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Abstract

In this thesis, we studied how both redundancy and mobility impact the performance of
computer systems and cellular networks, respectively. The general notion of redundancy
is that upon arrival each job dispatches copies into multiple servers. This allows
exploiting the variability of the queue lengths and server capacities in the system. We
consider redundancy models with both identical and i.i.d. copies. When copies are i.i.d.,
we show that with PS and ROS, redundancy does not reduce the stability region. When
copies are identical, we characterize the stability condition for systems where either
FCFS, PS, or ROS is implemented in the servers. We observe that this condition strongly
depends on the scheduling policy implemented in the system. We then investigate how
redundancy impacts the performance by comparing it to a non-redundant system. We
observe that both the stability and performance improve considerably under redundancy
as the heterogeneity of the server capacities increases. Furthermore, for both i.i.d. and
identical copies, we characterize redundancy-aware scheduling policies that improve
both the stability and performance. Finally, we identify several open problems that
might be of interest to the community.

User mobility in wireless networks addresses the fact that users in a cellular network
switch from cell to cell when geographically moving in the system. We control the
mobility speed of the users among the servers and analyze how mobility impacts the
performance at a user level. We observe that the performance of the system under fixed
mobility speed strongly depends on the inherent parameters of the system.

Keywords: Load balancing, stability, performance, redundancy, mobility.





Résumé

Dans cette thèse, nous avons étudié l’impact de la redondance et de la mobilité sur
les performances des systèmes informatiques et des réseaux cellulaires, respectivement.
La notion générale de redondance est qu’à l’arrivée, chaque tâche envoie des copies
dans plusieurs serveurs. Cela permet d’exploiter la variabilité de la longueur des files
d’attente et des capacités du serveur dans le système. Nous considérons des modèles
de redondance où les tâches ont soit des copies i.i.d. ou des copies identiques. Lorsque
des copies sont i.i.d., nous montrons que la région de stabilité n’est pas réduit quand
PS ou ROS est mis en œuvre. Lorsque les copies sont identiques, nous caractérisons
la condition de stabilité pour les systèmes où FCFS, PS ou ROS est mis en œuvre
dans les serveurs. Nous observons que cette condition dépend fortement de la discipline
de service. Nous examinons ensuite l’incidence de la redondance sur le rendement en
la comparant à celle d’un système où il n’y a pas de redondance. Nous observons
que la stabilité et les performances sont considérablement améliorées sous l’effet de la
redondance, à mesure que l’hétérogénéité des capacités du serveur augmente. De plus,
pour les systèmes avec des copies i.i.d. et des copies identiques, nous caractérisons des
disciplines de service prenant en compte la redondance qui peuvent améliorer à la fois
la stabilité et les performances du système. Enfin, nous identifions plusieurs problèmes
ouverts qui pourraient intéresser la collectivité.

La mobilité des utilisateurs dans les réseaux sans fil rend compte du fait que les
utilisateurs d’un réseau cellulaire passent d’une cellule à l’autre lorsqu’ils se déplacent
géographiquement dans le système. Nous contrôlons la vitesse de mobilité des utilisateurs
parmi les serveurs et analysons comment la mobilité affecte les performances au niveau
de l’utilisateur. Nous observons que la performance du système à vitesse de mobilité
constante dépend fortement des paramètres inhérents au système.

Mots clés: Équilibrage de charge, stabilité, performance, redondance, mobilité.
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Chapter 1

Introduction

This thesis is devoted to the analysis of multi-server queuing models in the context of
redundancy and user mobility. Redundancy is a load balancing technique recently used
in computer clusters in order to improve the delay experienced by the users. In a cellular
network, mobility is the phenomenon where a user communicates with a different base
station when geographically moving in the network. Both systems have in common that
the underlying model is a multi-server system. In this thesis, we aim to characterize the
impact of redundancy and mobility in the performance.

The general notion of redundancy is to dispatch multiple copies of each job to a
subset of servers and to consider the result of whichever copy completes service first,
moment in which the additional copies are removed from the system. Redundancy aims
to minimize the system latency by exploiting the variability in the queue lengths and
server capacities of the different servers. The potential of redundancy relies in finding
the right trade-off between on one hand exploiting variability and on the other hand
wasting resources by adding redundant copies.

Mobility addresses the fact that users in a cellular network switch from cell to cell
when geographically moving in the system. That is, upon arrival each user is first
assigned to a particular base station and then, this user follows a path where it receives
service from consecutive cells until it is completely served and leaves the system. Cellular
mobile networks are studied due to the various empirical evidences showing that the
capacity of base stations are more efficiently used under mobility.

From the mathematical point of view, both redundancy and mobility can be modeled
as a multi-server system, where a set of servers (or base stations) provides service to an
incoming stream of jobs. Jobs arrive according to some stochastic process and require a
randomly distributed amount of service. Relevant performance measures considered in
this thesis are stability of the system and the delay experienced by a user.



2 Introduction

1.1 Redundancy models

In large computer cluster systems, load balancing has a big impact in the performance
perceived by the end-users. A load balancing strategy determines how to distribute the
incoming jobs among the servers. For instance, Join-Shortest-Queue strategy dispatches
each incoming job into the server with least number of jobs among all the servers in
the system. This strategy, which is the optimal dispatching policy under exponentially
distributed service times ([74]), can be unpractical, since there is constant signaling
between the dispatcher and the servers.

In order to balance the trade-off between information and performance, many
different load balancing strategies have been analyzed in literature. The following
strategies partially share information between the servers and the dispatcher: Under
Power-of-d schemes, upon arrival of a job the dispatcher will probe d servers, and the
job either joins the shortest queue (JSQ(d)) or joins the queue with smallest workload
(JSW(d)). Under idle-server based policies, a server sends a notification to the dispatcher
when it idles. Under pull/push mechanisms, servers that are idle can claim jobs from
busy servers, and vice versa, servers with long queues can transfer jobs to idle servers.
Redundancy on the other hand, is a load balancer that is unaware of the state of the
servers, but does require signaling among the servers for cancellation of the copies.

The general notion of redundancy is to dispatch multiple copies of the same job to
multiple servers and wait until a first copy is taken into service or completes service,
moment in which the remaining copies of this job are removed. Redundancy exploits
the variability of queue lengths and server capacities in the system, and thus potentially
reduces the response time. Nevertheless, adding redundant copies induces a waste of
resources as servers work on copies that might not end up being completely served.
Therefore, there is a trade-off between exploiting the variability of the servers capacities
and the additional resources that this incurs.

In spite of the non-negligible waste of resources, many empirical and numerical
studies suggest that redundancy could potentially improve the performance of real-world
computer system applications. They advocate that redundancy is a robust and reliable
technique with promising results for a wide range of conditions. Note that, even though
the dispatcher is unaware of the state of the servers, by sending redundant copies, it
might avoid that jobs queue up on heavily-loaded servers.

The rest of this section is organized as follows. In Section 1.1.1 we present various
studies where redundancy has been implemented in real-world computer applications. In
Section 1.1.2 we present the modeling framework and terminology used in the literature,
as well as in the thesis. In Section 1.1.3 we provide a survey on the stability results
for redundancy models available in the literature. In Section 1.1.4 we focus on results
regarding the performance analysis and in particular discuss redundancy models that
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have a product-form steady-state distribution.

1.1.1 Implementation in real-world computer systems

Computer systems are clusters composed of hundreds of servers working in parallel
managing thousands of arriving queries per second. A low response time is a mayor
objective for computer system designers, [51]. As an example, [98] reveals that for
Microsoft Bing an additional two second slowdown reduces the requested queries per
user by 1.8% and the revenue per user by 4.3%. However, computer systems can have
very variable response times due to e.g. sharing resources among different applica-
tions/requests, demon programs running in the background, maintenance activities and
garbage collection.

In the following we present some studies that show that redundancy can improve
the performance of real-world applications in the context of computer systems. These
examples are DNS, Google Web Search, MapReduce and YouTube.

Domain Name System (DNS) is a hierarchical and decentralized naming system
that associates domain names to their respective IP addresses so that the computer
service locates and identifies the underlying network protocol. Since 1985, DNS provides
worldwide extended distributed directory service, which is essential for the functionality
of the Internet.

Vulimiri et al. [103, 104] consider a list of 10 DNS servers ranked with respect to
their mean response time (previously computed by simulation) and Alexa.com’s list of
the top one million website names. The authors observe that for the system where 10
copies of each query are dispatched to all 10 DNS servers, the fraction of queries later
than 500 ms is reduced by a factor 6.5, and the fraction later than 1.5 sec is reduced
by a factor 50, compared to the system where queries are assigned to a single server
chosen uniformly at random. Additionally, Vulimiri et al. [104] study the response
times for the system where d copies of each query are dispatched to the d best-ranked
DNS servers compared to dispatching the job only to the best-ranked DNS server, for
d = 2, . . . , 10. The authors observe that the mean, median, 95th and 99th percentile
of the average reduction is about 20-30% with 2 servers and improves up to 50-62%
reduction with 10 servers.

Google Web Search is by far the most used Internet search engines worldwide, with
over 92% of the Internet search queries, [99]. Google’s file storage system is composed of
scalable distributed data-intensive applications [49] and is very sensitive to fluctuations
of the response time. For example, [27] observes that when the delay is elongated by 4
seconds, these users perform 0.74% fewer searches after 4-6 weeks.
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A Google Web Search query follows a sophisticated process before it presents a
list of titles together with the respective uniform source locations to the user, [35, 12].
In a few words, first a DNS associates the query with an IP address and its relative
cluster. Within the cluster, a search protocol matches the query with a list of documents
identifiers, known as docids, ordered by their relevance. The list of docids serves to
compute the title and uniform source location of these documents.

Google applies two short-term redundancy strategies to reduce the tail response time
of its users, among other techniques, see [35, 12] for more details: i) Hedged requests;
each job dispatches a second copy only when the original one fails to complete service
before some amount of time, and waits until one of its copies is served. In [35] the
authors observe that sending a hedging request after a 0.10 seconds delay reduces the
99.9th-percentile tail response time from 1.8 seconds to 0.74 seconds when reading values
for 1000 keys stored in a BigTable distributed across 100 servers. This improvement
induces sending just 2% more of request. ii) Tied requests; each jobs dispatches multiple
copies into the system and when the first copy starts execution, the additional copies
are removed from the system. The server sends a cancellation message to the additional
copies in the servers. This implies that servers need to communicate among them and
induce some small delay when two copies enter service simultaneously, but avoids serving
the same job in multiple servers. The authors of [35] observe that when jobs dispatch
two copies in the Google’s clusters, the median response time is reduced by 16% and the
99.9th-percentile of the tail of the response time distribution is reduced by nearly 40%.

MapReduce is a programming model used to process and generate large data sets,
where incoming jobs are partitioned into tasks and executed in parallel, see more
details in [34]. MapReduce is composed by a map function that generates intermediate
key/value pairs from the incoming data set of key/value pairs, and a reduce function
that merges the intermediate values associated with the same key. Many real-world
operations are written as a MapReduce model, such as the Hadoop production cluster
at Facebook and the Dyrad cluster at Microsoft Bing.

MapReduce comes with its own challenge named stragglers. A task is said to be
a straggler if it runs much slower than other tasks. Stragglers dramatically affect the
delay of a job’s completion, and particularly that of small jobs, i.e. jobs with a few
tasks. This is an important issue in practice, since over 80% and 60% of the jobs are
small with fewer than 10 tasks in Hadoop and Dyrad, respectively, [5].

Redundancy has been implemented in a few straggler migration techniques in order
to improve the performance of MapReduce. Under the speculative execution technique,
if a tasks is detected to be a straggler, an additional copy of that task is send to another
server, [34]. The authors observe that the mean response time is significantly reduced
while the utilization of the system only increases by a small percentage. Mantri and
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LATE are both further improvements of the speculative executions strategy, see [6] and
[106] for more details.

Ananthanarayanan et al. [4, 5] implement the Dolly technique and evaluate the
performance using a trace-driven simulator replaying Hadoop logs from the Facebook
cluster for both LATE and Mantri straggles migration techniques. In contrast to the
straggler migration techniques, under Dolly all the tasks of a small job are replicated
and send into multiple servers upon arrival. The authors observe that under Dolly,
the completion time of small jobs improves by 47% and 39%, compared to LATE and
Mantri, respectively, at the cost of increasing utilization by less than 4%. Furthermore,
the overall average completion time of jobs improves by 40% and 33% in both cases.

YouTube, the well-known video streaming application by Google, contributes to more
than 25% of total mobile application traffic share, and to over 15% of all global traffic
during the worldwide lock-down pandemic situation due to COVID-19, according to The
Mobile Internet Phenomena Report 2020 [91] and the The Global Internet Phenomena
Report COVID-19 Spotlight May 2020 [92], respectively.

The main objective of video content providers is to deliver their users with video
playback that satisfies a high Quality of Experience (QoE). YouTube’s adaptation
algorithm implements redundancy in the following way: When a user requests to
see a video, this is segmented in small segments and coded into 4 quality levels. In
the beginning of the video reproduction, lower-quality level consecutive segments are
requested. Later on, whenever varying bandwidth conditions allow it, the user requests
additional higher-quality level consecutive segments of the video. The adaptation
algorithm replaces previously downloaded lower-quality segments with higher-quality
segments, as soon as these are available (overlapping with lower-quality segments).
Hence, the user requests for multiple copies of the same video segment. We note that
these copies are not identical, since they are of different quality levels. The adaptation
algorithm takes the copy of the segment with highest-quality level, but the additional
copies are not removed from the system. Therefore, there is a trade-off between network
efficiency and average playback quality that also affects the QoE of the user. See [96]
for a more detailed description.

In [95, 96] the authors quantify how much redundant traffic occurs and what is the
overall efficiency of this approach. Their results show that under YouTube’s adaptation
algorithm, the average playback quality can increase significantly by up to 0.7 quality
levels by just downloading a 30% of redundant data.
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1.1.2 Mathematical modeling

From the previous motivating examples, we observe that redundancy is a powerful load
balancing technique that is widely implemented in order to improve the performance
for various systems. We also observe that each system presents different properties
regarding the inherent structure of the copies of a job. In the following we present
mathematical models corresponding to different assumptions made in the literature.

The redundancy model is either flexible or constrained. Under a flexible redundancy
model, a job can dispatch copies to any server in the system. Under a constrained
redundancy model, the model topology determines the set of compatible servers of a
job, that is, the set of servers where the copies of the job can be served. The latter is
motivated by the fact that in real-world applications, even if servers are intrinsically
similar, some servers might be better equipped to process particular jobs because of
affinity relations or data locality issues.

Given a multi-server system with K servers, let us denote by S = {1, . . . ,K} the
set of servers. Jobs are labeled by types c = {s1, ..., si} ⊂ S, where i is the number of
copies and c is the set of compatible servers of the job. We let C be the set of all types,
that is, C determines the redundancy topology. Two constrained redundancy models
that we analyze in this thesis are redundancy-d and nested models.

The redundancy-d model is a multi-server system with K homogeneous servers with
capacity µ and the redundancy-d topology. Under the redundancy-d topology, each
job sends a copy to d out of K servers chosen uniformly at random, see Figure 1.1 (a).
That is, C := {{s1, . . . , sd} ⊂ S : si 6= sj , ∀i 6= j}, with |C| =

(K
d

)
. The number of

copies d is known as the redundancy degree.
The nested model is a multi-server system with K heterogeneous servers with the

nested topology. A system is said to have a nested topology if C satisfies the following: for
all job types c, c′ ∈ C, either i) c ⊆ c′ or ii) c′ ⊆ c or iii) c∩ c′ = ∅. First of all, note that

µ µ µ µ

λ

µ1 µ2

λ

µ1 µ2

λ

µ1 µ2 µ3 µ4

λ

(a) (b) (c) (d)

d

Figure 1.1 From left to right, the redundancy-d model (for K = 4 and d = 2), the
N -model, the W -model and the WW -model.
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the redundancy-d model does not fit in the nested topology. The smallest nested system
is the so-called N -model (Figure 1.1 (b)): this is a K = 2 server system with types
C = {{2}, {1, 2}}. Another nested system is the W -model (Figure 1.1 (c)), that is, K = 2
servers and types C = {{1}, {2}, {1, 2}}. In Figure 1.1 (d), a nested model with K = 4
servers and 7 different jobs types, C = {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3, 4}} is
given. This model is referred to as the WW -model.

Cancellation of copies of a job might occur either as soon as the first copy of this
job enters service, known as cancel-on-start (c.o.s.) or as soon as a copy is fully served,
known as cancel-on-complete (c.o.c.). Both c.o.s. and c.o.c. are interesting since they
exploit different aspects of the system: For instance, when FCFS is implemented, under
c.o.s., the job is served by the server with least workload. Whereas under c.o.c., the job
not only exploits the variability of the workloads in the queues, but also the variability
in the server capacities.

Redundancy models are challenging to analyze due to the correlation among the
departure processes of the servers induced by the cancellation of the copies. Within a
server there is a departure of a copy due to the following two events: (i) a local copy
departs due to completion, or (ii) a copy in another server completes (under c.o.c.) or
starts service (under c.o.s.) causing the corresponding copy in the server to depart.

A scheduling policy determines how copies are served within each server. Common
redundancy-unaware scheduling policies are First-Come-First-Served (FCFS) and Pro-
cessor Sharing (PS), which are widely implemented in real-world computer systems
([56]), and Random-Order-of-Service (ROS), which will present a promising performance
under redundancy models. Scheduling policies that try to exploit the redundant copies
in the system, so-called redundancy-aware polices, are Least-Redundant-First (LRF),
Most-Redundant-First (MRF) and Primaries-First (PF), introduced in [41]. For in-
stance, under LRF (MRF) within a server jobs with fewer (larger) number of copies have
priority over jobs with larger (fewer) number of copies. Under PF, among the copies of
a job, there is one that is a primary copy, whereas the other copies are secondary copies.
Within each server, primary copies have priority over the other copies and copies with
the same priority are served according to FCFS.

The correlation structure among the copies plays an important roll when char-
acterizing the instantaneous departure rate of a job in c.o.c. systems. This describes
how the copies of the same job are related among them. Formally, the service times,
a.k.a. service requirements, X1, . . . , Xk of the k copies of one job can be sampled by a
joint service time distribution F (x1, . . . , xk).
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A common assumption is that all the copies of a job are i.i.d. copies, that is, all
copies sample i.i.d. service times from the service time distribution of the job. In that
case there is no correlation among the copies of the same job. If in addition, the service
times are exponentially distributed, this considerably simplifies the analysis, since the
instantaneous departure rate of a job is given by the sum of the rates of the copies
that are in service. As we will see later in Sections 1.1.3 and 1.1.4, many studies on
redundancy models have considered i.i.d. copies.

Another common assumption is that copies of a job are identical copies, that is,
all the copies of a job have the same service time. Thus, there is a full correlation
among the copies of each job. The instantaneous departure rate of a job is given by
the departure rate of the copy that has received most service, which complicates the
analysis.

We further refer to the S&X model, which includes both i.i.d. copies and identical
copies. Here, the service time of each copy is decomposed into two components; the
inherent job size, which is identical for all the copies of a job, and the experienced
slowdown on the server it is being served. This model, first introduced in [42], was
inspired by the different response times that the same job can experience in different
servers due to server intrinsic characteristics.

We note that the correlation structure among the copies will considerably affect both
the stability region and the performance of the system. The i.i.d. copies assumption
can be considered when the intrinsic properties of the servers are highly variable due to
external conditions, such as garbage collection. The latter can provoke that the service
time experienced by each copy can be considerably different at all the compatible servers
of the job. On the other hand, when the intrinsic characteristics of the servers are
similar, the identical copies assumptions might be preferred, since all the copies of a job
will experience similar service times in all the compatible servers of the job. However,
we note that the i.i.d. and identical copies assumptions are the extreme cases of the
generally correlated copies, where under i.i.d. copies these are completely decorrelated
and under identical copies the correlation is 1.

1.1.3 Literature overview of stability results

In the following, we survey the main stability results for c.o.c. redundancy models
available in the literature, including those presented in this manuscript. This section is
based on [SR4], where we provide a survey on the stability condition results and open
problems for redundancy models.

From the point of view of stability, under the c.o.s. redundancy model, there is a
single copy of each job that enters service, as opposed to the redundancy c.o.c. models.
Hence, there is no waste of computational resources, which implies that redundancy
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has no direct impact in the stability condition, see [10] for more details. Therefore, we
focus only on c.o.c. redundancy models.

Table 1.1 summarizes the main stability results for c.o.c. redundancy models available
in the literature and proved in this thesis. The table is organized by scheduling policy,
service time distribution, redundancy topology and correlation structure. In brackets we
specify the additional assumptions that the authors consider in their respective paper.
The term “red-d” refers to the redundancy-d model and the term “gen” refers to a
general redundancy topology.

Table 1.1 Stability results for c.o.c. redundancy models.

Service i.i.d. copies identical copies General correlation
time red-d gen red-d gen red-d gen

FCFS

Exp. [43] [18, 46] Sec 3.3

General
[82](Scaled [77] [84]
Bernoulli) [59](Mean field) (Sufficient (Comparison

[60](Mean field) condition) result)

PS

Exp. Sec 3.2 Sec 8.1.1 Sec 3.4
(Conjecture)

General
[83]

[83] Sec 4.2 (Necessary
condition)

ROS

Exp. Sec 3.2 Sec 8.1.1 Sec 3.5 Sec 8.1.3
(Conjecture) (Conjecture)

General

We first introduce the stability condition when jobs have i.i.d. copies (first two
columns of Table 1.1). Secondly, we discussed the stability condition of systems with
identical copies (middle two columns in Table 1.1) and lastly for systems with a general
correlation structures among the copies (last two columns in Table 1.1). For the
stability results that are proved in this thesis, we provide the section where this is done.
The results that are presented in Chapter 8 are still open problems for which we state a
conjecture regarding the stability condition.

1.1.3.1 Independent and identically distributed copies

In this section we assume that jobs have i.i.d. copies, first for exponentially distributed
service times and then for scaled Bernoulli service times.

Exponential service times

We first discuss results on FCFS and exponentially distributed service times, a setting
studied by Bonald and Comte [18] and Gardner et al. [43, 46]. It was shown in [18] that
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this model fits the framework of order-independent queues and that the steady-state
distribution is of product-form (as will be further discussed in Section 2.4.2). The latter
facilitates the derivation of performance measures such as the stability condition and
the mean response time. The proposition below states the stability result for this model.

Proposition 1.1.1 ([18, 46]). For a redundancy system with general topology under
FCFS with exponentially distributed service times and i.i.d. copies, the system is stable
if for all C ⊆ C,

λ
∑
c∈C

pc <
∑

s∈S(C)
µs, (1.1)

where S(C) = ⋃
c∈C{s ∈ c}. The system is unstable if there exists C̃ ⊆ C such that

λ
∑
c∈C̃

pc >
∑

s∈S(C̃)

µs.

Informally, Eq. (1.1) states that the arrival rate to any subset of job types must be
less than the total capacity of the associated compatible servers. For exponential service
times, we note that if Eq. (1.1) is not satisfied, then there does not exists a policy that
makes the system stable. Hence, we say that the system is maximally stable. Thus, we
conclude that the stability region is not reduced due to adding redundant copies. The
latter might seem counter-intuitive at first, since even if servers waste resources serving
copies that are not fully served, the stability condition is as large as if there was no
redundancy.

Extending Proposition 1.1.1 to other scheduling policies is an important open problem
(see Section 8.1.1 for more details) and it has only been achieved for the redundancy-d
model. In this case, it is easy to see that Eq. (1.1) reduces to λ < µK. In one of the
main results of this thesis, we show that this stability condition remains valid when
either PS or ROS is implemented.

Proposition 1.1.2 (Section 3.2). For the redundancy-d model under either PS or ROS
with exponentially distributed service times and i.i.d. copies, the system is stable when
λ < Kµ and unstable when λ > Kµ.

Hence, under PS, ROS and FCFS, the redundancy-d model is maximally stable.
This however does not hold true in general. In Section 3.2.2, we provide an example of
a priority policy that is not maximally stable, i.e., the system becomes unstable even
though λ < Kµ.
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General service times

To the best of our knowledge, no stability results exist for general service times with
i.i.d. copies. We present here the stability result obtained for scaled Bernoulli service
times, defined as {

X ·M, w.p. 1/M
0, w.p. 1− 1/M,

where M > 0 and X is a strictly positive random variable with E[X] = 1. In this
setting, Raaijmakers et al. [82] characterize the stability condition for the redundancy-d
model where FCFS is implemented and the number of servers grows large.

Proposition 1.1.3 ([82]). Consider the redundancy-d model under FCFS with scaled
Bernoulli service times and i.i.d. copies. Then, λ < Md−1

E[min(X1,...,Xd)] is a sufficient stability
condition for any M . In addition, for any ε, it holds that (1− ε)λ < Md−1

E[min(X1,...,Xd)] is a
necessary condition, for M sufficiently large.

We observe that the stability condition is independent of the number of servers, but
strongly depends on the number of copies d. The latter is in contrast to the exponentially
distributed service times, where the stability condition does dependent on the number
of servers but is independent of d (see Proposition 1.1.2). Thus, we observe that when
copies are i.i.d., the stability condition strongly depends on the service time distribution.
In addition, we observe that as M grows large (and hence the variance of the service
times grows large), the stability region increases by a factor Md−1, by taking advantage
of a greater diversity in service times.

Several studies (e.g., [103]) have shown that the i.i.d. copies assumption can be
unrealistic, since large jobs remain large when replicated. Hence, having additional
copies could lead to high response times and even instability. Motivated by the latter,
stability results with correlated copies have been the focus of recent literature. In the
following, we first introduce the stability results under identical copies and then, under
generally correlated copies.

1.1.3.2 Identical copies

Let us assume now that jobs have identical copies, i.e., all copies belonging to one job
have the same size. This correlation makes that a job can only depart due to its copy
that has received most service so far. Thus, the instantaneous departure rate of a job
depends on its copy that has currently attained most service.

FCFS policy. With FCFS, the eldest job in the system will be served at all of its
compatible servers. A job later in the queue will be served at its compatible servers
that are not engaged by earlier jobs in the queue.
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The stability condition for the redundancy-d system with FCFS and exponentially
distributed service times is characterized in Section 3.3, through the average departure
rate per type in the so-called saturated system. The latter assumes an infinite backlog
of jobs waiting for service. The long-run time-average number of jobs in service in the
saturated system is denoted by ¯̀. A detailed description of the saturated system and
the characterization of ¯̀ can be found in Section 3.3.

Proposition 1.1.4 (Section 3.3). For the redundancy-d system under FCFS with
exponentially distributed service times and identical copies, the system is stable if λ < ¯̀µ
and unstable if λ > ¯̀µ.

The value of ¯̀, and hence the stability region, can be numerically obtained by solving
the balance equations of the saturated system, see Section 3.3 for more details. We
note that the instantaneous departure rate in the saturated system strongly depends on
the types in service. As a consequence, no expression has been derived so far for ¯̀ for
general K and d values.

Hellemans et al. [59] analyze the present redundancy-d model under the mean field
regime, that is, when the number of servers tends to infinity. The authors provide
a numerical method to see whether a given system is stable, but do not provide any
characterization of the stability region.

PS policy. Under PS and identical copies, the stability condition is characterized
in Section 4.2. There it is shown that the stability condition coincides with that of
a K parallel server system where each type-c job is only dispatched to its so-called
least-loaded servers. In order to state this result, we first need to define several sets of
servers and job types. The first subsystem includes all servers, that is S1 = S. We let
C1 = C. We denote by L1 the set of least-loaded servers in the system S1 = S. Thus,

L1 =

s ∈ S1 : s = arg min
s̃∈S1

 1
µs̃

∑
c∈C(s̃)

pc


 .

For i = 2, . . . ,K, we define recursively

Si := S\ ∪i−1
l=1 Ll,

Ci := {c ∈ C : c ⊂ Si},
Ci(s) := Ci ∩ C(s),
Li :=

{
s ∈ Si : s = arg mins̃∈Si

{
1
µs̃

∑
c∈Ci(s̃) pc

}}
.

The Si-subsystem refers to the system consisting of the servers in Si, with only jobs of
types in the set Ci. The Ci(s) is the subset of types that are served in server s in the
Si-subsystem. The set Li represents the set of least-loaded servers in the Si-subsystem.
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Finally, we denote by i∗ := arg maxi=1,...,K{Ci : Ci 6= ∅} the last index i for which the
subsystem Si is not empty of job types.

The stability condition is now characterized in Section 4.2 by the least-loaded servers
that can serve each job type.

Proposition 1.1.5 (Section 4.2). Assume that the service time distribution has no
atoms and is light-tailed (in the sense of Eq. (4.1)). For a redundancy system with a
general topology under PS with identical copies, the system is stable if λ∑c∈Ci(s) pc < µs,
for all s ∈ Li, i = 1, . . . , i∗. The redundancy system is unstable if there exists ι ≤ i∗

and s ∈ Lι such that λ∑c∈Cι(s) pc > µs.

For the redundancy-d model, the above stability condition simplifies into λ < Kµ/d,
proven in Section 3.4. The latter coincides with the stability condition of a system
where all the copies need to be served, that is, the worst possible stability condition.

ROS policy. Under ROS and identical copies, the stability condition is characterized
in Section 3.5 for the redundancy-d model with exponential service times. We show that
this is given by the maximum stability condition, that is, λ < µK. We note that this is
also the stability condition when copies are i.i.d., Proposition 1.1.2. We believe that
this holds true for any redundancy structure and any correlation structure, as stated in
Section 8.1.1.

Proposition 1.1.6 (Section 3.5). For the redundancy-d model under ROS with expo-
nentially distributed service times and identical copies, the system is stable if λ < Kµ.

The intuition behind the above result is as follows. Whenever there are many jobs
in a server, the probability that this server serves a copy of a job that has also a
copy elsewhere in service will be close to zero. Hence, with a probability close to 1,
all highly-loaded servers are serving copies of different jobs and their instantaneous
departure rate equals the sum of their capacities.

1.1.3.3 Generally correlated copies

We consider now redundancy models where the service times of the copies of each job
are correlated according to some general structure.

FCFS policy. For FCFS, Raaijmakers et al. [84] consider a general workload model,
which subsumes the S&X model, introduced in [42]. The main difference is that in [84]
the server capacities are not fixed, but each job samples server capacities from a discrete
and finite distribution. The authors assume that the server speed variations (slowdowns)
are either distributed according to New-Better-than-Used (NBU) or New-Worse-than-
Used (NWU). See Section 2.1 for more details on NBU and NWU distributions.



14 Introduction

Depending on the random variation in the server speed, the authors prove that either
no replication (d = 1) or full replication (d = K) provides a larger stability region. Note
that here the stability region refers to a wider concept than what we considered before.
That is, it refers to the set of arrival rates such that there exists a static assignment
rule that makes the system stable.

Proposition 1.1.7 ([84]). Consider the following model. Each job is routed to d servers
according to some static probabilistic assignment. Servers implement FCFS. Every time
a server starts serving a new copy, it samples a speed variation, which is independent
across servers. The type of a job is determined by the capacities it would obtain in each
server. A job has a generally distributed service time.

• If the probabilistic assignment can depend on the job type, and the speed variation
follows an NBU distribution, then the stability region for d = 1 is larger or equal
than that for d > 1.

• If the probabilistic assignment does not depend on the job type, and the speed
variation follows an NWU distribution, then the stability region for d = K is
larger or equal than that for d = 1.

From the above we observe that the optimal redundancy degree does not depend on
the job size distributions, but rather on the random variation in the server speeds for a
given job among the servers.

A sufficient stability condition for the redundancy-d model with FCFS has been ob-
tained in Mendelson [77]. He considers that the service times of the copies X1, . . . , Xd are
identically distributed with mean 1 and sampled from a joint distribution F (x1, . . . , xd).

Proposition 1.1.8 ([77]). Consider the redundancy-d model where FCFS is imple-
mented and the service times of the copies are sampled from a general joint distribution
F (x1, . . . , xd). Then, λ < λlb is a sufficient stability condition, where

λlb := µK∑d
m=0

(∑d−m
j=1 E[min(X1, . . . , Xj)] +mE[min(X1, . . . , Xd)]

)
Pm

,

and Pm =
(K−d
d−m

)( d
m

)
/
(K
d

)
.

For the special cases d = 1 and d = K, the sufficient condition simplifies to
λ < λlb = Kµ and λ < λlb = µ/E[min(X1, . . . , Xd)], respectively, which are in fact also
the necessary stability conditions.

PS policy. We now consider the redundancy-d model where PS is implemented.
Raaijmakers et al. [83] characterize the stability condition under any service time



1.1 Redundancy models 15

distribution through the minimum of the service times of the copies of a job. The latter
can be heuristically explained as follows: assume that all servers are equally loaded.
Then, due to PS, the copy that completes first is the one with the smallest service time
among all copies of the job.

Proposition 1.1.9 ([83]). For the redundancy-d model under PS where the service times
of the copies are sampled from a general joint distribution F (x1, . . . , xd), a necessary
stability condition is λdE[min(X1, . . . , Xd)] < Kµ.

In the particular case where copies are identical, the authors in [83] prove that
Proposition 1.1.9 gives a sufficient and necessary stability condition, which is given by
λd < Kµ. We note that the latter coincides with the stability condition for light-tailed
service times distributions provided in Proposition 1.1.5. Moreover, [83] shows that the
stability condition under NWU service time distributions, respectively NBU service time
distributions, is larger, respectively smaller, than that for exponential service times.

1.1.4 Literature overview on performance evaluation

Besides stability results, other performance measures have been studied in the literature,
such as the steady-state distribution, the workload distribution, as well as the response
times. These results are discussed in this section.

1.1.4.1 Performance of redundancy models

In some cases, it has been shown that the steady-state distribution of redundancy models
has a product-form distribution. In Section 2.4.1 we overview the class of systems
with a product-form steady-state distribution and introduce two particular systems
subsumed in this class of systems, the order-independent queues and the multi-type
jobs and multi-types server system in Visschers et al. [102]. In the following, we survey
the most relevant results for redundancy models with a product-form distribution.

c.o.c. and i.i.d. copies

For the c.o.c. redundancy models, the first performance results where obtained for FCFS,
exponentially distributed service times and i.i.d. copies. Under this setting Bonald and
Comte [18] and Gardner et al. [43, 46] characterize the steady-state distribution, which
is of a product-form, by showing that the system is an order-independent queue. It
is also shown in [43] that for the redundancy-d model, the mean delay reduces as the
redundancy degree d increases.

Cardinaels et al. [28] characterize the stationary behavior of the response time in
the heavy-traffic regime, that is, as the total load in the system approaches 1. Due
to the product-form of the steady-state distribution, the authors show that the joint
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distribution of the numbers of jobs of the various types converges to an exponentially
distributed random variable times the vectors of the probability types, a phenomenon
known as state space collapse.

Adan et al. [2] consider exponential services times and compare the redundancy
model under FCFS with i.i.d. copies to two multi-type multi-server systems without
redundancy. These are the FCFS-ALIS parallel queuing model and the FCFS matching
model, which both have a product-form steady-state distributions. Under the FCFS-
ALIS model, incoming jobs join a central queue in order of arrival and wait until a
compatible server idles. If upon arrival, the job finds idle compatibles servers, it joins
the one that has been idle for longest time, first introduced in Adan et al. [1]. Under the
FCFS matching model, incoming jobs join a central queue in order of arrival. Incoming
servers scan the queue of jobs and match with the longest waiting job that it can serve,
after which both the server and the matched job leave the system. If an incoming
server does not find a match, it leaves immediately without a match, [2]. The authors
show that the response times of jobs coincide under the redundancy model and the
FCFS matching model. The comparison relation between the redundancy model and
the FCFS-ALIS model depends on the parameters of the system, such as service rates
and server capacities.

c.o.s. and related models

The c.o.s. redundancy model where FCFS is implemented and jobs have exponentially
distributed service times is analyzed in Ayesta et al. [10], where the authors prove
that the model is equivalent to the Join-the-Shortest-Workload (JSW) model. The key
observation made by the authors was to relate both c.o.s. and c.o.c. redundancy models
to the state aggregation approach presented in Visschers et al. [102], which is known to
have a product-form steady-state distribution, see Section 2.4.1.

Ayesta et al. [9] present a token-based central queue approach for the parallel
FCFS server system where incoming jobs are associated to a set of compatible tokens.
The authors prove that the steady-state distribution of the token-based system has a
product-form. Furthermore, the authors show that the order-independent queues, the
FCFS matching model, and the state-aggregation approach in Visschers et al. [102] are
subsumed by this approach.

Furthermore, in a recent paper, Gardner and Righter [45] present a survey on models
with a product-form steady-state distribution. The authors consider models with
arbitrary compatibility graphs between servers and jobs, where FCFS is implemented
and jobs have exponentially distributed sizes. The authors provide a single-server queue
approach that subsumes the order-independent queues, and retrieve known product-form
distributions, such as the c.o.c. and c.o.s. redundancy models presented above.
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Comte and Dorsman [29] introduce the Pass-and-Swap queues, and prove that these
are a generalization of the order-independent queues, and that the product-form of
the steady-state distribution is preserved. Under Pass-and-Swap queues, an undirected
graph characterizes the swapping relation between job types. Upon a job completion,
a chain reaction is triggered, where starting from the job that departed, each ejected
job, swaps position with the closest compatible job type in the queue. The authors
provide several queues that fall into this framework, such as various closed networks,
among which there is a loss variant of the c.o.s. redundancy model. The authors show
sufficient and necessary stability conditions for Pass-and-Swap queues that also hold for
order-independent queues.

Limiting regimes

For c.o.c. redundancy models with identical copies, no product-form result has been
proved for the steady-state distribution. Instead, researchers have focused on analyzing
this model in the mean-field regime, that is, when the number of servers tends to infinity.

Hellemans and van Houdt [59] analyze the redundancy-d model with FCFS and
identical copies in the mean-field regime, that is, when the number of servers tends
to infinity. The authors develop a numerical method to compute the workload and
response time distributions under general service time distributions. In order for this
method to work, the authors assume the parameters to be such that the system is
stable. The authors can numerically infer whether the system is stable, but do not
provide any characterization of the stability region. The authors extend the previous
results to i.i.d. copies in [60]. In Hellemans et al. [57], the authors extend this study to
include many other load balancing strategies such as JSQ(d) and JSW(d), and general
correlation structure among the copies.

Several studies consider the homogeneous server system under JSQ(d) where FCFS
is implemented in the mean field, that is, when the number of servers tends to infinity.
In Mitzenmacher [80], the author characterizes the mean response time of the limiting
system for exponentially distributed service times. Hellemans and van Houdt [58],
characterize the workload and response time distribution of the present system where
jobs have general service times. In Hellemans and van Houdt [61] the authors propose
a method to compute the limit of the mean response time when additionally the load
approaches 1, i.e., the heavy traffic regime. This method is valid for models that satisfy
certain conditions, which include JSQ(d) and JSW(d).

Atar et al. [8] consider the heterogeneous FCFS server system and introduce the
Replicate-to-Shortest-Queue scheduling policy, RSQ(d), where each job is dispatched to
the d servers with least number of jobs, and whenever a first copy enters service, the
additional d− 1 copies waiting in the queue are removed, that is the c.o.s. model. We
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note that when d = 1, RSQ(1) coincides with the JSQ model and when d = N , RSQ(N)
coincides with the JSW model. The authors show that in the heavy-traffic regime, a
state state collapse occurs, that is, in the limit the queue lengths of all servers coincide.

1.1.4.2 Impact of the scheduling policy

The following studies focus on proposing redundancy implementations/strategies that
not only improve the overall mean response time, i.e., are efficient, but also do not harm
the marginal mean response time for job types, i.e., are fair.

Some of the earliest studies on the performance of redundancy models are Kim et
al. [68] and Koole and Righter [69], where the authors consider the flexible redundancy
system where FCFS is implemented and jobs have i.i.d. copies. The authors show that
for NWU service time distributions, full replication minimizes the load in the system
and stochastically maximizes the number of completed tasks, respectively in [68] and
[69]. In contrast, when service times follow NBU distributions, no-replication minimizes
the total load in the system ([68]) and maximizes the number of completed tasks for
a two server system ([69]). Borst et al. [19] consider instead a discrete-time flexible
redundancy system where jobs have geometrically distributed service times and observe
that redundancy harms the mean response time of the system.

Akgun et al. [3] consider a two-server system in which each server has dedicated
traffic, that is, each server is a unique compatible server for one job type. The authors
consider the DCF (Dedicated-Customers-First) scheduling policy and analyze the
efficiency and fairness for both dedicated and redundant jobs.

Sun et al. [100] consider various low-complexity redundancy scheduling techniques
for systems where job have i.i.d. copies, and investigate when these are delay-optimal
(or nearly-delay optimal) with respect to the stochastic ordering. These new scheduling
techniques are based on job replication and job cancellation decision features. For
instance, the authors propose show that the fewest unassigned task first with low-priority
replication and earliest due date first with replication policies are nearly delay-optimal
with NBU and NWU distributions, respectively.

Gardner et al. [41, 44] investigate the impact that the implemented scheduling
policy has on the performance for nested redundancy models (see Section 1.1.2.) where
jobs have exponentially distributed service times and i.i.d. copies. In [41], the authors
prove that implementing FCFS in the servers is highly effective in reducing the mean
response time in the system, although LRF is optimal. However, LRF fails to be fair
for redundant jobs. Thus, the authors present PF, which is fair for redundant jobs
and minimizes the overall mean response time. In [41], the authors study the marginal
effects of adding more redundancy. In particular for the system under LRF, the authors
show that even if scheduling more redundant jobs improves the mean response time,
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the maximum gains come from adding only a small proportion of redundant jobs.

1.1.4.3 Coding theory and redundancy

There has been a surge of papers from the coding theory community where redundancy
is implemented. Coding is implemented in large data storing systems where reliability
and fast downloads are primordial, see [89] for more details. Under the (n, k) maximum
separable distance (MDS) code, each data content is encoded into n blocks and stored
in n disks in such way that k out of n blocks are sufficient to reconstruct the entire
file, see [64, 65] for instance. Note that the (n, k) fork-join system can be seen as the
redundancy model where the first k out of n copies are requested, further when k = 1,
the model reduces to the redundancy model with i.i.d. copies with d = n.

In Lee et al. [72], the authors consider the (n, k) fork-join system and give upper
and lower bound system sequences that converge to the original system. Through these
bounds, the authors characterize the mean response time of the system. Furthermore,
Li et al. [75] study the mean field-limit and conclude that coding improves the mean
response time compared to the redundancy model, i.e., (n, 1).

In Joshi et al. [66], the authors consider an n server system where FCFS is
implemented the (n, r, k) partial fork-join model, that is, a job is sent to r out of n
servers uniformly chosen at random and waits for the first k ≤ r jobs to complete. The
authors analyze effective replication strategies for various scenarios and show that both
latency and cost are minimized when r increases for log-convex (high variable) service
time distributions.

Duffy et al. [36] compare the tail response time of the (n, r, k) partial fork-join model
with that of the redundancy-d model where there are r batch arrivals and a single copy
of each job is requested. The authors show that the tail distribution of the response
time under (n, r, k) partial fork-join is smaller than that under the redundancy-d model
if r − k ≥ d and as the number of servers tend to infinity.

In a recent paper, Zubeldia [107] considers the S&X model where the slowdown
experienced by each copy in service is independent across servers, but not necessarily
independent form the job’s service time. The author provides a lower-bound on the
mean delay for the (n, r, k) partial fork-join system, and shows that when slowdowns
are exponentially distributed and independent of the service time of the job, in the
mean-field the expected delay is minimized for a constant r that only depends on the
arrival rate and mean slowdown. Furthermore, when the slowdown depends in some
particular way on the service time of the job, the author shows that the mean delay is
minimized when smaller tasks are replicated more than larger tasks.
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1.2 Mobility models

By mobility we refer to the phenomenon arising in cellular networks, in which users
receive service from different stations as they move across the networks. A cellular
network is defined by static base stations, a.k.a antennas (servers), which divide the fields
into cells, and base stations communicate with its clients through radio communications.
Mobility addresses the fact that an incoming user will start being served in some
particular station, and then follow a path among the different stations in the network
while receiving service. Mobility is naturally studied through multi-server models, where
base stations correspond to the servers.

The mobility phenomenon also arises in ad-hoc networks. These are wireless networks,
where a set of nodes behaves in a decentralized manner and with no preexisting
infrastructure. That is, data transfers occur among different nodes, rather than with
a common base stations, and each node decides dynamically when to transmit and
to which of the nodes in the network. Under mobility, nodes transmit the data to its
destination via intermediate nodes. Various studies, such as [54], show that mobility
improves the capacity of ad-hoc networks, giving rise to other modeling frameworks not
covered in this thesis.

1.2.1 Cellular mobile networks

In this thesis, we focus on mobile cellular networks. As we have mentioned before,
each user is attached to the most suitable cell according to its geographic position
in the network, and switches cell when geographically moving in the network. These
users are classified according to their mobility patterns. A mobility pattern presents
particular radio communication features: pedestrians in the street using smart phones
move at slow speed and walk among obstacles that obstruct the signal. Vehicles such as
car and trains move at high speeds. Particularly railway traffic presents a challenging
scenario since trains travel in high speed, face various obstacles and transport groups
of passengers for which the relative mobility speed reduces to zero. Other mobility
patterns are maritime, aerial and outer space mobility, see [93, 13] for more details.

Relevant performance measures in cellular networks are users’ perceived throughput,
delay and loss rates. The performance in a cellular network is heavily dependent on the
properties of the radio channel, such as attenuations, interferences and fading effects,
which is handled by the so-called cellular handover protocol.

1.2.2 Mathematical modeling

There are several approaches studied in literature that mathematically model mobility
in cellular networks. The following are the most common mobility models, see [93, 13]
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for more details.
The Random-Walk Markovian model: The network is modeled by a multi-server

system where each user stays in a server or moves to another server according to some
transition probability distribution. Since this model is Markovian, there is no notion of
path, or consecutive visits. This model permits to capture the individual movements
with respect to the cells, and is the model we consider in this thesis.

The trace-based model: Cell phone companies record hundreds of mobility traces of
their users in order to construct mobility patterns and use them as a source of evaluation
when improving their handover protocols. This data is valuable for cell phone network
companies, since poor performance of their network can cause loss of clients.

Fluid flow mobility models: Individual cells are modeled on a macroscopic level,
compared to the mobility of users within the network. Thus, the behavior of the traffic
of its users is similar to a fluid flow through a pipe.

1.2.3 Overview of literature

Firstly, we provide an overview of papers characterizing the capacity region and stability
conditions of cellular networks. The capacity region is defined as the set of throughputs
that the network can achieve, whereas the stability condition is defined as the set of
parameter values such as the steady-state of the network exists.

Various scheduling strategies have been implemented in order to improve the through-
put of the elastic data users in cellular networks, data transfers of elastic users have
no dead-line constraints. For instance, under channel-aware scheduling strategies, the
feasible service rate of each user depends on the entire active users population in a
fairly intricate fashion. Various authors aim to implementing scheduling strategies that
exploit the available service rate variations to improve the throughput performance.
However, due to the variation rate dependencies, deriving the stability region, as well
as the relevant performance measures of these models is challenging.

Bonald et al. [15, 17], Borst [20], Borst et al. [22] and Jonckheere [63], among others
authors, study the capacity region and the flow-level performance of cellular networks
under channel-aware scheduling, assuming that there is no mobility.

As for cellular mobile networks, Bonald et al. [16, 17], Borst et al. [21] and Borst
[24] consider a wireless system carrying traffic from different classes under various
channel-aware scheduling strategies. A summary of those results can be found in Borst
[23]. Intra-cell (Inter-cell) mobility concerns user mobility within the base stations in
the same cell (among different cells), and manifest itself as slow fading (fast fading).
Whereas, mobility is modulated by introducing a speed parameter in this set of feasible
service rate vectors.

Bonald et al. [16, 17] consider a single-cell scenario under intra-cell mobility where
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fair share policy is implemented within each base station. That is, the feasible trans-
mission rate is equally distributed among the active flows at each base station. The
authors prove that the mean response time is lower (upper) bounded by the system
with speed infinity (zero), which implies that mobility always improves the performance
of the system.

Borst et al. [21, 17] consider a multi-cell system under inter-cell and intra-cell mobility.
The authors characterize the stability condition for the global optimal scheduling policies
as well as the fair share policy, which is smaller than under the global optimal scheduling
policy, and observe that mobility tends to increase the capacity of the system.

For the above system, Borst et al. [24, 17] assume the α-fair scheduling policy (for
α > 0), which is designed to maximize the total server utility, in order to analyze the
trade-off between the throughput and fairness in the system. The authors prove that
under mobility the capacity region increases monotonically as the value of α decreases,
in contrast to the system with no mobility, where the capacity region does not depend
on α. Additionally, the authors observe that for a given α, the capacity of the system is
larger for the system with mobility than without mobility.

Simatos et al. [97] consider a different system, this is a multi-server system under
PS where users’ mobility is modeled by an irreducible random walk with exponential
rates that are independent across clients. Jobs arrive according to a Poisson arrival
process and have exponentially distributed service times. The authors prove through
fluid-limit approximations and martingales that the stability condition is given by the
total arrival rate to be smaller than the total throughput rate. That is, the system is as
stable as an M/M/K system. Borst and Simatos [25] analyze the heavy-traffic regime
of the previous model and derive a form of spatial state space collapse.

Ganesh et al. in [40] prove that for the previous multi-server system under PS
where mobility is modulated by an irreducible Markov chain, the stability condition is
characterized by the following: the total arrival rate to the system needs to be smaller
than the total capacity of the system.

1.3 Main contributions

In this thesis, we consider a K parallel multi-server system where jobs arrive according
to a Poisson process of rate λ. We analyze the impact of redundancy and mobility
within this model. In Chapters 3 through 6, we focus on redundancy models and in
Chapter 7 we focus on mobility models.

In Chapter 3, we investigate the redundancy-d model with K homogeneous servers
with capacity µ where jobs have exponentially distributed sizes with unit mean and
either i.i.d. copies or identical copies. Let us denote by ρ := λ/µK the total load in the
system. We note that in the absence of redundancy, the sufficient and necessary stability
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condition is ρ < 1. We then show that under exponential service times, the stability
region can reduce but can not increase. We prove that when jobs have i.i.d. copies, the
stability condition is not reduced for both PS and ROS service policies, as in the case
of FCFS [43].

In the case of identical copies, we prove that the stability condition strongly depends
on the scheduling policy employed in the servers. For the ROS scheduling policy,
redundancy does not impact the stability region of the system, that is ρ < 1 is the
stability condition, whereas for FCFS and PS that is considerably reduced. The stability
condition for FCFS is given by ρ < ¯̀/K, where ¯̀ denotes the mean number of jobs in
an associated saturated system. Hence, ¯̀/K < 1 and we show that it reduces as the
number of copies d increases. Under PS, the stability condition reduces to ρ < 1/d, and
coincides with the stability condition of a system where all the d copies need to be fully
served. Hence, this represents the worst possible reduction in the system’s stability
region. Chapter 3 in this thesis is based on [SR1].

In Chapter 4 we generalize the previous results to a general redundancy topology
with heterogeneous server capacities and identical copies. When PS is implemented, we
characterize the stability condition for the system by a recursive algorithm that depends
on the load in each server. We show that this condition coincides with that of a system
where each job only dispatches copies into its least-loaded compatible servers.

In Chapter 5 we compare the stability condition and mean response times under
redundancy scheduling to those under Bernoulli routing system and JSQ (among the
compatible servers). Under Bernoulli routing, a single copy is dispatched to a server
chosen uniformly at random among the compatible servers. We show that if the server’s
load are sufficiently heterogeneous, the stability region under redundancy can be much
larger than that under Bernoulli routing. Which implies that the mean response time
improves considerably under redundancy. We also compare, the mean response time
under redundancy scheduling to that under JSQ. We observe that JSQ outperforms
redundancy most of the time, except when the system is highly heterogeneous. However,
under JSQ the dispatcher uses full information of the state of the system, which is often
unpractical. Chapters 4 and 5 in this thesis are based on [SR3].

In Chapter 6 we investigate scheduling policies that improve the mean response time
of redundancy systems with a general topology where jobs have general service times,
and either i.i.d. copies or identical copies. We focus on redundancy-aware scheduling
policies that are composed of two levels Π1-Π2, as well as redundancy unaware scheduling
policies FCFS and ROS. Under policy Π1-Π2, policy Π1 (the first-level policy) determines
the priority among the job types and, Π2 (the second-level policy) determines the policy
among the jobs with the same priority. When jobs have i.i.d. copies and exponential
service times, we generalize the result in [41] and show that for nested models LRF-Π2

minimizes the mean response time not only with FCFS in the second level, as shown in
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[41], but also with any second-level non-idling policy Π2. We also show that for NWU
service times policy Π1-FCFS minimizes the mean response time among all policies of
type Π1 −Π2, for any first-level strict priority policy Π1.

When identical copies are assumed, we prove that MRF-Π2, and particularly MRF-
ROS, outperforms MRF-FCFS for the nested redundancy model with heterogeneous
server capacities and any service time distributions, with Π2 non-idling. The latter is
due to the fact that having identical copies induces a waste of resources when serving
copies of the same job. Hence, by maximizing the number of different jobs in service
the mean number of jobs in the system is optimized. Chapter 6 in this thesis is based
on [SR6].

Chapter 7 is devoted to the analysis of the impact of mobility in a cellular network.
We consider the same model as the one analyzed in [40] and introduce α the parameter
that controls the mobility speed. We investigate the impact that the mobility speed has
on the performance of the system. When α =∞, that is, when the mobility speed is
fast, we characterize the steady-state distribution and show that this is decomposed
into two independent components: the total number of jobs in the system, which is
an M/M/1 system, and the distribution of these jobs among the servers, which is
distributed according to the multinomial distribution.

We then investigate the impact of α on the mean response time. We characterize
various conditions such that the mean response time improves or deteriorates as mobility,
i.e., α, increases under low loads. Under moderate loads, numerical analysis shows that
mobility might have a negative effect on the performance of the system, in contrast to
the results in some recent studies, such as [17]. However, under high loads we observe
that mobility considerably improves the mean response time and is the lowest when
α =∞. Chapter 7 of this thesis is based on [SR5].

We provide the main conclusion of this thesis in Chapter 8. There we also discuss
the open problems related to stability condition and impact of the scheduling policy on
redundancy models, we as well state several conjectures that are based on our intuitive
understanding of the system. Section 8.1 in this thesis is based on [SR4].

In the course of the thesis, Elene Anton did an internship in Carnegie Mellon
University under the supervision of Professor Mor Harchol-Balter. During this internship,
she developed bounds on the tail of the response time of jobs for a single server queue
and particularly for a priority queue. The relevant results of this research collaboration
can be found in [SR7], but are not included in this manuscript as the topic was not
related to multi-server systems.



Chapter 2

Introduction to stochastic processes

This chapter is devoted to provide a background on the main mathematical notions
used throughout the thesis.

In Section 2.1 we give a summary on the notions used for random variables. In
Section 2.2 we define the Lyapunov function, which will be used in Section 2.3, where we
give a survey on the convergence of stochastic processes, and in Section 2.4, where we
focus on the stability of stochastic processes. In Section 2.5 we present the light-traffic
approximation, as a method to analyze the performance of stochastic processes.

2.1 Random variables

Let us consider a random variable X with probability distribution function (pdf) fX ,
cumulative distribution function (cdf) FX and complementary cumulative distribution
functions (ccdf) F̄X in the (Rn,B(Rn)) metric space. In this thesis, we assume that
random variables live on the Euclidean space, that is the (Rn,B(Rn)) metric space
where B(Rn) is the Borel field of Rn with the uniform topology. In this chapter, we
assume that the stochastic process M(t) is Markovian and lives on the state space
E ⊂ Rn+. Without loss of generality, M(·) is a Borel right process, see [26]. We denote
by Px (·) := P (·|M(0) = x), Ex (·) := E (·|M(0) = x).

We can classify a random variable X through the tail distribution F̄X . We define here
two classes of distributions, New-Better-than-Used (NBU) and New-Worse-than-Used
(NWU), see [88, 94] for more details.

Definition 2.1.1. The random variable X is said to be New-Better-than-Used (NBU)
if for all t1, t2 ∈ R,

F̄X(t1 + t2) ≤ F̄X(t1)F̄X(t2).



26 Introduction to stochastic processes

The random variable X is said to be New-Worse-than-Used (NWU) if for all t1, t2 ∈ R,

F̄X(t1 + t2) ≥ F̄X(t1)F̄X(t2).

We let R(x) = − ln(F̄X(x)) be the hazard function, and r(x) = R′(x) be the hazard
rate function. That is,

r(x) = f(x)
F̄ (x)

for x ∈ R.

A sufficient condition for X to be NBU (NWU) is to have an increasing (a decreasing)
hazard rate, i.e., r(x) is increasing (decreasing) in x. The latter implies that the
coefficient of variation, cv :=

√
Var (X)/E (X), is at most (least) 1.

In the following we give an equivalent definition for both NBU and NWU in the
framework of queuing theory. Let X be the service time of a job in a server with
unit capacity, and Xt = {X − t : X > t} the remaining service time of a job that has
completed t time units of its service time.

Definition 2.1.2. We say that a random variable X is stochastically larger than the
random variable Y , written X ≥st. Y , if

P (X > t) ≥ P (Y > t) , for all t ∈ Rn+.

Equivalently, F̄X(t) ≥ F̄Y (t) for all t ∈ Rn+. Note that if X ≥st. Y , then E (X) ≥
E (Y ).

Theorem 2.1.3. The random variable X is New-Better-than-Used (NBU) if the remain-
ing processing time of a job that has received some processing (is used) is stochastically
smaller than the processing time of a task that has received no processing (is new), i.e.,
Xt ≤st X0 for all t.

The random variable X is New-Worse-than-Used (NWU) if the remaining processing
time of a job that has received some processing (is used) is stochastically larger than the
processing time of a task that has received no processing (is new), i.e., Xt ≥st X0 for
all t.

The notion of NWU and NBU comes from reliability theory, where it is “better” to
have lifetimes that are long, that is, NBU. This can be counterintuitive in the queuing
context, where long processing times are worse.

Depending on their tail properties, random variables can also be classified as heavy-
tailed and light-tailed, see [38] for more details.

Definition 2.1.4. We say that X is heavy-tailed if the moment generating function
E
(
etX

)
is infinite for all t > 0. We say that X is light-tailed if it is not heavy-tailed,

that is, E
(
etX

)
<∞, for some t > 0.
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We note that a light-tailed random variable has all its moments finite. Therefore, any
random variable having an infinite moment can not be light-tailed, hence is heavy-tailed.

A sufficient condition for a random variable to be heavy-tailed is that lim
x→∞

F̄ (x+
t)/F̄ (x) = 1, for all t > 0. Intuitively, under heavy-tailed distributions, if X ever exceeds
a large value, then it is likely that it also exceeds an even larger value as well.

The deterministic, Erlang distributions and Hyperexponential distributions are
ligh-tailed, but the deterministic and Erlang distributions are NBU, whereas the Hyper-
exponential distributions is NWU. The exponential distribution, which is memoryless,
is both NBU and NWU, since its failure rate is constant, µ, as well as light-tailed.

Pareto distributions are defined through F̄ (x) =
(

κ
x+κ

)−α
, where κ > 0 is the scale

parameter and α > 0 shape parameter. Pareto distributions are NWU and heavy-tailed,
and have all the moments of order γ < α finite, whereas the moments of order γ ≥ α
are infinite.

The Weibull distribution, is defined as F̄ (x) = e−(x/κ)α , where κ > 0 is the scale
parameter and α > 0 the shape parameter. This distribution is NWU if 0 < α < 1,
NBU if α > 1 and coincides with the exponential distribution when α = 1. Furthermore,
it is heavy-tailed if and only if α < 1 and all its moments are finite.

2.2 Lyapunov functions

Lyapunov functions are widely implemented when analyzing Markovian processes and
particularly its stability region, see for instance the Foster-Lyapunov criteria in [87].
Stability is introduced in Section 2.4 and is the main topic of Chapters 3 and 4.

Lyapunov functions are scalar functions defined in the phase-plane in order to
determine the stability of an equilibrium point. In the following we provide a rigorous
definition for Lyapunov functions.

Definition 2.2.1 ([39]). A function f : E → R+ is said to be a Lyapunov function with
drift size parameter −γ < 0, drift time parameter t0 > 0 and exception parameter K, if

sup
x∈E : f(x)>K

{Ex(f(M(t0))− f(x))} ≤ −γ.

In the following we define geometric Lyapunov functions, which will serve to charac-
terize the stationary behavior of the process.

Definition 2.2.2 ([39]). A function f : E → R+ is said to be a geometric Lyapunov
function with geometric drift size 0 < γ < 1, drift time parameter t0 and exception
parameter K, if

sup
x∈E : f(x)>K

{(f(x))−1Ex(f(M(t0)))} ≤ γ.
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In the following theorem, which is introduced in [39], we provide an upper bound
on the mean of the Markov process in stationarity. In Chapter 7, we analyze the
convergence of a particular sequence of stochastic processes to its limiting stochastic
process. We will construct a geometric Lyapunov function, which together with the
following theorem shows that the sequence of stochastic processes is tight, defined in
Definition 2.3.1.

Theorem 2.2.3 ([39]). Let us consider the Markov process (M(t), t ≥ 0) with stationary
distribution Π and assume that f is a geometric Lyapunov function with parameters
γ, t0 and K. For the system that is in steady-state at time t = 0,

E(f(M(0))) ≤ φ(t0)K
1− γ ,

where φ(t) := supx∈E{(f(x))−1Ex(f(M(t)))}, for t ≥ 0.

We note that the above theorem does not assume that the stationary distribution Π
is unique. The bound holds for every stationary distribution Π, but is valuable only
when φ(t0) is finite.

2.3 Convergence of stochastic processes

In the present section we provide a background on convergence, and particularly on the
convergence of stochastic processes and their probability measures. We recall that for a
Markov processes (M(t))t≥0 in the countable state space E, the function t→M(t) is
càdlàg if almost surely, the function is continuous on the right on R+ and has left limit
at any point, see [87, 14] for more details.

In Chapter 7 we consider a sequence of Markovian processes for which the limiting
Markovian process is not a càdlàg function, but will rather resemble a white noise
process. The latter represents a challenge when proving the convergence of the sequence
of the Markovian processes to its limit. In the present section, we provide a background
on the convergence of probability measures and stochastic processes.

Let us consider a sequence of stochastic processes {(Mn(t))t≥0}n∈N and its asso-
ciated sequence of probability measures {Pn}n∈N. The convergence of the sequence
{(Mn(t))t≥0}n∈N to its limiting stochastic process in decomposed into two steps. In the
first step, the tightness of the sequence of probability distributions is proved. In the
second step, the convergence in distribution of its finite dimensional distributions of the
system is proved. Before we give the result, let us define tightness:

Definition 2.3.1 ([87]). Assume the sequence of stochastic processes {(Mn(t))t≥0}n∈N
with probability measures {Pn}n∈N and that at time t = 0, Mn(0) is distributed
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according to Pn, for all n ∈ N. Then, {(Mn(t))t≥0}n∈N is said to be tight, if for any
ε > 0, there exists a sufficiently large constant K > 0 such that

sup
n
P (Mn(0) > K) < ε.

In Chapter 7 we consider a sequence of stochastic processes and prove that their
steady-state distribution is tight with respect to n. In order to do so, we consider a
positive increasing function φ, which is geometric Lyapunov with parameters λ, t0,K
(Definition 2.2.2), with x ≤ φ(x), for all x ≥ 0. Then, for the system M(0) starting in
steady-state the following inequalities hold:

sup
n
P (|Mn(0)| > C) ≤ sup

n
P (φ(|Mn(0)|) > φ(C)) ≤ e−φ(C) sup

n
E(eφ(|Mn(0)|))

≤ e−φ(C)ψ(t0)K
1− γ ,

where ψ(t) := supx∈E{(f(x))−1Ex(f(M(t)))}. The second inequality holds because of
the Markov inequality and the third inequality holds due to Theorem 2.2.3. Hence, the
supn P (|Mn(0)| > C) is bounded by e−φ(C) ψ(t0)K

1−γ , where the second term is constant
and e−φ(C) → 0 as C →∞. Therefore, from Definition 2.3.1 the sequence of steady-state
distributions of the stochastic processes {(Mn(t))t≥0}n∈N is tight.

In the following, we state the convergence of a sequence of stochastic processes,
which is given by the convergence in distribution of its probability measures.

Proposition 2.3.2 ([87]). The sequence of stochastic processes {(Mn(t))t≥0}n∈N on
E, with probability distributions {Pn}n∈N, converges in distribution to (M(t))t≥0, with
probability distribution P , if the following conditions are satisfied:

• the sequence {Pn}n∈N is tight,

• for any p ∈ N and t1, . . . , tp ∈ [0, T ]

lim
n→∞

Pn(M(t1) ∈ ·, . . . ,M(tp) ∈ ·) = P (M(t1) ∈ ·, . . . ,M(tp) ∈ ·).

That is, the finite marginal distributions of Pn converge to that of P .

In Chapters 3, 4 and 6, we consider a Markov process and analyze its fluid limit,
introduced later in Section 2.4.2.1. In order to show that the Markovian process converges
to its fluid limit, we invoke the Arzela-Ascoli theorem. In order to introduce this theorem,
let us consider a family of functions {fn}n∈N defined in R → R. The Arzela-Ascoli
theorem shows that any bounded sequence of fn has a convergent subsequence to its
limiting function f .
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Theorem 2.3.3 ([101]). Suppose that {fn} is a sequence of functions R→ R which is
Lipschitz continuous with uniform Lipschitz parameter K and pointwise bounded, that
is, for all x ∈ E the sequence {fn(x)}∞n=1 is bounded. Then, there exists a subsequence
nk of n which converges uniformly on compact sets to a continuous function f .

We recall that uniformly on compact sets (u.o.c.) is defined as follows: for each
compact set C and each ε > 0, there exists a K such that

|fnk(x)− fnj (x)| < ε, for all t ∈ C, for all k, j ≥ K.

2.4 Stability region and steady-state distribution

In Chapters 3 and 4, we characterize the stability region of various redundancy systems.
Intuitively, the stability region determines a set of parameters such that the system
remains stable, that is, the queue lengths do not build up. From the mathematical
viewpoint, we say that a system is stable if there exists a stationary probability measure
for the queue length process, that is, it is ergodic. Moreover, we say that the system is
unstable if it is not ergodic. See [88, 26] for a survey in this topic. In the following, we
give a mathematical definition for ergodic systems.

Definition 2.4.1 ([26]). A continuous time Markov chain is said to be ergodic if it
possesses a stationary probability measure Π for which lim

t→∞
||Px (M(t) ∈ A)−Π(A)|| = 0

for all x ∈ E and A ⊂ E.

The stationary probability measure, a.k.a. steady-state distribution, is also derived
in the following way:

Π(A) = lim
t→∞

1
t

∫ t

0
1(M(u)∈A)du.

We say that a process achieved stationarity, or steady-state, when a new transition of
the system does not affect the state probability measure. The steady-state distribution
allows for example to obtain the mean number of jobs in the system. By Little’s law
[76], the mean number of jobs in the system is proportional to the mean response time
of a job in the system.

In the following we present some particular systems, for which the steady-state
distribution is of a product-form.

2.4.1 Product-form steady-state distribution

Under product-form distributions, the stationary probability a state is given by the
product of the terms involved in that state. The stability region of the system can then
be determined by setting the normalization constant is such that the sum of all the
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probabilities equals 1. Furthermore, this structure might facilitate the derivation of
other performance measures such as the mean response time.

In the following we introduce the order-independent queues, a queuing system that
is subsumed in the class of systems with a product-form steady-state distribution. We
also introduce the class of systems in [102], where through the partial-balance method,
the authors obtain the steady-state distribution. However, we note that these are not
the only systems in the class of system with a product-form steady-state distribution.

In Section 1.1.3 we overviewed the literature on the performance evaluation of
redundancy models, where several studies present redundancy models with a product-
form steady-state distribution. These studies show that various redundancy models
fall into the framework of either order-independent queues or the multi-type job and
multi-type server system in [102], which present a product-form steady-state distribution.
These are the c.o.c. redundancy model ([10, 18]) and the c.o.s. redundancy model ([10]),
both with i.i.d. copies, FCFS and exponentially distributed service times.

Order-independent queues

Let us consider a queue where incoming jobs are of type v, with v = 1, . . . , V and V the
number of job types. Jobs arrive according to a Poisson process of rate λ and are of type
v with probability pv, with ∑V

v=1 pv = 1. Type-v jobs have exponentially distributed
service times with mean 1/µv. Arriving customers join the back of the queue and enter
the first compatible server that is idle. Let us denote by ~v = (vn, vn−1, . . . , v2, v1) the
state descriptor of the system where n is the number of jobs present and vi is the type
of the ith eldest job present in the system. We denote by φ(vn, . . . , v1) the total service
rate when in state (vn, . . . , v1) and by γi(vn, . . . , v1) the fraction of service rate provided
to the ith job in the queue, for i = 1, . . . , n, where ∑n

i=1 γi = 1.

Definition 2.4.2 ([70]). A queuing system is said to be an order-independent queue if
for all (vn, . . . , v1) and all i = 1, . . . , n, the service rates can be written as follows

φ(vn, . . . , v1)µviγi(vn, . . . , v1) = µ(n)si(vn, . . . , v1),

such that

(i) si(vn, . . . , v1) = si(vi, . . . , v1) for all 1 ≤ i ≤ n,

(ii) k(vn, . . . , v1) = ∑n
i=1 si(vn, . . . , v1) is independent of permutations of (vn, . . . , v1),

(iii) µ(n) > 0 for any n > 0 and s1(v) > 0 for any type v = 1, . . . V .

The function si(vn, . . . , v1) determines the rate at which service is given to the ith
job in the queue and the function µ(n) allows the service rate to depend upon the total
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number of jobs in the queue. We note that condition (i) implies that the service rate
received by the ith job is independent of the jobs that are behind that job. Furthermore,
condition (ii) implies that the service rate received by the ith job is independent of the
order of the jobs ahead of it in the queue.

The authors in [70] prove that order-independent queues have a steady-state distri-
bution which is of product-form and are quasi-reversible. See [67] for more details on
quasi-reversibility.

Theorem 2.4.3 ([70]). The steady-state distribution of an order-independent queue
where si(·) satisfies conditions (i) - (iii) for all (vn, . . . , v1) is given by

Π(vn, vn−1, . . . , v2, v1) = C
n∏
i=1

λpvi
µ(i)k(vi, . . . , v1) ,

where C is the normalization constant. Furthermore, the queue is quasi-reversible.

Bonald and Comte [18] prove that the c.o.c. redundancy model with FCFS, exponen-
tially distributed service times and i.i.d. copies falls into the order-independent queue
framework, and hence, has a product-form steady-state distribution.

Multi-type job and multi-type server model

In the following, we introduce another method in order to show that a given system
presents a product-form steady-state distribution. Visschers et al. [102] consider
a system where servers implement FCFS and jobs service times are exponentially
distributed. Arriving jobs that find several compatible servers idle, are dispatched to
one of them according to some assignment rule.

The authors consider the following aggregated state descriptor: (li, si, . . . , l1, s1), is
the state where there are i busy servers, s1, . . . , si ⊂ S and lj denotes the number of
jobs that arrived after the job that is in service in server sj and has as compatible server
a subset of the set of servers {s1, . . . , sj}, for j = 1, . . . , i.

For the present system, the authors characterize the steady-state distribution of the
model under some mild assumptions on the assignment probability distributions of the
assignment rule. To do so, the authors present a solution candidate of a product-form
and prove that the candidate solution satisfies the partial-balance equations. This
implies that the balance equations are satisfied, and hence the steady-state distribution
is characterized, which is of product-form.

Theorem 2.4.4 ([102]). Assume that the assignment rule satisfies the assignment
condition, that is, for every i = 1, . . . ,K and any subset {s1, . . . , si} of S of size i, the
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following is satisfied:

i∏
j=1

λsi({s1, . . . , si−1}) =
i∏

j=1
λs̄i({s̄1, . . . , s̄i−1}),

for every permutation s̄1, . . . , s̄i of s1, . . . , si, where λsi({s1, . . . , si−1}) is the rate at
which server si receives a copy to serve when servers {s1, . . . , si−1} are already busy.
Then, the steady-state distribution is

Π(li, si, . . . , l1, s1) =
(
λU({s1,...,si})
µ{s1,...,si}

)li
λsi({s1, . . . , si−1})

µ{s1,...,si}
. . .

(
λU({s1})
µ{s1}

)l1
λs1(∅)
µ{s1}

Π(0),

where µ{s1,...,si} = ∑i
j=1 µsj , λU({s1,...,si}) = ∑

v∈U({s1,...,si}) λpv, and U({s1, . . . , si}) =
{v : S(v) ⊆ {s1, . . . , si}}, with S(v) the servers that can serve a type-v job.

Ayesta et al. [10] show that c.o.s. redundancy models with FCFS, exponentially
distributed service times and i.i.d. copies fit within the framework of multi-type jobs
and multi-type servers system studied in Visschers et al. [102], which implies that
the steady-state distribution is of product-form. The above results have motivated
the development of unifying frameworks to explain the emergence of product-form
distributions in redundancy models. For instance, Ayesta et al. [9] and Gardner and
Righter [45] extend the frameworks of Visschers et al. [102] and order-independent
queues [70], respectively.

2.4.2 Stability region

In the following, we present some criteria to prove whether a Markov process is either
stable or unstable. These criteria consider qualitative aspects of the process rather than
finding the whole steady-state distribution, which can be extremely challenging. In this
thesis we consider stochastic processes with both countable and non-countable state
spaces. As we will observe in the following, having a countable state space simplifies
the derivation of the sufficient and necessary stability conditions.

Countable state spaces

Let us consider stochastic systems with countable state spaces. For instance, the
M/M/K system with FCFS has a Markovian state descriptor (M(t))t≥0, where M(t)
denotes the number of jobs in the system at time t, and the state space is E = (N∪{0}).
In Chapter 3, we analyze stochastic processes that have a countable state space. See
Robert [87] and Bramson [26] for more details on the stability of systems with countable
state spaces.
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In the following, we characterize when the system is stable. For countable state
spaces, ergodicity and positive recurrence are equivalent.

Definition 2.4.5 ([26]). An irreducible Markovian stochastic process is said to be
recurrent if for all states x, y ∈ E, Px(τy < ∞) = 1, otherwise it is transient, where
τy = inf{t > 0 : M(t) = y}. Additionally, an irreducible recurrent Markovian
stochastic process is said to be positive recurrent if for all states x, y ∈ E, Ex(τy) <∞,
and null recurrent if for all states x, y ∈ E, Ex(τy) =∞.

In order to prove stability of its stochastic process, we will apply Foster’s criteria,
a.k.a. Foster-Lyapunov’s criteria, which is commonly used to demonstrate positive
recurrence.

Theorem 2.4.6. ([87, Thorem 8.13]) Consider a irreducible Markov process in a
countable state space. If there exists a function f : E → R+, constants K, γ > 0 and a
integrable stopping time τ such that for f(x) > K,

Ex (f(M(τ))− f(x)) ≤ −γEx (τ) ,

if F := {x ∈ E : f(x) ≤ K}, the hitting time TF of F is integrable and Ex (TF ) ≤
f(x)/γ. Moreover, if F is a finite subset and Ex (f(M(1))) < +∞ for all x ∈ E, then
the Markov process is ergodic.

We note that the function f is a Lyapunov function and Ex (M(τ)− x) is know as
the one-step drift of the process.

We note that most of the times, even if the state representation is tractable, we will
not be able to find a function that has a positive or negative drift for the stochastic
model. For this reason, in Section 2.4.2.1 we introduce the fluid-limit approximation,
which is a valuable approximation that allows to prove stability of the stochastic process.

Non-countable state spaces

Let us consider stochastic systems with non-countable state spaces. For instance, the
M/G/1 system with PS has a Markovian descriptor (M(t), r1(t), . . . , rM(t)(t))t≥0, where
M(t) denotes the number of jobs in the system and ri(t) denotes the residual service time
of the ith eldest job in the system, for i = 1, . . . ,M(t), at time t. Then, M(t) ∈ N∪ {0}
and ri(t) ∈ R+ for all i. Thus, the state space is non-countable. In this thesis, the
stochastic processes analyzed in Section 4.2 have a non-countable state space.

For non-countable state spaces in the Euclidean space, ergodicity and positive
Harris recurrence are equivalent, [48, 78]. For a survey on stability of systems with
non-countable state space, see for instance [79, 7, 26].

In order to define Harris recurrence, we first introduce the petite sets.
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Definition 2.4.7 ([26]). A set A ∈ E is called a petite set if for probability measure F
on (0,∞) and some non trivial measure ν on (E,B(E)),

ν(B) ≤
∫ ∞

0
Px (M(t) ∈ B)F (dt),

for all x ∈ A and B ∈ B(E).

An intuitive explanation for petite sets is that each set B is “equally accessible”
from all points x ∈ A with respect to the measure ν. In addition, when the probability
measure F is concentrated in a single point, A is said to be a small set.

Definition 2.4.8 ([26]). A Markovian stochastic process is said to be Harris recurrent
if there exists a closed petite set A with Px (τA <∞) = 1, for all x ∈ E, where
τA = inf{t > 0 : M(t) ∈ A}. Furthermore, a Harris recurrent Markov chain is
positive Harris recurrent if there exists a closed petite set A such that for some δ > 0,
supx∈A Ex (τA(δ)) <∞, where τA(δ) = inf{t > δ : M(t) ∈ A}.

In the particular case where the state space is countable and irreducible, {0} is
uniformly accessible from A. Thus, when the state space is countable and irreducible,
Harris recurrence reduces to positive recurrence. Moreover, under this setting, all points
{x} are small set, for x ∈ E.

2.4.2.1 Fluid-limit approximation

In the present section, we introduce the fluid limit for a given stochastic process. The
fluid limit is an approximation that captures the general dynamics of the system and
is easier to study than the stochastic model. Furthermore, there exist results (e.g.
regarding stability) that translate the results obtained for the fluid limit back to the
stochastic process. For instance, in Chapters 3 and 4 we will rely on fluid limits in order
to establish the stability of the redundancy models. We refer to [87, 26] for more details
on the fluid-limit approximation.

Let us consider a continuous time Markovian process M(t). For any r > 0, we define
the fluid-scaled process M r(t) with initial state M(0) = rm as

M̄ r(t) = 1
r
M r(rt).

We note that the state is scaled by a factor 1/r whereas the time is accelerated by r.
Then, a fluid limit m(t) associated to process M(t) is defined as the limit of a converging
subsequence of r:

lim
r→∞

M̄ r(t) = lim
r→∞

M r(rt)
r

.
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Intuitively speaking, we speed up the time by parameter r and apply a Law of Large Num-
bers in order to obtain the “average” performance of the stochastic process (M(t))t≥0.
Therefore, the fluid-limit approximation captures the macroscopic dynamics of the
system whereas microscopic transitions vanish.

For a multi-server system where respectively the arrival times and the departure
times follow i.i.d. random variables with finite mean and the cumulative amount of
capacity/time spent on serving each job is a Lipschitz continuous function, it is shown
that the process has a uniformly convergent subsequence to a fluid limit, see for instance
[26]. Furthermore, the fluid limit can be written as the solution to a differential equation,
which is constructed from the one-step drift of the process.

For instance, consider the single-server system where FCFS is implemented and
jobs arrive according to a Poisson process with arrival rate λ and have exponentially
distributed service times with mean 1/µ. Using standard arguments, see [26], the
fluid-scaled number of jobs in the system, denoted by M r(t), with initial M(0) = rm is
defined as

M r(rt)
r

= m+ 1
r
Ã(rt)− 1

r
S̃(T r(rt)), (2.1)

where Ã(t) and S̃(t) are independent Poisson processes having rates λ and µ, respectively,
and T (t) is the cumulative amount of capacity spend on serving job during the time
interval (0, t]. For the present system, [26] shows that the process has a uniformly
convergent subsequence to a fluid limit. Furthermore, the fluid limit m(t) can be written
as the solution to a differential equation, which is constructed from the one-step drift of
the process. This differential equation is

dm(t)
dt = λ− µ1(m(t)>0),

and has solution m(t) = m(0) + t(λ− µ)+.
In the following we are interested in the stability of a stochastic process by analyzing

its fluid limit, an approach that we deploy in Chapters 3 and 4. Let us first introduce
the stability of the fluid model:

Definition 2.4.9 ([26]). A fluid limit model associated to a stochastic process is said
to be stable, if there exists a constant T such that all associated fluid limits satisfy,
m(t) = 0 for all t ≥ T |m(0)|. A fluid limit model is said to be unstable, if for some
initial state m(t)→∞ as t→∞, andweakly unstable, if there exists t0 > 0 such that
for each fluid limit solution with initial state m(0) = 0, it holds that m(t0) 6= 0.

For the countable state space, the stability of the stochastic process follows from the
stability of its fluid limit. However, the latter is no longer the case for non-countable
state spaces. We will again give stability results first for countable state spaces and
then for non-countable state spaces.
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Countable state spaces

The stability of countable state spaces through its fluid limit is studied in [87]. The
following theorem gives a stability result of the stochastic process by the study of its
fluid limit.

Theorem 2.4.10 ([87]). In a countable state space, the Markovian stochastic process
is positive recurrent if there exists a constant T such that the associated fluid limit at
time T ,

lim
r→∞

supErm(|M̄ r(T )|) = lim
r→∞

sup Erm(|M r(rT )|)
r

= 0.

Even in the fluid limit, where the stochastic microscopic transitions are oblivious for
the macroscopic dynamics of the system, showing that the fluid-scaled system converges
to 0 can be challenging. For instance, in Section 3.4, we characterize a system where
the process has a negative one-step drift, except for certain states where the drift
is discontinuous. Many other systems in literature also present this feature, and in
[47] the authors present a framework in order to analyze the fluid limit of a process
with discontinuous drifts. The authors define a function F as the convex hull of the
accumulation points of the fluid limit from different trajectories.

Proposition 2.4.11 ([47]). Assume that lim
R→∞

Ex
(
|M(τ)−M(0)|1(|M(τ)−M(0)|>R)

)
=

0 and that the drift of the process f(m0) = Ex (M(τ)−M(0)) is bounded. Let F be a
set-valued function defined as

F (m) := conv
(
accr→∞f(r ×mr) with lim

r→∞
mr = m

)
,

where conv(A) is the convex hull of set A and accr→∞ mr denotes the set of accumulation
points of the sequence mr when r goes to infinity. Then, the set of solutions of the
differential inclusion f(m) ∈ F (m) starting in x contains the fluid limits of M r.

An illustration of how F is constructed is available in Figure 1 in [47, Section 2].

Non-countable state spaces

The stability of the fluid limit and its associated stochastic process for non-countable
state spaces has been analyzed by several papers [26, 32, 31, 33, 73]. We note that, for
a system with non-countable state space, the transition from the stability/instability of
the fluid limit to the stability/instability is challenging to obtain.

In the following, we introduce sufficient conditions for fluid stability to imply stability
of the original stochastic system. These conditions are differentiated by the scheduling
policy implemented in the system.

We first focus on Head-of-the-Line (HL) policies, introduced in [26, 32]. Under HL
policies the total amount of capacity (or “effort”) already devoted to partially served jobs
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does not increase without bound. Particularly, policies where only the first job in each
server receive service, such as FCFS and Priority policies with FCFS, are HL policies.
The Head-of-Line PS where the eldest job of each type receives service simultaneously at
each server is also a HL policy. However, PS, as well as Last-Come-First-Serve (LCFS),
are not HL policy.

For HL policies, the following theorem states that for any open queuing network
where jobs have general service times, the stability of the fluid limit implies the stability
of the stochastic process.

Theorem 2.4.12 ([32]). In an open queuing network where an HL scheduling policy is
implemented, stability of the fluid limit implies stability of the stochastic process.

We note that the latter does not consider the PS scheduling policy, in which we are
interested in this manuscript. In [73], the authors study bandwidth-sharing networks
(with processor sharing policies), and show that under mild conditions, the stability
of the fluid model implies positive Harris recurrence of the stochastic process. The
conditions for that statement to hold include that the service time distribution is light-
tailed. However, [32] and [73] conjecture that the statement might also be applicable for
the system where PS is implemented and jobs have general service time distributions.

Theorem 2.4.13 ([73]). Consider a multi-server system where PS is implemented in
the servers and the service time distribution F of the jobs satisfy the following two
conditions:

1. F has no atoms.

2. F is a light-tailed distribution in the following sense,

lim
r→∞

sup
a≥0

E[(X − a)1{X−a>r}|X > a] = 0. (2.2)

Then, the underlying stochastic system is positive Harris recurrent if its fluid limit is
stable.

We note that Eq. (2.2) implies the following equation,

sup
a≥0

E[(X − a)|X > a] ≤ Φ <∞, (2.3)

which is a usual light-tailed condition (see [38]). Hence, Eq. (2.2) includes large
sets of distributions, such as phase-type distributions (which are dense in the set of
all distributions on R+), exponential and hyper-exponential distributions, as well as
distributions with bounded support.

The theorem below, originally in [33], considers a system with a weakly unstable
fluid limit and shows that the stochastic process can not be stable.
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Theorem 2.4.14 ([33]). If the fluid model of an open queuing network is weakly unstable,
then the open queuing network is unstable in the sense that, with probability 1,

|M(t)| → ∞ as t→∞.

2.5 Light-traffic approximation

The light-traffic approximation corresponds to the performance of the system when
the load approaches 0, i.e. λ→ 0. This approximation was pioneered by [85, 105] and
has been successfully applied in many papers such as [62, 86]. The main objective is
to obtain the mean number of jobs, and mean sojourn time, a.k.a. response time, as
the load approaches zero, for systems where these measures are challenging to find. In
this thesis, we use light-traffic approximations to obtain insights on the performance of
redundancy models, Chapter 3, and mobility models, Chapter 7.

Let us denote by D̄(λ, b) the mean sojourn time for a tagged job conditioned on its
size being b, for λ > 0. Let us assume that the first n derivatives of D̄(λ, b) exist for
λ = 0. We have the following approximation for D̄(λ, b) := D̄LT (λ, b) + O(λn+1), as
λ→ 0, where

D̄LT (λ, b) := D̄(0)(0, b) + λD̄(1)(0, b) + . . .+ λn

n! D̄
(n)(0, b), (2.4)

is referred to as the light-traffic approximation of order n. Here D̄(0)(0, b) = D(0)(0, b)
and D̄(i)(0, b) = ∂iD(λ,b)

∂λi
|λ=0, for i = 1, . . . , n. The i-th term, D̄(i)(0, b), is related to the

mean sojourn time when in addition to the tagged job, i other jobs arrive to the system
in the interval (−∞,∞). The choice of the value n establishes a compromise between
the accuracy of the approximation and the complexity of its derivation.

We restrict to the light-traffic approximation of order 1, that is, in Eq. (2.4) we set
n = 1. That is, we calculate the sojourn time of the tagged job conditioned on, at most,
having one other job present in the system. Let Ã(t0, t1) denote the number of arrivals
in the time interval [t0, t1) in addition to the tagged job who is assumed to arrive at
time 0. Then, the zeroth and first light-traffic derivatives satisfy

D̄(0)(0, b) := E
(
D̄(0, b)|Ã(−∞,∞) = 0

)
(2.5)

and

D̄(1)(0, b) :=
∫ ∞
−∞

(
E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t

)
−E

(
D̄(0, b)|Ã(−∞,∞) = 0

))
dt,

(2.6)
where τ is the arrival time of the other job.
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The intuitive idea behind this is that the states where two or more jobs are present
in the system are neglected, as these states will become negligible in the limit λ→ 0.
Indeed, when λ is small, starting empty the system evolves as follows: for a long
duration, of the order of 1/λ, nothing happens. Then, an arrival occurs. The job stays
in the system for a O(1) duration during which no new arrival occurs, since it typically
occurs after a duration of the order of 1/λ. Thus, states with two or more jobs are
exceptional and can be neglected.



Chapter 3

Stability of the redundancy-d system

In the present chapter, we characterize the stability condition of the redundancy-d
model, that is, the K homogeneous server system where each arriving job dispatches d
copies into d out of K servers chosen uniformly at random. We assume that jobs are
canceled when a first copy completes service, i.e., the c.o.c. system. We consider that
jobs have exponentially distributed service times with unit mean and either i.i.d. copies
or identical copies.

We define the total traffic load by ρ := λ
µK , where µ is the capacity of a server.

Note that without redundancy, i.e., d = 1, the system is stable if and only if ρ < 1
for any work-conserving policy employed in the servers. We further note that for both
i.i.d. copies and identical copies, the stability region might reduce, but cannot increase.
This follows since under exponentially distributed service times and homogeneous server
capacities, the total departure rate is at most Kµ, while the total arrival rate is λ.
Hence, ρ < 1 is a necessary stability condition for any value of d.

For the present model, Gardner et al. [43, 46] and Bonald and Comte [18] show that
when FCFS is implemented and jobs have i.i.d. copies, ρ < 1 is a sufficient stability
condition. That is, the stability region is not reduced due to adding redundant copies.

In this chapter we investigate whether ρ < 1 is also the stability condition for other
scheduling policies than FCFS, and/or for non-i.i.d. copies. In Table 3.1 we summarize
all the findings of this chapter.

In the case where jobs have i.i.d. copies, we prove that for both PS and ROS, the
stability region is not reduced when adding redundant copies. This statement might lead
the reader to think that ρ < 1 is the stability condition whenever copies are i.i.d. copies
and a work-conserving policy is implemented. However, this is not the case, and we
present a counterexample based on a priority policy.

For the case when jobs have identical copies, we observe that the stability condition
strongly depends on the employed scheduling policy. When ROS is implemented,
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Table 3.1 Summary of stability conditions

FCFS PS ROS

i.i.d. copies
ρ < 1 ρ < 1 ρ < 1

(Prop 3.2.3) (Prop 3.2.3)

identical copies
ρ < ¯̀/K ρ < 1/d ρ < 1

(Prop 3.3.3) (Prop 3.4.1) (Prop 3.5.3)

redundancy does not impact the stability region, that is, it remains ρ < 1.

When FCFS is implemented, the stability condition is reduced to ρ < ¯̀/K, where ¯̀
denotes the mean number of jobs in service in an associated saturated system that we
characterize. It holds that ¯̀< K − (d− 1), which follows from the fact that the oldest
job in the system is always served at all its compatible servers, and thus, the maximum
number of jobs in service is K − (d − 1). Furthermore, we numerically observe that
¯̀/K, and hence the stability region, decreases as the number of copies d increases.

Under PS, the system is stable if ρ < 1/d, which coincides with the stability region
of a system where all d copies of each job are fully served. Hence, PS represents the
worst possible reduction in stability.

The stability analysis under redundancy when copies are identical is challenging
because of the synchronized departures. The latter generates a strong correlation among
the departure processes in the servers. In order to prove the stability condition under
FCFS and PS, we resort to upper and lower bounds for which the departure process is
easier to characterize.

Through the light-traffic regime, we analyze the mean number of jobs, and observe
that for sufficiently low loads, redundancy does improve the performance of the system.
Numerical analysis also corroborates the latter statement.

In summary, the main takeaway message of this chapter is that when the servers are
identical and jobs have identical copies, the stability region can be drastically reduced
when adding redundant copies. Both stability and performance, strongly depend on the
employed scheduling policy within the servers.

The rest of the chapter is organized as follows: In Section 3.1 we give a detailed
description of the model. In Section 3.2 we present the stability results for i.i.d. copies.
In Section 3.3, Section 3.4 and Section 3.5 we focus on identical copies and present the
stability results for FCFS, PS and ROS, respectively. In Section 3.6 we provide the
light-traffic analysis and obtain insights on the performance of the systems through
simulations. All proofs are deferred to Appendix 3.8, for easy of readability.
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3.1 Model description

We consider the redundancy-d model for a K parallel-server system with homogeneous
capacities µ. We denote by S the set of all servers, S = {1, . . . ,K}. Under redundancy-d,
each job will be assigned a type label, c = {s1, . . . , sd}, with s1, . . . , sd ∈ S, si 6= sj , i 6= j,
to indicate the d servers to which a copy is sent.

We denote by C the set of all types, that is, C := {{s1, . . . , sd} ⊂ S : si 6= sj , ∀i 6=
j} and |C| =

(K
d

)
. The probability that a job is of type c equals pc = 1/

(K
d

)
for all

c ∈ C. We denote by C(s) the subset of types that are served at server s, that is,
C(s) = {c ∈ C : s ∈ c}. The number of types served at server s equals the number
of possible ways to choose d − 1 servers out of the remaining K − 1 servers, that is,
|C(s)| =

(K−1
d−1

)
, and λ

(K−1
d−1 )
(Kd ) = λd/K is the arrival rate per servers. Therefore, under

the redundancy-d model all servers are equally loaded.
We assume that jobs have exponentially distributed service times with unit mean

and that the copies of a job are either i.i.d. copies or identical copies.
We denote by Nc(t) the number of type-c jobs at time t and ~N(t) = (Nc(t), c ∈ C).

Furthermore, we denote by Ms(t) := ∑
c∈C(s)Nc(t), s = 1, . . . ,K, the number of copies

in server s, and ~M(t) = (M1(t), . . . ,MK(t)). For the i-th type-c job, let bcis denote the
realization of the service requirement of its copy in server s, i = 1, . . . , Nc(t), s ∈ c.
Note that in case the copies are identical, then bcis = bci for all s ∈ c. We let acis(t)
denote the attained service in server s of the i-th type-c job at time t. We denote by
Ac(t) = (acis(t))is a matrix on R+ of dimension Nc(t) × d. Note that the number of
type-c jobs increases by one at rate λ

(Kd ) , which implies that a row composed of zeros is
added to Ac(t). When one element acis(t) in matrix Ac(t) reaches the required service
bcis, the corresponding job departs and all of its copies are removed from the system.
Hence, row i in matrix Ac(t) is removed. The rate at which the attained service acis(t)
increases is determined by the employed scheduling policy in that server.

Within a server, a scheduling policy determines how the capacity of the server is
shared among the copies. Within this chapter, we mostly focus on three scheduling
policies: (i) First-Come-First-Serve (FCFS), where copies within a server are served
in order of arrival, (ii) Processor Sharing (PS), where each copy in server s receives
capacity 1/Ms(t), and (iii) Random Order of Service (ROS), where an idle server chooses
uniformly at random a new copy from its queue. All these three policies have in common
that they schedule only based on {Nc(t), c ∈ C}t≥0. Furthermore, for the system under
i.i.d. copies, the latter is also the Markovian descriptor of the system. However, for
the system under identical copies, {Nc(t), Ac(t), c ∈ C}t≥0 is the Markovian descriptor,
which has a non-countable state space. As to distinguish between the different policies,
we will add a superscript {FCFS, PS,ROS} to the process ~N(t).
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3.2 Independent identically distributed copies

In this section, we analyze the stability of the redundancy-d model when copies of a
job are i.i.d.. In Section 3.2.1, we prove that the stability condition under PS and
ROS does not reduce due to adding redundant copies. We use fluid limit arguments in
order to prove the stability condition. See Section 2.4.2 for more details on the stability
condition and the fluid-limit approximation. However we do not extend this result to
any arbitrary work-conserving policy, as we will show through a counterexample in
Section 3.2.2. Appendix 3.8.A contains the proofs of all results obtained in this section.

3.2.1 PS and ROS

In this section, we study the policies PS and ROS and prove that their stability condition
is ρ < 1 under the i.i.d. copies assumption. An intuitive explanation for this result is
the following. Under both PS and ROS, the average capacity of server s dedicated to
type-c jobs at time t is given by Nc(t)/Ms(t). Since copies are i.i.d., the departure rate
of type-c jobs is given by the sum of the departure rates in the d servers (in the set c)
the job is sent to, that is, µ

(∑
s̃∈c

Nc(t)
Ms̃(t)

)
. Now, summing over all job types that have a

copy in server s, we obtain as total departure rate from server s,

∑
c∈C(s)

∑
s̃∈c

(
µNc(t)
Ms̃(t)

)
. (3.1)

For a given time t, let smax be the server containing the largest number of copies, i.e.,
Msmax(t) ≥Ms(t), for all s. We have the following lower bound on the departure rate
from server smax:

∑
c∈C(smax)

∑
s̃∈c

(
µNc(t)
Ms̃(t)

)
≥
µ
∑
c∈C(smax)

∑
s̃∈cNc(t)

Msmax(t) =
µd
∑
c∈C(smax)Nc(t)
Msmax(t) = µd.

The arrival rate of copies to a server equals d
Kλ. If ρ < 1, then λ d

K < µd, hence the total
arrival rate to a server with the largest number of copies is smaller than its departure
rate. This allows us to prove that the fluid limit of server smax goes to zero in finite
time, hence implies stability.

The fluid-scaled system is defined as follows, see Section 2.4.2.1 for more details: For
r > 0, denote by N IID,r

c (t) the system where the initial state satisfies N IID
c (0) = rnc(0),

for all c ∈ C. The superscript IID refers to the system under either PS or ROS in
the system with i.i.d. copies. Using standard arguments, see [26], we can write for the
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fluid-scaled number of jobs per type

N IID,r
c (rt)
r

= nc(0) + 1
r
Ãc(rt)−

1
r
S̃c(T IID,rc (rt)), (3.2)

where Ãc(t) and S̃c(t) are independent Poisson processes having rates λ

(Kd ) and µ,

respectively, and T IID,rc (t) = ∑
s∈c T

IID,r
s,c (t), where T IID,rs,c (t) is the cumulative amount

of capacity spend on serving type-c jobs in server s ∈ c during the time interval (0, t].
In the following result, we obtain the general characterization of a fluid limit.

Lemma 3.2.1. For almost all sample paths ω and sequence rk, there exists a subsequence
rkj such that for all c ∈ C and t ≥ 0,

lim
j→∞

N
IID,rkj
c (rkj t)

rkj
= nIIDc (t), u.o.c and lim

j→∞

T
IID,rkj
c (rkj t)

rkj
= τ IIDc (t), u.o.c., (3.3)

with (nIIDc (·), τ IIDc (·)) continuous functions. In addition,

nIIDc (t) = nc(0) + λ(K
d

) t− µτ IIDc (t),

where nIIDc (t) ≥ 0, τ IIDc (0) = 0, τ IIDc (t) ≤ t, and τ IIDc (·) are non-decreasing and
Lipschitz continuous functions for all c ∈ C.

The following lemma gives a partial characterization of the fluid process.

Lemma 3.2.2. The fluid limit mIID
s (t) := ∑

c∈C(s) n
IID
c (t) satisfies:

dmIID
s (t)
dt ≤ λ d

K
− µd, if mIID

s (t) = max
l∈S
{mIID

l (t)} > 0.

In the case ρ < 1, the drift in the above expression is strictly negative. That is, the
maximum of the fluid process ~m(t) is strictly decreasing. Hence, there is a finite time T
when the fluid process is empty. From this, we can directly conclude that the system is
stable, see Theorem 2.4.10.

Proposition 3.2.3. Under either PS or ROS with i.i.d. copies, the system is stable
when ρ < 1.

Remark 3.2.4. Stability condition for general scheduling policies: We believe
that the above result holds for any non-preferential scheduling policy that treats all job
types equally, but we did not succeed in obtaining a unifying proof. Our approach to
prove Proposition 3.2.3 can be readily extended to cover all policies whose fluid drift
is (i) continuous and (ii) is equal or larger than µd for the server(s) with the largest
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number of copies. Both PS and ROS satisfy this property, but not FCFS. Given the
lack of generality of the class of policies that satisfy (i) and (ii), we chose to restrict
the presentation to PS and ROS. We provide a further discussion on the stability of
redundancy models with exponentially distributed i.i.d. copies in Chapter 8.

In Chapter 6, we will see that when one considers a nested redundancy topology,
there do exist priority policies that are maximally stable. More precisely, we show
there that a version of the LRF policy provides stability when implemented in a nested
system.

Remark 3.2.5. Stability condition for general service requirement distribu-
tions: In this chapter we focus on exponential distributed service requirements. The
analysis of general service requirement distributions is a very challenging problem and
it will require a different proof technique. For instance, FCFS with i.i.d. copies has
been studied in [82] for a specific choice of highly variable service requirements. For an
asymptotic regime, the authors show that the stability region increases without bound
as the service requirement becomes more variable and/or the number of redundant
copies increases. This is explained by the fact that each job has d independent copies,
and hence, in the (unlikely) event that a copy has a relatively large size, the probability
that this copy will be served will become very small as the number of redundant copies
increases, or the sizes of the copies become more variable, since the completion of a
small-sized copy will directly cancel this large copy. Therefore, the combination of
variable job sizes and redundancy, increases the stability region. In the case of PS, [83]
proves that for generally distributes service times, the necessary stability condition is
given by λdE(min(X1, . . . , Xd))/K < 1, where X1, . . . , Xd denote the service times of
the d i.i.d. copies of a job. Additionally, the authors show that the stability condition
for service time distributions that are NWU (NBU) is larger (smaller) than that for
exponential service time distributions (ρ < 1).

3.2.2 Priority policy

Given Proposition 3.2.3, one might wonder whether any work-conserving policy would
be maximally stable when copies are i.i.d.. Indeed, whenever all servers have copies
to serve, the total departure rate of jobs equals Kµ. This is however not enough to
conclude for stability. In Example 3.2.6. we give a counterexample.

Example 3.2.6. We consider the system with K = 3 and d = 2, hence there
are three different types of jobs: C = {{1, 2}, {1, 3}, {2, 3}}. In server 1, FCFS is
implemented. In server 2 and server 3, jobs of types {1, 2} and {1, 3} have preemptive
priority over jobs of type {2, 3}, respectively. Additionally, within a type, jobs are served
in order of arrival.

In Figure 3.1 we have plotted the trajectory of the system when ρ = 0.96 < 1.
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Figure 3.1 The trajectory of the number of jobs per type with time for the system with
λ = 2.9.

One observes that the number of type-{2, 3} jobs in the system grows large, while the
number of type-{1, 2} and type-{1, 3} jobs stay close to 0. Hence, the system is clearly
unstable, even though ρ < 1. This is explained as follows: jobs of type-{1, 2} and jobs
of type-{1, 3} are oblivious to the presence of jobs of type-{2, 3}, due to the preemptive
priority assumed in servers 2 and 3. Type-{1, 2} and type-{1, 3} jobs have only one
server in common. Such a FCFS-redundancy system (M -model) has been analyzed
in [46], where it was obtained that this system (and hence the number of type-{1, 2}
jobs and type-{1, 3} jobs) is stable when ρ = λ

3µ <
3
2 .

Type-{2, 3} jobs are served in server 2 (3) whenever there are no type-{1, 2} jobs
(type-{1, 3} jobs) present in the system. Note that type-{1, 2} and type-{1, 3} jobs
behave independent from type-{2, 3} jobs. Assuming type-{1, 2} and type-{1, 3} are in
steady state, the drift of the number of type-{2, 3} jobs in the system is given by

d
dtE

~n
[
N{2,3}(t)

]∣∣∣
t=0

= λ
3 − µP (N{1,2} = 0, N{1,3} > 0)
− µP (N{1,3} = 0, N{1,2} > 0)− 2µP (N{1,2} = 0, N{1,3} = 0).

By [46], we have that

P (N{1,2} = 0, N{1,3} > 0) = P (N{1,3} = 0, N{1,2} > 0)
= P (N{1,3} = 0, N{1,2} = 0)

(
2µ

2µ−λ/3 − 1
)
,

where P (N{1,3} = 0, N{1,2} = 0) =
(

(2µ−λ/3)2(3µ−2λ/3)
4µ2(3µ−2λ/3)+(λ/3)2µ

)
. After some algebra, we have

d
dtE

~n[N{2,3}(t)]∣∣∣
t=0

= λ

3 − 2µ
(

(2µ− λ/3)2(3µ− 2λ/3)
4µ2(3µ− 2λ/3) + (λ/3)2µ

)( 2µ
2µ− λ/3

)
.
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It can be checked that the latter is strictly negative if and only if ρ < 0.91. From
this one can conclude that the system is unstable when ρ > 0.91, using fluid scaling
techniques. We however omit the proof.

3.3 The FCFS scheduling policy and identical copies

In this section we consider the redundancy-d model when copies of a job are identical
and when FCFS is employed. We characterize the necessary and sufficient stability
condition and show that the stability region is reduced when adding redundant copies.
This as opposed to the i.i.d. copies case, for which the stability condition is independent
of the number of copies d. Appendix 3.8.B contains the proofs of the results obtained
in this section.

3.3.1 Characterization of stability condition

Due to the homogeneous capacities and identical copies assumption, if the copies in
service in the K servers belong to k different jobs, the departure rate of the system
is equal to kµ. The latter is smaller than Kµ, even though K servers are busy. This
follows from the observation below.

Observation 3.3.1. At every instant of time when the system is not empty, the job
that is longest in the system will be running on d servers.

Since at every instant of time there is a subset of d servers giving service to all the
copies of the same job and copies are identical, the total output rate of this subset of d
servers is reduced to µ. Regarding the K − d remaining servers, the order of arrivals of
the jobs impacts the output rate of the remaining servers. As an example, when K = 4
and d = 2, the K − d = 2 remaining servers have as total output rate either µ (if copies
of the same job are first in line in both servers) or 2µ. In total, this would give as total
output rate either 2µ or 3µ. In both cases, it is strictly less than Kµ = 4µ.

From the above, it is clear that the total departure rate is not order-independent,
see condition (ii) in Definition 2.4.2. It depends on the order of arrivals of the jobs that
are in service. Note that in the case of i.i.d. copies, the order independence property
was key to obtain a product-form steady state distribution, see [18, 9]. In the case of
identical copies (as considered here), the lack of the order independence assumption
prevents us from obtaining a closed-form expression for the stability condition. Instead,
in the main result of this section, we will characterize the stability condition through
the average departure rate in a corresponding system with infinite backlog, referred to
as the saturated system. Formally, the saturated system is defined as follows.
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Definition 3.3.2. Saturated system. There is an infinite backlog of jobs waiting in the
system, sampled uniformly over types. There are K servers and the scheduling policy
within a server is FCFS. The d copies corresponding to a job are identical.

We denote the long-run time average number of distinct jobs served in the saturated
system by ¯̀. Hence, the total departure rate in a saturated system is ¯̀µ. Below we
show that λ < ¯̀µ, or equivalently, ρ < ¯̀/K, is a necessary and sufficient condition for
the original FCFS system with identical copies to be stable. The characterization of
the stability condition through a saturation system is reminiscent of the saturation rule
obtained in [11] to prove stability of a large class of queuing systems. We can however
not use their framework due to certain specifics of our model. Instead, in order to prove
the stability condition, we resort to stochastic coupling, martingale arguments and fluid
limits. The proof will be given in Section 3.3.2.

Proposition 3.3.3. Under FCFS and identical copies, the system is stable if ρ < ¯̀/K
and unstable if ρ > ¯̀/K .

We will prove in Section 3.4, that the stability condition under PS and identical
copies is ρ < 1/d. Note that ¯̀≥ dK/de, since at least dK/de jobs are being served at a
given time in the saturated system. This gives the following corollary.

Corollary 3.3.4. The stability region under FCFS, ρ < ¯̀/K, is larger than under PS,
ρ < 1/d.

In the remainder of this section, we characterize ¯̀. In order to do so, we consider
the Markovian state descriptor of the form ~e = (O`∗ , L`∗−1, . . . , O2, L1, O1). Here, `∗

denotes the number of jobs that receive service in state ~e and Oj denotes the type of the
j-th job in service. Furthermore, there are Lj jobs that arrived after job Oj and cannot
be served since they are waiting for servers that are busy serving types O1, . . . , Oj . Note
that the state descriptor ~e retains the order of the arriving jobs per type from right to
left.

For a given state ~e, we let `∗(~e) denote the number of jobs in service, i.e., `∗. Let Ē
denote the state space of the saturated system. The mean number of jobs in service can
formally be written as

¯̀ :=
∑
~e∈Ē

π(~e)`∗(~e), (3.4)

with π(~e) the steady-state distribution of the saturated system.
In general, no closed-form expression is known for ¯̀. In Appendix 3.8.B, we write a

general expression for the balance equations of the saturated system and state them
explicitly for the case d = K − 2 (simplest non-trivial case, since then either two or
three jobs are served in the saturated system). From this, we can obtain numerically
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Figure 3.2 The table and figure show the values of ¯̀/K for different values of d and K.

¯̀/K K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

d = 1 1 1 1 1 1 1 1

d = 2 0.5 0.66 0.71 0.74 0.76 0.77 0.77

d = 3 0.33 0.5 0.54 0.57 0.58 0.60

d = 4 0.25 0.4 0.43 0.46 0.47

d = 5 0.2 0.33 0.36 0.38

d = 6 0.16 0.28 0.31

d = 7 0.14 0.25

the value of ¯̀. When d ∈ {1,K− 1,K}, we can instead get closed-form expressions for ¯̀.
When d = K − 1, there are d servers that process copies of one job, and the remaining
K − d = 1 server serves one additional job, hence, ¯̀ = 2. When instead d = 1, there
is no redundancy and each server serves one job in the saturated system, i.e., ¯̀= K.
When d = K, the system behaves as a single server with capacity µ, that is, ¯̀= 1.

In Figure 3.2, we present ¯̀/K for different values of d and K: the table (left) shows
¯̀/K for small values of K and the figure (right) plots the value of ¯̀/K as K grows
large. To obtain the value of ¯̀ for d 6= 1,K − 2,K − 1,K, we simulated the saturated
system, rather than solving the balance equations. We note from Figure 3.2 that ¯̀/K
(and hence the stability region) increases when the number of servers (K) grows large.
We make this formal in the proposition below, which is proved using stochastic coupling
arguments.

Proposition 3.3.5. For the saturated system, it holds that ¯̀/K is increasing in K.

It would be interesting to determine limK→∞ ¯̀/K, as this would represent the
stability condition in a mean-field setting. The values in the figure at Figure 3.2 seem to
indicate that lim

K→∞
¯̀/K = c with c < 1, that is, also in the mean-field limit, the stability

region reduces as compared to d = 1. We observed that this value c coincides with the
value obtained by the numerical method developed in [58].

From Figure 3.2 we further observe that ¯̀/K decreases when the number of redundant
copies (d) increases. Unfortunately, we did not succeed in finding an argument to prove
this property. In Chapter 8 we draw two conjecture after these two observations.

3.3.2 Proof of the stability condition

In this section we show that ρ < ¯̀/K is both a necessary and sufficient stability
condition, that is, we prove Proposition 3.3.3. The dependency on the order of arrivals
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of the total departure rate makes exact analysis hard. In order to prove the stability
condition, we formulate two auxiliary systems that we can compare sample-path wise
to the original system. These systems will have the property that for a sufficiently large
period of time, a saturated system is observed, and hence, have as average departure
rate ¯̀µ, which allows us to prove the stability condition. See Section 2.4.2 for more
details on the stability condition. The full proofs can be found in Appendix 3.7.B.

3.3.2.1 Necessary stability condition

The auxiliary process ~N (T )(t) is defined as follows. At time t = 0, we assume that Ãc(T )
type-c jobs arrive, ∀c ∈ C. During the interval (0, T ] there are no further arrivals. After
time t > T , new type-c jobs arrive according to the original Poisson process with rate
λ/
(K
d

)
. In the ~N (T )-system, each server serves according to FCFS.

The reason why the auxiliary system is a lower bound can be explained as follows.
Under the auxiliary system, all the jobs that in the original system are planed to arrive
up to time T > 0, are already present at time t = 0. Therefore, under FCFS, these jobs
will be served in the auxiliary system no later than in the original one.

To compare the auxiliary process with the original FCFS system, we need to
introduce some notation. The attained service of the copy of the i-th type-c job in
server s, aFCFScis (t), will be compared to the attained service of the same copy in the
~N (T )-system. For that, (with slight abuse of notation), we let a ~N(T )

cis (t) denote the
attained service of this same copy, where we assume that in case this copy has already
departed in the ~N (T )-system, then a ~N(T )

cis (t) is set equal to its service requirement bci. In
the result below we show that sample-path wise, a job departs earlier in the ~N (T )-system
than in the original system. In particular, this implies that if the original FCFS model
is stable, then the ~N (T )-system is stable as well.

Lemma 3.3.6. Assume NFCFS
c (0) = N

(T )
c (0) and aFCFScis (0) = a

~N(T )
cis (0), for all c, i, s.

Then, N (T )
c (t) ≤ NFCFS

c (t) + (Ãc(T ) − Ãc(t))+ and aFCFScis (t) ≤ a
~N(T )
cis (t), for all

i = 1, . . . , NFCFS
c (t), c ∈ C, s ∈ S.

Let the random variable τ(T ) > 0 denote the moment that one of the servers becomes
empty. In the time interval [0, τ(T )], the ~N (T )-system will behave as a saturated system.
We will prove that as T grows large, τ(T ) grows large, and due to the law of large
numbers, the time-average number of jobs in service in the interval [0, τ(T )] will be
equal to ¯̀, as defined in Eq. (3.4). Since each job in service has a departure rate µ,
this allows us to prove that if the ~N (T )-system is stable, then λ < ¯̀µ. Together with
Lemma 3.3.6 this gives the following result.

Proposition 3.3.7. Under FCFS and identical copies, the system is unstable if ρ >
¯̀/K.
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3.3.2.2 Sufficient stability condition

In order to prove that ρ < ¯̀/K is a sufficient stability condition, we define the process
~N (0)(t) as follows. In the time interval [0, | ~N (0)(0)|/µ], only those jobs that were
already present at time 0 are allowed to be served (according to FCFS). From time
t, t ≥ | ~N (0)(0)|/µ onwards, all jobs present in the system can be served. We note that
the present system is new compared to the ~N (T )-system in Section 3.3.2.1 and is not
derived by fixing T = 0.

In ~N (0)-system, all the jobs that in the original system arrived between time t = 0
and t = | ~N (0)(0)|/µ, can not be served until time t = | ~N (0)(0)|/µ. From that moment
on, all present jobs are again served in order of arrival. Therefore, under FCFS, these
jobs will be served in the original system no later than in the ~N (0)-system.

We first establish a sample-path comparison with the original FCFS system, which
allows us to conclude for stability of the original process. We let a ~N(0)

cis (t) denote the
attained service of the i-th type-c job in the ~N (0)-system. The attained service of the
i-th type-c job in server s in the ~N (0)-system will be compared to the attained service
of the same copy in the FCFS system. In order to do so, with a slight abuse of notation,
we let aFCFScis (t) denote the attained service of this same copy, where we assume that
in case this copy has already departed in the FCFS-system, then it is set equal to its
service requirement bci.

Lemma 3.3.8. Assume NFCFS
c (0) = N

(0)
c (0) and aFCFScis (0) = a

~N(0)
cis (0), for all c, i, s.

Then, N (0)
c (t) ≥ NFCFS

c (t) and a
~N(0)
cis (t) ≤ aFCFScis (t), for all i = 1, . . . , N (0)

c (t), c ∈
C, s ∈ S.

For the stochastic process ~N (0)(·), we will see that the system is stable if ρ < ¯̀/K.
To do so, we will characterize the fluid limit. We will show that at the moment the
auxiliary process can start serving jobs that were not present at time 0, the queue
has built up, and during a considerable amount of time the system will behave as a
saturated system. Hence, the average number of occupied servers equals ¯̀, which allows
us to prove that ~N (0)(t) is stable if ρ < ¯̀/K. Together with Lemma 3.3.8 this gives the
following result.

Proposition 3.3.9. Under FCFS and identical copies, the system is stable if ρ < ¯̀/K.

3.4 The PS scheduling policy and identical copies

In this section, we show that ρ < 1/d is the stability condition for the redundancy-d
model with identical copies when PS is employed in all the servers.

Proposition 3.4.1. Under PS and identical copies, the system is stable if ρ < 1
d and

unstable if ρ > 1
d .



3.4 The PS scheduling policy and identical copies 53

Remark 3.4.2. Stability under general service time distributions: Our result,
which appeared in [SR1], holds for exponential service requirements. In [83], Raaijmakers
et al. extended this result. Using fluid limit arguments, the authors showed that ρ < 1/d
is a necessary stability condition when the service times follow a general distribution
and copies have a general correlation structure. In Chapter 4, we extend the stability
result of Proposition 3.4.1 to a general redundancy topology, and generally distributed
service times with identical copies.

Before proceeding to the intuition (Section 3.4.1) and proof of Proposition 3.4.1
(Section 3.4.2), we first characterize the instantaneous departure of a job in the system.

Under PS, the attained service of the copy of the i-th type-c job in server s increases
at speed µ/MPS

s (t), that is, daPScis (t)
dt = µ

MPS
s (t) , ∀c ∈ C(s), i = 1, . . . , Nc(t). Note that a

departure of a job is due to a departure in the server where it has the largest attained
service. Denote by s∗ci(t) the server that contains the copy of the i-th type-c job
with the largest attained service, that is, s∗ci(t) := arg maxs∈c{aPScis (t)}, for all c ∈ C,
i = 1, . . . , Nc(t). The instantaneous departure rate of the i-th type-c job under PS is
hence µ

MPS
s∗
ci

(t)(t)
. In particular, the number of type-c jobs decreases at rate

NPS
c (t)∑
i=1

µ

MPS
s∗ci(t)

(t)
. (3.5)

3.4.1 Intuition behind stability condition and its proof

To illustrate why ρ < 1/d is the stability condition, we have plotted in Figure 3.3 the
trajectories of the number of copies in each of the servers, MPS

s (t), for two settings,
K = 3 and K = 8, with d = 2. In both cases, we assume the load is such that ρ > 1/d.
We let the system start in a very large state, and plot the trajectories over a large time
horizon.

In Figure 3.3, we observe the following effect. When the processes MPS
s (t) are

unbalanced (as is the case for t < 104), the number of copies at the most loaded servers
decrease. Consider one of the highly-loaded servers, referred to as server s̃. Now, a copy
in service in server s̃ will leave because either it has obtained full service in server s̃, or
a copy of the same job finished service in another less-loaded server. The rate at which
a copy is served at such a less-loaded server, is higher than that in the high-loaded
server s̃. Thus, the effective departure rate of copies from server s̃ will be higher than
µ. Since the arrival rate of new copies to a given server equals λ d

K , this explains why
the number of copies in server s̃ (a higher loaded server) can go down, even though
λd/K > µ (ρ > 1/d).

Hence, during a certain time, the system experiences a “good phase” in which
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(a) K = 3, d = 2 and ρ = 0.53 (b) K = 8, d = 2 and ρ = 0.52.

Figure 3.3 Trajectory of the number of jobs in the system (dashed lines) and number of
copies per server (solid lines) with respect to time under PS with identical copies.

higher-loaded servers decrease and the total queue length decreases as well. However,
once the servers are more equally loaded, we observe that the total queue length starts
to build up. To explain this, consider the symmetric case, i.e., MPS

s (t) = m, for all s.
Then, each copy of a job receives in each server the same fraction of capacity. Hence,
the departure rate of copies from a server is µ (see Eq. (3.5)). Since λd/K > µ, the
servers will build up from then on, and the total number of jobs will diverge.

In order to prove the stability condition, the challenge is to prove instability. We note
that the total number of jobs cannot be taken as Lyapunov function: As we described
above, inside some cone around the diagonal (symmetric states), the drift of the total
number of copies in the system is strictly positive, while outside that cone, the drift of
the total number of jobs is decreasing. We further observe from Figure 3.3 that the drift
of the server with the minimum number of copies is strictly positive, while the drifts
of the higher-loaded servers is first negative, until they join the minimum, from which
point on they stay together and increase. This motivated us to study the drift of the
server with the minimum number of copies. Though it is a complicated (non-monotone)
function for the stochastic process, one can show that for the fluid limit, the drift of the
server with the minimum number of copies is strictly positive. So, even if at a short
time scale, the minimum cannot be taken as Lyapunov function, the minimum at a fluid
scale does go up if ρ > 1/d. This is exactly what is used in order to prove unstability,
see Lemma 3.4.5.



3.4 The PS scheduling policy and identical copies 55

3.4.2 Proof of stability condition

Having identical copies makes exact analysis hard, as it requires to keep track of the
attained service of the copies in each of the servers. In order to derive the necessary and
sufficient stability condition, i.e. to prove Proposition 3.4.1, we describe two systems
that lower and upper bound the original PS system. These systems will have the
property that the departure rate no longer depends on the attained service. The latter
allows us to prove using fluid limit arguments the necessary (sufficient) condition for
stability for the lower bound (upper bound) system and hence, also for the original
system. See Section 2.4.2 for more details on the stability condition and the fluid-limit
approximation. The full proofs can be found in Appendix 3.7.C.

3.4.2.1 Necessary stability condition

For the original system, the departure rate of the number of type-c jobs depends on the
attained service, see Eq. (3.5). More precisely, the departure rate of the i-th type-c job
equals

µ

MPS
s∗ci(t)

(t)
, (3.6)

where we recall that s∗ci(t) denotes the server where a copy of this job has received most
service so far. The Lower Bound (LB) system is defined as follows: We replace Eq. (3.6)
by

µ

MPS
sminc ( ~N(t))

(t)
,

where sminc ( ~N(t)) := arg mins∈c{Ms(t)} is the server with the least number of copies
that contains a type-c job at time t (ties are broken at random). That is, in the
LB-system, a type-c job receives service from the server in the set c with the minimum
number of copies. We note that since the LB-system does no longer depend on the
attained service, it is more amenable to get the stability condition.

The LB-system is described by {NLB
c (t), c ∈ C}t≥0, living on the countable set

(N ∪ {0})(
K
d ). Here, NLB

c (t) denotes the number of type-c jobs in the LB-system. The
process NLB

c (t) increases by one at rate λ/
(K
d

)
(as is the case for the original process),

and decreases by one at rate

µ
NLB
c (t)

MLB
sminc ( ~NLB(t))

(t)
, (3.7)

where MLB
s = ∑

c∈C(s)N
LB
c . Note that Eq. (3.7) coincides with Eq. (3.5), where now

s∗ci(t) is replaced by sminc ( ~N(t)) (because for a given type, all jobs share the same server
with the smallest number of copies). Below, we prove that this system gives a stochastic
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lower bound for the original system.

Lemma 3.4.3. Assume NPS
c (0) = NLB

c (0), for all c. Then, NPS
c (t) ≥st N

LB
c (t), for

all c ∈ C and t ≥ 0.

In Lemma 3.4.4 below, we give an expression for the departure rate from a server s
in the LB-system. Before doing so, we need to introduce some notation. For each
server s, we define Ds( ~NLB(t)) := {l ∈ S : MLB

s (t) ≥ MLB
l (t)}. We denote by

Csl ( ~N(t)) := {c ∈ C(s) : l = sminc ( ~N(t))}, the subset of types that are served in server s
and for whom server l is the server with the minimum number of copies that serve type c.
Notice that C(s) is the disjoint union of the above elements, C(s) = ∪l∈Ds( ~N(t))C

s
l ( ~N(t)).

Lemma 3.4.4. For the LB-system, when in state ~NLB(t) = ~nLB, the number of copies
in server s, MLB

s (t), decreases by one at rate

µ

1 +
∑

l∈Ds(~nLB)

(MLB
s (t)−MLB

l (t))∑c∈Cs
l
(~n)N

LB
c (t)

MLB
s (t)MLB

l (t)

 . (3.8)

In particular, from Eq. (3.8) we clearly see the improvement brought by redundancy.
For the server with the minimum number of copies, Eq. (3.8) simplifies to µ. This server
is hence not receiving any help from the other (higher-loaded) servers. However, servers
that do not have the minimum number of copies, do benefit from redundant copies, as
their service rate is µ plus some additional positive fractions. This is due to the fact
that in the LB-system, all types in server s that also have a copy in another server with
less copies, will receive as effective service rate that what they would get in this latter
server, and hence receive a higher capacity than what they would get in server s.

We study the fluid limit of the lower bound system in order to conclude the LB-system
is transient when ρ > 1/d. The fluid-scaling consists in studying the rescaled sequence of
systems indexed by parameter r, see Section 2.4.2.1 for more details. For r > 0, denote
by NLB,r

c (t) the system where the initial state satisfies NLB
c (0) = rnc(0), for all c ∈ C.

The associated number of copies per server is given by MLB,r
s (t) = ∑

c∈C(s)N
LB,r
c (t),

for all s ∈ S. For the fluid-scaled number of jobs per type we can write

NLB,r
c (rt)
r

= nc(0) + 1
r
Ãc(rt)−

1
r
S̃c(TLB,rc (rt)), (3.9)

where TLB,rc (t) is defined as the cumulative amount of capacity spent on serving type-c
jobs in server sminc ( ~NLB,r(·)) during the time interval (0, t]. The existence of fluid limits
can be proved as before: The statement of Lemma 3.2.1 indeed directly translates to
the process ~NLB,r(t), and is therefore left out. In the following result, we obtain the
general characterization of a fluid limit.
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Lemma 3.4.5. The fluid limit mLB
s (t) := ∑

c∈C(s) n
LB
c (t) satisfies:

dmLB
s (t)
dt = λ

d

K
− µ, if mLB

s (t) = min
l∈S
{mLB

l (t)} > 0,

and
dmLB

s (t)
dt ≥ λ d

K
− µ, if mLB

s (t) = min
l∈S
{mLB

l (t)} = 0.

Remark 3.4.6. In case λd/K − µ > 0, this partial characterization of the fluid limit
implies the following. Consider servers whose amount of fluid is the minimum, that
is, consider servers belonging to the set U(t) := {s ∈ S : mLB

s (t) ≤ mLB
s̃ (t), ∀s̃}. By

Lemma 3.4.5, the amount of fluid in these servers increases with a strictly positive
rate λd/K − µ. Moreover, if at time t0 > t, some server s̃ is added to this set, that is,
U(t0) = U(t)∪{s̃}, this server will increase as well from that moment on with the same
rate λd/K − µ.

This uniform divergence of the fluid limit, together with bounds on the macroscopic
drifts, allows us to show instability of the stochastic process ~NLB(t) via a usual
transience criterion for Markov chains whenever the fluid drift λd/K − µ is strictly
positive. Together with Lemma 3.4.3, this allows us to prove the following result.

Proposition 3.4.7. Under PS and identical copies, the system is unstable if ρ > 1/d.

3.4.2.2 Sufficient stability condition

For the original system, a job departs the system once a copy has received its service in
one of the servers. We will now upper bound this, by considering the same system, but
where a job departs from the system only if all its copies have completed service.

The Upper Bound (UB) system is defined as follows: we let NUB
c (t) denote the

number of type-c jobs, and AUBc (t) = (aUBcis (t))is, with aUBcis (t) the attained service of
the i-th type-c job in server s. Note that the number of copies in server s is given by
MUB
s (t) = ∑

c∈C(s)
∑NUB

c (t)
i=1 1(aUBcis (t)<bci), since a copy is only present in server s when

aUBcis (t) is strictly smaller than the service requirement bci. The i-th type-c job in server
s is served at speed µ/MUB

s (t), hence daUBcis (t)
dt = 1/MUB

s (t). Now, the i-th type-c job
departs from the system once aUBcis (t) = bci for all servers s ∈ c, that is, when all the
copies of a job are fully served.

To compare the UB-system with the original PS system, we need to compare the
attained service of the i-th arrived job in both systems. For that, we denote by αUBi,s (t)
and αPSi,s (t) the attained service of the i-th arrived job in server s, for UB and PS,
respectively. With slight abuse of notation, we set αPSi,s (t) equal to βi (the service
requirement of the i-th arrived job) for all servers s, in case it has departed from the
PS system.
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Lemma 3.4.8. Assume αPSi,s (0) = αUBi,s (0), for all i = 1, . . . , and s ∈ S. Then,
αUBi,s (t) ≤st αPSi,s (t) for all t ≥ 0, i = 1, . . ., and s ∈ c. In particular, NUB

c (t) ≥st NPS
c (t).

In the UB-system, all copies need to be served until a job departs. Hence, each
queue receives copies at rate λd/K and copies depart at rate µ, that is, its marginal
distribution is that of an M/M/1 system with arrival rate λd/K and departure rate µ.
The latter is positive recurrent if and only if ρ < 1/d. Since ~NUB(t) serves as an upper
bound for our model (Lemma 3.4.8), this implies that the original system is positive
recurrent as well, as stated in the result below.

Proposition 3.4.9. Under PS and identical copies, the system is stable if ρ < 1/d.

3.5 The ROS scheduling policy and identical copies

In this section we study ROS with identical copies and show that the stability condition
is ρ < 1. Appendix 3.8.D contains the proofs of the results obtained in this section.

3.5.1 Intuition behind stability condition and its proof

Under ROS with identical copies, an idle server chooses uniformly at random a new
copy from its queue and serves it until the copy finishes service, or one of its identical
copies finishes service in another server. Note that if k servers are serving different jobs,
then the total departure rate of these k servers is µk. If however these k servers are
serving a copy from the same job, then these k servers give together a total departure
rate µ (since copies are identical), hence capacity is wasted.

From the above, we observe that P(every copy in service belongs to a unique job)
is an important measure to determine the stability condition under ROS. Note that this
probability is strictly smaller than 1 when the queue length is small, hence capacity is
wasted. However, as the queues grow large, this probability will converge to 1, showing
that under the fluid scaling no capacity is wasted. This then allows us to conclude that
the stability condition is not reduced when adding redundant copies, that is, ρ < 1 is
the stability condition.

3.5.2 Proof of stability condition

In order to prove the stability, we investigate the fluid-scaled system. For r > 0, denote
by NROS,r

c (t) the system where the initial state satisfies ~NROS(0) = r~n(0). Using
routing arguments, we can write

NROS,r
c (rt)

r
= nc(0) + 1

r
Ãc(rt)−

1
r
S̃c(TROS,rc (rt)), (3.10)
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where TROS,rc (t) is defined as the cumulative amount of capacity spent on serving a first
copy of type-c jobs in the interval (0, t]. For a given job, we refer with “first copy” to
that copy (out of the d) that was first to enter into service.

The existence of the fluid limit can be proved. In fact, the statement of Lemma 3.2.1
and its proof directly carry over, and are therefore left out.

For a given server s, fixed time t ≥ 0 and state ~NROS(t) = ~n, such that ∑c∈C(s) nc >

0, we denote by Ps(~n) the probability that at time t this server is serving a copy that is
not in service in any other server. Then, the following lemma is true.

Lemma 3.5.1. For any server s ∈ S and ~NROS,r(0) = r~nr, such that lim
r→∞

∑
c∈C(s) rn

r
c >

0, then
lim
r→∞

Ps(r~nr) = 1. (3.11)

Thus, in the fluid limit, each server serves a copy of a job that is not being served at
any other server in the system. We note, that this property holds since the scheduling
policy is ROS, and does not depend neither on the redundancy topology nor the copies
correlation nor the service time distribution in the servers.

The following lemma gives a partial characterization of the fluid process.

Lemma 3.5.2. The fluid limit mROS
s (t) := ∑

c∈C(s) n
ROS
c (t) satisfies the following:

dmROS
s (t)
dt ≤ λ d

K
− µd, if mROS

s (t) = max
l∈S
{mROS

l (t)} > 0.

In case ρ < 1, the drift in the above expression is strictly negative. That is, the
maximum of the fluid process ~m(t) is strictly decreasing. Hence, there is a finite time T
when the fluid process is empty. From this, we can directly conclude stability (same
steps as in the proof of Proposition 3.2.3).

Proposition 3.5.3. Under ROS with identical copies, the process ~NROS(t) is ergodic
when ρ < 1.

3.6 Numerical analysis

We have implemented a simulator in order to assess numerically the impact of redundancy
in a redundancy-d system. We run these simulations for a sufficiently large number of
busy periods (106), so that, the variance and confidence intervals of the mean number
of jobs in the system are sufficiently small.

We simulate the system under the same assumptions as considered in the theoretical
results, that is, exponential service times and homogeneous servers. In order to assess
the impact of our modeling assumptions, we also simulate the queuing model with other
service time distributions, such as deterministic services, or degenerate hyperexponential
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Figure 3.4 Mean number of jobs for the redundancy-d system (K = 5) with exponential
service times and i.i.d. copies vs. the load for FCFS, PS and ROS service policies, and
for d = 1 (◦), d = 2 (�), d = 3 (∗), d = 4 (×) and d = 5 (4).

distributions. Under the latter distribution, with probability p the service requirement
is exponentially distributed with parameter µp, and is 0 otherwise, hence, the mean
service time equals 1/µ (independent of p). The squared coefficient of variation however
equals 2

p − 1, which increases as p decreases. As a consequence, this distribution allows
us to study the impact of the service time variability on the performance.

Without loss of generality, throughout this section we assume that the mean service
requirement of a copy equals 1. In Section 3.6.1 we present the numerics for i.i.d. copies
and in Section 3.6.2 for identical copies.

3.6.1 IID copies

In this section we consider that copies are i.i.d. copies. Under FCFS, PS and ROS, the
system is stable whenever ρ < 1. In Figure 3.4 we plot the mean number of jobs (scaled
by 1 − ρ) under these policies for different values of d and exponentially distributed
service times. For a given d, we observe that the plots under FCFS, PS and ROS
are very similar. In addition, we observe that increasing the number of redundant
i.i.d. copies, d, improves the performance.

In Figure 3.5 we plot the mean number of jobs under FCFS, PS, and ROS for
exponential, deterministic, and degenerate hyperexponential (p = 0.25 and p = 0.1)
service time distributions. We assume K = 5 servers and plot the performance for
d = 2 and d = 4 copies. For either FCFS, PS or ROS, we can draw similar qualitative
observations: (i) For variable service distributions, the performance improves as d
increases while it is the other way around for deterministic copies, and (ii) for a given
d, the performance improves as the variability of the service time distribution increases.
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(a) FCFS (b) PS

(c) ROS

Figure 3.5 Mean number of jobs for the redundancy-d system (K = 5) with d = 2 (◦)
and d = 4 (�), for exponential, deterministic and degenerate hyperexponential (p = 0.25
and p = 0.1) service times (i.i.d. copies) vs. the load.

Only under FCFS and PS, with the degenerate hyperexponential distribution the system
remains stable even if ρ > 1, while the stability region with deterministic service
requirements seems to be reduced. In general, this can be intuitively explained by
noting that when copies of a job are i.i.d. copies, the probability that a job departs due
the completion of a rather large copy will become small as the variability in the copies
increases. For PS, the increase in performance due to variability of service sizes is even
more profound than with FCFS (see also Figure 3.5), as only jobs that have a positive
service time for their d copies will enter service (which happens with probability pd),
while all other jobs are served instantaneously. We further note that (i) has been proved
for PS in [83], where it was shown that for NWU (NBU) service times, the stability
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region increases (decreases) as a function of d. Point (ii) has been proved for FCFS in
an asymptotic region in [82].

Under ROS, simulation results seem to indicate that the stability condition remains
ρ < 1 for any service time distributions. Since copies are being randomly chosen for
service, the system does not seem to profit from the variability of the service times of
the i.i.d. copies. For example, in the case of degenerate hyperexponential distribution,
when ρ is close to 1, with probability p a job will start being served in a server where
its copy has strictly positive service requirement. Due to ROS, in a high congested
system, the probability that another copy (possible of size 0) of this job will receive
service in another server will be close to zero. Hence, with probability p a job needs
exponential service time with parameter µp and with probability 1− p its service time
equals zero. On average it needs 1/µ, which explains why ρ < 1 can be the stability
condition. Further note that for d = 4, it seems that the system remains stable when
ρ = 1. This is however not the case. For ρ close to 1, the mean number of jobs in the
system is close to zero, which can be explained as follows: A job has a strictly positive
service requirement with probability pd. When d = 4 and p ∈ {0.25, 0.1}, it holds that
p4 < 10−2. Hence, it is very likely that for a very long time, zero jobs are present in
the system (as all arriving jobs spend zero time in the system). This explains why for
ρ < 1, the mean number of jobs stays very close to zero. We however believe that the
stability condition is ρ < 1.

3.6.2 Identical copies

In this section we consider jobs with identical copies. We have proved that the stability
condition strongly depends on the employed scheduling policy and on the number of
copies d. In Section 3.6.2.1 we evaluate the system for different values of d and observe
that the stability region reduces as d grows large. In Section 3.6.2.2 we characterize the
performance and its dependence on d for a light-load regime, and observe that when the
load is small enough, redundancy can improve the performance. In Section 3.6.2.3, we
numerically study the impact of different service time distributions on the performance.

3.6.2.1 Exponential service time distributions

In Figure 3.6 we plot the mean number of jobs under (a) FCFS (K = 5), (b) PS
(K = 5), (c) ROS (K = 5) and (d) ROS (K = 8) respectively, for different values of
d. The vertical lines in Figure 3.6 (a) and (b) correspond to the stability regions (for
different values of d) as derived in Proposition 3.3.3 (where ¯̀/K has been obtained via
simulation of the saturated system) and Proposition 3.4.1. Indeed, we observe that the
mean numbers of jobs under FCFS and PS have an asymptote at the point ¯̀/K and
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(a) FCFS, K = 5 (b) PS, K = 5

(c) ROS, K = 5 (d) ROS, K = 8

Figure 3.6 Mean number of jobs for the redundancy-d system with exponential service
times and identical copies vs. the load.

1/d, respectively. An interesting observation we can draw from Figure 3.6 (a) and (b) is
that for every d, the stability region under FCFS is larger than under PS, as proved
in Corollary 3.3.4.

Under the ROS scheduling policy, the stability condition is ρ < 1 and does not
reduce due to adding redundant copies, Proposition 3.5.3. In order to observe how the
mean number of jobs performs with d, in Figure 3.6 (c) and (d) we plot the ratio between
the mean number of jobs under d and the mean number of jobs under no redundancy
(d = 1). If the ratio is below 1, this implies that redundancy (for the particular value of
d) improves the performance.

In Figure 3.6 (c) and (d), we observe that for small values of d, redundancy out-
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(a) d = 2 and K = 2, . . . , 9 (b) d = K − 2 and K = 4, . . . , 10

Figure 3.7 Mean number of jobs for the redundancy-d system under FCFS with expo-
nential service times and identical copies vs. the load.

performs the non-redundant system, for any value of the load,. However for d values
close K the performance degrades compared to that under redundancy-1. The latter
suggests that there is a trade-off between the number of redundant copies at each
server and the overload that the latter induces compared to the non-redundant system.
Overall, we observe that when the scheduling policy is ROS, redundancy can improve
the performance of the system for any value of ρ. This is very different from the FCFS
and PS cases, in which the best performance is given by redundancy-1 as the value of ρ
increases, see Figure 3.6 (a) and (b).

In Figure 3.7 we focus on FCFS. As before, the vertical lines correspond to the
stability region, ρ < ¯̀/K. In Figure 3.7 (a), we fix the number of copies to d = 2 and
plot the performance for several values of the number of servers K. We note that the
stability region increases in K (as also proved in Proposition 3.3.5) and that it converges
as K grows large to a constant value. In Figure 3.7 (b), we instead set d = K − 2,
so that the number of copies increases with K. Now, we observe that the stability
condition reduces as the number of servers K increases. Hence, the negative impact due
to having one more redundant copy, is more important than the benefit of having one
more server. This is in agreement with the case d = K − 1, for which the the stability
region (ρ < 2

K ) also decreases in K.

3.6.2.2 Light-traffic approximation

In this section we consider the steady-state performance for extremely low traffic load,
i.e., the so-called light-traffic regime, see Section 2.5 for more details. The light-traffic
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(a) FCFS (b) PS

Figure 3.8 Ratio of the mean delay with d identical copies and the mean delay with
no redundant copies (d = 1), as a function of ρ. For the redundancy-d system (K = 5)
with exponential service times and identical copies.

approximation corresponds to the first-order asymptotic expansion of the system as
λ → 0. More precisely, as λ → 0 we seek to write E(| ~NP (∞)|) = N̄LT,P (λ) + o(λ2),
for a given scheduling policy P . We defer the details of the light-traffic analysis
to Appendix 3.8.E, and we give here the main result of the approach in which we
characterize N̄LT,FCFS(λ), N̄LT,ROS(λ) and N̄LT,PS(λ).

Lemma 3.6.1. The leading term of the light-traffic approximation for FCFS, ROS and
PS with identical copies is given by N̄LT,FCFS(λ) = N̄LT,ROS(λ) = λ

µ + 3λ2

2µ2
1

(Kd ) , and

N̄LT,PS(λ) = λ
µ + λ2

µ2
1

(Kd ) , respectively.

We note that for all three policies, the light-traffic term is minimized in d∗ := bK/2c.
To explain this, we note that at very low loads, an arriving job will find at most one
other job present. In particular this implies that this new arrival will wait for service
if and only if it is of the same type as the job already present in the system. The
probability of being of the same type is equal to 1/

(K
d

)
, which is minimized by setting d

equal to d∗.
For ROS, we saw in Figure 3.6 that d = 2 minimized the mean number of jobs for

any value of ρ. In Figure 3.8 (a) and (b) we consider FCFS and PS, respectively, for low
load. We plot the ratio of the mean total number of jobs for the system with d identical
copies with that of a system with no redundant copies (d = 1). If the ratio is below 1,
this implies that redundancy (for the particular value of d) improves the performance.
As predicted in Lemma 3.6.1, redundancy reduces the mean delay for ρ small enough,
and the best performance is obtained in d = 2. For sufficiently large load, the minimum
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delay is obtained with d = 1, see also Figure 3.6.

3.6.2.3 General service time distributions

In Figure 3.9, we compare the mean number of jobs for exponential, deterministic, and
degenerate hyperexponential service time distributions. We consider K = 5 servers and
d = 2 and d = 4 identical copies.

We observe in Figure 3.9 that for FCFS, PS and ROS, the performance degrades as
d increases. This is in contrast to the i.i.d. copies case, where we observed the opposite
effect, see Figure 3.5. This is due to the fact that with identical copies, capacity is

(a) FCFS (b) PS

(c) ROS

Figure 3.9 Mean number of jobs for the redundancy-d system (K = 5) with d = 2(◦) and
d = 4(�), and exponential, deterministic and degenerate hyperexponential (p = 0.25
and p = 0.1) service times (identical copies) vs. the load.
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wasted on serving the exact same copy, while with i.i.d. copies, the system benefits from
the difference in the requirement per copy.

For FCFS and ROS, we observe that, unlike in the i.i.d. copies case, the performance
of the system degrades as the variability of the service time increases. In particular, for a
given d, the best performance is obtained with deterministic service times. Moreover, for
the degenerate hyperexponential service time distribution, the performance deteriorates
as p decreases. For FCFS, these observations are in agreement with the results obtained
by [58] for the mean field analysis.

From the numerics, it seems that for deterministic or degenerate hyperexponential
service times, ROS is more stable than when FCFS and PS are implemented.

Another observation is that for PS the mean number of jobs in the systems seems
to almost coincide for the different service time distribution, that is, the performance
seems to be nearly insensitive to the service time distribution (beyond its mean value).
When degenerate hyperexponential service times are considered, it is trivial that the
performance coincides with that of exponential service requirements. This can be
explained as follows: With identical copies, only a fraction p of the arrivals have a
non-zero service requirement, and this is exponentially distributed with mean 1/(pµ).
Thus, the system with degenerate hyperexponential service requirements with parameter
p is equivalent to the system with arrival rate λ and exponentially distributed service
requirements with mean 1/µ where time is parametrized with parameter p. Similar
results are obtained in [55], where the authors show that for JSQ scheduling with PS,
the mean number of jobs is nearly insensitive to the service time distribution.

3.7 Concluding remarks

In the present chapter, we have investigated the stability region and performance of
the redundancy-d systems where servers are equally loaded, that is, the system where
servers have homogeneous capacities, and each arriving job sends d copies into uniformly
chosen d servers at random. We have shown that when jobs have i.i.d. copies, the
stability condition of the system is not reduced due to adding redundant copies for both
PS and ROS scheduling policies.

We observe that under the identical copies assumption, the stability condition
strongly depends on the implemented scheduling policy. When ROS is implemented,
the stability condition is independent of the redundancy degree d and does not reduce
due to adding redundant copies. However, when FCFS and PS are implemented, the
stability condition is dramatically reduced for the redundancy-d homogeneous system.
In Chapter 4 we investigate the stability condition for redundancy models with general
redundancy topologies and identical copies.
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3.8 Appendix

A: Proofs of Section 3.2

Proof of Lemma 3.2.1: From the law of large numbers, we obtain that almost surely,

lim
r→∞

1
r
Ãc(rt) = λ(K

d

) t and lim
r→∞

1
r
S̃c(s)ds = µt. (3.12)

The cumulative amount of capacity spent on serving type-c jobs in server s, T IID,rs,c (t)
increases at rate N IID

c (t)/M IID
s (t) ≤ 1. Hence, 1

rT
IID,r
s,c (rt)− 1

rT
IID,r
s,c (ru) ≤ (t− u) for

every t ≥ u, i.e., T IID,rs,c (rt)/r is Lipschitz continuous. Therefore, by the Arzela-Ascoli
theorem we obtain that for almost all sample path ω and any sequence rk, there exists

a subsequence rkj such that lim
j→∞

T
IID,rkj
c (rkj t)

rkj
= τ IIDc (t), u.o.c.. Together with Eq. (3.2)

and Eq. (3.12), we obtain Eq. (3.3).

Proof of Lemma 3.2.2: For ease of notation, we removed the superscript IID through-
out the proof. Let f(~n) = (fc(~n), c ∈ C), with fc(~n) : R|C|+ → R|C|, denote the drift
vector field of ~N(t) when starting in state ~N(0) = ~n, i.e., f(~n) = d

dtE
~n
[
~N(t)

]∣∣∣
t=0

. We
can deduce from the results of [47, Proposition 5] that the fluid limit ~n(t) satisfies

d~n(t)
dt ∈ F (~n(t)), (3.13)

where
F (~n) := conv

(
accr→∞ f(r~nr) with lim

r→∞
~nr = ~n

)
. (3.14)

Here, accr→∞ xr denotes the set of accumulation points of the sequence xr when r

goes to infinity and conv(A) is the convex hull of set A. An illustration of how F is
constructed is available in Figure 1 in [47, Section 2].

Using Eq. (3.13) and Eq. (3.14), we can partly characterize the fluid process ms(t) =∑
c∈C(s) nc(t). Denote by f̃s(~n) = ∑

c∈C(s) fc(~n) the one-step drift of Ms(t). The arrival
rate of copies to server s equals λ

(K−1
d−1

)
/
(K
d

)
= λd/K. Recall from Eq. (3.1) that the

total departure rate of copies from server s equals µ
(∑

c∈C(s)
∑
l∈c

nc
ml

)
. Hence, in state

~n, the drift of server s is equal to

f̃s(~n) = λ
d

K
− µ

 ∑
c∈C(s)

∑
l∈c

nc
ml

 . (3.15)

LetG2(~n) := {s ∈ S : ms ≥ ml,∀l}. Note that if s ∈ G2(~n), then
(∑

c∈C(s)
∑
l∈c

nc
ml

)
≥(∑

c∈C(s)
∑
l∈c

nc
ms

)
= ∑

c∈C(s) d
nc
ms

= d.
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Now, let limr→∞ ~n
r = ~n, and ~n 6= ~0. Then, for s ∈ G2(~n),

lim
r→∞

f̃s(r~nr) = λd/K − µ

 ∑
c∈C(s)

∑
l∈c

nc
ml

 ≤ λd/K − µd.
Together with Eq. (3.13), Eq. (3.14) and ∑c∈C(s)

dnc(t)
dt = dms(t)

dt , this concludes the
proof.

Proof of Proposition 3.2.3: Define mIID
max(t) := maxs∈S{mIID

s (t)} and fix T =
mIID
max(0)/d(µ− λ

K ). From Lemma 3.2.2, we know that at time T , mmax(T ) = 0. Since
for any s ∈ S, mIID

s (t) ≤ mIID
max(t), we conclude that at time T the fluid system is empty.

From Theorem 2.4.10 we conclude that the process is ergodic.

B: Comments and proofs of Section 3.3

Balance equations of the saturated system

For ~e1, ~e2 ∈ E, we denote by q(~e1, ~e2) the transition probability from state ~e1 to state
~e2. Recall that in state ~e = (O`∗ , . . . , O2, L1, O1) ∈ Ē, exactly `∗(~e) := `∗ jobs are
being served, each of them with departure rate µ. Hence, the balance equations of the
saturated system are given by

µ`∗(~e1)π(~e1) =
∑
~e2∈Ē

q(~e2, ~e1)π(~e2),

with π(~e) the steady-state distribution.

We will write down the balance equations in the case d = K − 2. In that case,
at any moment in time there is one job that is served in d = K − 2 servers. In the
remaining two servers, either one job, or two jobs are served. Hence, the states of the
saturated system are of the form ~e = (O3, L2, O2, L1, O1) and ~e = (O2, L1, O1). We
denote by C(O1) := {c ∈ C : c ∪ O1 = {1, . . . ,K}} the subset of types that together
with type O1 make all servers busy. Hence, if the system is in state ~e = (c, L1, O1),
c ∈ C(O1), the total departure rate is 2µ. We denote by C̄(O1) := C −O1 ∪ C(O1) the
subset of types that together with O1 do not use all servers. For O1, O2 ∈ C, we denote
by C(O1, O2) := {c ∈ C : c ∪ O1 ∪ O2 = {1, . . . ,K}} the subset of types that together
with O1 and O2 make all servers busy.
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The balance equations are given by:

2µπ(O2, L1, O1) = µπ(O2, L1 + 1, O1) + µ
∑
c∈C(O1)

∑L1
j=0( 1

|C|)
j+1π(c, L1 − j,O1)

+µ∑c∈C(O1)( 1
|C|)

L1+1π(O1, 0, c) + µ
∑
c∈C̄(O1)

(
1

(K−1
d )

)L1

π(O2, L1, O1, 0, c)

+µ∑c∈C̄(O1)
∑L1
j=0

(
1

(K−1
d )

)j
π(O2, j, c, L1 − j,O1),

with L1 ≥ 0, O1 ∈ C, and O2 ∈ C(O1). The term (1/
(K−1

d

)
)j in the fourth and fifth

term on the right represents the probability that all j waiting jobs are of type O1 (types
O1 and c occupy K − 1 servers, hence

(K−1
d

)
is the number of possible types that can

compose L1). For a 3µ departure rate configuration state we have

3µπ(O3, L2, O2, L1, O1) = µπ(O3, L2, O2, L1 + 1, O1)

+µ∑c∈C̄(O1)∩C(O1,O3)
∑L1
j=0

(
1

(K−1
d )

)j+1
π(O3, L2 + j + 1, c, L1 − j,O1)

+µ∑c∈C(O1,O2)
∑L2
j=0

(
(K−1

d )
|C|

)j
1
|C|(c, L2 − j,O2, L1, O1)

+µ∑c∈C̄(O1)∩C(O1,O3)

(
1

(K−1
d )

)L1+1
π(O3, L1 + L2 + 1, O1, 0, c)

+µ∑c∈C̄(O1)∩C(O1,O2)

(
(K−1

d )
|C|

)L2
1
|C|

(∑L1
j=0

(
1

(K−1
d )

)j
π(O2, j, c, L1 − j,O1)

+
(

1
(K−1

d )

)L1

π(O2, L1, O1, 0, c)
)

+µ∑c∈C(O1)

(
(K−1

d )
|C|

)L2 (
1
|C|

)2 (∑L1
j=0

(
( 1
|C|)

jπ(c, L1 − j,O1)
)

+ ( 1
|C|)

L1π(O1, 0, c)
)
,

with O1 ∈ C, O2 ∈ C̄(O1), O3 ∈ C(O1, O2) and L1, L2 ≥ 0. Note that on the right-hand-
side, the term (K−1

d )
|C| is the probability that an arriving job is of type c ∈ O1 ∪O2 (the

number of types c with c ∈ O1 ∪O2 is equal to
(K−1

d

)
).

Some properties of ¯̀: In the proof, we will make use of the following properties for
the saturated system (as defined in Definition 3.3.2). Recall that the average total
departure rate of the saturated system is given by ¯̀µ, where ¯̀ is defined in Eq. (3.4)
as the average number of jobs in service. For the saturated system, recall that `∗(~e)
denotes the number of jobs that is served in state ~e. Hence

lim
t→∞

1
t

∫ t

0
`∗(~e(u))du = ¯̀, almost surely. (3.16)

For the saturated system, let `∗c(~e) equal 1 if a type-c job is served in state ~e and 0
otherwise. Note that ∑c∈C `

∗
c(~e) = `∗(~e). Hence, using the system symmetry, (or more

precisely, the exchangeability of the server contents), and together with Eq. (3.16), we
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obtain that
lim
t→∞

1
t

∫ t

0
`∗c(~e(u))du =

¯̀(K
d

) , almost surely. (3.17)

Proof of Proposition 3.3.5: We are given a saturated system with K servers, with
a central queue where jobs wait in order of arrival. The system starts serving at
time 0. Let cK(i) denote the type of the i-th job at time 0 in this central queue. Let
αKis (t) denote the attained service of this job at time t in server s ∈ cK(i). Once the
job i departs, the attained service αKis (t) is set equal to βi, the service requirement of
job i. Let DK

c (t) denote the number of departed type-c jobs in the interval (0, t] and
DK
s (t) := ∑

c∈CK(s)D
K
c (t) the number of departed jobs from server s, with CK the set

of types with K servers. We will prove that

DK
s (t) ≥st DK−1

s (t), with s an arbitrary server in each of the systems. (3.18)

Before proving this, we first show how Eq. (3.18) implies that ¯̀/K is increasing
in K, as stated in Proposition 3.3.5. From Eq. (3.18) we have limt→∞

1
tD

K
s (t) ≥

limt→∞
1
tD

K−1
s (t), that is, the long-run departure rate from server s is increasing in

the number of servers. Note that µ∑c∈C(s) `
∗
c(~e(t)) is the instantaneous departure rate

from server s, where `∗c(~e(t)) equals 1 if a type-c job is served, and equals 0 otherwise.
From Eq. (3.17), we have that the long-run departure rate from server s can equivalently
be written as limt→∞

1
tµ
∑
c∈C(s)

∫ t
0 `
∗
c(~e(t))du = ¯̀µ

(Kd )
(K−1
d−1

)
= d¯̀µ

K . Since the long-run

departure rate is increasing in the number of servers, this implies that ¯̀
K is increasing

in K and proves the statement of Proposition 3.3.5.

We are left with proving Eq. (3.18). In order to do so, we will couple the system
with K servers to a system with K − 1 servers as follows. We consider the central
queue associated to the saturated system with K servers, which corresponds to an
infinite backlog of jobs (at time 0) ordered according to arrival (from −∞). In the
K − 1 server model, server K is removed. We couple the K − 1 server model to the K
server model, by creating the central queue for the K − 1 system as follows. For each
i-th job in the central queue that has a copy in server K, i.e., K ∈ cK(i), we choose
uniformly at random another server among the remaining K\cK(i) servers, denoted by
sK−1(i). Hence, for any job with K ∈ cK(i), we set its type in the K − 1 system as
cK−1(i) = (cK(i)\K) ∪ sK−1(i). For all jobs with K /∈ cK(i), we set cK−1(i) = cK(i).
Below we show that for all t ≥ 0,

αKis (t) ≥ αK−1
is (t),∀i = 1, . . . and ∀s ∈ cK(i)\K. (3.19)
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and
αKiK(t) ≥ αK−1

isK−1(i)(t). (3.20)

From Eq. (3.19) and Eq. (3.20) we obtain that Eq. (3.18) holds: If a job i departs from
a server s in the K − 1 system, then (i) either also s ∈ cK(i), in which case this job
has departed at a time u ≤ t in the K system (from Eq. (3.19)), (ii) or s 6= cKi , which
implies that the type of the job is different in the K system and K − 1 system, hence
s = sK−1(i). Then, from Eq. (3.20) it follows that this job has departed at a time u ≤ t
in the K system. To conclude, in both cases, job i has already departed in the K system
before it departs in the K − 1 system, hence, Eq. (3.18) holds.

The result in Eq. (3.19) and Eq. (3.20) will be proved by induction. It holds at time 0.
Now assume that for all u ≤ t it holds that αKis (u) ≥ αK−1

is (u),∀i = 1, . . . and ∀s ∈
cK(i)\K. and αKiK(u) ≥ αK−1

isK−1(i)(u). We prove that this remains true at time t+.
In order for the inequality Eq. (3.19) to no longer be valid at time t+, it needs to hold

that either Eq. (3.19) or Eq. (3.20) hold with strict equality. We first assume the first
case, that is, αKis (t) = αK−1

is (t), for some i and s ∈ cK(i)\K. If αKis (t) = αK−1
is (t) = 0

and in the K − 1 system it holds that αK−1
is (t+) > 0, then this implies that one of the

following occurs:

(1) in the K system, the server s is serving the i1-th job, with i1 < i, while in the K−1
system, server s starts serving job i at time t+. However, since αKi1s̃(t) ≥ α

K−1
i1s̃

(t),
for all s̃ ∈ cK(i)\K, this implies that job i1 should not have a copy in server s
in the K − 1 system, since otherwise, job i1 was also still in service in the K − 1
system. However, due to the construction of the coupling and since s 6= K, such a
job i1 does not exist.

(2) in the K−1 system, this job i finishes its service in server s̃, that is, αK−1
is̃ (t+) = βi

and hence αK−1
is (t+) = βi. But since Eq. (3.19) and Eq. (3.20) hold at time t, this

job is then also finished in the K system, and hence also αKis (t+) = βi.

Now assume αKis (t) = αK−1
is (t) > 0 for some i and s ∈ cK(i)\K. Then, both jobs are

in service in server s, hence the inequality remains valid, unless the job departs in the
K − 1 system (and hence αK−1

is (t+) = βi), but not in the K system. This can however
not happen, since αKjs̃(t) ≥ αK−1

js̃ (t), ∀js̃ ∈ cK(j)\K and αKjK(t) ≥ αK−1
jsK−1(j)(t). Hence,

the inequality remains valid at time t+.
To prove that αKis (t) = αK−1

is (t), implies αKis (t+) = αK−1
is (t+) follows exactly the

same steps and is therefore left out.

Proof of Lemma 3.3.6: Both systems are coupled as follows: At time t = 0,
NFCFS
c (0) = 0 and N

(T )
c (0) = Ãc(T ), where Ãc(t) is the arrival process of type-c

jobs. During the time interval [0, T ], we couple the original system and its modified
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version by using the same arrivals and service times in the FCFS systems, as those that
arrived in the ~N (T )-system at time 0.

The result will be proved by induction. It holds at time 0. Now assume that for all
u ≤ t it holds that N (T )

c (u) ≤ NFCFS
c (u) + (Ãc(T )− Ãc(u))+ and aFCFScis (u) ≤ a ~N(T )

cis (u),
for all i = 1, . . . , NFCFS

c (t), c ∈ C, s ∈ S. We prove that this remains true at time t+.
For that, assume there is a c such that N (T )

c (t) = NFCFS
c (t) + (Ãc(T )− Ãc(t))+. If

t < T , only in the FCFS system we can have an arrival, in which case NFCFS
c (t+) =

NFCFS
c (t) + 1 and (Ãc(T )− Ãc(t+))+ = (Ãc(T )− Ãc(t))+ − 1. Hence, the inequality

remains valid. If t ≥ T , then an arrival in the FCFS system is coupled to an arrival in
the ~N (T )-system, hence N (T )

c (t+) = NFCFS
c (t+) (and note that (Ãc(T )− Ãc(t))+ = 0).

Now, assume the i-th type-c job departs in the FCFS system (which can cause a
violation of the inequality). Since aFCFScis̃ (t) ≤ a

~N(T )
cis̃ (t), for all s̃, it holds that the

same job departs in the ~N (T )-system. Hence, in all cases, the inequality N
(T )
c (t+) ≤

NFCFS
c (t+) + (Ãc(T )− Ãc(t+))+ remains valid at time t+.

Now assume there exists a c, i, s such that aFCFScis (t) = a
~N(T )
cis (t). First assume

aFCFScis (t) = a
~N(T )
cis (t) > 0. Because of FCFS, in both systems this copy has entered

service in server s at the same instant of time. Hence, it cannot happen that aFCFScis (t+) >
a
~N(T )
cis (t+). If instead aFCFScis (t) = a

~N(T )
cis (t) = 0, the i-th type-c copy in server s is waiting

in the queue in both systems. We need to prove that if this copy would enter service
in server s at time t+ in the FCFS system, it also enters service in the ~N (T )-system in
server s. From the FCFS policy and aFCFSc̃js (t) ≤ a

~N(T )
c̃js (t), for all c̃, j ≤ i, this follows

directly.

Proof of Proposition 3.3.7: We will prove that if the ~N (T )-system is stable and T is
sufficiently large, then λ ≤ ¯̀µ. From Lemma 3.3.6, it follows that stability of the FCFS
system, implies stability of the ~N (T )-system, and hence λ ≤ ¯̀µ, which would conclude
the proof.

We will now prove that if the ~N (T )-system is stable, then λ ≤ ¯̀µ. We define the
random variable τ(T ) as the first moment in time a servers gets empty in the ~N (T )-
system, i.e., τ(T ) := min{u : M (T )

s (u) = 0, for some server s}. Up till time τ(T ), the
~N (T )-system is stochastically equivalent to the saturated system. Hence, using the
Markovian description of the process M (T )

s and Dynkin’s formula, we have that there
exists a martingale (Zs(t))t≥0 such that

M (T )
s (τ(T )) = M (T )

s (0) + dλ(T + (τ(T )− T )+)
K

−
∫ τ(T )

0
µ
∑

c∈C(s)
`c(~e(u))du+Zs(τ(T )).

(3.21)
Since the increasing process associated to Zs is bounded in mean by Ct, with C > 0,
it follows that suptE

(Zs(t)
t

)2 ≤ Ct
t2 , which in turn implies that Zs(τ(T ))

τ(T ) → 0 in L2 and
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hence the convergence holds almost surely.
Since by the law of large numbers for the Poisson process, lim infT→∞ τ(T )

T ≥ c > 0, it
follows that lim infT→∞M (T )

s (0)/τ(T ) = 0 and lim infT→∞
∫ τ(T )

0 µ
∑
c∈C(s) `c(~e(u))du =

¯̀µ almost surely. Now, together with Eq. (3.21) and Eq. (3.17), it follows that

lim
T→∞

M
(T )
s (τ(T ))
τ(T ) = lim

T→∞

dλ

K

T + (τ(T )− T )+

τ(T ) − d

K
¯̀µ, almost surely. (3.22)

By assumption, the ~N (T )-system is stable, hence, E(τ(T )) < ∞. We can take a
sample path realization ω such that τ(T ) <∞ and Eq. (3.22) holds. At least one of the
following two cases holds:

• there exists a subsequence Ti of T , such that τ(Ti) ≥ Ti and for each Ti, the server
that empties first is the same server s̃. For any ε > 0, we have for i large enough
that

M
(Ti)
s̃ (τ(Ti)) ≥M (T )

s̃ (0)− d

K
(¯̀µ− λ)τ(Ti)− o(ε).

• there exists a subsequence Ti of T , such that τ(Ti) < Ti and for each Ti, the server
that empties first is server s̃. For any ε > 0, we have for i large enough that

M
(Ti)
s̃ (τ(Ti)) ≥M (T )

s̃ (0)− d

K
(¯̀µ− λ)τ(Ti)− o(ε),

since τ(Ti) < Ti.

For both cases we have that since M (Ti)
s̃ (τ(Ti)) = 0, this implies λ < ¯̀µ (if M (T )

s̃ (0) > 0)
and it implies λ = ¯̀µ (if M (T )

s̃ (0) = 0).

Proof of Lemma 3.3.8: We couple both systems as follows: at time zero, both systems
start in the same initial state, that is, N (0)

c (0) = NFCFS
c (0) and a

~N(0)
cis (0) = aFCFScis (0),

for all c, i, s. Arrivals and their service requirements are coupled.
The result will be proved by induction. It holds at time 0. Now assume that

for all u ≤ t it holds that N (0)
c (u) ≥ NFCFS

c (u) and a
~N(0)
cis (u) ≤ aFCFScis (u) for all

i = 1, . . . , NFCFS
c (t), c ∈ C, s ∈ S. Below, we prove that this remains true at time t+.

Assume there is a c such that N (0)
c (t) = NFCFS

c (t). The inequality can be violated
at time t+ if there is a type-c departure in ~N (0), but not in FCFS. However, note that
if the head-of-the-line type-c job in the ~N (0)-system departs, since a ~N(0)

c1s̃ (t) ≤ aFCFSc1s̃ (t),
this job would also depart from the FCFS system. Hence, N (0)

c (t+) = NFCFS
c (t+) at

time t+.
Now assume there exists a c, i, s such that a ~N(0)

cis (t) = aFCFScis (t). First assume
a
~N(0)
cis (t) = aFCFScis (t) > 0. Because of FCFS, in both systems this copy has entered

service in server s at the same instant of time. Hence, it cannot happen that a ~N(0)
cis (t+) >
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aFCFScis (t+). If instead a ~N(0)
cis (t) = aFCFScis (t) = 0, the i-th type-c copy in server s is waiting

in the queue in both systems. We need to prove that if this copy would enter service
in server s at time t+ in the ~N (0)-system, it also enters service in the FCFS-system in
server s. From the FCFS policy and a

~N(0)
c̃js (t) ≤ aFCFSc̃js (t), for all c̃, j ≤ i, this follows

directly.

Proof of Proposition 3.3.9: From Lemma 3.3.8 we have that ~N (0)-system is an upper
bound for the original FCFS system. Hence, it will be enough to prove stability of the
process ~N (0)(t).

In order to prove stability of ~N (0)(t), we study the fluid-scaled system. That is, for
each r, we study ~N (0),r(t), with ~N (0),r(0) = r~n(0). Define T0 = |~n(0)|

µ . By definition of
~N (0),r(t), in the interval [0, rT0], only those jobs present at time 0 are served (according
to FCFS). From time rT0 = | ~N(0),r(0)|

µ onwards, all jobs can be served.
We write ~N (0),r(t) = ~N

(0),r
A (t) + ~N

(0),r
B (t), where ~N

(0),r
A (t) denotes the number of

old jobs, that is, the number of jobs present at time t among those that were already
present at time t = 0. We let ~N

(0),r
B (t) = ~N (0),r(t)− ~N

(0),r
A (t) denote the number of new

jobs present at time t. Similarly, we let M (0)
s,B(t) denote the number of new jobs that

have a copy in server s.
We define

T1 := T0
λ

¯̀µ− λ
= |~n(0)| λ

µ(¯̀µ− λ)
.

We show that for any fluid limit ~n(t) of ~N (0),r(rt) it holds that it is zero at some time
smaller than or equal to T0 + T1, that is |~n(t)| = 0, for some t ≤ T1 + T0.

In the interval [0, rT0], the system serves only the jobs present at time 0. Let ˆ̀r
A(t)

denote the number of such jobs in service at time t in the ~N (0),r-system. Hence, using
the Markovian description of the process | ~N (0),r

A (rt)| and Dynkin’s formula, we have
that there exists a martingale (Z(t))t≥0 such that

| ~N (0),r
A (rt)|
r

= |~n(0)| − µ1
r

∫ rt

0
ˆ̀
A(u)du+ Z(rt)

r
, (3.23)

for t ∈ [0, T0]. Since the increasing process associated to Z is bounded in mean by Ct,
with C > 0, it follows that suptE

(Z(rt)
r

)2
< ∞, which in turn implies that Z(rt)

r → 0
almost surely. Further note that ˆ̀

A(u) ≥ 1 whenever ~n 6= ~0. Together, this gives that

lim
r→∞

| ~N (0),r
A (rt)|
r

≤ max(0, |~n(0)| − µt), for t ∈ [0, T0].

Hence, for any fluid limit ~nA(t), we have |~nA(t)| ≤ max(0, |~n(0)|−µt), so that |~nA(T0)| =
0.

In the remainder of the proof, we study fluid limits of the process ~N
(0),r
B (rt)/r. We
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define the random variable T r1 := inf{t > 0 : there is an s s.t. M (0),r
s,B (r(T0 + t)) = 0}

as the first moment after time T0 that one of the servers gets empty in the fluid limit.
By the law of large numbers, lim infr T r1 ≥ c > 0, almost surely. Hence, without loss of
generality, we can focus on sample paths such that the latter is the case. For a given
sample path we let

T̃1 := lim inf
r→∞

T r1 .

Note that T̃1 ≥ c. We consider henceforth the subsequence rj of any given sequence r,
such that

T
rj
1 > T̃1 − ε, ∀rj .

In particular, this implies that all servers are working on new jobs during the interval
[rjT0, rjT0+rj(T̃1−ε)], for any rj . Also note that all jobs ~N (0)

B (T1) are “freshly” sampled,
and hence the system behaves as a saturated system during this time frame.

Using the Markovian description of the process ~M
(0),r
B (rt) and Dynkin’s formula, we

have that there exists a martingale (Zs(t))t≥0 such that

|M (0),r
s,B (rt)| = λ

dt

K
− µ

∫ rt

rT0

∑
c∈C(s)

`∗c(~e(u))du+ Zs(rt), (3.24)

where t is such that T0 ≤ t ≤ T0 + T̃1 − ε. We recall that `∗c(~e(u)) equals 1 if a type-c
job is in service, and equals zero otherwise. Since the increasing process associated to
Zs is bounded in mean by Ct, with C > 0, it follows that suptE

(Zs(rt)
r

)2 ≤ Ctr
r2 = Ct

r ,
which in turn implies that Zs(rt)

r → 0 almost surely. Now together with Eq. (3.17), we
conclude that for this subsequence rj of r,

lim
j→∞

|M (0),rj
s,B (rjt)|
rj

= λ
dt

K
− ¯̀µ d

K
(t− T0) = (λ− ¯̀µ) d

K
t+ T0 ¯̀µ d

K
,

where t is such that T0 ≤ t ≤ T0 + T̃1 − ε. Hence, the corresponding fluid limit satisfies

ms,B(t) = (λ− ¯̀µ) d
K
t+ T0 ¯̀µ d

K
, (3.25)

where t is such that T0 ≤ t ≤ T0 + T̃1 − ε. In case T̃1 > T1, since T1 = T0
λ

¯̀µ−λ , one
obtains from Eq. (3.25) that ms,B(T0 + T1) = 0 for all s. Now assume T̃1 ≤ T1. By
definition of T r1 , it holds that ∏sM

(0),r
s,B (r(T0 +T r1 )) = 0 and hence ∏sms,B(T0 + T̃1) = 0.

From Eq. (3.25) one has ms,B(T0 + T̃1 − ε) = ms̃,B(T0 + T̃1 − ε), for any s, s̃ and any
ε > 0. This, together with the fact that a fluid limit ~nB(t) is a continuous function
and ∏sms,B(T0 + T̃1) = 0, it follows that ms,B(T0 + T̃1) = 0 for all s and hence also
ms,B(T0 + T1) = 0 since T̃1 ≤ T1.

We conclude that at time T0 + T1, for any fluid limit ~n(·) of ~N (0),r(·), it holds
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that ~n(T0 + T1) = ~0. From Theorem 2.4.10, we conclude that the process ~N (0)(t) is
ergodic.

C: Proofs of Section 3.4

Proof of Lemma 3.4.3: We couple the two systems as follows: at time zero, start in
the same initial state. Arrivals are coupled in both systems. Below it will become clear
how the departures are coupled under both systems.

Assume that at time t ≥ 0, NPS
c (t) ≥ NLB

c (t) for all c ∈ C. We prove that this
remains valid at time t+. We only need to analyse states such that NPS

c (t) = NLB
c (t) =

nc, for some c ∈ C. Under this situation, note that MPS
s∗ci(t)

(t) ≥ MPS
sminc ( ~NPS(t))(t) ≥

MLB
sminc ( ~NPS(t))(t) ≥M

LB
sminc ( ~NLB(t))(t) for all i = 1, . . . , NPS

c (t). Hence, the departure rate

of type-c jobs in the PS system, µ∑NPS
c (t)

i=1
1

MPS
s∗
ci

(t)(t)
, is smaller than or equal to that

in the LB-system, µ NLB
c (t)

MLB

sminc ( ~NLB(t))
(t) . We can therefore couple the systems such that

if there is a type-c departure in the original PS model, then also a type-c departure
occurs in the LB-system. Since arrivals are coupled in both systems, it follows directly
that at time t+, NPS

c (t+) ≥ NLB
c (t+).

Proof of Lemma 3.4.4: For simplicity in notation, we remove the superscript LB
throughout the proof. From Eq. (3.7), we have that the departure rate of Ms(t) is given
by ∑

c∈C(s)

Nc(t)
Msminc (~n)(t)

. (3.26)

Recall that c ∈ Csl (~n) if server l is the server with the minimum number of copies that
serves a type-c job. Hence, if c ∈ Csl (~n), then sminc (~n) = l. Since C(s) = ∪l∈Ds(~n)Csl (~n),
Eq. (3.26) can be written as

∑
l∈Ds(~n)

∑
c∈Cs

l
(~n)Nc(t)

Ml(t)
. (3.27)

Using that ∑c∈Css(~n)Nc(t) can be written as Ms(t)−
∑
l∈Ds(~n),l 6=s

∑
c∈Cs

l
(~n)Nc(t), we

obtain that Eq. (3.27) is equal to

∑
l∈Ds(~n),l 6=s

∑
c∈Cs

l
(~n)Nc(t)

Ml(t)
+ 1−

∑
l∈Ds(~n),l 6=s

∑
c∈Cs

l
(~n)Nc(t)

Ms(t)

= 1 +
∑

l∈Ds(~n)

(Ms(t)−Ml(t))
∑
c∈Cs

l
(~n)Nc(t)

Ms(t)Ml(t)
.
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Proof of Lemma 3.4.5: For ease of notation, we removed the superscript LB through-
out the proof.

Let f(~n) = (fc(~n), c ∈ C), with fc(~n) : R|C|+ → R|C|, denote the drift vector field
of ~N(t) when starting in state ~N(0) = ~n, i.e. f(~n) = d

dtE
~n
[
~N(t)

]
t=0. Recall that the

fluid limit can be characterized as in Eq. (3.13) and Eq. (3.14). We want to partly
characterize the fluid process ms(t) = ∑

c∈C(s) nc(t). We denote by f̃s(~n) = ∑
c∈C(s) fc(~n)

the drift of Ms(t).
From Lemma 3.4.4, we can write the drift of Ms(·), starting in state ~N(0) = ~n, as

f̃s(~n) = λ
d

K
− µ1(ms>0) − µ1(ms>0)

 ∑
l∈Ds(~n)

(ms −ml)
∑
c∈Cs

l
(~n) nc

msml

 , (3.28)

where Ds(~n) = {l ∈ S : ms ≥ ml} is the set of servers that have less than or equal
number of copies, compared to server s, in state ~n.

Let G1(~n) := {s ∈ S : ms ≤ ml, ∀l}. If s ∈ G1(~n) and limr→∞
∑
c∈C(s) n

r
c =

limr→∞m
r
s > 0, it follows from Eq. (3.28) that

lim
r→∞

f̃s(r~nr) = λd/K − µ.

If instead s ∈ G1(~n) and limr→∞m
r
s = 0, then

conv
(
accr→∞ f̃s(r~nr) with lim

r→∞
~nr = ~n

)
= conv(λd/K − µ, λd/K).

Combining Eq. (3.13) and ∑c∈C(s)
dnc(t)

dt = dms(t)
dt , we conclude the proof.

Proof of Proposition 3.4.7: From Lemma 3.4.3 we have that if the lower-bound
system is unstable, then also the original PS system. Hence, to prove Proposition 3.4.7,
it will be enough to prove that ~NLB(t) is unstable if ρ > 1/d. This is done in the
remainder of the proof.

For ease of notation, we remove the superscript LB throughout the proof. To prove
that the system is transient, below we will show that there is a subsequence of t such
that the system ~N(t) converges towards +∞.

Define mmin(t) := mins∈S{ms(t)} and fix T = (|~n|+ δ)/(λd/K −µ), for some δ > 0.
From Lemma 3.4.5, we know that at time T , mmin(T ) ≥ |~n|+ δ, when ~n(0) = ~n. Hence,
as well,

|~n(T )| ≥ mmin(T ) ≥ |~n|+ δ. (3.29)

For almost all sample paths, and any subsequence rk of r, there exists a further

subsequence rkj such that limj→∞
| ~N

rkj (rkjT )|
rkj

= |~n(T )| ≥ |~n|+ δ, with ~N r(0) = r~n and
~n(t) a fluid limit (the inequality follows from Eq. (3.29)). Hence, when considering the
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liminf subsequence, this gives, for all ~n,

lim inf
r→∞

∣∣∣ ~N r(rT )
r

∣∣∣ ≥ |~n|+ δ,

where ~N r(0) = r~n. From Fatou’s lemma, this implies

lim inf
r→∞

E
(
~N r(rT )
r

)
≥ |~n|+ δ.

Hence, there exists r0(~n) ≥ 1, such that ~N r0(~n)(0) = r0(~n)~n and

E
(
~N r0(~n)(r0(~n)T )

)
≥ r0(~n) (|~n|+ δ − ε) , (3.30)

for some ε, with 0 < ε < δ. Now, for any ~n, define the discrete time stochastic process
(~Yl, ~Zl), l ≥ 0:

~Z0 = ~n,

~Yl+1 = ~N r0(~Zl)(r0( ~Zl)T ), where ~N r0(~Zl)(0) = r0(~Zl)~Zl,
~Zl+1 = ~Yl+1r0( ~Zl), l ≥ 0.

Observe that:

1. (~Yl, ~Zl) is Markov, since ~N is a Markov process.

2. It follows from Eq. (3.30) that E
(
|~Zl+1|

∣∣∣~Zl)− |~Zl| ≥ δ − ε > 0, l ≥ 0.

3. Using Dynkins formula for the continuous time process ~N(t), we see that

E
(
E
(
|~Zl+1|

)
− |~Zl|

)
= E

(
|~Zl|+

1
r0(~Zl)

∫ r0(~Zl)T

0
a( ~Ns)ds− |~Zl|

)
= E

( 1
r0(~Zl)

∫ r0(~Zl)T

0
a( ~Ns)ds

)
,

where a(·) is the drift of the norm function. Note that given the model (bounded
rates of arrival and departures) this drift is a bounded function (say by γ), which
implies that

E
(
|~Zl+1| − |~Zl|

)
≤ E

(
E
(
γr0(~Zl)T
r0(~Zl)

∣∣∣~Zl
))

= γT <∞.

Using a typical transience criterion for Markov chains, (see for instance Proposition 8.9
in [87]), we obtain that Zl cannot be stable. This in turn directly implies that ~N(t)
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converges along one subsequence of t towards +∞, which implies that it cannot be
stable.

Proof of Lemma 3.4.8: We couple both systems as follows: at time zero, we start
in the same initial state. Arrivals and their service requirements are coupled in both
systems.

The result will be proved by induction. It holds at time 0. Now assume that for all
u ≤ t it holds that αUBi,s (u) ≤ αPSi,s (u) for all i = 1, . . . , and s ∈ S. Below we prove that
this remains true at time t+.

Let c(i) denote the type of the i-th arrived job and let Ã(t) denote the number of
arrivals until time t. Assume there is an i ≤ Ã(t) and s ∈ c(i) such that αUBi,s (t) = αPSi,s (t).
Note that for all c,

NUB
c (t) =

Ã(t)∑
j=1

1{c=c(j)}1{∃s̃∈c(j), s.t. αUBj,s̃ (t)<βj}

and

NPS
c (t) =

Ã(t)∑
j=1

1{c=c(j)}1{∀s̃∈c(j),αPSj,s̃ (t)<βj}.

Since αUBj,s̃ (t) ≤ αPSj,s̃ (t), for all j, s̃, it follows that NUB
c (t) ≥ NPS

c (t), for all c, hence

MUB
s̃ (t) ≥MPS

s̃ (t) for all servers s̃. In particular, this implies that dαUBi,s (t)
dt = 1

MUB
s (t) ≤

1
MPS
s (t) = daPSi,s (t)

dt , for s ∈ c(i), which together with αUBi,s (t) = αPSi,s (t) gives that
αUBi,s (t+) ≤ αPSi,s (t+) holds at time t+.

D: Proofs of Section 3.5

Proof of Lemma 3.5.1: For ease of notation, we remove the superscript ROS through-
out the proof. Assume at time 0 we are in state ~N(0) = ~N . We first derive Ps( ~N), the
probability that at time t = 0 a given server s is serving a copy that is not in service in
any other server. In order to derive that, we consider Ps( ~N |c) defined as the probability
that server s is serving a type-c job, s ∈ c, and this job is not in service in any other
server.

Let −T̃s < 0 denote the time that server s started working on the copy which it is
serving at time 0. When the server becomes idle, it chooses a copy uniformly at random.
Hence, the probability that a copy from a type-c job is being served in server s is given
by Nc(−T̃s)

Ms(−T̃s)
. Using the law of total probability, we have

Ps( ~N) =
∑
c∈C(s)

Nc(−T̃ rs )
Ms(−T̃ rs )

Ps( ~N |c). (3.31)
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To calculate Ps( ~N |c), note that Nc(−T̃ rl )−1
Ml(−T̃ rl ) is the probability that server l is not

serving the type-c copy that is now in service in server s, with l, s ∈ c. Hence,

Ps( ~N |c) = Πl∈c,l 6=s
Ml(−T̃ rl )− 1
Ml(−T̃ rl )

, s ∈ c. (3.32)

We now characterize the fluid limits, which we recall can be characterized as in
Eq. (3.13) and Eq. (3.14). Let f(~n) = (fc(~n), c ∈ C), with fc(~n) : R|C|+ → R|C|, denote the
drift vector field of ~N(t) when starting in state ~N(0) = ~n, i.e., f(~n) = d

dtE
~n
[
~N(t)

]
t=0.

Hence, we study the fluid drift in points r~nr, where limr→∞ r~n
r = ~n. That is, ~N(0) =

r~nr.

Since the transition rates µ and λ are of order O(1), it follows directly that T̃ rs and
~N(−T̃ rs )− ~N(0) are of order O(1) as well, so that

lim
r→∞

Nc(−T̃ rs )
Ms(−T̃ rs )

= lim
r→∞

Nc(0)
Ms(0) = nc(0)

ms(0) and lim
r→∞

Ml(−T̃ rl )− 1
Ml(−T̃ rl )

= 1. (3.33)

It hence follows from Eq. (3.31) and Eq. (3.32) that if limr→∞
∑
c∈C(s) rn

r
c > 0 then,

limr→∞ Ps(r~nr) = 1.

Proof of Lemma 3.5.2: For ease of notation, we remove the superscript ROS
throughout the proof. We denote by f̃s(~n) = ∑

c∈C(s) fc(~n) the one-step drift of Ms(t).
When starting in state ~N(0) = r~nr, the latter is in the limit equal to

lim
r→∞

f̃s(r~nr) = λ
d

K
− µ

 ∑
c∈C(s)

∑
l∈c

nc
ml

lim
r→∞

(Pl(r~n))− lim
r→∞

(gc,l,s(r~nr)(1− Pl(r~n)))


(3.34)

with gc,l,s = O(1). Note that the first term multiplied by µ in Eq. (3.34) represents
departures of type-c jobs, c ∈ C(s), who were served in one unique server. Here nc

ml

represents the probability (in the limit) that a copy from type c is being served in server s,
see Eq. (3.33). The second term multiplied by µ in Eq. (3.34) represents departures due
to a type-c job that is being served in more than one server simultaneously. Together
with Lemma 3.5.1, Eq. (3.11), we obtain

lim
r→∞

f̃s(r~nr) = λ
d

K
− µ

∑
c∈C(s)

∑
l∈c

nc
ml
. (3.35)

Now, note that Eq. (3.35) is equal to Eq. (3.15) (the fluid drift for the ROS model
with i.i.d. copies). Hence, the proof now follows as in the proof of Lemma 3.2.2.
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E: Proofs of Section 3.6.2.2

Light-traffic approximation

In the present we calculate the light-traffic approximation of order 1, where the light-
traffic approximation was introduced in Section 2.5 and the n = 1 order approximation
is given in Eq. (2.4). We note that for the ease of notation we drop the dependency on
P of D̄(n)(0, b). Hence, we will calculate the sojourn time of the tagged job conditioned
on, at most, having one other job present in the system. Let Ã(t0, t1) denote the number
of arrivals in the time interval [t0, t1) in addition to the tagged job who is assumed
to arrive at time 0. The zeroth and first light-traffic derivatives satisfy, Eq. (2.5) and
Eq. (2.6) (in Section 2.5):

D̄(0)(0, b) := E
(
D̄(0, b)|Ã(−∞,∞) = 0

)
= b (3.36)

and

D̄(1)(0, b) := 1(K
d

) ∫ ∞
−∞

[
E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t, c1 = c

)
−E

(
D̄(0, b)|Ã(−∞,∞) = 0

)]
dt (3.37)

where τ is the arrival time of the other job. There Eq. (3.36) is straightforward, since
only the tagged job is present, and all copies of this job are equal to b. There, Eq. (3.37)
is obtained applying the following reasoning in Eq. (2.6): when in addition to the tagged
job, another job is present, the delay of the tagged job will depend on the type of
the job already in the system, denoted by c1. If both jobs are of a different type, the
new job will start being served immediately, and hence the first term in the integral
of D(1)(0, b) = b, that is, the first light-traffic derivative is equal to zero. On the other
hand, if both jobs have the same type, which happens with probability 1

(Kd ) , the job that
is already in the system will have an impact on the sojourn time of the tagged job. We
note that the precise value of the impact will depend on P , which we quantify later on
in the proof of Lemma 3.6.1. We note that in Eq. (3.37), the first term is conditioned
on the job being of the same type as the tagged job.

We note that if the scheduling policy does not depend on d, then neither does
E(D̄(0, b)|Ã(−∞,∞) = 1, τ = t, c1 = c), hence the light-traffic approximation of order 1
is minimized when d is set equal to d∗ = bK/2c.

Proof of Lemma 3.6.1: In order to obtain an expression for N̄LT,P (λ), we will calculate
D̄LT,P (λ, b), uncondition on b and then apply Little’s law. By Eq. (3.36) and Eq. (3.37),
calculating D̄LT,P (λ, b) reduces to calculating E

(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t, c1 = c

)
.

Below we do so for exponentially distributed service requirements and with P equal to
PS, FCFS, or ROS.
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First consider FCFS. If in addition to the tagged job, another job arrives in the
interval (−∞,∞), which is of the same type c1 = c and has service time B1 = b1, then
the sojourn time of the tagged job will be given by

E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t, B1 = b1, c1 = c

)

=


b, if t ≤ −b1,
t+ b1 + b, if − b1 ≤ t ≤ 0,
b, if t ≥ 0.

For example, the second equation is the case where the other job arrives before the
tagged job, and has still b1 + t remaining service left. Hence, the tagged job has to wait
b1 + t, so that its sojourn time equals b+ b1 + t. To calculate D̄(1)(0, b), we subtract from
the above D̄(0)(0, b) = b and we multiply with 1

(Kd ) , integrate over t, and uncondition

on the service requirements b1. Further unconditioning on b gives 3λ
2µ2

1
(Kd ) . On the

other hand, unconditioning D̄(0)(0, b) over b readily yields 1/µ. Summing both terms,
we get D̄LT,FCFS(λ) = 1

µ + 3λ
2µ2

1
(Kd ) , and multiplying by λ (Little’s law) we obtain the

expression for N̄LT,FCFS(λ).

The analysis of FCFS carries directly over to ROS, since at most two jobs are
considered to be present in the system, in which case jobs under ROS will be served in
order of arrival.

We now consider PS. We consider the case where in addition to the tagged job,
another job arrives in the system in the interval (−∞,∞). Let b1 denote the service of
this other job and c1 its type. We have

E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t, B1 = b1c1 = c

)

=



b if t ≤ −b1,
b+ b1 + t if − b1 ≤ t ≤ −b1 + b and b ≤ b1,
2b if − b1 + b ≤ t ≤ 0 and b ≤ b1,
b+ b1 + t if − b1 ≤ t ≤ 0 and b ≥ b1,
b+ b1 if 0 ≤ t ≤ b− b1 and b ≥ b1,
2b− t if b− b1 ≤ t ≤ b and b ≥ b1,
2b− t if 0 ≤ t ≤ b and b ≤ b1,
b if t ≥ b.

The expression above takes into account all the possible events. For example, the first
equation is the case when the other job arrives and leaves before the tagged job arrives.
The second equation is the case where the other job arrives before the tagged job and
leaves first. In that case, the sojourn time experienced by the tagged job is b plus the
capacity spend on serving the other job b1 − (−t). The third equation is the case where
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the other job arrives before the tagged job and leaves after the tagged job. In that case,
the tagged job has shared during its whole stay the server, hence its sojourn time equals
2b.

To calculate D̄(1)(0, b), we combine all the cases, subtract D̄(0)(0, b) = b and multiply
by 1

(Kd ) , integrate over t and uncondition over b1. Then, further unconditioning on b

we get the expression λ
µ2

1
(Kd ) . As in the case of FCFS, summing now with 1/µ, we get

D̄LT,PS(λ) = 1
µ + λ

µ2
1

(Kd ) . Multiplying by λ yields N̄LT,PS(λ).



Chapter 4

Stability with a general redundancy
topology

In the present chapter, we characterize the stability condition for redundancy systems
with a general topology and heterogeneous server capacities, where jobs have identical
copies. That is, we generalize the results in Chapter 3 for the redundancy-d system where
jobs have exponentially distributed service times, to a general redundancy topology
and general service time distributions. Chapter 3, serves as a basis to understand the
performance when the system is heterogeneous.

More precisely, we investigate the stability condition when servers implement PS.
We characterize the stability condition by a recursion, and observe that this condition
coincides with that of a system where each job type only dispatches copies into its
least-loaded servers, and those copies need to be fully served. We also discuss the
stability conditions when either FCFS or ROS is implemented. The latter are open
problems and are further discussed in Chapter 8.

Through a numerical analysis, we investigate the performance of the redundancy
systems under the three scheduling policies. We consider both low and high variable
service time distributions and observe that under FCFS and ROS the performance
degrades when the service time distribution is highly variable, whereas under PS the
performance seems to be nearly insensitive to the service time distribution.

The rest of the chapter is organized as follows: In Section 4.1 we give a detailed
description of the model. In Section 4.2 we present the stability results for PS with
identical copies for a general redundancy topology. In Section 4.3 we provide a discussion
of the stability condition under FCFS and ROS. Section 4.4 provides insights on the
performance of redundancy systems through simulations. All proofs are deferred to
Appendix 4.6, for the sake of readability. Several proof techniques in the present chapter
are based on those from Chapter 3.
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We further refer to Chapter 5 where we take advantage of the results in this chapter
in order to investigate when adding redundancy can be beneficial from the stability
point of view. That is, we characterize when redundancy can improve the stability
region, and hence the performance under high loads, with respect to Bernoulli routing
system.

4.1 Model description

We consider a K parallel-server system with heterogeneous capacities µs, for s ∈ S,
where S denotes the set of all servers, S = {1, . . . ,K}. Each job will be assigned a type
label, c = {s1, . . . , sn}, with s1, . . . , sn ∈ S, si 6= sj , i 6= j and n ≤ K, to indicate the n
servers to which a copy is sent. We let C be the set of all the types, that is, C determines
the redundancy topology of the system. We denote by |C| the total number of types.
An arriving job is of type c ∈ C with probability pc, where ∑c∈C pc = 1. We denote by
C(s) the subset of types that are served at server s, that is, C(s) = {c ∈ C : s ∈ c}.

In this chapter, we assume that the service time distribution is a random variable X
with unit mean and distribution function F that has no atoms and is light-tailed. This
assumption is needed, see [73] and [81], in order to apply fluid limits arguments in the
context of processor sharing networks. To be more specific, we refer to F as light-tailed
if the following is satisfied:

lim
r→∞

sup
a≥0

E[(X − a)1{X−a>r}|X > a] = 0. (4.1)

It can be seen (as observed in [81]) that Eq. (4.1) also implies

sup
a≥0

E[(X − a)|X > a] ≤ Φ <∞, (4.2)

which is a usual light-tailed condition (see [38]). Hence, Eq. (4.1) and Eq. (4.2), though
exclude heavy-tailed distributions like Pareto, include large sets of distributions as
phase-type (which are dense in the set of all distributions on R+), exponential and
hyper-exponential distributions, as well as distributions with bounded support.

We denote by Nc(t) the number of type-c jobs that are present in the redundancy
system at time t and ~N(t) = (Nc(t), c ∈ C). Furthermore, we denote the number of
copies per server by Ms(t) := ∑

c∈C(s)Nc(t), s ∈ S, and ~M(t) = (M1(t), . . . ,MK(t)). For
the j-th type-c job, let bcj denote the service requirement of this job, for j = 1, . . . , Nc(t),
c ∈ C.

Let acjs(t) denote the attained service in server s of the j-th type-c job at time
t. We denote by Ac(t) = (acjs(t))js a matrix on R+ of dimension Nc(t) × |c|. Note
that the number of type-c jobs increases by one at rate λpc, which implies that a row
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composed of zeros is added to Ac(t). When one element acjs(t) in matrix Ac(t) reaches
the required service bcj , the corresponding job departs and all of its copies are removed
from the system. Hence, row j in matrix Ac(t) is removed.

In the present chapter, for a given system where servers implement policy P , we
characterize λR,P as the value of λ such that the redundancy model is stable if λ < λR,P

and unstable if λ > λR,P . We study scheduling policies FCFS, PS and ROS. As to
distinguish between the different policies, we will add a superscript {FCFS, PS,ROS}
to the process ~N(t).

4.2 The PS scheduling policy

In order to characterize the stability condition of the system under PS and identical
copies, we define the load of a server in a subsystem:

Definition 4.2.1. For any given set of servers S̃ ⊆ S and its associated set of job types
C̃ = {c ∈ C : c ⊆ S̃}, the load of server s ∈ S̃ in this so-called S̃-subsystem is defined
by

λ
∑
c∈C̃(s) pc

µs
,

where C̃(s) = C̃ ∩ C(s) is the subset of types in C̃ that are served in server s.

4.2.1 An illustrative example

In the following, we first illustrate through a numerical example some of the key
aspects of our proof, and in particular the essential role played by the load defined in
Definition 4.2.1. In Figure 4.1 we plot the trajectories of the number of copies per server
with respect to time for a K = 4 server where each job dispatches two copies, that is,
C = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. Our proof techniques will rely on fluid
limits, and therefore we chose large initial points. Figures 4.1 (a) and (b) show the
trajectories for the redundancy-2 model (that is, pc = 1/

(K
d

)
for all c ∈ C and µk = µ

for k = 1, . . . , 4) for λ = 1.8 and λ = 2.1, respectively. Figures 4.1 (c) and (d) consider
a heterogeneous system (parameters see the legend) for λ = 7.5 and λ = 9, respectively.

The homogeneous example (Figure 4.1 (a) and (b)) falls within the scope of Sec-
tion 3.4. There we show that the stability condition is λ < µK

d . In Figure 4.1 (a) and
(b), the value for λ is chosen such that they represent a stable and an unstable system,
respectively.

The behavior of the heterogeneous case is rather different. The parameters corre-
sponding to Figures 4.1 (c) and (d) are such that the system is stable in (c), but not in
(d). In Figure 4.1 (c) we see that the trajectories of all queue lengths are not always
decreasing, including the maximum queue length. In Figure 4.1 (d), we observe that
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(a) λ = 1.8 (b) λ = 2.1
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(c) λ = 7.5
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1

s
2

s
3

s
4

(d) λ = 9

Figure 4.1 Trajectory of the number of copies per server with respect to time for a K = 4
server system where each job dispatches two copies with exponentially distributed
job sizes. Figures (a) and (b) consider the redundancy-2 model. Figures (c) and
(d) consider heterogeneous server capacities ~µ = (1, 2, 4, 5) and arrival rates per type
~p = (0.25, 0.1, 0.1, 0.2, 0.2, 0.15) for types C.

the number of copies in servers 3 and 4 are decreasing, whereas those of servers 1 and 2
are increasing.

When studying stability for the heterogeneous setting, one needs to reason recursively.
First, assume that each server s needs to handle its full load, i.e., λ

∑
c∈C(s)pc
µs

. Hence,
one can simply compare the servers loads, λ∑c∈C(s) pc/µs, to see which server is the
least-loaded server and could hence potentially empty first. In this example, server 4 is
the least-loaded server in the system, and, in fluid scale, will reach zero in finite time,
and remain zero, since λ∑c∈C(4) pc/µ4 = λ(p{1,4} + p{2,4} + p{3,4})/5 = 0.675 is smaller
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than 1.
Whenever, at fluid scale, server 4 is still positive, the other servers might either

increase or decrease. However, the key insight is that once the queue length of server
4 reaches 0, the fluid behavior of the other classes no longer depend on the jobs that
also have server 4 as compatible server. That is, we are sure that all jobs that have
server 4 as compatible server, will be fully served in server 4, since server 4 is in fluid
scale empty and all the other servers are overloaded. Therefore, jobs with server 4 as
compatible server can be ignored, and we are left with a subsystem formed by servers
{1, 2, 3} and without the job types served by server 4. Now again, we consider the
load in the subsystem {1, 2, 3} in order to determine the least-loaded server. This time,
server 3 has the minimum load, which is λ(p{1,3} + p{2,3})/4 = 0.75. This is less than 1,
it is a sufficient condition for server 3 to empty.

Similarly, once server 3 is empty, we consider the subsystem with servers 1 and 2
only. Hence, there is only one type of jobs, {1, 2}. Now server 2 is the least-loaded
server and its load is λp{1,2}/2 = 0.937. Thus, the load in the server is less than 1,
which implies that server 2 (and hence server 1, because there is only one job type) will
be stable too. Indeed, in Figures 4.1 (c) we also observe that as soon as the number
of copies in server 3 is relatively small compared to that of server 1 and server 2, the
number of copies in both server 1 and server 2 decreases.

We can now explain the evolution observed in Figure 4.1 (d) when λ = 9. The
evolution for servers 4 and 3 can be argued as before: both their loads are larger than
λ = 9, hence they empty in finite time. However, the load of the subsystem with servers
1 and 2, which is 1.125, is strictly larger than 1. We thus observe that, unlike in the
homogeneous case, in the heterogeneous case some servers might be stable, while others
(here server 1 and 2) are unstable.

Proposition 4.2.3 formalizes the above intuitive explanation, by showing that the
stability of the system can be derived recursively.

The load at every subsystem allows us now to reinterpret the homogeneous case
depicted in Figure 4.1 (a) and (b). In this case, the load in the S system of all the
servers is the same, which implies (i) that either all servers will be stable, or all unstable,
and (ii) from the stability viewpoint is as if all copies received service until completion.

4.2.2 Stability condition

4.2.2.1 General redundancy topology

In this section we discuss the stability condition of the general redundancy topology
with PS. In order to do so, we first define several sets of subsystems, similar to as what
we did in the illustrative example of Section 4.2.1.
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The first subsystem includes all servers, that is S1 = S. We let C1 = C. We denote
by L1 the set of least-loaded servers in the system S1 = S. Thus,

L1 =
{
s ∈ S1 : s = arg min

s̃∈S1

{
λ
∑
c∈C pc
µs̃

}}
.

For i = 2, . . . ,K, we define recursively

Si := S\ ∪i−1
l=1 Ll,

Ci := {c ∈ C : c ⊂ Si},
Ci(s) := Ci ∩ C(s),

Li :=
{
s ∈ Si : s = arg mins̃∈Si

{
λ
∑

c∈Ci(s̃)
pc

µs̃

}}
.

The Si-subsystem will refer to the system consisting of the servers in Si, with only
jobs of types in the set Ci. The Ci(s) is the subset of types that are served in server s in
the Si-subsystem. The Li represents the set of servers s with least-loaded servers in the
Si-subsystem. Finally, we denote by i∗ := arg maxi=1,...,K{Ci : Ci 6= ∅} the last index i
for which the subsystem Si is not empty of job types.

Remark 4.2.2. We illustrate the above definitions by applying them to the particular
example considered in Section 4.2.1. The first subsystem consists of servers S1 =
S = {1, 2, 3, 4} and all job types, see Figure 4.2 (a). The loads in the S1 subsystem
are: {3.375, 2.4, 0.825, 0.675}, and thus L1 = {4}. The second subsystem is formed by
S2 = {1, 2, 3} and job types that are compatible with server 4 can be ignored, that is,
C2 = {{1, 2}, {1, 3}, {2, 3}}, see Figure 4.2 (b). The loads for servers in the S2 subsystem
are given by {2.625, 1.65, 0.75}, and thus L2 = {3}. The third subsystem consists of
servers S3 = {1, 2} and job types that are compatible with servers 3 or 4 can be ignored,
that is, C3 = {{1, 2}}, see Figure 4.2 (c). The loads for servers in the S3 subsystem are

µ1 µ2 µ3 µ4

λd=2

µ1 µ2 µ3 µ4

λd=2

µ1 µ2 µ3 µ4

λd=2

µ1 µ2 µ3 µ4 µ1 µ2 µ3 µ4

(a) (b) (c)

S1
L1

S2
L2

S3
L3

Figure 4.2 The K = 4 server system where each job dispatches two copies according to
~p. In (a) subsystem S1, in (b) subsystem S2 and in (c) subsystem S3.
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given by {1.875, 0.937}. Hence, L3 = {2}. Then, S4 = {1}, but C4 = ∅, so that i∗ = 3.

In the following proposition we characterize the stability condition for servers in
terms of the load corresponding to each subsystem. It states that the least-loaded servers
in the Si-subsystem can be stable if and only if all servers in subsystems S1, . . . , Si−1

are stable as well. The proof can be found in Section 4.2.3.

Proposition 4.2.3. For a given i ≤ i∗, servers s ∈ Li are stable if λ∑c∈Ci(s) pc < µs,
for all l = 1, . . . , i. Servers s ∈ Li are unstable if there is an l = 1, . . . , i such that
λ
∑
c∈Ci(s) pc > µs.

Corollary 4.2.4. The redundancy system is stable if λ∑c∈Ci(s) pc < µs, for all s ∈ Li
and i = 1, . . . , i∗. The redundancy system is unstable if there exists an ι ∈ {1, . . . , i∗}
such that λ∑c∈Cι(s) pc > µs and s ∈ Lι.

From the above corollary, we directly observe that the stability condition for the
redundancy system coincides with the stability condition corresponding to K individual
servers where each type-c job is only dispatched to its least-loaded servers.

We define by λR,PS the value of λ such that the redundancy model is stable if
λ < λR,PS and unstable is λ > λR,PS . From the corollary, we hence obtain that the
stability region under redundancy is given by

λR,PS = min
i=1,...,i∗

{
µs∑

c∈Ci(s) pc

}
. (4.3)

We note that the set of stability conditions is not necessarily ordered with respect to i,
for i = 1, . . . , i∗.

Furthermore, we note that the stability condition is upper bounded by the condition
provided by the S1 subsystem, that is, λR,PS ≤ maxs∈S{µs/

∑
c∈C(s) pc}.

4.2.2.2 Particular redundancy topologies

In this subsection we discuss the stability condition for some particular the redundancy
topologies redundancy-d and nested.

Redundancy-d. In Section 3.4, the redundancy-d model was proved to be stable if
λd < µK. From Corollary 4.2.4 we obtain that this remains the stability condition for
light-loaded service time distributions. We note that each server has arrival rate λd/K
and capacity µ, thus the load at every server is d/(Kµ). This implies that L1 = S,
C1 = 1 and i∗ = 1. From Corollary 4.2.4, we obtain that the system is stable if λd < µK.

For the system with redundancy-d topology and heterogeneous server capacities, we
have the following:
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Corollary 4.2.5. Assume the redundancy-d topology with heterogeneous server capac-
ities µ1 < . . . < µK . The system is stable if for all i = d, . . . ,K, λ(i−1

d−1)
(Kd ) < µi. The

system is unstable if there exists i ∈ {d, . . . ,K} such that λ(i−1
d−1)
(Kd ) > µi.

In the case of homogeneous server capacities, it is easy to deduce that the stability
condition, λd < µK, decreases as d increases. However, in the heterogeneous server
capacities case, both the numerator and denominator are non-monotone functions of d,
and as a consequence it is not straightforward how the stability condition depends on d.
This dependence on d will be numerically studied in Section 5.2.1.

N-model. The simplest nested model is the N -model. We recall that this is a K = 2
server system with capacities ~µ = (µ1, µ2) and types C = {{2}, {1, 2}}, see Figure 1.1
(b). A job is of type {2} with probability p and of type {1, 2} with probability 1− p.
The stability condition is λ < λR,PS where:

λR,PS =


µ2, 0 ≤ p ≤

(
µ2−µ1
µ2

)+

µ1/(1− p),
(
µ2−µ1
µ2

)+
≤ p ≤ µ2

µ1+µ2

µ2/p,
µ2

µ1+µ2
< p ≤ 1.

The above is obtained as follows: The load of the system is µ1/(1−p) and µ2, respectively
for server 1 and server 2. First assume µ1/(1− p) > µ2. Then L1 = {1} and the second
subsystem is composed of server S2 = {2} and C2 = {{2}}, with arrival rate λp to server
2. Hence the load of server 2 in the S2-subsystem is µ2/p. From Corollary 4.2.4, it
follows that λR,PS = min{µ1/(1 − p), µ2/p}. On the other hand, if µ1/(1 − p) < µ2,
then L1 = {2}, and S2 = {1}, but C2 = ∅. Thus, λR,PS = µ2. Lastly, if µ1/(1− p) = µ2,
L1 = {1, 2}, thus S2 = ∅ and C2 = ∅. Hence, λR,PS = µ2.

We observe that the stability condition λR,PS , is a continuous function reaching
the maximum value λR,PS = µ1 + µ2 at p = µ2/(µ1 + µ2). It thus follows that for
p = µ2/(µ1 + µ2), redundancy achieves the maximum stability condition.

W -model. The W -model is a K = 2 server system with capacities ~µ = (µ1, µ2) and
types C = {{1}, {2}, {1, 2}}, see Figure 1.1 (c). A job is of type {1} with probability
p{1}, type {2} with probability p{2} and of type {1, 2} with probability p{1,2}. W.l.o.g.,
assume (1− p{2})/µ1 ≥ (1− p{1})/µ2, that is, the load on server 1 is larger or equal to
that on server 2. The stability condition is then given by:

λR,PS =

 µ2/(1− p{1}), p{1} ≤ µ1
µ1+µ2

µ1/p{1}, p{1} ≥ µ1
µ1+µ2

,
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if (1− p{2})/µ1 > (1− p{1})/µ2. And,

λR,PS = µ2/(1− p{1})

if (1 − p{2})/µ1 = (1 − p{1})/µ2. Similar to the N -model, the above can be obtained
from Corollary 4.2.4. When p{1} = µ1/(µ1 + µ2), maximum stability λR,PS = µ1 + µ2

is obtained.

4.2.3 Proof of the stability condition

In this section, we prove that the condition in Proposition 4.2.3 is sufficient and necessary
for the respective subsystem to be stable. As we observe in Section 4.2.1, there are two
main issues concerning the evolution of a redundancy system with a general topology
and heterogeneous server capacities. First of all, the number of copies in a particular
server decreases, only if a certain subset of servers is already in steady state. Secondly,
for a particular server s ∈ S, the instantaneous departure of that server might be larger
than µs due to copies leaving in servers other than s. This makes the dynamics of the
system complex. In order to prove Proposition 4.2.3, we therefore construct upper and
lower bounds of our system for which the dynamics are easier to characterize. By using
fluid limit arguments, we prove that the upper bound (lower bound) is stable (unstable)
directly, which implies that the original system is also stable (unstable). This will be
done in Proposition 4.2.12 and Proposition 4.2.19. See Section 2.4.2 for more details on
the stability condition and the fluid-limit approximation. All proofs of this section can
be found in Appendix 4.6.A.

We first introduce some notation: We denote by Ec(t) = max{j : Ucj < t} the
number of type-c jobs that arrived during the time interval (0, t) and by Ucj the instant
of time at which the jth type-c job arrived to the system. We recall that bcj denotes
its service realization. Additionally, since copies are identical, all the copies of that
job have the same service realization. We denote by b′cms the residual job size of the
mth eldest type-c job in server s that is already in service at time 0. We further let
φs( ~MPS(t)) be the capacity that each of the copies in server s obtains when in state
~MPS(t), which under PS is given by φs( ~MPS(t)) := µs

MPS
s (t) for server s ∈ S and time

t ≥ 0. The cumulative service that a copy in server s gets during the time interval (v, t)
is then

ηs(v, t) :=
∫ t

x=v
φs( ~MPS(x))dx.
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4.2.3.1 Sufficient stability condition

Before we define the Upper Bound (UB) system we introduce some notation. We define
the set of least-loaded servers for type-c jobs, for all c ∈ C. That is,

R(c) := {s : ∃i, s.t. c ∈ Ci(s) and s ∈ Li},

for all c ∈ C. Note that there is a unique subsystem Si for which this happens, i.e.,
R(c) ⊆ Li for exactly one i. We note that for a type-c job, if c contains at least a server
that was removed in the ith iteration, then R(c) ⊆ Li. We further let R := ∪c∈CR(c).

We define the UB-system as follows. Upon arrival, each job is with probability pc
of type c and sends identical copies to all servers s ∈ c. In the UB-system, a type-c
job departs the system only when all copies in the set of servers R(c) are fully
served. We recall that the set R(c) denotes the set of servers where a type-c job is the
least-loaded server. When this happens, the remaining copies that are still in service
(necessarily not in a server in R(c)) are immediately removed from the system. We
denote by NUB

c (t) the number of type-c jobs present in the UB-system at time t.
We note that the UB-system is closely related to the one in which copies of type-c

jobs are only sent to servers in R(c). However, the latter system is of no use for our
purposes as it is neither an upper bound nor a lower bound of the original system.

We first prove that UB-system provides an upper bound on the original system.
To do so, we show that every job departs earlier in the original system than in the
UB-system. In the statement, we assume that in case a job has already departed in the
original system, but not in the UB-system, then its attained service in all its servers in
the original system is set equal to its service requirement bcj .

Proposition 4.2.6. Assume NPS
c (0) = NUB

c (0) and aPScjs(0) = aUBcjs (0), for all c, j, s.
Then, NPS

c (t) ≤ NUB
c (t) and aPScjs(t) ≥ aUBcjs (t), for all c, j, s and t ≥ 0.

We now prove that λ∑s∈Cl(s) < µs, for all l = 1, . . . , i, implies stability of the servers
in the set Li, that is, the first implication of Proposition 4.2.3. We do this by analyzing
the UB-system for which stability of the servers Li follows intuitively as follows: Given
a server s ∈ L1 and any type c ∈ C(s), it holds that R(c) ⊆ L1(c). Hence, a server
in L1 will need to fully serve all arriving copies. Therefore each server s, with s ∈ L1,
behaves as an M/G/1 PS queue, which is stable if and only if its arrival rate of copies,
λ
∑
c∈C1(s) pc, is strictly smaller than its departure rate, µs. Assume now that for all

l = 1, . . . , i− 1 the subsystems Sl are stable and we want to show that servers in Li are
stable as well. First of all, note that in the fluid limit, all types c that do not exist in
the Si-subsystem, i.e., c /∈ Ci(s), will after a finite amount of time equal (and remain)
zero, since they are stable. For the remaining types c that have copies in server s ∈ Li,
i.e., s ∈ c with s ∈ Li, it will hold that their least-loaded servers are R(c) ⊆ Li. Due
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to the characteristics of the upper bound system, all copies sent to these servers will
need to be served. Hence, a server s ∈ Li behaves in the fluid limit as an M/G/1 PS
queue with arrival rate λ∑c∈Ci(s) pc and departure rate µs. In particular, such a queue
is stable if and only if λ∑c∈Ci(s) pc < µs.

We now prove the stability of the UB-system. For that, we first describe the
dynamics of the number of type-c jobs in the UB-system, denoted by NUB

c (t). We
recall that a type-c job departs only when all the copies in the set of servers R(c) are
completely served. We let ηminR(c)(v, t) = mins̃∈R(c){ηs̃(v, t)} be the minimum cumulative
amount of capacity received by a copy in one of its servers R(c) during the interval
(v, t). Therefore,

NUB
c (t) =

NUB
c (0)∑
m=1

1
(
{∃s̃ ∈ R(c) : b′cms̃ > ηs̃(0, t)}

)
+
Ec(t)∑
j=1

1
(
bcj > ηminR(c)(Ucj , t)

)
.

We denote the number of type-c copies in server s by MUB
s,c (t). We note that for a

type-c job in server s there are two possibilities: (server s ∈ Li),

• if s ∈ R(c), the copy of the type-c job leaves the server as soon as it is completely
served. The cumulative amount of capacity that the copy receives during (v, t) is
ηs(v, t).

• If s /∈ R(c), the copy of the type-c job in server s leaves the system either if it is
completely served or if all copies of this type-c job in the servers R(c) are served.
We note that for any s̃ ∈ R(c), s̃ ∈ Ll, with l < i.

Hence, the number of type-c jobs in server s ∈ Li is given by the following expression.
If s ∈ R(c),

MUB
s,c (t) =

MUB
s,c (0)∑
m=1

1
(
b′cms > ηs(0, t)

)
+
Ec(t)∑
j=1

1 (bcj > ηs(Ucj , t))

and if s /∈ R(c),

MUB
s,c (t) =

MUB
s,c (0)∑
m=1

1
(
{∃s̃ ∈ R(c) : b′cms̃ > ηs̃(0, t)} ∩ b′cms > ηs(0, t)

)
+
Ec(t)∑
j=1

1
(
bcj > ηR(c),s(Ucj , t)

)
,

where ηR(c),s(v, t) = max{ηminR(c)(v, t), ηs(v, t)}. The first terms in both equations cor-
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respond to the type-c jobs that were already in the system by time t = 0, the second
terms correspond to the type-c jobs that arrived during the time interval (0, t).

In the following we obtain the number of copies per server. Before doing so, we
need to introduce some additional notation. Let Dl(s) = {c ∈ C(s) : R(c) ⊆ Ll(c)}
be the set of types in server s for which the set of least-loaded servers for type-c jobs
is R(c) ⊆ Ll(c). If s ∈ Li, then, by definition, Dl(s) 6= ∅ if l ≤ i and {Dl(s)}il=1 forms
a partition of C(s). Furthermore, Di(s) = Ci(s), for all s ∈ Li. Therefore, for a server
s ∈ Li, the number of copies in the server is given by the following expression:

MUB
s (s) =

∑
c∈C(s)

MUB
s,c (t) =

i−1∑
l=1

∑
c∈Dl(s)

MUB
s,c (t) +

∑
c∈Ci(s)

MUB
s,c (t).

The first term of the RHS of the equation corresponds to the type-c jobs in server
s that have R(c) ⊆ Ll(c). The second term of the RHS corresponds to type-c jobs
in server s that have R(c) ⊆ Li(c). Particularly, we note that in the UB-system,
MUB
s (t) ≤∑c∈C(s)N

UB
c (t), since copies might have left, while the job is still present.

In order to prove the stability condition, we investigate the fluid-scaled system. The
fluid-scaling consists in studying the rescaled sequence of systems indexed by parameter
r, see Section 2.4.2.1 for more details. For r > 0, we denote by MUB,r

c,s (t) the system
where the initial state satisfies MUB

s,c (0) = rmUB
s,c (0), for all c ∈ C and s ∈ S. We define,

M̄UB,r
s,c (t) =

MUB,r
s,c (rt)
r

, and M̄UB,r
s (t) = MUB,r

s (rt)
r

In the following, we characterize the fluid model.

Definition 4.2.7. Non-negative continuous functions mUB
s (·) are a fluid model solution

if they satisfy the functional equations

mUB
s (t) =

i−1∑
l=1

∑
c∈Dl(s)

[
mUB
s,c (0)

(
1−G

(
η̄R(c),s(0, t)

))

+λpc
(∫ t

x=0
1− F

(
η̄R(c),s(x, t)

)
dx

)]
+

∑
c∈Ci(s)

[
mUB
s,c (0) (1−G(η̄s(0, t)))

+λpc
∫ t

x=0
(1− F (η̄s(x, t)))dx

]
, (4.4)

for s ∈ Li and i = 1, . . . , i∗, where G(·) is the distribution of the remaining service
requirements, F (·) the service time distribution of arriving jobs, and

η̄s(v, t) =
∫ t

x=v
φs(~mUB(x))dx,
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η̄minR(c)(v, t) = min
s̃∈R(c)

{η̄s̃(v, t)},

η̄R(c),s(v, t) = max{η̄minR(c)(v, t), η̄s(v, t)}.

The existence and convergence of the fluid limit to the fluid model can now be
proved.

Proposition 4.2.8. The limit point of any convergent subsequence of (M̄UB,r
s (t), s ∈

S)t≥0 is almost surely a solution of the fluid model Eq. (4.4).

We now give a further characterization of the fluid model Eq. (4.4).

Proposition 4.2.9. Let i ≤ i∗ and assume λ
∑
c∈Cl(s) pc < µs for all l ≤ i − 1 and

s ∈ Ll. Then, there is a time T ≥ 0, such that for t ≥ T and for s ∈ ∪i−1
l=1Ll, mUB

s (t) = 0
and for s ∈ Li

mUB
s (t) =

∑
c∈Ci(s)

[
mUB
s,c (0) (1−G(η̄s(0, t))) + λpc

∫ t

x=0
(1− F (η̄s,i(x, t)))dx

]
, (4.5)

with
η̄s,i(v, t) :=

∫ t

x=v
φs,i(~m(x))dx,

and φs,i(~m(x)) := µs∑
c∈Ci(s)

ms,c(x) .

Below we prove that the UB-system is Harris recurrent. Note that the concept of
Harris recurrence is needed here since the state space is not countable, (as we need to
keep track of residual service times). Hence, we need to prove that there exists a petite
set C for which P (τC < ∞) = 1 where τC is the stopping time of C, see Section 2.4
for the corresponding definitions. To do so, we first establish the fluid stability, that
is, the fluid model is 0 in finite time. The latter is useful, as we can use the result in
Theorem 2.4.13 (originally in [73]) that establishes that under some suitable conditions,
fluid stability implies Harris recurrency, see the lemma below.

Lemma 4.2.10. If the fluid limit is fluid stable, then the stochastic system is Harris
recurrent.

Eq. (4.5) coincides with the fluid limit of an M/G/1 PS system with arrival rate
λ
∑
c∈Ci(s) pc and server speed µs. If λ∑c∈Cl(s) pc < µs, for all l = 1, . . . , i, Eq. (4.5)

equals zero in finite time. Hence, from Lemma 4.2.10 we conclude that for servers
s ∈ Li, the associated stochastic number of copies in server s is Harris recurrent, as
stated in the proposition below.

Proposition 4.2.11. For i ≤ i∗, the set of servers s ∈ Li in the UB-system is stable if
λ
∑
c∈Ci(s) pc < µs, for all l = 1, . . . , i.
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Together with Proposition 4.2.6, we obtain the following result for the original
system.

Proposition 4.2.12. For a given i ≤ i∗, servers s ∈ Li are stable if λ∑c∈Cl(s) pc < µs,
for all l = 1, . . . , i.

Remark 4.2.13. In Section 3.4 we show that for the redundancy-d model, the system
where all the copies need to be served is an upper bound. We note that this upper
bound coincides with the upper bound presented in this chapter (in that case L1 = S).
Nevertheless, the proof approach is different. In Section 3.4, see also [83], the proof
followed directly, as each server in the upper bound system behaved as an M/G/1 PS
queue. In the general redundancy topology studied here, the latter is no longer true for
the system as a whole. Instead, it does apply recursively when considering the fluid
regime: In order to see that a given server s ∈ Li behaves as a PS queue in the fluid
regime, one first needs to argue that all the servers with less load than that server, that
is, the servers in L1, . . . ,Li−1, become 0 under fluid scaling.

Remark 4.2.14. In order to make a link with the result in Proposition 3.4.9, let us
consider the fluid limit of Proposition 4.2.11 applied to the redundancy-d model where
jobs have exponentially distributed service times (with unit mean). We recall that under
redundancy-d, we have that i∗ = 1 and thus, the UB-system is the system where all the
copies need to be served. Then, the fluid limit expression in Proposition 4.2.11 simplifies
to

mUB
s (t) = mUB

s (0) + t(λ d
K
− µ).

We note above equation coincides with the fluid limit of an M/M/1 PS system, and
is stable if and only if λ < Kµ/d. Which coincides with the stability condition of the
UB-system defined in Section 3.4.2.2.

Remark 4.2.15. We note that the service time distribution F has no atoms and is light-
tailed (Eq. (4.1)). This assumption on the service time distribution, is an assumption
needed in order to prove Lemma 4.2.10 (see Appendix 4.6.A for more details).

4.2.3.2 Necessary stability condition

In this section we prove the necessary stability condition of Proposition 4.2.3. Let us
first define

ι := min

l = 1, . . . , i∗ : λ
∑

c∈Ci(s)
pc > µs

 ,
and by γ := µs∑

c∈Cι(s)
pc

.
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We note that for any i < ι, λ∑c∈Ci(s) pc < µs. Hence, the servers in Li, with i < ι

are stable, see Proposition 4.2.11. We are left to prove that the servers in Sι cannot be
stable. In order to do so, we construct a lower bound system.

In the Sι subsystem, the loads are such that for all s ∈ Sι, (∑c∈Cι(s) pc)/µs ≤ 1/γ.
We will construct the Lower Bound (LB) system in which the resulting load at each
server is γ for all servers s ∈ Sι. We use the superscript LB in the notation to refer to
this system, which is defined as follows. First of all, we only want to focus on the Sι
system, hence, we set the arrival rate pLBc = 0 for types c ∈ C\Cι, whereas the arrival
rate for types c ∈ Cι remain unchanged, i.e., pLBc = pc. The capacity of servers s ∈ Sι in
the LB-system is set to

µLBs := µs̃

∑
c∈Cι(s) pc∑
c∈Cι(s̃) pc

= γ · (
∑

c∈Cι(s)
pc),

where s̃ ∈ Lι. Additionally, in the LB-system, we assume that each copy of a type-c job
receives the same amount of capacity, which is equal to the highest value of µLBs /MLB

s (t),
s ∈ c. We therefore define the service rate for a job of type c by

φLBc ( ~NLB(t)) := max
s∈c

{
µLBs

MLB
s (t)

}
, (4.6)

where c ∈ Cι (instead of φs(·) for a copy in server s in the original system). The
cumulative amount of capacity that a type-c job receives is

ηLBc (v, t) :=
∫ t

x=v
φLBc ( ~NLB(x))dx, for c ∈ Cι.

The number of type-c jobs in the system is given by

NLB
c (t) = 0, for c ∈ C\Cι,

NLB
c (t) =

NLB
c (0)∑
m=1

1
(
b′cms > ηLBc (0, t)

)
+
Ec(t)∑
j=1

1
(
bcj > ηLBc (Ucj , t)

) , for c ∈ Cι

We first prove that LB-system is a lower bound for the original system.

Proposition 4.2.16. Assume NPS
c (0) = NLB

c (0), for all c. Then, NPS
c (t) ≥st NLB

c (t),
for all c ∈ C and t ≥ 0.

In order to show that the LB-system is unstable, we investigate the fluid-scaled
system. For r > 0, denote by NLB,r

c (t) the system where the initial state satisfies
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NLB
c (0) = rnLBc (0), for all c ∈ C. We write for the fluid-scaled number of jobs per type

N̄LB,r
c (t) = NLB,r

c (rt)
r

.

In the following we give the characterization of the fluid model.

Definition 4.2.17. Non-negative continuous functions nLBc (·) are a fluid model solution
if they satisfy the functional equations

nLBc (t) = 0, c ∈ C\Cι,

nLBc (t) = nLBc (0)
(
1−G

(
η̄LBc (0, t)

))
+ λpc

(∫ t

x=0
1− F

(
η̄LBc (x, t)

)
dx

)
, c ∈ Cι

where G(·) is the distribution of the remaining service requirements of initial jobs, F (·)
the service time distribution of arriving jobs and

η̄LBc (v, t) =
∫ t

x=v
φLBc (~nLB(x))dx, with c ∈ Cι.

The existence and convergence of the fluid-scaled number of jobs (N̄LB,r
c (t), c ∈

C) to the fluid model (nLBc (t), c ∈ C) can be proved as before. The statement of
Proposition 4.2.8, indeed directly translates to the process (N̄LB,r

c (t), c ∈ C), since
ηLBc (v, t) is both decreasing and continuous in v for all c ∈ C. Therefore, it is left out.

Next, we characterize the fluid model solution ~nLB(t) in terms of the number of
copies per server mLB

s (t) = ∑
c∈C(s) n

LB
c (t). We show that if the initial condition for all

servers is such that mLB
s (0)/µLBs = α(0) for all s ∈ Sι, then mLB

s (t)/µLBs = α(t) for all
s ∈ Sι, where α(t) is given below.

Lemma 4.2.18. Let us assume that the initial condition is such that nLBc (0) = 0 for
all c ∈ C\Cι and for c ∈ Cι, nLBc (0) are such that mLB

s (0)/µLBs = α(0) for all s ∈ Sι.
Let

α(t) = α(0)(1−G(η̄LBα (0, t))) + λ

γ

∫ t

x=0
(1− F (η̄LBα (x, t)))dx, (4.7)

where η̄LBα (v, t) =
∫ t
x=v φ

LB
α (α(x))dx, with φLBα (α(t)) = 1

α(t) . Then, nLBc (t) = 0 for all
t ≥ 0 and c ∈ C\Cι, and

mLB
s (t)/µLBs = α(t),

for all t ≥ 0 and s ∈ Sι.

We note that Eq. (4.7) corresponds to the fluid limit of an M/G/1 system with PS,
arrival rate λ/γ and server speed 1. Assuming λ > γ, it follows that the fluid limit
mLB
s (t), s ∈ Sι diverges. Hence, together with Proposition 4.2.16, the fluid limit of

the original system ms(t) diverges for all s ∈ Sι as well, that is, the original system
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is weakly unstable, see Definition 2.4.9. In the proposition below, we show that this
implies that the stochastic process can not be stable either, by using similar arguments
as in [33, Theorem 3.2].

Proposition 4.2.19. For a given i ≤ i∗, servers s ∈ Si are unstable if there is an
l = 1, . . . , i such that λ∑s∈Cl(s) pc > µs.

Remark 4.2.20. In the special case of the redundancy-d model, Section 3.4 used a lower
bound that consisted in modifying the service rate obtained per job type, as in Eq. (4.6).
This lower bound coincides with the lower bound presented in this chapter, since under
the redundancy-d model, it holds that µLBs = µs = µ. The difficulty when studying a
redundancy system with a general topology lies in the fact that the load received in each
server is different. In order to show that the fluid limit of the server with the minimum
number of copies is increasing (in the lower bound), we need to adequately modify the
server capacities in order to make sure that the load at each of the servers is equal.

Remark 4.2.21. Let us focus on the fluid limit expression in Lemma 4.2.18. For the
redundancy-d model with exponentially distributed service times (with unit mean), this
lemma shows the diagonal property we explain in Section 3.4, where we showed that
inside some cone around the diagonal (symmetric states), the fluid drift of the number
of copies per server stay together for all the servers and is strictly positive. For this
particular system, Lemma 4.2.18 shows that if the initial condition of the LB-system is
such that mLB

s (0)/µ = α(0) for all c ∈ C, then

α(t) = α(0) + λ
d

K
− µ, (4.8)

and mLB
s (t) = α(t), for all t ≥ 0 and s ∈ S. The latter is closely related to Remark 3.4.6,

where we show that if the system starts unbalanced, eventually the number of copies per
server will get together and stay together for the rest of the time.

4.3 The FCFS and ROS scheduling policies

4.3.1 The FCFS scheduling policy

In this section, we consider redundancy systems with a general topology and hetero-
geneous server capacities where jobs have exponentially distributed service times and
identical copies. The stability condition when FCFS is implemented in the servers is
still an open problem. Under these assumptions we observe that the total instantaneous
departure rate depends not only on the types in service, as it was the case for the
redundancy-d model in Section 3.3, but also on the attained service of the corresponding
copies in service as this determines from which server a copy can depart. Hence, the
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state descriptor of the process needs to capture not only the job types in their order of
arrival, but also the attained service times of each of the copies in service. The latter
implies that the analysis of the stability condition is hard and that the techniques used
in Section 3.3 are no longer valid.

In the following we discus the stability condition for a simple redundancy topology,
the N -model. In the N -model, we note that type-{1, 2} jobs enter no later in server 1
than in server 2. Therefore, we can say that if µ1 ≥ µ2, then type-{1, 2} jobs will get
fully served in server 1, and hence intuitively, eventually jobs of type {2} get the full
capacity of server 2.

From the latter intuition, we can derive that the stability condition is given by the
following conditions. However, we did not succeed in having a proof for the conjecture
that the stability condition is as follows.

Conjecture 4.3.1. Consider the N -model with µ1 ≥ µ2, exponential service times and
identical copies. This system is stable if λ < λR,FCFS and unstable otherwise, where

λR,FCFS =


µ1

1−p , 0 ≤ p ≤ µ2
µ1+µ2

µ2
p ,

µ2
µ1+µ2

≤ p ≤ 1.

When p = µ2/(µ1 + µ2), the above condition reduces to λ < µ1 + µ2, which is the
maximum stability condition for exponentially distributed job sizes. We note that it
coincides with the stability condition under PS when µ1 ≥ µ2, derived in Section 4.2.2.2.

We note that for this simple model, we are able to guess the long-run departure
rate of each type. However, no such guess will be possible when µ1 < µ2 or a general
redundancy topology is considered. The stability condition of this redundancy system
is further discussed in Chapter 8.

4.3.2 The ROS scheduling policy

The stability condition under the ROS scheduling policies when copies are identical is
still an open problem. We provide our conjecture below, which we further discuss in
Chapter 8.

Conjecture 4.3.2. Consider the redundancy system with general topology and hetero-
geneous server capacities, where jobs have exponentially distributed service times and
identical copies. The system under ROS is stable if for all C ⊆ C,

λ
∑
c∈C

pc <
∑

s∈S(C)
µs,
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where S(C) = ∪c∈C{s ∈ c}. The system is unstable if there exists C̃ ⊆ C such that

λ
∑
c∈C̃

pc >
∑

s∈S(C̃)

µs.

4.4 Numerical analysis

We have implemented a simulator in order to assess the impact of the scheduling policies
FCFS, PS and ROS in redundancy models. Our simulations consider a large number of
busy periods (106), so that the variance and confidence intervals of the mean number of
jobs in the system are sufficiently small.

Within this section, we compare the performance of those service policies under
different service time distributions. First, for exponentially distributed service times,
we compare the performance with respect to the scheduling policy implemented in the
servers. Second, for a given policy, we investigate how the service time distribution
affects the performance of the system.

We further refer to Chapter 5 where the performance under redundancy scheduling
is compared to load balancers that do not apply redundancy.

4.4.1 Exponential service time distributions

In order to analyze the impact of the scheduling policy on the performance of the
system when jobs have identical copies, in Figure 4.3 we consider an N -model when
either FCFS, or PS, or ROS is implemented. We assume capacities ~µ = (1.25, 1) and

Figure 4.3 Mean number of jobs under FCFS, PS, and ROS with respect to that under
FCFS. For the N -model with ~µ = (1.25, 1), ~p = (1, 1.25)/2.25, and with respect to
λ/2.25.
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~p = (1, 1.25)/2.25. We note that for this choice of µ and ~p, the stability condition under
PS is given by λ < 2.25, which is the maximum stability condition under exponentially
distributed service times, see Section 4.2.2.2. Additionally, we conjecture that that is
also the stability condition under both FCFS and ROS, see Section 4.3. In Figure 4.3,
we plot the ratio between the mean number of jobs in the system under either FCFS,
PS, or ROS, with respect to the mean number of jobs under FCFS. We observe that
under low loads, PS and ROS outperform FCFS, whereas as the load increases FCFS
outperforms both PS and ROS.

In Figure 4.4 (a) and (b) we consider a W -model and compare the performance
under the different policies PS, FCFS and ROS. We take exponentially distributed
service times with either ~µ = (1, 2) or ~µ = (2, 1). We plot the mean number of jobs with
respect to p{1,2}, with p{1} = 0.35 and p{2} = 1 − p{1} − p{1,2}. The only redundant
job type is {1, 2}, thus as p{1,2} increases, we can observe how increasing the fraction
of redundant jobs affects the performance. We also note that when p{1,2} increases,
the load in server 1 increases as well, whereas the load in server 2 stays constant. In
Figure 4.4 (a) we set λ = 1, and in Figure 4.4 (b) we set λ = 2.

In the case of ~µ = (1, 2), we observe that FCFS always outperforms ROS. Intuitively
we can explain this as follows. Since p{1} is kept fixed, as p{1,2} increases, the load in
server 1 increases. With FCFS, it is more likely that both servers work on the same copy,
and hence that the fast server 2 “helps” the slow server 1 (with high load). With ROS
however, both servers tend to work on different copies, and the loaded slow server 1 will
take a long time serving copies that could have been served faster in the fast server 2.

(a) λ = 1 (b) λ = 2

Figure 4.4 Mean number of jobs for the W -model where FCFS (◦), PS (�) and ROS
(×) is implemented in the servers, with respect to p{1,2} and exponentially distributed
service times. We set p{1} = 0.35 and p{2} = 1− p{1} − p{1,2}.
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On the other hand, with ~µ = (2, 1) and sufficiently large p{1,2}, ROS outperforms FCFS.
In this case, the loaded server 1 is the fast server, and hence having both servers working
on the same copy becomes ineffecient, which explains that the performance under ROS
becomes better. As a rule of thumb, it seems that for a redundancy model, if slow
servers are highly loaded, then FCFS is preferable, but if fast servers are highly loaded,
then ROS is preferable.

From Figures 4.4 (a) and (b) we further observe that for all values of p{1,2}, FCFS
and ROS outperform PS, and that the gap increases when λ increases.

(a) FCFS (b) PS

(c) ROS

Figure 4.5 Mean number of jobs in the system with respect to λ for non-exponential
service times and redundancy topologies W (◦), and redundancy-2 (�), and redundancy-
4 (×) with K = 5. For the W -model, we set ~µ = (1, 2), and for the redundancy-d with
K = 5 a) FCFS and c) ROS ~µ = (1, 1.5, 2, 2.5, 3) and b) PS ~µ = (1, 2, 4, 6, 8).
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4.4.2 General service time distributions

In Figure 4.5 we investigate the performance of redundancy with (a) FCFS, (b) PS and
(c) ROS for several non-exponential distributions. In particular, we consider the following
distributions for the service times: deterministic, hyperexponential, and bounded Pareto,
as well as the exponential distribution. With the hyperexponential distribution, job
sizes are exponentially distributed with parameter ν1 (ν2) with probability q (1 − q).
For Pareto the density function is 1−(k/x)α

(1−(k/q̃)α) , for k ≤ x ≤ q̃. We choose the parameters
so that the mean service time equals 1. Namely for the hyperexponential distribution
parameters are q = 0.2, ν1 = 0.4 and ν2 = 1.6, and for the bounded Pareto distribution
are α = 0.5, q̃ = 6 and k = 1/q̃. In Figure 4.5, we plot the mean number of jobs
as a function of λ for the W -model (◦) and the redundancy-2 topology with K = 5
(�), and redundancy-4 topology with K = 5 (×). For the W -model, ~µ = (1, 2) and
pc = 1/3 for all c ∈ C. For the redundancy-d topologies with K = 5, for FCFS and ROS
~µ = (1, 1.5, 2, 2.5, 3), and for PS ~µ = (1, 2, 4, 6, 8). For PS, the respective parameters ~p
are chosen such that the system is stable for the simulated arrival rates.

We observe that when either FCFS or ROS is implemented, Figure 4.5 (a) and (c),
the performance depends on the variability of the service time distribution, and it seems
to degrade as the variability of the service time distribution increases.

We also observe that when K = 5 under FCFS and PS, the stability region under
d = 2 is larger than that under d = 4. We also observe that when PS is implemented,
Figure 4.5 (b), the performance seems to be nearly insensitive to the service time
distribution, beyond its mean value. We note that similar conclusions were derived for

(a) Exponential service times (b) Bounded Pareto service times

Figure 4.6 For the W -model with ~p = (0.35, 0.40, 0.25) under (a) exponentially and (b)
bounded Pareto, with parameters α = 0.5, q̃ = 15, distributed service times, and with
respect to µ2, for λ = 1.5 and µ1 = 2.
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the redundancy-d model in Section 3.6.
In Figure 4.6 we consider (a) exponential and (b) bounded Pareto, with parameters

α = 0.5, q̃ = 15, service time distributions and plot the mean number of jobs for
different values of µ2, when λ = 1.5, ~p = (0.35, 0.4, 0.25) and µ1 = 2. As before,
with exponentially distributed service times, Figure 4.6 (a), FCFS and ROS slightly
outperform PS. In the case where jobs have bounded Pareto distributed service times,
Figure 4.6 (b), PS outperforms both FCFS and ROS. This seems to indicate that as
the variability of the service time distribution increases, PS might become a preferable
choice over FCFS and ROS in redundancy systems.

4.5 Concluding remarks

In this chapter, we characterize the stability condition of redundancy systems with a
general topology when servers implement PS. In Chapter 5, we aim to understand under
which circumstances redundancy improves the performance of a given system compared
to a non-redundant system. We consider non-redundant Bernoulli routing, where jobs
are dispatched uniformly at random to one of the compatible servers of the job, and
JSQ.

We note that the stability condition when the scheduling policy is either FCFS or
ROS remains an open problem. We provide further discussions, conjectures and open
problems on the stability condition of several redundancy systems in Chapter 8.
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4.6 Appendix

A: Proofs of Section 4.2

Proof of Corollary 4.2.5: The stability condition of such a system is given by
Corollary 4.2.4. We note that each server s ∈ S receives C(s) =

(K−1
d−1

)
different job

types, that is, by fixing a copy in server s, all possible combinations of d − 1 servers
out of K − 1. Thus, L1 = arg mins∈S1{λ

(K−1
d−1 )

(Kd )µs } = K, S2 = S − {K} and condition

λ
(K−1
d−1 )
(Kd ) < µK .

We note each server s ∈ Si receives
(|Si|−1
d−1

)
different job types, for i = 1, . . . , i∗

and thus, the least-loaded server in the subsystem with servers Si, only depends on
the capacities of servers in Si, that is Li = arg mins∈Si{1/µs}. Additionally since,
µ1 < . . . < µK , one obtains that Li = K− i+ 1, for i = 1, . . . ,K−d+ 1. The associated
conditions are λ(K−i+1

d−1 )
(Kd ) < µK−i+1 for i = 1, . . . ,K − i + 1. This set of conditions is

equivalent to that in Corollary 4.2.5.

Proof of Proposition 4.2.6: We assume that both systems are coupled as follows:
at time t = 0, both systems start at the same initial state NPS

c (0) = NUB
c (0) and

aPScjs(0) = aUBcjs (0) for all c, j, s. Arrivals and service times are also coupled. For simplicity
in notation, we assume that when in the original system a type-c copy reaches its service
requirement b, the attained service of its |c| − 1 additional copies is fixed to b and the
job remains in the system until the copy of that same job in the UB system is fully
served at all servers in R(c).

We prove this result by induction on t. It holds at time t = 0. We assume that for
u ≤ t it holds that NPS

c (t) ≤ NUB
c (t) and aPScjs(t) ≥ aUBcjs (t) for all c, j, s. We show that

this inequality holds for t+.
We first assume that at time t, it holds that NPS

c (t) = NUB
c (t) for some c ∈ C. The

inequality is violated only if there is a job for which the copy in the UB system is fully
served at all servers R(c), but none of the copies in the original system is completed.
That means, there exist a j such that aPScjs(t) < aUBcjR(c)(t) = bj for all s ∈ c. However,
this can not happen, since by hypothesis aPScjs(t) ≥ aUBcjs (t) for all s ∈ c.

We now assume that at time t, aPScjs(t) = aUBcjs (t) for some c, j, s. There are now
two cases. If this copy (and job) has already left in the original system, then aPScjs(t) =
acjs(t+) = bcj and hence aPScjs(t+) ≥ aUBcjs (t+). If instead the copy has not left in
the original system, then by hypothesis it holds that NPS

c (t) ≤ NUB
c (t) and thus,

MPS
s (t) ≤ MUB

s (t) and µs
MPS
s (t) ≥

µs
MUB
s (t) . That means that the copy in the original

system has a higher service rate at time t than the same copy in the UB system. Hence,
aPScjs(t+) ≤ aUBcjs (t+).
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Proof of Proposition 4.2.8: The proof is identical to the the proof of Theorem
5.2.1 in [37] (which is itself based on Lemma 5 in [52]). We only need to ensure that
η̄minR(c)(v, t) and η̄R(c),s(v, t) are decreasing in v and continuous on v ∈ [ψs(t) + ε, t], where
ψs(t) = sup(v ∈ [0, t] : ms(u) = 0).

Let us verify that η̄minR(c)(v, t) and η̄R(c),s(v, t) are decreasing and continuous on v. We
note that the function ηs(·, t) that gives the cumulative service that a copy in server s
received during time interval (·, t), is a Lipschitz continuous function, increasing for
t < τs and non decreasing for t > τs, where τs = inf{t > 0 : Ms(t) = 0}.

If η̄minR(c)(v, t) = η̄s1(v, t) and η̄R(c),s(v, t) = η̄s2(v, t) for all v ∈ [0, t) and some
s1, s2 ∈ S, then both η̄minR(c)(v, t) and η̄R(c),s(v, t) are decreasing and continuous on v,
since by definition η̄s(v, t) is decreasing and continuous on v for all s ∈ S.

Let us assume that for v0 ∈ [0, t) is such that η̄minR(c)(v, t) = η̄s̃1(v, t) for v ≤ v0

and η̄minR(c)(v
+
0 , t) = η̄s̃2(v0, t), for some s̃1, s̃2 ∈ R(c). We first verify that η̄minR(c)(v, t) is

continuous on v = v0. Since, η̄s̃1(v, t) and η̄s̃2(v, t) are continuous on v = v0, then

lim
x−→v0

η̄minR(c)(x, t) = η̄s̃1(v, t) = η̄s̃2(v, t) = lim
x+→v0

η̄minR(c)(x, t).

Therefore, we conclude that η̄minR(c)(x, t) is continuous on v ∈ [0, t). Analogously, one can
verify that η̄minR(c),s(x, t) is continuous on v ∈ [0, t).

We now verify that η̄minR(c)(x, t) is decreasing on v ∈ [0, t). Let us consider 0 < t1 <

v0 < t2 < t. Then for η̄minR(c)(v, t),

η̄minR(c)(t1, t) = η̄s̃1(t1, t) ≤ η̄s̃1(t2, t) ≤ η̄s̃2(t2, t) = η̄minR(c)(t2, t),

where the first inequality holds since η̄s̃1(v, t) is decreasing on v. We conclude that
η̄minR(c)(v, t) is decreasing v.

Let us verify that η̄R(c),s(v, t) is decreasing on v. W.l.o.g. we assume that there
exists v0 ∈ [0, t), such that η̄R(c),s(v, t) = η̄minR(c)(v, t) for v < v0 and η̄R(c),s(v, t) = η̄s(v, t)
for t > v > v0. Then,

η̄R(c),s(t1, t) = η̄minR(c)(t1, t) ≤ η̄s(t1, t) ≤ η̄s(t2, t) = η̄R(c),s(t2, t)

where the first inequality holds since η̄s̃1(v, t) is decreasing on v. We conclude that
η̄R(c),s(x, t) is decreasing v.

Proof of Proposition 4.2.9: For simplicity in notation, we remove the superscript
UB throughout the proof.
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First assume s ∈ L1. Since D0 = ∅, from Eq. (4.4), we directly obtain

ms(t) =
∑

c∈C1(s)
[ms,c(0) (1−G(η̄s(0, t))) + λpc

∫ t

x=0
(1− F (η̄s(x, t)))dx], ∀t > 0.

This expression coincides with the fluid limit of an M/G/1 PS queue with arrival rate
λ
∑
c∈C1(s) pc and server speed µs. Since λ∑c∈C1(s) pc < µs, we know that there exists a

τ̄s such that ms(t) = 0, for all t ≥ τ̄s.

The remainder of the proof is by induction. Consider now a server s ∈ Ll and
assume there exists a time T̃ such that ms(t) = 0, for all t ≥ T̃ and s ∈ ∪l−1

j=1Lj . Thus,
for t ≥ T̃ , also ms,c(t) = 0 for all s ∈ ∪l−1

j=1Lj , c ∈ Dj(s), j = 1, . . . , l − 1. We consider
server s ∈ Ll. From Eq. (4.4) its drift is then given by:

ms(t) =
l−1∑
j=1

∑
c∈Dj(s)

ms,c(t) +
∑

c∈Cl(s)
ms,c(t)

=
∑

c∈Cl(s)

[
ms,c(0) (1−G(η̄s(0, t))) + λpc

∫ t

x=0
(1− F (η̄s(x, t)))dx

]
,

for all t ≥ T̃ . Now note that φs(~m(t)) = µs
ms(t) = µs∑

c∈Cl(s)
ms,c(t)

= φs,l(~m(t)), where

the second equality follows from the fact that ms,c(t) = 0 for all for all s ∈ ∪l−1
j=1Lj ,

c ∈ Dj(s), j = 1, . . . , l − 1.

To finish the proof, Eq. (4.5) coincides with the fluid limit of an M/G/1 system
with PS, arrival rate λ∑c∈Cl(s) pc and server speed µs. Hence, if l < i, the standard PS
queue is stable, and we are sure that it equals and remains zero in finite time.

Proof of Lemma 4.2.10: In [73], the authors consider bandwidth sharing networks
(with processor sharing policies), and show that under mild conditions, the stability of
the fluid model (describing the Markov process of the number of per-class customers
with their residual job sizes) is sufficient for stability (positive Harris recurrence).

Our system, though slightly different from theirs satisfies the same assumptions, and
as a consequence their results are directly applicable to our model.

More precisely, given the assumptions on the service time distribution, our model
satisfies the assumptions given in [73, Section 2.2] for inter-arrival times and job-sizes. (In
particular exponential inter-arrival times satisfy the conditions given in [73, Assumption
2.2.2].)

Proof of Lemma 4.2.18: From Definition 4.2.17, we obtain that for each server
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s ∈ Sι,

mLB
s (t)
µLBs

= 1
µLBs

∑
c∈Cι(s)

nLBc (t)

=
∑

c∈Cι(s)

[
nLBc (0)
µLBs

(
1−G

(
η̄LBc (0, t)

))

+ λpc
µLBs

(∫ t

x=0
1− F

(
η̄LBc (x, t)

)
dx

)]
.

We recall that α(t) is defined as

α(t) = α(0)
(
1−G

(
η̄LBα (0, t)

))
+ λ

γ

(∫ t

x=0
1− F

(
η̄LBα (x, t)

)
dx

)
.

We let the initial condition be such that mLBs (0)
µLBs

= α(0) for all s ∈ Sι and we will prove
by contradiction that for all t > 0,

mLB
s (t)
µLBs

= α(t), for all s ∈ Sι.

Let us assume that t0 is the first time such that there exists s̃ ∈ Sι such that α(t0) 6=
mLB
s̃ (t0)/µLBs̃ . Since ∑c∈Cι(s)

nLBc (0)
µLBs

= mLBs (0)
µLBs

= α(0) and ∑
c∈Cι(s)

pc
µLBs

= 1/γ, this
implies that there exist c̃ ∈ C̃ and t1, 0 ≤ v ≤ t1 < t0 such that η̄LBα (v, t1) 6= η̄LBc̃ (v, t1).
However, since α(t) = mLB

s (t)/µLBs for all t < t0, this implies that φc(~n(t)) = 1/α(t) for
all t < t0 and c ∈ C̃(s), and hence η̄LBα (v, t) = η̄LBc̃ (v, t), for all t < t0. We have hence
reached a contradiction, which concludes the proof.

Proof of Proposition 4.2.16: The number of type-c jobs in the system is given by
NLB
c (t) = 0, for c ∈ C\Cι, and for c ∈ Cι,

NLB
c (t) =

NLB
c (0)∑
m=1

1
(
b′cms > ηLBc (0, t)

)
+
Ec(t)∑
j=1

1
(
bcj > ηLBc (Ucj , t)

) .
We note that for all c ∈ C\Cι the result is direct since pLBc = 0 for all c ∈ C\Cι. Then,
let us consider c ∈ Cι. For any ~NPS and ~NLB such that ~NPS ≥ ~NLB, the following
inequalities hold:

φs( ~N) = µs
MPS
s

=
µs(
∑
c∈Cι(s) pc)

(∑c∈Cι(s) pc)MPS
s

=
(∑c∈Cι(s) pc)µs/(

∑
c∈Cι(s) pc)∑

c∈C(s)\Cι(s)N
PS
c +∑

c∈Cι(s)N
PS
c

≤
(∑c∈Cι(s) pc)µs/(

∑
c∈Cι(s) pc)∑

c∈Cι(s)N
PS
c

≤
γ × (∑c∈Cι(s) pc)∑

c∈Cι(s)N
LB
c

≤ max
s∈c

{
µLBs
MLB
s

}
= φLBc ( ~NLB).
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The second last inequality holds since γ ≥ µs/(
∑
c∈Cι(s) pc) for all s ∈ Sι and NLB

c ≤
NPS
c for all c ∈ Cι. We note that ∑c∈Cι(s)N

LB
c = MLB

s (t). It follows from straight
forward sample-path arguments that NLB

c (t) ≤ NPS
c (t) for all t ≥ 0 and c ∈ Cι.

Proof of Proposition 4.2.19: We prove this proposition by using similar arguments
as in Theorem 3.2 in [33], but to keep the manuscript self-contained, we adapt the proof
to our case.

We show that the stochastic system is unstable, that is, | ~M(t)| → ∞ as t → ∞,
with probability 1. Because the fluid limit of the original system is weakly unstable,
there exists a time T > 0 such that |~m(T )| > 0 for any fluid limit ~m(t) of ~M(t). In
the following, we show that lim inf

r→∞
| ~M(rT )/r| > 0 with probability 1 by contradiction,

which directly implies that lim
t→∞
| ~M(t)| =∞.

Assume that lim inf
r→∞

| ~M(rT )/r| = 0. The latter implies that there exists a subse-
quence rn of r such that | ~M(rnT )/rn| → 0 as n→∞. We note that {M(r·)/r, r ≥ 1}
is precompact, thus there exists a subsequence rnm of rn such that ~M(rnmT )/rnm
converges u.o.c. to a fluid limit ~m(·). The latter implies that

| ~M(rnmT )/rnm | → |~m(T )| > 0.

Hence, lim inf
r→∞

| ~M(rT )/r| > 0, which concludes the proof.



Chapter 5

When does redundancy improve
performance

In the present chapter we investigate the impact that redundancy scheduling has on
the performance of the system, by comparing redundancy scheduling to Bernoulli
routing and Join-the-Shortest-Queue (JSQ). Under Bernoulli routing, a type-c job is
send with uniform probability to one of its compatible servers in c. Under JSQ, each
job is dispatched to the compatible server that has the least number of jobs (ties are
broken at random). Our analysis consists of two steps: in the first step, we compare
analytically the stability condition of the system under redundancy scheduling to that
under Bernoulli routing. Secondly, we numerically compare the mean number of jobs in
the system under redundancy to that under Bernoulli routing and JSQ.

From a dispatchers viewpoint, the analytical comparison between redundancy and
Bernoulli routing is reasonable under the assumption that the dispatcher only knows
the type of the job and the set of its compatible servers. Numerically, we also compare
to JSQ, which is the optimal scheduling policy under certain conditions ([74]). However,
we note that opposite to redundancy, JSQ uses full information on the state of the
system.

We aim to understand when having redundant copies is beneficial for the performance
of the system in this context. Observe that the answer is not clear upfront as adding
redundant copies has two opposite effects: on the one hand, redundancy helps exploiting
the variability across server capacities, but on the other hand, it induces a waste of
resources as servers work on copies that do not end up being completely served.

In order to make this analysis concrete, we assume that jobs have exponentially
distributed service times and identical copies. We consider various server capacity
settings where PS is implemented. We compute the stability condition for this system
and compare it to that under Bernoulli routing.
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We observe that when the capacities of the servers are sufficiently heterogeneous,
the stability region under redundancy is larger than that under Bernoulli routing. In
addition, numerical computations allow us to conclude that the degree of heterogeneity
needed in the servers in order for redundancy to be beneficial, decreases in the number
of servers, and increases in the number of redundant copies. By simulation, we observe
that these conclusions are also appreciable in the mean number of jobs in the system.

Using a simulator, we compare numerically the mean number of jobs under redun-
dancy to those under Bernoulli routing and JSQ routing, where either FCFS, PS or
ROS is implemented in the servers. We observe that redundancy might not always
improve the performance and when it does improve, the improvement is small. However,
we note that JSQ requires full information of the state of the queues at every instant of
time, which is unpractical.

The present chapter is organized as follows: In Section 5.1 we derive the stability
condition under Bernoulli routing and in Section 5.2 compare it to the stability condition
under redundancy. In Section 5.3, we numerically compare the mean number of jobs
under redundancy to that under both Bernoulli routing and JSQ.

5.1 Stability under Bernoulli routing

We define by λB the value of λ such that the Bernoulli routing model is stable if λ < λB

and unstable if λ > λB. Under Bernoulli routing, the redundancy topology determines
the set of compatible servers of each job type where the dispatcher can send the job.
Upon arrival the job is dispatched to one of its compatible servers chosen uniformly
at random. There is an arrival of a type-c job to server s at rate λpc/|c|. Thus, the
Bernoulli system reduces to K independent servers, where server s receives arrivals at
rate λ(∑c∈C(s)

pc
|c|) and has a departure rate µs, for all s ∈ S. This gives the following

stability result.

Proposition 5.1.1. The Bernoulli routing system, where jobs are uniformly distributed
across its compatible servers and any work-conserving scheduling policy is implemented
in the servers, is stable if and only if,

λ < λB := min
s∈S

{
µs∑

c∈C(s)
pc
|c|

}
. (5.1)

5.2 Comparison of the stability condition

In the present section we compare the stability region under redundancy scheduling,
obtained in Chapters 3 and 4, to that under Bernoulli routing, Proposition 5.1.1. Recall
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that λR,P denotes the value of λ such that the redundancy scheduling under scheduling
policy P is stable if λ < λR,P and unstable if λ > λR,P , for P ∈ {FCFS, PS, ROS}.

For the PS scheduling policy we have that λR,PS = mini=1,...,i∗,s∈Li

{
µs∑

c∈Ci(s)
pc

}
,

from Corollary 4.2.4. Together with Eq. (5.1), we obtain the following sufficient and
necessary conditions for redundancy to improve the stability condition.

Corollary 5.2.1. Consider the heterogeneous PS server system with a general redun-
dancy topology and with exponentially distributed service times. The stability region
under redundancy with identical copies is larger than under Bernoulli routing if and
only if

min
i=1,...,i∗,s∈Li

{ µs∑
c∈Ci(s) pc

} > min
s∈S
{ µs∑

c∈C(s)
pc
|c|
}.

The stability condition when either FCFS or ROS is implemented is only known
for the redundancy-d model. For this setting, the following corollary is straightforward
after Proposition 3.3.3 and Proposition 3.5.3.

Corollary 5.2.2. Let us consider the redundancy-d model, jobs have exponential service
times and identical copies.

• The stability condition when FCFS is implemented is larger of equal than that
under Bernoulli routing if and only if

¯̀µ > min
s∈S
{ µs∑

c∈C(s)
pc
|c|
}.

• The stability condition when ROS is implemented is equal to that under Bernoulli
routing, that is given by, λ < Kµ.

We the reminder of this section, we consider the redundancy-d and nested redundancy
topologies and compute the stability region for various server capacities settings. We aim
to understand how the stability region behaves under redundancy when the heterogeneity
among the servers increases.

5.2.1 Redundancy-d topology

We consider the redundancy system with redundancy-d topology and heterogeneous
server capacities. When jobs are dispatched according to Bernoulli routing, the stability
condition reduces to the following.

Corollary 5.2.3. Assume the redundancy system with redundancy-d topology and K

heterogeneous servers where µ1 < . . . < µK . The stability condition under Bernoulli
routing is given by λ < Kµ1.
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Table 5.1 The maximum arrival rates λR,PS and λB in the system under PS and
capacities µk = µk−1 with the redundancy-d topology.

µ = 1 µ = 1.2 µ = 1.4 µ = 2 µ = 3 µ∗

Red-2

K = 3 1.5 2.16 2.94 6 9 1.41
K = 4 2 3.45 5.48 12 18 1.26
K = 5 2.5 5.18 9.14 20 30 1.19
K = 10 5 22.39 41.16 90 135 1.08

Red-3
K = 4 1.33 2.30 3.65 10.66 36 1.44
K = 5 1.66 3.45 6.40 26.66 90 1.31
K = 10 3.33 17.19 60.23 320 1080 1.13

BR

K = 3 3 3 3 3 3
K = 4 4 4 4 4 4
K = 5 5 5 5 5 5
K = 10 10 10 10 10 10

When servers implement PS, we obtain that λR,PS = mini=d,...,K
{

(Kd )
(i−1
d−1)

µi

}
, from

Corollary 4.2.5. The following corollary is straightforward.

Corollary 5.2.4. Assume the redundancy system with redundancy-d topology and K

heterogeneous servers where µ1 < . . . < µK . When PS is implemented in the servers,
the stability condition under redundancy is strictly larger than under Bernoulli routing
if and only if

Kµ1 < min
i=d,...,K

{ (K
d

)(i−1
d−1
)µi
}
.

Because
(i−1
d−1
)

is increasing in i, the following corollary is straightforward.

Corollary 5.2.5. Assume the K heterogeneous server system with the redundancy-d
topology and where µ1 < . . . < µK . When PS is implemented in the servers, the system
under redundancy has a larger stability region than the Bernoulli routing if µ1d < µd.

Hence, if there exists a redundancy parameter d such that µ1d < µd, then adding d
redundant copies to the system improves its stability region. In that case, the stability
condition of the system will improve by at least a factor µd

dµ1
.

In the following, we consider two server capacities settings and compare the stability
region under redundancy to that under Bernoulli routing when servers implement PS.

Server setting 1: In Table 5.1, we chose µk = µk−1, k = 1, . . . ,K, so that the
minimum capacity equals 1. Hence, for Bernoulli, λB = K. We assume that the servers
implement PS and compare the stability condition under redundancy scheduling to that
under Bernoulli routing.

Under redundancy we have the following: For µ = 1 the system is a redundancy-d
model (homogeneous capacities and redundancy-d topology), so that λR,PS = K/d,
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see Section 3.4. We denote by µ∗ the value of µ for which the stability region of the
redundant system coincides with that of Bernoulli routing, i.e., the value of µ such
that λR,PS = λB. For µ < µ∗ (the gray area on the left-hand-side of the thick line in
Table 5.1), Bernoulli has a larger stability region, while for µ > µ∗ (the area on the
right-hand-side of the thick line in in Table 5.1), redundancy outperforms Bernoulli.

We observe that for a fixed d, µ∗ decreases as K increases as well. Therefore, as the
number of servers increases, the level of heterogeneity that is needed in the servers in
order to improve the stability under redundancy decreases.

We also observe that for fixed K, µ∗ increases as d increases for PS. This means
that as the number of redundant copies d increases, the server capacities need to be
more heterogeneous in order to improve the stability region under redundancy.

Finally, let us focus on the numbers in bold, we observe that when the number
of servers K is large enough and the servers are heterogeneous enough (large µ), the
stability region increases in the number of redundant copies d.

Server setting 2: In Table 5.2, we consider linearly increasing capacities on the
interval [1,M ], that is µk = 1 + M−1

K−1 (k − 1), for k = 1, . . . ,K. In the area on the
right-hand-side of the thick line, redundancy outperforms Bernoulli.

Table 5.2 The maximum arrival rates λR,PS and λB in the system under PS and
capacities µk = 1 + M−1

K−1 (k − 1) with the redundancy-d topology.

M = 1 M = 2 M = 3 M = 4 M = 6

Red-2

K = 3 1.5 3 4.5 6 9
K = 4 2 4 6 8 12
K = 5 2.5 5 7.5 10 15
K = 10 5 10 15 20 30

Red-3
K = 4 1.33 2.66 4 5.33 8
K = 5 1.66 3.33 5 6.66 10
K = 10 3.33 6.66 10 13.33 20

BR

K = 3 3 3 3 3 3
K = 4 4 4 4 4 4
K = 5 5 5 5 5 5
K = 10 10 10 10 10 10

When PS is implemented, the following corollary is straightforward due to simple
qualitative rules can be deduced.

Corollary 5.2.6. For the system with the redundancy-d topology, where server imple-
ment PS and capacities µk = 1 + M−1

K−1 (k − 1), for k = 1, . . . ,K, the stability condition
is given by: λR,PS = MK

d , for d > 1, while λB = K. Hence, the redundancy system
outperforms the stability condition of the Bernoulli routing if and only if M ≥ d.

If M ≥ d, redundancy is a factor M/d better than Bernoulli. Hence, increasing
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M , that is, the heterogeneity among the servers, is significantly beneficial for the
redundancy system, as we can observe in Table 5.2. However, the stability condition of
the redundancy system degrades as the number of copies d increases.

5.2.2 Nested redundancy systems

We consider the following nested redundancy topologies: N , W , WW (Figure 1.1 (b),
(c), (d)) and WWWW . The latter is a K = 8 server system that is composed of 2 WW

models and an additional job type c = {1, . . . , 8} for which all servers are compatible.
For all three models, we assume that a job is with probability pc = 1/|C| of type c.

Let us start by analyzing the stability conditions under the N -model. The stability
condition of the N -model with Bernoulli routing is given by the following expression:

λB =


2 min{µ1, µ2}, if p = 0
2µ1/(1− p), if 0 ≤ p ≤

(
µ2−µ1
µ1+µ2

)+

2µ2/(1 + p), if
(
µ2−µ1
µ1+µ2

)+
< p ≤ 1.

The above set of conditions is obtained from the fact that under Bernoulli routing,
λB = min{2µ1/(1− p), µ2/(p+ 1

2(1− p))}. Note that λB is a continuous function with
a maximum µ1 + µ2 at the point p = µ2−µ1

µ1+µ2
.

Comparing λB to λR,PS (obtained in Section 4.2.2.2) leads to the following:

Corollary 5.2.7. Under an N -model where servers implement PS, the stability condition
under redundancy is larger than under Bernoulli routing under the following conditions:
If µ2 ≤ µ1, then p ∈ (

(
2µ2−µ1
2µ2+µ1

)+
, 1). If µ2 > µ1, then p ∈ (0, (µ2−2µ1

µ2
)+) ∪ (2µ2−µ1

2µ2+µ1
, 1).

From the above we conclude that under PS, if µ1 is larger than 2µ2, then redundancy
is always better than Bernoulli, independent of the arrival rates of job types. For
the case µ2 > µ1, we observe that for µ2 large enough, redundancy will outperform
Bernoulli.

In the reminder of this section, we consider the PS scheduling policy and W -based
redundancy topologies. For the W -model, the stability condition of the Bernoulli system
is given by the following expression, see Eq. (5.1):

λB =


µ1/(p{1} + 1

2p{1,2}),
µ1

µ1+µ2
< p{1} + 1

2p{1,2}

µ1 + µ2,
µ1

µ1+µ2
= p{1} + 1

2p{1,2}

µ2/(1− p{1} − 1
2p{1,2}),

µ1
µ1+µ2

> p{1} + 1
2p{1,2}

The above conditions have been analyzed by analyzing the different cases with respect
to p{1} and p{1,2}, as in the N -model case.

In Table 5.3 we consider two settings of parameters, µk = µk−1 for k = 1, . . . ,K,
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Table 5.3 The maximum arrival rates λR,PS and λB in W -based redundancy topologies.

µk = µk−1 µ = 1 µ = 1.2 µ = 1.4 µ = 2 µ = 3 µ∗

Red
W -model 1.5 1.8 2.10 3 3 1.33
WW -model 2.33 4.03 4.90 7 7 1.19

WWWW -model 3.75 8.64 10.5 15 15 1.17
µk = 1 + M−1

K−1 (k − 1) M = 1 M = 2 M = 3 M = 4 M = 6

Red
W -model 1.5 1.8 2.10 3 3
WW -model 2.33 4.66 7 7 7

WWWW -model 3.75 7.14 10.71 12.85 15

BR
W -model 2 2 2 2 2
WW -model 4 4 4 4 4

WWWW -model 8 8 8 8 8

upper part of the table, and µk = 1 + M−1
K−1 (k − 1) for k = 1, . . . ,K, lower part of the

table. We note that that λB = K under both settings and that for the W model, server
capacities are ~µ = (1, µ2).

We observe that the similar results are obtained as when server capacities are
µk = µk−1 for k = 1, . . . ,K. We denote by µ∗ the value of µ for which λR,PS = λB. We
observe that for PS as the number of servers duplicate, the µ∗ decreases, and is always
smaller than 1.5. So that, as the number of servers increases, the level of heterogeneity
that is needed in order for redundancy to outperform Bernoulli decreases too.

When instead servers capacities are µk = 1+M−1
K−1 (k−1) for k = 1, . . . ,K, we observe

that when PS is implemented and M ≥ K the stability condition under redundancy
equals λR,PS = |C|, which is always larger than λB = K. However, as the number of
servers increases, the maximum capacity of the servers, M , needs to increase M in order
for redundancy to outperform Bernoulli.

5.3 Numerical analysis

In the present section we investigate impact of redundancy in the performance of multi-
server systems. To do so, we consider a system where servers implement either FCFS, or
PS, or ROS and compare the performance under redundancy scheduling to that of the
Bernoulli routing and JSQ. We have implemented a simulator and particularly evaluate
the redundancy system and compare to the following two systems:

• when the scheduling policy is Bernoulli routing. In Section 5.2 we compare the
stability condition analytically.

• when the scheduling policy Join the Shortest Queue (JSQ) policy according to
which each job is dispatched to the compatible server that has the least number
of jobs (ties are broken at random). In a recent paper, [30], it was shown that
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Figure 5.1 W -model with p{1} = 0.35 and p{2} = 1−p{1}−p{1,2}. Servers have capacities
~µ = (1, 2) (solid line) and ~µ = (2, 1) (dashed line). Depict the stability condition under
redundancy when PS is implemented, λR,PS (◦), under Bernoulli routing λB (�) and
under JSQ λJ (×).

JSQ – with exponential service time distributions – combined with size-unaware
scheduling policies such as FCFS, PS or ROS, is maximally stable, i.e., if there
exists a static dispatching policy that achieves stability, so will JSQ.

Our simulations consider a large number of busy periods (106), so that the variance and
confidence intervals of the mean number of jobs in the system are sufficiently small.

In Figure 5.1 and Figure 5.2, we consider the W -model with exponential service
time distributions for which either FCFS, PS or ROS is implemented in the servers.
We set p{1} = 0.35 and p{2} + p{1,2} = 0.65, and vary the value of p{1,2}. We consider
either ~µ = (1, 2) or ~µ = (2, 1). We note that when p{1,2} increases, the load in server 1
increases as well, whereas the load in server 2 stays constant.

In Figure 5.1 we plot λR,PS (◦), λB (�) and λJ (×), for capacities ~µ = (1, 2) and
~µ(2, 1). We use the analysis in Section 4.2 to obtain the stability when servers implement
PS and the dispatching policy is redundancy, the analysis in Section 5.1 to obtain the
stability when that is Bernoulli routing and [30] when JSQ. We note that either for
Bernoulli routing or JSQ the stability condition is invariant to the scheduling policy
implemented in the servers in this case.

In Figure 5.1, we observe that when servers implement PS, redundancy consistently
has a larger stability region than Bernoulli in the ~µ = (1, 2) case and for p{1,2} ∈ [0, 0.5)
in the ~µ = (2, 1) case. We let λJ be the value of λ such that JSQ is stable if λ < λJ

and unstable if λ > λJ . Using [30],

λJ = max
pc,s≥0,

∑
s∈c pc,s=1

{
min
s∈S

µs∑
c∈C(s) pc,spc

}
.
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We observe that the stability condition under redundancy coincides on a large region
with that of JSQ, which, in view of the results of [30], implies that redundancy is in
that region maximally stable.

In Figure 5.2, we depict the mean number of jobs in the system when either
redundancy (◦), or Bernoulli routing (�), or JSQ (×) is the scheduling policy respectively
when FCFS ((a) and (b)), PS ((c) and (d)) and ROS ((e) and (f)) is implemented in the
servers. When analyzing the present figures, we will come back to Figure 5.1 in order
to observe the stability condition at each study case.

When ~µ = (1, 2), we observe that redundancy performs better than Bernoulli routing,
under the three FCFS, PS and ROS. This difference becomes larger as p{1,2} increases.
This is due to the fact that the redundancy policy does better in exploiting the larger
capacity of server 2 than Bernoulli, which becomes more important as p{1,2} increases.
In addition, we note that for redundancy, Bernoulli routing and JSQ, the mean number
of jobs increases as p{1,2} increases. The reason for this is that as p{1,2} increases, the
load on server 1 increases. Since server 1 is the slow server, this increases the mean
number of jobs.

In the opposite case, i.e., ~µ = (2, 1), the mean number of jobs is non-increasing
in p{1,2}. This is because as p{1,2} increases, the load on server 1 increases. Since
server 1 is now the fast server, this has a positive effect on the performance (decreasing
mean number of jobs). However, as p{1,2} gets larger, the additional load (created by
the copies) makes that the performance can be negatively impacted. This happens
for λ = 2, where the mean number of jobs under redundancy is a U-shape function,
more pronounced under either FCFS or PS than under ROS. We furthermore observe
that in the ~µ = (2, 1) case, redundancy outperforms Bernoulli for any value of p{1,2}
when λ = 1.5, for the three FCFS, PS and ROS. However, when λ = 2, Bernoulli
outperforms redundancy under both FCFS and PS, for FCFS when p{1,2} > 0.51 and for
PS when p{1,2} > 0.49. This is due to the additional load, generated under redundancy,
that becomes more pronounced as p{1,2} becomes larger. We note that under ROS,
redundancy performs better than Bernoulli routing for any p{1,2}.

Let us focus on JSQ, we observe that when servers implement either FCFS ((a) and
(b)) or ROS ((e) and (f)), JSQ outperforms redundancy. When ~µ = (1, 2), the different
is rather small and almost inappreciable under FCFS. However, when ~µ = (2, 1), we
observe that this difference increases as p{1,2} increases. When servers instead implement
PS, we observe that under both ~µ = (1, 2) and ~µ = (2, 1), JSQ outperforms redundancy.
For small values of p{1,2} the difference is rather small, however it becomes larger
as p{1,2} increases due to the additional load that redundancy creates. However this
improvement does not come for free, as JSQ requires precise information of the queue
lengths at all times.

In Figure 5.3 we depict the performance of the W model for different values of µ2,
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(a) FCFS, λ = 1.5 (b) FCFS, λ = 2

(c) PS, λ = 1.5 (d) PS, λ = 2

(e) ROS, λ = 1.5 (f) ROS, λ = 2

Figure 5.2 W -model with (a) and (b) FCFS servers, (c) and (d) PS servers and (e) and
(f) ROS servers. Fixed parameter p{1} = 0.35 and p{2} = 1− p{1} − p{1,2}. Depict the
mean number of jobs under redundancy (◦), Bernoulli routing (�) and JSQ (×) for
λ = 1.5 and λ = 2.
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(a) FCFS (b) PS

(c) ROS (d)

Figure 5.3 W -model with servers (a) FCFS, (b) PS and (c) ROS, for fixed parameters
~p and µ1 = 1. (a), (b), (c) depict the mean number of jobs under redundancy (◦),
Bernoulli routing (�) and JSQ (×), and (d) depicts the stability regions λR,PS , λB and
λJ .

while keeping fixed ~p = (p{1}, p{2}, p{1,2}) and µ1 = 1. In Figure 5.3 (a), (b) and (c) we
plot the mean number of jobs and we see that when servers implement FCFS (a), PS (b)
and ROS (c), for both configurations of ~p, the performance of the redundancy, Bernoulli
routing and JSQ improve as µ2 increases. In Figure 5.3 (d), we depict the stability
condition under redundancy, Bernoulli routing and JSQ, when PS is implemented.

In Figure 5.3 (d) we observe that the stability condition under redundancy with PS
servers is larger than that under Bernoulli routing and, coincides with that under JSQ
on a large region, which implies that the redundancy system is maximally stable in that
region.
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In Figure 5.3 (a), (b) and (c) we observe that under either FCFS, or PS, or ROS,
the gap between redundancy and Bernoulli routing is significant as µ2 grows large, in
both cases of ~p. We note that under PS, the stability condition under Bernoulli routing
has larger than that redundancy when µ2 is small (Figure 5.3 (d)), and hence, the
performance under redundancy is worst. We note that for ROS, the performance under
redundancy is always better than that under Bernoulli routing.

We also observe that redundancy can outperform JSQ as µ2 grows large. Intuitively,
we can explain this by observing that for very large values of µ2, with both redundancy
and JSQ, all jobs of type p{1,2} get served in server 2. We observe in Figure 5.3 (d) that
the stability conditions with redundancy and JSQ are very similar, for PS.



Chapter 6

Impact of scheduling in redundancy
models

In the present chapter we investigate the impact of the scheduling policy on the
performance of redundancy systems. We do so by stochastically comparing the number
of jobs under different scheduling polices. We focus on redundancy-aware policies that
are composed of two levels. The first level (Π1) describes the priority among the job
types and the second level (Π2) describes how the jobs with the same priority are served
in a server. Examples of first-level policies are LRF and MRF, while second-level policies
could be FCFS or ROS. This two-level policy is denoted by Π1 −Π2.

Most of the literature in this topic considers jobs with i.i.d. copies. For the flexible
redundancy model, Koole and Righter [69] show that serving the same job in all servers
minimizes the number of jobs in the system when service times are NWU. For a
constrained redundancy model, more particularly, the nested model, Gardner et al.
[41] prove that LRF-FCFS minimizes the number of jobs for exponentially distributed
service times.

In this chapter, we consider redundancy systems with a general redundancy topology
where jobs follow a general service time distribution and have either i.i.d. copies or
identical copies. Under the i.i.d. copies assumption, we show that for the nested
redundancy model with exponential service times, LRF-Π2 minimizes the number of
jobs in the system independently of the non-idling second-level policy Π2. That is,
we generalize the result in [41] to any non-idling second-level policy Π2. Furthermore,
when service times are NWU, we show that for a given non-idling first-level policy Π1,
Π1-FCFS minimizes the number of jobs in the system. The latter is motivated by the
fact that under NWU service times and i.i.d. copies, the service time of a copy that
enters service is stochastically smaller than the remaining service time of a copy of that
job that is already in service, which increases the chance that the job departs sooner.
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Under the identical copies assumption, we prove that for the nested redundancy
model MRF-Π2, and particularly MRF-ROS, outperforms MRF-FCFS for any service
time distributions, with Π2 non-idling. The latter is motivated by the fact that when
copies are identical, all the copies of each job have the same size, which induces a waste
of resources when serving copies of the same job.

We also show that under Π1-FCFS, the total number of jobs when having i.i.d. copies
is stochastically smaller than when having identical copies.

Lastly, we discuss the stability condition for the redundancy-aware scheduling policies
analyzed in the present chapter. In particular, for the redundancy system with a general
topology and heterogeneous server capacities with exponentially distributed service
times, we show that (i) for LRF-Π2 with i.i.d. copies and non-idling Π2, and (ii) for
LRF-ROS with any correlation structure among the copies, the stability region is not
reduced due to adding redundant copies.

The present chapter is organized as follows: In Section 6.1 we give a detailed
description of the model. In Section 6.2 we stochastically compare the performance of
the redundancy systems with respect to the scheduling policy (Section 6.2.1), and with
respect to the correlation structure among the copies (Section 6.2.2). In Section 6.3
we discuss and characterize the stability condition of the redundancy-aware scheduling
policies implemented in this chapter. In Section 6.4 we implement a simulator in order
to asses the previous results and obtain further insights.

6.1 Model description

We consider the same setting as in Chapter 4. We consider a K parallel server system
with heterogeneous capacities µs, for s ∈ S and where S = {1, . . . ,K} is the set of all
servers. Jobs arrive to the system according to a Poisson process of rate λ. Each job is
labeled with a type c that represents the subset of servers to which it sends a copy: i.e.,
c = {s1, . . . , sn}, where n ≤ K, s1, . . . , sn ∈ S and si 6= sl, for all i 6= l. We denote by C
the set of all types in the system. An arriving job is with probability pc of type c, with∑
c∈C pc = 1. Let us denote by C(s) = {c ∈ C : s ∈ c} the subset of types that dispatch

a copy into server s. We generally assume a nested redundancy topology, that is, for all
job types c, c′ ∈ C, either i) c ⊆ c′ or ii) c′ ⊆ c or iii) c ∩ c′ = ∅.

In this chapter, we assume that the service times of the jobs follow a general
distribution, which is independent across jobs. Special attention will be given to
exponential and New-Worse-than-Used (NWU) service time distributions. See Section 2.1
for more details on NWU distributions.

We denote by π a generic scheduling policy implemented in the system. In this
chapter, we introduce two-level scheduling policies:
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• The first level determines the priority among job types.

• The second level determines the scheduling policy of jobs with the same priority.
This policy is assumed to be non-idling.

We refer to this two-level policy as π = Π1−Π2, where Π1 refers to the first level priority
and Π2 refers to the second level scheduling policy. Examples of first level policies Π1

are Least-Redundant-First (LRF) and Most-Redundant-First (MRF), which can either
be preemptive or non-preemptive. We say that a first level priority policy Π1 is a strict
priority policy, if in each server s there is a strict priority ranking of all job types in
C(s) and the server serves the job type present with the highest priority. For example,
LRF and MRF are strict priority policies for the nested redundancy models. Examples
of second level policies Π2 are FCFS, PS and ROS.

We assume that the correlation structure among the copies is either i.i.d. or identical
copies. For a given scheduling policy π, we denote by Nπ

c (t) the number of type-c jobs
present in the system at time t when jobs have i.i.d. copies and by Nπ(t) = ∑

c∈C N
π
c (t)

the total number of jobs at time t. We denote by Lπc (t) the number of type-c jobs in the
system at time t under identical copies and by Lπ(t) = ∑

c∈C L
π
c (t) the total number of

jobs at time t.
In this chapter, we compare the total number of jobs through stochastic ordering.

See Section 2.1 for more details on stochastic ordering.

6.2 Stochastic comparison results

In this section we analyze how the scheduling policy (Section 6.2.1) and the copy
correlation structure (Section 6.2.2) affect the performance of the system.

6.2.1 Comparison of the scheduling policy

For a given system, we compare the total number of jobs with respect to the scheduling
policy implemented in the system.

6.2.1.1 I.i.d. copies and exponential service times

We first assume that service times are exponentially distributed with i.i.d. copies. Due
to the memoryless property, we can show that the number of jobs is insensitive to the
implemented second-level policy Π2. This result holds when the first-level policy Π1 is
a strict priority policy.

Lemma 6.2.1. Consider a redundancy system with a general topology and heterogeneous
server capacities, where jobs have exponentially distributed service times and i.i.d. copies.
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Then, for any non-idling Π2 and Π′2, {NΠ1−Π2(t)}t≥0 =st {NΠ1−Π′2(t)}t≥0, where Π1 is
a strict preemptive priority policy.

Proof: Since Π1 is a strict priority policy, exactly one type of job has priority at any
given time in a given server. Because of the i.i.d. copies assumption and exponentially
distributed service times, within a job type, all non-idling policies are equivalent.

In Lemma 6.2.1 we show an insensitivity result with respect to the second-level
scheduler, under the condition that Π1 is a strict priority policy. In Section 6.4
(Figure 6.2), we will show that if this condition is not satisfied, the second-level policy
does have an impact on the number of jobs in the system.

In the following proposition we characterize the scheduling policy that stochasti-
cally minimizes the number of jobs under exponentially distributed service times and
i.i.d. copies. This proposition generalizes that in [41], where the authors prove that for
any policy π, {NLRF−FCFS(t)}t≥0 ≤st {Nπ(t)}t≥0.

Proposition 6.2.2. Consider a redundancy system with a nested topology and hetero-
geneous server capacities where jobs have exponentially distributed i.i.d. copies. Then,
{NLRF−Π2(t)}t≥0 ≤st {Nπ(t)}t≥0 with preemptive LRF and any policy π.

Proof: In [41] it was proven that {NLRF−FCFS(t)}t≥0 ≤st {Nπ(t)}t≥0 for any policy π.
Together with Lemma 6.2.1 this gives the result.

6.2.1.2 I.i.d. copies and NWU service times

When jobs have i.i.d. copies and NWU service time distributions, the service time of a
copy that is already in service is stochastically larger than that of a copy that has not
received service yet. Hence, this suggests that whenever a server becomes available, it
will be better to serve a copy of a job that has already a copy elsewhere in service, to
have it leave faster. That is exactly what policy Π2=FCFS does. In the result below we
show that, given a first-level policy Π1, FCFS is indeed optimal. The proof is deferred
to the Appendix 6.5.A.

Proposition 6.2.3. Consider a redundancy system with a general topology and hetero-
geneous server capacities, where Π1 is a strict preemptive priority policy, jobs service
times follow a NWU distribution and copies are i.i.d.. Then, {NΠ1−FCFS(t)}t≥0 ≤st
{NΠ1−Π2(t)}t≥0, for all t ≥ 0 and any second-level non-idling policy Π2 such that it
serves one copy at a time and once started on a copy, it gives that copy priority over all
other copies of the same type.
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This result is in agreement with the results obtained in [69]. In that paper, the authors
show that in a flexible redundancy system with NWU service times and i.i.d. copies, it
is optimal to maximize the number of copies of a job in service.

For exponential service times and nested topologies, the optimal first-level policy Π1

is LRF. However, this does not extend to NWU service time distributions. We refer
to Section 6.4 (Figure 6.3) where we observe that for the W -model LRF performs well
when the variability of the service time distribution is low; however, MRF outperforms
LRF when the variability of this distribution is high.

6.2.1.3 Identical copies

For the homogeneous server system when jobs have identical copies, each server will
need the same amount of time to serve a copy. Hence, it is never optimal to assign
a copy of a job that is already in service (an ’old job’) to an idle server, regardless
of the service time distribution. In the following proposition, we show that for the
heterogeneous server system when the first-priority level is preemptive MRF, the number
of jobs under Π2 is stochastically smaller than that under FCFS. The proof is deferred
to the Appendix 6.5.A.

Proposition 6.2.4. Consider a redundancy system with a nested topology and hetero-
geneous server capacities, where the service times of the jobs are sampled from a general
distribution and copies are identical. Then, {LMRF−FCFS(t)}t≥0 ≥st {LMRF−Π2(t)}t≥0

with preemptive MRF and where Π2 is non-idling and such that it serves one copy at a
time and once started on a copy, it gives that copy priority over all other copies of the
same type.

The key property to prove the above result is that in a nested redundancy system with
preemptive MRF-FCFS, all copies of a job enter service simultaneously and complete
service in the server with highest capacity, wasting resources on the other servers serving
this job. Hence, the system behaves as if the each job is served in its feasible server
with the highest capacity, while the other feasible servers idle until that job is departed.

It is tempting to believe that Proposition 6.2.4 remains valid when MRF is replaced
by any other preemptive strict priority policy. We refer to Section 6.4 (Figure 6.4) where
we observe that for the W -model, the mean number of jobs for LRF-ROS is smaller
than that under LRF-FCFS. However, we did not succeed in finding a proof for this
claim.

6.2.2 Comparison between i.i.d. copies and identical copies

In the present section we investigate how the correlation structure among the copies
affects the performance of the system. That is, we consider the total number of jobs per
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type in the system with i.i.d. copies, N(t), and compare this stochastically to the system
with identical copies, L(t). The proofs in this section are deferred to the Appendix 6.5.A.

In Chapter 3 we prove that the stability condition for the redundancy-d (with d > 1)
model is larger under i.i.d. copies than under identical copies for FCFS. This is due to
the fact that, when service times are exponential and copies are i.i.d., the departure
rate of a subset of busy server is given by the sum of all the service rates, whereas under
identical copies it is given by the sum of the rates of servers giving service to different
jobs. Hence, the departure rate under i.i.d. copies is at least as large as that under
identical copies. In the following lemma we show that the jobs with i.i.d. copies leave
no later than with identical copies.

Proposition 6.2.5. Consider a redundancy system with a general topology and hetero-
geneous server capacities, where the service times of the jobs are sampled from a general
distribution. Then, for any preemptive policy Π1, we have that {NΠ1−FCFS(t)}t≥0 ≤st
{LΠ1−FCFS(t)}t≥0.

We note the previous proposition also holds when the scheduling policy is (single-
level) FCFS when compared with another single-level policy, such as ROS. That holds
by taking Π1 the policy where all the job types have the same priority.

In the following, we aim to generalize the previous result to general (not necessarily
Π1-FCFS) scheduling policies. We first provide a lemma that shows that idling is
non-optimal. We then prove in the proposition that any system with identical copies,
can be improved upon by a policy with i.i.d. copies.

Lemma 6.2.6. Consider a redundancy system with a general topology and heterogeneous
server capacities where service times follow a general distribution. For any preemptive,
possibly idling policy π that is allowed to sample for each job either i.i.d. copies or
identical copies, there exists a non-idling preemptive policy, π′, that takes the same
decision regarding sampling i.i.d. or identical copies as π, such that {N ′(t)}t≥0 ≤st
{N(t)}t≥0.

The next proposition follows from Lemma 6.2.6 using arguments similar to those in
the proof of Lemma 6.2.5.

Proposition 6.2.7. Consider a redundancy system with a general topology and het-
erogeneous server capacities where service times follow a general distribution. For any
preemptive, possibly idling policy with identical copies, π, there exists a non-idling
preemptive policy with i.i.d. copies, π′, such that {Nπ′(t)}t≥0 ≤st {Lπ(t)}t≥0.
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6.3 Stability condition under the LRF and MRF policies

In this section, we discuss the stability conditions under first-level LRF and MRF
scheduling policies. We note that the stability conditions under FCFS and ROS
scheduling policies are analyzed in Chapters 3 and 4. The proofs in this section are
deferred to the Appendix 6.5.B.

I.i.d. copies

We first assume the nested redundancy topology and that copies are i.i.d.. The stability
condition under preemptive LRF-Π2 with exponentially distributed service times is
straightforward from Proposition 6.2.2 and [46]. In particular, the result shows that
preemptive LRF-Π2 is maximally stable. Below, we prove that the same holds true for
non-preemptive LRF-Π2.

Proposition 6.3.1. Consider a redundancy system with nested topology, where jobs
are exponentially distributed with unit mean and have i.i.d. copies, and LRF-Π2 is
implemented. When LRF policy is either preemptive or non-preemptive, the system is
stable if for all c ∈ C,

λ
∑
c̃⊆c

pc̃ <
∑
s∈c

µs.

The system is unstable if there exists ĉ ∈ C such that λ∑c̃⊆ĉ pc̃ >
∑
s∈ĉ µs.

Proof: The stability result when the LRF policy is preemptive follows directly from
Proposition 6.2.2 and [46]. From Proposition 6.2.2, the stability region under FCFS
must be at least as large as that under FCFS. For exponential service times, the latter
is maximally stable [46], and hence, so is LRF-Π2 with preemptive LRF. The proof
when LRF policy is non-preemptive can be found in Appendix 6.5.B.

The assumption that Π1=LRF is crucial in order for the maximum stability result
to hold. To see this, we refer to Example 6.3.5 where we will show that the N -model is
not maximally stable under either MRF-FCFS, or MRF-ROS. The assumptions of a
nested topology is crucial in the proof of Proposition 6.3.1. However, numerics suggest
that the maximum stability result could also be valid when the topology is non-nested.
Unfortunately, we did not succeed in proving this.

Non-i.i.d. copies

In the following proposition we discuss the stability condition when copies are non-i.i.d..
We first show that LRF-ROS is in this setting maximally stable. The proof is deferred
to the Appendix 6.5.B.
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Proposition 6.3.2. Consider a redundancy system with nested topology, where jobs
are exponentially distributed with unit mean and copies follow some general correlation
structure and LRF-ROS is implemented, with LRF either preemptive or non-preemptive.
The system is stable if for all c ∈ C,

λ
∑
c̃⊆c

pc̃ <
∑
s∈c

µs.

The system is unstable if there exists ĉ ∈ C such that λ∑c̃⊆ĉ pc̃ >
∑
s∈ĉ µs.

For a nested redundancy topology, assuming that first-level policy is LRF implies
that given the state of the system, the job type in service at each server is completely
characterized. In contrast to the ROS scheduling policy (analyzed in Section 4.3.2),
the fact that we are given the job type in service simplifies the analysis of the system.
Furthermore, since the second-level policy is ROS, when the number of jobs in service
is large, the probability that more than one copy of the same job is simultaneously
in service is close to zero, regardless of the correlation structure among the copies.
Hence, when the scheduling policy is LRF-ROS, we can completely characterize the
instantaneous departure rate of the system when in the fluid limit.

For non-nested systems, or two-level policies other than LRF-ROS, we did not
succeed in deriving the stability conditions. We do however show, in the examples below,
that this stability condition will not be maximally stable. We consider first a numerical
example (Example 6.3.3) of a non-nested system under LRF-ROS with identical copies
and observe that it is not maximally stable.

Figure 6.1 The redundancy topology where each job dispatches copies to either 2 or 3
servers out of 4 chosen uniformly at random with homogeneous server capacities. The
trajectory of the total number of jobs for exponentially distributed service times and
identical copies for scheduling policies Π1-Π2 with Π1=LRF, MRF and Π2=FCFS, ROS
for various arrival rates.
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Example 6.3.3. We consider 4 homogeneous servers with unit capacities, and jobs
dispatch either 2 or 3 copies chosen uniformly at random, and copies are identical.
The maximum stability condition is λ < 4 [46]. However, in Figure 6.1 we observe
that already for λ = 3.4 the system is not stable for any of the policies Π1-Π2, with
Π1 ∈ {LRF,MRF} and Π2 ∈ {FCFS,ROS}, including the LRF-ROS policy.

Regarding the stability condition, we can also draw the following observations for
two-level priority policies from the figure. We observe that the stability region under
LRF-Π2 is larger than that under MRF-Π2. For LRF-ROS we observe that the stability
region is at least λ < 3, whereas for MRF-ROS, we observe that already for λ = 3 the
system is unstable. Similarly, we observe that the stability region for LRF-FCFS is at
least λ < 2.5, whereas for MRF-FCFS already for λ = 2.5 the system is unstable. Lastly
in Figure 6.1 we also observe that the stability region under Π1-ROS is larger than that
under Π1-FCFS.

The following corollary is straightforward from Proposition 6.2.4.

Corollary 6.3.4. Consider a redundancy system with nested topology, where jobs are
exponentially distributed with unit mean and identical copies. The stability condition
under preemptive MRF-ROS, is at least as large as than that under preemptive MRF-
FCFS.

We made the same observation for non-preemptive MRF in Example 6.3.3. We
note that the above corollary does not give us any stability condition, since for both
MRF-ROS and MRF-FCFS, the stability condition is unknown.

In the following example we discuss the stability condition for a nested model, but
under two-level policies other than LRF-ROS. We observe that these systems are not
maximally stable.

Example 6.3.5. N-model: We assume the N -model where servers have heterogeneous
capacities ~µ = (µ1, µ2), and p (1− p) is the probability that a job is of type {2} ({1, 2}).
The maximum stability condition when jobs have exponentially distributed service times
is given by λp < µ2 and λ < µ1 + µ2.

In the case of MRF-Π2, with Π2 non-idling, we have that type-{2} jobs can only
be served if there is no type-{1, 2} job present in the system. Let us denote by µΠ2 the
mean departure rate of type-{1, 2} jobs in the system and by ρ1 = λ(1− p)/µΠ2. Then
µΠ2 is given by max{µ1, µ2} for identical copies, and by µ1 + µ2 for i.i.d. copies. In
both cases, type-{2} can only be served (1− ρ1) fraction of the time. Thus, the stability
condition is given by λp < µΠ2 and λ(1− p) < µ2(1− ρ1).

In the case of LRF-FCFS, with identical copies when type-{2} is present in the
system, the total departure rate is given by µ1 + µ2, assuming that type-{1, 2} is also
present. Then, when type-{2} is no longer there, ρ2 = λ(1− p)/µ2 fraction of the time,
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the total departure rate is time-varying and given by µ12(t) := α(t)µ1+(1−α(t))µ2, where
α(t) is either 0 or 1. Note that µ12(t) ≤ max{µ1, µ2}. Therefore, the stability condition
is given by λ(1− p)/µ2, λ < µ1 + µ2 and λp < µ̃12(1− ρ2), where µ̃12 ≤ max{µ1, µ2}.

We observe that for both examples, the stability region is reduced when adding
redundant copies.

6.4 Numerical analysis

We have implemented a simulator in order to investigate the impact of the scheduling
policies on the performance of redundancy models. In particular, we simulate the
performance under the policies FCFS, ROS, LRF-FCFS, LRF-ROS, MRF-FCFS and
MRF-ROS, where MRF and LRF are assumed to be preemptive. Our simulations
consider a large number of busy periods (106), so that the variance and confidence
intervals of the mean number of jobs in the system are sufficiently small.

In this section, we consider deterministic, exponential, and degenerate hyperexpo-
nential service time distributions, with unit mean. We recall that under the degenerate
hyperexponential distribution, with probability q the service requirement is exponentially
distributed with parameter µq, and is 0 otherwise. We set µ = 1. Hence, the mean
service time equals µ = 1 (independent of q) and the squared coefficient of variation
equals C2 = 2

q − 1, which increases as q decreases. We note that when q = 1, this is an
exponential distribution, with C2 = 1. The deterministic distribution is NBU and the
degenerate hyperexponential distribution is NWU, while the exponential distribution is
both.

We note that the stability condition is unknown for most of the policies we simulate.
Due to this reason, we choose the value of the arrival rate λ in such a way that the
performance differences are perceivable, while preserving (seemingly) stability.

6.4.1 I.i.d. copies

In Figure 6.2 we consider a W -model and compare the performance under different
scheduling policies for exponential service times. We assume homogeneous capacities
~µ = (1, 1) and fix λ = 1.3. We plot the mean number of jobs with respect to p{1,2}, with
p{1} = 0.35 and p{2} = 1− p{1} − p{1,2}.

We draw three main observations form Figure 6.2. Firstly, let us focus on the mean
response time for policies π = Π1-Π2 for fixed Π1 and Π2=FCFS, ROS. We observe that
the mean number of jobs under Π1-FCFS and Π1-ROS coincide for both Π1=LRF and,
Π1=MRF. We note that LRF and MRF are first-level strict priority policies for the
W -model. This observation is in agreement with the result obtained in Lemma 6.2.1.

Secondly, we focus on policies FCFS and ROS. For these policies the first-level
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(a) ~µ = (1, 1) and λ = 1.3 (b) ~µ = (1, 2) and λ = 2

Figure 6.2 The mean number of jobs for the W -model with respect to p{1,2}, with fixed
p{1} = 0.35 and p{2} = 1− p{1} − p{1,2} with exponential service times and i.i.d. copies.

policy Π1 treats all types equally, and hence is not a strict priority policy. We observe
that the performance depends on the scheduling policy implemented in the servers and
that FCFS outperforms ROS. Note that this is not in disagreement with Lemma 6.2.1,
since there it was assumed that the first-level policy was strict priority. The differences
between FCFS and ROS are pronounced when servers are heterogeneous (~µ = (1, 2))
and there are many redundant jobs (p{1,2} approaches 1 − p{1}). The latter can be
explained as follows. In the extreme case p{1,2} = 1− p{1}, there is no traffic of type-{2}
jobs. By giving priority to type-{1} jobs in server 1, type-{1, 2} jobs will have the fast
server for themselves, and thus the amount of time that servers idle while there are jobs
to serve in the system is reduced. This is most likely to happen under FCFS.

Thirdly, we observe in Figure 6.2 that LRF-Π2, with Π2=FCFS, ROS, outperform
the other policies. That is in agreement with Proposition 6.2.2.

In Figure 6.3 we consider the W -model and compare the performance under different
scheduling policies assuming degenerate hyperexponential service times. We assume
λ = 1.3, homogeneous capacities ~µ = (1, 1) and pc = 1/3 for all c ∈ C. We plot the mean
number of jobs with respect to q. We note that the coefficient of variation C2 = 2/q− 1
is a decreasing function such that C2 →∞ as q → 0, and C2 = 1 when q = 1. Recall
that for q = 1, the distribution is exponential with coefficient of variation 1.

In Figure 6.3, let us focus on the redundancy-aware policies π = Π1-Π2. We observe
that Π1-FCFS (solid line) outperforms Π1-ROS (dashed line) for Π1=LRF (×), and
Π2=MRF (◦). These are in agreement with Lemma 6.2.3. This observation also holds
when Π1 treats all types equal, that is, we observe that FCFS outperforms ROS.

In Figure 6.3 we also observe that as q approaches 1 (that is, the distribution
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Figure 6.3 The mean number of jobs for the W -model with respect to q for capacities
~µ = (1, 1), λ = 1.3 and pc = 1/3 for all c ∈ C. Assume degenerate hyperexponential
service times with parameter q and i.i.d. copies.

approaches the exponential distribution), LRF-FCFS outperform the other policies.
When q equals 1, i.e., the exponential distribution, we observe that the performance
under LRF-FCFS and LRF-ROS coincide, which is in agreement with Lemma 6.2.1
and Proposition 6.2.2. When instead q approaches 0, that is C2 →∞, we observe that
MRF-FCFS outperforms all other scheduling policies. This observation can be explained
as follows: When the service time of the copies is not that variable, the service policy
that is more work-conserving improves the mean number of jobs. However, when the
service times are very variable, the policy that maximizes the number of copies of the
same job in service, that is, MRF, improves the performance. In Chapter 8 we draw a
conjecture based on these observations.

6.4.2 Identical copies

In Figure 6.4 we consider the W -model and plot the mean number of jobs with respect
to p{1,2}, with p{1} = 0.35 and p{2} = 1 − p{1} − p{1,2}. We assume identical copies
and homogeneous capacities ~µ = (1, 1) and λ = 1. We consider three service time
distributions: (a) exponential, (b) deterministic, and (c) degenerate hyperexponential
with parameter q = 0.1. We note that for deterministic service times, there is no
distinction between i.i.d. and identical copies.

We observe that MRF-ROS outperforms MRF-FCFS for any service time distribution
and any load. This is in agreement with the results in Proposition 6.2.4.

We also draw the following observations from Figure 6.4. Firstly, we observe that
when the first-level policy is either LRF or no-priority, then ROS outperforms FCFS in
the second-level, for any service time distribution. Secondly, for a given second-level
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(a) Exponential distribution (b) Deterministic

(c) Degenerate hyperexponential with q = 0.1

Figure 6.4 The mean number of jobs for the W -model with respect to p{1,2}, with
capacities ~µ = (1, 1), λ = 1, p{1} = 0.35 and p{2} = 1 − p{1} − p{1,2} with identical
copies.

policy, we observe that LRF outperforms MRF in the first-level, for any service time
distribution. As a consequence, we also observe that LRF-ROS outperforms all other
policies, for any service time distribution. These observations can be explained as
follows. When copies are identical, having several copies of the same job in service
will degrade the performance when servers are homogeneous. We note that for a given
second-level policy, LRF minimizes the number of copies of the same job in service.
Furthermore, for a given first-level policy, ROS minimizes the number of copies of the
same job in service.

Let us focus on Figure 6.4 (b) deterministic service times. We note that under
deterministic service times the correlation of the copies does not affect the performance
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Figure 6.5 The mean number of jobs for the W -model with respect to p{1,2}, with
capacities ~µ = (2, 1), λ = 1.3, p{1} = 0.35 and p{2} = 1 − p{1} − p{1,2} with identical
copies and exponential service time distributions.

of the system. Hence, the figure is also valid for i.i.d. copies. We can then make the
following observation for i.i.d. copies: for degenerate hyperexponential service times
(which is of NWU type) it is optimal to set Π2=FCFS, while for deterministic service
times (which is of NBU type), the numerical example shows that Π2=ROS performs
better. This observation for NBU service time distributions and i.i.d. copies is in
agreement with the result in [69], where the authors prove that for a two-server system
with a flexible redundancy structure, no-replication maximizes the number of completed
jobs at any time instant.

Finally, in Figure 6.4 we observe that for a given policy π, the performance deteri-
orates as the variability of the service time increases. We note that the coefficient of
variation of the distributions exponential, deterministic and degenerate hyperexponential
are 1, 0, and 19, respectively.

In Figure 6.5 we consider the W -model with heterogeneous server capacities ~µ =
(2, 1) and plot the mean number of jobs with respect to p{1,2}, with p{1} = 0.35 and
p{2} = 1− p{1} − p{1,2}. We assume identical copies, λ = 1.3 and exponential service
times. We observe that with heterogeneous capacities, the same observations as for
Figure 6.4 can be made.
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6.5 Appendix

A: Proofs of Section 6.2

Proof of Proposition 6.2.3: We prove that when there are two jobs of the same type
to be served, it is always better to serve a copy of the job that already has a copy in
service in another server, than to serve a copy of the job that has no other copies in
service. That is a stronger result than the claim of the proposition. The argument is
similar to that of [44], but we outline the proof here briefly for completeness.

We assume that at some time t, under policy π a server starts to serve a copy of
a job that has no other copies in service, say this copy is from job 2 and in server 1.
Additionally, there is a job in server 1 of the same type as job 2 that has copies being
served in another server(s), say that this is job 1. Let A be the set of servers that job 1
has already received some service on and let B be the set of servers that can serve job 1
but have not yet started to serve job 1.

We let π′ serve job 1 on server 1 at time t and thereafter always serve job 1 whenever
π serves job 2 or job 1 on any server in B, until either job 1 or job 2 completes service
under π, at some time τ . Otherwise we let π′ agree with π until time τ (including
when π serves job 1 on servers in A). We couple the service times of the copies of
jobs 1 and 2 on server 1 under the two policies, and let all other service times and
arrival times be the same under both policies. At time τ , under policy π′, job 1 has
completed service and job 2 has not yet received service at any of its compatible servers.
Under policy π, either job 1 or job 2 has completed service. Let us denote by a the job
that did not complete service under π, a is either 1 or 2. We note that job a received
service partially at some servers under policy π, say servers in the set J . We couple the
(new) service times of job 2 under π′ on servers J , denoted by S′2j for j = 1, . . . , |J |,
with the (used, or remaining) service times of job a, denoted by S′aj for j = 1, . . . , |J |.
Therefore, S′2j ≤ Saj with probability 1 for all j = 1, . . . , |J |. We can do this from the
NWU assumption. We let π′ serve a copy of job 2 whenever π serves a copy of job
a from time τ on, until job 2 completes under π′. Thereafter, we let the servers that
are serving a copy of job a in π idle in π′, and let it otherwise π′ agree with π. Then
{ ~N ′(t)}t≥0 ≤ { ~N(t))}t≥0 with probability 1.

By repeating this argument, one obtains that the FCFS scheduling policy which is
possibly idling is optimal. Then, one can easily verify that non-idling FCFS policy is
better than idling FCFS, by following the steps of the proof of Lemma 6.2.5.

Proof of Proposition 6.2.4: Assume we start at time t = 0 with an empty system.
We note that for the nested redundancy topology, under first-level preemptive MRF,
if any server is serving a type-c job, all servers s ∈ c are also serving a type-c job.
Moreover, when the second-level policy is FCFS, all these servers serve the same type-c
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job and, because MRF is preemptive, all the copies of that job entered service at the
same time. The job will leave due to completion of the copy in the server with the
highest capacity µs, with s ∈ C. We denote by s∗(c) := arg maxs∈c µs the server with
the highest capacity for type c. Hence, under MRF-FCFS, every time a type-c job
enters service, it is as if the server s∗(c) serves the job and the other servers s ∈ c\s∗(c)
idle until that job is either served or preempted by a higher priority job (which due to
MRF preempts all the servers serving that job).

Consider a general MRF-Π2 policy and let S be the system under this policy and
L(t) the number of jobs. Consider an alternate system, S′, with L′(t) jobs, that follows
the same MRF-Π2 policy, but whenever a job of type c completes on a server that is
distinct from server s∗(c), a new type-c job immediately replaces it. If the job had
already a copy in service on server s∗(c), this copy is kept in service, and all other copies
are replaced. Then L′(t) ≥st L(t). By coupling the service completions on server s∗(c)
for all c, we have L′(t) = LMRF−FCFS(t) for all t with probability 1, and the result
follows.

Proof of Proposition 6.2.5: We actually show a stronger result: we prove that the
system with i.i.d. copies is optimal when for each job, we can choose either independent
or identical copies. We consider a policy π where servers are required to follow Π1-FCFS
and idling is allowed. Under policy π, whenever a server starts serving a first copy of
a job, that server determines whether the service times of the copies of that job are
identical or i.i.d.. This decision is independent of the history of the process. We show
that for this policy π, if at time t it idles or schedules identical copies for a job in service
for the first time, we can construct a policy π′ with a coupled sample path, such that at
time t it does not idle or samples i.i.d. copies, and such that {N ′(s)}s≥0 ≤ {N(s)}s≥0

with probability 1, where N (N ′) denotes the number of jobs in the system under policy
π (π′). The result follows by starting at time 0 and repeating the argument each time a
policy deviates from the policy π, until we have the non-idling Π1-FCFS policy with
i.i.d. copies.

We first show that idling is non-optimal. Assume that at time t, π idles a server
during some time τ , when it has copies to serve according to Π1-FCFS. Say this is
server 1 that idles τ units of time and the next copy to serve in server 1 with highest
priority is of job 1. We let π′ agree with π for all of its copies correlation decisions, and
let their arrival times and service times be coupled. Moreover, we let π′ agree with π

until time t. At time t, under π′ server 1 serves the copy of job 1 from time t to time
t+ min{τ, s, r − t, a− t}, where s is the remaining service time of the copy of job 1 on
server 1, r is the earliest completion time of all other copies of job 1 running on other
servers and a is the arrival time of a higher priority job than job 1. Three different
events can occur:
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• τ = min{τ, s, r − t, a − t}. We let π′ idle server 1 after time t + τ whenever π
serves job 1 on server 1, until it has received service for τ units of time in that
server. Let π′ otherwise agree with π for all time after t+ τ and all servers. Then
the systems under the two policies will be in the same states at time t+ τ , and
{N ′(s)}s≥0 = {N(s)}s≥0 wp 1.

• s = min{τ, s, r − t, a− t}. We let π′ idle the servers serving job 1 after time t+ s

whenever π serves job 1 on those servers, until job 1 departs under π and let it
otherwise agree with π. We let π′ agree with π thereafter. At the time that job 1
departs under π, the two systems will be in the same state, but job 1 will have
departed earlier under π′, so {N ′(s)}s≥0 ≤ {N(s)}s≥0 with probability 1.

• r − t = min{τ, s, r − t, a− t}. Then the job departs at the same moment in both
systems. Hence, π and π′ will be in the same state at time t+ τ , and letting π′

agree with π from then on, {N ′(s)}s≥0 = {N(s)}s≥0 with probability 1.

• a− t = min{τ, s, r− t, a− t}. At time a, job 1 is preempted in π′. Then, we let π′

idle server 1 after time a whenever π servers job 1 on server 1, until it has received
service for a− t units of time in that server (like job 1 received under policy π′).
Let π′ otherwise agree with π for all time after a. Then the systems under the
two policies will be in the same states at time a, and {N ′(s)}s≥0 = {N(s)}s≥0

with probability 1.

Now let us assume from our argument above, that π never idles but that at some
time t, π starts serving the first copy of job 1 and chooses identical copies. We let
π′ agree with π before time t and let it choose i.i.d. copies for job 1. We denote by
τ the time that job 1 completes service under π, say at server 1. Because the copies
are identical, server 1 has done the most work on job 1 between times t and τ . We
couple the service time of job 1 on server 1 under π′ to that under π. Then, π′ samples
i.i.d. copies for the rest of the copies of job 1. We let all other service times and all
arrival times be coupled under both policies. We let π′ agree with π until job 1 departs
under π′, at time τ ′. From our coupling, τ ′ ≤ τ . Let π′ idle any server that serves
job 1 under π between times τ ′ and τ and let it otherwise agree with π from time τ ′

on. From our argument above, a policy that agrees with π′ but does not idle will have
even earlier departures than π′. The argument can be repeated, each time reducing the
number-in-system process, until we have all i.i.d copies and no idling.

Proof of Lemma 6.2.6: The structure of this proof is similar to that of Lemma 6.2.5.
We consider a policy π where idling is allowed. We show that if at time t policy π idles,
we can construct a policy π′ with a coupled sample path, such that at time t it does
not idle and {N ′(s)}s≥0 ≤ {N(s)}s≥0 with probability 1.
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We assume that at time t, π idles a server during a fixed amount of time τ , when
there is a copy of another job to be served. We let π′ agree with π for all of its copies
correlation decisions, and let their arrival times and service times be coupled. Moreover,
we let π′ agree with π until time t. At time t, under π′ server 1 serves the copy of job 1
from time t to time t + min{τ, s, r − t}, where s is the remaining service time of the
copy of job 1 on server 1, and r is the earliest completion time of all other copies of
job 1 running on other servers. We let π′ agree with π for all other servers from time
t to t+ τ . Thereafter, whenever π serves job 1 on server 1, let π′ also serve job 1 on
server 1 if it has not completed under π′ (s = min{τ, s, r − t}) and otherwise let it idle
server 1 (τ = min{τ, s, r− t}), and let π′ agree with π for all other jobs and servers. We
note that if r− t = min{τ, s, r− t}, both systems are in the same state at time r. Then
{N ′(s)}s≥0 ≤ {N(s)}s≥0 with probability 1.

Proof of Proposition 6.2.7: By similar arguments as those in Lemma 6.2.5, we
can construct a policy π̃ that is possibly idling and dispatches i.i.d. copies. From
Lemma 6.2.6, for that policy π̃, that only chooses i.i.d. copies, there exists a policy π′

that is non-idling and schedules i.i.d. copies.

B: Proofs of Section 6.3

Proof of Proposition 6.3.1 and Proposition 6.3.2

In order to prove both propositions, we analyze the fluid-scaled system. We recall that
the redundancy structure is nested and that Nc(t) denotes the number of type-c jobs
at time t. For r > 0, we denote by N r

c (t) the system where the initial state satisfies
N r
c (0) = rnc(0), for all c ∈ C. We write the fluid-scaled number of jobs per type by

using standard arguments, see [26],

N r
c (rt)
r

= nc(0) + 1
r
Ãc(rt)−

1
r
S̃c(T rc (rt)), (6.1)

where Ãc(t) and S̃s(t) are independent Poisson processes having rates λpc and 1,
respectively. T rc (t) is the cumulative amount of capacity spend in serving type-c jobs,
which strongly depends upon the correlation structure among the copies, that is,

T rc (t) = g((T rs,c(t))s∈c),

where T rs,c(t) is the cumulative amount of capacity spend on serving type-c jobs in
server s ∈ c during the time interval (0, t] and g is characterized by the correlation
structure of the copies. We note that when copies are i.i.d. T rc (t) = ∑

s∈c T
r
s,c(t) and

when copies are identical, T rc (t) = maxs∈c{T rs,c(t)}.
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In the following result, we obtain the general characterization of a fluid limit. The
existence of fluid limits can be proved following the same steps as in Lemma 3.2.1, so
its proof is omitted.

Lemma 6.5.1. For almost all sample paths ω and sequence rk → ∞, there exists a
subsequence rkj →∞ such that for all c ∈ C and t ≥ 0,

lim
j→∞

N
rkj
c (rkj t)
rkj

= nc(t) u.o.c1 and lim
j→∞

T
rkj
c (rkj t)
rkj

= τc(t) u.o.c., (6.2)

with (nc(·), τc(·)) continuous functions. In addition,

nc(t) = nc(0) + λpct− τc(t), (6.3)

where nc(t) ≥ 0, τc(0) = 0, τc(t) ≤ tmaxs∈c{µs}, and τc(·) are non-decreasing and
Lipschitz continuous functions for all c ∈ C.

In order to provide the characterization of the fluid limit, we first introduce some
notation. Let us group the types with respect to their number of copies: In L1, the jobs
of types with a single copy, that is, L1 = {c ∈ C : |c| = 1}. We denote by Li the jobs of
types with i copies, that is, for i = 2, . . . , |C|,

Li = {c ∈ C : |c| = i}.

From the nested structure of the system, we note that for each c ∈ Li and c̃ ∈ Lj
with j < i, either c̃ ⊂ c or c̃ ∩ c = ∅. For all c ∈ Li, let us denote by Li(c) = {c̃ ⊂ c}
the job types that are subsumed in type c, for i = 1, . . . , |C|.

In Section 3.5, we consider the redundancy-d model when server implement ROS,
and show that in the fluid limit each server serves a copy of a job that is not being
served at any other server in the system. In the following lemma we show that the latter
is also true for a nested redundancy topology where Π1-ROS is implemented in the
servers. As in Section 3.5, we denote by Ps( ~N), the probability that when ~N(0) = ~N ,
at time t = 0 a given server s is serving a copy that is not in service in any other server.
Then, the following lemma is true.

Lemma 6.5.2. Consider a redundancy system with a nested topology and where servers
implement Π1-ROS. For any server s ∈ S and ~N r(0) = r~nr, such that lim

r→∞

∑
c∈C(s) rn

r
c >

0, then
lim
r→∞

Ps(r~nr) = 1. (6.4)

Proof: Assume at time 0, server s idles and that we are in state ~N r(0) = ~N . At this
moment, under Π1-ROS server s can only serve a single type in the system, say type
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c. Let us consider servers l ∈ c that are serving a type-c job at time t = 0, say servers
S(c). We denote by −T̃ rl < 0 the time at which server l started serving a new type c
job, whether another job departed from the server, or it preempted a copy with less
priority in that server. We note that Nc(−T̃ rl )−1

Nc(−T̃ rl ) is the probability that server l is not
serving the copy of the same job that is now in service in server s. Hence,

Ps( ~N) = Πl∈S(c),l 6=s
N r
c (−T̃ rl )− 1
N r
c (−T̃ rl )

. (6.5)

We set ~N(0) = r~nr. Since the transition rates µs and λ are of order O(1), it follows
directly that T̃ rs and ~N(−T̃ rs )− ~N(0) are of order O(1) as well, so that

lim
r→∞

N r
c (−T̃ rl )− 1
N r
c (−T̃ rl )

= lim
r→∞

N r
c (0)− 1
N r
c (0) = 1. (6.6)

It hence follows from Eq. (6.5) that limr→∞ Ps(r~nr) = 1.

Let us characterize the instantaneous departure of a type-c̃ job. Let us denote by Cc̃
the types that are a subsumed in type c̃. That is,

Cc̃ = {c ∈ C : c ⊆ c̃}.

Note that if c̃ ∈ Li, then Cc̃ = Li(c̃).

Lemma 6.5.3. Assume that jobs have exponential service times and

• if copies are i.i.d. copies, assume LRF-Π2, with LRF non-preemptive and Π2

non-idling,

• if copies follow some general correlation structure, assume LRF-ROS.

For each type c̃ ∈ C, the fluid limit ∑c∈Cc̃ nc(t) satisfies the following:

d∑c∈Cc̃ nc(t)
dt =

∑
c∈Cc̃

λpc −
∑
s∈c̃

µs, if nc̃(t) > 0.

Proof: We first consider a general correlation structure among the copies and LRF-ROS.
When starting in state ~N(0) = r~nr, the drift function is

f̃(r
∑
c∈Cc̃

nrc) =
∑
c∈Cc̃

λpc

−
∑
s∈c̃

µs

∏
l∈c̃
Pl(r~nr)

− gc̃(r~nr)(1−∏
l∈c̃
Pl(r~nr)) (6.7)
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for nc̃ > 0, where gc̃ is a function that captures the instantaneous departure rate of the
system when more than one copies (with any correlation structure) of the same job are
in service, and note that gc̃ = O(1) as r →∞. Assuming that nc̃ > 0, due to LRF and
nested structure, each server s ∈ c̃ serve jobs of a single type-c, with c ⊆ c̃ which is
the type with least redundant copies in that server s. We note that the first departure
term in Eq. (6.7) represents departures from servers s ∈ c̃ of type-c jobs c ∈ c̃ , who
were served in one unique server. Since these jobs have no other copies in service, the
total departure rate from the servers in c̃ equals ∑s∈c̃ µs. The second departure term
in Eq. (6.7) represents departures due to a type-c job that is being served in more than
one server simultaneously.

Therefore, from equation 6.7 together with Lemma 6.5.2, we obtain

lim
r→∞

f̃(r
∑
c∈Cc̃

nrc) = λ
∑
c∈Cc̃

pc −
∑
s∈c̃

µs. (6.8)

Now assume copies are i.i.d. copies and servers implement LRF-Π2 with LRF non-
preemptive and Π2 non-idling. Under these assumptions, the drift function is given
by

f̃(r
∑
c∈Cc̃

nrc) = λ
∑
c∈Cc̃

pc −
∑
s∈c̃

µs, when nc̃ > 0. (6.9)

This can be seen as follows. When there are type-c jobs present, c ∈ c̃, each server is
working on such a job, possibly the same job. Because of the i.i.d. copies assumption,
the departure rate of these jobs is simply the sum of all the capacities.

In order to prove Proposition 6.3.1 and Proposition 6.3.2, we introduce the redun-
dancy degree per type. Let us assume w.l.o.g. that L1 is non-empty. For each type
c ∈ L1, the fluid limit nc(t) is given by the following due to Lemma 6.5.3:

dnc(t)
dt = λpc −

∑
s∈c

µs, if nc(t) > 0.

We note that λpc−
∑
s∈c µs < 0, by hypothesis. The latter coincides with the fluid limit

of an M/M/1 system with arrival rate λpc and server capacity ∑s∈c µs. Hence, for all
c ∈ L1, nc(t) reaches zero in finite time, say at time T1, and stays zero.

The proof follows now by induction. Assume that there is a time Tj , such that
nc(t) = 0 for t > Tj , for all c ∈ Li and i ≤ j. In the following we show that for Lj+1,
there is a Tj+1 > Tj , such that nc(t) = 0 for t > Tj+1 and for all c ∈ Lj+1.

For a type c ∈ Lj+1, the fluid drift of ∑c̃∈Lj+1(c) nc̃(t) is given by the following due
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to Lemma 6.5.3:

d∑c̃∈Lj+1(c) nc̃(t)
dt =

∑
c̃∈Lj+1(c)

λpc̃ −
∑
s∈c

µs, if nc(t) > 0. (6.10)

From hypothesis, we note that there exits time Tj such that nc̃(t) = 0 for all c̃ ∈ Li

with i ≤ j. Hence,
d
∑

c̃∈Lj+1(c) nc̃(t)
dt = dnc(t)

dt , when t ≥ Tj . Together with Eq. 6.10,

dnc(t)
dt =

∑
c̃∈Lj+1(c)

λpc̃ −
∑
s∈c

µs, if nc(t) > 0,

for all t ≥ Tj . We note that λ∑c̃∈Lj+1(c) pc̃ −
∑
s∈c µs < 0, by hypothesis. The latter

coincides with the fluid limit of an M/M/1 system with arrival rate λ∑c̃∈Lj+1(c) pc̃ and
server capacity ∑s∈c µs. Hence, for all c ∈ Lj+1, nc(t) reaches zero in finite time, say
at time Tj+1, and stays zero. Hence, there exists time T̃ > 0 when the fluid process is
empty. Together with Theorem 2.4.10, we conclude that the system is stable.



Chapter 7

Impact of mobility in cellular
networks

In the present chapter we investigate the impact of mobility in cellular networks. In
order to do so we consider the same open queuing network that was studied in Ganesh
at al. [40]. This is a K parallel server system with heterogeneous capacities µi for
i = 1, . . . ,K. Users arrive to server i according to a Poisson process of rate λi, with
λ = ∑K

i=1 λi, and have exponentially distributed service times with unit mean. The time
that a job spends in server i before it moves from that server to server j is exponentially
distributed with rate αrij , where α is the parameter that controls mobility speed and
rij > 0.

For a model where there is no mobility, i.e., α = 0, the stability condition is given
by max{i=1,...,K}{λi/µi} < 1. Meanwhile, for the system with mobility speed α > 0,
[40] shows that the stability condition upgrades up to ∑K

i=1 λi <
∑K
i=1 µi, which is

independent of the mobility speed. Motivated by the fact that mobility improves the
stability condition of the system, we aim to characterize how mobility impacts the delay
performance of its users.

We investigate the delay performance of the users with respect to the mobility
parameter. Our main results state that mobility might not always minimizes the mean
delay of the users. Moreover, we observe that the mean delay might not be monotone
on the mobility parameter, implying that there exits some positive and finite α that
achieves the minimum delay. The latter is in contrast to prior work, [17] among other
examples, that showed that mobility is always beneficial for the user’s delay perspective.

In order to do so, we analyze the mean number of jobs in the system, which by
Little’s law is proportional to the mean delay. Given the complexity of the model, exact
analysis of steady state performance is not possible. We thus study the light-traffic
regime of the mean number of jobs, i.e., when λ ≈ 0, and consider two metrics to assess
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the performance: (i) for any given α < ∞, the mean number of jobs in the system,
and (ii) the difference in the number of jobs between the extreme cases in which α is
either 0 or ∞. For both measures, we obtain a sufficient set of conditions depending
on the model parameters, such that for sufficiently low λ (i) the mean number of jobs
decrease in, and (ii) the difference in the mean number of jobs for the extreme values of
is negative.

The rest of the chapter is organized as follows. In Section 7.1, we give a detailed
description of the model. In Section 7.2 we analyze the light-traffic approximation of
the mean number of jobs with respect to the mobility parameter. In Section 7.3 we
consider the system outside the light-traffic regime; we define the system as α→∞ and
analyze the difference between the mean number of jobs for the system with α = 0 and
α =∞. Section 7.4 presents numerical results. Proofs are deferred to Appendix 7.5.

7.1 Model description

We consider a K parallel server system with heterogeneous capacities µi for i = 1, . . . ,K,
where incoming jobs might move among the servers while receiving service. New jobs
arrive to the system according to a Poisson process of rate λ and are routed towards
server i with probability pi, where ∑K

i=1 pi = 1. Thus, there is an arrival at server i at
rate λi := λpi. We assume that jobs have exponentially distributed service times with
unit mean. We let µ̄ = ∑K

i=1 µi denote the sum of the capacities of each server.
A job in server i, i = 1, . . . ,K, moves to server j with an exponential rate αrij ,

where α is the parameter that controls the moving speed. Thus, while in the network
users move according to the Q-matrix αR = (αrij)i,j . We assume that the corresponding
irreducible Markov chain is independent across jobs and we denote by ~π = (π1, . . . , πK)
its unique stationary distribution. We note that ~π does not depend on α.

The state of the system at time t ≥ 0 is given by the number of jobs present at each
server, ~Nα(t) = (Nα

1 (t), . . . , Nα
K(t)), and lives in ZK+ . The non-zero components in the

transition matrix of the process ~Nα(t) are given by:

Qα(~n, ~m) =


λpi, if ~m = ~n+ ~ei, for i = 1, . . . ,K
µi, if ~m = ~n− ~ei and nαi > 0, for i = 1, . . . ,K
αnirij , if ~m = ~n+ ~ej − ~ei, for i, j = 1, . . . ,K, i 6= j

where ~n, ~m ∈ NK and ~ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ RK , with a 1 in the i−th position.
Note that λpi (µi) corresponds to an arrival to (a departure from) server i. Each job in
server i moves into server j at rate αrij , hence, the total moving rate from server i to
sever j is αnirij .
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From the stability viewpoint, with α = 0, there is no mobility, and all nodes need
to be stable separately, and the stability condition of the system is maxi{λpi/µi} < 1.
On the other hand for any α > 0, the network becomes interconnected, and in [40] it
was shown that the stability condition becomes λ < µ̄. Thus, the stability region with
mobility is always larger than in the case without mobility. We will denote by ρ = λ/µ̄

the load in the system.
Whenever the stability condition for given α ≥ 0 holds, we let ~Πα = (Πα(~n))~n∈ZK+

denote the steady-state distribution of ~Nα(t). From theory, we know that ~Πα is the
unique solution of the balance equations given by:

λΠα(~0) =
K∑
i=1

µiΠα(~ei), (7.1)

and for states ~n 6= ~0
K∑
i=1

λpi +
K∑

i,j=1
i 6=j

αnirij +
K∑
i=1

µi1(ni > 0)

Πα(~n)

=
K∑
i=1

(λpiΠα(~n− ~ei)1(ni > 0) + µiΠα(~n+ ~ei))

+
K∑

i,j=1
i 6=j

(nj + 1)αrjiΠα(~n+ ~ej − ~ei)1(ni > 0) (7.2)

where 1(·) denotes the indicator function.
Our main performance measure is the mean number of jobs in steady state, which by

Little’s law is proportional to the mean delay. We denote by ~Nα(∞) a random variable
distributed as ~Πα. We recall that E~n(·) = E(·| ~Nα(0) = ~n) and P~n(·) = P(·| ~Nα(0) = ~n).

7.2 Light-traffic analysis for a 2-cell system

In the present section we obtain the light-traffic approximation for the system with
K = 2. As we have introduced in Section 2.5, the light-traffic approximation corresponds
to the first-order asymptotic expansion of the system as λ → 0, see [105] for more
details. That is, we consider that E(| ~Nα(∞)|) = λmLT (α) + o(λ) as λ→∞, for some
mLT (α) > 0. In order to find an expression, we neglect states with more than one user,
as these states will become negligible in the limit λ→ 0. The proof of this section are
deferred to Appendix 7.5.A.

We note that the light-traffic analysis of general K is cumbersome, we thus focus on
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the K = 2 case. However, as we will see later, this provides interesting insights on the
performance of the system. When neglecting states with two or more users, the balance
Eq. (7.1) and Eq. (7.2), simplify into the following system of equations:

λΠα,LT (0, 0) = µ1Πα,LT (1, 0) + µ2Πα,LT (0, 1)
(µ1 + αr12)Πα,LT (1, 0) = λp1Πα,LT (0, 0) + αr21Πα,LT (0, 1) (7.3)
(µ2 + αr12)Πα,LT (0, 1) = λp2Πα,LT (0, 0) + αr12Πα,LT (1, 0)

By solving these balance equations we obtain the following results:

Πα,LT (0, 0) = α(µ1r21+µ2r12)+µ1µ2
λ(α(r12+r21)+p1µ2+p2µ1)+α(µ1r21+µ2r12)+µ1µ2

Πα,LT (1, 0) = λ(αr21+p1µ2)
λ(α(r12+r21)+p1µ2+p2µ1)+α(µ1r21+µ2r12)+µ1µ2

Πα,LT (0, 1) = λ(αr12+p2µ1)
λ(α(r12+r21)+p1µ2+p2µ1)+α(µ1r21+µ2r12)+µ1µ2

which gives, as λ → 0, (here ≈ has an informal sense, while ∼ is the usual leading
asymptotic term)

E(| ~Nα(∞)|) ≈ Πα,LT (1, 0) + Πα,LT (1, 0) ∼ λmLT (α)

with

mLT (α) =
α+ p1µ2+p2µ1

(r12+r21)
α(µ1π1 + µ2π2) + µ1µ2

(r12+r21)
(7.4)

where in this simple 2-node case we have π1 = r21
r12+r21

and π2 = r12
r12+r21

.
Therefore, the following result on the behavior of the mean delay the in the light-

traffic regime is straightforward.

Proposition 7.2.1. If µ1 = µ2 or p1π2µ2 = p2π1µ1, then mLT is constant. If µ1 > µ2,
then mLT is strictly increasing if p1π2µ2 > p2π1µ1 and strictly decreasing if p1π2µ2 <

p2π1µ1.

These conditions can be put in a more concise form as follows. Let in the sequel

C :=
(

K∑
i=1

pi
µi

)
− 1∑K

i=1 µiπi
. (7.5)

Then, in the case K = 2 and µ1 > µ2, the above result can be restated by saying that
mLT is strictly increasing if C < 0 and strictly decreasing if C > 0. Eq. (7.5) can be
interpreted as follows. The first term in C is the mean sojourn time of a user arriving
to the network if it were not to move, while the second term is the mean sojourn time
of a user moving at infinite speed. Thus C < 0 means that a user would depart sooner
by not moving because it is more likely to have arrived to a favorable node, and so in
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this case mobility should worsen the system’s performance, which is indeed the content
of Proposition 7.2.1 since in this case mLT is increasing with α. It is interesting that, in
the light-traffic regime, only the two extreme cases with zero and infinite speeds matter.
The comparison between these two extreme cases is the purpose of the next section.

We observer that in in the particular case K = 2, the previous result shows that
delay is monotone in the light-traffic regime. Moreover, it can be increasing or decreasing
depending on the precise parameters as shown below. That is in contrast with what
we announced in the introduction of this chapter, that the delay performance is not
necessarily monotone, let it increasing, with the mobility speed. In Section 7.4 we
show some examples to illustrate the behavior of E(| ~Nα(∞)|) outside the light-traffic
regime, where we observe that delay performance might not actually be monotonic in
the mobility speed.

7.3 Arbitrary number of servers

The constant C introduced above suggests to compare the case without mobility to the
case with infinity mobility, which is what we do here. The main difference with the
preceding section is that we do not restrict ourselves to the case K = 2. To do so, we
assume that λi < µi for every i, so that the systems with and without mobility are
stable, and we compare the two extreme cases α = 0 and α =∞ through the metric

∆ := E| ~N0(∞)| − E| ~N∞(∞)|.

In order to give sense to this metric, we first explain what we mean by the case α =∞.

7.3.1 Infinite speed system

Here we define the limiting process ~N∞ corresponding to infinite speed. As the speed of
mobility increases, the dynamics within the system can be decomposed into two types.
On a relatively slow time scale, the total number of jobs changes due to an arrival or a
departure, whereas on a relatively fast time scale, jobs move across servers. As α→∞,
one can expect a complete decomposition between these two dynamics which is indeed
what happens.

This separation of time scales induces the following behavior in the limit. Conditioned
on the total number of users in the system, since users move at infinite speed and thus
forget instantaneously their initial location, at each point in time they are spread in the
network according to ~π and their locations at different time instants are independent.
Moreover, the total number of users evolves according to an M/M/1 queue with arrival
rate λ but whose departure rate depends on the current queue length because some of the
queues may be empty. More precisely, if there are x customers in the system, then queue
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i will be nonempty with probability 1− (1− πi)x which gives an instantaneous service
rate ∑K

i=1 µi(1 − (1 − πi)x). Thus, the limiting process is the process ( ~N∞(t), t ≥ 0)
defined as follows:

• | ~N∞| is the Z+-valued birth-and-death process with non-zero transition rates
q(x, x+ 1) = λ and q(x, x− 1) = ∑K

i=1 µi (1− (1− πi)x);

• let T ⊂ R+ a finite set: conditioned on | ~N∞|, ( ~N∞(t), t ∈ T ) are independent ran-
dom variables such that ~N∞(t) follows a multinomial distribution with parameter
(| ~N∞(t)|, ~π), i.e., for ~n = (n1, . . . , nK) with n1 + · · ·+ nK = | ~N∞(t)|, we have

P( ~N∞(t) = ~n | | ~N∞|) = | ~N∞(t)|!
n1! · · ·nK !π

n1
1 · · ·π

nK
K . (7.6)

We emphasize that because users move at infinite speed, in-between two times s < t

users move infinitely many times. In particular, the multi-dimensional process ~N∞ is
not càdlàg and its trajectory resembles a white noise process. This rough behavior
prevents ~N∞ from being a Markov process, although the sequence embedded at arrival
and departure epochs is a Markov chain. Another related Markov process is the one-
dimensional process | ~N∞| counting the total number of users: this process does not “see”
the wild oscillations caused by users moving infinitely fast: it behaves smoothly and is
a Markov process. In the following, by stationary distribution we mean a distribution
such that if ~N∞(0) starts according to this distribution, the law of ~N∞(t) does not
change over time. The following result describes the stationary behavior of ~N∞.

Proposition 7.3.1. ~N∞ has a unique stationary distribution ~Π∞ given for ~n ∈ ZK+ by

Π∞(~n) = (n1 + · · ·+ nK)!
n1! · · ·nK ! πn1

1 · · ·π
nK
K × λ|~n|∏|~n|

x=1 µ(x)
Π∞(~0) (7.7)

where

µ(x) =
K∑
i=1

µi(1− (1− πi)x)

and Π∞(~0) is the normalization constant.

We note that the first term in Eq. (7.7) corresponds to the multinomial distribution
where |~n| jobs are distributed within K servers in batches of ni jobs, for i = 1, . . . ,K.
The second multiplying term in Π∞(~n) corresponds to the distribution of a birth-and-
death process with arrival rate λ and departure rate µ(|~n|), when the number of users
in the system is |~n|.
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7.3.2 Convergence of ~Nα towards ~N∞

We now establish the convergence of ~Nα toward ~N∞ as α → ∞. Since ~N∞ is not
càdlàg, this convergence cannot hold at the functional level. Rather, we show that
the convergence holds in the sense of finite-dimensional distributions, and also for the
stationary distributions.

In order to do so, we first prove the following technical result on the tightness of the
process with respect to parameter α, defined in Section 2.3.

Proposition 7.3.2. Let θ > 0 be such that λ(eθ − 1) < λ+µ̄
2 (1− e−θ) and Φ(~n) = eθ|~n|

for ~n ∈ ZK+ . Then Φ is a geometric Lyapounov function of ~Nα uniformly on α. That is,
there exist η ∈ (0, 1), α0 > 0, t0 > 0 and n ∈ Z+ such that for every α ≥ α0 and every
~n ∈ ZK+ with |~n| ≥ n,

E~n
(
eθ|

~Nα(t0)|
)
≤ (1− η)eθ|~n|.

In the following proposition we give relevant convergence properties on ~Nα and its
stationary distribution, with respect to α→∞. We provide the relative definitions of
convergence in Section 2.3.

Proposition 7.3.3. As α→∞, we have:

• ( ~Nα(t), t ∈ T ) ⇒ ( ~N∞(t), t ∈ T ) for any finite T ⊂ R+, i.e., ~Nα converges to
~N∞ in the sense of finite-dimensional distributions;

• | ~Nα| ⇒ | ~N∞|, i.e., | ~Nα| converges to | ~N∞| uniformly on compact sets;

• ~Πα ⇒ ~Π∞, i.e., ~Πα converges in distribution to ~Π∞.

7.3.3 Comparison of the cases α = 0 and α =∞

Since for α = 0 the system is a collection of K independent M/M/1 queues, we have
according to Eq. (7.7)

∆(λ) =
K∑
i=1

µi
µi − λpi

− 1
Z

∑
n≥1

nλn∏n
x=1 µ(x)

with Z = 1 +∑
n≥1

λn∏n

x=1 µ(x)

∆′(λ) =
K∑
i=1

µipi
(µi − λpi)2 −

1
Z

∞∑
n=1

n2λn−1∏n
x=1 µ(x) + Z ′

Z2

∞∑
n=1

nλn∏n
x=1 µ(x)

and so ∆′(0) = C since Z(0) = 1 and µ(1) = ∑K
i=1 µiπi. We thus obtain the following

result.
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Proposition 7.3.4. If C > 0 then ∆(λ) > 0 for λ small enough, i.e., the system with
mobility performs better than the system without. In contrast, if C < 0 then ∆(λ) < 0
for λ small enough, i.e., the system without mobility performs better than the system
with mobility.

7.4 Numerical analysis

In this section we investigate the performance of the system by numerical means. In
order to do so, we solve numerically the balance equations of the system described in
Eq. (7.1) and Eq. (7.2).

7.4.1 Mean response time

In Figure 7.1 we plot the mean response time with respect to α for different values of
loads. We consider K = 2 servers, fix parameters p1 = 0.6, µ1 = 1.5, µ2 = 1, r12 = 0.5
and analyze two systems; when r21 = 0.2 and when r21 = 0.7.

For the system with r21 = 0.2, (for which (π1, π2) = (0.28, 0.71)), the following
inequality holds: p1

µ1π1
> p2

µ2π2
. From Proposition 7.2.1, we know that under sufficiently

low loads, the system with no mobility has the best performance. From Figure 7.1
we observe that this remains true until the load is ρ = 0.25. We also observe that for
ρ = 0.5, 0.75 the system with α =∞ has the best performance.

For the system with r21 = 0.7 (for which (π1, π2) = (0.58, 0.41)) the inequality holds
in the opposite direction: p1

µ1π1
< p2

µ2π2
. We observe that the system with α = ∞ has

the best performance for any load.
To assess the performance of the system with K > 2, we consider the case K = 3

and compute numerically the performance for a large number of parameter settings.
The main objective is to determine to what extend the sing of the parameter C permits
to predict the monotonicity of the performance. Our analysis consisted in fixing K = 3
servers and different parameters pi and µi, for i = 1, 2, 3. We then select randomly the
values of rij , and we calculate numerically E(| ~Nα|) as a function of α. By numerical
inspection, we deduce whether E(| ~Nα|) is monotone or not. Then, among the monotone
ones we classify them as increasing or decreasing versus the sing of the value C in that
system. The main results we obtain are (i) when the mean number of jobs is monotone,
the slope of the function coincides with that fixed by the sign of value C and (ii) the
fraction of set of parameters that yield non monotone performance is relatively smaller,
see Table 7.1.

To be specific, we explain in detail one of the experiments we considered for the
system with p1 = p2 = p3 = 1/3 and µ1 = 1, µ2 = 1.2 and µ3 = 1.5. In Table 7.1
we show first the proportion of monotone and non monotone functions. Then, for the
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(a) ρ = 0.01 (b) ρ = 0.1

(c) ρ = 0.5 (d) ρ = 0.75

Figure 7.1 Mean number of jobs depending on α for K = 2 and from left to right an
increasing set of load values. For fixed parameters µ1 = 1.5, µ2 = 1, p1 = 0.6, p2 = 0.4,
r12 = 0.5. The black filled line corresponds to the system with r21 = 0.2 and the dashed
line to the one with r21 = 0.7.

system that are monotone on α, the slope of each system versus the sign of the C value.
We note that the 90% of the cases the mean number of jobs is monotone and is well
classified by its value C. For the remaining 10%, the function is non monotone on
α. In Figure 7.2 (a) we plot three examples of the mean number of jobs with respect
to α for these particular systems. In the system Rα1 and Rα3 , we note that there is a
finite positive α with the minimum number of jobs. In summary, we conclude that even
though C fully characterizes the monotonicity for the K = 2 case, this is no longer the
case for K > 2. However, as we saw in Proposition 7.3.4, C does suffice to characterize
the sing of ∆, for any value of K.
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monotone 0.8985
C > 0 C < 0

decreasing 0.6369 0
increasing 0 0.2616

non monotone 0.1015
Total 1

Table 7.1 Classification of events

7.4.2 Comparison of the cases α = 0 and α =∞

In Figure 7.2 (b) we plot function ∆ with respect to ρ for K = 2 servers and several
values of π1, and π2. From Eq. (7.5), we obtain that ∆ < 0 iff π1 < 0.5. We note that
mobility has a bad impact for the case π1 = 0.1 until loads ρ < 0.9. Here π1 is such
that the delay of a job in the system with no mobility reminds smaller than that of the
system with mobility α =∞. We also observe that as π1 → 0.5, ∆ becomes positive at
smaller load values. Additionally, for any π1, as ρ→ 1, ∆ is positive. This event can be
argued in the following way: as ρ→ 1 , we expect that | ~N∞| approaches a single server
queue with capacity µ̄, which is more efficient than a K parallel M/M/1 system with
capacities µ.

Another particular event holds when π1 = 0.9. We observe that for intermediate

R
1

R
2

R
3

(a) K = 3 servers (b) K = 2 servers

Figure 7.2 (a) Fixed parameters pi = 1/3 for i = 1, 2, 3 and µ1 = 1, µ2 = 1.2
and µ3 = 1.5. Three different system with Rα1 = {r12 = 0.71, r13 = 0.97, r21 =
0.43, r23 = 0.07, r13 = 0.07, r23 = 0.65}, Rα2 = {0.15, 0.97, 0.04, 0.10, 0.16, 0.98} and
Rα3 = {0.04, 0.46, 0.37, 0.07, 0.58, 0.07}. (b) For fixed parameters µ1 = 1.5 > µ2 = 1,
p1 = 0.6, p2 = 0.4 and π1, π2 ∈ (0, 1) such that π1 + π2 = 1.
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values of ρ, the system with no mobility has better performance. This shows that under
arbitrary loads, mobility might also have a negative impact on the performance of the
system.
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7.5 Appendix

A: Proofs of Section 7.2

Proof of Proposition 7.2.1: This result comes from the expression of the derivative
of mLT in α, namely

d

dα
mLT (α) = (µ1 − µ2)(p1π2µ2 − p2π1µ1)

(r12 + r21)
(
α(µ1π1 + µ2π2) + µ1µ2

(r12+r21)

)2

B: Proofs of Section 7.3

Proof of Proposition 7.3.1: Let X be a random variable distributed according
to Eq. (7.7). Then we immediately get

P(|X| = k) =
∑

~n:|~n|=k
Π∞(~n) ∝ λk∏k

x=1 µ(x)
.

According to standard results for birth-and-death process, we recognize the stationary
distribution of | ~N∞|. Thus, |X| is the stationary distribution of | ~N∞|. According
to Eq. (7.7), conditionally on |X| the coordinates X1, . . . , XK follow the multinomial
distribution with parameter |X|. Since ~N∞(t) is obtained similarly from | ~N∞|, this
implies that X is the stationary distribution for ~N∞.

Proof of Proposition 7.3.2: By definition of geometric Lyapunov functions, see
Definition 2.2.2, we need to fix mobility speed α∗, initial state ~n∗ and parameters t∗, η
such that

Eα~n
[
e(θ| ~Nα(t∗)|)]
eθ| ~Nα(0)|

< 1− η (7.8)

∀| ~Nα(0)| = |~nα| ≥ |~n∗| and α ≥ α∗. We develop Eq. (7.8) in order to obtain the
bound:
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Eα~n
[
e(θ| ~Nα(t)|)]
eθ| ~Nα(0)|

=
Eα~n

[
e

(
θ

(
| ~Nα(0)|+A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

i (u−)>0)
))]

eθ| ~Nα(0)|

= Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

i (u−)>0)
))]

(7.9)

where A(t) denotes the total number of arrivals to the system at time t and Di(t) is the
number of potential departures at server i at time t for i = 1, . . . ,K.

We denote by ~Nα
c (t) the closed system where only the ~Nα(0) initial jobs are present

and has mobility speed α. Thus, for all t > 0, | ~Nα(t)− ~Nα
c (t)| ≤ A(t) +∑K

i=1Di(t) = ξ

and Eq. (7.9) is bounded by the following,

Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

i (u−)>0)
))]
≤ Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

c,i(u)>ξ)
))]

(7.10)

We divide the value space of ξ in two disjoint subsets: (ξ ≥
√
n∗) and (ξ <

√
n∗).

Therefore, Eq. (7.10) equals

Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

c,i(u)>ξ)
))]

= Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

c,i(u)>ξ)
))

; ξ ≥
√
n∗

]

+ Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

c,i(u)>ξ)
))

; ξ <
√
n∗

]
(7.11)

In the following we analyze each expressions on its own. For Eq. (7.11), notice that
ξ = A(t) +∑K

i=1Di(t) is distributed by a Poisson process of rate (λ+ µ̄)t.

Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

c,i(u)>ξ)
))

; ξ ≥
√
n∗

]

≤ Eα~n

[
eθA(t); ξ = A(t) +

K∑
i=1

Di(t) ≥
√
n∗

]

≤ Eα~n
[
eθξ; ξ ≥

√
n∗
]

= fθ,t(
√
n∗) < η

2 (7.12)
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Then, as
√
n∗ →∞, fθ,t(

√
n∗)→ 0. Therefore, there exists a constant value, say η

2
that bounds Eq. (7.11).

On the other hand, turn back attention to Eq. (7.11). Now we develop the second
term of the sum,

Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

c,i(u)>ξ)
))

; ξ <
√
n∗

]

= E1
~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nc,i(αu)>ξ)

))
; ξ <

√
n∗

]
(7.13)

≤ E1
~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nc,i(αu)>

√
n∗)
))]

(7.14)

For the equality in Eq. (7.13), we rescale the system in the following way: (Nα
c (t), t ≥

0) with mobility transition rate matrix αR is equivalent to (N1
c (αt), t ≥ 0) with transition

rate matrix R.

Now, we focus on the initial state ~n and fix it as the one with maximum expected
value, ~nm. This further implies that the maximum is obtained for some initial state such
that |~nm| ≥ |~n∗|. However, the maximum is obtained at |~nm| = |~n∗| by applying the
following argument consecutively. Denoted by ~N~nm

c a closed system with |~nm| particles
that starts at position ~nm. Thus, 1(N~nm

c,i (t) >
√
n∗) ≤ 1(N~nm+ei

c,i (t) >
√
n∗) for any t.

This happens until the least number of particles given by |~nm| = |~n∗|. Therefore, take

~nm ∈ arg max
~n:|~nm|=|~n∗|

{
E~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nc,i(αu)>

√
n∗)
))]}

Remark that ~nm depends on variables α and t, which will be lately fixed. Thus,
~nm = ~nm(α, t). Once ~nm is fixed, we look at closed system ~Nm(t), which starts at
position ~nm and has |~nm| = |~n∗| particles. Therefore, Eq. (7.14) is upper bounded by
the followings:
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E~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nc,i(αu)>

√
n∗)
))]

≤ E~nm

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nm

c,i(αu)>
√
n∗)
))]

= eλt(e
θ−1)E~nm

[
K∏
i=1

e

(
−θ
∫ t

0 Di(du)1(Nm
c,i(αu)>

√
n∗)
)]

= E~nm

[
e

(
λt(eθ−1)−

∑K

i=1 µi(1−e
−θ)
∫ t

0 1(Nm
c,i(αu)>

√
n∗)du

)]

By applying the Laplace transform of a Poisson process and then verifying that
1− e−θ1(Nm

c,i(αu)>
√
n∗) = 1(Nm

c,i(αu) >
√
n∗)(1− e−θ), equality in Eq. (7.15) holds.

Denote by Z(α) = ∑K
i=1 µi

1
t

∫ t
0 1(Nm

c,i(αu) >
√
n∗)du. First, by a change of variables,

Z(α) = ∑K
i=1 µi

1
αt

∫ αt
0 1(Nm

c,i(u) >
√
n∗)du. Take Z∗ = infα≥α∗ Z(α). Then, Eq. (7.15)

is bounded by the following:

E~nm

[
e

(
λt(eθ−1)−

∑K

i=1 µi(1−e
−θ)
∫ t

0 1(Nm
c,i(αu)>

√
n∗)du

)]
≤ E~nm

[
e(λt(eθ−1)−t(1−e−θ)Z∗)]

(7.15)

From the ergodic theorem, see [87], when α∗ → ∞, Z∗ converges almost surely
into ∑K

i=1 µiE~nm(1(Nm
c,i(t) >

√
n∗)) = ∑K

i=1 µiP~nm(Nm
c,i(t) >

√
n∗) in steady-state.

Last distribution expression has the shape of a multinomial distribution. Denote∑K
i=1 µiP~nm(Nm

c,i(t) >
√
n∗) = z∗(n∗,

√
n∗). Additionally, Px∗(Nm

c,i(0) >
√
n∗) → 1 as

n∗ →∞, for all i = 1, . . . ,K. Hence, z∗(n∗,
√
n∗)→ µ̄. From the hypothesis: θ is such

that λ(eθ − 1)− λ+µ̄
2 (1− e−θ) < 0. Therefore, eλ(eθ−1)−(1−e−θ)µ̄ < e(1−eθ)λ−µ̄2 .

E~nm
[
e(λt(eθ−1)−t(1−e−θ)Z∗)]

= E~nm
[
e(λt(eθ−1)−t(1−e−θ)(Z∗±z∗(n∗,

√
n∗))]

= eλt(e
θ−1)−t(1−e−θ)z∗(n∗,

√
n∗) × E~nm

[
e(−t(1−e−θ)(Z∗−z∗(n∗,

√
n∗))]

< et(1−e
−θ)λ−µ̄2 E~nm

[
e(−t(1−e−θ)(Z∗−z∗(n∗,

√
n∗))]

Therefore, initial Eq. (7.10) is bounded by Eq. (7.12) and Eq. (7.16):
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Eα~n

[
e

(
θ

(
A(t)−

∑K

i=1

∫ t
0 Di(du)1(Nα

c,i(u)>ξ)
))]

≤ η

2 + et(1−e
−θ)λ−µ̄2 E~nm

[
e(−t(1−e−θ)(Z∗−z∗(n∗,

√
n∗))]

Fix t = 1. From stability, e(1−e−θ)λ−µ̄2 is positive and strictly smaller than 1. Say it
is bounded by 1−η, for some small η > 0. Lastly, since stated before, Z∗ → z∗(n∗,

√
n∗)

when α∗ → ∞. Then, we fix α∗ for which the previous expectation is bounded by
(1 + η

10), Hence, Eq. (7.16) is bounded as follows:

η

2 + e(1−e−θ)λ−µ̄2 E~nm
[
e(−(1−e−θ)(Z∗−z∗(n∗,

√
n∗))] < η

2 + (1− η)(1 + η

10) < 1− 4η
10

Turn attention back to ~nm = ~nm(α, t). For this just fixed α∗ and for t = 1,
~nm = ~nm(α∗, 1) must be fixed and the later steps done again for that particular
~nm.Therefore, we have shown that Φ is a geometric Liapunov function of ~Nα uniformly
for α.

Proof of Proposition 7.3.3: We first explain how to derive the last convergence
~Πα ⇒ ~Π∞ from the first item (convergence of finite-dimensional distributions). We then
explain the two first convergences, which are based on a coupling argument.

From Proposition 7.3.2 we have that Φ(~n) = eθ|~n| is a geometric Liapunov function.
Together with Theorem 2.2.3, we have that

E~n(eθ|Nα(∞)|) ≤ c

for any α ≥ α0 and for some constant c independent of α. In the following we show
that the family of probability distributions (~Πα, α ≥ α0) is tight (Definition 2.3.1). By
the Markov inequality, we obtain the following inequality:

sup
n
Pn(| ~Xn| > C) ≤ sup

n
Pn(φ(| ~Xn|)| > φ(C)) ≤ e−φ(C)E(e| ~X(0)|) ≤ e−φ(C)c,

which is 0 as C →∞.
Let κ be any accumulation point, and assume without loss of generality by working

along an appropriate subsequence that ~Πα ⇒ κ. Then the finite-dimensional convergence
implies that

P~Πα( ~Nα(t) = n(t), t ∈ T )→ Pκ( ~N∞(t) = n(t), t ∈ T )

for any finite subset T ⊂ RK+ and any vector (n(t), t ∈ T ) with n(t) ∈ NK for each t ∈ T .
As ~Πα is the stationary distribution of ~Nα, the above convergence implies that κ is
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also invariant for ~N∞ and so κ = ~Π∞ according to Proposition 7.3.1. Therefore, from
Theorem 2.3.2, it follows that ~Πα converges in distribution to ~Π∞.

Let us now prove the first two convergences. They rely on a coupling argument
which we explain. However, we omit the technical details which are cumbersome but
do not add significant understanding of the proof. Let (tk, k ≥ 1) be the sequence
of arrivals and potential departures from the original system with finite α. Consider
another system ~M obtained in the following way: for each k ≥ 1, | ~M(tk+)| = | ~Nα(tk+)|
but for ~M , these particles are spread according to π in the system. Note that this is not
the case for ~Nα because in this system, users are not spread according to π which is
the stationary distribution while users only move at finite speed. So, in-between times
tk and tk+1, there are the same number of particles but potentially starting at different
positions. Moreover, we couple these trajectories so that if they meet, then they stay
merged until time tk+1. As α increases, particles move and therefore also merge faster
and faster so that in the limit α→∞, all particles merge almost instantaneously with
probability going to one. In particular, for every ε > 0 we have

P( ~Nα(t) = ~M(t), t ∈ [0, T ] \ [tk, tk + ε])→ 1.

In ~M , particles are by construction distributed according to π in the network at all
times and so the previous relation implies that as α→∞, this is also the case for ~Nα.
From this we readily derive the first two convergence results.





Chapter 8

Conclusions and future work

In this thesis, we studied how both redundancy and mobility impact the performance
of computer systems and cellular networks, respectively. This study is motivated by
empirical and analytical evidence showing that both redundancy and mobility may
improve the perceived service experience by the users. A unifying feature in both
problems is that mathematically they can be modeled via multi-server queuing systems.

Under redundancy models, we have first investigated the stability condition when
copies are either i.i.d. copies or identical copies. Under the former assumption, we
show that under redundancy-d and exponentially distributed service times, the stability
condition with both PS and ROS is not reduced when adding redundant copies, as it is
the case for FCFS.

However, several studies reveal that the i.i.d. copies assumption, which has been
widely assumed in literature, is unrealistic for real-world computer systems. Therefore,
we study the performance of system when copies are identical. The main observation
is that the stability condition strongly depends on the implemented scheduling policy.
We observe that under redundancy-d, the stability condition under ROS is not reduced
compared to the non-redundant system. However, the latter is not the case for both
FCFS and PS, for which we observe that the stability condition can significantly degrade
due to adding redundant copies. Under FCFS the stability condition is derived as
the average departure rate of the so-called associated saturated system. Furthermore
under PS, we show that the stability condition under any general redundancy topology
coincides with that of a system where jobs are only dispatched to its least-loaded
compatible servers. For the redundancy-d model, this reduces to the stability condition
of a system where all the copies need to be fully served.

In order to have a better understanding of the impact of redundancy, we compare
both the stability region and the mean response times, which are the zeroth and first
moment of the response time distribution, to non-redundant load balancers such as
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Bernoulli routing and JSQ. Our main finding is that when the server capacities are
sufficiently heterogeneous, redundancy can considerably improve both performance
measures when compared to Bernoulli routing.

We have also investigated how the scheduling policy implemented in the servers
impacts the performance of the redundancy system. When jobs have i.i.d. copies, we
generalize the result in [41] and show that for a nested model with exponential service
times, LRF-Π2 minimizes the number of jobs in the system for any non-idling policy
Π2. We observe that when the service times of the copies are variable, as it is the case
for NWU service times and i.i.d. copies, the performance is improved by the policy that
maximizes the number of copies of a job in service, whereas under non-variable service
times, or for identical copies, it is improved by the policy that minimizes the number
of copies of one job in service. We prove that for a general redundancy topology with
i.i.d. copies and NWU service times, Π1-FCFS minimizes the number of jobs present in
the system among all two-level policies of type Π1 −Π2, for any first-level strict priority
policy Π1. If instead, copies are identical, we prove that for the nested redundancy
model, MRF-Π2, and particularly MRF-ROS, outperforms MRF-FCFS for any service
time distributions, with Π2 non-idling.

In the case of cellular networks, we investigate how mobility impacts the performance
of the system through α, the parameter that controls mobility. The main takeaway
message is that mobility might not always have a positive impact on the performance of
the system even if it improves its throughput. This result was not evident at first, since
there are several recent papers (for instance [17]) where the opposite conclusion has been
reached. Our analysis shows that mobility need not always improve the performance,
and we have characterized a condition such that, if satisfied, the performance might
improve or deteriorate as mobility increases under low loads. Numerical analysis shows
that under moderate loads, mobility might have a negative effect on the performance
of the system. However, under high loads we observe that mobility does improve the
performance and that the system with infinity mobility speed has the minimum delay.

8.1 Open problems on the stability of redundancy models

In the course of this thesis, we have identified several open problems related to stability
that might be of interest to the community. We present them in this section, together
with several conjectures that arise out of our understanding of the system.

8.1.1 I.i.d. copies

The stability region under FCFS is maximally stable with exponential service times and
i.i.d copies, see Gardner et al. [46] and Bonald and Comte [18].
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Proposition 8.1.1 ([18, 46]). For the heterogeneous redundancy system with C job
types, exponentially distributed service times and i.i.d. copies, the system under FCFS
is stable if for all C ⊆ C,

λ
∑
c∈C

pc <
∑

s∈S(C)
µs,

where S(C) = ∪c∈C{s ∈ c}. The system is unstable if there exists C̃ ⊆ C such that

λ
∑
c∈C̃

pc >
∑

s∈S(C̃)

µs.

We believe that the above result should remain valid for any work-conserving
scheduling policy with non-preferential treatment across types, such as PS, ROS, Last-
Come-First-Served (LCFS) and Least-Attained-Service (LAS). The intuition behind this
is the following: the i.i.d assumption combined with the non-preferential treatment across
types allows us to take advantage of diversity when the system is close to saturation.

Conjecture 8.1.2. Consider a redundancy system with a general topology, with exponen-
tially distributed service times and i.i.d. copies. For any work-conserving non-preferential
scheduling policy, the system is stable if for all C ⊆ C,

λ
∑
c∈C

pc <
∑

s∈S(C)
µs,

where S(C) = ⋃
c∈C{s ∈ c}. The system is unstable if there exists C̃ ⊆ C such that

λ
∑
c∈C̃

pc >
∑

s∈S(C̃)

µs.

Open problem 1: If we relax the exponential service times to general service time
distribution, the stability condition is unknown.

8.1.2 FCFS and identical copies

In Section 3.3, we saw that λ/µK < ¯̀/K is the stability condition of the redundancy-d
system with FCFS where jobs have identical copies and exponential service times. In
Section 4.3.1 we discuss the stability condition of redundancy systems with a general
topology. As we mention there, the state descriptor of the system needs to capture
both the type of the jobs in their order of arrival and the attained service of each of the
copies in service. The latter implies the techniques used in Section 3.3 are no longer
valid and that new techniques are required. Relaxing the assumption that servers have
homogeneous capacities makes the analysis of this model hard. Similar multi-server
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systems with synchronized departures have been analyzed in literature, however, always
for homogeneous server capacities. For instance in [53, 90], the authors derive the
stability condition of a multi-server queuing system with homogeneous capacities in
which each arriving job requires a random number of servers simultaneously and retains
these servers for an exponentially distributed amount of time.

Open problem 2. If we relax the redundancy-d topology to general topologies, or the
exponential service times to general service times, the stability condition under FCFS is
unknown.

For the redundancy-d model with exponential service times, we observed in Figure 3.2
that for a given number of copies d, lim

K→∞
¯̀/K < 1. Note that λ/µK < 1 is the stability

condition for a system with no redundancy. Hence, if it can be proved that lim
K→∞

¯̀/K < 1,
this would imply that as the number of servers grows large, the traffic load that a
redundancy system can support is smaller than if no redundancy was implemented.

Conjecture 8.1.3. Consider the redundancy-d model where FCFS is implemented and
jobs have exponentially distributed service times and identical copies. Then, for fixed d,
lim
K→∞

¯̀/K < 1.

The limit should coincide with the stability condition given in [59], where the authors
develop a numerical method to derive the stability condition in the mean-field limit.

We also observed the following monotonicity property in the number of redundant
copies. More precisely, we conjecture that as the degree of redundancy increases, the
stability region becomes smaller.

Conjecture 8.1.4. Consider the redundancy-d model where FCFS is implemented and
jobs have exponentially distributed service times and identical copies. Then, for fixed K,
¯̀ is decreasing in d, and hence, the stability region is decreasing in d.

8.1.3 ROS and general correlated copies

We conjecture that Proposition 8.1.1 also provides the stability condition of the system
where ROS is implemented and copies follow a general correlation structure, including
identical copies. The latter is motivated by the following: let us assume that there are
multiple copies of the same job being served at various of its compatible servers. Due to
the heterogeneous capacities and the correlation among the copies, the departure rate
of that job depends on the residual service time of each copy, which makes the analysis
hard. We note that if server capacities are homogeneous and copies are identical, the
potential departure of a job is characterized by the minimum among the attained service
times of the copies in service.
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However, when the number of jobs in the system is large, the probability that more
than one copy of the same job are simultaneously in service is zero in the fluid limit, as
we have shown in Lemma 3.5.1. Then, the fluid limit of the system is that of the system
where jobs have i.i.d. copies. Hence, if Conjecture 8.1.2 is valid, this would imply that
Conjecture 8.1.5 is true as well.

Conjecture 8.1.5. Consider a redundancy system with a general topology, with expo-
nentially distributed service times and any correlation structure among the copies. The
system where ROS is implemented is stable if for all C ⊆ C,

λ
∑
c∈C

pc <
∑

s∈S(C)
µs,

where S(C) = ∪c∈C{s ∈ c}. The system is unstable if there exists C̃ ⊆ C such that

λ
∑
c∈C̃

pc >
∑

s∈S(C̃)

µs.

8.2 Open problems on the impact of the scheduling policy

In Chapter 6 we have investigated how the scheduling policy affects the performance
of redundancy models and search for policies that minimize the number of jobs in the
system. In this section, we present several conjectures that we believe hold based on
our understanding of the system.

8.2.1 I.i.d. copies

In Figure 6.3 we observe that for the W -model and degenerate hyperexponential service
times with i.i.d. copies, MRF-FCFS minimizes the mean response time as the variability
of the service times increases, that is, when q → 0.

We note that under degenerate hyperexponential distributions and i.i.d. copies, when
an idle server schedules a job that is already in service, with probability 1− q this copy
has zero service time and with probability q has positive service time. Hence, if q is
close to 0, a copy has with a high probability a zero service time, which implies that the
job departs immediately. The scheduling policy that maximizes the number of copies of
each job in service will maximize this effect and we believe that this can be the optimal
policy. Moreover, second-level FCFS maximizes the service time of a job with NWU
i.i.d. copies, as it is show in [69]. This gives us the following conjecture.

Conjecture 8.2.1. Consider the nested redundancy model with heterogeneous servers,
where jobs service times are degenerate hyperexponential (with parameter q) and i.i.d. copies.
Then, NMRF−FCFS ≤ Nπ as q → 0, for any policy π.
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8.2.2 Identical copies

In Figures 6.4 and 6.5, we observe that for the W -model and identical copies, LRF-ROS
minimizes the mean response time compared to any other policy. When service times
are exponential, we do believe that, maximizing the number of different jobs in service
is required in order to optimize the performance. We therefore have the following
conjecture.

Conjecture 8.2.2. Consider the nested redundancy model with heterogeneous server
capacities, where jobs have exponential service times and copies are identical. Then,
{LLRF−ROS(t)}t≥0 ≤ {Lπ(t)}t≥0, for any policy π.

8.3 Other open problems

In order to overcome the loss of stability induced by the present redundancy techniques,
researchers have proposed other scheduling techniques such as threshold-based redun-
dancy. Under this model, incoming jobs dispatch copies to the servers that have a
workload/number of copies of at most Z among its set of compatible servers, or if all
compatible servers exceeds workload/number of copies Z the job is send to a compatible
server chosen uniformly at random. That is, below the threshold the system behaves as
the redundancy model and above the threshold it behaves as the Bernoulli routing model.
We note that the stability region is not impacted under this redundancy technique.
However, as observed in [57], where the authors obtain the response time distribution
in the mean-field limit, the choice of the threshold Z can significantly affect the mean
response time of the system.

We believe that it can be interesting to implement the self-learning threshold
technique to the present threshold-based redundancy models. Learning has recently
been implemented in Goldsztanjn et al. [50] for a parallel-server system where a central
dispatcher balances the load according to a threshold-based policy. For a redundancy
system, the self-learning threshold-based policy could be implemented in the following
way: the dispatcher sends copies to the compatible servers below a threshold value and
a single copy to a server uniformly chosen at random above the threshold value. The
value of the threshold is adapted at each arrival time by the dispatcher so that the the
average number of jobs in the system is minimized. We note that under this new policy,
there is no loss of stability and we aim to minimize the mean response time of jobs.
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ABSTRACT

In this thesis, we studied how both redundancy and mobility impact the performance of computer
systems and cellular networks, respectively. The general notion of redundancy is that upon arrival each
job dispatches copies into multiple servers. This allows exploiting the variability of the queue lengths
and server capacities in the system. We consider redundancy models with both identical and i.i.d. copies.
When copies are i.i.d., we show that with PS and ROS, redundancy does not reduce the stability region.
When copies are identical, we characterize the stability condition for systems where either FCFS, PS, or
ROS is implemented in the servers. We observe that this condition strongly depends on the scheduling
policy implemented in the system. We then investigate how redundancy impacts the performance by
comparing it to a non-redundant system. We observe that both the stability and performance improve
considerably under redundancy as the heterogeneity of the server capacities increases. Furthermore, for
both i.i.d. and identical copies, we characterize redundancy-aware scheduling policies that improve both
the stability and performance. Finally, we identify several open problems that might be of interest to
the community.

User mobility in wireless networks addresses the fact that users in a cellular network switch from
cell to cell when geographically moving in the system. We control the mobility speed of the users among
the servers and analyze how mobility impacts the performance at a user level. We observe that the
performance of the system under fixed mobility speed strongly depends on the inherent parameters of
the system.
Keywords: Load balancing, stability, performance, redundancy, mobility.

RÉSUMÉ

Dans cette thèse, nous avons étudié l’impact de la redondance et de la mobilité sur les performances des
systèmes informatiques et des réseaux cellulaires, respectivement. La notion générale de redondance
est qu’à l’arrivée, chaque tâche envoie des copies dans plusieurs serveurs. Cela permet d’exploiter la
variabilité de la longueur des files d’attente et des capacités du serveur dans le système. Nous considérons
des modèles de redondance où les tâches ont soit des copies i.i.d. ou des copies identiques. Lorsque
des copies sont i.i.d., nous montrons que la région de stabilité n’est pas réduit quand PS ou ROS est
mis en œuvre. Lorsque les copies sont identiques, nous caractérisons la condition de stabilité pour les
systèmes où FCFS, PS ou ROS est mis en œuvre dans les serveurs. Nous observons que cette condition
dépend fortement de la discipline de service. Nous examinons ensuite l’incidence de la redondance sur
le rendement en la comparant à celle d’un système où il n’y a pas de redondance. Nous observons
que la stabilité et les performances sont considérablement améliorées sous l’effet de la redondance, à
mesure que l’hétérogénéité des capacités du serveur augmente. De plus, pour les systèmes avec des
copies i.i.d. et des copies identiques, nous caractérisons des disciplines de service prenant en compte
la redondance qui peuvent améliorer à la fois la stabilité et les performances du système. Enfin, nous
identifions plusieurs problèmes ouverts qui pourraient intéresser la collectivité.

La mobilité des utilisateurs dans les réseaux sans fil rend compte du fait que les utilisateurs d’un
réseau cellulaire passent d’une cellule à l’autre lorsqu’ils se déplacent géographiquement dans le système.
Nous contrôlons la vitesse de mobilité des utilisateurs parmi les serveurs et analysons comment la
mobilité affecte les performances au niveau de l’utilisateur. Nous observons que la performance du
système à vitesse de mobilité constante dépend fortement des paramètres inhérents au système.
Mots clés: Équilibrage de charge, stabilité, performance, redondance, mobilité.
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