
HAL Id: tel-04170799
https://theses.hal.science/tel-04170799v1

Submitted on 25 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtualization of micro-architectural components using
software solutions

Vo Quoc Bao Bui

To cite this version:
Vo Quoc Bao Bui. Virtualization of micro-architectural components using software solutions. Net-
working and Internet Architecture [cs.NI]. Institut National Polytechnique de Toulouse - INPT, 2020.
English. �NNT : 2020INPT0082�. �tel-04170799�

https://theses.hal.science/tel-04170799v1
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Réseaux, Télécommunications, Systèmes et Architecture

Présentée et soutenue par :
M. VO QUOC BAO BUI

le mardi 29 septembre 2020

Titre :

Unité de recherche :

Ecole doctorale :

Virtualization of Micro-architectural Components Using Software Solutions

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

 Institut de Recherche en Informatique de Toulouse (IRIT)
Directeur(s) de Thèse :

M. DANIEL HAGIMONT
M. ALAIN TCHANA

Rapporteurs :
M. JALIL BOUKHOBZA, UNIVERSITE DE BRETAGNE OCCIDENTALE

Mme FABIENNE BOYER, UNIVERSITE GRENOBLE ALPES

Membre(s) du jury :
M. FABRICE HUET, UNIVERSITE DE NICE SOPHIA ANTIPOLIS, Président
M. ALAIN TCHANA, ECOLE NORMALE SUP LYON ENS DE LYON, Membre

M. DANIEL HAGIMONT, TOULOUSE INP, Membre

To my family...

It’s hardware that makes a machine fast.
It’s software that makes a fast machine slow.

Craig Bruce.

Acknowledgments

I would like to express my gratitude to Mr. Alain Tchana, Professor at
École Normale Supérieure de Lyon and to Mr. Daniel Hagimont, Professor at
Institut National Polytechnique de Toulouse for their supervision during the
three years of my PhD. Their advices are very valuable and important to the
work in this thesis. I also would like to thank all the jury members who spent
their valuable time to evaluate my work.

I’m very thankful to my colleagues in SEPIA research team: Boris Teabe,
Vlad Nitu, Kevin Jiokeng, Patrick Lavoisier Wapet, Djob Mvondo, Mathieu
Bacou, Grégoire Todeschi, Tu Dinh, Stella Bitchebe,... Beside the helpful work-
related discussions, their humor and welcome made me feel happy and joyful
to be a part of the team.

I wish to express my thanks to The Embassy of France in Viet Nam for the
scholarship during my three years in France.

Finally, I’m grateful to my family and friends who always support me and
give me encouragements to pursuit my goals.

iv

Abstract

Cloud computing has become a dominant computing paradigm in the in-
formation technology industry due to its flexibility and efficiency in resource
sharing and management. The key technology that enables cloud computing
is virtualization. Essential requirements in a virtualized system where several
virtual machines (VMs) run on a same physical machine include performance
isolation and predictability. To enforce these properties, the virtualization soft-
ware (called the hypervisor) must find a way to divide physical resources (e.g.,
physical memory, processor time) of the system and allocate them to VMs
with respect to the amount of virtual resources defined for each VM. However,
modern hardware have complex architectures and some microarchitectural-level
resources such as processor caches, memory controllers, interconnects cannot
be divided and allocated to VMs. They are globally shared among all VMs
which compete for their use, leading to contention. Therefore, performance
isolation and predictability are compromised.

In this thesis, we propose software solutions for preventing unpredictability
in performance due to micro-architectural components. The first contribution is
called Kyoto, a solution to the cache contention issue, inspired by the polluters
pay principle. A VM is said to pollute the cache if it provokes significant cache
replacements which impact the performance of other VMs. Henceforth, using
the Kyoto system, the provider can encourage cloud users to book pollution
permits for their VMs.

The second contribution addresses the problem of efficiently virtualizing
NUMA machines. The major challenge comes from the fact that the hypervisor
regularly reconfigures the placement of a VM over the NUMA topology. How-
ever, neither guest operating systems (OSs) nor system runtime libraries (e.g.,
HotSpot) are designed to consider NUMA topology changes at runtime, lead-
ing end user applications to unpredictable performance. We presents eXtended
Para-Virtualization (XPV), a new principle to efficiently virtualize a NUMA
architecture. XPV consists in revisiting the interface between the hypervisor
and the guest OS, and between the guest OS and system runtime libraries so
that they can dynamically take into account NUMA topology changes.

vi

Résumé

Le cloud computing est devenu un paradigme dominant dans l’industrie
informatique en raison de sa flexibilité et de son efficacité dans le partage et
la gestion des ressources. La technologie clé qui permet le cloud computing
est la virtualisation. L’isolation et la prédictibilité de performance sont des
exigences essentielles d’un système virtualisé où plusieurs machines virtuelles
(MVs) s’exécutent sur une même machine physique. Pour mettre en œuvre ces
propriétés, le logiciel de virtualisation (appelé l’hyperviseur) doit trouver un
moyen de diviser les ressources physiques (par exemple, la mémoire physique,
le temps processeur) du système et de les allouer aux MVs en fonction de
la quantité de ressources virtuelles définies pour chaque MV. Cependant, les
machines modernes ont des architectures complexes et certaines ressources de
niveau micro-architectural telles que les caches de processeur, les contrôleurs
de mémoire, les interconnexions ne peuvent pas être divisées et allouées aux
MVs. Elles sont partagées globalement entre toutes les MVs qui rivalisent pour
leur utilisation, ce qui conduit à la contention. Par conséquent, l’isolation et la
prédictibilité de performance sont compromises.

Dans cette thèse, nous proposons des solutions logicielles pour prevenir la
non-prédictibilité des performances due aux composants micro-architecturaux.
La première contribution s’appelle Kyoto, une solution pour le problème de
contention du cache, inspirée du principe pollueur-payeur. Une MV est pol-
lueuse si elle provoque des remplacements importants de lignes de cache qui
ont un impact sur la performance des autres MVs. Désormais, en utilisant le
système Kyoto, le fournisseur peut encourager les utilisateurs du cloud à réser-
ver des permis de pollution pour leurs MVs.

La deuxième contribution aborde le problème de la virtualisation efficace
des machines NUMA. Le défi majeur vient du fait que l’hyperviseur reconfigure
régulièrement le placement d’une MV sur la topologie NUMA. Cependant, ni
les systèmes d’exploitation (OSs) invités ni les librairies de l’environnement
d’exécution (par exemple, HotSpot) ne sont conçus pour prendre en compte les
changements de topologie NUMA pendant leur exécution, conduisant les appli-
cations de l’utilisateur final à des performances imprévisibles. Nous présentons
eXtended Para-Virtualization (XPV), un nouveau principe pour virtualiser ef-
ficacement une architecture NUMA. XPV consiste à revisiter l’interface entre
l’hyperviseur et l’OS invité, et entre l’OS invité et les librairies de l’environne-
ment d’exécution afin qu’ils puissent prendre en compte de manière dynamique
les changements de topologie NUMA.

viii

Contents

1 Introduction 1

2 Background 4
2.1 Virtualization . 5

2.1.1 Definitions . 5
2.1.2 CPU Virtualization . 7
2.1.3 Memory Virtualization 11
2.1.4 I/O Virtualization . 14

2.2 Processor Caches . 18
2.2.1 Definitions . 18
2.2.2 Operating principle . 20
2.2.3 Associativity . 21

2.3 Non-Uniform Memory Access (NUMA) 22
2.3.1 The hardware view . 22
2.3.2 The Linux kernel view 23

2.4 Virtualization of Micro-architectural Components 24
2.5 Synthesis . 28

3 Kyoto: Taxing Virtual Machines for Cache Usage 29
3.1 Motivations . 30

3.1.1 Problem statement . 30
3.1.2 Problem assessment . 31

3.1.2.1 Experimental environment 31
3.1.2.2 Benchmarks . 31
3.1.2.3 Metrics . 32
3.1.2.4 Evaluation scenarios 32
3.1.2.5 Evaluation results 33

3.2 The Kyoto Principle . 34
3.2.1 Basic idea: “polluters pay” 35
3.2.2 The Kyoto’s scheduler within Xen 36
3.2.3 Computation of llc_capact 37

3.3 Evaluations . 38
3.3.1 The processor is a good lever 38

x

3.3.2 Equation 3.1 vs LLC misses (LLCM): which indicator as
the llc_cap? . 39

3.3.3 KS4Xen’s effectiveness 40
3.3.4 Comparison with existing systems 42
3.3.5 Kyoto’s overhead . 43

3.4 Discussion . 46
3.5 Related Work . 47
3.6 Synthesis . 49

4 When eXtended Para–Virtualization (XPV) Meets NUMA 50
4.1 Motivations . 51

4.1.1 Description . 52
4.1.2 Limitations . 52
4.1.3 Synthesis . 56
4.1.4 Hot-(un)plug as a solution? 56

4.2 eXtended Para-Virtualization 57
4.2.1 Principle . 57
4.2.2 Methodology for making legacy systems XPV aware . . . 58

4.3 Technical Integration . 61
4.3.1 Xen modifications . 62
4.3.2 Linux modifications . 63
4.3.3 Application-level modifications: the HotSpot Java vir-

tual machine use case . 64
4.4 Evaluations . 65

4.4.1 Experimental setup . 65
4.4.2 XPV implementation efficiency 66
4.4.3 vNUMA vs blackbox solutions 68
4.4.4 XPV facing topology changes 70

4.4.4.1 XPV facing topology changes caused by vCPU
loadbalancing 71

4.4.4.2 XPV facing topology changes caused by mem-
ory ballooning 72

4.4.5 Automatic NUMA Balancing (ANB) limitations 73
4.4.6 XPV internals . 74

4.5 Related Work . 75
4.5.1 Industrial solutions . 75
4.5.2 Academic solutions . 76
4.5.3 Positioning of our work 76

4.6 Synthesis . 77

xi

5 Conclusion and Perspectives 78
5.1 Conclusion . 78
5.2 Perspectives . 79

Bibliography 81

xii

Chapter 1

Introduction

Nowadays, many organizations tend to outsource the management of their
physical infrastructure to hosting centers. By this way, companies aim at re-
ducing their cost by paying only for what they really need. This trend, com-
monly called cloud computing, is general and concerns all field of Information
Technology. Notably, recent years have seen HPC application developers and
industries thinking about the migration of their applications to the cloud [81].

In this context, the majority of platforms implements the Infrastructure as a
Service (IaaS) cloud model where customers buy virtual machines (VM) with a
set of reserved resources. One of the essential properties of virtualization is that
it provides isolation among VMs running on the same physical machine. Iso-
lation takes different forms, including security (sandboxing) and performance.
Regarding security, isolation between VMs means that operating systems (and
their applications) running in VMs are executing in separate address spaces
and are therefore protected against illegal (bogus or malicious) accesses from
other VMs. Regarding performance, isolation means that the performance of
applications in one VM should not be influenced or depend on the behavior of
other VMs running on the same physical machine.

Performance isolation and predictability are hard to achieve in a virtual-
ized context due to complex architectures of modern hardware. Some micro-
architectural components such as last level cache (LLC) can’t be properly
and/or efficiently divided and virtualized, resulting in performance interference
caused by contention. In addition, machines have evolved to NUMA multicore
architectures where there is a complex interconnect to connect NUMA nodes,
each contains a memory bank and several cores. The performance promises

Chapter 1. Introduction

of NUMA architectures is nearly achieved in bare-metal systems with heuris-
tics that place the memory and the threads of the processes on the nodes
[75, 53, 52, 56]. However, in a virtualized system, the guest OS cannot imple-
ment such heuristics as the hypervisors can blindly change the NUMA topology
of the guest VMs in order to balance the workload in the underlying hardware.

In this thesis, we propose two contributions as follows:

Kyoto: A software solution to the issue of LLC contention. This solution
is inspired by the polluters pay principle. A VM is said to pollute a cache
if it provokes significant cache replacements which impact the performance of
other VMs. We rely on hardware counters to monitor the cache activity of each
VM and to measure each VM cache pollution level. A VM which exceeds its
permitted pollution at runtime has its CPU capacity reduced accordingly.

eXtended Para-Virtualization (XPV): A new principle to efficiently virtu-
alize a NUMA architecture. XPV consists in revisiting the interface between
a hypervisor and a guest OS and between the guest OS and the system run-
time libraries (SRLs) in order to dynamically adapt NUMA policies used in
the guest OS and the SRLs when the NUMA topology of the VM changes. By
doing so, XPV allows each layer in the virtualization stack to implement what
it does best: optimization of resource utilization for the hypervisor and NUMA
resource placement for the guest OS and the SRLs.

Publications that constitute this thesis:

1. Alain Tchana, Bao Bui, Boris Teabe, Vlad Nitu, Daniel Hagimont. Miti-
gating performance unpredictability in the IaaS using the Kyoto principle.
Middleware 2016: 17th ACM/IFIP/USENIX International Middleware
Conference, Dec 2016, Trento, Italy. pp. 1-10.

2. Bao Bui, Djob Mvondo, Boris Teabe, Kevin Jiokeng, Lavoisier Wapet,
et al.. When eXtended Para-Virtualization (XPV) meets NUMA. EU-
ROSYS 2019: 14th European Conference on Computer Systems, Mar
2019, Dresde, Germany. pp.7.

2

Chapter 1. Introduction

Other publications:

1. Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schi-
avoni, Pascal Felber, and Daniel Hagimont. Everything You Should Know
About Intel SGX Performance on Virtualized Systems. Proc. ACM
Meas. Anal. Comput. Syst. 3, 1, Article 5 (March 2019), 21 pages.
DOI:https://doi.org/10.1145/3322205.3311076.

The rest of this thesis is organized as follows. Chapter 2 presents the back-
ground of our work including virtualization, processor cache and NUMA and
discusses the virtualization of several micro-architectural components. Chapter
3 and 4 present in detail our two contributions: Kyoto and XPV respectively,
their implementation as well as their evaluation. Finally, chapter 5 concludes
our work and discuss the future works.

3

Chapter 2

Background

Contents
2.1 Virtualization . 5

2.1.1 Definitions . 5

2.1.2 CPU Virtualization 7

2.1.3 Memory Virtualization 11

2.1.4 I/O Virtualization 14

2.2 Processor Caches . 18

2.2.1 Definitions . 18

2.2.2 Operating principle 20

2.2.3 Associativity . 21

2.3 Non-Uniform Memory Access (NUMA) 22

2.3.1 The hardware view 22

2.3.2 The Linux kernel view 23

2.4 Virtualization of Micro-architectural Components 24

2.5 Synthesis . 28

We present here the background of this thesis: virtualization and virtual-
ization techniques in section 2.1, processor caches in section 2.2, NUMA archi-
tecture in section 2.3 and an overview of virtualization solutions for different
micro-architectural components in section 2.4. The two sections 2.2 and 2.3
cover micro-architectural components which are the sources of the performance
unpredictability we address in this work.

2.1. Virtualization

2.1 Virtualization

2.1.1 Definitions

Virtualization isn’t a new concept. It finds its root back to the late 1960s. Back
then, it had been seen as a cost-effective technique for “organizing computer
systems resources to provide extraordinary system flexibility and support for
certain unique applications” [57]. A popular use case was to allow several devel-
opers to share an expensive computer system. However, by the 1980s, with the
appearance of personal computers and the maturity of operating systems (OSs),
virtualization didn’t gain much attention from computer system researchers.
When hardware becomes more powerful over time, interests in virtualization
across academics and industry have been raised again. While virtualization is
still regarded as an effective and flexible way for sharing computing resources,
it can help address some limitations of the current system architectures, such
as security, reliability and OS migration. It quickly becomes a driving force
of innovation in both software and hardware industries. Several improvements
have been made in OSs, systems management and hardware designs to account
for better virtualization. A new computing paradigm called cloud computing
where computing resources are provided to users on demand has been widely
adopted thanks to the flexibility of virtualization technology.

Virtualization refers to the process of creating a virtual representation of
something, such as CPU, memory, network card, disk storage. A combination of
virtualized CPUs, memory and I/O devices that forms a complete and isolated
computing environment is defined as a virtual machine (VM). The latter is
created and managed by a system software called hypervisor or virtual machine
monitor (VMM) and can run its own independent OS instance, called the
guest OS. However, not any piece of software that creates and manages VMs is
considered as hypervisor. According to Popek and Goldberg [88], a hypervisor
has three essential characteristics: equivalence, performance and safety.

• Equivalence: A program executing in a virtual environment created by
the hypervisor performs identically to its execution on hardware. The dif-
ferences in executions caused by timing dependencies and resource avail-
ability are acceptable.

• Performance: A “statically significant” amount of program instructions
must be executed directly by the hardware without the intervention from

5

2.1. Virtualization

the hypervisor. As a result, at worst, the virtual environment only shows
minor decreases in speed.

• Safety: The hypervisor is in complete control of system resources. It
means (1) a VM is limited to only using the amount of resources allocated
to it and (2) it’s possible for the hypervisor to regain control of resources
already allocated. In other words, VMs are required to be isolated from
each other as well as from the hypervisor.

Figure 2.1: Two types of hypervisors.

Several hypervisors have been developed throughout the years and are usu-
ally (and loosely) classified into two categories depending on whether they run
on a bare machine or on a host OS (Fig. 2.1):

• Type-1: The hypervisor runs on a bare machine and directly controls
system resources. The emphasis here is on system scheduling and resource
allocation [36]. The hypervisor itself makes the resource allocation and
scheduling decisions. XEN [32], VMWare ESX Server [17] and Microsoft
Hyper-V are examples of type-1 hypervisors.

• Type-2: The hypervisor runs on a host OS. It’s the latter that plays the
role of resource allocator and scheduler of the system. The hypervisor
and VMs appear as normal processes to the host OS. Examples of type-2

6

2.1. Virtualization

hypervisors are KVM [70], Oracle VirtualBox [105], VMWare Worksta-
tion [35]. Although the performance of type-2 hypervisors may not be as
good as that of type-1 hypervisors, their implementation is less complex.

2.1.2 CPU Virtualization

The requirements defined by Popek and Goldberg have been served as a guide-
line for developing hypervisors. Popek and Goldberg went further and proposed
a theorem which determines if a given instruction set architecture (ISA) is vir-
tualizable, in the sense that any OS being able to run on the hardware can
be run inside a VM without modifications [88]: “For any conventional third-
generation computer, a virtual machine monitor may be constructed if the set
of sensitive instructions for that computer is a subset of the set of privileged in-
structions”. An instruction is considered sensitive if it can update the machine
state or its semantics depend on the machine state. On the other hand, a priv-
ileged instruction is one that can only be executed in supervisor mode and will
cause a trap when executed in user mode. The virtualization approach implied
by the theorem is direct execution with trap-and-emulate which consists
of, as its name suggests, (1) directly executing non-sensitive instructions on
the processors; (2) trapping and then emulating sensitive instructions. In this
way, the VMM can remain in control and configure the virtualized hardware
correctly to achieve virtualization goals.

Figure 2.2: x86 architecture in a non-virtualized environment [8].

As stated above, researches on virtualization went inactive for some time.
ISAs developed during that time, such as MIPS, x86 and ARM, didn’t take
virtualization into account. The x86 architecture, for example, contains several
problematic sensitive but unprivileged instructions (pushf, popf, iret,...) [93].

7

2.1. Virtualization

As a result, it is not virtualizable according to the Popek and Goldberg the-
orem. However, there are other techniques, namely binary translation and
paravirtualization, that can satisfy the virtualization requirements of equiv-
alence, performance and safety. Later, when virtualization became more pop-
ular, hardware producers incorporated hardware assisted features into their
processors helping the x86 architecture conform to the theorem.

The x86 hardware. Before going into detail about different virtualization
techniques, it’s worth noting that the x86 hardware is assumed by default in
this thesis. As shown in the Fig. 2.2, in the x86 architecture, there are four
levels of privilege, namely Ring 0, 1, 2 and 3. Ring 0 is the most privileged
level, Ring 3 is the least. In a non-virtualized environment, Ring 0 is used for
the OS, applications run at Ring 3 while Ring 1 and 2 are usually unused.

Figure 2.3: Full virtualization on x86 hardware [8].

Binary translation. This technique is usually employed to run binary
programs compiled for a specific ISA on processors with a different ISA [97].
The way it works is to read and analyze the source instructions, translate
them into the new instructions that are executable on the target hardware and
execute them. The process can be done statically or dynamically.

Dynamic binary translation can be applied for virtualization to run unmod-
ified OSs on x86 architecture. The idea is to translate sensitive but unprivileged
instructions to safer ones that provide the intended effects on the VM. To speed
up performance, translated code is cached. Optimization techniques such as
“block chaining”, which allows blocks of translated code to be executed one
after another without transferring control back to the hypervisor, can be used.
However, using binary translation for user-level programs could still introduce
up to 5x slowdown [94]. To address the performance issue, VMware’s solution

8

2.1. Virtualization

is to combine direct execution with binary translation: direct execution used
to run user applications, binary translation used to run the guest OS [35]. This
solution (Fig. 2.3) is referred to as full virtualization.

Figure 2.4: XEN paravirtualization on x86 hardware [8].

Paravirtualization. While binary translation adapts problematic instruc-
tions at the binary level, paravirtualization does that at the source code level.
Therefore, this technique can only be used for open source OSs, such as Linux,
FreeBSD. Although the application scope is limited, paravirtualization gives
better performance than binary translation.

XEN [32] is a popular open source type-1 hypervisor that uses paravirtu-
alization. To provide virtualization support for the x86 hardware, the OS’s
code for x86 architecture needs to be updated in a way that non-virtualizable
instructions are unused. These instructions are replaced by hypercalls, which
are calls from the guest OS to the hypervisor. The latter can then take ap-
propriate actions to properly emulate the VM state. With these changes, all
instructions to be executed are now virtualizable. XEN can use direct execution
with trap-and-emulate to implement virtualization (Fig. 2.4).

Hardware assisted virtualization. To overcome the lack of virtualiza-
tion support from the hardware, hypervisor developers had to find a way to
adapt the guest OS at either source code or binary level. This made hypervi-
sors more complex than they should be. As the need for virtualization became
inevitable, Intel and AMD both have updated their products to add virtualiza-
tion extensions. While Intel introduced VT-x, AMD developed AMD-V. Both
are virtualization technologies for x86 platforms. The main goal is to eliminate
the need for paravirtualization and binary translation. This helps hypervisors
become simpler, more robust but still maintain a high level of performance and
supports for unmodified guest OSs. We focus our discussion on Intel VT-x. Al-

9

2.1. Virtualization

though Intel VT-x and AMD-V are not entirely the same, they rely on similar
principles.

Figure 2.5: Hardware assisted virtualization on x86 (Intel) hardware [8].

VT-x enabled processors have two modes of operation: root operation and
non-root operation [83]. Both operating modes offer four privilege levels. In
general, root operation is intended for use by a hypervisor, while a guest OS
runs in non-root operation. Transitions between the two modes are allowed.
Precisely, there are two kinds of transition: a transition from root operation
to non-root operation is called a VM Entry, and a transition from non-root
operation to root operation is called a VM Exit. Upon a VM Entry, the so-
called host processor state is stored and the guest processor state is loaded.
Similarly, a VM Exit causes the guest state to be saved and the host state
to be loaded. The two processor states are parts of a hardware-based data
structure named the virtual machine control structure (VMCS).

Processors behave differently depending on which mode of operation they
are in. In non-root mode, the processor behavior is limited and modified to
facilitate virtualization. For instance, sensitive instructions and events now
cause VM Exits which give control back to the hypervisor. It’s also possi-
ble for system developers to configure conditions triggering VM Exits via the
VMCS. With these architectural changes, Intel VT-x makes the x86 hardware
virtualizable according to the Popek and Goldberg’s criteria (Fig. 2.5).

10

2.1. Virtualization

2.1.3 Memory Virtualization

Figure 2.6: An overview of address translation in a virtualized environment.

Virtualization adds a new layer into the software stack alongside with a new
address space. In a virtualized environment, there are basically three address
spaces: guest virtual address (GVA), guest physical address (GPA) and host
physical address (HPA). GVAs are what is exposed to applications by the guest
OS. HPAs are real machine addresses used by the hardware to fetch and store
the data. GPAs are addresses assumed by guest OSs as main memory but this
memory is virtualized.

The main objective is to translate a GVA to a HPA. Address translations are
usually done via a technique called paging, which consists of dividing memory
into pages and using page tables (PTs) mapping pages between two address
spaces. The guest OS sets up a set of virtual-to-physical page tables (V2Ps) for
each process. The hypervisor can maintain two following sets of PTs: physical-
to-host page tables (P2Hs) and virtual-to-host page tables (V2Hs). All these
PTs are not necessarily needed at the same time, a virtualization technique
can mainly rely on one or two of them. The actual address translation is
however carried out by the PT walker, which is a special hardware of the
memory management unit (MMU). Its job is to walk through the PTs of choice
(pointed to by the CR3 register) to get the desired address. Fig. 2.6 shows
a high level overview regarding how the address translation can be done. We
present here three well-known techniques: shadow paging, direct paging
and hardware assisted paging.

Shadow paging. The guest OS is unaware of the existence of the hypervi-
sor. In this case, the hypervisor maintains the V2Hs in the shadow. These PTs
are usually referred to as the shadow page tables (SPTs). It is only the SPTs
that are used by the PT walker to perform the address translation. There-
fore, the performance of address translation is close to that of a native, non-

11

2.1. Virtualization

virtualized system. However, there are some sources of overhead in shadow
paging (Fig. 2.7). First, the hypervisor must intervene when the guest OS up-
dates its PTs in order to reflect the changes to the SPTs accordingly. This is
usually done by a technique called memory tracing, which allows the hypervi-
sor to mark any page in guest physical memory as read-only. Any attempt to
write to a read-only page will result in a page fault, transferring control to the
hypervisor. Second, the PT walker may update the accessed and dirty bits in
the SPTs, these changes need to be reflected back in the guest. Third, when
the guest tries to schedule a new process, it updates the guest CR3 register to
establish the new process’s PTs, the hypervisor must intercept this operation,
set the shadow CR3 value pointing to the corresponding SPTs. As a result, if
the VM causes too many context switches or PT updates, its performance may
suffer greatly.

Figure 2.7: Shadow paging with 2-level PTs [15].

12

2.1. Virtualization

Figure 2.8: Address translation with EPT (4-level PTs; eLi is EPT level i; gLi
is guest PT level i).

Direct paging. This technique is used by XEN to provide memory vir-
tualization for paravirtualized VMs. As the guest OS knows that it runs in a
virtualized environment, the hypervisor lets it manage the V2Hs directly (hence
the name direct paging). The guest OS has controlled access to necessary in-
formation in order to correctly maintain the V2Hs. The hypervisor is still there
to validate any update to the PTs made by the guest OS. As the latter has no
write permission to the PTs, the changes have to be applied via hypercalls to
the hypervisor.

Hardware assisted paging. Modern Intel’s hardware has implemented
a virtualization extension called Extended Page Tables (EPT) or Nested Page
Tables (NPT) in case of AMD’s. EPT adds to the VMCS the EPT pointer field
that points to the P2Hs. The guest OS maintains the V2Ps which are pointed
to by the guest CR3 register. This means the two PTs are now exposed to
the hardware. The PT walker can perform a so-called 2-dimensional walk
using both PTs to get a HPA from a GVA. Precisely, after each pass through

13

2.1. Virtualization

the V2Ps to translate a GVA to a GPA, the P2Hs are then used to derive
a HPA from the GPA. As a result, EPT helps eliminate calls or traps into
the hypervisor in case of the PT update synchronization. However, the cost
of an address translation with EPT becomes more expensive as both PTs are
used. For example, supposing both PTs have 4 levels in their structure, EPT
requires 24 memory references in total as opposed to only 4 memory references
in a native page walk (Fig. 2.8).

2.1.4 I/O Virtualization

I/O devices are important components for a computer system. Fortunately,
just like in case of processor and memory, even with the lack of hardware
supports for virtualization, they can still be virtualized purely by software
techniques with the costs of engineering time and performance. However, for
high performance use cases, hardware virtualization extensions are required.

Figure 2.9: Architectures for software-based I/O virtualization (simplified):
emulation (left) and paravirtualization (right). The hypervisor routes I/O re-
quests from the guests to a privileged VM, denoted “dom0”, having device
drivers installed to perform the back-end of I/O operations.

I/O emulation (full virtualization). A traditional approach for I/O
virtualization consists of exposing virtual I/O devices to the guests while im-
plementing the semantics of physical devices in a device emulation layer. In
general, the OS can interact with I/O devices via the following mechanisms:
Port-mapped IO (PIO), Memory-mapped IO (MMIO), Direct Memory Access
(DMA) and interrupts. With proper configuration, guest’s PIOs and MMIOs

14

2.1. Virtualization

can be trapped, interrupts can be injected into the guest. Emulating DMA is
easy for the hypervisor as it can read from and write to the guest’s memory
pages. All of these emulations can be done with or without VT-x/AMD-V
support. To fulfill I/O requests from the guests, the hypervisor has two op-
tions: using device drivers embedded within itself (VMware ESXi) or relying
on a privileged guest equipped with necessary device drivers (XEN, shown in
Fig. 2.9). While using embedded drivers in the hypervisor may help reduce
latency, the second option has the advantages of simplicity and portability.

I/O paravirtualization. Although I/O emulation provides good compat-
ibility, it usually has high performance overheads. This is due to the fact that
the physical devices that are emulated are not designed to support virtualiza-
tion. For example, there are multiple register accesses involved in sending or
receiving a single Ethernet frame using the Intel 82540EM Gigabit Ethernet
Controller [36]. This is inefficient in a virtualized setup as the matching em-
ulation code (e.g., e1000 in QEMU) would cause a lot of VM exits per frame
sent or received as well.

It takes time for hardware makers to keep up with the virtualization train.
However, it’s possible to emulate a virtual device whose specification is efficient
for virtualization (i.e., to minimize the number of VM exits involved). The
guest OS and the hypervisor have to agree to work on such a device for I/O
operations. The device is said to be paravirtualized and the guest needs to
install a paravirtualized driver to work with it. This driver, which is also known
as the front-end driver, is the first in the two components in the architecture
of I/O paravirtualization. The second component is the back-end driver that
runs in the hypervisor (or in a privileged guest) and serves as the underlying
implementation for the device (Fig. 2.9).

Figure 2.10: Address translation with 2D MMU for processes and 1D IOMMU
for I/O devices [36].

15

2.1. Virtualization

Direct device assignment. Instead of exposing a virtual I/O device, the
hypervisor can directly assign the physical device to the VM for exclusive usage.
This solution may provide the best performance for an I/O-intensive VM as
the latter can interact with the device with minimal or no involvement from
the hypervisor. However, apart from some obvious drawbacks like the lack of
scalability and portability, there are concerns about safety as well, especially
for DMA capable devices. The fundamental problem is the mismatch of the
notion of physical addresses used by the guest OS and the device. The guest
OS directs the device using the GPAs while the device expects to work with the
HPAs for I/O operations. This means the device could potentially access to
memory belonging to the hypervisor or other VMs. A software-based solution
for this is to modify the device driver to do the address translation. However,
exposing the HPAs to the driver doesn’t eliminate the safety issues. Additional
hardware support is necessary for a secure and safe direct device assignment.

Many chip vendors have updated their hardware to include the I/O memory
management unit (IOMMU), such as Intel’s Virtualization Technology for Di-
rected I/O (VT-d) [21], AMD’s I/O Virtualization Technology (AMD-Vi) [24].
IOMMU has a component called DMA remapping hardware that can do the
address translation using the page tables mapping the virtual addresses used
by the device (e.g., the GPAs) to the HPAs. Basically, the way the DMA
remapping hardware works for I/O devices is similar to how the MMU works
for processes (Fig. 2.10). However, unlike regular memory accesses, I/O devices
don’t expect page faults for DMA operations. For that reason and because the
hypervisor doesn’t know exactly which pages are used by the device, when the
hypervisor assigns a device to a guest, it usually pins the entire guest’s memory.

I/O device sharing. Direct device assignment can achieve a native per-
formance for guest’s I/O operations but is not a scalable solution. Each direct
assigned device can only be used by one VM at a time and the number of
devices that are plugged into the host system is limited (comparing to the
number of guests). To make direct device assignment scalable, the Single Root
Input/Output Virtualization or SR-IOV was proposed. It is an extension for
PCI Express (PCIe) devices. Traditionally, it’s the responsibility of the hyper-
visor to multiplex I/O devices for the VMs. In case of a SR-IOV device, the
resource sharing function is built in at the hardware level. However, some min-
imal support is still required from the system software in order for the SR-IOV
to work as a resource sharing mechanism.

16

2.1. Virtualization

Figure 2.11: Direct device assignment with SR-IOV.

A SR-IOV device works by presenting at least one physical function (PF)
and multiple virtual functions (VFs) [16]. A PF acts as a full-featured PCIe
function with the ability to configure and manage the SR-IOV functionality
(e.g., allocate, deallocate and configure the VFs). A VF is a simple PCIe
function that can process I/O but with a limited configuration space. Each
VF can be assigned to a VM as a separate device instance. In Fig. 2.11, the
hypervisor uses the PF driver to configure the VFs of a SR-IOV device (e.g., a
SR-IOV NIC) and assigns each VF for a guest. The VF’s configuration space
is presented to the guest as the device’s configuration space. The assigned VF
is recognized and usable thanks to the VF driver residing in the guest.

Supposing a VF of a SR-IOV NIC is assigned to the guest. The latter can
receive an Ethernet packet as follows [19]. When the Ethernet packet arrives
at the NIC, the Layer 2 sorter, which is configured by the PF driver, puts the
packet into the dedicated receive queue of the target VF. The packet is then
moved to the memory space of the guest via DMA with the target memory
location configured by the VF driver. After the DMA operation is completed,
the NIC fires an interrupt which is handled by the hypervisor. The latter
generates a virtual interrupt to inform the guest that the packet has arrived.
For any operation that has global effect, the VF driver must communicate
with the PF driver. It’s up to the vendor to implement the communication
path between the two drivers.

17

2.2. Processor Caches

2.2 Processor Caches

2.2.1 Definitions

The processor caches are layers of memory located between the main memory
and a processor. One of the main activities of the processor is to access data
(read or write) in memory. However, the speed of a computer’s main memory
is much slower than the processor’s. Therefore, when the CPU tries to access
memory, it has to wait for a period time during which it does not execute in-
structions. To minimize this waiting time, a cache memory is inserted between
the CPU and the main memory. This mechanism allows the processor to access
a very fast cache memory before accessing the main memory.

Cache memories are part of the so-called memory hierarchy. Fig. 2.12 shows
a hierarchy of different types of memory available in a computer system. As
we go up in this hierarchy, the cost and speed increase while the size decreases.
At the highest level, there are the registers that are used for computations.
The cache memories are actually placed between the registers and the main
memory. In fact, with this structure, we can consider that for each level of
memory in the hierarchy, the smaller and faster storage unit at level n serves
as a cache for level n + 1 below.

Figure 2.12: Memory hierarchy inside a computer system.

It is possible to integrate several levels of processor cache in a computer
system. Today’s machines often have three levels of cache memory (namely
L1, L2 and L3, Fig. 2.13). The relationship between two levels of cache can

18

2.2. Processor Caches

be inclusive or exclusive. For example, the L2 cache is said to be inclusive if
it is forced to contain all the data inside the L1 cache. In case of an exclusive
cache, the data can be in the L1 cache or in the L2 cache but never in both.
When there is a cache fault at a cache level, the data is searched in the next
cache level. A cache fault in the last level cache (LLC) triggers the loading of
data from memory. The accessed data is replicated in all caches (except for
exclusive caches). Moreover, today machines are multicore, potentially multi
sockets, there are multiple local caches. As the shared data can be cached in
different places, the problem of cache coherence where multiple local copies of
the data need to be in-sync with each other arises. Snoopy or directory-based
protocols are commonly used by the hardware to ensure coherency.

The memory hierarchy works effectively because of the principles of data
locality. There are two forms of locality that many programs tend to follow.
When a piece of data is accessed for the first time, it is very likely to be revisited
later. So it’s worth keeping it in the cache. This is the principle of temporal
locality. Programs also tend to use the data in the memory area located near
the recently accessed data. Therefore, prefetching this memory area in the
cache could speeds up the performance. This is the principle of spatial locality.
For example, the instructions of a program are executed one after the other and
the next instruction to be executed is often placed in the location immediately
after the current instruction (except for the branch instructions).

Figure 2.13: Example of hardware with three levels of memory cache.

19

2.2. Processor Caches

2.2.2 Operating principle

The main memory is partitioned into contiguous data blocks. The cache mem-
ory is also partitioned into blocks of the same size as those in the main memory,
but in fewer numbers. These blocks of memory are called cache lines. The size
of each cache line can vary from 64 to 256 bytes. A cache line represents the
smallest unit of data that can be transferred between the cache and main mem-
ory. That is, it is impossible to load only a portion of a cache line from memory.
On the other hand, data words in a cache line can be accessed individually by
the processor.

The processor does not directly access the cache. In fact, the cache memo-
ries are not addressable and invisible from the processor’s point of view. When
the processor requests a read or write at a location in the memory, this access
is intercepted by the cache. If the requested data is present in the cache, there
is a cache hit. Otherwise, if it isn’t found, we have a cache miss or a cache
fault. A cache miss is potentially much more expensive compared to a cache
hit as the data may need to be loaded from the main memory.

Figure 2.14: Partition of the 32-bit memory address.

The processor accesses data by specifying its address in memory. To make
a correspondence between a memory address and a cache line, the former is
divided into three parts: tag, set offset, and word offset (Fig. 2.14). With a
cache line of 2W bytes in size, the lowest W bits of a memory address are used
as the offset into the cache line. The following S bits determine which set this
address belongs to (supposing there are 2S sets of cache lines). The remaining
32 −W − S = T bits (supposing the addresses are 32-bits wide) are used for
the tag that are associated with each cache line to differentiate the addresses in
the same set. Note that the memory address used by the cache can be physical
or virtual, depending on the cache implementation [44].

As the size of a cache is very small, and if a program has a working set size
larger than the cache size, it would cause a lot of cache faults. The selection of

20

2.2. Processor Caches

cache lines to be removed from the cache depends on the replacement policy
used. The Least Recently Used (LRU) policy, for example, replaces the least
recently used lines. There are other replacement algorithms such as Least
Frequently Used (LFU), First In First Out (FIFO). Also note that a cache fault
can trigger the eviction of several cache lines due to the prefetching mechanism
implemented in modern cache memories.

2.2.3 Associativity

The associativity of a cache indicates the number of possible cache lines where
the data located at a specific memory address can be stored. It is possible to
have a cache implementation in which memory data can be placed in any line.
This is the case of fully associative cache. The latter is very effective in reducing
collisions (cache faults). On the other hand, it is complex to implement because
in order to test the existence of the data in the cache, it requires to compare the
memory address against all the cache lines at the same time. Full associativity
is therefore only used in small cache memories such as Translation Lookaside
Buffer (TLB) caches.

Figure 2.15: Different types of cache associativity.

21

2.3. Non-Uniform Memory Access (NUMA)

For larger caches, we need a different approach. The main idea is to limit
the search space. In the extreme case, a memory address corresponds to one
and only one cache line. This is called the direct-mapped cache. This type of
cache memory simplifies the implementation of the cache. On the other hand,
the major drawback is the fact that it can create a lot of conflicting cache faults
if the memory addresses used by the program are not fairly distributed.

A trade-off solution is to create a set-associative cache. A N-way associative
cache divides its cache lines into N sets. The memory block corresponding to
a set can be placed in any available line of that set. If there is no line left,
a replacement policy is used. It’s easy to see that the two types of cache we
have seen above are special cases of the N-way associative cache. For the fully
associative cache, there is a single set that contains all the lines in the cache
and for the direct-mapped cache, the number of set is equal to the number
of lines. Fig. 2.15 shows an example regarding how a memory block is placed
depending on the type of cache associativity.

2.3 Non-Uniform Memory Access (NUMA)

2.3.1 The hardware view

Figure 2.16: Example of a NUMA system with 4 NUMA nodes.

In a traditional multiprocessor shared memory system, all the processors are
connected to the main memory via a single shared system bus. As a result, they
experience the same access time to the memory. This Uniform Memory Access

22

2.3. Non-Uniform Memory Access (NUMA)

(UMA) architecture has a scalability problem: as the number of processors
increases, the available bandwidth for each processor decreases. To provide
scalable memory bandwidth, a new architecture called Non-Uniform Memory
Access (NUMA) was introduced.

In a NUMA system, there are multiple components referred as NUMA
nodes. Each NUMA node may contain zero or more CPUs and memory
(Fig. 2.16). The nodes of the NUMA system are connected together through
some system interconnects such as AMD’s HyperTransport or Intel’s QuickPath
Interconnect. Although a processor attached to a node can access memory of
any node, the memory bandwidth and the access latency the processor experi-
ences vary depending on the distance between its node and the node containing
the memory being accessed. The lower the distance is, the higher the memory
bandwidth and the lower the latency is. Each node may also have its own pri-
vate caches. The cache coherency is ensured by the hardware. The described
above NUMA platform is usually known as cache coherent NUMA (ccNUMA).

2.3.2 The Linux kernel view

The proposed NUMA architecture introduces interesting challenges to software
developers. As the memory access time becomes non-uniform, careful attention
need to be taken regarding resource placement to avoid performance loss.

Linux maintains an independent memory management subsystem for each
NUMA node with memory [10]. In case of a memoryless node, the attached
CPUs are reassigned to other nodes that have memory. Traditionally, Linux
organizes memory pages into zones (e.g., normal zone, DMA zone) The zones
are ordered for page allocations. It means that if a selected zone has no memory
left, the page allocation is fallbacked to the zone after it. On a NUMA system,
a node can have multiple memory zones and a memory zone can overlap many
nodes. Linux creates for each memory zone a fallback zonelist containing dif-
ferent zones available across the NUMA nodes. The fallback zonelist can be
ordered by zones or by nodes. Linux uses the node ordered zonelist by default:
if there is a fallback, the memory allocator looks into other zones on the same
node first.

The Linux scheduler is also NUMA aware. In fact, the concept of scheduling
domains used for load balancing reflects the CPU topology in the system. The
base domain spans all the cores of the physical CPU. The parent level domain

23

2.4. Virtualization of Micro-architectural Components

spans all the physical CPUs in the system or in case of NUMA, all the physical
CPUs of a node. As Linux prioritizes local page allocations, the scheduler tries
to minimize task migrations among distant nodes.

To help deal with NUMA systems more efficiently, Linux exposes the under-
lying NUMA topology to user space and implements several NUMA policies
beside the default one. Specifically, the memory allocator can operate in 3
additional modes: bind, preferred and interleaved [11]. Bind mode allocates
memory pages only from the set of specified nodes. Preferred mode attempts
to allocate memory pages from the single specified node. If there is no mem-
ory left for allocations, it fallbacks to other nodes. Interleaved mode allocates
memory pages in a round-robin way among the specified nodes. Using these
policies and with the ability to control how the scheduler schedules application
processes, users can find an optimal configuration for their applications.

2.4 Virtualization of Micro-architectural Compo-
nents

The hypervisor enforces isolation among the VMs running on the same host
system by giving a fraction of computing resources to each VM and multiplex-
ing them on the host system. Several software and hardware techniques for
virtualizing coarse-grained resources such as physical memory, processor and
I/O devices were discussed in Section 2.1. On the other hand, some micro-
architectural resources such as last level cache, memory controller and inter-
connect are difficult to be properly and/or efficiently partitioned and virtu-
alized due to their nature in current system architectures. Regardless, they
are globally shared among all VMs. In other words, they are still subject to
contention, leading to performance interference. In this thesis, we consider
the additional hardware features built-in modern processors (e.g., hardware
performance counters) as micro-architectural components as well. There are
software that are designed to exploit these hardware features. The lack of
micro-architectural information being properly exposed to the VMs may cause
such applications running inside the VM to work incorrectly or less efficiently.
For instance, if the hypervisor doesn’t properly expose the performance mon-
itoring unit (PMU) programming interfaces to a VM, running a PMU-based
profiler inside the VM doesn’t produce meaningful output.

24

2.4. Virtualization of Micro-architectural Components

In general, depending on each type of micro-architectural resources, there
are two possible strategies that can be employed by the hypervisor on standard
hardware. The first one is to provide and maintain a virtualized view of the
resource to the VMs using traditional virtualization techniques (e.g., emula-
tion, paravirtualization). The second one consists of simply not exposing the
micro-architectural detail and if there is contention, relying on heuristics in re-
source scheduling and placement to minimize the interference among the VMs.
We discuss below some typical micro-architectural components and techniques
proposed to virtualize them.

Performance Monitoring Unit (PMU). Modern processors have the
PMU allowing software developers to do fine-grained performance profiling for
their applications. The PMU consists of a set of performance counter registers
that can be configured to monitor hardware-related events such as cache misses,
TLB misses, clock cycles. A counter overflow interrupt is sent to the CPU
when a performance counter register monitoring an event reaches a pre-defined
threshold. To allow a PMU-based profiler to properly run inside a guest, the
latter must have access to the performance counters and the hypervisor has
to implement PMU multiplexing. The virtual PMU can be implemented for
hardware-assisted guests [45, 46, 84] or paravirtualized guests [84]. In hardware-
assisted virtualization, the hypervisor can allow the guest to directly access
the performance counters and intercept the guest’s operations as necessary
via a trap-and-emulate mechanism. It can also inject virtual interrupts into
the guest. The hardware can be configured to automatically save and restore
the performance counters. In paravirtualization, hypercalls and a software
interrupt mechanism are used to implement the virtual PMU. Moreover, some
potential optimizations, such as the offsetting technique for accumulative event
counters and the batching of several register configuration changes into a single
call, can be used.

Dynamic Voltage and Frequency Scaling (DVFS). The DVFS com-
ponent allows processor cores to operate on different frequency/voltage levels
(i.e., P-states) to optimize power consumption. High-level power management
(PM) policies are implemented in the OS through a system service called gover-
nor. For example, the default governor used in most systems is the ondemand
governor where the frequency is adjusted according to CPU utilization. Cur-
rent hypervisors can only set a single PM policy per physical core although
the core may be shared among VMs with different loads. Liu et al. [76] and
Hagimont et al. [60] show that this scenario makes PM inefficient and may also
hurt the VM performance. Hagimont et al. [60] propose Power Aware Sched-

25

2.4. Virtualization of Micro-architectural Components

uler (PAS) to address the incompatibilities between virtualization and DVFS.
PAS dynamically adjusts the CPU share allocated to each VM each time the
processor frequency is modified. VirtualPower [82] attempts to export a set
of virtualized states called VirtualPower Management (VPM) states to VMs.
The PM requests from the VMs are recorded and used as inputs for VPM rules
which rely on hardware scaling, soft scaling or consolidation to carry out the
management decisions. Similarly, VIP [69] also define virtual P-states but per
virtual CPU (vCPU) and expose them to VMs. To enforce virtual P-states,
when a vCPU is scheduled out and in, its virtual P-state is saved and restored
respectively.

Advanced Programmable Interrupt Controller (APIC). The APIC
[26] equipped on each Intel’s processor core (also known as the local APIC or
LAPIC) can receive interrupts from several sources and send them to the pro-
cessor for handling. In a multiple processor systems, LAPIC sends and receives
the interprocessor interrupt (IPI) messages between processors. As an essen-
tial component of a processor core, the hypervisor must virtualize the LAPIC
for the VMs. To virtualize the LAPIC, the hypervisor maintains a memory
page called the “virtual APIC page” hosting all the virtual LAPIC’s registers
and then trap-and-emulate accesses to that page. Emulating guest accesses
to the virtual LAPIC’s control registers is not ideal in terms of performance
as it requires a lot of VM Exits. To address the virtualization overheads, In-
tel proposed a hardware feature called APIC virtualization (APICv) that can
eliminate up to 50% of VM Exits [20].

Processor caches. Current hypervisors are incapable of explicitly par-
titioning caches for VMs. This leads to the so-called cache contention issue
where VMs compete against each other for cache usages. Several research have
investigated this problem. They can be organized into two categories. The
first category includes research [98, 47, 43, 65, 73, 31] which proposes to in-
telligently collocating processes or VMs. Concerning the second category, it
includes research [89, 64, 90] which proposes to physically or softly partition
the cache. The main drawbacks of these solutions are the following: cache
partitioning solutions require the modification of hardware (not yet adopted
in today’s clouds) while VM placement solutions are not always optimal (VM
placement is a NP-hard problem). Most important, VM placement solutions
are not in the spirit of the cloud which relies on the pay-per-use model: why
not each VM is assigned an amount of cache utilization in the same way as it
is done for coarse-grained resource types?

26

2.4. Virtualization of Micro-architectural Components

To address this limitation, we propose Kyoto (see Chapter 3), a software
technique that employs the polluter pay principle in cache partitioning. This is
the first contribution in this thesis.

Non-Uniform Memory Access (NUMA). Existing approaches for vir-
tualizing the NUMA topology fall into two categories, Static and Blackbox. The
static virtual NUMA (vNUMA) approach is offered by major hypervisors (Xen,
KVM, VMWare and Hyper-V), and consists in directly exposing to the VM
the initial mapping of its vCPUs and VM memory to NUMA nodes when the
VM boots. Because the OS and the system runtime libraries (SRLs, such as
Java virtual machine) are unable to support resource mapping reconfiguration
[42, 23], this solution can only be used if the hypervisor fully dedicates a phys-
ical CPU (pCPU) to a given vCPU (respectively a machine memory frame to
the same guest memory frame), and if this mapping never changes during the
lifetime of the VM. This solution is not satisfactory because it wastes energy
and hardware resources by preventing workload consolidation.

On a NUMA architecture, current hypervisors are inefficient because they
blindly change the NUMA topology of the guest VM in order to balance the
load. The hypervisor migrates the vCPUs of a virtual machine when it balances
the load on the physical pCPUs or when it starts/stops new virtual machines.
The hypervisor also migrates the memory of a virtual machine when it uses
ballooning or memory flipping techniques [17]. These migrations change the
NUMA topology transparently to the VM [100, 103, 28]. However, guest OSs
and their SRLs are optimized for a given static NUMA topology, not for a
dynamic one [23]. Therefore, when the hypervisor changes the NUMA topology
of the VM, the guest OS and its SRLs consider a stale NUMA topology, which
results in wrong placements, and thus performance degradation.

The Blackbox approach was proposed by Disco [34], KVM [9], Xen, and
Voron et al. [103]. It consists in hiding the NUMA topology by exposing a
uniform memory architecture to the VM, and in implementing NUMA poli-
cies directly inside the hypervisor. By this way, the Blackbox approach can be
used in case of consolidated workloads. But, as we experimentally show in Sec-
tion 4.1, this approach is inefficient, especially with SRLs. A SRL often embeds
its own NUMA policies, which has been proven to be much more efficient than
exclusively relying on the OS (or hypervisor) level NUMA policies [56, 55, 68].
The Blackbox approach nullifies this effort because it hides the NUMA topol-
ogy from the SRL. Another issue with the Blackbox approach comes from the
current implementations of hypervisors, which can make conflicting placement

27

2.5. Synthesis

decisions. For instance, we have observed that the NUMA policy of the hyper-
visor may migrate a vCPU to an overloaded node in order to enforce locality,
while the load balancer of the hypervisor migrates back that vCPU in order to
balance the load (see Section 4.5).

Chapter 4 introduces extended paravirtualization (XPV), a software tech-
nique helping the whole software stack respond to changes in NUMA topology.
XPV constitutes the second contribution in this thesis.

2.5 Synthesis

This chapter introduced the general context of this thesis: virtualization and
several software and hardware techniques to implement it for different types of
system resources. Next, we presented the cache memory architecture and the
NUMA architecture that create interesting challenges at the micro-architectural
level for virtualization. Finally, we summarized several micro-architectural
components available in modern computer systems as well as state-of-the-art
techniques proposed to virtualize each of these components. While there are
many micro-architectural components that need to be addressed in virtualized
environments, we believe that processor caches and NUMA are critical to the
performance of VMs. Therefore, our contributions in this thesis focus mainly
on processor caches and NUMA.

28

Chapter 3

Kyoto: Taxing Virtual Machines
for Cache Usage

Contents
3.1 Motivations . 30

3.1.1 Problem statement 30

3.1.2 Problem assessment 31

3.2 The Kyoto Principle . 34

3.2.1 Basic idea: “polluters pay” 35

3.2.2 The Kyoto’s scheduler within Xen 36

3.2.3 Computation of llc_capact 37

3.3 Evaluations . 38

3.3.1 The processor is a good lever 38

3.3.2 Equation 3.1 vs LLC misses (LLCM): which indi-
cator as the llc_cap? 39

3.3.3 KS4Xen’s effectiveness 40

3.3.4 Comparison with existing systems 42

3.3.5 Kyoto’s overhead 43

3.4 Discussion . 46

3.5 Related Work . 47

3.6 Synthesis . 49

3.1. Motivations

In this chapter, the micro-architectural component that we study is the
last level cache (LLC). We investigate the LLC contention issue in a virtual-
ized environment. To address this problem, a software solution called Kyoto
that is inspired by the polluters pay principle is introduced. A VM is said to
pollute a cache if it provokes significant cache replacements which impact the
performance of other VMs. We rely on hardware counters to monitor the cache
activity of each VM and to measure each VM cache pollution level. Hence-
forth, using the Kyoto system, the provider may compel cloud users to book
pollution permits for their VMs. A VM which exceeds its permitted pollution
at runtime has its CPU capacity reduced accordingly. We have implemented
Kyoto in several virtualization systems including both general purpose systems
(Xen and KVM) and specialized HPC systems (Pisces [86]).

3.1 Motivations

3.1.1 Problem statement

Virtualization has proved to be one of the best technology to isolate the exe-
cution of distinct applications in the same computer. The main feature which
allows achieving this goal is resource partitioning. The analysis of today’s
hypervisors shows that only the partitioning of coarse-grained hardware re-
sources (the main memory, the CPU, etc.) are allowed. The partitioning of
microarchitectural-level components such as the Front Side Bus (FSB) and
processors’ caches are not taken into account, resulting in contention. This
situation suits for some application types like network intensive applications.
However, it is problematic for a non negligible proportion of application types.
Several research have shown that contention on microarchitectural-level compo-
nents is one of the main source of performance unpredictability [73]. The conse-
quences of the latter are twofold. On the one hand, it could require supplemen-
tary tasks from cloud users. For instance, Netflix developers have reported [18]
that they needed to redesign their applications to deal with this issue in Ama-
zon EC2. On the other hand, some suggest that performance unpredictability
contributes to brake the inroad of the cloud in some domains like HPC [81].
Contention on the LLC has been pointed by several research [65, 73, 31] as a
critical issue.

30

3.1. Motivations

Definition: LLC contention occurs when several VMs compete on the same
LLC lines. It concerns both VMs which run in parallel (on distinct cores on
the same socket) or in an alternative manner on the same core. The former
situation is promoted by the increase number of cores in today’s machines
while the latter situation comes from time sharing scheduling. The next section
presents evaluation results which attest the need to handle LLC contention.

3.1.2 Problem assessment

In order to provide a clear illustration of the issue we address, we consider the
following assumptions: any VM runs a single application type and is configured
with a single vCPU which is pinned to a single core.

3.1.2.1 Experimental environment

Main memory 8096 MB
L1 cache L1_D 32 KB, L1_I 32 KB, 8-way
L2 cache L2_U 256 KB, 8-way
LLC 10 MB, 20-way
Processor 1 Socket, 4 Cores/socket

Table 3.1: Experimental machine

All experiments have been performed on a Dell machine with Intel Xeon E5-
1603 v3 2.8 GHz processor. Its characteristics are presented in Table. 3.1. The
machine runs a Ubuntu Server 12.04 virtualized with xen 4.2.0.

3.1.2.2 Benchmarks

Micro benchmark. Micro benchmark applications come from [44]. In brief,
a micro benchmark application creates an array of elements whose size corre-
sponds to a specific working set size. Elements are randomly chained into a
circular linked list. The program walks through the list by following the link
between elements.

31

3.1. Motivations

Macro benchmark. We use both blockie [79] and applications from SPEC
CPU2006 [7] as complex benchmarks. They are widely used to assess the
processor and the memory subsystem performance.

3.1.2.3 Metrics

The two following metrics are used: cache miss ratio (cache misses per mil-
lisecond) and instruction per cycles (IPC). The latter is used to measure an
application performance. To compute these metrics, we gathered statistical
data from hardware performance monitoring counters (PMC) using a modified
version of perfctr-xen [84].

3.1.2.4 Evaluation scenarios

Handling an intermediate level-cache (ILC) miss takes less time (the proba-
bility to find the missed data within the other cache is high) than handling
an LLC miss (which always requires main memory accesses). In the case of
our experimental machine, the time taken to access each cache level (measured
with lmbench [5]) is the following (approximately): 4 cycles for L1, 12 cycles
for L2, 45 cycles for LLC, and 180 cycles for the main memory. Therefore,
VMs can be classified into three categories: C1 includes VMs whose working
set fits within ILC (including L1 and L2), C2 includes VMs whose working
set fits within the LLC (L3), and C3 is composed of the other applications.
For each category Ci (1 ≤ i ≤ 3), we have developed both a representative
and a disruptive VM, respectively noted vi

rep and vi
dis. Each vi

rep is executed
in ten situations: alone (one situation), in an alternative manner with each
vi

dis (three situations), in parallel with each vi
dis (three situations), and both in

parallel and in an alternate way with each vi
dis (three situations). We report

the degradation comparing to the alone execution in percentage.

32

3.1. Motivations

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p
er

f.
 d

eg
ra

d
at

io
n

Alternative
 execution

v
1

dis
v

2
dis

v
3

dis

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p
er

f.
 d

eg
ra

d
at

io
n Parallel

 execution

v
1

dis
v

2
dis

v
3

dis

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p
er

f.
 d

eg
ra

d
at

io
n

Combination of
 alternative and
 parallel
 execution

v
1
dis

v
2
dis

v
3
dis

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p
er

f.
 d

eg
ra

d
at

io
n

Alternative
 execution

v
1

dis
v

2
dis

v
3

dis

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p
er

f.
 d

eg
ra

d
at

io
n Parallel

 execution

v
1

dis
v

2
dis

v
3

dis

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p
er

f.
 d

eg
ra

d
at

io
n

Combination of
 alternative and
 parallel
 execution

v
1

dis
v

2
dis

v
3

dis

Figure 3.1: LLC contention could impact some applications.

3.1.2.5 Evaluation results

Fig. 3.1 presents the execution results of the above scenarios. Firstly, we can
see that the competition on ILC is not critical for any VM type (all the first
bars are invisible because the performance degradation percentage is almost
nil). In addition, C1’s VMs are agnostics to both ILC and LLC contention (the
three first bars of each curve are invisible because the performance degradation
of vi

rep is almost nil). Indeed, the cost needed to handle an ILC miss is negligi-
ble. Secondly, we can see that both C2 and C3’s VMs are severely affected by
LLC contention (the four visible bars in each curve show that the performance
degradation percentage is not negligible). Thirdly, contention generated by a
parallel execution is more devastating than the contention generated by an al-
ternative execution: up to 70% of performance degradation in the former vs
about 13% in the latter.

33

3.2. The Kyoto Principle

 0

 5000

 10000

 15000

 20000

 25000

 3 6 9 12 15 18 21

L
L

C
M

Tick (msec)
(1 time slice = 3 ticks)

Alone
Alternative

Parallel
Alter.+Para.

Figure 3.2: Impact of LLC contention explained with LLC misses

In order to complete the analysis, let us zoom-in on the first six v2
rep’s time

slices1 (v2
rep is the most penalized VM type). We can see from Fig. 3.2 that

when the VM runs alone, LLC misses occur only during the first time slice (data
loading). It is not the case in the other situations because of the competition
on LLC lines. This problem is well observed in the alternative execution which
has a zigzag shape: the first tick of each time slice is used for loading data to
the LLC (because the data have been evicted by the disruptive VM during the
previous time slice). Concerning the parallel execution, the cache miss rate is
very high because of data eviction. This is caused by the parallel execution
with the disruptive VM.

In conclusion, sharing the LLC without any partitioning strategy under its
utilization could be problematic for some VMs. In this chapter we propose a
solution in this direction, see the next section. In the rest of the chapter, C2

and C3’s VMs are called sensitive VMs.

3.2 The Kyoto Principle

This section presents our solution (called Kyoto) to the LLC contention issue.
After a presentation of the basic idea behind Kyoto (simple but powerful), a de-
tailed description of its implementation within the Xen virtualization system is

1A time slice (30msec) is composed of 3 ticks (10msec) in Xen.

34

3.2. The Kyoto Principle

given (the patch can be downloaded at https://bitbucket.org/quocbaoit/
xen-4.2.0-perfctr.git). We have also implemented Kyoto within KVM (the
default Linux virtualization system) and Pisces [86] (a lightweight co-kernel for
achieving performance isolation for HPC applications). An evaluation of the
latter is presented in Section 3.3.

3.2.1 Basic idea: “polluters pay”

We propose a software solution whose basic idea is the same as the “polluters
pay” principle of the Kyoto protocol [4]. This solution relies on the following
assumptions. (1) A VM execution time results in the pollution of the LLC
at a certain level. (2) Therefore, a VM which generates a high pollution level
is likely to cause more contention (thus aggressive against other VMs) when
it is collocated with other VMs. Under these assumptions, if one is able to
instantiate a VM with a booked pollution level, and to enforce that pollution
level during the overall VM lifetime, then he will have defined a solution to the
problem of cache partitioning, thus cache contention. Therefore, the utilization
of the LLC could be charged to cloud users in the same way as coarse-grained
resources (e.g. processor, disk, main memory). This is the main idea we follow
in this contribution. This idea raises two main challenges:

• How to monitor a specific VM pollution level at runtime?

• How to enforce a booked pollution level at runtime?

The first challenge can be achieved using hardware performance monitoring
counters (PMCs). The latter allow to gather information about the utilization
of the majority of microarchitectural-level components such as the LLC. Sec-
tion 3.2.3 presents which metrics Kyoto uses to compute a VM pollution level.
Concerning the second challenge, Kyoto relies on the processor, which is the
central resource in a computer: a VM is only able to pollute the LLC when
it is scheduled on a processor. Therefore, the processor can service as a lever
to enforce a pollution level (this is illustrated in Section 3.3.1). A VM whose
actual pollution level exceeds the booked one sees its computing capacity re-
duce. Therefore, handling the second challenge requires the extension of the
hypervisor component which is responsible to schedule VM on processors. The
next section presents an implementation of the Kyoto’s scheduler within Xen.

35

https://bitbucket.org/quocbaoit/xen-4.2.0-perfctr.git
https://bitbucket.org/quocbaoit/xen-4.2.0-perfctr.git

3.2. The Kyoto Principle

3.2.2 The Kyoto’s scheduler within Xen

The Kyoto’s scheduler (hereafter noted KS4Xen) enforces each VM’s booked
pollution level during the overall lifetime of the VM. Before presenting KS4Xen,
we firstly gives a quick description of the Xen credit scheduler (hereafter noted
XCS), knowing that further details could be found in [39].

XCS. It is the default scheduler in Xen. It is suitable for cloud platforms
since the customer books for an amount of computing capacity which should be
ensured without wasting resources. XCS works as follows. A VM v is configured
at start time with a credit c which should be ensured by the scheduler. To this
end, the latter defines remainCredit, a scheduling variable, which is initialized
with c. Each time a v’s vCPU is scheduled on a processor, (1) the scheduler
translates into a credit value (let us say burntCredit) the time spent by v

on that processor. (2) Subsequently, the scheduler computes a new value for
remainCredit by subtracting burntCredit from remainCredit. When the latter
reaches a lower threshold, the VM is no longer allowed to get the processor.
We can say that the VM is "blocked". Periodically, the scheduler increases the
value of remainCredit for each VM blocked according to its initial credit c.
This allows the VM to become schedulable.

KS4Xen. We propose KS4Xen as an extension of XCS. The former works
as follows. In addition to c (introduced above), a VM is configured (booked
by its owner) with the pollution level (noted llc_cap) it is allowed to generate
during a time slice. At runtime, a scheduling variable named pollution_quota

is assigned to each VM. As well as XCS ensures the respect of c, KS4Xen does
the same for llc_cap. This is achieved by periodically monitoring LLC related
statistics for each VM. From these collected data, the actual llc_cap (noted
llc_capact) of each VM is computed over a period (see Section 3.2.3). The
scheduler then debits the VM’s pollution_quota according to this llc_capact.
If a VM’s pollution_quota goes negative, that VM will be in priority OVER,
meaning that it cannot use the processor any more. At the end of each time
slice, VMs earn a specific amount of pollution quota based on their booked
llc_cap. If a pollution_quota is positive, the VM is marked UNDER, meaning
that it can use the processor. There are also some codes we have introduced in
order to provide a way to set a VM’s llc_cap as a Xen command line parameter.
In summary, apart from the code provided by perfctr-xen [84], which is used
to collect PMCs, we made our modifications in 8 files of Xen source codes,
representing about 110 LOCs.

36

3.2. The Kyoto Principle

3.2.3 Computation of llc_capact

The computation of llc_capact is periodically performed (e.g. each 100 million
of instructions) for all active vCPUs. We assume that vCPUs of the same VM
have the same behaviour. Therefore, only one vCPU of each VM is considered.
Kyoto relies on two performance metrics: LLC Misses and UnHalted Core
Cycles. Subsequently, the llc_capact is estimated using equation 3.1.

llc_capact = llc_misses× cpu_freq_khz

unhalted_core_cycles
(3.1)

Being able to collect LLC related statistics is not sufficient to compute
llc_capact for each specific VM. A crucial question goes unresolved: How to
rightly identify PMCs of a specific VM knowing that several VMs may run in
parallel atop the same LLC2? The Kyoto monitoring system is able to use two
solutions. The first solution consists in dedicating the use of the LLC to the
vCPU whose llc_capact needs to be computed. In other words, only one core in
the socket is activated during the sampling time (about one billion of cycles).
The other vCPUs are migrated to another socket. This solution could impact
migrated vCPU performance (as shown in Section 3.3.5). The second solution
comes as a response to this limitation.

The second solution relies on the use of a microarchitectural-level simulator.
We have used the McSimA+ [30] simulator in our prototype. McSimA+ [30] is
able to be configured to reflect a specific hardware (including processor caches,
pipelines, etc.). Using a pin tool [37], the instructions generated during the
execution of an application can be concurrently replayed within the simulator.
McSimA+ returns PMCs related to the architecture of the machine given as
the input. Relying on such a simulator, which runs atop a dedicated machine,
the computation of each VM’s llc_capact can be achieved following these steps:

1. KS4Xen asks the simulator to start the pin tool for a sampling period,

2. the simulator replays instructions and sends PMCs back to KS4Xen,

3. and KS4Xen computes the llc_capact based on the collected PMCs.

The next section presents the evaluation results of all KS4Xen aspects.
2A VM should not be punished for the pollution of another VM.

37

3.3. Evaluations

VM name Applications
vsen1 , vsen2 , vsen3 respectively gcc, omnetpp, soplex
vdis1 , vdis2 , vdis3 respectively lbm, blockie, mcf

Table 3.2: Experimental VMs

3.3 Evaluations

After the presentation of the results which justify our choices, the evaluation
of both KS4Xen’s effectiveness and overhead are presented. Unless otherwise
specified, any VM uses a single vCPU (having the computing capacity of a
core) and runs either a SPEC CPU2006 application or blockie [79]. The latter
is one of the most contentious application from the contention benchmark suite
developed in [79]. To make reading easier, we use the following notations: vi

sen

and vi
dis respectively identify a sensitive and a disruptive VM, lcv means that

the VM v is configured with a booked llc_cap value equals to lc. Table 3.2
shows the name of the application which corresponds to each vi

sen and vi
dis

(1 ≤ i ≤ 3). Throughout the rest of the chapter, the expression “we ran an
application x” is equivalent to “we ran a VM hosting application x”.

3.3.1 The processor is a good lever

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

%
 o

f
p

e
rf

.
d

e
g

ra
d

a
ti

o
n

vdis1 computation power

vsen1

vsen2

vsen3

Figure 3.3: The processor is a good lever for punishing polluter/disruptive VMs

38

3.3. Evaluations

KS4Xen uses the processor as the lever to enforce an assigned llc_cap. The
first experiment type confirms a strong relationship between a VM’s computing
capacity and its aggressiveness, which is correlated to its pollution level. The
scenario we use for these experiments is the following. We run each vseni in
parallel with a vi

dis (let us say vdis1 (lbm)) while varying the computing capacity
of the latter. Fig. 3.3 shows the results of these experiments. We can see that
each vseni ’s performance degradation percentage linearly increases with vdis1 ’s
capacity. Indeed, increasing vdis1 ’s computing capacity increases its scheduling
frequency, which in turn increases its aggressiveness.

 0

 5

 10

 15

 20

 25

bl
oc

ki
e

lb
m

m
cf

so
pl

ex

m
ilc

om
ne

tp
p

gc
c

xa
la

n

as
ta

r
bz

ip

 0

 10

 20

 30

 40

 50

 60

A
v

g
.

ag
re

ss
iv

it
y

1
k

 L
L

C
M

Avg. agressivity
LLCM values

 0

 5

 10

 15

 20

 25

bl
oc

ki
e

lb
m

m
cf

so
pl

ex

m
ilc

om
ne

tp
p

gc
c

xa
la

n

as
ta

r
bz

ip

 0

 10

 20

 30

 40

 50

 60

A
v

g
.

ag
re

ss
iv

it
y

1
0

k
 e

q
u

at
io

n
 1

Avg. agressivity
Equation 1 values

Figure 3.4: LLCM vs Equation 3.1

3.3.2 Equation 3.1 vs LLC misses (LLCM): which indicator
as the llc_cap?

This section presents evaluation results which confirm the better accuracy of
equation 3.1 (introduced in [98]) in comparison with LLCM for the estimation

39

3.3. Evaluations

of each VM pollution level. The latter can be seen as the aggressiveness level
of the VM. We use the following scenario. We evaluate the aggressiveness of
10 applications (astar, blockie, bzip, gcc, lbm, mcf, milc, omnetpp, soplex, and
xalan) as follows. Each application is firstly executed alone and its llc_cap is
computed in two manners: using LLCM and using equation 3.1. Subsequently,
each application is executed in parallel with each of the other applications to
evaluate its real aggressiveness. The latter corresponds to the performance
degradation level they causes. The average aggressiveness of each application
is computed. The results of these experiments are presented in Fig. 3.4 in a
descending order regarding real aggressiveness values. The latter lead to the
order o1=(blockie, lbm, mcf, soplex, milc, omnetpp, gcc, xalan, astar, bzip)
while the order obtained with LLCM is o2=(milc, lbm, soplex, mcf, blockie,
gcc, omnetpp, xalan, astar, bzip) and the one obtained with equation 3.1 is
o3=(lbm, blockie, milc, mcf, soplex, gcc, omnetpp, xalan, astar, bzip). Relying
on the Kendall’s tau [74] method, we can see that o3 is closer to o1 than o2. In
conclusion, equation 3.1 is a better indicator for llc_cap than LLCM.

3.3.3 KS4Xen’s effectiveness

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

v di
s
1

v di
s
2

v di
s
3

N
o
rm

al
iz

ed
 v

se
n

1
 p

er
f. vsen

1 perf.

 0

 2

 4

 6

 8

 10

v di
s
1

v di
s
2

v di
s
3

1
k
 #

p
u
n
is

h
m

en
ts

vsen
1

vdis
i

 0 10 20 30 40 50 60 70
running

running

vdis
1 CPU usage with XCS

vdis
1 CPU usage with KS4Xen

-1200

-800

-400

 0

 400

 800

 0 10 20 30 40 50 60 70

1
k
.
p
o
ll

u
ti

o
n
_
q
u
o
ta

Ticks (10msec)

Figure 3.5: KS4Xen minimizes LLC contention, thus avoids performance vari-
ations

40

3.3. Evaluations

This section evaluates the benefits of KS4Xen in terms of LLC contention
limitation. This can be judged by the ability of KS4Xen to ensure performance
predictability. This evaluation is straightforward. We run in parallel 250kvsen1

(gcc) with different 250kvdisi (lbm, blockie, and mcf). Recall that 250k is the
pollution permit. Fig. 3.5 shows the results of these experiments. We can see
that the performance of vsen1 is almost kept whatever the aggressiveness of
the concurrent VM (Fig. 3.5 top left). Fig. 3.5 top right shows respectively
the number of times where vsen1 and vdisi have been punished (i.e., blocked by
the scheduler). All vdisi (disturber VMs) have received more penalties than
vsen1 . To complete the analysis, curves in Fig. 3.5 bottom plot for vdis1 (lbm)
respectively the variation of both pollution_quota and the processor utilization.
Contrary to XCS (the red line), we can see that in KS4Xen, the VM is deprived
of the processor for long moment every time the measured llc_cap exceeds the
booked llc_cap (the zigzag line).

We have also evaluated KS4Xen scalability. To this end, we execute 250kvsen1

while varying the number of colocated 50kvdisi (from 1 to 15 vCPUs3). KS4Xen
is scalable if vsen1 ’s performance is kept. From Fig. 3.6, we can see that KS4Xen
always keeps the performance of the sensitive VM whatever the number of
colocated disturbers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 6 8 10 13 14 15

N
o
rm

a
li

ze
d

 v
se

n
1
 p

e
rf

.

colocated vdis1

Figure 3.6: KS4Xen’s scalability
3According to [109], the average number of vCPUs sharing the same core is about 4.

Having 4 cores in our socket, we can colocate up to 16 vCPUs (remember that vsen1 is
already assigned one vCPU).

41

3.3. Evaluations

3.3.4 Comparison with existing systems

Figure 3.7: Pisces architecture

The previous section have presented the Kyoto’s effectiveness in comparison
with the Xen system, a general purpose virtualization system. We have also
compared Kyoto with Pisces [86], a co-kernel [92] which allows building strongly
isolated HPC applications (see Fig. 3.7). To guarantee performance isolation,
a Pisces application runs in a VM which has the entire control of its assigned
resources, without the intervention of an hypervisor. By doing so, Pisces
avoids the contention within the hypervisor and other virtualization compo-
nents (such as driver domains), which is known to be source of performance
interference [101]. We have evaluated the Pisces capability to (1) isolate a sen-
sitive application (vsen1) and to limit the negative effect of a disruptive applica-
tion (vdis1). Subsequently, we have implemented and evaluated the effectiveness
of two other Kyoto versions: one for the Linux virtualization system (via the
CFS scheduler, noted KS4Linux) and the other for Pisces (noted KS4Pisces).
Fig. 3.8 (the first two bars) shows that Pisces does not ensure performance
predictability when the LLC is shared between a sensitive and a disruptive
VM (the performance difference is about 24%). This is explained by the fact
that the performance interference issue considered by Pisces is the one which
comes from shared virtualization components (such as the driver domain) and
coarse-grained resources (such as processors). Microarchitectural-level compo-
nents like the LLC are not considered. Fig. 3.8 (the last two bars) also shows
that when the previous experiment is played in a Kyoto environment, perfor-
mance predictability is achieved (notice that we use the same llc_cap metric
presented in the previous section).

42

3.3. Evaluations

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Pisc
es

KS4Pisc
es

E
x
e
c
.
ti

m
e
 (

se
c
)

vsen
1
 alone

vsen
1
 colocated

Figure 3.8: Comparison of Kyoto with Pisces

3.3.5 Kyoto’s overhead

The complexity of Kyoto is O(n), where n is the number of vCPUs (about a
hundred in data center computers) in the physical machine. This section eval-
uates Kyoto’s overhead by relying on KS4Xen knowing the lessons learned here
are applicable to other Kyoto’s implementations. The execution of KS4Xen can
introduce two overhead types: (1) from the solution used to identify LLC statis-
tics related to a specific vCPU (to compute its llc_capact, see Section 3.2.3),
and (2) from the monitoring system (PMCs gathering). This section evaluates
the impact (if ever exists) of these overheads.

43

3.3. Evaluations

 0

 2

 4

 6

 8

 10

 12

 14

m
cf

so
pl

ex

m
ilc

om
ne

tp
p

xa
la

n

as
ta

r
bz

ip
lb

m

P
er

f.
 d

eg
ra

d
at

io
n
 (

%
)

Figure 3.9: Migrating vCPU could impact VMs which host memory bound
applications

llc_capact computation. Recall that one of the solutions used by KS4Xen
to identify the LLC statistics related to a specific vCPU relies on the dedica-
tion of a socket to that vCPU for the duration of the sampling. This requires
the migration of not concerned vCPUs to another socket. We evaluate the
impact of this migration using the following scenario. We experiment 8 SPEC
CPU2006 applications atop a NUMA machine (PowerEdge R420) composed
of 2 sockets (noted numa0 and numa1). Each experiment uses a single VM
composed of a single vCPU which starts its execution on numa0. KS4Xen is
configured to periodically migrate the vCPU between numa0 and numa1. The
return migration from numa1 to numa0 is performed after a random period in
order to mimic the time taken by KS4Xen to compute all vCPUs’ llc_capact.
Fig. 3.9 presents the results of these experiments. We can see that all VMs
are not impacted at the same level. We have observed that the most affected
applications (milc, omnetpp, lbm) are those which run memory intensive ap-
plications (up to 12% overhead). This is explained by the fact that when the
vCPU is migrated to numa1, all memory accesses are done remotely.

44

3.3. Evaluations

 0

 50

 100

 150

 200

 250

 300

hmmer bzip

ll
c c

ap
ac

t
(k

)
Not isolated

Isolated

Figure 3.10: vCPU isolation could be avoided in some situations

This degradation can be minimized by reducing the number of migrations.
We have identified two situations in which vCPU isolation is not mandatory.
These situations are:

• A vCPU which generates a very low level of LLC misses (let us say lower
than a configurable threshold) will not be isolated. Indeed, such vCPUs
are neither disturbers nor sensitive. The first two bars in Fig. 3.10 shows
the value of llc_capact for a VM running hmmer (known to generate low
LLC misses) when its vCPU is isolated and not isolated (colocated with
several disturbers vCPUs). We can see that the difference is almost nil.

• A vCPU which shares the LLC only with vCPUs which generate low level
LLC misses will not be isolated. Indeed, since colocated vCPUs are not
disturbers, it is most likely that the obtained llc_capact is not far from
the correct value. The last two bars in Fig. 3.10 shows bzip’s llc_cap is
almost the same when it is colocated with several hmmer applications.

PMCs gathering. We have also evaluated KS4Xen’s overhead in terms of
the amount of resources it consumes. Concerning the main memory, KS4Xen

45

3.4. Discussion

extends two data structures (structcsched_vcpu and structcsched_dom) to
record PMCs for each VM. This extension is about 72 bytes, which is negligible.
Concerning the processor, the execution of perfctr-xen (for gathering PMCs) is
the only source of processing time consumption. To evaluate the latter, we ran
in parallel two VMs which host the same CPU bound application (the SPEC
CPU2006 application povray) atop the same processor. KS4Xen and XCS
are experimented with different time slices (scheduling periods) to vary the
intervention delay (thus the execution of the monitoring system, the potential
source of overhead). Fig. 3.11 presents the results of these experiments. We
can see that both KS4Xen and XCS lead VMs to the same performance level.
In other words, the monitoring system used by KS4Xen does not introduce an
overhead.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

E
xe

cu
ti

o
n

 t
im

e
 (

se
c)

Time slice (ms)

With XCS
With KS4Xen

Figure 3.11: The overhead incurs by KS4Xen is near zero.

3.4 Discussion

The contribution of this chapter does not target all cloud types. It is suit-
able for HPC clouds since they run applications which are very sensitive to
microarchitectural-level components behavior (such as LLC contention). There-
fore, we assume that users of such clouds are able to deal with the new param-
eter we have introduced: the llc_cap. A question that one could ask is how
the user chooses a VM’s llc_cap value? We answer this question as follows.
A cloud platform often defines a set of bookable instance types (e.g. Amazon

46

3.5. Related Work

EC2 proposes 38 instance types4) which are different by the amount of resource
they are assigned regarding each resource type. For instance in Amazon EC2,
the particularity of a R3 instance is the fact that it is assigned a lot of memory
in comparison with the computing capacity. Therefore, relying on typed VM,
the provider can associate to each instance type a llc_cap level. We can as-
sume that the latter is proportional to the amount of memory assigned to the
instance. For instance, R3’s instances will be assigned much more llc_cap than
C3’s instances since the primary needs of the latter is the computing capacity.

3.5 Related Work

Existing solutions can be organized into two categories: placement algorithms
and cache partitioning.

Placement algorithms. Several prior work have proposed cache aware
scheduling algorithms to address the problem of LLC contention. In the con-
text of non-virtualized environments, [98, 47, 43, 106, 62, 59] presented some
methods to evaluate the sensitivity and the aggressiveness of an application.
Our Kyoto system uses one of these approaches, particularly the one presented
by [98]. [99] proposed ATOM (Adaptive Thread-to-Core Mapper), a heuristic
to find the optimal mapping between a set of processes and cores such that
the effect of cache contention is minimized. [111] is situated in the same vein.
It proposed two scheduling algorithms to distribute processes across different
cores such that miss rate is fairly distributed. [49] presented a cache aware
scheduling algorithm which awards more processing time to a process when it
suffers from cache contention. Therefore, [49] confirms in some way the fact
that the processor can serve as a lever for controlling LLC utilization as we
did.

Several researches [65, 73, 31, 106, 62, 59] have pointed the problem of LLC
contention in the context of virtualized environments. However, very few of
them have proposed a solution to this problem. [87] studied the effects of
collocating different types of VMs under various VM to processor placement
schemes to discover the best placement. The main limitation of this solution
is the fact that it needs to know the applications which are running within
VMs (to evaluate the collocation effects). [29] proposed a cache aware VM
consolidation algorithm which chooses the consolidation plan so that the overall

4https://aws.amazon.com/ec2/instance-types/

47

https://aws.amazon.com/ec2/instance-types/

3.5. Related Work

LLC misses are minimized in the IaaS. This solution considers the entire IaaS,
not a single machine as we did.

Cache partitioning. In this category we can distinguish two main ap-
proaches. The first approach is based on cache replacement policies. It is in-
dependent from the execution environment (virtualized or not). According to
this approach, [89, 64] proposed a dynamic insertion policy (DIP) which adapts
the insertion policy (LRU or BIP) according to process memory activities. By
doing so, DIP avoids to keep in the cache data of a VM which is parsing a
large working set (a kind of disruptive VM). This solution is limited to a single
category of disruptive VMs. [47] trends in the same direction by proposing PD
(Protecting Distance), a cache replacement policy which protects cache lines
that may be reused. [108] proposes a cache management policy called PIPP
(Promotion/Insertion Pseudo-Partitioning). The latter partitions the cache by
managing both cache insertion and promotion policies. [90] presents UCP
(Utility-based Cache Partitioning), a runtime mechanism for partitioning the
cache between multiple applications. UCP monitors each application using a
cost estimation hardware circuit. Collected data are used by a partitioning al-
gorithm to decide the amount of cache resources to allocate to each application.
The policy is implemented through hardware and software modifications. [63]
presented a QoS enabled cache architecture which enables more cache resources
for high priority applications. Applications are assigned a priority level (this
is comparable to our llc_cap). Then each cache line is tagged with a priority
level.

The second approach addresses the cache contention issue using software
based cache partitioning. Our solution uses this approach. [67, 104] proposed
to partition the cache using page coloring [110]. Each VM is reserved a portion
of the cache, and the physical memory is allocated such that a VM cache lines
map only that reserved portion. This idea is very nice but difficult to imple-
ment. It depends on both the architecture of the cache and the replacement
policy. Moreover, allocating physical pages to enforce the use of a specific place
of the cache could be difficult to implement without wasting memory resources.
For these reasons, [67, 104] only presented preliminary results.

Positioning of our work. The main drawbacks of the above solutions are
the following: cache partitioning solutions require the modification of hardware
while VM placement solutions are not always optimal (VM placement is a NP-
hard problem), most important these solutions are not in the spirit of
the cloud which relies on the pay-per-use model: why can’t we allow each VM

48

3.6. Synthesis

to book for an amount of cache utilization such that the virtualization system
ensures it in the same way as it does for other coarse-grained resource types
(CPU, memory, etc.). In this work, we have proposed the Kyoto system which
is a step in that direction.

3.6 Synthesis

We presented in this chapter a new approach to address the issue of perfor-
mance unpredictability due to LLC contention in a virtualized cloud environ-
ment. Our approach is inspired by the polluters pay principle which is applied
as follows: any VM should pay for the amount of pollution it generates in the
LLC. To implement it, we relied on hardware counters to monitor the utiliza-
tion of the LLC by VMs, and we implemented a new vCPU scheduler which
enforces at runtime a booked pollution level of a VM. We have presented a
prototype for Xen system, KVM and Pisces. These prototypes have been eval-
uated using reference benchmarks (SPEC CPU2006), showing that they can
enforce performance isolation between VMs even in case of LLC contention.

49

Chapter 4

When eXtended
Para–Virtualization (XPV) Meets
NUMA

Contents
4.1 Motivations . 51

4.1.1 Description . 52

4.1.2 Limitations . 52

4.1.3 Synthesis . 56

4.1.4 Hot-(un)plug as a solution? 56

4.2 eXtended Para-Virtualization 57

4.2.1 Principle . 57

4.2.2 Methodology for making legacy systems XPV aware 58

4.3 Technical Integration . 61

4.3.1 Xen modifications 62

4.3.2 Linux modifications 63

4.3.3 Application-level modifications: the HotSpot Java
virtual machine use case 64

4.4 Evaluations . 65

4.4.1 Experimental setup 65

4.4.2 XPV implementation efficiency 66

4.4.3 vNUMA vs blackbox solutions 68

4.4.4 XPV facing topology changes 70

4.1. Motivations

4.4.5 Automatic NUMA Balancing (ANB) limitations . . 73

4.4.6 XPV internals . 74

4.5 Related Work . 75

4.5.1 Industrial solutions 75

4.5.2 Academic solutions 76

4.5.3 Positioning of our work 76

4.6 Synthesis . 77

In this chapter, we are interested in studying the NUMAmicro-architectural
component. We propose a new principle called extended paravirtualization
(XPV) to efficiently virtualize a NUMA architecture. XPV extends the well
known paravirtualization (PV) principle in two directions. First, in the same
way as PV actually abstracts away I/O devices [40], XPV extends the principle
by also abstracting away the physical NUMA topology into a virtual NUMA
topology that can change at runtime. Second, while currently PV is only used at
the guest OS level to implement optimized drivers for virtualized environments,
XPV extends this principle to the software runtime libraries (SRLs, such as
Java virtual machine). By doing so, XPV allows each layer in the virtualization
stack to implement what it does best: optimization of resource utilization for
the hypervisor and NUMA resource placement for the guest OS and the SRLs.

4.1 Motivations

Several research work realized in native environments [75, 53, 52, 56] have
demonstrated the necessity to specialize system software (e.g., OS and SRL)
with respect to the NUMA architecture. The same observations were made [103,
78, 23] in virtualized environments. Among the existing solutions (presented in
Section 4.5), vNUMA is the most promising one. This section presents vNUMA
and the motivations for our work. Although the problem we address affects all
hypervisors (as far from our knowledge), we use Xen for the assessment.

51

4.1. Motivations

4.1.1 Description

vNUMA consists in showing to the VM a virtual NUMA topology which corre-
sponds to the mapping1 of its virtual resources on physical NUMA nodes. By
this way, there is no need for the hypervisor to include a NUMA optimization
algorithm since the optimization can be performed by the guest OS. At the time
of writing of the thesis, the most popular hypervisors (Xen, VMware, hyper-V
and VMware) implement vNUMA. This is considered as the ideal approach to
handle NUMA in virtualized environments because it makes guest OS’s NUMA
policies (assumed to be the most optimal ones) effective, as argued by VMware
in [23]2.

4.1.2 Limitations

Figure 4.1: Hypervisor’s resource utilization optimizations may lead to vNUMA
changes.

1Notice that the VM does not see the full machine NUMA topology.
2“... Since the guest is not aware of the underlying NUMA, the placement of a process

and its memory allocation is not NUMA aware... vSphere 5.x solves this problem by exposing
virtual NUMA topology for wide virtual machines.” by VMware in [23]

52

4.1. Motivations

The common implementation approach of vNUMA consists of the hypervisor
storing the virtual topology of the VM in its ACPI tables, so that the guest
OS uses it at boot time as any OS does. This implementation has the advan-
tage to be straightforward. However, its main limitation is that a change in
the NUMA topology cannot be taken into account without rebooting the VM
[23]. In fact, existing OSs are not designed to dynamically take into account
NUMA topology changes. Also, a simple solution based on hot-(un)plug of
CPU and memory resources is not suitable as its might seem, more details in
Section 4.1.4. Topology changes occur in a virtualized system because of re-
source utilization fairness and optimizations (to avoid waste) implemented by
the hypervisor. To achieve these goals, the hypervisor is allowed to dynamically
adapt the mapping between the vCPUs and the pCPUs, and the mapping be-
tween the guest physical addresses (GPAs) and the NUMA nodes, by changing
the mapping between the GPAs and the host physical addresses (HPAs). More
precisely, the hypervisor can change the NUMA topology of a VM due to the
following decisions (summarized in Fig. 4.1).

CPU load balancing. Resource overcommitment is the widely used ap-
proach for optimizing resource utilization in virtualized datacenters. It consists
in allowing more resource reservation than the available resources. For the
CPU, this approach could lead to load imbalance, thus unfairness. This issue
is addressed by the hypervisor by migrating vCPUs from heavily contended
nodes to less contended ones. Such migrations could be frequent due to tem-
porary CPU load imbalance as indicated by VMware [23]. For instance, we
have observed that the execution of three 15vCPUs/12GB SpecJBB 2005 VMs
on a 8-node machine - 6 cores per node (two nodes dedicated to the privileged
VM in Xen) - generates about 20 vCPUs migrations between different NUMA
nodes per minute. We voluntarily choose large VMs to observe the generated
migrations.

Memory ballooning. Ballooning is the commonly used technique to im-
plement memory overcommitment. It allows dynamic memory reclaim (when
the VM does not use its entire memory) and allocation (when the VM needs
memory) from/to a VM. Ballooning may induce a modification of the mapping
between GPAs and HPAs. Pages which are reclaimed (on balloon inflate) can
be given (on balloon deflate) on any NUMA node.

Memory flipping. Memory flipping is the recent approach used by most
hypervisors to implement zero-copy during I/O (e.g., network) operations [38,
6]. It consists in exchanging (instead of copying) memory pages between the

53

4.1. Motivations

driver VM (the one which includes device drivers) and the user VM which
sends/receives packets. When the driver VM and user VMs are located on
different NUMA nodes (which is commonly the case), user VMs which perform
I/O operations will see a portion of their memory remapped on the driver
VM’s node. To assess this issue, we ran BigBench [54] on our 8-node machine.
All the VM resources are initially mapped on a single NUMA node which is
distinct from the one used by the driver VM. Without rebooting the VM, we
repeated the execution of BigBench 8 times. Fig. 4.2 shows the amount of
remote memory (due to memory flipping) at the beginning of each execution
of the benchmark. We can see that it increases in respect with the number of
execution, up to 45% of the VM’s memory is remote at execution number 5 due
to the memory flipping mechanism. This degrades the application performance
by 32%.

Figure 4.2: The effect of memory flipping, which occurs on I/O intensive ap-
plications. The top curve shows the proportion of the VM’s memory which has
been remapped on remote nodes after each run. The bottom curve shows the
performance of the application after each run.

VM live migration. VM live migration involves moving a running VM
from one physical host to another one. It is a central technology in today’s
datacenters. For instance, dynamic VM packing (which is a common approach
used to optimize resource utilization), physical server failure handling, data-
center maintenance, overheating power supply management and hardware up-
grades rely on it [95]. All of this makes VM live migrations very frequent in
the datacenter, especially large ones (such as Google Cloud Engine [95]). The
migration of a VM may change the mapping of its vCPUs and GPAs on the
destination machine.

54

4.1. Motivations

We assess in Xen the impact of using a stale topology as follows. We
used two memory intensive benchmarks: STREAM [80] (a synthetic bench-
mark measuring the sustainable memory bandwidth) and LU from Spec MPI
2007 [14]. The benchmarks run within a VM (called the tested VM) configured
with 12 vCPUs and 30GB memory. They use TCMalloc [68] as the SRL. We
compared three situations: (1) the VM sees a UMA topology but the hyper-
visor implements the interleaved policy (the VM’s memory is interleaved by
a granularity of 1GB among NUMA nodes selected to host the VM), which
corresponds to the default Xen solution. (2) the VM sees a NUMA topology
which corresponds to its exact resource mapping (noted vNUMA); (3) and the
VM sees a NUMA topology which is different from its actual mapping: all of
its CPUs are migrated away from the initial nodes (noted Stale vNUMA). The
initial resource mapping of the VM is as shown in Fig. 4.1 while the stale
topology is the one caused by the transition labeled “vCPU migration”. The
experiment results are shown in Fig. 4.3. Lower is better for LU (the left curve)
while it is the opposite for STREAM (the right curve). When we compare In-
terleaved and vNUMA (first two bars), we can observe that static vNUMA is
the most efficient configuration. For instance, we can notice for LU up to 13%
of performance difference. However, Interleaved becomes better than vNUMA
when the initial topology becomes stale.

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
on
ds
)

0

500

1000

1500

2000

2500

lu

Interleaved
vNUMA
Stale	vNUMA

M
B
/s

0

104

2×104

3×104

4×104

5×104

6×104

Copy Scale Add Triad

Figure 4.3: Assessment of the negative impact of presenting a stale topology to
the VM when vNUMA is used. Evaluation realized using LU from Open MPI
2007 (left, lower is better) and STREAM (right, higher is better).

55

4.1. Motivations

4.1.3 Synthesis

Although vNUMA is the ideal approach for taking into account NUMA in
virtualized environments, its current implementation makes it static, thus inef-
ficient facing topology changes. Hypervisor vendors like VMware and Hyper-V
have also underlined this limitation. Typically, the VMware documentation [23]
states: “The idea of exposing virtual NUMA topology is simple and can improve
performance significantly. [...] On a virtual environment, it becomes likely that
the underlying NUMA topology of a virtual machine changes while it is running.
[...] Unless the application is properly reconfigured for the new NUMA topology,
the application will fail. To avoid such failure, ESXi maintains the original vir-
tual NUMA topology even if the virtual machine runs on a system with different
NUMA topology.”. Today, to prevent the inefficiency of vNUMA, hypervisor
providers make the following recommendations [51, 71, 41, 66, 2, 102, 96]: (1)
either the data center operator enables vNUMA and disables all hypervisor’s re-
source management optimizations, which leads to resource waste or unfairness,
(2) either she disables vNUMA and keeps hypervisor’s resource management
optimizations by using blackbox solutions (the hypervisor implements NUMA
policies and exposes a UMA architecture to the VM), which are not optimal
for performance (see Section 4.4). None of these two solutions is satisfactory.

4.1.4 Hot-(un)plug as a solution?

One might imagine the utilization of resource hot-(un)plug as a solution for
providing an adaptable vNUMA solution. Although this solution is without
any doubt elegant, it is not as straightforward and complete. These are the
main reasons:

1. Resource hot-(un)plugging is only possible for CPUs or memory which
have been discovered and recorded by the guest OS at boot time [42].
Therefore, the implementation of a hot-(un)plug based solution needs to
first show to the VM at boot time the entire physical machine topology,
knowing that the actual VM’s resource mapping concerns only a subset
of the topology. This requires deep kernel code rewriting in both the
VM’s OS setup code and also the hypervisor code which is responsible for
starting a VM. The development cost3 of this step is very high compared

3Notice that we tried unsuccessfully this alternative during several months.

56

4.2. eXtended Para-Virtualization

to the approach we present in the next section. Moreover, it would be
difficult to port this code to other systems.

2. Assuming that the above is implemented, memory hot-(un)plug is only
possible at the granularity of a block (e.g., 512MB in the current Linux
kernel version). Remember that topology changes could be caused by
the relocation of very few memory pages (e.g., see memory flipping for
example).

3. Finally, Hot-(un)plug is not sufficient because the SRL which runs inside
the VM is not aware of the new topology.

For all these reasons, hot-(un)plug is considered incompatible with vNUMA,
which is also the VMware opinion [42, 23]. In this chapter, we present eXtended
Para-Virtualization, a principle for implementing an adaptable vNUMA.

4.2 eXtended Para-Virtualization

This section describes the eXtended Para-Virtualization (noted XPV) principle
and our methodology to implement it in legacy systems.

4.2.1 Principle

In this contribution, we propose to make the static vNUMA approach dynamic
by revisiting the interface between the hypervisor and the VM. At high level,
the hypervisor exposes a dynamic virtual NUMA topology, which abstracts
away the physical NUMA architecture. Because current OSs and SRLs are
unable to handle a dynamic NUMA topology, we propose the eXtended Para-
Virtualization (XPV) principle to dynamically adapt the NUMA policies used
in the kernel of the guest OS and in the SRLs when the NUMA topology of
the VM changes.

XPV extends the para-virtualization (PV) principle to the whole hardware
and the SRLs. PV consists in modifying the code of the kernel of the guest
OS to efficiently virtualize I/O devices (the split-driver model), virtualize the
MMU, virtualize the time, enforce protection and handle CPU exceptions.
We extend the PV principle to the whole hardware by also virtualizing the

57

4.2. eXtended Para-Virtualization

NUMA topology. Instead of using a driver that considers a static NUMA
topology4, the guest kernel uses a para-virtualized driver that considers a dy-
namic NUMA topology. We also extend the PV to the SRLs. We propose to
modify SRLs with a para-virtualized NUMA management driver tailored for
virtualized environments. Instead of considering a static NUMA topology, this
para-virtualized NUMA management layer adapts the NUMA policy of the
SRL when the NUMA topology of the VM changes. Notice that the hypervisor
works as usual for non-XPV-aware VMs, meaning that XPV- and non-XPV
aware VMs can share the same host. This is also true for XPV- and non-XPV
aware applications which run inside a XPV aware VM.

By definition, XPV requires modifications in both the guest kernel code
and the SRL code. In the remainder of the section, we present a systematic
methodology for applying XPV to different legacy systems, and we show that
the required modifications remain modest.

4.2.2 Methodology for making legacy systems XPV aware

In the hypervisor, we implement XPV by adding a notification to the guest
kernel when the NUMA topology changes. In the guest kernel, we implement
XPV mainly by adapting the NUMA-aware components and by forwarding the
notification to the SRL when the guest kernel receives a notification from the
hypervisor. In the SRL, we implement XPV mainly by adapting the NUMA-
aware components when the SRL receives a notification from the guest kernel.
Fig. 4.4 presents the components modified to implement XPV, and the remain-
der of the section details these modifications.

4The code that handles NUMA in current OSs is often spread in the kernel. In order to
simplify the presentation, we consider that this code forms a driver.

58

4.2. eXtended Para-Virtualization

Figure 4.4: Overview of the components involved in the XPV implementa-
tion. Solid black arrows present the different steps (1-5) required to handle a
dynamic virtual NUMA topology in SRLs. Dashed arrows show guest kernel
components involved when the NUMA topology of the VM changes. Solid red
arrows represent the notifications when the NUMA topology changes.

Design choices. When the hypervisor creates a VM, it gives the VM a
topology through ACPI tables. The static vNUMA approach exposes a NUMA
topology while the blackbox solutions expose a UMA one. Exposing an initial
NUMA topology to the VM is inadequate for XPV because:

• Many NUMA-aware kernel components in the guest are hard to modify
to take into account changes in the NUMA topology.

• Such kernel components may introduce unpredictable performance if they
implement NUMA optimizations on a wrong topology.

59

4.2. eXtended Para-Virtualization

Instead, XPV makes the following design choices:

• We expose a UMA topology through ACPI tables so that kernel compo-
nents will not implement NUMA optimizations.

• We expose the real NUMA topology through a different data structure
shared between the hypervisor and the VM. This data structure is up-
dated upon resource remapping by the hypervisor. Key kernel compo-
nents in the guest which are critical are modified to use this (dynamic)
NUMA topology. We modified three components: the page allocator, the
scheduler and the NUMA policy manager.

Hypervisor layer adaptation. We introduce a new driver, called the topol-
ogy manager. This driver follows the split-driver principle: a part of the driver
is implemented in the hypervisor while the other part is implemented in the
guest kernel. The topology manager maintains the NUMA topology of each
VM and, when the NUMA topology changes, notifies the VM with an interrupt.
As exposing a UMA topology is the default behavior of any hypervisor, imple-
menting the topology manager is straightforward. It requires modifications in
the VM life cycle manager of the hypervisor in order to create and destroy
the data structure associated to a VM, in the memory manager in order to
record the physical addresses used by a VM and in the scheduler in order to
record the location of the vCPUs. These components are easy to identify in
any hypervisor and we were able to implement XPV in Xen and Linux KVM.

Guest kernel adaptation. The implementing XPV requires first the
implementation of the kernel part of topology manager driver. The kernel
uses this driver at bootstrap to retrieve the initial topology of the VM and to
initialize its NUMA-aware data structures. Then, when the driver receives a
notification from the hypervisor, it increments a counter used by the SRLs to
know the current version of the NUMA topology (see below), retrieves, through
a shared memory, its actual NUMA topology (e.g., physical location of the
vCPUs) and updates the NUMA-aware data structures of three components of
the guest OS: the page allocator, the NUMA policy manager and the scheduler.
As a consequence of this update, the kernel considers the new NUMA topology
for the newly allocated pages and the newly created threads. However, the
kernel does not try to relocate the previously allocated pages and threads:
instead, we let kernel’s NUMA policies (such as Automatic NUMA Balancing in
Linux) and the SRL migrate its memory and its thread because we consider that
they are those who know how to efficiently handle the new NUMA topology.

60

4.3. Technical Integration

To summarize, implementing XPV in the guest kernel requires the imple-
mentation of the topology manager and modifications in bootstrap code, in the
page allocator, NUMA policies and the scheduler. These components are easy
to identify in any kernel and we were able to implement XPV in Linux and
FreeBSD.

SRL layer adaptation. For the adaptation of the SRL layer, we need
to consider the system libraries/APIs (i.e., the c and numa libraries) and SRL
itself (e.g., jemalloc [3] or HotSpot [1]). For the former, only two modifications
are required: (1) the modification of the functions that retrieves the NUMA
topology in order to use our topology manager driver instead of the static
ACPI tables, and (2) the addition of a new function retrieving the topology
version number. The latter is useful for SRL to identify that its internal NUMA
topology becomes stale.

Each SRL has to implement its own algorithm to handle a NUMA topology
change. However, we have identified that, in our three studied SRLs (HotSpot
[1], TCMalloc [68], and jemalloc [3]), we can apply a systematic methodology
to implement XPV. This methodology consists in modifying the code of three
components that are often found in SRLs: the bootstrap code, the thread man-
ager and the memory manager. In the bootstrap code, the SRL has to record
the initial topology version number of the topology. In the thread manager, the
SRL may migrate the threads when the topology changes (i.e., when the topol-
ogy version number changes) to ensure locality with memory. In the memory
manager, the SRL has to update its internal data structures when the topol-
ogy changes, and, if required, to adequately migrate the pages that are already
allocated to the application.

4.3 Technical Integration

We applied the methodology described in the previous section in two legacy
hypervisors (Xen and KVM), two legacy guest OSs (Linux and FreeBSD) and
three legacy SRLs (HotSpot, TCMalloc, and jemalloc). Table 4.1 summarizes
the efforts required for each legacy system. All the patches are available at
https://github.com/bvqbao/numaVirtualization.

61

https://github.com/bvqbao/numaVirtualization

4.3. Technical Integration

Systems #files #LOC
Xen 4.9 8 117
KVM from Linux 4.14 6 218
Linux 4.14 26 670
FreeBSD 11.0 23 708
HotSpot 8 3 53
TCMalloc 2.6.90 (gperftools-2.6.90) 3 65
jemalloc 5.0.1 9 86

Table 4.1: XPV integration in several legacy systems.

4.3.1 Xen modifications

When Xen creates a VM, given the requested and available resources, it first
determines on which NUMA node(s) to place the VM. If more than one NUMA
node are needed, Xen statically allocates memory to the VM in a round-robin
way (with 1GB granularity by default) over the selected NUMA nodes. The
latter are usually referred to as the VM’s home nodes. Xen also sets the soft
affinity of the VM’s vCPUs to pCPUs of the home nodes. This soft affinity is
a preference and does not prevent the migration of vCPUs to different nodes
when the home nodes are overloaded.

In order to implement XPV in Xen, the topology manager first records the
initial topology of the VM when the latter boots. This initial topology is stored
in a memory region shared between Xen and the guest kernel. Recall that
topology changes may happen on the following cases: vCPU migrations (due
to vCPU load balancing) inside a machine, grants acquisition on new memory
pages (due to memory flipping), memory page migrations inside a machine (due
to ballooning), and VM migrations between machines. For the three former
cases, the modification performed in Xen is straightforward. Whenever a vCPU
of a VM is migrated to a different NUMA node, we update the corresponding
VM’s topology in the shared memory region and notifies the VM by injecting
an interrupt in the guest. Regarding page migrations, in Xen, they take the
form of page deallocation/reallocation as a consequence of memory ballooning.
The new location(s) of memory pages are taken into account as follows: when
the migrated pages return to the guest OS, the latter then examines on which
node each page is located and puts the pages into the correct free page lists (see
Section 4.3.2, Memory allocator). The same operation is realized when the VM
acquires grants on pages located on new nodes. In fact, no modifications at Xen
level are needed in these cases. Concerning changes caused by the migration

62

4.3. Technical Integration

of the VM, they can be considered as a combination of vCPU migrations and
memory migrations. Therefore, we combine the above techniques together for
handling such changes.

4.3.2 Linux modifications

Page allocator. The major challenge of implementing XPV in an OS is to
adapt the page allocator. In Linux, memory pages on each node are divided
into zones. Linux relies on the NUMA policy used by the application to search
for free pages. The page allocator applies the NUMA policy to select a node
and then a zone in that node for page allocations. Each zone has a component
called the buddy system [72] which is responsible for page allocations inside the
zone. The buddy system breaks memory into blocks of pages and maintains a
separate page list for each block size. Most of the time, allocation requests are
for single page frames. In order to get better performance, a per-CPU page
frame cache is used to quickly serve these requests. Allocations of multiple
contiguous pages are directly handled by the buddy system.

We start with a UMA version of the page allocator and we modify it to be
NUMA-aware as follows. Firstly, we add new variables representing the actual
NUMA information used by application processes. Secondly, we partition the
per-CPU page frame cache and the free page lists of the buddy system by the
number of physical NUMA nodes. The kernel can know which page comes from
which node because it knows the machine frame number of each page and the
memory range on each physical node. In contrast with normal NUMA systems,
with XPV, the page allocator will apply the NUMA policy (stored in the newly
added variables) to determine the allocated node after a zone is selected. To
improve performance, the mapping from a page number to a physical node can
be cached and will be updated only at points where page migrations may occur
(e.g., ballooned pages returning to the memory allocator).

Scheduler. Linux scheduler organizes CPUs into a set of scheduling do-
mains for load balancing. A scheduling domain consists of a set of CPUs having
the same hardware properties regarding their location in the NUMA topology.
As a result, they form a tree-like structure. We could have reproduced such
structure in the scheduler with the real NUMA topology. However, in XPV,
for simplicity, we only builds a single domain containing all the CPUs of the
VM. We found that this is actually an acceptable solution as we could avoid
the adjustments in the scheduler when the topology get changed.

63

4.3. Technical Integration

NUMA policy manager. We only describe here the Automatic Numa
Balancing (ANB) [58] as it is the most advanced and complex NUMA opti-
mization is Linux. Once activated, ANB periodically unmaps memory pages
and then traps page faults when the pages are accessed. By doing this, ANB
can know the relation between the tasks and the accessed memory and de-
termine if it should move memory closer to the tasks that reference it. Since
migrating memory pages is quite expensive, ANB may moves tasks closer to the
memory they are accessing instead. The adaptation of ANB to be XPV aware
consists mostly in replacing the default topology information provided by the
OS by the actual topology information provided by the hypervisor. Some page
fault metrics used by ANB may need to be recalculated when the topology
get changed. However, in order to avoid the complexity and also the fact that
we don’t know how long a topology will last, we decide to not recalculate the
metrics in our implementation. Instead, ANB will just continue to work with
the newer topology and the metrics are recalculated in a very short time.

4.3.3 Application-level modifications: the HotSpot Java vir-
tual machine use case

We consider HotSpot 8, which uses the parallel garbage collector (GC) by
default. GC divides the memory heap into two regions (usually referred as
generations): a young generation and an old generation. New objects are placed
in the young generation. If they survive long enough, they will be promoted
and moved to the old generation. The young generation partitions its address
spaces into N group spaces with N is the number of NUMA nodes. Each group
space gets memory pages from the corresponding NUMA node. In order to
know how to allocate memory for a given thread, HotSpot also keeps track of
the CPU-to-node mapping. Regarding the old generation, it has memory pages
allocated in a round-robin way over the NUMA nodes.

The modification we introduce in HotSpot to make it XPV aware is as
follows. At the end of a collection, HotSpot examines the topology version
counter (introduced in the system library, see Section 4.2.2) to check if the
NUMA topology is stale. In case of stale topology, HotSpot creates the new
group spaces and/or removes the invalid ones according to the new topology
and updates the CPU-to-node mapping.

64

4.4. Evaluations

4.4 Evaluations

The previous section presented XPV, a way to virtualize NUMA while taking
into account topology changes that may impact VMs. This previous section
reported components that should be modified and the corresponding number
of LOC required to implement XPV in different legacy systems. This corre-
sponds to the qualitative evaluation of XPV. The current section presents the
quantitative evaluation.

4.4.1 Experimental setup

The evaluations are realized on a DELL server having 8 nodes (6 AMD Opteron
6344 cores per node), each linked to a 8GB local memory. Otherwise specified,
the used hypervisor is Xen and guest VMs use Linux. One node (6 cores and
8GB) is dedicated to the privileged VM (called dom0 in Xen jargon). Thus,
user VMs (called domU in Xen jargon) can only use the remaining 7 NUMA
nodes (42 cores and 56GB). Otherwise specified, every user VM has 20 vCPUs
and 30GB memory. Note that this configuration is used because we want the
VM occupies at least 4 physical NUMA nodes which, we think, are big enough
to show the NUMA effects.

We experimented two application categories: those which can use an SRL
(Java, C/C++) and those without an SRL (Fortran). For Java, we evaluate
SpecJBB 2005 [13] (noted JBB2005) single JVM (the performance metric is
the number of business operations per second (bops)) and BigBench [54] (the
performance metric is the execution time). These applications use HotSpot as
the SRL. Regarding C/C++ applications, they are evaluated with milc and
lammps from Spec MPI 2007 [14]. We selected these benchmarks because they
are representative of the two categories of Spec MPI applications: medium
memory usage and large memory usage. These applications use TCMalloc as
the SRL. We also experiment WebServing from CloudSuite [50], which uses the
two SRLs and performs a lot of I/O. WebServing is a traditional web service
application with four tiers: a web server, a database server, a memcached server
and a client. The first three tiers are deployed in the evaluated VM while the
client is deployed on a distinct server. The performance metric is the number of
operations per second (ops/sec). Otherwise indicated, HotSpot and TCMalloc
are launched while enabling their NUMA optimizations. Applications from the
second category are bt331, fma3d, swim, mgrid331, applu331 from Spec OMP

65

4.4. Evaluations

2012 [22] and pop2 from Spec MPI 2007.

In addition to the static vNUMA solution, which exposes the topology to the
VM, we also compared XPV with four different blackbox solutions. The latter
are implemented within the hypervisor with the VM seeing a UMA topology.
These solutions are:

• First-touch (noted FT): this solution is the basic Linux’s NUMA manage-
ment solution. It has been implemented within the hypervisor by Voron
et al. [103].

• Automatic NUMA Balancing (noted ANB) [58]: It is the most advanced
Linux solution for handling NUMA. KVM naturally includes ANB while
VMware implements a similar solution. We implemented ANB in Xen
for the purpose of this work. We did this by reproducing the Linux
implementation of ANB in Xen. Such a proactive solution could be seen
as the ideal XPV competitor.

• Interleaved: the VM’s resources are packed on the minimum number of
NUMA nodes and the memory is interleaved by pages of 1GB (Xen’s
default policy).

• No policy: the VM’s vCPUs and memory are equally distributed over its
allocated nodes, no NUMA policy is used.

To plot the results of all applications on the same figure using the same
referential, results are normalized, over the “No policy” solution. For all plots,
higher is better.

4.4.2 XPV implementation efficiency

Recall that XPV follows the same approach as vNUMA, which is the presen-
tation of the NUMA topology to VMs. However, the implementation of XPV
follows a different strategy, which requires few modifications and make it adapt-
able (theoretically thus far). One could ask if XPV is at least as efficient as
vNUMA when the VM topology stays unchanged. To answer this question, we
compared the performance of several applications when they run atop vNUMA
and XPV. Recall that the implementation of XPV does not use any Xen’s
vNUMA code. Fig. 4.5 presents the evaluation results, interpreted as follows.

66

4.4. Evaluations

XPV performs similarly to vNUMA only with JBB2005 and pop2. However, it
outperforms vNUMA for the remaining applications, by up to 75% in the case
of mgrid331, and even for I/O applications (by up to 15% with webserving).
This performance gap between the two solutions, which follow the same static
vNUMA approach in this experiment, is explained by the fact that we were able
to optimize XPV in comparison with Xen’s vNUMA implementation. Several
comments were posted in Xen-dev mailing list [48] (a scheduling issue inside
the guest), underlying the inefficient implementation of vNUMA.

JB
B2

00
5

bt
33
1

fm
a3
d

sw
im

m
gr
id
33
1

ap
pl
u3

31
po

p2
m
ilc

la
m
m
ps

we
bs
er
vi
ng

0

1

2

3

no
rm

al
iz
ed

pe
rf.

vNUMA XPV

Figure 4.5: XPV implementation efficiency. XPV is compared with vNUMA
(implementer by Xen) when no topology change occurs. The performance
gap comes from the fact that the implementation of vNUMA by Xen is less
optimized than XPV. Notice that the latter does not use any vNUMA code.

We also performed the same experiments using smaller VMs (4GB of mem-
ory with 4vCPUs). Fig. 4.6 presents the obtained results. We can observe that
XPV outperforms vNUMA with most of the benchmarks (by up to 40% with
swim), but the difference is smaller than with bigger VMs (53% with swim for
big VMs). Therefore, for the remaining evaluations in this chapter, instead of
using Xen’s vNUMA as the static vNUMA baseline, we will use a static version
of XPV. Thus, in the rest of this evaluation section, vNUMA refers to a static
version of XPV.

67

4.4. Evaluations

bt
33
1

fm
a3
d

sw
im

ap
pl
u3

31

po
p2

m
ilc

la
m
m
ps

0

0.5

1

1.5

no
rm

al
iz
ed

pe
rf.

vNUMA XPV

Figure 4.6: XPV implementation efficiency with small VMs.

4.4.3 vNUMA vs blackbox solutions

In this section, we compare vNUMA with the existing state-of-the-art blackbox
solutions described above. During these experiments, no topology change is
triggered by the hypervisor. Every application runs in a VM which uses three
NUMA nodes. Fig. 4.7 presents the evaluation results, interpreted as follows.

(1) vNUMA (see “vNUMA with SRL NUMA” bars) outperforms all black-
box solutions. For instance, in the case of swim, vNUMA outperforms Inter-
leaved, FT, and ANB by about 130%, 99%, and 88% respectively. Concerning
JBB2005, which is the only benchmark used by Xen [12] and VMware [23] de-
velopers for evaluating the benefits of vNUMA, we can observe a performance
gap of about 12% (which is significant) between vNUMA and other solutions.
This is compliant with the results obtained by both Xen and VMware develop-
ers. However, as mentioned above, the evaluation of other benchmarks shows
that vNUMA can bring much more benefits. The main reason which explains
the efficiency of the vNUMA approach (the exposition of the topology to the
VM) is the fact that it allows optimized NUMA policies implemented by the
guest OS and the SRLs (HotSpot and TCMalloc here) to be effective.

68

4.4. Evaluations

JB
B2

00
5

bt
33
1

fm
a3
d

sw
im

m
gr
id
33
1

ap
pl
u3

31

po
p2

m
ilc

la
m
m
ps

0

1

2

3
no

rm
al
iz
ed

pe
rf.

Interleaved FT ANB vNUMA without NUMA SRL vNUMA with NUMA SRL

Figure 4.7: vNUMA compared with the state-of-the-art blackbox solutions
(higher is better). This experiment also highlight the importance of NUMA
policies embedded within the SRL. No topology change is triggered during this
experiment.

(2) For some applications, the benefits of vNUMA is magnified by the opti-
mized NUMA policies embedded within the SRL (compare “vNUMA without
NUMA SRL” with “vNUMA with NUMA SRL” bars). This is the case for
JBB2005, milc and lammps. For instance, milc performs 64% better when TC-
Malloc (its SRL) is NUMA aware atop vNUMA. Notice that applications for
which “vNUMA without NUMA SRL” equals “vNUMA with NUMA SRL” do
not use an SRL.

(3) One could imagine that by implementing ANB (which is a Linux NUMA
solution) at the hypervisor level, it could provide the same results as using it
in a NUMA VM. Our results show that this is not true (compare “ANB” with
“vNUMA without NUMA SRL” bars). vNUMA outperforms ANB by up to
88% in the case of swim. This is because in the hypervisor, ANB works at the
vCPU granularity, which is not as fine-grained as the thread granularity inside
the guest OS. In fact, what a vCPU accesses may suddenly change if the guest
schedules another task on it. Therefore, the decision to move a vCPU or a set
of memory pages for minimizing remote memory accesses is not precise as it is
dictated by several tasks, which is not the case when ANB runs in the guest.

(4) Among hypervisor level solutions, ANB is the best one.

69

4.4. Evaluations

4.4.4 XPV facing topology changes

This section presents the evaluation of XPV when resource management deci-
sions taken by the hypervisor lead to NUMA topology changes for the VMs.
Recall that the topology-changing decisions could be: vCPU load balancing,
memory ballooning, memory flipping, and VM live migration. Since memory
ballooning and memory flipping lead to the same consequences5 (which is mem-
ory remapping), we only present the evaluation results of one of them (memory
ballooning). Concerning topology changes due to VM live migration, they can
be seen as a combination of the other topology change types. Therefore, our
evaluations focus on topology changes caused by vCPU load balancing and
memory ballooning.

To show the benefits of each XPV feature, we evaluated two XPV versions:

• XPV with topology change notifications confined within the guest OS.
The SRL level is not informed. This means that only NUMA policies
implemented within the guest kernel are aware of topology changes. This
version is noted “OS only XPV”.

• XPV with topology change notifications taken into account by both the
guest kernel and the SRL. This version is simply noted “XPV”.

We compared these two versions with blackbox solutions and a static version
of XPV noted vNUMA as stated above. We present and discuss in this section
only the results for three representative applications since the other results that
we have observed are similar: a representative Java application (JBB2005), a
representative C application (milc), and a representative application which does
not use an SRL (swim).

5We experimented flipping and observed that negative impact for a memory intensive app
which runs inside the VM which is subject to flipping.

70

4.4. Evaluations

4.4.4.1 XPV facing topology changes caused by vCPU loadbalancing

 0
 1
 2
 3
 4
 5
 6
 7

 0 10 20 30 40 50 60 70 80 90

N
U

M
A

 n
o
d

e
s

Time(minutes)

Figure 4.8: NUMA nodes occupied by vCPU0 of JBB2005 VM during its life-
time when overcommitment is done on the CPU resource.

Recall that vCPU loadbalancing could lead to vCPU migrations between differ-
ent nodes, thus changing the topology of VMs. To create a situation which may
lead the hypervisor performing vCPU loadbalancing, we run each tested appli-
cation in three identical VMs (started at the same time). The total number of
vCPUs (for the three VMs) is 48 while the number of available cores is 42 (recall
that 6 cores are dedicated to the dom0). Thus, the scheduler of the hypervisor
is likely to realize vCPU loadbalancing during the experiment. As an example,
Fig. 4.8 shows the different nodes occupied by vCPU0 of JBB2005 VM during
its execution. For this application, we counted 1695 topology changes during
the execution, corresponding to about 20 topology changes per minutes (noted
TC/min). The topology change rates for milc and swim are 5 TC/min and 12
TC/min respectively.

Fig. 4.9 presents the performance of each application when different NUMA
virtualization solutions are used. These results are interpreted as follows. (1)
We can see that JBB2005 does not suffer a lot from the issue of topology
changes due to vCPU migrations. Except FT, the performance gap between
XPV and other solutions (about 12%) is almost the same as when there is no
topology change (presented in Fig. 4.7). FT provides the lowest performance,
58% lower than XPV. In fact, FT only considers NUMA for the first memory
allocation operations. Interleaved suffer less because it has interleaved the
VM’s memory, thus increasing the probability for a vCPU to access a local
memory. Concerning ANB, it enforces memory locality by relocating either
vCPUs or memory chunks. (2) Things are different concerning milc and swim.
The performance gap between XPV and other solutions is higher in this case

71

4.4. Evaluations

(90% and 55% on average for milc and swim respectively). This means that milc
and swim are sensitive to topology changes caused by vCPU loadbalancing. (3)
The static vNUMA solution significantly degrades the application performance
when topology changes are triggered. The performance gap with the adaptable
XPV solution is about 12%, 127% and 84% in the case of JBB2005, milc
and swim respectively. (4) Making topology changes visible to the SRL layer
improves the performance of some applications. The gap between "OS only
XPV" and XPV is about 12% for JBB2005 and 65% for milc (recall that swim
does not use an SRL). (5) XPV keeps all applications almost to their best
performance, which is the one observed when no topology change is triggered
(presented in Fig. 4.7).

JBB2005 milc swim
0

1

2

3

no
rm

al
iz
ed

pe
rf.

Interleaved
FT
ANB
vNUMA
OS only XPV
XPV

Figure 4.9: XPV facing vCPU loadbalancing due to the overcommitment of
the CPU resource (higher is better).

4.4.4.2 XPV facing topology changes caused by memory ballooning

To realize this experiment, we used Badis, a memory overcommitment system
presented in [85]. Badis is able to dynamically adjust the memory size of VMs
which share the same host in order to give to each VM the exact amount of
memory it needs. We ran Badis and our three applications (JBB2005, swim
and milc) at the same time. Each VM is launched with 10vCPUs and 20GB
which can be adjusted by Badis. There is no CPU overcommitment in this
experiment.

72

4.4. Evaluations

JBB2005 milc swim
0

1

2

3

no
rm

al
iz
ed

pe
rf.

Interleaved
FT
ANB
vNUMA
OS only XPV
XPV

Figure 4.10: XPV facing memory ballooning (higher is better).

Fig. 4.10 presents the evaluation results. The interpretation of these results
is almost the same as the one presented in the previous section. The only
difference with the previous experiments if the fact that both Interleaved and
FT provide very bad performance. For instance, in the case of swim, XPV
outperforms Interleaved and FT by about 173% and 304% respectively.

4.4.5 Automatic NUMA Balancing (ANB) limitations

Due to the inability of existing vNUMA solutions to handle VM topology
changes, ANB like solutions have been envisioned as the best compromise thus
far. In the performance point of view, our evaluation results confirmed that
ANB is the best blackbox solution, although it is largely outperformed by
XPV. However, ANB has two side effects which can degrade the performance
of the hypervisor. First, ANB decisions can enter in conflict with resource
management decisions performed by the hypervisor. For instance, a vCPU
loadbalancing decision can move a vCPU to a node, resulting in remote mem-
ory accesses, thus the intervention of ANB. The latter will move back the vCPU
to its source node, thereby contradicting the previous resource management de-
cision. This issue has also been identified by VMware [23]. Second, a malicious
VM can manipulate ANB as follows. Let us consider a VM booted with two
vCPUs, one vCPU per node. Let us consider its memory distributed on the
two nodes. Even if the VM is presented a UMA topology (as ANB does), an
application inside the VM can dynamically discover the distance between vC-
PUs an a memory chunk using read/write latencies (the STREAM benchmark
[80] is the perfect candidate). Therefore, a malicious application can enforce

73

4.4. Evaluations

remote memory accesses in order to force ANB in the hypervisor to continually
migrate the corresponding VM’s vCPUs. These migrations would lead to the
migration of tenant VMs, thus impacting their execution. We implemented
such a malicious VM and validated this issue.

4.4.6 XPV internals

To evaluate the low level overhead introduced by XPV, we evaluated XPV
internal mechanisms. The latter are:

1. the new interrupt handler in the OS used each time there is a topology
update,

2. the new syscall used by the SRL to check the topology version and to
retrieve the topology information from the OS (for instance in our exper-
iments, it is called each time the GC runs),

3. the search for a free page on a particular node,

4. the update of memory allocator’s data structures (per-CPU caches and
the central buddy allocator).

First, the new interrupt handler in XPV runs in about 368 CPU cycles,
which is negligible. Second, the new syscalls added to the GC, we found that
the GC execution time is not significantly impacted. We rely on virtual dy-
namic shared object (vDSO) [33], which is a mechanism provided by the kernel
for exporting some frequently used read-only syscalls to user-space applica-
tions. vDSO routines are called as regular routines, without worrying about
performance overhead. Thus, the time consumed by the new syscall is negligi-
ble. Third, about the search for a free page, it takes a negligible time to do so
as all pages in the kernel are indexed by node (you can refer to Section 4.3.2).
Finally, concerning the update of memory allocator’s data structures, whenever
a page is freed and returns to the allocator, the kernel examines on which node
the page resides and puts it in the correct location. This hardly has any impact
on application performance.

74

4.5. Related Work

4.5 Related Work

Several work investigated the problem of efficiently handling NUMA architec-
tures in virtualized environments. Most of them were implemented by hyper-
visor providers (Xen, VMware, Hyper-V), and, to the best of our knowledge,
only six academic works investigated this issue.

4.5.1 Industrial solutions

Xen [78]. Xen tries to pack the VM’s resources on a single node, called
the home node. When the VM requires more than one node, Xen proposes
both Interleaved and static vNUMA. As shown in this chapter, none of these
solutions are efficient as XPV.

Oracle VM Server [27]. Oracle VM server proposes the policies used by
Xen. It suffers thus the same limitations.

VMWare [23]. VMWare works like Xen, but does not allocate the memory
with an interleaved policy. Instead, the VM’s memory is simply spread over
nodes. Concerning its static vNUMA based solution, VMware is able to update
the virtual NUMA topology of the VM by changing the ACPI tables. However,
its effectiveness depends on the capability of the guest OS to adapt itself on
topology changes. This is not currently the case in the mainstream OSs, which
makes the VMware’s solution inefficient. In this chapter, our XPV solution is
able to dynamically adapt the NUMA policies of both the OS and the SRLs
when the hypervisor changes the topology.

KVM [9]. KVM implements two blackbox solutions through Linux. These
solutions are First-touch (FT) and Automatic NUMA Balancing (ANB). FT is
inefficient with SRL based applications while ANB has a lot of limitations as
presented in the previous section (conflict with resource management decisions
taken by the hypervisor and vulnerable in the point of view of security).

Hyper-V [25]. Hyper-V uses the static vNUMA approach. When it cre-
ates a VM, Hyper-V exposes the bootstrap NUMA topology to the VM. Hyper-
V does not handle the issues related to topology changes [51].

75

4.5. Related Work

4.5.2 Academic solutions

To the best of our knowledge, all academic solutions use a blackbox approach,
meaning that the VM sees a UMA topology and the hypervisor implements
the NUMA policy. Disco [34] is a hypervisor that enforces locality on a NUMA
machine by using page migration and page replication. When the hypervisor
observes that a page is intensively used remotely, it migrates or replicates the
page. Disco hides the NUMA topology, which makes this solution inefficient
for an SRL that implements its own NUMA policy. Similarly, Rao et al. [91],
Wu et al. [107], Jaeung al. [61] and Liu et al. [77] proposed new heuristics to
place or to migrate the memory or the vCPUs in order to efficiently use the
NUMA architecture. However, in their work, they hide the NUMA topology to
the VM, which also makes them inefficient for many SRLs. All these solutions
are similar to ANB, which has been discussed above.

Instead of proposing new NUMA policies, Voron et al. [103] proposed to
implement NUMA policies used in Linux and the Carrefour policy [53] in the
hypervisor. The VM can then choose the most efficient NUMA policy. Because
a single NUMA policy can not be efficient for all applications, letting an appli-
cation selects its policy is better than using a single fixed policy. However, the
solution proposed by Voron et al. only considers memory (thread placement is
not studied). The solution also assumes that all applications inside a VM use
the same NUMA policy, which is not the best strategy if a VM runs several
processes. Moreover, the solution hides the NUMA topology to the VM, which
makes it inefficient for many SRLs. Finally, the solution requires a lot of en-
gineering efforts, while we show that XPV only requires a modest engineering
effort.

4.5.3 Positioning of our work

As shown in previous sections, all existing solutions fail to virtualize NUMA
efficiently. With XPV, we propose to make the static vNUMA approach dy-
namic. XPV exposes to the guest OS and its SRLs the exact actual NUMA
topology. By doing so, XPV allows each layer in the virtualization stack to
do what it does best: resource utilization optimization for the hypervisor and
NUMA management for SRLs, helped by the guest OS.

76

4.6. Synthesis

4.6 Synthesis

In this chapter we presented XPV, a new principle for virtualizing NUMA.
XPV adopts an opposite approach in comparison with existing solutions. In
fact, instead of managing NUMA at the hypervisor level, XPV presents to
the VM its actual topology while tracking topology changes. We presented a
systematic way to integrate in less than 2k LOC XPV in two legacy hypervisors
(Xen and KVM), two legacy guest OSs (Linux and FreeBSD), and three system
runtime libraries (HotSpot, TCMalloc, and jemalloc). We evaluated XPV with
different Java and C benchmarks. The evaluation results showed that XPV
outperforms all existing solutions, by up to 304%.

77

Chapter 5

Conclusion and Perspectives

5.1 Conclusion

With the emergence of cloud computing, researches on virtualization have be-
come very active among computer science researchers. At its core, virtualiza-
tion is about introducing a hardware abstraction layer between the OS and the
physical hardware. Virtualization techniques for CPU, memory and standard
I/O devices are well established. Virtualization of micro-architectural compo-
nents such as processor caches or NUMA still have rooms for improvements.
The main difficulties are not only due to the fact that there is no proper way
to physically partition these components in the current hardware architectures
but also that the hypervisor can reconfigure the resource placement for a VM
at will, at any time without the guest OS knowing as a result of load balancing.
We showed that these factors can bring severe performance impacts to VMs
sharing the same underlying physical hardware. It’s worth pointing out that
consolidating a maximum number of VMs on a minimum number of physical
machines is a common practice in cloud computing as it can increase hardware
utilization rates and decrease power consumption in the data centers.

In this thesis, we proposed software solutions called Kyoto and XPV to
virtualize processor caches and NUMA machines respectively. With Kyoto,
the main idea is to associate and enforce a LLC pollution permit to a VM.
The pollution permit is defined as a function of LLC cache misses and enforced
by the vCPU scheduler in the hypervisor. We implemented Kyoto in three
popular virtualization systems: Xen, KVM and Pisces. The results from our
experiments validate Kyoto’s effectiveness in terms of performance isolation

5.2. Perspectives

and predictability. They also show that Kyoto introduces a negligible overhead.
Henceforth, using the Kyoto system, the cloud provider may compel cloud users
to book pollution permits for their VMs.

Through experiments, we showed that exposing to a VM its actual NUMA
topology is the best way to handle NUMA in virtualized systems. To virtualize
a NUMA machine, XPV extends the well known paravirtualization principle in
two directions. First, in the same way as paravirtualization actually abstracts
away I/O devices, XPV extends the principle by also abstracting away the
physical NUMA topology into a virtual NUMA topology that can change at
runtime. Second, while currently paravirtualization is only used at the guest
OS level to implement optimized drivers for virtualized environments, XPV
extends this principle to the SRLs: we propose to adapt the SRLs with par-
avirtualization techniques in order to dynamically adapt their NUMA policy
when the virtual NUMA topology changes. Thanks to XPV, several VMs can
run on a NUMA machine and still use NUMA policies efficiently.

5.2 Perspectives

In Kyoto, we focused mainly on the LLC contention because it is one of the
most well-known and critical types of resource contention. We would like to
investigate further into other types of contention such as contention for the
memory controller and for network resources. Memory controller contention
occurs when several processors and I/O devices request for memory access
at the same time. A careful study about the memory controller’s behavior
and strategies for handling simultaneous requests can potentially reveal some
optimization opportunities to minimize the contention. Besides, the problem of
contention, caused due to the share of network resources by VMs or applications
is also an interesting topic. For instance, user VMs usually have access to
network disk servers. To improve the performance, a SSD cache layer can be
placed between the user VMs and the storage servers. Normally, the SSD cache
layer is implicitly shared among the user VMs, leading to contention.

Regarding XPV, we would like to apply the principle to other types of non-
uniform architectures such as Non-Uniform Input/Output Access (NUIOA)
where I/O devices can connect to specific CPUs making them access to some
memory nodes faster than to the others. In case of NUIOA, I/O performance
depends on the placement of processes on CPUs. We think that exposing

79

5.2. Perspectives

NUIOA topology to the VM allows the latter to achieve the best I/O perfor-
mance possible in a virtualized environment.

NUMA architecture is an evolution from the traditional multiprocessor
shared memory architecture as an attempt to provide scalable memory band-
width. However, a NUMAmachine is still a tightly coupled computing package:
a workload can only use resources available on a single machine and there is
no easy way for a machine to share its spare resources. In addition, it remains
impossible to integrate new CPU or memory technologies into such machine.
The only option is to replace the whole machine with a new one. To avoid
this terrible waste and to improve resource utilization, many hardware vendors
have proposed the so-called disaggregated architecture. Disaggregation means
separating computing resources (processors, memory) and allowing each type
of resource to be assigned independently to workloads. The communication
between different resources can be done through high-performance network
technologies such as Infiniband, Photonic Interconnect and iSCSI. One of the
benefits of a disaggregated architecture is the ability to add or remove indi-
vidual processor or memory module. A disaggregated architecture is generally
implemented at the rack scale. As a result, such an architecture is easier to
manage in a datacenter, and the topology is more uniform than that of a NUMA
architecture. However, modules may be heterogeneous, leading to performance
unpredictability. It would be interesting to investigate virtualization support
in such architectures.

80

Bibliography

[1] The hotspot group. http://openjdk.java.net/groups/hotspot/. Vis-
ited on June 2020.

[2] Hyper-v vnuma enable. https://specs.openstack.org/openstack/
nova-specs/specs/ocata/implemented/hyper-v-vnuma-enable.
html. Visited on June 2020.

[3] jemalloc memory allocator. http://jemalloc.net/. Visited on June
2020.

[4] Kyoto protocol. http://unfccc.int/kyoto_protocol/items/2830.
php. Visited on June 2020.

[5] Lmbench - tools for performance analysis. http://www.bitmover.com/
lmbench/. Visited on June 2020.

[6] Memory flipping in kvm. https://wiki.osdev.org/Virtio. Visited on
June 2020.

[7] Spec cpu 2006. https://www.spec.org/cpu2006/. Visited on June 2020.

[8] Understanding full virtualization, paravirtualization, and hardware
assist. https://www.vmware.com/content/dam/digitalmarketing/
vmware/en/pdf/techpaper/VMware_paravirtualization.pdf. Visited
on June 2020.

[9] What is linux memory policy? https://www.kernel.org/doc/
Documentation/vm/numa_memory_policy.txt. Visited on June 2020.

[10] What is numa. https://www.kernel.org/doc/html/latest/vm/numa.
html. Visited on June 2020.

[11] What is numa. https://www.kernel.org/doc/html/latest/
admin-guide/mm/numa_memory_policy.html. Visited on June 2020.

http://openjdk.java.net/groups/hotspot/
https://specs.openstack.org/openstack/nova-specs/specs/ocata/implemented/hyper-v-vnuma-enable.html
https://specs.openstack.org/openstack/nova-specs/specs/ocata/implemented/hyper-v-vnuma-enable.html
https://specs.openstack.org/openstack/nova-specs/specs/ocata/implemented/hyper-v-vnuma-enable.html
http://jemalloc.net/
http://unfccc.int/kyoto_protocol/items/2830.php
http://unfccc.int/kyoto_protocol/items/2830.php
http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/
https://wiki.osdev.org/Virtio
https://www.spec.org/cpu2006/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://www.kernel.org/doc/html/latest/vm/numa.html
https://www.kernel.org/doc/html/latest/vm/numa.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/numa_memory_policy.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/numa_memory_policy.html

Bibliography

[12] Xen on numa machines. https://wiki.xen.org/wiki/Xen_on_NUMA_
Machines. Visited on September 2018.

[13] Specjbb2005 (java server benchmark). https://www.spec.org/
jbb2005/, 2005. Visited on June 2020.

[14] Spec mpi 2007. https://www.spec.org/mpi2007/, 2007. Visited on
June 2020.

[15] Amd-v nested paging. Tech. rep., AMD, Inc, 2008. Visited on June 2020.

[16] Pci-sig single root i/o virtualization (sr-iov) sup-
port in intel virtualization technology for connectivity.
https://www.intel.com/content/dam/doc/white-paper/pci-sig-
single-root-io-virtualization-support-in-virtualization-technology-for-
connectivity-paper.pdf, 2008. Visited on June 2020.

[17] Understanding memory resource management in vmware esx server.
https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/techpaper/perf-vsphere-memory_management.pdf, 2009.
Visited on June 2020.

[18] 5 lessons we’ve learned using aws. http://techblog.netflix.com/
2010/12/5-lessons-weve-learned-using-aws.html, 2010. Visited on
June 2020.

[19] Pci-sig sr-iov primer: An introduction to sr-iov technology, 2011.

[20] Enabling optimized interrupt/apic virtualization in kvm. https://
www.linux-kvm.org/images/7/70/2012-forum-nakajima_apicv.pdf,
2012. Visited on June 2020.

[21] Intel virtualization technology for directed i/o (vt-d): Enhanc-
ing intel platforms for efficient virtualization of i/o devices.
https://software.intel.com/content/www/us/en/develop/articles/intel-
virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-
for-efficient-virtualization-of-io-devices.html, 2012. Visited on June
2020.

[22] Spec omp 2007. https://www.spec.org/omp2012/, 2012. Visited on
June 2020.

[23] The cpu scheduler in vmware vsphere 5.1. https://www.vmware.
com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/
vmware-vsphere-cpu-sched-performance-white-paper.pdf, 2013.
Visited on April 2018.

82

https://wiki.xen.org/wiki/Xen_on_NUMA_Machines
https://wiki.xen.org/wiki/Xen_on_NUMA_Machines
https://www.spec.org/jbb2005/
https://www.spec.org/jbb2005/
https://www.spec.org/mpi2007/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/perf-vsphere-memory_management.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/perf-vsphere-memory_management.pdf
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
https://www.linux-kvm.org/images/7/70/2012-forum-nakajima_apicv.pdf
https://www.linux-kvm.org/images/7/70/2012-forum-nakajima_apicv.pdf
https://www.spec.org/omp2012/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf

Bibliography

[24] Amd i/o virtualization technology (iommu) specification. http:
//developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf,
2016. Visited on June 2020.

[25] Deploying virtual numa for vmm. https://technet.microsoft.com/
en-us/library/jj628164.aspx, 2016. Visited on June 2020.

[26] Intel 64 and ia-32 architectures developer’s
manual: Vol. 3a. https://www.intel.com/
content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3a-part-1-manual.
html, 2016. Visited on June 2020.

[27] Optimizing oracle vm server for x86 performance. http://www.oracle.
com/technetwork/server-storage/vm/ovm-performance-2995164.
pdf, 2017. Visited on June 2020.

[28] Ackaouy, E. The xen credit cpu scheduler. http://www-archive.
xenproject.org/files/summit_3/sched.pdf, 2006. Visited on June
2020.

[29] Ahn, J., Kim, C., Han, J., Choi, Y.-R., and Huh, J. Dynamic
virtual machine scheduling in clouds for architectural shared resources.
In Proceedings of the 4th USENIX Conference on Hot Topics in Cloud
Ccomputing (USA, 2012), HotCloud’12, USENIX Association, p. 19.

[30] Ahn, J. H., Li, S., O, S., and Jouppi, N. P. Mcsima+: A manycore
simulator with application-level+ simulation and detailed microarchitec-
ture modeling. In ISPASS (2013), IEEE Computer Society, pp. 74–85.

[31] Apparao, P., Iyer, R., and Newell, D. Implications of cache
asymmetry on server consolidation performance. In 2008 IEEE Inter-
national Symposium on Workload Characterization (Seattle, WA, USA,
Oct. 2008), IEEE, pp. 24–32.

[32] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. Xen
and the art of virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (2003), SOSP ’03, ACM,
pp. 164–177.

[33] Bovet, D. P. Implementing virtual system calls. https://lwn.net/
Articles/615809/, 2014. Visited on September 2018.

83

http://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
http://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
https://technet.microsoft.com/en-us/library/jj628164.aspx
https://technet.microsoft.com/en-us/library/jj628164.aspx
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
http://www.oracle.com/technetwork/server-storage/vm/ovm-performance-2995164.pdf
http://www.oracle.com/technetwork/server-storage/vm/ovm-performance-2995164.pdf
http://www.oracle.com/technetwork/server-storage/vm/ovm-performance-2995164.pdf
http://www-archive.xenproject.org/files/summit_3/sched.pdf
http://www-archive.xenproject.org/files/summit_3/sched.pdf
https://lwn.net/Articles/615809/
https://lwn.net/Articles/615809/

Bibliography

[34] Bugnion, E., Devine, S., and Rosenblum, M. Disco: Running com-
modity operating systems on scalable multiprocessors. In Proceedings of
the Sixteenth ACM Symposium on Operating Systems Principles (1997),
SOSP ’97, ACM, pp. 143–156.

[35] Bugnion, E., Devine, S., Rosenblum, M., Sugerman, J., and
Wang, E. Y. Bringing virtualization to the x86 architecture with the
original vmware workstation. ACM Trans. Comput. Syst. 30, 4 (Nov.
2012).

[36] Bugnion, E., Nieh, J., and Tsafrir, D. Hardware and software
support for virtualization. No. # 38 in Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, San Rafael, CA. OCLC:
1014037684.

[37] Bungale, P. P., and Luk, C.-K. Pinos: A programmable frame-
work for whole-system dynamic instrumentation. In Proceedings of the
3rd International Conference on Virtual Execution Environments (New
York, NY, USA, 2007), VEE ’07, Association for Computing Machinery,
p. 137–147.

[38] Cherkasova, L., and Gardner, R. Measuring cpu overhead for
i/o processing in the xen virtual machine monitor. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference (2005),
ATEC ’05, USENIX Association, pp. 24–24.

[39] Cherkasova, L., Gupta, D., and Vahdat, A. Comparison of the
three cpu schedulers in xen. SIGMETRICS Perform. Eval. Rev. 35, 2
(Sept. 2007), 42–51.

[40] Chisnall, D. The Definitive Guide to the Xen Hypervisor. Chapter:
Understanding How Xen Approaches Device Drivers., first ed. Prentice
Hall Press, Upper Saddle River, NJ, USA, 2007.

[41] Denneman, F. Decoupling of cores per socket from virtual numa
topology in vsphere 6.5. http://frankdenneman.nl/2016/12/12/
decoupling-cores-per-socket-virtual-numa-topology-vsphere-6-5/,
2016. Visited on June 2020.

[42] Denneman, F. Impact of cpu hot add on numa
scheduling. http://frankdenneman.nl/2017/04/14/
impact-cpu-hot-add-numa-scheduling/, 2017. Visited on July
2018.

84

http://frankdenneman.nl/2016/12/12/decoupling-cores-per-socket-virtual-numa-topology-vsphere-6-5/
http://frankdenneman.nl/2016/12/12/decoupling-cores-per-socket-virtual-numa-topology-vsphere-6-5/
http://frankdenneman.nl/2017/04/14/impact-cpu-hot-add-numa-scheduling/
http://frankdenneman.nl/2017/04/14/impact-cpu-hot-add-numa-scheduling/

Bibliography

[43] Dhiman, G., Marchetti, G., and Rosing, T. Vgreen: A system
for energy-efficient management of virtual machines. ACM Trans. Des.
Autom. Electron. Syst. 16, 1 (Nov. 2010).

[44] Drepper, U. What every programmer should know about memory;.
2007.

[45] Du, J., Sehrawat, N., and Zwaenepoel, W. Performance profiling
in a virtualized environment. In Proceedings of the 2nd USENIX Con-
ference on Hot Topics in Cloud Computing (USA, 2010), HotCloud’10,
USENIX Association, p. 2.

[46] Du, J., Sehrawat, N., and Zwaenepoel, W. Performance profiling
of virtual machines. SIGPLAN Not. 46, 7 (Mar. 2011), 3–14.

[47] Duong, N., Zhao, D., Kim, T., Cammarota, R., Valero, M.,
and Veidenbaum, A. V. Improving cache management policies us-
ing dynamic reuse distances. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture (USA, 2012),
MICRO-45, IEEE Computer Society, p. 389–400.

[48] Faggioli, D. Pv-vnuma issue: topology is misinterpreted by the
guest. https://lists.xenproject.org/archives/html/xen-devel/
2015-07/msg03241.html, 2015. Visited on June 2020.

[49] Fedorova, A., Seltzer, M., and Smith, M. D. Improving perfor-
mance isolation on chip multiprocessors via an operating system sched-
uler. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques (USA, 2007), PACT ’07, IEEE
Computer Society, p. 25–38.

[50] Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Al-
isafaee, M., Jevdjic, D., Kaynak, C., Popescu, A. D., Aila-
maki, A., and Falsafi, B. Clearing the clouds: A study of emerging
scale-out workloads on modern hardware. In Proceedings of the Seven-
teenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (2012), ASPLOS XVII, ACM,
pp. 37–48.

[51] Finn, A. Hyper-v dynamic memory versus virtual numa. https:
//www.petri.com/hyper-v-dynamic-memory-versus-virtual-numa,
2015. Visited on June 2020.

85

https://lists.xenproject.org/archives/html/xen-devel/2015-07/msg03241.html
https://lists.xenproject.org/archives/html/xen-devel/2015-07/msg03241.html
https://www.petri.com/hyper-v-dynamic-memory-versus-virtual-numa
https://www.petri.com/hyper-v-dynamic-memory-versus-virtual-numa

Bibliography

[52] Gaud, F., Lepers, B., Decouchant, J., Funston, J., Fedorova,
A., and Quéma, V. Large pages may be harmful on numa systems. In
Proceedings of the 2014 USENIX Conference on USENIX Annual Techni-
cal Conference (2014), USENIX ATC’14, USENIX Association, pp. 231–
242.

[53] Gaud, F., Lepers, B., Funston, J., Dashti, M., Fedorova, A.,
Quéma, V., Lachaize, R., and Roth, M. Challenges of memory
management on modern numa systems. Communications of the ACM
58, 12 (Nov. 2015), 59–66.

[54] Ghazal, A., Ivanov, T., Kostamaa, P., Crolotte, A., Voong,
R., Al-Kateb, M., Ghazal, W., and Zicari, R. V. Bigbench
v2: The new and improved bigbench. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE) (April 2017), pp. 1225–1236.

[55] Gidra, L., Thomas, G., Sopena, J., and Shapiro, M. A study
of the scalability of stop-the-world garbage collectors on multicores. In
Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (2013), AS-
PLOS ’13, ACM, pp. 229–240.

[56] Gidra, L., Thomas, G., Sopena, J., Shapiro, M., and Nguyen,
N. Numagic: A garbage collector for big data on big numa machines. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (New York,
NY, USA, 2015), ASPLOS ’15, ACM, pp. 661–673.

[57] Goldberg, R. P. Survey of virtual machine research. Computer 7, 9
(Sept. 1974), 34–45.

[58] Gorman, M. Automatic numa balancing. https://lwn.net/
Articles/523065/, 2012. Visited on September 2018.

[59] Gupta, A., Kale, L. V., Milojicic, D., Faraboschi, P., and
Balle, S. M. Hpc-aware vm placement in infrastructure clouds. In
Proceedings of the 2013 IEEE International Conference on Cloud Engi-
neering (USA, 2013), IC2E ’13, IEEE Computer Society, p. 11–20.

[60] Hagimont, D., Mayap Kamga, C., Broto, L., Tchana, A., and
De Palma, N. Dvfs aware cpu credit enforcement in a virtualized
system. In Middleware 2013 (Berlin, Heidelberg, 2013), D. Eyers and
K. Schwan, Eds., Springer Berlin Heidelberg, pp. 123–142.

86

https://lwn.net/Articles/523065/
https://lwn.net/Articles/523065/

Bibliography

[61] Han, J., Ahn, J., Kim, C., Kwon, Y., Choi, Y.-R., and Huh, J.
The effect of multi-core on hpc applications in virtualized systems. In
Proceedings of the 2010 Conference on Parallel Processing (2011), Euro-
Par 2010, Springer-Verlag, pp. 615–623.

[62] Heechul Yun, Gang Yao, Pellizzoni, R., Caccamo, M., and
Lui Sha. MemGuard: Memory bandwidth reservation system for ef-
ficient performance isolation in multi-core platforms. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium
(RTAS) (Philadelphia, PA, Apr. 2013), IEEE, pp. 55–64.

[63] Iyer, R., Zhao, L., Guo, F., Illikkal, R., Makineni, S., Newell,
D., Solihin, Y., Hsu, L., and Reinhardt, S. Qos policies and ar-
chitecture for cache/memory in cmp platforms. In Proceedings of the
2007 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (New York, NY, USA, 2007), SIGMET-
RICS ’07, Association for Computing Machinery, p. 25–36.

[64] Jaleel, A., Hasenplaugh, W., Qureshi, M., Sebot, J., Steely,
S., and Emer, J. Adaptive insertion policies for managing shared
caches. In Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (New York, NY, USA, 2008),
PACT ’08, Association for Computing Machinery, p. 208–219.

[65] Jerger, N. E., Vantrease, D., and Lipasti, M. An Evaluation of
Server Consolidation Workloads for Multi-Core Designs. In 2007 IEEE
10th International Symposium on Workload Characterization (Boston,
MA, USA, Sept. 2007), IEEE, pp. 47–56.

[66] Jha, M. Whats new in vsphere 6.0 - vnuma enhance-
ments. https://alexhunt86.wordpress.com/2015/05/16/
whats-new-in-vsphere-6-0-vnuma-enhancements/, 2015. Visited on
June 2020.

[67] Jin, X., Chen, H., Wang, X., Wang, Z., Wen, X., Luo, Y., and
Li, X. A Simple Cache Partitioning Approach in a Virtualized Envi-
ronment. In 2009 IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications (Chengdu, Sichuan, China, 2009),
IEEE, pp. 519–524.

[68] Kaminski, P. Numa aware heap memory manager. https:
//developer.amd.com/wordpress/media/2012/10/NUMA_aware_
heap_memory_manager_article_final.pdf, 2012. Visited on June
2020.

87

https://alexhunt86.wordpress.com/2015/05/16/whats-new-in-vsphere-6-0-vnuma-enhancements/
https://alexhunt86.wordpress.com/2015/05/16/whats-new-in-vsphere-6-0-vnuma-enhancements/
https://developer.amd.com/wordpress/media/2012/10/NUMA_aware_heap_memory_manager_article_final.pdf
https://developer.amd.com/wordpress/media/2012/10/NUMA_aware_heap_memory_manager_article_final.pdf
https://developer.amd.com/wordpress/media/2012/10/NUMA_aware_heap_memory_manager_article_final.pdf

Bibliography

[69] Kang, K.-D., Alian, M., Kim, D., Huh, J., and Kim, N. S. VIP:
Virtual Performance-State for Efficient Power Management of Virtual
Machines. In Proceedings of the ACM Symposium on Cloud Computing
(Carlsbad CA USA, Oct. 2018), ACM, pp. 237–248.

[70] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A.
KVM: the Linux Virtual Machine Monitor. In In Proceedings of the 2007
Ottawa Linux Symposium (OLS’-07 (2007).

[71] Klee, D. Vmware vsphere 6.5 breaks your sql server
vnuma settings. https://www.davidklee.net/2016/11/29/
vmware-vsphere-6-5-breaks-your-sql-server-vnuma-settings/,
2016. Visited on June 2020.

[72] Knowlton, K. C. A fast storage allocator. Communications of the
ACM 8, 10 (Oct. 1965), 623–624.

[73] Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z.,
and Pu, C. An Analysis of Performance Interference Effects in Virtual
Environments. In 2007 IEEE International Symposium on Performance
Analysis of Systems & Software (San Jose, CA, USA, Apr. 2007), IEEE,
pp. 200–209.

[74] Lapata, M. Automatic evaluation of information ordering: Kendall’s
tau. Comput. Linguist. 32, 4 (Dec. 2006), 471–484.

[75] Lepers, B., Quéma, V., and Fedorova, A. Thread and memory
placement on numa systems: Asymmetry matters. In Proceedings of
the 2015 USENIX Conference on Usenix Annual Technical Conference
(2015), USENIX ATC ’15, USENIX Association, pp. 277–289.

[76] Liu, M., Li, C., and Li, T. Understanding the Impact of vCPU
Scheduling on DVFS-Based Power Management in Virtualized Cloud
Environment. In 2014 IEEE 22nd International Symposium on Mod-
elling, Analysis & Simulation of Computer and Telecommunication Sys-
tems (Paris, France, Sept. 2014), IEEE, pp. 295–304.

[77] Liu, M., and Li, T. Optimizing virtual machine consolidation per-
formance on NUMA server architecture for cloud workloads. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA) (Minneapolis, MN, USA, June 2014), IEEE, pp. 325–336.

[78] Liu, W., and Ufimtseva, E. vnuma in xen. https:
//events.static.linuxfound.org/sites/events/files/slides/
vNUMA%20in%20Xen_XenDev.pdf, 2014. Visited on June 2020.

88

https://www.davidklee.net/2016/11/29/vmware-vsphere-6-5-breaks-your-sql-server-vnuma-settings/
https://www.davidklee.net/2016/11/29/vmware-vsphere-6-5-breaks-your-sql-server-vnuma-settings/
https://events.static.linuxfound.org/sites/events/files/slides/vNUMA%20in%20Xen_XenDev.pdf
https://events.static.linuxfound.org/sites/events/files/slides/vNUMA%20in%20Xen_XenDev.pdf
https://events.static.linuxfound.org/sites/events/files/slides/vNUMA%20in%20Xen_XenDev.pdf

Bibliography

[79] Mars, J., and Soffa, M. L. Synthesizing contention. In Proceed-
ings of the Workshop on Binary Instrumentation and Applications (New
York, NY, USA, 2009), WBIA ’09, Association for Computing Machinery,
p. 17–25.

[80] McCalpin, J. Stream: Sustainable memory bandwidth in high per-
formance computers. Tech. rep., University of Virginia, Charlottesville,
Virginia, 1991-2007. A continually updated technical report.

[81] Milojicic, D. High performance computing (hpc) in the cloud. Com-
puting Now (9 2012).

[82] Nathuji, R., and Schwan, K. Virtualpower: Coordinated power
management in virtualized enterprise systems. In In Proceedings of In-
ternational Symposium on Operating System Principles (SOSP (2007).

[83] Neiger, G., Santoni, A., Leung, F., Rodgers, D., and Uhlig, R.
Intel virtualization technology: Hardware support for efficient processor
virtualization. Intel Technology Journal 10, 03 (aug 2006).

[84] Nikolaev, R., and Back, G. Perfctr-xen: A framework for per-
formance counter virtualization. In Proceedings of the 7th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (New York, NY, USA, 2011), VEE ’11, Association for Computing
Machinery, p. 15–26.

[85] Nitu, V., Kocharyan, A., Yaya, H., Tchana, A., Hagimont,
D., and Astsatryan, H. Working set size estimation techniques in
virtualized environments: One size does not fit all. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 2, 1 (Apr.
2018), 19:1–19:22.

[86] Ouyang, J., Kocoloski, B., Lange, J. R., and Pedretti, K.
Achieving performance isolation with lightweight co-kernels. In Proceed-
ings of the 24th International Symposium on High-Performance Parallel
and Distributed Computing (New York, NY, USA, 2015), HPDC ’15, As-
sociation for Computing Machinery, p. 149–160.

[87] Paul, I., Yalamanchili, S., and John, L. K. Performance im-
pact of virtual machine placement in a datacenter. In 2012 IEEE 31st
International Performance Computing and Communications Conference
(IPCCC) (Austin, TX, USA, Dec. 2012), IEEE, pp. 424–431.

89

Bibliography

[88] Popek, G. J., and Goldberg, R. P. Formal requirements for virtual-
izable third generation architectures. Commun. ACM 17, 7 (July 1974),
412–421.

[89] Qureshi, M. K., Jaleel, A., Patt, Y. N., Steely, S. C., and
Emer, J. Adaptive insertion policies for high performance caching. In
Proceedings of the 34th Annual International Symposium on Computer
Architecture (New York, NY, USA, 2007), ISCA ’07, Association for
Computing Machinery, p. 381–391.

[90] Qureshi, M. K., and Patt, Y. N. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In Proceedings of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture (USA, 2006), MICRO 39, IEEE Computer
Society, p. 423–432.

[91] Rao, J., Wang, K., Zhou, X., and Xu, C. Optimizing virtual ma-
chine scheduling in numa multicore systems. In 2013 IEEE 19th Interna-
tional Symposium on High Performance Computer Architecture (HPCA)
(Feb 2013), pp. 306–317.

[92] Riesen, R., Brightwell, R., Bridges, P. G., Hudson, T., Mac-
cabe, A. B., Widener, P. M., and Ferreira, K. Designing and im-
plementing lightweight kernels for capability computing. Concurr. Com-
put. : Pract. Exper. 21, 6 (Apr. 2009), 793–817.

[93] Robin, J. S., and Irvine, C. E. Analysis of the intel pentium’s ability
to support a secure virtual machine monitor. In Proceedings of the 9th
Conference on USENIX Security Symposium - Volume 9 (USA, 2000),
SSYM’00, USENIX Association, p. 10.

[94] Rosenblum, M., Bugnion, E., Devine, S., and Herrod, S. A.
Using the simos machine simulator to study complex computer systems.
ACM Trans. Model. Comput. Simul. 7, 1 (Jan. 1997), 78–103.

[95] Ruprecht, A., Jones, D., Shiraev, D., Harmon, G., Spivak, M.,
Krebs, M., Baker-Harvey, M., and Sanderson, T. Vm live mi-
gration at scale. In Proceedings of the 14th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments (2018), VEE
’18, ACM, pp. 45–56.

[96] Simons, J. vnuma: What it is and why it matters. https://octo.
vmware.com/vnuma-what-it-is-and-why-it-matters/, 2011. Visited
on June 2020.

90

https://octo.vmware.com/vnuma-what-it-is-and-why-it-matters/
https://octo.vmware.com/vnuma-what-it-is-and-why-it-matters/

Bibliography

[97] Sites, R. L., Chernoff, A., Kirk, M. B., Marks, M. P., and
Robinson, S. G. Binary translation. Commun. ACM 36, 2 (Feb. 1993),
69–81.

[98] Tang, L., Mars, J., and Soffa, M. L. Contentiousness vs. sensitiv-
ity: Improving contention aware runtime systems on multicore architec-
tures. In Proceedings of the 1st International Workshop on Adaptive Self-
Tuning Computing Systems for the Exaflop Era (New York, NY, USA,
2011), EXADAPT ’11, Association for Computing Machinery, p. 12–21.

[99] Tang, L., Mars, J., Vachharajani, N., Hundt, R., and Soffa,
M. L. The impact of memory subsystem resource sharing on datacenter
applications. In Proceedings of the 38th Annual International Sympo-
sium on Computer Architecture (New York, NY, USA, 2011), ISCA ’11,
Association for Computing Machinery, p. 283–294.

[100] Teabe, B., Tchana, A., and Hagimont, D. Application-specific
quantum for multi-core platform scheduler. In Proceedings of the Eleventh
European Conference on Computer Systems (2016), EuroSys ’16, ACM,
pp. 3:1–3:14.

[101] Teabe, B., Tchana, A., and Hagimont, D. Billing system CPU
time on individual VM. In 2016 16th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid) (Cartagena,
Colombia, May 2016), IEEE, pp. 493–496.

[102] Teimouri, D. Numa and vnuma - back to the basic. https://www.
teimouri.net/numa-vnuma-back-basic/#.WuSuy9axXCJ, 2017. Visited
on June 2020.

[103] Voron, G., Thomas, G., Quéma, V., and Sens, P. An interface
to implement numa policies in the xen hypervisor. In Proceedings of the
Twelfth European Conference on Computer Systems (2017), EuroSys ’17,
ACM, pp. 453–467.

[104] Wang, X., Wen, X., Li, Y., Luo, Y., Li, X., and Wang, Z. A Dy-
namic Cache Partitioning Mechanism under Virtualization Environment.
In 2012 IEEE 11th International Conference on Trust, Security and Pri-
vacy in Computing and Communications (Liverpool, United Kingdom,
June 2012), IEEE, pp. 1907–1911.

[105] Watson, J. Virtualbox: Bits and bytes masquerading as machines.
Linux J. 2008, 166 (Feb. 2008).

91

https://www.teimouri.net/numa-vnuma-back-basic/#.WuSuy9axXCJ
https://www.teimouri.net/numa-vnuma-back-basic/#.WuSuy9axXCJ

Bibliography

[106] West, R., Zaroo, P., Waldspurger, C. A., and Zhang, X. On-
line cache modeling for commodity multicore processors. In Proceedings
of the 19th International Conference on Parallel Architectures and Com-
pilation Techniques (New York, NY, USA, 2010), PACT ’10, Association
for Computing Machinery, p. 563–564.

[107] Wu, S., Sun, H., Zhou, L., Gan, Q., and Jin, H. vprobe: Schedul-
ing virtual machines on numa systems. In 2016 IEEE International Con-
ference on Cluster Computing (CLUSTER) (Sept 2016), pp. 70–79.

[108] Xie, Y., and Loh, G. H. Pipp: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In Proceedings of the 36th An-
nual International Symposium on Computer Architecture (New York, NY,
USA, 2009), ISCA ’09, Association for Computing Machinery, p. 174–183.

[109] Zeng, L., Wang, Y., Shi, W., and Feng, D. An improved xen
credit scheduler for i/o latency-sensitive applications on multicores. In
Proceedings of the 2013 International Conference on Cloud Computing
and Big Data (USA, 2013), CLOUDCOM-ASIA ’13, IEEE Computer
Society, p. 267–274.

[110] Zhang, X., Dwarkadas, S., and Shen, K. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th
ACM European Conference on Computer Systems (New York, NY, USA,
2009), EuroSys ’09, Association for Computing Machinery, p. 89–102.

[111] Zhuravlev, S., Blagodurov, S., and Fedorova, A. Addressing
shared resource contention in multicore processors via scheduling. In
Proceedings of the Fifteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (New York,
NY, USA, 2010), ASPLOS XV, Association for Computing Machinery,
p. 129–142.

92

	Introduction
	Background
	Virtualization
	Definitions
	CPU Virtualization
	Memory Virtualization
	I/O Virtualization

	Processor Caches
	Definitions
	Operating principle
	Associativity

	Non-Uniform Memory Access (NUMA)
	The hardware view
	The Linux kernel view

	Virtualization of Micro-architectural Components
	Synthesis

	Kyoto: Taxing Virtual Machines for Cache Usage
	Motivations
	Problem statement
	Problem assessment
	Experimental environment
	Benchmarks
	Metrics
	Evaluation scenarios
	Evaluation results

	The Kyoto Principle
	Basic idea: ``polluters pay''
	The Kyoto's scheduler within Xen
	Computation of llc_capact

	Evaluations
	The processor is a good lever
	Equation 3.1 vs LLC misses (LLCM): which indicator as the llc_cap?
	KS4Xen's effectiveness
	Comparison with existing systems
	Kyoto's overhead

	Discussion
	Related Work
	Synthesis

	When eXtended Para–Virtualization (XPV) Meets NUMA
	Motivations
	Description
	Limitations
	Synthesis
	Hot-(un)plug as a solution?

	eXtended Para-Virtualization
	Principle
	Methodology for making legacy systems XPV aware

	Technical Integration
	Xen modifications
	Linux modifications
	Application-level modifications: the HotSpot Java virtual machine use case

	Evaluations
	Experimental setup
	XPV implementation efficiency
	vNUMA vs blackbox solutions
	XPV facing topology changes
	XPV facing topology changes caused by vCPU loadbalancing
	XPV facing topology changes caused by memory ballooning

	Automatic NUMA Balancing (ANB) limitations
	XPV internals

	Related Work
	Industrial solutions
	Academic solutions
	Positioning of our work

	Synthesis

	Conclusion and Perspectives
	Conclusion
	Perspectives

	Bibliography

