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Preamble

How does brain work? Four words, a simple question and thousands of years of studies to unravel
how this unique organ allows the emergence of consciousness in complex living matter. From the
first description of the structure of the brain back in the Ancient Egypt1, our knowledge of the
mechanisms allowing brain functions considerably increased. Nowadays, one of the most important
challenges to answer this question is the design of an accurate description of the feeding of brain
cells. The design of such a description is challenging by the large amount of sources of complexity
at stake in the brain. First, brain cells are fed by a network of blood vessels which is complex
by its architecture and the variability of the size of the vessels composing it. Inside the brain,
the vascular network is made of hundreds of millions of microscopic vessels. Furthermore, blood,
which effectively carries vital chemical species like oxygen or nutrients, is a fluid exhibiting peculiar
physical properties. Finally, the production of the energy necessary for brain cells to ensure their
function involves complex (bio-)chemical reactions. As a consequence, this challenge has to be
tackled accounting for numerous fields of science like medecine, biology, neurosciences, chemistry,
fluid mechanics, graph theory etc... each exhibiting its own conceptual and/or technical issues.
As a transverse framework, statistical physics appears to be an appropriate tool to bind together
these various fields to offer an operational description of the cerebral blood flow properties.

Beyond scientific interest, an accurate description of the mechanisms of blood supply to
brain cells is required to understand the emergence of brain pathologies associated to vascular im-
pairments. These pathologies represent a real public health issue specially in developed countries.
In France, we indeed estimate to about 140.000 each year the number of new CerebroVascular
Accidents (CVAs). With a fatality rate of 20%, CVAs are the first cause of death for women.
At the world scale, according to 2010 World Health Organization (WHO) figures, the number of
victims of CVAs is evaluated to 17 millions with a fatality rate of one third and is considered as the
second cause of mortality. Extrapolating its current increase, stroke incidence at the global scale
is expected to reach about 80 millions in 20302. In addition to this high lethality rate, surviving
people often experiment long time sequelae like motor function and/or cognitive deficits leading
to a significantly increased risk of developing dementia. Dementia is also a common aspect of
numerous neuro-degenerative diseases, the best known and most common of which is Alzheimer’s
Disease (AD). In 2015, 900.000 AD cases have been identified in France and more than 35 millions
worldwide. According to WHO, the latter is expected to almost double every 20 years3. More
generally, also according to WHO, the incidence of overall dementiae is expected to reach more

1https://blogs.ucl.ac.uk/researchers-in-museums/2018/02/21/neuroscience-in-ancient-egypt/
comment-page-1/

2http://www.fondation-recherche-avc.org/frequence
3https://alzheimer-recherche.org/la-maladie-alzheimer/quest-maladie-dalzheimer/

definition-et-chiffres/
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than 150 millions cases in 20504. This public health challenge, coupled to the economic question of
the dependency of patients, requieres innovant early detection and therapeutic strategies for these
pathologies and consequently, an important long term investment of the scientific community on
this issue.

In this context a collaboration between Sylvie Lorthois, specialist in brain (fluid) mechanics,
and Tanguy Le Borgne, specialist in the statistical description of (reactive) transport in geologi-
cal fractured and porous media, has emerged taking this thesis as an anchorage point. The two
environments of the Institut de Mécanique des Fluides de Toulouse (IMFT) and the Observa-
toire des Sciences de l’Univers de Rennes (OSUR) offered multiple stimulating point of views
to tackle this innovative analysis of brain blood supply with the organizational counterpart of
spending approximately 18 months in Toulouse and 18 months in Rennes. These environnements
also provided the opportunity for developing enriching collaborations with, on one hand, Marco
Dentz (IDAEA-CSIC, Barcelona) and, on the other hand, Oliver Giraud (LPTMS, Saclay) and
Bertrand Georgeot (LPT, Toulouse). This thesis has been funded under the European Research
Council (ERC) grants agreements 615102 (BrainMicroFlow) and 648377 (ReactiveFronts). This
thesis work contains two papers that have already been submitted to peer-reviewed journals and
which are currently under review. Furthermore, part of this work has been presented into several
international conferences.

4https://www.pasteur.fr/fr/centre-medical/fiches-maladies/alzheimer-maladie
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Chapter 1

State of the art

In this first chapter, we introduce key elements of the exisiting litterature about the cerebral blood
micro-circulation. Along this manuscript, these elements serve as a base to define the scientific
context which motivates the different facets of this thesis work. From basic aspects of brain
vascular anatomy, we primarly highlight the essential role of blood circulation in maintaining an
optimal functioning of brain cells through the regulation of physical and chemical conditions. In
a second part, we present the state of the art of pre-existing models of blood flow at the micro-
vascular scale. Finally, we introduce some classical frameworks of statistical physics to model
flow and transport into disordered porous media. We will show how these frameworks enable to
relate micro-vascular structure to blood flow and transport properties within both qualitative and
quantitative approaches, providing novel perspectives to understand the brain micro-circulation.

1.1 The cerebral blood circulation

Blood circulation is crucial in humans, but similarly in most complex life forms, as it plays a key
role in cell homeostasis, i.e. blood circulation maintains numerous physical and chemical quantities
under physiological conditions. Hence, its task is to transport vital chemical species (e.g. oxygen,
nutrients, hormones...), but also cells of the immunitary system, from their dedicated production
or absorption organs towards the rest of the body. Conversely, it ensures the removal of toxic
species (e.g. metabolic wastes), from all the body towards the filtration organs. Blood circulation
is furthermore involved in temperature regulation. Impulsed by the heart beat, blood flows from
the heart to organs, and reciprocally from organs to the heart, through a collection of vessels
known respectively as arteries and veins.

In the human brain, blood is supplied and drained to and from the brain by a complex
network of arteries and veins which can be roughly decomposed as follows. Fresh blood supply
is ensured by three principal arteries: anteriorly, a pair of Internal Carotid Arteries (ICAs) and,
posteriorly, the Basilar Artery (BA). These three arteries meet at the base of the brain to form a
redundant anastomotic structure called the circle of Willis (Fig. 1.1a) [1]. Three pairs of cerebral
arteries emerge from the circle of Willis: the Anterior Cerebral Arteries (ACAs), the Middle
Cerebral Arteries (MCAs), and the Posterior Cerebral Arteries (PCAs). All together, the ACAs,
MCAs and PCAs effectively supply the brain in blood. These three arteries and their sub-branches
manage this supply by meshing the surface of the brain, or pial surface, and the falx cerebelli1 in

1The falx cerebelli is a membrane separating the two cerebral hemispheres.
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10 CHAPTER 1. STATE OF THE ART

the deep brain (Fig. 1.1b) [2]. The overall redundancy of this arterial network allows increased
resilience of the blood supply in case of arterial stenoses or thromboses [3,4]. Conversely, blood is
collected back from the brain by a dense venous system differentiating mostly from arterial system
by its much less redundant structure [2]. From the pial surface and the deep brain, tree-like veins
merge together and drain blood to an ensemble of large cerebral veins which structure the whole
brain venous system: the dural sinuses. Finally, with no venous equivalent of the circle of Willis,
blood from dural sinuses flows directly into a unique pair of neck veins, known as Internal Jugular
Veins (IJVs), before being recollected into the central circulatory system (Fig 1.2).

a)

Basilar artery [2.61 mm]

P1 segments [L:1.83,R:1.86 mm]

Posterior communicating arteries [L:1.81,R:1.81 mm]

Internal carotid arteries: cerebral part [L:3.87,R:3.44 mm]
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[L:2.42 mm]
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Figure 1.1: The brain arterial network forms a redundant structure in charge of the
blood supply. a) A 3D reconstrution of the Circle of Willis ensuring the redundancy of the
arterial network at the base of brain (adapted from [1]). b) Anterior view of a 3D reconstruction
of the whole brain arterial system (adapted from [1]).

a)

Internal
jugular
veins

b)

Internal
jugular
veins

Figure 1.2: The brain venous network forms a tree-like structure in charge of the blood
draining. a) Lateral view of a 3D reconstrution of the dural sinuses structuring the brain venous
system (adapted from [1]). b) Lateral view of a 3D reconstruction of the whole brain venous
system (adapted from [1]).
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In this thesis, we focus on the outer thin layer of the brain which is irrigated and drained by
the pial arterial and venous networks: the cortex [5]. Also called gray matter, the cortex, only 1 to
4.5 mm thick in humans, has a fundamental role in cognition as it contains the nuclei of the cells
responsible for information processing, the neurons. The cortex surrounds an other type of tissue,
the white matter, whose function is to mediate the communication between the different regions
of the brain by the intermediary of nervous fibers, or tracts (Fig. 1.3). The colorimetric distinction
between white and gray matters is mainly due to a large difference in the vascularization of these
two tissues as the vascular density in the gray matter is up to two times larger than in the white
matter [6]. This difference of vascular density might also hide dissimilarities in the structural
properties of the vascular network, e.g. topology, in the white matter. This observation highlights
the necessity of a careful transposition of the outcomes of this work to other regions of the brain
than the gray matter.

Figure 1.3: The brain cortex is a thin layer (1 to 4.5 mm in humans) located in the
outer part of the brain. Drawing of a longitudinal brain slice highlighting white and gray
matters (source: Animated Dissection of Anatomy for Medicine).

As both arterial and venous superficial networks develop, they interwine at the surface of
the cortex. Moreover, while arteries and veins ramify, they see both their diameter and length
considerably decrease (Fig. 1.4a). When they reach a characteristic range of diameters, 10 to 75
microns and 20 to 120 microns in humans respectively, they dive within the gray matter generating
a rather uniform spatial distribution of low-spaced blood flow inlets and outlets, respectively, at
the cortical surface [2]. This order of magnitude of vessel diameters marks the edge of the micro-
circulation and consequently the litterature commonly refers to arteries and veins as arterioles
and venules. From here, both arterioles and venules start to divide in a tree-like fashion. Akin
to arteries and veins, arterioles and venules see both their length and diameter decrease as they
ramify (Fig. 1.4b) [7].

Arterioles and venules are connected together by a dense and space-filling network of thin
vessels, or capillaries, with diameters smaller than 10 microns in humans. The topology of this
network of capillaries, or capillary bed, completely differs from the structure of arterioles and
venules [7] (Fig. 1.5). Here, the tree-like organization of the latter is replaced by a mesh-like,
or looped, network with local community structure [8, 9]. This dense space-filling structure is
crucial to deliver blood to brain cells almost cell-by-cell [9, 10]. Interestingly, the structure of
the capillary bed is quite similar accross mamalian species [8]. Hence, the use of animal models,
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like mouse models, opens new avenues potentially relevant for the understanding of human blood
micro-circulation.

a) b)

Figure 1.4: Interwining arterial and venous networks define a rather uniform spatial
distribution of low-spaced inlets and outlets at the cortical surface. a) Drawing of a
lateral view of the arterial and venous systems running over the cortical surface of the human
brain. Tributaries of the middle cerebral artery are shown in red, tributaries of the anterior
cerebral artery in green, tributaries of the posterior cerebral artery in blue and veins in black
(extracted from [2]). b) Drawing of the diving of the arteriolar and venular sub-branches in depth
of the cortical layer. Arterioles are shown in red, venules in black. The deepest region correponds
to sub-cortical white matter (extracted from [2]).

Figure 1.5: The cortical capillary bed forms a dense mesh-like and space-filling network
connecting arterioles and venules. Micro-vascularisation in the vincinity of the central sulcus
(extracted from [2]).

In addition to carrying blood to brain cells, the micro-vasculature plays an active role in the
regulation of the Cerebral Blood Flow (CBF). For instance, the activation of a region of the cortex
has been shown to be associated to a local increase of the CBF highlighting the coupling between
neuronal activity and blood supply, a phenomenon known as neuro-vascular coupling [11]. First,
the regulation of the CBF has been shown to be mediated by dilations or contractions of smooth
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muscle cells, or myocytes, present in the walls of the perfusing arterioles [11–13]. Moreover, more
recent studies tend to prove that capillaries also play an active part in neuro-vascular coupling and
even that capillary dilation precedes arteriolar dilation [14]. Capillary dilation is made possible
by the relaxation of contractile cells wrapping the capillaries, the pericytes. Conversely, abnormal
contraction of the pericytes after a pathologic decrease of the oxygen concentration in brain tissues,
also called ischemia, prevents the normal re-establishement of flow after stroke [14]. More generally,
alterations of the micro-vascular networks, such as vessel shrinkage or occlusions, and their impact
on blood flow is still an active field of research, especially in the context of understanding the onset
and/or progression of Alzheimer’s disease [4, 11,15–21].

1.2 Modelling brain micro-circulation
The design of micro-circulation models is a key step in the determination of the main physical
mechanisms driving brain blood supply. Where the decomposition of a complex phenomenon
into independant physical processes is not always accessible for experimentalists, models offer
this possibility in order to perform a quantitative analysis of the impact of the modification of
one parameter on an other into a controlled framework defined by more or less sophisticated
principles. The predictions emerging from such models hence guide the understanding of the
dominant physical mechanisms leading to experimental observations. The amount of sources
of complexity at stake in brain micro-circulation makes particularly interesting the use of such
models. In the following, we present the evolution of micro-circulation models conjointly to the
technical issues that have conditionned their design.

The principal challenge in the design of brain micro-circulation models is to have of a suffi-
ciently accurate knowledge of the blood flow organization within the brain micro-vasculature. In
that extent, along the years, a wide variety of imaging techniques have been developed or adapted
to perform quantitative measurements of hemodynamic quantities like CBF or Red Blood Cell
(RBC) velocities. The first measurements of statistics of hemodynamic quantities in brain micro-
vascular networks of rodents date back to the end of the 70’s and the beginning of the 80’s [22,23].
Thanks to classical light microscopy, these studies highlighted the presence of blood flow hetero-
geneties in the first micron decades of the cortex.

The development of the first minimally invasive imaging techniques few years later was a
turning point in the way to tackle brain micro-circulation. Since the early 80’s, Positron Emission
Tomography (PET) and, a decade later, functional Magnetic Resonance Imagning (fMRI) provided
the first maps of the CBF organization at the brain scale [24–26]. On one hand, these techniques
allowed to extensively study neuro-vascular coupling, initially speculated in 1890 [27], by imaging
for instance the patterns of modification of the CBF and/or of brain metabolism induced by
regional neuronal activations (Fig. 1.6). On the other hand, they allowed to assess the simultaneity
of the blood flow decrease with cognitive decline in neuro-degenerative deseases and notably in
Alzheimer’s [11, 15, 16]. The low invasivity and the ability to image the blood flow organization
in the whole brain have made of these techniques a privileged tool for clinical detection of such
diseases [17, 28]. However, for the time being, the characteristics of these imaging techniques
go hand in hand with limited spatial resolutions to about one millimeter [29]. This limitation
of the spatial resolution prevents PET and fMRI to image the whole blood flow organization
within the micro-vasculature and it largely influenced the design of micro-circulation models in
this period. Hence, the theoretical models developed between the beginning of the 80’s until the
beginning of the 2000’s did not account for the complexity of micro-vascular structure. Instead,
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these models consider the brain as a set of coarse compartments exchanging chemical species and
in particular oxygen [30–34]. Useful notably to interpret and provide mathematical fundations of
the observations made by PET and fMRI techniques, these spatially coarse-grained approaches
nevertheless neglect local blood flow heterogeneities.

a)

b)

Figure 1.6: Minimally invasive imaging techniques like Positron Emission Tomography
(PET) or functional Magnetic Resonance Imaging (fMRI) provides a coarse-grained
description of the blood flow organization and/or of the metabolism at brain scale.
a) PET imaging of blood flow (top) and oxygen consumption (bottom) at different depths for a
subject at rest with eyes closed (extracted from [35]). b) fMRI of the formation of blood flow
patterns during verb generation task (extracted from [36]).

During the 90’s, the question of accounting for micro-circulation heterogeneities saw a re-
newed interest motivated notably by the will to improve the determination of the CBF from PET
and fMRI. Based on the measure of the activity of radioactive tracers, like 15O or 18F, for PET
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and on the variation of the magnetical susceptibility of hemoglobin due to deoxygenation for MRI,
the determination of the CBF requires an a priori function linking uptake dynamics to the “lo-
cal” concentrations of this contrast agent. This function, sometimes called transfer function [37],
describes the statistics of time spent by contrast agents within the micro-vasculature and encodes
the transport dynamics at stake within the micro-circulation. The choice of this function has been
shown to impact significatively the quantification of the CBF. In this context, novel experiments
have been developed to characterize accurately the transit time distribution of tracers within the
micro-vasculature, the bolus experiments [38,39].

With the improvement of imaging techniques, like confocal microscopy [40] and few years
later Multi-Photon Microscopy (MPM) (see [41] for the historical paper and [42] for a review), the
characterization of blood flow heterogeneities took a step forward. These techniques allowed to
measure for the first time hemodynamic quantities with unprecedented micron-resolved accuracy
and imaging depth in rodent brains [40,43,44]. These studies notably emphasized the heterogene-
ity of the blood velocity by direct measurements of RBC velocities and the dispersion of contrast
agent travel times within the micro-vasculature thanks to enhanced bolus experiments. In parallel,
blood flow models on simplistic networks [12,45] provided the first fundamental aspects linking the
blood flow organization and the micro-vascular structure. Even if yet not well understood, mainly
due to the lack of physical description of blood flow organization into accurate micro-vascular
networks, the interplay between local dynamic heterogeneities and dispersion of network travel
times, has been embedded into a simple empirical micro-circulation model: the Capillary Transit
Time Heterogeneity (CTTH) model [46]. The model parametrization is deduced empirically either
by considering that the distribution of vessel transit times is equal to the distribution of travel
times within the micro-vasculature or fitting the empirical travel times distributions obtained by
bolus experiments with a gamma function [44,46]. Hence, the CTTH model provides an analytical
description of the distribution of travel times within the micro-vascular networks, which can be
of use in the context of blood flow imaging, but has important conceptual limitations. First, the
correspondance between vessel transit times and network travel times is not guaranteed as it is
not based on topological or mathematical fundations. Secondly, because of the lack of physical
interpretations of the dynamics at stake in the micro-vascular networks, it is difficult to evaluate
the errors induced by the empirical calibration of the model. In particular, the travel time dis-
tributions obtained experimentally by in vivo bolus experiments in rodents is masked in the long
time regime (>5 s) by the recirculation of the contrast agents [44]. Nevertheless, this model high-
lights the impact of transport heterogeneities on brain metabolism with potentially detrimental
consequences in the case of excessive heterogeneities, a process called malignant CTTH [20, 46].
The limitations of this model highlight the necessity of designing a unified theoretical framework
unraveling the role of micro-vascular network structure in the emergence of heterogeneous blood
flow and transport properties. Such a theoretical framework may help to improve post-processing
of brain fMRI and PET and to make a step forward in the understanding of neurovascular brain
pathologies.

Fortunately, the development of novel ex vivo [47–49] and in vivo [50–52] digitalization tech-
niques of cortical micro-vascular networks in the 2000s opened new avenues for the study of blood
flow and transport heterogeneities. These techniques allow notably to perform highly-resolved
blood flow simulations in anatomically accurate micro-vascular networks. In this following, the
essential concepts underlying such simulations are presented.

At the micro-vascular scale, blood flow properties drastically change in comparison to the
ones of the macro-circulation and accurate simulations should account for it. First, micro-
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circulation is no longer characterized by the periodic dynamics impulsed by the heart beat [53].
Secondly, at this scale, blood exhibits peculiar rheological properties. Blood is constituted by soft
and deformable Red Blood Cells (RBCs), among other corpuscules, in suspension into plasma, a
newtonian fluid exhibiting barely the same rheological properties than water. As a suspension,
blood rheological properties are influenced by the size of the vessels in which it is flowing. This
is particularly true in the micro-circulation where the diameter of vessels reaches the order of
magnitude of the size of the RBCs. Hence, the blood non-newtonian properties give rise to three
major effects:

• The Fåhraeus effect (Fig 1.7). On one hand, RBCs are excluded from the regions close to
the vessel walls resulting in the presence of a cell-free layer [54]. On the other hand, these
regions are influenced by no-slip boundary condition at the vessel walls inducing a gradient
between average blood flow and RBC flow velocities. This results in a non-linear relation
between the tube hematocrit, defined as the volumic fraction of RBCs in vessels, and the
discharge hematocrit, defined as the ratio of the RBC flow rate over the whole blood flow
rate [55].

5 10 20 50 100
DIAMETER, µm

Figure 1.7: Blood flow velocity gradients in vessels induce a non-linear relation between
RBC fraction and RBC flow fraction (the Fåhraeus effect). Plot of the evolution of the
ratio between tube HT and discharge HD hematocrits as a function of the vessel diameter for
different values of HD (adapted from [56]).

• The Fåhraeus-Lindquist effect (Fig 1.8). As a colloidal suspension, blood is subject to
jamming effects tending to increase its viscosity with RBC fraction (or tube hematocrit) [57].
Fortunately, the high deformability of RBCs and the presence of the lubrificating cell-free
layer close to the vessel walls counterbalance partly these jamming effects.
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Figure 1.8: Blood viscosity is sensitive to RBC concentration and vessel diameter (the
Fåhraeus-Lindquist effect). Plot of the evolution of blood relative apparent viscosity with
discharge hematocrit HD and vessel diameter (extracted from [56])

• The phase separation effect (Fig 1.9). The repartition of RBCs at bifurcations does not nec-
essarily follow the flow rate repartition. This effect tends to favor RBCs to enter downstream
vessels with the largest flows and diameters [58].

a) b)

Figure 1.9: RBCs are distributed disproportionnally to blood flow repartition at bifur-
cations (the phase separation effect). a) Sketch of the RBC repartition between two vessels
of different diameters at a bifurcation (extracted from [59]). b) Plot of the RBC flow fraction as
a function of the blood flow fraction in vessels downstream to a bifuraction (extracted from [56]).

Linking the emergence of such rheological properties to indivual and/or collective cell mechanics
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and/or dynamics is still an active field of research and is in particular the subject of various direct
numerical simulations [60]. Nevertheless, handling the whole complexity of RBC dynamics in
large micro-vascular networks is very computationnally expensive2 [61–63]. That is why, since
1990, a numerical set up has been proposed in order to compute blood flow in the rat mesentery3

in a computationnally effective way. This scheme accounts for the blood rheological properties
and has been verified by comparison to experiments with good statistical agreement [56]. The
method consists in considering blood as a single phase fluid with an apparent viscosity depending
on its composition in RBCs and on the geometrical properties of the vessel through which blood
is flowing. The model is calibrated thanks to empirical laws quantifying the three above effects.
Hence, it is possible to adapt the classical Poiseuille law for single phase fluid [64] in order to
compute the blood flow Q through a vessel ij accounting for the presence of RBCs in suspension
(see e.g. [65]), resulting in the following system of equations:

∀ ij,





Qij =
πd4ij

128µijlij
∆Pij

∑

j

Qij = 0
(1.1)

where dij, µij, lij and ∆Pij are respectively the diameter, blood apparent viscosity, length and
pressure drop associated to vessel ij and j denotes the ensemble of vertices connected to vertex i
by vessels ij. As the RBC fraction depends on the flow values, due to phase separation effects, and
given the retro-action of the RBC on local resistance of vessels via a modification of the viscosity,
this system is solved iteratively. Because of the difficulty to access digitized accurate micro-
vascular networks, the first applications of this numerical framework to brain micro-circulation
were implemented two decades after its development [66–69]. The results of this type of simulations
have notably led to the design of hybrid discrete-continuum models for blood flow organization
justified by the topological properties of the micro-vascular networks [70, 71]. In these papers,
the idea is to treat tree-like arterioles and veinules on a discrete footing whereas space-filling
homogeneous capillary bed is treated as a continuous medium by the use of volume-averaging
techniques (see e.g. [72]).

In this thesis, based on numerical simulations following this single phase fluid approach [21,
73], we analyze the statistical properties of blood flow and transport into large mouse micro-
vascular networks. Notably, we take advantage of this numerical setup to investigate the long
time transport dynamics in the brain micro-vasculature, which is totally unknown for now. Fur-
thermore, the impact of vessel occlusions on flow organization can be precisely analyzed thanks
to a tunable complexity of micro-vascular networks. From this analysis, our goal is to provide for
the first time a statistical physics framework relating blood flow and transport properties to the
structure of the brain micro-vascular networks in their full complexity. As we shall see, similar
questions have been investigated intensively in the field of porous and disordered media. Thus,
in the next Section, we take a step back and seek inspiration from the theoretical frameworks
developed in this context.

2For recall, the human cortex is filled with more than 10 billions of vessels and even more RBCs.
3The mesentery is a part of the abdomen much more accessible and structurally less complex than the brain

microvasculature.
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1.3 Statistical models for flow and transport in disordered
media

The characterization of flow organization into porous media and its consequences on transport have
been an intensive field of research over the past decades driven primarly by petroleum engineering
and water resource research [74, 75]. More recently, the concepts and methods developed for
geological porous media have started to be applied in biological systems [76]. In this short review,
we focus on two major questions that have recieved a lot of interest in the past decades: How
does the topological structure of the porous medium influence or determine the flow organization?
What is the relation between the flow organization and the transport properties? A supplementary
question, particularly relevant in the context of the morphogenesis of biological systems [77], can
be added to the two previous ones: How does the flow influence in return the structure of the
medium? These fundamental questions have driven the design of several theoretical frameworks
along the years. In the context of this thesis, we focus on the two first questions presented above.

In this section, we thus present three theoretical frameworks which contributed to answer
these questions: the Continuous Time Random Walk (CTRW) [78], the q-model [79] and the
percolation theory [80]. They constitute a theoretical base upon which we develop our own blood
flow and transport models as these frameworks are not sufficient by themselves to describe the
blood flow properties in brain micro-vascular networks. The choice of these frameworks relied
on their ability to provide relevant answers to some of the challenges raised by the study of flow
and transport properties in brain micro-vascular networks. First, the CTRW framework links
flow organization, including the flow organization in networks [81], to the associated transport
properties [78]. Hence, it is an attractive framework to provide quantitative predictions of the
transport of particles, e.g. nutrients or oxygen, within the micro-vasculature. Secondly, the
q-model describes flow statistics in disordered porous media [82]. It thus provide a relevant
framework to analyze in details the statistics of the random part of the blood flow organization
induced by the structure of the capillary bed. Finally, the percolation theory has successfully
demonstrated the relation between the modification of the topology of the medium, e.g. network
connectivity, and its functional properties [80], e.g. network conductance. In that extent, the
percolation theory is a relevant framework to study the impact of micro-vascular occlusions on
cerebral blood flow. In the following, we introduce the basic elements of each of these three
frameworks.

The Continuous Time Random Walk (CTRW) The CTRW is a stochastic process intro-
duced in 1965 in its original lattice formulation to account for potentially largely distributed lag
times between two successive hops of a particle [83]. This differs from classical Brownian motion
for which hopping rate and hop length, defining the diffusion constant, are unique [84]. The
CTRW formalism quantifies the impact of large distributions of lag times on the First Passage
Time Distribution (FPTD), or BreakThrough Curve (BTC) in geophysicists vocabulary, or Sur-
vival Probability (SP) for instance [85–87]. Few years later, a hop length distribution has been
further introduced giving rise to the modern CTRW formalism [88]. This formalism has been
used for a wide range of applications like quantitative finance [89], spread of epidemics [90] or cell
motion [91]. In particular, the CTRW framework has been successfully used in order to model
anomalous transport in geological formations to account for the observed random heterogeneity
of the velocity field that emerges from the disordered structure of geological porous media [92].
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Formally the CTRW constitutive equation reads [88]:

R(s, t) =
∑

s′

∫
dτΨ(s− s′, t− τ)R(s′, τ) (1.2)

where R(s, t) is the rate of arrival of particles at position s and time t and Ψ(∆s,∆t) is the joint
probability per unit of time density function to observe conjointly a spatial increment ∆s and a
time increment ∆t. The CTRW process can be equivalently described in terms of a Generalized
Master Equation [93] in order to include for example reactive processes [94].

a)

b)

Figure 1.10: The CTRW framework provides an accurate description of the anoma-
lous transport dynamics in random lattices. a) Spatial distribution of particles in a square
lattice of random conductances (extracted from [81]). b) Contour plots (main panel) and longi-
tudinal (left inset) and transverse (right inset) cuts of the average particle density at an arbitrary
date during the transport obtained by direct Monte Carlo simulations, uncorrelated CTRW and
correlated CTRW (extracted from [81]).

In flow-driven transport, the distribution of particle, or Lagrangian, time increments can be
directly related to the Eulerian flow statistics in the medium through the following reasoning:
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• Assuming ergodic transport, equidistant Lagrangian velocity statistics ps(v), can be ex-
pressed in terms of the Eulerian velocity distribution pe(v) through flux-weighting as [78]:

ps(v) =
vpe(v)

〈v〉 (1.3)

where 〈v〉 is the Eulerian average velocity.

• Hence, equidistant Lagrangian time increment distribution, ps(t), can be obtained by clas-
sical change of variable in probability density function, ps(t)dt = ps(v)dv, with t = s/v:

ps(t) ∼
ps(v)

v2
(1.4)

This iso-space formulation is particularly adapted in the context of modelling transport into
random networks as we can assign to each edge of the network of unit topological length and
its associated travel time (Fig 1.10a). In more complex cases, this theoretical framework can
account for potential correlations in the sampling of the time increments, or velocity, statistics [81,
95] (Fig 1.10b) or the presence of a deterministic drift induced for example by non-local flow
organization [96]. Based on the observation of the heterogeneities of transport dynamics in the
brain micro-circulation, we intend to use the CTRW framework to provide a quantitative model
linking the resulting dispersion of travel times to local flow properties.

The q-model The q-model is a statistical mechanics model originally developed to quantify the
force fluctuations in random bead packs [97]. As it will be extensively studied in Chapter 3, we will
provide here only the principal conceptual aspects of this model and its link with flow in porous
media. In its mean field formulation, the q-model defines an analytically solvable framework based
on only the two following requirements [79]:

• A local recursive equation based on the conservative weight propagation between successive
bead layers: each bead transmits the totality of the weight it bears through random fractions
destinated to each bead on which it relies. Reciprocally, each bead bears the sum of the
random contributions of the beads belonging to the above layer.

• The stability of the distribution of force fluctuations with depth.

The process of conservative propagation of forces in random bead packs is similar to the local de-
scription of flow organization in disordered porous media in which flow sums and divides randomly
at pores (Fig. 1.11a). Hence, this model has been adapted to predict flow statistics in porous me-
dia of random conductances with success [82, 98]. Akin to random aggregation/fragmentation
process [99–101], the emerging distribution of force fluctuations in random bead packs, and by
analogy of flow in porous media, is found to decay exponentially at large values (Fig. 1.11b).
This model emphasizes that pore size distribution is not the only driver of flow heterogeneities
as assumed sometimes at the cost to consider local pressure drops constant accross the pore net-
work [102]. In other words, there is a competition between flow heterogeneities controlled by the
pore size distribution and flow heterogeneities controlled by flow disorder. The reconciliation of
both visions into a unified theoretical framework is currently investigated within a collaboration
that we have developed during my thesis with the team of Marco Dentz. In micro-vascular net-
works, the disordered structure and the homogeneneity of the capillary bed motivates the use of
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the q-model to study the heterogeneity of the flow statistics. In that extent, we intend to provide
in this work a complete mapping of the flow organization in homogeneous random networks on
the q-model.

a)
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Figure 1.11: Random additions and divisions of the flow at pores in disordered porous
media induce an exponential distribution of the flow statistics at high values. a)
Snaphot of the local flow organization in a porous medium of random conductances (extracted
from [82]). b) Flow distribution in disordered pore networks obtained by experiment (blue) and
by simulations, with a single realization (green) and on average over several realizations (red).
Main panel: linear scale. Inset: semi-log scale (extracted from [82]).

The percolation theory Percolation theory has been originally designed to model fluid flow
through porous media and introduced in its original lattice formulation in 1957 [103]. Laying the
foundations of the percolation theory, this work highlighted the crucial role of the pore network
topology (e.g. dimension or graph connectivity) on flow properties. By the study of the impact
of random removal of lattice links, this work demonstrated the existence of a critical fraction of
remaining links below which the flow cannot establish: the percolation threshold. In 1971, an ex-
periment emphasized the surprising behavior of conductance evolution with the removed fraction
of bonds in a 2D square lattice in the shape of a two regime decay [104] (Fig. 1.12a). In the first
regime, conductance decays linearly with the fraction of missing bonds before smoothening and
finally reaching zero at the percolation threshold (Fig. 1.12b). The effective medium framework
developed the same year [105] provided the first analytical answer to this linear decay. In par-
ticular, this framework linked with success the connectivity of 2D and 3D lattices to the slope
of the linear regime [80]. In the latter study, the second regime is also shown to be a power law
in the fraction of added bonds with a universal characteristic exponent. The emergence of such
regime is associated to the growth of an “infinite”, or giant, component spanning the network. The
study of the network topological properties, driving the flow properties, close to the percolation
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threshold is tackled with approaches accounting for the emergence of the self-similar dynamics of
cluster growth like Renormalization Group techniques [106]. With the emergence of real complex
networks in our every day life, like transportation networks or the World Wide Web, the influ-
ence of distributed connectivity on the percolation process has been a trending topic along the
years [107–110]. This resulted notably in the study of the impact of targeted attacks [111,112] or
optimal network dismantling [113,114] on network robustness.

a) b)

Figure 1.12: Conductance decrease during the percolation process exhibits two regimes:
a first linear decay at low values of removed bonds smoothening non-linearly in the
vicinity of a critical value, the percolation threshold. a) Historical experiment highlighting
the two-regimes decay of the conductance: a conductive sheet perforated randomly. In this photo
the fraction of removed bonds is 0.268 (extracted from [104]). b) Evolution of the conductance
G(p) (dashed line) and the percolation probability P (p) (triangles and circles) as a function of the
fraction of present bonds p in 3D cubic lattice obtained by direct simulations. Full line reprensents
the prediction of the effective medium prediction (extracted from [80]).

In the context of this thesis, the toplogical structure of the micro-vasculature constrains
the range of relevant results in the abundant litterature about percolation. First, micro-vascular
networks are not complex networks in the sense that they display a uniform 3-connectivity and
then belong to the class of Random Regular Graphs (RRGs) [115]. Secondly, the dynamics close
to the percolation threshold are not investigated because of their irrelevance in micro-vascular
networks. On one hand, on a physical point of view, the establishment of the flow is not driven by
the emergence of a giant component as micro-vascular inlets and outlets have a close topological
proximity. This induces a trivially low percolation threshold. On the other hand, on a biological
point of view, the fraction of occluded vessels rarely overcomes 20%. In this regime, cerebral blood
flow decreases linearly in average [21] emphasizing that pertubative approaches should catch the
impact of occlusions on blood flow. The question of flow perturbations far from the percolation
threshold have been investigated previously notably in the context of the impact of failure in
power grids [116]. In this context, the impact of changes in power grid topology is quantified
through a term called the Line Outage Distribution Factor (LODF). More recently, this concept
has been generalized to account for the type of processes developing in the network, e.g. oscillating
interactions, flow propagation or disease spreading [117]. Hence, the generalization of this concept
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allows to catch into a unified framework the response of the network to small perturbations
independently of the type of interactions binding the nodes. In particular, this kind of approach
has been used in the context of the study of the resilience of biological transport networks and in
particular of the vasculature [118]. In agreement with the concepts developed in these last works,
we focus in this thesis on the influence of punctual inlets and outlets, topological communities
and vessel condutance variability in micro-vascular networks on cerebral blood flow modifications
induced by micro-vascular occlusions.

1.4 Objectives and outline
Along this introductory chapter, we settled the scientific context of this thesis work. In the light
of the presented litterature, we have shown that numerous questions are still open. In particular,
it is unclear how the peculiar structure of the brain micro-vascular networks [2, 7–9] influences
or determines the flow organization and the emergence of the observed heterogeneous blood flow
properties [22, 23, 43, 44]. Consequently, the lack of physical description of the blood flow orga-
nization within micro-vascular networks prevents from designing first principle micro-circulation
transport models. This compromises the generality or the accuracy of former transport mod-
els [30–34,38,39,44,46]. Hence, the determination by such types of models of the role of the micro-
circulation in the onset and/or the progression of neuro-degenerative diseases like Alzheimer’s is
questionable although experiments attest that micro-circulation impairements do play an active
role in such diseases [4,11,15–20]. In particular, these studies have highlighted cerebral blood flow
decrease as a key process associated to cognitive decline. However, the mechanisms leading to
such decrease and their consequences on brain metabolism are still poorly understood. Recently,
micro-vascular occlusions have been shown to be a precursor of cognitive decline in Alzheimer’s
mouse models [21]. These occlusions have been observed conjointly to a decrease of the cerebral
blood flow in these rodents. Consequently, they could be a mechanism explaining such decrease
and the triggering of the biological pathways leading to the onset of the disease. However, here
again, this interpretation suffers a lack of quantification of the cerebral blood flow perturbations
induced by micro-vascular occlusions.

As a consequence, the main objectives of this thesis can be summarized by the three following
challenges:

1. Unraveling the interplay between the brain micro-vascular structure and the blood flow
organization.

2. Modelling the transport properties emerging from this organization within a quantitative
framwork allowing to predict the evolution of concentrations of relevant chemical species
with cerebral blood flow decrease.

3. Providing a theoretical framework explaining the perturbation of the cerebral blood flow
induced by micro-vascular occlusions.

In order to report the outcomes of our investigations, this thesis manuscript is structured in three
chapters:

• In Chapter 2, we present the results of a statistical analysis performed on highly-resolved
blood flow simulations in anatomically accurate mouse brain micro-vascular networks. This
analysis serves as a starting point for the modelling of transport properties in such networks
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thanks to the Continuous Time Random Walk (CTRW) framework. We further present
the results of the comparison of this model to the simulations of transport of passive and
reactive particles.

• In Chapter 3, we focus on the interplay between the disordered structure of the capillary bed
and the flow organization in the light of the q-model. In that extent, we firstly present the
details of this model and their link with flow in disordered porous media. We then perform
a statistical analysis of potential local flow correlations explaining the observed deviation of
obervations to mean-field predictions.

• In Chapter 4, we investigate the linear decrease of the cerebral blood flow due to micro-
vascular occlusions within the percolation framework. Doing so, we lay the fundation of a
theoretical approach accounting for the community structure and blood flow organization in
micro-vascular networks. We further investigate the impact of multiple inlets and outlets and
conductance heterogeneties on flow resilience. Finally, we highlight the large perturbations
of blood flow organization induced by such occlusions.
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Chapter 2

Blood flow organization and effective
transport models

Describing and understanding the emergence of blood flow organization in brain micro-vascular
networks is a key step in the design of predictive micro-circulation transport models. Such macro-
scopic models are central to a large range of applications, from clinical studies aimed at improving
the diagnosis and/or staging of brain disease [38, 39] to fundamental studies on cerebral blood
flow and metabolism or neuro-vascular coupling [11]. In particular, they could open new av-
enues to predict the decrease of the efficiency of oxygen or nutrients supply and the removal of
metabolic wastes induced by blood flow impairments. In the context of Alzheimer’s disease, a
decrease of the cerebral blood flow, or hypoperfusion, associated to a decrease of the metabolic
activty [11, 15, 16, 21] and to an accumulation of metabolic wastes, e.g. amyloid [119], have been
identified as markers of the disease.

In this chapter, our objective is to adress the question of the transport mechanisms leading
to the appearance and/or growth of regions with abnormal concentrations of oxygen or amyloid.
To do so, based on a statistical analysis of highly-resolved blood flow simulations on anatomically
accurate mouse brain micro-vascular networks, we first highlight the determinant role of micro-
vascular structure in the emergence of blood flow organization. Such organization is found to
induce anomalous transport properties in the micro-circulation. This results in a broad distribu-
tion of time spent by blood in the micro-circulation. We notably show that these transit time
heterogeneities are the main driver of concentration heterogeneities in micro-vascular networks as
intuited in [46]. Besides, in this thesis, we derive for the first time a transport model account-
ing for these large heterogeneities supported by physical mechanisms linking the micro-vascular
structure and the flow organization. In agreement with our simulations, we notably highlight the
role of such transit time heterogeneities in the early development of regions exceeding critical oxy-
gen and amyloid concentrations under conditions of hypoperfusion. This could be an additional
mechanism leading to a positive feedback responsible for the progression of Alzheimer’s disease.

2.1 Blood flow and transport statistics modelling

This section reproduces a manuscript under review in Nature Communications. In a first part, we
focus on the interplay between micro-vascular structure and blood flow organization. Then, we
show that this organization induces anomalous transport properties leading to a large dispersion
of travel times within the brain micro-vasculature by the design of a novel micro-circulatory model

27
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belonging to the class of Continuous Time Random Walks (CTRWs). Finally, we show that these
properties are responsible for the early development of regions with abnormal concentrations of
oxygen and amyloid with hypoperfusion. Hence, we unveil a new potential mechanism leading to
the progression of Alzheimer’s disease.
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Abstract

Blood microcirculation supplies neurons with oxygen and nutrients, and contributes to
clearing their neurotoxic waste, including amyloid-β, a metabolic waste product centrally in-
volved in Alzheimer’s Disease. The microvascular architecture combines tree-like arteriolar
and venular structures with a dense capillary network, yielding highly heterogeneous blood
flow and travel time distributions. Such heterogeneities likely control the appearance of criti-
cal regions, whether hypoxic or with abnormally high amyloid-β concentration, a signature of
microvascular dysfunction. The quantification of such intravascular travel time distributions
plays a central role for understanding, modeling and imaging the microvascular contributions
to brain disease onset and progression. Yet current models, broadly used for interpreting in
vivo measurements, rely on empirical functions whose link with the microvascular architecture
is unknown. Here we use highly-resolved intracortical blood flow and transport simulations,
validated from in vivo measurements, to establish the physical laws linking the microvascular
architecture to the macroscopic transport properties that control oxygen supply and amyloid-β
clearance. We show that the microvascular organization leads to the emergence of anomalous
transport dynamics and hence to the occurrence of unexpectedly large blood travel times
through the cortex. We develop a Continuous Time Random Walk theory capturing these
dynamics and predicting that critical regions appear much earlier than anticipated by current
models under mild hypoperfusion. These findings hence provide a new framework for measur-
ing and modelling microvascular dysfunction in brain pathophysiology, as shown here in the
context of Alzheimer’s disease.

The brain microvascular network provides an
efficient, highly integrated and dynamic infras-
tructure for the distribution of blood [1, 2, 3]:
it supplies oxygen, nutrients and, if needed,
drugs to all cells in the brain, and ensures

* Corresponding authors: tanguy.le-borgne@univ-
rennes1.fr and lorthois@imft.fr

the removal of their metabolic waste [4, 5].
Since the brain lacks any substantial energy re-
serve, it also acts as a short-term regulation
system, which responds quickly and locally to
the metabolic needs of neurons [2, 6]. In ageing
and disease, however, the progressive appear-
ance of abnormal vessel architectures, includ-

1
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ing reduced capillary diameters or stalling, and
the decrease in regulation efficiency together re-
duce blood flow and the availability of oxygen
[2, 7, 5, 8, 9, 10, 11]. This also alters the clear-
ance of metabolic waste, including neurotoxic
forms of amyloid-β centrally involved in the
pathogenesis of Alzheimer’s Disease (AD) [4, 9,
10]. Thus, understanding the links between the
microvascular architecture, reduced blood flow
and impaired oxygen delivery and metabolic
waste clearance is a key challenge to decipher
the role of microvascular dysfunction in brain
disease.

The microvascular architecture is structured by
tree-like arterioles and venules that connect to
a dense capillary network [12, 13, 3]. While
this organization ensures a large surface of ex-
change between blood and the brain tissue, it
also induces strong spatial heterogeneities of
vessel flows and capillary transit times, leading
to heterogeneous oxygenations [14, 15]. Even in
normal conditions, some vessels with low blood
flow rates approach the hypoxic threshold [16,
17]. These critical vessels may be particularly
vulnerable to further pathological stress [17],
consistent with the appearance of small hypoxic
regions in the cortex of ageing and AD mice [18,
9]. Since reduced capillary flow also compro-
mises metabolic waste clearance, critical vessels
with abnormally high intravascular concentra-
tions of amyloid-β may also be expected. Yet,
it is unknown how such critical vessels may
appear under normal conditions nor how they
may progress in response to pathological stress,
such as hypoperfusion [19, 10, 20].

In fact, the dynamics governing oxygen or
amyloid-β distributions in such networks are
fundamentally non-local: the solute concentra-
tion in a given vessel depends on the blood
travel time from penetrating arterioles, where
blood enters into the brain cortex, to this ves-
sel, which integrates all blood velocities along
the corresponding pathways. Furthermore, the
distribution of blood flow is also non-local, i.e.
driven by the whole vascular architecture. Be-
cause the impact of such non-local dynamics on
relevant network-scale processes is difficult to
resolve explicitly, the blood travel time distri-

bution through the microvascular network1 has
been represented by phenomenological mod-
els [23], including early indicator dilution anal-
ysis models [24, 25, 23, 21] and the recent
Capillary Transit Time Heterogenity (CTH)
model [14]. These models rely on empirical
blood travel time distributions, following math-
ematical functions chosen to match the exper-
imentally observed distributions [26]. A key
property emerging from CTH models is that
increased transit time heterogeneities induce a
decreased efficiency of oxygen supply [14]. Con-
sistently, reduced transit time heterogeneity
has been experimentally confirmed in the cor-
tical layers with the highest levels of metabolic
activity [27] or in response to neuronal activa-
tion [28] while increased transit time hetero-
geneity has been inferred, based on such mod-
els, from clinical imaging data in AD patients
[29]. Besides these few examples, CTH models
have been used to interpret a large amount of
experimental data [30, 31, 32, 18, 15] thus help-
ing to identify increased vascular heterogeneity
as a key general mechanism of neuronal injury.

A fundamental limitation of current phe-
nomenological models is that they do not quan-
titatively relate the transport dynamics to the
underlying network architecture and flow distri-
butions. This makes it difficult to understand
and predict how changes in vessel architecture
may influence blood travel time heterogeneity
and thus alter oxygen supply and metabolic
waste clearance. Furthermore, in vivo measure-
ments are limited to time scales smaller than
the blood recirculation time (∼ 5s) [33], which
limits the range available for the calibration
of empirical models. Hence, their predictive
power for the statistics of longer time scales,
which likely control the appearance of vessels
with critical oxygen or amyloid-β concentra-
tions, is strongly dependent on the mathemati-

1Blood transit times through microvascular networks
have also been referred to as traversal times [21] or, sim-
ply, as transit times. To avoid any ambiguity with local
transit times, i.e. the time for blood to flow through
one single vessel, we use here the term travel times. The
distribution of travel times is sometimes referred to as
the impulse response function, as the transfer function
of the system or as the microvascular response func-
tion [22].

Submission to Nature Communications 2
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cal functions chosen to parametrize travel time
distributions [25, 24]. Yet, the physical mecha-
nisms shaping these distributions and how they
depend on the network structure [23] are poorly
understood.

Theoretical analyses of transport in model ran-
dom networks have shown that these systems
can exhibit anomalous transport dynamics, i.e.
characterized by slow power law decays of the
large travel time probabilities [34]. The latter
have been successfully described by Continuous
Time Random Walk (CTRW) theories, provid-
ing analytical expressions of travel time distri-
butions as a function of the microscale struc-
tures and flow distributions [35, 34, 36, 37]. Al-
though microvascular networks fundamentally
differ from such random networks, their com-
plex structure potentially contains the funda-
mental ingredients for anomalous transport dy-
namics to develop. To explore this hypothesis,
we use highly-resolved simulations of blood flow
in such networks, validated from in vivo mea-
surements, that provide access to the full statis-
tics of blood flow and transport dynamics in
realistic microvascular networks. We use these
insights to uncover the scaling laws of blood
flow distributions arising from the microvascu-
lar architecture and develop an effective trans-
port model at the scale of the network that
captures these properties. This provides ana-
lytical solutions for the blood travel time dis-
tributions inferred from the physics of trans-
port in these networks. Our model predicts
that the interplay between the spatial distribu-
tion of arterioles and venules and the mesh-like
architecture of the capillary bed [12] leads to
the emergence of anomalous transport dynam-
ics. This implies that the occurence probability
of large blood travel times is significantly larger
than predicted by current models. We couple
this model to the kinetics of oxygen consump-
tion and amyloid-β production in brain cells
to show that these anomalous transport prop-
erties control the early development of critical
vessels with low oxygen or large amyloid-β con-
centrations under hypoperfusion. These find-
ings hence provide a new framework to mea-
sure, understand and model the onset and de-
velopment of brain diseases, such as AD [38].

Results

Vessel flow rates and transport times fol-
low broad distributions. Our analysis is
based on highly-resolved simulations of blood
flow in anatomic micro-vascular networks, val-
idated by comparison with in vivo measure-
ments (see Methods and SI Appendix A). We
first present results obtained in a microvessel
network (∼ 15.000 vessels) digitized from a
1mm3 of the mouse cortex (see Fig. S1) and
then compare the results to a different mouse
microvessel network and to bio-mimetic net-
works (SI Appendix C and H). The dense cap-
illary bed in the first network is homogeneous
and space-filling [17, 39], with a narrow dis-
tribution of vessel diameters (4.8 ± 0.9 µm).
The network is fed and drained by ∼15 arte-
riolar and ∼30 venular trees (Fig. 1a, Fig. S1
and Supplementary Movie S1). Simulations in-
tegrate the non-linear blood rheology and red
blood cell repartition at diverging vessel bi-
furcations (see Methods). The average flow
rate is 〈Q〉0 = 4.10−2 nL/s. The probability
density function (PDF) of blood flow in ves-
sels shows a large spread across about seven
decades around the average flow rate (Fig. 1b).
This PDF exhibits two different regimes: it is
uniform in the low flow range and decays as
a power law with exponent -2 above a char-
acteristic value Qc = 10−2 nL/s. The num-
ber of vessels in these regimes is approximately
P (Q < Qc) = 60% and P (Q > Qc) = 40%,
with large flow rates developing preferentially
in the neighborhood of arterioles and vessels
(Fig. 1a and S1f, Supplementary Movie S2).
The flow PDF is well approximated by a
Cauchy distribution (Fig. 1b), consistent with
the theoretical asymptotic behavior obtained in
large Random Regular Graphs [40]

pQ(Q) =
2

πQc

1

1 + (Q/Qc)2
, (1)

A direct consequence of the broad distribu-
tion of flow rates Q is the broad distribution
of advective transit times in vessels (inset of
Fig. 1b), which are defined as:

t =
lπd2

4Q
, (2)
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Figure 1: The blood flow organization in cortical microvessel networks induces broadly
distributed flows and vessel transit times. a) Simulated blood flow map in a microvascular network
feeding 1mm3 of the mouse cortex (see Fig. S1a,b and Supplementary Movie S1). Vessel flow rates
are represented with blue shades for Q < Qc and red shades for Q > Qc (see also Fig. S1c,d,f and
Supplementary Movie S2). b) PDF of simulated flow rates (black dots) compared with the approximation
of Eq. 1 (continuous blue line). The characteristic flow rate Qc separating the uniform and power-law
regimes is indicated as a dotted line. Inset: PDF of vessel transit times. The diffusion coefficients for
oxygen and amyloid-β (DO2 = 2.10−9 m2.s−1 and DAβ = 6.10−11 m2.s−1) yield diffusion times (tO2

D and
tAβD ) indicated by the green and dashed lines, respectively. c) Example of trajectories visiting less than
30 vessels (orange) and more than 60 vessels (blue), originating from the arteriole shown by the arrow
(see Fig. S2a-d and Supplementary Movies S3).

where l is the vessel length and d the ves-
sel diameter. As the flow PDF, the ves-
sel transit time PDF is characterized by two
regimes separated by the characteristic time

tc =
〈l〉capπ〈d〉2cap

4Qc
= 10−1 s, where 〈l〉cap =

50 µm and 〈d〉cap = 5 µm are taken as charac-
teristic capillary length and diameter, respec-
tively. Since the vessel length l and diameter d
vary weakly compared to the flow rate Q, the
transit time variability is mainly driven by the
flow rate fluctuations. We thus estimate the
PDF of vessel transit times from the PDF of
flow rates as pt(t) = pQ(Q)dQ/dt, also yielding
a Cauchy distribution

pt(t) =
2

πtc

1

1 + (t/tc)2
, (3)

in good agreement with the simulations (inset
of Fig. 1b). The scaling pt(t) ∼ t−2 for long
times, t > tc, is induced by the uniform flow
PDF pQ(Q) ∼ cst at low flow rates, Q < Qc,
leading to pt(t) ∼ dQ/dt ∼ t−2 (Eq. (2)). This
scaling yields a non-negligible probability of ex-
tremely long vessel transit times, which may
lead to the emergence of anomalous transport

properties at the network scale [34, 35].
This vessel transit time PDF pt(t) characterizes
the vessel transport statistics in the absence of
diffusion. Diffusion introduces a maximum cut-
off time tD = 〈l〉2/D in the transit time PDF,
corresponding to the diffusive transport time
over a vessel length. For oxygen and amyloid-
β, the two species considered here, the range
of times tc < t < tD over which the power law
pt(t) ∼ t−2 holds thus covers respectively one
and three orders of magnitude (Fig. 1b, inset).
Therefore, this power law regime affects signif-
icantly more amyloid-β clearance than oxygen
supply.

Network trajectory lengths and travel
times show anomalous transport statis-
tics. In addition to the broad distribution
of vessel transit times, solute transport at the
scale of the microvascular network is also con-
trolled by the distribution of trajectory lengths
from arterioles to venules. Our particle track-
ing simulations (see Methods, Fig. 1c and 2a
and Supplementary Movie S4) show that tra-
jectories lengths L, expressed in number of vis-
ited vessels, vary from less than 10 to about 80
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(Fig. 2b). The trajectory length PDF is char-
acterized by a power law scaling pL(L) ∼ L−2

between two characteristic lengths L0 = 12 and
Lc = 50. Above Lc, the PDF decays sharply as
pL(L) ∼ exp (−L/L∗) with L∗ = 5 (Fig. 2b):

{
pL(L) ∼ L−2 L0 < L ≤ Lc
pL(L) ∼ exp(−L/L∗) L > Lc

(4)

Averaging over multiple trajectories of equal
length, we computed the evolution of the local
average transit time along the trajectory, as a
function of the number n of vessels visited since
the inlet arteriole (Fig. 2b, inset). These aver-
age local transit times are of the order of 10−2

s close to the inlet arterioles, then increase, up
to two orders of magnitudes for the longest tra-
jectories, then decreases again in the vicinity of

the outlet venules. The network travel time T L
thus increases with the trajectory length L fol-
lowing two different trends (Inset of Fig. 2c,
SI Appendix D and Fig. S4a-b),





T L(L) ≈ τ1(L− L0) + T0 L0 < L ≤ Lc

T L(L) ≈ Tc
(
L

Lc

)4

L > Lc

(5)
where T0 = 0.2 s, Tc = 1.8 s, and τ1 = 0.04 s
is on the order of the mean transit time over
particle trajectories.
The broad distribution of vessel transit times,
together with the distribution of trajectory
lengths, leads to a broad range of travel times
at the network scale pT (T ) (Fig. 2c). Without
diffusion, simulated travel times vary over four
orders of magnitudes. Accounting for the diffu-
sive cut-off transit time (inset of Fig. 1b), the
travel time distribution still covers over two or-
ders of magnitude for oxygen and three orders
of magnitude for amyloid-β (Fig. 2c).

Flow and transport properties emerge
from the physics of dipole flows in net-
works. The statistical properties driving these
transport dynamics can be understood as aris-
ing from different topological properties of the
flow field, as schematized in Fig. 3. The mea-
sured scaling pQ(Q) ∼ Q−2 is a characteristic of
dipole flows [41] (see SI Appendix C, Fig. S3d).

In the present system, high flow rates are lo-
calized around arterioles and venules that act
as multiple sources and sinks (Fig. 1a and S1,
Supplementary Movie S1), driving the flow in
the network. Hence, in the large flow range,
Q > Qc, the flow field behaves statistically as
a superposition of dipoles. At low flow rates,
Q < Qc, the flow statistics differ from the con-
tinuous dipole model and become uniform, a
signature of the network structure (see SI Ap-
pendix C, Fig. S3d). In random networks, the
flow PDF is indeed theoretically expected to
follow exponential distributions, driven by the
random additions and divisions of flow at ver-
tices [42]. In the low flow range, this asymptot-
ically leads to a uniform distribution of flows.
Here, the low-flow vessels are far from arteri-
oles and venules. Therefore, their statistics are
dominated by the random fluctuations induced
by the network structure. Noteworthy, simi-
lar flow PDFs are observed for dipole flows on
space-filling networks with architectures of in-
creasing complexity, see Fig. S3b-d. Thus, the
observed flow statistics are generic and arise
from the interplay between a structured dipole-
like topology for large flows and a random net-
work topology for small flows.

The distribution of trajectory lengths (Fig. 2b),
is also consistent with this dipole flow inter-
pretation (see SI Appendix C, Fig. S3e). For
dipole flows on a finite size network, the power
law regime pL(L) ∼ L−2 develops until a cut-
off length, corresponding to the network size,
which sets the maximum trajectory length. In
the present system, the characteristic trajec-
tory length Lc that sets the transition to the
exponential cut-off (Eq. (4)) is the maximum
length of trajectories that can travel directly
from one arteriole to a neighboring venule [43]
(Fig. 1c and S2a,b, Supplementary Movie S3
(orange trajectories)). These trajectories typ-
ically reach the bottom of the simulated do-
main and include on average 20 arteriolar steps,
20 venular steps and 10 capillary steps in be-
tween (see Fig. 3 and SI Appendix B, Fig. S2f).
Longer trajectories connect more distant arte-
rioles and venules via the deep capillary bed,
where most vessels are in the low flow regime
(Q < Qc) (Fig. 1c, 3 and S2c,d, Supplementary
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Figure 2: Trajectory lengths and travel times are broadly distributed at network scale.
a) 3D view of typical particle trajectories (see also Supplementary Movie S4) with growing numbers
of visited vessels (Red: L = 20; Yellow: L = 30; Orange: L = 40; Green: L = 50; Cyan: L = 60;
Blue: L = 70; Violet: L = 80). b) Probability Density Function (PDF) of trajectory lengths. Inset:
Local vessel transit times t averaged over all trajectories of same length L as a function of the number
n of vessels visited since the inlet arteriole, normalized by L. Results for different trajectory lengths are
shown with the same color conventions as in panel a). c) PDF of travel times through the network for
purely advective (black dots), oxygen (green dots) and amyloid-β (red dots) transport. Inset: Average

travel time T L
as a function of trajectory length L (see also SI Appendix D and Fig. S4a-b). The linear

and power law tendencies (Eq. (5)) are shown respectively as dashed and dotted blue lines. Note that
the linear tendency does not appear as a straight line in log log because of the constant T0 in Eq. (5)
(See SI AppendixD).

Movie S3 (blue trajectories)).

The relationship between average travel times

and trajectory lengths T L(L) (Eq. (5)) shows a
transition from a linear to a power law scaling
(Inset of Fig. 2c and Fig. S4a,b). In the first
linear regime, the number of visited capillar-
ies remains approximately constant when the
trajectory length increases (see SI Appendix B
and Fig. S2f). This implies that the additional
visited vessels belong to arterioles and venules.

The linear scaling of T L(L) indicates that the
average transit time t in such vessels remains
approximately constant when trajectories ex-
plore deeper sections of the network. As ar-
terioles penetrate at depth, their flow rate de-
creases but so does their diameter and length,
which may explain this finding. This may con-
stitute an evolutionary advantage contributing
to spatially uniformize the supply and clear-
ance of solutes across the network while mini-
mizing total dissipation and blood volume [44,
45, 46]. In the second regime, the power law

scaling T L(L) ∼ L4 is characteristic of dipole
flow in 3D systems (see SI Appendix C): in
the deep network, blood flows from the pre-

2D dipole �ow

  Broadly distributed
capillary transit times

Broadly distributed 
  �owpath lengths

SUPERFICIAL MICROVASCULAR
                  NETWORK:

3D dipole �ow

DEEP MICROVASCULAR
            NETWORK:

venules

arterioles

Blood �ow paths
through the capillary bed

Lc

Main drivers of microvascular
transport dynamics

Figure 3: Schematic illustration of the blood
flow organization in the cortical microcircu-
lation inferred from the observed flow and
transport properties. Arterioles and venules are
represented in red and blue respectively. Blood flow
paths through the capillary bed are represented as
black lines. The characteristic trajectory length
Lc is the maximum length of trajectories that can
travel directly from one arteriole to a neighboring
venule (green line).
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capillary arterioles to the post-capillary venules
through a complex 3D network of capillaries
(Fig. 1c, 3 and S2c,d and Supplementary Movie
S3 (blue trajectories)) where the number of vis-
ited capillaries increases steeply with the tra-
jectory length (Fig. S2f).

Mean field transport dynamics are gov-
erned by dipolar trajectory length dis-
tributions. The distribution of trajectory
lengths (Eq. (4)), coupled with the relation-
ship between average travel time and trajectory
length (Eq. (5)), provides a mean field trans-
port model for the travel time PDF across the
network (SI Appendix D). This mean field de-
scription, which neglects random fluctuations
due to the network structure but captures the
dipole-driven trajectory length distribution, is
characterized by a transition from a power law
to a stretched exponential behavior:

pT (T ) ∼
(
(T − T0)/τ1 + L0

)−2

for T < Tc

pT (T ) ∼
( T
Tc

)−3/4
exp

(
−Lc
L∗

( T
Tc

)1/4
)

for T > Tc
(6)

with Tc = 1.8 s (Eq. (5)). This model cap-
tures the travel time distribution over the first
two orders of magnitude (Fig. 4a and SI Ap-
pendix D, Fig. S4c). We compare this predic-
tion to that of a reference CTH model, that
assumes a Gamma distribution of travel times,
whose parameters are calibrated from in vivo
data [14] (see SI Appendix G). Since experi-
mentally measured travel time distributions are
limited to times smaller than ∼ 5 s due to blood
recirculation [28, 33], this CTH model serves
here as a reference to assess the effect of ne-
glecting the experimentally inaccessible longest
travel times. While it captures relatively well
the shape of the travel time distribution in the
low range, the reference CTH model signifi-
cantly underestimates the probability of late
times (Fig. 4a). Accounting for the trajectory
length distribution via the mean field model al-
lows capturing a significant part of this long

time dynamics. The mean field model, how-
ever, does not capture the power law behavior
of the longest travel times, driven by vessels
with transit times t > tc in the deep capillary
network (Fig 1c). Since the oxygen cut-off dif-
fusion time tO2

D is close to tc (inset of Fig. 1b),
this long time regime does not affect much oxy-
gen transport, which is well represented by the
mean field model (Fig. 4a).

Random flow fluctuations in the capil-
lary network control large blood travel
times. To obtain a full description of the trans-
port dynamics, in particular for low diffusiv-
ity solutes such as amyloid-β, we seek an ef-
fective transport model that captures the het-
erogeneity of vessel transit times around the
average behavior described above. Fluid ele-
ments transported along a given trajectory in
the network move from one vessel to the next
with a broadly varying time step (see SI Ap-
pendix E and F and Fig. S5a)). This closely
corresponds to the conceptual framework of
Continuous Time Random Walk (CTRW) [35,
37], which has been proved relevant as an effec-
tive representation of transport in random net-
works [34, 36]. However, as a consequence of
the dipole structure of the flow at large scale,
two characteristics of the transport dynamics
differ from a conventional CTRW representa-
tion. First, the number of steps in a given tra-
jectory is broadly distributed according to tra-
jectory lengths (Eq. (4)). Secondly, the mean
local transit time at the nth step within a tra-
jectory of length L depends on the trajectory
length (Eq. (5), inset of Fig. 2b and SI Ap-
pendix D). Fluctuations of local transit times
around these mean local transit times define
a noise term that is independent on trajec-
tory lengths and follows a power law scaling
controlled by the flow distribution (see SI Ap-
pendix E). We therefore developed a CTRW
framework capturing these two properties (see
SI Appendix F).

This framework allows deriving an analytical
solution for the travel time distribution pT (T )
in the network,

pT (T ) = p1T (T ) + p2T (T ), (7)
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Figure 4: Long travel times, captured by our mechanistic model, drive the emergence of
critical areas with impaired oxygen delivery and amyloid-β clearance under hypoperfusion.
a) CTRW model predictions (full black line) compared to purely advective, amyloid-β and oxygen trans-
port simulations (black, red and green dots, respectively). The prediction of the mean-field transport
model (Eq. 6) and of the reference CTH model (SI Appendix G) are shown as dashed black and blue lines,
respectively. b) Fraction fp of network travel times larger than τO2

c for oxygen delivery as a function
of average flow rate 〈Q〉/〈Q〉0. Simulations (green dots) are compared to the predictions of the mean
field model (dashed black line) and of the reference CTH model (dashed blue line). The inset shows
the fraction fv of vessels in the network that are only reached by flow paths with travel times to these
vessels larger than τO2

c , as a function of the flow rate. c) Fraction fp of network travel times larger than
τAβc = 8 s (squares), τAβc = 16 s (dots) and τAβc = 40 s (triangles), as a function of average flow rate for
amyloid-β clearance. The predictions of the CTRW model (Eq. (7)) for each value of τAβc are shown as
continuous black lines. The predictions of the reference CTH model (see SI Appendix G) for each value
of τAβc are shown as a blue dashed lines.

where p1T (T ) and p2T (T ) are defined in Laplace
space as,

p̃1T (s) = e−sT0
Lc∑

L=L0+1

pL(L) (P(sτ1))
L−L0 (8)

and

p̃2T (s) = e−sT0PLc−L0(sτ1)
∞∑

L=Lc+1

pL(L)PL−Lc
(
s
Tc(L/Lc)4 − Tc

L− Lc

)
(9)

where s is the Laplace variable, P(s) =
2sK2(2

√
s) with K2 the Bessel function of the

second kind and pL(L) is given by Eq. (4).
This CTRW model is fully determined from the
trajectory length PDF (Eq. (4)) and the rela-
tionship between average time and trajectory
length (Eq. (5)). It provides an accurate pre-
diction over a broad range of travel times with
no fitting parameter (Fig. 4a). In particular, it
captures the late time power law decay:

pT (T ) ∼ T −3. (10)

The emergence of this power law is consistent
with the CTRW theory that predicts stable
power law distributions for noises character-
ized by power law exponents equal or smaller
than 3 (see Fig. S5) [35, 37]. Hence, the late
time transport behavior is characterized here
by stable anomalous transport, driven by the
broad distribution of flow rates in the network.
As far as we know, no experimental data have
been obtained to confirm this result in the brain
microcirculation. However, injections of flow-
limited tracers in the coronary network of iso-
lated rabbit hearts, which avoids blood recir-
culation, yielded a power-law decay of the late
time regime with exponent −3.21 ± 0.27 [47].
This suggests that, despite the variability of mi-
crovascular architecture among organs [48, 49],
the combination of tree-like structures with a
dense capillary network in their global organi-
zation is sufficient to drive this late time power
law decay.

Simulation of three-dimensional oxygen
distribution in microvascular networks.
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Figure 5: Simulated distribution of blood oxygen concentration relative to oxygen arteriolar
concentration in the microvascular network represented in Fig. 1. See also Supplementary
Movie S5. a) Side view. b) Top view. c) Evolution of the mean vessel oxygen concentration along
trajectories of size L, concentrations are normalized by the arteriolar concentration cAO2

. Red: L = 20;
Yellow: L = 30; Orange: L = 40; Green: L = 50; Cyan: L = 60; Blue: L = 70; Violet: L = 80.

Assuming that oxygen consumption in vessels
follows first order kinetics [26] (see Methods
and SI Appendix I), we use our particle tracking
simulations to compute three-dimensional fields
of oxygen concentration in vessels (Fig. 5a,b
and Supplementary Movie S5). The charac-
teristic reaction time of the first order kinetics
τO2
r = 1.5 s is estimated by matching the sim-

ulated ratio between oxygen concentrations at
venular outlets and those at arteriolar inlets to
typical measured values (see Methods). The
evolution of the oxygen concentration along
trajectories, averaged over trajectories of equal
length (Fig. 5c), is in qualitative agreement
with previous experimental observations [17].
Oxygen decays close to the network inlets, as
trajectories penetrate down in the cortex, then
reaches a minimum in the capillary bed (ex-
cept for the shortest trajectories L = 20), and
increases again as blood flows up to the venu-
lar outlets (Fig. 5c). The minimum oxygen
value along trajectories decreases with the tra-
jectory length L, as longer trajectories pene-
trate deeper in the network. This directly re-
sults from the increase of blood travel time with
increasing trajectory length (Eq. (5) and inset
of Fig. 2c). The minimal oxygen concentration
in the network, reached in the deep capillar-
ies of the longest trajectories, is close to 1/12
of the inlet concentration, i.e. 10 mm Hg of
oxygen partial pressure, assuming 120 mm Hg

at the inlets. This value is typically used to
identify hypoxic brain regions in animal exper-
iments [50, 51]. Hence, our results are consis-
tent with the recent experimental observation
that some vessels approach the hypoxic thresh-
old in the cortex of normal mice [17]. The in-
crease of oxygen towards the outlet venules is
also consistent with in vivo observations show-
ing an increase of oxygen concentrations with
increasing venous diameters [17]. While its ori-
gins are debated [17], the two minimal ingredi-
ents included in our simulations, i.e. first order
decay of oxygen with travel time and mixing
at vessel intersections, are sufficient to capture
this behavior. Hence, the travel time and tra-
jectory length statistics explored here are key
to explain the oxygen dynamics.

Anomalous transport drives the early ap-
pearance of hypoxic regions under condi-
tions of hypoperfusion. Hypoperfusion, i.e.
the decrease of the average blood flow, is a ma-
jor pathological stress associated to many dis-
eases [19], including early stages of AD [38, 20].
Schematically, it may be due to reduced perfu-
sion pressure or increased cerebrovascular resis-
tance, e.g. induced by capillary occlusions [8] or
reduced vessel diameters [9] in AD. In the lat-
ter case, the total resistance of the capillary bed
has been estimated to increase more than three-
fold, leading to a ∼ 50% blood flow reduction.
This large hypoperfusion level significantly in-
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creases tissue hypoxia [9] and is believed to fa-
vor amyloid-β accumulation in the brain [10],
thus participating in disease progression. How-
ever, whether lower levels of hypoperfusion (5
to 30%), such as induced by capillary occlu-
sions [8], may be involved in disease onset is de-
bated [10]. In this context, we use our modeling
framework to quantify the appearance of hy-
poxic regions, focusing on the occurrence prob-
ability of trajectories with travel times above
the critical travel time fp(T > τO2

c ), which
corresponds to the hypoxic threshold.Using the
first order kinetic model (SI Appendix I, equa-
tion S28), we estimate this critical travel time
to be τO2

c = log(12)τO2
r = 3.7 s. The probabil-

ity of exceeding τO2
c along a given flow path-

way is derived from our transport model as

fp(T > τc) =
∫∞
τc
dT p〈Q〉T (T ), where p

〈Q〉
T (T )

is the predicted network travel time distribu-
tion for any flow rate 〈Q〉. The latter is derived
from the travel time distribution in normal con-
ditions as p

〈Q〉
T (T ) = p

〈Q〉0
T (T 〈Q〉0/〈Q〉), where,

〈Q〉0 is the blood flow in normal conditions, de-
duced from the above simulations, for which all
parameters, including the perfusion pressure,
correspond to physiological data (see Methods
and SI Appendix A). In other words, chang-
ing the average flow rate 〈Q〉 is equivalent to
rescaling the critical time as τc〈Q〉/〈Q〉0. This
also holds true when the flow rate change is in-
duced by capillary occlusions as the shape of
the travel time PDFs is similar, not only for
different sets of mouse microvascular networks,
but also when up to 10% of capillaries are oc-
cluded (see SI Appendix H and Fig. S6).

Under normal perfusion, the fraction of travel
times larger than τO2

c is equal to fp(T > τO2
c ) =

1.3% (Fig. 4b). This fraction increases non-
linearly as the average flow decreases, e.g. by
a factor 4 when 〈Q〉 decreases by a factor 2, an
evolution accurately captured by the mean field
model (Eq. (6)). As discussed above, oxygen
transport is mostly controlled by the dipole-
driven transport regime and its travel time dis-
tribution is relatively well represented by the
mean field transport model (Fig. 4a). We thus

approximate p
〈Q〉0
T by the mean-field travel time

distribution (Eq. (6)), which provides an ac-
curate prediction of the simulated fraction of

critical travel times for all flow rates (Fig. 4b).
Since the latter integrates the broad distribu-
tion of trajectory lengths, it predicts a signif-
icantly larger occurrence probability fp(T >
τO2
c ) than the reference CTH model (Fig. 4b),

which is two orders of magnitude below the
simulated probabilities under baseline perfu-
sion. Noteworthy, the fractions of trajecto-
ries fp(T > T ′) measured at the outlet are
very close to the fractions of critical vessels
fv(T > T ′) within the network, i.e. vessels that
are only visited by fluid elements taking a time
larger than T ′ to reach them from the inlet ar-
terioles (SI Appendix B, Fig. S2e). Hence, the
travel time statistics at the outlet venules offer
a surrogate for the transport statistics within
the network. As a result, the mean field model
also provides a good prediction for the prob-
ability of occurrence of hypoxic vessels within
the network (inset of Fig. 4b). When hypoper-
fusion is induced by capillary occlusions, these
hypoxic vessels may likely add up to the oc-
cluded vessels, thus enhancing their impact at
early stages of AD [8].

The weak diffusivity of amyloid-β ampli-
fies the impact of anomalous transport.
We use a similar modelling method as for oxy-
gen to relate the blood travel time statistics
to amyloid-β concentrations (see Methods and
SI Appendix J). Owing to its low diffusivity,
amyloid-β is highly sensitive to random flow
fluctuations in the capillary network as dis-
cussed above (Fig.2a). Therefore we approx-

imate p
〈Q〉0
T by the CTRW model (Eqs. (7-9)).

The metabolism and neurotoxicity of amyloid-
β involve multiple soluble and insoluble iso-
forms and is still poorly understood [52, 53, 54].
To account for this uncertainty, we consider a
range of critical times τAβc = 8, 16 or 40 s. This
leads respectively to a three-, five- or tenfold
arterio-venous increase of the total intravas-
cular amyloid concentration (see Methods and
SI Appendix J), which is much larger than the
measured physiological increase of about 20%
[55], thus yielding different degrees of compro-
mised clearance. As expected, the probabil-
ities of occurrence of trajectories with travel
times above these critical times fp(T > τAβc )
vary significantly with τc (Fig. 4c). While
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the CTH model predicts an exponential evo-
lution of the fraction of critical travel times
fp(T > τAβc ) with 〈Q〉 (linear in semi-log in
Fig. 4c), the CTRW model captures the clearly
non-exponential trend observed from the sim-
ulations. This is a signature of the power
law scalings of travel time distributions, driven
by anomalous transport. Hence, the refer-
ence CTH model underestimates the fractions
of travel times with inefficient amyloid-β clear-
ance by several orders of magnitude, while the
CTRW model accurately predicts the proba-
bility of these critical travel times for all 〈Q〉
and τc.

Discussion

By reducing the complexity of the trans-
port problem in anatomically realistic networks
while keeping the essential physics of trans-
port emerging from the network architecture,
our analysis reveals the physical mechanisms
by which the microvascular architecture shapes
the blood travel time distribution. This is a ma-
jor fundamental open question in microvascular
physiology and a bottleneck for accurate quan-
tification of hemodynamic parameters from
brain imaging data in a broad range of applica-
tions, from clinical studies aimed at improving
the diagnosis and/or staging of brain disease
to fundamental studies on cerebral blood flow
and metabolism, neuro-vascular coupling, cere-
bral autoregulation and/or blood-brain barrier
function in health and disease [23].

We have demonstrated that the blood travel
time distributions are driven by two funda-
mental mechanisms constitutive of anomalous
transport dynamics [35]: broadly distributed
blood trajectory length and broadly distributed
capillary transit times. As schematized in
Fig. 3, the former are determined by dipolar
flow patterns resulting from the localized con-
nections with upstream and downstream sur-
face vessels, while the latter are driven by
random-like fluctuations within the capillary
network. For high diffusivity species, such
as oxygen, travel time distributions are cut-
off by diffusive transport, a third fundamen-

tal mechanism which dampens the random-like
fluctuations. These fundamental insights yield
the first physics-based analytical solutions for
transport at the scale of cortical microvascu-
lar networks, accurately predicting the statisti-
cal distributions of travel times of different so-
lutes, including oxygen (Eq. (6)) and amyloid-
β (Eqs. (7-9)).

This offers an alternative to current effective
models of transport at the scale of microvas-
cular networks. Such models either consider
simplified networks as combinations of paral-
lel elements (e.g. [56]), overlooking the link be-
tween the transport dynamics and the underly-
ing microvascular architecture, or use empirical
functions (e.g. [14]). The latter are calibrated
from in vivo measurements, which, due to
blood recirculation, are limited to travel times
of 5s. Extrapolation to larger time scales is
constrained by the underlying parametrization
chosen for the distribution of travel time, most
often gamma distributions [14, 26, 57]. The
resulting exponential decay underestimates the
probability of large travel times that follow a
slow power law decay induced by the anoma-
lous transport dynamics uncovered here. Such
models predict that a significant level of hy-
poperfusion, where blood flow is reduced by
∼ 20% compared to normal perfusion, should
be reached for hypoxic vessels to appear. Even
in normal conditions, we found that a small
proportion (∼ 1.2%) of hypoxic vessels develop
in the microvascular network. This finding
is consistent with experimental measurements
[16, 17]. Furthermore, accounting for anoma-
lous transport leads to a regular non-linear
increase of the proportion of hypoxic vessels
with decreased flow. The impact of anomalous
transport is stronger for amyloid-β, which has
a smaller diffusion coefficient. Hence, the prob-
abilities of occurrence of critical vessels with
inefficient metabolic waste clearance is orders
of magnitude larger than predicted by current
empirical models under normal condition and
their increase under hypoperfusion occurs much
earlier than anticipated by these models.

Overall, these findings underpin the physical
mechanisms by which moderate levels of hypop-
erfusion yield a non-linear expansion of hypoxic
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regions and lead to increased accumulation of
amyloid-β in the brain tissue. Crucially, hy-
poxia and amyloid-β accumulation are two key
ingredients of the amyloid cascade, the posi-
tive feedback loop linking hypoperfusion and
amyloid-related pathways of AD (see e.g. Fig. 3
in [10]). Combined with the recent discovery
that, at early stages of AD, each single cap-
illary occlusion has a similar, and cumulative,
impact on blood flow, without any threshold ef-
fect [8], this suggests that capillary occlusions,
even in small proportions, may trigger this pos-
itive feedback loop. Current numerical simu-
lations [8] that neglect it, as well as any other
compensatory effects, e.g variations of the cere-
bral perfusion pressure, tend to underestimate
the magnitude of hypoperfusion compared to
experiments in animal models of AD. Hence,
we speculate that pathological stresses induced
by the amyloid cascade, e.g. pericyte activa-
tion and resulting capillary constrictions, have
an outsized impact in disease progression. Our
results suggest that such cascading events may
be initiated by spatial heterogeneities of blood
flow. In particular, as larger travel times are ex-
pected for trajectories feeding the sub-cortical
regions, this may explain their specific vulner-
ability [58, 59], as highlighted by the appear-
ance of white matter hyper-intensities in clin-
ical imaging, in both cerebrovascular disease
and AD [60, 29]. Besides shedding new light
on the impact of capillary occlusions at early
stages of AD, and more generally on the role
of hypoperfusion in AD onset and progression,
these findings contribute to explain the consid-
erable overlap between vascular and neurode-
generative factors in the pathogenesis of brain
disease [2, 7].

These results will also contribute to improv-
ing the quantification of physiological param-
eters from brain perfusion or functional imag-
ing data, whether acquired by optical imaging,
computed tomography or magnetic resonance.
Such quantification generally relies on the
choice of mathematical functions to represent
the distribution of intravascular travel times
below the scale of imaging resolution. Our find-
ings hence establish the physical grounds for
defining these travel time functions and relate

them to the microvascular architecture. This
may help to account for vascular alterations,
which are currently overlooked when interpret-
ing human clinical imaging data in patient pop-
ulations [61], contributing to bridge the gap
with knowledge acquired from animal experi-
ments.

The analysis of transport dynamics in highly-
resolved simulations of blood flow in anatom-
ically realistic microvascular networks is com-
plementary to in vivo experiments in that it
provides access to the full flow and transport
statistics, opening a new window to decipher
the underlying non-local physics. With the fast
progress of numerical simulations and imag-
ing capacities, the presented framework may be
further improved. For example, larger simula-
tions domains, possibly up to whole mice brain
(see e.g. [62]) may be considered, as well as pas-
sive or active vessel diameter variations result-
ing from changes in blood flow, brain autoregu-
lation and/or neurovascular coupling [23, 2, 6].
The diphasic nature of blood or more realistic
reactive intravascular transport dynamics (see
e.g. [63]), simplified here as first order kinetics
and neglecting the the oxygen binding cooper-
ativity to hemoglobin, could also be considered
in the future, as well as transport and metabolic
processes within the brain tissue (see e.g. [54,
26, 64]).

Our theoretical framework hence opens new
perspectives for the development of predictive,
physics-based, transport models at the scale
of brain microvascular networks that account
for the complexity of microvascular architec-
tures. The resulting scaling laws are generic
to a large variety of networks, from simplified
ones to accurate anatomical representations,
with or without capillary occlusions. This sug-
gests the uncovered anomalous transport mech-
anisms are general, even if the parameter values
and pre-factors of scaling laws may be slightly
dependent on the specific assumptions in our
blood flow computational scheme. Interest-
ingly, the predicted late time power law decay
of travel time probabilities, with exponent −3,
has also been observed with a similar exponent
in the coronary microcirculation [47]. This sug-
gests that, despite the variability of microvascu-
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lar architecture among organs [48, 49], blood is
ultimately transported in a capillary network,
where velocity fluctuations likely follow simi-
lar distributions as described here. Hence, this
provides a new hypothesis for this scaling, pre-
viously interpreted as arising from an underly-
ing fractal organization of blood flow [23, 65].

Methods

Brain microvascular networks. We use a
large postmortem dataset (∼ 15, 000 vessel seg-
ments in a ∼ 1 mm3 region) from the mouse
vibrissa primary sensory (vS1) cortex obtained
by [66, 3] (see SI Appendix A and Supplemen-
tary Movie S1), previously used for simulation
studies by [43, 67, 68, 8, 63]. Details on the
procedures used for correcting the vessels di-
ameters to match the in vivo distributions and
for classifying vessels into arterioles, capillar-
ies and venules are given in the Supplemen-
tary Material from [8]. For comparison, we
use a second dataset from the same cortical re-
gion, obtained from another mouse [66, 3], as
well as dense, space-filling networks of increas-
ing complexity, including randomly-generated
networks, which reproduce well the spatial and
functional statistics of the mouse capillary bed
[39] (SI Appendix C and H).

Simulation of blood flow and Lagrangian
transport. Blood flow is modeled using a non-
linear network approach [69, 8], with prescribed
boundary conditions (see SI Appendix A for
details on methods and validation procedures).
This yields the pressure P at each vertex and
the flow rate Q and haematocrit H in each ves-
sel. We then simulate the transport of 5.107

passive Lagrangian particles, injected from ar-
teriolar inlets with a probability proportional
to their flow rate. We advect these particles
at local vessel velocity (v = 〈Q〉/〈Q〉0Q/πr2),
where 〈Q〉/〈Q〉0 represents the global variation
of cerebral blood flow compared to physiolog-
ical baseline conditions. We distribute them
in downstream vessels using flux-weighted frac-
tions, i.e. with a probability proportional to the

local flow rate (SI Appendix B). For each par-
ticle trajectory, we computed the correspond-
ing travel time τ and trajectory length L, i.e.
the total number of visited vessels, as well as
the Lagrangian transit time series (Fig. S5a,
SI Appendix E). Diffusion may be taken into
account by replacing, in these time series, the
local (advective) transit time t by the local dif-
fusion time (tD = l2/D) if tD < t.

First order kinetics models of oxygen
supply and amyloid-β clearance In order
to evaluate the characteristic times associated
to oxygen supply and amyloid-β clearance, we
assume that they can both be described by the
following first order kinetics models (see e.g.
[14, 70] and SI Appendix I and J):

∂cO2

∂t
= −kO2

cO2
(11)

and

d(cAβ )

dt
=
d(cAβ − cTAβ )

dt

= −kAβ (cAβ − cTAβ )

(12)

where k−1O2
= τO2

r and k−1Aβ = τAβ are respec-
tively the characteristic times for oxygen con-
sumption in the brain tissue and for amyloid-β
clearance.
Coupling these kinetics with the travel time
distribution p(T ), we obtain the ratio between
oxygen concentration at the outlet (venules),
cV02 , and at the inlet (arterioles), cA02 ,

cV02/c
A
02 =

∫ ∞

0

dT exp (−kO2
T ) pT (T ) (13)

In the same way, we obtain the ratio be-
tween the amyloid-β concentration at the out-
let (venules), cVAβ , and its tissue concentration,

cTAβ ,

cVAβ/c
T
Aβ

= 1−
∫ ∞

0

dT
{(

1−
cAAβ
cTAβ

)

exp
(
−kAβT

)
pT (T )

}
(14)
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Using the measured travel time distribution
for oxygen (Green dots in Fig. 2c), we match
Eq. (13) to the typical resting oxygen ex-
traction fraction of ≈ 30% [14], which gives
cV02/c

A
02 ≈ 0.7 [14], yielding τO2

r = k−1O2
=

1.5 s. Interestingly, this time is of same or-
der as the decay time measured in single cell
in vitro measurements of RBC oxygen desatu-
ration dynamics [71], equal to 800 ms. Sim-
ilarly, using typical amyloid-β concentration
values (see e.g. [72, 54]) and an arterio-

venous increase of 20% [55] yields τ
Aβ
r = k−1Aβ =

97 s. This estimated time is of same order as
can be deduced by abluminal-to-luminal per-
meability measurements in an in vitro blood-
brain barrier model (hCMEC/D3 endothelial
monolayers) [73], which yielded a permeability
P ' 18.10−5 cm/min. Assuming an endothe-
lial thickness of ∼ 1µm, this leads to a charac-
teristic time of 33 s. By contrast, previous esti-
mates based on a compartmental model yielded
τAβr = 3000 s [70], i.e. two orders of magni-
tudes above the in vitro results. Hence, despite
the simplified reaction kinetics considered here,
capturing the full range of travel times appears
to be a key element for modelling reactive pro-
cesses in the cortex.

Supplementary movies

• Supplementary Movie S1 shows a rotating
view of the 1mm3 mouse brain sample used
to model the brain blood flow transport
properties, corresponding to the snapshots
of Fig. S1a-b. Arterioles are displayed in
red, venules in blue and capillary vessels in
green.

• Supplementary Movie S2 shows a rotating
view of the flow rate distribution, high-
lighting the two flow regimes, correspond-
ing to the snapshots of Fig. 1a and Fig.
S1f. Vessel flow rates are represented with
blue shades for Q < Qc and red shades for
Q > Qc.

• Supplementary Movie S3 shows a rotating
view of all trajectories with L ≤ 30 (or-
ange) and L ≥ 60 (blue) originating from
the arteriole highlighted by an arrow in

Fig. 1c, corresponding to the snapshot of
Fig. 1c.

• Supplementary Movie S4 shows a rotating
view of typical particle trajectories with
different trajectory lengths (numbers of
visited vessels)(Red: L = 20; Yellow: L =
30; Orange: L = 40; Green: L = 50;
Cyan: L = 60; Blue: L = 70; Violet: L =
80) corresponding to the snapshot of Fig.
2a.

• Supplementary Movie S5 shows a rotating
view of the oxygen concentration field, cor-
responding to the snapshots of Fig. 5a-b.
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A. Blood flow simulations in intracortical networks

We describe the vasculature as a network of interconnected tubes where arterioles and venules
respectively act as inlets and outlets for blood flow (see Fig. S1a-b and Supplementary Movie S1).
We compute the stationary flow rate distribution using a nonlinear network approach described
in Pries et al. [1], Lorthois et al. [2] and Cruz-Hernández et al. [3]. This approach, where
blood is considered as a homogeneous fluid and red blood cells are treated as a volume fraction
(haematocrit), accounts for the complex rheological properties of blood flow in microcirculation
through two in vivo empirical laws. The first one describes the average dissipation at vessel scale
through an apparent viscosity which depends on the tube diameter and haematocrit, so that a
linear relationship between the flow rate and the pressure drop can be written in each vessel [4,
5]:

Qij =
πd4ij

128µij lij
∆ijP (S1)

where Qij , dij , lij , ∆ijP and µij are respectively the flow rate, the mean diameter, the length,
the pressure difference and the apparent viscosity associated to vessel ij. The distribution of
haematocrit in the network and phase-separation effects are captured by the second empirical
law [6] that links haematocrit and flow rate ratios at diverging bifurcations.

This problem is nonlinear and is solved iteratively (see e.g. [2, 7, 5]) with the following
boundary conditions: imposed physiological pressures at network inlets (one-connected arteriolar
vertices located at the top-surface) and outlets (one-connected venular vertices located at the
top-surface), where PA = 10640 Pa and PV = 2660 Pa, respectively, imposed haematocrit at
network inlets (H=0.4), and no-flow at the bottom of the sample. Pseudo-periodic boundary
conditions are used at network side faces as described in [3], with the additional constraint that,
to connect two vertices located on opposite side faces, their projections on a parallel plane are
closer than 80 µm.

This yields the pressure, the flow rate and the haematocrit within the network, without any
free parameter. The obtained flow distribution are displayed in Fig. S1c-d. Moreover, in Fig. S1f,
we present the top view of Fig.1 of the main manuscript, showing the flow distribution with a
discontinuous scale, highlighting the different flow regimes. The above flow distributions have
been validated by comparison to in vivo measurements in mouse (see Supplementary Figure 15g-
h in Cruz-Hernández et al. [3]). In addition, the range of simulated velocities at different depths
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in the cortical microvessel network is consistent with experimental measurements (Fig. S1e).
This supports the choice of the no-flow boundary condition at the bottom of the sample, which
is the most uncertain one due to the lack of highly resolved in vivo flow data in the deep cortical
layers.

For a given network architecture, the above linear system behaves linearly as a function of
the perfusion pressure (PA − PB). The apparent viscosity in each vessel is indeed independent
on the flow rate and, similarly, the parametrization of phase separation only depends on the flow
ratio between the daughter branches. Thus, hypoperfusion resulting from a decreased perfusion
pressure yields flow distributions which can be linearly deduced from the above simulations, for
which all parameters, including the perfusion pressure, correspond to physiological data. When a
small proportion of capillary vessels is occluded, which slightly modifies the network architecture,
all velocities remain, at first order, proportional to the mean flow rate.

Figure S1: 3D rendering of the microvascular network, showing vessel types and flow
distributions. a-b) Snapshot of the 1mm3 mouse brain sample used to model the brain blood flow
transport properties, side and top view (see Supplementary Movie S1), respectively. Arterioles are
displayed in red, venules in blue and capillary vessels in green. Network inlets are defined as arteriolar
vertices located at the top surface (pial surface) and connected only to a single other vertex, as apparent
in b). Similarly, network outlets are defined as venular vertices located at the top surface and connected
only to a single other vertex. c-d) Flow rate distribution using a continuous logarithmic color scale,
side and top view respectively. e) Comparison of simulated capillary blood velocity statistics with
capillary red blood cell velocity statistics measured experimentally at different cortical depths within
100 micron-thick slices. Blue: simulated average blood velocity (4Q/πd2) from the present study; Black:
experimental red-blood cell velocity data extracted from [8]. f) Same as panel d using a discontinuous
color scale as in Fig. 1a of the main manuscript with blue shades for Q < Qc and red shades for Q > Qc.
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B. Network exploration by Lagrangian trajectories and de-
rived quantities

Blood transport is solved by particle tracking (see Materials and Methods, Fig.2a and corre-
sponding Supplementary Movie S2). Examples of Lagrangian trajectories originating from a
given arteriole (highlighted by arrows in the figure) are displayed in Fig. S2a-d. Note that,
because of the pseudo-periodic boundary conditions, these trajectories, can cross a side of the
domain and connect to venules on the opposite side.

The proportion of vessels where intravascular diffusive transport dominates over advective
transport (i.e. Pe < 1) for oxygen and amyloid-β in physiological conditions is estimated based
on the vessel Péclet number Pe = t/τD, where t is the local transit time and τD the diffusion time
of the considered specie (DO2 = 2.10−9 m2.s−1 and DAβ = 6.10−11 m2.s−1 [9]). For oxygen and
amyloid-β in physiological conditions, it is respectively equal to 9% and 2%. Diffusion is taken
into account in the Lagrangian statistics by replacing, for these vessels, the local (advective)
transit time t by the local diffusion time (tD = l2/D).

The travel time distribution pT (T ) is computed from the Probability Density Function (PDF)
of particle travel times from any inlet arteriole to any outlet venule. The fraction of travel times
superior to a given threshold time T ′ is thus fp(T > T ′) =

∫∞
T ′ dT pT (T ). To evaluate how

different pathways contribute to the transport dynamics within the network, we also quantified
the fraction of vessels irrigated by trajectories of different travel times. We thus defined the
fraction fv(T > T ′) of vessels in the network only visited by particles with travel times larger
than T ′. The two fractions fp and fv are approximately equal, as shown in Fig. S2e from oxygen
transport simulations, indicating that the statistics of travel times measured at the outlet are
representative of the travel time statistics within the network.

To understand how particles of different lengths explore the different vessels (arterioles,
venules, capillaries), we computed the average number of visited capillaries nc as a function
of trajectory length L (Fig. S2f). The number of visited capillaries initially increases until
L ≈ 20 and then reaches a plateau at nc ≈ 10. Above Lc, the number of visited capillaries
increases again linearly. Therefore below Lc, trajectories increases their lengths by visiting more
arterioles and venules, as they penetrate deeper into the network (see Fig. S2a-b and schematic
of Fig.3 in the main manuscript). Above Lc, the steep increase of the number of visited capillar-
ies with trajectory length reflects the exploration of the deep capillary bed by longer blood flow
paths (see Fig. S2c-d and schematic of Fig.3 in the main manuscript).
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Figure S2: Exploration of the network by Lagrangian trajectories a-b) Snapshots showing all
particle trajectories originating from a single arteriole (highlighted by the arrow), with length smaller
than L = 30, respectively side and top view and c-d) with length than L = 70. Note that, because of
the pseudo-periodic boundary conditions, trajectories originating from a given arteriole, can cross a side
of the domain and connect to venules on the opposite side. Trajectories are the same as in Fig. 1 of the
main manuscript. e) Fraction fv(T > T ′) of vessels only visited by particles with travel times from the
inlet to the vessel larger than T ′ as a function of the fraction fp(T > T ′) of network travel times larger
than T ′. The dashed line represents fp = fv. f) Evolution of the average number of capillaries nc within
trajectories as a function of trajectory length L. The dashed line highlights the linear tendency nc ∼ L.

C. Dipole flows on networks

To investigate the similarities and differences between the results obtained in intracortical net-
works and the results obtained in simpler networks, we compared the flow and transport statis-
tics of different systems. We considered i) the classical solution of dipole flow in a 2D finite
size continuous homogeneous medium [10] (Fig. S3a), ii) a dipole flow in a 2D square lattice
with homogeneous conductances (Fig. S3b), and iii) a superposition of multiple dipole flows
in a 3D random space-filling network with homogeneous conductances constructed following the
method of Smith et al. [11] to reproduce the topological and functional properties of intracortical
capillary networks (Fig. S3c).

We first recall basic theoretical results derived by Kurowski et al. (1994)[10] for a dipole
flow created by a source and sink separated by a distance a in a homogeneous layer of thickness
d limited by a circular impervious boundary of radius R. Taking the center of the line joining
the source and sink as the reference point (r = 0), the velocity field can be expressed in polar
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Figure S3: Blood flow and trajectory statistics in dipole flows of increasing complexity. a)
Streamlines for a single dipole flow in a 2D finite size continuous medium plotted using the solution of
Kurowski et al. [10]. b) Flow distribution for a single dipole flow in a 2D square lattice with homogeneous
conductances obtained by numerical simulation. The color scale represents the logarithm of Q/〈Q〉. c)
Flow distribution generated by a random distribution of inlet and outlet points on the upper surface
of a synthetic 3D space-filling disordered network. The color scale represents the logarithm of Q/〈Q〉.
A quarter of the volume has been removed to enable visualization of the central part of the network.
d) Velocity PDFs for the dipole flow in a finite continuous medium (blue), the dipole flow in a square
lattice (black) and multiple dipole flows in a 3D random network (red), e) PDFs of trajectory lengths
for the dipole flow in a square lattice (black) and multiple dipole flows in a 3D random network (red),
and f) relationship between average travel time and trajectory length for the dipole flow in a square
lattice (black) and multiple dipole flows in a 3D random network (red).

coordinates as: 



vr =
q0a

2πd
cos θ

(
1

r2
− 1

R2

)

vθ =
q0a

2πd
sin θ

(
1

r2
+

1

R2

) (S2)

where r is the distance from the center and q0 is the inlet and outlet flow rate. The velocity
magnitude v =

√
v2r + v2θ is,

v =
q0a

2πd

√
cos θ2

(
1

r2
− 1

R2

)2

+ sin θ2
(

1

r2
+

1

R2

)2

(S3)

For r � R, the velocity magnitude thus evolves as,

v(r) ∼
r�R

q0
r2
. (S4)
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which leads through the change of variable pv(v)dv = pr(r)rdr to the velocity PDF,

pv(v) ∼ q0v−2 (S5)

This scaling is verified in Fig. S3d for v > vc, with the characteristic velocity vc = 〈v〉/4. Below
vc, the PDF evolves as pv ∼ v. The large velocity scaling pv(v) ∼ v−2 is also recovered for
the dipole flow in a square lattice (Fig. S3b). However, the low velocity regime is replaced by a
uniform distribution, as observed in our biological network. As discussed in the main manuscript,
this confirms that the uniform distribution at low flows is related to the network structure.

Far from the dipole, the streamlines may be approximated as circles of radius r and length
L = 2πr [10]. The travel time derived by integration of the velocity along r given by Eq. (S4) is
thus,

T =

∫ L

0

dr

v(r)
∼ L3 (S6)

This is verified in Fig. S3f for a single dipole flow in a 2D square network (Fig. S3b). Kurowski
et al. (1994) have further shown that the resulting travel time PDF for a single dipole in a
homogeneous 2D medium is [10],

pT (T ) ∼ T −4/3 exp(−T /Tc) (S7)

where Tc = R3/q0. Through the change of variable pL(L)dL = pT (T )dT this leads to,

pL(L) ∼ L−2, (S8)

which is verified in Fig. S3e for a single dipole flow on a homogeneous 2D network.
We have investigated the statistical measurements described above for flow in 3D random

space-filling network with homogeneous conductances (Fig. S3c), which are representative of the
capillary bed structure [11]. Sixteen inlet points and 16 outlet points were randomly distributed
at the surface of a random cubic network of ∼ 253 vessels. Boundary conditions are imposed
pressure on inlets and outlets and no flow on all other vessels at the boundary. The statistics of
velocities and trajectory lengths, as well as the average travel time dependency with the trajectory
length, appear to all follow the same statistics as the 2D network (Fig. S3d-f). This suggests
that although the system is three-dimensional, the streamline patterns behave statistically as 2D
dipoles. This behavior results from the multiple dipolar injection and extraction at the surface
of the network, which constrains the streamlines to extend mostly vertically in the network,
therefore being topologically equivalent to 2D dipoles.

In 3D systems with embedded dipoles far from each other, the velocity is expected to decay
as v(r) ∼ r−3, leading from Eq. (S6) to the mean travel time:

T ∼ L4. (S9)

This scaling is observed for large trajectory lengths in our microvascular network simulations
(see inset of Fig. 2c in the main document and Fig. S4b). We interpret this transition to 3D
dipole flows as resulting from the decrease in density of arterioles and venules in the depth of
the cortex [12]. At their capillary ends, deep arterioles and venules are further from each other
compared to thetheir typical separation distance at the surface and the streamline patterns are
therefore less constrained laterally and can develop large trajectories in the capillary bed (see
schematic of Fig. 3 in the main manuscript), following the characteristic scaling of 3D dipoles.

As discussed above, many characteristics of dipole flow in continuous systems are recovered
in the periodic lattices and random networks considered above. A notable difference concerns the
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flow distribution in the low flow range: the flow rate PDF for both periodic and random networks
exhibits a plateau at low values, a signature of the network structure which is consistent with
the findings of Alim et al. [13]. The latter suggest that flow distributions in random networks
follow exponential PDFs, leading to the plateau at small flows. This uniform distribution of flow
at low values, also observed in our biological networks, is at the origin of the broad distribution
of vessel transit time discussed in the main manuscript. Thus, in the large flow rate and short
trajectory length regime, microvascular networks are analogous to dipole flows in that they follow
the scalings of Eq. (S5) and Eq. (S8) (see Fig. 1b and Fig. 2b in the main manuscript). However,
the relationship between travel times and trajectory lengths (see Inset of Fig. 2c in the main
text) is different from that expected for simple dipole flow (Eq. (S6)). The later exhibits a linear
tendency for L < Lc and then a power law with exponent 4, similar to Eq. (S9). We understand
this difference as follows.

Trajectory lengths smaller than Lc, i.e in the first linear regime, correspond to trajecto-
ries with direct connections occurring at different depths between neighboring arterioles and
venules [14], see schematic of Fig.3 and Fig. S2a,b, where most venules connected to the in-
jection arteriole lie in a cylindrical region of radius ∼ 700 µm around it. Depending on the
trajectory length L, these connections occur at different depths, but the pressure drop through-
out the capillary bed is approximately constant. In fact, because they have larger diameters,
pressure drops within arterioles and venules are small compared to pressure drops throughout the
capillary network. Consistently, the number of visited capillaries in these trajectories depends
weakly on the trajectory length (Fig. S2f). This implies that the average capillary transit time
in these trajectories is the same for any L < Lc. Hence, as the trajectory length increases, the
additional visited vessels belong to arterioles and venules for L < Lc. As discussed in the main

mansucript, the linear scaling of T L(L) indicates that the average transit time t in such vessels
remains approximately constant as trajectories explore deeper sections of the network.

Trajectories of lengths larger than Lc correspond to connections between arterioles and more
distant venules (Fig.3 and Fig. S2c,d), and include a number of capillaries linearly growing with
the trajectory length (Fig. S2f). As explained above, in the deep part of the cortex, blood
trajectories are driven by the 3D dipolar nature of the flow in between these distant arteriole
and venules. Therefore, they follow the average time-length scaling expected for 3D dipole flows
(Eq. S9).

D. Mean field transport model

The mean field transport model pT (T ) is derived by associating to each trajectory of length L a
mean travel time, i.e. averaged over all trajectories of same length. This is equivalent to removing
the noise induced by flow fluctuations linked to the random network structure. The mean field

model is obtained analytically from the average travel time T L for a given trajectory length L
and the trajectory length PDF pL(L) using the change of variable pT (T )dT = pL(L)dL. The
average travel time is characterized by a transition from a linear to power law behavior, driven
by the flow organization respectively in the superficial and deep microvascular network (Eq. (5)
in the main manuscript and Appendix C),





T L(L) ≈ τ1(L− L0) + T0 L0 < L ≤ Lc

T L(L) ≈ Tc
(
L

Lc

)4

L > Lc
(S10)
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These trends are shown in linear and loglog plots in Fig. S4a-b (same as inset of Fig.2c in the
main manuscript). The trajectory length PDF (Eq. (4) and Fig.2b of the main manuscript) is

{
pL(L) ∼ L−2 L0 < L ≤ Lc
pL(L) ∼ exp(−L/L∗) L > Lc

(S11)

The mean field travel time PDF is pT = pL(L(T )) dL
dT , leading to a transition from a power law

to a stretched exponential:





pT (T ) ∼
(
(T − T0)/τ1 + L0

)−2
, for T < Tc

pT (T ) ∼
( T
Tc

)−3/4
exp

(
−Lc
L∗

( T
Tc

)1/4
)

, for T > Tc
(S12)

We compare this analytical prediction to the numerical estimation of the mean field travel time

PDF pT (T ), obtained by computing T L for each trajectory length and calculating its PDF for
all trajectory lengths (Fig. S4c). The mean field travel time PDF is identifcal to the full travel
time PDF up to a time of about T = 10 s. Above this time, the full travel time PDF deviates
to follow the power law trend pT ∼ T −3, resulting from the noise component (see Appendix E
and F). The analytical prediction of Eq. (S12) is in good agreement with the computed mean
field PDF over the full range of times (Fig. S4c).

Figure S4: Characteristics and predictive power of the mean field model. Average travel time

T L as a function of trajectory length L in a) linear scale b) loglog scale (same as inset of Fig.2c in the
main manuscript). The linear and power law tendencies (Eq. (S10)) are shown respectively as dashed
and dotted blue lines. The transition travel time and trajectory lengths between these two tendencies
are indicated as Tc and Lc. c) Full travel time PDF (black dots) compared to the numerical mean field
travel time PDF (blue dots). The theoretical mean field model is shown as a blue line. The late time
power law tendency pT ∼ T −3 characteristic of noise-driven anomalous transport in the late time regime
is shown as a black dashed line.
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E. Noise in vessel transit time induced by random network
fluctuations

The series of local transit times along a given trajectory exhibit large erratic fluctuations around
the series of average transit times (Fig. S5a). To analyze these fluctuations, induced by the
randomness of the network, we define a noise term ξ by normalizing the vessel transit time tj at

the jth step by its mean value tj
L

, where ·L denotes the average over trajectories of size L,

ξ =
tj

tj
L
. (S13)

The statistics of these fluctuations pξ are found to be independent on the trajectory length
(Fig. S5b). Large fluctuations of ξ, which control long times, follow a power law pξ(ξ) ∼ ξ−3.
This trend is consistent with the Lagrangian transit times distribution, which follows the same
power law scaling (Fig. S5c). This power law behavior is linked to the Eulerian vessel transit
time distribution, which follows pet (t) ∼ t−2 at large times (Eq. 3 in the main manuscript).
Indeed, the Lagrangian transit times statistics p`t(t), that is the statistics of vessel transit times
sampled by particle trajectories, are weighted by the local flow rate Q ∼ 1/t [15], leading to

p`t(t) ∼ pet (t)/t ∼ t−3. (S14)

As discussed in the main manuscript, this power law scaling for long transit times is induced by
the uniform distribution of low flow rates (see Fig.1b in the main manuscript). Such uniform
distributions are characteristic of flow in random networks (Fig.S3d), which follow exponential
distributions and therefore are constant at low values [13]. Assuming an exponential model of
flow rate fluctuations induced by random network connections, we obtain, after change of variable
and weighting by flow, the following noise PDF for fluctuations of vessel transit times,

pξ(ξ) =
exp(−1/ξ)

ξ3
, (S15)

which is in good agreement with measured noise in the large fluctuation range, i.e. for ξ ≥ 1
(Fig. S5b).
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Figure S5: Statistics of Lagrangian capillary transit times. a) Series of local and averaged
transit times for trajectories of equal lengths (L = 60), as a function of the number n of vessels visited
since the inlet arteriole. The thick line shows the average trend (as in the inset of Fig. 2b in the main
manuscript) and the thin line shows an example of transit time series along one trajectory. The noise ξ
is defined as the ratio of the local to the average transit time at a given position n/L (Eq. (S13)). b)
Noise probability density functions. Colored lines show the noise PDF pξ,L(ξ) for different trajectory
lengths L = {20, 30, 40, 50, 60, 70, 80} with the color convention from Fig. 2 of the main manuscript.
The black dots show the noise PDF averaged over all trajectory lengths pξ(ξ). The black line represents
the analytical approximation of Eq. (S15) for large noise values. The dashed line shows the power law
trend for large fluctuations. c) Lagrangian transit time PDFs (black dots). The dashed line shows the
power law trend (Eq. (S14)).

F. Analytical derivation of the Continuous Time Random
Walk model

In complement to the mean field transport model that captures the effect of dipole-driven tra-
jectory lengths distributions, we derived a stochastic transport model integrating in addition the
effect of network-driven transit time fluctuations. Fluid elements move to one vessel to the next
with a broadly varying transit time, which corresponds closely to the Continuous Time Random
Walk representation [16, 17, 18]. In this framework, the travel time Tj after j− 1 vessels evolves
as:

Tj+1 = Tj + tj (S16)

with tj the time increments at vessel j. From Eq. (S13) we take tj = ξtj
L

, where ξj is a random

noise with distribution pξ(ξ). From the mean field model (Eq. (S10)) we have tj
L

= τ1 for

L < Lc and tj
L

= Tc(L/Lc)4−Tc
L−Lc for L > Lc, leading to,





tj = ξjτ1 L0 ≤ j < Lc

tj = ξj
Tc(L/Lc)4 − Tc

L− Lc
Lc ≤ j < L

(S17)

The temporal increment in the CTRW model (Eq. (S16)) hence integrates the mean field field

travel time distribution driven by the dipole flow patterns through tj
L

and the network fluctu-
ations quantified by the noise term ξj . Because we focus on the impact of long travel times, we
do not consider trajectories smaller than L0, which is the smallest trajectory length in the mean
field model (Fig. S4a). Therefore, the CTRW model is initialized at TL0

= T0.
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The total network travel time is,

T = T0 +
L−1∑

j=L0

tj (S18)

Since the time increments tj are independent, the travel time PDF is,

pT (T ) =
∞∑

L=L0+1

pL(L)

∫ ∞

0

dtL0
...

∫ ∞

0

dtL−1pt,L0
(tL0

)...pt,L−1(tL−1)δ


T0 +

L−1∑

j=L0

tj − T


 .(S19)

Since the trajectory distribution pL(L) and the relation between mean travel time and length
follow different regimes above and below Lc, we decompose Eq. (S19) as a sum of two contribu-
tions:

pT (T ) = p1T (T ) + p2T (T ) (S20)

where

p1T (T ) =

Lc∑

L=L0+1

pL(L)

∫ ∞

0

dξL0
...

∫ ∞

0

dξL−1p(ξL0
)...p(ξL−1)δ


T0 + τ1

L−1∑

j=L0

ξj − T


 , (S21)

p2T (T ) =
∞∑

L=Lc+1

pL(L)

∫ ∞

0

dξL0
...

∫ ∞

0

dξL−1p(ξL0
)...p(ξL−1)

δ


T0 + τ1

Lc−1∑

j=L0

ξj +
Tc(L/Lc)4 − Tc

L− Lc

L−1∑

j=Lc

ξj − T


 . (S22)

Eq. (S21) and Eq. (S22) can be expressed in Laplace space respectively as,

p̃1T (s) = e−sT0
Lc∑

L=L0+1

pL(L)PL−L0(sτ1) (S23)

and

p̃2T (s) = e−sT0PLc−L0(sτ1)
∞∑

L=Lc+1

pL(L)PL−Lc
(
s
Tc(L/Lc)4 − Tc

L− Lc

)
(S24)

where P = L{pξ(ξ)} is the Laplace transform of pξ(ξ). For the noise PDF pξ(ξ) we take the
analytical expression of Eq. (S15), which provides a good approximation for large fluctuations
ξ ≥ 1 (Fig. S5). Its Laplace transform is P(s) = 2sK2(2

√
s) with s the Laplace variable and K2

is a modified Bessel function of the second kind.
The CTRW model (Eq. (S20)), solved by numerical Laplace inversion of Eq. (S23) and Eq.

(S24), provides an accurate prediction of the advective travel time PDF for T > T0 (Fig.4a in
the main manuscript) with no fitting parameter. This model is thus fully determined from the
trajectory length PDF (Eq. (S11)) and the relationship between average time and trajectory
length (Eq. (S10)). Model predictions are also consistent with the travel time distributions of
oxygen and amyloid-β up to a cutt off time driven by diffusion.
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G. Reference CTH model

To investigate the effect of the long network travel times, which cannot be accessed by in vivo
measurements, we compare our model prediction to that of a reference CTH model calibrated
from experimental data [19]. The latter assumes that the travel time PDF follows a Gamma
distribution,

pT (T ) =
T n−1

Γ(n)θn
e−T /θ (S25)

where the parameters n and θ are related to the travel time mean and variance as T = nθ and
σ2
T = nθ2, respectively. Jespersen et al. [19] have compiled a series of experimental data ob-

tained in various physiological conditions and shown that these moments follow the approximate
relationship σT ≈ 0.7T (see symbols in Figure 4 of Jespersen et al. [19]). Using this relationship
and the average travel time in our simulations, T = 0.66 s, we estimate the parameters of the
reference model to be n = 2 and θ = 0.32 for the considered microvascular network. Since
experimentally measured travel time distributions are limited to times smaller than ∼ 5 s due to
blood recirculation [20, 21], this empirical model serves here as a reference to assess the effect of
neglecting the experimentally inaccessible longest travel times.
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H. Robustness of flow and transport properties across anatom-
ical networks

We have previously shown [11] that the size of a representative elementary volume (REV) for
the capillary bed is (∼400x400x400 µm3). Thus, the microvessel network (Fig. S1.a) used in
the present simulations contains more than 10 representative elementary volumes (REV) for
the capillary bed. Moreover, for this network, the ratio between the number of penetrating
arterioles and of ascending venules, which gives insight on the large-scale structures superimposed
to the capillary bed, corresponds to the average ratio in the cortex. Thus, we expect to obtain
statistically robust results.

In this section, we check this and further test the generality of our results using two different
micro-vascular networks: the same network as shown in Fig. S1.a, but with 10 % randomly stalled
capillaries, and another network extracted from the same region of the mouse brain previously
obtained by Tsai et al. [22] and Blinder et al. [23]. The flow statistics are found to be very
similar in all networks and consistent with our stochastic model (Fig. S6.a). As a consequence,
our transport model is in good agreement with the travel time distributions in all networks (Fig.
S6.b).

Figure S6: Statistics of flow and transport in a stalled micro-vascular network and in a
different sample network. a) Flow rate PDFs. b) Travel time PDFs. Black dots represent the results
from the network presented in Fig. S1. Red dots represent the results for this same network with 10%
of stalled capillaries. Green dots represent the results for another network drawn from the same region
of the mouse brain. The continuous lines in sub-figure a) and b) represent respectively our flow PDF
(Eq. (1) in the main text) and transport models (Eq. (7) in the main text).
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I. Reactive transport of oxygen

To investigate the impact of the travel time distribution on oxygen transport within the brain
cortex, we use a simplified Lagrangian model of transport in vessels coupled to diffusive mass
transfer and consumption in the brain tissue. We consider a transported element of fluid carrying
an oxygen concentration cO2

.Diffusive mass transfer from the vessel to the tissue is modeled by
a first-order exchange kinetics,

∂cO2

∂t
= −k(cO2

− cTO2
) (S26)

where cTO2
is the local averaged concentration in the brain tissue next to the vessel and k−1 is

the characteristic diffusion time across the vessel walls. The oxygen concentration in the tissue
cTO2

evolves through consumption and diffusive mass transfer with the vessel as,

∂cTO2

∂t
= −kO2c

T
O2

+ k(cO2 − cTO2
) (S27)

where kO2
is the first order kinetic constant for oxygen consumption in the brain tissue. Since

the characteristic diffusion time across the vessel walls, e2

DO2
∼ 5 × 10−4s (taking e ∼ 1µm for

capillary vessels [24]), is small, we assume that k >> kO2
, so that oxygen in the tissue is locally

in equilibrium with oxygen in blood (cTO2
' cO2

). This yields:

∂cO2

∂t
= −kO2cO2 , (S28)

a first order equation similar as the one used by [19]. Solving for this equation yields:

cO2
(T ) = cO2

(0) exp (−kO2
t) (S29)

where T is the local travel time from the inlet along a given trajectory and cO2
(0) = cAO2

is
the oxygen concentration at the arterial inlets. Because the kinetics are linear, the oxygen
concentration carried by each fluid element can be resolved independently and then added to
reconstruct the oxygen distribution in the network. In other words, the average concentration in
a given vessel is deduced as the average of local concentrations of all trajectories flowing through
this vessel, yielding the oxygen concentration field throughout the network for a given kinetic
constant kO2

(Fig.5a,b in the main manuscript).
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J. Amyloid-β clearance

We model amyloid-β clearance using similar assumptions as for oxygen. Due to tissue production,
the tissue amyloid-β concentration, cTAβ , is much higher than the blood amyloid-β concentration,

cTAβ (see e.g. [25] where cAAβ=264 pg/ml and [26] where cTAβ=8150 pg/ml, as measured by the same

immunoprecipitation/mass spectrometry technique). Thus, we assume that cTAβ is approximately
constant because of tissue production. Taking a linear mass transfer between the tissue and the
vessels [27], we obtain,

d(cAβ )

dt
=
d(cAβ − cTAβ )

dt
= −kAβ (cAβ − cTAβ ) (S30)

where k−1Aβ is the characteristic time for amyloid-β clearance. Solving this equation leads to:

cAβ (t)− cTAβ = (cAβ (0)− cTAβ ) exp
(
−kAβ t

)
(S31)

where cAβ (0) = cAAβ is the amyloid-β concentration at the arterial inlets.
Thus, for each trajectory with travel time T , the ratio between the venous outlet concentration

cvAβ and tissue concentration is given by,

cvAβ/c
T
Aβ = 1− (1−

cAAβ
cTAβ

) exp (−kAβT ) (S32)

This simplifies to

cvAβ/c
T
Aβ = 1− exp (−kAβT ) (S33)

when the travel time is much larger than
cAAβ
cTAβ

k−1Aβ . As for the oxygen model, we couple this first

order model of amyloid production in tissues with the typical measured arterio-venous increase

of 20% [28], and obtain τ
Aβ
r = k−1Aβ = 97 s. Inserting the critical times τAβc = 8, 16 or 40 s in Eq.

(S32) yields respectively a three-, five- or tenfold arterio-venous increase of the total intravascular
amyloid concentration.
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[20] E. Gutiérrez-Jiménez, C. Cai, I. K. Mikkelsen, P. M. Rasmussen, H. Angleys, M. Merrild,
K. Mouridsen, S. N. Jespersen, J. Lee, N. K. Iversen, S. Sakadžić, and L. Østergaard.
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2.2 Conclusion and perspectives

In this chapter, we have shown that the brain micro-vascular structure induces a blood flow or-
ganization akin to dipole flow on random networks. Such an organization notably induces broad
blood flow distributions in the shape of Cauchy distributions. Both the dipole and disordered
contributions to flow organization are found to induce anomalous transport properties at the scale
of the network. These anomalous transport properties are driven by broadly distributed trajectory
lengths of Lagrangian particles within the micro-vasculature and broadly distributed vessel tran-
sit times, respectively. This results in the emergence of a large dispersion of Lagrangian particle
travel times within the micro-vascular networks on about four decades. The long time asymptotic
regime of travel time distribution shows notably a stable power law decay with characteristic scal-
ing exponent -3. Designing a novel semi-analytical model for micro-circulatory transport, we have
been able to capture the transport dynamics in brain micro-vascular networks at coarse-grained
scale using a Continuous Time Random Walk approach. In agreement with our simulations, this
model notably predicts the evolution of the size of areas with critical concentrations in amyloid
and oxygen under hypoperfusion. These results offer a novel quantitative approach for predict-
ing the impact of cerebral blood flow decrease on amyloid accumulation in Alzheimer’s disease.
Moreover, we have demonstrated that such an accumulation is simultaneous to the increase of the
size of regions with a critically low oxygen concentration. This novel approach emphasizes the un-
derestimation of transport heterogeneities by former micro-circulation models and, consequently,
the underestimation of the impact of such heterogeneities on brain metabolism in healthy and
unhealthy brain micro-vascular networks [20,44,46]. In that extent, our transport model supports
the idea of an early triggering of a positive feedback loop linking the decrease of the cerebral blood
flow to amyloid accumulation and to a decrease of metabolic activity in brain. However, in the
light of this work, several questions remain open and will necessitate further investigations.

The first question is undoubtedly the impact of considering larger micro-vascular networks.
In this work, we have studied the blood flow organization and transport properties in a 1 mm3

volume of cortex. This change in network size is not expected to impact the observed scaling laws as
we have shown that they derive directly from the network structure. However it could impact some
of the model parameters. Indeed, we expect a depth increase to modify the parameters affected
by boundary effects, namely Qc, Lc and potentially L∗. Conversely, larger lateral extension would
have only little impact on the transport properties because of the screening of further arterioles
and venules by neighbouring ones. Then, it would be essential for the improvement of model
accuracy to comfront our actual parametrization to statistics obtained on larger micro-vascular
network data sets.

The second question that arises is the question of the consistency of our description in the
case of drastic changes in the conductance homogeneity of the capillary bed. We have shown
in this chapter that occlusions of the micro-vascular networks do not significatively impact the
scaling laws describing blood flow and transport properties. This stablity of the description relies
on the fact that even if some vessels are missing, the rest of micro-vasculature remains unchanged.
However, in the case of Alzheimer’s disease, an other component of cerebral blood flow decrease
which has not been taken into account here is the shrinkage of capillary vessels [11, 14–17, 20].
Conversely, during brain activation, capillary vessels dilate but it is unclear if they all dilate the
same way, or dilate at all, in brain tissue volumes corresponding to this study [11, 14]. Then, the
question of capillary heterogeneity potentially induced by the two above mechanisms should be
addressed as well experimentally as theoretically. We expect that an increase of the heterogeneity
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of the capillary diameters should induce an increase of the vessel fraction in the low flow regime,
modifying the observed scaling laws, specially the plateau in the flow distribution and consequently
the asymptotic scaling of the travel time distribution.

The third question concerns the accuracy of the reaction models that we have used to com-
pute the evolution of the regions with critical concentrations of amyloid and oxygen. Indeed,
the metabolic bio-chemical reactions leading to amyloid production and to oxygen consumption
are more complex that the ones we have used in this chapter (see e.g. [120] for amyloid). In
the particular case of oxygen for instance, on one hand, we have considered an equilibrium be-
tween tissue and vessel oxygen concentrations and, on the other hand, we have disregarded the
kinetics of desorption of oxygen from the Red Blood Cells (RBCs), which is well known to be
non-linear [121]. The desorption of oxygen is potentially an important feature in its supply to
brain tissues as RBCs act like tanks releasing oxygen all along their journey within the micro-
vasculature. Neglecting desorption kinetics and assuming equilibrium of concentrations between
blood and tissue can consequently lead to inaccurate predictions of the distribution of oxygen
within the micro-vaculature. Then, an improvement of our transport model would be to couple
transport to appropriate reaction kinetics in order to accurately predict the supply of oxgyen
or amyloid accross the micro-vasculature. This can be done both numerically and theoretically,
thanks to the CTRW framework. Hence, it could be interesting to compare simulations and model
predictions to highly-resolved experimental measures of intra-vascular oxygen and amyloid con-
centrations for instance. Some measures of this type already exist for oxygen [10] but not for
amyloid. The ultimate goal would be to introduce brain metabolic kinetics in the reactive trans-
port model. Doing this, we could avoid the assumption of fixed chemical specie concentrations in
brain tissues allowing to access to a higher level of generality.

Finally, the question of the spatial distribution of the chemical specie concentrations is still
open with at least two potential implications. On one hand, brain tissues integrates the contri-
butions of few neighbouring vessels. The local tissue concentration is then a local spatial average
of the micro-vascular concentrations. As a consequence, it could be useful to study concentration
spatial correlations in order to perform accurate averages. This will allow to have a better eval-
uation of the impact of micro-vascular critically low concentrations on surrounding tissues. On
the other hand, occlusions or vessel shrinkage, as key features of Alzheimer’s disease, can induce
important local flow fluctuations (see notably Chapter 4 for occlusions) and consequently can also
lead to large fluctuations of the uptake of chemical species. Within the CTRW approach that we
have developed in this chapter, we do not have any information on the spatial locations of the
concentrations. Then, we can only access to the impact of first order perturbations of the flow,
i.e. the global reduction of the blood flow. Introducing a spatial dependency can allow to access
to the local modifications of the chemical specie concentrations induced by micro-vascular occlu-
sions. Practically, it is possible to introduce a spatial dependency within the CTRW framework
thanks to a geometrical characterization of micro-vascular networks. Doing this, we would access
to a better picture of chemical specie concentrations in brain tissues and of their modification
by micro-vascular occlusions. This would allow to progress in understanding the link between
micro-vascular occlusions and cognitive decline in particular in the context of Alzheimer’s disease.



Chapter 3

Random network flow statistics model

In the previous chapter, we have shown that the cerebral blood flow organization at the micro-
vascular level is statistically similar to a flow structured by dipolar injections on a random network.
This organization is associated to a flow rate distribution exhibiting two regimes separated by a
characteristic flow value, Qc. Below Qc, the flow rate distribution is uniform whereas, above Qc,
the flow rate distribution exhibits a large power law tail. Hence, Qc delimits the domains of
predominance of dipole and random flows. In other words, network randomness perturbates the
structured dipole flow organization until the signature of the dipole flow vanishes due to finite size
effects. The low flow regime is spatially located in the disordered part of the micro-vasculature:
the capillary bed. As the dipole structure has been extensively studied in the previous chapter, we
focus here on characterizing the statistics of the random flow emerging from the topology-driven
disorder in the capillary bed.

3.1 Preliminary observation

Predicting flow statistics from the properties of a porous medium is a central question of porous
media physics. Hence, an important part of the litterature, which historically mainly concerns
geological porous media, focuses on the impact of pore size heterogeneity on flow properties [82,
98, 102]. The focus on pore size heterogeneity makes sense for geological porous media as they
display large pore size variability but it appears to be less relevant for biological porous media
where the biological feedbacks impose much more regularity on the pore sizes [122], and this is
particularly true for capillary networks. In this system, flow variability does not arise from pore
size heterogeneity but from the random connection of capillaries. We call here such type of flows
topology-driven random flows.

As discussed in the previous chapter, one of the key properties that emerges from topology-
driven random flows is the uniform distribution of flow at low values. This was observed in [98]
in porous medium of moderate pore size heterogeneity. In this article, this plateau has been
shown to be part of a stretched exponential distribution. This result has been derived from
the observation of a Gaussian distribution of velocities induced by the moderate level of pore
size heterogeneities. In topology-driven flows, the velocity distribution is similar to the flow
distribution because of low variability of pore sizes. Hence, the explanatation of the emergence of
such plateau in topology-driven flows should be found elsewehere. More recently, an adaptation
of a statistical mechanics model, the q-model, has been proposed in [82] to predict the high flow
regime of the flow distribution in porous media of highly heterogeneous conductances. The latter
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study provides an analytical description of the flow distribution at high values in the shape of an
exponential distribution. Conceptually, the q-model is based on the idea that the statistics of a
conservative quantity submitted to consecutive random additions and divisions converge during
this process towards a stable distribution under certain conditions. The use of this model in the
context of flows in random porous media is motivated by the local divisions and sums of the flow
at the pore intersections. The question of the link between the pore size distribution and the
emerging power law distribution of flows at low values in porous media of highly heterogeneous
conductances is still open. This issue is currently the subject of a collaboration that we have
developed with Marco Dentz but this lies beyond the scope of this chapter. Here, as stated above,
we focus on designing a statistical framework able to predict accurately the flow distribution in
topology-driven random flows which are relevant in micro-vascular networks.

To do so, we first analyze the flow statistics obtained for a 3D bio-mimetic capillary bed
(∼ 15.000 edges) for which a uniform pressure boundary condition is imposed at the top and
at the bottom in order to focus on avoiding any deterministic large scale structuration of the
flow. This network is obtained from a raw network, product of a 3D Voronoi tessalation of
the space, designed to satisfy the topological and geometrical properties of capillary networks.
Hence, this so-constructed bio-mimetic capillary bed presents on a topological point of view, for
instance, the same 3-connectivity and loop distribution and, on a geometrical point of view, the
same distributions of diameter and length of vessels than real capillary beds [8]. This results in
a disordered regular network with connectivity 3 and roughly homogeneous conductances within
which an almost stratified pressure field settles with the prescribed boundary conditions (Fig. 3.1).

a)

Pmin Pmax
P

b)

Figure 3.1: Uniform pressure boundary condition imposed at the top and at the bottom
results in an approached stratification of the pressure field at the network scale. a-b)
Snapshots of the pressure field in a bio-mimetic capillary network with linear color scale.

The apparent structured organization of the pressure field hides the high level of flow dis-
order which results from it (Fig.3.2a). As expected from the results of Chapter 2, the flow rate
distribution associated to network edges, pQ, exhibits a large plateau at low values (Fig.3.2b).
This plateau is ended by a sharp cut-off in the vicinity of the mean value. Strikingly, even if the
flow rate distribution is close to an exponential, it shows less probability to obtain both small and
large values than expected by this classical solution for flow statistics in random porous media.
Our objective in this chapter is to explain the narrowing of the flow distribution compared to the
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q-model classical solutions.
In this chapter, we first present key elements of the q-model in its original mean-field for-

mulation. Then, we discuss the use of this model in the context of the prediction of flow statistics
in random porous media. Finally, we discuss the limitations of the mean-field formulation of the
q-model for the considered system due to the presence of local anti-correlations in the flow. We
show that these anti-correlations are induced by the limitations of homogeneous networks to dis-
sipate the whole local pressure drops associated to the largest flows predicted by the mean-field
formulation of the q-model. Along this chapter, as there is no relevance in considering absolute
values, quantities might be rescaled by their corresponding mean value and shorthanded with tilde
sat on top.
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Figure 3.2: Exponential-like flow distribution emerges from network disorder. a) Snap-
shot of the flow distribution in a bio-mimetic micro-vascular network with logarithmic color scale.
b) Associated probability Density Function of flow rates (dashed line) and exponential distribution
(full line). Main panel: log-log scale. Inset: semi-log scale.

3.2 The mean-field q-model: theory and simulations

The q-model was primarly designed in its mean-field formulation to quantify the force fluctua-
tions in random bead packs through an analytically solvable framework [79, 97]. Furthermore,
the generality of its constitutive elements makes it a particularly versatile model with a wide
range of potential applications. We first recall these constitutive elements in the context of force
fluctuations in bead packs. We will then detail its formulation in the context of flow in porous
media.

Let a disordered pack of unit mass beads. This pack can be subdivided into an extensive
number of superimposed bead layers (Fig. 3.3 shows an exemple of a such decomposition in layers).
Each bead in the D layer bears a random fraction of the weight of the beads located in the above
layers. This weight fraction is transfered to a given bead by the N beads located above and with
which it is in contact. Hence, considering that each bead supports its own weight in addition to
the weight transfered by the above beads, the total weight supported by the i bead in the D layer,
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wi(D), can be expressed as:

wi(D) =
N∑

j=1

qijwj(D − 1) + 1 (3.1)

where the qij’s are random variables belonging to [0; 1] and distributed according to a pdf η. They
represent the fraction of weight supported by the j bead transfered to i. In order to get rid of the
drift of the weight distribution with D induced by the internal mass of each bead, the normalized
weight is defined as vi(D) = wi(D)/D.

Figure 3.3: Random bead packs can be decomposed into superimposed bead layers.
Sketch of weigth transmission into a random bead packs in the particular case for which a bead
transfers the weight to only one bead located in the below layer. Layers are indexed by D. The
numbers above each bead highlight its overall supported weight, wi(D) (extracted from [79]).

At each node, the supported weight in a given layer is the sum of the product of the v and q
random variable realizations in the previous layer. Thanks to the observed stability of the weight
distribution and ignoring weight correlations within layers, it is possible to write a recursive mean-
field equation on the distribution of the normalized weights on nodes. Hence, the pdf of v can be
expressed in terms of a N -convolution product of the vq pdf , which gives at large D:

P (v) =
N∏

j=1

∫ 1

0

dqjη(qj)

∫ ∞

0

dvjP (vj)δ

(
N∑

j=1

vjqj − v
)

(3.2)

The parametrization of the η distribution is a critical step in the analytical treatment of Eq. (3.2)
as this distribution encodes the characteristics of the weight propagation. In this section, we focus
on the case of uniformly distributed weight fractions: all q’s random variables sample uniformly
the interval [0, 1]. We will see in the next sections that the uniform distribution suits well the
characteristics of flow fraction propagation in micro-vascular networks. We stress here that the
weight fractions are not totally independent as they relate through the constraint

∑N
i qi = 1

(more precisely, we can consider N − 1 independent variables and the N th conditionned by qN =
1 −∑N−1

i qi if
∑N−1

i qi ≤ 1). With those prescriptions, the η distribution is found not to be
uniform for general N (see [79] for the demontration and Fig. 3.4 for plots of η for some values of
N):

η(q) = (N − 1)(1− q)N−2 (3.3)

With this paramterization of the η distribution, Eq. (3.2) is analytically tractable. Going into
Laplace space, in which convolution products turn to classical products, this becomes:

P̃ (s) =

[∫ 1

0

dqη(q)P̃ (sq)

]N
(3.4)
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where P̃ is the Laplace transform of P .
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Figure 3.4: Conservation equation implies a N−dependency in the distribution of prop-
agated weight fractions. Distribution of weight fractions η(q) for N = 2 (black), 3 (blue), 4
(red) and 5 (green).

We first present the computation of P in the case of N = 2. In addition to be the simplest
case and consequently gives an idea of the way to handle the general case, it corresponds closely
to the topology of the flow organization in micro-vascular networks that we will discuss in more
details in the following section. In the N = 2 case, η(q) = 1 and Eq. (3.2) then becomes:

P̃ (s) =

[∫ 1

0

dqP̃ (sq)

]2
(3.5)

Introducing the Laplace transform of the distribution of transfered weights, Ṽ = P̃ 1/2, and per-
forming a change of variable u = sq, the precedent equation becomes:

sṼ (s) =

∫ s

0

duṼ 2(u) (3.6)

Differentiating with respect to s:

s
dṼ (s)

ds
+ Ṽ (s) = Ṽ 2(s) (3.7)

This differential equation has for solution Ṽ (s) = 1/(1−Cs) and consequently P̃ (s) = 1/(1−Cs)2.
By definition of the mean rescaled weight, which is equal to the mass of a bead,

∫∞
0
dvvP (v) =

dP̃ (s)/ds|s=0 = 1, the constant C is found equal to −1/2. Inverting the Laplace transformation,
the distribution of weights supported by the beads is:

P (v) = 4ve−2v (3.8)

and the distribution of weights transfered between layers is:

V (v) = 2e−2v (3.9)
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Trivially, we recover the expected result that the mean weight supported by beads differs by a
factor N = 2 to the mean weight transfered between layers.

The overall approach presented above can be generalized for arbitrary values of N intro-
ducing this time Ṽ = P̃ 1/N and considering the general form of the η distribution of Eq. (3.3).
Furthermore, the generalized version of Eq. (3.6) should be differentiated N − 1 times. We will
not present the details of the computation in the general case as it is particularly cumbersome but
to only recall its results. Hence, the weight distribution supported by beads in the general case is
a gamma distribution:

P (v) =
NN

(N − 1)!
vN−1e−Nv (3.10)

and the distribution of propagated weights an exponential distribution:

V (v) = Ne−Nv (3.11)

In the following, we present a simple simulation scheme capturing the essence of the q-model.
The interest of these simulations is to allow to investigate the effects of the model constitutive
elements and in particular the η distribution. Considering a pool of Np = 5.000 particles of unit
mass, we iteratively perform successive random fragmentations and dissociations of these particles.
As long as the number of fragmented particles is equal to the number of particles that have to be
aggregated the distribution of particle mass converges toward a stable distribution. Furthermore,
by construction of the algorithm, the process is purely without memory and the particle shuffle
ideal, which suit perfectly to the mean-field framework.

a)

10−4 10−3 10−2 10−1 100 101
10−5

10−4

10−3

10−2

10−1

100

M

p M
(M

)

b)

0 2 4 6 8

10−6

10−4

10−2

100

m

p m
(m

)

Figure 3.5: Mass distributions of particles emerging from the symmetrical random
aggregation/fragmentation process are well predicted by the mean-field q-model. a)
Mass distribution of aggregated particles (dots) and associated q-model mean-field predictions
(full lines) of Eq. (3.10). b) Mass distribution of fragmented particles (dots) and associated q-
model mean-field predictions (full lines) of Eq. (3.11). For both panels, simulations are performed
with N = 2 (black), N = 3 (blue) and N = 4 (red).

This aggregation/fragmentaion proccess is described by a mass conservation equation:

Mi(D) =
N∑

j=1

qijMij(D − 1), (3.12)
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where Mi(D) is the mass of the ith particle at the Dth iteration of the process and qij the mass
fraction coming from the fragmentation of the jth particle in the precedent iteration, and a local
recursive equation on the mass distribution, denoted pM :

pM(M) =
N∏

j=1

∫ 1

0

dqjη(qj)

∫ ∞

0

dMjpM(Mj)δ

(
N∑

j=1

Mjqj −M
)

(3.13)

It is clear from the similar structure of, on one hand, Eq. (3.1) and Eq. (3.12) and, on the other
hand, Eq. (3.2) and Eq. (3.13) that the two processes are conceptually equivalent in the large
D limit. In Fig. 3.5, introducing the mass distribution of fragmented particles, pm, we verify
the agreement between the results of simulations performed for varying N with mass fractions
uniformly distributed and the predictions of the q-model for pM (Eq. (3.10)) and pm (Eq. (3.11)).

In this section, we have recalled the principal theoretical aspects of the mean-field formulation
of the q-model. We have further introduced a simple numerical scheme capturing the essence of
this model. Together, these theoretical and numerical tools are key elements necessary to the
analysis and the prediction of the flow statistics into disordered porous media as discussed in the
following.

3.3 q-model and flow organization

In the previous section, through the introduction of the symmetric random aggregation/fragmen-
tation process, we have shown that the q-model framework was relevant to model other physical
processes that force fluctuations into random bead packs. This correspondance in the analytical
treatment of those two processes is the result of the generality of the model constitutive elements,
i.e. a conservation equation (Eq. (3.1)) and a local recursive relation on the pdf , made possible
by its stability (Eq. (3.2)). In this section, we discuss how these concepts apply in the context of
flow into disordered porous media. In the following, we review the limitations of this analogy in
the particular case of our 3-connected biomimetic microvascular network.

Flows into disordered porous media are similar to the symmetric aggregation/fragmentation
process presented in the previous section. However, they differ from the force fluctuations into
random bead packs by the absence of of source term due to the addition of individual bead mass in
the conservation equation. This conceptual difference induces two consequences. First, layer (or
more appropriated here, depth) dependency becomes irrelevant and the large D limit useless. As
a consequence, we discard it in the following. Secondly, associated to the hypothesis of stability
of the flow distribution, this constrains the topological configurations of the flow as explained
in the following. If the flow distribution is stable, it notably conserves its mean and the total
amount of flow passing from one layer to an other should be exactly conserved. Furthermore, if
the total and mean flows are conserved, this implies that the number of edges should be conserved
with the depth. The conservation of the higher moments of the pdf imposes, as for them, that
only a small variety of local toplogical configurations can emerge in order to satisfy, at least
statistically, the stability hypothesis. In other words, even if local topological trees may emerge
from the spatial organization of the flow, its statistically representative configurations turn out to
be antisymmetrical (Fig. 3.6).
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qji = ωjiQj

qki = ωkiQk

qil = Qi

qlm = ωlmQl
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Figure 3.6: Conservation of the flow and stability of the flow distribution constrains flow
local topological configuration. Sketch of the statistically representative flow configuration in
3-connected random networks.

Contrary to force distribution in random bead packs where the weight propagation is less
relevant than the weight supported by each bead in itself, in flow through porous media, the flow
rate pdf at nodes is a priori less important as they have marginal impact on large scale transport
properties, and even more within pore network modelling frameworks. Consequently, the flow rate
pdf is commonly measured within pore throats, i.e. on the edges of the equivalent pore network.

In the context of flow in random networks, Eq. (3.1) now reads:

Qi =
N∑

j=1

qij (3.14)

where the Qi is the flow at node i and qij = ωijQj is the fraction of flow coming from node j to i,
or in another words the flow associated to the edge ij and Eq. (3.2) becomes:

pQ(Q) =
N∏

j=1

∫ 1

0

dωjηω(ωj)

∫ ∞

0

dQjpQ(Qj)δ

(
N∑

j=1

ωjQj −Q
)

(3.15)

Assuming an ηω distribution according to Eq. (3.3), the flow rate pdf on nodes behaves like:

pQ(Q) =
NN

(N − 1)!
QN−1e−NQ (3.16)

and the flow rate pdf on edges is expected to behave like:

pq(q) = Ne−Nq (3.17)

for which 〈Q〉 = 1.
Eq. (3.17) demonstrates the emergence of the exponential-like flow distributions in random

networks as observed in Fig. 3.2. Moreover, the constraint of antisymmetry imposed on local
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flow configurations leads to an alternation of converging and diverging local topological structures
for a 3-regular flow network. Consequently, as two edges emanating for divergent bifurcations
give rise to a single edge before dividing again, at the network scale, about one third of edges
transmits in totality the amount of flow coming from its upstream node (Fig. 3.6). These edges
might be understood as nodes within the q-model framework and consequently their associated
flows are expected to be distributed according to a gamma-like pdf as verified in Fig. 3.7. As a
consequence, the flow distribution on all edges of the network, pQ, has to be expressed in terms
of the flow distribution on edges, pq, and on nodes, pQ, as:

pQ(Q) ≈ 2

3
pq(q) +

1

3
pQ(Q) (3.18)

In the following, we will refer to these particular edges which present a gamma-like distribution
of flows as “node edges”, by opposition to physical edges that can be mapped by q-model edges.
The latter are simply called edges. Moreover, Fig. 3.7 highlights that, similarly to pQ, the pQ pdf
is narrower than the analytical prediction of Eq. (3.16).
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Figure 3.7: Flow statistics for “node edges” exhibit a gamma-like distribution, the
mean-field q-model with uniformly distributed flow fractions fails to predict them
accurately. Flow rate pdf for “node edges” (dashed line) and plot of Eq. (3.16) with N = 2 (full
line).

We formulate two hypotheses to explain the observed deviation of flow distributions on nodes
and on edges to Eq. (3.16) and Eq. (3.17):

• the distribution ηω is not uniform.

• the correlations that are ignored within the mean-field formulation of the q-model have
non-negligible impact on the flow rate statistics.

We will now examine which of these two hypoteses is more likely to produce this deviation before
adressing the issue of the physical mechanisms that underly the narrowing of the flow distributions.

To begin, we tackle the question of a potentially non-uniform ηω distribution. As a conse-
quence, ηω is computed distinguishing edges to “node edges” in coherence with the above remark,
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i.e. the values ω = 1 induced by the 3-connected topology are not taken into account in the ω’s
statistics. In Fig. 3.8a, we observe that ηω slightly differs from a uniform distribution in two ways.
On one hand, it displays a smooth peaked shape around ω = 0.5. On the other hand, ηω rapidly
decreases in the vicinity of 0 and 1. As stated above, we first investigate the consequences of
considering this distribution, instead of a uniform one, on the flow rate statistics. The physical
interpretation of this deviation will be adressed later.
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Figure 3.8: The observed deviation to uniformity of the empirical ηω distribution brings
only minor corrections to the emerging mass (or flow) distributions. a) Propagated flow
fraction pdf , ηω (dashed line) and uniform distribution (full line). b) Aggregated particle (or node)
mass (or flow) distribution (dashed line) and plot of Eq. (3.16) (full line). Main panel: log-log
scale. Inset: semi-log scale. c) Fractionned particle (or edge) mass (or flow) distribution (dashed
line) and plot of Eq. (3.17) (full line). Main panel: log-log scale. Inset: semi-log scale.

In order to investigate the consequences of such deviation to uniformity of the ηω distri-
bution, we use the numerical scheme presented in the previous section. Hence, sampling the
empirical ηω distribution of Fig. 3.8a, we perform simulations of successive random fragmenta-
tions and aggregations of a pool of 5.000 particles of unit mass and compare the results of these
simulations to the mean-field q-model predictions for a uniform ηω (Fig. 3.8b and c). With the
notations introduced in the previous section, the mass distributions of fractionned and aggregated
particles, respectively pm and pM , are effectively impacted by the change in the ηω distribution.
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Nevertheless, this modification does not suffice in itself to explain the important narrowing of the
flow distributions computed in the micro-vascular networks compared to the mean-field q-model
predictions. This indicates that something more important is happening beyond mean-field as
discussed in the following section.

3.4 Beyond the mean-field approximation

In this section, we investigate the limitations of the mean-field formulation and determine the
physical mechanisms leading to it. We explore if correlations in the flow organization could
explain the unexpected narrowness of pQ (Fig. 3.2b) and pQ (Fig. 3.7). Furthemore, we attempt
to relate the emergence of these correlations to the physical properties of the medium. Doing so,
we underline the importance of the distinction that we made between physical edges and q-model
edges.

In the q-model, the mean-field approximation neglects the correlations that might exist
between beads belonging to the same layer. In flow networks, these ignored correlations can
take place between the flow fractions ω associated to the flows that sum at a given node and/or
between the flows Q associated to the upstream nodes of this same node. As the impact of the non-
uniformity of the ηω distribution cannot explain on its own the observed deviation from Eq. (3.16)
and Eq. (3.17), the question of the existence of correlations between, on one hand, the ω variables
and, on the other, the Q variables is raised. In order to investigate those potential correlations,
we split flow fractions and node flows into fifteen equiprobable classes Ci(ω) and Ci(Q) of equal
size and compute their joint probability matrices, or copula density functions [123], pC(ω2),C(ω1) and
pC(Q2),C(Q1) respectively.
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Figure 3.9: Copula density function analysis highlights the emerging anti-correlations
between flow fractions whereas node flows appear rather independent. a) Flow fraction
copula density function. b) Upstream node flow copula density function.

Copula density functions have been developed to study the correlations between random
variables disregarding the marginal probability density function associated to each random vari-
able [123]. Indeed, the classes composing the matrices are random variables with uniform marginal
probability density functions by construction. Then, their joint probability is uniform for indepen-
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dent random variables. Conversely, if the random variables are totally correlated, copula density
function exhibits ones in the first diagonal and zeros elsewhere and if the random variables are
totally anti-correlated, copula density function exhibits ones in the second diagonal and zeros else-
where. The copula formalism has been used in a wide range of fields from quantitative finance [124]
to hydrogeological transport [125–127].

In Fig. 3.9a, the flow fraction copula density function exhibits the highest probabilities in
the vicinity of the second diagonal and is maximal in the bottom right-hand corner (and in top
left-hand corner by symmetry of this matrix). Furthermore, the lowest probabilities are located in
the bottom left-hand corner and in the top right-hand corner. This matrix structure characterizes
the presence of anti-correlations between the ω variables. These anti-correlations highlight the
tendency of the flow to sum small flows with large flows. In that extent, these anti-correlations
are good candidates to explain the narrowing of the flow distributions. As for the upstream node
flow copula density function, the conclusion is less clear. The copula density function appears
rather uniform, a sign of the indepedence of the Q variables, however it seems to exist soft positive
correlations specially for the lowest classes. Nevertheless, by comparison to the flow fraction copula
density function, these correlations seem negligible. Furthermore, positive correlations would tend
to increase the variability of the flow fluctuations. Then, the correlations between the Q variables
cannot constitute a driver of the narrowing of the flow distributions. Hence, we disregard it in the
following.
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Figure 3.10: Drastic increase of “node edge” conductance re-establishes quasi-
independency between the ω variables and brings corrections to the flow fraction
distribution. a) Flow fraction copula density function. b) Flow fraction distribution (dashed
line) and uniform distribution (full line).

The emergence of anti-correlations between the w random variables, associated to the ap-
proximate independancy of the Q variables, induces therefore anti-correlations between the q
variables. The fact that such correlations are not observed in bead packs, and then commonly
not taken into account into analytical computations, might be linked to the differences between
both systems. The principal difference is a pressure difference at the boundaries of the random
network for the flow to establish, whereas the weight propagating in the bead packs is the result
of internal bead mass. The global pressure difference then strongly constrains the local pressure
differences accross the network, i.e. the sum of the pressure drops along streamlines would need to
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be equal to the global pressure difference, where the weight magnitudes can freely fluctuate. This
constrain specially affects the high flow statistics. This mechanism can explain notably the sharp
cut-off of the flow distributions (see e.g. Fig. 3.2b). This observation is even more relevant for
what we called “node edges” whose flows are twice the order of magnitude of other edges but with
comparable conductances, as discussed in the previous section. Furthermore, this explanation of
the global pressure constraint is also compatible with the slight deviation from uniformity that we
observed for the ηω distribution (Fig. 3.8a). In order to respect the global constraint, downstream
node flows can be forced to choose ω close to 1/2 rather than 1 (and 0 by symmetry) in order to
minimize their local pressure difference in the case where the upstream node flow is high.

In order to check that the anti-correlations between added flow fractions result effectively
from the limitations of the pressure dissipation along “node edges”, we increase the “node edge”
diameter by a factor 5, leading to an increase of the conductance by a factor 54 = 625, and
recompute the flow. As the “node edge” conductance importantly increases, there is no longer
theoretical limitations of their associated flow magnitude and the anti-correlations between the
w variables vanish (Fig. 3.10a). However, the edge conductance is, as for it, unchanged and the
limitations on largest edge flows, that we already noticed in Fig. 3.8a by a decay of the ηω in the
vicinity of 1 (and 0), considerably reinforce. Now, ηω exhibits large deviations from uniformity in
the shape of a concave distribution (Fig. 3.10b) highlighting the transfer of the pressure constraint
to edges.
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Figure 3.11: Mean-field predictions accuracy is restored following w variable decorre-
lation. a) Node flow distribution (dashed line) and mean-field predictions (full line). b) Physical
edge distribution (dashed line) and mean-field predictions (full line). Main panels: log-log scale.
Insets: semi-log scale. Flow fractions are sampled according to the empirical ηω of Fig. 3.10

Finally, we verify that the accuracy of the mean-field formulation of the q-model is restored
with the removal of the w anti-correlations. Doing this, we finish to demonstrate that the w
anti-correlations are effectively the main driver of the mean-field fail in predicting accurately flow
statistics in topology-driven random flows (Fig. 3.2b and Fig. 3.7). We then compute pQ, the
distribution of flow rates on all edges (edges and “node edges”) and pQ, the distribution of flow
rates at nodes. We stress here that, because of the presence of the “node edges”, pQ has to be
expressed as pQ ≈ 2pq/3+pQ/3 (Eq. (3.18)). In the same way as before, mean-field predictions are
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obtained by simulating consecutive random aggregations and fragmentations accounting for the
non-uniformity of the ηω distribution of Fig. 3.10b. Once again, we use a pool of 5.000 particles of
unit mass with mass fractions sampled according to the empirical ηω distribution. The comparison
between mean-field predictions and corresponding flow distributions is presented in Fig. 3.11 and
highlights the restoration of the mean-field accuracy after ω variable decorrelation.

3.5 Conclusion and perspectives
In this chapter, we have investigated the emergence of exponential-like flow distributions in random
networks through the q-model framework. This theory was first designed to predict force fluctua-
tions in random bead packs. The use of this model to predict flow statistics in random networks is
motivated by the very general constitutive elements of this model, i.e. a conservation equation, the
pdf stability and a local recursive equation emerging from a random aggregation/fragmentation
rule. However, we have shown in this section that the analogy between force fluctuations in bead
packs and flows in random networks has some important limitations. First, the quantity of inter-
est, in bead packs, is the weight supported by each bead, which focuses the study on the node
of the equivalent force network. On the contrary, for flow networks, the quantity of interest is
the physical edge flow statistics which can be distributed according to either q-model node or
edge distributions. The second difference relies on the nature of the two systems. The imposed
pressure conditions at the boundaries of the flow network constrain locally the flow propagation
leading to local flow anti-correlations. These anti-correlations are responsible for the limitations of
the q-model mean-field formulation to predict accurately the flow statistics in homogeneous ran-
dom networks. This results in a decrease of the flow heterogeneities compared to the exponential
solution of the mean-field q-model.

The presence of anti-correlations between the flow fraction random variables consists in a
interesting source of complexity as they are usually considered independent in the litterature. As a
consequence, this study offers new perspectives for future research. On a theoretical point of view,
the integration of w anti-correlations consists in an interesting computational challenge as well
for the derivation of the general q-model solutions as for the computation of possible new (anti-)
correlations in the flow structure that can emerge from them [128]. Furthermore, the response of
the w anti-correlations to modification of the network topology (disorder and connectivity) could
be an other topic of interest. In particular, it is expected that there exists an upper connectivity
above which mean-field predictions become again exact. Finally, for transport in (biological)
porous media, the corrections that we highlighted to the mean-field solution could be of use to
quantify properly the (bio-)chemical reaction dynamics occuring in those systems.



Chapter 4

Impact of occlusions on blood flow
organization

The influence of network topological changes induced by edge removals on the organization of the
flow is an open question which as been investigated for decades in the porous media community.
In the context of this thesis, vessel occlusions in brain micro-vascular networks have been recently
shown to be a potential mechanism explaining the decrease of cerebral blood flow at early stages
of Alzheimer disease’s, which may trigger the biological pathways underlying the disease [21].
For instance, it has notably been shown in this paper that such occlusions lead to cognitive
decline in mice. Furthermore, this work has also highlighted that the cerebral blood flow decrease,
known for long time to go along with cognitive decline [4, 11, 15–20], might also be explained
by the appearance of such occlusions. Starting from this observation, our goal in this chapter
is to unravel the contributions of various sources of complexity present in brain micro-vascular
networks on their resilience to vessel occlusions. These sources of complexity have led us to develop
novel approaches accurately describing the underlying mechanisms leading to cerebral blood flow
decrease induced by a random occlusion process.

4.1 Preliminary observations

As stated in the introduction of this thesis, brain micro-vascular networks are composed of two
types of structures: the capillary bed and the arterioles and venules. The capillary bed, represent-
ing about 95% of micro-vessels, is a dense space-filling network with approximately homogeneous
conductances and a topological community structure. By contrast, arterioles and venules are tree-
like quasi-fractal structures with a large variability of their vessel conductance. In [21], occlusions
leading to cognitive decline in Alzheimer’s mouse models are located in the capillary bed. As a
consequence, the impact of occlusions of arterioles and venules, which lead to brain infarcts and
is also a current active field in brain disease research, lies beyond the scope of this thesis. More-
over, cognitive decline in Alzheimer’s mouse models starts from a low percentage of occlusions
(∼3-5%) [21] and even in extreme circumstances, e.g. after a Middle Cerebral Artery stroke, the
percentage of occlusions does not exceed 30% after reperfusion [129]. As a consequence, we focus
our study to low to moderate fractions of occlusions while taking margins with higher fractions of
occlusions experimentally observed. In that extent, we restrict in this chapter the maximal value
of occlusion fractions to 40%.

In this first section, we present the preliminary study that motivated the analysis developed
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in the present chapter. Doing so, we introduce some quantities and concepts that we found relevant
to characterize the system response to an occlusion process. First, we introduce pocc the fraction of
occluded vessels and the global cerebral blood flow Q which is the sum of the flow of all arterioles,
i.e. the inlets of the micro-vascular networks. In the absence of occlusions, the global cerebral
blood flow is denoted Q0. Hence, Q/Q0 is the relative decrease of the cerebral blood flow induced
by the capillary occlusions. For a constant imposed pressure difference between network inlets
and outlets, Q/Q0 is equivalent to the relative decrease of the network conductance. Finally, we
introduce the fraction of no-flow micro-vascular inlets f , i.e. the fraction of arterioles disconnected
to all possible venules. For the considered range of occlusions, or dilute regime, the conductance, or
inlet flow, of lattices of resistances has been shown to evolve linearly with the fraction of removed
edges as [80]:

〈
Q

Q0

〉
= 1− Z

Z − 2
pocc (4.1)

with the above notations and where Z is the lattice connectivity. Here, 〈·〉 stands for averages
over multiple realizations. In the case of micro-vascular networks, most vertices have 3 connexions
so that Z can be approximated as Z = 3. In the following, Eq. (4.1) will serve as a reference
solution and, if not stated, 〈·〉 will correspond to averages over 100 realizations.
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Figure 4.1: Occlusions in the capillary bed induce a linear decrease in the cerebral
blood flow before smoothening conjointly to a raise in the disconnection probability
of perfusing arterioles. a) Decrease of the cerebral blood flow as a function of the fraction of
occluded capillaries. Average (black dots). Linear fit y = 1− 2.17x (black line). Effective medium
prediction of Eq. (4.1) from [80] (thick blue line). b) Average fraction of no-flow arterioles as
a function of the fraction of occluded capillaries (black dots) and power-law fit y = 70x9 (black
line).

Fig. 4.1 highlights few interesting characteristics of the micro-vascular network response
to the occlusion process. First, in agreement with the behiavour in the classical dilute regime
percolation, the decay of the average inlet flow is linear with the fraction of occluded vessels for a
small percentage. However, the slope of the linear regime does not agree with the predictions of
Eq. (4.1): instead of 3, we find a slope of about 2.17. This is consistent with the result previously
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obtained in [21] where the slope is inferior, but close, to 2.5. Moreover, from pocc ≈ 20%, the
decrease of the mean inlet flow deviates from this linear trend and slows down smoothly in a
non-linear fashion. This non-linearity, apparently conjoint to the start of the drastic increase of
the fraction of disconnected arterioles (Fig. 4.1b), may signify the impossibility to predict this
decay by effective medium approaches. In the following sections, we first investigate the physical
mechanisms leading to the emergence of the fluctuations in the cerebral blood flow decrease by
the study of the perturbation induced by a single occlusion. Doing so, we lay the fundations of a
theoretical framework able to account for the impact of the various sources of brain micro-vascular
network heterogeneities. Then, our objective in a second part is to unravel the contributions of
these heterogeneities to the deviation of the average decrease of the inlet flow rate to Eq. (4.1).

4.2 Single occlusion
This section reproduces a manuscript written in collaboration with O. Giraud and B. Georgeot
which has been submitted to Brain Multiphysics and is currently under review. In this article,
we focus on the contribution of the capillary bed community structure [8,9] on the flow resilience
in micro-vascular networks to localized damage. Indeed, community structure has been shown in
many systems, e.g. in disease spreading on networks but also for transportation or communication
networks, to influence network robustness and function [130–135]. Here, we focus on the influence
of the topological structure of micro-vascular networks on the variability of inlet flow decrease
induced by a single occlusion neglecting for instance vessel conductance heterogeneities.
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In cerebrovascular networks, some vertices are more connected to each other than with the rest of the vascu-
lature, defining a community structure. Here, we introduce a class of model networks built by rewiring Random
Regular Graphs, which enables to reproduce this community structure and other topological properties of cere-
brovascular networks. We use these model networks to study the global flow reduction induced by the removal
of a single edge. We analytically show that this global flow reduction can be expressed as a function of the ini-
tial flow rate in the removed edge and of a topological quantity, both of which display probability distributions
following Cauchy laws, i.e. with large tails. As a result, we show that the distribution of blood flow reductions is
strongly influenced by the community structure. In particular, the probability of large flow reductions increases
substantially when the community structure is stronger, weakening the network resilience to single capillary
occlusions. We discuss the implications of these findings in the context of Alzheimer’s Disease, in which the
importance of vascular mechanisms, including capillary occlusions, is beginning to be uncovered.

I. INTRODUCTION

Cerebral hypoperfusion, i.e. the decrease of cerebral blood
flow, is a common feature of many brain diseases, includ-
ing neurodegenerative diseases, such as Alzheimer’s Disease
(AD) [1, 2], and cerebrovascular diseases, such as hypoperfu-
sion dementia [3]. Hypoperfusion is a key player in the on-
set and progression of cerebrovascular diseases [3, 4] and has
been considered until recently as a consequence of neurode-
generation in AD [5]. However, this view is now debated [1].
In human patients, cerebral blood flow indeed decreases —
in a statistical and epidemiologic sense — before neurotoxic
waste accumulate in the brain and before any measurable cog-
nitive deficits [6]. Moreover, occlusions of capillary vessels
by white blood cells (neutrophils) have been observed in an-
imal models of AD before the accumulation of amyloid β ,
the main neurotoxic protein forming deposits (plaques) in AD
brains [7]. Despite the small proportion of occluded vessels (1
to 4%), the pharmacological removal of these neutrophils led
to a significant increase in blood flow and improved the cogni-
tive performance of the animals. At a later stage , i.e. when the
animals already showed plaques, extensive capillary constric-
tions have also been observed [8]. The exposition of pericytes,
i.e. active mural cells wrapping around the capillaries, to in-
creased concentrations of amyloid β has been shown to induce
their contraction. This contributes to a positive feedback loop,
where decreased cerebral blood flow not only triggers biolog-
ical pathways leading to increased amyloid β production in
the brain, but also directly impairs its elimination by the flow-
ing blood. This results in increased amyloid β accumulation
in the brain, increased pericyte contraction and further hypop-
erfusion [8]. In parallel, hypoperfusion also directly compro-
mises the brain’s energy supply, with deleterious neurological
consequences.

A central question in this context is: to what extent could a
small proportion of vessel occlusions trigger the above posi-

tive feedback loop, contributing to AD onset and progression?
Using highly resolved simulations of blood flow in anatomi-
cally realistic microvascular networks from human and mice,
it was previously shown that, on average, cerebral blood flow
decreases linearly with an increasing proportion of capillar-
ies occluded at random, up to 20%, i.e. without any thresh-
old effect [7]. Thus, on average, each single capillary occlu-
sion has a similar, and cumulative, contribution to the blood
flow decrease at the scale of the network. Here, we focus
on the variability of this contribution and seek to determine
how it is controlled by the fundamental topological proper-
ties of cerebrovascular networks. In particular, we investi-
gate the role of network communities, i.e. substructures with
vertices more connected to each other than to other vertices,
which have been identified in such networks [9, 10] and many
other real-life networks [11, 12]. In social networks, for ex-
ample, these communities represent groups of users with spe-
cific affinities, the identification of which is an important area
of research [13, 14]. Such communities are also important to
understand the organization of the World Wide Web [15, 16],
as they influence the various page ranking algorithms.

In order to study the role of communities in brain microvas-
cular networks, we take a step back and adopt a theoretical
point of view, using model networks of increasing complex-
ity, as illustrated in Fig. 1, but with a single inlet and out-
let, and vessels with identical unit conductivity. On the one
hand, this abstract approach enables to control the network
community structure. On the other hand, it enables to de-
rive analytical expressions, or to perform averages over many
realizations of similar graphs with same properties, in order
to analyze the variability of the blood flow reduction induced
by the occlusion of a single vessel. We first consider sim-
ple ideal graphs known as Random Regular Graphs (RRGs)
in network theory [17]. These graphs do not need to be em-
bedded in the physical space and they are structureless. They
nevertheless reproduce one of the main topological proper-
ties of cerebrovascular networks, in which most vertices have
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the same coordination number (or degree), equal to three (see
e.g. [9, 18, 19]). Moreover, many realizations of RRGs of ar-
bitrary size can be easily constructed, and they locally behave
like trees, enabling analytical derivations that provide insight
on their asymptotic behavior in the limit of large sizes. We
then modify this ideal RRG model to provide a simple gener-
ation scheme that enables to control the strength of the com-
munities by rewiring together a finite number of elementary
RRGs. As a third model, we use random networks constructed
from Voronoi diagrams of sets of points homogeneously dis-
tributed in 3D space, following [19]. Such spatial networks
are locally randomized but homogeneous at the network scale,
and reproduce both the structure and function of brain capil-
lary networks [19]. Finally, we also consider the intracortical
vascular network from the mouse parietal cortex (15,000 ves-
sels in a 1mm3 region) used in [7]. In these last two anatomi-
cally realistic networks, by contrast with [20, 21], we neglect
the contribution of vessel morphology, including distributions
of diameters and lengths, and impose unit conductivity in all
edges.

We use the above models to study the impact of single edge
removal, i.e. equivalent to vessel occlusion. We show that
the resulting flow reduction at network scale can be expressed
as a function of the initial flow rate in the occluded vessel
and a topological quantity, both of which display probability
distributions with large tails. As a result, we show that the
distribution of blood flow reductions may display unexpect-
edly large values, the probability of which increases when the
community structure is stronger. Such results indicate that the
topology of biological networks, including their community
structure, is important to assess their functional properties, es-
pecially their biological resilience.

The paper is organized as follows. In Section II, we intro-
duce the network models that will be considered, and inves-
tigate in Section III their topological properties compared to
anatomically realistic networks. In Section IV, we consider
blood flow through these networks. We uncover in particular
the quantities controlling the distribution of flow reductions
induced by the removal of a single edge and highlight how
the network topological properties influence this distribution.
Finally, in Section V, we discuss these findings and their im-
plication for brain pathophysiology.

II. NETWORK MODELS

Network models have been used in many fields [22–27],
where they proved useful to distinguish the main architectural
properties of real-life complex networks that strongly impact
their function from peculiarities which may depend on partic-
ular instances but do not change much the function.

Here, we start from the observation that, as stated in the
Introduction, most vertices in cerebrovascular networks have
three neighbours (either one vessel branches into two other
vessels or two vessels merge into another one) [9, 19]. The
simplest graph model one can think of to study such networks
is a graph model only reproducing this feature, i.e. with con-

Figure 1: Topological representation of typical realizations of var-
ious graph models. From left to right: RRG with connectivity
z = 3 and N = 100 vertices; rewired RRG obtained with nr = 10
rewirings, starting from 4 RRGs of size n0 = 100; Voronoi graph V
with N = 1158 vertices. Note that the figure only represents the ex-
isting connections (edges) between vertices, without accounting for
their spatial position.

stant connectivity. Such graphs are known as regular graphs.
Thus, the first model we consider is random regular graphs
(RRGs), where each vertex has the same connectivity z, as
illustrated in Fig. 1, left (see Appendix A for details).

RRG graphs by construction do not present specific sub-
structures. However, in many real-life networks, including
cerebrovascular networks, groups of vertices may have more
links to each other than to other vertices [9, 10], defining sub-
structures, or communities. In order to account for such com-
munities, we also consider a slightly more elaborate model,
which we call rewired RRG model. It is obtained by gen-
erating nc independent RRG graphs, which may all have the
same size or have a given heterogeneous size distribution, and
rewiring pairs of edges at random, as illustrated in Fig. 1, mid-
dle (see Appendix A for details). In particular, we will de-
note by Rk a subfamily of rewired RRGs built from a set of
RRGs whose size is distributed to reproduce the communities
of cerebrovascular networks, as further introduced in Section
III B, and with k rewirings.

Both RRG and rewired RRG models are ideal graphs of in-
finite dimension [17, 22, 23, 28], which are not embedded in
the physical space (i.e. vertices have no a priori physical spa-
tial coordinates). Thus, to account for the 3D structure of the
brain, we consider a phenomenological model, constructed
from edges of Voronoi cells in the three-dimensional space,
which reproduce both the structure and function of brain capil-
lary networks [19] (see Appendix A for detail on the construc-
tion). The topology of a typical realization V of such graphs,
that we call Voronoi graphs, is displayed in Fig. 1 right.

Finally, we also construct a graph based on experimental
data from a mouse brain previously acquired by [9, 18] (see
Appendix A for details). By contrast to the previous graph,
this experimental graph not only includes the space-filling
capillary vessels, but also the tree-like penetrating arterioles
and ascending venules [29]. Noteworthy, because these latter
graphs are obtained from real 3D structures, vessels intersect-
ing the edges of the considered region are cut. We recover the
3-connectivity of the graph by removing recursively all dan-
gling vertices (vertices of connectivity one), and we keep only
the largest connected component.
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III. TOPOLOGICAL PROPERTIES

A. Distribution of loop lengths

The topology of a graph can be characterized by the lengths
of the shortest paths connecting pairs of vertices. For instance,
in scale-free graphs, hubs allow to connect any two vertices
with a very short path [22]. A related quantity is the distri-
bution of loop lengths in the graph [9, 19]. Here, we define
a loop as the shortest path going from one vertex i to itself
through two given neighbours of that vertex. For a vertex with
z neighbours, there are

(z
2

)
loops. The loop length L is given

by the total number of vertices (or edges) in the loop.
In Fig. 2, we display the loop length distribution P(L) for

the considered network models. As shown in the top panel,
for a RRG of size N, the distribution is peaked around 2lnN,
consistent with the RRGs being locally tree-like [30, 31]. In
the same way, the loop distribution of a collection of several
independent elementary RRGs of size n0 is peaked at 2 lnn0.
Under increased rewiring, the distribution progressively shifts
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Figure 2: Distribution of loop lengths. Top: Average loop length
distribution for RRGs (black) with N = 1600 (right) or N = 40
(left), and rewired RRGs with 40 elementary RRGs of size 40
(red) and (from left to right) 100 to 500 rewirings; each histogram
is obtained from 10 random realizations. The vertical dashed lines
indicate 2 ln40' 7.38 and 2ln1600' 14.76. Bottom: Distribution
of loop lengths for a Voronoi graph and the mouse network, com-
pared with distributions obtained for rewired RRGs Rk of het-
erogeneous substructure size. Orange: Voronoi graph V of Fig. 1
left; Blue: Mouse graph; Red: Average for 10 realizations of rewired
RRGs Rk, with k = 40 (dotted), 75 (solid) and 160 (dashed-dotted)
rewirings.

Figure 3: Community graph plot of the Voronoi graph V (left)
and the mouse graph (right). The 1158 vertices of V distribute
into 20 communities of sizes 103, 97, 81, 77, 74, 74, 72, 69, 68, 65,
60, 56, 53, 49, 44, 43, 31, 18, 17, 7. The 8720 vertices of the mouse
graph distribute into 20 communities of sizes 833, 829, 791, 767,
757, 736, 727, 704, 696, 673, 491, 175, 155, 149, 93, 69, 34, 19, 14,
8.

towards the one of a RRG of size N = ncn0. Thus, rewired
RRGs continuously interpolate between a distribution of loops
peaked at a value only depending on the substructure size n0
to one peaked at a value only depending on the total network
size N.

Interpreting the loop length distribution of the Voronoi and
mouse networks is less trivial. As shown in the bottom panel
of Fig. 2, orange and blue lines, respectively, they are peaked
at a similar value, irrespective of their different network sizes,
suggesting that, for these networks, the dominant factor is
the community size and not the network size. Moreover, the
mouse network has a slightly larger proportion of loops with
lengths above the peak compared to the Voronoi graph V (or-
ange line). This is consistent with earlier findings that the
Voronoi graphs reproduce well the loop length distribution
of cerebral capillary networks [19] and the additional contri-
bution of tree-like arterioles and venules in the mouse net-
work [32]. However, these distributions are larger than the
typical distributions obtained in Fig. 2 top with rewired RRGs
of equal size. Such distributions can be roughly reproduced by
considering elementary RRGs with heterogeneous sizes (red
lines in bottom panel). This suggests that the simple proposed
model of RRG rewiring is sufficiently versatile to generate
ideal graphs reproducing the topological properties of intra-
cortical microvascular networks, by contrast to single RRGs,
which do not account for the underlying substructures. In the
next subsection, we thus focus on the community structure of
these different networks.

B. Communities

As mentioned in the Introduction, communities are an ubiq-
uitous feature of many real-life networks, and correspond to
groups of vertices that are more likely to be connected to-
gether than with the rest of the graph. Such communities
have been previously identified in brain microvascular net-
works [9, 10]. To identify these communities, we maxi-
mize the modularity µ(C ) of all possible partitions C , fol-
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Figure 4: Spatial localization of communities extracted from the
Voronoi graph V (left) and the mouse graph (right). Spheres are
centered at the barycenter of vertices in a given community, and their
radius is given by the standard deviation of vertex positions around
that barycenter.

lowing [11, 12, 33] and, in the case of intracortical net-
works, [9, 10]. The quantity µ(C ) compares the probability
of having an edge within a given subset of this partition with
the probability expected by chance, i.e. from connections ran-
domly chosen under the constraint of maintaining the graph
connectivity z (see Appendix B for details). This quantity lies
between − 1

2 and 1, and is positive if the partition C has some
relevance as a graph community structure. We call modularity
µ of the graph the maximal modularity over all partitions, or
equivalently the modularity of the optimal partition (see Ap-
pendix B). Noteworthy, even for graphs such as single RRGs
without any built-in substructures, the optimization process
finds the specific partition of the graph which maximizes the
modularity. The value of µ(C ) for this particular partition is
usually well above zero. Thus, for single RRGs, we obtain an
average modularity µRRG ∼ 0.661 when averaged over many
realizations. This value corresponds to purely random fluctu-
ations, which create random clusters of vertices more tightly
bound together than with the rest of the graph. Higher val-
ues are expected for the graph community structure to have
any relevance. In this case, we directly use the modularity
to assess the strength of the obtained community structure.
For the Voronoi graph we find µV ∼ 0.827 and for the mouse
graph µmouse ∼ 0.846. Besides modularity, alternative quanti-
ties have also been used for that purpose, for example the ex-
ponent of the scaling law relating the number of inter- versus
intra-community edges [9]. However, the range of exponents
characterizing strong communities depends on the dimension
of the space in which the graph is embedded [54], making it
difficult to compare real-life networks and ideal graphs such
as RRGs or rewired RRGs.

Below, we first examine the community structure of the
Voronoi and mouse networks, and subsequently discuss how
to incorporate these findings into the rewired RRG model.
The community structures of the Voronoi and mouse networks
are displayed in Fig. 3. Consistent with a high modular-
ity value, the number of edges within communities is much
larger than the number of edges connecting different commu-
nities. Moreover, these communities are highly segregated in

Figure 5: Community graph plot of a generic RRG of size N =
1000 (left) and a rewired RRG R75 (right).

space, i.e. with few overlap, as displayed in Fig. 4. In this fig-
ure, we use the spatial information about vertices of our 3D
graphs to represent each community by a sphere, centered at
the barycenter of its vertices and with a radius equal to the
standard deviation of vertex positions around that barycenter.
Not surprisingly, this suggests that in such systems, commu-
nities are a manifestation of the spatial organization of the net-
work, and that vertices in a given spatial region make exten-
sive connections with the neighboring vertices. By contrast,
in pure RRGs, the community structure is mainly irrelevant.
Communities in RRG graphs are highly connected to each
other (Fig. 5, left) and the average modularity is much lower
(µRRG ∼ 0.661), even if, as said above, the maximization pro-
cedure always produces some spurious community structure
by construction.

Relevant communities are recovered for the rewired RRGs
(see e.g. Fig. 5, right, where communities associated to
rewired RRGs of heterogeneous sizes are displayed). From
the results presented in the previous Subsection, we expect
that increasing the number of rewirings will result in ap-
proaching the behavior of a single, larger, RRG. This results in
weaker communities, i.e. a network with lower modularity, as
illustrated in Fig. 6, and increased ratio of inter- versus intra-
community edges. Below, we seek to estimate the number of
rewirings needed to construct heterogeneous rewired RRGs
with both community structures (defined by their number and
size) and modularity matching those of a given real-life net-
work.

For example, in the case of Voronoi V , the network has
1422 intra-community edges and 182 inter-community edges,
and thus the ratio between inter and intra edges is ≈ 0.128.
Choosing a rewired RRG with elementary RRG sizes given
by the communities of V , we find a linear dependence of this
ratio with the number of rewirings (inset of Fig. 6). To match
the inter- over intra-edge ratio of V , this yields, via the fit of
Fig. 6, nr = 74.79 ≈ 75 rewirings. The so obtained random
graphs will be denoted by R75 in the remaining of this paper.
Their average modularity (obtained by averaging over 100 re-
alizations) is equal to µR75 ' 0.817±0.0065, which is indeed
very close to the modularity of the Voronoi and mouse graphs.
[55].

Noteworthy, the resulting distribution of loop lengths P(L)
for such a number of rewirings matches well the distribution
of loop lengths of Voronoi V (see Fig. 2), despite the fact
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Figure 6: Graph modularity for rewired RRGs as a function of
the number k of rewirings. Red: rewired RRGs Rk, as defined
in Appendix A, average and standard deviation obtained from 100
realizations; Black: result for generic RRGs of same size (µ = 0.661
± 0.003 for 100 realizations); Blue: result for the mouse graph with
one single realization. Voronoi graph V has modularity µ = 0.827,
corresponding to ∼ 70 rewirings. Inset: Mean number of inter-
versus intra-community edges in a rewired RRG Rk as a function
of number k of rewirings. Average and standard deviation from
100 realizations. The red line is the best linear fit (y = 0.0285 +
0.00304x).

that the 3D structure is entirely absent from the rewired RRG
model. This similarity also manifests in the community struc-
ture displayed in Figs. 3 and 5.

The results of this Section show that topological features
such as the community structure are important properties of
intracortical microvascular networks. These properties can
be implemented in the RRG model by adding a community
structure and a certain amount of rewiring. Such models can
describe correctly the loop distribution and the modularity of
the real networks, while having no other features left in the
model. They also enable to perform averages over all realiza-
tions of these networks, which all have the same structure, a
useful tool to get statistically significant quantities and assess
the variability of the results. We will use these models in the
next Section to study the resilience of the above networks to
single-edge occlusion and assess its dependence on modular-
ity.

IV. BLOOD FLOW THROUGH THE NETWORK

We now connect the previous graphs with the outer world
by adding a single inlet edge and a single outlet edge (see
Fig. 7). Following [20, 21], we also ignore the complex rheol-
ogy of blood, so that imposing a constant pressure (potential)
difference between the tips of these edges results in establish-
ing a stationary flow field throughout the network, that can be
obtained by inverting a linear system of equations [21, 34]. In
the present Section, we shall examine how occluding a sin-

gle vessel affects the total flow rate transported through the
network.

A. Definitions

Starting from a graph G with M = N−2 vertices, we pick
up two edges at random, and add two vertices I and O in the
middle of these edges. To these vertices, which now are the
N−1th and Nth vertices of the graph, we respectively connect
an inlet vertex I′ and an outlet vertex O′. Note that, in that way,
a graph with constant connectivity z = 3 keeps that property.

Let pi denote the potential (pressure) at vertex i for 1 6 i 6
N. The local flux (flow rate) from i to j is defined as

qi j = γi j(pi− p j), (1)

where γ is the matrix of conductivities.
For i = 1 to N−2, Kirchhoff’s current law yields

∑
j

γi j p j−
(

∑
j

γi j

)
pi = 0, 1 6 i 6 N−2, (2)

where γi j is the conductivity of edge i j. For i = N − 1 or
N, there is an additional flux γii′(pi − pi′), where pi′ is the
corresponding imposed potential (pI′ or p0′ ), yielding

∑
j 6=i′

γi j p j−
(

∑
j

γi j

)
pi =−γii′ pi′ , i = N−1,N (3)

where γii′ is the conductivity of the newly added edges, which
will be denoted by γI′ for the inlet and γO′ for the outlet in the
following. Let A be the N×N matrix defined by

Ai j =

{
γi j if i 6= j,
−∑k γik if i = j,

(4)

for 16 i, j 6N, and the sum over k runs over all neighbours of
i, including i′ [56]. We define vector b as the vector with en-
tries −γii′ pi′ at position i = N−1 and N and 0 elsewhere, that
is, b = (0, . . . ,0,−γI′ pI′ ,−γO′ pO′)

T . Then, from Eqs. (2) and
(3), the vector p is the unique solution of Ap = b. Generically,
A is invertible, so that p is explicitly given by p = A−1b.

In Fig. 7, we illustrate the fluxes qi j for one inlet point
I′ on the left and one outlet point O′ on the right of a sin-
gle RRG. By mass conservation, the total flow rate Q trans-
ported through the network is equal to the inlet and outlet
fluxes. Thus, with the above notations, Q = γI′(pI′ − pI) =
γO′(pO− pO′) =Γ(pI′− pO′), where Γ denotes the overall net-
work conductance. We also denote by δP= pI′− pO′ the fixed
value of the potential difference between the inlet and outlet.
Then Q = ΓδP. We will now examine how Q, or equivalently
Γ, is affected by the removal of one edge.

B. Flow reduction induced by removing one edge

We now denote by Q′i j the total flow rate transported
through the network when edge i− j is removed, and by
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Figure 7: Flow field in a single RRG. Here, M = 30 (N = 32). The
two boundary vertices (I′ and O′) are highlighted in cyan. The two
vertices added to connect these boundaries to the graph (I and O), are
highlighted in red. Arrows show the direction of flow q while edge
thickness is proportional to 1/ log |q|.

δQi j = Q−Q′i j the corresponding flow reduction. This flow
reduction can be expressed as follows (see Appendix C)

δQi j

Q
≡

(Q−Q′i j)

Q
=

Γ
γi j

1
ti j

(
qi j

Q

)2

, (5)

where qi j is the initial flux in the removed edge and ti j = 1+
γi j[(A−1)ii +(A−1) j j−2(A−1)i j] is non-dimensional.

In what follows, for simplicity, we will only consider the
case where the pressure reduction δP = pI′− pO′ = 1 is fixed,
so that Q = Γ, and where all conductivities γi j are taken equal
to 1. Equation (5) reduces to

δQi j =
q2

i j

ti j
. (6)

Equation (6) states that the total flow reduction induced by
removing one edge i− j is quadratic in the initial flux qi j
through this edge, and inversely proportional to ti j. Below,
we further examine the properties of these two quantities gov-
erning the flow reduction.

C. Cauchy laws for the quantities governing the flow reduction

It is first possible to get an insight into the denominator ti j
in Eq. (6) by considering the asymptotic case of very large
regular trees (see e.g. [35, 36]). For that purpose, let us de-
note by G(x) = (A−x1)−1 the Green function of matrix A, so
that A−1 = G(0). In the case where the off-diagonal elements
of A are those of the adjacency matrix of an infinite regular
tree, one can find a recursive relation between the diagonal el-
ements of G(x). The latter expresses Gii(x) as a function of
the G j j(x), with j the children of i, and of the diagonal ele-
ments of A (see e.g. [35, 36]). For infinite trees, all vertices i
are at the root of statistically identical trees. Therefore Gii(x)
behaves as a random variable G and all G j j(x) behave as in-
dependent random variables Gp with the same distribution as
G. These are solutions of the recursive equation

G =
1

c− x−∑z−1
p=1 Gp

, (7)
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Figure 8: Distribution of ti j for (i, j) running over all edges of
a single realization of a graph. Solid lines display numerical re-
sults, dashed lines Cauchy fits (8). Top: RRG (left), rewired RRG
R75 (right); Bottom: Voronoi V (left), Mouse (right). Insets: flow
reduction δQi j as a function of qi j, illustrating the quadratic de-
pendence given by Eq. (6).

where z is the graph connectivity and c is a random variable
distributed in the same way as the diagonal elements of A.
When the graph is no longer an infinite tree but a finite random
regular graph, Eq. (7) is only approximate.

It is known in statistical physics [35] that the mean-field
solution of this recursive equation amounts to approximating
the exact solution (in the form of a probability distribution
of Gii(x) as a random variable) by symmetric Cauchy distri-
butions. As a result, (A−1)ii is expected to follow a Cauchy
distribution, so that, by stability of Cauchy distributions, the
quantity ti j = 1+(A−1)ii +(A−1) j j− 2(A−1)i j, which corre-
sponds to the denominator in (6), is also likely to follow a
Cauchy distribution.

In Fig. 8, we plot the distributions of ti j for all our net-
works models, from RRGs to the mouse network. Whatever
the considered graph, these distributions are indeed well-fitted
by Cauchy distributions

P(t) =
1
π

a
a2 +(t− t0)2 , (8)

where t0 is the median value and a is the half width at half
maximum (HWHM) [37]. Besides, in all cases, we numeri-
cally find that the median value t0 is close to 1/3, and thus
the prefactor of q2

i j in (6) is close to 3. This result can be
recovered by generalizing the reasoning of [21, 38], initially
introduced to study the dilute regime of bond percolation. For
regular networks of connectivity z with a single inlet and out-
let, we show in Appendix D that the flow reduction can be
approximated by

δQi j =
z

z−2
(pi− p j)

2 (9)

in the limit of infinite size and under the assumption that the
graph is isotropic at the inlet and outlet. The inset of Fig. 8
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Figure 9: Width a of the Cauchy distribution (8) (normalized by
the average Cauchy width of a RRG graph of same size) as a
function of graph modularity. Each point is a single graph real-
ization. RRG (black), rewired RRG (red) for R75 (triangles) and Rk
with k = 100 to 200 (circles) rewirings, Voronoi (orange), and Mouse
(blue).

shows that this quadratic law is well verified whatever the con-
sidered graph. In our case, z = 3 and thus the prefactor of
(pi − p j)

2 in (9) is z
z−2 = 3, recovering 1/3 as the median

value t0 of the Cauchy distribution for ti j.
In addition, Cauchy laws have fat tails. As a result, the

occurrence probability of small and large values of quantities
following Cauchy distributions is much larger than for normal
distributions. For instance, the probability of values smaller
than t0−3a, where t0 denotes the median and a is the HWHM,
is ≈ 0.0002 for a Gaussian distribution whereas it is ≈ 0.1 for
a Cauchy distribution, i.e. five hundred times higher. Thus,
there is a number of values of the ti j which are very small.
When such an edge i− j is removed, this translates into a
prefactor of the flow reduction qi j which is particularly high,
inducing a significant drop in the total flow Q. As a result, the
larger the Cauchy distribution in Fig. 8, the larger the fluctua-
tions observed around Eq. (9) in the corresponding inset.

Importantly, the half width a of the Cauchy distribution
strongly depends on the community structure of the under-
lying graph. In Fig. 9, we show that for graphs of comparable
size, the width increases with the graph modularity, signifi-
cantly increasing the probability of large flow reductions re-
sulting from the removal of a single edge.

We now turn to the distribution of qi j, the numerator in (6).
This distribution can be understood based on similar argu-
ments as above. From (1), local fluxes are indeed obtained
by linear combinations of potentials p = A−1b, leading to a
Cauchy distribution in the case of infinite trees. Besides, be-
cause of flow reversibility, its median value is expected to be
zero. This is consistent with the blood flow distributions com-
puted in realistic intracortical networks from mice [39]. These
distributions have fat algebraic tails (power laws with expo-
nent -2) characteristic of Cauchy distributions, which can al-
ternately be interpreted, based on hydrodynamic arguments,
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Figure 10: Top panel: Distribution of lnδQ for (i, j) over all
edges. Black : 100 realizations of generic RRGs with N1 = 1176; Or-
ange: Voronoi (100 realizations); Red: 1000 realizations of rewired
RRGs Rk with random k, 100 6 k 6 600, divided into 20 sets of 50
realizations, where in each set graphs have approximately the same
modularity; histograms for sets 10, 15 and 20 are shown (three red
curves with modularity increasing from left to right). All histograms
are averaged over windows of size ∼ 1 in lnδQ. The dashed vertical
line indicates position lnδQ0 = −11.773 where 25% of the prob-
ability lies on the right for the generic RRG of size N1. Bottom
panel: same for mouse (blue) and RRGs with N2 = 8720 (black,
100 realizations) ; dotted black corresponds to the RRG of size N1

translated to the left by ln N2
2

N2
1
' 4 units in logarithmic scale. With this

translation, both RRG distributions coincide, showing that the 1/N2

scaling obtained in Appendix E corrects perfectly for the size effect
in case of RRGs. The dashed vertical line corresponds to the vertical
line in the top panel translated in the same way. Insets: same in log
scale. Dashed lines indicate slopes ± 1

2 .

as emerging from dipole-driven flows on random networks.
Their properties have been investigated in [39], but the impact
of the community structure has not been considered. Follow-
ing the same approach as above, we find however that modu-
larity affects significantly less the width of the distribution of
qi j compared to the one of ti j.

D. Distribution of flow reductions

After having determined the distribution of the denomina-
tors and numerators in Eq. (6), we now turn to the distribu-
tion of flow reductions δQi j, which controls the variability of
the global network response to the removal of a single edge.
There is no general result which describes this distribution
for both qi j and ti j following Cauchy distributions. In Ap-
pendix E, however, assuming that the distribution of flow re-
ductions is mainly controlled by the distribution of flow rates
within the network, we show that for a regular graph and in the
limit of large sizes, the left tail of the distribution of lnδQi j is
expected to follow P(lnδQ) ∼ 1/δQ−1/2 and the right tail is
expected to follow P(lnδQ)∼ 1/δQ1/2.

As shown in Fig. 10 (insets), this asymptotic behavior is
indeed correctly reproduced for the elementary RGGs (black
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Figure 11: Probability of flow reductions larger than flow thresh-
old δQ0 as a function of modularity. δQ0 is chosen to correspond
to the third quartile of the distribution obtained for the RRG of same
size, as displayed in Fig. 10 by dashed vertical lines. Same color
code as Fig. 10 (RRG with N1 = 1176 is the black circle, RRG with
N2 = 8720 is the black triangle.

lines), so that the distribution of lnδQ is approximately sym-
metric. For these structureless graphs, it is also obvious
that the position of its maximum, denoted by ln δ̂Q, strongly
depends on the network size (compare black lines in top
(N1=1176) versus bottom (N2=8720) panel in Fig. 10). As
shown in Appendix E for large RRGs, we expect δ̂Q to scale
as 1/N2. Thus, the two distributions obtained for RRGs with
sizes N1 = 1176 and N2 = 8720 should match by a transla-
tion of the former by N2

2/N2
1 to the left. This is verified in the

bottom panel of Fig. 10 (superimposed black line and black
dots) and suggests that, for these structureless graphs, the dis-
tribution of flow reductions is indeed controlled by the distri-
bution of flow rates throughout the network. However, what-
ever the graph size, the distributions of lnδQ become distorted
towards larger values when the modularity increases, i.e. for
graphs with substructures. As a result, the corresponding dis-
tributions slowly depart from the above predicted scalings,
especially for large values of δQi j, and the location of their
maxima increases. This is consistent with the concomitant in-
crease of a, the width of the distribution of the denominator in
Eq. (6), demonstrated in the previous Section.

To further quantify the effect of modularity, we plot in
Fig. 11 the probability of flow reductions larger than a given
threshold δQ0, chosen to correspond to the third quartile of
the distribution obtained for the RRG of same size [57]. From
this arbitrary choice, this proportion is obviously 25% for both
RRGs. It increases almost linearly for increasing modulari-
ties, up to ∼30% for the rewired RRGs. It even increases by
almost two-fold for the Voronoi and mouse networks. Thus,
in general, a stronger community structure is clearly associ-
ated with a higher probability of large flow reductions when
removing one edge. As a result, in brain microvascular net-
works, the removal (or equivalently the occlusion) of one sin-
gle vessel yields probabilities of large blood flow reductions
that may be more than twice the prediction for graphs without
substructures.

V. CONCLUSION AND PERSPECTIVES

We have investigated the topological structure of cere-
brovascular networks, based on an anatomical network ex-
tracted from a mouse brain, model capillary networks derived
from space-filling Voronoi tessellations and different graph
models belonging to the class of Random Regular Graphs. We
have shown that the anatomical network contains substruc-
tures corresponding to communities of vessels, which are ge-
ographically localized in 3D. The proposed models including
such communities provide a reasonable representation of the
topology of cerebrovascular networks, as highlighted by their
similar loop distributions.

We have then studied how the strength of these communi-
ties affects the distribution of global flow reductions when an
edge is removed, or, equivalently, when a single vessel is oc-
cluded. For that purpose, we have shown that the resulting
flow reduction at network scale can be expressed as a function
of the initial flow rate in the occluded vessel and a topological
quantity. Both of them display probability distributions with
large tails, resulting in a large probability of rare events. The
presence of community structures even enlarges the tail of the
distribution of the topological quantity, resulting in general
in a distribution of flow reductions shifted towards larger and
larger values when the community structure becomes more
pronounced. In other words, the community structure weak-
ens the network resilience to capillary occlusions, by increas-
ing the probability of larger flow reductions, inducing a large
variability of the impact of a single vessel occlusion depend-
ing on its location in the network.

The proposed theoretical approach neglects the heterogene-
ity of vessel conductivities. In other words, by contrast
to [20, 21, 40], we ignored the contribution of vessel mor-
phology, including distributions of diameters and lengths. We
also ignored the complex rheology of blood [34, 41, 42]. Our
results are nevertheless consistent with recent work modeling
the impact of single capillary occlusion in highly resolved nu-
merical simulations accounting for blood microvascular rhe-
ology in anatomically realistic microvascular networks [40],
focusing on local flow reorganizations in the vicinity of the oc-
cluded vessel. Not surprisingly, the results, obtained for a total
of 96 occluded capillaries representing less than 1% of capil-
laries, exhibited considerable numerical dispersion, which has
been pointed out by the authors as a methodological difficulty.
Nevertheless, the median volume of the region with flow re-
ductions above 20% has been shown to increase by a factor
2.5 between capillaries with low initial flow rate and those
with high initial flow rate. This suggests that the present the-
oretical framework, which enables using graph models and
focusing on network topology, keeps enough physical ingre-
dients to be relevant.

While this does not sufficiently reduce the complexity of
the problem to yield a complete theory relating the community
structure to the shape of the distribution of flow reductions
(providing e.g full analytical derivations), it still enables to de-
duce relevant asymptotic scalings for all quantities controlling
this distribution, which considerably helps to interpret the nu-
merical results obtained in the mouse and Voronoi networks.
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Noteworthy, the last decades have seen tremendous progress
of in vivo experimental techniques, including multiphoton mi-
croscopy and laser-based techniques that enable to selectively
occlude microvessels in rodent brains [43]. This offers large
possibilities of data collection, which may be useful to vali-
date our findings. In a complementary way, the present theo-
retical framework may help enrich data interpretation, e.g. by
considering the impact of network communities on flow re-
organizations or by enabling the expected broad distribution
of flow reductions to be taken into account in the statistical
design of the studies.

Moreover, the present work provides a theoretical basis for
future studies about the impact of multiple capillary occlu-
sions [7] on cerebrovascular function. As mentioned in the
Introduction, this may help to understand the interplay be-
tween hypoperfusion and amyloid-induced neurodegeneration
in the onset and progression of AD [1]. We may in particular
speculate that the microvascular community structure evolves
with disease progression. For example, capillary occlusions
at early stages of the disease, i.e. in healthy networks, may
strengthen their community structure. This would increase the
probability of larger blood flow reductions induced by further
occlusions, providing an additional self-amplificatory mech-
anism in the positive feedback loop linking hypoperfusion
and neurodegeneration in AD [1]. In the same way, different
network organizations in different brain areas (e.g. primary
versus secondary cortex, subcortical regions, hippocampus),
which are being uncovered thanks to whole brain post-mortem
vascular network reconstructions in rodents [44], may be a
clue to explain their different vulnerabilities, e.g. understand
why the hippocampus is one of the first damaged brain regions
exhibiting cognitive deficits in AD. Long-term vascular re-
modelling, including capillary rarefaction, in normal or patho-
logical aging [45] may also contribute to modify the commu-
nity structure of vascular networks in the brain, thus providing
an additional mechanism which may explain the considerable
overlap between vascular pathology and AD [3, 5].

To investigate the above assumptions, new datasets finely
mapping the whole-brain vascular architecture of rodents in
normal aging and at different stages of various brain diseases,
including AD, are needed. Moreover, the present framework
should be enriched to account for multiple occlusions, e.g. by
introducing a perturbation approach valid in the dilute limit,
where the removal of edges can still be considered indepen-
dent of each other. Multiple network inlets and outlets should
also be considered. The vascular network within the brain
cortex is indeed fed and drained by a large number of pen-
etrating arterioles and ascending venules [9, 46], which may
contribute to enhance the network resilience to capillary oc-
clusions. By contrast, occlusions of penetrating arterioles in-
duce dramatic damage, as shown by a comprehensive series
of in vivo experiments [9, 29, 47–49]. This has been inter-
preted as resulting from insufficient compensatory collateral
flow from other network inlets through the capillary bed, as
reviewed in [46]. Our result suggest that it may alternately
be understood as resulting from the hierarchical organization
of the network, inlet (and outlet) vessels being those carrying
the largest flow rates, thus leading to the largest flow reduc-

tions, both at network scale and, by extension, recursively in
the neighborhood of the occluded vessel. This phenomenon is
likely to be increased if conductance heterogenities are taken
into account, such vessels displaying the largest conductances,
leading to correlations between high flow and high conduc-
tance, while such correlations are negligible in the capillary
network. Besides AD, this would open perspectives in the
context of ischemic stroke, where neutrophil occlusions of up
to 30% of capillary vessel have been recently discovered, pre-
venting reperfusion after recanalization of the upstream cere-
bral artery [50].

Acknowledgements.

Research reported in this publication was supported by
the European Research Council under ERC grant agreements
615102 (BrainMicroFlow) and 648377 (ReactiveFronts) and
by the NIH (awards R21CA214299 and 1RF1NS110054). We
gratefully acknowledge P. Blinder, P. Tsai and D. Kleinfeld
for sharing anatomical networks. OG wishes to thank Labo-
ratoire de Physique Théorique (IRSAMC, Toulouse) for their
kind hospitality.

Appendix A: Details on the construction of network models

All network models considered in the present paper are de-
fined using a graph description of their topology, i.e. including
a set of N vertices connected by edges. Thus, each edge i− j is
uniquely defined by its two endpoint vertices i and j. In addi-
tion, when the network model is embedded in the 3D physical
space, all vertices i have distinct coordinates (xi,yi,zi).

There is a finite number of graphs with a fixed number N
of vertices. If we assign a certain probability to each of them,
we get ensembles of random graphs. Random graphs allow
to make generic statistical predictions on real-life systems
(see [51] for a review). The most popular models are regular
graphs [25] (in which each vertex has the same connectivity
z), Erdös-Rényi graphs [52, 53], or scale-free graphs [22],
depending on the problem under consideration. Here we
consider the following models.

Random regular graphs. Random regular graphs (RRGs)
denotes a subset of graphs uniformly distributed over the
finite set of random regular graphs of size N with a given
connectivity z. Algorithms have been proposed to randomly
generate such a subset [28]. In practice, we use the Random-
Graph function of Mathematica. Note that for a graph with N
vertices, there are in total zN edge endpoints, and since each
edge has two endpoints, zN must be even. In particular, for
z= 3, as is the case in this paper, we must choose N to be even.

Rewired random regular graphs. We start from a set of
nc independent RRGs of arbitrary even size. We then pick
a pair of edges (i− j, i′− j′) at random and replace it with
(i− j′, i′− j). We iterate this random rewiring nr times. At
moderate nr, the graph keeps some remnant features of its
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initial elementary components, while for nr → ∞, it behaves
like a single RRG. The initial nc RRG graphs may have all the
same size or different ones. In most numerical applications,
we will consider a rewired RRG built from 20 elementary
RRGs of sizes 102, 96, 80, 76, 74, 74, 72, 68, 68, 64, 60, 56,
52, 48, 44, 42, 30, 18, 16, 6. These sizes correspond to those
of the communities of one of the Voronoi graphs (denoted V
in the text and defined below), see caption of Fig. 3, with odd
sizes rounded off to even numbers. Such a rewired RRG with
k rewirings will be denoted Rk.

Voronoi graphs. In addition to having mostly 3-connected
vertices, the network of capillary vessels, i.e. the smallest
vessels within the brain cortex, is space-filling [19, 32]. This
last property can be reproduced by constructing 3D Voronoi
diagrams from sets of seed points randomly distributed under
the strong constraint that there is only one seed point in each
cube of a 3D cubic grid. However, these Voronoi diagrams
have high connectivity, with many vertices of degree up
to 5. By randomly merging, pruning or adding vertices
following the geometrical constraints described in [19], we
get 3D model networks statistically reproducing most of
the morphological, topological and transport properties of
brain capillary networks [19]. Because these networks are
generated in a 3D cubic region, all boundary edges are cut
and dangling, so that their outer boundary vertex is only
1-connected. In the present paper, we recursively remove
these dangling edges, so that all remaining vertices are at least
of degree 2. For simplicity, the resulting graphs are described
as Voronoi graphs in the present paper. One of them, which
we denote V , serves as an illustration throughout the paper.

Mouse graph. We use the graph description of a large
postmortem dataset (∼ 1 mm3 and∼ 15,000 vessel segments)
from the mouse vibrissa primary sensory (vS1) cortex previ-
ously obtained by [9, 18]. While this dataset contains vessel
diameters and labels classifying vessels in arterioles, capillar-
ies and venules, we discard this information and consider that
all edges are equivalent, with unit conductivities. As above,
we recursively remove all dangling edges.

Appendix B: Communities and modularity

A graph G with N vertices can be partitioned into commu-
nities, which are subsets Ck of vertices. Intuitively, a commu-
nity Ck is such that vertices in Ck are highly connected to one
another, with comparatively fewer edges connecting them to
vertices outside the community. There is however no unique
answer to the question of what a meaningful partition of a
graph is. Under reasonable assumptions, it is possible to con-
struct many functions that quantify the relevance of a given
partition for community detection [12].

One such function which has been very much used for that
purpose in network theory is the modularity [33], which for a

given partition C into subsets Ck is defined as

µ(C ) =
1

2m ∑
k

∑
i, j∈Ck

(
ai j−

did j

2m

)
. (B1)

In this expression ai j is equal to 1 if there is an edge con-
necting vertices i and j, and to 0 otherwise, di is the number
of outgoing edges of i, m is the total number of edges, and
the sum runs over all subsets Ck in the partition. The sum
∑i, j∈Ck

ai j gives (twice) the number of edges within the set
Ck. The number did j is the number of edges that could con-
nect i and j if they were taken at random. The modularity thus
compares the mean probability of having an edge of the graph
G within a set Ck to the probability of having such an edge in
a graph G ′ where all vertices have the same degree as in G but
edges are chosen at random.

The various possible functions characterizing the relevance
of the partition lead to different methods for community de-
tection in graphs (for a review see [12]). We used modularity-
based clustering algorithms, which go through the space of
possible partitions trying to maximize the modularity. In prac-
tice, we use the FindGraphCommunities function of Math-
ematica. The algorithm finds the optimal partition with the
largest modularity for a given graph. This enables to define
the modularity of the graph, which we identify with the mod-
ularity of this optimal partition, or equivalently the maximal
modularity over all partitions C :

µ = MaxC µ(C ). (B2)

We then define the community structure of a graph as the par-
tition with this maximal modularity (B2).

Appendix C: Removing one edge

We recall that potentials are solution of Ap = b, where A
is the matrix of conductances and b is the given by the right-
hand side of Eq. (2), namely b = (0, . . . ,0,−γI′ pI′ ,−γO′ pO′)

T

(i.e. potentials pI′ and pO′ are imposed at inlet vertex I′ and
outlet vertex O′, respectively, see Fig. 7). We now examine
the consequence, on the total flow rate Q, of removing one
edge from the network. Let us first suppose, without loss of
generality, that there is some edge connecting vertices 1 and 2
and that we remove it. Let us denote by A′ the matrix Eq. (4)
with edge 1-2 removed. The new potentials p′j in the absence
of edge 1-2 are solution of A′p′ = b.

Matrices A and A′ only differ by their upper-left 2×2 cor-
ner: the off-diagonal elements are indeed given by A12 = γ12
when edge 1-2 is present, and A′12 = 0 when it has been
removed, while the diagonal elements change from Aii to
A′ii = Aii + γ12. Introducing the column vector u defined by
uT = {1,−1,0, ...,0}, this can be reexpressed as

A′ = A+ γ12uuT . (C1)

Therefore, A′ is a rank-one extension of A. The inverse of
such a rank-one extension can be obtained from the Sherman-
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Morrison formula [37]

(A+ γ12uuT )−1 = A−1− γ12
A−1uuT A−1

1+ γ12uT A−1u
. (C2)

Multiplying both members of this equation by vector bT on
the left and b on the right, we get

bT p′ = bT p− γ12
pT uuT p

1+ γ12uT A−1u
, (C3)

where p′ = (A+ γ12uuT )−1b is the solution to the flow equa-
tion with edge 1-2 removed. From the definition of u, the
scalar product of p and u is pT u = p1 − p2. As for the
scalar product bT p, we use the fact that Q = γI′(pI′ − pI) =
γO′(pO− pO′) = ΓδP, which leads to

pI = pI′ −
Γ
γI′

δP

pO = pO′ +
Γ

γO′
δP. (C4)

Then, recalling that δP = pI′ − pO′ ,

bT p =−γI′ pI pI′ − γO′ pO pO′ (C5)

=−γI′ p
2
I′ − γO′ p

2
O′ +Γ(δP)2. (C6)

Equation (C3) then directly yields

δP(Q−Q′(12)) =
γ12(p1− p2)

2

1+ γ12[(A−1)11 +(A−1)22−2(A−1)12]
,

(C7)
where Q′12 is the new total flow after removal of edge 1-2.

This equation is exact, and since there is nothing special
about vertices 1 and 2, it remains valid for any arbitrary edge
removed. Thus, in general, we have

δQi j

Q
=

γi j

Γ
1
ti j

(
pi− p j

δP

)2

, (C8)

where δQi j = Q−Q′i j, and ti j = 1+ γi j[(A−1)ii +(A−1) j j −
2(A−1)i j] only depends on the network topology and is dimen-
sionless. This equation is homogeneous and leads to Eq. (5).

Appendix D: Typical value of ti j

In this section we want to estimate the typical value of de-
nominators ti j in Eq. (6). We will do so by following a rea-
soning analogous to the ones in [21, 38]. As we shall see,
this reasoning is general and does not depend on the values
of the edge conductances γi j; we therefore keep them in this
Appendix.

As in Appendix C, we consider, without loss of generality,
that the edge is between vertices 1 and 2. The correspond-
ing ti j is defined (see Appendix C) as t12 = 1+ γ12[(A−1)11 +

(A−1)22− 2(A−1)12]. Let u = (1,−1,0, ..,0), and denote by
p̃ the solution of the equation Ap̃ = b̃, where b̃ is a vector

such that p + p̃ = p′. That is, p̃ is the correction that one
has to superimpose to the potential p in order to reproduce
the solution p′ in the absence of edge 1-2. Since we have
A(p+ p̃) = b+ b̃ and A′p′ = b, this leads to b̃ = (A−A′)p′.
Recalling that A′ = A+ γ12uuT , we finally get b̃ = qu, with
q = γ12(p′2− p′1).

The solution p̃ thus corresponds to a pressure distribution
where an ingoing edge is attached to vertex 1 and an outgoing
edge to vertex 2, with an incoming and outgoing flux equal to
some value q0 (see Eq. (3)). For p̃� 1, we have q0 ' q.

Using the definition of ti j, we then have

1− t12 =−γ12uT A−1u =−γ12

q
uT p̃ =−γ12

q
(p̃2− p̃1). (D1)

If the network is large and homogeneous enough, the solution
p̃ can be seen as obtained from the superposition of a current
q coming in at vertex 1 and going out at infinity, and a current
q coming from infinity and going out at vertex 2. The flux
q entering from outside at vertex 1 will spread evenly along
the z wires of the graph connected with it, so that each edge,
among which edge 1-2, will carry a flux q/z. Similarly the
flux outgoing at 2 will create a flux q/z in all edges arriving at
2, in particular the edge from 1 to 2. By superposition, the flux
from 1 to 2 will be γ12(p̃1− p̃2) = 2q/z. Thus, using (D1), we
get ti j = 1−2/z. The prefactor in Eq. (6) is then equal to

1
ti j

=
z

z−2
, (D2)

which, for connectivity z = 3, yields a prefactor 3.

Appendix E: Distribution of the logarithm of the flow reduction:
asymptotic scaling and position of the maximum

Equation (6) relates the flow variation δQ due to the re-
moval of an edge with flow rate q as δQ = q2/t. As men-
tioned in Section IV, both q and t are distributed according
to Cauchy distributions and they may be correlated. How-
ever, for large RRGs, we have shown that the Cauchy dis-
tribution of t is narrow (Fig. 8), so that we can assume that
fluctuations of t are small enough to be neglected compared
to flow rate fluctuations. We further assume that the abso-
lute value of q is distributed following the Cauchy distribu-
tion P(|q|) = 2

πQc
1

1+(|q|/Qc)2 [39], where Qc is the smallest
flow rate characterizing the power law regime.

Replacing t by its median value, we get from Eq. (6)

P(δQ) = P(q)
dq

dδQ
∼ 1√

δQ(1+δQ/(3Q2
c))

(E1)

for the distribution of δQ. Setting X = ln(δQ) and recalling
that p(X)dX = P(δQ)dδQ, we have

p(X)∼ eX/2

1+ eX/(3Q2
c)
, (E2)
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and thus

ln p(X) = a+
X
2
− ln

(
1+

eX

3Q2
c

)
, (E3)

where a is some constant that accounts for the prefactor in
(E2). At small values of δQ we have X →−∞ and therefore
the scaling behaviour

ln p(X)' a+
X
2
. (E4)

At large values of δQ we get

ln p(X)' a′− X
2
, (E5)

with a′ some constant. Besides, the root of the derivative
of Eq. (E2) yields the maximum of the distribution p for
δ̂Q = 3Q2

c . Finally, in the limit of large sizes, RRGs of con-
nectivity 3 with one additional inlet and outlet behave like the
union of two balanced binary trees of equal height H [37],
with roots corresponding to the inlet and outlet. Thus, we
have N = 2(2H − 1)−Nl , Nl = 2(H−1) corresponding to the
number of leaves that merge to connect the two trees. For
such a graph, the distribution of absolute flow rate is fully de-
scribed by the power-law regime, so that Qc is equal to the
lowest value of the distribution, i.e. in the graph leaves. As
a result, Qc = Q/Nl . Combining these two equations leads to
Qc = 3Q/(N+1), so that, in the limit of large sizes, δ̂Q scales
as 1/N2.
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4.3 Successive occlusions
In the previous section, we have laid the fundation of a generalized dilute regime formalism able
to account for both the topological particularities and flow organization of brain micro-vascular
networks (Eq. (9) for networks with unit vessel conductance and Eq. (C8) for the general case).
However, this study was limited to the removal of a single edge. In the following, our objective
is to unravel the different contributions of brain micro-vascular network heterogeneities in the
context of multiple occlusions. To do so, we investigate the evolution of the flow properties during
this occlusion process in model networks with controlled degrees of heterogeneity.
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Figure 4.2: Percolation analysis performed on a bio-mimetic capillary bed with dipolar
boundary conditions shows that the flow organization not only affects fluctuations of
the flow reduction but also the average decrease and disconnection probability. a)
Evolution of the average inlet flow rate decrease with dipolar boundary conditions obtained for
500 realizations (black dots) and with fixed pressure drop applied on two opposite faces (blue
dots). Inlet flow decrease associated to different progressive occlusion realizations with dipolar
configuration of sources: each occlusion increment is added with memory of the previous ones
(thin colored dashed lines). Linear fit y = 1− 2.75x (black line). Effective medium prediction of
Eq. (4.1) (thick blue line). b) Disconnection probability (black dots). Power-law fit y = 9.5x2.6.

Impact of flow organization Here, the study is performed on a bio-mimetic capillary bed [8]
with dipolar injection, i.e. flow is injected and pumped by and from only two edges with low
topological distance at the network surface. This network has been choosen for this study as it
allows to easily manipulate the boundary conditions with fixed topological structure. Fig. 4.2a
shows that the large fluctuations highlighted in the previous section persist for successive occlu-
sions. Interestingly, the computed average differs slightly from the effective medium prediction
of Eq. (4.1): the computed slope in the linear regime is found to be equal to 2.75 instead of 3.
This deviation cannot be explained by the topology of the bio-mimetic network as it does not
appear while performing the percolation analysis on this network with fixed pressure drop applied
on two opposite faces1 (see Fig. 3.1 for an illustration of the organization of the pressure field in
such conditions). Moreover, the average fraction of disconnected inlets, which is equivalent to the

1This configuration of boundary conditions corresponds to the one applied in [80] in order to perform the
percolation analysis.
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percolation probability in the case of a single input, shows a different scaling law from [80]. Here,
the probability to break the flow increases non-linearly since the first percentages of occlusions
(Fig. 4.2b).

Impact of micro-vascular network topology As a second step of this study, we reproduce
the above analysis with a model network only accounting for the micro-vascular topology. To do
so, we impose the inlet and outlet pressures on one arteriole and one venule randomly choosen
among the 14 arterioles and 28 venules. We also set all the conductances at the same value.
In addition, contrary to the analysis performed in the preliminary section where only capillaries
were occluded, here, all vessels can be occluded including arterioles and venules. As expected,
the flow decrease is still submitted to large fluctuations (Fig 4.3a). More interestingly, the micro-
vascular topology induces an increased robustness to flow decrease in the first occlusion percentages
compared to bio-mimetic networks (Fig 4.3a). The flow decrease exhibits two different linear
decays characterized respectively by a first slope of 2.17 and a second slope, identical to the
previous study on bio-mimetic networks, of 2.75. This change in slope is located around 20% of
occlusions (Fig 4.3a). As this break in slope was not present in the previous analysis, we can
assert that it is a consequence of a topological difference between micro-vascular networks and
bio-mimetic networks. Bio-mimetic networks only mimicking the capillary bed, we could see here
the impact of the composite nature of micro-vascular networks: tree-like arterioles and venules
and mesh-like capillary bed. Here, the disconnection probability does not change fundamentally
and sees only small parametric corrections (Fig. 4.3b).
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Figure 4.3: Percolation analysis on the mouse micro-vascular networks displayed in
Fig. 5 or Fig. S1 of Chapter 2 with only one inlet and outlet and uniformized conduc-
tances hihlights a change in slope around pocc = 20% delimiting a regime of increased
flow robustness for a low percentage of occlusions. a) Evolution of the average inlet flow
rate decrease (black dots). Linear fit y = 1 − 2.17x (black line). Linear fit y = 1.1 − 2.75x (red
line). Effective medium prediction of Eq. (4.1) (thick blue line). b) Disconnecting probability
(black dots). Power-law fit y = 11x2.8 (black line).

Impact of multiple inlets/outlets As a third step of this study, we start from the previ-
ous configuration but now allowing all arterioles and venules to perfuse and drain the micro-
vasculature. Fig. 4.4a shows a drastic decrease of the fluctuations around the computed average.



4.3. SUCCESSIVE OCCLUSIONS 101

On the other hand, the two regime decay remains and the value of the associated slopes slightly
decreases, 1.9 for the first regime and 2.6 for the second and the value of the transition between
the two regimes appears to slighly increase. Moreover, the scaling law associated to the fraction
of disconnected arterioles sees no drastic changes except the value of its pre-factor which goes
from 11 to 6 (Fig. 4.4a). However, even if the individual disconnection probability does not much
vary with the addition of all inlets/outlets, the addition of multiple inlets and outlet considerably
increase the flow resilience at the scale of the network. This can be emphasized by a simple first
order evaluation of the total disconnection probability, i.e. the probability to observe a zero flow
at every inlets, by 〈f〉nA , where nA is the number of inlets in the system. With nA = 14 in our
micro-vascular networks, the total disconnection probability can be estimated to be about 10−5

for 40% of occlusions. As a comparison, the percolation threshold is at about 40% of missing
bonds in bio-mimetic networks with boundary conditions classically used in percolation analysis
(Fig. 4.1a). This result is quite interesting. It suggers that despite of the low resilience of the flow
with a unique dipolar configuration of sources, the increase in inlets/oulets number considerably
strengthens the flow resilience to an extent that it becomes more resilient than a flow induced by
boundary conditions classically used in percolation theory. The fact the multi-dipole configuration
of sources is precisely the one that appears in the brain micro-circulation can lead us to think
that this configuration has emerged from an evolutionnary process tending to optimize blood flow
resilience in this vital organ.
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Figure 4.4: Percolation analysis on micro-vascular network with all arterioles and
venules and uniformized conductances displays a drastic decrease of flow decrease fluc-
tuations. a) Evolution of the average inlet flow rate decrease (black dots). Linear fit y = 1−1.9x
(black line). Linear fit y = 1.1 − 2.6x (red line). Effective medium prediction of Eq. (4.1) (thick
blue line). b) Average fraction of disconnected arterioles (black dots). Power-law fit y = 6x2.8

(black line).

Impact of restraining the occlusion process to the capillary bed Until there, in this
section, we have performed the occlusion process independently of the vessel type. However, as
stated in the Preliminary Section, the occlusions that are suspected to trigger Alzheimer’s disease
occur in the capillary bed. In this ultimate analysis, starting from the last configuration, we now
bias the occlusion process to occur uniquely within the capillary bed. The idea underlying this
procedure is to see if the arterioles and venules can create topological unalterable paths reinforcing
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the global flow resilience to random occlusions. Unfortunately, restraining the occlusion process
to the capillary bed only leads to an other slight parametric correction of the previous scaling laws
(Fig. 4.5). Nevertheless, by comparison to Fig. 4.1, this result indicates that something relevant to
understand cerebral blood flow decrease induced by capillary occlusion was neglected in this study:
the conductance heterogeneity. In the light of this ultimate analysis, it seems clear that arterioles
and venules as highly conductive trees are in themselves an element of robustness, preventing the
emergence of the second decay regime and decreasing significantively the probability to see an
inlet disconnected.
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Figure 4.5: Percolation analysis restrained on the capillary bed of micro-vascular net-
works with uniformized conductances shows only parametric corrections to the pre-
vious results. a) Evolution of the average inlet flow rate decrease (black dots). Linear fit
y = 1 − 1.4x (black line). Linear fit y = 1.1 − 2.2x (red line). Effective medium prediction of
Eq. (4.1) (thick blue line). b) Average fraction of disconnected arterioles (black dots). Power-law
fit y = 2.1x2.8 (black line).

To conclude this section, we recap the key points of this study:

• The dipole flow organization not only produces large fluctuations around the average flow
reduction as shown in Section 2, but also modifies the average flow reduction in itself and
the percolation probability expected by classical results on percolation on lattices.

• The topological structure of micro-vascular networks induces a two linear regime decay
separated by a change in slope for about 20% of occlusions. This peculiar behaviour is
probably induced by the composite nature of micro-vascular networks connecting tree-like
arterioles and venules with mesh-like capillary bed.

• The presence of multiple inlets and outlets, i.e. arterioles and venules, considerably in-
creases the resilience of the flow to occlusions by reducing the fluctuations of inlet flow
decrease and total disconnection probability. This may suggest the presence of a passive
flow compensatory mechanism between arterioles (or venules) in the case of a flow decrease
in a neighbouring one.

• At the cost of a slightly steeper decrease of the first decay regime, high arteriolar and
venular conductances create preferential and unalterable paths decreasing drastically the
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fraction of disconnected arterioles and allowing to prevent the emergence of the second
linear decay regime of inlet flow reduction, in the context of capillary occlusions. As a
consequence, arterioles and venules play an important role in blood flow resilience in brain
micro-circulation.

4.4 Perturbations induced by capillary occlusions

In percolation theory, the question of the quantification of the local perturbation of the flow
induced by edge removals is rarely adressed. However, in the context of biological systems, and
here brain micro-vascular networks, the flow is oftenly coupled to (bio-)chemical reactions. Given
that (bio-)chemical reactions have their own kinetics, flow kinetics should be compatible with
reaction kinetics in order to let the time for the reaction to settles but, at the same time, to avoid
stagnation points. In that extent, transport in biological media should satisfy a certain kind of
optimality criterion [122]. In this brief section, such local flow perturbations are investigated by
computing their statistics accross two networks with different boundary conditions: the mouse
micro-vascular network with occlusions in the capillary bed and the bio-mimetic capillary bed
with fixed pressure drop applied on two opposite faces. The use of two different networks with
different flow organizations aims to test the potential independence of these flow perturbations
on the network topology and flow organization. This analysis is performed for low fraction of
occlusions (1%, 5% and 10%) where the dilute regime of percolation applies. Furthemore, the
perturbation statistics are obtained by performing averages on 10 realizations in order to limit the
impact of the inlet flow fluctuations that have been highlighted in the previous section. Hence,
we define δqi0 is the perturbation of the initial flow of edge i as follows:

δqi0 =
qi

qi0(1− αpocc)
(4.2)

where α is the slope of the linear decay corresponding to the studied range of occlusions, qi is
the flow of edge i after the occlusion of a fraction pocc of vessels. As shown in Eq. (4.2), we make
discard the linear tendency from the computation of the flow perturbation. Finally, we define pδq0 ,
the probability density function of the above local flow perturbations.

Fig. 4.6 shows the large perturbations of the flow in the shape of a Cauchy distribution,
independently of the applied boundary conditions and the considered network. The emergence
of such Cauchy distributions is not surprising in the light of this thesis work. In Appendix D
of Section 2, we indeed showed that occlusions, or edge removals, were equivalent to introducing
a potential correction at each node of the removed edges in order to produce flow correction of
same magnitude and opposite direction within the removed edges (Eq. (D1)). This configuration
closely corresponds to the dipole flow. Further, we have shown that this dipole flow configuration
induces a Cauchy law distribution on networks (see Section 1 of Chapter 2).

The fraction of vessels perturbated by the introduction of occlusions can be obtained by
the computation of the integral of the Cauchy distribution. This integral is found to evolve non-
linearly with the fraction of occluded vessels highlighting the long range of the perturbations
induced by capillary occlusions. Fig. 4.6 shows that the integral of the Cauchy distribution is
approximately equal to 8%, 26% and 40% respectively for 1%, 5% and 10% of occlusions in the
bio-mimetic network and to 7%, 23% and 33% respectively for 1%, 5% and 10% of occlusions in
the micro-vascular networks.
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Figure 4.6: Random occlusions in flow networks induce broadly distributed flow per-
turbations in the shape of a Cauchy distribution independently of network topology
and flow organization. a-b) Flow distribution in bio-mimetic capillary networks with fixed
pressure drop applied on two opposite faces and the associated probability density functions of
perturbation statistics induced by vessel occlusion (dashed line). Cauchy fits with integral 0.08
(blue full line), 0.26 (red full line) and 0.40 (green full line). c-d) Flow distribution in micro-
vascular networks with anatomically realistic boundary conditions and the associated probability
density functions of perturbation statistics induced by capillary occlusion (dashed line). Cauchy
fits with integral 0.07 (blue full line), 0.23 (red full line) and 0.33 (green full line). In b) and d),
blue, red and green respectively label the results for 1%, 5% and 10% of occluded vessels.

Quantitavely, it appears that there is a little dependency on the flow organization or/and the
network topology but this has to be investigated with more accuracy, performing for example a
systematic analysis of this Cauchy law integral, to provide a definitive conclusion. This difference
might be linked to the factors of flow robustness that we have highlighted in the previous Section.
Given that asymptotic scalings for the Cauchy distribution are a uniform distribution and a power
law with exponent -2 (see Section 1 of Chapter 2), we can easily compute the fraction of vessels
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which are submitted to large flow perturbations, δq0 < 0.1 and δq0 > 10:




f(δq0 < 0.1) =
2C(pocc)

π

∫ 0.1

0

dδq0 = 0.1
2C(pocc)

π

f(δq0 > 10) =
2C(pocc)

π

∫ ∞

10

(δq0)
−2dδq0 = 0.1

2C(pocc)

π

(4.3)

where C(pocc) is the Cauchy integral.
With this quick estimation, we can conclude that beyond inducing a break in the flow at

their location, occlusions induce large fluctuations to a fraction of vessels of the same order of
magnitude than the fraction of occluded vessels themselves. This mechanism reinforces all the
more the detrimental consequences of capillary occlusions on cerebral blood flow and metabolism.

4.5 Conclusion and perspectives

In this section, we investigated the global flow decrease in brain micro-vascular networks induced
by occlusions of capillary vessels. Motivated by the observation of a linear decrease of the global
flow, in average, with the increase in the fraction of occluded vessels until 20% [21], we have adopted
the point of view of percolation on networks, which predicts such type of linear decrease for the
considered range of occlusion fractions. However, both the topology of the micro-vasculature and
the resulting organization of the blood flow have been found to produce a new phenomenology
poorly investigated to the best of our knowledge by state of the art theories. These sources of
complexity have led us to develop novel approaches to describe accurately the mechanism leading
to the emergence of these new properties. Hence, we have laid the fundation of a generalized
framework to study the dilute regime of percolation with non-trivial flow organization and network
toplogical structures. Within this framework, we have notably unveiled that the flow reduction
induced by a single occlusion has a quadratic dependence on the flow initially present in the vessel
and is inversely proportionnal to a topological term. We have shown that this topological term is
sensitive to the presence of a community structure in networks. In particular, for micro-vascular
networks, this topological term is distributed according to a Cauchy law, increasing the probability
to observe large flow reductions compared to networks with no underlying community structure.

Next, we have performed a quantitative study of the influence of different sources of com-
plexity present in the micro-vascular structure on the global flow decrease and the probability
to disconnect a micro-vascular inlet, or arteriole, for successive occlusions. In particular, in this
second part, we have focused on the impact of, on one hand, the composite nature of the micro-
vasculature which is made of highly conductive and heterogeneous tree-like structures connected
by homogenous mesh-like networks, and, on the other hand, the large density of inlets and outlets.
Unfortunately, all these particularities do affect, at least parametrically, the global flow decrease
and the arteriole disconnection probability. However, more interestingly, some elements appear
to be invariant. First, the dipole flow organization induces a power law evolution of the inlet
disconnection probability since the very first percentages of occlusions. Secondly, in agreement
with the results presented in Section 2, such flow organization generates large fluctuations of the
flow decrease around a linear average trend. Thirdly, the observed transition in the decay of
the global flow decrease in micro-vascular networks for about 20% of occlusions is undoubtedly
a consequence of the peculiar topological structure of the micro-vascular networks. Fourthly, the
presence of multiple inlets and outlets, without changing significantively the inlet disconnection
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probability, drastically reduces the global flow decrease fluctuations around the computed aver-
age. Finally, we have shown that vessel occlusions induce large perturbations of the flow within a
fraction of vessels comparable to the fraction of occluded vessels.

Overall, the study presented in this chapter emphasizes that beyond on site break in the
flow, capillary occlusions exhibit at least two other major detrimental consequences: the decrease
of the global flow and the large perturbations of the flow within a fraction of vessels of the same
order than the fraction of effectively occluded vessels. The percolation framework that we have
developed in order to describe the impact of a single occlusion on blood flow organization in
Section 2 is only the first step in the way to model the impact of multiple vessel occlusions on
brain micro-vascular networks with their full complexity. The fact that the average global flow
decrease in the dilute regime, as shown in Section 3, is still linear while increasing the complexity
is a good sign that our framework can be extended. Within this framework, it could be notably
interesting to describe the mechanisms that lead to the drastic decrease of global flow fluctuations
in the presence of multiple inlets and outlets. Such a description could importantly benefit to
the understanding of potential compensatory mechanisms ensuring an increased resilience of the
blood flow supply to brain cells. Moreover, performing a purely topological percolation analysis,
i.e. focusing on the size and number of connected components, on the micro-vascular networks
could provide information on the mechanism that leads to the observed transition around 20% of
occlusions in the decay of the global flow. This transition has been shown to induce a discontinuous
change in slope in micro-vascular networks with uniform conductances. This may indicate the
presence of a topological first order phase transition [136] at this fraction of occlusions with
potential disconnection of large scale vessel clusters. This should be investigated in the future
by the study, for instance, of the evolution of the distribution of disconnected cluster sizes. It
would be interesting to perform this study in comparison to the study that we have led in this
thesis on the community structure of micro-vascular networks. Conjointly, it seems appropriate
to investigate more precisely why this sharp transition in micro-vascular networks with uniform
conductances is avoided in anatomical micro-vascular networks. This could be a clue to progress
on the understanding of the role of arterioles and venules on network robustness and/or flow
resilience [118] and consequently on the understanding of the physical mechanism linking micro-
vascular occlusions to cognitive dysfunction.

To conclude this chapter, we stress on a critical point of this study. In Alzheimer’s disease,
occlusions have been shown to be mediated by White Blood Cell (WBC) adhesion on vessel
walls. In that extent, occlusions result from a dynamical process directly induced by the micro-
vascular transport properties in themselves. Consequently, WBC can potentially only occlude
vessels with non-zero flow rate. This defines a conceptual framework slightly different from the
classical percolation approach where edges can be removed independently of their flow value. In
that extent, the percolation analysis presented above could consist in a lower bound of the effective
impact of occlusions in the micro-circulation [137]. This remark invites potentially to treat WBC
mediated occlusions on a dynamical point of view rather than on a static one to account for the
consecutive re-organization of the flow after each occlusion. More generally, whether the occlusion
process is tackled from a dynamical or static point of view, it could be refined by considering some
correlations between the spatial location of occlusions or weighting the occlusion probability by a
coefficient accounting for the local flow magnitude or/and vessel diameter.



Chapter 5

General conclusion and perspectives

Blood circulation supplies organs with vital chemical species, e.g oxygen and nutrients, maintains
the physiological constants at their optimal value and removes metabolic waste. Brain perfusion
is mediated at the cellular scale by a system of small vessels whose diameters range from a few to
hundred microns: the micro-vascular networks. These micro-vascular networks have a composite
structure including tree-like supplying and draining networks, known respectively as arterioles and
venules, connected together by a space-filling network: the capillary bed. Beyond maintaining
physiological constants, brain micro-vascular networks have been shown to play an active role in
the regulation of the cerebral blood flow in order to match the increase of the metabolic demand
induced by brain activation. This mechanism is called neuro-vascular coupling.

Despite of the essential role of blood flow in making neurons thrive and in preserving neuronal
life as much as possible under pathological stress, its organization at the micro-vascular scale
is poorly understood. The first elements of description of blood flow organization in micro-
vascular networks have emerged only recently principally thanks to the improvement of imaging
techniques. Such techniques allow direct measurements of hemodynamic quantities, e.g. Red
Blood Cell velocities, but also imaging the micro-vascular network structure, which enable to
perform realistic blood flow simulations on anatomically accurate networks. On a medical point
of view, some of these imaging techniques, while offering poor spatial resolutions, have turned out
to be of a great help in the understanding of cerebral pathologies. Hence, for instance, functional
Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET) have highlighted
the vascular component of Alzheimer’s disease highlighted by a decrease of the cerebral blood flow
jointly with the cognitive decline [138]. More recently, thanks to in vivo optical imaging technique
with much higher spatial resolution„ a micro-vascular occlusive process has been proposed as a
potential biological mechanism leading to the cognitive decline in mice [21].

In that context, the aim of this thesis has been to unveil the blood flow organization and
its transport properties in healthy but also in partially occluded brain micro-vascular networks.
Based on highly resolved blood flow simulations in anatomically accurate mouse brain micro-
vascular networks, our aim was to understand how the local description of the flow and the
structure of the micro-vascular networks interplay to give rise to flow organization and transport
properties at the network scale. To do so, we have adopted different statistical physics formalisms
appropriate to this objective.

In Chapter 2, we have first highlighted the large distributions of blood flow and transport
properties in the brain micro-circulation. We have notably revealed the crucial role of long time
transport dynamics in the supply of vital chemical species and on the removal of metabolic wastes.
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This observation is one of the key results of this thesis work as no experiment and theoretical ap-
proach, until now, has described with such a level of accuracy this part of the transport effectively
involved in these vital biological mechanisms. Furthermore, we have ensured the reproducibility
and the generality of this observation providing a physical explanation linking the emergence of
these flow properties to the structure of micro-vascular networks. Hence, we have shown the close
correspondance between the micro-vascular blood flow organization and the one engendered by
dipolar flows on random networks. From these insights, we have derived a semi-analytical stochas-
tic model belonging to the class of Continuous Time Random Walks, which accounts for such a
non-trivial flow organization. This model is in good agreement with our (reactive) transport sim-
ulations and notably with the evolution of the size of regions with pathologically low oxygen and
amyloid concentrations.

In Chapter 3, we have investigated the impact of the disordered structure of the homogeneous
and space-filling capillary bed on the flow organization. We have demonstrated the presence of
local flow anti-correlations adapting a model coming from the physics of granular media, the
q-model. Notably, we have shown that these anti-correlations induce a narrowing of the flow
fluctuations compared to the mean-field exponential solution of the q-model. Finally, we have
established that these anti-correlations result from the limitations of homogenous networks to
dissipate high pressure gradients.

In Chapter 4, we have focused on the impact of micro-vascular occlusions on blood flow
organization. First, we have demonstrated that the community structure, i.e. substructures with
vertices more connected to each other than to other vertices, is a factor of vulnerability of the
blood flow supply in micro-vascular networks under localized damages. For this, we have developed
a new theoretical framework within the dilute regime of percolation. We have also highlighted
the contribution of various sources of complexity present in brain micro-vascular networks, e.g.
conductance and topological heterogeneities or multiple inlets and outlets, on blood supply re-
silience. Our findings highlight that it is difficult to make accurate predictions on the impact of
occlusions on blood flow decrease and inlet disconnection probability without accounting for this
whole complexity. However some important invariant behavior has appeared. The topology of
micro-vascular networks is responsible for a change of behaviour in the global flow rate decrease
for about 20% of occluded capillaries. The presence of multiple network inlets and outlets con-
siderably reduces the fluctuations precedently highlighted by our renewed percolation framework.
This observation could be seen as a compensatory mechanism aiming to increase the resilience of
the blood supply function of micro-vascular networks. The highly conductive tree-like structure
of arterioles and venules creates preferential paths which are not altered by capillary occlusions.
These robust structures prevent the increase of the global flow reduction after 20% of occlusions
and drastically decrease the arteriole disconnecting probability. Eventually, we have shown that
occlusions induce large flow perturbations in addition to the global decrease of the flow already
highlighted in [21]. We have provided a physical explanation to these perturbations and the first
elements of quantification of the magnitude of their impact on the remaining vessels. The work
presented in this thesis does not cover all the aspects of the modelling of blood flow and transport
in brain micro-vascular networks and some questions or improvements could be interestingly be
investigated in the context of future research.

In Chapter 2, we have identified four major issues that would be interesting to be adressed
in future research. First, it would be very useful to perform blood flow and transport simulations
on larger, and more specifically deeper or even whole brain, cerebral micro-vascular networks to
quantify the impact of a change of the system size on the observations that we made in this
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work. This would allow to improve the accuracy of our transport model. In the same spirit, it
would be also very interesting to have large and anatomically accurate human brain micro-vascular
networks to confirm that they have the same transport properties as the mouse networks used here.
Secondly, the impact of capillary bed heterogeneities, notably induced by vessel shrinkage [11,14–
17,20], could be an other interesting perspective to explore specially in the context of Alzheimer’s
disease. Like occlusions, vessel shrinkages have been identified as a mechanism leading to cerebral
blood flow decrease in Alzheimer’s disease. Investigating the impact of the such vessel diameter
modifications on blood flow and transport properties could provide a complementary analysis to
the one performed in this thesis. The third question concerns the improvement of the chemical
reaction modelling. In this thesis, we have made important simplifying approximations specially
for oxygen reaction kinetics. A very promising improvement of this thesis work would be to account
for the whole oxygen reaction kinetics within the micro-vasculature and notably to account for the
oxgyen desorption kinetics from the red blood cells. This could lead to a modelling framework,
accounting for all the reactive processes, oxygen desoprtion as we have already said but also
metabolic kinetics, into a single reactive transport model. Finally a further improvement of
the transport model that we have designed in this thesis would be the introduction of a spatial
dependency of the reactive transport model. This would allow to predict the spatial distribution
of concentrations accross the micro-vasculature and to perform local spatial averages providing a
description of the concentrations of chemical species in brain tissues. In addition to these four
major perspectives, we identify three perspectives slightly apart from this thesis work. First, it
would be interesting to obtain accurate experimental data on the late time transport regime, which
plays a central role in the onset of brain pathologies. The principal challenge in the production of
such data is to prevent the recirculation of the contrast agent. A solution, if realizable, would be to
perform the acquisition by multi-photon microscopy of a bolus experiment with non-metabolizable
and low diffusible contrast agent in rodents under dialysis. The second perspective concerns the
improvement of minimally invasive imaging techniques. We have stated in the State of the Art
(Section 2) that the determination of blood flow by minimally invasive imaging techniques was
in fact an inverse problem necessitating a “transfer function” to account for unresolved transport
processes below the image pixel size. Until here, only empirical functions were used. It would
be interesting to see if the physics-based transport framework that we developed in this thesis
may provide a new operational tool for these techniques for these techniques. Finally, it would
be interesting to see in what extent our transport model can be adapted to other organs or other
regions of the brain.

In Chapter 3, the demonstration of the presence of local flow anti-correlations in random
flows in homogeneous networks offers also interesting perspectives. First, on a theoretical point of
view, the design of a correlated q-model has, to the best of our knowledge, never been performed
in the litterature. The resolution of this computational challenge could potentially lead to new
classes of solutions for this process that can be used in a wide range of fields from physics of
granular media to theoretical chemistry and obviously flows into disordered porous media. On the
point of view of flows into disordered porous media, the presence of such anti-correlations raises the
question of the potential non-negligible correlations in the sampling of the velocity distribution
by Lagrangian particles. This question has already been tackled in the context of transport
into heterogeneous disordered porous media, e.g. [81], but not in homogenous disordered porous
media. Furthermore, it has been shown in [128] that mass conservation in the q-model induces
non-local mass correlations in space and in time. The result of the competition between these
correlations and the anti-correlations that we have unveiled in this thesis is an other interesting
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question. On the point of view of reactive transport, these anti-correlations are expected to be
a passive mechanism leading to the homogeneization of concentrations in homogeneous networks.
Indeed, as highest flows have a tendency to mix with lowest ones, we could expect that these
anti-correlations induce a tendency of the highest concentrations to be mixed with the lowest
ones. This deserves to be investigated in more details. Finally, in the context of micro-vascular
circulation, this correlated q-model could be a relevant tool to predict the concentrations of red
blood cells accross the micro-vasculature opening new avenues for the description of oxygen supply
to brain cells.

In Chapter 4, the design of a renewed percolation framework offers interesting perspectives
to predict accurately the perturbation of the blood flow organization in micro-vascular networks in
its full complexity. The first generalization step would be to extend this framework to an arbitrary
number of micro-vascular inlets and outlets. With this formulation, it will be useful to study or
demonstrate the existence of a passive compensatory mechanism between arterioles and between
venules. Then, this framework could be generalized to an arbitrary number of occlusions in order
to predict the global blood flow decrease induced by a realistic fraction of vessel occlusions to
mimick the first stages of Alzheimer’s disease. This would be a crucial step in the understanding
of the onset and the progression of this disease. The last step would be to account for the
whole complexity of the micro-vascular networks but given the parametric dependence on such
a large number of micro-vascular network particularities, i.e. a specific conductance distribution
in arterioles and venules and a biased sampling of vessels to occlude only capillaries, it is likely
that an accurate description of blood flow corrections would not be obtained in an other way
than by numerical resolution. Finally, two issues have not yet be addressed. First, it would be
interesting to investigate the transition from the first regime to the second one in the decrease of
the average blood flow. An analysis of the distribution of cluster sizes and/or an analysis of the
number of independant clusters might highlight a (first order) topological transition for 20% of
occlusions. If such a transition exists, this would be characterized for instance by the creation of
disconnected sub-graphs. This would be a major aspect of the decrease of the resilience of the
blood supply function of micro-vascular networks in the case of a moderate fraction of occlusions.
Furthermore, it would be interesting to see if the spatial localization of these sub-graphs matches
with the spatial localization of the communities that we have unveiled in this thesis. Finally,
the quantification of the impact of the flow perturbations induced by capillary occlusions has to
be completed in order to predict notably the impact of such perturbations on the distributions
of the concentration of chemical species accross the micro-vasculature. For nutrients or oxygen,
we expect the emergence of regions with high concentrations, in which the flow has considerably
increased, and the emergence of regions with low concentrations, downstream to the regions where
the flow has considerably decreased. Conversely, for waste, we expect the emergence of regions
with low concentrations, in which the flow has considerably increased, and the emergence of regions
with high concentrations, downstream to the regions where the flow has considerably decreased.
This mechanism could contribute to alterate the brain metabolic processes with possible link with
the progress of neuro-degenerative diseases like Alzheimer’s and raises the question of optimal
transport in brain micro-vascular networks.
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Abstract Micro-vascular networks play a key role in the blood supply to brain cells: they ensure
an accurate delivery of oxygen and nutrients and the removal of toxic metabolic wastes. The joint
alterations of these networks and of the cerebral micro-circulation have been recently highlighted
as a critical mechanism in cognitive decline in (micro-)strokes or neuro-degenerative diseases like
Alzheimer’s. However, little is known about how the structure of brain micro-vascular networks
influences the blood flow organization and its transport properties.

In a first part, we demonstrate that the micro-vascular structure drives the blood flow organi-
zation similarly to dipole flows on random networks. This organization implies anomalous transport
properties characterized by a broad distribution of Lagrangian particle travel times in the micro-
vasculature. These transport properties are successfully captured by our Continuous Time Random
Walk model which predicts notably the non-linear increase of the size of areas with abnormal con-
centrations of oxygen or metabolic wastes with global blood flow reduction. In a second part, we
highlight the presence of local flow anti-correlations in homogeneous random networks. We demon-
strate, thanks to the q-model framework, that these anti-correlations result from the limitations of
such networks to dissipate the pressure along their edges. In a final part, we highlight that the spa-
tialized community structure of micro-vascular networks weakens their resilience to vessel occlusions
compared to unstructured random networks. We quantify the role of these communities thanks to the
design of a model inspired by percolation theory which allows to account for micro-vascular flow and
structure heterogeneities. Furthermore, we show the existence of large flow perturbations induced
by vessel occlusions. This work provides new theoretical tools to understand the onset and/or the
progression of neuro-degenerative diseases.

Résumé Les réseaux micro-vasculaires jouent un rôle clé dans l’apport sanguin aux cellules céré-
brales : ils assurent un approvisionnement précis en oxygène et nutriments et l’évacuation des déchets
métaboliques toxiques. Les altérations conjointes de ces réseaux et de la micro-circulation cérébrale
ont été récemment mises en évidence comme un mécanisme critique dans le déclin des capacités
cognitives lors de (micro) accidents vasculaires cérébraux ou de maladies neuro-dégénératives comme
la maladie d’Alzheimer. Cependant, le lien entre la structure des réseaux micro-vasculaires cérébraux,
l’organisation de l’écoulement sanguin et ses propriétés de transport reste un mystère.

Dans une première partie, nous démontrons que la structure micro-vasculaire détermine l’organi-
sation de l’écoulement sanguin similairement à un écoulement dipolaire sur un réseau aléatoire.
Cette organisation implique des propriétés de transport anormales caractérisées par une distribution
large des temps de trajet des particules lagrangiennes dans la micro-vasculature. Ces propriétés de
transport sont capturées avec succès par notre modèle de Marcheur Aléatoire en Temps Continu qui
prédit notamment l’augmentation non-linéaire de la taille des régions présentant des concentrations
anormales en oxygène ou en déchets métaboliques avec la diminution du débit sanguin global. Dans
une seconde partie, nous dévoilons la présence d’anti-corrélations, localement dans l’écoulement, dans
les réseaux aléatoires homogènes. Nous démontrons, grâce au cadre théorique du q-model, que ces
anti-corrélations résultent de la limitation de ces réseaux à dissiper la pression le long de leurs liens.
Dans une dernière partie, nous dévoilons que la structure en communautés spatialisées des réseaux
micro-vasculaires fragilise leur résilience à l’occlusion de vaisseaux par rapport à des réseaux aléatoires
non-structurés. Nous quantifions le rôle de ces communautés grâce au développement d’un modèle
inspiré de la théorie de la percolation qui permet la prise en compte des hétérogénéités de structure
et d’écoulement dans la micro-vasculature. Enfin, nous montrons l’existence de larges perturbations
de l’écoulement induites par ces occlusions. Ce travail fournit de nouveaux outils théoriques pour
comprendre le déclenchement et/ou la progression de maladies neuro-dégénératives.
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