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Résumé

Pour résoudre les problèmes de l’apprentissage automatique à grande échelle, les méthodes de
premier ordre telles que la descente du gradient stochastique et l’ADAM sont les méthodes
de choix en raison de leur coût pas cher par itération. Le problème des méthodes du premier
ordre est qu’elles peuvent nécessiter un réglage lourd des paramètres et/ou une connaissance
des paramètres du problème. Il existe aujourd’hui un effort considérable pour développer
des méthodes du second ordre stochastiques efficaces afin de résoudre des problèmes de
l’apprentissage automatique à grande échelle. La motivation est qu’elles demandent moins de
réglage des paramètres et qu’elles convergent pour une plus grande variété de modèles et de
datasets. Dans la première partie de la thèse, nous avons présenté une approche de principe
pour désigner des méthodes de Newton stochastiques à fin de résoudre à la fois des équations
non linéaires et des problèmes d’optimisation d’unemanière efficace. Notre approche comporte
deux étapes. Premièrement, nous pouvons réécrire les équations non linéaires ou le problème
d’optimisation sous forme d’équations non linéaires souhaitées. Ensuite, nous appliquons
de nouvelles méthodes du second ordre stochastiques pour résoudre ce système d’équations
non linéaires. Grâce à notre approche générale, nous présentons de nombreux nouveaux
algorithmes spécifiques du second ordre qui peuvent résoudre efficacement les problèmes de
l’apprentissage automatique à grande échelle sans nécessiter de connaissance du problème
ni de réglage des paramètres. Dans la deuxième partie de la thèse, nous nous concentrons
sur les algorithmes d’optimisation appliqués à un domaine spécifique : l’apprentissage par
renforcement (RL). Cette partie est indépendante de la première partie de la thèse. Pour
atteindre de telles performances dans les problèmes de RL, le policy-gradient (PG) et sa
variante, le policy-gradient naturel (NPG), sont les fondements de plusieurs algorithmes de
l’état de l’art (par exemple, TRPO et PPO) utilisés dans le RL profond. Malgré le succès
empirique des méthodes de RL et de PG, une compréhension théorique solide du PG original a
longtemps fait défaut. En utilisant la structure du RL du problème et des techniques modernes
de preuve d’optimisation, nous obtenons nouvelles analyses en temps fini de la PG et de la NPG.
Grâce à notre analyse, nous apportons également de nouvelles perspectives aux méthodes avec
de meilleurs choix d’hyperparamètres.



Abstract

To solve large scale machine learning problems, first-order methods such as stochastic gradient
descent and ADAM are the methods of choice because of their low cost per iteration. The
issue with first order methods is that they can require extensive parameter tuning, and/or
knowledge of the parameters of the problem. There is now a concerted effort to develop
efficient stochastic second order methods to solve large scale machine learning problems. The
motivation is that they require less parameter tuning and converge for wider variety of models
and datasets. In the first part of the thesis, we presented a principled approach for designing
stochastic Newton methods for solving both nonlinear equations and optimization problems
in an efficient manner. Our approach has two steps. First, we can re-write the nonlinear
equations or the optimization problem as desired nonlinear equations. Second, we apply new
stochastic second order methods to solve this system of nonlinear equations. Through our
general approach, we showcase many specific new second-order algorithms that can solve the
large machine learning problems efficiently without requiring knowledge of the problem nor
parameter tuning. In the second part of the thesis, we then focus on optimization algorithms
applied in a specific domain: reinforcement learning (RL). This part is independent to the first
part of the thesis. To achieve such high performance of RL problems, policy gradient (PG)
and its variant, natural policy gradient (NPG), are the foundations of the several state of the
art algorithms (e.g., TRPO and PPO) used in deep RL. In spite of the empirical success of RL
and PG methods, a solid theoretical understanding of even the “vanilla” PG has long been
elusive. By leveraging the RL structure of the problem together with modern optimization
proof techniques, we derive new finite time analysis of both PG andNPG. Through our analysis,
we also bring new insights to the methods with better hyperparameter choices.
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Chapter 1

Introduction

1.1 Stochastic Second Order Methods in Optimization

1.1.1 Context and scope

Optimization in AI. We have witnessed the progress of artificial intelligence (AI), also called
machine learning, over the last decade. It has been widely applied in society from natural
language processing, computer vision to online advertising and even robotics, to name a few.
For instance, in natural language processing, there are machine translation problem, like google
translate, and chat bot problem, like ChatGPT. In computer vision, there are image segmentation,
image classification, object detection problems, and so on. In particular, optimization plays an
important role in AI. That is, the problem of interest can be formalized as a loss function f of
parameter w ∈ Rd in dimension d. For instance, a function f can look like the one in Figure 1.1.
Here the dimension of the function is 3, for simplicity. The goal is to design an algorithm to
find automatically the best parameter w∗ to minimize the loss function so that it can fit the AI
model.

First order methods. A very classic method to solve this is the iterative method – Gradient
Descent. That is, at k-th iteration, the parameter wk is updated as follows,

wk+1 = wk − ηk ∇f(wk),

where ηk is the step size. Gradient descent is also called the first order method, because it
involves the first derivative of the function.

This is a very simple method in optimization. However, the issue with first order methods
is that they can require extensive parameter tuning, and/or knowledge of the parameters of
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Figure 1.1 – Optimization paradigm.

the problem. For instance, the step size depends on the scale of the function. Indeed, given a
function f , the minimum of f is identical to the same problem multiplied by a positive number
C as shown in Figure 1.2. While the updates of their gradient descent are not the same. The
second update is proportional to C. Therefore, gradient descent is hard to tune, as it depends
heavily on the scale of the function. Consequently, the practitioner needs to inject domain
knowledge at a higher-level of howmodeling components interact to make a first order method
work well. The reliance on first order methods ultimately restricts the choice and development
of alternative models.

Figure 1.2 – Gradient descent depends on the scale of the function.

Second order methods. Now let look at the Newton’s method, which is another classic iterative
method for minimizing f . That is, at k-th iteration, we have

wk+1 = wk − η∇2f(wk)−1∇f(wk).

2
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Newton’s method is also called the second order method, because it involves the second
derivative of the function.

Because of the access of the second order information, the update of the Newton’s method
is able to capture the local curvature of the function f , which allows to have an improved
update direction compared to the gradient descent method. This leads to a faster convergence
of Newton’s method compared to the gradient descent method as well.

More importantly, Newton’s method is scale invariant. Indeed, when the problem is mul-
tiplied by a positive number C, the update of Newton’s method remains the same. That
is,

wk+1 = wk − η∇2f(wk)−1∇f(wk) ⇐⇒ wk+1 = wk − η∇2(C · f(wk))−1∇(C · f(wk)).

Consequently, it is much easier to tune the step size of Newton’s method than the one of
gradient descent. However, the inverse operator∇2f(wk)−1 is expensive to compute. The cost
per iteration is d3, which is prohibitive when d is large. Here comes a natural question:

Can we achieve the best of the two worlds ?

That is, having an algorithm that does not suffer from parameter tuning, such as step size, and
still maintains efficient computational cost that is as cheap as first order methods. In the first
part of the thesis, this question will be addressed positively.

1.1.2 New stochastic second order methods

The significant increase in the number of data samples in recent machine learning applications
(such as web advertising and bioinformatics) precludes the use of either the exact gradient
methods or the exact Newton’s methods. To solve large scale machine learning problems,
stochastic first order methods such as Stochastic Gradient Descent (Robbins and Monro, 1951,
SGD), ADAGRAD (Duchi et al., 2011) and ADAM (Kingma and Ba, 2015) are the methods
of choice in practice because of their low cost per iteration. As mentioned above, tuning step
sizes can be time consuming. There is now a concerted effort to develop efficient stochastic
second order methods (Gupta et al., 2018) to solve large scale machine learning problems. The
motivation is that they require less parameter tuning and converge for wider variety of models
and datasets.

In this first part of the thesis, we presented a principled approach for designing stochas-
tic second order methods for solving both nonlinear equations and finite sum optimization
problems in an efficient manner. Our approach has two steps. First, we can re-write the
nonlinear equations or the finite sum problem as desired nonlinear equations, using variable
splitting or function splitting tricks. Second, we apply new stochastic second order methods to
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solve this system of nonlinear equations. For the new stochastic second order methods, we
introduce Sketched Newton-Raphson (SNR) in Chapter 2 and Sketched Newton-Raphson
with Variable Metric (SNRVM), which is an extension of SNR in Section 3.4 Chapter 3. Both
SNR and SNRVM are variants of the Newton-Raphson (NR) method and can have the same
cost as SGD per iteration when solving finite sum problems. This overcomes the issue of the
original NR method where the cost per iteration is prohibitive when the dimension of the
nonlinear equations is large. The idea of having low cost per iteration is the use of the stochastic
tool: sketch-and-project technique (Gower and Richtárik, 2015b), which allows us to reduce
the dimension of the Newton system and hence make the cost per iteration cheap. Through
the general SNR and SNRVM, we showcase many specific new second order algorithms that
can solve the large machine learning problems with finite sum structure efficiently without
requiring much knowledge of the problem nor parameter tuning. See more details of our
contributions next.

1.1.3 Outline and contributions of Part I

The general research goal driving the first part of the thesis can be framed as

designing an optimization algorithm for solving large scale machine learning problems, that is
incremental, efficient, scales well with the feature dimension, and that requires less parameter tuning.

To reach this goal, our first attempt is to propose a new stochastic second order method
– Sketched Newton-Raphson (SNR) in Chapter 2 , which combines the Newton-Raphson
method with the sketch-and-project technique (Gower and Richtárik, 2015b). Overall, our
main contribution is a thorough analysis of SNR through various forms (e.g. TCS in Section 2.8,
nonlinear Kaczmarz method (Wang et al., 2022) and Stochastic Newton method (Rodomanov
and Kropotov, 2016; Kovalev et al., 2019, SNM)), accompanied with the global convergence
theory of SNR. At a high level concept, we demonstrate how SNR opens the gate of designing
and analyzing many new stochastic second order methods (e.g. TCS and nonlinear Kaczmarz
method (Wang et al., 2022)), or recovering existent stochastic second order methods with
their new convergence theories (e.g. SNM (Rodomanov and Kropotov, 2016; Kovalev et al.,
2019) and the original Newton-Raphson method). As for the convergence theories of SNR, we
reformulate the method as a variant of the SGD method. This reformulation is interesting. It
turns that the reformulation is always a smooth and interpolated function. The interpolation
condition means that, the function has zero noise for stochastic gradient at the optimum. These
properties are frequently used in the SGD convergence proofs (Ma et al., 2018; Vaswani et al.,
2019a). Thanks to this reformulation, we establish the global convergence theory and rates of
convergence under convex type assumptions by leveraging proof techniques of SGD. Being
beneficial from the reformulation, our theory also provides a new global convergence theory
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for the original Newton-Raphson method under strictly weaker assumptions as compared
to the classic monotone convergence theory (Ortega and Rheinboldt, 2000; Deuflhard, 2011).
Through the general framework of SNR, we advocate to "Tossing-Coin-Sketch" – in short, TCS –
which solves large scale machine learning problems efficiently. Regarding to our research goal,
TCS is incremental. It is able to require only a single data point per iteration. When sampling
only one single data point per iteration, TCS scales well with the feature dimension. In this
case, it has the same cost per iteration as SGD. TCS also requires less parameter tuning of the
step size compared to the first order method (e.g. SGD and ADAM (Kingma and Ba, 2015)),
which is expected as being a second order method. We show through numerical experiments
that TCS is competitive as compared to classical variance reduced gradient methods (e.g. SAG
(Schmidt et al., 2017) and SVRG (Johnson and Zhang, 2013)). However, TCS is efficient when
using a batch sampling. It converges slowly in experiment for single data point per iteration. To
make TCS work efficiently, one needs to tune the sketch size. Consequently, the research goal
is partially achieved, as we still need to tune the sketch size to make the algorithm efficient.

Motivated by our research goal, more specifically, by finding a new algorithm on top of TCS
that requires less parameter tuning, including not only the step size but also the sketch size,
we propose Stochastic Average Newton (SAN) in Chapter 3. Using similar approach of designing
new stochastic second order methods from SNR, we develop SAN, which is incremental, in that
it requires only a single data point per iteration. It is also cheap to implement when solving
large scale regularized generalized linear models, with the same cost per iteration as SGD.
We show through extensive numerical experiments that SAN is parameter-free and remains
competitive as compared to variance reduced gradient methods (e.g. SAG (Schmidt et al., 2017)
and SVRG (Johnson and Zhang, 2013)). To provide a convergence theory of our methods, we
extend SNR to SNRVM that allows for a variable metric and that includes SAN as a special
case.

In total, Part I conveys the conceptual message that it is possible to design many new
stochastic second order methods that are able to solve large scale machine learning problems
efficiently without the knowledge about the problem, neither parameter tuning.

1.2 Finite Time Analysis of Policy Gradient Methods in Reinforce-
ment Learning

In the second part of the thesis, we then focus on optimization algorithms applied in a specific
domain: reinforcement learning (RL). This part is independent to the first part of the thesis.
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1.2.1 Reinforcement learning

We have got some of the most impressive AI results from RL, such as game playing (Mnih
et al., 2015; Silver et al., 2017; OpenAI et al., 2019; Vinyals et al., 2019), autonomous driving
(Shalev-Shwartz et al., 2016; Kiran et al., 2022), robotics (Kober et al., 2013; Levine et al., 2016;
Gu* et al., 2017; Levine et al., 2018) and beyond. So, what is RL ? The short answer is that, RL
is about learning in an unknown environment through trial and failure to make sequential
decisions.

Markov decision process (MDP). In the traditional RL paradigm as shown in Figure 1.3,
an agent interacts with an environment modeled as a Markov decision process (Puterman,
1994, MDP). At time t, the agent is at state st somewhere in the environment. The environment
can be seen as a state space S. Then the agent takes an action at among all possible actions in
the action space A. Based on the current state and action st, at, the environment will lead the
agent to the next state st+1 with the transition probability P , also known as the dynamic of the
environment. Through this interaction, the agent will get a reward r(st, at)1. In particular, the
action at is chosen through the policy π ∈ ∆(A)S , which is a function from state space S to the
probability simplex of the action space ∆(A). We note πst,at ∈ R the density of choosing action
at over action space at st and πst ∈ ∆(A) is the distribution over actions at state st. Thus, a
policy induces a distribution over trajectories {st, at, r(st, at)}t≥0.

Figure 1.3 –An agent interactswith the environment, trying to take smart actions tomaximize cumulative
rewards.

Policy optimization. The objective of the agent is to solve theMDP. That is, to find the optimal
policy such that the total expected cumulative rewards over the trajectory Vρ(π), defined as

Vρ(π) def= Es0∼ρ, at∼πst , st+1∼P(·|st,at)

[ ∞∑
t=0

γtr(st, at)
]

,

1In Chapter 5, we use cost instead of reward to better align with the minimization convention in the optimization
literature.
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are maximum. The problem is also called policy optimization. Here the expectation is with
respect to the initial state distribution ρ ∈ ∆(S) for s0, followed by the policy π and the dynamic
P . The γ ∈ [0, 1) is the discounted factor that defines the importance of future rewards. The γ

close to 0 means that only short-term costs are considered so that old rewards will have a small
impact; γ close to 1 means that we focus on long-term rewards.

In practice, the policy space is very large. To reduce the dimensions and make the computa-
tion feasible, the policy π is often parametrized as π(θ) with θ ∈ Θ ⊂ Rd belonged to certain
family Θ. So the function Vρ(π(θ)) depends on the parameter θ and we use the shorthand
Vρ(θ) def= Vρ(π(θ)). Now our goal switches to find the optimal parameter θ to maximize Vρ(θ),
which can be formulated as the following problem

arg max
θ∈Θ

Vρ(θ) def= Es0∼ρ, at∼πst (θ), st+1∼P(·|st,at)

[ ∞∑
t=0

γtr(st, at)
]

.

Throughout the thesis, we consider Θ = Rd in general without specification.

1.2.2 Policy gradient methods

Naturally, we can consider maximizing Vρ(θ) as an optimization problem. So we can solve it
with gradient ascent type methods, which is known as Policy Gradient (PG) method in RL. That
is, at k-th iteration, we have

θk+1 = θk + ηk∇θVρ(θ).

PG method is very popular in RL due to its simplicity. For instance, it is easier to implement
and use in practice, compared to value-based or model-based methods, which are RL specific
methods. PG method can solve a wide range of problems including non-Markov and partially-
observable environments.

PG is popular also due to its versatility. First of all, PG has several forms of updates,
such as REINFORCE (Williams, 1992), PGT (Sutton et al., 2000), GPOMDP (Baxter and
Bartlett, 2001) and actor-critic (Konda and Tsitsiklis, 2000). It can be effectively paired with
optimization techniques to obtain more sophisticated algorithms. For instance, natural policy
gradient (Kakade, 2001, NPG) is a direct application of natural gradient method (Amari, 1998)
from optimization to RL, and policy mirror descent (Lan, 2022; Xiao, 2022, PMD) is inspired
from mirror descent (Nemirovski and Yudin, 1983; Beck and Teboulle, 2003) in optimization.
Combined with the variance reduction techniques, such as SVRG (Johnson and Zhang, 2013),
SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018), SpiderBoost (Wang et al., 2019),
STORM (Cutkosky andOrabona, 2019), SNVRG (Zhou et al., 2020), PAGE (Li et al., 2021b), and
more (Tran-Dinh et al., 2021), lots of variance reduced PG methods in RL (Papini et al., 2018;
Shen et al., 2019; Xu et al., 2020b; Yuan et al., 2020; Huang et al., 2020; Pham et al., 2020; Yang
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et al., 2022; Huang et al., 2022) have been developed recently. In fact, the current state of the
art algorithms in policy optimization TRPO (Schulman et al., 2015) and PPO (Schulman et al.,
2017) are developed by leveraging specific structures of RL and the optimization techniques
(e.g., trust-region and proximal method). Overall, variants of PG methods with optimization
techniques were shown to have impressive empirical successes (Schulman et al., 2015; Lillicrap
et al., 2016; Mnih et al., 2016; Schulman et al., 2017; Haarnoja et al., 2018), especially in the deep
RL.

Despite the success of PG methods in practice, a solid theoretical understanding of even the
“vanilla” PG has long been elusive until recent. However, the literature still remains fragmentary.
Some of the literature focus on the analysis of the exact PG, including the pioneer work of
Agarwal et al. (2021) and other works (Zhang et al., 2020a; Mei et al., 2020); some focus on the
stochastic PG (Papini, 2020; Liu et al., 2020; Zhang et al., 2020b; Xiong et al., 2021). In terms
of results, they are with different criteria of convergence, such as first-order stationary point
convergence (Papini, 2020; Zhang et al., 2020b), global optimum convergence (Agarwal et al.,
2021; Zhang et al., 2020a; Mei et al., 2020) and average regret to the global optimum (Zhang
et al., 2021b; Liu et al., 2020). Different results are applied in different RL settings, such as the
softmax tabular policy with or without different regularizations (Agarwal et al., 2021; Zhang
et al., 2020a; Zhang et al., 2021b; Mei et al., 2020), or with different assumptions, such as the
Lipschitz and smooth policy (Liu et al., 2020; Zhang et al., 2020b; Xiong et al., 2021) and the
assumption of the bijection between the primal and the dual space (Zhang et al., 2020a). In
particular, lots of the literature require large mini-batch of sampled trajectories, such as O(ϵ−1)
or O(ϵ−2) trajectories per iteration for stochastic updates (Papini, 2020; Liu et al., 2020; Zhang
et al., 2020b; Xiong et al., 2021). Here ϵ is the accuracy of the performance. This is strange, as in
SGD convergence theory literature in optimization, single data per iteration is usually not an
issue.

The second challenge about PG is that, unlike value-based or model-based methods, the
existing PG methods, are not sample efficient in theory. Recently, NPG is proved by Xiao (2022)
to be efficient for tabular case with linear convergence, which matches the convergence rate
of value-based methods, such as policy iteration method (Puterman, 1994; Bertsekas, 2012).
As mentioned, NPG (Kakade, 2001) inspires from natural gradient method (Amari, 1998),
uses a preconditioner to improve PG direction, similar to quasi-Newton methods in classical
optimization (Martens, 2020). So, can we extend the linear convergence of NPG from tabular
to function approximation regime, which is a more realistic setting in practice ? Besides, NPG
is important. It is the building block of TRPO (Schulman et al., 2015) and PPO (Schulman
et al., 2017). Thus, it is of great interest to understand NPG well and to push its limits further.
We address these two challenges of PG in the second part of the thesis, separately.
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1.2.3 Outline and contributions of Part II

In the light of the above, this second part of the thesis is dedicated to deriving better theoretical
understandings of the PG methods. We ask the following question: why PG methods are
efficient and how to provably choose their hyper parameters ? By leveraging the RL structure
of the problem together with modern optimization proof techniques (Khaled and Richtárik,
2023; Lan, 2022; Xiao, 2022), we derive novel finite time analysis of both the original PG and
NPG in Chapter 4 and 5, respectively.

First, in Chapter 4 we adapt recent tools developed for the analysis of SGD in non-convex
optimization from Khaled and Richtárik (2023) to obtain convergence and sample complexity
guarantees for the original PG, including REINFORCE (Williams, 1992), PGT (Sutton et al.,
2000) and GPOMDP (Baxter and Bartlett, 2001). Throughout the thesis, we will call the
updates of REINFORCE, PGT and GPOMDP as vanilla PG. Our main contribution is to provide
a general vanilla PG analysis with weaker assumptions compared to the literature. This general
analysis not only unifies much of the fragmented results in the literature under one guise, but
also recovers the best results for each setting, with a wider range of hyper parameter choices,
which can be of great practical interest, and sometimes even improve the existing results with
additional gradient domination assumption. More precisely, we provide a single convergence
theorem that recovers the Õ(ϵ−4) sample complexity of vanilla PG to a stationary point. That
is, consider a sample as a triple (st, at, r(st, at)) which is a single step interaction with the
environment at time t among a single sampled trajectory {st′ , at′ , r(st′ , at′)}t′≥0 per iteration.
With Õ(ϵ−4) samples, the vanilla PG is guaranteed to converge to an ϵ-stationary point. Our
results also affords greater flexibility in the choice of hyper parameters such as the step size and
the batch size m of the trajectories, including the single trajectory case (i.e., m = 1). When an
additional relaxed weak gradient domination assumption is available, we establish a novel global
optimum convergence theory of PG with Õ(ϵ−3) sample complexity. We then instantiate our
theorems in different settings, where we both recover existing results and obtain improved
sample complexity, e.g., Õ(ϵ−3) sample complexity for the convergence to the global optimum
for Fisher-non-degenerated parametrized policies. The key ingredient of the analysis is to
consider the so-called ABC assumption (Khaled and Richtárik, 2023), bounding the empirical
gradient in terms of the suboptimality gap (A), the expected but truncated gradient (B) and
an additive constant (C). This ABC assumption may appear a bit obscure at a first sight, but
it is indeed a clever way to unify many of the current assumptions used in the RL literature.
Notably, expected Lipschitz and smooth policies, softmax tabular policies with or without
regularization, and Fisher non-degenerate policies are considered as special cases of the ABC
assumption. Through our general analysis, we thus derive a better theoretical understanding
of the vanilla PG and get a freedom to choose the hyper parameters of PG in practice according
to the available computational resources.
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As mentioned in the previous section, the vanilla PG is not sample efficient. In Chapter 5,
we develop the linear convergence of another popular RL algorithm known as NPG and its
variant, Q-NPG, for the class of log-linear policies. The resulting theorems extend the work
of Xiao (2022) from the tabular softmax policies to the function approximation regime. We
show that using a geometrically increasing step size, these algorithms can achieve a linear
convergence rate, similar as the tabular setting, up to the function approximation error. The core
of the analysis is that, leveraging the compatible function approximation framework developed
by Agarwal et al. (2021), NPG can be interpreted as a mirror ascent approach. This is the
viewpoint adopted for the analysis, where an inexact mirror ascent update is considered. The
chapter further provides Õ(ϵ−2) sample complexity results under some addition technical
assumptions, which improve over best known results in the literature.

Throughout Part II, we derive a better understanding and sample efficiency in PG methods
in RL.

10



1.2 Finite Time Analysis of Policy Gradient Methods in Reinforcement Learning

Chapter 1
Introduction

Part I: Stochastic Second Order Methods in Optimization
⇝ A principled approach to design incremental,
efficient, cheap and parameter-free algorithms

Chapter 2
Sketched Newton-Raphson

Chapter 3
Stochastic Average Newton

Part II: Finite Time Analysis of Policy
Gradient Methods in Reinforcement Learning

⇝ A better understanding and sample efficiency in PG methods in RL

Chapter 4
Vanilla Policy Gradient
(General Analysis)

Chapter 5
Natural Policy Gradient

(Linear Convergence Analysis)

Chapter 6
Conclusion

Figure 1.4 – This thesis is separated in two parts. We start with optimization in Part I where we design
new efficient stochastic second ordermethodswith convergence guarantees. Leveraging the optimization
proof techniques, we then move to reinforcement learning (RL) in Part II that focuses on the theoretical
foundations of the policy gradient (PG) methods, including both the vanilla and natural policy gradient.
These two topics are presented as being orthogonal, but there is a common thread of being optimization.
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Chapter 2

Sketched Newton-Raphson

In this chapter, we propose a new globally convergent stochastic second order method. Our
starting point is the development of a new Sketched Newton-Raphson (SNR) method for
solving large scale nonlinear equations of the form F (x) = 0 with F : Rp → Rm. We then
show how to design several stochastic second order optimization methods by re-writing the
optimization problem of interest as a system of nonlinear equations and applying SNR. For
instance, by applying SNR to find a stationary point of a generalized linear model (GLM),
we derive completely new and scalable stochastic second order methods. We show that the
resulting method is very competitive as compared to state-of-the-art variance reduced methods.
Furthermore, using a variable splitting trick, we also show that the Stochastic Newton method
(SNM) is a special case of SNR, and use this connection to establish the first global convergence
theory of SNM.

We establish the global convergence of SNR by showing that it is a variant of the online
stochastic gradient descent (SGD) method, and then leveraging proof techniques of SGD. As a
special case, our theory also provides a new global convergence theory for the original Newton-
Raphson method under strictly weaker assumptions as compared to the classic monotone
convergence theory. 1

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The sketch-and-project viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Reformulation as stochastic gradient descent . . . . . . . . . . . . . . . . . . 24

2.4 Convergence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1This chapter is based on an article published in Society for Industrial and Applied Mathematics (SIAM) Journal

on Optimization (SIOPT 2022) (Yuan et al., 2022b).
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2.1 Introduction

One of the fundamental problems in numerical computing is to find roots of systems of
nonlinear equations such as

F (x) = 0, (2.1)

where F : Rp → Rm. We assume throughout the chapter that F : Rp → Rm is continuously
differentiable and that there exists a solution to (2.1), that is

Assumption 2.1. ∃x∗ ∈ Rp such that F (x∗) = 0.

This includes a wide range of applications from solving the phase retrieval problems (Can-
dès et al., 2015), systems of polynomial equations related to cryptographic primitives (Björklund
et al., 2019), discretized integral and differential equations (Ortega and Rheinboldt, 2000), the
optimal power flow problem (Torres and Quintana, 2000) and, our main interest here, solving
nonlinear minimization problems in machine learning. Most convex optimization problems
such as those arising from training a Generalized Linear Model (GLM), can be re-written as a
system of nonlinear equations (2.1) either by manipulating the stationarity conditions or as
the Karush-Kuhn-Tucker equations2 (Karush, 1939; Kuhn and Tucker, 1951).

When dealing with non-convex optimization problems, such as training a Deep Neural
Network (DNN), finding the global minimum is often infeasible (or not needed (Kawaguchi,
2016)). Instead, the objective is to find a good stationary point x such that∇f(x) = 0, where f

is the total loss we want to minimize.
In particular, the task of training an overparametrized DNN (as they often are) can be cast

as solving a special nonlinear system. That is, when the DNN is sufficiently overparametrized,
the DNN can interpolate the data. As a consequence, if fi(x) is the loss function over the ith
data point, then there is a solution to the system of nonlinear equations ∥∇fi(x)∥2 = 0,∀i.

The building block of many iterative methods for solving nonlinear equations is the Newton-
Raphson (NR) method given by

xk+1 = xk − γ
(
DF (xk)⊤

)†
F (xk) (2.2)

at kth iteration, where DF (x) def= [∇F1(x) · · · ∇Fm(x)] ∈ Rp×m is the transpose of the Jacobian
matrix of F at x,

(
DF (xk)⊤

)† is the Moore-Penrose pseudoinverse of DF (xk)⊤ (Moore, 1920;
Bjerhammar, 1951; Penrose, 1955) and γ > 0 is the stepsize.

2Under suitable constraint qualifications (Nocedal and Wright, 1999).
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The NR method is at the heart of many commercial solvers for nonlinear equations (Ortega
and Rheinboldt, 2000). The success of NR can be partially explained by its invariance to
affine coordinate transformations, which in turn means that the user does not need to tune
any parameters (standard NR sets γ = 1). The downside of NR is that we need to solve a
linear least squares problem given in (2.2) which costs O(min{pm2, mp2}) when using a direct
solver. When both p and m are large, this cost per iteration is prohibitive. Here we develop a
randomized NR method based on the sketch-and-project technique (Pilanci and Wainwright,
2015; Gower and Richtárik, 2015b) which can be applied in large scale, as we show in our
experiments.

2.1.1 The sketched Newton-Raphson method

Our method relies on using sketching matrices to reduce the dimension of the Newton system.

Definition 2.2. The sketching matrix S ∈ Rm×τ is a random matrix sampled from a distribution
D, where τ ∈ N is the sketch size. We use Sk ∈ Rm×τ to denote a sketching matrix sampled from a
distribution Dxk that can depend on the iterate xk.

By sampling a sketching matrix Sk ∼ Dxk at kth iteration, we sketch (row compress)
NR update and compute an approximate Sketched Newton-Raphson (SNR) step, see line 4 in
Algorithm 1. We use Dx to denote a distribution that depends on x, and allow the distribution
of the sketching matrix to change from one iteration to the next.

Algorithm 1: SNR: Sketched Newton-Raphson
Input: D = distribution of sketching matrix; stepsize parameter γ > 0

1 Initialize x0 ∈ Rp

2 for k = 0, 1, · · · do
3 Sample a fresh sketching matrix: Sk ∼ Dxk

4 xk+1 = xk − γDF (xk)Sk

(
S⊤

k DF (xk)⊤DF (xk)Sk

)†
S⊤

k F (xk)

Output: Last iterate xk

Because the sketching matrix Sk has τ columns, the dominating costs of computing the
SNR step (line 4 in Algorithm 1) are linear in p and m. In particular, DF (xk)Sk ∈ Rp×τ can
be computed by using τ directional derivatives of F (xk), one for each column of Sk. Using
automatic differentiation (Christianson, 1992), these directional derivatives cost τ evaluations of
the function F (x). Furthermore, it costsO(pτ2) to form the linear system in line 4 of Algorithm 1
by using the computed matrix DF (xk)Sk and O(τ3) to solve it , respectively. Finally the matrix
vector product S⊤

k F (xk) costs O(mτ). Thus, without making any further assumptions to the
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structure of F or the sketching matrix, the total cost in terms of operations of the update SNR
(line 4 in Algorithm 1) is given by

Cost(SNR) = O
(
(eval(F ) + m)× τ + pτ2 + τ3

)
. (2.3)

Thus Algorithm 1 can be applied when both p and m are large and τ is relatively small.

The rest of the chapter is organized as follows. In the next section, we provide some
background and contrast it with our contributions. After introducing some notations in
Section 2.1.3 and presenting alternative sketching techniques in Section 2.1.4, we show that SNR
can be viewed as a sketch-and-project type method in Section 2.2. This is the viewpoint that
first motivated the development of this method. After which, we provide another crucial
equivalent viewpoint of SNR in Section 2.3, where we show that SNR can be seen as Stochastic
Gradient Descent (SGD) applied to an equivalent reformulation of (2.1). We then provide a
global convergence theory by leveraging this insight in Section 2.4. As a special case, our theory
also provides a new global convergence theory for the original NR method (2.2) under strictly
weaker assumptions as compared to the monotone convergence theory in Section 2.5, albeit for
different step sizes. For the other extreme where the sketching matrix samples a single row, we
present the new nonlinear Kaczmarz method as a variant of SNR and its global convergence
theory in Section 2.6. We then show how to design several stochastic second order optimization
methods by re-writing the optimization problem of interest as a system of nonlinear equations
and applying SNR. For instance, using a variable splitting trick, we show that the Stochastic
Newton method (SNM) (Rodomanov and Kropotov, 2016; Kovalev et al., 2019) is a special case
of SNR, and use this connection to establish the first global convergence theory of SNM in
Section 2.7. In Section 2.8, by applying SNR to find a stationary point of a GLM, we derive
completely new and scalable stochastic second order methods. We show that the resulting
method is very competitive as compared to state-of-the-art variance reduced methods.

2.1.2 Background and contributions

a) Stochastic second-order methods. There is now a concerted effort to develop efficient
second-order methods for solving high dimensional and stochastic optimization problems in
machine learning. Most recently developed Newton methods fall into one of two categories:
subsampling and dimension reduction. The subsampling methods (Erdogdu andMontanari, 2015;
Roosta-Khorasani and Mahoney, 2019; Kohler and Lucchi, 2017; Bollapragada et al., 2018; Zhou
et al., 2018), and (Agarwal et al., 2017; Pilanci and Wainwright, 2017)3 use mini-batches to

3Newton sketch (Pilanci and Wainwright, 2017) and LiSSa (Agarwal et al., 2017) use subsampling to build an
estimate of the Hessian but require a full gradient evaluation. As such, these methods are not efficient for very
large n.

20



2.1 Introduction

compute an approximate Newton direction. Though these methods can handle a large number
of data points (n), they do not scale well in the number of features (d). On the other hand,
second-order methods based on dimension reduction techniques such as Gower et al. (2019a)
apply Newton’s method over a subspace of the features, and as such, do not scale well in the
number of data points. Sketching has also been used to develop second-order methods in the
online learning setting (Gürbüzbalaban et al., 2015; Luo et al., 2016; Calandriello et al., 2017)
and quasi-Newton methods (Gower et al., 2016).
Contributions. We propose a new family of stochastic second-order method called SNR. Each
choice of the sketching distribution and nonlinear equations used to describe the stationarity
conditions, leads to a particular algorithm. For instance, we show that a nonlinear variant
of the Kaczmarz method is a special case of SNR. We also show that the subsampling based
SNM (Rodomanov and Kropotov, 2016; Kovalev et al., 2019) is a special case of SNR. By using
a different norm in the sketch-and-project viewpoint, we show that the dimension reduced
method Randomized Subspace Newton (RSN) (Gower et al., 2019a) is also a special case of
SNR. We provide a concise global convergence theory, that when specialized to SNM gives its
first global convergence result. Furthermore, the convergence theory of SNR allows for any
sketch size, which translates to any mini-batch size for the nonlinear Kaczmarz and SNM. In
contrast, excluding SNM, the subsampled based Newton methods (Erdogdu and Montanari,
2015; Roosta-Khorasani and Mahoney, 2019; Kohler and Lucchi, 2017; Bollapragada et al., 2018;
Zhou et al., 2018; Agarwal et al., 2017; Pilanci and Wainwright, 2017) rely on high probability
bounds that in turn require large mini-batch sizes4. We detail the nonlinear Kaczmarz method
in Section 2.6, the connection with SNM in Section 2.7 and RSN in Appendix A.7.

b) New method for GLMs. There exist several specialized methods for solving GLMs,
including variance reduced gradient methods such as SAG/SAGA (Schmidt et al., 2017; Defazio
et al., 2014) and SVRG (Johnson and Zhang, 2013), and methods based on dual coordinate
ascent like SDCA (Shalev-Shwartz and Zhang, 2013), dual free SDCA (dfSDCA) (Shalev-
Shwartz, 2016) and Quartz (Qu et al., 2015).
Contributions. We develop a specialized variant of SNR for GLMs in Section 2.8. Our resulting
method scales linearly in the number of dimensions d and the number of data points n, has the
same cost as SGD per iteration in average. We show in experiments that our method is very
competitive as compared to state-of-the-art variance reduced methods for GLMs.

c) Viewpoints of (Sketched) Newton-Raphson. We show in Section 2.3 that SNR can be
seen as SGD applied to an equivalent reformulation of our original problem. We will show
that this reformulation is always a smooth and interpolated function (Ma et al., 2018; Vaswani

4The batch sizes in these methods scale proportional to a condition number (Agarwal et al., 2017) or ϵ−1 where
ϵ is the desired tolerance.
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et al., 2019a). These gratuitous properties allow us to establish a simple global convergence
theory by only assuming that the reformulation is a star-convex function: a class of nonconvex
functions that include convexity as a special case (Nesterov and Polyak, 2006; Lee and Valiant,
2016; Zhou et al., 2019; Hinder et al., 2020). The details of the SGD interpretation can be found
in Section 2.3. In addition, we also show in Appendix A.1 that SNR can be seen as a type of
stochastic Gauss-Newton method or as a type of stochastic fixed point method.

d) Classic convergence theory of Newton-Raphson. The better known convergence theorems
for NR (the Newton-Kantorovich-Mysovskikh Theorems) only guarantee local or semi-local
convergence (Kantorovitch, 1939; Ortega and Rheinboldt, 2000). To guarantee global conver-
gence of NR, we often need an additional globalization strategy, such as damping sequences or
adaptive trust-region methods (Conn et al., 2000; Lu et al., 2010; Deuflhard, 2011; Kelley, 2018),
continuation schemes such as interior point methods (Nesterov and Nemirovskii, 1994; Wright
and Nocedal, 2006), and more recently cubic regularization (Kovalev et al., 2019; Nesterov
and Polyak, 2006; Cartis et al., 2009). Globalization strategies are used in conjunction with
other second-order methods, such as inexact Newton backtracking type methods (Bellavia and
Morini, 2001; An and Bai, 2007), Gauss-Newton or Levenberg-Marquardt type methods (Zhou
and Chen, 2010; Zhou, 2013; Yuan, 2011) and quasi-Newton methods (Yuan, 2011)5. The only
global convergence theory that does not rely on such a globalization strategy, requires strong
assumptions on F (x), such as in the monotone convergence theory (MCT) (Deuflhard, 2011).
Contributions. We show in Section 2.5.3 that our main theorem specialized to the standard NR
method guarantees a global convergence under strictly less assumptions as compared to the
MCT, albeit under a different stepsize. Indeed, MCT holds for step size equal to one (γ = 1)
and our theory holds for step sizes less than one (γ < 1).

Furthermore, we give an explicit sublinear O(1/k) convergence rate, as opposed to only
an asymptotic convergence in MCT. This appears to not be known before since, as stated by
(Deuflhard, 2011) w.r.t. the NR method “Not even an a-priori estimation for the number of iterations
needed to achieve a prescribed accuracy may be possible”. We show that it is possible by monitoring
which iterate achieves the best loss (suboptimality).

e) Sketch-and-project. The sketch-and-project method was originally introduced for solving
linear systems in Gower and Richtárik (2015b) and Gower and Richtárik (2015a), where it
was also proven to converge linearly and globally. In Richtárik and Takáč (2020), the authors
then go on to show that the sketch-and-project method is in fact SGD applied to a particular
reformulation of the linear system.

5A recent paper (Gao and Goldfarb, 2019) shows that quasi-Newton converges globally for self-concordant
functions without globalization strategy.
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Contributions. It is this SGD viewpoint in the linear setting (Richtárik and Takáč, 2020) that we
extend to the nonlinear setting. Thus the SNR algorithm and our theory are generalizations
of the original sketch-and-project method for solving linear equations to solving nonlinear
equations, thus greatly expanding the scope of applications of these techniques.

2.1.3 Notations

In calculating an update of SNR and analyzing SNR, the following random matrix is key

HS(x) def= S
(
S⊤DF (x)⊤DF (x)S

)†
S⊤. (2.4)

The sketching matrix S in (2.4) is sampled from a distribution Dx and HS(x) ∈ Rm×m is a
randommatrix that depends on x. We use Ip ∈ Rp×p to denote the identity matrix of dimension
p and use ∥x∥M

def=
√

x⊤Mx to denote the seminorm of x ∈ Rp induced by a symmetric positive
semi-definite matrix M ∈ Rp×p. Notice that ∥x∥M is not necessarily a norm as M is allowed to
be non invertible. We handle this with care in our forthcoming analysis. We also define the
following sets: F (U) = {F (x) | x ∈ U} for a given set U ⊂ Rp; W ⊥ = {v | ⟨u, v⟩ = 0, ∀u ∈W}
to denote the orthogonal complement of a subspaceW ; Im(M) = {y ∈ Rm | ∃x ∈ Rp s.t. Mx =
y} to denote the image space and Ker(M) = {x ∈ Rp | Mx = 0} to denote the null space
of a matrix M ∈ Rm×p. If M is a random matrix sampled from a certain distribution D, we
use ES∼D [M] =

∫
M MdPD(M) to denote the expectation of the random matrix. We omit the

notation of the distribution D, i.e. E [M], when the random source is clear. In particular, when
M is sampled from a discrete distributionwith r ∈ N s.t.Pr [M = Mi] = pi > 0, for i = 1, · · · , r

and∑r
i=1 pi = 1, then E [M] =

∑r
i=1 piMi.

2.1.4 Sketching matrices

Here we provide examples of sketching matrices that can be used in conjunction with SNR.
We point the reader to Woodruff (2014) for a detailed exposure and introduction. The most
straightforward sketch is given by the Gaussian sketch where every coordinate Sij of the
sketch S ∈ Rm×τ is sampled i.i.d according to a Gaussian distribution with Sij ∼ N (0, 1

τ ) for
i = 1, · · · , m and j = 1, · · · , τ . The sketch we mostly use here is the uniform subsampling
sketch, whereby

Pr [S = IC ] = 1(m
τ

) , for all set C ⊂ {1, · · · , m} s.t. |C| = τ , (2.5)

where IC ∈ Rm×τ denotes the concatenation of the columns of the identity matrix Im indexed
in the set C. More sophisticated sketches that are able to make use of fast Fourier type routines
include the random orthogonal sketches (ROS) (Pilanci and Wainwright, 2017; Ailon and
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Chazelle, 2009). We will not cover ROS sketches here since these sketches are fast when applied
only once to a fixed matrix M, as opposed to being re-sampled at every iteration .

2.2 The sketch-and-project viewpoint

The viewpoint that motivated the development of Algorithm 1 was the following iterative
sketch-and-project method applied to the Newton system. For this viewpoint, we assume that

Assumption 2.3. F (x) ∈ Im
(
DF (x)⊤

)
∀x ∈ Rp.

This assumption guarantees that there exists a solution to the Newton system in (2.2).
Indeed, we can now re-write the NR method (2.2) as a projection of the previous iterate xk

onto the solution space of a Newton system

xk+1 = argminx∈Rp

∥∥∥x− xk
∥∥∥2 s. t. DF (xk)⊤(x− xk) = −γF (xk). (2.6)

Since this is costly to solve when DF (xk) has many rows and columns, we sketch the Newton
system. That is, we apply a random row compression to the Newton system using the sketching
matrix S⊤

k ∈ Rτ×m and then project the previous iterates xk onto this sketched system as follows

xk+1 = argminx∈Rp

∥∥∥x− xk
∥∥∥2 s. t. S⊤

k DF (xk)⊤(x− xk) = −γS⊤
k F (xk). (2.7)

That is, xk+1 is the projection of xk onto the solution space of the sketched Newton system.
This viewpoint was our motivation for developing the SNR method. Next we establish our
core theory. The theory does not rely on the assumption F (x) ∈ Im

(
DF (x)⊤

)
, though this

assumption will appear again in several specialized corollaries. Without this assumption, we
can still interpret the Newton step (2.2) as the least squares solution of the linear system (2.6),
as we show next.

2.3 Reformulation as stochastic gradient descent

Our insight into interpreting and analyzing the SNR in Algorithm 1 is through its connection
to the SGD. Next, we show how SNR can be seen as SGD applied to a sequence of equivalent
reformulations of (2.1). Each reformulation is given by a vector y ∈ Rp and the following
minimization problem

min
x∈Rp

ES∼Dy

[
1
2 ∥F (x)∥2HS(y)

]
, (2.8)
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where HS(y) is defined in (2.4). To abbreviate notations, let

fS,y(x) def= 1
2 ∥F (x)∥2HS(y) and fy(x) def= E [fS,y(x)] = 1

2 ∥F (x)∥2E[HS(y)] . (2.9)

Every solution x∗ ∈ Rp to (2.1) is a solution to (2.8), since fy(x) is non-negative for every
x ∈ Rp and fy(x∗) = 0 is thus a global minima. With an extra assumption, we can show that
every solution to (2.8) is also a solution to (2.1) in the following lemma.

Lemma 2.4. If Assumption 2.1 holds and the following reformulation assumption

F (Rp) ∩Ker
(
ES∼Dy [HS(y)]

)
= {0}, ∀y ∈ Rp (2.10)

holds, then argminx∈Rp fy(x) = {x | F (x) = 0} for every y ∈ Rp.

Proof. Let y ∈ Rp. Previously, we show that {x | F (x) = 0} ⊂ argminx∈Rp fy(x). Now let x∗ ∈
argminx∈Rp fy(x). ByAssumption 2.1, we know that any globalminimizer x∗ of fy(x)must be s.t.
fy(x∗) = 0. This implies that F (x∗) ∈ Ker (E [HS(y)]) since E [HS(y)] is symmetric. However
F (x∗) ∈ F (Rp) and thus from (2.10), we have that F (x∗) ∈ F (Rp) ∩Ker (E [HS(y)]) = {0},
which implies F (x∗) = 0. Thus, we have argminx∈Rp fy(x) ⊂ {x | F (x) = 0}which concludes
the proof.

Thus with the extra reformulation assumption in (2.10), we can now use any viable op-
timization method to solve (2.8) for any fixed y ∈ Rp and arrive at a solution to (2.1). In
Lemma A.8, we give sufficient conditions on the sketching matrix and on the function F (x)
that guarantee (2.10) hold. We also show how (2.10) holds for our forthcoming examples in
Appendix A.6 as a direct consequence of Lemma A.8. However, (2.10) imposes for all y ∈ Rp

which can be sometimes restrictive. In fact, we do not need for (2.8) to be equivalent to solv-
ing (2.1) for every y ∈ Rp. Indeed, by carefully and iteratively updating y, we can solve (2.8)
and obtain a solution to (2.1) without relying on (2.10). The trick here is to use an online SGD
method for solving (2.8).

Since (2.8) is a stochastic optimization problem, SGD is a natural choice for solving (2.8).
Let ∇fS,y(x) denote the gradient of the function fS,y(·) which is

∇fS,y(x) = DF (x)HS(y)F (x). (2.11)

Since we are free to choose y, we allow y to change from one iteration to the next by setting
y = xk at the start of the kth iteration. We can now take a SGD step by sampling Sk ∼ Dxk at
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kth iteration and updating

xk+1 = xk − γ∇fSk,xk(xk). (2.12)

It is straightforward to verify that the SGD update (2.12) is exactly the same as the SNR update
in line 4 in Algorithm 1.

The objective function fS,y(x) has many properties that makes it very favourable for opti-
mization including the interpolation condition and a gratuitous smoothness property. Indeed,
for any x∗ ∈ Rp s.t. F (x∗) = 0, we have that the stochastic gradient is zero, i.e.∇fS,y(x∗) = 0.

This is known as the interpolation condition. When it occurs together with strong convexity, it
is possible to shows that SGD converges linearly (Ma et al., 2018; Vaswani et al., 2019a). We
will also give a linear convergence result in Section 2.4 by assuming that fy(x) is quasi-strongly
convex. We detail the smoothness property next.

However, we need to be careful, since (2.12) is not a classic SGD method. In fact, from the
kth iteration to the (k + 1)th iteration, we change our objective function from fxk(x) to fxk+1(x)
and the distribution from Dxk to Dxk+1 . Thus it is an online SGD. We handle this with care in
our forthcoming convergence proofs.

2.4 Convergence theory

Using the viewpoint of SNR in Section 2.3, we adapt proof techniques of SGD to establish the
global convergence of SNR.

2.4.1 Smoothness property

In our upcoming proof, we rely on the following type of smoothness property thanks to our
SGD reformulation (2.8).

Lemma 2.5. For every x ∈ Rp and any realization S ∼ Dx associated with any distribution Dx,

1
2∥∇fS,x(x)∥2 = fS,x(x). (2.13)

This is not a standard smoothness property. Indeed, since ∇fS,x(x∗) = 0 and fx(x∗) = 0,
we have that (2.13) implies that

∥∇fS,x(x)−∇fS,x(x∗)∥2 ≤ 2(fS,x(x)− fS,x(x∗)),
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which is usually a consequence of assuming that fS,x(x) is convex and 1–smooth (see Theorem
2.1.5 and Equation 2.1.7 in Nesterov (2014)). Yet in our case, equation (2.13) is a direct
consequence of the definition of fS,x as opposed to being an extra assumption. This gratuitous
property will be key in establishing a global convergence result.

2.4.2 Convergence for star-convex

We use the shorthand fk(x) def= fxk(x), fSk,k
def= fSk,xk and Ek [·] def= E

[
· | xk

]
. Here we establish

the global convergence of SNR by supposing that fk is star-convex which is a large class of
nonconvex functions that includes convexity as a special case (Nesterov and Polyak, 2006; Lee
and Valiant, 2016; Zhou et al., 2019; Hinder et al., 2020).

Assumption 2.6 (Star-Convexity). Let x∗ satisfy Assumption 2.1, i.e. let x∗ be a solution to (2.1).
For every xk given by Algorithm 1 with k ∈ N, we have that

fk(x∗) ≥ fk(xk) +
〈
∇fk(xk), x∗ − xk

〉
. (2.14)

We now state our main theorem.

Theorem 2.7. Let x∗ satisfy Assumption 2.6. If 0 < γ < 1, then

E
[

min
t=0,...,k−1

ft(xt)
]
≤ 1

k

k−1∑
t=0

E
[
ft(xt)

]
≤ 1

k

∥∥x0 − x∗∥∥2

2γ (1− γ) . (2.15)

Written in terms of F and for γ = 1/2 the above gives

E
[

min
t=0,...,k−1

∥∥∥F (xt)
∥∥∥2

E[HS(xt)]

]
≤ 4

∥∥x0 − x∗∥∥2

k
.

Besides, if the stochastic function fS,x(x) is star-convex along the iterates xk , i.e.

fSk,xk(x∗) ≥ fSk,xk(xk) +
〈
∇fSk,xk(xk), x∗ − xk

〉
(2.16)

for all Sk ∼ Dxk , then the iterates xk of SNR (line 4 in Algorithm 1) are bounded with∥∥∥xk − x∗
∥∥∥ ≤ ∥∥∥x0 − x∗

∥∥∥ . (2.17)
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Theorem 2.7 is an unusual result for SGD methods. Currently, to get a O(1/k) convergence
rate for SGD, one has to assume smoothness and strong convexity (Gower et al., 2019b) or
convexity, smoothness and interpolation (Vaswani et al., 2019a). Here we get a O(1/k) rate by
only assuming star-convexity. This is because we have smoothness and interpolation properties
as a by-product due to our reformulation (2.8). However, the star-convexity assumption of
fk(·) for all k ∈ N is hard to interpret in terms of assumptions on F in general. But, we are able
to interpret it in many important extremes. That is, for the full NR method, we show that it
suffices for the Newton direction to be 2–co-coercive (see (2.34) in Section 2.5). For the other
extreme where the sketching matrix samples a single row, then the star-convexity assumption
is even easier to check, and is guaranteed to hold so long as Fi(x)2 is convex for all i = 1, · · · , m

(see Section 2.6).
Next, we will show the convergence of F (xk) instead of fk(xk) via Theorem 2.7.

2.4.2.1 Sublinear convergence of the Euclidean norm ∥F∥

If E [HS(x)] is invertible for all x ∈ Rp, we can use Theorem 2.7 with the bound (2.17) to
guarantee that ∥F∥ converges sublinearly. Indeed, when E [HS(x)] is invertible, E [HS(x)] is
symmetric positive definite. Thus there exists λ > 0 that bounds the smallest eigenvalue away
from zero in any closed bounded set (e.g. {x ∈ Rp | ∥x− x∗∥ ≤

∥∥x0 − x∗∥∥}6):
min

x∈{x|∥x−x∗∥≤∥x0−x∗∥}
λmin (E [HS(x)]) = λ > 0, (2.18)

where λmin(·) is the smallest eigenvalue operator. Consequently, under the assumption of
Theorem 2.7 with the condition (2.16), from (2.17) and (2.18), we have

λE
[

min
t=0,...,k−1

∥∥∥F (xt)
∥∥∥2
]
≤ E

[
min

t=0,...,k−1

∥∥∥F (xt)
∥∥∥2

E[HS(xt)]

] (2.15)
≤ 1

k

∥∥x0 − x∗∥∥2

γ (1− γ) . (2.19)

It turns out that using the smallest eigenvalue of E [HS(x)] in the above bound is overly
pessimistic. To improve it, first note that we do not need that E [HS(x)] is invertible. Instead,
we only need that F (x) ∈ Im(DF (x)⊤) ⊂ Im(E [HS(x)]), as we show in Corollary 2.8.

Note L
def= supx∈{x|∥x−x∗∥≤∥x0−x∗∥} ∥DF (x)∥ > 0. Such L exists because x is in a closed

bounded convex set and because we have assumed that DF (·) is continuous. A continuous
mapping over a closed bounded convex set is bounded. Now we can state the sublinear
convergence results for ∥F∥.

6We can re-write the set as the closure of the ball {x ∈ Rp | x ∈ B(x∗, ∥x0 − x∗∥)}.
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Corollary 2.8. Let

ρ(x) def= min
v∈Im(DF (x))/{0}

v⊤DF (x)E [HS(x)] DF (x)⊤v

∥v∥2
, (2.20)

ρ
def= min

x∈{x|∥x−x∗∥≤∥x0−x∗∥}
ρ(x). (2.21)

It follows that 0 ≤ ρ(x) ≤ 1. If

F (x) ∈ Im(DF (x)⊤) ⊂ Im(E [HS(x)]) for all x ∈ Rp, (2.22)

then ρ(x) = λ+
min

(
DF (x)E [HS(x)] DF (x)⊤

)
> 0 ∀x ∈ Rp, and ρ > 0, where

λ+
min is the smallest non-zero eigenvalue. Furthermore, if the star-convexity for each sketching

matrix (2.16) holds , then

E
[

min
t=0,...,k−1

∥∥∥F (xt)
∥∥∥2
]
≤ 1

k
· L2 ∥∥x0 − x∗∥∥2

ργ (1− γ) . (2.23)

Thus with Corollary 2.8, we show that F (xt) converges to zero. This lemma relies on the
inclusion (2.22), which in turn imposes some restrictions on the sketching matrix and F (x). In
our forthcoming examples in Section 2.5 and 2.6, we can directly verify the inclusion of (2.22).
For other examples in Section 2.7 and 2.8, we provide the following Lemma 2.9 where we give
sufficient conditions for (2.22) to hold.

Lemma 2.9. Let F (x) ∈ Im(DF (x)⊤). Furthermore, we suppose that S ∼ Dx is adapted to
DF (x) by which we mean

Ker
(
E
[
SS⊤

])
⊂ Ker(DF (x)) ⊂ Ker

(
S⊤
)

, for all S ∼ Dx. (2.24)

Then it follows that (2.22) holds for all x ∈ Rp.

We refer to a sketching matrix S ∼ Dx that satisfies (2.24) as a sketch that is adapted to
DF (x). One easy way to design such adapted sketches is the following.

Lemma 2.10. Let Ŝ ∈ Rp×τ s.t. Ŝ ∼ D a fixed distribution independent to x and Ker(E[ŜŜ⊤]) ⊂
Ker(DF (x)⊤). Thus, S = DF (x)⊤Ŝ ∈ Rm×τ is adapted to DF (x).

The condition Ker(E[ŜŜ⊤]) ⊂ Ker(DF (x)⊤) in Lemma 2.10 holds for many standard
sketches including Gaussian and subsampling sketches presented as follows.
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Lemma 2.11. For Gaussian and uniform subsampling sketches defined in Section 2.1.4, we have
that E

[
SS⊤

]
= cIm with c > 0 a fixed constant depending on the sketch.

From Lemma 2.11, we know that E[ŜŜ⊤] = cIp invertible with c > 0. Thus Ker(E[ŜŜ⊤]) =
{0} ⊂ Ker(DF (x)⊤) holds for any sketch size τ .

2.4.3 Convergence for strongly convex

Here we establish a global linear convergence of SNR when assuming that fy is strongly
quasi-convex.

Assumption 2.12 (µ-Strongly Quasi-Convexity). Let x∗ satisfy Assumption 2.1 and

∃ µ > 0 s.t. fy(x∗) ≥ fy(x) + ⟨∇fy(x), x∗ − x⟩+ µ

2 ∥x
∗ − x∥2 ∀ x, y ∈ Rp. (2.25)

This Assumption 2.12 is strong, so much so, we have the following lemma.

Lemma 2.13. Assumption 2.12 implies (2.10) and that the solution to (2.1) is unique.

Under Assumption 2.12 , choosing γ = 1 guarantees a fast global linear convergence.

Theorem 2.14. If x∗ satisfies Assumption 2.12 and γ ≤ 1, then SNR converges linearly:

E
[∥∥∥xk+1 − x∗

∥∥∥2
]
≤ (1− γµ)k+1

∥∥∥x0 − x∗
∥∥∥2

with µ ≤ 1. (2.26)

2.5 New global convergence theory of the NR method

As a direct consequence of our general convergence theorems, in this section we develop a
new global convergence theory for the original NR method. We first provide the results in
1-dimension in Section 2.5.1, then a general result in higher dimensions in the subsequent
Section 2.5.2 and compare this result to the classic monotone convergence theory in Section 2.5.3.
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2.5.1 A single nonlinear equation

Consider the case where F (x) = ϕ(x) ∈ R is a one dimensional function and x ∈ R. This
includes common applications of the NR method such as calculating square roots of their
reciprocal7 and finding roots of polynomials. Even in this simple one dimension case, we find
that our assumptions of global convergence given in Corollary 2.8 are strictly weaker than the
standard assumptions used to guarantee NR convergence, as we explain next.

The NR method in one dimension at every iteration k is given by

xk+1 = xk − ϕ(xk)
ϕ′(xk)

def= g(xk).

To guarantee that this is well defined, we assume that ϕ′(xk) ̸= 0 for all k. A sufficient
condition for this procedure to converge locally is that |g′(x)| < 1 with x ∈ I where I is a given
interval containing the solution x∗. See for example Section 1.1 in (Deuflhard, 2011) or Chapter
12 in (Ortega and Rheinboldt, 2000). We can extend this to a global convergence by requiring
that |g′(x)| < 1 globally. In the case of NR, since g′(x) = 1− ϕ′(x)2−ϕ(x)ϕ′′(x)

ϕ′(x)2 = ϕ(x)ϕ′′(x)
ϕ′(x)2 , this

condition amounts to requiring

|ϕ(x)ϕ′′(x)|
ϕ′(x)2 < 1. (2.27)

Curiously, this condition (2.27) has an interesting connection to convexity. In fact, condi-
tion (2.27) implies that ϕ2(x) is convex and twice continuously differentiable. To see this, note
that d2

dx2 ϕ2(x) ≥ 0 is equivalent to

d2

dx2 ϕ2(x) = 2 d

dx
ϕ′(x)ϕ(x) = 2

(
ϕ(x)ϕ′′(x) + ϕ′(x)2

)
≥ 0. (2.28)

Now it is easy to see that (2.27) implies (2.28). Finally (2.28) also implies that ϕ2(x) is star-
convex, which is exactly what is required by our convergence theory in Corollary 2.8.

Indeed, in this one dimensional setting, Assumption 2.6 is equivalent to (2.16) and our
reformulation in (2.8) boils down to minimizing fy(x) = (ϕ(x)/ϕ′(y))2. Thus by Corollary 2.8,
the NR method converges globally if fxk(x), or simply if ϕ(x)2 is star-convex and ϕ′(xk) ̸= 0 for
all iterates of NR, which shows that our condition is strictly weaker than the other conditions,
because there exists functions that are star-convex but not convex, e.g. ϕ(x)2 = |x|(1−exp(−|x|))
from Nesterov and Polyak (2006) and Lee and Valiant (2016).

7Used in particular to compute angles of incidence and reflection in games such as quake https://en.wikipedia.
org/wiki/Fast_inverse_square_root.
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For future reference and convenience, we can re-write the star-convexity of each ϕ(x)2 as

0 = ϕ(x∗)2 ≥ ϕ2(x) + 2ϕ(x)ϕ′(x)(x∗ − x),

where x∗ is the global minimum of ϕ(x)2, i.e. ϕ(x∗) = 0. This can be re-written as

0 ≥ ϕ(x)
(
ϕ(x) + 2ϕ′(x)(x∗ − x)

)
. (2.29)

By verifying (2.29) and that ϕ′(xk) ̸= 0 on the iterates of NR, we can guarantee that the method
converges globally.

2.5.2 The full NR

Now let F (x) ∈ Rm and consider the full NR method (2.2). Similarly, since S = Im, Assump-
tion 2.6 is equivalent to (2.16). Corollary 2.8 sheds some new light on the convergence of NR.
In this case, our reformulation (2.8) is given by

fy(x) = 1
2F (x)⊤(DF (y)⊤DF (y))†F (x) = 1

2

∥∥∥∥(DF (y)⊤
)†

F (x)
∥∥∥∥2

(2.30)

and Corollary 2.8 states that NR converges if fxk(x) is star-convex for all the iterates xk ∈ Rp.
This has a curious re-interpretation in this setting. Indeed, let

n(x) def= −(DF (x)⊤)†F (x) (2.31)

be the Newton direction. From (2.30) and (2.31), we have that

fx(x) = 1
2 ∥n(x)∥2 . (2.32)

Using (2.32), Corollary 2.8 can be stated in this special case as the following corollary.

Corollary 2.15. Consider xk given by the NR (2.2) with γ < 1. If we have

F (x) ∈ Im(DF (x)⊤), (2.33)
1
2 ∥n(x)∥2 ≤ ⟨n(x), x∗ − x⟩ (2.34)

hold for every x = xk with solution x∗, then it exists L > 0 s.t. ∥DF (xk)∥ ≤ L and

min
t=0,...,k−1

∥∥∥F (xt)
∥∥∥2
≤ 1

k
· L2 ∥∥x0 − x∗∥∥2

γ (1− γ) . (2.35)
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First, in our proof of Corollary 2.15 in Appendix A.3.1, condition (2.33) implies (2.22).
Furthermore, condition (2.34) can be seen as a co-coercivity property of theNewton direction.

This co-coercivity establishes a curious link with the modern proofs of convergence of gradient
descent which rely on the co-coercivity of the gradient direction. That is, if f(x) is convex and
L–smooth, then we have that the gradient is L–co-coercive with

1
L
∥∇f(x)∥2 ≤ ⟨∇f(x), x− x∗⟩ .

This is the key property for proving convergence of gradient descent, see e.g. Section 5.2.4
in Bach (2021). To the best of our knowledge, this is the first time that the co-coercivity of the
Newton direction has been identified as a key property for proving convergence of the Newton’s
method. In particular, global convergence results for the NR method such as the monotone
convergence theories (MCT) only hold for functions F : Rp → Rm with p = m and rely on
a stepsize γ = 1, see Ortega and Rheinboldt (2000) and Deuflhard (2011). Corollary 2.15
accommodates “non-square” functions F : Rp → Rm. Excluding the difference in stepsizes and
focusing on “square” functions F : Rp → Rm with p = m, next we show in Theorem 2.16 that
our assumptions are strictly weaker than those used for establishing the global convergence of
NRwith constant stepsizes through the MCT.

2.5.3 Comparing to the classic monotone convergence theory of NR

Consider m = p. Here we show that our Assumption 2.1, (2.33) and (2.34) are strictly weaker
than the classic assumptions used for establishing the global convergence of NR with constant
stepsize. To show this, we take the assumptions used in the MCT in Section 13.3.4 in Ortega
and Rheinboldt (2000) and compare with our assumptions in the following theorem.

Theorem 2.16. Let F : Rp → Rp and let xk be the iterates of the NR method with stepsize γ = 1,
that is

xk+1 = xk −
(
DF (xk)⊤

)†
F (xk). (2.36)

Consider the following two sets of assumptions

(I) F (x) is component wise convex, (DF (x)⊤)−1 exists and is element-wise positive ∀x ∈ Rp.
There exist x and y s.t. F (x) ≤ 0 ≤ F (y) element-wise.

(II) There exists a unique x∗ ∈ Rp s.t. F (x∗) = 0, (2.33) and (2.34) hold for k ≥ 1.

If (I) holds, then (II) always holds. Furthermore, there exist problems for which (II) holds and (I)
does not hold.
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We observe that our assumptions are also strictly weaker than the affine covariates formula-
tions of convex functions given in Lemma 3.1 in Deuflhard (2011). The proof is verbatim to the
above.

Theorem 2.16 only considers the case that the stepsize γ = 1. We also investigate the case
where the stepsize γ < 1 in particular in 1-dimension and show that MCT does not hold in
this case in Appendix A.3.3. Thus we claim that our assumptions are strictly weaker than the
assumptions used in MCT (Ortega and Rheinboldt, 2000; Deuflhard, 2011) for establishing the
global convergence of NR, albeit for different step sizes.

2.6 Single row sampling: the nonlinear Kaczmarz method

The SNR enjoys many interesting instantiations. Among which, we have chosen three to
present in the main text: the nonlinear Kaczmarz method in this section, the Stochastic Newton
method (Rodomanov and Kropotov, 2016; Kovalev et al., 2019) in Section 2.7 and a new
specialized variant for solving GLMs in Section 2.8.

Here we present the new nonlinear Kaczmarz method as a variant of SNR. Consider the
original problem (2.1). We use a single row importanceweighted subsampling sketch to sample
rows of F (x) = 0. That is, let Pr [S = ei] = pi with the ith unit coordinate vector ei ∈ Rm for
i = 1, · · · , m. Then the SNR update (line 4 in Algorithm 1) is given by

xk+1 = xk − γ
Fi(xk)

∥∇Fi(xk)∥2
∇Fi(xk). (2.37)

We dub (2.37) the nonlinear Kaczmarz method, as it can be seen as an extension of the randomized
Kaczmarz method (Kaczmarz, 1937; Strohmer and Vershynin, 2009; Needell, 2010; Needell
et al., 2016) for solving linear systems to the nonlinear case8. By (2.9), this nonlinear Kaczmarz
method is simply SGD applied to minimizing

fxk(x) =
m∑

i=1
Pr [S = ei] fei,xk(x) (2.9)+(2.4)= 1

2

m∑
i=1

pi
Fi(x)2

∥∇Fi(xk)∥2
.

A sufficient condition for (2.10) to hold is that the diagonal matrix

Eei

[
Hei(xk)

] (2.4)=
m∑

i=1
pi

eie
⊤
i

∥∇Fi(xk)∥2
= Diag

(
pi

∥∇Fi(xk)∥2

)
(2.38)

8We note that there exists a nonlinear variant of the Kaczmarz method which is referred to as the Landwe-
ber–Kaczmarz method (Leitão and Svaiter, 2016). Though the Landweber–Kaczmarz is very similar to Kaczmarz,
it is not truly an extension since it does not adaptively re-weight the stepsize by

∥∥∇Fi(xk)
∥∥2.
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is invertible. Thus E
[
HS(xk)

]
is invertible if ∇Fi(xk) ̸= 0 for all i ∈ {1, · · · , m} and xk ∈ Rp.

In which case Ker (E [HS(y)]) = {0} for all y ∈ Rp and (2.10) holds.
Finally, to guarantee that (2.37) converges through Theorem 2.7, we need fxk(x) to be star-

convex on xk at every iteration. In this case, it suffices for each Fi(x)2 to be star-convex, since
any conic combination of star-convex functions is star-convex (Lee and Valiant, 2016). This is a
straightforward abstraction of the one dimension case, in that, if (2.29) holds for every Fi in the
place of ϕ, we can guarantee the convergence of (2.37). This is also equivalent to assuming the
star-convexity for each sketching matrix (2.16). Furthermore, if we have F (x) ∈ Im(DF (x)⊤)
hold for all x, then (2.22) holds, as Ker (E [HS(y)]) = {0}. We can guarantee the convergence
of (2.37) through Corollary 2.8.

2.7 The Stochastic Newton method

We now show that the Stochastic Newton method (SNM) (Rodomanov and Kropotov, 2016;
Kovalev et al., 2019) is a special case of SNR. This connection combined with the global
convergence theory of SNR, gives us the first global convergence theory of SNM, which we
detail in Section 2.7.2.

SNM (Kovalev et al., 2019) is a stochastic second order method that takes a Newton-type
step at each iteration to solve optimization problems with a finite-sum structure

min
w∈Rd

[
P (w) def= 1

n

n∑
i=1

ϕi(w)
]

, (2.39)

where each ϕi : Rd → R is twice differentiable and strictly convex. In brevity, the updates in
SNM at the kth iteration are given by

wk+1 =
(

1
n

n∑
i=1
∇2ϕi(αk

i )
)−1( 1

n

n∑
i=1
∇2ϕi(αk

i )αk
i −

1
n

n∑
i=1
∇ϕi(αk

i )
)

, (2.40)

αk+1
i =

wk+1 if i ∈ Bn

αk
i if i /∈ Bn

, (2.41)

where αk
1 , · · · , αk

n are auxiliary variables, initialized in SNM, and Bn ⊂ {1, . . . , n} is a subset of
size τ chosen uniformly on average from all subsets of size τ .

2.7.1 Rewrite SNM as a special case of SNR

Since P (w) is strictly convex, every minimizer of P satisfies ∇P (w) = 1
n

∑n
i=1∇ϕi(w) = 0.

Our main insight to deducing SNM is that we can re-write this stationarity condition using
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a variable splitting trick. That is, by introducing a new variable αi ∈ Rd for each gradient ∇ϕi,
and let p := (n + 1)d and x =

[
w ; α1 ; · · · ; αn

]
∈ Rp be the stacking9 of the w and αi variables,

we have that solving ∇P (w) = 0 is equivalent to finding the roots of the following nonlinear
equations

F (x) = F (w ; α1 ; · · · ; αn) def=
[

1
n

n∑
i=1
∇ϕi(αi) ; w − α1 ; · · · ; w − αn

]
, (2.42)

where F : R(n+1)d → R(n+1)d. Our objective now becomes solving F (x) = 0 with p = m =
(n + 1)d. To apply SNR to (2.42), we are going to use a structured sketching matrix. But first,
we need some additional notations.

Divide Ind ∈ Rnd×nd into n contiguous blocks of size nd× d as follows

Ind
def= [ Ind,1 Ind,2 · · · Ind,n ]

where Ind,i is the ith block of Ind. Let Bn ⊂ {1, . . . , n} with |Bn| = τ chosen uniformly at
average. Let IBn ∈ Rnd×τd denote the concatenation of the blocks Ind,i such that the indices
i ∈ Bn.

At the kth iteration of SNR, denote xk = [wk; αk
1 ; · · · ; αk

n], we define our sketching matrix
S ∼ Dxk as

S =


Id 0

1
n∇

2ϕ1(αk
1)

...
1
n∇

2ϕn(αk
n)

IBn

 ∈ R(n+1)d×(τ+1)d. (2.43)

Here the distribution Dxk depends on the iterates xk. The sketch size of S is (τ + 1)d with any
τ ∈ {1, · · · , n}. Now we can state the following lemma.

Lemma 2.17. Let ϕi be strictly convex for i = 1, . . . , n. At each iteration k, the updates of SNR
(line 4 in Algorithm 1) with F defined in (2.42), the sketching matrix Sk defined in (2.43) , and
stepsize γ = 1, are equal to the updates (2.40) and (2.41) of SNM.

Thus we conclude that SNM is a special case of SNR. However, in practice for solving
GLMs, instead of sampling S ∼ Dxk provided in (2.43), we only sample Bn and we execute
the efficient updates as suggested in Kovalev et al. (2019).

9In this chapter, vectors are columns by default, and given x1, . . . , xn ∈ Rq , we note [x1; . . . ; xn] ∈ Rqn the
(column) vector stacking the xi’s on top of each other with q ∈ N.

36



2.7 The Stochastic Newton method

2.7.2 Global convergence theory of SNM

Let x′ def= (w′; α′
1; · · · ; α′

n) ∈ R(n+1)d and S ∼ Dx defined in (2.43). By applying the global
convergence theory of SNR, we can now provide the first global convergence theory for SNM.

Corollary 2.18. Let w∗ be a solution to ∇P (w) = 0. Consider the iterate xk = (wk; αk
1 ; · · · ; αk

n)
given by SNM (2.40) and (2.41) and note x∗ def= (w∗; w∗; · · · ; w∗) ∈ R(n+1)d. If there exists
µ > 0 such that for all x, x′ ∈ R(n+1)d,

fx′(x∗) ≥ fx′(x) + ⟨∇fx′(x), x∗ − x⟩+ µ

2 ∥x
∗ − x∥2 (2.44)

= fx′(x) + ⟨∇fx′(x), x∗ − x⟩+ µ

2

(
∥w∗ − w∥2 +

n∑
i=1
∥w∗ − αi∥2

)
,

then the iterates {xk} of SNM converge linearly according to

E
[∥∥∥xk+1 − x∗

∥∥∥2
]
≤ (1− µ)k+1

∥∥∥x0 − x∗
∥∥∥2

. (2.45)

Proof. As ∇P (w∗) = 0, this implies immediately that x∗ is a solution of F . Besides, (2.44)
satisfies Assumption 2.12. Thus by Theorem 2.14, we get (2.45).

Even though (2.44) is a strong assumption, this is the first global convergence theory of
SNM, since only local convergence results of SNM are addressed in Kovalev et al. (2019).

As a by-product, we find that the function F (x) in (2.42) and the sketchingmatrix S defined
in (2.43) actually satisfy (2.22) through Lemma 2.9, namely as the following lemma.

Lemma 2.19. Consider the function F defined in (2.42) and the sketching matrix S defined in
(2.43), then we have the condition (2.22) hold.

From Lemma 2.19, we know that for any size of the subset sampling |Bn| = τ ∈ {1, · · · , n},
the condition (2.22) holds. The corresponding sketch size of S is (τ + 1)d.

Furthermore, using Lemma 2.17, we can also provide the global convergence of SNM with
stepsizes γ < 1 (SNM with relaxation) by using the weaker star-convexity assumption and
Theorem 2.7. We expand on this comment in Appendix A.4.3.
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2.8 Applications to GLMs – tossing-coin-sketchmethod

Consider the problem of training a generalized linear model

w∗ = arg min
w∈Rd

P (w) def= 1
n

n∑
i=1

ϕi(a⊤
i w) + λ

2 ∥w∥
2, (2.46)

where ϕi : R→ R+ is a convex and continuously twice differentiable loss function, ai ∈ Rd are
data samples and w ∈ Rd is the parameter to optimize. As the objective function is strongly
convex, the unique minimizer satisfies∇P (w) = 0, that is

∇P (w) = 1
n

n∑
i=1

ϕ′
i(a⊤

i w)ai + λw = 0. (2.47)

Let Φ(w) def=
[
ϕ′

1(a⊤
1 w) · · · ϕ′

n(a⊤
n w)

]⊤
∈ Rn and A def=

[
a1 · · · an

]
∈ Rd×n. By introducing

auxiliary variables αi ∈ R s.t. αi
def= −ϕ′

i(a⊤
i w), we can re-write (2.47) as

w = 1
λn

Aα, and α = −Φ(w). (2.48)

Note x = [α; w] ∈ Rn+d. The objective of finding the minimum of (2.46) is now equivalent to
finding zeros for the function

F (x) = F (α; w) def=
[ 1

λnAα− w

α + Φ(w)

]
, (2.49)

where F : Rn+d → Rn+d. Our objective now becomes solving F (x) = 0 with p = m = n + d.
For this, we will use a variant of the SNR. The advantage in representing (2.47) as the nonlinear
system (2.49) is that we now have one row per data point (see the second equation in (2.48)).
This allows us to use sketching to subsample the data.

Since the function F has a block structure, we will use a structured sketching matrix which
we refer to as a Tossing-coin-sketch. But first, we need the following definition of a block sketch.

Definition 2.20 ((n, τ)–block sketch). Let Bn ⊂ {1, . . . , n} be a subset of size τ uniformly
sampling at random. We say that S ∈ Rn×τ is a (n, τ)–block sketch if S = IBn where IBn denotes
the column concatenation of the columns of the identity matrix In ∈ Rn×n whose indices are in Bn.

Our Tossing-coin-sketch is a sketch that alternates between two blocks depending on the
result of a coin toss.
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Definition 2.21 (Tossing-coin-sketch). Let Sd ∈ Rd×τd and Sn ∈ Rn×τn be a (d, τd)–block
sketch and a (n, τn)–block sketch, respectively. Let b ∈ (0; 1). Now each time we sample S, we “toss

a coin” to determine the structure of S ∈ R(d+n)×(τd+τn). That is, S =
[
Sd 0
0 0

]
with probability

1− b and S =
[
0 0
0 Sn

]
with probability b.

By applying the SNR method with a tossing-coin-sketch for solving (2.49), we arrive at an
efficient method for solving (2.46) that we call the TCSmethod. By using a tossing-coin-sketch,
we can alternate between solving a linear system based on the first d rows of (2.49) and a
nonlinear system based on the last n rows of (2.49).

TCS is inspired by the first-order stochastic dual ascentmethods (Shalev-Shwartz andZhang,
2013; Shalev-Shwartz, 2016; Qu et al., 2015). Indeed, equation (2.48) can be seen as primal-dual
systems with primal variables w and dual variables α induced by the Legendre–Fenchel trans-
formation. Stochastic dual ascent methods are efficient to solve (2.48). At each iteration, they
update alternatively the primal and the dual variables w and α with the first-order information.
Thus, by sketching alternatively the primal and the dual systems and updating accordingly
with the Newton-type steps, TCS’s updates can be seen as the second-order stochastic dual
ascent methods.

Next we show that the TCS method verifies (2.22) through Lemma 2.9 in the following.

Lemma 2.22. Consider the function F defined in (2.49) and the tossing-coin-sketch S defined in
Definition 2.21, then (2.22) holds.

From Lemma 2.22, we know that for any size of the block sketch τd ∈ {1, · · · , d} and
τn ∈ {1, · · · , n}, (2.22) holds. The corresponding sketch size of S is τd + τn.

Using sketch sizes s.t. τn ≪ n, the TCS method has the same cost as SGD in the case d≪ n.
The low computational cost per iteration is thus another advantage of the TCS method. See
Appendix A.10 the cost per iteration analysis. For a detailed derivation of the TCS method, see
Appendix A.8 and a detailed implementation in Algorithm 7 in the appendix.

39



Sketched Newton-Raphson

Table 2.1 – Details of the data sets for binary classification
dataset dimension (d) samples (n) C.N. of the model L

covetype 54 581012 7.45× 1012 1.28× 107

a9a 123 32561 5.12× 104 1.57
fourclass 2 862 4.86× 106 5.66× 103

artificial 50 10000 3.91× 104 3.91
ijcnn1 22 49990 2.88× 103 5.77× 10−2

webspam 254 350000 7.47× 104 2.13× 10−1

epsilon 2000 400000 3.51× 104 8.76× 10−2

phishing 68 11055 1.04× 103 9.40× 10−2

2.8.1 Experiments for TCS method applied for GLM

We consider the logistic regression problem with 8 datasets10 taken from LibSVM (Chang and
Lin, 2011), except for one artificial dataset. Table 2.1 provides the details of these datasets,
including the condition number (C.N.) of the model and the smoothness constant L of the model.
C.N. of the logistic regression problem is given by

C.N. def= λmax(AA⊤)
4nλ

+ 1,

where λmax(·) is the largest eigenvalue operator. The smoothness constant L is given by

L
def= λmax(AA⊤)

4n
+ λ.

As for the logistic regression problem, we consider the loss function ϕi in (2.46) in the form

ϕi(t) = ln(1 + e−yit)

where yi are the target values for i = 1, · · · , n.
The artificial dataset. The artificial dataset A⊤ ∈ Rn×d in Table 2.1 is of size 10000× 50 and
generated by a Gaussian distribution whose mean is zero and covariance is a Toeplitz matrix.
Toeplitz matrices are completely determined by their diagonal. We set the diagonal of our
Toeplitz matrix as

[c0; c1; · · · ; cd−1] ∈ Rd

where c ∈ R+ is a parameter. We choose c = 0.9 (closed to 1) which results in A having highly
correlated columns, which in turn makes A an ill-conditioned data set. We set the ground

10All datasets except for the artificial dataset can be found downloaded on https://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets/. Some of the datasets can be found originally in Kohavi (1996), Mohammad et al.
(2012), Chang and Lin (2001), Blackard and Dean (1999), Wang et al. (2012), and Dua and Graff (2017).
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truth coefficients of the model

w = [(−1)0 · e− 0
10 ; · · · ; (−1)d−1 · e− d−1

10 ] ∈ Rd

and the target values of the dataset

y = sgn
(
A⊤w + r

)
∈ Rn

where r ∈ Rn is the noise generated from a standard normal distribution.
We compare the TCS method with SAG (Schmidt et al., 2017), SVRG (Johnson and Zhang,

2013), dfSDCA (Shalev-Shwartz, 2016) and Quartz (Qu et al., 2015). All experiments were
initialized at w0 = 0 ∈ Rd (and/or α0 = 0 ∈ Rn for TCS/dfSDCA methods) and were
performed in Python 3.7.3 on a laptop with an Intel Core i9-9980HK CPU and 32 Gigabyte of
DDR4 RAM running OSX 10.14.5. For all methods, we used the stepsize that was shown to
work well in practice. For instance, the common rule of thumb for SAG and SVRG is to use a
stepsize 1

L , where L is the smoothness constant. This rule of thumb stepsize is not supported by
theory. Indeed for SAG, the theoretical stepsize is 1

16L and it should be even smaller for SVRG
depending on the condition number. For dfSDCA and Quartz’s, we used the stepsize suggested
in the experiments in Shalev-Shwartz (2016) and Qu et al. (2015) respectively. For TCS, we
used two types of stepsize, related to the C.N. of the model. If the condition number is big
(Figure 2.1 top row), we used γ = 1 except for a9awith γ = 1.5. If the condition number is small
(Figure 2.1 bottom row), we used γ = 1.8. We also set the Bernoulli parameter b (probability
of the coin toss) depending on the size of the dataset (see Table A.1 in Appendix A.10), and
τd = d. We tested three different sketch sizes τn = 50, 150, 300. More details of the parameter
settings are presented in Appendix A.10.

We used λ = 1
n regularization parameter, evaluated eachmethod 10 times and stopped once

the gradient norm11 was below 10−5 or some maximum time had been reached. In Figure 2.1,
we plotted the central tendency as a solid line and all other executions as a shaded region for
the wall-clock time vs gradient norm.

From Figure 2.1, TCS outperforms all other methods on ill-conditioned problems (Figure 2.1
top row), but not always the case on well-conditioned problems (Figure 2.1 bottom row).
This is because in ill-conditioned problems, the curvature of the optimization function is not
uniform over directions and varies in the input space. Second-order methods effectively exploit
information of the local curvature to converge faster than first-order methods. To further
illustrate the performance of TCS on ill-conditioned problems, we compared the performance
of TCS on the artificial dataset in the top right of Figure 2.1. Note as well that for reaching
an approximate solution at early stage (i.e. tol = 10−3, 10−4), TCS is very competitive on all

11We evaluated the true gradient norm every 1000 iterations. We also paused the timing when computing the
performance evaluation of the gradient norm.
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Figure 2.1 – Experiments for TCS method applied for generalized linear model.

problems. TCS also has the smallest variance compared to the first-order methods based on
eye-balling the shaded error bars in Figure 2.1, especially compared to SVRG. Among the three
tested sketch sizes, 150 performed the best except on the epsilon dataset.

2.9 Discussion and bibliographical remarks

In this chapter, we introduced the SNR method, for which we provided strong convergence
guarantees. We also developed several promising applications of SNR to show that SNR is very
flexible and tested one of these specialized variants for training GLMs. SNR is flexible by the
fact that its primitive goal is to solve efficiently nonlinear equations. Since there are many ways
to re-write an optimization problem as nonlinear equations, each re-write leads to a distinct
method, thus leads to a specific implementation in practice (e.g. SNM, TCS methods) when
using SNR. Besides, the convergence theories presented in Section 2.4 guarantee a large variety
of choices for the sketch.

A natural question opened by our work was whether this flexibility would allow us to
discover other applications of SNR. This was answered positively by the work of Gower et al.
(2021a), which devised a variant of Stochastic Polyak (SP) method (Berrada et al., 2020; Loizou
et al., 2021) based on the Polyak step size (Polyak, 1987). In particular, Gower et al. (2021a)
show that SP under the interpolation condition (Crammer et al., 2006; Vaswani et al., 2019a) is
the nonlinear Kaczmarz methods (2.37). Thus SP is a special case of SNR. Using this viewpoint,
and leveraging our convergence results, Gower et al. (2021a) further show that SP can also be
viewed as a type of online SGDmethod, which facilitates the analysis of SP. On the experimental
side, Gower et al. (2021a) show that the SP method is very competitive as compared to ADAM

42



2.9 Discussion and bibliographical remarks

(Kingma and Ba, 2015) for the training of deep neural networks on computer vision tasks,
CIFAR10 (Krizhevsky, 2009) and SVHN (Netzer et al., 2011), and on NLP benchmarks, the
IWSLT14 English-German translation task (Cettolo et al., 2014).

As a follow-up work of SNR, the nonlinear Kaczmarz methods (2.37) and their convergence
were also recently investigated by Zeng and Ye (2020) and Wang et al. (2022) with different
choices of sampling. Faster nonlinear Kaczmarz methods with some greedy sampling rules
were further developed by Zhang et al. (2022c) and Zhang and Li (2022).

There are also many possible ways to extend SNR. Indeed, recall the sketch-and-project
viewpoint of SNR in (2.7)

xk+1 = argminx∈Rp

∥∥∥x− xk
∥∥∥2 (2.50)

s. t. S⊤
k DF (xk)⊤(x− xk) = −γS⊤

k F (xk). (2.51)

One extension of SNR is when the updates are relaxed to use inequality constraints instead of
equality constraints in (2.51), which was recently proposed by Gower et al. (2022). Second
possible extension of SNR is that, instead of projecting onto the linearization of S⊤

k F (xk), one
can use the local second-order expansion. That is, as a proxy of setting S⊤

k F (x) = 0, we set the
second-order expansion of S⊤

k F (x) around xk to be zero

S⊤
k F (xk) + S⊤

k DF (xk)⊤(x− xk) + 1
2(x− xk)⊤S⊤

k D2F (xk)(x− xk) = 0, (2.52)

where D2F (xk) is the second-order derivatives of F (xk). Hence, we replace the linear con-
straints (2.51) by the second-order constraints (2.52). If we choose the sketching matrix Sk as
a single row subsampling sketch, this becomes SP2 which was recently proposed by Li et al.
(2022a).

Another extension of SNR is to use variable metric for the projection rather than L2 norm
projection in (2.50). This was known as Sketched Newton-Raphson with Variable Metric (SNRVM)
developed in our later work Chen et al. (2022a), which will be presented in Section 3.4 in the
next Chapter 3.
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Chapter 3

SAN: Stochastic Average Newton
Algorithm for Minimizing Finite Sums

In this chapter, we present a principled approach for designing stochastic Newton methods for
solving finite sum optimization problems. Our approach has two steps. First, we re-write the
stationarity conditions as a system of nonlinear equations that associates each data point to a
new row. Second, we apply a Subsampled Newton Raphson method to solve this system of
nonlinear equations. Using our approach, we develop a new Stochastic Average Newton (SAN)
method, which is incremental by design, in that it requires only a single data point per iteration.
It is also cheap to implement when solving regularized generalized linear models, with a
cost per iteration of the order of the number of the parameters. We show through numerical
experiments that SAN requires no knowledge about the problem, neither parameter tuning,
while remaining competitive as compared to classical variance reduced gradient methods (e.g.
SAG and SVRG), incremental Newton and quasi-Newton methods (e.g. SNM, IQN). 1

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Function splitting methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Experiments for SAN applied for GLMs . . . . . . . . . . . . . . . . . . . . . 53

3.4 Sketched Newton Raphson with a variable metric . . . . . . . . . . . . . . . 56

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1This chapter is based on an article published in the proceedings of the 25 th International Conference onArtificial
Intelligence and Statistics (AISTATS 2022) (Chen et al., 2022a).
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3.1 Introduction

In contrast to the previous chapter, where we aim to solve the general nonlinear equation, in
this chapter we consider more precisely the problem of minimizing a sum of terms

w∗ ∈ argmin
w∈Rd

1
n

n∑
i=1

fi(w) def= f(w), (3.1)

where fi is a convex twice differentiable loss over a given i-th data point. Because of the specific
finite sum structure, we can design more adaptive algorithm, like TCS method in the previous
Section 2.8 (Algorithm 7), than the SNR method (Algorithm 1), which is for solving nonlinear
equation in general.

When the number of data points n and features d are large, first order methods such as
Stochastic Gradient Descent (Robbins and Monro, 1951, SGD), SAG (Schmidt et al., 2017),
SVRG (Johnson and Zhang, 2013) and ADAM (Kingma and Ba, 2015) are the methods of choice
for solving (3.1) because of their low cost per iteration. The issue with first order methods
is that they can require extensive parameter tuning, and/or knowledge of the parameters of
the problem. Consequently, to make a first order method work well requires careful tweaking
and tuning from an expert, and a careful choice of the model itself. Indeed, neural networks
have evolved in such a way that allows for SGD to converge, such as the introduction of batch
norm (Ioffe and Szegedy, 2015) and the push for more over-parametrized networks which
greatly speed-up the convergence of SGD (Ma et al., 2018; Vaswani et al., 2019a; Gower et al.,
2021c). Thus the reliance on first ordermethods ultimately restricts the choice and development
of alternative models.

There is now a concerted effort to develop efficient stochastic second order methods that
can exploit the sum of terms structured in (3.1). The hope for second order methods for
solving (3.1) is that they require less parameter tuning and converge for wider variety of
models and datasets. In particular, here we set out to develop stochastic second order methods
that achieve the following objective.

Objective 3.1. Develop a second order method for solving (3.1) that is incremental, efficient,
scales well with the dimension d, and that requires no knowledge from the problem, neither
parameter tuning.

Most stochastic second order methods are not incremental, and thus fall short of our first
criteria. This is due to the fact that most of these methods are only guaranteed to work in
a large mini-batch size regime, and not with a single sample. For instance, the subsampled
Newton methods (Roosta-Khorasani and Mahoney, 2019; Bollapragada et al., 2018; Liu and
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Roosta, 2021; Erdogdu and Montanari, 2015; Kohler and Lucchi, 2017) require potentially large
mini-batch sizes in order to guarantee that the subsampled Newton direction closely matches
the full Newton direction in high probability. Stochastic quasi-Newton methods (Byrd et al.,
2011; Mokhtari and Ribeiro, 2015; Moritz et al., 2016; Gower et al., 2016), SDNA (Qu et al.,
2016), the Newton sketch (Pilanci and Wainwright, 2017) and Lissa (Agarwal et al., 2017),
suffer from the same drawback: the need for large mini-batches or full gradient evaluation to
work, which makes them all not incremental.

The two existing methods that we are aware of that are truly incremental are IQN (Incre-
mental Quasi-Newton) (Mokhtari et al., 2018; Gao et al., 2020) and SNM (Stochastic Newton
Method) (Kovalev et al., 2019; Rodomanov and Kropotov, 2016). Both methods also enjoy a
fast local convergence rate. Their only drawback is their computational and memory costs per
iteration are at least O(d2) (see Table 3.1 and Section B.3.4 for more details). This is prohibitive
in a setting where the number of parameters for the model is large. Our goal is to develop a
method that is not only incremental, but also has a cost per iteration of O(d), as is the case for
first-order methods like SGD.

In this chapter, we develop two newNewton methods for solving (3.2) that effectively make
use of second order information, are incremental, and are governed by a single global conver-
gence theory. Our starting point for developing these methods is to re-write the stationarity
conditions

1
n

n∑
i=1
∇fi(w) = 0. (3.2)

At this point, we could apply Newton’s method for solving nonlinear equations, otherwise
known as the Newton Raphson method. However, this approach would ultimately require a
full pass over the data at each iteration.

To avoid taking full passes over the data, we re-write (3.2) by introducing n auxiliary
variables αi ∈ Rd and solving instead the nonlinear system given by

1
n

n∑
i=1

αi = 0, (3.3)

αi = ∇fi(w), ∀i ∈ {1, . . . , n}. (3.4)

Clearly (3.3–3.4) have the same solutions in w. The advantage of (3.3–3.4) is that each gradient
lies on a separate row. Consequently, applying a subsampled Newton Raphson method, that is
sampling a row and then applying Newton Raphson, to (3.3–3.4) will result in an incremental
method. We refer to (3.3–3.4) as the function splitting formulation, since it splits the gradient
across different rows.
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To solve (3.3–3.4) efficiently, we propose SAN (Stochastic Average Newton) in Section 3.2.1.
SAN is a subsampled Newton Raphsonmethod that is based on a new variable metric extension
of SNR (Sketch Newton Raphson Method) (Yuan et al., 2022b) that we present in Section 3.4,
which is itself a nonlinear extension of the Sketch-and-Project method for solving linear sys-
tems (Gower and Richtárik, 2015b). By using a different subsampling of the rows (3.3–3.4), we
also derive SANA in Section 3.2.2, which is a variant of SAN that uses unbiased estimates of
the gradient.

Note that the idea of applying a subsampled Newton method to a well-chosen system of
optimality conditions is not new. Indeed, it was recently shown in Yuan et al. (2022b) that the
SNMmethod (Kovalev et al., 2019) can be seen as the application of a subsampled Newton
method to the equations

1
n

n∑
i=1
∇fi(αi) = 0,

w = αi, for i = 1, . . . , n, (3.5)

which clearly are equivalent to (3.2). Consequently, the two methods SAN and SNM are
both subsampled Newton Raphson methods applied to either a function or a variable splitting
formulation of (3.2).

The contributions of this chapter are the following:
• We propose combining the function splitting reformulation (3.3–3.4) with a subsampled

Newton Raphson as a tool for designing stochastic Newton methods, all of which are
variance reducing in the sense that they are incremental and they converge with a constant
step size.

• We introduce SAN (Stochastic Average Newtonmethod) by using this tool, which is incre-
mental and parameter-free, in that, SAN works well with a step size γ = 1 independently
of the underlying dataset or the objective function.

• By specializing to GLMs (Generalized Linear Models), we develop an efficient implemen-
tation of SAN that has the same cost per iteration as the first-order methods. We perform
extensive numerical experiments and show that SAN is competitive as compared to SAG
and SVRG.

• To provide a convergence theory of our methods, we extend the class of Sketched Newton
Raphson (Yuan et al., 2022b) methods to allow for a variable metric that includes SAN as
a special case.

In Section 3.2, we show how to derive the SAN and SANA methods. We then present
two different experimental settings comparing SAN to variance reduced gradients methods
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in Section 3.3. In Section 3.4, we study SAN/SANA as instantiations of a new variable metric
Sketch Newton Raphson method and present a convergence theory for this class of method.

The following will be assumed throughout the chapter.

Assumption 3.2. For all i ∈ {1, . . . , n}, the function fi : Rd −→ R is of class C2 and verifies
∇2fi(w) ≻ 0 for every w ∈ Rd.

3.2 Function splitting methods

The advantage of the function splitting formulation given by (3.3) and (3.4) is that there is
a separate row for each data point. We will now take advantage of this, and develop new
incremental Newton methods based on subsampling the rows of (3.3–3.4).

The reformulation given in (3.3–3.4) is a large system of nonlinear equations. For brevity,
let p := (n + 1)d and x =

[
w ; α1 ; · · · ; αn

]
∈ Rp be the stacking2 of the w and αi variables.

Thus solving (3.3–3.4) is equivalent to solve F (x) = 0, where

F : Rp → Rp (3.6)
x 7→

[
1
n

∑
αi;∇f1(w)− α1; · · · ;∇fn(w)− αn

]
.

As seen in Chapter 1, solving nonlinear equations has long been one of the core problems
in numerical analysis, with variants of the Newton Raphson method (Ortega and Rheinboldt,
2000) being one of the core techniques. From a given iterate xk ∈ Rp, the Newton Raphson
method computes the next iterate xk+1 by linearizing F around xk and solving the Newton
system

∇F (xk)⊤(xk+1 − xk) = −F (xk). (3.7)

Here ∇F (x) ∈ Rp×p denotes the Jacobian matrix of F at x, and it is assumed that (3.7) has a
solution. The least norm solution of the Newton system is given by

xk+1 = xk −∇F (xk)⊤†F (xk), (3.8)

where † denotes the Moore-Penrose pseudoinverse.
This update can also be written as a projection step:

xk+1 = argmin ∥x− xk∥2

2In this chapter, vectors are columns by default, and given x1, . . . , xn ∈ Rq we note [x1; . . . ; xn] ∈ Rqn the
(column) vector stacking the xi’s on top of each other.
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s.t. ∇F (xk)⊤(x− xk) = −F (xk). (3.9)

In our setting, (3.8) is prohibitively expensive because it requires access to all of the data at
each step and the solution of a large (n + 1)d× (n + 1)d linear system. To bring down the cost of
each iteration, and to have a resulting incremental method, at each iteration we will subsample
the rows of the Newton system before taking a projection step. Next, we present two methods
based on subsampling. Later on Section 3.4, we generalize this subsampling approach to make
use of sketches of the system.

3.2.1 SAN: the Stochastic Average Newton method

The SAN method is a subsampled Newton Raphson method that alternates between sampling
equation (3.3) or sampling one of the equations in (3.4). After sampling, we then apply a step
of Newton Raphson to the sampled equation.

To detail the SANmethod, let π ∈ (0, 1) be a fixed probability, and let xk = [wk; αk
1 ; . . . ; αk

n] ∈
Rp be a given k-th iterate. With probability π the SAN method samples equation (3.3) and
focuses on finding a solution to this equation. Since (3.3) is a linear equation, it is equal to its
own Newton equation. Furthermore, this linear equation (3.3) has n variables and only one
equation, thus it has infinite solutions. We choose a single one of these infinite solution by
using a projection step

αk+1
1 , . . . , αk+1

n = argmin
α1,...,αn∈Rd

∑n
i=1

∥∥∥αi − αk
i

∥∥∥2

s.t. 1
n

∑n
i=1 αi = 0. (3.10)

The solution to this projection is given in line 4 in Algorithm 2 when γ = 1. We have added the
step size γ ∈ (0, 1] to act as relaxation.

Alternatively, with probability (1 − π) the SAN method then samples the j-th equation
in (3.4) uniformly among the n equations. To get the Newton system of ∇fj(w) = αj , we
linearize around wk ∈ Rd and αk

j ∈ Rd and set the linearization to zero giving

∇fj(wk) +∇2fj(wk)(w − wk) = αj .

This linear equation has 2d unknowns, and thus also has infinite solutions. Again, we use a
projection step to pick a unique solution as follows

αk+1
j , wk+1 = argmin

αj ,w∈Rd

∥∥∥αj − αk
j

∥∥∥2
+
∥∥∥w − wk

∥∥∥2

∇2fj(wk)

s.t. ∇fj(wk) +∇2fj(wk)(w − wk) = αj . (3.11)
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Here we have introduced a projection under a norm ∥w∥∇2fj(wk)
def=

〈
∇2fj(wk)w, w

〉
which

is based on the Hessian matrix ∇2fj(wk). Performing a projection step with respect to the
metric induced by the Hessian is often used in Newton type methods such as interior point
methods (Renegar, 2001) and quasi-Newtonmethods (Goldfarb, 1970). Moreover, we observed
that this choice of metric resulted in a much faster algorithm (see Section B.3.5 for experiments
that highlight this). The closed form solution to the above is given in lines 8-10 in Algorithm 2
when γ = 1 (see Lemma B.2 for the details).

We gather all these updates in Algorithm 2 and call the resulting method the Stochastic
Average Newtonmethod, or SAN for short.

Algorithm 2: SAN: Stochastic Average Newton
Input: {fi}ni=1, step size γ ∈ (0, 1], probability π ∈ (0, 1), max iteration T

1 Initialize α0
1, · · · , α0

n, w0 ∈ Rd

2 for k = 1, . . . , T do
3 With probability π update:

4 αk+1
i = αk

i −
γ

n

n∑
j=1

αk
j , ∀i ∈ {1, · · · , n}

5 Otherwise with probability (1− π):
6 Sample uniformly j ∈ {1, · · · , n}
7 Hk = Id +∇2fj(wk)
8 dk = −H−1

k

(
∇fj(wk)− αk

j

)
9 wk+1 = wk + γdk

10 αk+1
j = αk

j − γdk

Output: Last iterate wT +1

The SAN method is incremental, since it can be applied with as little as one data point per
iteration. SAN can also be implemented in such a way that the cost per iteration is O(d) in
expectation. Indeed, the averaging step on line 4 contributes with a π×O(nd) cost to the total cost
in expectation, since all of the vectors αi ∈ Rd for i = 1, . . . , n, are updated. But as we found
through expensive testing in Section B.3.3, SAN converges quickly if π is of the order ofO(1/n),
reducing the cost in expectation to O(d). Further, the average of the αi’s can be efficiently
implemented by maintaining and updating a variable αk = 1

n

∑n
j=1 αk

j . The main cost for SAN
is in solving the linear system (Id+∇2fj(wk))d = αk

j−∇fj(wk). Solving this systemwith a direct
solver would cost O(d3). Alternatively, the solution can be approximated using an iterative
Krylov method for which each iteration costs O(d) by using backpropagation (Freund et al.,
1992; Christianson, 1992) to compute Hessian-vector products. For regularized generalized
linear models (GLMs), the total cost of this matrix inversion is only O(d) operations, as we
show next.
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Generalized Linear Models. Regularized GLMs are models for which we have

fi(w) = ϕi(a⊤
i w) + λR(w), (3.12)

where ϕi : R → R is a loss function associated with the i-th data point ai ∈ Rd, λ > 0 is a
regularization parameter and R is a regularizer that is twice differentiable and separable, i.e.
R(w) =

∑d
i=1 Ri(wi) with Ri : R→ R. The inversion on line 8 of Algorithm 2 can be efficiently

computed using the Woodbury identity because the Hessian ∇2fj(w) = ϕ′′
j (a⊤

j w)(aja⊤
j ) +

λ∇2R(w) is a rank-one perturbation of a diagonal matrix, which costs O(d) to invert (see
Lemma B.7 for an explicit formula).

Remark 3.3 (SAN vs. SNM for GLMs). SAN can be implemented efficiently for all GLMs with
separable regularizers. This is not the case for SNM (Kovalev et al., 2019), which can only be
implemented efficiently when the regularizer is the L2 norm. For other separable regularizers, the
cost per iteration for SNM is to O(d3) instead of O(d2). See Appendix B.3.4 for details.

3.2.2 SANA: alternative with simultaneous projections

Here we present SANA, an alternative version of the SAN method. Instead of alternating
between projecting onto linearizations of (3.3) and (3.4), the SANA method projects onto the
intersection of (3.3) and the linearization of a subsampled equation (3.4). In other words, the
next iterate xk+1 = [wk+1; αk+1

1 ; . . . ; αk+1
n ] is defined as the unique solution of

argmin
w,α1,...,αn∈Rd

n∑
i=1

∥∥∥αi − αk
i

∥∥∥2
+
∥∥∥w − wk

∥∥∥2

∇2fj(wk)
,

s.t. ∇fj(wk) +∇2fj(wk)(w − wk) = αj ,

1
n

∑n
i=1 αi = 0. (3.13)

The closed form solution of (3.13) corresponds to lines 4–8 in Algorithm 3 when the
relaxation parameter is γ = 1 (see Lemma B.4 for a proof).

Computing one step of this method requires access to only one function fj (through its
gradient and Hessian evaluated at wk). In terms of computational cost, each step requires
inverting the d × d matrix (1 − 1

n)Id + ∇2fj(wk). As with SAN, this cost reduces to O(d) in
the context of generalized linear models. See Algorithm 10 in the appendix for the resulting
implementation for GLMs. Yet even in the case of GLMs, the SANA method costs O(nd) per
iteration because it updates all the αi vectors at every iteration. Thus the SANA method has
complexity which is O(n) times larger than SAN in expectation.
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Algorithm 3: SANA
Input: {fi}ni=1, step size γ ∈ (0, 1], max iteration T

1 Initialize w0, α0
1, · · · , α0

n ∈ Rd s.t. ∑n
i=1 α0

i = 0
2 for k = 1, . . . , T do
3 Sample uniformly j ∈ {1, . . . , n}
4 Hk = (1− 1

n)Id +∇2fj(wk)
5 dk = −H−1

k (∇fj(wk)− αk
j )

6 wk+1 = wk + γdk

7 αk+1
j = αk

j − γ(1− 1
n)dk

8 αk+1
i = αk

i + γ
ndk, for i ̸= j

Output: Last iterate wT +1

Both SAN and SANA can be interpreted as a stochastic relaxed Newton method that uses
estimates of the gradient. Indeed, computing dk in Algorithms 2 and 3 requires solving a
relaxed Newton system (

δId +∇2fj(wk)
)

dk = αk
j −∇fj(wk), (3.14)

where δ = 1 and δ = 1− 1
n , respectively. The right hand side of this Newton system is a biased

estimate of the gradient for SAN and an unbiased estimate for SANA. To see this, for simplicity,
let γ = 1. Taking expectation conditioned on time k over the right-hand side of (3.14) gives

E
[
αk

j −∇fj(wk)
]

= 1
n

n∑
i=1

αk
i −∇f(wk).

For SANA, because the averaging constraint is always enforced in (3.13), we have that 1
n

∑n
i=1 αk

i =
0, thus the right hand side of (3.14) is always an unbiased estimate of the negative gradient. As
for SAN, the averaging constraint is only enforced every so often with the update on line 4 in
Algorithm 2. Thus for SAN, the right hand is a biased estimate of the negative gradient until the
averaging constraint is enforced. In this sense, SAN and SANA are analogous to SAG (Schmidt
et al., 2017) and SAGA (Defazio et al., 2014). We found in practice that this biased estimate of
the gradient did not hurt the empirical performance of SAN, and thus we focus on experiments
on SAN in Section 3.3.

3.3 Experiments for SAN applied for GLMs

Herewe compare SAN inAlgorithm2 against twovariance reduced gradientmethods SAG(Schmidt
et al., 2017) and SVRG (Johnson and Zhang, 2013) for solving regularized GLMs (3.12), where
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ϕi(t) = log
(
1 + e−yit

) is the logistic loss, yi ∈ {−1, 1} is the i-th target value, and R is the
regularizer.

We use eight datasets in our experiments taken from LibSVM (Chang and Lin, 2011),3 with
disparate properties (see details of the datasets in Table B.1). We fixed an initial random seed,
evaluated each method 10 times, and stopped when the gradient norm was below 10−6 or a
maximum of 50 effective passes over data had been reached. In all of our experiments, we plot
effective data passes4 vs gradient norm, and plot the central tendency as a solid line and all
other executions as a shaded region. Plots with function sub-optimality are also provided in
Figure B.1 Section B.3.2, and show much the same relative rankings amongst the methods as
the gradient norm plots.

For all methods, we used the default step size. For instance, for SAG and SVRG we use the
step size 1

Lmax
where Lmax is the largest smoothness constant of fi, for i = 1, . . . , n. This step

size is significantly larger than what has been proven to work for SAG and SVRG.5 Yet despite
this, it is the default setting in sklearn’s logistic regression solver (Pedregosa et al., 2011), and
we also found that it worked well in practice. The other hyperparameter of SVRG is the inner
loop size which is set to n throughout our experiments. As for SAN, we set the probability
π = 1

n+1 and step size γ = 1. More details of the experiments are in Section B.3.1. 6

Logistic regression with L2 regularization. We consider L2-regularized logistic regression,
i.e. the regularizer is R(w) = λ

2 ∥w∥
2 with λ = 1/n. From Figure 3.1, SAN outperforms SAG

and SVRG in all eight datasets, except for mushrooms, ijcnn1 and covtype, where SAN remains
competitive with SAG or SVRG. Note as well that for reaching an approximate solution at early
stage, SAN outperforms SAG and SVRG in all datasets, except for covtype. Furthermore, SAN
often has a smaller variance compared to SAG and SVRG based on eye-balling the shaded error
bars in Figure 3.1 which was produced by multiple executions.

Logistic regression with pseudo-Huber regularization. We also tested logistic regression
with pseudo-Huber regularizer. The pseudo-Huber regularizer is defined asR(w) = λ

∑d
i=1 Ri(wi)

with Ri(wi) = δ2
(√

1 +
(wi

δ

)2 − 1
)
and is used to promote the sparsity of the solution (Foun-

toulakis and Gondzio, 2016). We set δ = 1 and λ = 1/n. See Section B.3.1 for more properties
and interpretations of the pseudo-Huber regularizer. From Figure 3.2, SAN is competitive

3All datasets can be found downloaded on https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
Some of the datasets can be found originally in (Mohammad et al., 2012; Chang and Lin, 2001; Blackard and Dean,
1999; Wang et al., 2012; Lewis et al., 2004; Dua and Graff, 2017).

4By effective data passes we mean the number of data access divided by n.
5SAG has been proven to converge with a step size of 1/16Lmax (Schmidt et al., 2017) and SVRG provably

converges with a step size of 1/10Lmax and loop size of m = 10Lmax/µ where µ is the strong convexity parameter
f(w) (Johnson and Zhang, 2013).

6The code is available on https://github.com/nathansiae/Stochastic-Average-Newton.
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Figure 3.1 – Logistic regression with L2 regularization.
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Figure 3.2 – Logistic regression with pseudo-Huber regularization.

with SAG and SVRG. Changing the regularizer from an L2 to pseudo-Huber has resulted in
a slower convergence for all methods, except on the datasets ijcnn1 and covtype. SVRG is
notably slower when using the pseudo-Huber regularizer, while SAG is the least affected, and
SAN is in between. Besides, SAN again outperforms SAG and SVRG in all datasets, except
for covtype, for reaching an approximate solution at early stage and has a smaller variance
compared to SAG and SVRG.

Overall, these tests confirm that SAN is efficient for a wide variety of datasets and problems.
SAN is efficient in terms of effective passes and cost per iteration. It benefits from both using
second order information yet still has the same cost O(d) as the stochastic first order methods.
SNM and IQN, the only other methods that fit our stated objective, have a O(d2) cost per
iteration for L2-regularized GLMs. SNM costs even more for other regularizers and IQN has a
O(nd2) memory cost. In Section B.3.4, we present experiments comparing SAN/SANA to the
SNM and IQN algorithms.

Another advantage of SAN is that it requires no prior knowledge of the datasets nor tuning
of the hyperparameters. To show this, we did a grid search over π and the step size γ of SAN, see
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Table 3.1 – Average cost of one iteration of various stochastic methods applied to GLMs.
memory memory access data access computational cost

SAN O(nd) O(d) O(1) O(d)∗

SANA O(nd) O(nd) O(1) O(nd)
SAG O(nd) O(d) O(1) O(d)
SVRG O(d) O(d) O(1) O(d)
SNM O(n + d2) O(d2) O(1) O(d2)∗∗

IQN O(nd2) O(d2) O(1) O(d2)
∗For SAN this O(d) computational cost is derived when π = O(1/n).

∗∗For SNM this O(d2) computational cost only holds for a L2 regularizer.

Tables B.2 and B.3 in Section B.3.3, where we found that SAN performs equally well for a wide
range of values of π and γ. Thus for simplicity we set π = 1

n+1 and γ = 1 in the experiments.
In contrast, SAG and SVRG require the computation of Lmax and the performance is highly
affected by the step size (see Table B.4 and B.5 in Section B.3.3).

However, the downside of SAN is that it stores nd scalars much like SAG/SAGA (Defazio
et al., 2014). See Table 3.1 the comparison among different algorithms.

3.4 Sketched Newton Raphson with a variable metric

3.4.1 Presentation of the SNRVM algorithm

Though our main focus is in solving the function splitting reformulation (3.3) and (3.4), we
find that our forthcoming theory holds for a large class of variable metric Sketched Newton
Raphsonmethods (Yuan et al., 2022b), of which SAN/SANA are special cases. All proofs are
given in Section B.5.

In order to design such method, we first reformulated our original problem (3.1) as a
system of nonlinear equations F (x) = 0 for a given choice of a smooth map F : Rp −→ Rm

and where p, m ∈ N are appropriately chosen dimensions, e.g., p = m = (n + 1)d in (3.6) for
SAN/SANA. We then proposed using a subsampled Newton Raphson method for solving
these nonlinear equations. Here we extend this subsampling to make use of any randomized
sketch of the system. That is, consider a random sketching matrix Sk ∈ Rm×τ sampled from
some distribution, where τ ∈ N is significantly smaller than p or m. We use this sketching
matrix to compress the rows of the Newton system (3.7) at each iteration by left multiplying as
follows

S⊤
k F (xk) + S⊤

k∇F (xk)⊤(x− xk) = 0. (3.15)
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The resulting system has τ rows and is under-determined. To pick a solution, we use the
projection

xk+1 = arg min
x∈Rp

∥∥∥x− xk
∥∥∥2 (3.16)

s.t. S⊤
k F (xk) + S⊤

k∇F (xk)⊤(x− xk) = 0.

The method in (3.16) is known as the SNR (Sketched Newton Raphson) method (Yuan et al.,
2022b). The SNR method affords a lot of flexibility by choosing different distributions for the
sketching matrices. Yet it is not flexible enough to include SAN/SANA, since these require
projections under a variable metric. To allow for projections under norms other than the L2
norm, we introduce a random positive-definite metric matrix Wk ∈ Rp×p that defines the norm
under which we project. Introducing as well a damping parameter γ > 0, as we did for SAN
and SANA, we obtain the following method

x̄k+1 = argmin ∥x− xk∥2Wk

s.t. S⊤
k∇F (xk)⊤(x− xk) = −S⊤

k F (xk),

xk+1 = (1− γ)xk + γx̄k+1. (3.17)

We call this method the Sketched Newton Raphson with Variable Metric (SNRVM for short). The
closed form expression7 for the iterates (3.17) is given by

xk+1 = xk − γW−1
k ∇F (xk)Sk ·

(
S⊤

k∇F (xk)⊤W−1
k ∇F (xk)Sk

)†
S⊤

k F (xk). (3.18)

In Chapter 2 and Appendix A.7, we already mention and show that RSN (Gower et al., 2019a)
is a special case of SNRVM. Here, SAN/SANA are also both instances of the SNRVM method
by choosing Sk as a subsampling matrix and Wk depending on the stochastic Hessian matrices.
In Section B.4 we provide a detailed derivation of SAN/SANA as an instance of the SNRVM
method.

We assume that at each iteration, the random matrices (Sk, Wk) are sampled according to
a proper finite distribution Dxk defined in the following.

Assumption 3.4 (Proper finite distribution). For every x ∈ Rp, there exists r ∈ N, probabilities
π1, . . . , πr > 0 with

∑r
i=1 πi = 1, and matrices {Si(x), Wi(x)}ri=1 s.t. for i = 1, . . . , r, we have

P(S,W)∼Dx
[(S, W) = (Si(x), Wi(x))] = πi.

7See Lemma B.14 in the appendix for a proof.
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The addition of a variable metric to SNR has proven to be very challenging in terms of
establishing a convergence theory. The current convergence theory and proofs techniques for
SNR in Yuan et al. (2022b) all fail with the addition of a variable metric. This is not so surprising,
considering the historic difficulty in developing theory for variable metric methods such as
the quasi-Newton methods. Despite the immense practical success of quasi-Newton methods,
a meaningful non-asymptotic convergence rate has eluded the optimization community for
70 years, with the first results having only just appeared last year (Rodomanov and Nesterov,
2021a; Rodomanov and Nesterov, 2021c; Rodomanov and Nesterov, 2021b; Jin and Mokhtari,
2022).

In the following sections, we provide a general linear convergence theory for SNRVM in
Section 3.4.2 and a more explicit linear convergence rate for SAN and SANA in Section 3.4.3.

3.4.2 Linear convergence rates for SNRVM

We start by introducing a technical assumption which guarantees that (3.17) is well defined,
which is always true for SAN and SANA.

Assumption 3.5. For every x ∈ Rp, the matrices ∇F (x)⊤∇F (x) and EDx [SS⊤] are invertible,
and every matrix W ∼ Dx is symmetric positive definite.

Proposition 3.6. Assumptions 3.4 and 3.5 are verified for SAN and SANA, under Assumption 3.2.

Let us now introduce the surrogate function

f̂k(x) def= 1
2 ∥F (x)∥2(∇F (xk)⊤W−1

k
∇F (xk))† , (3.19)

where Wk ∼ Dxk . This function is closely related to the SNRVM algorithm. Indeed, it is
possible to show that xk+1 is obtained by minimizing a quadratic approximation of f̂k along a
random subspace (see Lemma B.18). More precisely, xk+1 is the solution of

argmin
x∈Rp

f̂k(xk) + ⟨∇f̂k(xk), x− xk⟩+ 1
2γ

∥∥∥x− xk
∥∥∥2

Wk

s.t. x ∈ xk + Im
(
W−1

k ∇F (xk)Sk

)
Our forthcoming Theorem 3.8 shows that f̂k(xk) converges linearly to zero in expectation.
To achieve this, we need to make an assumption that controls the evolution of f̂k along the
iterations.
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3.4 Sketched Newton Raphson with a variable metric

Assumption 3.7. There exists L > 0 such that, for every k ∈ N and every x ∈ Rp:

f̂k+1(x) ≤ f̂k(xk) + ⟨∇f̂k(xk), x− xk⟩+ L

2

∥∥∥x− xk
∥∥∥2

Wk

.

We now state our core convergence result, which we prove in Appendix B.5.4.

Theorem 3.8. Let Assumptions 3.4, 3.5 and 3.7 hold, and let γ = 1/ L. Let (S, W) ∼ Dx and let

H(x) def= E
[
S
(
S⊤∇F (x)⊤W−1∇F (x)S

)†
S⊤
]

,

ρ(x) def= min
i=1,...,r

λ+
min

(
MiH(x)M⊤

i

)
,

where Mi
def= Wi(xk)− 1

2∇F (x). Assume that there exists ρ > 0 such that inf
k∈N

ρ(xk) ≥ ρ almost
surely. It follows that

E
[
f̂k(xk)

]
≤ (1− ργ)k E

[
f̂0(x0)

]
a.s.

When the metric is constant along iterations and F (x) is a linear function, or equivalently
our original problem (3.1) is a quadratic problem, then the SNRVMmethod (3.18) is known
as the sketch-and-project method (Gower and Richtárik, 2015b). In Section B.5.5, we show that
Theorem 3.8 when specialized to this case allows us to recover the well known convergence
rates for solving linear systems using sketch-and-project.

The convergence result of SNRVM in Theorem 3.8 is for the surrogate function f̂k(xk) and
the convergence rate ρ is not explicit. Next, we develop a linear convergence theory of SNRVM
for

∥∥∥F (xk)
∥∥∥2 with the explicit linear convergence rate ρ.

Indeed, the existence of a lower bound ρ > 0 in Theorem 3.8 can be guaranteed, provided
that we can uniformly control the matrices S, W and ∇F (x). Let us make this more precise:

Assumption 3.9. Assumption 3.5 holds, m = p and F is injective. We assume that there exists a
set Ω ⊂ Rp and constants µW , LW , µ̄S , LS , µ∇F , L∇F in (0, +∞) such that, for all x ∈ Ω, for all
(S, W) ∼ Dx,

spec(W) ⊂ [µW , LW ], σ(∇F (x)) ⊂ [µ∇F , L∇F ],
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µ̄S ≤ λmin

(
E
[
SS⊤

])
, ∥SS⊤∥ ≤ LS .

where spec(M) (resp. σ(M)) denote the set of eigenvalues (resp. singular values) of a square
matrix M .

This assumption is typically verified on bounded sets, if the matrices W, S,∇F (x) enjoy
some sort of continuity with respect to x (we detail this argument for SAN in Section B.5.7 in
the Appendix). Now we can state our general linear convergence theory of SNRVM in terms of
F (xk) itself, instead of the surrogate f̂k(xk), with explicit rates.

Theorem 3.10. Let Assumptions 3.4, 3.5, 3.7, and 3.9 hold, and let γ = 1/ L. Let {xk}k∈N be
generated by the SNRVM algorithm, and suppose that xk ∈ Ω almost surely. Then for all k ∈ N we
have that

E
[
∥F (xk)∥2

]
≤ C(1− γρ)k almost surely,

with ρ = µ2
∇F

L2
∇F

µW
LW

µ̄S
LS

, and C = 2E
[
f̂0(x0)

]
L2

∇F
µW

.

3.4.3 Linear convergence rates for SAN and SANA

Theorem 3.10 provides a general convergence theory for SNRVM. In this section, when special-
ized to SAN and SANA, we are able to get more insightful convergence results.

Indeed, Assumption 3.9 can be ensured for SAN and SANA under reasonable assumptions
on the regularity of the functions fi, in the following sense:

Assumption 3.11. There exists 0 < µf ≤ Lf such that for all i ∈ {1, . . . , n}, the function
fi : Rd −→ R is of class C2, µf -strongly convex and has a Lf -Lipschitz continuous gradient.

The next Theorem, which is our main convergence result for SAN and SANA, describes
linear rates for the iterates (wk, αk

1 , . . . , αk
n) themselves:

Theorem 3.12. Let Assumptions 3.7 and 3.11 hold. Let {xk}k∈N be a sequence generated by SAN
with π = 1/(n + 1), or by SANA, with γ = 1/L. Let w∗ = argmin f . Then for every k ∈ N:

E
[
∥wk − w∗∥2

]
+

n∑
i=1

E
[
∥αk

i −∇fi(w∗)∥2
]
≤ C(1− γρ)k
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3.5 Discussion

holds almost surely, where we can take

ρ =
min{1, µ3

f}
14n3(2 + L2

f )2 max{1, L3
f}

, C = 18n2 max{1, L2
f}(2 + L2

f )2

min{1, µ3
f}

E
[
f̂0(x0)

]
.

The resulting linear rate of convergence ρ in Theorem 3.12 depends on n and converges
to 1 as n goes to infinity. This is not surprising, since it is also the case for variance reduced
methods such as SAGA (Defazio et al., 2014) and SVRG (Johnson and Zhang, 2013). We also
note that our theoretical rate has a much worse dependence in µf , Lf and n than the rates of
SVRG and SAGA, because of the presence of exponents greater than 1. This might suggest that
our analysis is not tight: indeed we observed empirically that SAN performs as well as SVRG
and SAG, even in a regime where n is large and the problem is severely ill-conditioned (see
Table B.1 for more details).

3.5 Discussion

In this chapter, we introduced the use of a subsampled Newton Raphson method applied to a
specific function splitting problem as a tool for designing new incremental Newton methods.
We showcase this by developing SAN, an average Newton method that is empirically highly
competitive as compared to variance reduced gradientmethods, and does not require parameter
tuning. Further venues of investigation include:

• Improving our theoretical analysis, to obtain rates that better matches the ones of usual
variance reduced methods, motivated by our numerical experiments.

• Leveraging SNRVM’s structure to design a more efficient variant of SAN including mini-
batching. This should be simple thanks to our function splitting point of view, as we
would simply sample many rows at once in (3.5).

• Exploring different sketching techniques together with original and alternative splitting
point of views to design methods that have not been discovered yet.
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Chapter 4

A General Sample Complexity Analysis
of Vanilla Policy Gradient

In this chapter, we adapt recent tools developed for the analysis of Stochastic Gradient Descent
(SGD) in non-convex optimization to obtain convergence and sample complexity guarantees
for the vanilla policy gradient (PG). Our only assumptions are that the expected return is
smooth w.r.t. the policy parameters, that its H-step truncated gradient is close to the exact
gradient, and a certain ABC assumption. This assumption requires the second moment of
the estimated gradient to be bounded by A ≥ 0 times the suboptimality gap, B ≥ 0 times
the norm of the full batch gradient and an additive constant C ≥ 0, or any combination of
aforementioned. We show that the ABC assumption is more general than the commonly used
assumptions on the policy space to prove convergence to a stationary point. We provide a
single convergence theorem that recovers the Õ(ϵ−4) sample complexity of PG to a stationary
point. Our results also affords greater flexibility in the choice of hyper parameters such as
the step size and the batch size m, including the single trajectory case (i.e., m = 1). When an
additional relaxed weak gradient domination assumption is available, we establish a novel global
optimum convergence theory of PG with Õ(ϵ−3) sample complexity. We then instantiate our
theorems in different settings, where we both recover existing results and obtain improved
sample complexity, e.g., Õ(ϵ−3) sample complexity for the convergence to the global optimum
for Fisher-non-degenerated parametrized policies. 1

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1This chapter is based on an article published in the proceedings of the 25 th International Conference onArtificial

Intelligence and Statistics (AISTATS 2022) (Yuan et al., 2022a).
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4.1 Introduction

4.1 Introduction

Policy gradient (PG) is one of the most popular reinforcement learning (RL) methods for
computing policies that maximize long-term rewards (Williams, 1992; Sutton et al., 2000; Baxter
and Bartlett, 2001). The success of PG methods is due to their simplicity and versatility, as they
can be readily implemented to solve a wide range of problems (including non-Markov and
partially-observable environments) and they can be effectively paired with other techniques to
obtain more sophisticated algorithms such as the actor-critic (Konda and Tsitsiklis, 2000; Mnih
et al., 2016), natural PG (Kakade, 2001), natural actor-critic (Peters and Schaal, 2008a; Bhatnagar
et al., 2009), policy mirror descent (Tomar et al., 2022; Vaswani et al., 2022), trust-region based
variants (Schulman et al., 2015; Schulman et al., 2017; Shani et al., 2020), and variance-reduced
methods (Papini et al., 2018; Shen et al., 2019; Xu et al., 2020b; Yuan et al., 2020; Huang et al.,
2020; Pham et al., 2020; Yang et al., 2022; Huang et al., 2022). Unlike value-based methods,
a solid theoretical understanding of even the “vanilla” PG has long been elusive. Recently, a
more complete theory of PG has been derived by leveraging the RL structure of the problem
together with tools from convex and non-convex optimization (see Appendix C.1 for a thorough
review).

In this chapter, we first focus on the sample complexity of PG for reaching a FOSP (first-
order stationary point). We show how PG can be analysed under a very general assumption
on the second moment of the estimated gradient called the ABC assumption, which includes
most of the bounded gradient type assumptions as a special case. Our first contribution is
convergence guarantees and sample complexity for both REINFORCE (Williams, 1992) and
GPOMDP (Sutton et al., 2000; Baxter and Bartlett, 2001) under the ABC and assumptions on
the smoothness of the expected return and on its truncated gradient. Our sample complexity
analysis recovers both the well known O(ϵ−2) iteration complexity of exact PG and the Õ(ϵ−4)
sample complexity of REINFORCE and GPOMDP under weaker assumptions than had previ-
ously been explored (Zhang et al., 2020b; Liu et al., 2020; Xiong et al., 2021). Furthermore, our
analysis is less restrictive when it comes to the hyper-parameter choices. In fact, our results
allow for a wide range of step sizes and place almost no restriction on the batch size m, even
allowing for single trajectory sampling (m = 1), which is uncommon in the literature. The
generality of our assumption allows us to unify much of the fragmented results in the literature
under one guise. Indeed, we show that the analysis of Lipschitz and smooth policies, Gaussian
polices, softmax tabular polices with or without a log barrier or an entropy regularizer are all
special cases of our general analysis (see hierarchy diagram further down in Figure 4.1).

Recently, there has also beenmuchwork on establishing the convergence of PG to a global op-
timum (i.e., the best-in-class policy). This usually requiresmore restrictive assumptions (Zhang
et al., 2020a; Zhang et al., 2021a), specific RL settings (e.g., linear-quadratic regulator (Fazel
et al., 2018), tabular (Agarwal et al., 2021) and softmax tabular policy (Mei et al., 2020)), and it
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is often limited to exact PG. Inspired by the sample complexity analysis of the stochastic PG
for the global optimum in Liu et al. (2020) and Ding et al. (2022), our second contribution
is to establish a novel global optimum convergence theory of PG when an additional relaxed
weak gradient domination assumption is available. Our sample complexity analysis recovers the
well known O(ϵ−1) iteration complexity of the exact PG with the softmax tabular policy (Mei
et al., 2020) as a special case and obtains a new improved Õ(ϵ−3) sample complexity compared
to Õ(ϵ−4) in Liu et al. (2020), with the Fisher-non-degenerate parametrized policy (Liu et al.,
2020; Ding et al., 2022) as a special case. We also establish even faster global optimum conver-
gence theory when replacing the relaxed weak gradient domination assumption by gradient
domination in Appendix C.8. As a special case, we recover the well known linear convergence
rate of the exact PG with the softmax tabular policy with entropy regularization (Mei et al.,
2019) in Appendix C.8. Table 4.1 provides a complete overview of our results.

4.2 Preliminaries

Markov decision process (MDP). We consider a MDP M = {S,A,P,R, γ, ρ}, where S is
a state space; A is an action space; P is a Markovian transition model, where P(s′ | s, a)
is the transition density from state s to s′ under action a; R is the reward function, where
R(s, a) ∈ [−Rmax,Rmax] is the bounded reward for state-action pair (s, a) ; γ ∈ [0, 1) is the
discounted factor; and ρ is the initial state distribution. The agent’s behaviour is modelled as a
policy π ∈ ∆(A)S , where π(a | s) is the density of the distribution over actions at state s ∈ S.
We consider the infinite-horizon discounted setting.

Let p(τ | π) be the probability density of a single trajectory τ being sampled from π, that is

p(τ | π) = ρ(s0)
∞∏

t=0
π(at | st)P(st+1 | st, at). (4.1)

With a slight abuse of notation, let R(τ) =
∑∞

t=0 γtR(st, at) be the total discounted reward
accumulated along trajectory τ . We define the expected return of π as

J(π) def= Eτ∼p(·|π) [R(τ)] . (4.2)

Policy gradient. We introduce a set of parametrized policies {πθ : θ ∈ Rd}, with the assumption
that πθ is differentiable w.r.t. θ. We denote J(θ) = J(πθ) and p(τ | θ) = pθ(τ) = p(τ | πθ). In
general, J(θ) is a non-convex function. The PG methods use gradient ascent in the space of θ

to find the policy that maximizes the expected return, i.e., θ∗ ∈ arg supθ∈Rd J(θ). We denote
the optimal expected return as J∗ def= J(θ∗).
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4.2 Preliminaries

Table 4.1 – Overview of different convergence results for vanilla PG methods. The darker cells contain
our new results. The light cells contain previously known results that we recover as special cases of our
analysis, and extend the permitted parameter settings. White cells contain existing results that we could
not recover under our general analysis.

Guarantee∗ Setting∗∗
(our results in bold)

Reference Bound Remarks

for FOSP
stochastic PG
complexity of

Sample ABC Theorem 4.4 Õ(ϵ−4) Weakest assumption

E-LS Corollary 4.14
Papini (2020) Õ(ϵ−4)

Weaker assumption;
Wider range of parameters;
Recover O(ϵ−2) for exact PG;
Improved smoothness constant

for GO
stochastic PG
complexity of

Sample ABC + PL Theorem C.22 Õ(ϵ−1) Recover linear convergence for
the exact PG

ABC + (4.17) Theorem C.8 Õ(ϵ−3) Recover O(ϵ−1) for the exact PG

compatible
E-LS + FI + Corollary 4.21 Õ(ϵ−3) Improved by ϵ compared to

Corollary 4.14

for AR
stochastic PG
complexity of

Sample ABC + (4.17) Corollary C.7 Õ(ϵ−4) Weakest assumption

compatible
E-LS + FI +

Corollary C.17
Liu et al. (2020) Õ(ϵ−4) Weaker assumption;

Wider range of parameters

log barrier (4.31)
Softmax +

Corollary 4.18
Zhang et al. (2021b) Õ(ϵ−6)

Constant step size;
Wider range of parameters;
Extra phased learning step
unnecessary

for GO
the exact PG
complexity of

Iteration

log barrier (4.31)
Softmax +

Corollary C.14
Agarwal et al. (2021) O(ϵ−2) Improved by 1− γ

Softmax (4.28) Theorem C.8
Mei et al. (2020) O(ϵ−1)

entropy (C.84)
Softmax +

Theorem C.22
Mei et al. (2020) linear

+ PPG
LS + bijection Zhang et al. (2020a) O(ϵ−1)

Tabular + PPG Xiao (2022) O(ϵ−1)
LQR Fazel et al. (2018) linear

∗ Type of convergence. PG: policy gradient; FOSP: first-order stationary point; GO: global optimum; AR: average
regret to the global optimum.
∗∗ Setting. bijection: Assumption 1 in Zhang et al. (2020a) about occupancy distribution; PPG: analysis also holds
for the projected PG; Tabular: direct parametrized policy; LQR: linear-quadratic regulator.

The gradient ∇J(θ) of the expected return has the following structure

∇J(θ) =
∫
R(τ)∇p(τ | θ)dτ

=
∫
R(τ) (∇p(τ | θ)/p(τ | θ)) p(τ | θ)dτ

= Eτ∼p(·|θ) [R(τ)∇ log p(τ | θ)]
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(4.1)= Eτ

[ ∞∑
t=0

γtR(st, at)
∞∑

t′=0
∇θ log πθ(at′ | st′)

]
. (4.3)

In practice, we cannot compute this full gradient, since computing the above expectation
requires averaging over all possible trajectories τ ∼ p(· | θ). We resort to an empirical estimate
of the gradient by sampling m truncated trajectories τi =

(
si

0, ai
0, ri

0, si
1, · · · , si

H−1, ai
H−1, ri

H−1

)
with ri

t = R(si
t, ai

t) obtained by executing πθ for a given fixed horizon H ∈ N. The resulting
gradient estimator is

∇̂mJ(θ) = 1
m

m∑
i=1

H−1∑
t=0

γtR(si
t, ai

t) ·
H−1∑
t′=0
∇θ log πθ(ai

t′ | si
t′). (4.4)

The estimator (4.4) is known as the REINFORCE gradient estimator (Williams, 1992).
The REINFORCE estimator can be simplified by leveraging the fact that future actions do

not depend on past rewards. This leads to the alternative formulation of the full gradient

∇J(θ) = Eτ

[ ∞∑
t=0

(
t∑

k=0
∇θ log πθ(ak | sk)

)
γtR(st, at)

]
, (4.5)

which leads to the following estimate of the gradient known as GPOMDP (Baxter and Bartlett,
2001)

∇̂mJ(θ) = 1
m

m∑
i=1

H−1∑
t=0

(
t∑

k=0
∇θ log πθ(ai

k | si
k)
)

γtR(si
t, ai

t). (4.6)

Following the same argument of that future actions do not depend on past rewards, we can
also simplify the REINFORCE estimator by removing the rewards from previous states. This
leads to the third alternative formulation of the full gradient

∇J(θ) = Eτ

[ ∞∑
t=0
∇θ log πθ(at | st)

∞∑
t′=t

γt′R(st′ , at′)
]

. (4.7)

From (4.7), one can suggest the gradient estimator ∇̂mJ(θ) as

∇̂mJ(θ) = 1
m

m∑
i=1

H−1∑
t=0
∇θ log πθ(ai

t | si
t) ·

H−1∑
t′=t

γt′R(si
t′ , ai

t′), (4.8)

known as the policy gradient theorem (PGT) (Sutton et al., 2000). It has been shown by Peters
and Schaal (2008b) that PGT (4.8) is equivalent to GPOMDP (4.6). Due to their equivalence,
we refer to them interchangeably. A derivation of (4.5) and (4.7) is provided in Appendix C.2
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(Lemma C.3) for completeness. Notice that PGT has also an action value expression (5.8)
which will be presented in Chapter 5.

Both REINFORCE and GPOMDP are the truncated versions of unbiased gradient estimators
and they are unbiased estimates of the gradient of the truncated expected return

JH(θ) def= Eτ

[
H−1∑
t=0

γtR(st, at)
]

.2 (4.9)

Equipped with gradient estimators defined as either the exact full gradient (4.3), (4.5)
and (4.7) or the stochastic PG estimator (4.4), (4.6) or (4.8), vanilla policy gradient updates
the policy parameters as follows

θt+1 = θt + ηt∇̂mJ(θt) (4.10)

where ηt > 0 is the step size at the t-th iteration. See also Algorithm 4.

Algorithm 4: Vanilla policy gradient
Input: Mini-batch size m, step size η0 > 0

1 Initialize θ0 ∈ Rd for t = 0 to T − 1 do
2 Sample m trajectories following policy πθt from the MDP
3 Compute the policy gradient estimator ∇̂mJ(θt)
4 Update θt+1 = θt + ηt∇̂mJ(θt) and ηt

4.3 Non-convex optimization under ABC assumption

4.3.1 First-order stationary point convergence

We use ∇̂mJ(θ) to denote the unbiased policy gradient estimator of ∇JH(θ) used in (4.10).
It can be the exact gradient ∇J(θ) when H = m = ∞, or the truncated gradient estimators
in (4.4) or (4.6). All our forthcoming analysis relies on the following common assumptions.

Assumption 4.1 (Smoothness). There exists L > 0 such that, for all θ, θ′ ∈ Rd, we have

∣∣J(θ′)− J(θ)−
〈
∇J(θ), θ′ − θ

〉∣∣ ≤ L

2
∥∥θ′ − θ

∥∥2
. (4.11)

2We allow H to be infinity so that J∞(·) = J(·).
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Assumption 4.2 (Truncation). There exists D, D′ > 0 such that, for all θ ∈ Rd, we have

|⟨∇JH(θ),∇JH(θ)−∇J(θ)⟩| ≤ DγH , (4.12)
∥∇JH(θ)−∇J(θ)∥ ≤ D′γH . (4.13)

We recall that given the boundedness of the reward function, we have |J(θ)− JH(θ)| ≤
Rmax
1−γ γH by the definition of J(·) and JH(·). As such, when H is large, the difference between

J(θ) and JH(θ) is negligible. However, Assumption 4.2 is still necessary, since in our analysis
we first prove that ∥∇JH(θ)∥2 is small, and then rely on (4.13) to show that ∥∇J(θ)∥2 is also
small.

Remark. Assumption 4.2 might not be necessary if we replace the truncated estimator to
the unbiased estimator where the sampled trajectories have a stochastic length of the horizon
driven by the discounted factor. The alternative samplers are used later in Chapter 5 and
presented in Algorithms 13 and 14 in Appendix D.3.

We also make use of the ABC assumption (Polyak and Tsypkin (1973, equation (3.1))
and Khaled and Richtárik (2023, Assumption 2)3) which bounds the second moment of the
norm of the gradient estimators using the norm of the truncated full gradient, the suboptimality
gap and an additive constant.

Assumption 4.3 (ABC). There exists A, B, C ≥ 0 such that the policy gradient estimator satisfies

E
[∥∥∥∇̂mJ(θ)

∥∥∥2
]
≤ 2A(J∗ − J(θ)) + B ∥∇JH(θ)∥2 + C, (ABC)

for all θ ∈ Rd.

The ABC assumption effectively summarizes a number of popular and more restrictive
assumptions commonly used in non-convex optimization. Indeed, the bounded variance of
the stochastic gradient assumption (Ghadimi and Lan, 2013), the gradient confusion assump-
tion (Sankararaman et al., 2020), the sure-smoothness assumption (Lei et al., 2020), the convex
expected smoothness assumption (Gower et al., 2019b; Gower et al., 2021b) and different
variants of strong growth assumptions proposed by Schmidt and Roux (2013) and Vaswani
et al. (2019a) and Bottou et al. (2018) can all be seen as specific cases of Assumption 4.3. The

3While Khaled and Richtárik (2023) refer to this assumption as expected smoothness, we prefer the alternative
name ABC to avoid confusion with the smoothness of J .
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ABC assumption has been shown to be the weakest among all existing assumptions to provide
convergence guarantees for SGD for the minimization of non-convex smooth functions. A more
detailed discussion of the assumption for non-convex optimization convergence theory can be
found in Theorem 1 in Khaled and Richtárik (2023).

We state our main convergence theorem, that we will then develop into several corollaries.

Theorem 4.4. Suppose that Assumption 4.1, 4.2 and 4.3 hold. Consider the iterates θt of the
PG method (4.10) with stepsize ηt = η ∈

(
0, 2

LB

)
where B = 0 means that η ∈ (0,∞). Let

δ0
def= J∗ − J(θ0). It follows that

min
0≤t≤T −1

E
[
∥∇J(θt)∥2

]
≤ 2δ0(1 + Lη2A)T

ηT (2− LBη) + LCη

2− LBη
+
(2D(3− LBη)

2− LBη
+ D′2γH

)
γH .

(4.14)

In particular if A = 0, we have

E
[
∥∇J(θU )∥2

]
≤ 2δ0

ηT (2− LBη) + LCη

2− LBη
+
(2D(3− LBη)

2− LBη
+ D′2γH

)
γH , (4.15)

where θU is uniformly sampled from {θ0, · · · , θT −1}.

Theorem 4.4 provides a general characterization of the convergence of PG as a function of
all the constants involved in the assumptions on the problem and the policy gradient estimator.
Refer to Appendix C.1.1 for a discussion comparing the technical aspects of this result compared
to Khaled and Richtárik (2023). From (4.14) we derive the sample complexity as follows.

Corollary 4.5. Consider the setting of Theorem 4.4. Given ϵ > 0, let η = min
{ 1√

LAT
, 1

LB , ϵ
2LC

}
and the horizon H = O(log ϵ−1). If the number of iterations T satisfies

T ≥ 12δ0L

ϵ2 max
{

B,
12δ0A

ϵ2 ,
2C

ϵ2

}
, (4.16)

then min0≤t≤T −1 E
[
∥∇J(θt)∥2

]
= O(ϵ2).

Despite the generality of the ABC assumption, Corollary 4.5 recovers the best known
iteration complexity for vanilla PG in several well-known cases.

First, (4.16) recovers the O(ϵ−2) iteration complexity of the exact gradient method as a
special case. To see this, let H = m =∞ and ∇̂mJ(θ) = ∇J(θ) in (4.10), thus Assumption 4.2
and 4.3 hold automatically with A = C = D = D′ = 0 and B = 1. By (4.16), this shows that
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for any policy and MDP that satisfy the smoothness property (Assumption 4.1), the exact full
PG converges to a ϵ-FOSP in T = O(ϵ−2) iterations. This is the state-of-the-art convergence rate
for the exact gradient descent on non-convex objectives without any other assumptions (Beck,
2017).

Second, we recover sample complexity for stochastic vanilla PG. From Corollary 4.5, notice
that there is no restriction on the batch size m. By choosing m = O(1), equation (4.16) shows
that with TH = Õ(ϵ−4) samples (i.e., single-step interaction with the environment and single
sampled trajectory per iteration), the vanilla PG either with updates (4.4) or (4.6) is guaranteed
to converge to an ϵ-stationary point. Our sample complexity matches the results of Papini
(2020), Zhang et al. (2020b), Liu et al. (2020), and Xiong et al. (2021), but improve upon them
in generality, i.e., by recovering the exact PG analysis, providing wider range of parameter
choices and using the weaker ABC assumption (see Section 4.4.1 for more details).

4.3.2 Global optimum convergence under relaxed weak gradient domination

In this section, we present a global optimum convergence of the vanilla PG when the relaxed
weak gradient domination assumption is available, in addition to the (ABC) assumption.

Assumption 4.6 (Relaxed weak gradient domination). We say that J satisfies the relaxed weak
gradient domination condition if for all θ ∈ Rd, there exists µ > 0 and ϵ′ ≥ 0 such that

ϵ′ + ∥∇JH(θ)∥ ≥ 2√µ (J∗ − J(θ)) . (4.17)

The relaxed weak gradient domination is an extension of weak gradient domination4 (Agar-
wal et al., 2021; Mei et al., 2020; Mei et al., 2021) where ϵ′ = 0. Equipped with this assumption,
we obtain an average regret convergence as a direct consequence of Corollary 4.5 (see Corol-
lary C.7 in Appendix C.3.3). With the same assumption, we also obtain a new global optimum
convergence guarantee (see Theorem C.8 in Appendix C.3.4 for the full details).

Corollary 4.7. Consider the setting of Theorem C.8. Given ϵ > 0, let the horizon H = O(log ϵ−1).
If ϵ′ = 0, we choose the number of iterations T = O(ϵ−3); if ϵ′ > 0, we choose T = O((ϵ′)−2ϵ−1).
Then min

t∈{0,1,··· ,T }
J∗ − E [J(θt)] ≤ O(ϵ) +O(ϵ′).

4The weak gradient domination is the special case of the Kurdyka-Łojasiewicz (KŁ) condition with KŁ exponent
1 (Kurdyka, 1998).
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Consequently, when ϵ′ = Θ(ϵ) we have that the complexity of PG to reach a global optimum
is O(ϵ−3). Thus the relaxed weak gradient domination has afforded us a factor of ϵ−1 im-
provement as compared to the O(ϵ−4) complexity in Corollary 4.5. The relaxed weak gradient
domination is an assumption that is unique to PG methods. In Section 4.4.3, we show that the
Fisher-non-degenerate parametrized policy satisfies this assumption.

4.4 Applications

In this section we show how the ABC assumption can be used to unify many of the current
assumptions used in the literature. In Figure 4.1 we collect all these special cases in a hierarchy
tree. Then for each special case we give the sample complexity of PG as a corollary of Theo-
rem 4.4. Each of our corollaries match the best known results in these special cases, while also
providing a wider range of parameter choices and, in some cases, improving the dependency
on some terms in the bound (e.g., the discount factor γ). Finally, we show that the relaxed
weak gradient domination assumption holds for Fisher-non-degenerate parametrized policies,
thus leading to new improved sample complexity result for this setting.

4.4.1 Expected Lipschitz and smooth policies

We consider the expected Lipschitz and smooth policy (E-LS) assumptions proposed by Papini
et al. (2022)5.

Assumption 4.8 (E-LS). There exists constants G, F > 0 such that for every state s ∈ S, the
expected gradient and Hessian of log πθ(· | s) satisfy

Ea∼πθ(·|s)
[
∥∇θ log πθ(a | s)∥2

]
≤ G2, (4.18)

Ea∼πθ(·|s)
[∥∥∥∇2

θ log πθ(a | s)
∥∥∥] ≤ F. (4.19)

We call the above Expected Lipschitz and Smooth (E-LS), due to the expectation of a ∼ πθ(· |
s), in contrast to the more restrictive Lipschitz and smooth policy (LS) assumption

∥∇θ log πθ(a | s)∥ ≤ G and
∥∥∥∇2

θ log πθ(a | s)
∥∥∥ ≤ F, (LS)

5While Papini et al. (2022) refers to this assumption as smoothing policy, we prefer the alternative name expected
Lipschitz and smooth policy, as they not only induce the smoothness of J (see Lemma 4.11), but also the Lips-
chitzness (see Lemma C.9). In Papini et al. (2022), they also assume that Ea∼πθ(·|s) [∥∇θ log πθ(a | s)∥] is bounded,
while it is a direct consequence of (4.18) by Cauchy-Schwarz inequality.
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for all (s, a) ∈ S × A. The (LS) assumption is widely adopted in the analysis of vanilla
PG (Zhang et al., 2020b) and variance-reduced PG methods, e.g. Shen et al. (2019), Xu et al.
(2020a), Xu et al. (2020b), Yuan et al. (2020), Huang et al. (2020), Pham et al. (2020), Liu
et al. (2020), and Zhang et al. (2021a). It is also a relaxation of the element-wise boundness
of
∣∣∣ ∂

∂θi
log πθ(a | s)

∣∣∣ and ∣∣∣ ∂2

∂θi∂θj
log πθ(a | s)

∣∣∣ assumed by Pirotta et al. (2015) and Papini et al.
(2018)

4.4.1.1 Expected Lipschitz and smooth policy is a special case of ABC

In the following lemma we show that (E-LS) implies the ABC assumption.

Lemma 4.9. Under Assumption 4.8, consider a truncated gradient estimator defined either in (4.4)
or (4.6). Assumption 4.3 holds with A = 0, B = 1− 1

m and C = ν
m , that is,

E
[∥∥∥∇̂mJ(θ)

∥∥∥2
]
≤
(

1− 1
m

)
∥∇JH(θ)∥2 + ν

m
, (4.20)

where m is the mini-batch size, and ν = HG2R2
max

(1−γ)2 when using REINFORCE gradient estima-

tor (4.4) or ν = G2R2
max

(1−γ)3 when using GPOMDP gradient estimator (4.6).

Bounded variance of the gradient estimator. Interestingly, from (4.20) we immediately
obtain

Var
[
∇̂mJ(θ)

]
= E

[∥∥∥∇̂mJ(θ)
∥∥∥2
]
− ∥∇JH(θ)∥2

(4.20)
≤ ν − ∥∇JH(θ)∥2

m
≤ ν

m
, (4.21)

which was used as an assumption by Papini et al. (2018), Xu et al. (2020a), Xu et al. (2020b),
Yuan et al. (2020), Huang et al. (2020), and Liu et al. (2020). Yet (4.21) needs not to be an
additional assumption since it is a direct consequence of Assumption 4.8.

The (LS) and (E-LS) form the backbone of our hierarchy of assumptions in Figure 4.1. In
particular, (LS) implies (E-LS), and thus ABC is the weaker (and most general) assumption of
the three.

Corollary 4.10. The (ABC) assumption is the weakest condition compared to (LS) and (E-LS).

4.4.1.2 Sample complexity analysis for stationary point convergence

Of independent interest to the ABC assumption, Assumption 4.8 also implies the smoothness
of J(·) and the truncated gradient assumptions as reported in the following lemmas.
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Softmax with log barrier (4.31) ABC Softmax with entropy (C.84)

Gaussian policy (C.29)
(unbounded action space) E-LS

Gaussian policy (C.29)
(bounded action space) LS Softmax (4.28)

Figure 4.1 –A hierarchy between the assumptionswe present throughout the chapter. An arrow indicates
an implication.

Lemma 4.11. Under Assumption 4.8, J(·) is L-smooth, namely
∥∥∇2J(θ)

∥∥ ≤ L for all θ which is
a sufficient condition of Assumption 4.1, with

L = Rmax
(1− γ)2

(
G2 + F

)
. (4.22)

The smoothness constant (4.22) is tighter by a factor of 1−γ as compared to the smoothness
constant proposed in Papini et al. (2022). This is the tightest upper bound of ∇2J(·) we are
aware of in the existing literature. (see Appendix C.1.3 for more details).

Lemma 4.12. Under Assumption 4.8, Assumption 4.2 holds with

D = D′GRmax
(1− γ)3/2 , (4.23)

D′ = GRmax
1− γ

√
1

1− γ
+ H. (4.24)

The coefficient D′ in (4.24) got improved and is tighter by a factor of (1−γ)1/2 as compared
to the same term analysed in Lemma B.1 in Liu et al. (2020).

As a by-product, in Lemma C.9 in the appendix, we also show that J(·) is Lipschitz under
Assumption 4.8 with a tighter Lipschitzness constant, as compared to Papini et al. (2022), Xu
et al. (2020b), and Yuan et al. (2020). See more details in Appendix C.4.5.
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Now we can establish the sample complexity of vanilla PG for the expected Lipschitz and
smooth policy assumptions as a corollary of Theorem 4.4 and Lemmas 4.9, 4.11, and 4.12.

Corollary 4.13. Suppose that Assumption 4.8 is satisfied. Let δ0
def= J∗ − J(θ0). The PG method

applied in (4.10) with a mini-batch sampling of size m and constant step size

η ∈
(
0,

2
L
(
1− 1/m

)), (4.25)

satisfies

E
[
∥∇J(θU )∥2

]
≤ 2δ0

ηT
(
2− Lη

(
1− 1

m

)) + Lνη

m
(
2− Lη

(
1− 1

m

)) (4.26)

+

2D
(
3− Lη

(
1− 1

m

))
2− Lη

(
1− 1

m

) + D′2γH

 γH ,

where ν, L and D, D′ > 0 are provided in Lemmas 4.9, 4.11 and 4.12, respectively.

We first note that Corollary 4.13 imposes no restriction on the batch size, allowing us to
analyse both exact full PG and its stochastic variants REINFORCE and GPOMDP. For exact PG,
i.e., H = m =∞, we recover theO(1/T ) convergence. This translates to an iteration complexity
T = O

(
1
ϵ2

)
with a constant step size η = 1

L to guarantee E
[
∥∇J(θU )∥2

]
= O(ϵ2). On the other

extreme, when m = 1, by (4.25) we have that η ∈ (0,∞), i.e., we place no restriction on the
step size. In this case, we have that (4.26) reduces to

E
[
∥∇J(θU )∥2

]
≤ δ0

ηT
+ Lνη

2 +
(
3D + D′2γH

)
γH .

Thus the stepsize η controls the trade-off between the rate of convergence 1
ηT and leading

constant term Lνη
2 . Using Corollary 4.13, next we develop an explicit sample complexity for PG

methods.

Corollary 4.14. Consider the setting of Corollary 4.13. For a given ϵ > 0, by choosing the mini-
batch size m such that 1 ≤ m ≤ 2ν

ϵ2 , the step size η = ϵ2m
2Lν , the number of iterations T such

that

Tm ≥ 8δ0Lν

ϵ4 =

O
(

H
(1−γ)4ϵ4

)
for REINFORCE

O
(

1
(1−γ)5ϵ4

)
for GPOMDP

(4.27)
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and the horizon H = O
(
(1− γ)−1 log (1/ϵ)

)
, then E

[
∥∇J(θU )∥2

]
= O(ϵ2).

Remark. Given the horizon H = O
(
(1− γ)−1 log (1/ϵ)

), we have that (4.27) shows that the
sample complexity of GPOMDP is a factor of log (1/ϵ) smaller than that of REINFORCE.

Corollary 4.14 greatly extends the range of parameters for which PG is guaranteed to
converge within the existing literature. It shows that it is possible for vanilla policy gradient
methods to converge with a mini-batch size per iteration from 1 to O(ϵ−2) and a constant step
size chosen accordingly between O(ϵ2) and O(1), while still achieving the Tm×H = Õ

(
ϵ−4)

optimal complexity.
In particular, Corollary 4.4 in Zhang et al. (2020b), Proposition 1 in Xiong et al. (2021)

and Theorem E.1 in Liu et al. (2020) establish Õ (ϵ−4) for FOSP convergence by using the
more restrictive assumption (LS). Papini (2020) obtain the same results with the weaker
assumption (E-LS), which is also our case. However, we improve upon all of them by recovering
the exact full PG analysis, allowing much wider range of choices for the batch size m and the
constant step size η to achieve the same optimal sample complexity Õ (ϵ−4). Indeed, to achieve
the optimal sample complexity of FOSP, Papini (2020), Zhang et al. (2020b), Xiong et al. (2021),
and Liu et al. (2020) do not allow a single trajectory sampled per iteration. They require the
batch size m to be either ϵ−1 or ϵ−2. The existing analysis for vanilla PG that allows m = 1 that
we are aware of is Zhang et al. (2021b), which we compare with in Section 4.4.2.1 under the
specific setting of softmax tabular policy with log barrier regularization for the average regret
analysis.

4.4.2 Softmax tabular policy

In this section, we instantiate the FOSP convergence results of Corollary 4.13 and 4.14 in the
case of the softmax tabular policy. Combined with the specific properties of the softmax, our
general theory also recovers the average regret of the global optimum convergence analysis for
the softmax with log barrier regularization (Zhang et al., 2021b) and brings new insights of
the theory by leveraing the ABC assumption analysis.

Here the state space S and the action space A are finite. For all θ ∈ R|S||A| and any state-
action pair (s, a) ∈ S ×A, consider the following softmax tabular policy

πθ(a | s) def= exp(θs,a)∑
a′∈A exp(θs,a′) . (4.28)

We show that the softmax tabular policy satisfies (E-LS) as illustrated in the following lemma.
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Lemma 4.15. The softmax tabular policy satisfies Assumption 4.8 with G2 = 1− 1
|A| and F = 1,

that is, for all s ∈ S, we have

Ea∼πθ(·|s)
[
∥∇θ log πθ(a | s)∥2

]
≤ 1− 1

|A|
, (4.29)

Ea∼πθ(·|s)
[∥∥∥∇2

θ log πθ(a | s)
∥∥∥] ≤ 1. (4.30)

Remark. The softmax tabular policy also satisfies (LS) but with a bigger constant (see Ap-
pendix C.5.2).

Lemma 4.15 and the results in Section 4.4.1 immediately imply that all assumptions includ-
ing the (ABC) assumption of Theorem 4.4 are verified. Thus, as a consequence of Corollary 4.13
and 4.14, we have the following sample complexity for the softmax tabular policy.6

Corollary 4.16 (Informal). Given ϵ > 0, there exists a range of parameter choices for the batch size
m s.t. 1 ≤ m ≤ O(ϵ−2), the step size η s.t. O(ϵ2) ≤ η ≤ O(1), the number of iterations T and the
horizon H such that the sample complexity of the vanilla PG (either REINFORCE or GPOMDP)
is Tm×H = Õ

(
1

(1−γ)6ϵ4

)
to achieve E

[
∥∇J(θU )∥2

]
= O(ϵ2).

4.4.2.1 Global optimum convergence of softmax with log barrier regularization

Leveraging the work of Agarwal et al. (2021) and our Theorem 4.4, we can establish a global
optimum convergence analysis for softmax policies with log barrier regularization.

Log barrier regularization is often used to prevent the policy from becoming deterministic.
Indeed, when optimizing the softmax by PG, policies can rapidly become near deterministic
and the optimal policy is usually obtained by sending some parameters to infinity. This can
result in an extremely slow convergence of PG. Li et al. (2021a) show that PG can even take
exponential time to converge. To prevent the parameters from becoming too large and to
ensure enough exploration, an entropy-based regularization term is commonly used to keep
the probabilities from getting too small (Williams and Peng, 1991; Mnih et al., 2016; Nachum
et al., 2017; Haarnoja et al., 2018; Mei et al., 2019) . Here we study stochastic gradient ascent
on a relative entropy regularized objective, softmax with log barrier regularization, which is

6The exact statement is similar to Corollary 4.14. Thus, we report a more compact statement in Appendix C.5.2
(Corollary C.11).
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defined as

Lλ(θ) def= J(θ)− λE
s∼UnifS

[KL(UnifA, πθ(· | s))]

= J(θ) + λ

|A||S|
∑
s,a

log πθ(a | s) + λ log |A|, (4.31)

where the relative entropy for distributions p and q is defined as KL(p, q) def= Ex∼p

[
− log q(x)

log p(x)

]
,

Unifχ denotes the uniform distribution over a set χ and λ > 0 determines the strength of the
penalty.

Let ∇̂mLλ(θ) be the stochastic gradient estimator of Lλ(θ) using REINFORCE or GPOMDP
with batch size m (see the closed form of ∇̂mLλ(θ) in (C.58)). Thus ∇̂mLλ(θ) is an unbiased
estimate of the gradient of the truncated function

Lλ,H(θ) def= JH(θ) + λ

|A||S|
∑
s,a

log πθ(a | s) + λ log |A|. (4.32)

We show in the following that ∇̂mLλ(θ) satisfies the (ABC).

Lemma 4.17. Consider ∇̂mLλ(θ) by using either RIENFORCE (4.4) or GPOMDP (4.6), As-
sumption 4.3 holds with A = 0, B = 1− 1

m and C = ν
m , that is,

E
[∥∥∥∇̂mLλ(θ)

∥∥∥2
]
≤
(

1− 1
m

)
∥∇Lλ,H(θ)∥2 + ν

m
, (4.33)

where ν = 2
(
1− 1

|A|

) (
HR2

max
(1−γ)2 + λ2

|S|

)
when using REINFORCE or ν =

2
(
1− 1

|A|

) (
R2

max
(1−γ)3 + λ2

|S|

)
when using GPOMDP.

Similar to the softmax case, we show in Appendix C.5.3 that Lλ(θ) is also smooth and
verifies Assumption 4.2. Thus from Theorem 4.4, we have {θt}t≥0 converges to a FOSP of Lλ(·).
See the formal statement of this result in Appendix C.5.3 (Corollary C.13).

Besides, thanks to Theorem 5.2 in Agarwal et al. (2021), the FOSP of Lλ(·) is approximately
the global optimal solution of J(·) when the regularization parameter λ is sufficiently small.
As a by-product, we can also establish a high probability global optimum convergence analysis
(Appendix C.5.4).

In the following corollary, we show that we can leverage the versatility of Theorem 4.4 to
derive yet another type of result: a guarantee on the average regret w.r.t. the global optimum.
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Corollary 4.18. Given ϵ > 0, consider the batch size m such that 1 ≤ m ≤ 1
(1−γ)6ϵ3 , the step

size O(ϵ3) ≤ η = (1−γ)3ϵ3m
2Lν ≤ O(1) with L, ν in the setting of Corollary C.13 . If the horizon

H = O
(

log(1/ϵ)
1−γ

)
and the number of iterations T is such that

Tm×H ≥ Õ
( 1

(1− γ)12ϵ6

)
,

we have J∗ − 1
T

∑T −1
t=0 E [J(θt)] = O(ϵ).

This result recovers the sample complexity Õ(ϵ−6) of Zhang et al. (2021b). However, Zhang
et al. (2021b) do not study the vanilla policy gradient. Instead, they add an extra phased
learning step to enforce the exploration of the MDP and use a decreasing step size. Our result
shows that such extra phased learning step is unnecessary and the step size can be constant.
We also provide a wider range of parameter choices for the batch size and the step size with
the same sample complexity.

As Agarwal et al. (2021) mentioned, the regularizer (4.31) is more “aggressive” in penaliz-
ing small probabilities than the more commonly utilized entropy regularizer. We also show that
entropy regularized softmax satisfies the (ABC) and provide its FOSP analysis in Appendix C.7,
again thanks to the versatility of Theorem 4.4. Notice that for the FOSP convergence, only
an asymptotic result was established in Lemma 4.4 in Ding et al. (2021). Thus all proofs and
implications in Figure 4.1 are provided.

4.4.3 Fisher-non-degenerate parameterization

In this section, we study a general policy class that satisfies the following assumption.

Assumption 4.19 (Fisher-non-degenerate, Assumption 2.1 in Ding et al. (2022)). For all
θ ∈ Rd, there exists µF > 0 s.t. the Fisher information matrix Fρ(θ) induced by policy πθ and
initial state distribution ρ satisfies

Fρ(θ) def= E(s,a)∼v
πθ
ρ

[
∇θ log πθ(a | s)∇θ log πθ(a | s)⊤

]
≥ µF Id, (FI)

where vπθ
ρ is the state-action visitation measure defined as

vπθ
ρ (s, a) def= (1− γ)Es0∼ρ

∞∑
t=0

γtP(st = s, at = a|s0, πθ).
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This assumption is commonly used in the literatures (Liu et al., 2020; Ding et al., 2022).
Similar conditions of the Fisher-non-degeneracy is also required in other global optimum
convergence framework (Assumption 6.5 in Agarwal et al. (2021) on the relative condition
number). This assumption is satisfied by a wide families of policies, including the Gaussian
policy (C.29) and certain neural policy. We refer to Section B.2 in Liu et al. (2020) and Section 8
in Ding et al. (2022) for more discussions on the Fisher-non-degenerate setting.

We also need the following compatible function approximation error assumption7.

Assumption 4.20 (Compatible, Assumption 4.6 in Ding et al. (2022)). For all θ ∈ Rd, there
exists ϵbias > 0 s.t. the transferred compatible function approximation errorwith (s, a) ∼ v

πθ∗
ρ

satisfies

E
[
(Aπθ (s, a)− (1− γ)u∗⊤∇θπθ(a | s))2

]
≤ ϵbias, (compatible)

where v
πθ∗
ρ is the state-action distribution induced by an optimal policy πθ∗ , u∗ = (Fρ(θ))†∇J(θ).

This is also a common assumption (Wang et al., 2020; Agarwal et al., 2021; Liu et al., 2020;
Ding et al., 2022). In particular, when πθ is a softmax tabular policy (C.45), ϵbias is 0 (Ding
et al., 2022); when πθ is a rich neural policy, ϵbias is small (Wang et al., 2020).

Combining Assumption (FI), (compatible) with Assumption E-LS, by Lemma 4.7 in Ding
et al. (2022), we know that J(·) satisfies the relaxed weak gradient domination property (4.17)
with ϵ′ = µF

√
ϵbias

(1−γ)G and µ = µ2
F

4G2 . Consequently, we recover the average regret convergence result
O(ϵ−4) of Liu et al. (2020) in Corollary C.17 in Appendix C.6.1 with weaker assumption and
allowing wider range of parameter choices. We also have the following new global optimum
convergence result for the Fisher-non-degenerate parametrized policy.

Corollary 4.21. If the policy πθ satisfies Assumption 4.8, 4.19 and 4.20, consider the setting of
Corollary 4.7 with ϵ′ = µF

√
ϵbias

(1−γ)G andµ = µ2
F

4G2 . Then min
t∈{0,1,··· ,T }

J∗−E [J(θt)] ≤ O(ϵ)+O(√ϵbias)

and the sample complexity T ×H = Õ(ϵ−3) when ϵbias = 0 or T ×H = Õ((ϵbias · ϵ)−1) when
ϵbias > 0.

4.5 Discussion and bibliographical remarks

In this chapter, thanks to the recent tools developed for the SGD analysis in the nonconvex
optimization, we improved the convergence and sample complexity analysis for the vanilla PG

7We defer the definition of the advantage function Aπθ in Appendix C.6.
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under the general ABC assumption. This generality allowed us to unify much of the fragmented
results in the RL literature and brought new insight for the hyperparameter choices of the
PG algorithm. When an additional (weak) gradient domination condition is available, we
established the global optimum convergence results of vanilla PG and improved the current best
known sample complexity results for the stochastic vanilla PG. The results we have obtained
open up several experimental questions related to parameter settings for PG. We leave such
questions as an important future work to further support our theoretical findings.

One natural open question is whether the ABC assumption and the associated analysis
can be extended to the projected PG. If the answer is positive, this might improve the sam-
ple complexity analysis of the direct policy parameterization setting in the stochastic case.
Indeed, the direct policy parameterization satisfies a variant of weak gradient domination
condition (4.17) (Agarwal et al., 2021; Xiao, 2022) under the proximal framework. If the ABC
assumption and the associated analysis of Theorem C.8, which also uses the (4.17) condition,
can be extended to the proximal framework, it might be possible to establish the Õ(ϵ−3) sam-
ple complexity as our Theorem C.8 for the global optimum convergence for the direct policy
parameterization and allow for a wider range of hyperparameter choices.

Similarly, we wonder if the ABC assumption and the associated analysis can be extended to
the LQR setting. The challenge here will be the smoothness assumption and whether the ABC
assumption is satisfied by the LQR when doing the stochastic PG updates. Indeed, the LQR
only has an “almost” smoothness property (Fazel et al., 2018). One needs to investigate how
this will affect the current ABC analysis by extending the smoothness property to the “almost”
smoothness property.

It is worth mentioning that although the main focus of this chapter is the theoretical analysis
of vanilla variants of the PGmethod, Theorem C.8 under the relaxed weak gradient domination
assumption (4.17) is new for nonconvex SGD analysis and of independent interest. Recently,
Fatkhullin et al. (2022) extended the SGD analysis of Khaled and Richtárik (2023) and our
Theorem C.8 under more general assumptions. In particular, they relax the ABC assumption
by so called the expected smoothness of order k assumption (Assumption 4 in their paper)
and relax the weak gradient domination assumption (4.17) by the global Kurdyka-Łojasiewicz
assumption (Assumption 2 in their paper). We refer to Fatkhullin et al. (2022, Section 2) for
more details on their assumptions. Despite the generality of the assumptions they consider,
they are able to recover our SGD convergence analysis as special cases. As a result, this might
improve our vanilla PG analysis to a even more general setting.
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Chapter 5

Linear Convergence of Natural Policy
Gradient Methods with Log-Linear
Policies

In this chapter, we consider infinite-horizon discounted Markov decision processes and study
the convergence rates of the natural policy gradient (NPG) and the Q-NPG methods with the
log-linear policy class. Using the compatible function approximation framework, both methods
with log-linear policies can be written as inexact versions of the policy mirror descent (PMD)
method. We show that both methods attain linear convergence rates and Õ(1/ϵ2) sample
complexities using a simple, non-adaptive geometrically increasing step size, without resorting
to entropy or other strongly convex regularization. Lastly, as a byproduct, we obtain sublinear
convergence rates for both methods with arbitrary constant step size. 1
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Learning Representations (ICLR 2023) (Yuan et al., 2023).
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5.1 Introduction

5.1 Introduction

Policy gradient (PG) methods have emerged as a popular class of algorithms for reinforcement
learning. Unlike classical methods based on (approximate) dynamic programming (e.g., Puter-
man, 1994; De Farias and Van Roy, 2003; Bertsekas, 2012; Sutton and Barto, 2018), PG methods
update directly the policy and its parametrization along the gradient direction of the value
function (e.g., Williams, 1992; Sutton et al., 2000; Konda and Tsitsiklis, 2000; Baxter and Bartlett,
2001). An important variant of PG is the natural policy gradient (NPG) method (Kakade,
2001), which is a direct application of natural gradient method (Amari, 1998) for RL. NPG
uses the Fisher information matrix of the policy distribution as a preconditioner to improve the
policy gradient direction, similar to quasi-Newton methods in classical optimization (Martens,
2020). Variants of NPGwith policy parametrization through deep neural networks were shown
to have impressive empirical successes (Schulman et al., 2015; Lillicrap et al., 2016; Mnih et al.,
2016; Schulman et al., 2017; Haarnoja et al., 2018; Tomar et al., 2022).

Motivated by the success of NPG in practice, there is now a concerted effort to develop
convergence theories for the NPG method. Neu et al. (2017) provide the first interpretation of
NPG as a mirror descent (MD)method (Nemirovski and Yudin, 1983; Beck and Teboulle, 2003).
By leveraging different techniques for analyzingMD, it has been established thatNPG converges
to the global optimum in the tabular case (Agarwal et al., 2021; Khodadadian et al., 2021b; Xiao,
2022) and some more general settings (Shani et al., 2020; Vaswani et al., 2022; Grudzien et al.,
2022; Chen and Theja Maguluri, 2022). In order to get a fast linear convergence rate for NPG,
several recent works consider the regularized NPG methods, such as the entropy-regularized
NPG (Cen et al., 2021a) and other convex regularized NPG methods (Lan, 2022; Zhan et
al., 2021). By designing appropriate step sizes, Khodadadian et al. (2021b) and Xiao (2022)
obtain linear convergence of NPG without regularization (See Appendix D.1 for a thorough
review. In particular, Table D.1 provides a complete overview of our results.). However, all
these linear convergence results are limited in the tabular setting (direct parametrization). It
remains unclear whether this same linear convergence rate can be established in the function
approximation regime.

In this chapter we provide an affirmative answer to this question for the log-linear policy
class. Our approach is based on the framework of compatible function approximation (Sutton
et al., 2000; Kakade, 2001), which was extensively developed by Agarwal et al. (2021). Using
this framework, variants of NPGwith log-linear policies can be written as policy mirror descent
(PMD) methods with inexact evaluations of the advantage function or Q-function (giving rise
to NPG or Q-NPG respectively). Then by extending a recent analysis of PMD (Xiao, 2022), we
obtain a non-asymptotic linear convergence of both NPG and Q-NPGwith log-linear policies. A
distinctive feature of this approach is the use of a simple, non-adaptive geometrically increasing
step size, without resorting to entropy or other (strongly) convex regularization.
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Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies

5.1.1 Outline and contributions

In Section 5.2 we review the fundamentals of Markov decision processes (MDP), and describe
the log-linear policy class and the general NPGmethod. In Section 5.3we explain the compatible
function approximation framework and show that both NPG and Q-NPG can be expressed as
inexact versions of the PMD method.

Our main contributions start from Section 5.4, which contains our results on Q-NPG.
We present convergence results of Q-NPG in two different settings: one assuming bounded
transfer error and a relative condition number (Section 5.4.1) and the other assuming bounded
approximation error (Section 5.4.2). In both cases, we obtain linear convergence up to an
error floor towards the global optima. The extensions of the analysis of PMD (Xiao, 2022) are
highly nontrivial and require quite different techniques (see Appendix D.1.1 for more details).
Compared with the sublinear convergence results of Agarwal et al. (2021), we do not need a
projection step nor the assumption of bounded feature maps. However, our results depends on
some distribution mismatch coefficients and has larger error floors. In Section 5.4.3, by further
assuming that the feature maps are bounded and have a non-singular covariance matrix, we
obtain an Õ(1/ϵ2) sample complexity for Q-NPG with log-linear policies. In particular, our
sample complexity analysis also fixes errors of previous work.

In Section 5.5, we analyze theNPGmethodunder the assumption of bounded approximation
error, and show that it also enjoys linear convergence up to an error floor as well as an Õ(1/ϵ2)
sample complexity. As a by product of our analysis, we also obtain sublinear an O(1/k)
convergence rate for both NPG and Q-NPG with unconstrained constant step sizes and no
projection step.

5.2 Preliminaries on Markov decision processes

We consider an MDP denoted asM = {S,A,P, c, γ}, where S is a finite state space, A is a
finite action space, P : S ×A → S is a Markovian transition model with P(s′ | s, a) being the
transition probability from state s to s′ under action a, c is a cost function with c(s, a) ∈ [0, 1]
for all (s, a) ∈ S ×A, and γ ∈ [0, 1) is a discounted factor. Here we use cost instead of reward
to better align with the minimization convention in the optimization literature.

Let ∆(X ) denote the probability simplex for an arbitrary set X . The agent’s behavior is
modeled as a stochastic policy π ∈ ∆(A)|S|, where πs ∈ ∆(A) is the probability distribution
over actions A in state s ∈ S . At each time t, the agent takes an action at ∈ A given the current
state st ∈ S, following the policy π, i.e., at ∼ πst . Then the MDP transitions into the next state
st+1 with probability P(st+1 | st, at) and the agent encounters the cost ct = c(st, at). Thus, a
policy induces a distribution over trajectories {st, at, ct}t≥0. In the infinite-horizon discounted
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5.2 Preliminaries on Markov decision processes

setting, the cost function of π with an initial state s is defined as

Vs(π) def= E
at∼πst

st+1∼P(·|st,at)

[ ∞∑
t=0

γtc(st, at) | s0 = s

]
. (5.1)

Given an initial state distribution ρ ∈ ∆(S), the goal of the agent is to find a policy π that
minimizes the expected cost function

Vρ(π) def= Es∼ρ [Vs(π)] =
∑
s∈S

ρsVs(π) = ⟨V (π), ρ⟩ .

A more granular characterization of the performance of a policy is the state-action cost
function (Q-function). For any pair (s, a) ∈ S ×A, it is defined as

Qs,a(π) def= E
at∼πst

st+1∼P(·|st,at)

[ ∞∑
t=0

γtc(st, at) | s0 = s, a0 = a

]
. (5.2)

Let Qs ∈ R|A| denote the vector [Qs,a]a∈A. Then we have Vs(π) = Ea∼πs [Qs,a(π)] = ⟨πs, Qs(π)⟩.
The advantage function2 is a centered version of the Q-function:

As,a(π) def= Qs,a(π)− Vs(π), (5.3)

which satisfies Ea∼πs [As,a(π)] = 0 for all s ∈ S.

Visitation probabilities. Given a starting state distribution ρ ∈ ∆(S), we define the state
visitation distribution dπ(ρ) ∈ ∆(S), induced by a policy π, as

dπ
s (ρ) def= (1− γ)Es0∼ρ

[ ∞∑
t=0

γt Prπ(st = s | s0)
]

,

where Prπ(st = s | s0) is the probability that the t-th state is equal to s by following the
trajectory generated by π starting from s0. Intuitively, the state visitation distribution measures
the probability of being at state s across the entire trajectory. We define the state-action visitation
distribution d̄ π(ρ) ∈ ∆(S ×A) as

d̄ π
s,a(ρ) def= dπ

s (ρ)πs,a = (1− γ)Es0∼ρ

[ ∞∑
t=0

γt Prπ(st = s, at = a | s0)
]

. (5.4)

2An advantage function should measure how much better is a compared to π, while here A is positive when a is
worse than π. We keep calling A advantage function to better align with the convention in the RL literature.
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In addition, we extend the definition of d̄ π(ρ) by specifying the initial state-action distribution
ν ∈ ∆(S ×A), i.e.,

d̃ π
s,a(ν) def= (1− γ)E(s0,a0)∼ν

[ ∞∑
t=0

γt Prπ(st = s, at = a | s0, a0)
]

. (5.5)

The difference in the last two definitions is that for the former, the initial action a0 is sampled
directly from π, whereas for the latter, it is prescribed by the initial state-action distribution ν.
We use d̃ compared to d̄ to better distinguish the cases with ν and ρ. Without specification, we
even omit the argument ν or ρ throughout the chapter to simplify the presentation as they are
self-evident. From these definitions, we have for all (s, a) ∈ S ×A,

dπ
s ≥ (1− γ)ρs, d̄ π

s,a ≥ (1− γ)ρsπs,a, d̃ π
s,a ≥ (1− γ)νs,a. (5.6)

Policy parametrization. In practice, both the state and action spaces S and A can be very
large and some form of function approximation is needed to reduce the dimensions and make
the computation feasible. In particular, the policy π is often parametrized as π(θ) with θ ∈ Rm,
where m is much smaller than |S| and |A|. In this chapter, we focus on the log-linear policy
class. Specifically, we assume that for each state-action pair (s, a), there is a feature mapping
ϕs,a ∈ Rm and the policy takes the form

πs,a(θ) =
exp(ϕ⊤

s,aθ)∑
a′∈A exp(ϕ⊤

s,a′θ)
. (5.7)

This setting is important since it is the simplest instantiation of the widely-used neural policy
parametrization. To simplify notation in the rest of the chapter, we use the shorthand Vρ(θ) for
Vρ(π(θ)) and similarly Qs,a(θ) for Qs,a(π(θ)), As,a(θ) for As,a(π(θ)), dθ

s for d
π(θ)
s , d̄ θ

s,a for d̄
π(θ)
s,a ,

and d̃ θ
s,a for d̃

π(θ)
s,a .

Natural PolicyGradient (NPG)Method. Using the notations defined above, the parametrized
policy optimization problem is to minimize the function Vρ(θ) over θ ∈ Rm. The policy gradient
is given by the policy gradient theorem (Sutton et al., 2000)

∇θVρ(θ) = 1
1− γ

Es∼dθ, a∼πs(θ) [Qs,a(θ)∇θ log πs,a(θ)] . (5.8)

For parametrizations that are differentiable and satisfy∑a∈A πs,a(θ) = 1, including the log-
linear class defined in (5.7), we can replace Qs,a(θ) by As,a(θ) in the above expression (Agarwal
et al., 2021). A derivation of (5.8) is provided in Appendix D.2 (Lemma D.1) for completeness.
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The NPG method (Kakade, 2001) takes the form

θ(k+1) = θ(k) − ηkFρ
(
θ(k))†∇θVρ

(
θ(k)), (5.9)

where ηk > 0 is a scalar step size, Fρ(θ) is the Fisher information matrix

Fρ(θ) def= Es∼dθ, a∼πs(θ)

[
∇θ log πs,a(θ)

(
∇θ log πs,a(θ)

)⊤]
, (5.10)

and Fρ(θ)† denotes the Moore-Penrose pseudoinverse of Fρ(θ).

5.3 NPG with compatible function approximation

The parametrized value function Vρ(θ) is non-convex in general (see, e.g., Agarwal et al., 2021).
Despite being a non-convex optimization problem, there is still additional structure we can
leverage to ensure convergence. Following Agarwal et al. (2021), we adopt the framework of
compatible function approximation (Sutton et al., 2000; Kakade, 2001), which exploits the MDP
structure and leads to tight convergence rate analysis.

For any w ∈ Rm, θ ∈ Rm and state-action distribution ζ ∈ ∆(S×A), we define the compatible
function approximation error as

LA(w, θ, ζ) def= E(s,a)∼ζ

[(
w⊤∇θ log πs,a(θ)−As,a(θ)

)2]
. (5.11)

Kakade (2001) showed that the NPG update (5.9) is equivalent to (up to a constant scaling of
ηk)

θ(k+1) = θ(k) − ηkw
(k)
⋆ , w

(k)
⋆ ∈ argminw∈Rm LA

(
w, θ(k), d̄ (k)), (5.12)

where d̄ (k) is a shorthand for the state-action visitation distribution d̄ π(θ(k))(ρ) defined in (5.4).
A derivation of (5.12) is provided in Appendix D.2 (Lemma D.2) for completeness. In other
words, w

(k)
⋆ is the solution to a regression problem that tries to approximate As,a(θ(k)) using

∇θ log πs,a(θ(k)) as features. This is where the term "compatible function approximation error"
comes from. For the log-linear policy class defined in (5.7), we have

∇θ log πs,a(θ) = ϕ̄s,a(θ) def= ϕs,a −
∑

a′∈A πs,a′(θ)ϕs,a′ = ϕs,a − Ea′∼πs(θ)
[
ϕs,a′

]
, (5.13)

where ϕ̄s,a(θ) are called centered features vectors.
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In practice, we cannot minimize LA exactly; instead, a sample-based regression problem is
solved to obtain an inexact solution w(k). This leads to the following inexact NPG update rule:

θ(k+1) = θ(k) − ηkw(k), w(k) ≈ argminw LA

(
w, θ(k), d̄ (k)). (5.14)

The inexact NPG updates require samples of unbiased estimates of As,a(θ), the correspond-
ing sampling procedure is given in Algorithm 14, and a sample-based regression solver to
minimize LA is given in Algorithm 15 in the Appendix.

Alternatively, as proposed by Agarwal et al. (2021), we can define the compatible function
approximation error as

LQ(w, θ, ζ) def= E(s,a)∼ζ

[(
w⊤ϕs,a −Qs,a(θ)

)2] (5.15)

and use it to derive a variant of the inexact NPG update called Q-NPG:

θ(k+1) = θ(k) − ηkw(k), w(k) ≈ argminw LQ

(
w, θ(k), d̄ (k)). (5.16)

For Q-NPG, the sampling procedure for estimating Qs,a(θ) is given in Algorithm 13 and a
sample-based regression solver for w(k) is proposed in Algorithm 16 in the Appendix.

The sampling procedure and the regression solver of NPG are less efficient than those
of Q-NPG. Indeed, the sampling procedure for As,a(θ) in Algorithm 14 not only estimates
Qs,a(θ), but also requires an additional estimation of Vs(θ), and thus doubles the amount of
samples as compared to Algorithm 13. Furthermore, the stochastic gradient estimator of LQ in
Algorithm 16 only computes on a single action of the feature map ϕs,a. Whereas the one of LA

in Algorithm 15 computes on the centered feature map ϕ̄s,a(θ) defined in (5.13), which needs to
go through the entire action space, thus is |A| times more expensive to run. See Appendix D.3
for more details.

Following Agarwal et al. (2021), we consider slightly different variants of NPG and Q-NPG,
where d̄ (k) in (5.14) and (5.16) is replaced by a more general state-action visitation distribution
d̃ (k) = d̃ π(θ(k))(ν) defined in (5.5) with ν ∈ ∆(S × A). The advantage of using d̃ (k) is that it
allows better exploration than d̄ (k) as ν can be chosen to be independent to the policy π(θ(k)).
For example, it can be seen from (5.6) that the lower bound of d̃ π is independent to π, which is
not the case for d̄ π. This property is crucial in the forthcoming convergence analysis.
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5.3 NPG with compatible function approximation

5.3.1 Formulation as inexact policy mirror descent

Given an inexact solutionw(k) forminimizingLQ

(
w, θ(k), d̃ (k)), theQ-NPGupdate rule θ(k+1) =

θ(k) − ηkw(k), when plugged in the log-linear parametrization (5.7), results in a new policy

π(k+1)
s,a = 1

Z
(k)
s

π(k)
s,a exp

(
−ηk ϕT

s,aw(k)
)

, ∀ (s, a) ∈ S ×A,

whereπ(k) is a shorthand forπs,a(θ(k)) andZ
(k)
s is a normalization factor to ensure∑a∈A π

(k+1)
s,a =

1, for each s ∈ S . We note that the above π(k+1) can also be obtained by a mirror descent update:

π(k+1)
s = arg min

p∈∆(A)

{
ηk

〈
Φsw(k), p

〉
+ D(p, π(k)

s )
}

, ∀s ∈ S, (5.17)

where Φs ∈ R|A|×m is a matrix with rows (ϕs,a)⊤ ∈ Rm for a ∈ A, and D(p, q) denotes the
Kullback-Leibler (KL) divergence between two distributions p, q ∈ ∆(A), i.e.,

D(p, q) def=
∑
a∈A

pa log
(

pa

qa

)
.

A derivation of (5.17) is provided in Appendix D.2 (Lemma D.3) for completeness.
If we replace Φsw(k) in (5.17) by the vector [Qs,a(π(k))

]
a∈A ∈ R|A|, then it becomes the

policy mirror descent (PMD) method in the tabular setting studied by, for example, Shani et al.
(2020), Lan (2022) and Xiao (2022). In fact, the update rule (5.17) can be viewed as an inexact
PMD method where Qs(π(k)) is linearly approximated by Φsw(k) through compatible function
approximation (5.15). Besides, with the replacement of Φsw(k) by [Qs,a(π(k))

]
a∈A, (5.17) can

also be viewed as a special case of the mirror descent value iteration for the regularized MDP
studied by Geist et al. (2019), Vieillard et al. (2020), and Kozuno et al. (2022). Similarly, we
can write the inexact NPG update rule as

π(k+1)
s = arg min

p∈∆(A)

{
ηk

〈
Φ̄(k)

s w(k), p
〉

+ D(p, π(k)
s )

}
, ∀s ∈ S, (5.18)

where w(k) is an inexact solution for minimizing LA

(
w, θ(k), d̃ (k)) defined in (5.11), and Φ̄(k)

s ∈
R|A|×m is a matrix whose rows consist of the centered feature maps (ϕ̄s,a(θ(k))

)⊤, as defined
in (5.13).

Reformulating Q-NPG and NPG into the mirror descent forms (5.17) and (5.18), respec-
tively, allows us to adapt the analysis of PMD method developed in Xiao (2022) to obtain
sharp convergence rates. In particular, we show that with an increasing step size ηk ∝ γk, both
NPG and Q-NPG with log-linear policy parametrization converge linearly up to an error floor
determined by the quality of the compatible function approximation.
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5.4 Analysis of Q-NPG with log-linear policies

In this section, we provide the convergence analysis of the following inexact Q-NPG method

θ(k+1) = θ(k) − ηkw(k), w(k) ≈ argminw LQ

(
w, θ(k), d̃ (k)), (5.19)

where d̃ (k) is shorthand for d̃ π(θ(k))(ν) and ν ∈ ∆(S×A) is an arbitrary state-action distribution
that does not depend on ρ. The exact minimizer is denoted as w

(k)
⋆ ∈ argminw LQ

(
w, θ(k), d̃ (k)).

Following Agarwal et al. (2021), the compatible function approximation error can be
decomposed as

LQ

(
w(k), θ(k), d̃ (k)) = LQ

(
w(k), θ(k), d̃ (k))− LQ

(
w

(k)
⋆ , θ(k), d̃ (k))︸ ︷︷ ︸

Statistical error (excess risk)
+ LQ

(
w

(k)
⋆ , θ(k), d̃ (k)).︸ ︷︷ ︸

Approximation error

The statistical error measures how accurate is our solution to the regression problem, i.e.,
how good w(k) is compared with w

(k)
⋆ . The approximation error measures the best possible

solution for approximatingQs,a(θ(k)) using ϕs,a as features in the regression problem (modeling
error). One way to proceed with the analysis is to assume that both the statistical error and
the approximation error are bounded for all iterations, which is the approach we take in
Section 5.4.2 and is also the approach we take later in Section 5.5 for the analysis of the NPG
method.

However, in Section 5.4.1, we first take an alternative approach proposed by Agarwal et al.
(2021), where the assumption of bounded approximation error is replaced by a bounded transfer
error. The transfer error refers to LQ

(
w

(k)
⋆ , θ(k), d̃ ∗), where the iteration-dependent visitation

distribution d̃ (k) is shifted to a fixed one d̃ ∗ (defined in Section 5.4.1).
These two approaches require different additional assumptions and result in slightly differ-

ent convergence rates. Here we first state the common assumption on the bounded statistical
error.

Assumption 5.1 (Bounded statistical error, Assumption 6.1.1 in Agarwal et al. (2021)).
There exists ϵstat > 0 such that for all iterations k ≥ 0 of the Q-NPG method (5.19), we have

E
[
LQ

(
w(k), θ(k), d̃ (k))− LQ

(
w

(k)
⋆ , θ(k), d̃ (k))] ≤ ϵstat. (5.20)

By solving the regression problem with sampling based approaches, we can expect ϵstat =
O(1/

√
T ) (Agarwal et al., 2021) or ϵstat = O(1/T ) (see Corollary 5.11) where T is the number

of iterations used to find the inexact solution w(k).
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5.4.1 Analysis with bounded transfer error

Here we introduce some additional notation. For any state distributions p, q ∈ ∆(S), we define
the distribution mismatch coefficient of p relative to q as∥∥∥∥p

q

∥∥∥∥
∞

def= max
s∈S

ps

qs
.

Let π∗ be an arbitrary comparator policy, which is not necessarily an optimal policy and does
not need to belong to the log-linear policy class. Fix a state distribution ρ ∈ ∆(S). We denote
dπ∗(ρ) as d∗ and dπ(θ(k))(ρ) as d(k), and define the following distribution mismatch coefficients:

ϑk
def=

∥∥∥∥ d∗

d(k)

∥∥∥∥
∞

(5.6)
≤ 1

1− γ

∥∥∥∥d∗

ρ

∥∥∥∥
∞

and ϑρ
def= 1

1− γ

∥∥∥∥d∗

ρ

∥∥∥∥
∞
≥ 1

1− γ
. (5.21)

Thus, for all k ≥ 0, we have ϑk ≤ ϑρ. We assume that ϑρ <∞, which is the case, for example, if
ρs > 0 for all s ∈ S. This is commonly used in the literature on policy gradient methods (e.g.,
Zhang et al., 2020a; Wang et al., 2020) and the NPG convergence analysis (e.g., Cayci et al.,
2021; Xiao, 2022). We further relax this condition in Appendix D.6.1.

We also introduce a weighted KL divergence given by

D∗
k

def= Es∼d∗

[
D(π∗

s , π(k)
s )

]
.

If we choose the uniform initial policy, i.e., π
(0)
s,a = 1/|A| for all (s, a) ∈ S ×A (or θ(0) = 0), then

D∗
0 ≤ log |A| for all ρ ∈ ∆(S) and for any π∗ ∈ ∆(A)S . The choice of the step size will directly

depend on D∗
0 in our forthcoming linear convergence results.

Given a state distribution ρ and a comparator policy π∗, we define a state-action measure
d̃ ∗ as

d̃ ∗
s,a

def= d∗
s ·UnifA(a) def= d∗

s

|A|
, (5.22)

and use it to express the transfer error as LQ

(
w

(k)
⋆ , θ(k), d̃ ∗).

Assumption 5.2 (Bounded transfer error, Assumption 6.1.2 in Agarwal et al. (2021)). There
exists ϵbias > 0 such that for all iterations k ≥ 0 of the Q-NPG method (5.19), we have

E
[
LQ

(
w

(k)
⋆ , θ(k), d̃ ∗)] ≤ ϵbias. (5.23)

The ϵbias is often referred to as the transfer error, since it is the error due to replacing the
relevant distribution d̃(k) by d̃ ∗. This transfer error bound characterizes how well the Q-values
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can be linearly approximated by the feature maps ϕs,a. It can be shown that ϵbias = 0 when
π(k) is the softmax tabular policy (Agarwal et al., 2021) or the MDP has a certain low-rank
structure (Jiang et al., 2017; Yang and Wang, 2019; Yang and Wang, 2020; Jin et al., 2020). As
mentioned in Agarwal et al. (2021, Remark 19), when ϵbias = 0, one can easily verify that the
NPG and Q-NPG are equivalent algorithms. For rich neural parametrizations, ϵbias can be
made small (Wang et al., 2020).

The next assumption concerns the relative condition number between two covariance
matrices of ϕs,a defined under different state-action distributions.

Assumption 5.3 (Bounded relative condition number, Assumption 6.2 in Agarwal et al.
(2021)). Fix a state distribution ρ, a state-action distribution ν and a comparator policy π∗. Let

Σd̃ ∗
def= E(s,a)∼d̃ ∗

[
ϕs,aϕ⊤

s,a

]
, and Σν

def= E(s,a)∼ν

[
ϕs,aϕ⊤

s,a

]
, (5.24)

where d̃ ∗ is specified in (5.22). We define the relative condition number between Σd̃ ∗ and Σν as

κν
def= max

w∈Rm

w⊤Σd̃ ∗w

w⊤Σνw
, (5.25)

and assume that κν is finite.

The κν is referred to as the relative condition number, since the ratio is between two different
matrix induced norm. Notice that Assumption 5.3 benefits from the use of ν. In fact, it is shown
in Agarwal et al. (2021, Remark 22 and Lemma 23) that κν can be reasonably small (e.g., κν ≤ m

is always possible) and independent to the size of the state space by controlling ν.
Our analysis also needs the following assumption, which does not appear in Agarwal et al.

(2021).

Assumption 5.4 (Concentrability coefficient for state visitation). There exists a finite Cρ > 0
such that for all iterations k ≥ 0 of the Q-NPG method (5.19), it holds that

Es∼d∗

[(
d

(k)
s

d∗
s

)2]
≤ Cρ. (5.26)

The concentrability coefficient is studied in the analysis of approximate dynamic program-
ming algorithms (Munos, 2003; Munos, 2005; Munos and Szepesvári, 2008). It measures
how much ρ can get amplified in k steps as compared to the reference distribution d∗

s. Let
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ρmin = mins∈S ρs. A sufficient condition for Assumption 5.4 to hold is that ρmin > 0. Indeed,√√√√Es∼d∗

[(
d

(k)
s

d∗
s

)2]
≤
∥∥∥∥∥d(k)

d∗

∥∥∥∥∥
∞

(5.6)
≤ 1

1− γ

∥∥∥∥∥d(k)

ρ

∥∥∥∥∥
∞
≤ 1

(1− γ)ρmin
. (5.27)

In reality,√Cρ can be much smaller than the pessimistic bound shown above. This is especially
the case if we choose π∗ to be the optimal policy and d(k) → d∗. We further replace Cρ by Cν

defined in Section 5.4.2 that is independent to ρ and thus is more easily satisfied.

Now we present our first main result.

Theorem 5.5. Fix a state distribution ρ, an state-action distribution ν and a comparator policy π∗.
We consider the Q-NPG method (5.19) with the step sizes satisfying η0 ≥ 1−γ

γ D∗
0 and ηk+1 ≥ 1

γ ηk.
Suppose that Assumptions 5.1, 5.2, 5.3 and 5.4 all hold. Then we have for all k ≥ 0,

E
[
Vρ(π(k))

]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k 2
1− γ

+
2
√
|A|

(
ϑρ
√

Cρ + 1
)

1− γ

(√
κν

1− γ
ϵstat +√ϵbias

)
.

The main differences between our Theorem 5.5 and Theorem 20 of Agarwal et al. (2021),
which is their corresponding result on the inexact Q-NPG method, are summarized as follows.

• The convergence rate of Agarwal et al. (2021, Theorem 20) isO(1/
√

k) up to an error floor
determined by ϵstat and ϵbias. We have linear convergence up to an error floor that also
depends on ϵstat and ϵbias. However, the magnitude of our error floor is worse (larger) by
a factor of ϑρ

√
Cρ, due to the concentrability and the distribution mismatch coefficients

used in our proof. A very pessimistic bound on this factor is as large as |S|2/(1− γ)2.
• In terms of required conditions, both results use Assumptions 5.1, 5.2 and 5.3. Agar-
wal et al. (2021, Theorem 20) further assume that the norms of the feature maps ϕs,a

are uniformly bounded and w(k) has a bounded norm (e.g., obtained by a projected
stochastic gradient descent). Due to different analysis techniques referred next, we avoid
such boundedness assumptions but rely on the concentrability coefficient Cρ defined in
Assumption 5.4.

• Agarwal et al. (2021, Theorem 20) uses a diminishing step size η ∝ 1/
√

k where k is the
total number of iterations, but we use a geometrically increasing step size ηk ∝ γk for
all k ≥ 0. This discrepancy reflects the different analysis techniques adopted. The key
analysis tool in Agarwal et al. (2021) is a NPG Regret Lemma (their Lemma 34) which
relies on the smoothness of the functions log πs,a(θ) (thus the boundedness of ∥ϕs,a∥) and
the boundedness of ∥w(k)∥, and thus the classical O(1/

√
k) diminishing step size in the

optimization literature. Our analysis exploits the three-point descent lemma (Chen and
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Teboulle, 1993) and the performance difference lemma (Kakade and Langford, 2002),
without reliance on smoothness parameters. As a consequence, we can take advantage
of exponentially growing step sizes and avoid assuming the boundedness of ∥ϕs,a∥ or
∥w(k)∥.

Using increasing step size induces fast linear convergence. The reason is that Q-NPG
behaves more and more like policy iteration with large enough step size. Intuitively, when
ηk →∞ and Qs(θ(k)) is equal to the linear approximation Φsw(k) which is the case of the linear
MDP (Jin et al., 2020) with ϵbias = 0, (5.17) becomes

π(k+1)
s = arg min

p∈∆(A)

{〈
Qs(θ(k)), p

〉}
, ∀s ∈ S,

which is exactly the classical Policy Iteration method (e.g., Puterman, 1994; Bertsekas, 2012).
Thus, Q-NPG can match the linear convergence rate of policy iteration in this case. We refer to
Xiao (2022, Section 4.4) for more discussion on the connection with policy iteration.

As a by product, we also obtain a sublinearO(1/k) convergence result while using arbitrary
constant step size.

Theorem 5.6. Fix a state distribution ρ, an state-action distribution ν and an optimal policy
π∗. We consider the Q-NPG method (5.19) with any constant step size ηk = η > 0. Suppose that
Assumptions 5.1, 5.2, 5.3 and 5.4 all hold. Then we have for all k ≥ 0,

1
k

k−1∑
t=0

E
[
Vρ(π(t))

]
− Vρ(π∗) ≤ 1

(1− γ)k

(
D∗

0
η

+ 2ϑρ

)
+

2
√
|A|

(
ϑρ
√

Cρ + 1
)

1− γ

(√
κν

1− γ
ϵstat +√ϵbias

)
.

A deviation from the setting of Theorem 5.5 is that here we require π∗ to be an optimal
policy3. Compared to Theorem 20 inAgarwal et al. (2021), our convergence rate is also sublinear,
but with an improved convergence rate of O(1/k), as opposed to O(1/

√
k). Moreover, they use

a diminishing step size of order O(1/
√

k) while our constant step size is unconstrained.

5.4.2 Analysis with bounded approximation error

In this section, instead of assuming bounded transfer error, we provide a convergence analysis
based on the usual notion of approximation error and a weaker concentrability coefficient.

3In our analysis, we need to drop the positive term E
[
Vρ(θ(k)) − Vρ(π∗)

]
to obtain a lower bound, thus require

π∗ to be an optimal policy.
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Assumption 5.7 (Bounded approximation error). There exists ϵapprox > 0 such that for all
iterations k ≥ 0 of the Q-NPG method (5.19), it holds that

E
[
LQ

(
w

(k)
⋆ , θ(k), d̃ (k))] ≤ ϵapprox. (5.28)

As mentioned in Agarwal et al. (2021), Assumption 5.7 is stronger than Assumption 5.2
(bounded transfer error). Indeed,

LQ

(
w

(k)
⋆ , θ(k), d̃ ∗) ≤ ∥∥∥∥∥ d̃ ∗

d̃ (k)

∥∥∥∥∥
∞

LQ

(
w

(k)
⋆ , θ(k), d̃ (k)) (5.6)

≤ 1
1− γ

∥∥∥∥∥ d̃ ∗

ν

∥∥∥∥∥
∞

LQ

(
w

(k)
⋆ , θ(k), d̃ (k)).

Assumption 5.8 (Concentrability coefficient for state-action visitation). There exists Cν <∞
such that for all iterations of the Q-NPG method (5.19), we have

E(s,a)∼d̃ (k)

[(
h

(k)
s,a

d̃
(k)
s,a

)2]
≤ Cν , (5.29)

where h
(k)
s,a represents all of the following quantities:

d(k+1)
s π(k+1)

s,a , d(k+1)
s π(k)

s,a , d∗
sπ(k)

s,a , and d∗
sπ∗

s,a . (5.30)

Since we are free to choose ν independently of ρ, we can choose νs,a > 0 for all (s, a) ∈ S×A
for Assumption 5.8 to hold. Indeed, with νmin denoting min(s,a)∈S×A νs,a, we have

√√√√E(s,a)∼d̃ (k)

[(
h

(k)
s,a

d̃
(k)
s,a

)2]
≤ max

(s,a)∈S×A

h
(k)
s,a

d̃
(k)
s,a

(5.6)
≤ 1

(1− γ)νmin
, (5.31)

where the upper bound can be smaller than that in (5.27) if ρmin is smaller than νmin.

Theorem 5.9. Fix a state distribution ρ, an state-action distribution ν and a comparator policy π∗.
We consider the Q-NPG method (5.19) with the step sizes satisfying η0 ≥ 1−γ

γ D∗
0 and ηk+1 ≥ 1

γ ηk.
Suppose that Assumptions 5.1, 5.7 and 5.8 hold. Then we have for all k ≥ 0,

E
[
Vρ(π(k))

]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k 2
1− γ

+ 2
√

Cν (ϑρ + 1)
1− γ

(√
ϵstat +√ϵapprox

)
.
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Compared to Theorem 5.5, while the approximation error assumption is stronger than the
transfer error assumption, we do not require the assumption on relative condition number κν

and the error floor does not depends on κν nor explicitly on |A|. Besides, we can always choose
ν so that the concentrability coefficient Cν is finite even if Cρ is unbounded. However, it is not
clear if Theorem 5.9 is better than Theorem 5.5.

Remark 5.10. Note that Theorems 5.5, 5.6 and 5.9 benefit from using the visitation distribution
d̃ (k) instead of d̄ (k) (i.e., benefit from using ν instead of ρ). In particular, from (5.6), d̃ (k) has a
lower bound that is independent to the policy π(k) or ρ. This property allows us to define a weak
notion of relative condition number (Assumption 5.3) that is independent to the iterates, and also
get a finite upper bound of Cν (Assumption 5.8 and (5.31)) that is independent to ρ.

5.4.3 Sample complexity of Q-NPG

The previous results focus on iteration complexity, i.e., number of iterations used for updating θ.
Here we establish the sample complexity results, i.e., total number of samples of single-step
interaction with the environment, of a sample-based Q-NPG method (Algorithm 12 in Ap-
pendix D.3). Combined with a simple stochastic gradient descent (SGD) solver, Q-NPG-SGD in
Algorithm 16, the following corollary shows that Algorithm 12 converges globally by further
assuming that the feature map is bounded and has non-singular covariance matrix.

Corollary 5.11. Consider the setting of Theorem 5.9. Suppose that the sample-based Q-NPG
Algorithm 12 is run for K iterations, with T gradient steps of Q-NPG-SGD (Algorithm 16) per
iteration. Furthermore, suppose that for all (s, a) ∈ S ×A, we have ∥ϕs,a∥ ≤ B with B > 0, and
we choose the step size α = 1

2B2 and the initialization w0 = 0 for Q-NPG-SGD. If for all θ ∈ Rm, the
covariance matrix of the feature map followed by the initial state-action distribution ν satisfies

E(s,a)∼ν

[
ϕs,aϕ⊤

s,a

] (5.24)= Σν ≥ µIm, (5.32)

where Im ∈ Rm×m is the identity matrix and µ > 0, then

E
[
Vρ(π(K))

]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)K 2
1− γ

+
2 (ϑρ + 1)

√
Cνϵapprox

1− γ

+ 4
√

Cν (ϑρ + 1)
(1− γ)3

√
T

(
B2

µ

(√
2m + 1

)
+ (1− γ)

√
2m

)
.

In Q-NPG-SGD, each trajectory has the expected length 1/(1− γ) (see Lemma D.5). Conse-
quently, with K = O(log(1/ϵ) log(1/(1−γ))) and T = O

( 1
(1−γ)6ϵ2

), Q-NPG requires K ∗T/(1−
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γ) = Õ
( 1

(1−γ)7ϵ2
) samples such that E

[
Vρ(π(K))

]
− Vρ(π∗) ≤ O(ϵ) +O

(√
ϵapprox
1−γ

). The Õ(1/ϵ2)
sample complexity matches with the one of value-based algorithms such as Q-learning (Li
et al., 2020) and also matches with the one of model-based algorithms such as policy itera-
tion (Puterman, 1994; Lazaric et al., 2016) .

Compared toAgarwal et al. (2021, Corollary 26) for the sampled basedQ-NPGAlgorithm12,
their sample complexity is O( 1

(1−γ)11ϵ6
) with K = 1

(1−γ)2ϵ2 and T = 1
(1−γ)8ϵ4 . Despite the

improvement on the convergence rate forK, they use the optimization results of Shalev-Shwartz
and Ben-David (2014, Theorem 14.8) to obtain ϵstat = O(1/

√
T ), while we use the one of Bach

and Moulines (2013, Theorem 1) (see Theorem D.15 as well) to establish faster ϵstat = O(1/T )4.
With further regularity (5.32), Agarwal et al. (2021) mentioned that ϵstat = O(1/T ) can also
be achieved through Hsu et al. (2012, Theorem 16). In addition, Agarwal et al. (2021) use the
projected SGD method and require that the stochastic gradient is bounded which is incorrectly
verified in their proof 5. In contrast, to apply Theorem D.15, we avoid proving the boundedness
of the stochastic gradient. Alternatively, we require a different condition (5.32). A proof sketch
of our corollary is provided in Appendix D.4.5 for more details.

As for the condition (5.32), it is shown in Cayci et al. (2021, Proposition 3) that with ν

chosen as uniform distribution over S ×A and ϕs,a ∼ N (0, Im) sampled as Gaussian random
features, (5.32) is guaranteed with high probability. More generally, with m ≪ |S||A|, it is
easy to find m linearly independent ϕs,a among all |S||A| features such that the covariance
matrix Σν has full rank. This is a common requirement for linear function approximation
settings (Tsitsiklis and Van Roy, 1996; Melo et al., 2008; Sutton et al., 2009).

5.5 Analysis of NPG with log-linear policies

We now return to the convergence analysis of the inexact NPG method, specifically,

θ(k+1) = θ(k) − ηkw(k), w(k) ≈ argminw LA

(
w, θ(k), d̃ (k)), (5.33)

where d̃ (k) is a shorthand for d̃ π(θ(k))(ν) and ν ∈ ∆(S×A) is an arbitrary state-action distribution
that does not depend on ρ. Again, let w

(k)
⋆ ∈ argminw LA

(
w, θ(k), d̃ (k)) denote the minimizer.

Our analysis of NPG is analogous to that of Q-NPG shown in the previous section. That is,
we again exploit the inexact PMD formulation (5.18) and use techniques developed in Xiao
(2022).

4We are aware that Agarwal et al. (2021, Corollary 6.10) also use Bach and Moulines (2013, Theorem 1) in an
early version https://arxiv.org/pdf/1908.00261v2.pdf to obtain ϵstat = O(1/T ).

5Indeed, the stochastic gradient of LQ is unbounded, since the estimate Q̂s,a(θ) of Qs,a(θ) is unbounded. This
is because each single sampled trajectory has unbounded length. See Appendix D.4.5 for more explanations.
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The set of assumptions we use for NPG is analogous to the assumptions used in Section 5.4.2.
In particular, we assume a bounded approximation error instead of transfer error (c.f., Assump-
tion 5.2) in minimizing LA and do not need the assumption on relative condition number.

Assumption 5.12 (Bounded statistical error, Assumption 6.5.1 in Agarwal et al. (2021)).
There exists ϵstat > 0 such that for all iterations k ≥ 0 of the NPG method (5.33), we have

E
[
LA

(
w(k), θ(k), d̃ (k))− LA

(
w

(k)
⋆ , θ(k), d̃ (k))] ≤ ϵstat. (5.34)

Assumption 5.13 (Bounded approximation error). There exists ϵapprox > 0 such that for all
iterations k ≥ 0 of the NPG method (5.33), we have

E
[
LA

(
w

(k)
⋆ , θ(k), d̃ (k))] ≤ ϵapprox. (5.35)

Assumption 5.14 (Concentrability coefficient for state-action visitation). There exists Cν <

∞ such that for all iterations k ≥ 0 of the NPG method (5.33), we have

E(s,a)∼d̃ (k)

[(
d̄

(k+1)
s,a

d̃
(k)
s,a

)2]
≤ Cν and E(s,a)∼d̃ (k)

[(
d̄ π∗

s,a

d̃
(k)
s,a

)2]
≤ Cν . (5.36)

Under the above assumptions, we have the following result.

Theorem 5.15. Fix a state distribution ρ, a state-action distribution ν, and a comparator policy π∗.
We consider the NPG method (5.33) with the step sizes satisfying η0 ≥ 1−γ

γ D∗
0 and ηk+1 ≥ 1

γ ηk.
Suppose that Assumptions 5.12, 5.13 and 5.14 hold. Then we have for all k ≥ 0,

E
[
Vρ(π(k))

]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k 2
1− γ

+
√

Cν (ϑρ + 1)
1− γ

(√
ϵstat +√ϵapprox

)
.

Compared to Theorem 5.9, our convergence guarantees for Q-NPG and NPG have the same
convergence rate and error floor, and the same type of assumptions.

Now we compare Theorem 5.15 with Theorem 29 in Agarwal et al. (2021) for the NPG
analysis. The main differences are similar to those for Q-NPG as summarized right after
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Theorem 5.5: Their convergence rate is sublinear while ours is linear; they assume uniformly
bounded ϕs,a and w(k) while we require bounded concentrability coefficient Cν due to different
proof techniques; they use diminishing step sizes and we use geometrically increasing ones.
Moreover, Theorem 5.15 requires bounded approximation error, which is a stronger assumption
than the bounded transfer error used by their Theorem 29, but we do not need the assumption
on bounded relative condition number.

We note that the bounded relative condition number required by Agarwal et al. (2021,
Theorem 29) must hold for the covariance matrix of ϕ̄

(k)
s,a for all k ≥ 0 because the centered

feature maps ϕ̄
(k)
s,a depends on the iterates θ(k). This is in contrast to our Assumption 5.3, where

we use a single fixed covariance matrix for Q-NPG that is independent to the iterates, as defined
in (5.24).

In addition, the inequalities in (5.36) only involve half of the state-action visitation distri-
butions listed in (5.30), i.e., the first and the fourth terms. From (5.31), the upper bound of
Cν is obtained only through (5.6), which is a property of d̃ π itself for all policy π ∈ ∆(A)S .
Thus, Cν in (5.36) can share the same upper bound in (5.31) independent to the use of the
algorithm Q-NPG or NPG. Consequently, our concentrability coefficient assumption is weaker
than Assumption 2 in Cayci et al. (2021) which studies the linear convergence of NPG with
entropy regularization for the log-linear policy class. The reason is that the bound on Cν

in (5.31) does not depend on the policies throughout the iterations thanks to the use of d̃ (k)

instead of d̄ (k) (see Remark 5.10 as well). See Appendix D.6.2 for a thorough discussion on the
concentrability coefficient Cν .

Similar to Theorem 5.6, we also obtain a sublinear rate forNPGwhile using an unconstrained
constant step size.

Theorem 5.16. Fix a state distribution ρ, an state-action distribution ν and an optimal policy
π∗. We consider the NPG method (5.33) with any constant step size ηk = η > 0. Suppose that
Assumptions 5.12, 5.13 and 5.14 hold. Then we have for all k ≥ 0,

1
k

k−1∑
t=0

E
[
Vρ(π(t))

]
− Vρ(π∗) ≤ 1

(1− γ)k

(
D∗

0
η

+ 2ϑρ

)
+
√

Cν (ϑρ + 1)
1− γ

(√
ϵstat +√ϵapprox

)
.

Compared to Theorem 5.6, again here we require π∗ to be an optimal policy for the same
reason as indicated in Footnote 3. Furthermore our sublinear convergence guarantees for both
Q-NPG and NPG are the same. Compared to Theorem 29 in Agarwal et al. (2021), the main
differences are also similar to those for Q-NPG as summarized right after Theorem 5.6: our
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convergence rate improves from O(1/
√

k) to O(1/k); they use a diminishing step size of order
O(1/

√
k) while we can take any constant step size we want.

Despite the difference of using d̃ (k) instead of d̄ (k) for the compatible function approximation
LA(w(k), θ(k), d̃ (k)), notice that same sublinear convergence rate O(1/k) is established by Liu
et al. (2020) for NPG with constant step size, while their step size is bounded by the inverse
of a smoothness constant and they further require that the feature map is bounded and the
Fisher information matrix (5.10) is strictly lower bounded for all parameters θ ∈ Rm (see this
condition later in (5.37)). With such additional conditions, we are able to provide aO( 1

(1−γ)5ϵ2 )
sample complexity result of NPG next.

5.5.1 Sample complexity of NPG

Combined with a regression solver, NPG-SGD in Algorithm 15, which uses a slight modification
of Q-NPG-SGD for the unbiased gradient estimates of LA, we consider a sampled-based NPG
Algorithm 11 proposed in Appendix D.3 and show its sample complexity result in the following
corollary.

Corollary 5.17. Consider the setting of Theorem 5.15. Suppose that the sample-based NPG
Algorithm 11 is run for K iterations, with T gradient steps of NPG-SGD (Algorithm 15) per iteration.
Furthermore, suppose that for all (s, a) ∈ S ×A, we have ∥ϕs,a∥ ≤ B with B > 0, and we choose
the step size α = 1

8B2 and the initialization w0 = 0 for NPG-SGD. If for all θ ∈ Rm, the covariance
matrix of the centered feature map induced by the policy π(θ) and the initial state-action distribution
ν satisfies

E(s,a)∼d̃ θ

[
ϕ̄s,a(θ)(ϕ̄s,a(θ))⊤

]
≥ µIm, (5.37)

where Im ∈ Rm×m is the identity matrix and µ > 0, then

E
[
Vρ(π(K))

]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)K 2
1− γ

+
(ϑρ + 1)

√
Cνϵapprox

1− γ

+ 4
√

Cν (ϑρ + 1)
(1− γ)2

√
T

(
2B2

µ

(√
2m + 1

)
+
√

2m

)
.

Now we compare our Corollary 5.17 with Corollary 33 in Agarwal et al. (2021), which
is their corresponding sample complexity results for NPG. The main differences between
Corollary 5.17 and Corollary 33 in Agarwal et al. (2021) are similar to those for Q-NPG as
summarized right after Corollary 5.11: Their sample complexity is O( 1

(1−γ)11ϵ6
)while ours is
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Õ
( 1

(1−γ)5ϵ2
); they consider a projection step for the iterates and incorrectly bound the stochastic

gradient due to a similar error indicated in Footnote 5 (and see Appendix D.5.4 for more
details), while we assume Fisher-non-degeneracy (5.37).

Compared to Corollary 5.11, the sample complexities for both Q-NPG and NPG are the
same. The assumption (5.37) on the Fisher information matrix is much stronger than (5.32),
as (5.32) is independent to the iterates. However, despite the difference of using ν instead of ρ,
the Fisher-non-degeneracy (5.37) is commonly used in the optimization literature (Byrd et al.,
2016; Gower et al., 2016; Wang et al., 2017) and in the RL literature (Liu et al., 2020; Ding et al.,
2022; Yuan et al., 2022a). It characterizes that the Fisher information matrix behaves well as
a preconditioner in the NPG update (5.9). Indeed, (5.37) is directly assumed to be positive
definite in the pioneering NPG work (Kakade, 2001) and in the follow-up works on natural
actor-critic algorithms (Peters and Schaal, 2008a; Bhatnagar et al., 2009). It is satisfied by a
wide families of policies, including the Gaussian policy (Duan et al., 2016; Papini et al., 2018;
Huang et al., 2020) and certain neural policy with log-linear policy as a special case. We refer
to Liu et al. (2020, Section B.2) and Ding et al. (2022, Section 8) for more discussions on the
Fisher-non-degenerate setting.

To prove Corollary 5.17, our approach is inspired from the proof of the sample complexity
analysis of Liu et al. (2020, Theorem 4.9). That is, we require the Fisher-non-degeneracy (5.37)
and apply Theorem D.15 to the minimization of function LA(w, θ, d̃ θ) without relying on
the boundedness of the stochastic gradient. A proof sketch is provided in Appendix D.5.4.
Compared to their result, they obtain worse O( 1

(1−γ)7ϵ3
) sample complexity for NPG due to a

slower O(1/k) convergence rate.

5.6 Conclusion and discussion

In this chapter, for both NPG andQ-NPGmethods applied for the log-linear policy, we establish
the linear convergence results with non-adaptive geometrically increasing step sizes and the
sublinear convergence results with arbitrary large constant step sizes. Our work is the first
step of showing that the policy mirror descent proof techniques used in Xiao (2022) can be
extended in function approximation regime.

The main focus of this chapter was the theoretical analysis of NPG method. The results
we have obtained open up several experimental questions related to parameter settings for
NPG and Q-NPG. We leave such questions as an important future work to further support our
theoretical findings.

An interesting application from our work is to investigate the sample complexity of natural
actor-critic with our PMD analysis. Indeed, our work obtains w(k) by a regression solver.
One can also use temporal difference (TD) learning (e.g., Cayci et al. (2021), Chen and Theja
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Maguluri (2022), and Telgarsky (2022)) with Markovian sampling to achieve similar O(1/ϵ2)
sample complexity result. The performance analysis of TD learning will be expressed for ϵstat,
which directly imply the total sample complexity results through our theorems.

One natural question is whether we can extend our analysis to the general policy classes.
Here we provide one possible way. It can be extended by using a similar compatible function
approximation framework. Concretely, consider the parameterized policy

πs,a(θ) = exp(fs,a(θ))∑
a′∈A exp(fs,a′(θ)) ,

where fs,a(θ) is parameterized by θ ∈ Rm and is differential. AsAgarwal et al. (2021)mentioned,
the gradient can be written as

∇θ log πs,a(θ) = gs,a(θ) where gs,a(θ) = ∇θfs,a(θ)− Ea′∼πs(θ)
[
∇θfs,a′(θ)

]
.

The NPG update is equivalent to the following compatible function approximation framework

θ(k+1) = θ(k) − ηkw
(k)
⋆ , w

(k)
⋆ ∈ arg min

w
E(s,a)∼d̄ (k)

[(
As,a(θ(k))− w⊤gs,a(θ(k))

)2
]

.

AsAlfano and Rebeschini (2022, Remark 4.8) mentioned, if we assume that for all (s, a) ∈ S×A,
function f(θ) satisfies

fs,a(θ(k+1)) = fs,a(θ(k))− ηk(w(k)
⋆ )⊤gs,a(θ(k)),

which is the case for the log-linear policies, then one can easily verify that the NPG update
resulted in a new policy is also equivalent to the policy mirror descent update

π(k+1)
s = arg min

p∈∆(A)

{
ηk

〈
G(k)

s w(k), p
〉

+ D(p, π(k)
s )

}
, ∀s ∈ S,

where G
(k)
s ∈ R|A|×m is a matrix with rows (gs,a(θ(k)))⊤ ∈ R1×m for a ∈ A. Consequently, one

can extend our work naturally in this general setting to derive linear convergence analysis for
NPG. We refer to the recent work of Alfano et al. (2023) that follow this research direction and
generalize our results to the general parametrization including the neural networks as special
cases.

Perhaps one can consider the exponential tilting, a generalization of Softmax to more general
probability distributions. Another interesting venue of investigation is to consider the generalized
linear model instead of linear function approximation for the Q function and the advantage
function.
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One interesting open question is that is there a way to increase stepsize when the discount
factor is unknown. So far the PMD proof techniques used in Lan (2022) and Xiao (2022)
and ours require that the discount factor is known. Perhaps the work of Li et al. (2022b) can
help to find a way to increase stepsize when the discount factor is unknown. Indeed, Li et al.
(2022b) consider the averaged MDP setting. So there is no discount factor. They achieve linear
convergence for NPG by increasing the stepsize with some regularization parameters. It will
be interesting to investigate if the way of increasing stepsize in Li et al. (2022b) can be applied
in our setting.
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Chapter 6

General Conclusion and Perspectives

6.1 About Stochastic Second Order Methods in Optimization

The first part of this thesis was devoted to design new globally convergent stochastic sec-
ond order methods. We first developed a new Sketched Newton-Raphson (SNR) method
(Algorithm 1) for solving large scale nonlinear equations by using the sketch-and-project
techniques. We established the global convergence analysis of SNR by rewriting SNR as a
variant of online stochastic gradient descent (SGD), and then leveraging proof techniques of
SGD. SNR is so general that it accommodates the existing method (Stochastic Newton Method
(SNM) (Rodomanov and Kropotov, 2016; Kovalev et al., 2019)), but also allows for the design
of completely new methods, such as the Tossing-Coin-Sketch (TCS) method (Algorithm 5),
the nonlinear Kaczmarz method (2.37) (Wang et al., 2022) and a variant of Stochastic Polyak
method (Gower et al., 2021a). In particular, TCS is efficient, scales well with the number of
samples for solving generalized linear models (GLMs), and is competitive as compared to
classical variance reduced gradient methods.

Then, by adding adaptive norms for the projection, we extended SNR to a more general
Sketched Newton-Raphson with Variable Metric (SNRVM) method (3.18), equipped with
a global convergence theory. SNRVM is more general than SNR that it includes SNR and
Randomized Subspace Newton method (Gower et al., 2019a) as special cases. Through the
umbrella of SNRVM, we developed a new Stochastic Average Newton (SAN) method (Algo-
rithm 2) and SANA (Algorithm 3) for solving finite sum optimization problems. In particular,
SAN is incremental. That is, it samples only one single data point per iteration. SAN is efficient.
It costs O(d) per iteration for GLMs with the dimension d of the features. Last but not least,
SAN requires no parameter tuning (e.g. step size), neither knowledge from the problem (no
smoothness constant). As a result, SAN is also empirically highly competitive as compared to
variance reduced gradient methods.
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Overall, we presented a principled approach for designing stochastic Newton methods for
solving both nonlinear equations and optimization problems. Our approach has two steps.
First, we can re-write the nonlinear equations or the optimization problem as desired nonlinear
equations. Second, we apply SNRVM to solve this system of nonlinear equations.

There are many ways to re-write the nonlinear equations into another nonlinear equations,
such as introducing auxiliary variables and using function splitting or variable splitting for-
mulation as we demonstrated for TCS, SNM, SAN and SAGA. Each re-write leads to a distinct
method when using SNRVM. As such, we believe that SNRVM and its global convergence
theory will open the way to designing and analyzing a host of new stochastic second order
methods. This will be a very exciting direction for future work.

At the same time, there are alsomanyways to apply SNRVMby choosing different sketching
matrices or by varying different norms for the projection step. For instance, one promising
direction is to use new sophisticated sketching matrices, such as the Walsh-Hadamard matrix
(Lu et al., 2013; Pilanci and Wainwright, 2016), the fast Johnson-Lindenstrauss sketch (Pilanci
and Wainwright, 2017), sketches with determinantal sampling (Mutny et al., 2020), the count
sketch (Clarkson and Woodruff, 2017) and the SubCount sketch (Gazagnadou et al., 2022), to
design even faster variants of SNRVM or cover other stochastic second-order methods.

Perhaps the most exciting direction for future work is to extend SNRVMwith regularization.
Recently, there has been a surge of interest in developing variants of Newton’s method and
cubic Newton’s method by adding regularization (Mishchenko, 2021; Doikov and Nesterov,
2021; Doikov et al., 2022) along with strong global convergence guarantees (e.g., O(1/k2),
O(1/k3) which are much faster than O(1/k) convergence rate for gradient descent). However,
these methods are deterministic, their stochastic forms for solving large-scale problems remain
undiscovered. Thus there is still much to explore in designing new stochastic regularized
Newton’s method with the use of SNRVM. This will greatly extend SNRVM to much broader
applications and keep versatile convergence guarantees.

6.2 About Finite Time Analysis of Policy Gradient Methods in Rein-
forcement Learning

In the reinforcement learning (RL) part of this thesis, we studied the finite time analysis of the
vanilla policy gradient (PG) methods in Chapter 4 and natural policy gradient (NPG) methods
in Chapter 5, respectively. We first adapted the modern proof techniques of SGD at the time of
writing to establish a general but thorough finite time analysis of vanilla PG (Algorithm 4).
The key assumption we used is the ABC assumption. This assumption allows us to unify much
of the recent fragmented results in the RL literature and derive a better understanding for the
hyperparameter choices of the PG algorithm. Combined with an additional (weak) gradient
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domination assumption, we established the global optimum convergence results of vanilla PG
and improved the current best known sample complexity results of the Fisher-non-degenerate
policy from O(1/ϵ4) to O(1/ϵ3) for the stochastic vanilla PG.

One exciting future direction is that the generality of Theorem 4.4 opens the possibility to
identify a broader set of configurations (i.e., MDP and policy space) for which PG is guaranteed
to converge, notably thinking about settings such that the constant A in the ABC assumption
is non-zero, using additional assumptions such as the bijection assumptions based on the
occupancy measure space (Zhang et al., 2020a; Zhang et al., 2021a) to not only get improved
sample complexity for the global optimum convergence, but also allow a wider range of
hyperparameter choices for the convergence. Another interesting future direction might be
whether the ABC assumption analysis can be extended to the sample complexity analysis of
the actor-critic (Yang et al., 2019; Kumar et al., 2021; Xu et al., 2020c). As mentioned in Section
4.5, Fatkhullin et al. (2022) naturally extend the SGD upper bound performance of Khaled and
Richtárik (2023) and Yuan et al. (2022a). This might extend our PG analysis to even broader
RL settings.

We thenmoved a step further to the finite time analysis of the (Q)-NPGmethods (Algorithm
11 and 12), which are arguably one of the most important variants of the vanilla PG. Inspired
from the proof techniques of Xiao (2022), we extend their linear convergence results of NPG
from the softmax tabular policy to the log-linear policy with non-adaptive geometrically
increasing step size. Our analysis relies on the reformulation of (Q)-NPG as the policy mirror
descent (PMD) methods. The two main ingredients of our analysis are the three-point descent
lemma (Lemma D.14) and the performance difference lemma (Lemma D.4). Thanks to the
fast linear convergence results, we also established the fast Õ(1/ϵ2) sample complexity results
for (Q)-NPG.

Our work of fast linear convergence analysis of NPG for the log-linear policies might inspire
the current NPG convergence analysis in the function approximation regime from different
perspectives. One important future direction is whether our proof techniques and the use of
non-adaptive geometrically increasing step size can help improve the two-layer neural natural
actor-critic (NAC) convergence analysis (Wang et al., 2020; Cayci et al., 2022a). Same interesting
question can be asked for the linear MDP setting (Jin et al., 2020) to improve the analysis of
Zanette et al. (2021) and Hu et al. (2022). As for the sample complexity analysis, it would
be interesting to see if our work can improve the sample complexity analysis of NPG with
Markovian sampling in Xu et al. (2020c) or the one with the off-policy sampling in Chen et al.
(2022b).

Through our analysis of PG and NPG, the modern optimization results play an essential
role. Our works are possible only because of the significant progress of these new improved
optimization results. For instance, there has been extensive research on development of the
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performance of SGD in recent years (Ghadimi and Lan, 2013; Zhou and Gu, 2019; Gower et al.,
2019b; Khaled and Richtárik, 2023; Gower et al., 2021c; Arjevani et al., 2022; Zhou et al., 2022;
Fatkhullin et al., 2022; Sa et al., 2022), including the lower bound and upper bound analysis of
SGD performance. This provides a motivation that whether these SGD analysis can give some
fresh understanding to RL algorithms. Some of these SGD analysis only deal with finite-sum
structure, it might remains challenging to extend the analysis to the RL specific structure as we
did for the vanilla PG.

It is noteworthy that all our analysis of PG and NPG are for the first-order stationary
point (FOSP) convergence or for the global optimum convergence. It will be also interesting
to investigate the performance of PG and NPG through the second-order stationary point
convergence as Yang et al. (2021) did for the PG methods.

Recently, there has been a great success for variance reduced methods to improve the
convergence rate of SGD, such as SVRG (Johnson and Zhang, 2013), SARAH (Nguyen et al.,
2017), SPIDER (Fang et al., 2018), SpiderBoost (Wang et al., 2019), STORM (Cutkosky and
Orabona, 2019), SNVRG (Zhou et al., 2020), PAGE (Li et al., 2021b), and more (Tran-Dinh
et al., 2021). The RL community has then a great interest of applying these variance reduction
techniques to improve the performance of PG methods, which results in SVRPG (Papini et al.,
2018), SRVR-PG (Xu et al., 2020b), STORM-PG (Yuan et al., 2020) and ProxHSPGA (Pham et al.,
2020). Leveraging these variance reduction techniques has led to an overall improved sample
complexity of reaching FOSP. However, all these works require either the exact full gradient
updates or large batch sizes per iteration. Liu et al. (2020) and Ding et al. (2022) establish the
global optimum sample complexity analysis of SRVR-PG and STORM-PG, respectively. It will
be interesting to understand whether the ABC assumption analysis can be applied to these
algorithms and possibly allow for a wider range of hyperparameter choices, including the batch
size. Furthermore, inspired from SARAH (Nguyen et al., 2017), Yang et al. (2022) and Huang
et al. (2022) develop variance reduced versions of PMD. Similarly, Liu et al. (2020) also develop
a variance reduced version of NPG. It will be interesting to consider other variance reduction
techniques applied to PMD or NPG and see if our sample complexity analysis of PMD and
NPG can help to improve their sample complexity analysis. When the gradient domination
type assumptions are available, it will be interesting to rethink if we can achieve faster sample
complexity for these variance reduced PG and NPG methods as we did for the vanilla PG. One
of these cases was answered positively by the work of Fatkhullin et al. (2022) with their new
variance reduced algorithm – PAGER.

On the other side, PG and NPG have been applied to a variety of domains beyond the
common MDP setting. Understanding the limits of performance of these methods in different
setting has become an important avenue of research in recent year. For instance, the performance
of PG and NPG to achieve the Nash equilibrium is investigated in different game settings,
such as the Markov potential games (Leonardos et al., 2022; Zhang et al., 2022b), zero-sum
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matrix games (Cen et al., 2021b; Pattathil et al., 2022) and Markov games (Cen et al., 2021b;
Pattathil et al., 2022; Zhang et al., 2022a; Cen et al., 2022). Other interesting settings for the
analysis of PG and NPG include the multi-objective RL setup (Bai et al., 2021; Agarwal et al.,
2022), the partially observed MDP (Cayci et al., 2022b) and the constrained MDP (Ding et al.,
2020; Ying et al., 2022). The very interesting open question here is that whether the proof
techniques we used for the analysis of PG and NPG in this thesis can immediately help improve
the performance of these settings we just mentioned above.

6.3 Importing Stochastic Second-order Methods into RL

Finally, we would like to end this thesis by discussing the future direction where stochastic
second-order methods can be applied into RL. This would bridge the seemingly independent
Part I and Part II of the thesis together.

In spite of the success of PG and its variants, stochastic second-order methods applied into
RL appears to be relatively lacking both in the literature and in practice. Intuitively, the use of
the second-order information for the updates will help to accelerate the rate of convergence,
hence improve the sample complexity of the algorithms. It might also require less parameter
tuning, as compared to first-order algorithms. Recently, stochastic cubic regularized Newton
has been applied to solve RL problems and achieved promising results (Masiha et al., 2022).
Their global optimum convergence analysis benefits from the use of gradient domination
property.

As presented in Part I of the thesis, we have a way to design many new stochastic second-
order methods for solving optimization problems. It will be very interesting to see whether
these second-order methods can be applied in RL. Furthermore, it will also be interesting to
analysis these second-order methods using the proof techniques of PG, NPG or SNRVM.
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Chapter 7

Introduction étendue en Français

7.1 Méthodes du Second Ordre Stochastiques en Optimisation

7.1.1 Contexte

Optimisation en IA. Au cours de la dernière décennie, nous avons témoigné le progrès
de l’intelligence artificielle (IA), également appelée apprentissage automatique. Elle a été
largement appliquée dans la société, du traitement automatique des langues, la vision par
ordinateur, à la recommandation des publicités en ligne et même à la robotique, pour n’en
citer que quelques-unes. Par exemple, dans le traitement automatique des langues, il existe des
problèmes de traduction automatique, comme Google translate, et des problèmes de chatbot,
comme ChatGPT. Dans le domaine de la vision par ordinateur, il existe des problèmes de seg-
mentation, de classification d’images, et de détection d’objets, etc. En particulier, l’optimisation
joue un rôle important dans l’IA. En fait, le problème de l’intérêt peut être formalisé sous la
forme d’une fonction de perte f de paramètre w ∈ Rd dans la dimension d. Par exemple, une
fonction f peut ressembler à celle de la Figure 7.1. Ici, la dimension de la fonction est de 3, pour
simplifier. L’objectif est de concevoir un algorithme permettant de trouver automatiquement
le meilleur paramètre w∗ pour minimiser la fonction de perte afin qu’elle puisse s’adapter au
modèle d’IA.

Méthodes du premier ordre. Une méthode très classique pour résoudre ce problème est la
méthode itérative – Descente de Gradient. C’est-à-dire qu’à la k-ième itération, le paramètre wk

est mis à jour comme suit,
wk+1 = wk − ηk ∇f(wk),
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Figure 7.1 – Paradigme d’optimisation.

où ηk est la taille du pas, également connu sous le nom de taux d’apprentissage. La descente
de gradient est également appelée méthode du premier ordre, car elle implique la dérivée
première de la fonction.

Il s’agit d’une méthode d’optimisation très simple. Cependant, le problème des méthodes
du premier ordre est qu’elles peuvent nécessiter un réglage important des paramètres et/ou
une connaissance des paramètres du problème. Par exemple, la taille du taux d’apprentissage
dépend de l’échelle de la fonction. En effet, étant donné une fonction f , le minimum de f est
identique au même problème multiplié par un nombre positif C, comme dans la figure 7.2. En
revanche, les mises à jour de leur descente de gradient ne sont pas les mêmes. La deuxième
mise à jour est proportionnelle à C. Donc, la descente de gradient est difficile à régler, car
elle dépend fortement de l’échelle de la fonction. Par conséquent, le praticien doit injecter
des connaissances de domaine à un niveau supérieur sur la manière dont les composants de
modélisation interagissent pour qu’une méthode du premier ordre fonctionne bien. Cette
dépendance à l’égard des méthodes du premier ordre limite en fin de compte le choix et le
développement des modèles alternatifs.

Méthodes du second ordre. Examinons maintenant la méthode de Newton, qui est une autre
méthode itérative classique pour minimiser f . En d’autres termes, à la k-ième itération, on fait

wk+1 = wk − η∇2f(wk)−1∇f(wk).

La méthode de Newton est également appelée méthode du second ordre, car elle fait intervenir
la dérivée seconde de la fonction.

Grâce à l’accès aux informations du second ordre, lamise à jour de laméthode deNewton est
capable de capturer la courbure locale de la fonction f , ce qui permet d’améliorer la direction de
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Figure 7.2 – La descente de gradient dépend de l’échelle de la fonction.

la mise à jour par rapport à la méthode de descente de gradient. Cela conduit à une convergence
plus rapide par rapport à la méthode de descente de gradient.

Plus important encore, la méthode de Newton est invariante à l’échelle. En effet, lorsque le
problème est multiplié par un nombre positif C, la mise à jour de la méthode de Newton reste
la même. C’est-à-dire,

wk+1 = wk − η∇2f(wk)−1∇f(wk) ⇐⇒ wk+1 = wk − η∇2(C · f(wk))−1∇(C · f(wk)).

Par conséquent, il est beaucoup plus facile d’ajuster la taille du taux d’apprentissage de la
méthode de Newton que celle de la descente de gradient. Cependant, le calcul de l’opérateur
inverse∇2f(wk)−1 est coûteux. Le coût par itération est de d3, ce qui est prohibitif lorsque d

est grand. Une question naturelle se pose alors :

Peut-on atteindre le meilleur des deux mondes ?

C’est-à-dire avoir un algorithme qui ne souffre pas du réglage des paramètres, comme la taille
du taux d’apprentissage, et qui maintient toujours un coût de calcul pas cher, même que les
méthodes du premier ordre. Dans la première partie de la thèse, cette question sera abordée
de manière positive.

7.1.2 Nouvelles méthodes du second ordre stochastiques

La croissance significative de la quantité des données dans les applications récentes d’apprentissage
automatique (comme la publicité sur le web et la bio-informatique) empêche l’utilisation des
méthodes de gradient déterministes ou des méthodes de Newton déterministes. Pour résoudre
les problèmes d’apprentissage automatique à grande échelle, les méthodes stochastiques du
premier ordre telles que Descente de Gradient Stochastique (Robbins and Monro, 1951, SGD),
ADAGRAD (Duchi et al., 2011) et ADAM (Kingma and Ba, 2015) sont les méthodes de choix
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dans la pratique en raison de leur faible coût par itération. Comme nous l’avons mentionné
précédemment, le réglage de la taille des taux d’apprentissage peut prendre beaucoup de temps.
Il y a maintenant un effort concerté pour développer des méthodes stochastiques efficaces du
second ordre (Gupta et al., 2018) pour résoudre les problèmes d’apprentissage automatique
à grande échelle. La motivation est qu’ils nécessitent moins de réglage des paramètres et
convergent pour une plus grande variété de modèles et d’ensembles de données.

Dans cette première partie de la thèse, nous avons présenté une approche de principe
afin de designer des méthodes stochastiques du second ordre pour résoudre à la fois des
équations non linéaires et des problèmes d’optimisation de la somme finie d’une manière
efficace. Notre approche comporte deux étapes. Premièrement, nous pouvons réécrire les
équations non linéaires ou le problème de la somme finie comme des équations non linéaires
souhaitées, en utilisant des astuces de séparation de variables ou de fonctions. Ensuite, nous
appliquons de nouvelles méthodes du second ordre stochastiques pour résoudre ce système
d’équations non linéaires. Pour les nouvelles méthodes du second ordre stochastiques, nous
présentons la méthode de Sketched Newton-Raphson (SNR) au Chapitre 2 et la méthode de
Sketched Newton-Raphson avec une métrique variable (SNRVM), qui est une extension de la
méthode SNR dans la Section 3.4, Chapitre 3. SNR et SNRVM sont des variantes de la méthode
de Newton-Raphson (NR) et peuvent avoir le même coût que SGD par itération lors de la
résolution de problèmes de la somme finie. Cela permet de résoudre le souci de la méthode
NR originale, dont le coût par itération est prohibitif lorsque la dimension des équations non
linéaires est considérable. L’idée d’avoir un coût de calcul pas cher par itération est l’utilisation
d’un outil stochastique : la technique de sketch-and-project (Gower and Richtárik, 2015b), qui
nous permet de réduire la dimension du système de Newton et donc de rendre le coût de calcul
par itération raisonable. À travers le SNR général et le SNRVM, nous présentons de nombreux
nouveaux algorithmes spécifiques du second ordre qui peuvent résoudre efficacement les
problèmes d’apprentissage automatique à grande échelle avec une structure de la somme finie
sans besoin d’une connaissance du problème ni trop de réglage des paramètres. Vous trouverez
plus de détails sur nos contributions dans la section suivante.

7.1.3 Plan et contributions de la Partie I

L’objectif général de la recherche qui mène la première partie de la thèse peut être formulé
comme suivant

concevoir un algorithme d’optimisation pour résoudre les problèmes d’apprentissage automatique à
grande échelle, tel qu’il est incrémental et efficace, qu’il s’adapte bien à la dimension du problème et qu’il

nécessite moins de réglage des paramètres.
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Pour atteindre cet objectif, notre première tentative est de proposer une nouvelleméthode du
second ordre stochastique – Sketched Newton-Raphson (SNR) dans le Chapitre 2 qui combine
la méthode de Newton-Raphson avec la technique de sketch-and-project (Gower and Richtárik,
2015b). Dans l’ensemble, notre principale contribution est une analyse approfondie du SNR
sous différentes formes (par exemple, TCS dans la Section 2.8, méthode de Kaczmarz non
linéaire (Wang et al., 2022) et méthode de Newton stochastique (Rodomanov and Kropotov,
2016; Kovalev et al., 2019, SNM)), avec la théorie de la convergence globale associée. À
haut niveau, nous montrons comment SNR ouvre la porte à la construction et à l’analyse de
nombreuses nouvelles méthodes du second ordre stochastiques (par exemple, TCS et méthode
de Kaczmarz non linéaire (Wang et al., 2022)), ou à la récupération de méthodes du second
ordre stochastiques existantes avec un bénéfice de la nouvelle théorie de convergence (par
exemple, SNM (Rodomanov and Kropotov, 2016; Kovalev et al., 2019) et la méthode deNewton-
Raphson originale). En ce qui concerne les théories de convergence de SNR, nous reformulons
la méthode comme une variante de la méthode SGD. Cette reformulation est intéressante.
Il s’avère que la reformulation est toujours une fonction smooth et interpolée. La condition
d’interpolation signifie que la fonction a zero bruit pour le gradient stochastique à l’optimum.
Ces propriétés sont fréquemment utilisées dans les preuves de convergence de SGD (Ma et al.,
2018; Vaswani et al., 2019a). Grâce à cette reformulation, nous établissons la théorie de la
convergence globale et les taux de convergence sous des hypothèses de type convexe en utilisant
des techniques de preuve de SGD. Grâce à cette reformulation, notre théorie fournit également
une nouvelle théorie de convergence globale pour la méthode de Newton-Raphson originale
sous des hypothèses strictement plus faibles par rapport à la théorie de convergence monotone
classique (Ortega and Rheinboldt, 2000; Deuflhard, 2011). Grâce au cadre général du SNR, nous
préconisons le "Tossing-Coin-Sketch" – en bref, TCS – qui résout efficacement les problèmes
d’apprentissage automatique à grande échelle. Quant à notre objectif de recherche, TCS est
incrémental. Il est capable de ne prendre qu’un seul point de données par itération. Lors de
l’échantillonnage d’un seul point de données par itération, TCS s’adapte bien à l’échelle du
problème. Dans ce cas, le coût de calcul par itération est identique à celui de SGD. La méthode
TCS nécessite également moins de réglage des paramètres de la taille du taux d’apprentissage
par rapport à la méthode de premier ordre (par exemple SGD et ADAM (Kingma and Ba,
2015)), ce qui est normal puisqu’il s’agit d’une méthode de second ordre. Nous montrons à
l’aide d’expériences numériques que TCS est compétitive par rapport aux méthodes classiques
de gradient à variance réduite (par exemple SAG (Schmidt et al., 2017) et SVRG (Johnson and
Zhang, 2013)). Cependant, TCS est efficace lorsqu’elle utilise un échantillonnage dumini-batch.
Il converge lentement en expérience avec l’utilisation d’un seul point de données par itération.
Pour que TCS fonctionne efficacement, il est nécessaire d’ajuster la taille de sketching. Par
conséquent, l’objectif de la recherche est partiellement atteint, car nous devons encore ajuster
la taille de sketching pour rendre l’algorithme efficace.
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Motivés par notre objectif de recherche, plus précisément par la recherche d’un nouvel
algorithme au-dessus du TCS qui nécessite moins de réglage des paramètres, y compris non
seulement la taille du taux d’apprentissage mais aussi la taille de sketching, nous proposons
Stochastic Average Newton (SAN) dans le Chapitre 3. En utilisant une approche similaire que
SNR pour construire de nouvelles méthodes du second ordre stochastiques, nous développons
SAN, qui est incrémental, dans le sens qu’il ne nécessite qu’un seul point de données par
itération. Il est également peu coûteuse à mettre en œuvre lors de la résolution de modèles
linéaires généralisés régularisés à grande échelle, avec le même coût par itération que SGD.
Nous montrons par les expériences numériques que SAN est paramètre-free et compétitive
par rapport aux méthodes de gradient à variance réduite (par exemple SAG (Schmidt et al.,
2017) et SVRG (Johnson and Zhang, 2013)). Pour fournir une théorie de la convergence de nos
méthodes, nous étendons SNR à SNRVM qui permet une métrique variable et qui inclut SAN
comme un cas particulier.

Au total, la Partie I transmet un message conceptuel selon lequel il est possible de constru-
ire de nombreuses nouvelles méthodes du second ordre stochastiques capables de résoudre
efficacement des problèmes d’apprentissage automatique à grande échelle sans connaissance
du problème, ni réglage des paramètres.

7.2 Analysis de Temps Fini des Méthodes de Policy-Gradient en
Apprentissage par Renforcement

Dans la deuxième partie de la thèse, nous nous concentrons ensuite sur les algorithmes
d’optimisation appliqués à un domaine spécifique : l’apprentissage par renforcement (RL).
Cette partie est indépendante de la première partie de la thèse.

7.2.1 Apprentissage par renforcement

Nous avons obtenu quelques résultats les plus impressionnants de l’IA dans le domaine de RL,
comme les jeux vidéos et le jeu de Go (Mnih et al., 2015; Silver et al., 2017; OpenAI et al., 2019;
Vinyals et al., 2019), le véhicule autonome (Shalev-Shwartz et al., 2016; Kiran et al., 2022), la
robotique (Kober et al., 2013; Levine et al., 2016; Gu* et al., 2017; Levine et al., 2018) et bien plus
encore. Alors, qu’est-ce que RL ? La réponse courte est que RL consiste à apprendre dans un
environnement inconnu par des essais et des échecs pour prendre des décisions séquentielles.

Processus de décision markovien (MDP). Dans le paradigme traditionnel du RL, comme
le montre la Figure 7.3, L’interaction entre un agent et un environnement peut être modélisé
comme un processus de décision markovien (Puterman, 1994, MDP). Au temps t, l’agent est à
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l’état st quelque part dans l’environnement. L’environnement peut être modélisé comme un
espace d’états S. Ensuite, l’agent prend une action at parmi toutes les actions possibles dans
l’espace des actions A. En fonction de l’état actuel st et de l’action prise at, l’environnement
conduira l’agent à l’état suivant st+1 avec une probabilité de transition P , également connue
sous le nom de dynamique de l’environnement. Grâce à cette interaction, l’agent gagnera une
récompense r(st, at)1. En particulier, l’action at est choisie selon la politique π ∈ ∆(A)S , qui
est une fonction de l’espace d’état S vers le simplexe de probabilité de l’espace d’action ∆(A).
Nous notons πst,at ∈ R la densité du choix de l’action at sur l’espace des actions à l’état st et
πst ∈ ∆(A) est la distribution des actions à l’état st. Ainsi, une politique induit une distribution
sur les trajectoires {st, at, r(st, at)}t≥0.

Figure 7.3 – Un agent interagit avec l’environnement, en essayant de prendre des actions intelligentes
pour maximiser les récompenses cumulées.

L’optimisation de la politique. L’objectif de l’agent est de résoudre le MDP. C’est-à-dire, il
s’agit de trouver la politique optimale de sorte que la totale des récompenses cumulées sur la
trajectoire en espérence Vρ(π), définie comme

Vρ(π) def= Es0∼ρ, at∼πst , st+1∼P(·|st,at)

[ ∞∑
t=0

γtr(st, at)
]

,

soit maximale. Le problème est également appelé optimisation de la politique. Ici, l’espérance
est liée à la distribution de l’état initial ρ ∈ ∆(S) pour s0, suivie de la politique π et de la
dynamique P . Le γ ∈ [0, 1) est le facteur d’actualisation qui définit l’importance des récom-
penses futures. Un γ proche de 0 signifie que seuls les récompenses à court terme sont prises
en compte, par conséquence, les récompenses anciennes auront un faible impact ; un γ proche
de 1 signifie que nous nous concentrons sur les récompenses à long terme.

En pratique, l’espace de politique est très large. Pour réduire les dimensions et rendre le
calcul faisable, la politique π est souvent paramétrée comme π(θ) avec θ ∈ Θ ⊂ Rd appartenant

1Au Chapitre 5, nous utilisons le coût au lieu de la récompense pour mieux aligner sur la convention de
minimisation dans la littérature de l’optimisation.
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à une certaine famille Θ. La fonction Vρ(π(θ)) dépend donc du paramètre θ et nous utilisons
l’abréviation Vρ(θ) def= Vρ(π(θ)). Notre objectif est maintenant de trouver le paramètre optimal
θ pour maximiser Vρ(θ), ce qui peut être formulé comme le problème suivant

arg max
θ∈Θ

Vρ(θ) def= Es0∼ρ, at∼πst (θ), st+1∼P(·|st,at)

[ ∞∑
t=0

γtr(st, at)
]

.

Tout au long de la thèse, nous considérons Θ = Rd en général sans spécification.

7.2.2 Méthodes de policy-gradient

Naturellement, nous pouvons considérer la maximisation de Vρ(θ) comme un problème
d’optimisation. Nous pouvons donc le résoudre à l’aide de méthodes de type ascente de
gradient, connues sous le nom de Policy-Gradient (PG) en RL. En d’autres termes, à la k-ième
itération, on fait

θk+1 = θk + ηk∇θVρ(θ).

PG est populaire en RL en raison de sa simplicité. Par exemple, il est plus facile à mettre en
œuvre et à utiliser dans la pratique que les méthodes basées sur la valeur (value-based) ou sur
le modèle, qui sont des méthodes spécifiques en RL. PG peut résoudre un grand ensemble de
problèmes, y compris les environnements non markoviens et partiellement observables.

La popularité de PG est également due à sa polyvalence. Tout d’abord, PG dispose
de plusieurs formes, telles que REINFORCE (Williams, 1992), PGT (Sutton et al., 2000),
GPOMDP (Baxter and Bartlett, 2001) et actor-critic (Konda and Tsitsiklis, 2000). Il peut
être efficacement associé à des techniques d’optimisation pour obtenir des algorithmes plus
sophistiqués. Par exemple, le gradient naturel de la politique (Kakade, 2001, NPG) est une
application directe de la méthode du gradient naturel (Amari, 1998) de l’optimisation au RL, et
la descente en miroir de la politique (Lan, 2022; Xiao, 2022, PMD) est inspirée de la descente en
miroir (Nemirovski and Yudin, 1983; Beck and Teboulle, 2003) en optimisation. Combinée aux
techniques à variance réduite, telles que SVRG (Johnson and Zhang, 2013), SARAH (Nguyen
et al., 2017), SPIDER (Fang et al., 2018), SpiderBoost (Wang et al., 2019), STORM (Cutkosky
and Orabona, 2019), SNVRG (Zhou et al., 2020), PAGE (Li et al., 2021b), et plus encore (Tran-
Dinh et al., 2021), de nombreuses méthodes de PG à variance réduite en RL (Papini et al., 2018;
Shen et al., 2019; Xu et al., 2020b; Yuan et al., 2020; Huang et al., 2020; Pham et al., 2020; Yang
et al., 2022; Huang et al., 2022) ont été développées récemment. En fait, les algorithmes de
l’état de l’art actuel en optimisation de la politique, comme TRPO (Schulman et al., 2015) et
PPO (Schulman et al., 2017), sont développés en utilisant des structures spécifiques de RL
et des techniques d’optimisation (par exemple, la méthode de la région de confiance et la
méthode proximale). Dans l’ensemble, les variantes des méthodes de PG avec des techniques
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d’optimisation se sont révélées avoir des succès empiriques impressionnants (Schulman et al.,
2015; Lillicrap et al., 2016; Mnih et al., 2016; Schulman et al., 2017; Haarnoja et al., 2018), en
particulier dans le RL profond.

Malgré le succès des méthodes de PG dans la pratique, une solide compréhension théorique
même de PG original a longtemps été difficile à obtenir jusqu’à récemment. Cependant, la
littérature reste fragmentaire. Une partie de la littérature se concentre sur l’analyse de PG
déterministe, y compris le travail de pionnier de Agarwal et al. (2021) et d’autres travaux
(Zhang et al., 2020a; Mei et al., 2020) ; certains se concentrent sur le PG stochastique (Papini,
2020; Liu et al., 2020; Zhang et al., 2020b; Xiong et al., 2021). En termes de résultats, ils
s’appuient sur différents critères de convergence, tels que la convergence du point stationnaire
de premier ordre (Papini, 2020; Zhang et al., 2020b), la convergence vers l’optimum global
(Agarwal et al., 2021; Zhang et al., 2020a; Mei et al., 2020) et le regret moyen par rapport à
l’optimum global (Zhang et al., 2021b; Liu et al., 2020). Différents résultats sont appliqués
dans différents environnements de RL, tels que la politique tabulaire de softmax avec ou sans
différentes régularisations (Agarwal et al., 2021; Zhang et al., 2020a; Zhang et al., 2021b; Mei
et al., 2020), ou avec des hypothèses différentes, telles que la politique Lipschitz et smooth (Liu
et al., 2020; Zhang et al., 2020b; Xiong et al., 2021) et l’hypothèse de la bijection entre l’espace
primal et l’espace dual (Zhang et al., 2020a). En particulier, une grande partie de la littérature
nécessite un grand mini-batch de trajectoires échantillonnées, telles que O(ϵ−1) ou O(ϵ−2)
trajectoires par itération pour les mises à jour stochastiques des paramètres (Papini, 2020; Liu
et al., 2020; Zhang et al., 2020b; Xiong et al., 2021). Ici, ϵ est la précision de la performance. Cela
est étrange, car dans la littérature sur la théorie de la convergence SGD en optimisation, une
seule donnée par itération n’est généralement pas un problème.

Le deuxième défi de PG est que, contrairement aux méthodes basées sur la valeur ou sur le
modèle, les méthodes de PG existantes ne sont pas efficaces pour l’échantillonnage en théorie.
Récemment, Xiao (2022) a prouvé que la méthode NPG était efficace pour le cas tabulaire
avec une convergence linéaire, ce qui est aussi le taux de convergence des méthodes basées sur
la valeur, tel que l’algorithme d’itération sur la politique (Puterman, 1994; Bertsekas, 2012).
Comme mentionné, NPG (Kakade, 2001) s’inspire de la méthode du gradient naturel (Amari,
1998), utilise un préconditionneur pour améliorer la direction de PG, similaire aux méthodes
de quasi-Newton en optimisation classique (Martens, 2020). Pouvons-nous donc étendre la
convergence linéaire de NPG du régime tabulaire au régime d’approximation des fonctions,
qui est un cas plus réaliste dans la pratique ? En outre, NPG est important. C’est la pierre
angulaire de TRPO (Schulman et al., 2015) et de PPO (Schulman et al., 2017). Il est donc très
intéressant de bien comprendre NPG et de repousser ses limites. Nous abordons ces deux défis
de PG dans la deuxième partie de la thèse, séparément.
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7.2.3 Plan et contributions de la Partie II

A la lumière de ce qui précède, cette deuxième partie de la thèse est consacrée à une meilleure
compréhension théorique desméthodes de PG. Nous posons la question suivante : pourquoi les
méthodes de PG sont-elles efficaces et comment justifier le choix de leurs hyper paramètres ? En
utilisant la structure de RL du problème et des techniques modernes de preuve d’optimisation
(Khaled and Richtárik, 2023; Lan, 2022; Xiao, 2022), nous dérivons de nouvelles analyses en
temps fini de PG original et de NPG dans les Chapitres 4 et 5, respectivement.

Tout d’abord, dans le Chapitre 4, nous adaptons des outils récents développés pour l’analyse
de SGD dans l’optimisation non convexe de Khaled and Richtárik (2023) afin d’obtenir des
garanties de convergence et de complexité d’échantillon pour le PG original, y compris REIN-
FORCE (Williams, 1992), PGT (Sutton et al., 2000) et GPOMDP (Baxter and Bartlett, 2001).
Tout au long de la thèse, nous appellerons les mises à jour de REINFORCE, PGT et GPOMDP
PG vanille. Notre principale contribution est de fournir une analyse générale de PG vanille
avec des hypothèses plus faibles par rapport à la littérature. Cette analyse générale permet
non seulement d’unifier la plupart des résultats fragmentés de la littérature sous une même
forme, mais aussi de retrouver les meilleurs résultats pour chaque contexte, avec un intervalle
de choix d’hyper paramètres plus large, ce qui peut avoir un grand intérêt dans la pratique,
et parfois même d’améliorer les résultats existants avec une hypothèse supplémentaire de
domination du gradient. Plus précisément, nous fournissons un seul théorème de convergence
qui récupère la complexité d’échantillonnage Õ(ϵ−4) du PG vanille vers un point stationnaire.
En d’autres termes, considérons un échantillon comme un triple (st, at, r(st, at)) qui est une
interaction en une étape avec l’environnement au temps t parmi une seule trajectoire échan-
tillonnée {st′ , at′ , r(st′ , at′)}t′≥0 par itération. Avec des échantillons Õ(ϵ−4), le PG vanille est
garantie de converger vers un ϵ-point stationnaire . Nos résultats offrent également une plus
grande flexibilité dans le choix des hyper paramètres tels que la taille du taux d’apprentissage
et la taille du mini-batch m des trajectoires, y compris l’utilisation d’une seule trajectoire (i.e.
m = 1) par itération. Lorsqu’une hypothèse supplémentaire relaxed weak gradient domination
est disponible, nous établissons une nouvelle théorie de convergence de l’optimum global de
PG avec une complexité d’échantillonnage Õ(ϵ−3). Nous instancions ensuite nos théorèmes
dans différents contextes, où nous retrouvons les résultats existants et obtenons une complexité
d’échantillon améliorée, par exemple Õ(ϵ−3) complexité d’échantillon pour la convergence
vers l’optimum global pour les politiques paramétrées non dégénérées de Fisher. L’ingrédient
clé de l’analyse consiste à considérer l’hypothèse ABC (Khaled and Richtárik, 2023), qui limite
le gradient empirique en termes d’écart de sous-optimalité (A), de gradient en espérance
mais tronqué (B) et d’une constante additive (C). Cette hypothèse ABC peut sembler un peu
obscure à première vue, mais il s’agit en fait d’un moyen astucieux d’unifier un grand nombre
des hypothèses actuelles utilisées dans la littérature RL. Notamment, les politiques Lipschitz
et smooth espérance, les politiques tabulaires de softmax avec ou sans régularisation, et les
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politiques non dégénérées de Fisher sont considérées comme des cas particuliers de l’hypothèse
ABC. Grâce à notre analyse générale, nous parvenons à unemeilleure compréhension théorique
du PG vanille et nous avons la liberté de choisir les hyper paramètres de PG dans la pratique
en fonction des ressources informatiques disponibles.

Comme indiqué dans la section précédente, le PG vanille n’est pas efficace en termes
d’échantillonnage. Au Chapitre 5, nous développons la convergence linéaire d’un autre algo-
rithme RL populaire connu sous le nom de NPG et de sa variante, Q-NPG, pour la classe des
politiques log-linéaires. Les théorèmes qui en résultent étendent les travaux de Xiao (2022)
des politiques softmax tabulaires au régime d’approximation des fonctions. Nous montrons
qu’en utilisant une taille de taux d’apprentisage géométriquement croissante, ces algorithmes
peuvent atteindre un taux de convergence linéaire, similaire au cas tabulaire, jusqu’à l’erreur
d’approximation de la fonction. Le cœur de l’analyse est que, en s’appuyant sur le framework
d’approximation de fonction compatible développé par Agarwal et al. (2021), NPG peut être
interprétée comme une méthode de gradient d’ascente en miroir. C’est le point de vue adopté
pour l’analyse, où une mise à jour inexacte de l’ascenste en miroir est considérée. Le chapitre
fournit en outre des résultats de complexité d’échantillon Õ(ϵ−2) sous certaines hypothèses
techniques supplémentaires, qui améliorent les meilleurs résultats connus dans la littérature.

Tout au long de la Partie II, nous obtenons une meilleure compréhension et une meilleure
efficacité des échantillons dans les méthodes de PG en RL.
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Chapitre 1
Introduction

Partie I: Méthodes du Second Ordre Stochastiques en Optimisation
⇝ Une approche fondée sur des principes pour construire des algorithmes

incrémentaux, efficaces, pas cher et paramètres-free

Chapitre 2
Sketched Newton-Raphson

Chapitre 3
Stochastic Average Newton

Partie II: Analysis de Temps Fini des Méthodes de
Policy-Gradient en Apprentissage par Renforcement

⇝ Une meilleure compréhension et efficacité de l’échantillonnage dans les méthodes de PG en RL

Chapitre 4
Vanilla Policy Gradient
(Analyse générale)

Chapitre 5
Natural Policy Gradient

(Analyse de convergence linéaire)

Chapitre 6
Conclusion

Figure 7.4 – Cette thèse est divisée en deux parties. Nous commençons par l’optimisation dans la Partie I
où nous concevons de nouvelles méthodes du second ordre stochastiques et efficaces avec des garanties
de convergence. En nous appuyant sur les techniques de preuve d’optimisation, nous passons ensuite à
l’apprentissage par renforcement (RL) dans la Partie II qui se concentre sur les fondements théoriques
des méthodes de policy-gradient (PG), y compris le PG vanille et le PG naturel. Ces deux sujets sont
présentés comme étant orthogonaux, mais le fil conducteur est l’optimisation.
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Here we provide some additional noteworthy observations made in Chapter 2. In par-
ticular, we show that SNR can also be seen as a type of stochastic Gauss-Newton method in
Appendix A.1.1 or as a type of stochastic fixed point method in Appendix A.1.2, respectively.
In Appendix A.6, we provide the sufficient conditions for the reformulation assumption (2.10),
where our examples SNM and TCS satisfy those conditions. In Appendix A.8, we carefully
derive the closed form updates of TCS presented in Section 2.8. In Appendix A.9, we provide
more detailed and efficient pseudo-codes for TCS. In Appendix B.3.1, we give further details
on the numerical experiments. And we add additional experiments of TCS methods combined
with stochastic line-search in Appendix A.11.
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A.1 Other viewpoints of SNR

Beside the connection between SNR and SGD, in the next section we reformulate SNR as a
stochastic Gauss-Newton (GN) method and a stochastic fixed point method in the subsequent
Appendix A.1.2.

A.1.1 Stochastic Gauss-Newton method

The GN method is a method for solving nonlinear least-squares problems such as

min
x∈Rp

∥F (x)∥2G , (A.1)

where G is a symmetric positive-definite matrix. Like the Newton-Raphson method, at each
step of the GN method, the function F (x) is replaced by its linearization in (A.1) and then
solved to give the next iterate. That is

xk+1 ∈ argminx∈Rp

∥∥∥DF (xk)⊤(x− xk) + γF (xk)
∥∥∥2

G
, (A.2)

where xk+1 is the least-norm solution to the above.
Now consider the GN method where the matrix that defines the norm in (A.2) changes at

each iteration as is given by G ≡ Gk def= E
[
HS(xk)

]
and let d

def= x−xk. Since Gk is an expected
matrix, we can write

∥∥∥DF (xk)⊤d + γF (xk)
∥∥∥2

E[HS(xk)] = E
[∥∥∥DF (xk)⊤d + γF (xk)

∥∥∥2

HS(xk)

]
.

This suggests a stochastic variant of the GNwhere we use the unbiased estimate HS(xk) instead
of Gk. This stochastic GN method is in fact equivalent to SNR, as we show next.

Lemma A.1. Let x0 ∈ Rp and consider the following Stochastic Gauss-Newton method

dk ∈ argmin
d∈Rp

∥∥∥DF (xk)⊤d + γF (xk)
∥∥∥2

HSk
(xk)

xk+1 = xk + dk (A.3)

where Sk is sampled from Dxk at kth iteration and dk is the least-norm solution. If Assumption 3.5
holds, then the iterates (A.3) are equal to the iterates of SNR (line 4 in Algorithm 1).
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Proof. Differentiating (A.3) in d, we find that dk is a solution to

DF (xk)HSk
(xk)DF (xk)⊤dk = −γDF (xk)HSk

(xk)F (xk).

Let A def= DF (xk)HSk
(xk)DF (xk)⊤. Taking the least-norm solution to the above gives

dk = −γA†DF (xk)HSk
(xk)F (xk) = −γA†Av

= −γA†AAv = −γAv

= −γDF (xk)HSk
(xk)F (xk),

where on the first line, we used that Assumption 3.5 shows there exists v ∈ Rp such that
F (xk) = DF (xk)⊤v. On the second line, we used that A = AA which is shown in the proof of
Corollary 2.8 . Then we used A†AA = A which is a property of the pseudoinverse operator
that holds for all symmetric matrices. Consequently xk+1 = xk + dk which is exactly the update
given in line 4 in Algorithm 1.

Thus our sketched Newton-Raphson method can also be seen as a stochastic Gauss-Newton
method. Furthermore, if S = I, then (A.3) is no longer stochastic and is given by

dk ∈ argmin
d∈Rp

∥∥∥DF (xk)⊤d + γF (xk)
∥∥∥2

(DF (xk)⊤DF (xk))†

xk+1 = xk + dk. (A.4)

Thus as a consequence of Lemma A.1, we have that this variant (A.4) of GN is in fact the
Newton-Raphson method.

A.1.2 Stochastic fixed point method

In this section, we reformulate SNR as a stochastic fixed point method. Such interpretation is
inspired from Richtárik and Takáč (2020)’s stochastic fixed point viewpoint. We extend their
results from the linear case to the nonlinear case.

Assume that Assumption 3.5 holds and re-consider the sketch-and-project viewpoint (2.7)
in Section 2.2. Note the zeros of the function F

L def= {x | F (x) = 0}

and the sketched Newton system based on y

LS,y
def=

{
x ∈ Rp | S⊤DF (y)⊤(x− y) = −S⊤F (y)

}
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with y ∈ Rp and S ∼ Dy. For a closed convex set Y ⊆ Rd, let ΠY denote the projection operator
onto Y . That is

ΠY(x) def= argminy∈Rp {∥y − x∥ : y ∈ Y} . (A.5)

Then, from (2.7) by plugging Y = LS,y and y = x into (A.5), we have

ΠLS,x
(x) = x−DF (x)HS(x)F (x). (A.6)

Now we can introduce the fixed point equation as follows

χ
def=

{
x | x = ES∼Dx

[
ΠLS,x

(x)
]}

. (A.7)

Assumption 3.5 guarantees that finding fixed points of (A.7) is equivalent to the reformulated
optimization problem (2.8) with y = x, as we show next.

Lemma A.2. If Assumption 3.5 holds, then

χ = argminx∈Rp

1
2 ∥F (x)∥2ES∼Dx [HS(x)] . (A.8)

Proof. Let χS
def=
{

x | x = ΠLS,x
(x)
}
with S ∼ Dx. First, we show that

χS = argminx∈Rd

1
2 ∥F (x)∥2HS(x) . (A.9)

In fact,

x ∈ χS
(A.6)⇐⇒ DF (x)HS(x)F (x) = 0

Assumption 3.5
⇐⇒ ∃v ∈ Rd s.t. F (x) = DF (x)⊤v and DF (x)HS(x)DF (x)⊤v = 0

⇐⇒ HS(x)F (x) = 0 (as DF (x)HS(x)DF (x)⊤ ⪰ 0)

⇐⇒ 1
2 ∥F (x)∥2HS(x) = 0.

So we induce (A.9). Finally (A.8) follows by taking expectations with respect to S in (A.9).

To solve the fixed point equation (A.7), the natural choice of method is the stochastic fixed
point method with relaxation. That is, we pick a relaxation parameter γ > 0, and consider the
following equivalent fixed point problem

x = ES∼Dx

[
γΠLS,x

(x) + (1− γ)x
]

.
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Using relaxation is to improve the contraction properties of the map. Then at kth iteration,

xk+1 = γΠLS,xk
(xk) + (1− γ)xk, (A.10)

where S ∼ Dxk . Consequently, it is straight forward to verify that (A.10) is exactly the update
given in line 4 in Algorithm 1.

A.2 Proof of Section 2.4

A.2.1 Proof of Lemma 2.5

Proof. Turning to the definition of fS,x in (2.9), we have that

∥∇fS,x(x)∥2 (2.11)= ∥DF (x)HS(x)F (x)∥2 = F (x)⊤HS(x)⊤DF (x)⊤DF (x)HS(x)F (x)

= F (x)⊤HS(x)F (x) = 2fS,x(x),

where we used the property M†MM† = M† with M = S⊤DF (x)⊤DF (x)S to establish that
HS(x)⊤DF (x)⊤DF (x)HS(x) (2.4)= HS(x).

A.2.2 Proof of Theorem 2.7

Proof. Let t ∈ {0, . . . , k − 1} and δt
def= xt − x∗. We have that

Et

[
∥δt+1∥2

] (2.12)= Et

[∥∥∥xt − γ∇fSt,t(xt)− x∗
∥∥∥2
]

= ∥δt∥2 − 2γ
〈
δt,∇ft(xt)

〉
+ γ2Et

[∥∥∥∇fSt,t(xt)
∥∥∥2
]

(2.14)
≤ ∥δt∥2 − 2γ(ft(xt)− ft(x∗)) + γ2Et

[∥∥∥∇fSt,t(xt)
∥∥∥2
]

(2.13)= ∥δt∥2 − 2γ (1− γ) (ft(xt)− ft(x∗))
ft(x∗)=0= ∥δt∥2 − 2γ (1− γ) ft(xt). (A.11)

Taking total expectation for all t ∈ {0, . . . , k − 1}, we have that

E
[
∥δt+1∥2

]
≤ E

[
∥δt∥2

]
− 2γ (1− γ)E

[
ft(xt)

]
. (A.12)

Summing both sides of (A.12) from 0 to k − 1 gives

E
[∥∥∥xk − x∗

∥∥∥2
]

+ 2γ (1− γ)
k−1∑
t=0

E
[
ft(xt)

]
≤
∥∥∥x0 − x∗

∥∥∥2
.
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Dividing through by 2γ (1− γ) > 0 and by k, we have that

E
[

min
t=0,...,k−1

ft(xt)
]
≤ min

t=0,...,k−1
E
[
ft(xt)

]
≤ 1

k

k−1∑
t=0

E
[
ft(xt)

]
≤ 1

k

∥∥x0 − x∗∥∥2

2γ (1− γ) ,

where in the most left inequality we used Jensen’s inequality.
Finally, if (2.16) holds, then we can repeat the steps leading up to (A.11) without the

conditional expectation, so that

∥δt+1∥2
(2.12)+(2.16)+(2.13)

≤ ∥δt∥2 − 2γ (1− γ) fSt,t(xt).

Since fSt,t(xt) ≥ 0, we have ∥δt+1∥2 ≤ ∥δt∥2, i.e. (2.17) holds.

A.2.3 Proof of Corollary 2.8

To prove Corollary 2.8, we need the following lemma first.

Lemma A.3 (Lemma 10 in Gower et al. (2019a)). For any matrix W and symmetric positive
semi-definite matrix G s.t. Ker(G) ⊂ Ker(W), we have Ker(W⊤) = Ker(WGW⊤).

Now we show the proof of Corollary 2.8.

Proof. First recall that

DF (x)HS(x)DF (x)⊤DF (x)HS(x)DF (x)⊤ = DF (x)HS(x)DF (x)⊤ for all x ∈ Rp,

which is shown in the proof of Lemma 2.5. Thus DF (x)HS(x)DF (x)⊤ is a projection. By
Jensen’s inequality, the eigenvalues of an expected projection are between 0 and 1. Thus by
the definition of ρ(x), we have 0 ≤ ρ(x) ≤ 1. Next, by (2.22), we have Ker (E [HS(x)]) ⊂
Ker (DF (x)). Thus, by Lemma A.3 we have that

Im (DF (x)) =
(
Ker

(
DF (x)⊤

))⊥
=
(
Ker

(
DF (x)E [HS(x)] DF (x)⊤

))⊥
, (A.13)

where the second equality is obtained by Lemma A.3. Now from the definition of ρ(x) in (2.20),
we have

ρ(x) (A.13)= min
v∈(Ker(DF (x)E[HS(x)]DF (x)⊤))⊥

/{0}

v⊤DF (x)E [HS(x)] DF (x)⊤v

∥v∥2

= λ+
min

(
DF (x)E [HS(x)] DF (x)⊤

)
> 0.
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It now follows that ρ > 0, since the definition of ρ in (2.21) is given by minimizing ρ(x) over the
closed bounded set {x | ∥x− x∗∥ ≤

∥∥x0 − x∗∥∥}. Next, given x ∈ {x | ∥x− x∗∥ ≤
∥∥x0 − x∗∥∥},

sinceF (x) ∈ Im(DF (x)⊤) by (2.22) and notice that Im(DF (x)⊤) = Im(DF (x)⊤DF (x)), there
exists v ∈ Rm s.t. F (x) = DF (x)⊤DF (x)v.

If F (x) ̸= 0, then DF (x)v ∈ Im (DF (x)) /{0}, we have

∥F (x)∥2E[HS(x)] = v⊤DF (x)⊤DF (x)E [HS(x)] DF (x)⊤DF (x)v
(2.20)
≥ ρ(x)v⊤DF (x)⊤DF (x)v. (A.14)

Since F (x) = DF (x)⊤DF (x)v and Im(DF (x)⊤)⊕Ker(DF (x)) = Rm,1 we have that

∃! y ∈ Ker(DF (x)) ⊂ Rm s.t. v = (DF (x)⊤DF (x))†F (x) + y.

Thus
DF (x)v = DF (x)(DF (x)⊤DF (x))†F (x) = (DF (x)⊤)†F (x).

Substituting this in (A.14), we have that

∥F (x)∥2E[HS(x)] ≥ ρ(x) ∥F (x)∥2(DF (x)⊤DF (x))† ≥
ρ

L2 ∥F (x)∥2 , (A.15)

where on the last inequality, we use that supx∈{x|∥x−x∗∥≤∥x0−x∗∥} ∥DF (x)∥ ≤ L and ρ(x) ≥ ρ

by the definition of ρ in (2.21) .
If F (x) = 0, (A.15) still holds. Thus, for all x ∈ {x | ∥x− x∗∥ ≤

∥∥x0 − x∗∥∥}, (A.15)
holds. Consequently by Theorem 2.7 and (2.17) under the star-convexity condition (2.16) with∥∥xt − x∗∥∥ ≤ ∥∥x0 − x∗∥∥ for all t ∈ {0, · · · , k − 1}, we have that

ρ

L2E
[

min
t=0,...,k−1

∥∥∥F (xt)
∥∥∥2
] (A.15)
≤ E

[
min

t=0,...,k−1

∥∥∥F (xt)
∥∥∥2

E[HS(xt)]

] (2.15)
≤ 1

k

∥∥x0 − x∗∥∥2

γ (1− γ) ,

which after multiplying through by L2/ ρ > 0 concludes the proof.

A.2.4 Proof of Lemma 2.9

Proof. Since Ker(DF (x)⊤DF (x)) = Ker(DF (x))
(2.24)
⊂ Ker(S⊤), we have

Ker
((

S⊤DF (x)⊤DF (x)S
)†
)

= Ker
(
S⊤DF (x)⊤DF (x)S

)
= Ker(S), (A.16)

1The operator ⊕ denotes the direct sum of two vector spaces.
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where the last equality is obtained by LemmaA.3 with Ker(DF (x)⊤DF (x)) ⊂ Ker(S⊤). Thus,
using Lemma A.3 again with G =

(
S⊤DF (x)⊤DF (x)S

)†, W = S and Ker(G) ⊂ Ker(W)
given by (A.16), we have that

Ker(HS(x)) (2.4)= Ker(S
(
S⊤DF (x)⊤DF (x)S

)†
S⊤) = Ker(S⊤) = Ker(SS⊤). (A.17)

As HS(x) is symmetric positive semi-definite ∀ S ∼ Dx, we have that

v ∈ Ker (E [HS(x)])⇐⇒ E [HS(x)] v = 0⇐⇒ ∥v∥2E[HS(x)] = 0 (as E [HS(x)] ⪰ 0)

⇐⇒ E
[
∥v∥2HS(x)

]
= 0⇐⇒

∫
S
∥v∥2HS(x) dPDx(S) = 0

⇐⇒ ∥v∥2HS(x) = 0 ∀ S ∼ Dx

(
as ∥v∥2HS(x) ≥ 0 ∀ S

)
HS(x)⪰0⇐⇒ v ∈ Ker (HS(x)) ∀ S ∼ Dx ⇐⇒ v ∈

⋂
S∼Dx

Ker (HS(x)) ,

where we use ⋂S∼Dx
Ker (HS(x)) to note the intersection of the random subsets Ker (HS(x))

for all S ∼ Dx. Similarly, we have Ker
(
E
[
SS⊤

])
=
⋂

S∼Dx
Ker

(
SS⊤

)
because SS⊤ is also

symmetric, positive semi-definite for all S ∼ Dx. Thus we have

Ker(E [HS(x)]) =
⋂

S∼Dx

Ker(HS(x))

(A.17)=
⋂

S∼Dx

Ker(SS⊤) = Ker(E
[
SS⊤

]
)

(2.24)
⊂ Ker(DF (x)).

Consequently, by considering the complement of the above, we arrive at (2.22).

A.2.5 Proof of Lemma 2.10

Proof. First, Ker(DF (x)) ⊂ Ker(Ŝ⊤DF (x)) = Ker(S⊤). Furthermore, from Lemma A.3 with
Ker(E[ŜŜ⊤]) ⊂ Ker(DF (x)⊤), we conclude the proof with

Ker
(
E
[
SS⊤

])
= Ker(DF (x)⊤E[ŜŜ⊤]DF (x)) ⊂ Ker(DF (x)).

A.2.6 Proof of Lemma 2.11

Proof. For Gaussian sketches with Sij ∼ N (0, 1
τ ), we have that c = 1. Indeed, since the mean is

zero, off-diagonal elements of E
[
SS⊤

]
are all zero. We note Si: the ith row of S, then the ith
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diagonal element of the matrix E
[
SS⊤

]
is given by

E
[
Si:S⊤

i:

]
=

τ∑
j=1

E
[
S2

ij

]
=

τ∑
j=1

1
τ

= 1.

For the uniform subsampling sketch (2.5), we have again that off-diagonal elements are zero
since the rows of S are orthogonal. The diagonal elements are constant with

E
[
Si:S⊤

i:

]
= 1(m

τ

) ∑
C⊂{1,...,m},|C|=τ,i∈C

1 =
(m−1

τ−1
)(m

τ

) = τ

m
, for all i = 1, · · · , m.

A.2.7 Proof of Lemma 2.13

Proof. Let y ∈ Rp and let u ∈ F (Rp) ∩Ker (E [HS(y)]). u ∈ F (Rp) implies that ∃x ∈ Rp s.t.
F (x) = u. Besides, u ∈ Ker (E [HS(y)]) implies that E [HS(y)] F (x) = 0. Now we apply (2.25)
at point x knowing that fy(x∗) = 0:

0 ≥ fy(x) + ⟨∇fy(x), x∗ − x⟩+ µ

2 ∥x
∗ − x∥2

=⇒ 0 ≥ 0 + ⟨0, x∗ − x⟩+ µ

2 ∥x
∗ − x∥2 (as E [HS(y)] F (x) = 0)⇐⇒ x = x∗.

Thus F (x) = u = 0. We conclude F (Rp) ∩Ker (E [HS(y)]) = {0}, i.e. (2.10) holds.
Besides, let x′ be a global minimizer of fy(·). Then fy(x′) = fy(x∗) = 0 and ∇fy(x′) = 0.

Similarly, by applying (2.25) at point x′, we obtain x′ = x∗. Consequently, x∗ is the unique
minimizer of fy(·) for all y, thus the unique solution to (2.1), according to (2.10) and Lemma 2.4.

A.2.8 Proof of Theorem 2.14

Proof. Let δk
def= xk − x∗. By expanding the squares, similarly we have that

Ek

[
∥δk+1∥2

]
= ∥δk∥2 − 2γ

〈
δk,∇fk(xk)

〉
+ γ2Ek

[∥∥∥∇fSk,k(xk)
∥∥∥2
]

(2.25)
≤ (1− γµ) ∥δk∥2 − 2γ(fk(xk)− fk(x∗)) + γ2Ek

[∥∥∥∇fSk,k(xk)
∥∥∥2
]

(2.13)
≤ (1− γµ) ∥δk∥2 − 2γ (1− γ) (fk(xk)− fk(x∗))

≤ (1− γµ) ∥δk∥2 .
(
since γ (1− γ) (fk(xk)− fk(x∗)) ≥ 0

)
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Now by taking total expectation, we have that

E
[∥∥∥xk+1 − x∗

∥∥∥2
]
≤ (1− γµ)E

[∥∥∥xk − x∗
∥∥∥2
]
≤ (1− γµ)k+1

∥∥∥x0 − x∗
∥∥∥2

.

Next, we show that µ ≤ 1. In fact, when we imply (2.25) at the point xk, it shows

(2.25) (2.13)=⇒ fk(x∗) ≥ 1
2Ek

[∥∥∥∇fSk,k(xk)
∥∥∥2
]

+
〈
x∗ − xk,∇fk(xk)

〉
+ µ

2 ∥x
∗ − xk∥2

⇐⇒ fk(x∗) ≥ 1
2Ek

[∥∥∥x∗ −
(
xk −∇fSk,k(xk)

)∥∥∥2
]
− 1− µ

2 ∥x∗ − xk∥2

fk(x∗)=0=⇒ (1− µ)∥x∗ − xk∥2 ≥ Ek

[∥∥∥x∗ −
(
xk −∇fSk,k(xk)

)∥∥∥2
]
≥ 0.

Thus µ ≤ 1.

A.3 Proof of Section 2.5

A.3.1 Proof of Corollary 2.15

Proof. From (2.11), we have that

∇fx(x) = DF (x)(DF (x)⊤DF (x))†F (x) = (DF (x)⊤)†F (x) = −n(x). (A.18)

Substituting (2.32) and (A.18) in (2.16) yields (2.34). Next, for S = Im, we have that

Im(E [HS(x)])) = Im((DF (x)⊤DF (x))†) = Im(DF (x)⊤DF (x)) = Im(DF (x)⊤).

Thus, we have that F (x) ∈ Im(DF (x)⊤) ⊂ Im(E [HS(x)])), i.e. (2.22) holds. So all the
conditions in Corollary 2.8 are verified. Since S = Im, we have that ρ(x) = 1 for all x, so ρ = 1.
Furthermore, because we assume that DF (·) is continuous and the iterates xk are in a closed
bounded convex set (2.17) which is implied by (2.16) from Theorem 2.7, there exists L > 0 s.t.
∥DF (xk)∥ ≤ L for all the iterates. Finally, by Corollary 2.8, the iterates converge sublinearly
according to (2.23) which in this case is given by (2.35).

A.3.2 Proof of Theorem 2.16

Proof. First, we prove (I) =⇒ (II). Assume that (I) holds. Since DF (x) is invertible, (2.33)
holds trivially. By 13.3.4 in Ortega and Rheinboldt (2000), we know that there exists a unique
x∗ ∈ Rp s.t. F (x∗) = 0. It remains to verify if (2.34) holds for k ≥ 1. First, note that the
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invertibility of DF (xk) gives

fk(xk) = 1
2

∥∥∥F (xk)
∥∥∥2

(DF ⊤
k

DFk)† = 1
2

∥∥∥(DF ⊤
k )−1Fk

∥∥∥2 (2.36)= 1
2

∥∥∥xk+1 − xk
∥∥∥2

, (A.19)

with abbreviations fk(xk) ≡ fxk(xk), Fk ≡ F (xk) and DFk ≡ DF (xk). Furthermore,

∇fk(xk) = DFk(DF ⊤
k DFk)−1F (xk) = (DF ⊤

k )−1F (xk) (2.36)= xk − xk+1. (A.20)

Thus we can re-write the right hand side of the star-convexity assumption (2.14) as

fk(xk) +
〈
∇fk(xk), x∗ − xk

〉 (A.19)+(A.20)= 1
2

∥∥∥xk+1 − xk
∥∥∥2

+
〈
xk − xk+1, x∗ − xk

〉
= 1

2

∥∥∥xk+1 − xk
∥∥∥2

+
〈
xk − xk+1, xk+1 − xk + x∗ − xk+1

〉
= −1

2

∥∥∥xk+1 − xk
∥∥∥2

+
〈
xk − xk+1, x∗ − xk+1

〉
.

From (I), we induce by Lemma 3.1 in Deuflhard (2011) that NR is component wise monotone
with x∗ ≤ xk+1 ≤ xk for k ≥ 1. Thus xk − xk+1 ≥ 0 and x∗ − xk+1 ≤ 0 component wise and
consequently,

〈
xk − xk+1, x∗ − xk+1

〉
≤ 0. Thus it follows that

fk(xk) +
〈
∇fk(xk), x∗ − xk

〉
≤ 0 = fk(x∗).

Thus (2.34) holds for k ≥ 1 and this concludes that (I) =⇒ (II).
We now prove that (II) does not imply (I). Consider the example F (x) = Ax− b, where

A ∈ Rp×p is invertible and b ∈ Rp. Thus, DF (x) = A⊤ is invertible and (2.33) holds. As
for (2.34), let x∗ be the solution, i.e. Ax∗ = b, we have that

fk(x) = 1
2 ∥F (x)∥2(DF (xk)⊤DF (xk))−1 = 1

2 ∥A(x− x∗)∥2(AA⊤)−1 = 1
2 ∥x− x∗∥2 ,

which is a convex function and so (2.34) holds and thus (II) holds. However, (I) does not
necessarily hold. Indeed, if A = −Ip, then DF (x) is not element-wise positive.

A.3.3 The monotone convergence theory of NR with stepsize γ < 1

The monotone convergence theory of the NR in both Ortega and Rheinboldt (2000) and Deu-
flhard (2011) need to have the stepsize γ = 1. If γ < 1 which is the case in our convergence
Theorem 2.7 and Corollary 2.8, the iterates {xk}k≥1 under the set of assumptions (I) proposed
in Theorem 2.16 are no longer guaranteed to be component wise monotonically decreasing.
Here we investigate alternatives. In particular, we consider the case in 1-dimension for function
F = ϕ : R→ R.
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Lemma A.4. Let xk be the iterate of the NR method with stepsize γ < 1 for solving ϕ(x) = 0, that
is

xk+1 = xk − γ
ϕ(xk)
ϕ′(xk) . (A.21)

If ϕ satisfies the set of assumptions (I) proposed in Theorem 2.16, then

(a) The iterates of the ordinary NR method (2.36) are necessarily monotonically decreasing.

(b) The iterates of the NRmethod (A.21)with γ < 1 are not necessarily monotonically decreasing.

(c) Assumption (2.33) holds; for 1
2 ≤ γ < 1, there exists k′ ≥ 0 such that for all k ̸= k′, there

exists a unique x∗ that satisfies Assumption 2.1 and the iterates xk and the optimum x∗

satisfy (2.34).

(d) The iterates xk following the NR method (A.21) with 1
2 ≤ γ < 1 converge sublinearly to a

zero of ϕ.

Remark of (a) Even though this result is known and generalized in d-dimension in Ortega
and Rheinboldt (2000) and Deuflhard (2011), we stress it here to highlight the impact of the
stepsize γ in the NR method and leverage the analysis of (a) in the special 1-dimensional case
to prove (b).

Proof. If ϕ satisfies (I), then ϕ is convex and ϕ′−1 > 0, which implies ϕ′′ ≥ 0 and ϕ′ > 0.
From ϕ′ > 0, we obtain that ϕ is strictly increasing. Besides, from (I), ∃ x, y ∈ R such that
ϕ(x) ≤ 0 ≤ ϕ(y). This with the strictly increase of ϕ induces that ∃! x∗ such that ϕ(x∗) = 0, i.e.
x∗ satisfies Assumption 2.1. So ∀x < x∗, ϕ(x) < 0 and ∀x > x∗, ϕ(x) > 0. Now consider the
following two functions

u(x) def= x− ϕ(x)
ϕ′(x) and U(x) def= x− γ

ϕ(x)
ϕ′(x)

which are exactly the updates of the ordinary NR (2.36) and the NR (A.21) with a stepsize
γ ∈ (0, 1), respectively. We first analyze the behaviour of the function u and show (a), which
can be formulated as x∗ ≤ xk+1 ≤ xk for all k ≥ 1. The derivative of u is

u′(x) = ϕ(x)ϕ′′(x)
ϕ′(x)2 .

By the sign of functions ϕ, ϕ′ and ϕ′′, we know that if x > x∗, then u′(x) ≥ 0 and if x < x∗, then
u′(x) ≤ 0. This implies that the function u is increasing in [x∗, +∞[ and decreasing in ]−∞, x∗].
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Overall, we have 
min
x∈R

u(x) = u(x∗) ϕ(x∗)=0= x∗, (A.22a)
u(x) < x and u increasing, when x > x∗, (A.22b)
u(x) > x and u decreasing, when x < x∗. (A.22c)

Consequently, x∗ ≤ xk+1 is obtained by x∗ (A.22a)= min u(x) ≤ u(xk) = xk+1. As for the
inequality xk+1 ≤ xk, x∗ (A.22a)= min u(x) ≤ u(xk−1) = xk for k ≥ 1 and xk+1 = u(xk)

(A.22b)
≤ xk

as xk ≥ x∗.
To show (b), we analyze the behavior of the function U . Consider its derivative

U ′(x) = (1− γ) + γ
ϕ(x)ϕ′′(x)

ϕ′(x)2 .

By the sign of functions ϕ, ϕ′ and ϕ′′, if x > x∗, U ′(x) > 0. However, U ′(x∗) ϕ(x∗)=0= 1− γ > 0,
which implies min U(x) < x∗. Here we include the case where min U(x) = −∞. Also by the
sign of functions ϕ and ϕ′ and γ < 1, when x > x∗, we have u(x) < U(x) and u(x) > U(x) for
x < x∗. In summary, we have


min
x∈R

U(x) < U(x∗) ϕ(x∗)=0= u(x∗) (A.22a)= x∗, (A.23a)
u(x) < U(x) < x and U increasing, when x > x∗, (A.23b)
u(x) > U(x) > x when x < x∗. (A.23c)

In NRwith stepsize γ < 1, consider x0 ∈ R. We discuss different cases based on the comparison
between x0 and x∗.

If x0 ≥ x∗ named as case (i), by induction, we get x∗ (A.23a)= U(x∗)
(A.23b)
≤ = U(xk) =

xk+1
(A.23b)
≤ xk for all k ≥ 0. In this case, the iterates decrease monotonically.

If x0 < x∗, there are two cases, named as case (ii), for all k ∈ N, U(xk) ≤ x∗, and case (iii),
∃k′ ∈ N, U(xk′) > x∗.

If (ii) holds, we have that the iterates increase monotonically. Indeed, by (ii) and by
induction, we get xk

(A.23c)
≤ U(xk) = xk+1 (ii)

≤ x∗ for all k ∈ N.
Otherwise, we are in case (iii). Let k′ be the smallest index that U(xk′) > x∗. Then we

conclude that the iterates {xk}k≥0 increase monotonically when k ≤ k′ and {xk}k≥k′+1 decrease
monotonically. In fact, by the definition of k′, we know that for k ∈ [[0, k′ − 1]], U(k) ≤ x∗. Then
by induction as in case (ii) but for k ≤ k′, we get {xk}k≥0 increase monotonically when k ≤ k′.
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When k ≥ k′ + 1, by induction as in case (i) but for U(xk′) = xk′+1 > x∗, we get {xk}k≥k′+1

decrease monotonically. We thus observe (b).
Statement (c) follows from the proof of Theorem 2.16 in 1-dimension in taking account the

stepsize γ < 1. Then (2.33) holds and (2.34) becomes

fk(xk) +
〈
∇fk(xk), x∗ − xk

〉
= 1− 2γ

2γ2 (xk+1 − xk)2

︸ ︷︷ ︸
≤0 as 1

2 ≤γ in (c)

+ 1
γ

(xk − xk+1)(x∗ − xk+1)︸ ︷︷ ︸
def=(∗)

(A.24)

in considering

fk(xk) = 1
2

(
ϕ(xk)
ϕ′(xk)

)2
(A.21)= 1

2γ2 (xk+1 − xk)2,

∇fk(xk) = ϕ(xk)
ϕ′(xk)

(A.21)= 1
γ

(
xk − xk+1

)
,

with ϕ = F and ϕ′ = DF . To get (2.34) hold, from (A.24), it suffices to prove (∗) ≤ 0.
By the analysis of (b), we know: in case (i), (∗) ≤ 0 for all k ≥ 0 as x∗ ≤ xk+1 ≤ xk; in

case (ii), (∗) ≤ 0 for all k ≥ 0 as x∗ ≥ xk+1 ≥ xk; finally in case (iii), for k ̸= k′, (∗) ≤ 0 as
x∗ ≥ xk+1 ≥ xk for k ≤ k′ − 1 and x∗ ≤ xk+1 ≤ xk for k ≥ k′ + 1. So in all cases, (∗) ≤ 0 for all
k or for k ̸= k′. We thus obtain (c).

It remains to show (d), which is simply obtained by (c) and Corollary 2.8, as (2.34) holds
for all iterates xk except for just one iterate xk′ potentially.

The monotone convergence theory is based on assumptions (I) with stepsize γ = 1. Under
the same assumptions with γ < 1, such theory may not hold. Indeed, following the analysis
in Lemma A.4 in 1-dimension case, by (A.23c) we do not have the monotone property for the
function U when x < x∗. That is the reason why (b) happens but not (a) in Lemma A.4. In
d-dimension case, without such monotone property for the function U , {xk} is not guaranteed
to be monotone, which is the main clue in their theory’s proof. However, with stepsize γ < 1,
assumptions (I) can still imply our Assumptions 2.1, (2.33) and (2.34) under constraint 1

2 ≤ γ <

1 in 1-dimension case. In addition, though our theory does not either require any constraint
for stepsize γ < 1 or guarantee that the NR method is monotonic in terms of the iterates
component wisely, we still guarantee the sublinear global convergence. We thus conclude
that Assumptions 2.1, (2.33) and (2.34) are strictly weaker than the assumptions used in the
monotone convergence theory in Ortega and Rheinboldt (2000) and Deuflhard (2011), albeit
for different step sizes.
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A.4 Proof of Section 2.7

A.4.1 Proof of Lemma 2.17

In our upcoming proof of Lemma 2.17, we still need the following lemma.

Lemma A.5. Let ϕi be twice differentiable and strictly convex for i = 1, . . . , n. The Jacobian
DF (x)⊤ of F (x) defined in (2.42) is invertible for all x ∈ R(n+1)d.

Proof. Let x ∈ R(n+1)d. Let y
def= (u; v1; · · · ; vn) ∈ R(n+1)d with u, v1, · · · , vn ∈ Rd such that

DF (x)y = 0. The transpose of the Jacobian of F (x) is given by

DF (x) =


0 Id · · · Id

1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)
−Ind

 . (A.25)

From DF (x)y = 0 and (A.25), we obtain
n∑

i=1
vi = 0, and 1

n
∇2ϕi(αi)u = vi for all i = 1, · · · , n.

Plugging the second equation in the first one gives
(

1
n

∑n
i=1∇2ϕi(αi)

)
u = 0. Since every ϕi is

twice differentiable and strictly convex, we have∇2ϕi(αi) > 0. This implies 1
n

∑n
i=1∇2ϕi(αi) >

0, and is thus invertible. Consequently u = 0 and vi = 0 from which we conclude that the
Jacobian DF (x)⊤ is invertible.

Now we can give the proof of Lemma 2.17.

Proof. Consider an update of SNR (line 4 inAlgorithm 1)withF defined in (2.42), the sketching
matrix Sk defined in (2.43) , and stepsize γ = 1 at the kth iteration. By Lemma A.5, we have
that DF (x) is invertible and thus Assumption 2.3 holds. By (2.7), the SNR update (line 4 in
Algorithm 1) can be re-written as

xk+1 = argmin
∥∥∥w − wk

∥∥∥2
+

n∑
i=1

∥∥∥αi − αk
i

∥∥∥2 s.t. S⊤
k DF (xk)⊤(x− xk) = −S⊤

k F (xk). (A.26)
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Plugging (2.42), (2.43) and (A.25) into the constraint in (A.26) gives


Id 0
1
n∇

2ϕ1(αk
1)

...
1
n∇

2ϕn(αk
n)

IBn



⊤ 
0 Id · · · Id

1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)
−Ind



⊤ 
w − wk

α1 − αk
1

...
αn − αk

n



= −


Id 0

1
n∇

2ϕ1(αk
1)

...
1
n∇

2ϕn(αk
n)

IBn



⊤ 
1
n

∑n
i=1∇ϕi(αk

i )
wk − αk

1
...

wk − αk
n

 .

After simplifying the above matrix multiplications, we have that (A.26) is given by

xk+1 = [wk+1; αk+1
1 ; · · · ; αk+1

n ] = argmin
∥∥∥w − wk

∥∥∥2
+

n∑
i=1

∥∥∥αi − αk
i

∥∥∥2

s. t. 1
n

n∑
i=1
∇2ϕi(αk

i )(w − αk
i ) = − 1

n

n∑
i=1
∇ϕi(αk

i ),

w = αj , for j ∈ Bn. (A.27)

To solve (A.27), first note that αk+1
i = αk

i for i ̸∈ Bn, since there is no constraint on the variable
αi in this case. Furthermore, by the invertibility of 1

n

∑n
i=1∇2ϕi(αk

i ), we have that (A.27) has a
unique solution s.t. αj = w for all j ∈ Bn and

w =
(

1
n

n∑
i=1
∇2ϕi(αk

i )
)−1( 1

n

n∑
i=1
∇2ϕi(αk

i )αk
i −

1
n

n∑
i=1
∇ϕi(αk

i )
)

.

Concluding, we have that the SNR update (A.27) is given by

wk+1 =
(

1
n

n∑
i=1
∇2ϕi(αk

i )
)−1( 1

n

n∑
i=1
∇2ϕi(αk

i )αk
i −

1
n

n∑
i=1
∇ϕi(αk

i )
)

,

αk+1
i =

wk+1 if i ∈ Bn

αk
i if i /∈ Bn

,

which is exactly the Stochastic Newton method’s updates (2.40) and (2.41) in (Kovalev et al.,
2019).
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A.4.2 Proof of Lemma 2.19

Proof. First, we show that E
[
SS⊤

]
is invertible ∀x ∈ R(n+1)d. By the definition of S in (2.43),

SS⊤ =


Id

1
n∇

2ϕ1(α1) · · · 1
n∇

2ϕn(αn)
1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)
IBnI⊤

Bn
+ M

 ,

where M = {Mij}1≤i≤n,1≤j≤n is divided into n× n contiguous blocks of size d× d with each
block Mij defined as the following

Mij
def= 1

n
∇2ϕi(αi) ·

1
n
∇2ϕj(αj) ∈ Rd×d and M ∈ Rnd×nd.

Taking the expectation over S w.r.t. the distribution D(w,α1,··· ,αn) gives

E
[
SS⊤

]
=


Id

1
n∇

2ϕ1(α1) · · · 1
n∇

2ϕn(αn)
1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)

τ
nInd + M



=


Id

1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)




Id

1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)



⊤

+ τ

n

[
0 0
0 Ind

]
. (A.28)

E
[
SS⊤

]
is symmetric, positive semi-definite. Let (u; v1; · · · ; vn) ∈ R(n+1)d s.t.

(u; v1; · · · ; vn)⊤E
[
SS⊤

]
(u; v1; · · · ; vn) = 0.

From (A.28), we obtain∥∥∥∥∥
[
Id; 1

n
∇2ϕ1(α1); · · · ; 1

n
∇2ϕn(αn)

]⊤
[u; v1; · · · ; vn]

∥∥∥∥∥
2

+ τ

n

n∑
i=1
∥vi∥2 = 0.

Since both terms are non negative, we obtain ∑n
i=1 ∥vi∥2 = 0 =⇒ ∀ i, vi = 0, and then

u = 0. This confirms that E
[
SS⊤

]
is positive-definite, thus invertible and Ker(E

[
SS⊤

]
) =

{0}. Besides, from Lemma A.5, we get DF (x) invertible. Thus F (x) ∈ Im(DF (x)⊤) and
Ker(DF (x)) = {0}. We have (2.24) hold. By Lemma 2.9, we have that (2.22) holds for all
x ∈ R(n+1)d.
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A.4.3 Stochastic Newton method with relaxation

Consider the function P (·) defined in (2.39). By the analysis of Lemma 2.17, we can even
develop a variant of SNM in the case stepsize γ < 1 and we call the method Stochastic Newton
method with relaxation. The updates are the following

wk+1 = γ

( 1
n

n∑
i=1
∇2ϕi(αk

i )
)−1( 1

n

n∑
i=1
∇2ϕi(αk

i )αk
i −

1
n

n∑
i=1
∇ϕi(αk

i )
)

+ (1− γ)wk, (A.29)

αk+1
i =

wk+1 − (1− γ)(wk − αk
i ) if i ∈ Bn

αk
i if i /∈ Bn

, (A.30)

In the rest of Appendix A.4.3, we use the shorthand x
def= (w; α1; · · · ; αn) ∈ R(n+1)d and

xk def= (wk; αk
1 ; · · · ; αk

n) the iterates of SNR in Lemma 2.17 with stepsize γ < 1 at the kth
iteration.

Lemma A.6. At each iteration k, the updates of SNR xk are equal to the updates (A.29), (A.30)
of SNM with relaxation.

Proof. Following the proof of Lemma 2.17 and taking account the stepsize γ, by (A.26) and (2.7),
the updates of SNR xk+1 at (k + 1)th iteration are given by

xk+1 = argmin
∥∥∥w − wk

∥∥∥2
+

n∑
i=1

∥∥∥αi − αk
i

∥∥∥2 s.t. S⊤DF (xk)⊤(x− xk) = −γS⊤F (xk), (A.31)

where the sketching matrix S ∼ Dxk is defined in (2.43). Similar to (A.27), (A.31) can be
re-written as

xk+1 = argmin
∥∥∥w − wk

∥∥∥2
+

n∑
i=1

∥∥∥αi − αk
i

∥∥∥2 (A.32)

s.t. 1
n

n∑
i=1
∇2ϕi(αk

i )(w − wk) = −γ

( 1
n

n∑
i=1
∇ϕi(αk

i ) + 1
n

n∑
i=1
∇2ϕi(αk

i )(wk − αk
i )
)

,

w − αi = (1− γ)(wk − αk
i ), for i ∈ Bn.

Similarly, note that if i ̸∈ Bn, then αk+1
i = αk

i , since there is no constraint on the variable αi in
this case. Then by the invertibility of 1

n

∑n
i=1∇2ϕi(αk

i ), we have the unique solution of (A.32),
which is

wk+1 = γ

( 1
n

n∑
i=1
∇2ϕi(αk

i )
)−1( 1

n

n∑
i=1
∇2ϕi(αk

i )αk
i −

1
n

n∑
i=1
∇ϕi(αk

i )
)

+ (1− γ)wk,

αk+1
i = wk+1 − (1− γ)(wk − αk

i ), for i ∈ Bn.
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Overall, we have

wk+1 = γ

( 1
n

n∑
i=1
∇2ϕi(αk

i )
)−1( 1

n

n∑
i=1
∇2ϕi(αk

i )αk
i −

1
n

n∑
i=1
∇ϕi(αk

i )
)

+ (1− γ)wk,

αk+1
i =

wk+1 − (1− γ)(wk − αk
i ) if i ∈ Bn

αk
i if i /∈ Bn

,

which is exactly the updates (A.29) and (A.30) in SNM with relaxation.

Notice that both the original SNM and SNM with relaxation have the same complexity.
Consequently, Theorem 2.7 allows us to develop the following global convergence theory of
SNM with relaxation γ.

Corollary A.7. Consider the iterate xk =
(
wk; αk

1 ; · · · ; αk
n

)
given by (A.29) and (A.30). Note

x∗ def= (w∗; w∗; · · · ; w∗) ∈ R(n+1)d where w∗ is the stationary point of∇P (w) that satisfies

fxk(x∗) ≥ fxk(xk) +
〈
∇fxk(xk), x∗ − xk

〉
, for all k ∈ N, (A.33)

then

min
t=0,...,k−1

E
[
fxt(xt)

]
≤ 1

k

k−1∑
t=0

E
[
fxt(xt)

]
≤ 1

k

∥∥x0 − x∗∥∥2

2γ (1− γ) .

Proof. Equation (A.33) with the assumption that w∗ is the stationary point of∇P (w) implies
that Assumption 2.1 and 2.6 hold. Then we conclude the proof by Theorem 2.7.

A.5 Proof of Lemma 2.22

Proof. First, we show that E
[
SS⊤

]
is invertible. By Definition 2.21, it is straightforward to verify

that

E
[
SS⊤

]
=
[ (1−b)τd

n Id 0
0 bτn

n In

]

is invertible and Ker(E
[
SS⊤

]
) = {0}. Now we show the Jacobian DF ⊤(x) invertible. Let

x = [α; w] ∈ Rn+d with α ∈ Rn and w ∈ Rd. Then DF (x) is written as

DF (x)⊤ =
[ 1

λnA −Id

In ∇Φ(w)⊤

]
, (A.34)
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where ∇Φ(w)⊤ = Diag
(
ϕ′′

1(a⊤
1 w), . . . , ϕ′′

n(a⊤
n w)

)
A⊤ ∈ Rn×d. Denote the diagonal matrix

D(w) def= Diag
(
ϕ′′

1(a⊤
1 w), . . . , ϕ′′

n(a⊤
n w)

)
. Since ϕi is continuously twice differentiable and

convex, ϕ′′
i (a⊤

i w) ≥ 0 for all i. Thus, D(w) ≥ 0.
Let (u; v) ∈ Rn+d with u ∈ Rn and v ∈ Rd such that DF (x)⊤[u; v] = 0. We have

DF (x)⊤
[
u

v

]
= 0 (A.34)⇐⇒

[ 1
λnA −Id

In ∇Φ(w)⊤

] [
u

v

]
= 0 =⇒

(
In + 1

λn
D(w)A⊤A

)
u = 0. (A.35)

If D(w) is invertible, (A.35) becomes

D(w)
(

D(w)−1 + 1
λn

A⊤A
)

u = 0 ⇐⇒
(

D(w)−1 + 1
λn

A⊤A
)

u = 0. (A.36)

Since D(w) is invertible, i.e. D(w) > 0, we obtain D(w)−1 > 0. As 1
λnA⊤A ≥ 0, we get

D(w)−1 + 1
λnA⊤A > 0, thus invertible. From (A.36), we get u = 0.

Otherwise, D(w) is not invertible. Without losing generality, we assume that ϕ′′
1(a⊤

1 w) ≥
ϕ′′

2(a⊤
2 w) ≥ · · · ≥ ϕ′′

n(a⊤
n w) = 0. Let j be the largest index for which ϕ′′

j (a⊤
j w) > 0. If j does not

exist, then D(w) = 0. From (A.35), we get u = 0 directly. If j exists, we have 1 ≤ j < n and

D(w)A⊤A = Diag
(
ϕ′′

1(a⊤
1 w), . . . , ϕ′′

j (a⊤
j w), 0, . . . , 0

)
A⊤A

=

Diag
(
ϕ′′

1(a⊤
1 w), . . . , ϕ′′

j (a⊤
j w)

)
A⊤

1:jA1:j 0
0 0

 , (A.37)

where A1:j
def= [a1 · · · aj ] ∈ Rd×j . Note u = [u1; · · · ; un] ∈ Rn. Plugging (A.37) into (A.35), we

get In + 1
λn

Diag
(
ϕ′′

1(a⊤
1 w), . . . , ϕ′′

j (a⊤
j w)

)
A⊤

1:jA1:j 0
0 0

u = 0

⇐⇒


(
Ij + 1

λnDiag
(
ϕ′′

1(a⊤
1 w), . . . , ϕ′′

j (a⊤
j w)

)
A⊤

1:jA1:j
)

u1:j = 0

u(j+1):n = 0
, (A.38)

where u1:j
def= [u1; · · · ; uj ] ∈ Rj and u(j+1):n

def= [uj+1; · · · ; un] ∈ Rn−j . From (A.38), u(j+1):n =
0. Now Diag

(
ϕ′′

1(a⊤
1 w), . . . , ϕ′′

j (a⊤
j w)

)
is invertible in the subspace Rj as every coordinate in

the diagonal ϕ′′
i (a⊤

i w) is strictly positive for all 1 ≤ i ≤ j. Similarly, we obtain u1:j = 0 from the
first equation of (A.38). Overall we get u = 0.

Thus, in all cases, u = 0, then v = 1
λnAu = 0. We can thus induce that DF (α; w)⊤ is

invertible for all α and w. Similar to Lemma 2.19, we have (2.24) hold, and by Lemma 2.9, we
have that (2.22) holds.
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A.6 Sufficient conditions for reformulation assumption (2.10)

To give sufficient conditions for (2.10) to hold, we need to study the spectra of E [HS(x)] . The
expected matrix E [HS(x)] has made an appearance in several references (Gower et al., 2019a;
Mutny et al., 2020; Derezinski et al., 2020) in different contexts and with different sketches. We
build upon some of these past results and adapt them to our setting.

First note that (2.10) holds if E [HS(x)] is invertible. The invertibility of E [HS(x)] was
already studied in detail in the linear setting in Theorem 3 in Gower and Richtárik (2015a)
when S is sampled from a discrete distribution. Here we can state a sufficient condition of (2.10)
for sketching matrices that have a continuous distribution.

Lemma A.8. For every x ∈ Rp, if ES∼Dx

[
SS⊤

]
and DF (x)⊤DF (x) are invertible, then

ES∼Dx [HS(x)] is invertible.

Proof. Let x ∈ Rp and S ∼ Dx. Let G = DF (x)⊤DF (x) which is thus symmetric positive
definite and W = S⊤. In this case, since G is invertible we have that Ker(G) = {0} ⊂ Ker(W)
verified, by Lemma A.3, we have that

Ker
((

S⊤DF (x)⊤DF (x)S
)†
)

= Ker
(
S⊤DF (x)⊤DF (x)S

)
= Ker(S), (A.39)

Consequently, using LemmaA.3 againwithG =
(
S⊤DF (x)⊤DF (x)S

)†,W = S andKer(G) ⊂
Ker(W) given by (A.39), we have that

Ker(HS(x)) = Ker
(

S
(
S⊤DF (x)⊤DF (x)S

)†
S⊤
)

= Ker(S⊤) = Ker(SS⊤). (A.40)

Following the same steps in the proof of Lemma 2.9 right after (A.17), we obtain

Ker(E [HS(x)]) =
⋂

S∼Dx

Ker(HS(x)) (A.40)=
⋂

S∼Dx

Ker(SS⊤) = Ker(E
[
SS⊤

]
) = {0},

where the last equality follows as E
[
SS⊤

]
is invertible, which concludes the proof.

The invertibility ofE
[
SS⊤

]
states that the sketchingmatrices need to “span every dimension

of the space” in expectation. This is the case for Gaussian and subsampling sketches which
are shown in Lemma 2.11. This is also the case for our applications SNM and TCS which are
shown in the proofs of Lemma 2.19 and Lemma 2.22, respectively.

As for the invertibility of DF (x)⊤DF (x) ∈ Rm×m, this imposes that DF (x) has full-column
rank for all x ∈ Rp, thus m ≤ p. This excludes the regime of solving F (x) = 0 with m > p.
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However, our applications SNM and TCS also satisfy this condition which are again shown in
the proofs of Lemma A.5 and Lemma 2.22, respectively.

Consequently, by Lemma A.8, we have that SNM and TCS satisfy (2.10).

A.7 Extension of SNR and Randomized Subspace Newton

In the SNR method in line 4 in Algorithm 1, we only consider a projection under the standard
Euclidean norm. If we allow SNR for a changing norm that depends on the iterates, we find
that the Randomized Subspace Newton (Gower et al., 2019a) (RSN) method is in fact a special
case of SNR under this extension.

The changing norm projection of SNR is that, at kth iteration of SNR, instead of applying
line 4 in Algorithm 1, we can apply the following update

xk+1 = xk − γW−1
k DF (xk)Sk

(
S⊤

k DF (xk)⊤W−1
k DF (xk)Sk

)†
S⊤

k F (xk) (A.41)

where Wk ≡W(xk) with W(xk) a certain symmetric positive-definite matrix associated with
the kth iterate xk ∈ Rp.

The interpretation of using the matrix W(xk) is that, assuming Assumption 3.5 holds, then
instead of considering (2.7), we apply the following updates

xk+1 = argminx∈Rp

∥∥∥x− xk
∥∥∥2

Wk

s. t. S⊤
k DF (xk)⊤(x− xk) = −γS⊤

k F (xk), (A.42)

using the projection ∥ · ∥Wk
which changes at each iteration. One can verify easily that (A.42) is

equivalent to (A.41) under Assumption 3.5, even though this assumption is not necessary and
the update (A.41) is still available. Besides, the update (A.41) is known as sketched Newton-
Raphson with variable metric (SNRVM), studied in our later work Chen et al. (2022a). See
Section 3.4 in Chapter 3 for more details.

Now we can show that RSN is a special case of SNR with a changing norm projection. The
RSNmethod (Gower et al., 2019a) is a stochastic second order method that takes a Newton-type
step at each iteration to solve the minimization problem

min
x∈Rp

P (x)
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where P : Rp → R is a twice differentiable and convex function. In brevity, the updates in RSN
at the kth iteration are given by

xk+1 = xk − 1
L̂

Sk

(
S⊤

k∇2P (xk)Sk

)†
S⊤

k∇P (xk) (A.43)

where Sk is sampled i.i.d from a fixed distribution D and L̂ > 0 is the relative smoothness
constant (Gower et al., 2019a).

Since P (x) is convex, it suffices to find a stationary point x such that ∇P (x) = 0. We can
recover the exact same update (A.43) by applying SNR to solve ∇P (x) = 0 with an adaptive
changing norm. That is, let F (x) = ∇P (x) and DF (x) = ∇2P (x). At the kth iteration, let
Wk = ∇2P (xk). Then (A.41) is exactly the RSN update (A.43) with γ = 1

L̂
.

A.8 Explicit formulation of the TCS method

Here we provide details about how TCS method presented in Section 2.8 is obtained from the
general SNR method 1.

Consider the SNR method (line 4 in Algorithm 1) applied for the nonlinear equations
F (α; w) = 0 with F defined in (2.49) and the Jacobian of F (α; w) in (A.34).

At kth iteration (αk, wk) ∈ Rn × Rd, let[
αk+1

wk+1

]
def=
[

αk

wk

]
+ γ ·

[
∆αk

∆wk

]

and Sk ∈ R(d+n)×(τd+τn) the random sketching matrix. By line 4 in Algorithm 1, we obtain the
closed form update
[

∆αk

∆wk

]
= −DF (αk; wk)Sk

(
S⊤

k DF (αk; wk)⊤DF (αk; wk)Sk

)†
S⊤

k

[ 1
λnAαk − wk

αk + Φ(wk)

]
. (A.44)

As for the tossing-coin-sketch, consider a Bernoulli parameter b with b ∈ (0, 1). There is a

probability 1− b that the random sketching matrix has the type Sk =
[
Sd 0
0 0

]
with Sd ∈ Rd×τd ,

a (d, τd)–block sketch, and a probability b that the random sketching matrix has the type

Sk =
[
0 0
0 Sn

]
with Sn ∈ Rn×τn , a (n, τn)–block sketch. So Sd = IBd

and Sn = IBn .

Let ABd,: ≡ I⊤
Bd

A ∈ Rτd×n denote a row subsampling of A and A:,Bn ≡ AIBn ∈ Rd×τn de-
note a column subsampling of A. Let∇Φk

Bn
≡ ∇ΦkIBn ∈ Rd×τn denote a column subsampling
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of ∇Φk with∇Φk ≡ ∇Φ(wk) and Φk ≡ Φ(wk). We also use the shorthands vBn ≡ I⊤
Bn

v ∈ Rτn

with v ∈ Rn and vBd
≡ I⊤

Bd
v ∈ Rτd with v ∈ Rd.

If Sk =
[
Sd 0
0 0

]
, the update (A.44) applied for the function (2.49) and its Jacobian (A.34)

becomes
[

∆αk

∆wk

]
= −

[ 1
λnA⊤Sd

−Sd

](
S⊤

d

( 1
λ2n2 AA⊤ + Id

)
Sd

)†
S⊤

d

( 1
λn

Aαk − wk
)

= −
[ 1

λnA⊤
Bd,:

−IBd

](
ABd,:A⊤

Bd,:
λ2n2 + Iτd

)†(
ABd,:α

k

λn
− wk

Bd

)
. (A.45)

Similarly, if Sk =
[
0 0
0 Sn

]
, the update (A.44) becomes

[
∆αk

∆wk

]
= −

[
Sn

∇ΦkSn

] (
S⊤

n

(
[∇Φk]⊤∇Φk + In

)
Sn

)†
S⊤

n

(
αk + Φk

)

= −
[

IBn

∇Φk
Bn

] (
[∇Φk

Bn
]⊤∇Φk

Bn
+ Iτn

)† (
αk

Bn
+ Φk

Bn

)
. (A.46)

Then we update
[

αk+1

wk+1

]
=
[

αk

wk

]
+ γ ·

[
∆αk

∆wk

]
.

See Algorithm 5 the pseudocode for the updates (A.45) and (A.46).

A.9 Pseudo code and implementation details for GLMs

We also provide a more efficient and detailed implementation of Algorithm 5 in Algorithm 7 in
this section.

It is beneficial to first understand Algorithm 5 in the simple setting where τd = τn = 1. We
refer to this setting as the Kaczmarz–TCS method.
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Algorithm 5: τ–TCS
Input: Stepsize γ > 0, sketch sizes τd, τn ∈ N, probability b ∈ (0, 1), v ∼ B(b) be a

Bernoulli random variable (the coin toss)
1 Initialize (α0; w0) ∈ Rn+d

2 for k = 0, 1, · · · do
3 Sample v ∼ B(b) with v ∈ {0, 1}
4 if v = 0 then
5 Sample Bd ⊂ {1, . . . , d}with |Bd| = τd uniformly
6 Compute yd ∈ Rτd the least norm solution to
7

(
ABd,:A⊤

Bd,:
λ2n2 + Iτd

)
yd = ABd,:α

k

λn − wk
Bd

8 Compute the updates

9

[
∆αk

∆wk

]
= −

[
1

λnA⊤
Bd,:

−IBd

]
yd

10 else
11 Sample Bn ⊂ {1, . . . , n}with |Bn| = τn uniformly
12 Compute yn ∈ Rτn the least norm solution to
13

(
[∇Φk

Bn
]⊤∇Φk

Bn
+ Iτn

)
yn = αk

Bn
+ Φk

Bn

14 Compute the updates

15

[
∆αk

∆wk

]
= −

[
IBn

∇Φk
Bn

]
yn

16 wk+1 = wk + γ∆wk

17 αk+1 = αk + γ∆αk

Output: Last iterate αk, wk
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A.9.1 Kaczmarz–TCS

Let fj ∈ Rd (ei ∈ Rn) be the jth (the ith) unit coordinate vector in Rd (in Rn, respectively).

For Sk =
[
Sd 0
0 0

]
with Sd = fj , from (A.45) we get

[
∆αk

∆wk

]
= −

1
λn

∑n
l=1 aljαk

l − wk
j

1
λ2n2

∑n
l=1 a2

lj + 1


1

λn


a1j

...
anj


−fj

 . (A.47)

For Sk =
[
0 0
0 Sn

]
with Sn = ei, from (A.46) we get

[
∆αk

∆wk

]
= − αk

i + ϕ′
i(a⊤

i wk)
∥ai∥22ϕ′′

i (a⊤
i wk)2 + 1

[
ei

ϕ′′
i (a⊤

i wk)ai

]
. (A.48)

See Algorithm 6 an efficient implementation of Algorithm 5 in a single row sampling
case. Notice that we introduce an auxiliary variable αk to update the term 1

λn

∑n
l=1 aljαk

l for
j = 1, · · · , d in (A.47) andwe store a d×dmatrix covwhich can be seen as the covariancematrix
of the dataset A to update the term 1

λ2n2
∑n

l=1 a2
lj for j = 1, · · · , d in (A.47) (see Algorithm 6

Line 10). We also store a vector sample ∈ Rn to update the term ∥ai∥22 for i = 1, · · · , n in (A.48)
(see Algorithm 6 Line 19).

Cost per iteration analysis of Algorithm 6 From Algorithm 6, the cost of computing (A.47)
is O(n) with n coordinates’ updates of the auxiliary variable α (see Algorithm 6 Line 13). This
is affordable as the cost of each coordinate’s update is 1. Besides A is often sparse. The update
in this case can be much cheaper than n. Besides, the cost of computing (A.48) is O(d). If we
choose the Bernoulli parameter b = n/(n + d) which selects one row of F uniformly, the total
cost of the updates TCS in expectation with respect to the Bernoulli distribution will be

Cost(update TCS) = O(n) ∗ (1− b) +O(d) ∗ b = O(nd/(n + d)) = O(min(n, d)).

So the TCS method can have the same cost per iteration as the stochastic first-order methods
in the case d < n, such as SVRG (Johnson and Zhang, 2013), SAG (Schmidt et al., 2017),
dfSDCA (Shalev-Shwartz, 2016) and Quartz (Qu et al., 2015).
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Algorithm 6: Kaczmarz-TCS
Input: D = distribution over random matrices

1 store in memory:
2 sample: (∥ai∥22)1≤i≤n ∈ Rn

3 cov: 1
λ2n2 AA⊤ ∈ Rd×d

4 initialization:
5 Choose (α0, w0) ∈ Rn × Rd and a step size γ ∈ R++

6 Set α0 = 1
λnAα0

7 for k = 0, 1, · · · do
8 Sample a fresh tossing-coin sketching matrix: Sk ∼ D

9 if Sk =
[
Sd 0
0 0

]
with Sd = fj then

10 Update (A.47): \\ Sketch a linear system based on the first d rows of the Jacobian

11 ∆wk
j = αk

j −wk
j

cov[j, j]+1

12 ∆αk = −∆wk
j · 1

λn

a1j
...

anj


13 wk+1

j = wk
j + γ ·∆wk

j \\ jth coordinate’s update of the variable wk

14 αk+1 = αk + γ ·∆αk \\ full vector’s update of the auxiliary variable αk

15 αk+1 = αk − γ ·∆wk
j · cov[: , j]

16 else

17 Sk =
[
0 0
0 Sn

]
with Sn = ei

18 Update (A.48): \\ Sketch a system based on the last n rows of the Jacobian
19 temp = a⊤

i wk \\ temporal scalar
20 ∆αk

i = − αk
i +ϕ′

i(temp)
sample[i]·ϕ′′

i (temp)2+1
21 ∆wk = ∆αk

i · ϕ′′
i (temp) · ai

22 wk+1 = wk + γ ·∆wk \\ full vector’s update of the variable wk

23 αk+1
i = αk

i + γ ·∆αk
i \\ ith coordinate’s update of the auxiliary variable αk

24 αk+1 = αk + γ ·∆αk
i · 1

λnai

Output: Last iterate αk, wk
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A.9.2 τ–Block TCS

Here we provide Algorithm 7 which is a detailed implementation of Algorithm 5 in a more
efficient way. Similar to Algorithm 6 but with sketch sizes τd and τn, we also store a d×d matrix
cov, but not a vector sample. We refer to Algorithm 7 as the τ -block TCS method.

From Algorithm 7, the cost of solving the τd × τd system (see Algorithm 7 Line 10) is O(τ3
d )

for a direct solver and the cost of updating α and α (see Algorithm 7 Line 13 and Line 14) are
O(τdn) and O(τdd) respectively. Overall, this implies that the cost of executing the sketching of
the first d rows is

cd
def= O(max(τ3

d , τdn, τdd)). (A.49)

Similarly, the dominant cost of executing the last n rows sketch comes from forming the τn× τn

linear system or solving such system (see Line 25), which gives

cn
def= O(max(τ3

n, τ2
nd)). (A.50)

In average, which means taking the Bernoulli parameter b into account, the total cost per
iteration of the TCS updates in expectation is

cavg
def= cd × (1− b) + cn × b

= O(max(τ3
d , τdn, τdd))× (1− b) +O(max(τ3

n, τ2
nd))× b. (A.51)

Depending on the sketch sizes (τd, τn) and the Bernoulli parameter b, the nature of cavg can
be different from O(d) (see Kaczmarz-TCS in Algorithm 6) to O(d2) (see the cost per iteration
analysis paragraph in the next section). We discuss the total cost per iteration of the TCS
method in practice in different cases in the next section.

A.10 Additional experimental details

All the sampling of the methods was pre-computed before starting counting the wall-clock
time for each method and each dataset. We also paused the timing when the algorithms were
under process of the performance evaluation of the gradient norm or of the logistic regression
loss that were necessary to generate the plots.

In the following, from the experimental results for GLM in Section 2.8.1, we discuss the pa-
rameters’ choices for TCS in practice, including the sketch sizes (τd, τn), the Bernoulli parameter
b, the stepsize γ and the analysis of total cost per iteration. See Table A.1 for the parameters we
chose for TCS in the experiments in Figure 2.1. Such choices are due to TCS’s cost per iteration.
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Algorithm 7: τ–Block TCS
Input: D = distribution over random matrices

1 store in memory:
2 cov: 1

λ2n2 AA⊤ ∈ Rd×d

3 initialization:
4 Choose (α0, w0) ∈ Rn × Rd and a step size γ ∈ R++

5 Set α0 = 1
λnAα0

6 for k = 0, 1, · · · do
7 Sample a fresh tossing-coin sketching matrix: Sk ∼ D

8 if Sk =
[
Sd 0
0 0

]
with Sd = IBd

and |Bd| = τd then

9 Update (A.45): \\ Sketch a linear system based on the first d rows of the Jacobian
10 Compute yd ∈ Rτd the least norm solution to the τd × τd linear system
11 (cov[Bd, Bd] + Iτd

) yd = −
(
αk

Bd
− wk

Bd

)
12 Compute the updates
13 wk+1

Bd
= wk

Bd
− γ · yd \\ τd coordinates’ update of the variable wk

14 αk+1 = αk + γ · 1
λnA⊤

Bd,:yd \\ full vector’s update of the auxiliary variable αk

15 αk+1 = αk + γ · cov[: , Bd]yd

16 else

17 Sk =
[
0 0
0 Sn

]
with Sn = IBn and |Bn| = τn

18 Update (A.46): \\ Sketch a system based on the last n rows of the Jacobian
19 temp = A⊤

:,Bn
wk ∈ Rτn \\ Temporal vector

20 Dk
Bn

= Diag
(
ϕ′′

Bn
(temp)

)
∈ Rτn×τn \\ Compute ϕ′′

i (a⊤
i wk) element-wise

∀i ∈ Bn

21 ∇Φk
Bn

= A:,BnDk
Bn
∈ Rd×τn

22 Φk
Bn

= ϕ′
Bn

(temp) \\ Compute ϕ′
i(a⊤

i wk) element-wise ∀i ∈ Bn

23 Compute yn ∈ Rτn the least norm solution to the τn × τn linear system
24

(
[∇Φk

Bn
]⊤∇Φk

Bn
+ Iτn

)
yn = −

(
αk

Bn
+ Φk

Bn

)
25 Compute the updates
26 wk+1 = wk + γ · ∇Φk

Bn
yn \\ full vector’s update of the variable wk

27 αk+1
Bn

= αk
Bn

+ γ · yn \\ τn coordinates’ update of the auxiliary variable αk

28 αk+1 = αk + γ · 1
λnA:,Bnyn

Output: Last iterate αk, wk
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Table A.1 – Details of the parameters’ choices (γ and b) for 50-TCS, 150-TCS and 300-TCS
50-TCS 150-TCS 300-TCS

dataset stepsize Bernoulli Bernoulli Bernoulli
covetype 1.0 n

n+τn∗3
n

n+τn∗3
n

n+τn∗3
a9a 1.5 n

n+τn
− 0.03 n

n+τn
− 0.03 n

n+τn
− 0.11

fourclass 1.0 n
n+τn

− 0.11 n
n+τn

− 0.11 n
n+τn

− 0.11
artificial 1.0 n

n+τn
− 0.03 n

n+τn
− 0.11 n

n+τn
− 0.11

ijcnn1 1.8 n
n+τn

− 0.03 n
n+τn

− 0.11 n
n+τn

− 0.11
webspam 1.8 n

n+τn∗3
n

n+τn∗3
n

n+τn∗3
epsilon 1.8 n

n+τn∗3
n

n+τn∗3
n

n+τn∗3
phishing 1.8 n

n+τn
− 0.03 n

n+τn
− 0.11 n

n+τn
− 0.11

Choice of the sketch size τd For all of our experiments, τd = d performs always the best in

time and in number of iterations. That means, when Sk =
[
Sd 0
0 0

]
at kth iteration, we choose

Sd = Id. Note also that the first d rows (2.49) are linear, thus using Sd = Id gives an exact
solution to these first d equations. We found that such an exact solution from the linear part
induces a fast convergence when d < n. We did not test datasets for which d > n with d very
large.

Choice of the Bernoulli parameter b for uniform sampling First, we calculate the probability
of sampling one row of the function F (2.49). Since there exists two types of sketching for TCS
method depending on the coin toss, we address both of them. The probability of sampling one
specific row of the first block (fist d rows of (2.49)) is

pd = τd

d
× (1− b)

and the one of the second block is
pn = τn

n
× b.

It is natural to choose b such that the uniform sampling of the whole system, i.e. pd = pn, is
guaranteed. This implies to set

puniform
def= τdn

τdn + τnd
.

As we choose τd = d, this implies

puniform = n

n + τn
.
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Figure A.1 – a9a dataset: Grid search of the Bernoulli parameter b and the stepsize γ with 150-TCS
method.The darker colors correspond to a resulting small gradient norm and thus a better solution.

However, we found through multiple experiments that when setting b slightly smaller than
puniform (e.g. −1%), this reduces significantly the number of iterations to get convergence. See
in Figure A.1 for a grid search of the Bernoulli parameter b and the stepsize γ for a9a dataset
with b = puniform = 0.995 in the first line of the figure. Before giving details about how to
choose b in practice, we first provide the cost per iteration analysis of the TCS method in detail.

Total cost per iteration in expectation analysis for TCS in different cases Recall two types
of costs per iteration cd (A.49) and cn (A.50). In our cases, consider b = n

n+τn
and d = τd < n.

To summarize, the cost per iteration in expectation can be one of the three following cases
followed with their bounds:

1. If τn <
√

n < d < n such as epsilon dataset, then cd = O(d3) > cn = O(τ2
nd), and

cavg1 = O(d3)×
(

1− n

n + τn

)
+O(τ2

nd)× n

n + τn
= O( τnd

n + τn
(d2 + τnn))

=⇒ O(τ2
nd) ≤ cavg1 ≤ O(τnd2); (A.52)

2. if τn < d <
√

n such as webspam dataset with 50-TCS and 150-TCS, a9a, phishing and
covtype datasets with 50-TCS method, then cd = O(dn) > cn = O(τ2

nd), and

cavg2 = O(dn)×
(

1− n

n + τn

)
+O(τ2

nd)× n

n + τn

= O( τnn

n + τn
(d + τnd)) = O(τ2

nd) as 1
2 ≤

n

n + τn
< 1; (A.53)
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Table A.2 – Cost per iteration for different datasets and different sketch sizes.
dataset 50-TCS 150-TCS 300-TCS
covetype cd > cn cd > cn cd > cn

a9a cd > cn cd > cn cd < cn

fourclass cd < cn cd < cn cd < cn

artificial cd > cn cd < cn cd < cn

ijcnn1 cd > cn cd < cn cd < cn

webspam cd > cn cd > cn cd > cn

epsilon cd > cn cd > cn cd > cn

phishing cd > cn cd < cn cd < cn

3. if d <
√

n and d < τn such as all the other experiments for TCS methods in Figure 2.1,
then cd = O(dn), cn = O(τ3

n), and

cavg3 = O(dn)×
(

1− n

n + τn

)
+O(τ3

n)× n

n + τn

= O( τnn

n + τn
(d + τ2

n))

= O(τ3
n) > O(d3) as 1

2 ≤
n

n + τn
< 1. (A.54)

Notice that cavg1, cavg2, cavg3 ≪ O(dn) in general for large scale datasets with large n. For
example, cavg1 < O(dn) when τnd < n. This justifies that TCS method is cheaper than the
first-order method which requires evaluating the full gradient and thus has a cost per iteration
of at least O(dn). From cavg1 (A.52), we know that TCS method can have the same cost per
iteration as the stochastic first-order methods which isO(d) in practice, such as SVRG (Johnson
and Zhang, 2013), SAG (Schmidt et al., 2017), dfSDCA (Shalev-Shwartz, 2016) and Quartz (Qu
et al., 2015).

Furthermore, from the above analysis of computational cost, we can easily obtain the
comparisons between cd and cn for different datasets and different sketch sizes in Table A.2.
These comparisons helped us to choose b as we detail in the following.

Choice of the Bernoulli parameter b in practice From the above discussion about puniform,
heuristically, we decrease b from puniform to achieve faster convergence. For a large range of
choices b, TCS converges. However, b affects directly the computational cost per iteration. From
(A.51), we know that if cd > cn, decreasing b will increase the average cost of the method. In
this case, there is a trade-off between the number of iterations and the average cost to achieve
the fastest convergence in time (see Figure A.1). For a large dataset with n large such as epsilon,
webspam and covtype, we decrease b slightly, as for a small dataset, we make a relatively big
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Figure A.2 – Comparisons of different sketch sizes for TCS method in terms of the number of iterations.

decrease for b. If cd < cn, decreasing b will also decrease the average cost. In this case, we tend
to decrease b even further. See Table A.1 the choices of b.

Choice of the sketch size τn As for τn, we observe that with bigger sketch size τn, the method
requires less number of iterations to get convergence. From Figure A.2, this is true for all the
datasets except for covtype dataset. However, choosing bigger sketch size τn will also increase
the cost per iteration. Consequently, there exists an optimal sketch size such that the method
converges the fastest in time taking account the balance between the number of iterations and
the cost per iteration. From the experiments in Figure 2.1, we show that τn = 150 is in general
a very good choice for any scale of n.

Choice of the stepsizes Different to our global convergence theories, in practice, choosing
constant stepsize γ > 1 may converge faster (see Figure A.1) for certain datasets. Here we need

to be careful that the stepsize we mentioned is the stepsize used for the sketch Sk =
[
0 0
0 Sn

]
.

As for the sketch Sk =
[
Sd 0
0 0

]
, we always choose stepsize γ = 1. Because stepsize γ = 1 solves

exactly the linear system. Henceforth, we use γ to designate the stepsize used for the sketch
of the last n rows of F (2.49). In our experiments, we find that the choice of the stepsize is
related to the condition number (C.N.) of the model. If the dataset is ill-conditioned with a big
C.N. of the model, γ = 1 is a good choice (see Figure 2.1 top row and Table A.1 first four lines
except for a9a); if the dataset is well-conditioned with a small C.N. of the model, all γ ∈ (1, 1.8]
gets convergence (see Figure A.1). In practice, γ = 1.8 is a good choice for well-conditioned
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datasets (see Figure 2.1). However, from the grid search of stepsizes for a9a (see Figure A.1),
we know that the optimal stepsize for a9a is γ = 1.5. To avoid tuning the stepsizes, i.e. a grid
search procedure, we will apply a stochastic line search process (Vaswani et al., 2019b) in the
next Appendix A.11.

Furthermore, we observe that the stepsize γ is highly related to the smoothness constant L.
If L is big, then we choose γ close to 1, if L is small, we increase γ until γ = 1.8 (see Table A.1).
Such observation remains conjecture.

Finally, to summarize in practice for the TCS method with d < n, we choose τd = d and
τn = 150, we choose b following the guideline introduced above; we always choose stepsize
γ = 1 for the sketch of first d rows (2.49); as for the sketch of last n rows (2.49), we choose
stepsize γ = 1 if the dataset is ill-conditioned and we can choose stepsize γ = 1.8 if the dataset
is well-conditioned.

A.11 Stochastic line-search for TCS methods applied in GLM

In order to avoid tuning the stepsizes, we can modify Algorithm 1 by applying a stochastic
line-search introduced by (Vaswani et al., 2019b). This is because again SNR can be interpreted
as a SGDmethod. It is a stochastic line-search because on the kth iteration we sample a stochastic
sketching matrix Sk, and search for a stepsize γk satisfying the following condition:

fSk,wk

(
wk − γk∇fSk,wk(wk)

)
≤ fSk,wk(wk)− c · γk

∥∥∥∇fSk,wk(wk)
∥∥∥2

(2.13)= (1− 2cγk) fSk,wk(wk). (A.55)

Here, c > 0 is a hyper-parameter, usually a value close to 0 is chosen in practice.

A.11.1 Stochastic line-search for TCS method

Nowwe focus on GLMs, whichmeans we develop the stochastic line-search based on (A.55) for

TCSmethod. At kth iteration, ifSk =
[
Sd 0
0 0

]
withSd = IBd

, we sketch a linear system based on

the first d rows of the Jacobian (A.34). Because of this linearity, the function fSk,(αk,wk)(αk; wk)
is quadratic. Thus (A.55) can be re-written as

fSk,k

([
αk

wk

]
− γk∇fSk,k(αk; wk)

)
= (1− γk)2fSk,k(αk; wk)

≤ (1− 2cγk)fSk,k(αk; wk), (A.56)
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where we use the shorthand fSk,k(αk; wk) ≡ fSk,(αk;wk)(αk; wk). To achieve the Armijo line-
search condition (A.56), it suffices to take γ = 1 and 0 < c ≤ 1

2 which is a common choice.
Consequently, we do not need extra function evaluations. It is also well known that stepsize
equal to 1 is optimal as for Newton’s method applied in quadratic problems.

If Sk =
[
0 0
0 Sn

]
with Sn = IBn , we have

fSk,k(αk; wk) = 1
2
(
αk

Bn
+ Φk

Bn

)⊤ (
[∇Φk

Bn
]⊤∇Φk

Bn
+ Iτn

)† (
αk

Bn
+ Φk

Bn

)
. (A.57)

and

fSk,k

([
αk

wk

]
− γk∇fSk,k(αk; wk)

)

= 1
2F (αk + γk∆αk; wk + γk∆wk)⊤HSk

(αk; wk)F (αk + γk∆αk; wk + γk∆wk)

= 1
2F (αk + γk∆αk; wk + γk∆wk)⊤

[
0

IBn

] (
[∇Φk

Bn
]⊤∇Φk

Bn
+ Iτn

)†

[
0

IBn

]⊤

F (αk + γk∆αk; wk + γk∆wk) (A.58)

with[
0

IBn

]⊤

F (αk + γk∆αk; wk + γk∆wk) = αk
Bn

+ γkI⊤
Bn

∆αk + ϕ′
Bn

(
A⊤

:,Bn
wk + γkA⊤

:,Bn
∆wk

)
.

(A.59)

By (A.46), we recall that

∆αk = −IBn

(
[∇Φk

Bn
]⊤∇Φk

Bn
+ Iτn

)† (
αk

Bn
+ Φk

Bn

)
, (A.60)

∆wk = −∇Φk
Bn

(
[∇Φk

Bn
]⊤∇Φk

Bn
+ Iτn

)† (
αk

Bn
+ Φk

Bn

)
. (A.61)

Note that the cost for evaluating (A.57) and (A.58) areO(τn) andO (max
(
τ3

n, τnd
)) respectively,

which are not expensive. Because one part of them are essentially a by-product from the
computation of yn, ∆αk and ∆wk in Algorithm 5. See Algorithm 8 the implementation of TCS
combined with the stochastic Armijo line-search. β ∈ (0, 1) is a discount factor.
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Algorithm 8: τ–TCS+Armijo
Input: Stepsize γ > 0, line-search parameter c > 0, discount factor β ∈ (0, 1), sketch

sizes τd, τn ∈ N, probability b ∈ (0, 1), v ∼ B(b) be a Bernoulli random variable
(the coin toss)

1 Initialize (α0; w0) ∈ Rn+d

2 for k = 0, 1, · · · do
3 Sample v ∼ B(b) with v ∈ {0, 1}
4 if v = 0 then
5 Sample Bd ⊂ {1, . . . , d}with |Bd| = τd uniformly.
6 Compute yd ∈ Rτd the least norm solution to
7

(
ABd,:A⊤

Bd,:
λ2n2 + Iτd

)
yd = ABd,:α

k

λn − wk
Bd

8 Compute the updates

9

[
∆αk

∆wk

]
= −

[
1

λnA⊤
Bd,:

−IBd

]
yd

10 wk+1 = wk + ∆wk

11 αk+1 = αk + ∆αk

12 else
13 Reset γ to the initial stepsize.
14 Sample Bn ⊂ {1, . . . , n}with |Bn| = τn uniformly.
15 Compute yn ∈ Rτn the least norm solution to
16

(
[∇Φk

Bn
]⊤∇Φk

Bn
+ Iτn

)
yn = αk

Bn
+ Φk

Bn

17 Compute the updates

18

[
∆αk

∆wk

]
= −

[
IBn

∇Φk
Bn

]
yn

19 while fSk,k

([
αk

wk

]
+ γ

[
∆αk

∆wk

])
> (1− 2cγ)fSk,k(αk, wk) do

20 γ ← β · γ
21 wk+1 = wk + γ∆wk

22 αk+1 = αk + γ∆αk

Output: Last iterate αk, wk
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Figure A.3 – Experiments for TCS method combined with the stochastic line-search.

A.11.2 Experimental results for stochastic line search

For all experiments, we set the initial stepsize γ = 2 with γ the stepsize for the last n rows’
sketch and reduce the stepsize by a factor β = 0.9 when the line-search (A.55) is not satisfied.
We choose the stepsize γ = 1 with γ the stepsize for the first d rows’ sketch and c = 0.09.

From Figure A.3, we observe that stochastic line search guarantees the convergence of the
algorithm and does not tune any parameters. However, it slows down the convergence speed
compared to the original algorithm with its rule of thumb parameters’ choice. This is expected,
as it does extra function evaluations at each step for the stochastic line search procedure.
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The Appendix is organized as follows: In Appendix B.1, we carefully derive the closed form
updates of SAN and SANApresented in Algorithm 2 and 3. In Appendix B.2, we specialize SAN
and SANA for the case of regularized generalized linear models and provide more detailed and
efficient pseudo-codes for such case. In Appendix B.3, we give further details on the numerical
experiments and provide additional experiments for SANA to compare with SNM and IQN. In
Appendix B.4 and B.5, we provide the proofs for the claims and results in Section 3.4.

B.1 A closed form expression for SAN and SANA

In this section, we show that the updates of the SANmethod given inAlgorithm 2 are equivalent
to the implicit formulation in (3.10)-(3.11). We then derive the closed form updates of the
SANAmethod in Section B.1.2. Finally in Section B.1.3, we provide a useful lemma. It provides
an alternatively way to directly deduce the closed form updates (3.10) and (3.11) of SAN.

B.1.1 Closed form expression for SAN

We start with the following technical lemma.
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Lemma B.1. Let j ∈ {1, . . . , n}. Let ŵ ∈ Rd, and α̂1, . . . , α̂n ∈ Rd. Let cj ∈ Rd, and Hj ∈ Rd×d

be a symmetric positive definite matrix. The optimization problem

min
w,α1,...,αn∈Rd

1
2

n∑
i=1
∥αi − α̂i∥2 + 1

2 ∥w − ŵ∥2Hj

subject to Hj(w − ŵ)− αj = cj ,

has a unique solution (w, α1, . . . , αn) given by

w = ŵ + (Id + Hj)−1(cj + α̂j),

αj = α̂j − (Id + Hj)−1(cj + α̂j),

αi = α̂i for i ̸= j.

Proof. Denoting x = (w, α1, . . . , αn), let us define

Φ(x) def= 1
2

n∑
i=1
∥αi − α̂i∥2 + 1

2 ∥w − ŵ∥2Hj
, and Ψj(x) def= Hj(w − ŵ)− αj − cj . (B.1)

The fact that Hj is positive definite implies that Φ is strongly convex. Moreover Ψj is affine,
so we deduce that this problem has a unique solution. Moreover, this solution, let us call it
x = (w, α1, . . . , αn), is characterized as the unique vector in R(n+1)d satisfying the following
Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951):

(∃βj ∈ Rd) such that
∇Φ(x) +∇Ψj(x)βj = 0,

Ψj(x) = 0.
(B.2)

The derivatives in the above KKT conditions are given by

∇Φ(x) =


Hj(w − ŵ)

α1 − α̂1
...

αn − α̂n

 and ∇Ψj(x) =



Hj

0d

...
Id

...
0d


← j + 1

(B.3)
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Using the expression for these derivatives, we can rewrite the KKT conditions (B.2) as

(∃βj ∈ Rd) such that



Hj(w − ŵ) + Hjβj = 0,

αj − α̂j − βj = 0,

αi − α̂i + 0 = 0, for all i ̸= j

Hj(w − ŵ)− αj − cj = 0.

(B.4)

We immediately see that αi = α̂i for i ̸= j. Combining the second and fourth equations in
(B.4), we obtain

βj = αj − α̂j = Hj(w − ŵ)− cj − α̂j .

Multiplying this new equality by Hj allows us to rewrite the first equation in (B.4) as:

Hj(w − ŵ) + Hjβj = 0⇔ Hj(w − ŵ) + H2
j (w − ŵ) = Hj(cj + α̂j).

Using the fact that Hj is invertible, the latter is equivalent to write:

w = ŵ + (Id + Hj)−1 (cj + α̂j).

Moreover, since Hj(Id + Hj)−1 = Id − (Id + Hj)−1, we can also turn the fourth equation in
(B.4) into

αj = Hj(w − ŵ)− cj =
(
Id − (Id + Hj)−1

)
(cj + α̂j)− cj = α̂j − (Id + Hj)−1(cj + α̂j).

This proves the claim.

Lemma B.2. Let π ∈ [0, 1] and γ ∈ (0, 1] a step size. Algorithm 2 (SAN) is equivalent to the
following algorithm:
With probability π, update according to

x̄k+1 = argmin ∥w − wk∥2 +
n∑

i=1
∥αi − αk

i ∥2 subject to 1
n

n∑
i=1

αi = 0,

xk+1 = (1− γ)xk + γx̄k+1,
(B.5)

Otherwise with probability (1− π), sample j ∼ {1, . . . , n} uniformly and update according to


x̄k+1 = argmin ∥w − wk∥2∇2fj(wk) +

n∑
i=1
∥αi − αk

i ∥2

subject to ∇2fj(wk)(w − wk)− αj = −∇fj(wk),

xk+1 = (1− γ)xk + γx̄k+1.

(B.6)
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Proof. Suppose that we are in the case (which holds with probability π) given by (B.5). In the
projection step, we see that w is not present in the constraint, which implies that w̄k+1 = wk,
and therefore wk+1 = wk. On the other hand, (ᾱ1, . . . , ᾱn) is the projection of (α1, . . . , αn) onto
a simple linear constraint, and can be computed in closed form as

(∀i ∈ {1, . . . , n}) ᾱk+1
i = αk

i −
1
n

n∑
i=1

αk
i .

Consequently

(∀i ∈ {1, . . . , n}) αk+1
i = (1− γ)αk

i + γ

(
αk

i −
1
n

n∑
i=1

αk
i

)
= αk

i −
γ

n

n∑
i=1

αk
i ,

which gives us exactly the step 4 in Algorithm 2.
Let now j be in {1, . . . , n} sampled uniformly, and suppose that we are in the case given

by (B.6). Using Lemma B.1 we can compute an explicit form for x̄k+1 given by

w̄k+1 = wk +
(
Id +∇2fj(wk)

)−1
(αk

j −∇fj(wk)),

ᾱk+1
j = αk

j −
(
Id +∇2fj(wk)

)−1
(αk

j −∇fj(wk)),

ᾱk+1
i = α̂k

i for all i ̸= j.

Consequently, after applying the relaxation step we have

wk+1 = wk + γ
(
Id +∇2fj(wk)

)−1
(αk

j −∇fj(wk)),

αk+1
j = αk

j − γ
(
Id +∇2fj(wk)

)−1
(αk

j −∇fj(wk)),

ᾱk+1
i = α̂k

i for all i ̸= j.

which is exactly the steps 8-10 in Algorithm 2.

B.1.2 Closed form expression for SANA

Lemma B.3. Let j ∈ {1, . . . , n}. Let cj ∈ Rd, ŵ ∈ Rd, and let α̂1, . . . , α̂n ∈ Rd be such that∑n
i=1 α̂i = 0. Let Hj ∈ Rd×d be a positive definite matrix. Then the optimization problem

min
w,α1,...,αn∈Rd

1
2

n∑
i=1
∥αi − α̂i∥2 + 1

2 ∥w − ŵ∥2Hj
,

subject to Hj(w − ŵ)− αj = cj ,

169



Complements on Chapter 3

n∑
i=1

αi = 0, (B.7)

has a unique solution (w, α1, . . . , αn) given by

d =
(

n− 1
n

Id + Hj

)−1
(cj + α̂j),

w = ŵ + d,

αj = α̂j −
n− 1

n
d,

αi = α̂i + 1
n

d, for i ̸= j.

Proof. Noting x = (w, α1, . . . , αn), let us define Φ(x) and Ψj(x) as in (B.1), together with

Ψ0(x) def=
n∑

i=1
αi.

The fact that Hj is positive definite implies that we are minimizing a strongly convex function
over a set of affine equations. We deduce that this problem has a unique solution. Moreover,
this solution, let us call it x = (w, α1, . . . , αn), is characterized as the unique vector in R(n+1)d

satisfying the following KKT conditions:

(∃β0, βj ∈ Rd) such that


∇Φ(x) +∇Ψ0(x)β0 +∇Ψj(x)βj = 0,

Ψ0(x) = 0,

Ψj(x) = 0.

Here, we can compute∇Φ(x) and∇Ψj(x) as in (B.3), together with

∇Ψ0(x) =


0d

Id

...
Id

 .
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Therefore, we can rewrite the KKT conditions as

(∃β0, βj ∈ Rd) such that



Hj(w − ŵ) + 0 + Hjβj = 0,

αj − α̂j + β0 − βj = 0,

αi − α̂i + β0 + 0 = 0, for all i ̸= j∑n
i=1 αi = 0

Hj(w − ŵ)− αj − cj = 0.

(B.8)

The last equation in (B.8) can be rewritten as

αj = Hj(w − ŵ)− cj . (B.9)

Summing the equations involving αi for i ̸= j, and using the fact that
n∑

i=1
αi =

n∑
i=1

α̂i = 0,
together with (B.9), we can deduce that

0 =
∑
i ̸=j

(αi − α̂i + β0) = −αj + α̂j + (n− 1)β0 = −Hj(w − ŵ) + cj + α̂j + (n− 1)β0.

In other words, we obtain that

β0 = 1
n− 1 (Hj(w − ŵ)− (cj + α̂j)) . (B.10)

Injecting the above expression into the second equation of (B.8), and using again (B.9), gives

βj = Hj(w − ŵ)− cj − α̂j + 1
n− 1 (Hj(w − ŵ)− (cj + α̂j))

= n

n− 1 (Hj(w − ŵ)− (cj + α̂j))

Combining this expression of βj with the first equation in (B.8) leads to

0 = Hj(w − ŵ) + n

n− 1Hj (Hj(w − ŵ)− (cj + α̂j))

= Hj

((
Id + n

n− 1Hj

)
(w − ŵ)− n

n− 1(cj + α̂j)
)

Using the fact that Hj is positive definite, we obtain that:

w = ŵ + n

n− 1

(
Id + n

n− 1Hj

)−1
(cj + α̂j)

= ŵ +
(

n− 1
n

Id + Hj

)−1
(cj + α̂j),

= ŵ + d,
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where d is defined as
(

n−1
n Id + Hj

)−1
(cj + α̂j).

Going back now to (B.9) we can write

αj = Hjd− cj = Hj

(
n− 1

n
Id + Hj

)−1
(cj + α̂j)− cj

=
(

Id −
n− 1

n

(
n− 1

n
Id + Hj

)−1
)

(cj + α̂j)− cj

= α̂j −
n− 1

n

(
n− 1

n
Id + Hj

)−1
(cj + α̂j)

= α̂j −
n− 1

n
d.

It remains to computeαi, for i ̸= j. Start with the first equation of (B.8) and see thatw−ŵ+βj =
0. This implies that βj = −d. We can therefore use the second equation of (B.8) to write that

β0 = βj − (αj − α̂j) = −d + n− 1
n

d = − 1
n

d.

We can finally call the third equation of (B.8) and write that αi = α̂i − β0 = α̂i + 1
nd.

Lemma B.4. Let γ ∈ (0, 1] be a step size. Algorithm 3 (SANA) is equivalent to the following
algorithm: update the iterates according to



x̄k+1 = argmin ∥w − wk∥2∇2fj(wk) +
n∑

i=1
∥αi − αk

i ∥2

subject to


1
n

n∑
i=1

αi = 0,

∇2fj(wk)(w − wk)− αj = −∇fj(wk),

xk+1 = (1− γ)xk + γx̄k+1.

(B.11)

Proof. Consider the iterates defined by (B.11). Using Lemma B.3, we can compute an explicit
form for x̄k+1:

dk =
(

n− 1
n

Id +∇2fj(wk)
)−1

(αk
j −∇fj(wk)),

w̄k+1 = wk + dk,

ᾱk+1
j = αk

j −
n− 1

n
dk,

ᾱk+1
i = αk

i + 1
n

dk, for i ̸= j.
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B.1 A closed form expression for SAN and SANA

After applying the relaxation step xk+1 = (1− γ)xk + γx̄k+1, we obtain exactly the steps 5-8 in
Algorithm 3.

B.1.3 Generic projection onto linear systems

Here we provide a useful lemma that can directly deduce the closed form updates of (3.10)
and (3.11) of SAN. It will also be used later in the appendix.

Lemma B.5. Let A ∈ Rn×d, S ∈ Rn×τ , b ∈ Im (A), and H be a symmetric positive definite
matrix. The optimization problem

x∗ = arg min
x∈Rd

1
2 ∥x∥

2
H ,

subject to S⊤Ax = S⊤b,

has a unique solution, called the weighted sketch-and-project optimal solution:

x∗ = H−1A⊤S(S⊤AH−1A⊤S)†S⊤b. (B.12)

Proof. First, note that this problem is strongly convex because H is supposed to be positive
definite, and therefore admits a unique solution x∗ ∈ Rd. Second, since H is invertible, we can
do the change of variables y

def= H1/2x. This allows us to write that x∗ = (H)−1/2 y∗ where y∗ is
the unique solution of

arg min
y∈Rd

1
2 ∥y∥

2 ,

subject to S⊤AH−1/2y = S⊤b.

The unique solution to the above problem is the minimal-norm solution of the linear system
S⊤A (H)−1/2 y = S⊤b, which can be simply expressed by using the pseudo-inverse (Ben-Israel
and Charnes, 1963, Definition 1) :

y∗ =
(
S⊤AH−1/2

)†
S⊤b.

Using the relation M† = M⊤(MM⊤)† (Penrose, 1955, Lemma 1 & Equation (10)), we obtain

y∗ = (H)−1/2 A⊤S(S⊤AH−1A⊤S)†S⊤b.

Multiplying this equality by H−1/2 gives us the desired expression for x∗.
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This lemma is useful. Later it will be applied in Lemma B.14 and consequently provide the
explicit updates of (3.10) and (3.11) of SAN in Section B.4.2. Thus this is a different way to
obtain the closed form updates of SAN, compared to Section B.1.1.

B.2 Implementations for regularized GLMs

B.2.1 Definition and examples

Here we specify our algorithms for the case of regularized generalized linear models. Through-
out this section, we assume that our finite sum minimization problem (3.1) is a GLM (general-
ized linear model) defined as follows.

Assumption B.6 (Regularized GLM). Our problem (3.1) writes as

min
w∈Rd

1
n

∑
i=1

fi(w) def= ϕi(⟨ai, w⟩) + R(w), (B.13)

where {ai}ni=1 ⊂ Rd are data points, {ϕi}ni=1 are twice differentiable real convex loss functions
with ϕ′′

i (t) > 0, and R is a separable regularizer with R(w) =
d∑

j=1
Rj(wj) where Rj is a twice

differentiable real convex function with R′′
j (t) > 0, for all t ∈ R.

Some classic examples of GLMs include ridge regression where ϕi(t) = 1
2(t − yi)2 and

Rj(t) = λ
2 t2 where λ > 0 is a regularization parameter. L2-regularized logistic regression, the

example on which we perform most of our experiments, is also a GLM with

ϕi(t) = ln
(
1 + e−yit

)
and Rj(t) = λ

2 t2. (B.14)

We also consider other forms of separable regularizers such as the pseudo-huber regularizer
where Rj(t) = λδ2

(√
1 +

(
t
δ

)2 − 1
)
where δ is a parameter.

In the next section, wewill show that for GLMs, ourmethods can be efficiently implemented.
But first we need the following preliminary results.

Lemma B.7 (Simple computations with Regularized GLMs). For GLMs (Assumption B.6)
we have for all j ∈ {1, . . . , n}, all w ∈ Rd and every µ ≥ 0 that

(1)
∇R(w) = [R′

1(w1) . . . R′
d(wd)]⊤,

∇2R(w) = Diag (R′′
1(w1), . . . , R′′

d(wd)) .
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(2)
∇fj(w) = ∇R(w) + ϕ′

j(⟨aj , w⟩)aj ,

∇2fj(w) = ∇2R(w) + ϕ′′
j (⟨aj , w⟩)aja⊤

j .

(3) With âj :=
(
µId +∇2R(wk)

)−1
aj , we have

(
µId +∇2fj(w)

)−1
=
(
µId +∇2R(wk)

)−1
−

ϕ′′
j (⟨aj , w⟩)

1 + ϕ′′
j (⟨aj , w⟩)⟨âj , aj⟩

âj â⊤
j .

(4) If R(w) = λ
2∥w∥

2, with λ > 0, then

(
µId +∇2fj(w)

)−1
= 1

µ + λ

(
Id −

ϕ′′
j (⟨aj , w⟩)

µ + λ + ϕ′′
j (⟨aj , w⟩)∥aj∥2

aja⊤
j

)
.

Proof. (1) and (2) are trivial. For (3), let Φ := ϕ′′
j (⟨aj , w⟩), which is nonnegative because of

the Assumption B.6. Consider now the Sherman–Morrison formula:

(M + uu⊤)−1 = M−1 − 1
1 + ⟨M−1u, u⟩

(M−1u)(M−1u)⊤.

This allows us to write, for D = (µId +∇2R(w))−1 and M = Φ−1(µId +∇2R(w)), that
(
µId +∇2fj(w)

)−1
=

(
µId +∇2R(w) + Φaja⊤

j

)−1
= Φ−1

(
M + aja⊤

j

)−1

= Φ−1
(

M−1 − 1
1 + ⟨M−1aj , aj⟩

(M−1aj)(M−1aj)⊤
)

= D− Φ
1 + Φ⟨Daj , aj⟩

(Daj)(Daj)⊤.

(4) is a direct consequence of the fact that D =
(
µId +∇2R(wk)

)−1 = 1
µ+λId.

B.2.2 SAN with GLMs

Here we give the detailed derivation of our implementation of SAN for GLMs, see Algorithm 9.
Upon examination, we can see that every step of Algorithm 9 has a cost of O(d), except on
line 4. As explained in Section 3.2.1, the averaging cost on line 4 costs O(d) in which π is of
the order of O(1/n). The only step that we have left an implicit computation is on lines 9
and 10 which require inverting (Id +∇2R(wk)). But this to comes at a cost of O(d) since in our
Assumption B.6 the regularizer is separable, and thus the Hessian is a diagonal matrix whose
inversion also costs O(d).
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Algorithm 9: SAN for regularized GLMs
Input: Data {ai}ni=1, loss functions {ϕi}ni=1, regularizer R, π ∈ (0, 1), step size

γ ∈ (0, 1], max iteration T
1 Initialize α0

1, · · · , α0
n, w0 ∈ Rd and α0 = 1

n

∑n
i=1 α0

i .
2 for k = 0, . . . , T − 1 do
3 With probability π update:
4 αk+1

i = αk
i − γαk, for all i ∈ {1, · · · , n}

5 wk+1 = wk

6 Otherwise with probability (1− π):
7 Sample j ∈ {1, . . . , n} uniformly
8 gk = ∇R(wk) + ϕ′

j(⟨aj , wk⟩)aj − αk
j

9 âj = (Id +∇2R(wk))−1aj

10 dk = ϕ′′
j (⟨aj ,wk⟩)⟨âj ,gk⟩

1+ϕ′′
j (⟨aj ,wk⟩)⟨âj ,aj⟩ âj −

(
Id +∇2R(wk)

)−1
gk

11 wk+1 = wk + γdk

12 αk+1
j = αk

j − γdk

13 αk+1
i = αk

i for i ̸= j

14 αk+1 = αk − γ
ndk

Output: Last iterate wT

Next we formalize the costs of Algorithm 9 in the following remark. By computational
cost, we refer to the total number of floating point operations, that is the number of scalar
multiplications and additions.

Remark B.8. The average costs of SAN (Algorithm 9) per iteration under Assumption B.6 are:

• Memory storage of O(nd) scalars.
• Memory access of O(πnd + (1− π)d) which is O(d) when π ≃ 1/n.
• Data access of O(1) .
• Computational cost of O(πdn + (1− π)d) which is O(d) when π ≃ 1/n.

In calculating the average computational cost per iteration, we used that in expectation
the updates on lines 4–5 occur with probability π, while the updates on lines 7–14 occur with
probability (1− π).

Lemma B.9. The SAN Algorithm 2 applied to Regularized GLMs (in the sense of Assumption
B.6) is Algorithm 9.
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Proof. Let k ∈ {0, . . . , T − 1}. With probability π from Algorithm 2 we have

αk+1
i = αk

i −
γ

n

n∑
j=1

αk
j , for all i ∈ {1, · · · , n}.

This can be rewritten as αk+1
i = αk

i − γᾱk, which is the update on line 4 in Algorithm 9.
With probability (1− π) from Algorithm 2 we have

dk = −
(
Id +∇2fj(wk)

)−1 (
∇fj(wk)− αk

j

)
,

wk+1 = wk + γdk,

αk+1
j = αk

j − γdk.

Using Lemma B.7, we see that

gk := ∇fj(wk)− αk
j = ∇R(wk) + ϕ′

j(⟨aj , wk⟩)aj − αk
j .

Still using Lemma B.7, and introducing the notation âj = (Id +∇2R(wk))−1aj , we see that

(
Id +∇2fj(wk)

)−1
=
(
Id +∇2R(wk)

)−1
−

ϕ′′
j (⟨aj , wk⟩)

1 + ϕ′′
j (⟨aj , wk⟩)⟨âj , aj⟩

âj â⊤
j .

Therefore,
dk =

ϕ′′
j (⟨aj , wk⟩)⟨âj , gk⟩

1 + ϕ′′
j (⟨aj , wk⟩)⟨âj , aj⟩

âj −
(
Id +∇2R(wk)

)−1
gk,

which concludes the proof.

Finally, when the regularizer is the L2 norm, then we can implement SAN even more
efficiently as follows.

Example B.10 (Ridge regularization). If R(w) = λ
2∥w∥

2 with λ > 0, then the stochastic Newton
direction dk can be computed explicitly (see also Lemma B.7):

dk =
ϕ′′

j (rk)
1 + λ

·
⟨aj , αk

j ⟩ − ϕ′
j(rk) ∥aj∥2 − λrk

1 + λ + ϕ′′
j (rk) ∥aj∥2

aj −
1

1 + λ

(
λwk + ϕ′

j(rk)aj − αk
j

)
,

where rk = ⟨aj , wk⟩.

B.2.3 SANA with GLMs

In Algorithm 10 we give the specialized implementation of SANA (Algorithm 3) for GLMs.
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Algorithm 10: SANA for regularized GLMs
Input: Data {ai}ni=1, loss functions {ϕi}ni=1, regularizer R, step size γ ∈ (0, 1], max

iteration T
1 Initialize α0

1, · · · , α0
n, w0 ∈ Rd, with∑n

i=1 α0
i = 0;

2 Pre-compute µ = n−1
n ;

3 for k = 0, . . . , T − 1 do
4 Sample j ∈ {1, . . . , n} uniformly;
5 gk = ∇R(wk) + ϕ′

j(⟨aj , wk⟩)aj − αk
j

6 âj = (µId +∇2R(wk))−1aj

7 dk = ϕ′′
j (⟨aj ,wk⟩)⟨âj ,gk⟩

1+ϕ′′
j (⟨aj ,wk⟩)⟨âj ,aj⟩ âj −

(
µId +∇2R(wk)

)−1
gk

8 wk+1 = wk + γdk

9 αk+1
j = αk

j + γµdk

10 αk+1
i = αk

i −
γ
ndk, for i ̸= j

Output: Last iterate wT

Next we formalize the costs of Algorithm 10 in the following remark.

Remark B.11. The costs of SANA (Algorithm 10) per iteration under Assumption B.6 are:

• Memory storage of O(nd) scalars.
• Memory access of O(nd).
• Data access of O(1) .
• Computational cost of O(nd).

Lemma B.12. The SANA Algorithm 3 applied to Regularized GLMs (in the sense of Assumption
B.6) is Algorithm 10.

Proof. Let k ∈ {0, . . . , T − 1}, and µ := 1 − n−1. Let j be sampled over {1, . . . , n} uniformly.
From Algorithm 3 we have

gk = ∇fj(wk)− αk
j ,

dk = −
(
µId +∇2fj(wk)

)−1
gk,

wk+1 = wk + γdk,

αk+1
j = αk

j − γµdk,

αk+1
i = αk

i + γ
ndk, for i ̸= j.
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Using Lemma B.7, we see that

gk = ∇R(wk) + ϕ′
j(⟨aj , wk⟩)aj − αk

j .

Still using Lemma B.7, and introducing the notation âj = (µId +∇2R(wk))−1aj , we have that

(
µId +∇2fj(wk)

)−1
=
(
µId +∇2R(wk)

)−1
−

ϕ′′
j (⟨aj , wk⟩)

1 + ϕ′′
j (⟨aj , wk⟩)⟨âj , aj⟩

âj â⊤
j .

Therefore,
dk =

ϕ′′
j (⟨aj , wk⟩)⟨âj , gk⟩

1 + ϕ′′
j (⟨aj , wk⟩)⟨âj , aj⟩

âj −
(
µId +∇2R(wk)

)−1
gk,

which concludes the proof.

B.3 Experimental details in Section 3.3 and additional experiments

We present the details of the experiments in Section 3.3, in order to guide readers to reproduce
the exact same results in Figure 3.1 and Figure 3.2. We also explain some grid search results
about sensitivity of hyperparameters in Section B.3.3, showing in particular that SAN does not
require parameter tuning. Then we provide additional experiments for SANA, SNM and IQN
in Section B.3.4 which are not included in Chapter 3. These experimental results support that
SANA introduced in Section 3.2.2 is also a reasonable method. Finally, we provide experiments
to compare SAN and SAN without variable metric in Section B.3.5 to illustrate the importance
of such variable metric.

B.3.1 Experimental details in Section 3.3

All experiments in Section 3.3 were run in Python 3.7.7 on a laptopwith an Intel Core i9-9980HK
CPU and 32 Gigabyte of DDR4 RAM running OSX 11.3.1.

All datasets were taken directly fromLibSVM (Chang and Lin, 2011) on https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/ and the scaled versions were used if provided. All datasets
were preprocessed by adding an intercept, i.e. a constant feature one. For the datasets whose
binary labels are not in {−1, 1}, e.g., phishing, mushrooms and covtype, we assigned−1 to the
smallest labels and +1 to those largest ones. All learnable parameters were initialized by zeros,
e.g., w0 = 0 ∈ Rd and α0

i = 0 ∈ Rd for i = 1, · · · , n for SAN.
Table B.1 provides the details of the datasets we used in Section 3.3, including the condition

number and Lmax. For a given dataset, let A = [a1 · · · an] ∈ Rd×n be the data matrix, the
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Table B.1 – Details of the binary data sets used in the logistic regression experiments
dataset dimension (d) samples (n) Lmax sparsity condition number
phishing 68 + 1 11055 0.5001 0.5588 4.1065× 1018

mushrooms 112 + 1 8124 5.5001 0.8125 1.3095× 1019

ijcnn1 22 + 1 49990 1.2342 0.4091 25.6587
covtype 54 + 1 581012 2.154 0.7788 9.6926× 1017

webspam 254 + 1 350000 0.5 0.6648 6.9973× 10255

epsilon 2000 + 1 400000 0.5 0.0 3.2110× 1010

rcv1 47236 + 1 20242 0.5 0.9984 5.3915× 1025

real-sim 20958 + 1 72309 0.5 0.9976 1.3987× 1020

condition number in Table B.1 is computed by

condition number of the dataset def=
√

λmax (AA⊤)
λ+

min (AA⊤)
,

where λmax and λ+
min are the largest and smallest non-zero eigenvalue operators respectively.

Lmax is defined as Lmax = maxi=1,...,n Li, where Li = 1
4 ∥ai∥2 + λ is the smoothness constant of

the regularized logistic regression fi. Notice that the step size’s choice for SAG and SVRG is of
the order of O(1/Lmax).

From Table B.1, note that we have datasets that are middle scale (top row of Figure 3.1) and
large scale (bottom row of Figure 3.1), well conditioned (ijcnn1) and ill conditioned (webspam
and rcv1), sparse (rcv1 and real-sim) and dense (epsilon), under-parametrized (phishing,
mushrooms, ijcnn1, covtype, webspam, epsilon and real-sim) and over-parametrized (rcv1).

Pseudo-Huber function. Recall the definition of the pseudo-Huber function used as the
regularizer in our experiments in Figure 3.2: R(w) =

∑d
i=1 Ri(wi) with

Ri(wi) = δ2

√1 +
(

wi

δ

)2
− 1

 .

Whenwi is large, Ri(wi)→ δ|wi| for all i = 1, · · · , n, i.e. R(w) approximates L1 loss with a factor
δ; when wi is closed to zero, Ri(wi)→ 1

2w2
i for all i = 1, · · · , n, i.e. R(w) approximates L2 loss.

This function can be served as a regularizer to promote the sparsity of the solution (Fountoulakis
and Gondzio, 2016).

Besides, the pseudo-Huber is C∞. The gradient of the pseudo-Huber is given by

∇R(w) =

 w1√
1 +

(w1
δ

)2 · · · wd√
1 +

(wd
δ

)2
⊤

∈ Rd
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Figure B.1 – Function sub-optimality of logistic regression with L2 regularization.

and the Hessian is given by

∇2R(w) = Diag

(1 +
(

w1
δ

)2
)−3/2

, · · · ,

(
1 +

(
wd

δ

)2
)−3/2

 ≤ Id.

Thus the pseudo-Huber is 1-smooth which is the same as L2 regularizer. Consequently, Lmax

for the pseudo-Huber regularized logistic regression is the same as the L2-regularized one.

B.3.2 Function sub-optimality plots

The performance of an algorithm for solving a convex problem is usually done bymeasuring one
of the following quantities: the solution gap ∥wk−w∗∥where w∗ is the solution of the problem,
the optimization gap f(wk)− inf f , and the stationarity gap ∥∇f(wk)∥. In Chapter 3 we choose
to measure and compare performance of algorithms in terms of ∥∇f(wk)∥. The main reason for
this is that the solution gap ∥wk − w∗∥ and the optimization gap f(wk)− inf f both require to
compute the solution of the problem to a high precision. While this is possible to do for small
problems, it quickly becomes intractable for large problems (see Figure B.1 for covtype), which
we want to address in Chapter 3 (see Table B.1 for more bigger datasets than covtype). The flat
curves appeared in Figure B.1 after certain effective passes, especially for covtype dataset, are
due to the imprecise computation of inf f from the solver scipy.optimize.fmin_l_bfgs_b.
Indeed, the curves in Figure B.1 are in logarithmic scale. When f(wk)− ̂inf f < 0 with ̂inf f the
tentative solution of the problem computed by the solver, it means that the solution ̂inf f is
imprecise, i.e. the solver performs worse than the tested algorithms. In this case, Figure B.1
plots

∣∣∣f(wk)− ̂inf f
∣∣∣ = ̂inf f − f(wk) > 0 where the curves remain flat in logarithmic scale.

We argue that the quantity ∥∇f(wk)∥2 is a fair and good proxy for the more classical
optimization gap f(wk) − inf f . Our argument for this is twofold. First, we observe empiri-
cally on small problems (for which we can compute inf f with precision) that the curves for
∥∇f(wk)∥2 and f(wk)− inf f behave the same (see Figure B.1). Second, we verify theoretically
that ∥∇f(wk)∥2 and f(wk)− inf f are of the same order. Indeed, Assumption 3.2 implies that
f is strongly convex on every compact. In particular, it verifies on every compact a Lojasiewicz
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Table B.2 – covtype dataset: grid search of π and γ for SAN

π
γ 0.7 0.8 0.9 1.0 1.1 1.2 1.3

1/2n 27 25 23 21 21 22 24
1/n 26 26 25 22 22 23 24
10/n 28 24 24 23 23 22 22
100/n 28 26 23 23 22 23 24
1000/n 28 26 27 27 25 24 26

inequality:

(∀R > 0)(∃µ > 0)(∀w ∈ B(0, R)) f(w)− inf f ≤ 1
2µ
∥∇f(w)∥2.

Moreover, f is convex, so if we assume that f has aL-Lipschitz gradient, we obtain the following
inequality:

(∀w ∈ Rd) 1
2L
∥∇f(w)∥2 ≤ f(w)− inf f.

Note that this assumption is verified for the functions considered in our experiments (see
Section B.3.1).

B.3.3 Effect of hyperparameters

Aswediscussed in Section 3.3, SAN involves neither prior knowledge of the datasets (e.g.,Lmax),
nor the hyperparameter tuning, while both SAG (Schmidt et al., 2017) and SVRG (Johnson
and Zhang, 2013) do. To support this conclusion, under different hyperparameters setting, we
measure the performance of the given algorithm by monitoring the number of effective passes
over the data required to reach below a threshold (e.g., 10−4 in our case) of ∥∇f∥. We repeat
this procedure 5 times and report the average results.

Grid search for SAN. SAN has two hyperparameters: the probability π doing the averaging
step in Algorithm 2 and the step size γ. We searched π in a wide range

π ∈ { 1
2n

,
1
n

,
10
n

,
100
n

,
1000

n
};

as for γ, through our extensive experiments, we observed that SAN works consistently well
when γ is around one as we expected for second order methods, thus we tried

γ ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
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Table B.3 – ijcnn1 dataset: grid search of π and γ for SAN

π
γ 0.7 0.8 0.9 1.0 1.1 1.2 1.3

1/2n 13 13 14 12 11 12 13
1/n 14 13 12 12 12 12 13
10/n 13 13 12 12 12 12 13
100/n 13 11 12 13 11 12 14
1000/n 16 13 13 13 14 14 14

Table B.4 – Grid search of the step size γ for SVRG on four datasets

Datasets
γ 1

10Lmax
1

5Lmax
1

3Lmax
1

2Lmax
1

Lmax
2

Lmax
5

Lmax

covtype 44 24 18 14 20 × ×
ijcnn1 22 12 10 10 15 25 ×
phishing 14 11 10 14 18 44 ×
mushrooms × × 44 36 28 20 46

Table B.2 and B.3 show the grid search results on datasets covtype and ijcnn1. We see that
the average effective data passes required to reach the threshold is stable. It means that SAN is
not sensitive to these hyperparameters. This advantage allows us to use π = 1

n+1 and γ = 1.0
as default choice in our experiments shown in Section 3.3.

Grid search for SAG and SVRG. Additionally we evaluated the effect of step size γ which is
a crucial hyperparameter for first order methods. Let fi be Li-smooth for all i ∈ {1, . . . , n} and
Lmax = maxi∈{1,...,n} Li. As γ = 1

Lmax
is thought as the rule of thumb choice in practice (Pe-

dregosa et al., 2011) for SAG and SVRG, we searched over the values given by

γ ∈
{ 1

10Lmax
,

1
5Lmax

,
1

3Lmax
,

1
2Lmax

,
1

Lmax
,

2
Lmax

,
5

Lmax

}
on different datasets.

Table B.5 – Grid search of the step size γ for SAG on four datasets

Datasets
γ 1

10Lmax
1

5Lmax
1

3Lmax
1

2Lmax
1

Lmax
2

Lmax
5

Lmax

covtype 21 19 23 24 40 × ×
ijcnn1 14 16 17 17 22 34 ×
phishing 14 17 21 21 30 48 ×
mushrooms × 47 32 24 18 25 ×
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From our observations to Table B.4 and B.5 ,1 we can draw the conclusions that compared
to SAN, there is no universal step size choice for SAG and SVRG which gives a consistent
good performance on different datasets. This point is one of our original motivations to
develop a second order method that requires neither prior knowledge from datasets nor the
hyperparameter tuning.

B.3.4 Additional experiments for SANA, SNM and IQN applied for L2 logistic
regression

We present some additional results of SANA, SNM (Kovalev et al., 2019) and IQN (Mokhtari
et al., 2018) compared to SAN on L2 logistic regression scenario.

First, we show the results on middle size datasets, phishing and mushrooms in Figure B.2.
On the one hand, in terms of effective passes of data, SANA has a similar performance as SAN
despite the fact that SANA is unbiased and SAN is a biased estimate. Both methods are less
efficient than SNM and IQN. Notice that the initialization process of SNM is expensive, as it
requires a computation of the full Newton system. Such process is not counted into the effective
passes. On the other hand, in terms of computational time, we observe that SAN does as well as
IQN and SNM: SAN’s cheap iteration cost compensates for its slower convergence rate. On the
other hand, we observe for SANA that it is not competitive with respect to the other methods in
terms of time taken. This is coherent in a regime where d≪ n since SANA has a computation
cost ofO(nd) per iteration (see Table 3.1), while the cost for SAN and SNM, IQN is respectively
O(d) and O(d2), However, it shows that SANA is still a meaningful incremental second order
method that satisfies our objective statement. This supports our general approach to design
algorithms via function splitting.

In our second set of experiments, we compare those algorithms on large scale datasets. As
shown in Figure B.3, we tested two datasets webspam and epsilon. As we discuss below, both
SNM and IQN are limited in this case, while SAN is able to efficiently solve the problem. IQN
is disqualified in this large scale setting, because its memory cost of O(nd2) is prohibitive and
makes it impossible to run on a laptop. This cost comes from the fact that IQN maintains and
updates n approximations of the hessians∇2fi(wk), each of size d2, and these matrices are not
low-rank even for a GLM, preventing from using GLM implementation tricks (as it is the case
for SNM, see Remark B.13 below). We also did not run SANA, since we already know that
it performs similarly to SAN in terms of effective passes, but suffers from a cost per iteration
scaling with n, which is too large here. It is possible to run SNM, but it is not efficient in terms
of computational time due to its expensive cost per iteration. For the dataset epsilon, just after

1The symbol × in these tables means that the algorithm can not reach below the threshold 10−4 after 50 data
passes.
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Figure B.2 – L2-regularized logistic regression for SAN, SANA, SNM and IQN on middle size datasets.
Top row is evaluated in terms of effective data passes and bottom row is evaluated in terms of computa-
tional time.

one pass over the data, the running time of SNM exceeded our maximum allowed time while
at the same time SAN has run 25 data passes and reached a solution with a 10−6 precision.

Furthermore, note that we are running experiments in a setting which is favorable to SNM.
Indeed, its cost per iteration O(d2) is only valid when using L2 regularization. If we were to
consider another separable regularizer, its cost per iteration would be O(d3), making SNM
infeasible for large dimensional problems. The next remark details those considerations about
the complexity of SNM.

Remark B.13 (On the cost of SNM). The updates of SNM can be written in closed form as

wk+1 =
(

1
n

n∑
i=1
∇2fi(αk

i )
)−1( 1

n

n∑
i=1
∇2fi(αk

i )αk
i −∇fi(αk

i )
)

,

αk+1
j = wk+1,

αk+1
i = αk

i for i ̸= j,

where w, αi ∈ Rd for i = 1, · · · , n are variables defined in (3.5) using a variable splitting trick. The
main cost of SNM is to update the following inverse matrix

(
1
n

∑n
i=1∇2fi(αk

i )
)−1

after updating
a single αj .
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Figure B.3 – L2-regularized logistic regression for SAN and SNM on large size datasets. Top row is
evaluated in terms of effective data passes and bottom row is evaluated in terms of computational time.

For L2-regularized GLMs, by using the Sherman-Morrison formula, the above term can be
implemented efficiently in O(d2) (See Algorithm 3 in Kovalev et al. (2019)), exploiting rank one
updates of the matrix.

For other separable regularizers, such a formula is no longer available, as the perturbation
becomes rank d due to the diagonal Hessian of the regularizer derived by Lemma B.7 (1). The
inversion of the matrix, therefore costs O(d3) over all. Note that the memory cost is also impacted in
this case: for general separable regularizers the memory cost will beO(nd+d2), instead ofO(n+d2)
as can be seen in Table 3.1 for L2-regularized GLMs.

B.3.5 SAN vs SAN without the variable metric

One of the main design features of SAN is that at every iteration we project our iterates onto
an affine space with respect to a metric induced by the Hessian of one sampled function. One
could ask whether this is worth it, given that it makes the theoretical analysis much more
difficult. Let us consider again the problem introduced in (3.11) where the Hessian induced
norm has been replaced by the L2 norm as following:

αk+1
j , wk+1 = arg min

αj∈Rd,w∈Rd

∥∥∥αj − αk
j

∥∥∥2
+
∥∥∥w − wk

∥∥∥2 (B.15)

subject to ∇fj(wk) +∇2fj(wk)(w − wk) = αj .
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Figure B.4 – L2-regularized logistic regression for SAN and SAN without the variable metric.

Using Lemma B.5, we can compute the closed form update of (B.15) (the details are left to
readers):

αk+1
j = αk

j −
(
I + (∇2fj(wk))2

)−1 (
αk

j −∇fj(wk)
)

, (B.16)
wk+1 = wk −∇2fj(wk)

(
αk+1

j − αk
j

)
. (B.17)

We call this algorithm SAN-id2 for short. However, we observe from Figure B.4 that SAN-id
only performs well at the early stage and stops converging to the optimum after the first few
passes over the data. This motivated us to develop the version with the variable metric as
introduced in the main text.

B.4 SAN and SANA viewed as a sketched Newton Raphson method
with variable metric

Here we provide a more detailed, step by step, introduction of the SAN and SANAmethods.
We also detail how SAN and SANA are particular instances of the Variable Metric Sketched
Newton Raphson method introduced in the Section 3.4.

B.4.1 A sketched Newton Raphson point of view

Here we clarify how the SAN and SANAmethods are special cases of the sketched Newton
Raphson method with a variable metric detailed in Section 3.4.

Let x =
[
w ; α1 ; · · · ; αn

]
∈ R(n+1)d and F : R(n+1)d → R(n+1)d defined as

F (x) def=
[

1
n

∑
αi ;∇f1(w)− α1 ; · · · ;∇fn(w)− αn

]
. (B.18)

2because this algorithm fits also in our SNRVM framework with Wk ≡ I in (3.18).
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Therefore w∗ ∈ Rd is a minimizer of (3.1) if and only if there exists x∗ = [w∗; α∗
1; . . . ; α∗

n] ∈
R(n+1)d such that F (x∗) = 0. The Jacobian∇F (x) is given by

∇F (x) =


0 ∇2f1(w) · · · ∇2fn(w)

1
nId

... −Ind

1
nId

 ∈ R(n+1)d×(n+1)d, (B.19)

To find a zero of the function F , one could use the damped Newton Raphson method

xk+1 = xk − γ∇F (xk)⊤ †F (xk), γ ∈ (0, 1]. (B.20)

This can be equivalently rewritten as a projection-and-relaxation step given by
 x̄k+1 = argmin ∥x− xk∥2 subject to ∇F (xk)⊤(x− xk) = −F (xk),

xk+1 = (1− γ)xk + γx̄k+1.
(B.21)

Using the definition of our function F in (3.6), we see that each iteration of the Newton
Raphson method requires to project onto the following set of linear equations:

∇F (xk)⊤(x− xk) = −F (xk),

⇔


1
n

n∑
i=1

(αi − αt
i) = − 1

n

n∑
i=1

αt
i,

∇2fi(wt)(w − wt)− (αi − αt
i) = αt

i −∇fi(wt) for i ∈ {1, . . . , n},

⇔


1
n

n∑
i=1

αi = 0,

∇2fi(wt)(w − wt)− αi = −∇fi(wt) for i ∈ {1, . . . , n}.
(B.22)

Projecting onto (B.22) is challenging for two reasons: first it accesses all of the data (every
function fi is involved) and second it requires solving a large linear system.

One approach to circumvent this bottleneck is to sketch this linear system: at every iteration,
instead of considering (B.22), we will project onto a random row compression of this system.
Sketching can be for instance as simple as sampling one of the equations appearing in (B.22).
In its more general form, a sketch corresponds to any linear transformation of the equations. In
our context, this can be written as

S⊤∇F (xk)⊤(x− xk) = −S⊤F (xk), (B.23)

where S ∈ R(n+1)d×τ is called the sketching matrix, and its number of columns τ is typically
small.
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This idea is at the core of the Sketched Newton Raphson method (Yuan et al., 2022b), which
aims at finding a zero of the function F by iterating:

 x̄k+1 = argmin ∥x− xk∥2 subject to S⊤
k∇F (xk)⊤(x− xk) = −S⊤

k F (xk),

xk+1 = (1− γ)xk + γx̄k+1,
(B.24)

where Sk is a sketching matrix randomly sampled at each iteration with respect to some
distribution.

As we detailed in Section 3.4, the algorithms proposed in Chapter 3 can be seen as particular
instances of a Variable Metric Sketched Newton Raphson method. This more general framework
allows, at every iteration, to project the previous iterate onto (B.23) with respect to some
non-euclidean metric. The algorithm writes as follows:
 x̄k+1 = argmin ∥x− xk∥2Wk

subject to S⊤
k∇F (xk)⊤(x− xk) = −S⊤

k F (xk),

xk+1 = (1− γ)xk + γx̄k+1.
(B.25)

Here, both Sk and Wk are randomly sampled with respect to a distribution which may depend
on xk. Besides, Wk is positive-definite. The closed form solution to (B.25) is given in (3.18),
thanks to the following Lemma.

Lemma B.14. If the iterates in (3.17) are well defined, then they are equivalent to (3.18).

Proof. Let xk+1 be the iterate defined by (3.17), where we assumed that the linear system
S⊤

k∇F (xk)⊤(x − xk) = −S⊤
k F (xk) has a solution. Let us do a change of variable u = x − xk,

and write x̄k+1 = xk + u∗ where

u∗ = argmin ∥u∥2Wk
subject to S⊤

k∇F (xk)⊤u = −S⊤
k F (xk).

We can call Lemma B.5 to obtain that

u∗ = −W−1
k ∇F (xk)Sk

(
S⊤

k∇F (xk)⊤W−1
k ∇F (xk)Sk

)†
S⊤

k F (xk).

The claim follows after writing that xk+1 = (1− γ)xk + γ(xk + u∗) = xk + γu∗.

B.4.2 SAN is a particular case of SNRVM

Let us consider SAN, described in Algorithm 2, and rewrite it as an instance of the Variable
Metric Sketched Newton Raphson method (B.25). Given a probability π ∈ (0, 1), we define for
all x ∈ R(n+1)d a distribution DSAN

x as follows: (S, W) ∼ DSAN
x means that
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• with probability π we have

S =


Id

0d

...
0d

 and W = I(n+1)d, (B.26)

• with probability 1− π, we sample j ∈ {1, · · · , n} uniformly and set

S =



0d

...
Id

...
0d


← j + 1 and W =


∇2fj(w)

Id

. . .
Id

 . (B.27)

Lemma B.15. Let π ∈ (0, 1) and γ ∈ (0, 1] a step size. Algorithm 2 (SAN) is equivalent to the
Variable Metric Sketched Newton Raphson method (B.25) applied to the function F defined in (3.6),
where at each iteration (Sk, Wk) is sampled with respect to DSAN

xk , as defined in (B.26)-(B.27).

Proof. Let us consider the Variable Metric Sketched Newton Raphson method described in this
Lemma. We consider two cases, corresponding to the two classes of events described in (B.26)
and (B.27).

Suppose that we are in the case (which holds with probability π) given by (B.26). In this
case we have

S⊤
k∇F (xk)⊤(x− xk) (B.19)+(B.26)=

[
0d

1
nId · · · 1

nId

]
(x− xk)

= 1
n

n∑
i=1

(αi − αk
i ),

S⊤
k F (xk) (3.6)+(B.26)= 1

n

n∑
i=1

αk
i .

Those expressions mean that the linearized equation (B.23) is equivalent to 1
n

n∑
i=1

αi = 0. So
the update of the variables is exactly given by (B.5).

Let now j be in {1, . . . , n} sampled uniformly, and suppose that we are in the case given
by (B.27). We can then compute

S⊤
k∇F (xk)⊤(x− xk) (B.19)+(B.27)=

[
∇2fj(wk) 0d · · · −Id · · · 0d

]
(x− xk)
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= ∇2fj(wk)(w − wk)− (αj − αk
j ),

S⊤
k F (xk) (3.6)+(B.27)= ∇fj(wk)− αk

j .

Those expressions mean that the linearized equation (B.23) is equivalent to ∇2fj(wk)(w −
wk)− αj = −∇fj(wk). So the update of the variables is exactly given by (B.6). The conclusion
follows Lemma B.2.

B.4.3 SANA is a particular case of SNRVM

Let us consider SANA, described in Algorithm 3, and rewrite it as an instance of the Variable
Metric Sketched Newton Raphson method (B.25). We define for all x ∈ R(n+1)d a distribution
DSANA

x as follows: (S, W) ∼ DSANA
x means that, with probability 1/n we sample j ∈ {1, · · · , n}

and we have

S =



Id 0d

0d
...

... Id

... ...
0d 0d


← j + 1 and W =


∇2fj(w)

Id

. . .
Id

 . (B.28)

Lemma B.16. Let γ ∈ (0, 1] be a step size. Algorithm 3 (SANA) is equivalent to the Variable
Metric Sketched Newton Raphson method (B.25) applied to the function F defined in (3.6), where
at each iteration (Sk, Wk) is sampled with respect to DSANA

xk , as defined in (B.28).

Proof. Let k ∈ N, and suppose that we have sampled j ∈ {1, . . . , n} and Sk and Wk according
to (B.28). Therefore,

S⊤
k∇F (xk)⊤(x− xk) (B.19)+(B.28)=

[
0d

1
nId · · · · · · · · · 1

nId

∇2fj(wk) 0d · · · −Id · · · 0d

]
(x− xk)

=

 1
n

n∑
i=1

(αi − αk
i )

∇2fj(wk)(w − wk)− (αj − αk
j )


S⊤

k F (xk) (3.6)+(B.28)=

 1
n

n∑
i=1

αk
i

∇fj(wk)− αk
j

 .
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Those expressions mean that the linearized equation (B.23) is equivalent to the two equations
n∑

i=1
αi = 0 and ∇2fj(wk)(w − wk)− αj = −∇fj(wk). So the update of the variables is exactly

given by (B.11). The conclusion follows Lemma B.4.

B.5 Proofs for the results in Section 3.4, including Theorems 3.8 and
3.12

B.5.1 Proof of Proposition 3.6

Proof. Let us start by showing that Assumption 3.4 is satisfied for SAN and SANA. The distri-
bution DSAN

x (resp. DSANA
x ) defined in the Section B.4.2 (resp. Section B.4.3) is clearly finite and

proper so long as π ∈ (0, 1). It remains to computeE[SS⊤]. We can see that it is a block-diagonal
matrix Diag

(
πId, 1−π

n Id, · · · , 1−π
n Id

)
(resp. Diag

(
Id, 1

nId, · · · , 1
nId

)
), which is invertible since

π ∈ (0, 1).
Now let us turn on Assumption 3.5. To prove that ∇F (x)⊤∇F (x) is invertible, it is enough

to show that ∇F (x) is injective. Let x = (w ; α) ∈ Rd+dn, and let us first show that ∇F (x)
is injective. Suppose there exists x̄ = (w̄ ; ᾱ) ∈ Rd+dn such that ∇F (x)x̄ = 0. Consequently
from (B.19) we have that

n∑
i=1
∇2fi(w)ᾱi = 0

1
n

w̄ = ᾱi, for i = 1, . . . , n. (B.29)

Substituting out the ᾱi’s we have that

∇2f(w)w̄ = 1
n

n∑
i=1
∇2fi(w)w̄ = 0.

Consequently, since ∇2f(w) is positive definite (recall Assumption 3.2), and in particular
injective, we have that w̄ = 0. Thus it follows from (B.29) that ᾱi = 0 for i = 1, . . . , n. This all
shows that x̄ = 0, and concludes the proof that∇F (x) is injective.

Furthermore,∇F (x) is a square matrix, thus invertible. We have F (x) ∈ Im
(
∇F (x)⊤

)
.

Finally ∇F (x)⊤∇F (x) is invertible since

Null
(
∇F (x)⊤∇F (x)

)
= Null (∇F (x)) = {0}.
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B.5.2 SNRVM is equivalent to minimizing a quadratic function over a random
subspace

Lemma B.17 (Lemma 10 in Gower et al. (2019a)). For every matrix M and symmetric pos-
itive semi-definite matrix G such that Null (G) ⊂ Null (M), we have that Null

(
M⊤

)
=

Null
(
MGM⊤

)
.

Lemma B.18. Let Assumptions 3.4 and 3.5 hold. Then the iterates of SNRVM are equivalent to

xk+1 = argminx∈Rp f̂k(xk) +
〈
∇f̂k(xk), x− xk

〉
+ 1

2γ

∥∥∥x− xk
∥∥∥2

Wk

(B.30)

subject to x ∈ xk + Im
(
W−1

k ∇F (xk)Sk

)
,

where f̂k is defined in (3.19).

Proof. Start by observing that the problem in (B.30) is strongly convex, and therefore has a
unique solution that we will note x∗. Let us prove that x∗ is exactly xk+1 whose closed form
expression is given in (3.18). For this, let τ be the number of columns for Sk, and let u ∈ Rτ .
We can then write that x∗ = xk + W−1

k ∇F (xk)Sku∗, where u∗ is any solution of the following
unconstrained optimization problem:

u∗ ∈ argminu∈Rτ

〈
∇f̂k(xk), W−1

k ∇F (xk)Sku∗
〉

+ 1
2γ

∥∥∥W−1
k ∇F (xk)Sku∗

∥∥∥2

Wk

.

Writing down the optimality conditions for this convex quadratic problem, we see that u∗ must
verify:

γS⊤
k∇F (xk)⊤W−1

k ∇f̂k(xk) + S⊤
k∇F (xk)⊤W−1

k ∇F (xk)Sku∗.

Let us choose the pseudo inverse solution of this linear system:

u∗ = −γ
(
S⊤

k∇F (xk)⊤W−1
k ∇F (xk)Sk

)†
S⊤

k∇F (xk)⊤W−1
k ∇f̂k(xk). (B.31)

Using the definition of f̂k, we can write

∇f̂k(xk) = ∇F (xk)
(
∇F (xk)⊤W−1

k ∇F (xk)
)†

F (xk). (B.32)
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All we need to prove now is that

∇F (xk)⊤W−1
k ∇F (xk)

(
∇F (xk)⊤W−1

k ∇F (xk)
)†

F (xk) = F (xk). (B.33)

To see why (B.33) is true, first notice that ∇F (xk)⊤W−1
k ∇F (xk)

(
∇F (xk)⊤W−1∇F (xk)

)† is
the orthogonal projector onto the range of∇F (xk)⊤W−1

k ∇F (xk). Moreover, using the fact that
W−1

k is injective together with Lemma B.17, we can write that

Im
(
∇F (xk)⊤W−1

k ∇F (xk)
)

=
(
Null

(
F (xk)⊤W−1

k ∇F (xk)
))⊥

=
(
Null

(
∇F (xk)

))⊥

= Im
(
∇F (xk)⊤

)
.

Since we know from Assumption 3.5 that ∇F (xk)⊤ is surjective, and so that F (xk) belongs in
the range of∇F (xk)⊤, we deduce that (B.33) is true. We can now inject (B.33) into (B.31), and
obtain finally that

x∗ = xk + W−1
k ∇F (xk)Sku∗

= xk − γW−1
k ∇F (xk)Sk

(
S⊤

k∇F (xk)⊤W−1
k ∇F (xk)Sk

)†
S⊤

k F (xk),

which is exactly (3.18).

B.5.3 About ρ in Theorem 3.8

Lemma B.19. If A, B are two symmetric positive semi-definite matrices, then

Null (A + B) = Null (A) ∩Null (B) .

Proof. If x ∈ Null (A) ∩ Null (B) then it is trivial to see that x ∈ Null (A + B). If x ∈
Null (A + B), then

0 = ⟨(A + B)x, x⟩ = ⟨Ax, x⟩+ ⟨Bx, x⟩,

where by positive semi-definiteness we have ⟨Ax, x⟩ ≥ 0 and ⟨Bx, x⟩ ≥ 0. The sum of nonneg-
ative numbers being nonegative, we deduce that

⟨Ax, x⟩ = ⟨Bx, x⟩ = 0.
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Since ⟨Ax, x⟩ = 0, we deduce from the fact that A is symmetric that Ax = 0. Similarly, Bx = 0,
which concludes the proof.

The following Lemma will be needed in the proof of Theorem 3.8.

Lemma B.20. Recall the definition of H(x) given by

H(x) def= E
[
S
(
S⊤∇F (x)⊤W−1∇F (x)S

)†
S⊤
]

, (B.34)

If Assumption 3.4 and 3.5 hold, then H(x) is invertible. Moreover, for every symmetric positive
definite matrix W and x ∈ Rp we have that

min
v∈Im(W−1/2∇F (x))\{0}

〈
W−1/2∇F (x)H(x)∇F (x)⊤W−1/2v, v

〉
∥v∥2

(B.35)

is exactly the smallest positive eigenvalue of W−1/2∇F (x)H(x)∇F (x)⊤W−1/2.

Proof. Let x ∈ Rp and (S, W) ∼ Dx. Let G = ∇F (x)⊤W−1∇F (x) which is symmetric pos-
itive semi-definite. Since ∇F (x)⊤∇F (x) and W are invertible we have that G is invertible.
Consequently Null (G) = {0} ⊂ Null

(
S⊤
)
. Thus by Lemma B.17 (with M = S⊤) we have

that

Null
((

S⊤∇F (x)⊤W−1∇F (x)S
)†
)

= Null
(
S⊤∇F (x)⊤W−1∇F (x)S

)
= Null (S) .

Using Lemma B.17 once again with G =
(
S⊤∇F (x)⊤W−1∇F (x)S

)† and M = S, we have that

Null
(

S
(
S⊤∇F (x)⊤W−1∇F (x)S

)†
S⊤︸ ︷︷ ︸

def=HS,W(x)

)
= Null

(
S⊤
)

= Null
(
SS⊤

)
. (B.36)

Observe that with our notations and from Assumption 3.4,

H(x) = ES,W∼Dx [HS,W(x)] =
r∑

i=1
piHSi(x),Wi(x)(x).

As HSi(x),Wi(x)(x) is symmetric positive semi-definite, we can use Lemma B.19 to write

Null (H(x)) = Null
(

r∑
i=1

piHSi(x),Wi(x)(x)
)

=
r⋂

i=1
Null

(
HSi(x),Wi(x)(x)

)
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(B.36)=
r⋂

i=1
Null

(
Si(x)Si(x)⊤

)
= Null

(
ES∼Dx

[
SS⊤

])
= {0}

This means that H(x) is invertible for all x ∈ Rp.
Now, take any x ∈ Rp, and a symmetric positive definite matrix W. Then the matrix

W−1/2∇F (x)H(x)∇F (x)⊤W−1/2

is symmetric, semi-definite positive. SinceH(x) andW are invertible, we can apply Lemma B.17
again to obtain

Null
(
∇F (x)⊤W−1/2

)
= Null

(
W−1/2∇F (x)H(x)∇F (x)⊤W−1/2

)
. (B.37)

Consequently

Im
(
W−1/2∇F (x)

)
=

(
Null

(
∇F (x)⊤W−1/2

))⊥

(B.37)=
(
Null

(
W−1/2∇F (x)H(x)∇F (x)⊤W−1/2

))⊥
. (B.38)

Therefore, we conclude that (B.35) is equal to

min
v∈(Null(W−1/2∇F (x)H(x)∇F (x)⊤W−1/2))⊥\{0}

〈
W−1/2∇F (x)H(x)∇F (x)⊤W−1/2v, v

〉
∥v∥2

= λ+
min

(
W−1/2∇F (x)H(x)∇F (x)⊤W−1/2

)
> 0.

B.5.4 Proof of Theorem 3.8

Proof. Let k ∈ N. In this proof, we will write∇Fk as a shorthand for∇F (xk), and we introduce
the notation∇WFk

def= W−1/2
k ∇F (xk). First we aim to establish a relationship between f̂k(xk) =∥∥∥F (xk)

∥∥∥2

(∇F ⊤
k

W−1
k

∇Fk)†
and

∥∥∥F (xk)
∥∥∥2

H(xk)
. Observe that Assumption 3.5 allows us to write that

(∀x ∈ Rp) F (x) = ∇F (x)⊤W−1/2
k (∇F (x)⊤W−1/2

k )†F (x). (B.39)
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This is due to the fact that ∇F (x)⊤W−1/2
k (∇F (x)⊤W−1/2

k )† is the projection matrix onto
Im

(
∇F (x)⊤W−1/2

k

)
, where W−1/2

k is surjective, meaning that

Im
(
∇F (x)⊤

)
= Im

(
∇F (x)⊤W−1/2

k

)
.

From (B.39) we have that∥∥∥F (xk)
∥∥∥2

H(xk)
=

〈
F (xk), H(xk)F (xk)

〉
(B.39)=

〈
∇WF ⊤

k (∇WF ⊤
k )†F (xk), H(xk)∇WF ⊤

k (∇WF ⊤
k )†F (xk)

〉
=

〈
(∇WF ⊤

k )†F (xk),∇WFkH(xk)∇WF ⊤
k

(
(∇WF ⊤

k )†F (xk)
)〉

Lemma B.20
≥ ρ ∥(∇WF ⊤

k )†F (xk)∥2 (B.40)
= ρ

∥∥∥F (xk)
∥∥∥2

(∇WF ⊤
k

∇WFk)† (B.41)
(3.19)= 2ρf̂k(xk), (B.42)

where in (B.40) we used that Im
(
(∇WF ⊤

k )†
)

= Im
(
∇WFk

) together with Lemma B.20, and
in (B.41) we used that (M)†⊤(M)† = (M⊤)†(M)† = (MM⊤)† for every matrix M. Now, we
turn onto the study the term f̂k(xk). Compute its gradient with respect to the metric induced
by Wk at xk:

∇Wk f̂k(xk) = W−1
k ∇Fk(∇F ⊤

k W−1
k ∇Fk)†F (xk)

= W−1/2
k (∇F ⊤

k W−1/2
k )†F (xk). (B.43)

This, together with the Assumption 3.7, allows us to write that

f̂k+1(xk+1)

≤ f̂k(xk) +
〈
∇f̂k(xk), xk+1 − xk

〉
+ L

2

∥∥∥xk+1 − xk
∥∥∥2

Wk

(3.18)+(B.43)= f̂k(xk)− γ

〈
nWk(xk), W−1

k ∇FkSk

(
S⊤

k∇F ⊤
k W−1

k ∇FkSk

)†
S⊤

k F (xk)
〉

Wk

+γ2L

2

∥∥∥∥W−1
k ∇FkSk

(
S⊤

k∇F ⊤
k W−1

k ∇FkSk

)†
S⊤

k F (xk)
∥∥∥∥2

Wk

(B.39)= f̂k(xk)− γ

〈
F (xk), Sk

(
S⊤

k∇F ⊤
k W−1

k ∇FkSk

)†
S⊤

k F (xk)
〉

+γ2L

2

∥∥∥∥W−1
k ∇FkSk

(
S⊤

k∇F ⊤
k W−1

k ∇FkSk

)†
S⊤

k F (xk)
∥∥∥∥2

Wk

= f̂k(xk)− γ

(
1− γL

2

)∥∥∥F (xk)
∥∥∥2

Sk(S⊤
k

∇F ⊤
k

W−1
k

∇FkSk)†S⊤
k

197



Complements on Chapter 3

γ=1/L= f̂k(xk)− γ

2

∥∥∥F (xk)
∥∥∥2

Sk(S⊤
k

∇F ⊤
k

W−1
k

∇FkSk)†S⊤
k

(B.44)

where in (B.44) we use the identity M†MM† = M† with M = S⊤
k∇F ⊤

k W−1
k ∇FkSk. Taking

the expectation conditioned on xk in the inequality (B.44) gives

E
[
f̂k+1(xk+1) | xk

]
≤ E

[
f̂k(xk) | xk

]
− γ

2

∥∥∥F (xk)
∥∥∥2

H(xk)

≤ E
[
f̂k(xk) | xk

]
− ργf̂k(xk).

Taking full expectation and expanding the recurrence gives finally

E
[
f̂k+1(xk+1)

]
≤ (1− ργ)E

[
f̂k(xk)

]
.

B.5.5 SNRVM for solving linear systems

Herewe consider the simplified case inwhich our objective function (3.1) is a quadratic function.
In this case, the stationarity condition (3.5) is a linear system. To simplify the notation, let us
denote in this section the resulting linear system as

Ax = b, where A ∈Mp(R), p = d(n + 1). (B.45)

In other words, our nonlinear map is given by F (x) = Ax− b. Because∇F (x) = A⊤, where A
is a square matrix, we see that the assumptions on F in Assumption 3.5 are verified if and only
if A is invertible.

In this setting the SNR method (3.16) is known as the sketch-and-project method (Gower
and Richtárik, 2015b). The sketch-and-project method has been shown to converge linearly
at a fast rate (Gower and Richtárik, 2015b; Gower and Richtárik, 2015a). Thus this quadratic
case serves as a good sanity check to verify if our rate of convergence in Theorem 3.8 recovers
the well known fast linear rate of the sketch-and-project method. This is precisely what we
investigate in the next lemma. It only remains to reformulate Assumption 3.7, which we do in
the following lemma.

Lemma B.21. If {Wk}k∈N is a sequence of invertible matrices such that

Wk+1 ⪯Wk, (B.46)

and A is invertible, then Assumption 3.7 holds with L = 1.
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Proof. Using the fact that F (x) = Ax− b and∇F (x) = A⊤, we can rewrite definition (3.19) as

f̂k(x) = 1
2 ∥Ax− b∥2(AW−1

k
A⊤)† . (B.47)

Now, since A is invertible, we have (AW−1
k A⊤)† = A⊤−1WkA−1. So, if x∗ is the unique

solution to (B.45), then we obtain

f̂k(x) = 1
2 ∥x− x∗∥2Wk

. (B.48)

Using Assumption B.46 together with the fact that f̂k is quadratic to conclude that

f̂k+1(xk+1)
(B.46)
≤ f̂k(xk+1)

= f̂k(xk) + ⟨∇f̂k(xk), xk+1 − xk⟩+ 1
2∥x

k+1 − xk∥2∇2f̂k(xk)

= f̂k(xk) + ⟨∇f̂k(xk), xk+1 − xk⟩+ 1
2∥x

k+1 − xk∥2Wk
.

Proposition B.22. Let A ∈ Mp(R) be invertible, b ∈ Rp, and x∗ be the solution to (B.45). Let
(xk)k∈N be a sequence generated from SNRVM (3.18), with F (x) = Ax − b, and γ = 1. We
assume that, at every iteration k ∈ N, the matrices (Sk, Wk) are sampled from a finite proper
distribution (see Assumption 3.4) such that for all x, Dx is independant of x, that EDx [SS⊤] is
invertible and Wk is constant and equal to some invertible matrix W ∈Mp(R).

Let
ρ

def= λmin
(
W−1/2A⊤EDx0 [S(S⊤AW−1A⊤S)†S⊤]AW−1/2

)
.

It follows that ρ ∈ (0, 1), and

E
[
∥xk − x∗∥2W

]
≤ (1− ρ)∥x2 − x∗∥2W. (B.49)

Proof. We are going to apply the result in Theorem 3.8, so we start by checking its assumptions.
First, our assumptions on the sampling ensure that Assumption 3.4 is verified. Second, as dis-
cussed earlier in this section, the fact that A is invertible ensures that Assumption 3.5 holds true.
Third, our assumption that Wk ≡W together with Lemma B.21 tells us that Assumption 3.7
holds with L = 1, meaning that we take a stepsize γ = 1. Let H def= EDx0 [S(S⊤AW−1A⊤S)†S⊤].
Note that this matrix is independant of k, because we assumed the distribution Dx to be
independant of x. We also know that H is invertible, thanks to Lemma B.20. Therefore,
ρ = λmin

(
W−1/2A⊤HAW−1/2

)
> 0.
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To prove that ρ ≤ 1, observe that

W−1/2A⊤E[S(S⊤AW−1A⊤S)†S⊤]AW−1/2

= E[W−1/2A⊤S(S⊤AW−1/2W−1/2A⊤S)†S⊤AW−1/2]

= E[(S⊤AW−1/2)⊤((S⊤AW−1/2)(S⊤AW−1/2))†(S⊤AW−1/2)]

= E[(S⊤AW−1/2)†(S⊤AW−1/2)],

where (S⊤AW−1/2)†(S⊤AW−1/2) is the orthogonal projection onto the range of W−1/2A⊤S.
Consequently λmax((S⊤AW−1/2)†(S⊤AW−1/2)) ≤ 1, and from Jensen’s inequality, we deduce
that the eigenvalues of its expectation also are in (0, 1]. Whence ρ ∈ (0, 1].

To conclude the proof, see that under our assumptions, the quantity ρ(x) defined in Theorem
3.8 is independent of x, and equal to ρ. We have verified all the assumptions needed to call
Theorem 3.8, which proves the claim.

The rate of convergence given in (B.49) is exactly the well known linear rate of convergence
given in Theorem 4.6 in Gower and Richtárik (2015a). For example, if A is symmetric positive
definite, and we can set Wk ≡ A and sample the sketching matrix S ∈ Rp×1 according to

Pr S = ei = Aii

Trace (A) , for i = 1, . . . , m.3

With this choice of sketch and metric, the resulting method (3.18) is known as coordinate
descent (Leventhal and Lewis, 2010; Gower and Richtárik, 2015b). In this case, our resulting
rate in (B.49) is controlled by

ρ = λmin
(
A1/2E

[
ei (Aii)† e⊤

i

]
A1/2

)
= λmin (A)

Trace (A) ,

which is exactly the celebrated linear convergence rate of coordinate descent first given
in Leventhal and Lewis (2010).

Proposition B.22 shows that our main convergence theory in Theorem 3.8 is tight in this
quadratic setting. That is, when specialized to a linear mapping F (x) and a fixed metric
W ≡Wk, our Theorem 3.8 recovers the best known convergences results as a special case.

B.5.6 Proof of Theorem 3.10

3Here ei ∈ Rm is the i-th unit coordinate vector and Trace (A) =
∑m

i=1 Aii is the trace of A.
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Lemma B.23. Let Assumption 3.9 hold. Let x ∈ Ω, let (Ŝ, Ŵ) be in the domain ofDx, and consider
A := Ŵ−1/2∇F (x)H(x)∇F (x)⊤Ŵ−1/2, where H(x) is defined in (B.34). Then

λmin(A) ≥ µ2
∇F

L2
∇F

µW

LW

µ̄S

LS
.

Proof. Let us write H := H(x), J := ∇F (x) and U := J⊤Ŵ−1/2, so that A = U⊤HU . There-
fore,

λmin(A) ≥ λmin(U⊤U)λmin(H).

From Assumption 3.5 we know that Ŵ is invertible, and also that J is injective, so from
Assumption 3.9 and the fact that J is a square matrix, we deduce that J is invertible, and
therefore deduce that U is invertible as well. This means that λmin(U⊤U) > 0 and that

λmin(U⊤U) = λmin(UU⊤) = λmin(J⊤Ŵ−1J)

≥ λmin(J⊤J)λmin (̂̂W−1) = σmin(J)2

λmax(W) ≥
µ2

∇F

LW
.

Now we turn to H, and write H = E
[
SBS⊤

]
, where B = (S⊤GS)†, with G = J⊤W−1J . From

the same arguments as above, we know that that G is invertible under our assumptions. So,
using properties of the pseudo inverse with the fact that G is symmetric and Lemma B.17, we
can write that

Null (B) = Null
(
(S⊤GS)⊤

)
= Null

(
S⊤GS

)
= Null (S) .

Therefore, for all x ∈ Rp we have S⊤x ∈ Null (B)⊥. So, by noting λ∗
min(B) the smallest nonzero

eigenvalue of B, we can write that

⟨SBS⊤x, x⟩ = ⟨BS⊤x, BS⊤⟩ ≥ λ∗
min(B)∥S⊤x∥2 = λ∗

min(B)⟨SS⊤x, x⟩.

Here

λ∗
min(B) = ∥B†∥−1 = ∥S⊤GS∥−1 ≥ ∥SS⊤∥−1∥G∥−1

≥ ∥SS⊤∥−1∥J⊤J∥−1∥W−1∥−1 ≥ L−1
S L−2

∇F µW ,

where we used the fact that ∥W−1∥−1 = λmin(W) and ∥J⊤J∥−1 = σmax(J)−2. By combining
those last inequalities we obtain that

⟨Hx, x⟩ = E
[
⟨SBS⊤x, x⟩

]
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≥ L−1
S L−2

∇F µWE
[
⟨SS⊤x, x⟩

]
= L−1

S L−2
∇F µW ⟨E

[
SS⊤

]
x, x⟩

≥ L−1
S L−2

∇F µW µ̄S∥x∥2.

This means that λmin(H) ≥ L−1
S L−2

∇F µW µ̄S . If we recombine all our inequalities, we ultimately
obtain that

λmin(A) ≥ µ2
∇F

LW
L−1

S L−2
∇F µW µ̄S ,

which is what we needed.

Lemma B.24. Let Assumption 3.9 hold. Let x ∈ Ω, let (Ŝ, Ŵ) be in the domain of Dx. Then

λmin

(
(∇F (x)⊤W−1∇F (x))†

)
≥ L−2

∇F µW > 0.

In particular, for all k ∈ N, if xk ∈ Ω almost surely, then

E
[
f̂k(xk)

]
≥ µW

2L2
∇F

E
[
∥F (xk)∥2

]
almost surely.

Proof. We have λmin

(
(∇F (x)⊤W−1∇F (x))†

)
= ∥∇F (x)⊤W−1∇F (x)∥−1 where

∥∇F (x)⊤W−1∇F (x)∥ ≤ σmax(∇F (x))2λmin(W)−1 ≤ L2
∇F µ−1

W ,

which gives the desired lower bound on the eigenvalues. Now, given xk ∈ Ω we immediately
deduce that

f̂k(xk) ≥ µW

2L2
∇F

∥F (xk)∥2. (B.50)

The conclusion follows by taking the expectation on this inequality.

Proof of Theorem 3.10. Keeping the notations of Theorem 3.8, we see from Lemma B.23 that we
can take

ρ = µ2
∇F

L2
∇F

µW

LW

µ̄S

LS
> 0,

from which we obtain that

(∀k ∈ N) E
[
f̂k(xk)

]
≤ (1− ργ)k E

[
f̂0(x0)

]
almost surely.
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We now can use Lemma B.24 to lower bound the left member of that inequality, and obtain

(∀k ∈ N) µW

2L2
∇F

E
[
∥F (xk)∥2

]
≤ (1− ργ)k E

[
f̂0(x0)

]
almost surely. (B.51)

The conclusion follows by taking

C = E
[
f̂0(x0)

] L2
∇F

µW
.

B.5.7 Proof of convergence for SAN and SAN for bounded sequences

Proposition B.25. Let Assumption 3.2 hold. For SAN and SANA, Assumption 3.9 holds on every
compact set Ω.

Proof. First, remember that Assumption 3.5 holds for SAN and SANA (see Proposition 3.6), and
that m = p = (n + 1)d. Now, let Ω be a compact set, and verify that the bounds in Assumption
3.9 hold.

We start with the sketching matrices S, for which we know (see the proof of Proposition
3.6 in Section B.5.1) that

∥SS⊤∥ = 1 and E
[
SS⊤

]
= Diag

(
πId,

1− π

n
Id, · · · ,

1− π

n
Id

)
or Diag

(
Id,

1
n

Id, · · · ,
1
n

Id

)
.

In both cases, we see that we can take LS = 1 and µ̄L = min{ 1
n , 1−π

n , π}.
Second, let Wi be in the domain of Dx. According to their definition in (B.27, B.28), and

because the fi is of class C2 (see Assumption 3.2), we know that each Wi is continuous with
respect to x. Moreover, we know (again from Assumption 3.2) that Wi is definite positive
: λmin(Wi) > 0. This is true for every x ∈ Ω, so by continuity of λmin and the compactness
of Ω, we deduce that inf

x∈Ω
λmin(Wi) > 0. Similarly, sup

x∈Ω
λmax(Wi) < +∞. This means that the

constants µW and LW are well defined in (0, +∞).
Finally, we need to control the singular values of ∇F (x) over Ω. We use here the same

arguments that we used for Wi : ∇F (x) is continuous with respect to x, and it is invertible
(because it is square and injective, see Proposition 3.6).

Theorem B.26. Let Assumptions 3.2 and 3.7 hold. Let {xk}k∈N be a sequence generated by SAN
with π = 1/(n + 1), or by SANA, with γ = 1/L. Suppose that {xk}k∈N is bounded almost surely.
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Then there exists C, ρ > 0 such that, for every k ∈ N,

E
[
∥F (xk)∥2

]
≤ C(1− γρ)k a.s.

Proof. There exists a compact set Ω containing almost surely the sequence. So it remains to
combine Theorem 3.10 together with Proposition B.25 and Proposition 3.6.

B.5.8 Proof of Theorem 3.12

The proof of Theorem 3.12, which can be found at the end of this section, will combine Theorem
3.10 with the forthcoming Propositions B.29 and B.30.

Lemma B.27. Let φ : [0, +∞) −→ [1, +∞) be defined as

φ(t) :=
√

1 + 1
2
(
t +

√
4t + t2

)
. (B.52)

1. φ(t) is well defined and increasing on [0, +∞[.

2. φ(t)−1 =
√

1 + 1
2

(
t−
√

4t + t2
)
.

3. For all a ∈ (0, +∞), φ(at)φ(t−1)t−1/2 is decreasing on (0, +∞).

4. For all a ∈ (0, +∞), and all t ≥ 1, φ(at)φ(t−1) ≤ φ(1)
√

t
√

2 + a.

Proof. 1 : It is well defined because t+
√

4t + t2 ≥ 0. It is increasing because it is the composition,
sum and product of increasing functions on [0, +∞[. Point 2 is a simple exercise. Point 3 is a
bit more technical. Let ϕ(t) = φ(at)2φ(t−1)2t−1, which is the square of the quantity of interest.
We can compute its derivative, and a some effort we obtain that

t3ϕ′(t) = −
[
t + 1

2
(
1 +
√

1 + 4t
)] [

1 + at√
4at + a2t2

]
− 1

2

[
1 + 1 + 2t√

1 + 4t

] [
1 + 1

2
(
at +

√
4at + a2t2

)]
.

It is clear that the above expression is the sum of two negative terms, implying that ϕ is
decreasing. For item 4, we use the monotonicity of item 3 to get

φ(at)φ(t−1) ≤ φ(a · 1)φ(1)
√

t.
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From the inequality a +
√

a2 + 4a ≤ 2a + 2 (it is easy to prove it by rearranging the terms and
taking the square), we deduce that

φ(a) ≤
√

1 + 1
2 (2a + 2) =

√
2 + a.

Lemma B.28. Let A ∈ Rm×d be an injective matrix. Let φ be defined as in (B.52) and consider:

A :=
[
Id 0d,m

A Im

]
.

Then ∥A∥ = φ
(
∥A⊤A∥

)
.

Proof. We start by remembering that ∥A∥ is the largest singular value of A. The singular values
of A are exactly the square root of the eigenvalues of A⊤A, which is given by

A⊤A :=
[
Id + A⊤A A⊤

A Im

]
.

We compute its eigenvalues by finding the roots of its characteristic polynomial, that we note
P ∈ R[X]. Using a simple formula for computing the determinant of a 2× 2 block matrix, we
can write, for all X ̸= −1 :

P (X) = det
[
(1−X)Id + A⊤A A⊤

A (1−X)Im

]

= det ((1−X)Im) det
(
(1−X)Id + A⊤A−A⊤((1−X)Im)−1A

)
= (1−X)m det

(
(1−X)Id + A⊤A− 1

1−X
A⊤A

)
= (1−X)m−d det

(
(1−X)2Id + (1−X)A⊤A−A⊤A

)
= (1−X)m−d det

(
(1−X)2Id −XA⊤A

)
.

The right member of this equality is polynomial in X , since the determinant of a matrix is
polynomial in its coefficients, and our assumption that A is injective implies that m− d ≥ 0. In
particular this right member is well defined and continuous at X = −1, which means that the
equality holds true for every X ∈ R.
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We see that 1 is a root of P , with multiplicity m − d. The other roots are the zeroes of
det

(
(1−X)2Id −XA⊤A

)
, for which we see that

det
(
(1−X)2Id −XA⊤A

)
= 0 ⇔ (1−X)2 is an eigenvalue of XA⊤A

⇔ (1−X)2 = Xλ for λ ∈ spec(A⊤A)

⇔ X = 1 + 1
2
(
λ±

√
4λ + λ2

)
for λ ∈ spec(A⊤A),

which gives us the remaining 2d roots (countedwithmultiplicity). This proves that the singular
values of A are 1 (with multiplicity m− d) and (see Lemma B.27.2)

{φ(λ), φ(λ)−1 | λ ∈ spec
(
A⊤A

)
}.

Since φ is increasing (Lemma B.27.1), and φ(λ) ≥ 1, we conclude that the largest singular value
of A is φ

(
∥A⊤A∥

)
.

Proposition B.29. Let Assumption 3.11 hold, and consider the SAN (resp. SANA) algorithm. Let
c =

√
3+

√
5

2 . Then Assumption 3.9 is verified, with Ω = Rp and:

µW = min{1, µf}, LW = max{1, Lf},

µ̄S = min
{

1−π
n , π

}(
resp. µ̄S = 1

n

)
, LS = 1,

µ∇F = µW

c
√

n
√

2+L2
f

, L∇F = LW c
√

n
√

2 + L2
f .

Proof. Let x ∈ Rp be fixed, J := ∇F (x) ∈ Rp×p, and (S, W) in the domain of Dx. We need to
find uniform spectral bounds on those three matrices. For S, we have seen already in the proof
of Proposition B.25 that we can take LS = 1, and µ̄L = 1

n for SAN, or min{1−π
n , π} for SANA.

For W, we see directly from (B.27, B.28) that it is a block-diagonal matrix, whose eigenvalues
are included in [µW , LW ], with µW = min{1, µf} and LW = max{1, Lf}. The rest of this proof
is dedicated to the study of J , which requires more work.

Remember that the expression for J is given in (B.19). We write for convenience that

J =
[

0d H
1
nE⊤ −Ind

]
,
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where

E := [Id, · · · , Id] ∈ Rd×nd, H := [H1, · · · , Hn] ∈ Rd×nd, Hi := ∇2fi(w).

Let us now introduce a fewmorematrices. Let H̄ := ∇2f(w), which can equivalently be written
as H̄ = 1

n

∑
i Hi = 1

nHE⊤. Now consider

U :=
[

Id 0d,nd

−H⊤ Ind

]
, D :=

[
H̄ 0d,nd

0nd,d −Ind

]
, V :=

[
Id 0d,nd

−1
n E⊤ Ind

]
.

Note that those three matrices are triangular, and invertible because H̄ is invertible. It is easy
to see that J = U⊤DV . Indeed,

DV =
[

H̄ 0d,nd

1
nE⊤ −Ind

]
, U⊤DV =

[
H̄ −H 1

nE⊤ H
1
nE⊤ −Ind

]
=
[

0d H
1
nE⊤ −Ind

]
,

where the last equality comes from the fact that H 1
nE⊤ = H̄ . Therefore, it remains to upper

bound the right member of

σmax(J) =
√

λmax(J⊤J) = ∥J∥ ≤ ∥D∥∥U∥∥V ∥.

Bounding the smallest singular value will follow the same argument. Indeed, from our as-
sumptions, JT J is invertible (see Proposition 3.6), but J is a square matrix, therefore J itself is
invertible. In consequence, we can write that J−1 = V −1⊤

D−1U−1, so that

σmin(J) = 1
∥J−1∥

≥ 1
∥D−1∥∥U−1∥∥V −1∥

,

where one easily computes that

U−1 =
[

Id 0d,nd

H⊤ Ind

]
, D−1 =

[
H̄−1 0d,nd

0nd,d −Ind

]
, V −1 =

[
Id 0d,nd

1
nE⊤ Ind

]
.

It is easy to see, given our smoothness and strong convexity assumptions, that

∥D∥ = max{1, L} = LW and ∥D−1∥ = max{1, µ−1} = µ−1
W .

Now, observe that V and V −1 share the same structure, so we can call Lemma B.28 with
A = 1

nET or − 1
nET . In both cases A⊤A = n−1Id, meaning that ∥A⊤A∥ = n−1, and so we

deduce that
∥V ∥ = ∥V −1∥ = φ(n−1).
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Finally, we do the same for U and U−1 : we use Lemma B.28 with A = ±H⊤. In both cases
A⊤A = HH⊤ =

∑n
i=1 H2

i , whose eigenvalues belong to [nµ2, nL2]. Due to the monotonicity of
φ, we deduce that

∥U∥ = ∥U−1∥ ≤ φ(nL2).

As a result, we conclude that

σmin(J) ≥ 1
µ−1

W φ(n−1)φ(nL2)
= µW

φ(n−1)φ(nL2) ,

while
σmax(J) ≤ LW φ(n−1)φ(nL2).

We can then conclude by using Lemma B.27.4 and noting c = φ(1).

Proposition B.30. Let Assumption 3.11 hold, and consider the SAN (resp. SANA) algorithm.
Then

1. F : Rp −→ Rp is a diffeomorphism

2. F −1 : Rp −→ Rp is Lipschitz continuous :

(∀x, y ∈ Rp) ∥x− y∥ ≤
c
√

n
√

2 + L2
f

min{1, µf}
∥F (x)− F (y)∥ with c =

√
3 +
√

5
2 .

3. F −1(0) = [w∗, ∇f1(w∗), . . . , ∇fn(w∗)], with w∗ = argmin f .

Proof. Let us start by showing that F is injective. For x, x̂ ∈ Rp, we have

F (x) = F (x̂) ⇒ 1
n

∑
i

αi = 1
n

∑
i

α̂i and ∇fi(w)− αi = ∇fi(ŵ)− α̂i, ∀i = 1, . . . , n. (B.53)

Summing the right member over i, we obtain that ∇f(w) −∇f(ŵ) = 1
n

∑
i αi − 1

n

∑
i α̂i = 0.

In other words, we obtained that∇f(w) = ∇f(ŵ). Now, we assumed that f is strongly convex,
therefore∇f is injective (this can be seen from the fact that∇f is strongly monotone). So we
deduce that w = ŵ. Going back to (B.53), we see now that αi = α̂i, from which we conclude
that x = x̂, and that F is indeed injective.

We know that ∇F (x) is invertible for all x ∈ Rp (see Proposition 3.6), so we can use the
global inversion theorem to deduce that F is a diffeomorphism between Rp and F (Rp). Let us
prove now that F (Rp) = Rp. For this we will use an argument analog to what we used in the
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proof of Proposition B.29. Let u, d, v⊤ : Rp −→ Rp be defined as

u(x) := (w,−∇f1(w) + α1, . . . ,−∇fn(w) + αn),

v⊤(x) := (w − 1
n

n∑
i=1

αi, α1, . . . , αn),

d(x) := (∇f(w),−α1, . . . ,−αn).

It is a simple exercise to verify that F = v⊤ ◦ d ◦ u. We will see now that those three functions
are invertible and that their inverses are given by

u−1(x) := (w,∇f1(w) + α1, . . . ,∇fn(w) + αn),

v⊤−1(x) := (w + 1
n

n∑
i=1

αi, α1, . . . , αn),

d−1(x) := (∇f∗(w),−α1, . . . ,−αn).

For u, it is again a simple exercise to verify that u ◦ u−1 = u−1 ◦ u = idRp . Same for v (which
actually is linear). For d, we used the notation f∗ which refers to the Fenchel transform of f ,

f∗(u) := sup
w∈Rd

⟨u, w⟩ − f(w).

We assumed f to be strongly convex and smooth, which means that f∗ is well-defined and
differentiable on Rp, and that (∇f)−1 = ∇f∗ (Bauschke and Combettes, 2017, Theorems
13.37, 16.29 & 18.15). This proves that our expression for d−1 is correct. Now we conclude, by
seeing that u−1, v⊤−1

, d−1 are well-defined on Rp, that F −1 is well-defined on Rp, and so that
F (Rp) = Rp.

Now, we focus on F −1 : Rp −→ Rp. It is differentiable everywhere, so we can use the mean
value theorem to deduce that F −1 is Lipschitz continuous on Rp, with a Lipschitz constant
being bounded by:

sup
y∈Rp

∥∇F −1(y)∥ = sup
x∈Rp

∥∇F −1(F (x))∥ = sup
x∈Rp

∥∇F (x)−1∥ = sup
x∈Rp

1
σmin(∇F (x)) ≤

1
µ∇F

,

where µ∇F was computed in Proposition B.29. We obtain that

∥x− y∥ = ∥F −1(F (x))− F −1(y)∥ ≤ 1
µ∇F

∥F (x)− F (y)∥.

To conclude about the expression of F −1(0), compute

F −1(x) = (u−1 ◦ d−1 ◦ v⊤−1)(x)
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= [ŵ, ∇f1 (ŵ)− α1, · · · , ∇fn (ŵ)− αn] , with ŵ = ∇f∗
(

w + 1
n

n∑
i=1

αi

)
,

and use the fact that∇f∗(0) = w∗.

Proof of Theorem 3.12. Let w∗ = argmin f , and x∗ = [w∗, ∇f1(w∗), . . . , ∇fn(w∗)], such that
F (x∗) = 0 according to Proposition B.30. Using again Proposition B.30, we obtain for all k ∈ N
that

∥xk − x∗∥2 ≤
c2n(2 + L2

f )
min{1, µ2

f}
∥F (xk)∥2.

Here we have
∥xk − x∗∥2 = ∥wk − w∗∥2 +

n∑
i=1
∥αk

i −∇fi(w∗)∥2.

Taking the expectation on the above expressions, and using the fact that c2 ≤ 3, we obtain that

E
[
∥wk − w∗∥2

]
+

n∑
i=1

E
[
∥αk

i −∇fi(w∗)∥2
]
≤

3n(2 + L2
f )

min{1, µ2
f}

E
[
∥F (xk)∥2

]
.

Now we can use Theorem 3.10 together with Proposition B.29, and combine the constants into
play. For the sake of the presentation, we assume π = 1/(n + 1), so that we can have a unique
lower bound for SAN and SANA : µ̄S = min{ 1

n , 1
n+1} ≥

1
2n . We also simplify the expression of

c, by again using bounds like c2 ≤ 3 or c4 ≤ 7. This allows us to write that

E
[
∥F (xk)∥2

]
≤ C ′(1− γρ)k almost surely,

with ρ = min{1,µ3
f }

14n3(2+L2
f

)2 max{1,L3
f

} , and C ′ = 6nE
[
f̂0(x0)

] max{1,L2
f }(2+L2

f )
min{1,µf } . The conclusion follows

by taking C = C ′ 3n(2+L2
f )

min{1,µ2
f

} :

E
[
∥wk − w∗∥2

]
+

n∑
i=1

E
[
∥αk

i −∇fi(w∗)∥2
]
≤ 18n2E

[
f̂0(x0)

] max{1, L2
f}(2 + L2

f )2

min{1, µ3
f}

(1− γρ)k.
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Here we provide the related work discussion, the missing proofs from Chapter 4 and some
additional noteworthy observations made in Chapter 4.

C.1 Related work

We provide an extended discussion for the context of our work, including a discussion com-
paring the technical novelty of the chapter to the finite sum minimization result in Khaled
and Richtárik (2023), a comparison of the convergence theories of vanilla PG and the problem
dependent constants.

C.1.1 Technical contribution and novelty compared to Khaled and Richtárik (2023)

Our technical novelty compared to Khaled and Richtárik (2023) is threefold:
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• First, Theorem 4.4 is not a direct application of Theorem 2 in Khaled and Richtárik (2023),
which requires unbiased estimators of the gradient. Yet in PG methods, we have to
deal with biased estimators due to the truncation of the trajectories. The first technical
challenge was to adapt the proof technique to allow for biased gradients and a truncation
error. This also explains the need of Assumption 4.2. Similarly, we need to handle the
same challenge for the proof of Theorem C.22 when adapting the proof of Theorem 3
in Khaled and Richtárik (2023).

• Second, when considering the results we derived in specific cases in Section 4.4, the
difference between ourwork andKhaled andRichtárik (2023) is evenmore significant. All
cases studied in Khaled and Richtárik (2023) (e.g., finite-sum structure) are not applicable
for PG methods and we had to derive specific analysis for our specialized settings (soft-
max with different regularizers, expected Lipschitz and smooth policies, Fisher-non-
degenerate parametrized policies). Furthermore, our focus is on deriving explicit sample
complexity, whereas the results in Khaled and Richtárik (2023) are concerned with
convergence rates in terms of number of iterations. These dimensions are where most
of the technical work was done. Without this work of developing sample complexity
and studying specific cases found in PG literature, it was not clear at all that the (ABC)
assumption proposed in Khaled and Richtárik (2023) would be relevant in RL.

• Finally, we also consider the setting where the relaxed weak gradient domination holds
(Assumption 4.6 and Theorem C.8). This is an assumption that is unique to PG methods
and had not been considered in Khaled and Richtárik (2023). Technically speaking, the
proof of Theorem C.8 is unique and required a different approach (see the arguments
following (C.20)).

C.1.2 Sample complexity analysis of the vanilla policy gradient

Despite the success of PG methods in practice, a comprehensive theoretical understanding was
lacking until recently.

Global optimum convergence of vanilla PG with the exact full gradient. We refer to global
optimum convergence as an analysis that guarantees that J∗− J(θT ) ≤ ϵ after T iterations. The
global optimum convergence results of PG with the exact full gradient have been developed
under a number of different specific settings.

By using a gradient domination property of the expected return, which is also referred to as
the Polyak-Lojasiewicz (PL) condition (Polyak, 1963; Łojasiewicz, 1963), Fazel et al. (2018) show
that the linear-quadratic regulator (LQR) converges linearly to the global optimum for PG with
the exact full gradient. However, in the LQR setting the function J is not smooth, and thus does
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not fit into the general setting we considered in this chapter. Notice that such (PL) condition is
widely explored by Bhandari and Russo (2019) to identify more general MDP settings. When
such (PL) condition holds, Bhandari and Russo (2019) show that any stationary point of the
policy gradient of the expected return is a global optimum. More recently, Agarwal et al.
(2021) leveraged a weak gradient domination property, also called the weak Polyak-Lojasiewicz
condition which is exactly our condition (4.17) with ϵ′ = 0, to show that the projected PG
converges to the global optimum with a O(ϵ−2) convergence rate in tabular MDPs with tabular
policies, also called direct policy parameterization. In later work, Xiao (2022) improve this
result by a factor of ϵ, i.e., they establish a O(ϵ−1) convergence rate for the projected PG in the
tabular setting when the exact full gradient is available. At the moment, we could not adapt our
general ABC structure to analyze and derive a sample complexity guarantee for the projected
PG. The same convergence rate O(ϵ−1) is developed by Zhang et al. (2020a) by leveraging the
hidden convex structure of the cumulative reward and consequently showing that all local
optima (i.e., stationary points) are in fact global optima under certain bijection assumptions
based on the occupancy measure space (Assumption 1 in Zhang et al. (2020a)). Notice that the
assumptions proposed by Zhang et al. (2020a) are satisfied in the specific case of the tabular
setting. We do not cover this specific assumption in our current analysis.

The global optimum convergence analysis with exact PG is also investigated in the case of
softmax tabular policy with or without regularization. Agarwal et al. (2021) first provide an
asymptotic convergence for the softmax tabular without regularization and a O(ϵ−2) conver-
gence rate for the softmax tabular with log barrier regularization. Even though the gradient
domination property ((PL) or (4.17)) is not globally satisfied for the softmax tabular, Mei et al.
(2020) prove that it is available by following the path of the iterationswith the exact full gradient
updates. Such a property is called the non-uniform Lojasiewicz inequality. Consequently, Mei
et al. (2020) show a O(ϵ−1) convergence rate for the softmax tabular without regularization by
the weak gradient domination condition and a linear convergence rate for the softmax tabular
with entropy regularization by the gradient domination condition. Finally, Li et al. (2021a)
recently showed that the result of Mei et al. (2020) for softmax tabular policies may actually
contain a term that is exponential in the discount factor, thus showing that exact PG may take
an exponential time to converge.
Our Contributions. We provide a general sample complexity analysis which, when instantiated
using specific settings given in the literature, recovers the same or even slightly improved con-
vergence rates. Indeed, from Corollary C.14 we recover theO(ϵ−2) convergence rate of Agarwal
et al. (2021) for the softmax tabular with log barrier regularization and improve the rate by a
factor of 1− γ through a better analysis of the smoothness constant. By leveraging the (relaxed
weak) gradient domination properties which hold under the path of the iterations (Mei et al.,
2020), we recover their results. That is, we recover the O(ϵ−1) convergence rate for the softmax
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tabular without regularization in Theorem C.8 and the linear convergence rate for the softmax
tabular with entropy regularization in Theorem C.22.

Sample complexity for FOSP convergence. The convergence rates derived for exact PG are
representative of the behavior of the algorithm but do not take into account the additional errors
due to the stochastic nature of the actual algorithm used in practice. In this chapter we mostly
focus on the sample complexity of the stochastic vanilla PG for FOSP convergence. The well
known sample complexity for REINFORCE is Õ(ϵ−4) s.t. 1

T

∑T −1
t=0 E

[∥∥∥∇̂mJ(θt)
∥∥∥2
]
≤ ϵ2 after T

iterations. However, as Papini (2020) mentioned, “formal proofs of this result are surprisingly hard
to find both in the policy optimization and in the nonconvex optimization literature.” Papini (2020)
give a proof of the result under the expected Lipschitz and smooth policy assumption (E-LS)
in Theorem 7.1. When an estimate of the Q-function is available, Zhang et al. (2020b) also
establish the same dependency on ϵ for the sample complexity of FOSP convergence for the
policy gradient theorem (Sutton et al., 2000) under more restrictive Lipschitz and smooth
policy assumption (LS). By adding an additional uniform ergodicity assumption (Mitrophanov,
2005), Xiong et al. (2021) improve the sample complexity of (Zhang et al., 2020b) by some
factors of 1− γ but still has the same dependency on ϵ.
Our Contributions. We establish the sample complexity analysis for the vanilla PG: REIN-
FORCE (4.4) and GPOMDP (4.6). We improve the results of Papini (2020), Zhang et al.
(2020b), and Xiong et al. (2021) by using weaker assumptions and allowing much wider range
of hyper parameters (the batch size m and the constant step size η) to achieve the optimal
sample complexity. Overall, for both the exact and stochastic PG, our general sample complexity
analysis recovers the state-of-the-art dependency on ϵ under the ABC assumption.

Sample complexity for global optimum convergence. We refer to sample complexity of
global optimum convergence as an analysis that guarantees that J∗ − E [J(θT )] ≤ ϵ after T

iterations. To the best of our knowledge, there is no existing analysis that considers this type
of convergence result for the stochastic vanilla PG. As for variance-reduced PG, by using
Assumption 1 in Zhang et al. (2020a) about occupancy distribution, Zhang et al. (2021a)
establish a Õ(ϵ−2) sample complexity to achieve the global optimum.
Our Contributions. Under the ABC assumption, the smoothness and an additional gradient
domination type assumptions (4.17) and (PL), we establish the faster sample complexity
analysis for the global optimum convergence in Section 4.3.2 and Section C.8. More precisely,
when the relaxed weak gradient domination assumption (4.17) is available, we establish
Õ(ϵ−3) sample complexity in Theorem C.8. We also show that one wide family of policies, the
Fisher-non-degenerate parametrized policies, satisfy this relaxed weak gradient domination
assumption. When the gradient domination assumption (PL) is available, we establish Õ(ϵ−1)
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sample complexity for the global optimum in Theorem C.22. It remains an open question
whether softmax or softmax with entropy still satisfy the (weak) gradient domination type of
assumptions for the stochastic PG updates based on the exact PG analysis of Mei et al. (2020).

Sample complexity for the average regret convergence. We refer to the sample complexity
for average regret as an analysis that guarantees that J∗ − 1

T

∑T −1
t=0 E [J(θt)] ≤ ϵ. Zhang et al.

(2021b) show that with sample complexity Õ(ϵ−6), PG methods can converge to the average
regret optimum by using as little as a single sampled trajectory per iteration (i.e., mini-batch
size m = 1) for softmax with log barrier regularization. However, their setting does not use
“vanilla” PG but a modified version with re-projection meant to guarantee a sufficient level of
policy randomization. Liu et al. (2020) obtain faster sample complexity Õ(ϵ−4) by assuming in
addition a Fisher-non-degenerate parameterization, i.e. the Fisher information matrix is strictly
lower bounded (Assumption 4.19), and the compatible function approximation assumption
(Assumption 4.20). Notice that the softmax with log barrier regularization does not satisfy all
these assumptions and they require large batch sizes per iteration.
Our Contributions. We recover the sample complexity for the average regret convergence Õ(ϵ−6)
of Zhang et al. (2021b) in the softmax with log barrier regularization with the vanilla PG setting
. Compared to their results, we show that the extra phased learning step is unnecessary and the
step size can be constant instead of using a decreasing step size. We also provide a wider range
of parameter choices for the batch size and the step size with the same sample complexity. For
the Fisher-non-degenerate parametrized policy, we also recover the sample complexity for the
average regret convergence Õ(ϵ−4) of Liu et al. (2020) in Corollary C.17. Compared to their
results, we improve upon them by using weaker assumption E-LS, allowing much wider range
of choices for the batch size m ∈

[
1; 2ν

ϵ2

]
and the corresponded constant step size η to achieve

the same optimal sample complexity Õ (ϵ−4).
C.1.3 Better analysis of the problem dependent constants

Throughout the chapter, we also provided tighter bounds on the smoothness constants, Lip-
schitzness constants, and the variance of the gradient estimators under Assumption (E-LS).
Notice that the smoothness and Lipschitz constants we consider here are properties of the ex-
pected return J(·) in (4.2) or the regularized expected return Lλ(·) in (4.31). They depend only
on the assumptions and are independent to the specific PG algorithm. For this reason, below
we compare our bounds with work that studies variants of PG other than vanilla PG, where
the bounds on the smoothness and Lipschitz constants are also needed. On the other hand,
for the variance of the gradient estimators, we only consider the vanilla gradient estimators
REINFORCE (4.4) and GPOMDP (4.6) with batch size m. A resume of the improved problem
dependent constants – smoothness and Lipschitzness constants, is provided in Table C.1.
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Table C.1 – E-LS constants G, F (Assumption 4.8), smoothness constant L and Lipschitzness constant Γ
for Gaussian and (regularized) Softmax tabular policies, where φ is an upper bound on the euclidean
norm of the feature function for the Gaussian policy, Rmax is the maximum absolute-valued reward, γ
is the discount factor, σ is the standard deviation of the Gaussian policy.

Gaussian∗ Softmax Softmax with log barrier

G2 φ2

σ2 1− 1
|A| ✗∗∗

F φ2

σ2 1 ✗

L 2Rmaxφ2

(1−γ)2σ2
Rmax

(1−γ)2

(
2− 1

|A|

)
Rmax

(1−γ)2

(
2− 1

|A|

)
+ λ

|S|

Γ Rmaxφ
(1−γ)3/2σ

Rmax
(1−γ)3/2

√
1− 1

|A|

√
2
(
1− 1

|A|

) (
R2

max
(1−γ)3 + λ2

|S|

)
∗The (E-LS) constants G2 and F are provided in Lemma 23 in Papini et al. (2022).

∗∗When there is a “✗”, it means this is not applicable directly in such setting.

Smoothness constant. The smoothness constant L = Rmax
(1−γ)2

(
G2 + F

) in (4.22) provided in
Lemma 4.11 is tighter as compared to Papini et al. (2022, Lemma 6) under Assumption (E-LS),
and is also tighter as compared to Xu et al. (2020b, Proposition 4.2 (2)) and Liu et al. (2020,
Lemma B.1) under more restrictive assumptions (LS). Compared to existing bounds, our result
shows that when γ is close to 1, the smoothness constant (4.22) depends on (1−γ)−2 instead of
(1−γ)−3 as derived in Papini et al. (2022), Xu et al. (2020b) and Liu et al. (2020). Consequently,
the smoothness constant for softmax derived in Lemma C.10 and C.12 are also tighter than the
one derived in Lemma 7 in Mei et al. (2020) and Lemma D.2 in Agarwal et al. (2021), which
both have the dependency of (1− γ)−3. Finally, compared to the smoothness constant in Shen
et al. (2019) and Xu et al. (2020a), our result is independent to the horizon H .

Recent works, such as Proposition 1 in Huang et al. (2020) and equation (17) in Yuan et al.
(2020), have the dependency of (1− γ)−2 for the smoothness constant under assumptions (LS).
However, this is due to a recurring mistake in a crucial step in bounding the Hessian.1

Lipschitzness constant. The improved Lipschitzness constant under Assumption (E-LS) is
provided in LemmaC.9 (iii) in Section C.4.5. Compared to the existing bounds, our result shows
that when γ is close to 1, the Lipschitzness constant Γ depends on (1−γ)−3/2 instead of (1−γ)−2

derived in the proof of Lemma 6 in Papini et al. (2022) under the same Assumption (E-LS).

Upper bound of the variance of the gradient estimators. As for the result in Lemma 4.9,
our bounds (4.21) on the variance of the gradient estimators REINFORCE and GPOMDP

1In a previous version of the proof in Sect. C, Xu et al. (2020b) rely on the identity ∇2
θJ(θ) = Eτ [∇θg(τ | θ)],

which is incorrect since the operators ∇θ and E [·] are not commutative in this case as the density p(· | θ) of E [·]
depends on θ as well. This error is recently fixed by Xu et al. (2020b) on https://arxiv.org/pdf/1909.08610.pdf
in their original paper.
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are slightly tighter than the one in Lemma 17 and 18 in Papini et al. (2022), see more details
in Section C.4.1. Shen et al. (2019) and Pham et al. (2020) also showed that the variance
of the vanilla gradient estimator with batch size m = 1 is bounded under more restrictive
assumptions (LS). While their bounded variance depends on (1− γ)−4 and they only consider
the GPOMDP gradient estimator, ours (4.21) depends on (1− γ)−3 for GPOMDP or H

(1−γ)2 for
REINFORCE which is tighter in both cases.

C.2 Auxiliary Lemmas

Lemma C.1. For all γ ∈ [0, 1) and any strictly positive integer H , we have that

H−1∑
t=0

(t + 1)γt ≤
∞∑

t=0
(t + 1)γt = 1

(1− γ)2 .

Proof. The first part of the inequality is trivial. We now prove the second part of the inequality.
Let

S
def=

∞∑
t=0

(t + 1)γt.

We have

γS =
∞∑

t=0
(t + 1)γt+1 =

∞∑
t=1

tγt.

Subtracting of the above two equations gives

(1− γ)S =
∞∑

t=0
(t + 1)γt −

∞∑
t=1

tγt = 1 +
∞∑

t=1
(t + 1− t)γt =

∞∑
t=0

γt = 1
1− γ

.

Finally, the proof follows by dividing 1− γ on both hand side.

Lemma C.2. For all γ ∈ [0, 1) and any strictly positive integer H , we have that

∞∑
t=0

(t + 1)2γt ≤ 2
(1− γ)3 .
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Proof. Let

S
def=

∞∑
t=0

(t + 1)2γt.

We have

γS =
∞∑

t=0
(t + 1)2γt+1 =

∞∑
t=1

t2γt.

Thus, the subtraction of the above two equations gives

(1− γ)S =
∞∑

t=0
(t + 1)2γt −

∞∑
t=1

t2γt

= 1 +
∞∑

t=1
((t + 1)2 − t2)γt

= 1 +
∞∑

t=1
(2t + 1)γt

=
∞∑

t=0
(2t + 1)γt

= 2
∞∑

t=0
(t + 1)γt −

∞∑
t=0

γt

= 2
(1− γ)2 −

1
1− γ

≤ 2
(1− γ)2 ,

where the second last line is obtained by Lemma C.1. Finally, the proof follows by dividing
1− γ on both hand side.

Lemma C.3. The full policy gradient (4.3) can be re-written as (4.5) or (4.7). That is,

∇J(θ) = Eτ

[ ∞∑
k=0

γkR(sk, ak)
∞∑

t=0
∇θ log πθ(at | st)

]

= Eτ

[ ∞∑
t=0

(
t∑

k=0
∇θ log πθ(ak | sk)

)
γtR(st, at)

]

= Eτ

[ ∞∑
t=0
∇θ log πθ(at | st)

∞∑
t′=t

γt′R(st′ , at′)
]

.
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Proof. To simplify (4.3), we notice that future actions do not depend on past rewards. That is,
for 0 ≤ k < l among terms of the two sums in equation (4.3), we have

Eτ

[
∇θ log πθ(al | sl)γkR(sk, ak)

]
= Es0:l,a0:l

[
∇θ log πθ(al | sl)γkR(sk, ak)

]
= Es0:l,a0:(l−1)

[
γkR(sk, ak)Eal

[
∇θ log πθ(al | sl)

∣∣∣∣ s0:l, a0:(l−1)

]]
= Es0:l,a0:(l−1)

[
γkR(sk, ak)

∫
πθ(al | sl)∇θ log πθ(al | sl) dal

]
= Es0:l,a0:(l−1)

[
γkR(sk, ak)

∫
∇θπθ(al | sl) dal

]

= Es0:l,a0:(l−1)

γkR(sk, ak)∇θ

∫
πθ(al | sl) dal︸ ︷︷ ︸

=1

 = 0.

Plugging the above property into (4.3) yields the lemma’s claim.

Lemma C.4. Under Assumption 4.8, for all non negative integer t and any state-action pair
(st, at) ∈ S ×A at time t of a trajectory τ ∼ p(· | θ) sampled under the parametrized policy πθ, we
have that

Eτ∼p(·|θ)
[
∥∇θ log πθ(at | st)∥2

]
≤ G2, (C.1)

Eτ∼p(·|θ)
[∥∥∥∇2

θ log πθ(at | st)
∥∥∥] ≤ F. (C.2)

Proof. For t > 0 and (st, at) ∈ S ×A, we have

Eτ

[
∥∇θ log πθ(at | st)∥2

]
= Est

[
Eat∼πθ(·|st)

[
∥∇θ log πθ(at | st)∥2

∣∣st

]] (4.18)
≤ G2,

where the first equality is obtained by the Markov property.
Similarly, we have

Eτ

[∥∥∥∇2
θ log πθ(at | st)

∥∥∥] = Est

[
Eat∼πθ(·|st)

[∥∥∥∇2
θ log πθ(at | st)

∥∥∥ ∣∣st

]] (4.19)
≤ F.
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Lemma C.5. For all non negative integers 0 ≤ h < h′, and any state-action pairs
(sh, ah), (sh′ , ah′) ∈ S × A at time h and h′ respectively of the same trajectory τ ∼ p(· | θ)
sampled under the parametrized policy πθ, we have

Eτ

[
(∇θ log πθ(ah | sh))⊤∇θ log πθ(ah′ | sh′)

]
= 0. (C.3)

Proof. For 0 ≤ h < h′, we have

Eτ

[
(∇θ log πθ(ah | sh))⊤∇θ log πθ(ah′ | sh′)

]
= Eah,sh,sh′

[
Eah′

[
(∇θ log πθ(ah | sh))⊤∇θ log πθ(ah′ | sh′)

∣∣∣∣sh, ah, sh′

]]
= Eah,sh,sh′

[
(∇θ log πθ(ah | sh))⊤ Eah′

[
∇θ log πθ(ah′ | sh′)

∣∣∣∣sh, ah, sh′

]]
= Eah,sh,sh′

[
(∇θ log πθ(ah | sh))⊤

∫
ah′

πθ(ah′ | sh′)∇θ log πθ(ah′ | sh′)dah′

]

= Eah,sh,sh′

[
(∇θ log πθ(ah | sh))⊤

∫
ah′
∇θπθ(ah′ | sh′)dah′

]

= Eah,sh,sh′

[
(∇θ log πθ(ah | sh))⊤∇θ

∫
ah′

πθ(ah′ | sh′)dah′︸ ︷︷ ︸
=1

]
= 0,

where the first and second equality is obtained by the Markov property.

Lemma C.6. For all non negative integers 0 ≤ t, and any state-action pairs (sh, ah) ∈ S ×A at
time 0 ≤ h ≤ t of the same trajectory τ ∼ p(· | θ) sampled under the parametrized policy πθ, we
have

Eτ

∥∥∥∥∥
t∑

h=0
∇θ log πθ(ah | sh)

∥∥∥∥∥
2 =

t∑
h=0

Eτ

[
∥log πθ(ah | sh)∥2

]
. (C.4)

Proof. For 0 ≤ t, we have

Eτ

∥∥∥∥∥
t∑

h=0
∇θ log πθ(ah | sh)

∥∥∥∥∥
2

=
t∑

h=0
Eτ

[
∥log πθ(ah | sh)∥2

]
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+ 2
t−1∑
h=0

t∑
h′=h+1

Eτ

[
(∇θ log πθ(ah | θh))⊤∇θ log πθ(ah′ | θh′)

]
(C.3)=

t∑
h=0

Eτ

[
∥log πθ(ah | sh)∥2

]
.

C.3 Proof of Section 4.3

C.3.1 Proof of Theorem 4.4

Proof. We start with L-smoothness of J from Assumption 4.1, which implies

J(θt+1) ≥ J(θt) + ⟨∇J(θt), θt+1 − θt⟩ −
L

2 ∥θt+1 − θt∥2

= J(θt) + η
〈
∇J(θt), ∇̂mJ(θt)

〉
− Lη2

2

∥∥∥∇̂mJ(θt)
∥∥∥2

.

Taking expectations conditioned on θt, we get

Et [J(θt+1)] ≥ J(θt) + η ⟨∇J(θt),∇JH(θt)⟩ −
Lη2

2 Et

[∥∥∥∇̂mJ(θt)
∥∥∥2
]

(ABC)
≥ J(θt) + η ⟨∇JH(θt) + (∇J(θt)−∇JH(θt)) ,∇JH(θt)⟩

−Lη2

2
(
2A(J∗ − J(θt)) + B ∥∇JH(θt)∥2 + C

)
= J(θt) + η

(
1− LBη

2

)
∥∇JH(θt)∥2 − Lη2A(J∗ − J(θt))

−LCη2

2 + η ⟨∇JH(θt),∇J(θt)−∇JH(θt)⟩
(4.12)
≥ J(θt) + η

(
1− LBη

2

)
∥∇JH(θt)∥2 − Lη2A(J∗ − J(θt))

−LCη2

2 − ηDγH .

Subtracting J∗ from both sides gives

− (J∗ − Et [J(θt+1)]) ≥ −(1 + Lη2A)(J∗ − J(θt)) + η

(
1− LBη

2

)
∥∇JH(θt)∥2

− LCη2

2 − ηDγH .
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Taking the total expectation and rearranging, we get

E [J∗ − J(θt+1)] + η

(
1− LBη

2

)
E
[
∥∇JH(θt)∥2

]
≤ (1 + Lη2A)E [J∗ − J(θt)] + LCη2

2 + ηDγH .

Letting δt
def= E [J∗ − J(θt)] and rt

def= E
[
∥∇JH(θt)∥2

]
, we can rewrite the last inequality as

η

(
1− LBη

2

)
rt ≤ (1 + Lη2A)δt − δt+1 + LCη2

2 + ηDγH . (C.5)

We now introduce a sequence of weightsw−1, w0, w1, · · · , wT −1 based on a technique developed
by Stich (2019). Let w−1 > 0. Define wt

def= wt−1
1+Lη2A

for all t ≥ 0. Notice that if A = 0, we have
wt = wt−1 = · · · = w−1. Multiplying (C.5) by wt/η,

(
1− LBη

2

)
wtrt ≤

wt(1 + Lη2A)
η

δt −
wt

η
δt+1 + LCη

2 wt + DγHwt

= wt−1
η

δt −
wt

η
δt+1 +

(
LCη

2 + DγH
)

wt. (C.6)

Summing up both sides as t = 0, 1, · · · , T − 1 and using telescopic sum, we have,
(

1− LBη

2

) T −1∑
t=0

wtrt ≤
w−1

η
δ0 −

wT −1
η

δT +
(

LCη

2 + DγH
) T −1∑

t=0
wt

≤ w−1
η

δ0 +
(

LCη

2 + DγH
) T −1∑

t=0
wt. (C.7)

Let WT
def=
∑T −1

t=0 wt. Dividing both sides by WT , we have,
(

1− LBη

2

)
min

0≤t≤T −1
rt ≤

1
WT
·
(

1− LBη

2

) T −1∑
t=0

wtrt ≤
w−1
WT

δ0
η

+ LCη

2 + DγH . (C.8)

Note that,

WT =
T −1∑
t=0

wt ≥
T −1∑
t=0

min
0≤i≤T −1

wi = TwT −1 = Tw−1
(1 + Lη2A)T

. (C.9)

Using this in (C.8),
(

1− LBη

2

)
min

0≤t≤T −1
rt ≤

(1 + Lη2A)T

ηT
δ0 + LCη

2 + DγH . (C.10)
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However, we have

E
[
∥∇J(θt)∥2

]
= E

[
∥∇J(θt)−∇JH(θt) +∇JH(θt)∥2

]
= E

[
∥∇JH(θt)∥2

]
+ 2E [⟨∇JH(θt),∇J(θt)−∇JH(θt)⟩]

+E
[
∥∇J(θt)−∇JH(θt)∥2

]
(4.12)+(4.13)
≤ E

[
∥∇JH(θt)∥2

]
+ 2DγH + D′2γ2H . (C.11)

Substituting rt in (C.10) by E
[
∥∇J(θt)∥2

]
and using (C.11), we get

(
1− LBη

2

)
min

0≤t≤T −1
E
[
∥∇J(θt)∥2

]
≤ (1 + Lη2A)T

ηT
δ0 + LCη

2 + DγH

+
(

1− LBη

2

)(
2DγH + D′2γ2H

)
.

Our choice of step size guarantees that no matter B > 0 or B = 0, we have 1 − LBη
2 > 0.

Dividing both sides by 1− LBη
2 and rearranging yields the theorem’s claim.

If A = 0, we know that {wt}t≥−1 is a constant sequence. In this case, WT = Tw−1. Dividing
both sides of (C.7) by WT , we have,

(
1− LBη

2

) 1
T

T −1∑
t=0

rt ≤
δ0
ηT

+ LCη

2 + DγH . (C.12)

Similarly, substituting rt in (C.12) by E
[
∥∇J(θt)∥2

]
and using (C.11), we get

(
1− LBη

2

)
E
[
∥∇J(θU )∥2

]
=
(

1− LBη

2

) 1
T

T −1∑
t=0

E
[
∥∇J(θt)∥2

]
≤ δ0

ηT
+ LCη

2 + DγH +
(

1− LBη

2

)(
2DγH + D′2γ2H

)
.

Dividing both sides by 1− LBη
2 and rearranging yields the theorem’s claim.

C.3.2 Proof of Corollary 4.5

Proof. Given ϵ > 0, from Corollary 1 in Khaled and Richtárik (2023), we know that if η =
min

{ 1√
LAT

, 1
LB , ϵ

2LC

} and the number of iterations T satisfies

T ≥ 12δ0L

ϵ2 max
{

B,
12δ0A

ϵ2 ,
2C

ϵ2

}
,
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we have
2δ0(1 + Lη2A)T

ηT (2− LBη) + LCη

2− LBη
≤ ϵ2.

It remains to show (2D(3− LBη)
2− LBη

+ D′2γH
)

γH ≤ ϵ2.

Besides, our choice of the step size η ≤ 1
LB implies that 1

2−LBη ≤ 1, thus
(2D(3− LBη)

2− LBη
+ D′2γH

)
γH ≤

(
6D + D′2γH

)
γH .

Finally, it suffices to choose H such that

γH ≤ ϵ2 ⇐⇒ H ≥ 2 log ϵ−1

log γ−1 = O(log ϵ−1),

to guarantee that min0≤t≤T −1 E
[
∥∇J(θt)∥2

]
= O(ϵ−2), which concludes the proof.

Remark. When γ is close to 1, the horizon has the following property.

H = 2 log ϵ−1

log γ−1 = O
(

log ϵ−1

1− γ

)
.

Remark. When A = 0, by following the same analysis of Corollary 4.5 applied to (4.15) in The-
orem 4.4, choosing the parameters proposed in Corollary 4.5 guarantees that E

[
∥∇J(θU )∥2

]
=

O(ϵ2).

C.3.3 Average regret convergence under the relaxed weak gradient domination
assumption

When the relaxed weak gradient domination assumption (4.17) is available, it is straightfor-
ward to obtain the average regret to the global optimum convergence under the setting of
Corollary 4.5.

Corollary C.7. Suppose that Assumption 4.1, 4.2, 4.3 and 4.6 hold with A = 0. Given ϵ > 0, let
η = min

{ 1
LB , ϵ

2LC

}
and the horizon H = O(log ϵ−1). If the number of iterations T satisfies

T ≥ 12δ0L

ϵ2 max
{

B,
2C

ϵ2

}
, (C.13)

then J∗ − 1
T

∑T −1
t=0 E [J(θt)] = O(ϵ) +O(ϵ′).
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Proof. From the remark of the proof analysis of Corollary 4.5 with A = 0, we know that

E
[
∥∇J(θU )∥2

]
= 1

T

T −1∑
t=0

E
[
∥∇J(θt)∥2

]
= O(ϵ2).

From Assumption 4.2, we get

1
T

T −1∑
t=0

E
[
∥∇JH(θt)∥2

]
= O(ϵ2). (C.14)

Besides, from (4.17), we obtain that

(ϵ′)2 + ∥∇JH(θ)∥2 ≥ (ϵ′ + ∥∇JH(θ)∥)2

2 ≥ 2µ(J∗ − J(θ))2. (C.15)

Thus, by (C.14) and (C.15), we have

(ϵ′)2 + 1
T

T −1∑
t=0

E
[
∥∇JH(θt)∥2

] (C.14)= (ϵ′)2 +O(ϵ2)

(C.15)
≥ 2µ

T

T −1∑
t=0

E
[
(J∗ − J(θt))2

]

≥ 2µE

(J∗ − 1
T

T −1∑
t=0

J(θt)
)2

≥ 2µ

(
J∗ − 1

T

T −1∑
t=0

E [J(θt)]
)2

,

where the last two inequalities are obtained by applying Jensen inequality twice. By using
(a + b)2 ≥ a2 + b2 with a, b ≥ 0, we conclude that J∗ − 1

T

∑T −1
t=0 E [J(θt)] = O(ϵ) +O(ϵ′).

C.3.4 Global optimum convergence under the relaxed weak gradient domination
assumption

In this section, we present the new global optimum convergence theory under the relaxed weak
gradient domination assumption (4.17).

Theorem C.8. Suppose that Assumption 4.1, 4.2, 4.3 and 4.6 hold. Given ϵ > 0, define δ s.t. if
ϵ′ = 0, set δ = ϵ, if ϵ′ > 0, set δ = ϵ′. Suppose that PG defined in (4.10) is run for T > 0 iterations
with step size (ηt)t chosen as

ηt =


1
b if T ≤ b

µδ or t ≤ t0
2

2b+µδ(t−t0) if T ≥ b
µδ and t > t0

(C.16)
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with t0 =
[

T
2

]
and b = max{2AL

µδ , 2BL, µδ}. If J∗ − E [J(θt)] ≥ δ for all t ∈ {0, 1, · · · , T − 1},
then

J∗ − E [J(θT )] ≤ 16 exp
(
−µδ(T − 1)

2b

)
(J∗ − J(θ0)) + 12LC

µ2δ2T
+ 26DγH

µδ

+ 12(ϵ′)2(2b− LB)
µ2δ2T

+ 2ϵ′

µ
, (C.17)

otherwise, we have
min

t∈{0,1,··· ,T −1}
J∗ − E [J(θt)] ≤ δ.

Remark. Similar to the exact full gradient update in Thm. 4.4, notice that for the exact full
gradient update, we have Asm. 4.2 and 4.3 hold with A = C = D = 0 and B = 1. Thus under
the smoothness and the weak gradient domination assumption (i.e., ϵ′ = 0), we have

J∗ − E [J(θT )] ≤ 16 exp
(
−µϵ(T − 1)

2b

)
(J∗ − J(θ0)).

With T = 1
ϵ log

(
1
ϵ

)
, we have J∗ − E [J(θT )] ≤ ϵ. Thus we establish Õ(ϵ−1) convergence rate for

the number of iterations to the global optimal. We recover the same rate for the softmax tabular
policy in Theorem 4 in Mei et al. (2020) where the smoothness assumption holds and the weak
gradient domination condition (4.17) holds on the path of the iterates in the exact case.

Proof. From (4.17), we obtain that

(ϵ′)2 + ∥∇JH(θ)∥2 ≥ (ϵ′ + ∥∇JH(θ)∥)2

2 ≥ 2µ(J∗ − J(θ))2

=⇒ ∥∇JH(θ)∥2 ≥ 2µ(J∗ − J(θ))2 − (ϵ′)2. (C.18)

Let t ∈ {0, 1, · · · , T − 1}. Using the L-smoothness of J from Assumption 4.1,

J∗ − J(θt+1) ≤ J∗ − J(θt)− ⟨∇J(θt), θt+1 − θt⟩+ L

2 ∥θt+1 − θt∥2

= J∗ − J(θt)− ηt

〈
∇J(θt), ∇̂mJ(θt)

〉
+ Lη2

t

2

∥∥∥∇̂mJ(θt)
∥∥∥2

.

Taking expectation conditioned on θt and using Assumption 4.3 and 4.6,

Et [J∗ − J(θt+1)]

226



C.3 Proof of Section 4.3

≤ J∗ − J(θt)− ηt ⟨∇J(θt),∇JH(θt)⟩+ Lη2
t

2 Et

[∥∥∥∇̂mJ(θt)
∥∥∥2
]

(ABC)
≤ J∗ − J(θt)− ηt ⟨∇JH(θt) + (∇J(θt)−∇JH(θt)),∇JH(θt)⟩+

+Lη2
t

2
(
2A(J∗ − J(θt)) + B ∥∇JH(θt)∥2 + C

)
= (1 + Lη2

t A)(J∗ − J(θt))− ηt

(
1− LBηt

2

)
∥∇JH(θt)∥2 + Lη2

t C

2
−ηt ⟨∇J(θt)−∇JH(θt),∇JH(θt)⟩

(C.18)
≤

(
1 + Lη2

t A
)

(J∗ − J(θt))− µηt (2− LBηt) (J∗ − J(θt))2 + ηt

(
1− LBηt

2

)
(ϵ′)2

+Lη2
t C

2 − ηt ⟨∇J(θt)−∇JH(θt),∇JH(θt)⟩
(4.12)
≤

(
1 + Lη2

t A
)

(J∗ − J(θt))− µηt (2− LBηt) (J∗ − J(θt))2 + ηt

(
1− LBηt

2

)
(ϵ′)2

+Lη2
t C

2 + ηtDγH

≤
(
1 + Lη2

t A
)

(J∗ − J(θt))−
3µ

2 ηt(J∗ − J(θt))2 + ηt

(
1− LBηt

2

)
(ϵ′)2

+Lη2
t C

2 + ηtDγH , (C.19)

where the last line is obtained by the choice of the step size ηt ≤ 1
b with b ≥ 2LB.

Taking total expectation and letting rt
def= E [J∗ − J(θt)] on (C.19), we have

rt+1 ≤ rt + LAη2
t rt −

3µ

2 ηtr
2
t + ηt

(
1− LBηt

2

)
(ϵ′)2 + LC

2 η2
t + ηtDγH . (C.20)

If there exists t ∈ {0, 1, · · · , T −1} such that rt < δ, then we are done. Alternatively if rt ≥ δ

for all t ∈ {0, 1, · · · , T − 1}, from (C.20), we have

rt+1 ≤ rt + LAη2
t rt −

3µδ

2 ηtrt + ηt

(
1− LBηt

2

)
(ϵ′)2 + LC

2 η2
t + ηtDγH

≤ (1− µδηt)rt + ηt

(
1− LBηt

2

)
(ϵ′)2 + LC

2 η2
t + ηtDγH , (C.21)

where the last line is obtained by the choice of the step size ηt ≤ 1
b with b ≥ 2LA

µδ . Here
1− µδηt ≥ 0 as ηt ≤ 1

b with b ≥ µδ. We notice that (C.21) is similar to (C.99). The rest of the
proof is similar to the one of Theorem C.22.

If T ≤ b
µδ , ηt = 1

b . From (C.21), we have

rT ≤
(

1− µδ

b

)
rT −1 + LC

2b2 + DγH

b
+ 2b− LB

2b2 (ϵ′)2

227



Complements on Chapter 4

(C.21)
≤

(
1− µδ

b

)T

r0 +
(

LC

2b2 + DγH

b
+ 2b− LB

2b2 (ϵ′)2
)

T −1∑
i=0

(
1− µδ

b

)i

≤ exp
(
−µδT

b

)
r0 + LC

2µδb
+ DγH

µδ
+ 2b− LB

2µδb
(ϵ′)2 (C.22)

T ≤ b
µδ

≤ exp
(
−µδT

b

)
r0 + LC

2µ2δ2T
+ DγH

µδ
+ 2b− LB

2µ2δ2T
(ϵ′)2. (C.23)

If T ≥ b
µδ , as ηt = 1

b when t ≤ t0, from (C.22), we have

rt0 ≤ exp
(
−µδt0

b

)
r0 + LC

2µδb
+ DγH

µδ
+ 2b− LB

2µδb
(ϵ′)2

≤ exp
(
−µδ(T − 1)

2b

)
r0 + LC

2µδb
+ DγH

µδ
+ 2b− LB

2µδb
(ϵ′)2, (C.24)

where the last line is obtained by t0 =
[

T
2

]
≥ T −1

2 .
For t > t0,

ηt = 2
µδ
(

2b
µδ + t− t0

) .

From (C.21), we have

rt ≤
2b
µδ + t− t0 − 2

2b
µδ + t− t0

rt−1 + 2LC

µ2δ2
(

2b
µδ + t− t0

)2 + 2DγH

µδ
(

2b
µδ + t− t0

)
+ 2(ϵ′)2

µδ
(

2b
µδ + t− t0

)
1− LB

µδ
(

2b
µδ + t− t0

)
 .

Multiplying both sides by
(

2b
µδ + t− t0

)2, we have

( 2b

µδ
+ t− t0

)2
rt ≤

( 2b

µδ
+ t− t0

)( 2b

µδ
+ t− t0 − 2

)
rt−1 + 2LC

µ2δ2 + 2DγH

µδ

( 2b

µδ
+ t− t0

)
+ 2(ϵ′)2

µδ

(2b− LB

µδ
+ t− t0

)
≤
( 2b

µδ
+ t− t0 − 1

)2
rt−1 + 2LC

µ2δ2 + 2DγH

µδ

( 2b

µδ
+ t− t0

)
+ 2(ϵ′)2

µδ

(2b− LB

µδ
+ t− t0

)
.

Let wt
def=
(

2b
µϵ + t− t0

)2. We have

wtrt ≤ wt−1rt−1 + 2LC

µ2δ2 + 2DγH

µδ

( 2b

µδ
+ t− t0

)
+ 2(ϵ′)2

µδ

(2b− LB

µδ
+ t− t0

)
.
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Summing up for t = t0 + 1, · · · , T and telescoping, we get,

wT rT ≤ wt0rt0 + 2LC(T − t0)
µ2δ2 + 2DγH

µδ

T∑
t=t0+1

( 2b

µδ
+ t− t0

)

+ 2(ϵ′)2

µδ

T∑
t=t0+1

(2b− LB

µδ
+ t− t0

)

= 4b2

µ2δ2 rt0 + 2LC(T − t0)
µ2δ2 + 4bD(T − t0)γH

µ2δ2 + DγH

µδ
(T − t0)(T − t0 + 1)

+ 2(ϵ′)2(2b− LB)(T − t0)
µ2δ2 + (ϵ′)2

µδ
(T − t0)(T − t0 + 1).

Dividing both sides by wT and using that since

wT =
( 2b

µδ
+ T − t0

)2
≥ (T − t0)2,

we have

rT ≤
4b2

µ2δ2wT
rt0 + 2LC(T − t0)

µ2δ2wT
+ 4bD(T − t0)γH

µ2δ2wT
+ DγH

µδwT
(T − t0)(T − t0 + 1)

+ 2(ϵ′)2(2b− LB)(T − t0)
µ2δ2wT

+ (ϵ′)2

µδwT
(T − t0)(T − t0 + 1)

≤ 4b2

µ2δ2(T − t0)2 rt0 + 2LC

µ2δ2(T − t0) + 4bDγH

µ2δ2(T − t0) + 2DγH

µδ
+ 2(ϵ′)2(2b− LB)

µ2δ2(T − t0) + 2(ϵ′)2

µδ
.

By the definition of t0, we have T − t0 ≥ T
2 . Plugging this estimate and notice that (ϵ′)2

δ = ϵ′ by
the definition of δ, we have

rT ≤ 16b2

µ2δ2T 2 rt0 + 4LC + 8bDγH

µ2δ2T
+ 2DγH

µδ
+ 4(ϵ′)2(2b− LB)

µ2δ2T
+ 2ϵ′

µ

T ≥ b
µδ

≤ 16b2

µ2δ2T 2 rt0 + 4LC

µ2δ2T
+ 10DγH

µδ
+ 4(ϵ′)2(2b− LB)

µ2δ2T
+ 2ϵ′

µ

(C.24)
≤ 16b2

µ2δ2T 2

(
exp

(
−µδ(T − 1)

2b

)
r0 + LC

2µδb
+ DγH

µδ
+ (ϵ′)2(2b− LB)

2µδb

)

+ 4LC

µ2δ2T
+ 10DγH

µδ
+ 4(ϵ′)2(2b− LB)

µ2δ2T
+ 2ϵ′

µ

T ≥ b
µδ

≤ 16 exp
(
−µδ(T − 1)

2b

)
r0 + 8LC

µ2δ2T
+ 16DγH

µδ
+ 8(ϵ′)2(2b− LB)

µ2δ2T

+ 4LC

µ2δ2T
+ 10DγH

µδ
+ 4(ϵ′)2(2b− LB)

µ2δ2T
+ 2ϵ′

µ

= 16 exp
(
−µδ(T − 1)

2b

)
r0 + 12LC

µ2δ2T
+ 26DγH

µδ
+ 12(ϵ′)2(2b− LB)

µ2δ2T
+ 2ϵ′

µ
.
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(C.25)

It remains to take the maximum of the two bounds (C.23) and (C.25) with

b = max{2AL

µδ
, 2BL, µδ}.

C.3.5 Proof of Corollary 4.7

Proof. From Theorem C.8, when H = O(log ϵ−1), the dominant terms in (C.17) are 12LC
µ2δ2T

and
2ϵ′

µ . To guarantee that
min

t∈{0,1,··· ,T }
J∗ − E [J(θt)] ≤ O(ϵ) +O(ϵ′),

it suffices to choose T = O(δ−2ϵ−1) such that 12LC
µ2δ2T

= O(ϵ). Thus, by the definition of δ,
when ϵ′ = 0, we have T = O(ϵ−3); when ϵ′ > 0, we have T = O((ϵ′)−2ϵ−1). Otherwise, from
Theorem C.8, notice that δ ≤ ϵ + ϵ′, we have min

t∈{0,1,··· ,T −1}
J∗ − E [J(θt)] ≤ O(ϵ) +O(ϵ′), which

concludes the proof.

C.4 Proof of Section 4.4.1

C.4.1 Proof of Lemma 4.9

Note that a similar result to Lemma 4.9 is given as Lemma 17 and 18 in (Papini et al., 2022).
More precisely, Lemma 17 and 18 in (Papini et al., 2022) provide an upper bound of the variance
of the PG estimator similar to the following result

Var
[
∇̂mJ(θ)

]
≤ ν

m
.

We derive a slightly tighter bound

Var
[
∇̂mJ(θ)

]
≤ ν − ∥∇JH(θ)∥

m
.

This tighter bound is crucial for our work since it results in a tighter bound on E
[∥∥∥∇̂mJ(θ)

∥∥∥2
]

which still fits the format of (ABC). Here is the proof for Lemma 4.9.

Proof. Let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ . Thus
∇̂mJ(θ) = 1

m

∑m
i=1 g(τi | θ). Both ∇̂mJ(θ) and g(τ | θ) are unbiased estimators of JH(θ). We

have
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E
[∥∥∥∇̂mJ(θ)

∥∥∥2
]

= E

∥∥∥∥∥ 1
m

m−1∑
i=0

g(τi | θ)
∥∥∥∥∥

2
= E

∥∥∥∥∥ 1
m

m−1∑
i=0

g(τi | θ)−∇JH(θ) +∇JH(θ)
∥∥∥∥∥

2
= ∥∇JH(θ)∥2 + E

∥∥∥∥∥ 1
m

m−1∑
i=0

(g(τi | θ)−∇JH(θ))
∥∥∥∥∥

2
= ∥∇JH(θ)∥2 + 1

m2

m−1∑
i=0

E
[
∥g(τi | θ)−∇JH(θ)∥2

]
= ∥∇JH(θ)∥2 + 1

m
E
[
∥g(τ1 | θ)−∇JH(θ)∥2

]
= ∥∇JH(θ)∥2 +

E
[
∥g(τ1 | θ)∥2 − ∥∇JH(θ)∥2

]
m

, (C.26)

where the third, the fourth and the fifth lines are all obtained by using∇JH(θ) = E [g(τi | θ)].
It remains to show Eτ

[
∥g(τ | θ)∥2

]
is bounded under Assumption 4.8.

If ∇̂mJ(θ) is a REINFORCE gradient estimator, then

Eτ

[
∥g(τ | θ)∥2

] (4.4)= Eτ

∥∥∥∥∥
H−1∑
t′=0

γt′R(st′ , at′) ·
H−1∑
t=0
∇θ log πθ(at | st)

∥∥∥∥∥
2

≤ R2
max

(1− γ)2Eτ

∥∥∥∥∥
H−1∑
t=0
∇θ log πθ(at | st)

∥∥∥∥∥
2

(C.4)= R2
max

(1− γ)2

H−1∑
t=0

Eτ

[
∥∇θ log πθ(at | st)∥2

]
(C.1)
≤ HG2R2

max
(1− γ)2 , (C.27)

where the second line is obtained by using |R(st′ , at′)| ≤ Rmax.
Finally, the ABC assumption holds with

E
[∥∥∥∇̂mJ(θ)

∥∥∥2
] (C.26)+(C.27)

≤
(

1− 1
m

)
∥∇JH(θ)∥2 + HG2R2

max
m(1− γ)2 .

If ∇̂mJ(θ) is a GPOMDP gradient estimator, then
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Eτ

[
∥g(τ | θ)∥2

] (4.6)= Eτ

∥∥∥∥∥
H−1∑
t=0

γt/2R(st, at)γt/2
(

t∑
k=0
∇θ log πθ(ak | sk)

)∥∥∥∥∥
2

≤ Eτ

(H−1∑
t=0

γtR(st, at)2
)H−1∑

k=0
γk

∥∥∥∥∥
k∑

k′=0
∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2

≤ R2
max

1− γ
·

H−1∑
k=0

γkEτ

∥∥∥∥∥
k∑

k′=0
∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2

(C.4)= R2
max

1− γ
·

H−1∑
k=0

γk
k∑

k′=0
Eτ

[
∥∇θ log πθ(ak′ | sk′)∥2

]
(C.1)
≤ G2R2

max
1− γ

·
H−1∑
k=0

γk(k + 1)

≤ G2R2
max

(1− γ)3 , (C.28)

where the second line is from the Cauchy-Schwarz inequality, the third line is obtained by
using |R(st, at)| ≤ Rmax and the last line is obtained by Lemma C.1.

The above together with (C.26) imply that ABC assumption holds with

E
[∥∥∥∇̂mJ(θ)

∥∥∥2
] (C.26)+(C.28)

≤
(

1− 1
m

)
∥∇JH(θ)∥2 + G2R2

max
m(1− γ)3 .

C.4.2 Proof of Corollary 4.10

Proof. It is trivial that Assumption (LS) implies (E-LS). Now we show that (E-LS) is strictly
weaker than (LS).

Consider a scalar-action, fixed-variance, Gaussian policy:

πθ(a | s) = N
(
a | θ⊤ϕ(s), σ2

)
= 1

σ
√

2π
exp

−1
2

(
a− θ⊤ϕ(s)

σ

)2
 , (C.29)

where θ ∈ Rd, σ > 0 is the standard deviation, and ϕ : S → Rd is a mapping from the state
space to the feature space.

From Lemma 23 in Papini et al. (2022), the Gaussian policy (C.29) under the condition
that the state feature vectors are bounded satisfies (E-LS). That is, under the condition that
there exists φ ≥ 0 such that sups∈S ∥ϕ(s)∥ ≤ φ. One does not require that the actions are
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bounded for the Gaussian policy. This is not the case in Xu et al. (2020b) in Section D under
assumptions (LS).

Besides, from Lemma 4.9, we know that Assumption (E-LS) implies (ABC). This concludes
the claim of the corollary.

C.4.3 Proof of Lemma 4.11

Proof. We know that

∇2J(θ) (4.5)= ∇θEτ

[ ∞∑
t=0

γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)]

= ∇θ

∫
p(τ | θ)

∞∑
t=0

γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)
dτ

=
∫
∇θp(τ | θ)

( ∞∑
t=0

γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

))⊤

dτ

+
∫

p(τ | θ)
∞∑

t=0
γtR(st, at)

(
t∑

k=0
∇2

θ log πθ(ak | sk)
)

dτ

=
∫

p(τ | θ)∇θ log p(τ | θ)
( ∞∑

t=0
γtR(st, at)

(
t∑

k=0
∇θ log πθ(ak | sk)

))⊤

dτ

+
∫

p(τ | θ)
∞∑

t=0
γtR(st, at)

(
t∑

k=0
∇2

θ log πθ(ak | sk)
)

dτ

= Eτ

∇θ log p(τ | θ)
( ∞∑

t=0
γtR(st, at)

(
t∑

k=0
∇θ log πθ(ak | sk)

))⊤
+Eτ

[ ∞∑
t=0

γtR(st, at)
(

t∑
k=0
∇2

θ log πθ(ak | sk)
)]

(4.1)= Eτ

 ∞∑
t′=0
∇θ log πθ(at′ | θt′)

( ∞∑
t=0

γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

))⊤
︸ ︷︷ ︸

1

+Eτ

[ ∞∑
t=0

γtR(st, at)
(

t∑
k=0
∇2

θ log πθ(ak | sk)
)]

︸ ︷︷ ︸
2

. (C.30)
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We now bound the above two terms separately. The second term can be bounded easily. That
is,

∥∥ 2 ∥∥ ≤ Eτ

[ ∞∑
t=0

γt |R(st, at)|
(

t∑
k=0

∥∥∥∇2
θ log πθ(ak | sk)

∥∥∥)]

≤ Rmax

∞∑
t=0

γt

(
t∑

k=0
Eτ

[∥∥∥∇2
θ log πθ(ak | sk)

∥∥∥])
(C.2)
≤ FRmax

∞∑
t=0

γt(t + 1)

= FRmax
(1− γ)2 , (C.31)

where the second line is obtained by using |R(st, at)| ≤ Rmax and the last line is obtained by
Lemma C.1.

To bound the first term, we use the following notation x0:t
def= (x0, x1, · · · , xt) with {xt}t≥0

a sequence of random variables. Similar to the derivation of GPOMDP, we notice that future
actions do not depend on past rewards and past actions. That is, for 0 ≤ t < t′ among terms of
the two sums in 1 , we have

Eτ

∇θ log πθ(at′ | st′) · γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)⊤
= Es0:t′ ,a0:t′

∇θ log πθ(at′ | st′) · γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)⊤
= Es0:t′ ,a0:(t′−1)

Eat′

∇θ log πθ(at′ | st′) · γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)⊤ ∣∣∣∣ s0:t′ , a0:(t′−1)


= Es0:t′ ,a0:(t′−1)

Eat′

[
∇θ log πθ(at′ | st′)

∣∣∣∣ st′

]
· γtR(st, at)

(
t∑

k=0
∇θ log πθ(ak | sk)

)⊤
= Es0:t′ ,a0:(t′−1)

∫ πθ(at′ | st′)∇θ log πθ(at′ | st′)dat′ · γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)⊤
= Es0:t′ ,a0:(t′−1)

∫ ∇θπθ(at′ | st′)dat′ · γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)⊤

= Es0:t′ ,a0:(t′−1)

∇θ

∫
πθ(at′ | st′)dat′︸ ︷︷ ︸

=1

·γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)⊤


= 0, (C.32)
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where the third equality is obtained by the Markov property. Thus, 1 can be simplified. We
have

1 (C.32)= Eτ

 t∑
t′=0
∇θ log πθ(at′ | θt′)

( ∞∑
t=0

γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

))⊤
= Eτ

 ∞∑
t=0

γtR(st, at)
(

t∑
t′=0
∇θ log πθ(at′ | θt′)

)(
t∑

k=0
∇θ log πθ(ak | sk)

)⊤ .

(C.33)

Now we can bound 1 easily. That is,

∥∥ 1 ∥∥ (C.33)
≤ Eτ

 ∞∑
t=0

γt |R(st, at)|
∥∥∥∥∥

t∑
t′=0
∇θ log πθ(at′ | θt′)

∥∥∥∥∥
2

≤ Rmax

∞∑
t=0

γtEτ

∥∥∥∥∥
t∑

t′=0
∇θ log πθ(at′ | θt′)

∥∥∥∥∥
2

(C.4)= Rmax

∞∑
t=0

γt
t∑

t′=0
Eτ

[
∥∇θ log πθ(at′ | θt′)∥2

]
(C.1)
≤ G2Rmax

∞∑
t=0

γt(t + 1)

= G2Rmax
(1− γ)2 , (C.34)

where the second line is obtained by using |R(st, at)| ≤ Rmax and the last line is obtained by
Lemma C.1.

Finally,
∥∥∥∇2J(θ)

∥∥∥ (C.30)+(C.34)+(C.31)
≤ Rmax

(1− γ)2 (G2 + F ).

C.4.4 Proof of Lemma 4.12

Proof. From (4.5), we have

∥∇J(θ)−∇JH(θ)∥2

=
∥∥∥∥∥Eτ

[ ∞∑
t=H

γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)]∥∥∥∥∥
2
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≤ Eτ

∥∥∥∥∥
∞∑

t=H

γt/2R(st, at)γt/2
(

t∑
k=0
∇θ log πθ(ak | sk)

)∥∥∥∥∥
2

≤ Eτ

( ∞∑
t=H

γtR(st, at)2
) ∞∑

k=H

γk

∥∥∥∥∥
k∑

k′=0
∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2

≤ R2
maxγH

1− γ
Eτ

 ∞∑
k=H

γk

∥∥∥∥∥
k∑

k′=0
∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2

(C.4)= R2
maxγH

1− γ

∞∑
k=H

γk
k∑

k′=0
Eτ

[
∥∇θ log πθ(ak′ | sk′)∥2

]
(C.1)
≤ G2R2

maxγH

1− γ

∞∑
k=H

γk(k + 1)

= G2R2
maxγ2H

1− γ

∞∑
k=0

γk(k + 1 + H)

=
( 1

1− γ
+ H

)
G2R2

maxγ2H

(1− γ)2 , (C.35)

where the second and third lines are obtained by Jensen and Cauchy-Schwarz inequality
respectively, the fourth line is obtained by using |R(st, at)| ≤ Rmax and the last line is obtained
by Lemma C.1.

Thus

D′ (C.35)= GRmax
1− γ

√
1

1− γ
+ H.

Next, by inequality of Cauchy-Swartz we have

|⟨∇JH(θ),∇JH(θ)−∇J(θ)⟩| ≤ ∥∇JH(θ)∥ ∥∇JH(θ)−∇J(θ)∥
(4.13)
≤ ∥∇JH(θ)∥ ·D′γH

≤ D′GRmax
(1− γ)3/2 γH , (C.36)

where the last line is obtained by Lemma C.9 (iii). Thus

D
(C.36)= D′GRmax

(1− γ)3/2 .
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C.4.5 Lipschitz continuity of J(·)

In this section, we show that J(·) is Lipschitz-continuous under Assumption 4.8.

Lemma C.9. If Assumption 4.8 holds, for any m trajectories τi and θ ∈ Rd, we have

(i) ∇̂mJ(θ) is Lg-Lipschitz continuous if conditions (LS) hold;

(ii) The norm of the gradient estimator squared in expectation is bounded, i.e. E
[∥∥∥∇̂mJ(θ)

∥∥∥2
]
≤

Γ2
g.

(iii) J(·) is Γ-Lipschitz, namely ∥∇J(θ)∥ ≤ Γ with Γ = GRmax
(1−γ)3/2 . Similarly, we have

∥∇JH(θ)∥ ≤ Γ for the exact policy gradient of the truncated function JH(·) for any horizon
H .

Furthermore, if ∇̂mJ(θ) is a REINFORCE gradient estimator, then Lg = HF Rmax
1−γ and Γg =

√
HGRmax

1−γ ; if ∇̂mJ(θ) is a GPOMDP gradient estimator, then Lg = F Rmax
(1−γ)2 and Γg = Γ.

Remark. The Lipschitzness constant proposed in LemmaC.9 (iii) is novel. SeeAppendix C.1.3
for more details.

The results in Lemma C.9 (ii) match the special case of Lemma 4.9 when the mini-batch size
m = 1. It also implies Assumption (ABC) but with a looser upper bound, which is independent
to the batch size m. We include a proof for completeness of the properties of a general vanilla
policy gradient estimator. Notice that the bound of E

[∥∥∥∇̂mJ(θ)
∥∥∥2
]
with GPOMDP gradient

estimator is a factor of 1− γ tighter as compared to Proposition 4.2 (3) in Xu et al. (2020b) and
equation (17) in Yuan et al. (2020) under more restrictive assumptions (LS).

The result with GPOMDP gradient estimator in Lemma C.9 (i) was already proposed in
Proposition 4.2 in Xu et al. (2020b), but not with REINFORCE gradient estimator. We include a
proof for both gradient estimators for the completeness.

Proof. To prove (i), let ∇̂mJ(θ) be a REINFORCE gradient estimator. From (4.4), we have

∥∥∥∇ (∇̂mJ(θ)
)∥∥∥ =

∥∥∥∥∥ 1
m

m∑
i=1

H−1∑
t=0

(
H−1∑
t′=0

γt′R(si
t′ , ai

t′)
)
∇2

θ log πθ(ai
t | si

t)
∥∥∥∥∥

≤ 1
m

m∑
i=1

(
H−1∑
t′=0

γt′
∣∣∣R(si

t′ , ai
t′)
∣∣∣)H−1∑

t=0

∥∥∥∇2
θ log πθ(ai

t | si
t)
∥∥∥

≤ Rmax
1− γ

· 1
m

m∑
i=1

H−1∑
t=0

∥∥∥∇2
θ log πθ(ai

t | si
t)
∥∥∥

237



Complements on Chapter 4

(LS)
≤ HFRmax

1− γ
,

where the third line is obtained by using ∣∣R(si
t′ , ai

t′)
∣∣ ≤ Rmax. In this case, Lg = HF Rmax

1−γ .
Let ∇̂mJ(θ) be a GPOMDP gradient estimator. From (4.6), we have

∥∥∥∇ (∇̂mJ(θ)
)∥∥∥ =

∥∥∥∥∥ 1
m

m∑
i=1

H−1∑
t=0

γtR(si
t, ai

t)
(

t∑
k=0
∇2

θ log πθ(ai
k | si

k)
)∥∥∥∥∥

≤ 1
m

m∑
i=1

H−1∑
t=0

γt
∣∣∣R(si

t, ai
t)
∣∣∣ ( t∑

k=0

∥∥∥∇2
θ log πθ(ai

k | si
k)
∥∥∥)

≤ Rmax
m

m∑
i=1

H−1∑
t=0

γt

(
t∑

k=0

∥∥∥∇2
θ log πθ(ai

k | si
k)
∥∥∥)

(LS)
≤ FRmax

H−1∑
t=0

γt(t + 1)

Lemma C.1
≤ FRmax

(1− γ)2 ,

where similarly, the third line is obtained by using ∣∣R(si
t, ai

t)
∣∣ ≤ Rmax. In this case, Lg = F Rmax

(1−γ)2 .
To prove (ii), let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory

τ . Thus ∇̂mJ(θ) = 1
m

∑m
i=1 g(τi | θ). Both ∇̂mJ(θ) and g(τ | θ) are unbiased estimators of

JH(θ). We have

E
[∥∥∥∇̂mJ(θ)

∥∥∥2
]
≤ Eτ

[
∥g(τ | θ)∥2

]
.

If ∇̂mJ(θ) is a REINFORCE gradient estimator, from (C.27), we have Γg =
√

HGRmax
1−γ . If

∇̂mJ(θ) is a GPOMDP gradient estimator, from (C.28), we have Γg = GRmax
(1−γ)3/2 .

To prove (iii), we have

∥∇J(θ)∥2 (4.5)=
∥∥∥∥∥Eτ

[ ∞∑
t=0

γtR(st, at)
(

t∑
k=0
∇θ log πθ(ak | sk)

)]∥∥∥∥∥
2

≤ Eτ

∥∥∥∥∥
∞∑

t=0
γt/2R(st, at)γt/2

(
t∑

k=0
∇θ log πθ(ak | sk)

)∥∥∥∥∥
2

≤ Eτ

( ∞∑
t=0

γtR(st, at)2
) ∞∑

k=0
γk

∥∥∥∥∥
k∑

k′=0
∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2

≤ R2
max

1− γ
Eτ

 ∞∑
k=0

γk

∥∥∥∥∥
k∑

k′=0
∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2
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(C.4)= R2
max

1− γ

∞∑
k=0

γk
k∑

k′=0
Eτ

[
∥∇θ log πθ(ak′ | sk′)∥2

]
(C.1)
≤ G2R2

max
1− γ

∞∑
k=0

γk(k + 1)

= G2R2
max

(1− γ)3 ,

where the second and third lines are obtained by Jensen and Cauchy-Schwarz inequality
respectively, the fourth line is obtained by using |R(st, at)| ≤ Rmax and the last line is obtained
by Lemma C.1.

Thus,

∥∇J(θ)∥ ≤ Γ with Γ = GRmax
(1− γ)3/2 .

Similarly, we also have

∥∇JH(θ)∥ ≤ Γ with Γ = GRmax
(1− γ)3/2

for the exact policy gradient of the truncated function J(·) for any horizon H .

C.4.6 Proof of Corollary 4.13

Proof. From Lemma 4.11, we know that J is L-smooth. Consider policy gradient with a mini-
batch sampling of size m. From Lemma 4.9, we have Assumption 4.3 holds with A = 0,
B = 1− 1

m and C = ν/m. Assumption 4.2 is verified as well by Lemma 4.12 with appropriate
D and D′. By Theorem 4.4, plugging A = 0, B = 1 − 1

m and C = ν/m in (4.15) yields the
corollary’s claim with step size η ∈

(
0, 2

L(1− 1
m )

)
.

C.4.7 Proof of Corollary 4.14

Proof. Consider vanilla policy gradient with step size η ∈
(

0, 1
L(1− 1

m )

)
and a mini-batch

sampling of size m. We have

E
[
∥∇J(θU )∥2

] (4.26)
≤ 2δ0

ηT
(
2− Lη

(
1− 1

m

)) + Lνη

m
(
2− Lη

(
1− 1

m

))
+

2D
(
3− Lη

(
1− 1

m

))
2− Lη

(
1− 1

m

) + D′2γH

 γH
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≤ 2δ0
ηT

+ Lνη

m
+
(
6D + D′2γH

)
γH ,

where the second inequality is obtained by 1
2−Lη(1− 1

m ) ≤ 1 with η ∈
(

0, 1
L(1− 1

m )

)
.

To get E
[
∥∇J(θU )∥2

]
= O(ϵ2), it suffices to have

O(ϵ2) ≥ 2δ0
ηT

+ Lνη

m
(C.37)

and

O(ϵ2) ≥
(
6D + D′2γH

)
γH (C.38)

respectively. To make the right hand side of (C.38) smaller than ϵ2, we need HγH = O(ϵ2).
Thus, we require

H = O
(

log
(1

ϵ

)
/ log

(1
γ

))
.

To make the right hand side of (C.37) smaller than ϵ2, we require

Lνη

m
≤ ϵ2

2 ⇐⇒ η ≤ ϵ2m

2Lν
. (C.39)

Similarly, for the first term of the right hand side of (C.37), we require

2δ0
ηT
≤ ϵ2

2 ⇐⇒ 4δ0
ϵ2T

≤ η. (C.40)

Combining the above two inequalities gives

4δ0
ϵ2T

≤ η ≤ ϵ2m

2Lν
. (C.41)

This implies

Tm ≥ 8δ0Lν

ϵ4 . (C.42)

The condition on the step size η ∈
(

0, 1
L(1− 1

m )

)
requires that the mini-batch size satisfies

ϵ2m

2Lν
≤ 1

L
(
1− 1

m

) =⇒ m ≤ 2ν

ϵ2 .

To conclude, it suffices to choose the step size η = 4δ0
ϵ2T

= ϵ2m
2Lν , a mini-batch size m between 1 and

2ν
ϵ2 , the number of iterations T = 8δ0Lν

mϵ4 and the fixed Horizon H = O
(
log

(
1
ϵ

)
/ log

(
1
γ

))
so that
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the inequalities (C.38), (C.39), (C.40), (C.41) and (C.42) hold, which guaranteeE
[
∥∇J(θU )∥2

]
=

O(ϵ2).
Thus, the total sample complexity is

Tm×H =
8δ0Lν log

(
1
ϵ

)
log

(
1
γ

)
ϵ4

= Õ(ϵ−4).

More precisely, from Lemma 4.11, L = Rmax
(1−γ)2 (G2 + F ). When using REINFORCE gradi-

ent estimator (4.4), from Lemma 4.9, ν = HG2R2
max

(1−γ)2 . Thus, when γ is close to 1, the sample
complexity is

8δ0H2G2R3
max(G2 + F )

(1− γ)4ϵ4 =
8δ0G2R3

max(G2 + F )
(
log

(
1
ϵ

))2

(
log

(
1
γ

))2
(1− γ)4ϵ4

= O
((

log
(1

ϵ

))2
(1− γ)−6ϵ−4

)
. (C.43)

In this case, we can choose the mini-batch size m ∈
[
1; 2ν

ϵ2

]
, i.e. from 1 to O (H(1− γ)−2ϵ−2)

and the constant step size η = ϵ2m
2Lν varies from O ((1− γ)2) to O (H−1(1− γ)4ϵ2) accordingly.

When using GPOMDP gradient estimator (4.6), from Lemma 4.9, ν = G2R2
max

(1−γ)3 . Thus, when
γ is close to 1, the sample complexity is

8δ0HG2R3
max(G2 + F )

(1− γ)5ϵ4 =
8δ0G2R3

max(G2 + F ) log
(

1
ϵ

)
log

(
1
γ

)
(1− γ)5ϵ4

= O
(

log
(1

ϵ

)
(1− γ)−6ϵ−4

)
.

(C.44)

In this case, we can choose the mini-batch size m ∈
[
1; 2ν

ϵ2

]
, i.e. from 1 to O ((1− γ)−3ϵ−2) and

the constant step size η = ϵ2m
2Lν varies from O ((1− γ)2) to O ((1− γ)5ϵ2) accordingly.

Remark. Comparing (C.44) to (C.43), we have that the sample complexity of GPOMDP is a
factor of log (1/ϵ) smaller than that of REINFORCE.

C.5 Proof of Section 4.4.2

In this section, θ ∈ R|S||A| and denote θs ≡ (θs,a)a∈A ∈ R|A|. We also use the following notations

πs,a(θ) def= πθ(a | s) and πs(θ) def= πθ(· | s) ∈ ∆(A) ∈ R|A|.
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C.5.1 Preliminaries for the softmax tabular policy

Recall the softmax tabular policy given by

πs,a(θ) def= exp(θs,a)∑
a′∈A exp(θs,a′) . (C.45)

From (C.45), for any (s, a, a′) ∈ S ×A×Awith a′ ̸= a, we have immediately the following
partial derivatives for the softmax tabular policy

∂πs,a(θ)
∂θs,a

= πs,a(θ)(1− πs,a(θ)), (C.46)

∂πs,a(θ)
∂θs,a′

= −πs,a(θ)πs,a′(θ). (C.47)

Notice that for s′ ∈ S with s′ ̸= s, we have ∂πs,a(θ)
∂θs′,a

= 0. From (C.46) and (C.47), we obtain
respectively the gradient of πs,a(θ) and the Jacobian of πs(θ) w.r.t. θs

∂πs,a(θ)
∂θs

=
(

∂πs(θ)
∂θs,a

)⊤

= πs,a(θ)(1a − πs(θ)), (C.48)

∂πs(θ)
∂θs

= Diag (πs(θ))− πs(θ)πs(θ)⊤ def= H(πs(θ)), (C.49)

where 1a ∈ R|A| is a vector with zero entries except one non-zero entry 1 corresponding to the
action a. Now from (C.48) and (C.49), we obtain respectively the gradient and the Hessian of
log πs,a(θ) w.r.t. θs given by

∂ log πs,a(θ)
∂θs

= 1a − πs(θ), (C.50)
∂2 log πs,a(θ)

∂θ2
s

= −H(πs(θ)). (C.51)

C.5.2 Stationary point convergence of the softmax tabular policy

First we provide the proof of Lemma 4.15.

Proof. For any state s ∈ S and any θ ∈ R|S||A|, from (C.50), we have

Ea∼πθ(·|s)
[
∥∇θ log πθ(a | s)∥2

]
= Ea∼πθ(·|s)

[
1 + ∥πs(θ)∥2 − 2πs,a(θ)

]
= 1 + ∥πs(θ)∥2 − 2

∑
a∈A

πs,a(θ)2

= 1− ∥πs(θ)∥2
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≤ 1− 1
|A|

, (C.52)

where the last line is obtained by using Cauchy-Schwarz inequality in the following

∥πs(θ)∥2 =
∑
a∈A

πs,a(θ)2 ≥ 1
|A|

(∑
a∈A

πs,a(θ)
)2

= 1
|A|

.

Thus we have G2 = 1− 1
|A| .

Besides, from Lemma 22 in Mei et al. (2020), we have ∥H(πs(θ))∥ ≤ 1. Thus from (C.51),
we have ∥∥∇2

θ log πθ(a | s)
∥∥ ≤ 1. Taking expectation over action, we have

Ea∼πθ(·|s)
[∥∥∥∇2

θ log πθ(a | s)
∥∥∥] ≤ 1.

Thus we have F = 1.

Remark. Without expectation, for any (s, a) ∈ S ×A, (C.52) becomes

∥∇θ log πθ(a | s)∥2 = 1 + ∥πs(θ)∥2 − 2πs,a(θ) ≤ 2, (C.53)

where the inequality is obtained by

∥πs(θ)∥2 =
∑
a∈A

πs,a(θ)2 ≤
∑
a∈A

πs,a(θ) = 1 (C.54)

with πs,a(θ) ∈ [0, 1]. This means, the softmax tabular policy satisfies (LS) condition with a
bigger constant G2 = 2 instead of 1− 1

|A| and F = 1.
Lemma 4.15 immediately implies that J(·) with the softmax tabular policy is smooth and

Lipschitz as following.

Lemma C.10. J(·) with the softmax tabular policy is Rmax
(1−γ)2

(
2− 1

|A|

)
-smooth and

Rmax
(1−γ)3/2

√
1− 1

|A| -Lipschitz.

Proof. From Lemma 4.15, we know that Assumption 4.8 is satisfied with G2 = 1 − 1
|A| and

F = 1. Thus, J(·) with the softmax tabular policy is smooth and Lipschitz.
Indeed, from Lemma 4.11, we obtain the smoothness constant Rmax

(1−γ)2

(
2− 1

|A|

)
for J(·); and

from Lemma C.9 (iii), we obtain the Lipschitzness constant Rmax
(1−γ)3/2

√
1− 1

|A| for J(·).

Now we can provide the formal statement of Corollary 4.16.
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Corollary C.11 (Formal). For any accuracy level ϵ, if we choose the mini-batch size m such that
1 ≤ m ≤ 2ν

ϵ2 , the step size η = ϵ2m
2Lν with L = Rmax

(1−γ)2

(
2− 1

|A|

)
and

ν =


H
(

1− 1
|A|

)
R2

max
(1−γ)2 for REINFORCE(

1− 1
|A|

)
R2

max
(1−γ)3 for GPOMDP

,

the number of iterations T such that

Tm ≥


8δ0R3

max
(

1− 1
|A|

)(
2− 1

|A|

)
(1−γ)4ϵ4 ·H for REINFORCE

8δ0R3
max
(

1− 1
|A|

)(
2− 1

|A|

)
(1−γ)5ϵ4 for GPOMDP

, (C.55)

and the horizon H = O
(
(1− γ)−1 log (1/ϵ)

)
, then E

[
∥∇J(θU )∥2

]
= O(ϵ2).

Proof. From Lemma C.10, we know that L = Rmax
(1−γ2)

(
2− 1

|A|

)
.

From Lemma 4.9 and 4.15, we know that

ν =


H
(

1− 1
|A|

)
R2

max
(1−γ)2 for REINFORCE(

1− 1
|A|

)
R2

max
(1−γ)3 for GPOMDP

.

Plugging in L and ν in Corollary 4.14 yields the corollary’s claim.

C.5.3 Stationary point convergence of the softmax tabular policy with log barrier
regularization

First we provide the proof of Lemma 4.17.

Proof. Let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ . Thus
∇̂mJ(θ) = 1

m

∑m
i=1 g(τi | θ). Both ∇̂mJ(θ) and g(τ | θ) are unbiased estimators of JH(θ).

From (4.32), we have the following gradient estimator

∇̂mLλ(θ) = ∇̂mJ(θ) + λ

|A||S|
∑
s,a

∇θ log πs,a(θ). (C.56)
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For a state s ∈ S, from (C.50), we have

λ

|A||S|
∑
a∈A

∂ log πs,a(θ)
∂θs

= λ

|A||S|
∑
a∈A

(1a − πs(θ))

=
λ1|A|
|A||S|

− λπs(θ)
|S|

= λ

|S|

(1|A|
|A|
− πs(θ)

)
, (C.57)

where 1|A| ∈ R|A| is a vector of all ones. Thus we have

∇̂mLλ(θ) (C.56)+(C.57)= ∇̂mJ(θ) + λ

|S|

( 1
|A|
−
[
πs(θ)

]
s∈S

)
, (C.58)

where 1 ∈ R|S||A| and [
πs(θ)

]
s∈S

=
[
πs1(θ) ; · · · ; πs|S|(θ)

]
∈ R|S||A|

is the stacking2 of the vectors πsi(θ).
Next, taking expectation on the trajectories, we have

E
[∥∥∥∇̂mLλ(θ)

∥∥∥2
]

(C.58)= E
[∥∥∥∥∇̂mJ(θ) + λ

|S|

( 1
|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2]

= E
[∥∥∥∥∇JH(θ) + λ

|S|

( 1
|A|
−
[
πs(θ)

]
s∈S

)
+ ∇̂mJ(θ)−∇JH(θ)

∥∥∥∥2]

= ∥∇Lλ,H(θ)∥2 + E
[∥∥∥∇̂mJ(θ)−∇JH(θ)

∥∥∥2
]

(C.26)= ∥∇Lλ,H(θ)∥2 +
E
[
∥g(τ1 | θ)−∇JH(θ)∥2

]
m

= ∥∇Lλ,H(θ)∥2

+
E
[∥∥∥∥g(τ1 | θ) + λ

|S|

(
1

|A| −
[
πs(θ)

]
s∈S

)
−∇JH(θ)− λ

|S|

(
1

|A| −
[
πs(θ)

]
s∈S

)∥∥∥∥2
]

m

=
(

1− 1
m

)
∥∇Lλ,H(θ)∥2 +

E
[∥∥∥∥g(τ1 | θ) + λ

|S|

(
1

|A| −
[
πs(θ)

]
s∈S

)∥∥∥∥2
]

m

2Here vectors are columns by default, and given x1, · · · , x|S| ∈ R|A| we note [x1 ; . . . ; x|S|] ∈ R|S||A| the
(column) vector stacking the xi’s on top of each other.
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≤
(

1− 1
m

)
∥∇Lλ,H(θ)∥2 +

2E
[
∥g(τ1 | θ)∥2

]
+ 2

∥∥∥∥ λ
|S|

(
1

|A| −
[
πs(θ)

]
s∈S

)∥∥∥∥2

m
.

(C.59)

In particular, we have
∥∥∥∥ λ

|S|

( 1
|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2
≤ λ2

|S|2
( |S||A|
|A|2

− 2 |S|
|A|

+ |S|
)

= λ2

|S|

(
1− 1
|A|

)
, (C.60)

where the inequality is obtained by using ∥πs(θ)∥2 ≤ 1 in (C.54).
As for E

[
∥g(τ1 | θ)∥2

]
, if ∇̂mJ(θ) is a REINFORCE gradient estimator, from (C.27), we have

E
[
∥g(τ1 | θ)∥2

]
≤ HG2R2

max
(1− γ)2 =

HR2
max

(
1− 1

|A|

)
(1− γ)2 , (C.61)

where the equality is obtained by Lemma 4.15 with G2 =
(
1− 1

|A|

)
.

Combining (C.59), (C.60) and (C.61), we have that the REINFORCE gradient estimator
∇̂mLλ(θ) satisfies (ABC) assumption with

E
[∥∥∥∇̂mLλ(θ)

∥∥∥2
]
≤
(

1− 1
m

)
∥∇Lλ,H(θ)∥2 + 2

m

(
1− 1
|A|

)(
HR2

max
(1− γ)2 + λ2

|S|

)
.

If ∇̂mJ(θ) is a GPOMDP gradient estimator, from (C.28), we have

E
[
∥g(τ1 | θ)∥2

]
≤ G2R2

max
(1− γ)3 =

R2
max

(
1− 1

|A|

)
(1− γ)3 . (C.62)

Combining (C.59), (C.60) and (C.62), we have that the GPOMDP gradient estimator ∇̂mLλ(θ)
satisfies (ABC) assumption with

E
[∥∥∥∇̂mLλ(θ)

∥∥∥2
]
≤
(

1− 1
m

)
∥∇Lλ,H(θ)∥2 + 2

m

(
1− 1
|A|

)( R2
max

(1− γ)3 + λ2

|S|

)
.

Thus ∇̂mLλ(θ) satisfies the (ABC) assumption for both REINFORCE and GPOMDP gradient
estimators, which concludes the proof.

We also verify that Lλ(·) is smooth and Lipschitz in the following lemma.
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Lemma C.12. Lλ(·) is
(

Rmax
(1−γ)2

(
2− 1

|A|

)
+ λ

|S|

)
-smooth and

√
2
(
1− 1

|A|

) (
R2

max
(1−γ)3 + λ2

|S|

)
-

Lipschitz.

Proof. For the smoothness constant, first, fromLemmaC.10, we know that J(·) is Rmax
(1−γ)2

(
2− 1

|A|

)
-

smooth.
It remains to show the regularizerR(θ) def= λ

|A||S|
∑

s,a log πθ(a | s) is λ
|S| -smooth. From (C.58),

we have
∇R(θ) = λ

|S|

( 1
|A|
−
[
πs(θ)

]
s∈S

)
.

From (C.49), we have ∥∥∥∥∥∂2R(θ)
∂θ2

s

∥∥∥∥∥ =
∥∥∥∥− λ

|S|
H(πs(θ))

∥∥∥∥ ≤ λ

|S|
,

where the inequality is obtained by using ∥H(πs(θ))∥ ≤ 1 from Lemma 22 in Mei et al. (2020).
Since ∂2R(θ)

∂θs∂θs′
= 0 for s ̸= s′, we have that ∥∥∇2R(θ)

∥∥ ≤ λ
|S| , which yields the smoothness

constant of Lλ(·).
For the Lipschitzness constant, from (C.58), we know that

∥∇Lλ(θ)∥2 =
∥∥∥∥∇J(θ) + λ

|S|

( 1
|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2

≤ 2 ∥∇J(θ)∥2 + 2
∥∥∥∥ λ

|S|

( 1
|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2

Lemma C.10
≤ 2

(
1− 1
|A|

) R2
max

(1− γ)3 + 2
∥∥∥∥ λ

|S|

( 1
|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2

(C.60)
≤ 2

(
1− 1
|A|

) R2
max

(1− γ)3 + 2λ2

|S|

(
1− 1
|A|

)
= 2

(
1− 1
|A|

)( R2
max

(1− γ)3 + λ2

|S|

)
. (C.63)

Thus,
∥∇Lλ(θ)∥ ≤

√
2
(

1− 1
|A|

)( R2
max

(1− γ)3 + λ2

|S|

)
.

The truncated gradient assumption in the case of Lλ,H(·). As Lλ(θ) and Lλ,H(θ) use the
same regularizer, the bias due to the truncation does not affect the regularization. Besides, from
Lemma 4.15, we have that Assumption (E-LS) holds. Thus, from Lemma 4.12, Assumption 4.2
holds for Lλ(θ) and Lλ,H(θ) with the same constant D and D′ in Lemma 4.12 and the constant
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G in Lemma 4.15. That is,

|⟨∇Lλ,H(θ), Lλ,H(θ)− Lλ(θ)⟩| ≤ DγH , (C.64)
∥∇Lλ,H(θ)− Lλ(θ)∥ ≤ D′γH , (C.65)

with

D = D′Rmax
(1− γ)3/2

√
1− 1
|A|

, (C.66)

D′ = Rmax
1− γ

√( 1
1− γ

+ H

)(
1− 1
|A|

)
. (C.67)

Similar to Corollary C.11, now we can provide the FOSP convergence of Lλ(θ).

Corollary C.13. Consider the vanilla PG (either REINFORCE or GPOMDP) applied in Lλ(·).
Let δ0

def= L∗
λ − Lλ(θ0) with L∗

λ

def= maxθ∈Rd Lλ(θ). For any accuracy level ϵ, if we choose the
mini-batch size m such that 1 ≤ m ≤ 2ν

ϵ2 , the step size η = ϵ2m
2Lν with L = Rmax

(1−γ)2

(
2− 1

|A|

)
+ λ

|S|
and

ν =

 2
(
1− 1

|A|

) (
HR2

max
(1−γ)2 + λ2

|S|

)
when using REINFORCE

2
(
1− 1

|A|

) (
R2

max
(1−γ)3 + λ2

|S|

)
when using GPOMDP

, (C.68)

the number of iterations T such that

Tm ≥ 8δ0Lν

ϵ4 = O((1− γ)−5ϵ−4), (C.69)

and the horizon H = O
(
(1− γ)−1 log (1/ϵ)

)
, then E

[
∥∇Lλ(θU )∥2

]
= O(ϵ2).

Proof. From Lemma C.12, we know that L = Rmax
(1−γ)2

(
2− 1

|A|

)
+ λ

|S| .
From Lemma 4.17, we know that

ν =

 2
(
1− 1

|A|

) (
HR2

max
(1−γ)2 + λ2

|S|

)
when using REINFORCE

2
(
1− 1

|A|

) (
R2

max
(1−γ)3 + λ2

|S|

)
when using GPOMDP

.

Plugging in L and ν in Corollary 4.14 yields the corollary’s claim.
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C.5.4 Sample complexity of high probability global optimum convergence for the
softmax tabular policy with log barrier regularization

In this section, we provide the sample complexity to reach a global optimum convergence of
the expected return J(·) in high probability for the softmax tabular policy with log barrier
regularization.

Before the results, we introduce the stationary distribution

dρ,s(π∗) def= Es0∼ρ(·),τ∼p(·|π∗)

[
(1− γ)

∞∑
t=0

γtP (st = s)
]

,

where π∗ is the optimal policy. We refer to
∥∥∥dρ(π∗)

ρ

∥∥∥
∞

def= maxs∈S
dρ,s(π∗)

ρ(s) as the distribution
mismatch coefficient of π under ρ (Agarwal et al., 2021)3. We assume that the initial state
distribution ρ satisfies mins ρ(s) > 0. This assumption was adapted by Agarwal et al. (2021) to
ensure that the distribution mismatch coefficient is finite.

Corollary C.14. For any accuracy level ϵ > 0, any probability accuracy level δ ∈ (0, 1) and
any starting state distribution ρ, consider the vanilla PG (either REINFORCE or GPOMDP)
applied to Lλ(·). If we chose the horizon H = O

(
(1− γ)−1 log (1/ϵopt) log (1/δ)

)
, the batch size

1 ≤ m ≤ 2ν
δϵ2

opt
and the number of iterations T such that Tm ≥ 8(L∗

λ−Lλ(θ0))Lν

δ2ϵ4
opt

, the regularization

parameter λ = (1−γ)ϵ

2
∥∥∥ dρ(π∗)

ρ

∥∥∥
∞

and

ϵopt = λ

2|S||A| = (1− γ)ϵ
4|S||A|

∥∥∥dρ(θ∗)
ρ

∥∥∥
∞

(C.70)

with L, ν in the setting of Corollary C.13, then we have an upper bound of the sample complexity

Tm×H = O

 |S|4|A|4
∥∥∥dρ(θ∗)

ρ

∥∥∥4

∞
δ2ϵ4(1− γ)10 · log (1/ϵ) log (1/δ)

 (C.71)

guarantees that J∗ − J(θT ) ≤ ϵ with probability at least 1− δ.

The above high probability global optimum sample complexity holds with a wide range of
parameters (e.g. batch size m and step size η) thanks to Corollary C.13.

3For simplicity, we assume that the sampling for the initial state distribution is the same as the initial state
distribution appeared in the expected return J(·). There is no difference, compared to our results, to impose
a different initial state distribution µ ̸= ρ for the stochastic vanilla PG. In this case, the distribution mismatch
coefficient will be

∥∥∥ dρ(π∗)
µ

∥∥∥
∞
.
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We need the following result to link the stationary point convergence of Lλ(·) to the subop-
timality gap convergence J∗− J(·) when the norm of the gradient of a stationary point and the
regularization parameter λ are sufficiently small.

Proposition C.15 (Theorem 5.2 in Agarwal et al. (2021)). Suppose θ is such that ∥∇Lλ(θ)∥ ≤
λ

2|S||A| , then for every initial distribution ρ, we have

J∗ − J(θ) ≤ 2λ

1− γ

∥∥∥∥dρ(θ∗)
ρ

∥∥∥∥
∞

. (C.72)

By leveraging Proposition C.15, we now derive the proof for Corollary C.14.

Proof. From Corollary C.13 we have that E
[
∥∇Lλ(θU )∥2

]
≤ δϵ2

opt,

Thus, there exists t0 ∈ {0, · · · , T − 1} s.t. E
[
∥∇Lλ(θto)∥2

]
≤ E

[
∥∇Lλ(θU )∥2

]
≤ δϵ2

opt.
From Proposition C.15, we know that if ∥∇Lλ(θto)∥ ≤ ϵopt, we have

J∗ − J(θt0) ≤ 2λ

1− γ

∥∥∥∥dρ(θ∗)
ρ

∥∥∥∥
∞

= ϵ.

Thus, we have

P(J∗ − J(θt0) ≤ ϵ) ≥ P (∥∇Lλ(θto)∥ ≤ ϵopt) . (C.73)

Consequently, we have

P(J∗ − J(θt0) ≥ ϵ) = 1− P(J∗ − J(θt0) ≤ ϵ)
(C.73)
≤ 1− P (∥∇Lλ(θto)∥ ≤ ϵopt)

= P (∥∇Lλ(θto)∥ ≥ ϵopt)

= P
(
∥∇Lλ(θto)∥2 ≥ ϵ2

opt

)
≤

E
[
∥∇Lλ(θto)∥2

]
ϵ2
opt

(by Markov’s inequality)

≤ δ. (C.74)

Since t0m ≤ Tm, we conclude that the upper bound of the sample complexity is

Tm×H ≥ 8(J∗ − J(θ0))Lν

δ2ϵ4
opt

×H = O

 |S|4|A|4
∥∥∥dρ(θ∗)

ρ

∥∥∥4

∞
δ2ϵ4(1− γ)10 · log (1/ϵ) log (1/δ)

 .
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Remark. Following the proof of Corollary C.14, we can also deduce the iteration complexity
of the exact full gradient updates for the global optimum convergence.

Indeed, from Lemma C.12, Lλ(·) is smooth. From Theorem 4.4, we know that with the
number of iterations

T ≥ 12δ0L

ϵ2
opt

= O
(

δ0
(1− γ)4ϵ2

)
, (C.75)

we have min0≤t≤T −1 ∥∇Lλ(θt)∥2 ≤ ϵ2
opt for the exact full gradient updates.

From Proposition C.15, we have min0≤t≤T −1 J∗ − J(θt) ≤ ϵ.
Compared to the iteration complexity in Corollary 5.1 in Agarwal et al. (2021), ours (C.75)

is improved by a factor of 1− γ thanks to an improved analysis of the smoothness constant in
Lemma C.12.

C.5.5 Sample complexity of the average regret convergence for softmax tabular
policy with log barrier regularization

By leveraging Proposition C.15, we now derive the proof for Corollary 4.18.

Proof. We define the following set of "bad" iterates based on a technique developed by Zhang
et al. (2021b)

I+ def=
{

t ∈ {0, · · · , T − 1}
∣∣∣∣ ∥∇Lλ(θt)∥ ≥

λ

2|S||A|

}
(C.76)

with

λ = (1− γ)ϵ
2
∥∥∥dρ(θ∗)

µ

∥∥∥
∞

. (C.77)

We have

J∗ − 1
T

T −1∑
t=0

J(θt) = 1
T

∑
t∈I+

J∗ − J(θt) + 1
T

∑
t/∈I+

J∗ − J(θt)

≤ |I+|
T
· 2Rmax

1− γ
+ 1

T

∑
t/∈I+

J∗ − J(θt)

≤ |I+|
T
· 2Rmax

1− γ
+ T − |I+|

T
· 2λ

1− γ

∥∥∥∥dρ(θ∗)
ρ

∥∥∥∥
∞
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≤ |I+|
T
· 2Rmax

1− γ
+ 2λ

1− γ

∥∥∥∥dρ(θ∗)
ρ

∥∥∥∥
∞

(C.77)= |I+|
T
· 2Rmax

1− γ
+ ϵ. (C.78)

where the second line is obtained as |J(·)| ≤ Rmax
1−γ and the third line is obtained by Proposi-

tion C.15.
It remains to bound |I+|. In fact,

T −1∑
t=0
∥∇Lλ(θt)∥2 ≥

∑
t∈I+

∥∇Lλ(θt)∥2

≥ |I+|λ2

4|S|2|A|2 .

Thus, we have

|I+|
T

≤ 4|S|2|A|2

λ2 · 1
T

T −1∑
t=0
∥∇Lλ(θt)∥2

(C.77)=
16
∥∥∥dρ(θ∗)

µ

∥∥∥2

∞
|S|2|A|2

(1− γ)2ϵ2 · 1
T

T −1∑
t=0
∥∇Lλ(θt)∥2 . (C.79)

Thus, we have

J∗ − 1
T

T −1∑
t=0

J(θt)
(C.78)+(C.79)

≤
32Rmax

∥∥∥dρ(θ∗)
ρ

∥∥∥2

∞
|S|2|A|2

(1− γ)3ϵ2 · 1
T

T −1∑
t=0
∥∇Lλ(θt)∥2 + ϵ. (C.80)

Taking expectation over the iterations on both side, we have

J∗ − 1
T

T −1∑
t=0

E [J(θt)]
(C.78)+(C.79)

≤
32Rmax

∥∥∥dρ(θ∗)
ρ

∥∥∥2

∞
|S|2|A|2

(1− γ)3ϵ2 · 1
T

T −1∑
t=0

E
[
∥∇Lλ(θt)∥2

]
+ ϵ.

(C.81)

It suffices to have 1
T

∑T −1
t=0 E

[
∥∇Lλ(θt)∥2

]
≤ (1−γ)3ϵ3 to guarantee that J∗− 1

T

∑T −1
t=0 E [J(θt)] ≤

O(ϵ).
From Corollary 4.14, consider the batch size m such that 1 ≤ m ≤ 2ν

(1−γ)3ϵ3 = O
(

1
(1−γ)6ϵ3

)
,

the step size O(ϵ3) ≤ η = (1−γ)3ϵ3m
2Lν ≤ O(1) with L, ν in the setting of Corollary C.13 . If the

horizon H = O
(

log(1/ϵ)
1−γ

)
and the number of iterations T is such that

Tm×H ≥ 8(J∗ − J(θ0))Lν

(1− γ)6ϵ6 ×H = Õ
( 1

(1− γ)12ϵ6

)
,
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we have 1
T

∑T −1
t=0 E

[
∥∇Lλ(θt)∥2

]
≤ (1− γ)3ϵ3, which conclude the proof.

C.6 Proof of Section 4.4.3

First, we give the definition of the advantage function Aπθ induced by the policy πθ appeared
in the transferred compatible function approximation error in Assumption 4.20. To do this,
given a policy π, we define the state-action value function Qπ : S ×A → R as

Qπ(s, a) def= Eat∼π(·|st),st+1∼P(·|st,at)

[ ∞∑
t=0

γtR(st, at)
∣∣∣∣ s0 = s, a0 = a

]
.

From this, the state-value function V π : S → R and the advantage function Aπ : S × A → R,
under the policy π, can be defined as

V π(s) def= Ea∼π(·|s) [Qπ(s, a)] ,

Aπ(s, a) def= Qπ(s, a)− V π(s).

Before presenting the sample complexity of the average regret convergence and the proof of
Corollary 4.21 for Fisher-non-degenerate parametrized policy, we need the following result
to show that Fisher-non-degenerate parametrized policy satisfies the relaxed weak gradient
domination assumption.

Proposition C.16 (Lemma 4.7 in Ding et al. (2022)). If the policy πθ satisfies Assump-
tion 4.8, 4.19 and 4.20, then

µF
√

ϵbias

(1− γ)G + ∥∇JH(θ)∥ ≥ µF

G
(J∗ − J(θ)). (C.82)

Remark. Here we use the weaker assumption (E-LS) instead of (LS) compared to the original
Lemma 4.7 in Ding et al. (2022). The relaxed weak gradient domination property still holds.
The proof essentially follows the same arguments and thus is omitted here.

C.6.1 Sample complexity of the average regret convergence for Fisher-non-degenerate
policy

Consequently, it is straightforward to obtain the average regret to the global optimum conver-
gence under the setting of Corollary 4.14 for Fisher-non-degenerate parametrized policy.
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Corollary C.17. Assume that the policy πθ satisfies Asm. 4.8, 4.19 and 4.20. For a given ϵ > 0,
by choosing the mini-batch size m such that 1 ≤ m ≤ 2ν

ϵ2 , the step size η = ϵ2m
2Lν , the number of

iterations T such that

Tm ≥ 8δ0Lν

ϵ4 =

O
(

H
(1−γ)4ϵ4

)
for REINFORCE

O
(

1
(1−γ)5ϵ4

)
for GPOMDP

(C.83)

and the horizon H = O
(
(1− γ)−1 log (1/ϵ)

)
, then J∗ − 1

T

∑T −1
t=0 E [J(θt)] = O(ϵ) +O(√ϵbias).

Remark. The sample complexity Õ(ϵ−4) of the average regret is also shown in Theorem 4.6
in Liu et al. (2020). However, Liu et al. (2020) use the more restrictive assumption (LS) and
require large batch size m = O(ϵ−2). We improve upon them by using weaker assumption E-LS,
allowing much wider range of choices for the batch size m ∈

[
1; 2ν

ϵ2

]
and the constant step size

η to achieve the same optimal sample complexity Õ (ϵ−4).
Proof. From Corollary 4.14, we know that E

[
∥∇J(θU )∥2

]
= O(ϵ2). However, from Proposi-

tion C.16, we know that Assumption 4.6 is satisfied. Thus, by doing a similar analysis as in
Corollary C.7, we conclude the proof.

C.6.2 Proof of Corollary 4.21

Now we provide the proof of Corollary 4.21.

Proof. From Proposition C.16, we have that Assumption 4.6 holds. Also because of Assump-
tion (E-LS), we have Lemmas 4.9, 4.11 and 4.12 hold. Finally, by Corollary 4.7, this directly
concludes the proof.

C.7 FOSP convergence analysis for the softmax with entropy regu-
larization.

In this section, we study stochastic gradient ascent on the softmax tabular policy with entropy
regularization, which is

J̃(θ) def= J(θ) + H(θ) (C.84)
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where H(θ) is the “discounted entropy” defined as

H(θ) def= Eτ∼p(·|θ)

[ ∞∑
t=0
−γtλ log πst,at(θ)

]
.

Using the same technique to derive the full gradient of the expected return (4.3), we have

∇J̃(θ) = ∇J(θ)− λEτ

[
∇ log p(τ | θ)

∞∑
t=0

γt log πst,at(θ)
]

−λEτ

[ ∞∑
t=0

γt∇θ log πst,at(θ)
]

(4.1)= ∇J(θ)− λEτ

[ ∞∑
k=0
∇θ log πsk,ak

(θ)
∞∑

t=0
γt log πst,at(θ)

]

−λEτ

[ ∞∑
t=0

γt∇θ log πst,at(θ)
]

= ∇J(θ)− λEτ

[ ∞∑
t=0

γt log πst,at(θ)
(

t∑
k=0
∇θ log πsk,ak

(θ)
)]

−λEτ

[ ∞∑
t=0

γt∇θ log πst,at(θ)
]

(4.5)= Eτ

[ ∞∑
t=0

γt

(
(R(st, at)− λ log πst,at(θ))

(
t∑

k=0
∇θ log πsk,ak

(θ)
)

−λ∇θ log πst,at(θ)
)]

, (C.85)

where the third line is obtained by using the fact that for any 0 ≤ t < k, we have

Eτ [log πst,at(θ)∇θ log π(sk, ak)(θ)] = 0. (C.86)

Equation (C.86) is derived by following the same proof technique of Lemma C.5.
Thus, the stochastic gradient estimator of∇J̃(θ) with mini-batch size m is

∇̂mJ̃(θ) def= ∇̂mJ(θ)− λ

m

m∑
i=1

H−1∑
t=0

γt

(
log πsi

t,ai
t
(θ)
(

t∑
k=0
∇θ log πsi

k
,ai

k
(θ)
)

+∇θ log πsi
t,ai

t
(θ)
)

.

(C.87)

Notice that ∇̂mJ̃(·) is the unbiased gradient estimator of the truncated function

J̃H(θ) def= Eτ

[
H−1∑
t=0

γt (R(st, at)− λ log πst,at(θ))
]

. (C.88)
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We show that ∇̂mJ̃(·) satisfies the (ABC) assumption as following.

Lemma C.18. The stochastic gradient estimator (C.87) satisfies Assumption (ABC) with

E
[∥∥∥∇̂mJ̃(θ)

∥∥∥2
]
≤
(

1− 1
m

)∥∥∥∇J̃(θ)
∥∥∥2

+
2
(
1− 1

|A|

)
R2

max

m(1− γ)3

+ 2λ2

m(1− γ2)

(
1− 1
|A|

)
+ 8H|A|λ2

m(1− γ)3 .

Proof. Let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ of
∇JH(θ). Thus ∇̂mJ(θ) = 1

m

∑m
i=1 g(τi | θ). Both ∇̂mJ(θ) and g(τ | θ) are unbiased estimators

of JH(θ).
Similarly, let g̃(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ of

∇J̃H(θ). Thus ∇̂mJ̃(θ) = 1
m

∑m
i=1 g̃(τi | θ), and ∇̂mJ̃(θ) and g̃(τ | θ) are unbiased estimators of

J̃H(θ).
Similar to (C.26), from (C.87) we have

E
[∥∥∥∇̂mJ̃(θ)

∥∥∥2
]

= E
[∥∥∥∇̂mJ̃(θ) +∇J̃H(θ)−∇J̃H(θ)

∥∥∥2
]

=
∥∥∥∇J̃H(θ)

∥∥∥2
+ E

[∥∥∥∇̂mJ̃(θ)−∇J̃H(θ)
∥∥∥2
]

=
∥∥∥∇J̃H(θ)

∥∥∥2
+ E

∥∥∥∥∥ 1
m

m∑
i=1

(g̃(τi | θ)−∇J̃H(θ))
∥∥∥∥∥

2


=
∥∥∥∇J̃H(θ)

∥∥∥2
+ 1

m
E
[∥∥∥g̃(τ1 | θ)−∇J̃H(θ)

∥∥∥2
]

=
(

1− 1
m

)∥∥∥∇J̃(θ)
∥∥∥2

+ 1
m
E
[
∥g̃(τ1 | θ)∥2

]
. (C.89)

It remains to show Eτ

[
∥g̃(τ | θ)∥2

]
is bounded. From (C.87) we have

E
[
∥g̃(τ | θ)∥2

]
= Eτ

[∥∥∥∥∥g(τ | θ)− λ
H−1∑
t=0

γt log πst,at(θ)
(

t∑
k=0
∇θ log πsk,ak

(θ)
)

− λ
H−1∑
t=0

γt∇θ log πst,at(θ)
∥∥∥∥∥

2]

≤ 2E
[
∥g(τ | θ)∥2

]
+ 2λ2E

∥∥∥∥∥
H−1∑
t=0

γt log πst,at(θ)
(

t∑
k=0
∇θ log πsk,ak

(θ)
)∥∥∥∥∥

2

256



C.7 FOSP convergence analysis for the softmax with entropy regularization.

+ 2λ2E

∥∥∥∥∥
H−1∑
t=0

γt∇θ log πst,at(θ)
∥∥∥∥∥

2
≤

2
(
1− 1

|A|

)
R2

max

(1− γ)3 + 2λ2 E

∥∥∥∥∥
H−1∑
t=0

γt log πst,at(θ)
(

t∑
k=0
∇θ log πsk,ak

(θ)
)∥∥∥∥∥

2
︸ ︷︷ ︸

1

+ 2λ2 E

∥∥∥∥∥
H−1∑
t=0

γt∇θ log πst,at(θ)
∥∥∥∥∥

2
︸ ︷︷ ︸

2

, (C.90)

where the last inequality is obtained by Lemma 4.9 with GPOMDP estimator and the constant
G2 = 1− 1

|A| provided from Lemma 4.15.
Now we will bound 1 and 2 separately.
From Lemma C.6, we know that

2 =
H−1∑
t=0

γ2tE
[
∥∇θ log πst,at(θ)∥2

]
Lemma 4.15

≤
(

1− 1
|A|

)H−1∑
t=0

γ2t

≤ 1
1− γ2

(
1− 1
|A|

)
. (C.91)

As for 1 , we have

1 ≤ H
H−1∑
t=0

γ2tE

(log πst,at(θ))2
∥∥∥∥∥

t∑
k=0
∇θ log πsk,ak

(θ)
∥∥∥∥∥

2
≤ H

H−1∑
t=0

γ2tE

(log πst,at(θ))2
∥∥∥∥∥

t∑
k=0
∇θ log πsk,ak

(θ)
∥∥∥∥∥

2
≤ H

H−1∑
t=0

γ2tE
[
(log πst,at(θ))2 (t + 1)

t∑
k=0
∥∇θ log πsk,ak

(θ)∥2
]

(C.53)
≤ 2H

H−1∑
t=0

γ2t(t + 1)2E
[
(log πst,at(θ))2

]

≤ 2H|A|
H−1∑
t=0

γ2t(t + 1)2 (C.92)

≤ 4H|A|
(1− γ)3 , (C.93)
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where (C.92) is obtained by using

E
[
(log πst,at(θ))2

]
= Est

[∑
a∈A

πst,a(θ) (log πst,a(θ))2
]
≤ |A|,

and the last line is obtained by γ2t ≤ γt and Lemma C.2.
Combining (C.89), (C.90), (C.91) and (C.93) yields the claim of the lemma.

By adopting Lemma 14 in Mei et al. (2020), we show that J̃(·) is smooth as following.

Lemma C.19. J̃(·) is
(

Rmax
(1−γ)2

(
2− 1

|A|

)
+ λ(4+8 log |A|)

(1−γ)3

)
-smooth.

Proof. From (C.84), we have

J̃(θ) = J(θ)− λEτ

[ ∞∑
t=0

γt log πst,at(θ)
]

.

From Lemma C.10, we know that J(·) is
(

Rmax
(1−γ)2

(
2− 1

|A|

))
-smooth.

FromLemma14 inMei et al. (2020), we know thatEτ
[∑∞

t=0 γt log πst,at(θ)
] is (λ(4+8 log |A|)

(1−γ)3

)
)-

smooth.
Combining the two smoothness constants yields the claim of the lemma.

From Lemma C.18 and Lemma C.19 we can also establish a similar FOSP convergence as
for Corollary 4.14.

Corollary C.20. Consider the vanilla PG updates (C.87) for the softmax with entropy regulariza-
tion (C.84) . For a given ϵ > 0, by choosing the mini-batch size m such that 1 ≤ m ≤ 2ν

ϵ2 , the step
size η = ϵ2m

2Lν , the horizon H = O
(
(1− γ)−1 log (1/ϵ)

)
and the number of iterations T such that

Tm ≥ 8δ0Lν

ϵ4 = O((1− γ)−6ϵ−4) (C.94)

with
L =

( Rmax
(1− γ)2

(
2− 1
|A|

)
+ λ(4 + 8 log |A|)

(1− γ)3

)
and

ν =
2
(
1− 1

|A|

)
R2

max

(1− γ)3 + 2λ2

(1− γ2)

(
1− 1
|A|

)
+ 8H|A|λ2

(1− γ)3 ,
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then E
[∥∥∥∇J̃(θU )

∥∥∥2
]

= O(ϵ2).

Remark. The sample complexity Tm×H isO((1− γ)−8ϵ−4) instead ofO((1− γ)−6ϵ−4) as in
Corollary 4.14 due to the (1−γ)−3 dependency on the smoothness constant L and the (1−γ)−4

dependency on the bounded variance constant ν.

Proof. From Lemma C.19, we know that

L =
( Rmax

(1− γ)2

(
2− 1
|A|

)
+ λ(4 + 8 log |A|)

(1− γ)3

)
.

From Lemma C.18, we know that

ν =
2
(
1− 1

|A|

)
R2

max

(1− γ)3 + 2λ2

(1− γ2)

(
1− 1
|A|

)
+ 8H|A|λ2

(1− γ)3 .

Plugging in L and ν in Corollary 4.14 yields the corollary’s claim.

C.8 Global optimum convergence under the gradient domination
assumption

As Fazel et al. (2018) and Mei et al. (2020) did for the exact policy gradient update, relying on
the following gradient domination assumption, we establish a global optimum convergence
guarantee and the sample complexity analysis for the stochastic vanilla PG.

Assumption C.21 (Gradient domination). We say that a differentiable function J satisfies the
gradient domination condition if for all θ ∈ Rd, there exists µ > 0 such that

1
2 ∥∇JH(θ)∥2 ≥ µ (J∗ − J(θ)) . (PL)

The gradient domination condition is also known as the Polyak-Lojasiewicz (PL) condition.
The PL condition was originally discovered independently in the seminal works of B. Polyak
and S. Łojasiewicz (Polyak, 1963; Łojasiewicz, 1963; Łojasiewicz, 1959). Equipped with this
additional assumption, we can adapt Theorem 3 in Khaled and Richtárik (2023) and obtain the
following global optimum convergence guarantee.
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Theorem C.22. Suppose that Assumptions 4.1, 4.2, 4.3 and C.21 hold. Suppose that PG defined
in (4.10) (Alg. 4) is run for T > 0 iterations with step size (ηt)t chosen as

ηt =


1
b if T ≤ b

µ or t ≤ t0
2

2b+µ(t−t0) if T ≥ b
µ and t > t0

(C.95)

with t0 =
[

T
2

]
and b = max{2AL/µ, 2BL, µ}. Then

J∗ − E [J(θT )] ≤ 16 exp
(
− µ(T − 1)

2 max{2AL
µ , 2BL, µ}

)
(J∗ − J(θ0)) + 12LC

µ2T
+ 26DγH

µ
.

(C.96)

Remark. Notice that for the exact full gradient update, we have Assumption 4.2 and 4.3
hold with A = C = D = 0 and B = 1. Thus under the smoothness assumption and the (PL)
condition , we establish a linear convergence rate for the number of iterations to the global
optimal. We recover the linear convergence rate for the softmax with entropy regularization in
Theorem 6 in Mei et al. (2020) where the smoothness assumption holds and the (PL) condition
holds under the path of the iterations in the exact case.

As for the stochastic vanilla PG, the dominant term in (C.96) is 12LC
µ2T

. This implies that the
sample complexity is T ×H = Õ(ϵ−1) with T = O(ϵ−1) and H = log ϵ−1.

Proof. Using the L-smoothness of J from Assumption 4.1,

J∗ − J(θt+1) ≤ J∗ − J(θt)− ⟨∇J(θt), θt+1 − θt⟩+ L

2 ∥θt+1 − θt∥2

= J∗ − J(θt)− ηt

〈
∇J(θt), ∇̂mJ(θt)

〉
+ Lη2

t

2

∥∥∥∇̂mJ(θt)
∥∥∥2

.

Taking expectation conditioned on θt and using Assumption 4.3 and C.21,

Et [J∗ − J(θt+1)] ≤ J∗ − J(θt)− ηt ⟨∇J(θt),∇JH(θt)⟩+ Lη2
t

2 Et

[∥∥∥∇̂mJ(θt)
∥∥∥2
]

(ABC)
≤ J∗ − J(θt)− ηt ⟨∇JH(θt) + (∇J(θt)−∇JH(θt)),∇JH(θt)⟩+

+Lη2
t

2
(
2A(J∗ − J(θt)) + B ∥∇JH(θt)∥2 + C

)
= (1 + Lη2

t A)(J∗ − J(θt))− ηt

(
1− LBηt

2

)
∥∇JH(θt)∥2 + Lη2

t C

2
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−ηt ⟨∇J(θt)−∇JH(θt),∇JH(θt)⟩
(PL)
≤

(
1− 2ηtµ

(
1− LBηt

2

)
+ Lη2

t A

)
(J∗ − J(θt)) + Lη2

t C

2
−ηt ⟨∇J(θt)−∇JH(θt),∇JH(θt)⟩

≤
(

1− 3ηtµ

2 + Lη2
t A

)
(J∗ − J(θt)) + Lη2

t C

2
−ηt ⟨∇J(θt)−∇JH(θt),∇JH(θt)⟩ (C.97)

(4.12)
≤

(
1− 3ηtµ

2 + Lη2
t A

)
(J∗ − J(θt)) + Lη2

t C

2 + ηtDγH

≤ (1− ηtµ)(J∗ − J(θt)) + Lη2
t C

2 + ηtDγH , (C.98)

where (C.97) is obtained by the inequality 1− LBηt

2 ≥ 3
4 , and (C.98) is obtained by the inequality

LηtA ≤ µ
2 , due to the choice of step size ηt ≤ 1

b for all t ≥ 0 with b ≥ 2BL, 2AL/µ, respectively.
Here, 1− ηtµ ≥ 0 as ηt ≤ 1

b and b ≥ µ.

Taking total expectation and letting rt
def= E [J∗ − J(θt)] on (C.98), we have

rt+1 ≤ (1− ηtµ)rt + Lη2
t C

2 + ηtDγH . (C.99)

If T ≤ b
µ , we have ηt = 1

b . Recursing the above inequality, we get

rT ≤
(

1− µ

b

)
rT −1 + LC

2b2 + DγH

b

(C.99)
≤

(
1− µ

b

)T

r0 +
(

LC

2b2 + DγH

b

)
T −1∑
i=0

(
1− µ

b

)i

≤ exp
(
−µT

b

)
r0 + LC

2µb
+ DγH

µ
(C.100)

T ≤ b
µ

≤ exp
(
−µT

b

)
r0 + LC

2µ2T
+ DγH

µ
. (C.101)

If T ≥ b
µ , as ηt = 1

b when t ≤ t0, from (C.100), we have

rt0 ≤ exp
(
−µt0

b

)
r0 + LC

2µb
+ DγH

µ

≤ exp
(
−µ(T − 1)

2b

)
r0 + LC

2µb
+ DγH

µ
, (C.102)

where the last line is obtained by t0 =
[

T
2

]
≥ T −1

2 .
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For t > t0,
ηt = 2

µ
(

2b
µ + t− t0

) .

From (C.99), we have

rt ≤ (1− ηtµ)rt−1 + Lη2
t C

2 + ηtDγH

=
2b
µ + t− t0 − 2

2b
µ + t− t0

rt−1 + 2LC

µ2
(

2b
µ + t− t0

)2 + 2DγH

µ
(

2b
µ + t− t0

) .

Multiplying both sides by
(

2b
µ + t− t0

)2, we have

(2b

µ
+ t− t0

)2
rt ≤

(2b

µ
+ t− t0

)(2b

µ
+ t− t0 − 2

)
rt−1 + 2LC

µ2 + 2DγH

µ

(2b

µ
+ t− t0

)
≤
(2b

µ
+ t− t0 − 1

)2
rt−1 + 2LC

µ2 + 2DγH

µ

(2b

µ
+ t− t0

)
.

Let wt
def=
(

2b
µ + t− t0

)2. Then,

wtrt ≤ wt−1rt−1 + 2LC

µ2 + 2DγH

µ

(2b

µ
+ t− t0

)
.

Summing up for t = t0 + 1, · · · , T and telescoping, we get,

wT rT ≤ wt0rt0 + 2LC(T − t0)
µ2 + 2DγH

µ

T∑
t=t0+1

(2b

µ
+ t− t0

)

= 4b2

µ2 rt0 + 2LC(T − t0)
µ2 + 4bD(T − t0)γH

µ2 + DγH

µ
(T − t0)(T − t0 + 1).

Dividing both sides by wT and using that since

wT =
(2b

µ
+ T − t0

)2
≥ (T − t0)2,

we have

rT ≤
4b2

µ2wT
rt0 + 2LC(T − t0)

µ2wT
+ 4bD(T − t0)γH

µ2wT
+ DγH

µwT
(T − t0)(T − t0 + 1)

≤ 4b2

µ2(T − t0)2 rt0 + 2LC

µ2(T − t0) + 4bDγH

µ2(T − t0) + 2DγH

µ
.
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By the definition of t0, we have T − t0 ≥ T
2 . Plugging this estimate, we have

rT ≤ 16b2

µ2T 2 rt0 + 4LC + 8bDγH

µ2T
+ 2DγH

µ

T ≥ b
µ

≤ 16b2

µ2T 2 rt0 + 4LC

µ2T
+ 10DγH

µ

(C.102)
≤ 16b2

µ2T 2

(
exp

(
−µ(T − 1)

2b

)
r0 + LC

2µb
+ DγH

µ

)
+ 4LC

µ2T
+ 10DγH

µ

T ≥ b
µ

≤ 16 exp
(
−µ(T − 1)

2b

)
r0 + 8LC

µ2T
+ 16DγH

µ
+ 4LC

µ2T
+ 10DγH

µ

= 16 exp
(
−µ(T − 1)

2b

)
r0 + 12LC

µ2T
+ 26DγH

µ
. (C.103)

It remains to take the maximum of the two bounds (C.101) and (C.103) with

b = max{2AL/µ, 2BL, µ}.
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Complements on Chapter 5
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D.2 Standard reinforcement learning results . . . . . . . . . . . . . . . . . . . . . 268
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D.6 Discussion on the distributionmismatch coefficients and the concentrability
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Here we provide the related work discussion, the missing proofs from Chapter 5 and some
additional noteworthy observations made in Chapter 5.

D.1 Related work

D.1.1 Technical Contribution and Novelty Compared to Xiao (2022)

Our technical novelty compared to Xiao (2022) is summarized as follows.

• Our linear convergence results (i.e., Theorem 5.5, 5.9 and 5.15) are not direct applications
of Theorem 10 in Xiao (2022). Indeed, Xiao (2022) establishes the connection between
NPG and a specific form of policy mirror descent (PMD) with the use of the weighted
Bregman divergence for the tabular setting, while we show that this connection can
also be established for the function approximation setting via the compatible function
approximation framework (5.11). We also modify the PMD framework of Xiao (2022)

264



D.1 Related work

with the linear approximation of the advantage function in (5.18), inspired from the
compatible function approximation framework. Thus, the approaches of deriving the
PMD form update are different. Without this work of using the compatible function
approximation framework to bridge NPG and PMD, it was not clear at all that the analysis
of Xiao (2022) could be extended in the log-linear policy setting. So our work is the first
step of showing that the proof techniques used in Xiao (2022) can be extended in function
approximation regime. In fact, the extension is highly nontrivial and requires significant
innovation (see details below). As for future work, one can extend our work to other
function approximation setting through a similar compatible function approximation
framework. See Section 5.6 for more details about the future work.

• Besides, our linear convergence results only consider the inexact NPG update. Compared
to Theorem 14 in Xiao (2022), which is their corresponding result on the inexact PMD
method, we improve their analysis by making much weaker assumptions on the accuracy
of the estimation Q(π). Xiao (2022) requires an L∞ supremumnorm bound on the estima-
tion error of Q, i.e., ∥Q̂(π)−Q(π)∥∞ ≤ ϵstat, whereas our convergence guarantee depends
on the expected L2 error of the estimate, i.e., Assumption 5.1 and 5.12. For instance,
Assumption 5.1 from equation (D.26) can be written as E

[
(ϕ⊤

s,aw(k) − ϕ⊤
s,aw

(k)
⋆ )2

]
≤ ϵstat,

which can be interpreted as E
[
(Q̂(π)−Q(π))2

]
≤ ϵstat under the linear approximation

setting. The techniques for handling L∞ and L2 errors are very different. Not only our
assumption is weaker, it also benefits from the sample complexity analysis that we explain
next.

• Consequently, when considering the sample complexity results we derived for sample-
based (Q)-NPG in Corollary 5.11 and 5.17, the difference between our work and Theorem
16 in Xiao (2022), which corresponds to their sample complexity results, is even more
significant. Corollary 5.11 with Algorithm Q-NPG-SGD (Algorithm 16) satisfies Assump-
tion 5.1 with a number of samples that depends only on the feature dimension m of ϕ

and does not depend on the cardinality of state space |S| or action space |A|. In contrast,
the assumption ∥Q̂(π)−Q(π)∥∞ ≤ ϵstat with the L∞ norm in Xiao (2022, Theorem 16)
causes the sample complexity to depend on |S||A|.
Furthermore, Xiao (2022) uses a Monte-Carlo approach with multiple independent
rollouts per iteration, while our sample-based (Q)-NPG uses one single rollout (Algo-
rithm 13 and 14) combined with regression solvers; Xiao (2022) derives a high proba-
bility sample complexity result, while we derive the convergence of the optimality gap
E
[
Vρ(π(K))

]
− Vρ(π∗) which can guarantee that the variance of Vρ(π(K)) converges to

zero. Thus, our sample-based algorithms had not been considered in Xiao (2022) and
our proofs of Corollary 5.11 and 5.17 require a different approach.
In particular, our sample complexity analysis regarding to the policy evaluation is novel.
Although our sample-based algorithms had been considered previously in Agarwal
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et al. (2021) and Liu et al. (2020), none of their analysis on the sample complexity was
correct. Indeed, Agarwal et al. (2021) required the boundedness of the stochastic gradient
estimator, which might not hold as we extensively discussed in Appendix D.4.5. We fixed
this by showing that E

[
Q̂s,a(θ)2

]
is bounded. See Appendix D.4.5 for all the subtleties,

including a proof sketch of Corollary 5.11. Liu et al. (2020) also incorrectly used an
inequality where the random variables are correlated. See the detailed explanation
(Footnote 2) in Appendix D.5.4. We fixed this error with a careful conditional expectation
argument. Please refer to Appendix D.5.4 for all the details, including a proof sketch of
Corollary 5.17. These dimensions are where an important part of the technical work was
done. Therefore, outside of the tabular setting, and considering NPG methods that make
use of a regression solver, our complexity analysis is currently the only analysis that is
entirely correct that we are aware of.

• Finally we not only extend the work of Xiao (2022) to NPG for log-linear policy, but
also consider the Q-NPG method and establish its linear convergence analysis. This is
a method that is unique to log-linear policy and again had not been considered in Xiao
(2022).

D.1.2 Finite-time analysis of the natural policy gradient

NPG for the softmax tabular policies. For the softmax tabular policies, Shani et al. (2020)
show that the unregularized NPG has a O(1/

√
k) convergence rate and the regularized NPG

has a faster O(1/k) convergence rate by using a decaying step size. Agarwal et al. (2021)
improve the convergence rate of the unregularized NPG to O(1/k) with constant step sizes.
Further, Khodadadian et al. (2021a) also achieves O(1/k) convergence rate for the off-policy
natural actor-critic (NAC), and a slower sublinear result is established by Khodadadian et al.
(2022a) for the two-time-scale NAC.

By using the entropy regularization, Cen et al. (2021a) achieve a linear convergence rate
for NPG. A similar linear convergence result has been obtained by rewriting the NPG update
under the PMD framework with the Kullback–Leibler (KL) divergence (Lan, 2022) or with
a more general convex regularizer (Zhan et al., 2021). Such approach is also applied in the
averagedMDP setting to achieve linear convergence for NPG (Li et al., 2022b). However, adding
regularization might induce bias for the solution. Thus, Lan (2022) considers exponentially
diminishing regularization to guarantee unbiased solution. Furthermore, by considering both
the KL divergence and the diminishing entropy regularization, Li et al. (2022c) establish the
linear convergence rate not only for the optimality gap but also for the policy. That is, the policy
will converge to the fixed high entropy optimal policy. Consequently, Li et al. (2022c) show
a local super-linear convergence of both the policy and optimality gap, as discussed in Xiao
(2022, Section 4.3).
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D.1 Related work

Recently, Bhandari and Russo (2021), Khodadadian et al. (2021b) and Khodadadian et al.
(2022b) and Xiao (2022) show that regularization is unnecessary for obtaining linear conver-
gence, and it suffices to use appropriate step sizes for NPG. In particular, Bhandari and Russo
(2021) propose to use an exact line search for the step size (Theorem 1 (a)) or to choose an
adaptive step size (Theorem 1 (c)). Similar adaptive step size is proposed by Khodadadian
et al. (2021b) and Khodadadian et al. (2022b). Notice that such adaptive step size requires
complete knowledge about the environmental model. Instead, a sufficiently large step size
might be enough. In this chapter, we extend the results of Xiao (2022) from the tabular setting
to the log-linear policies, using non-adaptive geometrically increasing step size and obtaining a
linear convergence rate for NPG without regularization.

NPG with function approximation. In the function approximation regime, there have been
many works investigating the convergence rate of the NPG or NAC algorithms from different
perspectives. Wang et al. (2020) establish the O(1/

√
k) convergence rate for two-layer neural

NAC with a projection step. The sublinear convergence results are also established by Zanette
et al. (2021) and Hu et al. (2022) for the linear MDP (Jin et al., 2020). Agarwal et al. (2021)
obtain the same O(1/

√
k) convergence rate for the smooth policies with projections. This was

later improved to O(1/k) by Liu et al. (2020) by replacing the projection step with a strong
regularity condition on the Fisher information matrix, and it was also improved to O(1/k)
by Xu et al. (2020c) with NAC under Markovian sampling. The same O(1/k) convergence rate
is established for log-linear policies by Chen et al. (2022b) when considering the off-policy
NAC.

With entropy regularization and a projection step, Cayci et al. (2021) obtain a linear conver-
gence for log-linear policies. Same entropy regularization and a projection step are applied
by Cayci et al. (2022a) for the neural NAC to improve the O(1/

√
k) convergence rate of Wang

et al. (2020) to O(1/k). In contrast, we show that by using a simple geometrically increasing
step size, fast linear convergence can be achieved for log-linear policies without any addi-
tional regularization nor a projection step. We notice that Chen and Theja Maguluri (2022,
Theorem 3.4)1 also uses increasing step size and achieves linear convergence for log-linear
policies without regularization. The main differences between our result and Theorem 3.4
in Chen and Theja Maguluri (2022) are fourfold. First, they rely on the contraction property
of the generalized Bellman operator, while we consider the PMD analysis approach. So the
proof techniques are completely different. Second, their parameter update results in the off-
policy multi-step temporal difference learning, whereas we require to solve a linear regression
problem to minimize the function approximation error. Third, their step size still depends
on the iterates which is thus an adaptive step size and is proportional to the total number of
iterations K, while ours is independent to the iterates nor to K. Finally, their assumption on

1This result appears after conference proceedings and is available on https://arxiv.org/pdf/2208.03247.pdf.
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the modeling error requires an L∞ supremum norm, i.e., ∥Qs(θ(k))− Φw
(k)
⋆ ∥∞ ≤ ϵbias for all

states s of the state space, our convergence guarantee depends on the expected error (e.g.,
Assumption 5.2, 5.7 or 5.13) which is a much weaker assumption. After publication of our
results, we are aware of the concurrent work of Alfano and Rebeschini (2022). They only
analyze the Q-NPG method and achieve similar linear convergence results as our Theorem 5.5.
In particular, their result in Theorem 4.7 has a better concentrability coefficient compared to
our Theorem 5.5. However, their Assumption 4.6 assumes that the relative condition number
upper bounds a time-varying ratio which depends on the iterates, while our Assumption 5.3
is independent to the iterates, as defined in (5.25). Furthermore, they only consider the case
when the initial state distribution is the same as the target state distribution, while our analysis
generalizes with any target state distribution, which is extensively discussed on the distribution
mismatch coefficients in Appendix D.6.1. See Table D.1 a complete overview of NPG in the
function approximation regime.

Fast linear convergence of other policy gradient methods. Different to the PMD analysis
approach, by leveraging a gradient dominance property (Polyak, 1963; Łojasiewicz, 1963),
fast linear convergence results have also been established for the PG methods under different
settings, such as the linear quadratic control problems (Fazel et al., 2018) and the exact PG
method with softmax tabular policy and entropy regularization (Mei et al., 2020; Yuan et
al., 2022a). Such gradient domination property is widely explored by Bhandari and Russo
(2019) to identify more general structural MDP settings. Linear convergence of PG can also be
obtained through exact line search (Bhandari and Russo, 2021, Theorem 1 (a)) or by exploiting
non-uniform smoothness (Mei et al., 2021).

Alternatively, by considering a general strongly-concave utility function of the state-action
occupancy measure and by exploiting the hidden convexity of the problem, Zhang et al. (2020a)
also achieve the linear convergence of a variational PG method. When the object is relaxed to a
general concave utility function, Zhang et al. (2021a) still achieve the linear convergence by
leveraging the hidden convexity of the problem and by adding variance reduction to the PG
method.

D.2 Standard reinforcement learning results

In this section, we prove the standard reinforcement learning results used in Chapter 5, in-
cluding the policy gradient theorem (5.8), the NPG updates written through the compatible
function approximation (5.12) and the NPG updates formalized as policy mirror descent
((5.17) and (5.18)). Then, we prove the performance difference lemma (Kakade and Langford,
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Table D.1 – Overview of different convergence results for NPG methods in the function approximation
regime. The darker cells contain our new results. The light cells contain previously known results for
NPG or Q-NPG with log-linear policies that we have a direct comparison to our new results. White cells
contain existing results that do not have the same setting as ours, so that we could not make a direct
comparison among them.

Setting Rate Reg. C.S. I.S.∗ Pros/cons compared to our work
Linear convergence

(Cayci et al., 2021)
Regularized NPG with log-linear Linear ✓ ✓ Better concentrability coefficients Cν

(Chen and Theja Maguluri, 2022)
Off-policy NAC with log-linear Linear ✓

we use non-adaptive increasing stepsize
They use adaptive increasing stepsize, while
error with L2 norm instead of L∞ norm;
Weaker assumptions on the approximation

(Alfano and Rebeschini, 2022)
Q-NPG with log-linear Linear ✓ on t, while ours is independent to t

Their relative condition number depends

(this work)
Q-NPG/NPG with log-linear Linear ✓

Sublinear convergence

(Zanette et al., 2021; Hu et al., 2022)
PMD for linear MDP O( 1√

k
) ✓

(Wang et al., 2020)
Two-layer neural NAC O( 1√

k
) ✓

(Cayci et al., 2022a)
Two-layer neural NAC O( 1

k ) ✓ ✓

(Agarwal et al., 2021)
NPG with smooth policies O( 1√

k
) ✓

(Xu et al., 2020c)
with smooth policies

NAC under Markovian sampling
O( 1

k ) ✓

(Liu et al., 2020)
Fisher-non-degenerate policies

NPG with smooth and
O( 1

k ) ✓

(Agarwal et al., 2021)
Q-NPG with log-linear O( 1√

k
) ✓ They have better error floor than ours

(Chen et al., 2022b)
Off-policy NAC with log-linear O( 1

k ) ✓

we use non-adaptive increasing stepsize
They use adaptive increasing stepsize, while
error with L2 norm instead of L∞ norm;
Weaker assumptions on the approximation

(this work)
Q-NPG/NPG with log-linear O( 1

k ) ✓

∗ Reg.: regularization; C.S.: constant stepsize; I.S.: increasing stepsize.
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2002), which is the first key ingredient for our PMD analysis. The three-point descent lemma
(Lemma D.14) is the second key ingredient for our PMD analysis.

Lemma D.1 (Policy gradient theorem, Theorem 1 in Sutton et al. (2000)). The full gradient
of the value function Vρ(θ) can be re-written as (5.8). That is,

∇θVρ(θ) = 1
1− γ

Es∼dθ, a∼πs(θ) [Qs,a(θ)∇θ log πs,a(θ)] .

Proof. The gradient of the value function Vρ(θ) can be written as follows,

∇θVρ(θ) = ∇θ

∑
s0∈S, a0∈A

ρ(s0)πs0,a0(θ)Qs0,a0(θ)

=
∑

s0,a0

ρ(s0) (∇θπs0,a0(θ)) Qs0,a0(θ) +
∑

s0,a0

ρ(s0)πs0,a0(θ)∇θQs0,a0(θ)

=
∑

s0,a0

ρ(s0)πs0,a0(θ) (∇θ log πs0,a0(θ)) Qs0,a0(θ)

+
∑

s0,a0

ρ(s0)πs0,a0(θ)∇θ

(
c(s0, a0) + γ

∑
s1

P(s1 | s0, a0)Vs1(θ)
)

=
∑

s0,a0

ρ(s0)πs0,a0(θ) (∇θ log πs0,a0(θ)) Qs0,a0(θ)

+ γ
∑

s0,a0,s1

ρ(s0)πs0,a0(θ)P(s1 | s0, a0)∇θVs1(θ)

= E [Qs0,a0(θ)∇θ log πs0,a0(θ)] + γE [∇θVs1(θ)]

=
∞∑

t=0
γtE [Qst,at(θ)∇θ log πst,at(θ)]

where the third equality is obtained through the Bellman equation, and the last step follows
from recursion. The above expectation is computed over the trajectories {(st, at)}t≥0. Notice
that we can also rewrite the expectation over the state and action space S ×A. That is,

∇θVρ(θ) =
∞∑

t=0
γtE [Qst,at(θ)∇θ log πst,at(θ)]

=
∞∑

t=0
γt

∑
(s,a)∈S×A

Pr(st = s, at = a)Qs,a(θ)∇θ log πs,a(θ)

=
∑

(s,a)∈S×A

∞∑
t=0

Pr(st = s, at = a)Qs,a(θ)∇θ log πs,a(θ)

=
∑

(s,a)∈S×A

1
1− γ

dθ(s)πs,a(θ)Qs,a(θ)∇θ log πs,a(θ),
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where the last line is obtained by the definition of the state-action visitation distribution d̄ π
s,a(ρ)

in (5.4). This completes the proof of the claim.

Lemma D.2 (NPG updates via compatible function approximation, Theorem 1 in Kakade
(2001)). Consider the NPG updates (5.9)

θ(k+1) = θ(k) − ηkFρ
(
θ(k))†∇θVρ

(
θ(k)),

and the updates using the compatible function approximation (5.12)

θ(k+1) = θ(k) − ηkw
(k)
⋆ ,

where w
(k)
⋆ ∈ argminw∈Rm LA

(
w, θ(k), d̄ (k)). If the parametrized policy is differentiable for all

θ ∈ Rm, then the two updates are equivalent up to a constant scaling (1− γ) of ηk.

Proof. Indeed, using the policy gradient (5.8) and the fact that∑a∈A∇πs,a(θ) = 0 for all s ∈ S ,
as π(θ) is differentiable on θ and∑a∈A πs,a = 1, we have the policy gradient theorem (Sutton
et al., 2000)

∇θVρ(θ) = 1
1− γ

Es∼dθ, a∼πs(θ) [As,a(θ)∇θ log πs,a(θ)] . (D.1)

Furthermore, consider the optima w
(k)
⋆ . By the first-order optimality condition, we have

∇wLA(w(k)
⋆ , θ(k), d̄ (k)) = 0

⇐⇒ E(s,a)∼d̄ (k)

[(
(w(k)

⋆ )⊤∇θ log π(k)
s,a −As,a(θ(k))

)
∇θ log π(k)

s,a

]
= 0

⇐⇒ E(s,a)∼d̄ (k)

[
∇θ log π(k)

s,a

(
∇θ log π(k)

s,a

)⊤
]

w
(k)
⋆ = E(s,a)∼d̄ (k)

[
As,a(θ(k))∇θ log π(k)

s,a

]
(5.9)+(D.1)⇐⇒ Fρ(θ(k))w(k)

⋆ = (1− γ)∇θVρ(θ(k)).

Thus, we have
w

(k)
⋆ = (1− γ)Fρ(θ)†∇θVρ(θ(k))

which yields the update (5.9) up to a constant scaling (1− γ) of ηk.

Lemma D.3 (NPG updates as policy mirror descent). The closed form solution to (5.17) is
given by

π(k+1)
s = π(k)

s ⊙
exp

(
−ηkΦsw(k)

)
∑

a∈A π
(k)
s,a exp

(
−ηkϕ⊤

s,aw(k)
) (D.2)
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= π(k)
s ⊙

exp
(
−ηkΦ̄(k)

s w(k)
)

∑
a∈A π

(k)
s,a exp

(
−ηk

(
ϕ̄s,a(θ(k))

)⊤
w(k)

) (D.3)

= arg min
p∈∆(A)

{
ηk

〈
Φ̄(k)

s w(k), p
〉

+ D(p, π(k)
s )

}
, ∀s ∈ S, (D.4)

where ⊙ is the element-wise product between vectors, and Φ̄(k)
s ∈ R|A|×m is defined in (5.18), i.e.

(
Φ̄(k)

s,a

)⊤ def= ϕ̄s,a(θ(k)) (5.13)= ϕs,a − E
a′∼π

(k)
s

[
ϕs,a′

]
.

Such policy update coincides the approximate NPG updates (5.33) of the log-linear policy, if
θ(k+1) = θ(k) − ηkw(k) with w(k) ≈ argminw LA(w, θ(k), d̃(k)); and coincides the approxi-
mate Q-NPG updates (5.19) of the log-linear policy, if θ(k+1) = θ(k) − ηkw(k) with w(k) ≈
argminw LQ(w, θ(k), d̃(k)).

Proof. For shorthand, let g = Φsw(k). Thus, (5.17) fits the format of Lemma D.11 in Ap-
pendix D.7 where q = π

(k)
s . Consequently, the closed form solution is given by (D.61), that

is

π(k+1)
s = π

(k)
s ⊙ e−ηkg∑

a∈A π
(k)
s,a e−ηkga

= π
(k)
s ⊙ e−ηkΦsw(k)∑

a∈A π
(k)
s,a e−ηkϕ⊤

s,aw(k)

= π(k)
s ⊙

exp
(
−ηkΦ̄s(θ(k))w(k)

)
∑

a∈A π
(k)
s,a exp

(
−ηk

(
ϕ̄s,a(θ(k))

)⊤
w(k)

) , (D.5)

where the last equality is obtained as

ϕ̄s,a(θ(k)) = ϕs,a − E
a′∼π

(k)
s

[
ϕs,a′

]
= ϕs,a − cs,

with cs ∈ R some constant independent to a.
Similarly, by applying Lemma D.11 with g = Φ̄(k)

s w(k), the closed form solution to (D.4)
is (D.5).

As for the closed form updates of the policy for NPG (5.33) and Q-NPG (5.19) with the
parameter updates θ(k+1) = θ(k) − ηkw(k), it is straightforward to verify that it coincides (D.2)
and (D.3) given the specific structure of the log-linear policy (5.7), which concludes the
proof.
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Lemma D.4 (Performance difference lemma (Kakade and Langford, 2002)). For any policy
π, π′ ∈ ∆(A)S and ρ ∈ ∆(S),

Vρ(π)− Vρ(π′) = 1
1− γ

E(s,a)∼d̄ π

[
As,a(π′)

] (D.6)

= 1
1− γ

Es∼dπ

[〈
Qs(π′), πs − π′

s

〉]
, (D.7)

where Qs(π) is the shorthand for [Qs,a(π)]a∈A ∈ R|A| for any policy π.

Proof. From Lemma 2 in Agarwal et al. (2021), we have

Vρ(π)− Vρ(π′) = 1
1− γ

E(s,a)∼d̄ π

[
As,a(π′)

]
= 1

1− γ
Es∼dπ

[〈
As(π′), πs

〉]
,

where As(π) is the shorthand for [As,a(π)]a∈A ∈ R|A| for any policy π. To show (D.7), it suffices
to show 〈

As(π′), πs
〉

=
〈
Qs(π′), πs − π′

s

〉
, for all s ∈ S and π, π′ ∈ ∆(A)S .

Let 1n denote a vector in Rn with coordinates equal to 1 element-wisely. Indeed, we have

〈
As(π′), πs

〉 (5.3)=
〈
Qs(π′)− Vs(π′) · 1|A|, πs

〉
=
〈
Qs(π′), πs

〉
−
〈
Vs(π′) · 1|A|, πs

〉
=
〈
Qs(π′), πs

〉
− Vs(π′)

(5.1)=
〈
Qs(π′), πs − π′

s

〉
,

from which we conclude the proof.

D.3 Algorithms

D.3.1 NPG and Q-NPG algorithms

Algorithm 11 combined with the sampling procedure (Algorithm 14) and the averaged SGD
procedure, called NPG-SGD (Algorithm 15), provide the sample-based NPG methods.

Similarly, Algorithm 12 combined with the sampling procedure (Algorithm 13) and the
averaged SGD procedure, called Q-NPG-SGD (Algorithm 16), provide the sample-based Q-NPG
methods.
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Algorithm 11: Natural policy gradient
Input: Initial state-action distribution ν, policy π(0), discounted factor γ ∈ [0, 1), step

size η0 > 0 for NPG update, step size α > 0 for NPG-SGD update, number of
iterations T for NPG-SGD

1 for k = 0 to K − 1 do
2 Compute w(k) of (5.33) by NPG-SGD, i.e., Algorithm 15 with inputs (T, ν, π(k), γ, α)
3 Update θ(k+1) = θ(k) − ηkw(k) and ηk

Output: π(K)

Algorithm 12: Q-Natural policy gradient
Input: Initial state-action distribution ν, policy π(0), discounted factor γ ∈ [0, 1), step

size η0 > 0 for Q-NPG update, step size α > 0 for Q-NPG-SGD update, number of
iterations T for Q-NPG-SGD

1 for k = 0 to K − 1 do
2 Compute w(k) of (5.19) by Q-NPG-SGD, i.e., Algorithm 16 with inputs (T, ν, π(k), γ, α)
3 Update θ(k+1) = θ(k) − ηkw(k) and ηk

Output: πθ(K)

D.3.2 Sampling procedures

In practice, we cannot compute the trueminimizerw
(k)
⋆ of the regression problem in either (5.33)

or (5.19), since computing the expectation LA or LQ requires averaging over all state-action
pairs (s, a) ∼ d̃ (k) and averaging over all trajectories (s0, a0, c0, s1, · · · ) to compute the values
of Q

(k)
s,a and A

(k)
s,a . So instead, we provide a sampler which is able to obtain unbiased estimates

of Qs,a(θ) (or As,a(θ)) with (s, a) ∼ d̃ θ(ν) for any π(θ).
To solve (5.19), we sample (s, a) ∼ d̃ (k) and Q̂

(k)
s,a by a standard rollout, formalized in

Algorithm 13. This sampling procedure is commonly used, for example in Agarwal et al. (2021,
Algorithm 1).

It is straightforward to verify that (sh, ah) and Q̂sh,ah
(θ) obtained in Algorithm 13 are

unbiased for any π(θ). The expected length of the trajectory is 1
1−γ . We provide its proof here

for completeness.

Lemma D.5. Consider the output (sh, ah) and Q̂sh,ah
(θ) of Algorithm 13. It follows that

E [h + 1] = 1
1− γ

,

Pr(sh = s, ah = a) = d̃ θ
s,a(ν),

E
[
Q̂sh,ah

(θ) | sh, ah

]
= Qsh,ah

(θ).
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Algorithm 13: Sampler for: (s, a) ∼ d̃ θ(ν) and unbiased estimate Q̂s,a(θ) of Qs,a(θ)
Input: Initial state-action distribution ν, policy π(θ), discounted factor γ ∈ [0, 1)

1 Initialize (s0, a0) ∼ ν, the time step h, t = 0, the variable X = 1
2 while X = 1 do
3 With probability γ:
4 Sample sh+1 ∼ P(· | sh, ah)
5 Sample ah+1 ∼ πsh+1(θ)
6 h← h + 1
7 Otherwise with probability (1− γ):
8 X = 0 \\ Accept (sh, ah)

9 X = 1
10 Set the estimate Q̂sh,ah

(θ) = c(sh, ah) \\ Start to estimate Q̂sh,ah
(θ)

11 t = h
12 while X = 1 do
13 With probability γ:
14 Sample st+1 ∼ P(· | st, at)
15 Sample at+1 ∼ πst+1(θ)
16 Q̂sh,ah

(θ)← Q̂sh,ah
(θ) + c(st+1, at+1)

17 t← t + 1
18 Otherwise with probability (1− γ):
19 X = 0 \\ Accept Q̂sh,ah

(θ)

Output: (sh, ah) and Q̂sh,ah
(θ)
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Proof. The expected length (h + 1) of sampling (s, a) is

E [h + 1] =
∞∑

k=0
Pr(h = k)(k + 1) = (1− γ)

∞∑
k=0

γk(k + 1) = 1
1− γ

.

The probability of the state-action pair (s, a) being sampled by Algorithm 13 is

Pr(sh = s, ah = a) =
∑

(s0,a0)∈S×A
νs0,a0

∞∑
k=0

Pr(h = k) Prπ(θ)(sh = s, ah = a | h = k, s0, a0)

=
∑

(s0,a0)∈S×A
νs0,a0(1− γ)

∞∑
k=0

γk Prπ(θ)(sk = s, ak = a | s0, a0) (5.5)= d̃ θ
s,a(ν).

Now we verify that Q̂sh,ah
(θ) obtained from Algorithm 13 is an unbiased estimate of Qsh,ah

(θ).
Indeed, from Algorithm 13, we have

Q̂sh,ah
(θ) =

H∑
t=0

c(st+h, at+h), (D.8)

where (H + 1) is the length of the horizon executed between lines 13 and 19 in Algorithm 13 for
calculating Q̂sh,ah

(θ).To simplify notation, we consider the estimate of Q̂s,a for any (s, a) ∈ S×A
following the same procedure starting from line 10 in Algorithm 13. Taking expectation, we
have

E
[
Q̂s,a(θ) | s, a

]
= E

[
H∑

t=0
c(st, at) | s0 = s, a0 = a

]

=
∞∑

k=0
Pr(H = k)E

[
H∑

t=0
c(st, at) | s0 = s, a0 = a, H = k

]

=
∞∑

k=0
(1− γ)γkE

[
k∑

t=0
c(st, at) | s0 = s, a0 = a

]

= (1− γ)E
[ ∞∑

t=0
c(st, at)

∞∑
k=t

γk | s0 = s, a0 = a

]

= E
[ ∞∑

t=0
γkc(st, at) | s0 = s, a0 = a

]
(5.2)= Qs,a(θ).

The desired result is obtained by setting s = sh and a = ah.
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Similar to Algorithm 13, to solve (5.33), we sample (s, a) ∼ d̃ (k) by the same procedure and
estimate Â

(k)
s,a with a slight modification, namely Algorithm 14 (also see Agarwal et al., 2021,

Algorithm 3).
Notice that the sampling procedure for estimating Qs,a(θ) in Algorithm 13 is simpler than

that for estimatingAs,a(θ) in Algorithm 14, since Algorithm 14 requires an additional estimation
of Vs(θ) and thus doubles the number of samples to estimate As,a(θ). As in Lemma D.5, we
verify in the following lemma that the output (sh, ah) is sampled from the distribution d̃ θ and
Âsh,ah

(θ) in Algorithm 14 is an unbiased estimator of Ash,ah
(θ) for all policy π(θ).

Lemma D.6. Consider the output (sh, ah) and Âsh,ah
(θ) of Algorithm 14. It follows that

E [h + 1] = 1
1− γ

,

Pr(sh = s, ah = a) = d̃ θ
s,a(ν),

E
[
Âsh,ah

(θ) | sh, ah

]
= Ash,ah

(θ).

Proof. Since the procedure of sampling (sh, ah) in Algorithm 14 is identical to the one in
Algorithm 13, from Lemma D.5, the first two results are verified. It remains to show that
Âsh,ah

(θ) is unbiased.
The estimation of Âsh,ah

(θ) is decomposed into the estimations of Q̂sh,ah
(θ) and V̂sh

(θ). The
procedure of estimating Q̂sh,ah

(θ) is also identical to the one in Algorithm 13. Thus, from
Lemma D.5, we have

E
[
Q̂sh,ah

(θ) | sh, ah

]
= Qsh,ah

(θ).

By following the similar arguments of Lemma D.5, one can verify that

E
[
V̂sh

(θ) | sh, ah

]
= Vsh

(θ).

Combine the above two equalities and obtain that

E
[
Âsh,ah

(θ) | sh, ah

]
= E

[
Q̂sh,ah

(θ)− V̂sh
(θ) | sh, ah

]
= Qsh,ah

(θ)− Vsh
(θ) (5.3)= Ash,ah

(θ).
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Algorithm 14: Sampler for: (s, a) ∼ d̃ θ(ν) and unbiased estimate Âs,a(θ) of As,a(θ)
Input: Initial state-action distribution ν, policy π(θ), discounted factor γ ∈ [0, 1)

1 Initialize (s0, a0) ∼ ν, the time step h, t = 0, the variable X = 1
2 while X = 1 do
3 With probability γ:
4 Sample sh+1 ∼ P(· | sh, ah)
5 Sample ah+1 ∼ πsh+1(θ)
6 h← h + 1
7 Otherwise with probability (1− γ):
8 X = 0 \\ Accept (sh, ah)

9 X = 1
10 Set the estimate Q̂sh,ah

(θ) = c(sh, ah) \\ Start to estimate Q̂sh,ah
(θ)

11 t = h
12 while X = 1 do
13 With probability γ:
14 Sample st+1 ∼ P(· | st, at)
15 Sample at+1 ∼ πst+1(θ)
16 Q̂sh,ah

(θ)← Q̂sh,ah
(θ) + c(st+1, at+1)

17 t← t + 1
18 Otherwise with probability (1− γ):
19 X = 0 \\ Accept Q̂sh,ah

(θ)

20 X = 1
21 Set the estimate V̂sh

(θ) = 0 \\ Start to estimate V̂sh
(θ)

22 t = h
23 while X = 1 do
24 Sample at ∼ πst(θ)
25 V̂sh

(θ)← V̂sh
(θ) + c(st, at)

26 With probability γ:
27 Sample st+1 ∼ P(· | st, at)
28 t← t + 1
29 Otherwise with probability (1− γ):
30 X = 0 \\ Accept V̂sh

(θ)

Output: (sh, ah) and Âsh,ah
(θ) = Q̂sh,ah

(θ)− V̂sh
(θ)
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D.3.3 SGD procedures for solving the regression problems of NPG and Q-NPG

Once we obtain the sampled (s, a) and Âs,a(θ(k)) from Algorithm 14, we can apply the averaged
SGD algorithm as in Bach and Moulines (2013) to solve the regression problem (5.33) of NPG
for every iteration k.

Here we suppress the superscript (k). For any parameter θ ∈ Rm, recall the compatible
function approximation LA in (5.33)

LA(w, θ, d̃ θ) = E(s,a)∼d̃ θ

[(
w⊤ϕ̄s,a(θ)−As,a(θ)

)2
]

.

With the output (s, a) ∼ d̃ θ and Âs,a(θ) from Algorithm 14 (here we suppress the subscript h),
we compute the stochastic gradient estimator of the function LA in (5.33) by

∇̂wLA(w, θ, d̃ θ) def= 2
(
w⊤ϕ̄s,a(θ)− Âs,a(θ)

)
ϕ̄s,a(θ). (D.9)

Next, we show that (D.9) is an unbiased gradient estimator of the loss function LA.

Lemma D.7. Consider the output (s, a) and Âs,a(θ) of Algorithm 14 and the stochastic gradi-
ent (D.9). It follows that

E
[
∇̂wLA(w, θ, d̃ θ)

]
= ∇wLA(w, θ, d̃ θ),

where the expectation is with respect to the randomness in the sequence of the sampled
s0, a0, · · · , st, at from Algorithm 14.

Proof. The total expectation of the stochastic gradient is given by

E
[
∇̂wLA(w, θ, d̃ θ)

] (D.9)= E
s, a, Âs,a(θ)

[
2
(
w⊤ϕ̄s,a(θ)− Âs,a(θ)

)
ϕ̄s,a(θ)

]
= E(s,a)∼d̃ θ, Âs,a(θ)

[
2
(
w⊤ϕ̄s,a(θ)− Âs,a(θ)

)
ϕ̄s,a(θ) | s, a

]
,

(D.10)

where the second line is obtained by (s, a) ∼ d̃ θ from Lemma D.6.
From Lemma D.6, we have

Es0,a0,··· ,st,at

[
Âs,a(θ) | s0 = s, a0 = a

]
= As,a(θ). (D.11)

Combining the above two equalities yield

E
[
∇̂wLA(w, θ, d̃ θ)

] (D.10)= E(s,a)∼d̃ θ

[
2
(
w⊤ϕ̄s,a(θ)− E

[
Âs,a(θ) | s, a

])
ϕ̄s,a(θ)

]
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(D.11)= E(s,a)∼d̃ θ

[
2
(
w⊤ϕ̄s,a(θ)−As,a(θ)

)
ϕ̄s,a(θ)

]
= ∇wLA(w, θ, d̃ θ),

as desired.

Since (D.9) is unbiased shown in Lemma D.7, we can use it for the averaged SGD algorithm
to minimize LA, called NPG-SGD in Algorithm 15 (also see Agarwal et al., 2021, Algorithm 4).

Algorithm 15: NPG-SGD
Input: Number of iterations T , step size α > 0, initialization w0 ∈ Rm, initial

state-action measure ν, policy π(θ), discounted factor γ ∈ [0, 1)
1 for t = 0 to T − 1 do
2 Call Algorithm 14 with the inputs (ν, π(θ), γ) to sample (s, a) ∼ d̃ θ and Âs,a(θ)
3 Update wt+1 = wt − α∇̂wLA(w, θ, d̃ θ) by using (D.9)
Output: wout = 1

T

∑T
t=1 wt

Similar to Algorithm 15, once we obtain the sampled (s, a) and Q̂s,a(θ) from Algorithm 13,
we can apply the averaged SGD algorithm to solve (5.19) of Q-NPG.

Recall the compatible function approximation LQ in (5.19)

LQ(w, θ, d̃ θ) = E(s,a)∼d̃ θ

[(
w⊤ϕs,a −Qs,a(θ)

)2
]

.

With the output (s, a) ∼ d̃ θ and Q̂s,a(θ) from Algorithm 13, we compute the stochastic gradient
estimator of the function LQ in (5.19) by

∇̂wLQ(w, θ, d̃ θ) def= 2
(
w⊤ϕs,a − Q̂s,a(θ)

)
ϕs,a, (D.12)

anduse it for the averaged SGDalgorithm tominimizeLQ, called Q-NPG-SGD inAlgorithm16 (also
see Agarwal et al., 2021, Algorithm 2). Compared to (D.9), the cost of computing (D.12) is
|A| times cheaper than that of computing (D.12). Indeed, to compute (D.12), we only need
one single action for ϕs,a, while to compute (D.9), one needs to go through all the actions to
compute ϕ̄s,a(θ). Thus, the computational cost of Q-NPG-SGD is |A| times cheaper than that of
NPG-SGD.

The estimator ∇̂wLQ(w, θ, d̃ θ) is also unbiased following the similar argument of the proof
of Lemma D.7. We formalize this in the following and omit the proof.
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Algorithm 16: Q-NPG-SGD
Input: Number of iterations T , step size α > 0, initialization w0 ∈ Rm, initial

state-action measure ν, policy π(θ), discounted factor γ ∈ [0, 1)
1 for t = 0 to T − 1 do
2 Call Algorithm 13 with the inputs (ν, π(θ), γ) to sample (s, a) ∼ d̃ θ and Q̂s,a(θ)
3 Update wt+1 = wt − α∇̂wLQ(w, θ, d̃ θ) by using (D.12)
Output: wout = 1

T

∑T
t=1 wt

Lemma D.8. Consider the output (s, a) and Q̂s,a(θ) of Algorithm 13 and the stochastic gradi-
ent (D.12). It follows that

E
[
∇̂wLQ(w, θ, d̃ θ)

]
= ∇wLQ(w, θ, d̃ θ),

where the expectation is with respect to the randomness in the sequence of the sampled
s0, a0, · · · , st, at from Algorithm 13.

D.4 Proof of Section 5.4

Throughout this section and the next, we use the shorthand V
(k)

ρ for Vρ(θ(k)) and similarly, Q
(k)
s,a

for Qs,a(θ(k)) and A
(k)
s,a for As,a(θ(k)). We also use the shorthand Q

(k)
s for the vector

[
Q

(k)
s,a

]
a∈A
∈

R|A| and A
(k)
s for the vector

[
A

(k)
s,a

]
a∈A
∈ R|A|.

We first provide the one step analysis of the Q-NPG update, which will be helpful for
proving Theorem 5.5, 5.6 and 5.9.

D.4.1 The one step Q-NPG lemma

The following one step analysis of Q-NPG is based on the mirror descent approach of Xiao
(2022).

Lemma D.9 (One step Q-NPG lemma). Fix a state distribution ρ; an initial state-action dis-
tribution ν; an arbitrary comparator policy π∗. Let w

(k)
⋆ ∈ argminw LQ(w, θ(k), d̃ (k)) denote the

exact minimizer. Consider the w(k) and π(k) given in (5.19) and (5.17) respectively. We have that

ϑρ(1− γ)
(
V (k+1)

ρ − V (k)
ρ

)
+ (1− γ)

(
V (k)

ρ − Vρ(π∗)
)

+ ϑρ

(∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a ϕ⊤
s,a

(
w(k) − w

(k)
⋆

)
︸ ︷︷ ︸

1

+
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

(
ϕ⊤

s,aw
(k)
⋆ −Q(k)

s,a

)
︸ ︷︷ ︸

2
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+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,a ϕ⊤
s,a

(
w

(k)
⋆ − w(k)

)
︸ ︷︷ ︸

3

+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,a

(
Q(k)

s,a − ϕ⊤
s,aw

(k)
⋆

)
︸ ︷︷ ︸

4

)

+
∑

(s,a)∈S×A
d∗

sπ(k)
s,a ϕ⊤

s,a

(
w(k) − w

(k)
⋆

)
︸ ︷︷ ︸

a

+
∑

(s,a)∈S×A
d∗

sπ(k)
s,a

(
ϕ⊤

s,aw
(k)
⋆ −Q(k)

s,a

)
︸ ︷︷ ︸

b
+

∑
(s,a)∈S×A

d∗
sπ∗

s,aϕ⊤
s,a

(
w

(k)
⋆ − w(k)

)
︸ ︷︷ ︸

c

+
∑

(s,a)∈S×A
d∗

sπ∗
s,a

(
Q(k)

s,a − ϕ⊤
s,aw

(k)
⋆

)
︸ ︷︷ ︸

d

≤ 1
ηk

D∗
k −

1
ηk

D∗
k+1. (D.13)

Proof. As discussed in Section 5.3.1 and from Lemma D.3, we know that the corresponding
update from π(k) to π(k+1) can be described by the PMDmethod (5.17). In the context of the
PMD method (5.17), we apply the three-point descent lemma (Lemma D.14) with C = ∆(A),
f is the linear function ηk

〈
Φsw(k), ·

〉
and h : ∆(A) → R is the negative entropy with h(p) =∑

a∈A pa log pa. Thus, h is of Legendre type with rint dom h ∩ C = rint ∆(A) ̸= ∅ and Dh(·, ·) is
the KL divergence D(·, ·). From Lemma D.14, we obtain that for any p ∈ ∆(A), we have

ηk

〈
Φsw(k), π(k+1)

s

〉
+ D(π(k+1)

s , π(k)
s ) ≤ ηk

〈
Φsw(k), p

〉
+ D(p, π(k)

s )−D(p, π(k+1)
s ).

Rearranging terms and dividing both sides by ηk, we get
〈
Φsw(k), π(k+1)

s − p
〉

+ 1
ηk

D(π(k+1)
s , π(k)

s ) ≤ 1
ηk

D(p, π(k)
s )− 1

ηk
D(p, π(k+1)

s ). (D.14)

Letting p = π
(k)
s yields

〈
Φsw(k), π(k+1)

s − π(k)
s

〉
≤ − 1

ηk
D(π(k+1)

s , π(k)
s )− 1

ηk
D(π(k)

s , π(k+1)
s ) ≤ 0. (D.15)

Letting p = π∗
s and subtract and add π

(k)
s within the inner product term in (D.14) yields

〈
Φsw(k), π(k+1)

s − π(k)
s

〉
+
〈
Φsw(k), π(k)

s − π∗
s

〉
≤ 1

ηk
D(π∗

s , π(k)
s )− 1

ηk
D(π∗

s , π(k+1)
s ).

Note that we dropped the nonnegative term 1
ηk

D(π(k+1)
s , π

(k)
s ) on the left hand side to the

inequality.
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Taking expectation with respect to the distribution d∗, we have

Es∼d∗

[〈
Φsw(k), π(k+1)

s − π(k)
s

〉]
+ Es∼d∗

[〈
Φsw(k), π(k)

s − π∗
s

〉]
≤ 1

ηk
D∗

k −
1
ηk

D∗
k+1. (D.16)

For the first expectation in (D.16), we have

Es∼d∗

[〈
Φsw(k), π(k+1)

s − π(k)
s

〉]
=

∑
s∈S

d∗
s

〈
Φsw(k), π(k+1)

s − π(k)
s

〉
=

∑
s∈S

d∗
s

d
(k+1)
s

d(k+1)
s

〈
Φsw(k), π(k+1)

s − π(k)
s

〉
≥ ϑk+1

∑
s∈S

d(k+1)
s

〈
Φsw(k), π(k+1)

s − π(k)
s

〉
≥ ϑρ

∑
s∈S

d(k+1)
s

〈
Φsw(k), π(k+1)

s − π(k)
s

〉
= ϑρ

∑
s∈S

d(k+1)
s

〈
Q(k)

s , π(k+1)
s − π(k)

s

〉
+ ϑρ

∑
s∈S

d(k+1)
s

〈
Φsw(k) −Q(k)

s , π(k+1)
s − π(k)

s

〉
= ϑρ(1− γ)

(
V (k+1)

ρ − V (k)
ρ

)
+ ϑρ

∑
s∈S

d(k+1)
s

〈
Φsw(k) −Q(k)

s , π(k+1)
s − π(k)

s

〉
, (D.17)

where the last equality is due to the performance difference lemma (D.7) in Lemma D.4 and
the two inequalities above are obtained by the negative sign of

〈
Φsw(k), π

(k+1)
s − π

(k)
s

〉
shown

in (D.15) and by using the following inequality

d∗
s

d
(k+1)
s

(5.21)
≤ ϑk+1

(5.21)
≤ ϑρ.

The second term of (D.17) can be decomposed into four terms. That is,
∑
s∈S

d(k+1)
s

〈
Φsw(k) −Q(k)

s , π(k+1)
s − π(k)

s

〉
=
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

(
ϕ⊤

s,aw(k) −Q(k)
s,a

)
+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,a

(
Q(k)

s,a − ϕ⊤
s,aw(k)

)
=
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a ϕ⊤
s,a

(
w(k) − w

(k)
⋆

)
+
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

(
ϕ⊤

s,aw
(k)
⋆ −Q(k)

s,a

)
+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,a ϕ⊤
s,a

(
w

(k)
⋆ − w(k)

)
+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,a

(
Q(k)

s,a − ϕ⊤
s,aw

(k)
⋆

)
= 1 + 2 + 3 + 4 , (D.18)

where 1 , 2 , 3 and 4 are defined in (D.13).
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For the second expectation in (D.16), by applying again the performance difference lemma (D.7),
we have

Es∼d∗

[〈
Φsw(k), π(k)

s − π∗
s

〉]
= Es∼d∗

[〈
Q(k)

s , π(k)
s − π∗

s

〉]
+ Es∼d∗

[〈
Φsw(k) −Q(k)

s , π(k)
s − π∗

s

〉]
(D.7)= (1− γ)

(
V (k)

ρ − Vρ(π∗)
)

+ Es∼d∗

[〈
Φsw(k) −Q(k)

s , π(k)
s − π∗

s

〉]
. (D.19)

Similarly, we decompose the second term of (D.19) into four terms. That is,

Es∼d∗

[〈
Φsw(k) −Q(k)

s , π(k)
s − π∗

s

〉]
=
∑
s∈S

∑
a∈A

d∗
sπ(k)

s,a

(
ϕ⊤

s,aw(k) −Q(k)
s,a

)
+
∑
s∈S

∑
a∈A

d∗
sπ∗

s,a

(
Q(k)

s,a − ϕ⊤
s,aw(k)

)
=

∑
(s,a)∈S×A

d∗
sπ(k)

s,a ϕ⊤
s,a

(
w(k) − w

(k)
⋆

)
+

∑
(s,a)∈S×A

d∗
sπ(k)

s,a

(
ϕ⊤

s,aw
(k)
⋆ −Q(k)

s,a

)
+

∑
(s,a)∈S×A

d∗
sπ∗

s,aϕ⊤
s,a

(
w

(k)
⋆ − w(k)

)
+

∑
(s,a)∈S×A

d∗
sπ∗

s,a

(
Q(k)

s,a − ϕ⊤
s,aw

(k)
⋆

)
= a + b + c + d , (D.20)

where a , b , c and d are defined in (D.13).

Plugging (D.17) with the decomposition (D.18) and (D.19) with the decomposition (D.20)
into (D.16) concludes the proof.

Consequently, the convergence analysis of Q-NPG (Theorem 5.5, 5.6 and 5.9) will be
obtained by upper bounding the absolute values of 1 , 2 , 3 , 4 , a , b , c , d in (D.13)
with different set of assumptions (assumptions in Theorem 5.5 or assumptions in Theorem 5.9)
and with different step size scheme (geometrically increasing step size for Theorem 5.5 and 5.9
or constant step size for Theorem 5.6).

D.4.2 Proof of Theorem 5.5

Proof. From (D.13) in Lemma D.9, we will upper bound | 1 | and | 3 | by the statistical error
assumption (5.20) and upper bound | 2 | and | 4 | by using the transfer error assumption (5.23).

Indeed, to upper bound | 1 |, by Cauchy-Schwartz’s inequality, we have

| 1 | ≤
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

∣∣∣ϕ⊤
s,a

(
w(k) − w

(k)
⋆

)∣∣∣
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≤

√√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d∗
s ·UnifA(a) ·

∑
(s,a)∈S×A

d∗
s ·UnifA(a)

(
ϕ⊤

s,a

(
w(k) − w

(k)
⋆

))2

(5.24)=

√√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d∗
s ·UnifA(a)

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σd̃ ∗

≤

√√√√√Es∼d∗

(d
(k+1)
s

d∗
s

)2 |A| ∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σd̃ ∗

(5.26)
≤

√
Cρ|A|

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σd̃ ∗
, (D.21)

where the second inequality is obtained by Cauchy-Schwartz’s inequality, and the third in-
equality is obtained by the following inequality

∑
a∈A

(
π(k+1)

s,a

)2
≤
∑
a∈A

π(k+1)
s,a = 1. (D.22)

Then, by using Assumption 5.3 with the definition of κν , (D.21) is upper bounded by

| 1 |
(5.25)
≤

√
Cρ|A|κν

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σν

(5.6)
≤

√
Cρ|A|κν

1− γ

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σ
d̃ (k)

, (D.23)

where we use the shorthand

Σd̃ (k)
def= E(s,a)∼d̃ (k)

[
ϕs,aϕ⊤

s,a

]
. (D.24)

Besides, by the first-order optimality conditions for the optima w
(k)
⋆ ∈ argminw LQ(w, θ(k), d̃ (k)),

we have

(w − w
(k)
⋆ )⊤∇wLQ(w(k)

⋆ , θ(k), d̃ (k)) ≥ 0, for all w ∈ Rm. (D.25)

Therefore, for all w ∈ Rm,

LQ(w, θ(k), d̃ (k))− LQ(w(k)
⋆ , θ(k), d̃ (k))

= E(s,a)∼d̃ (k)

[(
ϕ⊤

s,aw − ϕ⊤
s,aw

(k)
⋆ + ϕ⊤

s,aw
(k)
⋆ −Q(k)

s,a

)2
]
− LQ(w(k)

⋆ , θ(k), d̃ (k))

= E(s,a)∼d̃ (k)

[
(ϕ⊤

s,aw − ϕ⊤
s,aw

(k)
⋆ )2

]
+ 2(w − w

(k)
⋆ )⊤E(s,a)∼d̃ (k)

[
(ϕ⊤

s,aw
(k)
⋆ −Q(k)

s,a)ϕs,a

]
=

∥∥∥w − w
(k)
⋆

∥∥∥2

Σ
d̃ (k)

+ (w − w
(k)
⋆ )⊤∇wLQ(w(k)

⋆ , θ(k), d̃ (k))
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(D.25)
≥

∥∥∥w − w
(k)
⋆

∥∥∥2

Σ
d̃ (k)

. (D.26)

Define

ϵ
(k)
stat

def= LQ(w(k), θ(k), d̃ (k))− LQ(w(k)
⋆ , θ(k), d̃ (k)).

Note that from (5.20), we have

E
[
ϵ
(k)
stat

]
≤ ϵstat. (D.27)

Plugging (D.26) into (D.23), we have

| 1 | ≤
√

Cρ|A|κν

1− γ
ϵ
(k)
stat. (D.28)

Similar to (D.21), we get the same upper bound for | 3 | by just replacing π
(k+1)
s,a into π

(k)
s,a . That

is,

| 3 | ≤
√

Cρ|A|κν

1− γ
ϵ
(k)
stat. (D.29)

To upper bound | 2 | and | 4 |, we introduce the following term

ϵ
(k)
bias

def= LQ(w(k)
⋆ , θ(k), d̃ ∗).

Note that from (5.23), we have

E
[
ϵ
(k)
bias

]
≤ ϵbias. (D.30)

By Cauchy-Schwartz’s inequality, we have

| 2 | ≤
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

∣∣∣ϕ⊤
s,aw

(k)
⋆ −Q(k)

s,a

∣∣∣

≤

√√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d∗
s ·UnifA(a) ·

∑
(s,a)∈S×A

d∗
s ·UnifA(a)

(
ϕ⊤

s,aw
(k)
⋆ −Q

(k)
s,a

)2

=

√√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d∗
s ·UnifA(a) · ϵ(k)

bias
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(D.22)
≤

√√√√√Es∼d∗

(d
(k+1)
s

d∗
s

)2 |A|ϵ(k)
bias

(5.26)
≤

√
Cρ|A|ϵ(k)

bias. (D.31)

Similar to (D.31), we get the same upper bound for | 4 | by just replacing π
(k+1)
s,a into π

(k)
s,a . That

is,

| 4 | ≤
√

Cρ|A|ϵ(k)
bias. (D.32)

Next, we will upper bound the absolute values of a , b , c and d of (D.13) separately by
using again the statistical error (5.20) and by using the transfer error assumption (5.23).

Indeed, to upper bound | a |, by Cauchy-Schwartz’s inequality, we have

| a | ≤
∑

(s,a)∈S×A
d∗

sπ(k)
s,a

∣∣∣ϕ⊤
s,a

(
w(k) − w

(k)
⋆

)∣∣∣

≤

√√√√√√ ∑
(s,a)∈S×A

(d∗
s)2
(
π

(k)
s,a

)2

d∗
s ·UnifA(a)

∑
(s,a)∈S×A

d∗
s ·UnifA(a)

(
ϕ⊤

s,a

(
w(k) − w

(k)
⋆

))2

(5.24)=

√√√√√√ ∑
(s,a)∈S×A

(d∗
s)2
(
π

(k)
s,a

)2

d∗
s ·UnifA(a)

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σd̃ ∗

(D.22)
≤

√
|A|

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σd̃ ∗
.

From the definition of κν , we further obtain

| a |
(5.25)
≤

√
|A|κν

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σν

(5.6)
≤

√
|A|κν

1− γ

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σ
d̃ (k)

(D.26)
≤

√
|A|κν

1− γ
ϵ
(k)
stat. (D.33)

Similar to (D.33), we get the same upper bound for | c | by just replacing π
(k)
s,a into π∗

s,a. That is,

| c | ≤
√
|A|κν

1− γ
ϵ
(k)
stat. (D.34)
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To upper bound | b |, by Cauchy-Schwartz’s inequality, we have

| b | ≤
∑

(s,a)∈S×A
d∗

sπ(k)
s,a

∣∣∣(ϕ⊤
s,aw

(k)
⋆ −Q(k)

s,a
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≤
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(
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)2
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s ·UnifA(a)
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d∗
s ·UnifA(a)

(
ϕ⊤

s,aw
(k)
⋆ −Q

(k)
s,a

)2

=
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(d∗
s)2
(
π

(k)
s,a

)2

d∗
s ·UnifA(a)ϵ

(k)
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(D.22)
≤

√
|A|ϵ(k)

bias. (D.35)

Similar to (D.35), we get the same upper bound for | d | by just replacing π
(k)
s,a into π∗

s,a. That is,

| d | ≤
√
|A|ϵ(k)

bias. (D.36)

Plugging all the upper bounds (D.28) of | 1 |, (D.31) of | 2 |, (D.29) of | 3 |, (D.32) of | 4 |,
(D.33) of | a |, (D.35) of | b |, (D.34) of | c | and (D.36) of | d | into (D.13) yields

ϑρ (δk+1 − δk) + δk ≤
D∗

k

(1− γ)ηk
−

D∗
k+1

(1− γ)ηk
+

2
√
|A|

(
ϑρ
√

Cρ + 1
)

1− γ

(√
κν

1− γ
ϵ
(k)
stat +

√
ϵ
(k)
bias

)
,

(D.37)

where δk
def= V

(k)
ρ − Vρ(π∗). Dividing both sides by ϑρ and rearranging terms, we get

δk+1 +
D∗

k+1
(1− γ)ηkϑρ

≤
(

1− 1
ϑρ

)(
δk + D∗

k

(1− γ)ηk(ϑρ − 1)

)

+
2
√
|A|

(√
Cρ + 1

ϑρ

)
1− γ

(√
κν

1− γ
ϵ
(k)
stat +

√
ϵ
(k)
bias

)
.

If the step sizes satisfy ηk+1(ϑρ − 1) ≥ ηkϑρ, which is implied by ηk+1 ≥ ηk/γ and (5.21), then

δk+1 +
D∗

k+1
(1− γ)ηk+1(ϑρ − 1) ≤

(
1− 1

ϑρ

)(
δk + D∗

k

(1− γ)ηk(ϑρ − 1)

)

+
2
√
|A|

(√
Cρ + 1

ϑρ

)
1− γ

(√
κν

1− γ
ϵ
(k)
stat +

√
ϵ
(k)
bias

)

≤
(

1− 1
ϑρ

)k+1(
δ0 + D∗

0
(1− γ)η0(ϑρ − 1)

)
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+
k∑

t=0

(
1− 1

ϑρ

)k−t 2
√
|A|

(√
Cρ + 1

ϑρ

)
1− γ

(√
κν

1− γ
ϵ
(t)
stat +

√
ϵ
(t)
bias

)
.

Finally, by choosing η0 ≥ 1−γ
γ D∗

0 and using the fact that

(1− γ)(ϑρ − 1)
(5.21)
≥ (1− γ)

( 1
1− γ

− 1
)

= γ,

we obtain

δk ≤ δk + D∗
k

(1− γ)ηkϑρ

≤
(

1− 1
ϑρ

)k 2
1− γ

+
2
√
|A|

(√
Cρ + 1

ϑρ

)
1− γ

k−1∑
t=0

(
1− 1

ϑρ

)k−1−t (√
κν

1− γ
ϵ
(t)
stat +

√
ϵ
(t)
bias

)
.

Taking the total expectation with respect to the randomness in the sequence of the iterates
w(0), · · · , w(k−1), we have

E
[
Vρ(π(k))

]
− Vρ(π∗)

≤
(

1− 1
ϑρ

)k 2
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+
2
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(D.27)+(D.30)

≤
(
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ϑρ

)k 2
1− γ

+
2
√
|A|

(√
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ϑρ
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k−1∑
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(
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)k−1−t (√
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)

≤
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)k 2
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+
2
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|A|

(
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)
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)
,

where the second inequality is obtained by Jensen’s inequality. This concludes the proof.
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D.4.3 Proof of Theorem 5.6

Proof. By (D.37) and using a constant step size η, we have

ϑρ (δk+1 − δk) + δk ≤
D∗

k

(1− γ)η −
D∗

k+1
(1− γ)η +

2
√
|A|

(
ϑρ
√

Cρ + 1
)

1− γ

(√
κν

1− γ
ϵ
(k)
stat +

√
ϵ
(k)
bias

)
.

Taking the total expectation with respect to the randomness in the sequence of the iterates
w(0), · · · , w(k−1), summing up from 0 to k − 1 and rearranging terms, we have

ϑρE [δk] +
k−1∑
t=0

E [δt] ≤
D∗

0
(1− γ)η + ϑρδ0 + k ·

2
√
|A|

(
ϑρ
√

Cρ + 1
)

1− γ

(√
κν

1− γ
ϵstat +√ϵbias

)
,

where we use the following inequalities

E
[√

ϵ
(t)
stat

]
≤
√
E
[
ϵ
(t)
stat

] (D.27)
≤
√

ϵstat,

E
[√

ϵ
(t)
bias

]
≤
√
E
[
ϵ
(t)
bias

] (D.30)
≤
√

ϵbias.

Finally, dropping the positive term E [δk] on the left hand side as π∗ is the optimal policy and
dividing both side by k yields

1
k

k−1∑
t=0

E
[
Vρ(π(t))

]
− Vρ(π∗) ≤ D∗

0
(1− γ)ηk

+ 2ϑρ

(1− γ)k

+
2
√
|A|

(
ϑρ
√

Cρ + 1
)

1− γ

(√
κν

1− γ
ϵstat +√ϵbias

)
.

D.4.4 Proof of Theorem 5.9

Proof. Similar to the proof of Theorem 5.5, by Lemma D.9, we upper bound the absolute values
of 1 , 2 , 3 , 4 , a , b , c , d introduced in (D.13), separately, with the set of assumptions in
Theorem 5.9.

In comparison with the proof of Theorem 5.5, we will also upper bound | 1 |, | 3 |, | a | and
| c | by the statistical error assumption (5.20) as in the proof of Theorem 5.5. However, we
will upper bound | 2 |, | 4 |, | b | and | d | by using the approximation error assumption (5.28)
instead of the transfer error assumption (5.23).
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To upper bound | 1 |, by Cauchy-Schwartz’s inequality, we get

| 1 | ≤
∑
s∈S

∑
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(D.26)
≤

√
Cνϵ

(k)
stat.

Similar to | 1 |, by using Assumption 5.8 and Cauchy-Schwartz’s inequality, and by simply
replacing π(k+1) into π(k) or π∗ and replacing d(k+1) into d∗, we obtain the same upper bound
of | 3 |, | a | and | c |, that is

| 3 |, | a |, | c | ≤
√

Cνϵ
(k)
stat.

Next, we define

ϵ(k)
approx

def= LQ(w(k)
⋆ , θ(k), d̃ (k))

By Assumption 5.7, we know that

E
[
ϵ(k)
approx

]
≤ ϵapprox.

To upper bound | 2 |, by Cauchy-Schwartz’s inequality, we have
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Similar to | 2 |, by using Assumption 5.7 and Cauchy-Schwartz’s inequality, and by simply
replacing π(k+1) into π(k) or π∗ and replacing d(k+1) into d∗, we obtain the same upper bound
for | 4 |, | b | and | d |, that is

| 4 |, | b |, | d | ≤
√

Cνϵ
(k)
approx.

Consequently, plugging all these upper bounds into (D.13) leads to the following recurrent
inequality

ϑρ (δk+1 − δk) + δk ≤
D∗

k

(1− γ)ηk
−

D∗
k+1

(1− γ)ηk
+ 2
√

Cν (ϑρ + 1)
1− γ

(√
ϵ
(k)
stat +

√
ϵ
(k)
approx

)
.

By using the same increasing step size as in Theorem 5.5 and following the same arguments in
the proof of Theorem 5.5 after (D.37), we obtain the final performance bound with the linear
convergence rate

E
[
Vρ(π(k))

]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k 2
1− γ

+ 2
√

Cν (ϑρ + 1)
1− γ

(√
ϵstat +√ϵapprox

)
.

D.4.5 Proof of Corollary 5.11

In order to better understand our proof, we first identify an issue appeared in the sample
complexity analysis of Q-NPG in Agarwal et al. (2021, Corollay 26). Agarwal et al. (2021)
adopts the optimization results of Shalev-Shwartz and Ben-David (2014, Theorem 14.8) where
the stochastic gradient ∇̂LQ(w, θ, d̃ θ) in (D.12) needs to be bounded. However, although they
consider a projection step for the iterate wt and assume that the feature map ϕs,a is bounded,
∇̂LQ(w, θ, d̃ θ) is still not guaranteed to be bounded. Indeed, recall the stochastic gradient of
the function LQ in (D.12)

∇̂wLQ(w, θ, d̃ θ) = 2
(
w⊤ϕs,a − Q̂s,a(θ)

)
ϕs,a.

They incorrectly use the argument thatw, ϕs,a and Q̂s,a(θ) are bounded to imply that
∥∥∥∇̂wLQ(w, θ, d̃ θ)

∥∥∥
is bounded. In fact, Q̂s,a(θ) can be unbounded even though E

[
Q̂s,a(θ)

]
= Qs,a(θ) ∈

[
0, 1

1−γ

]
is

bounded. To see this, we can rewrite Q̂s,a(θ) from (D.8) as

Q̂s,a(θ) =
H∑

t=0
c(st, at),
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with (s0, a0) = (s, a) ∼ d̃ θ and H is the length of the sampled trajectory for estimating Qs,a(θ)
in Algorithm 13. From Algorithm 13 and from the proof of Lemma D.5, we know that the
probability of H = k + 1 is that

Pr(H = k + 1) = (1− γ)γk.

So, with exponentially decreasing low probability, H can be unbounded. Consequently,
|Q̂s,a(θ)| upper bounded by H is not guaranteed to be bounded.

Proof sketch. Instead, we adopt the optimization results of Bach andMoulines (2013, Theorem
1) (see also Theorem D.15), which does not require the boundedness of the stochastic gradient.
However, in our following proof, we can verify thatE

[
Q̂s,a(θ)2

]
is bounded even though Q̂s,a(θ)

is unbounded. As to verify the condition (vi) in Theorem D.15 in our proof, i.e., the covariance
of the stochastic gradient at the optimum is upper bounded by the covariance of the feature
map up to a finite constant, we use a conditional expectation computation trick to separate
the correlated random variables Q̂s,a(θ) and ϕs,a with (s, a) ∼ d̃ θ appeared in the stochastic
gradient.

Proof. From Theorem 5.9, it remains to upper bound the statistical error√ϵstat produced from
the Q-NPG-SGD procedure (Algorithm 16) for each iteration k. We suppress the superscript
(k). Let wout be the output of T steps Q-NPG-SGD with the constant step size 1

2B2 and the
initialization w0 = 0, and let w⋆ ∈ argminw LQ(w, θ, d̃ θ) be the exact minimizer. To upper
bound ϵstat from (5.20), we aim to apply the standard analysis for the averaged SGD, i.e.,
Theorem D.15. Now we verify all the assumptions in order for Q-NPG-SGD.

First, (i) is verified by considering the Euclidean spaceH = Rm.
The observations

(
ϕs,a , Q̂s,a(θ)ϕs,a

)
∈ Rm × Rm are independent and identically dis-

tributed, sampled from Algorithm 13. Thus, (ii) is verified with xn = ϕs,a ∈ Rm and
zn = Q̂s,a(θ)ϕs,a ∈ Rm.

As the feature map ∥ϕs,a∥ ≤ B, we have E
[
∥ϕs,a∥2

]
finite. From (5.32), we know that the

covariance E
[
ϕs,aϕ⊤

s,a

]
is invertible. To verify (iii), it remains to verify that E

[∥∥∥Q̂s,a(θ)ϕs,a

∥∥∥2
]

is finite. Indeed, by using ∥ϕs,a∥ ≤ B, we have

E
[∥∥∥Q̂s,a(θ)ϕs,a

∥∥∥2
]
≤ B2E

[
Q̂s,a(θ)2

]
.
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Thus, it remains to show E
[(

Q̂s,a(θ)
)2
]
finite for (iii). From (D.8), we rewrite Q̂s,a(θ) as

Q̂s,a(θ) =
H∑

t=0
c(st, at),

with (s0, a0) = (s, a) ∼ d̃ θ and H is the length of the trajectory for estimating Qs,a(θ). Thus, (iii)
is verified as the variance of Q̂s,a(θ) is upper bounded by

E
[(

Q̂s,a(θ)
)2
]

= E(s,a)∼d̃ θ

 ∞∑
k=0

Pr(H = k)E

( k∑
t=0

c(st, at)
)2

| H = k, s0 = s, a0 = a


= E(s,a)∼d̃ θ

(1− γ)
∞∑

k=0
γkE

( k∑
t=0

c(st, at)
)2

| H = k, s0 = s, a0 = a


≤ E(s,a)∼d̃ θ

[
(1− γ)

∞∑
k=0

γk(k + 1)2
] Lemma C.2

≤ 2
(1− γ)2 , (D.38)

where the first inequality is obtained as |c(st, at)| ∈ [0, 1] for all (st, at) ∈ S ×A.
Next, we introduce the residual

ξ
def=
(
Q̂s,a(θ)− w⊤

⋆ ϕs,a

)
ϕs,a

(D.12)= 1
2∇̂wLQ(w⋆, θ, d̃ θ). (D.39)

From Lemma D.8, we know that

E
[
∇̂wLQ(w⋆, θ, d̃ θ)

]
= ∇wLQ(w⋆, θ, d̃ θ).

So, we have that
E [ξ] = 1

2∇wLQ(w⋆, θ, d̃ θ) = 0,

where the last equality is obtained asw⋆ is the exactminimizer of the loss functionLQ. Thus, (iv)
is verified with that f is 1

2LQ, ξn is ξ and θ is w in our context.
From Q-NPG-SGD update D.12, we have (v) verified with step size α/2 in our context.
Finally, for (vi), from the boundedness of the feature map ∥ϕs,a∥ ≤ B, we take R = B such

that E
[
∥ϕs,a∥2 ϕs,aϕ⊤

s,a

]
≤ B2E

[
ϕs,aϕ⊤

s,a

]
. It remains to find σ > 0 such that

E
[
ξξ⊤

]
≤ σ2E

[
ϕs,aϕ⊤

s,a

]
.

We rewrite the covariance of ξ as

E
[
ξξ⊤

] (D.39)= E
[(

Q̂s,a(θ)− w⊤
⋆ ϕs,a

)2
ϕs,aϕ⊤

s,a

]
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= E(s,a)∼d̃ θ

[(
Q̂s,a(θ)− w⊤

⋆ ϕs,a

)2
ϕs,aϕ⊤

s,a | s, a

]
= E(s,a)∼d̃ θ

[
E
[(

Q̂s,a(θ)− w⊤
⋆ ϕs,a

)2
| s, a

]
ϕs,aϕ⊤

s,a

]
.

Thus, it suffices to find σ > 0 such that

E
[(

Q̂s,a(θ)− w⊤
⋆ ϕs,a

)2
| s, a

]
= E

[(
Q̂s,a(θ)

)2
| s, a

]
− 2Qs,a(θ)w⊤

⋆ ϕs,a +
(
w⊤

⋆ ϕs,a

)2
≤ σ2

(D.40)

for all (s, a) ∈ S ×A to verify (vi). Besides, we know that

E
[(

Q̂s,a(θ)
)2
| s, a

] (D.38)
≤ 2

(1− γ)2 .

We also know that |Qs,a(θ)| ≤ 1
1−γ and ∥ϕs,a∥ ≤ B. Now we need to bound ∥w⋆∥. Again, since

w⋆ is the exact minimizer, we have∇wLQ(w⋆, θ, d̃ θ) = 0. That is

E(s,a)∼d̃ θ

[(
w⊤

⋆ ϕs,a −Qs,a(θ)
)

ϕs,a

]
= 0,

which implies

w⋆ =
(
E(s,a)∼d̃ θ

[
ϕs,aϕ⊤

s,a

])†
E(s,a)∼d̃ θ [Qs,a(θ)ϕs,a]

(5.6)
≤ 1

1− γ

(
E(s,a)∼ν

[
ϕs,aϕ⊤

s,a

])†
E(s,a)∼d̃ θ [Qs,a(θ)ϕs,a] .

By the boundness of the feature map ∥ϕs,a∥ ≤ B and the Q-function |Qs,a(θ)| ≤ 1
1−γ , and the

condition (5.32), we have the minimizer w⋆ bounded by

∥w⋆∥
(5.32)
≤ B

µ(1− γ)2 .

By using the upper bounds of E
[(

Q̂s,a(θ)
)2
| s, a

]
, |Qs,a(θ)|, ∥w⋆∥ and ∥ϕs,a∥, the left hand

side of (D.40) can be upper bounded by

E
[(

Q̂s,a(θ)− w⊤
⋆ ϕs,a

)2
| s, a

]
≤ 2

(1− γ)2 + 2B2

µ(1− γ)3 + B4

µ2(1− γ)4

= 1
(1− γ)2

( B2

µ(1− γ) + 1
)2

+ 1


≤ 2

(1− γ)2

(
B2

µ(1− γ) + 1
)2

.
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Thus, in order to satisfy (D.40), we choose

σ =
√

2
1− γ

(
B2

µ(1− γ) + 1
)

.

Now all the conditions (i) - (vi) in Theorem D.15 are verified. With step size α = 1
2B2 , the

initialization w0 = 0 and T steps of Q-NPG-SGD updates (D.12), we have

E
[
LQ(wout, θ, d̃ θ)

]
− LQ(w⋆, θ, d̃ θ) ≤ 4

T

(
σ
√

m + B ∥w⋆∥
)2

≤ 4
T

(√
2m

1− γ

(
B2

µ(1− γ) + 1
)

+ B2

µ(1− γ)2

)2

Consequently, Assumption 5.1 is verified by

√
ϵstat ≤

2
(1− γ)

√
T

(
B2

µ(1− γ)
(√

2m + 1
)

+
√

2m

)
.

The proof is completed by replacing the above upper bound of √ϵstat in the results of Theo-
rem 5.9.

D.5 Proof of Section 5.5

D.5.1 The one step NPG lemma

To prove Theorem 5.15 and 5.16, we start from providing the one step analysis of the NPG
update.

Lemma D.10 (One step NPG lemma). Fix a state distribution ρ; an initial state-action
distribution ν; an arbitrary comparator policy π∗. At the k-th iteration, let w

(k)
⋆ ∈

argminw LA(w, θ(k), d̃ (k)) denote the exact minimizer. Consider the w(k) and π(k) NPG iterates
given in (5.33) and (5.18) respectively. Note

ϵ
(k)
stat

def= LA(w(k), θ(k), d̃ (k))− LA(w(k)
⋆ , θ(k), d̃ (k)), (D.41)

ϵ(k)
approx

def= LA(w(k)
⋆ , θ(k), d̃ (k)), (D.42)

δk
def= V (k)

ρ − Vρ(π∗).
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If Assumptions 5.12, 5.13 and 5.14 hold for all k ≥ 0, then we have that

ϑρ (δk+1 − δk) + δk ≤
D∗

k

(1− γ)ηk
−

D∗
k+1

(1− γ)ηk
+
√

Cν (ϑρ + 1)
1− γ

(√
ϵ
(k)
stat +

√
ϵ
(k)
approx

)
.

(D.43)

Proof. As discussed in Section 5.3.1 and from Lemma D.3, we know that the corresponding
update from π(k) to π(k+1) can be described by the PMD method (5.18). From the three-point
descent lemma (Lemma D.14) and (5.18), we obtain that for any p ∈ ∆(A), we have

ηk

〈
Φ̄(k)

s w(k), π(k+1)
s

〉
+ D(π(k+1)

s , π(k)
s ) ≤ ηk

〈
Φ̄(k)

s w(k), p
〉

+ D(p, π(k)
s )−D(p, π(k+1)

s ).

Rearranging terms and dividing both sides by ηk, we get
〈
Φ̄(k)

s w(k), π(k+1)
s − p

〉
+ 1

ηk
D(π(k+1)

s , π(k)
s ) ≤ 1

ηk
D(p, π(k)

s )− 1
ηk

D(p, π(k+1)
s ).

Letting p = π
(k)
s and knowing that〈

Φ̄(k)
s w(k), π(k)

s

〉
= 0 for all k ≥ 0,

which is due to (5.13), we have
〈
Φ̄(k)

s w(k), π(k+1)
s

〉
≤ − 1

ηk
D(π(k+1)

s , π(k)
s )− 1

ηk
D(π(k)

s , π(k+1)
s ) ≤ 0. (D.44)

Letting p = π∗
s yields

〈
Φ̄(k)

s w(k), π(k+1)
s − π∗

s

〉
≤ 1

ηk
D(π∗

s , π(k)
s )− 1

ηk
D(π∗

s , π(k+1)
s ).

Note that we dropped the nonnegative term 1
ηk

D(π(k+1)
s , π

(k)
s ) on the left hand side to the

inequality.
Taking expectation with respect to the distribution d∗, we have

Es∼d∗

[〈
Φ̄(k)

s w(k), π(k+1)
s

〉]
− Es∼d∗

[〈
Φ̄(k)

s w(k), π∗
s

〉]
≤ 1

ηk
D∗

k −
1
ηk

D∗
k+1. (D.45)

For the first expectation in (D.45), we have

Es∼d∗

[〈
Φ̄(k)

s w(k), π(k+1)
s

〉]

297



Complements on Chapter 5

=
∑
s∈S

d∗
s

〈
Φ̄(k)

s w(k), π(k+1)
s

〉
=

∑
s∈S

d∗
s

d
(k+1)
s

d(k+1)
s

〈
Φ̄(k)

s w(k), π(k+1)
s

〉
(5.21)+(D.44)
≥ ϑk+1

∑
s∈S

d(k+1)
s

〈
Φ̄(k)

s w(k), π(k+1)
s

〉
(5.21)+(D.44)
≥ ϑρ

∑
s∈S

d(k+1)
s

〈
Φ̄(k)

s w(k), π(k+1)
s

〉
= ϑρE(s,a)∼d̄ (k+1)

[
(ϕ̄(k)

s,a)⊤w(k)
]

= ϑρE(s,a)∼d̄ (k+1)

[
A(k)

s,a

]
+ ϑρE(s,a)∼d̄ (k+1)

[
(ϕ̄(k)

s,a)⊤w(k) −A(k)
s,a

]
= ϑρ(1− γ)

(
V (k+1)

ρ − V (k)
ρ

)
+ ϑρE(s,a)∼d̄ (k+1)

[
(ϕ̄(k)

s,a)⊤w(k) −A(k)
s,a

]
, (D.46)

where the last line is obtained by the performance difference lemma (D.6), and we use the
shorthand ϕ̄

(k)
s,a as ϕ̄s,a(θ(k)).

The second term of (D.46) can be lower bounded. To do it, we first decompose it into two
terms. That is,

E(s,a)∼d̄ (k+1)

[
(ϕ̄(k)

s,a)⊤w(k) −A(k)
s,a

]
= E(s,a)∼d̄ (k+1)

[
(ϕ̄(k)

s,a)⊤(w(k) − w
(k)
⋆ )

]
︸ ︷︷ ︸

1
+ E(s,a)∼d̄ (k+1)

[
(ϕ̄(k)

s,a)⊤w
(k)
⋆ −A(k)

s,a

]
︸ ︷︷ ︸

2

. (D.47)

We will upper bound the absolute values of the above two terms | 1 | and | 2 | separately.
More precisely, similar to the proof of Theorem 5.9, we will upper bound the first term | 1 |
by the statistical error assumption (5.34) and upper bound the second term | 2 | by using the
approximation error assumption (5.35).

To upper bound 1 , we first define the following covariance matrix of the centered feature
map

Σ(k)
d̃ (k)

def= E(s,a)∼d̃ (k)

[
ϕ̄ (k)

s,a (ϕ̄ (k)
s,a )⊤

]
. (D.48)

Here we use the superscript (k) for Σ(k)
d̃ (k) to distinguish the covariance matrix of the feature

map Σd̃ (k) defined in (D.24) in the proof of Theorem 5.5, as the centered feature map ϕ̄
(k)
s,a

depends on the iterates θ(k).
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By Cauchy-Schwartz’s inequality, we have
∣∣ 1 ∣∣ ≤

∑
(s,a)∈S×A

d̄ (k+1)
s,a

∣∣∣(ϕ̄(k)
s,a)⊤(w(k) − w

(k)
⋆ )

∣∣∣

≤

√√√√√√ ∑
(s,a)∈S×A

(
d̄

(k+1)
s,a

)2

d̃
(k)
s,a

∑
(s,a)∈S×A

d̃
(k)
s,a

(
(ϕ̄(k)

s,a)⊤(w(k) − w
(k)
⋆ )

)2

(D.48)=

√√√√√E(s,a)∼d̃ (k)

( d̄
(k+1)
s,a

d̃
(k)
s,a

)2∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σ(k)
d̃ (k)

.

By further using the concentrability assumption 5.14, we have

∣∣ 1 ∣∣ (5.36)
≤

√
Cν

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σ(k)
d̃ (k)

≤
√

Cν

(
LA(w(k), θ(k), d̃ (k))− LA(w(k)

⋆ , θ(k), d̃ (k))
)

(D.49)
(D.41)=

√
Cνϵ

(k)
stat, (D.50)

where (D.49) uses that w
(k)
⋆ is a minimizer of LA and w

(k)
⋆ is feasible (see the same arguments

of (D.26) in the proof of Theorem 5.5).

For the second term | 2 | in (D.47), by Cauchy-Schwartz’s inequality, we have

| 2 | ≤
∑

(s,a)∈S×A
d̄ (k+1)

s,a

∣∣∣(ϕ̄(k)
s,a)⊤w

(k)
⋆ −A(k)

s,a

∣∣∣

≤

√√√√√√ ∑
(s,a)∈S×A

(
d̄

(k+1)
s,a

)2

d̃
(k)
s,a

∑
(s,a)∈S×A

d̃
(k)
s,a

(
(ϕ̄(k)

s,a)⊤w
(k)
⋆ −A

(k)
s,a

)2

=

√√√√√E(s,a)∼d̃ (k)

( d̄
(k+1)
s,a

d̃
(k)
s,a

)2LA(w(k)
⋆ , θ(k), d̃ (k))

(5.36)+(D.42)
≤

√
Cνϵ

(k)
approx. (D.51)

Plugging (D.50) and (D.51) into (D.46) yields

Es∼d∗

[〈
Φ̄(k)

s w(k), π(k+1)
s

〉]
≥ ϑρ(1− γ)

(
V (k+1)

ρ − V (k)
ρ

)
− ϑρ

√
Cν

(√
ϵ
(k)
stat +

√
ϵ
(k)
approx

)
.

(D.52)
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Now for the second expectation in (D.45), by using the performance difference lemma (D.6)
in Lemma D.4, we have

−Es∼d∗

[〈
Φ̄(k)

s w(k), π∗
s

〉]
= −E(s,a)∼d̄ π∗

[
A(k)

s,a

]
+ E(s,a)∼d̄ π∗

[
A(k)

s,a − (ϕ̄(k)
s,a)⊤w(k)

]
= (1− γ)

(
V (k)

ρ − Vρ(π∗)
)

+ E(s,a)∼d̄ π∗

[
A(k)

s,a − (ϕ̄(k)
s,a)⊤w(k)

]
. (D.53)

The second term of (D.53) can be lower bounded. We first decompose it into two terms.
That is,

E(s,a)∼d̄ π∗

[
A(k)

s,a − (ϕ̄(k)
s,a)⊤w(k)

]
= E(s,a)∼d̄ π∗

[
A(k)

s,a − (ϕ̄(k)
s,a)⊤w

(k)
⋆

]
︸ ︷︷ ︸

a
+ E(s,a)∼d̄ π∗

[
(ϕ̄(k)

s,a)⊤(w(k)
⋆ − w(k))

]
︸ ︷︷ ︸

b

. (D.54)

Nowwewill upper bound the absolute values of the above two terms | a | and | b | separately.
For the first one | a |, by Cauchy-Schwartz’s inequality, we have

| a | ≤
∑

(s,a)∈S×A
d̄ π∗

s,a

∣∣∣A(k)
s,a − (ϕ̄(k)

s,a)⊤w
(k)
⋆

∣∣∣

≤

√√√√√√ ∑
(s,a)∈S×A

(
d̄ π∗

s,a

)2

d̃
(k)
s,a

∑
(s,a)∈S×A

d̃
(k)
s,a

(
(ϕ̄(k)

s,a)⊤w
(k)
⋆ −A

(k)
s,a

)2

=

√√√√√E(s,a)∼d̃ (k)

( d̄ π∗
s,a

d̃
(k)
s,a

)2LA(w(k)
⋆ , θ(k), d̃ (k))

(5.36)+(D.42)
≤

√
Cνϵ

(k)
approx. (D.55)

For the second term | b | in (D.54), by Cauchy-Schwartz’s inequality, we have

| b | ≤
∑

(s,a)∈S×A
d̄ π∗

s,a

∣∣∣(ϕ̄(k)
s,a)⊤(w(k)

⋆ − w(k))
∣∣∣

≤

√√√√√√ ∑
(s,a)∈S×A

(
d̄ π∗

s,a

)2

d̃
(k)
s,a

∑
(s,a)∈S×A

d̃
(k)
s,a

(
(ϕ̄(k)

s,a)⊤(w(k) − w
(k)
⋆ )

)2

(D.48)=

√√√√√E(s,a)∼d̃ (k)

( d̄ π∗
s,a

d̃
(k)
s,a

)2∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σ(k)
d̃ (k)
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(5.36)
≤

√
Cν

∥∥∥w(k) − w
(k)
⋆

∥∥∥2

Σ(k)
d̃ (k)

(D.49)
≤

√
Cν

(
LA(w(k), θ(k), d̃ (k))− LA(w(k)

⋆ , θ(k), d̃ (k))
)

(D.41)=
√

Cνϵ
(k)
stat. (D.56)

Thus, we lower bound (D.54) by

−Es∼d∗

[〈
Φ̄(k)

s w(k), π∗
s

〉] (D.55)+(D.56)
≥ (1− γ)

(
V (k)

ρ − Vρ(π∗)
)
−
√

Cν

(√
ϵ
(k)
stat +

√
ϵ
(k)
approx

)
.

(D.57)

Substituting (D.52) and (D.57) into (D.45), dividing both side by 1− γ and rearranging
terms, we get

ϑρ (δk+1 − δk) + δk ≤
D∗

k

(1− γ)ηk
−

D∗
k+1

(1− γ)ηk
+
√

Cν (ϑρ + 1)
1− γ

(√
ϵ
(k)
stat +

√
ϵ
(k)
approx

)
.

D.5.2 Proof of Theorem 5.15

Proof. From (D.43) in LemmaD.10, by using the same increasing step size as in Theorem 5.5, i.e.
η0 ≥ 1−γ

γ D∗
0 and ηk+1 ≥ ηk/γ, and following the same arguments in the proof of Theorem 5.5

after (D.37), we obtain the final performance bound with the linear convergence rate

E
[
Vρ(π(k))

]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k 2
1− γ

+
√

Cν (ϑρ + 1)
1− γ

(√
ϵstat +√ϵapprox

)
.

D.5.3 Proof of Theorem 5.16

Proof. From (D.43) in Lemma D.10 with the constant step size, we have

ϑρ (δk+1 − δk) + δk ≤
D∗

k

(1− γ)η −
D∗

k+1
(1− γ)η +

√
Cν (ϑρ + 1)

1− γ

(√
ϵ
(k)
stat +

√
ϵ
(k)
approx

)
.
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Taking the total expectation with respect to the randomness in the sequence of the iterates
w(0), · · · , w(k−1) yields

ϑρ (E [δk+1]− E [δk]) + E [δk] ≤ E [D∗
k]

(1− γ)η −
E
[
D∗

k+1

]
(1− γ)η

+
√

Cν (ϑρ + 1)
1− γ

(
E
[√

ϵ
(k)
stat

]
+ E

[√
ϵ
(k)
approx

])

≤ E [D∗
k]

(1− γ)η −
E
[
D∗

k+1

]
(1− γ)η

+
√

Cν (ϑρ + 1)
1− γ

(√
E
[
ϵ
(k)
stat

]
+
√
E
[
ϵ
(k)
approx

])
(5.34)+(5.35)
≤ E [D∗

k]
(1− γ)η −

E
[
D∗

k+1

]
(1− γ)η

+
√

Cν (ϑρ + 1)
1− γ

(√
ϵstat +√ϵapprox

)
.

By summing up from 0 to k − 1, we get

ϑρE [δk] +
k−1∑
t=0

E [δt] ≤
D∗

0
(1− γ)η + ϑρδ0 + k ·

√
Cν (ϑρ + 1)

1− γ

(√
ϵstat +√ϵapprox

)
.

Finally, dropping the positive term E [δk] on the left hand side as π∗ is the optimal policy and
dividing both side by k yields

1
k

k−1∑
t=0

E
[
Vρ(π(t))

]
− Vρ(π∗) ≤ D∗

0
(1− γ)ηk

+ 2ϑρ

(1− γ)k +
√

Cν (ϑρ + 1)
1− γ

(√
ϵstat +√ϵapprox

)
.

D.5.4 Proof of Corollary 5.17

There is a similar remark for the proof of Corollary 5.17 to the one right before the proof of
Corollary 5.11 in Appendix D.4.5. We notice that there is the same error occurred for the proof
of NPG sample complexity analysis in Agarwal et al. (2021). Recall the stochastic gradient of
LA in (D.9)

∇̂wLA(w, θ, d̃ θ) = 2
(
w⊤ϕ̄s,a(θ)− Âs,a(θ)

)
ϕ̄s,a(θ).

It turns out that ∇̂wLA(w, θ, d̃ θ) is unbounded, since the estimate Âs,a(θ) of As,a(θ) can be
unbounded due to the unbounded length of the trajectory sampled in the sampling procedure,
Algorithm 14. Thus, Agarwal et al. (2021) incorrectly verify ∇̂LA(w, θ, d̃ θ) bounded by claiming
that Âs,a(θ) is bounded by 2

1−γ .
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Proof sketch. Despite the difference of using either d̃ θ or d̄ θ in the loss function LA, we
use the same assumptions of Liu et al. (2020), i.e., the Fisher-non-degeneracy (5.37) and
the boundedness of the feature map, and verify all the conditions of Theorem D.15 without
relying on the boundedness of the stochastic gradient. In particular, similar to the proof of
Corollary 5.11, we verify that E[Âs,a(θ)2] is bounded even though Âs,a(θ) is unbounded. To
verify the condition (vi) in Theorem D.15 in our proof, we use the same conditional expectation
computation trick as in the proof of Corollary 5.11 to separate the correlated random variables
Âs,a(θ) and ϕ̄s,a(θ) with (s, a) ∼ d̃ θ appeared in the stochastic gradient. Thanks to this trick,
we fix a flaw in the previous proof of Liu et al. (2020, Proposition G.1) 2.

Proof. Similar to the proof of Corollary 5.11, we suppress the subscript k. First, the centered
feature map is bounded by

∥∥∥ϕ̄s,a(θ)
∥∥∥ ≤ 2B. In order to apply Theorem D.15, it remains to

upper bound E
[
∥Âs,a(θ)ϕ̄s,a(θ)∥2

] and ∥w⋆∥ with w⋆ ∈ argminw LA(w, θ, d̃ θ), and find σ > 0
such that

E
[(

Âs,a(θ)− w⊤
⋆ ϕ̄s,a(θ)

)2
| s, a

]
= E

[(
Âs,a(θ)

)2
| s, a

]
− 2As,a(θ)w⊤

⋆ ϕ̄s,a(θ) +
(
w⊤

⋆ ϕ̄s,a(θ)
)2

≤ σ2 (D.58)

holds for all (s, a) ∈ S ×A and θ ∈ Rm.
Similar to the proof of Corollary 5.11, the closed form solution of w⋆ can be written as

w⋆ =
(
E(s,a)∼d̃ θ

[
ϕ̄s,a(θ)ϕ̄s,a(θ)⊤

])†
E(s,a)∼d̃ θ

[
Qs,a(θ)ϕ̄s,a(θ)

]
.

From (5.37), we have
∥w⋆∥ ≤

2B

µ(1− γ) .

2In a previous version of the proof in Section G, Liu et al. (2020, Proposition G.1) use the inequality

E
[(

Âs,a(θ) − w⊤
⋆ ϕ̄s,a(θ)

)2
ϕ̄s,a(θ)

(
ϕ̄s,a(θ)

)⊤
]

≤ E
[(

Âs,a(θ) − w⊤
⋆ ϕ̄s,a(θ)

)2
]
E
[
ϕ̄s,a(θ)

(
ϕ̄s,a(θ)

)⊤
]

which is incorrect since Âs,a(θ) and ϕ̄s,a(θ) are correlated random variables. To fix it, we use the following
conditional expectation computation trick

E
[(

Âs,a(θ) − w⊤
⋆ ϕ̄s,a(θ)

)2
ϕ̄s,a(θ)

(
ϕ̄s,a(θ)

)⊤
]

= E
[
E
[(

Âs,a(θ) − w⊤
⋆ ϕ̄s,a(θ)

)2
| s, a

]
ϕ̄s,a(θ)

(
ϕ̄s,a(θ)

)⊤
]

,

and bound the term E
[(

Âs,a(θ) − w⊤
⋆ ϕ̄s,a(θ)

)2
| s, a

]
in (D.58). This error is recently fixed by Liu et al. (2020)

on https://arxiv.org/pdf/2211.07937.pdf in their original paper.
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Nowwe need to upper bound E
[(

Âs,a(θ)
)2
| s, a

]
from (D.58). Indeed, by using Âs,a(θ) =

Q̂s,a(θ)− V̂s(θ), we have

E
[(

Âs,a(θ)
)2
| s, a

]
≤ 2E

[(
Q̂s,a(θ)

)2
| s, a

]
+ 2E

[(
V̂s,a(θ)

)2
| s, a

]
(D.38)
≤ 8

(1− γ)2 , (D.59)

where the last line is obtained, as E
[(

V̂s,a(θ)
)2
| s, a

]
shares the same upper bound (D.38) of

E
[(

Q̂s,a(θ)
)2
| s, a

]
by using the similar argument.

From (D.59) and ϕ̄s,a(θ) ≤ 2B, we verify E
[∥∥∥Âs,a(θ)ϕ̄s,a(θ)

∥∥∥2
]
bounded as well.

By using the upper bounds of E
[(

Âs,a(θ)
)2
| s, a

]
, ∥w⋆∥, |As,a(θ)| ≤ 2

1−γ and
∥∥∥ϕ̄s,a(θ)

∥∥∥ ≤
2B, the left hand side of (D.58) is upper bounded by

E
[(

Âs,a(θ)− w⊤
⋆ ϕ̄s,a(θ)

)2
| s, a

]
≤ 8

(1− γ)2 + 16B2

µ(1− γ)2 + 16B4

µ2(1− γ)2

= 4
(1− γ)2

(2B2

µ
+ 1

)2

+ 1


≤ 8

(1− γ)2

(
2B2

µ
+ 1

)2

.

Thus, we choose
σ = 2

√
2

1− γ

(
2B2

µ
+ 1

)
.

Now all the conditions (i) - (vi) in TheoremD.15 are verified. The reminder of the proof follows
that of Corollary 5.11.

D.6 Discussion on the distribution mismatch coefficients and the
concentrability coefficients

We have already mentioned in the comparison with Agarwal et al. (2021) right after Theorem
5.5 that, although we have linear convergence rates, the magnitude of our error floor is worse
(larger) by a factor of ϑρ

√
Cρ (ϑρ

√
Cν for Theorem 5.9 and 5.15), due to the concentrability Cρ

and the distribution mismatch coefficients ϑρ used in our proof. Such difference comes from
different nature of the proof techniques. Here the distribution mismatch coefficients ϑρ and
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coefficients

the concentrability coefficients Cρ and Cν are potentially large in our convergence theories. We
give extensive discussions on them, respectively.

D.6.1 Distribution mismatch coefficients ϑρ

Our distribution mismatch coefficient ϑρ in (5.21) is the same as the one in Xiao (2022). It
contains both an upper bound and a lower bound. The linear convergence rate in our theories
is 1 − 1

ϑρ
> 0. Thus, the smaller ϑρ is, the faster the resulting linear convergence rate. The

best linear convergence rate is achieved when ϑρ achieves its lower bound. Here our analysis
is general that it includes all the distribution mismatch coefficient ϑρ induced by any target
state distribution ρ. Our results generalizes and sometimes also improves with respect to prior
results.

A very pessimistic and trivial upper bound on ϑρ is

ϑρ ≤
1

(1− γ)ρmin
.

However, if the target state distribution ρ ∈ ∆(S) does not have full support, i.e., ρs = 0 for
some s ∈ S , then ϑρ might be infinite from this upper bound. Xiao (2022) just assumes that ϑρ

is finite. We further propose a solution to this particular issue. Indeed, if ρ does not have full
support, consider π∗ as an optimal policy. We can always convert the convergence guarantees
for some state distribution ρ′ ∈ ∆(S) with full support, i.e., ρ′

s > 0 for all s ∈ S as follows:

Vρ(π(k))− Vρ(π∗) =
∑
s∈S

ρs

(
Vs(π(k))− Vs(π∗)

)
=
∑
s∈S

ρs

ρ′
s

ρ′
s

(
Vs(π(k))− Vs(π∗)

)
≤
∥∥∥∥ ρ

ρ′

∥∥∥∥
∞

∑
s∈S

ρ′
s

(
Vs(π(k))− Vs(π∗)

)
=
∥∥∥∥ ρ

ρ′

∥∥∥∥
∞

(
Vρ′(π(k))− Vρ′(π∗)

)
.

Then we only need convergence guarantees of Vρ′(π(k))− Vρ′(π∗) for arbitrary ρ′ obtained from
all our convergence analysis above. In this case, the linear convergence rate depends on

ϑρ′
def= 1

1− γ

∥∥∥∥∥dπ∗(ρ′)
ρ′

∥∥∥∥∥
∞

<∞.

Equation (5.21) provides the lower bound 1
1−γ for ϑρ. Such lower bound can be achieved

when the target state distribution ρ satisfies that ρ = dπ∗(ρ) where π∗ is an optimal policy.
The advantage of this case is that, not only it implies the best linear convergence rate, more
importantly, the fast linear convergence rate is known to be γ. So we know the convergence
rate explicitly without any estimation, even though the optimal policy or the policy iterates are
unknown before training. Hence, we know when to stop running the algorithm. Lan (2022)
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only considers the case when ρ = dπ∗(ρ) and we are able to recover the same linear convergence
rate γ in their result.

Furthermore, the convergence performance Vρ(π(k))− Vρ(π∗) depends on the target state
distribution ρ. If the optimal policy π∗ is independent to the target state distribution ρ which is
usually the case in RL problems, then we are always allowed to fix ρ = dπ∗(ρ) for the analysis
without knowing ρ and π∗ and derive this best linear convergence performance with rate γ,
because we use the initial state-action distribution ν in training which is independent to ρ.

Finally, from (5.21), if d(k) converges to d∗, then ϑk converges to 1. This might imply
superlinear convergence results as Section 4.3 in Xiao (2022). In this case, the notion of the
distribution mismatch coefficients ϑρ no longer exists for the superlinear convergence analysis.
In other words, it is no longer concerned.

D.6.2 Concentrability coefficients Cν

The issue of having (potentially large) concentrability coefficients is unavoidable in all the fast
linear convergence analysis of the inexact NPG that we are aware of, including even the tabular
setting (e.g., Lan (2022) and Xiao (2022)) and the log-linear policy setting (Cayci et al. (2021),
Chen and Theja Maguluri (2022) and ours).

First, in the fast linear convergence analysis of inexact NPG, the concentrability coefficients
appear from the errors, including the statistical error and the approximation error. Thus, one
way to avoid having the concentrability coefficients appear is to consider the exact NPG in
the tabular setting (See Theorem 10 in Xiao (2022)). Because the tabular setting makes no
approximation error and the exact NPGmakes no statistical error. We consider the inexactNPG
with the log-linear policy. Consequently, we have the concentrability coefficients multiplied by
both the statistical error ϵstat and the approximation error (ϵbias in Assumption 5.2 or ϵapprox in
Assumption 5.7 and 5.13).

To remove the concentrability coefficients, one has to make strong assumptions on the
errors with the L∞ supremum norm. In the tabular setting, Lan (2022) and Xiao (2022)
assume that ∥Q̂(π)−Q(π)∥∞ ≤ ϵstat. The cons of such strong assumption requires high sample
complexity and is already explained in Appendix D.1.1. In the log-linear policy setting, Chen
and Theja Maguluri (2022) assume that ∥Qs(θ(k)) − Φw

(k)
⋆ ∥∞ ≤ ϵbias for the approximation

error, which is a very strong assumption in the function approximation regime. Due to the
supremum norm, ϵbias is unlikely to be small, especially for large action spaces. Under this
strong assumption, Lan (2022), Xiao (2022) and Chen and Theja Maguluri (2022) are able to
eliminate the concentrability coefficients. To avoid assuming such strong assumptions, both
Cayci et al. (2021) and our work consider the expected L2 errors in the log-linear policy setting,
which are much weaker assumptions, especially much more reasonable for the approximation

306



D.7 Standard optimization results

error ϵbias compared to the one in Chen and Theja Maguluri (2022). The tradeoff is that, the
concentrability coefficients can not be eliminated in this case both in Cayci et al. (2021) and our
results.

Furthermore, as mentioned right after Theorem 5.15, under the expected error assumptions
(Assumption 5.12 and 5.13), our concentrability coefficient Cν is better presented than the
one in Assumption 2 in Cayci et al. (2021) in the sense that it is independent to the policies
throughout the iterations thanks to the use of d̃ (k) instead of d̄ (k) (which is mentioned in
Remark 5.10 as well) and is controllable to be finite by ν, while the one in Cayci et al. (2021)
depends on the iterates, thus is unknown and is not guaranteed to be finite.

Finally, like the distribution mismatch coefficient, the upper bound of Cν in (5.31) is very
pessimistic. By the definition of Cν in (5.29), one can expect that Cν is closed to 1, when π(k)

and π(k+1) converge to π∗ with π∗ the optimal policy.
So our concentrability coefficient Cν is the "best" one among all concentrability coefficients

in the sense that it takes the weakest assumptions on errors compared to Lan (2022) and Xiao
(2022) and Chen and Theja Maguluri (2022), it does not impose any restrictions on the MDP
dynamics compared to Cayci et al. (2021) and it can be controlled to be finite by ν when other
concentrability coefficients are infinite (Scherrer, 2014).

It is still an open question whether we can obtain fast linear convergence results of the
inexact NPG in the log-linear policy setting, with small error floor and a much improved
concentrability coefficient, e.g., as the same magnitude as the one in Agarwal et al. (2021).

D.7 Standard optimization results

In this section, we present the standard optimization results from Beck (2017), Xiao (2022),
and Bach and Moulines (2013) used in our proofs.

First, we present the closed form update of mirror descent with KL divergence on the
simplex. We provide its proof for the completeness.

Lemma D.11 (Mirror descent on the simplex, Example 9.10 in Beck (2017)). Let g ∈ Rn

which will often be a gradient and let η > 0. For p, q in the unit n-simplex ∆n, the mirror descent
step with respect to the KL divergence

min
p∈∆n

η ⟨g, p⟩+ D(p, q) (D.60)
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is given by

p = q ⊙ e−ηg∑n
i=1 qie−ηgi

, (D.61)

where ⊙ is the element-wise product between vectors.

Proof. The Lagrangian of (D.60) is given by

L(p, µ, λ) = η ⟨g, p⟩+ D(p, q) + µ(1−
n∑

i=1
pi)−

n∑
i=1

λipi,

where µ ∈ R and λ ∈ Rn with non-negative coordinates are the Lagrangian multipliers. Thus
the Karush–Kuhn–Tucker conditions are given by

ηg + log(p/q) + 1n = µ1n + λ,

1⊤
n p = 1,

λi = 0 or pi = 0, for all i = 1, · · · , n,

where the division p/q is element-wise. Isolating p in the top equation gives

p = q ⊙ e(µ−1)1n+λ−ηg = eµ−1q ⊙ eλ−ηg.

Using the second constraint 1⊤
n p = 1 gives that

1 = eµ−1
n∑

i=1
qie

λi−ηgi =⇒ eµ−1 = 1∑n
i=1 qieλi−ηgi

.

Consequently, by plugging the above term into p, we have that

p = q ⊙ eλ−ηg∑n
i=1 qieλi−ηgi

.

It remains to determine λ. If qi = 0 then pi = 0 and thus λi > 0. Conversely, if qi > 0 then pi > 0
and thus λi = 0. In either of these cases, we have that the solution is given by (D.61).

Now we present the three-point descent lemma on proximal optimization with Bregman
divergences, which is another key ingredient for our PMD analysis. Following Xiao (2022,
Lemma 6), we adopt a slight variation of Lemma 3.2 in Chen and Teboulle (1993). First, we say
a convex function f is proper if dom f is nonempty and for all x ∈ dom f , f(x) > −∞; we say a
convex function is closed, if it is lower semi-continuous. Before presenting the lemma, we still
need some technical conditions.
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Definition D.12 (Legendre function, Section 26 in Rockafellar (1970)). We say a function h

is of Legendre type or a Legendre function if the following properties are satisfied:

(i) h is strictly convex in the relative interior of dom h, denoted as rint dom h.

(ii) h is essentially smooth, i.e., h is differentiable in rint dom h and, for any boundary point xb

of rint dom h, lim
x→xb

∥∇h(x)∥ → ∞ where x ∈ rint dom h.

Definition D.13 (Bregman divergence (Bregman, 1967; Censor and Zenios, 1997)). Let
h : dom h→ R be a Legendre function and assume that rint dom h is nonempty. The Bregman
divergence Dh(·, ·) : dom h × rint dom h → [0,∞) generated by h is a distance-like function
defined as

Dh(p, p′) def= h(p)− h(p′)−
〈
∇h(p′), p− p′〉 . (D.62)

Under the above conditions, we have the following result. We also provide its proof for
self-containment. (Xiao (2022) does not provide a formal proof.)

LemmaD.14 (Three-point descent lemma, Lemma 6 in Xiao (2022)). Suppose that C ⊂ Rm is
a closed convex set, f : C → R is a proper, closed convex function, Dh(·, ·) is the Bregman divergence
generated by a function h of Lengendre type and rint dom h ∩ C ̸= ∅. For any x ∈ rint dom h, let

x+ ∈ arg min
u ∈ dom h ∩ C

{f(u) + Dh(u, x)}.

Then x+ ∈ rint dom h ∩ C and for any u ∈ dom h ∩ C,

f(x+) + Dh(x+, x) ≤ f(u) + Dh(u, x)−Dh(u, x+).

Proof. First, we prove that for any a, b ∈ rint dom h and c ∈ dom h, the following identity holds:

Dh(c, a) + Dh(a, b)−Dh(c, b) = ⟨∇h(b)−∇h(a), c− a⟩ . (D.63)

Indeed, using the definition of Dh in (D.62), we have

⟨∇h(a), c− a⟩ = h(c)− h(a)−Dh(c, a), (D.64)
⟨∇h(b), a− b⟩ = h(a)− h(b)−Dh(a, b), (D.65)

309



Complements on Chapter 5

⟨∇h(b), c− b⟩ = h(c)− h(b)−Dh(c, b). (D.66)

Subtracting (D.64) and (D.65) from (D.66) yields (D.63).
Next, since h is of Legendre type, we have x+ ∈ rint dom h∩C. Otherwise, x+ is a boundary

point of dom h. From the definition of Legendre function, ∥∥∇h(x+)
∥∥ =∞which is not possible,

as x+ is also the minimum point of f(u) + Dh(u, x). By the first-order optimality condition, we
have 〈

u− x+, g+ +∇yDh(y, x)|y=x+

〉
≥ 0,

where g+ ∈ ∂f(x+) is the subdifferential of f at x+. From the definition of Dh, the above
inequality is equivalent to〈

u− x+,∇h(x+)−∇h(x)
〉
≥
〈
x+ − u, g+

〉
. (D.67)

Besides, plugging c = u, a = x+ and b = x into (D.63), we obtain

〈
u− x+,∇h(x+)−∇h(x)

〉
= Dh(u, x)−Dh(u, x+)−Dh(x+, x)

(D.67)
≥

〈
x+ − u, g+

〉
.

Rearranging terms and adding f(u) on both sides, we have

Dh(u, x)−Dh(u, x+) + f(u) ≥ f(u) +
〈
x+ − u, g+

〉
+ Dh(x+, x)

≥ f(x+) + Dh(x+, x),

which concludes the proof. The last inequality is obtained by the convexity of f and g+ ∈
∂f(x+).

Finally, we use the following linear regression analysis for the proof of our sample complexity
results, i.e., Corollary 5.11 and 5.17.

TheoremD.15 (Theorem 1 in Bach andMoulines (2013)). Consider the following assumptions:

(i) H is a m-dimensional Euclidean space.

(ii) The observations (xn, zn) ∈ H ×H are independent and identically distributed.

(iii) E
[
∥xn∥2

]
and E

[
∥zn∥2

]
are finite. The covariance E

[
xnx⊤

n

]
is assumed invertible.

(iv) The global minimum of f(θ) = 1
2E
[
⟨θ, xn⟩2 − 2 ⟨θ, zn⟩

]
is attained at a certain θ∗ ∈ H. Let

ξn = zn − ⟨θ∗, xn⟩xn denote the residual. We have E [ξn] = 0.
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(v) Consider the stochastic gradient recursion defined as

θn = θn−1 − η(⟨θn−1, xn⟩xn − zn),

started from θ0 ∈ H and also consider the averaged iterates θout = 1
n+1

∑n
k=0 θk.

(vi) There exists R > 0 and σ > 0 such that E
[
ξnξ⊤

n

]
≤ σ2E

[
xnx⊤

n

]
and E

[
∥xn∥2 xnx⊤

n

]
≤

R2E
[
xnx⊤

n

]
.

When η = 1
4R2 , we have

E [f(θout)− f(θ∗)] ≤ 2
n

(
σ
√

m + R ∥θ0 − θ∗∥
)2

. (D.68)
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Titre : Méthodes du second ordre stochastiques et analyse de temps fini des méthodes de policy-gradient
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Résumé : Pour résoudre les problèmes de l’appren-
tissage automatique à grande échelle, les méthodes
de premier ordre telles que la descente du gradient
stochastique et l’ADAM sont les méthodes de choix en
raison de leur coût pas cher par itération. Le problème
des méthodes du premier ordre est qu’elles peuvent
nécessiter un réglage lourd des paramètres et/ou une
connaissance des paramètres du problème. Il existe
aujourd’hui un effort considérable pour développer
des méthodes du second ordre stochastiques effi-
caces afin de résoudre des problèmes de l’apprentis-
sage automatique à grande échelle. La motivation est
qu’elles demandent moins de réglage des paramètres
et qu’elles convergent pour une plus grande variété
de modèles et de datasets. Dans la première partie
de la thèse, nous avons présenté une approche de
principe pour désigner des méthodes de Newton sto-
chastiques à fin de résoudre à la fois des équations
non linéaires et des problèmes d’optimisation d’une
manière efficace. Notre approche comporte deux
étapes. Premièrement, nous pouvons réécrire les
équations non linéaires ou le problème d’optimisation
sous forme d’équations non linéaires souhaitées. En-
suite, nous appliquons de nouvelles méthodes du se-
cond ordre stochastiques pour résoudre ce système

d’équations non linéaires. Grâce à notre approche
générale, nous présentons de nombreux nouveaux al-
gorithmes spécifiques du second ordre qui peuvent
résoudre efficacement les problèmes de l’apprentis-
sage automatique à grande échelle sans nécessiter
de connaissance du problème ni de réglage des
paramètres. Dans la deuxième partie de la thèse,
nous nous concentrons sur les algorithmes d’opti-
misation appliqués à un domaine spécifique : l’ap-
prentissage par renforcement (RL). Cette partie est
indépendante de la première partie de la thèse. Pour
atteindre de telles performances dans les problèmes
de RL, le policy-gradient (PG) et sa variante, le policy-
gradient naturel (NPG), sont les fondements de plu-
sieurs algorithmes de l’état de l’art (par exemple,
TRPO et PPO) utilisés dans le RL profond. Malgré
le succès empirique des méthodes de RL et de PG,
une compréhension théorique solide du PG original a
longtemps fait défaut. En utilisant la structure du RL
du problème et des techniques modernes de preuve
d’optimisation, nous obtenons nouvelles analyses en
temps fini de la PG et de la NPG. Grâce à notre ana-
lyse, nous apportons également de nouvelles pers-
pectives aux méthodes avec de meilleurs choix d’hy-
perparamètres.

Title : Stochastic Second Order Methods and Finite Time Analysis of Policy Gradient Methods

Keywords : Optimization, stochastic second-order methods, reinforcement learning, policy gradient methods

Abstract : To solve large scale machine learning pro-
blems, first-order methods such as stochastic gradient
descent and ADAM are the methods of choice be-
cause of their low cost per iteration. The issue with
first order methods is that they can require extensive
parameter tuning, and/or knowledge of the parame-
ters of the problem. There is now a concerted effort
to develop efficient stochastic second order methods
to solve large scale machine learning problems. The
motivation is that they require less parameter tuning
and converge for wider variety of models and data-
sets. In the first part of the thesis, we presented a
principled approach for designing stochastic Newton
methods for solving both nonlinear equations and op-
timization problems in an efficient manner. Our ap-
proach has two steps. First, we can re-write the non-
linear equations or the optimization problem as desi-
red nonlinear equations. Second, we apply new sto-
chastic second order methods to solve this system of
nonlinear equations. Through our general approach,

we showcase many specific new second-order algo-
rithms that can solve the large machine learning pro-
blems efficiently without requiring knowledge of the
problem nor parameter tuning. In the second part of
the thesis, we then focus on optimization algorithms
applied in a specific domain: reinforcement learning
(RL). This part is independent to the first part of the
thesis. To achieve such high performance of RL pro-
blems, policy gradient (PG) and its variant, natural po-
licy gradient (NPG), are the foundations of the several
state of the art algorithms (e.g., TRPO and PPO) used
in deep RL. In spite of the empirical success of RL
and PG methods, a solid theoretical understanding of
even the “vanilla” PG has long been elusive. By leve-
raging the RL structure of the problem together with
modern optimization proof techniques, we derive new
finite time analysis of both PG and NPG. Through our
analysis, we also bring new insights to the methods
with better hyperparameter choices.
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