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Abstract

Since the development of high performance computers, numerical simulations have evolved into
an important scientific tool by means of mathematical modeling to address physical problems
that are complex to handle experimentally. Predicting the behavior of physical systems which
are not directly observable helps to design and optimize new technology. Computational fluid
dynamics in specific aims to understand natural flow phenomena as well as to design and operate
engineering processes in industry. With the continuous increase in computational power every
year, the question of how to efficiently use computational resources becomes increasingly more
important. Improving existing practices involves a better understanding of the underlying
physical mechanisms as well as optimizing the algorithms that are used to solve them with
robust and rapid numerical methods. The Lattice-Boltzmann method (LBM) is a mesoscopic
approach to approximate the macroscopic equations of mass and momentum balance equations
for a fluid flow.

The objective of this study is to apply this concept to large scale problems and present
its capabilities in terms of physical modelling and computing efficiency. As a validation step,
computational models are tested against referenced theoretical, numerical and experimental
evidences over a wide range of hydrodynamic conditions from creeping to turbulent flows and
granular media. Turbulent flows are multi-scale flows that required fine meshes and long sim-
ulation times to converge statistics.Special care is taken to verify the fluid-solid interface for
dispersed two-phase flows.Two main setups are examined – the non-reacting, swirling flow inside
an injector and a particle-laden flow around a cylinder.

Swirling flows are typical of aeronautical combustion chambers. The selected configuration
is used to benchmark three different large eddy simulation solvers regarding their accuracy and
computational efficiency. The obtained numerical results are compared to experimental results
in terms of mean and fluctuating velocity profiles and pressure drop. The scaling, that is the
code performance on a large range of processors, is characterized. Differences between several
algorithmic approaches and different solvers are evaluated and commented.

Next, we focused on particle laden flows around a cylinder as generic configuration for the
interaction of a dispersed phase and flow hydrodynamic instabilities. It has been shown that the
viscosity of a suspension increases relative to the particle volume fraction and for a certain range
of particle material and concentration, this a fairly good model of interphase coupling. This
phenomenon only occurs in numerical simulations that are able to describe finite size effects
for rigid bodies. Comparing global flow parameters of suspensions at different particle volume
fractions and sizes have shown that these flow features can be obtained for an equivalent single
phase fluid with effective viscosity. Starting from neutrally buoyant particles the transition
to granular flow is investigated. By increasing the relative density of particles, the influence
of particle inertia on the equivalent fluid prediction is investigated and the contribution of
particle collisions on the drag coefficient for varying relative densities is discussed. Conclusions
are drawn regarding the code performance and physical representativeness of results.
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Résumé

Depuis le développement des ordinateurs à haute performance, les simulations numériques sont
devenues un outil scientifique important qui permet, grâce à la modélisation mathématique,
de résoudre des problèmes physiques complexes à traiter expérimentalement. La prédiction du
comportement de systèmes physiques qui ne sont pas directement observables aide à concevoir et
à optimiser de nouvelles technologies. La mécanique des fluides numérique est un outil important
qui nous aide à comprendre les phénomènes naturels et à dimensionner et opérer des procédés
complexes d’ingénierie dans l’industrie. Avec l’augmentation continue des ressources de calcul
au fur et à mesure des années, la question de savoir comment utiliser ces moyens de manière
efficace, robuste et précise devient de plus en plus importante. L’amélioration des pratiques
existantes implique une meilleure compréhension des mécanismes physiques sous-jacents ainsi
que l’optimisation des algorithmes employées pour résoudre les équations de bilan.

La méthode de Lattice-Boltzmann (LBM) est une approche mésoscopique permettant d’ap-
proximer les équations macroscopiques de conservation de la masse et de la quantité de mouve-
ment d’un fluide. L’objectif de cette étude est d’appliquer cette approche à des simulations de
grande échelle et de présenter ses performances numériques et physiques. Deux configurations
principales sont examinées – un écoulement swirlé non-réactif à l’intérieur d’un injecteur et un
écoulement chargé en particules autour d’un cylindre. Afin de valider les modélisations et tech-
niques numériques retenues, nous avons conduit plusieurs tests par rapport à des prédictions
théoriques, numériques et expérimentales de la littérature pour une large gamme d’écoulements
allant du régime de Stokes aux écoulements turbulents.

Les écoulements swirlés sont typiques des chambres de combustion aéronautiques. La confi-
guration retenue a été choisie pour évaluer la précision et l’efficacité de trois solveurs différents
de simulation des grandes structures de la turbulence. Les résultats de simulation numérique
sont comparés à des résultats expérimentaux en termes de profils de vitesse moyenne et fluc-
tuante et de perte de charge. La mise à l’échelle, c’est-à-dire la performance du code sur une
grande gamme de processeurs a été caractérisée ainsi que les différences entre les différentes
approches algorithmiques.

Le deuxième cas d’étude est celui d’un fluide chargé en particules s’écoulant autour d’un
cylindre. Ceci permet de prendre en compte l’effet d’augmentation de la viscosité effective de
la suspension en fonction de la fraction volumique des particules. Ce phénomène n’apparaît en
simulation numérique que si les particules sont rigides et de taille finie. Cette approximation
d’un fluide diphasique en milieu équivalent est confirmée en comparant les paramètres d’écou-
lement globaux.En partant de particules à flottabilité neutre, la transition vers un écoulement
granulaire est analysée. L’influence de l’inertie des particules est mise en évidence sur la réponse
de l’écoulement en augmentant la densité relative des particules, En particulier, la contribu-
tion des collisions des particules avec le cylindre sur le coefficient de traînée pour des densités
relatives variables est discutée. Pour conclure, nous avons dressé un bilan des performances de
calcul mais aussi de représentativité physique des résultats.

iii



iv



Acknowledgments

First I would like to thank all members of the jury for agreeing to evaluate my PhD work.
Especially Pierre Sagaut and Timm Krüger for reviewing my manuscript.

I am deeply thankful for the supervision by Thierry Poinsot, who is an excellent motivator
and Eric Climent, who dedicated much of his time to discuss with me about relevant issues.
You lead me well through world of science and I learned a lot from you. I also want to thank
Ulrich Rüde, who assisted many times with valuable advice and suggestions.

The last three years I was lucky enough to be part of the CFD team at CERFACS, which
offered many social exchanges as well as opportunities for scientific development. Thank you
Jean-François Boussuge and Gabriel Staffelbach for your support on LBM and HPC during
many joint meetings. I greatly appreciated the fast and persevering technical support of the
CSG group.

Likewise, I enjoyed being a member of the MiR group at IMFT and their heated discussions
during lunch time. Thank you Laurent Selle for your advice.

I want to say thank you to the waLBerla team at LSS Erlangen-Nürnberg for introducing
me to LBM and continuously assisting me in technical and scientific questions. In particular,
there is Christoph Rettinger who helped me numerous times with the fluid-solid coupling and
Martin Bauer & Markus Holzer, who assisted me with the code generation aspects. I also need
to highlight the efforts by Andrea Aniello and Paul Werner for operating AVBP and ProLB, re-
spectively during the collaboration on the swirler geometry. It was a pleasure working together.

This PhD was a marvelous experience and part of the journey, which is my life. It would
not have been possible without the support of some very special people. Finally, I want to
express my gratitude to the people who supported on a personal level me along the way: my
family and my extended family - my friends.

I would like to thank the support and computational resources (500,000 CPU hours) pro-
vided by CALMIP on Olympe supercomputer (project P19040). Furthermore, this work was
granted access to the HPC resources (4,500,000 CPU hours) of CINES, IDRIS, TGCC under
the allocation 2020-A0082B11478 made by GENCI.

v



vi



Acronyms

BB Bounce Back

BE Boltzmann Equation

BGK Bhatnagar-Gross-Krook

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

CLI Central Linear Interpolated

DC Direct-Coupling

DEM Discrete Element Method

EFN Equivalent Fine Nodes

EFFN Equivalent Fine Fluid Nodes

FV Finite Volume

HPC High Performance Computing

HRR Hybrid Recursive Regularized

IRZ Inner Recirculation Zone

KBC Karlin Bösch Chikatamarla

LB Lattice Boltzmann

LBM Lattice Boltzmann Method

LDV Laser Doppler Velocimetry

LES Large Eddy Simulation

MLUPS Mega Lattice Updates Per Second

MFLUPS Mega Fluid Lattice Updates Per Second

vii



MPI Message Passing Interface

MRT Multi-Relaxation Time

MR Multi-Reflection

PDF Particle Distribution Function

PGS Pressure Gradient Scaling

PIV Particle Image Velocimetry

PSD Power Spectral Density

RANS Reynolds Averaged Navier-Stokes

RMS Root Mean Square

SGS SubGrid Scale

TRT Two-Relaxation Time

viii



Contents

1 Introduction 1

2 Methods and implementation 3
2.1 Hydrodynamic flow description . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Laws of conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Chapman-Enskog Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Multiple-relaxation time model . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Two-relaxation time model . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Cumulant relaxation model . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Smagorinsky subgrid scale model . . . . . . . . . . . . . . . . . . . . . . 16
2.3.6 Entropic stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.7 Inclusion of external forces . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.8 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Moving obstacle boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 PDF refilling schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Granular collision modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 General description of waLBerla . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Single node performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.3 Mesh creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.4 Fluid-solid coupling algorithm . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Validation 31
3.1 First Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Second Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Particle response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Basset history force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Oscillating particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Segré-Silberberg effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Granular drag coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Turbulent flow between two parallel plates . . . . . . . . . . . . . . . . . . . . . 45
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



4 Solver comparison for swirled flows 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Presentation of solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 High-order finite volume solver . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Lattice-Boltzmann solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Numerical setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Comparison with experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 PIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 Power Spectral Density (PSD) of axial velocity . . . . . . . . . . . . . . . 63

4.5 Comparison of computational costs . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Additional computations with waLBerla . . . . . . . . . . . . . . . . . . . . . 66
4.6.1 Mesh convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.2 Unconfined configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Particles laden flow around a cylinder 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 Neutrally buoyant particles (hydrogel) . . . . . . . . . . . . . . . . . . . 77
5.3.2 Glass particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.3 Iron particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Discussion of the contributions to drag force . . . . . . . . . . . . . . . . . . . . 83
5.5 Performance aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Conclusions 91
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

x



Chapter 1

Introduction

Numerical simulations are a valuable complement to experiments for engineering and research
configurations. In many cases, experimental measurements are technically infeasible or simply
too expensive to perform. On the other hand, the numerical approach is comparatively cost-
effective and can be set up in a short time, but requires a certain amount of experimental
validation. Simulations provide access to all relevant quantities at any point in space and time
within the computational domain and allow rapid adaptation to an existing design. Since a
new physical prototype does not need to be built for each design iteration, simulations are often
used for optimization in fluid dynamic problems.

It cannot be claimed that the Lattice Boltzmann method (LBM) is a novel concept for
computational fluid dynamics (CFD). The mathematical foundation, i.e. the link between the
Boltzmann equation (BE) and the Navier-Stokes equations (NSE) was derived by Chapman [1]
and Enskog [2] in 1916/17, the first model for the collision process - which is still used today -
was described by Bhatnagar, Gross and Krook (BGK) in 1954 [3] and the first actual fluid flow
simulation was performed by Frisch, Hasslacher and Pomeau in 1986 [4]. However, new scientific
developments and the rise of massively parallel supercomputers have sparked the interest in
the method. There are conceptual differences that arise from LBM’s origin in kinetic theory
in contrast to classic CFD methods (Finite difference, finite volume, finite element), which
are based on continuum theory. Case in point: there is no need to explicitly solve a Poisson’s
equation and thus LBM can be solved strictly local. Due to the velocity discretization of the BE
on a Cartesian grid, the LBM is essentially a stencil code, which is generally easy to implement
and has obvious advantages in the context of massively parallel computations.

In recent years, we were able to witness the success of applying the LBM to engineering
problems such as multiphase flows [5, 6, 7], aeroacoustics for aircraft and cars [8], heat transfer
[9] or turbulent flows in complex geometries [10]. Even though the standard LBM is limited to
isothermal and weakly compressible to incompressible flows, there have been advances in its ex-
tensions to compressible flows [11, 12, 13]. Simulation of hemodynamics has been demonstrated
with a focus on code performance and scalability [14].

The LBM is well suited to perform on GPU [15] and heterogeneous (CPU&GPU) architec-
tures [16], which are becoming more prevalent in modern future supercomputers. Löhner [17]
argues that the "LES crisis", i.e. the barrier of running computations with O(109) degrees of
freedom and O(107) timesteps during one night, could be overcome in the next few years and
that the LBM is a good candidate for achieving this goal. Indeed, the extreme dimensions to
which the method can be scaled up has been recently exemplified by SunwayLB [18] by sus-
taining a performance of 4.7 PFlops on 10,400,000 cores of the Sunway TaihuLight computer.



2 Chapter 1. Introduction

Comparing the efficiency to classic methods [19, 20] is a difficult task since great care has to be
taken to find unbiased initial conditions and define appropriate accuracy criteria. As we will
see later, the inherent restriction of LBM to Cartesian grids prevents us from comparing results
on the same mesh that would typically be used in a finite volume solver. However, running the
finite volume solver on a Cartesian grid would constitute an evident disadvantage in complex
geometries.

For our simulations, we use the software framework waLBerla1, which is built on previous
work of Godenschwager [21], Feichtinger [22], Götz [23], Schornbaum [24], Bartuschat [25],
Rettinger [26]. Complementary, the code generation technique of lbmpy2 is employed, which
is based on the development by Bauer [27] . The current work is dedicated to continuing and
expanding on these efforts.

The first objective of the present PhD was to explore the potential of waLBerla’s tools in
the framework of IMFT (Institut de Mécanique des Fluides de Toulouse), where multiple codes
are used for CFD. Two specific domains were targeted:

• Aerodynamics in turbulent flows : The intrinsic nature of LBM sometimes makes it
difficult to apply near walls, where adaptive meshes are preferred by many groups.

• Two phase flows: The capacity of LBM to handle large meshes with inclusions of particles
is an attractive feature at IMFT, where multiple groups tackle such phenomena.

Even though the comparison of LBM codes with classical CFD solvers is difficult because
they use different meshes, we tried to give a fair comparison by investigating code performance
at "fixed precision". We also checked the intrinsic performance of the waLBerla framework
by comparing it to another LBM code, which is a reference in this field: the ProLB solver
developed by AMU, Renault, Airbus, LMFA and CS.

This Thesis is a collaboration, that brings together the knowledge of aerodynamics at CER-
FACS (Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique), the
research group involved in particle-laden flows at IMFT and the high performance comput-
ing (HPC) code development at LSS (Lehrstuhl für Systemsimulation, Friedrich-Alexander-
Universität Erlangen-Nürnberg).

The manuscript is organized as follows: Chap. 2 outlines the path from kinetic theory to
the continuous NSE and introduces the methods and models that are needed later. It also
highlights some aspects of the implementation of these methods in waLBerla and lbmpy.
Several configurations, such as the first and second Stokes problems [28, 29], the Basset history
force [30, 31], the Segré-Silberberg effect [32] and the turbulent flow between two plates [33],
are tested and compared to analytic or empirical solutions in Chap. 3 to verify the accuracy
of our simulation approach for flows from the Stokes regime to turbulent flows, the momentum
exchange between particle and fluid and the dynamics of rigid bodies. The main results are
found in Chap. 4 and Chap. 5. The former presents the comparison between three different fluid
dynamics solvers for a swirling flow at moderate Reynolds number and the latter explores the
generic configuration of the flow around a cylinder but with the presence of resolved particles.
Our findings are summarized and an outlook for future projects is given in Chap. 6.

1https://www.walberla.net
2https://pypi.org/project/lbmpy/

https://www.walberla.net
https://pypi.org/project/lbmpy/


Chapter 2

Methods and implementation

Contents
2.1 Hydrodynamic flow description . . . . . . . . . . . . . . . . . . . . . 4
2.2 Kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Moving obstacle boundary conditions . . . . . . . . . . . . . . . . . 22
2.5 Granular collision modeling . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The first part of this chapter outlines the physical fundamentals of fluid and gas dy-
namics. We start at the Navier-Stokes equations (NSE), which describe the fluid as a
continuum, followed by the Boltzmann equation (BE), which is based on the meso-
scopic description of kinetic theory. The connection between BE and NSE will be
explained briefly. We will construct the LBM by discretizing the BE in space, time
and velocity. Different models for the collision operator are introduced, such as the
BGK, MRT, TRT and cumulant models. Two methods for simulating turbulent flows
are presented: the Smagorinksy type SGS model and the entropic stabilization. Next,
we show how to include external forces and present boundary conditions, refilling
schemes for empty fluid cells and the collision modeling of the granular solver. The
last section highlights certain aspects of the implementation of these methods in the
framework of waLBerla and lbmpy. We discuss the single node performance, the
mesh creation procedure for complex geometries and the fluid-solid coupling algorithm.



4 Chapter 2. Methods and implementation

2.1 Hydrodynamic flow description

2.1.1 Laws of conservation
Common fluids are composed of a large number of individual molecules, but from a macro-
scopic viewpoint can be interpreted as a continuum. Inside a constant fluid element mass and
momentum are balanced through the laws of conservation

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1)

and
∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p+ F , (2.2)

with the fluid density ρ, velocity u, pressure p and an external force F . They were first derived
by Euler [34] for flows that exclusively involve isotropic stress, i.e. inviscid fluids.

2.1.2 Navier-Stokes equations
When taking shear stress into account, the momentum equation has to be complemented by
the deviatoric stress tensor σ:

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p+ ∇ · σ + F (2.3)

While the transfer of momentum in the Euler equation Eq. (2.2) is reversible, viscous fluids
exhibit internal friction, which leads to an irreversible and dissipative transfer of momentum.
This general form of momentum equation was first proposed by Cauchy [35] and later put
into the context of fluid mechanics by Stokes [36] to form the famous Navier-Stokes equations
(NSE). The viscous stress tensor in the NSE can be written as

σ = µ
(
∇u+ (∇u)T

)
+ ξ (∇ · u) I, (2.4)

where µ is the dynamic viscosity, ξ is the second viscosity and I is the identity matrix. This
tensor can be split into a normal and a shear stress

σ = µ
(
∇u+ (∇u)T − 2/3 (∇ · u) I

)
+ µB (∇ · u) I, (2.5)

introducing the bulk viscosity µB = 2µ/3+ξ. In the case that the dynamic viscosity is assumed
to be constant, the NSE can be simplified to

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p+ µ∆u+ (µB + µ/3) ∇(∇ · u) + F . (2.6)

Additionally, the velocity field of an incompressible flow with constant density is divergence
free ∇ · u = 0, which allows us to reduce the NSE to it’s incompressible form

ρ
Du

Dt
= −∇p+ µ∆u+ F , (2.7)

using the material derivative D
Dt

= ∂
∂t

+ u ·∇.
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2.1.3 Equation of state
To solve the incompressible NSE, the conservation of mass and momentum are sufficient. If
the density is not constant, an additional equation is needed to close the system of equations.
Following the thermodynamics of fluids [37], the ideal gas law is introduced

p = ρRT, (2.8)

with the specific gas constant R and the temperature T . From the expansion of the discrete
Boltzmann equation to second order it can be shown that the Lattice Boltzmann equations
are linked to the NSE via the isothermal equation of state [38]. While it is possible to use
alternative equations of state to better model thermal flows, we consider only isothermal flows
in the context of this thesis. Hence the temperature is assumed to be constant T = T0, so that
the state equation used here becomes p = ρRT0. Using the general definition of the speed of
sound cs at constant entropy S

c2
s =

(
∂p

∂ρ

)
S

(2.9)

the pressure can be expressed as a reference value plus fluctuation:

p = c2
sρ0 + c2

sρ
′. (2.10)

This expression is also valid for nonlinear equations of state if the deviation from the reference
state

p′ = p− p0 (2.11)
is small, so that it can be approximated by linearization.

2.2 Kinetic theory
The statistical behavior of microscopic particles (atoms, molecules) in a gas is modeled by
kinetic theory and developed out of the works of Maxwell [39] and Boltzmann [40]. It is based
on the particle distribution function (PDF) f(ξ,x, t), which describes the probability density
of finding fictive particles with microscopic velocity ξ at position x and time t. The evolution
of this distribution function is given by the Boltzmann equation

∂f

∂t
+ ξ ·∇f + F

ρ
·∇ξf = Ωf , (2.12)

where Ωf is the collision operator and F is an external body force. Integration of the PDF over
the microscopic velocity space yields moments, that consider the contribution of particles of all
velocities. These moments are used to recover macroscopic quantities such as mass density ρ,
momentum density ρu, total energy density ρE and internal energy density ρe as follows:

ρ(x, t) =
∫
f(x, ξ, t)dξ, (2.13a)

ρ(x, t)u(x, t) =
∫
ξf(x, ξ, t)dξ, (2.13b)

ρ(x, t)E(x, t) = 1
2

∫
|ξ|2f(x, ξ, t)dξ, (2.13c)

ρ(x, t)e(x, t) = 1
2

∫
|ξ − u|2f(x, ξ, t)dξ. (2.13d)
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The left hand side of the Boltzmann equation corresponds to the advection of the PDF,
whereas the right hand side describes local redistribution of f caused by the collision of fictive
particles. Finding a suitable model for this collision operator is an essential part of setting up
the LBM. Since collisions conserve the quantities of mass, momentum and energy, the collision
model must satisfy the conservation laws of following quantities:∫

Ω(f) d3ξ = 0, (2.14a)∫
ξΩ(f) d3ξ = 0, (2.14b)∫
|ξ|2Ω(f) d3ξ = 0, (2.14c)∫

|ξ − u|2Ω(f) d3ξ = 0. (2.14d)

The simplest form is the Bhatnagar, Gross and Krook (BGK) [3] operator:

ΩBGK = −1
τ

(f − f eq) , (2.15)

which specifies the collision as relaxation of distribution functions towards an equilibrium state
f eq with relaxation time τ . The relaxation time is determined by viscosity and heat diffusivity
(if thermal equations are considered). The equilibrium distribution is given by a Maxwell-
Boltzmann distribution [41]:

f eq = ρ

(
1

(2πRT )

)3/2

exp
(
−|ξ − u|

2

2RT

)
. (2.16)

The macroscopic continuity equations can be recovered from the Boltzmann equation [42]. For
this purpose the PDF is expanded as deviations from the equilibrium distribution in powers of
the Knudsen number:

f = f eq + ε(Kn)f (1) + ε2(Kn)f (2) + .... (2.17)

The Knudsen number is given as the ratio between the particle mean free path λ and the
physical length scale L

Kn = λ

L
∝ Ma

Re . (2.18)

and it is also proportional to ratio of Mach number to Reynolds number. When the Knudsen
number is low, the fluid is dominated by collisions and the PDF is approximately equal to its
local equilibrium f = f eq. This yields the macroscopic Euler equations, which are found by
integration of the Boltzmann equation over velocity space:

∂

∂t

∫
f d3ξ + ∂

∂xj

∫
ξjf d3ξ + Fj

ρ

∫ ∂f

∂ξj
d3ξ =

∫
Ωf d3ξ. (2.19)

To solve the terms in this equation we introduce the moments of f

Π0 =
∫
f d3ξ = ρ, Πi =

∫
ξif d3ξ = ρui, (2.20a)

Πij =
∫
ξiξjf d3ξ, Πijk =

∫
ξiξjξkf d3ξ, (2.20b)



2.3. Lattice Boltzmann method 7

where the first two moments are equivalent to Eq. (2.13) and the second order moment Πij is the
momentum flux tensor. The moments of the force term are obtained through multidimensional
integration by parts [43] as

∫ ∂f

∂ξj
d3ξ = 0,

∫
ξi
∂f

∂ξj
d3ξ =

∫ ∂ξi
∂ξj

f d3ξ = −ρδij. (2.21)

By using these moment definitions and the conservation properties of the collision operator in
Eq. (2.14), Eq. (2.19) simplifies to

∂(ρ)
∂t

+ ∂ (ρuj)
∂xj

= 0, (2.22)

which is equivalent to the continuity equation from Eq. (2.1). Likewise, the momentum con-
servation is found by first multiplying the Boltzmann equation by ξα and then integrating over
velocity space:

∂((ρui))
∂t

+ ∂Πij

∂xj
= Fi. (2.23)

We recover Eq. (2.2) with the momentum flux tensor from Eq. (2.20).

2.3 Lattice Boltzmann method
It has been shown numerous times, that the Lattice Boltzmann method can be used to solve
several transport equations and in particular the incompressible NSE [44, 45, 46, 47, 48]. To
construct our LBM scheme, we need to discretize the Boltzmann equation (Eq. (2.12)) in space,
time and microscopic velocity. The discrete distribution function f(cα,x, t) corresponds to the
probability density of fictive particles moving at discrete velocity cα in lattice direction α at
a grid cell with cell center position x at time t. The velocity discretization can generally be
represented by a stencil of the form DdQq in d dimensions with q discrete velocities α ∈ 0...q − 1
[49]. To recover the NSE one can use the D1Q3 velocity discretization in one dimension, D2Q9
in two dimensions or D3Q15, D3Q19, D3Q27 in three dimensions (see Fig. 2.1). For our
simulations, we will use the D3Q19 stencil because it provides a good agreement between
accuracy and computational efficiency. The space discretization in LBM has to be performed
with a uniform, Cartesian grid, so that the discrete lattice direction point to adjacent cells.

The LBM algorithm can be split into two steps - the collision step

f̃α(x, t) = fα(x, t) + Ωα(x, t), (2.24)

with the discrete collision operator Ωα and the subsequent streaming step

fα(x+ cα∆t, t+ ∆t) = f̃α(x, t) (2.25)

that propagates the updated set of distribution functions to neighboring cells x + cα∆t and
advances the simulation by time step ∆t. During the collision the distribution functions are
relaxed towards the local equilibrium

f eq
α (u, ρ) = wαρ

(
1 + cα · u

c2
s

) + (cα · u)2

2c4
s

− u · u2c2
s

)
, (2.26)
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where wα are the stencil specific lattice weights (see [49]). More specifically, we use a formulation
of the equilibrium distribution, which is suitable for small deviation from the reference pressure
ρ0 = ρ− ρ′ and better approximates the incompressible flow equations [50]:

f eq
α (u, ρ) = ωα

(
ρ+ ρ0

[
cα · u
c2
s

) + (cα · u)2

2c4
s

− u · u2c2
s

])
. (2.27)

Macroscopic values are recovered as moments of the discrete distribution functions

ρ =
∑
α

fα, u = 1
ρ

∑
α

cαfα, (2.28)

and the pressure is related to density via equation of state p = c2
sρ, according to Sec. 2.1.3.

For our simulations of particle-laden flow around a cylinder, we employ the classic single
relaxation time collision operator

ΩBGK
α = −∆t

τ
(fα − f eq

α ) , (2.29)

with the relaxation rate ω = 1/τ . Furthermore, we set ∆x = 1, ∆t = 1, ρ0 = 1 and c2
s = 1/3

in lattice units for all upcoming simulations.

D1Q3 D2Q9

D3Q15 D3Q19 D3Q27

Figure 2.1 – D2Q9, D3Q15, D3Q19 and D3Q27 lattice velocity discretization
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2.3.1 Chapman-Enskog Analysis
The so-called Chapman-Enskog analysis [38] is used to obtain macroscopic equations from
the Boltzmann equation. It also considers the stress tensor and hence describes the connection
between the LB equation and the NSE. In Sec. 2.2 we showed that the momentum conservation
equation is recovered for f = f eq. Thus, the stress tensor must be linked to the non-equilibrium
part of the distribution function:

fneq = f − f eq. (2.30)
The Chapman-Enskog analysis is essentially a perturbation expansion around the equilibrium
distribution for different orders of Kn, see Eq. (2.17). Now we consider terms up to first order
of Kn, i.e. f = f eq + ε(Kn)f (1), which is sufficient to recover the NSE [51]. The approach
is presented using the space and time continuous Boltzmann equation and the BGK collision
operator1:

∂tfα + cαi∂ifα = −1
τ

(fα − f eq
α ) . (2.31)

Applying a Taylor expansion yields

∆t (∂t + cαi∂i) fα + ∆t2
2 (∂t + cαi∂i)2 fα +O

(
∆t3

)
= −∆t

τ
fneq
α , (2.32)

where the third order error terms will be neglected since it is assumed that they are sufficiently
small [43]. To get rid of the second order derivative we multiply this equation by ∆t

2 (∂t + cαi∂i)
and subtract the result from itself while again neglecting the O (∆t3) terms leads to

∆t (∂t + cαi∂i) fα = −∆t
τ
fneq
α + ∆t (∂t + cαi∂i)

∆t
2τ f

neq
α . (2.33)

The next step is to expand the time derivative into orders of Kn

∆t∂tfα = ∆t
(
ε(Kn)∂(1)

t fα + ε2(Kn)∂(2)
t fα + ...

)
, (2.34)

while the space derivative is not expanded:

∆tcαi∂ifα = ∆t
(
ε(Kn)cαi∂(1)

x

)
fα. (2.35)

In perturbation theory this approach is called multiple-scale expansion. It is used to indepen-
dently deal with the derivative in terms of different orders in Kn, which summed up yield the
total derivative. Inserting this expansion along with Eq. (2.17) in Eq. (2.33), we can formulate
the equation in terms of the first O(ε) and second order O(ε2) in Kn :(

∂
(1)
t + cαi∂

(1)
i

)
f eq
α = −1

τ
f (1)
α , (2.36a)

∂
(2)
t f eq

α +
(
∂

(1)
t + cαi∂

(1)
i

)(
1− ∆t

2τ

)
f (1)
α = −1

τ
f (2)
α . (2.36b)

Multiplying by 1, cαi and summing over α, we obtain the zeroth and first order moments of
these equations. The terms of order O(ε) are the conservation equations, similar to what we
have seen in Sec. 2.2:

∂
(1)
t ρ+ ∂

(1)
k (ρuk) = 0, (2.37a)

∂
(1)
t (ρui) + ∂

(1)
j Πeq

ij = 0. (2.37b)
1It also possible to perform the analysis with a general collision operator, but this will not be covered here.
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Repeating the same process for order O(ε2) yields the second order correction terms to the
Euler equations:

∂
(2)
t ρ = 0, (2.38a)

∂
(2)
t (ρui) + ∂

(1)
j

(
1− ∆t

2τ

)
Π(1)
ij = 0. (2.38b)

Now, we can add Eq. (2.37) and (2.38) of corresponding order to find:(
ε∂

(1)
t + ε2∂

(2)
t

)
ρ+ ε∂

(1)
k (ρuk) = 0, (2.39a)(

ε∂
(1)
t + ε2∂

(2)
t

)
(ρui) + ε∂

(1)
j Πeq

ij = −ε2∂(1)
j

(
1− ∆t

2τ

)
Π(1)
ij , (2.39b)

which become the mass and momentum conversation equations after reversing the derivative
expansion made in Eq. (2.34) and (2.35). Here, the viscous stress tensor takes the form:

σ′ij = −
(

1− ∆t
2τ

)
Π(1)
ij . (2.40)

It can be shown [43] that the equilibrium moment and the perturbation moment are equal to

Πeq
ij =

∑
α

cαicαjf
eq
α = ρuiuj + ρd2

sδij, (2.41a)

Π(1)
ij =

∑
α

cαicαjf
(1)
α = −ρc2

sτ
(
∂

(1)
j ui + ∂

(1)
i uj

)
+ τ∂

(1)
k (ρuiujuk) . (2.41b)

The perturbation moment contains an error term of order O(u3), which can be neglected for
Ma2 = u2

c2s
� 1 [52]. As a consequence the LBM is considered to be only weakly compressible,

implying it is not suitable for strongly compressible flows [43].
Neglecting the O(u3) term, substituting the moments back into Eq. (2.39) and considering

the isothermal equation of state leads to

∂t + ∂k (ρuk) = 0, (2.42a)
∂t (ρui) + ∂j (ρuiuj) = −∂ip+ ∂j (ν (∂jui + ∂iuj)) , (2.42b)

with p = ρc2
s, ν = c2

s

(
τ − ∆t

2

)
and νB = 2

3ν. Finally, this form is equivalent to the NSE from
Eq. (2.3). The Chapman-Enskog expansion can also be performed by projecting onto Hermite
polynomials to derive the relation between the Boltzmann equation and the NSE [53].
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2.3.2 Multiple-relaxation time model
The BGK operator is the most straightforward approach to model the collision step of the
LBM. Unfortunately, it suffers from distinct drawback in terms of accuracy and stability when
the viscosity is too small (ω → 2), too large (ω → 0) or the velocity magnitudes exceeds the
incompressible range (‖u‖ → cs) [54, 55, 56] . Moreover, some flow problems yield viscosity
dependent results when using the BGK model in combination with the classic bounce-back
boundary condition. The best example for this behavior is the Poiseuille flow, where the
simulated wall location varies with the relaxation time τ [57]. To attenuate some of these
problems we can introduce a more general way of formulating the collision operator, such that
it offers more degrees of freedom.

The multiple-relaxation-times model (MRT) [58] is based on the idea of transforming the
populations of the PDF set f to moment space

m = Mf. (2.43)

For a DdQq space and velocity discretization the transformation matrix takes the form:

M =


M0,0 . . . M0,q−1
... . . . ...

Mq−1,0 . . . Mq−1,q−1

 . (2.44)

The obtained moments mα can be related to particular hydrodynamic terms by selecting the
entries of the transformation matrix. Replacing the relaxation rate ω = 1/τ in equations 2.24
and 2.25 by the matrix M−1SM yields

fα(x+ cα∆t, t+ ∆t) = fα(x, t)−M−1SM(fα(x, t)− f eq
α (x, t))

= fα(x, t)−M−1S(mα(x, t)−meq
α (x, t)),

(2.45)

where S is a diagonal matrix containing q individual relaxation rates

S =



ω0 0 . . . 0

0 ω1 . . . 0
... ... . . . ...

0 0 . . . ωq−1


. (2.46)

When all relaxation rates of S have the same value we recover the BGK operator, which is why
it is also called single-relaxation time (SRT) operator.

There are different ways to determine the entries of the transformation matrix, but we can
follow some guideline to produce physical meaningful moments [43]. Setting the first row to
M0,α = 1 leads to the zeroth order moment

m0 =
∑
α

fα, (2.47)

which corresponds to the density. First order moments are connected to the momentum j by
choosing Ml,α = cα,l, such that

ml =
∑
α

fαcα,l = ρul = jl, (2.48)
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where l ∈ {x, y} is the spatial direction in 2D or l ∈ {x, y, z} in 3D. These zeroth and first
order moments represent conserved macroscopic quantities like density or momentum and are
therefore not relaxed. The corresponding relaxation rate can be chosen arbitrarily (or set
to zero). The remaining vectors Mi, which are the rows of the transformation matrix, can
be constructed orthogonal to each other. This is most commonly achieved by applying the
Gram-Schmidt process or using Hermite polynomials. For a transformation matrix with non-
orthogonal row vectors, there are q distinct relaxation rates that have to be specified. The
orthogonalization reduces the number of relaxation rates and ensure that their corresponding
moments ml are uniquely defined and can be relaxed independently. Second order moments are
linked to components of the stress tensor, i.e. the shear and bulk viscosity in the Navier-Stokes
equations (Eq. (2.6)). Additional moments comprise the energy flux components, energy and
energy squared. Third and Fourth order moments are called "non-hydrodynamic" since they
do not directly contribute to hydrodynamic terms [44]. They can be chosen freely to improve
accuracy and stability for specific flow configurations [58]. Note that the MRT operator allows
to adjust the bulk viscosity independently of the shear viscosity, which can dampen unwanted
acoustic waves and help stabilizing the simulation [59, 60].

Finally, the MRT collision step is the succession of the following operations: transformation
of PDFs and their equilibrium from population space to moment space, the relaxation in mo-
ment space and the back transformation to population space. We can write the MRT collision
operator as

ΩMRT
α = −M−1S(Mf −Mfeq). (2.49)

The consecutive streaming step and the calculation of macroscopic quantities is equivalent to
the BGK scheme.

2.3.3 Two-relaxation time model
For certain configurations in the validation chapter Chap. 3, the two relaxation times (TRT)
collision operator [57] is utilized. Distribution functions are split into symmetric and antisym-
metric parts

f±α = 1
2 (fα ± fᾱ) , f eq±

α = 1
2 (f eq

α ± f
eq
ᾱ ) (2.50)

with ᾱ denoting the inverse direction, i.e. cᾱ = −cα. The TRT collision operator can be
written as

ΩTRT
α = −ω+

(
f+
α − f eq+

α

)
− ω−

(
f−α − f eq−

α

)
(2.51)

and involves the two distinct relaxation times ω+, ω−. While τ+ is determines the kinematic
fluid viscosity ν = c2

s

(
τ+ − 1

2

)
, the second relaxation time τ− can be chosen freely to improve

accuracy and stability. The TRT collision operator is a specialization of the MRT operator,
where all even-order moments are relaxed with ω+ and all odd-order moments are relaxed with
ω+. The relation between ω+ and ω− is the so-called "magic parameter"

Λ =
(1

2 − τ
+
)(1

2 − τ
−
)
. (2.52)

Setting Λ = 3/16 has been shown to produce the correct velocity profile for the Poiseuille
flow when using bounce-back boundary schemes [61], whereas the best stability in a generic
simulation can be achieved via Λ = 1/4 [56]. The TRT operator is particularly beneficial in
the low Reynolds number limit, as we will see later in Chap. 3.
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2.3.4 Cumulant relaxation model
A recently proposed alternative to the MRT method is the cumulant-based LBM [62]. Instead
of relaxing distribution functions in moment space, they are transformed into cumulant space,
where the collision takes place. We want to find a new moment formulation such that the
distribution functions can be composed of statistically independent quantities. These quantities
Cm represent different physical processes and they successively describe the deviation from a
Gaussian equilibrium distribution. Mathematically, the statistical independence is expressed
as a factorization of the distribution function fijk as products of constraints and probabilities
Fα that depend on certain physical processes with value Cα:

fijk =
∏
α

Fα(Cα). (2.53)

Here, we use a different notation of the distribution function, where i, j, k ∈ {−1, 0, 1}. To find
this new formulation, the distribution functions are rewritten using the continuous microscopic
velocity ξ = (ξ, υ, ζ), the lattice velocity c (which is always 1 for first-neighbor stencils) and
the Dirac delta function (δ(x) = 1 when x = 0 and δ(x) = 0 when x 6= 0):

f(ξ) =
∑
i,j,k

fi,j,kδ(ic− ξ)δ(jc− υ)δ(kc− ζ). (2.54)

Using the two-sided Laplace transformation

F (s) = L[f(x)](s) =
∫ +∞

−∞
f(x) · e−sx dx, (2.55)

the distribution functions are transformed into frequency space. We find the Laplace trans-
formed distribution function F (Ξ) with wave number Ξ = {Ξ,Υ, Z}:

F (Ξ) = L[f(ξ)] =
∫ +∞

−∞
f(ξ) · e−Ξ·ξ dξ =

∑
i,j,k

fi,j,ke
−Ξice−Υjce−Zkc. (2.56)

Unlike f(ξ), this new function F (Ξ) is indefinitely often differentiable in the wave number Ξ.
Similar to Eq. (2.53), we can express it as product of yet unknown, statistically independent
quantities:

F (Ξ) =
∏
α

Fα(Cα). (2.57)

Applying the logarithm to our function yields the sum

ln(F (Ξ)) =
∑
α

ln(Fα(Cα)), (2.58)

which can be used in a Taylor expansion:

ln(F (Ξ)) =
∑

o+p+q≥0

1
o!p!q!

∂o+p+q

∂Ξo∂Υp∂Zq
ln(F (Ξ,Υ, Z))

∣∣∣∣∣
Ξ=Υ=Z=0

· ΞoΥpZq. (2.59)

The evaluated derivatives, which appear as coefficients in this series are now defined as cumu-
lants copq:

copq := c−o−p−q
∂o+p+q

∂Ξo∂Υp∂Zq
ln(F (Ξ,Υ, Z))

∣∣∣∣∣
Ξ=Υ=Z=0

(2.60)
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At this point, we introduce a different notation for moments. A raw moment (see Sec. 2.3.2)
in the continuous form will be defined as

mopq =
∫
ξo · υp · ζq · f(t,x, ξ) dξ, (2.61)

where the indices o, p, q ∈ N0 indicate the order of the moment in spatial direction x, y, z,
respectively. Consequently, the discrete form of raw moments in the new notation is written:

mopq =
∑
α

coα,x · cpα,y · cqα,z · fα =
∑
ijk

coijk,x · c
p
ijk,y · c

q
ijk,z · fijk. (2.62)

If we revisit the Taylor series in Eq. (2.59) but without the logarithm (F instead of ln(F )), the
relation between cumulants and raw moments becomes apparent:

∂o+p+q

∂Ξo∂Υp∂Zq
F (Ξ,Υ, Z)

∣∣∣∣∣
Ξ=Υ=Z=0

=
∑
ijk

fijk(−ic)oe−Ξic(−jc)pe−Υjc(−kc)qe−Zkc
∣∣∣∣∣∣
Ξ=Υ=Z=0

= (−c)o+p+q
∑
ijk

io jp kq fijk

= (−c)o+p+qmopq.

(2.63)

We can now express the raw moments in similar fashion to the cumulants:

mopq = (−c)−o−p−q ∂o+p+q

∂Ξo∂Υp∂Zq
F (Ξ,Υ, Z)

∣∣∣∣∣
Ξ=Υ=Z=0

. (2.64)

Raw moments do not respect Galilean invariance, i.e. the independence of physical processes
from the velocity of the frame of reference. Another moment basis are central moments, which
consider velocity differences to the frame of reference instead of absolute values. In this way,
Galilean invariance is restored and the asymptotic error of the term in the Chapman-Enskog
analysis, that relates to the velocity dependence of viscosity, is reduced. Similar to raw mo-
ments, we define central moments in the continuous form as

κopq =
∫

(ξ − ux)o · (υ − uy)p · (ζ − uz)q · f(t,x, ξ) dξ (2.65)

and in the discrete form as

κopq =
∑
α

(cα,x − ux)o · (cα,y − uy)p · (cα,z − uz)q · fα

=
∑
ijk

(cijk,x − ux)o · (cijk,y − uy)p · (cijk,z − uz)q · fijk.
(2.66)

In order to find the Taylor series in frequency space of central moments, we introduce the new
distribution function

f̃(ξ) = f(ξ − u) = f(ξ − ux, υ − uy, ζ − uz), (2.67)

to which we apply the two sided Laplace transform:

F̃ (Ξ) = L[f̃(ξ)] = e−uΞ−vΥ−wZF (Ξ) =
∑
ijk

fijke
−Ξ(ic+uxe−Υ(jc+uye−Z(kc+uz) (2.68)
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Performing a Taylor expansion on F̃

F̃ (Ξ) =
∑

o+p+q≥0

1
o!p!q!

∂o+p+q

∂Ξo∂Υp∂Zq
F̃ (Ξ,Υ, Z)

∣∣∣∣∣
Ξ=Υ=Z=0

· ΞoΥpβZq, (2.69)

gives us the following coefficients:

∂o+p+q

∂Ξo∂Υp∂Zq
F̃ (Ξ,Υ, Z)

∣∣∣∣∣
Ξ=Υ=Z=0

=
∑
ijk

fijk[−(ic+ ux)]o[−(jc+ uy)]p[−(kc+ uz)]q. (2.70)

When we divide this expression by co+p+q, we find a definition for the central moments, that is
similar to the one for raw moments and cumulants:

κopq = (−c)−o−p−q ∂o+p+q

∂Ξo∂Υp∂Zq
F̃ (Ξ,Υ, Z)

∣∣∣∣∣
Ξ=Υ=Z=0

=
∑
ijk

fijk

(
i+ ux

c

)o (
j + uy

c

)p (
k + uz

c

)q (2.71)

Additional information on the implementation of the cumulant method can be found in [63]. In
lbmpy cumulant relaxation is implemented by transforming distribution functions from popu-
lation space into central moment space and then into cumulant space, where the collision takes
place. We can write a central moment generating function K(Ξ), that transforms populations
to central moments:

K(Ξ) = exp(−Ξ · u)
∑
cα

fα exp(cα ·Ξ) (2.72)

Subsequently, central moments are transformed into cumulants via the cumulant generating
function:

C(Ξ) = Ξ · u+ ln(K(Ξ)). (2.73)

Differentiating and evaluating this function at zero yields the cumulants, which are used during
the collision step. Afterwards, cumulants have to be transformed back to central moment space
and then to population space. Finding and evaluating the derivative of the moment generating
functions can be a tedious task. Fortunately, there is an easier method to construct central
moments from populations, called fast central-moment-transformation:

κij|q =
∑
k

(cijk,z − uz)q · fijk

κi|pq =
∑
j

(cijk,y − uy)q · κij|q

κopq =
∑
k

(cijk,x − ux)q · κi|pq

(2.74)

It can be shown that cumulants up to order three are almost identical to central moments:

ρc000 = κ000,

ρc100 = κ100,

ρc110 = κ110,

ρc111 = κ111,

ρc210 = κ210,

(2.75)
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and so on. Third and fourth order cumulants are computed via:

ρc211 =κ211 − (κ200κ011 + 2κ110κ101)/ρ,
ρc220 =κ220 − (κ200κ020 + 2κ2

110)/ρ,
ρc122 =κ122 − (κ002κ120 + κ020κ102 + 4κ011κ111 + 2(κ101κ021 + κ110κ012))/ρ,
ρc222 =κ222 − (4κ2

111 + κ200κ022 + κ020κ202 + κ002κ220 + 4(κ011κ211 + κ101κ121 + κ110κ112)
+ 2(κ120κ102 + κ210κ012 + κ201κ021))/ρ
+ (16κ110κ101κ011 + 4(κ2

101κ020 + κ2
011κ200 + κ2

110κ002) + 2κ200κ020κ002)/ρ2,

(2.76)

and so forth by permuting indices. The back transformation, as well as the construction of
equilibrium values can be found in [62]. External forces are applied symmetrically before and
after collision. Half the force is added to central moments before transformation to cumulants
and the other half is added after transforming cumulants back to central moments. In this way,
the first order central moments entering the collision is zero κS100 = 0.

Some properties of the cumulant method are preferential compared to the standard MRT.
Cumulants are mutually independent and be relaxed with individual relaxation rates, providing
more (real) degrees of freedom to adjust stability and accuracy. By design, cumulants are
Galilean invariant, i.e. independent of the reference frame. The equilibrium value of cumulants
is zero, except for conserved quantities like density and momentum. It should be noted, that
the transformation from populations to cumulants is non-linear.

2.3.5 Smagorinsky subgrid scale model
In many practical engineering applications it is not possible to numerically resolve all flow scales
via DNS because of the high computational cost. A subgrid scale (SGS) model reduces the cost
by applying a low-pass filter to the NSE. It is an essential ingredient in most CFD codes and it
can be introduced in LBM [64]. While large turbulent structures are computed, the small scale
flow features will be modeled instead. This idea is represented in Fig. 2.2, where k∆ denotes
the filter cutoff frequency. It is typically chosen, such that subgrid scales are not resolved and
must be modeled.

A spatial filtering operation can be written as [65]

φ(x) =
∫ +∞

−∞
φ(ψ)G(x−ψ) d3ψ, (2.77)

where G is the filter function and φ can be any physical quantity. Applying the filter operation
to the incompressible NSE yields the filtered continuity and momentum equations

∂iui = 0, (2.78a)
∂tui + uj∂jui = −∂ip− ∂jτij + ∂j (ν (∂jui + ∂iuj)) . (2.78b)

The Reynolds stress tensor
τij = uiuj − uiuj (2.79)

involves influence from unresolved scales and thus is the part which needs to be modeled. The
Smagorinsky model [66] relates the anisotropic stress tensor to the strain rate tensor

τij −
δij
3 τkk = −2νtSij = −2CS∆2|S|Sij, (2.80)
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Figure 2.2 – Energy spectrum in SGS turbulence modeling

where CS denotes the Smagorinsky constant, ∆ ∼ 1/k∆ is the filter cutoff length and |S| =√
2SijSij is the Frobenius norm of the strain rate tensor. The turbulent viscosity νt is introduced

to account for the additional energy dissipation of vortices at small scale.
Strictly speaking, there is no SGS model in LBM for turbulent flows. In LB methods, the

strain rate tensor can be computed locally as

Sij = 1
2(∂iuj + ∂jui) = −3ω

2ρΠneq
ij , (2.81)

where Πneq
ij is the second order moment tensor of the non-equilibrium part defined by

Πneq
ij =

∑
α

cαicαj
(
fα − f

eq
α

)
. (2.82)

The additional subgrid viscosity depends on the local shear rate such that

νt = (CS∆)2|S|, (2.83)

where the filter width is set to the lattice grid size ∆ = 1 and CS should be chosen in the range
of 0.1 to 0.2. Finally, the turbulent viscosity is added to the fluid viscosity ν0 in every grid cell
to obtain the total viscosity

νtotal = ν0 + νt, (2.84)
which is now used for the LB collision step. We use this turbulence model in combination with
the BGK collision operator, but it can also be used with other collision schemes like MRT or
cumulants.

In LBM like in classical LES codes, the necessity of using a SGS model such as Smagorinsky
remains a controversial issue since any numerical dissipation can play a similar role. This will
be tested in Chap. 4.
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2.3.6 Entropic stabilization
The entropic relaxation scheme is an extension to the classic LBM, which is particularly useful
for turbulent, high Reynolds number flows. The physically motivated idea is that the entropy
of a system must increase during a collision process. By maximizing the entropy of the post-
collision state, the numerical scheme is stabilized without explicitly adding artificial dissipation.
Here, we do not refer to the entropic Lattice-Boltzmann method (ELBM) but rather to its
successor - the family of KBC models developed by Karlin, Bösch and Chikatamarla [67].
Neither of the two models feature an explicit turbulence model, but they adapt the relaxation
parameter locally according to some entropy condition. While the ELBM adaptation affects
the fluid viscosity, the KBC model only modifies higher order moments, which have no direct
influence on hydrodynamic terms.

In order to avoid introducing mirror states, we follow the notation of lbmpy. Let us split
the populations in the PDF set according to their moments, such that

fα = kα + sα + hα, (2.85)

where kα is the kinematic part, sα is the shear part and hα is the higher-order part. The
kinematic moments are conserved quantities (which are not relaxed), the shear moments are
connected to the stress tensor of the NSE and the remaining moments are contained within the
higher-order part. Consequently, the post-collision state of the LB scheme can be written as

f̃α = fα − ωs∆sα − ωh∆hα, (2.86)

with the shear relaxation rate ωs, the higher-order relaxation rate ωh and the deviations from
equilibrium ∆sα = sα − seq

α and ∆hα = hα − heq
α . The main idea of the KBC model is to

maximize the entropy of the post-collision state of the LB scheme

S(f̃) = −
∑
α

f̃α ln
(
f̃α
f eq
α

)
. (2.87)

in every cell by adjusting ωh, while keeping ωs constant. Hence, we need to take the first
derivative of the entropy with respect to ωh and set it to zero:

∑
α

∆hα
(

ln
(
f̃α
f eq
α

)
+ 1

)
= 0 (2.88)

Eq. (2.88) could be solved by applying Newton’s method, which would be computationally
costly. Instead the logarithm is approximated by a first order Taylor expansion around 1
(ln(x) ≈ x − 1), since f̃ is expected to be close to f eq. The simplified condition for the point
of maximum entropy is ∑

α

∆h f̃α
f eq
α

= 0. (2.89)

Introducing the entropic scalar product

〈X|Y 〉 =
∑
α

XαYα
f eq
α

(2.90)

allows us to write the optimal relaxation rate for higher-order moments as

ω∗h = 1 + (1− ωs)
〈∆s|∆h〉
〈∆h|∆h〉 . (2.91)
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This formulation maximizes the entropy in every cell in a computational efficient manner with-
out the need for an iteration process.

As discussed in [68], there are several definitions sα leading to the different variants of the
KBC model. Tab. 2.1 gives an example of the moments and their corresponding equilibrium
values and relaxation rates of an orthogonalized D2Q9 MRT model. The zeroth and first order
moments, i.e. the first three entries in the table, relate to conserved quantities and are thus not
relaxed. Second order moments are split into two groups: the moments responsible for shear
viscosity and the moments responsible for bulk viscosity and they can be relaxed individually
with ω2,s and ω2,b, respectively. Third and Fourth order moments are relaxed with ω3 and ω4,
respectively. The shear part sα of the entropic formulation can be composed of the moments
corresponding to the shear viscosity plus an arbitrary combination of the moments related to
the bulk viscosity, third and fourth order moments. The remaining moments are attributed to
the higher-order part hα.

For our simulations of turbulent flows in Sec. 3.8 we configure the relaxation model such
that shear and bulk moments compose the shear part, i.e. ω2,s, ω2,b = ωs, whereas third and
fourth order moments compose the higher-order part, i.e. ω3, ω4 = ω∗h.

Moment Equilibrium value Relaxation rate∑
α fα ρ 0∑
α fαcα,x ρux 0∑
α fαcα,y ρuy 0∑
α fαcα,xcα,x − fαcα1cα1 ρu2

x − ρu2
y ω2,s∑

α fαcα,xcα,y ρuxuy ω2,s∑
α 3fαcα,xcα,x + 3fαcα,ycα,y − 2fα 3ρu2

x + 3ρu2
y ω2,b∑

α 3fαcα,xcα,xcα,y − fαcα,y 0 ω3∑
α 3fαcα,xcα,ycα,y − fαcα,x 0 ω3∑
α 9fαcα,xcα,xcα,ycα,y−3fαcα,xcα,x−3fαcα,ycα,y+fα 0 ω4

Table 2.1 – Exemplary relaxation scheme of an orthogonalized D2Q9 MRT model.
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2.3.7 Inclusion of external forces
When simulating flows that are driven by a pressure gradient, such as flows in a periodic channel
(see Sec. 3.6 and Sec. 3.8) , an external force term Fα has to be added to Eq. (2.24)

f̃α(x, t) = fα(x, t) + Ωα(x, t) + Fα. (2.92)

This force term has to satisfy the condition that its first order moment∑
α

cαFα = ρa (2.93)

is equal to the product of density and external acceleration a, acting on the fluid [69]. The
simplest way of constructing the force term is

Fα = wα
c2
s

ρcα · a, (2.94)

which is only suitable for strictly incompressible flows with constant external acceleration. This
is because the second order moment ∑

α

cα,icα,jFα = 0 (2.95)

is equal to zero for the form term in Eq. (2.94). Moreover, the calculation of the macroscopic
velocity has to be adjusted by adding the force term, such that

u∗ = 1
ρ

(∑
α

cαfα + ∆t
2
∑
α

Fα

)
. (2.96)

Luo force model

Luo [69, 70] proposed an advanced approach of specifying the force term:

Fα = wαρ

(
cα − u
c2
s

+ cα · u
c4
s

cα

)
· a. (2.97)

It can be used for weakly compressible flows since the second order moment is nonzero, i.e.∑
α

cα,icα,jFα = ρ(aiuj + ajui). (2.98)

The macroscopic velocity shift is equivalent to Eq. (2.96).

Guo force model

In addition to adjusting the macroscopic velocity, the equilibrium velocity is modified (in the
same manner) to obtain the force term

Fα =
(

1− ω

2

)
wαρ

(
cα − u
c2
s

+ cα · u
c4
s

cα

)
· a (2.99)

proposed by Guo [71]. The second order moment of this force term is nonzero.
Further force models have been suggested by Schiller [72] or Buick [73].
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2.3.8 Boundary conditions

No-slip

The no-slip condition is required to impose zero normal and tangential velocity at a boundary.
For LB schemes, it is also called bounce-back because populations are reflected back in the
opposite incoming direction. The missing populations can be obtained by applying

fᾱ(x) = f̃α(x) (2.100)

after the collision and before the streaming step. Fig. 2.3 offers a visual representation of the
Eq. (2.100). It is generally first order accurate in space [74] and viscosity depended when
used in combination with the BGK collision operator. For straight walls, where the exact wall
location is half-way (∆x/2) outside the boundary node it is second order accurate.

Figure 2.3 – Treatment of PDFs during no slip boundary handling

Free-slip

A free-slip boundary is achieved by the reflection scheme illustrated in Fig. 2.4. It enforces zero
normal velocity while preserving the tangential velocity component. Located half-way outside
the boundary node along a straight wall it is second order accurate, otherwise first-order.

Figure 2.4 – Treatment of PDFs during free-slip boundary handling

Velocity bounce-back

This boundary condition was introduced by Ladd [75] and is used to prescribe a velocity value
at the boundary. It is similar to the bounce-back scheme but has an additional term, that is
responsible for the momentum transfer from the boundary to the fluid:

fᾱ(x) = f̃α(x)− 2ρwα
c2
s

cα · ub. (2.101)

This additional term includes the velocity at the boundary ub and is constructed such that the
boundary behaves like a bounce-back condition when the fluid velocity equals the boundary
velocity.
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Constant pressure boundary

To impose the pressure at an outflow type boundary condition missing populations are obtained
by applying the anti-bounce-back method [61] and adding an equilibrium term for the pressure
as follows:

fᾱ(x) = −f̃α(x) + 2wαρ
(

1− u · u2c2
s

+ (cα · u)2

2c4
s

)
. (2.102)

Similar to the bounce-back, this pressure condition is second-order accurate if the boundary
is considered half-way outside the boundary. Second-order error terms can be removed by
introducing an additional correction term, see [57].

Periodic

Periodic boundary conditions are used to approximate an infinitely large domain in the given
direction. Two opposite ends of the domain are connected with each via communication other
as if they were neighboring patches. Populations of the PDF, that are directed towards the
boundary are streamed to the corresponding other side of the domain, as shown in Fig. 2.5.

pe
rio

di
c

pe
rio

di
c

Figure 2.5 – Treatment of PDFs during periodic boundary handling

2.4 Moving obstacle boundary conditions
Due to the kinetic nature of the LBM, momentum exchange between fluid and solid phases
can be computed in a straightforward manner. The underlying idea is that mass components
streaming into the boundary causes a momentum influx, while mass components streaming out
of the boundary causes a momentum outflux. At the same time a no-slip condition has to be
satisfied at the solid surface. The interface coupling is based on [75] and has been improved
by [76]. In our configuration, solid particles, as well as the stationary cylinder, are explicitly
mapped into the domain as solid obstacles. The boundary treatment is executed for every
discrete direction or link between fluid and solid nodes. The missing population fᾱ of the
distribution function set at the moving fluid-solid interface is derived from a bounce back (BB)
scheme

fᾱ(x, t+ ∆t) = f̃α(x, t)− ϕwα
c2
s

ρ0u(xb, t) · cα, (2.103)

which is extended by a term that takes the velocity u(xb, t) on the exact boundary location
xb = x+ δαcα∆t into account. The variable δq is the relative distance between the cell center
and the exact surface position. To achieve second order accuracy, we use the central linear
interpolation (CLI) [57] given by

fᾱ(x, t+ ∆t) = κ1f̃α(x, t) + κ0f̃α(x− cα∆t, t) + κ−1f̃ᾱ(x, t)− ϕwα
c2s
ρ0u(xb, t) · cα, (2.104)
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f̃α(x)

f̃ᾱ(x)

f̃α(x− cα)

f̃ᾱ(x− cα)

f̃α(x− 2cα)

u(x
b )

δ

Figure 2.6 – Distribution functions used in the fluid-solid coupling scheme. Fluid cells are
white, solid cells are colored and particle surface is represented by the arc.

with the coefficients κ1, κ0, κ−1 and ϕ found in Tab. 2.2. This interpolation scheme uses
subgrid information to smoothen the staircase approximation of the particle shape. It also
involves the population at the node x− cα∆t, which is located one cell further away from the
boundary. To achieve even higher accuracy the multi-reflection (MR) scheme can be employed:

fᾱ(x, t+ ∆t) =κ1f̃α(x, t) + κ0f̃α(x− cα∆t, t) + κ−1f̃α(x− 2cα∆t, t)
+ κ̄−1f̃ᾱ(x, t) + κ̄−2f̃ᾱ(x− cα∆t, t)
− ϕwα

c2s
ρ0u(xb, t) · cα + fpcα .

(2.105)

The coefficients are given in Tab. 2.2 and the correction term fpcα , which is necessary to elimi-
nate the second-order error, is available from [57]. This quadratic interpolation incorporates the
PDF populations depicted in Fig. 2.6. BB, CLI and MR schemes are designed in such a way,
that they produce viscosity independent solutions in porous media and Poiseuille flows when
used in combination with the TRT collision operator. A detailed comparison of the accuracy
of presented algorithms was done by Rettinger [26]. We will apply the CLI boundary condi-
tion during the following simulations as a compromise between accuracy and computational
efficiency.

κ0 κ−1 κ̄−1 κ̄−2 ϕ

BB 0 0 0 0 2

CLI 1−2δα
1+2δα 0 −κ0 0 4

1+2δα

MR 1−2δα−2δ2
α

(1−δα)2
δ2
α

(1−δα)2 −κ0 −κ−1
4

(1+2δα)2

Table 2.2 – Coefficients for the the bounce-back (BB), central linear interpolation (CLI) and
multi-reflection (MR) schemes. The last coefficient is always κ1 = 1− κ0 − κ−1 − κ̄−1 − κ̄−2.

The interaction force is the difference between instreaming and outstreaming mass com-
ponents multiplied with the relative velocity between fluid and solid phases. It is calculated
as

F αf−s(xb, t) = (∆x)3

∆t

[
(cαf−s − u(xb, t))f̃αf−s(x, t)− (cᾱf−s − u(xb, t))fᾱf−s(x, t+ ∆t)

]
(2.106)

for every direction αf−s that links a fluid with a solid cell [75, 77]. Summing up the contributions
over all fluid-solid links gives us the total force

F f−s(t) =
∑
xb

∑
αf−s

F αf−s(xb, t) (2.107)
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and torque
T f−s(t) =

∑
xb

∑
αf−s

(xb −Xp)× F αf−s(xb, t), (2.108)

acting on an obstacle with its center at position Xp. This implementation is based on the
previous work of Götz [23] and Bartuschat [25]. There are alternative approaches available,
i.e. different formulations of the boundary condition and algorithms for reconstructing missing
distribution function of empty cells [78, 79].

2.4.1 PDF refilling schemes
Due to the motion of a particle through the static computational grid, the domain mapping
has to be adjusted. When a cell that was filled with fluid in the previous time step is now
occupied by a particle, the cell status is simply changed to solid. In the case of a solid cell
turning into a fluid cell, the missing distribution functions need to be refilled. The simplest
approach to reconstruct missing PDFs of a newly created fluid cell xnew is to set them equal to
the equilibrium distribution

fα(xnew) = f eq
α (ρ̄f ,ub) (2.109)

using the local boundary velocity ub and an average density ρ̄f of available adjacent fluid cells
[80].

This scheme only considers the equilibrium part of the unknown PDF. A non-equilibrium
contribution can be included by adding the non-equilibrium part [81] of the PDF from the cell
in normal direction to the solid surface

fα(xnew) = f eq
α (ρ̄f ,ub) + fneq

α (xnew + cαn∆t). (2.110)

The approximate normal direction cαn is the lattice direction that is found by maximizing n·cα,
with n being the particle’s surface normal.

Another refilling strategy is to perform a linear extrapolation [82]

fα(xnew) = 2fα(xnew + cαn∆t)− fα(xnew + 2cαn∆t) (2.111)

if two fluid cells in normal direction are available or a quadratic extrapolation

fα(xnew) = 3fα(xnew + cαn∆t)− 3fα(xnew + 2cαn∆t) + fα(xnew + 3cαn∆t), (2.112)

if three fluid cells are available. None of the above formulations strictly respect the no-slip
boundary condition at the newly created fluid node. By making use of the MRT formulation,
the velocity can be constrained to the wall velocity without modifying moments that contribute
to different physical quantities like pressure and shear stress [83]. The momentsm are obtained
by applying the transfer matrix M to the previously extrapolated PDF set f̂ :

m(xnew) = Mf̂(xnew). (2.113)

In moment space the momentum
j = ρ0ub (2.114)

is constrained to enforce the no-slip condition at the particle boundary. Applying the inverse
transfer to the adjusted moments m∗ gives the new set of PDFs

fα(xnew) = M−1m∗(xnew). (2.115)
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This method of constraining the fluid velocity to the local particle velocity in moment space
has been shown to reduce fluctuations in the fluid-solid interaction [78]. If there are insufficient
fluid nodes available in normal direction, the previous refill schemes can serve as a fallback
solution.

2.5 Granular collision modeling

n

ui

uj

F n

F n

F t

F t

ε

mi

mj

Figure 2.7 – Scheme showing two colliding spherical particles

Whenever an overlap between particles is detected, a collision response needs to be modeled.
A well established method for resolving collisions is the discrete element method (DEM) [84,
85]. There are many variants of the DEM with complex physics modeling. Here, a so-called
soft-sphere approach is used to compute the repulsive force for two spheres or a sphere and a
wall. The penetration distance ε should be kept small in comparison to the particle diameter
to ensure numerical stability and physical relevance [86]. The normal contact force

F n
c = max(0, knε− γnun) (2.116)

is modeled based on a linear spring-dashpot system with normal spring stiffness kn, normal
damping coefficient γn and relative velocity in normal direction un = n

‖n‖ · (ui − uj). Here,
ui and uj correspond to the velocity of particle i and particle j, respectively. F n

c is restricted
to positive values to avoid attractive forces and added to all interacting objects through pos-
itive summation. The computation of friction laws is specific for static and dynamic friction.
Coulomb’s friction law F t

c = µF n
c is only applicable for two particles in contact, moving with a

substantial relative tangential velocity. In the model of Haff and Werner [87] the force compo-
nent F t

c at low tangential velocity is interpreted as a shear damping model

F t
c = −min(µF n

c , γtut) (2.117)

with µ denoting the Coulomb friction parameter, γt denoting the tangential damping coefficient
and ut = ‖ (ui − uj) − un

n
‖n‖‖ denoting the relative velocity in tangential direction. The

Coulomb friction sets the upper limit for friction forces in this approach. Contact parameters,
such as spring stiffness kn and damping coefficient

γn = −2
√
mijkn

ln e√
π2 + ln2 e

(2.118)
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are related to the coefficient of restitution e and the effective massmij = mimj
mi+mj between particle

i and particle j [88]. The time span of a typical collision

Tc = 2πmij√
4mijkn − γ2

n

(2.119)

can be estimated following [89].
The particle motion is integrated in time with a first-order semi-implicit Euler method.

The particle velocity v̇p = F
mp

is updated by using the total force F , which is obtained from
fluid-solid interaction and collision. The angular acceleration ẇp = T

I
depends on the total

torque T and the moment of inertia of a sphere I = md2/10.
The coefficient of restitution is a material property related to the elasticity of a collision

between two objects. The values for the materials used in this study are found in Tab. 5.1.
Normal and tangential damping coefficients are assumed equal γt = γn. When interacting with
a fixed obstacle, corresponding to the cylinder in Chap. 5, the effective mass mij is equal to the
particle mass only. Choosing a value for Tc will determine stiffness and damping coefficients
via eq. (2.118). In order to accurately resolve a solid collision, the granular time step ∆tG is
commonly set about an order of magnitude smaller than the time step of the fluid solver ∆t.
We use a sub-stepping strategy to reduce the computational cost, where hydrodynamic force
and torque are kept constant for a number Nsub = ∆t/∆tG of sub-intervals.

2.6 Implementation

2.6.1 General description of waLBerla
waLBerla2 is an extreme scale, open-source, C++ multiphysics software framework, that can
be used as a tool box for designing various types of applications such as the LBM computation
performed in [90]. It was designed from the ground up for high-performance computing (HPC)
on massively parallel clusters [22, 91] and GPU-based systems [92], so that it is used as a
reference implementation for LBM performance studies [93].

waLBerla uses automatic code generation to ensure excellent execution performance on
a wide range of different architectures. This meta-programming paradigm allows to start the
application development from a high-level description of the LBM method. All steps to derive
the LBM kernel codes can be performed automatically: the code is not only optimized for
specific architectures, but also becomes easier to change to test variants of the LBM methods.

The framework is based on a block-structured domain partitioning in order to achieve ex-
treme scalability and node level performance [94, 21]. The full domain is divided into equally
sized cuboids that can only be refined as a whole at a size ratio of 2:1 with direct neighbors.
Load balancing is achieved on the level of such blocks, not individual cells. Every process can
hold several blocks, but a block can only be assigned to one single process. Data from blocks
is only available to the block that it has been assigned to. This structure allows code paral-
lelization by the Message Passing Interface (MPI) or using hybrid MPI/OpenMP to guarantee
optimal scalability on a wide range of different supercomputer architectures. In complex ge-
ometries, the meshing algorithm will loop over all blocks and all cells to determine if they are
inside or outside the surface mesh and accordingly set them as fluid or empty cells. Blocks that

2https://www.walberla.net

https://www.walberla.net
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hold no fluid cells can be discarded, but blocks that hold one or more fluid cells will be kept
and stocked with the same set of data. This is necessary because the LBM kernel iterate over
all cells equally, irrespective of whether they are fluid cells or not.

Code generation is handled by the pystencils3 and lbmpy4 packages [27]. It uses symbolic
manipulation with the sympy algebra system to symbolically derive a stencil formulation from
the continuous LBM collision operator. During this procedure several optimization techniques,
such as common subexpression elimination and vectorization can be applied to generate highly
efficient C/C++ code. Additionally, optimized code for GPUs can be generated. Thus waL-
Berla with lbmpy can achieve performance portabiliy to a wide range of different architec-
tures.

2.6.2 Single node performance
This section demonstrates, that is possible to execute the collision models presented earlier
at a performance close to the roofline model [95] when exploiting all available optimization
techniques. A detailed reference on the optimization of LB kernels is [96]. Our LB kernels are
generated in lbmpy and embedded in waLBerla , which handles communication and boundary
conditions.

All benchmarks were run on a single node of the Kraken cluster5, which is equipped with
36 cores on a dual socket Intel Xeon Gold 6140 Skylake configuration. The CPU frequency was
fixed to 2.30 GHz during all tests. Each block holds 64 × 64 × 64, which is large enough to
ensure that data is stored in cache. The domain is fully periodic.

Performing one cell update of DdQq discretized LBM requires the transfer of 2 · q · 8 bytes
to and from memory when computing in double precision. We are interested in the D3Q19
model, which has a loop balance L of 304 B

LUP . The memory bandwidth B = 164.82 GB/s
on a single node of Kraken was measured using TheBandwidthBenchmark6. The maximum
attainable performance Pmax is estimated according to the roofline model

Pmax = B

L
= 164.82 GB

s / 304 B
LUP = 555.2 MLUPS. (2.120)

All LBM kernels are optimized by reducing the number of operations via common subex-
pression elimination in the formulation of the collision operator and the classic. Moreover, the
collision and stream steps are fused into a single step stream-collide pattern. There are two
different data structures available: the "Array of Structures" (AoS), where all PDFs of one cell
are stored consecutively in memory and the "Structure of Arrays" (SoA), where all PDFs of the
same direction are stored consecutively. To push the performance close to Pmax, one must make
use of SIMD vectorization (here: AVX512) and non-temporal stores, which are only available
for the SoA layout.

Fig. 2.8 and 2.9 show the measured performance for all collision operators used throughout
this manuscript: BGK, TRT, MRT, BGK with SGS turbulence model, MRT with entropic
stabilization and cumulants. When using SoA, the stream & collide kernel performs close to the
predicted maximum performance and we reach circa 60% of Pmax when including communication
and the periodic boundaries. In contrast, the AoS stream & collide performs significantly worse

3https://pypi.org/project/pystencils/
4https://pypi.org/project/lbmpy/
5https://cerfacs.fr/en/cerfacs-computer-resources/
6https://github.com/RRZE-HPC/TheBandwidthBenchmark

https://pypi.org/project/pystencils/
https://pypi.org/project/lbmpy/
https://cerfacs.fr/en/cerfacs-computer-resources/
https://github.com/RRZE-HPC/TheBandwidthBenchmark
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and circa 40% of Pmax are reached when executing the full LB scheme. All kernels can be run
at similar computational efficiency, which means no CPU is lost when activating the SGS
turbulence model or the entropic stabilization.

While the SoA data structure is employed for uniform grids (Sec. 3.8), the AoS data
structure performed better for non-uniform refined grids like the swirler geometry in Chap. 4.
As we will see later, the performance per node for this complex geometry is only 125 MLUPS
(95 MFLUPS) per node. This is a point to be addressed in the future code development.
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Figure 2.8 – Single node performance of different collision operators using the AoS data structure
compared to the roofline model on Kraken.
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Figure 2.9 – Single node performance of different collision operators using the SoA data struc-
ture compared to the roofline model on Kraken.

2.6.3 Mesh creation
The refinement strategy for block structured grid used in waLBerla follows the approach
by [97]. Blocks are refined at the ratio 2:1 with respect to their grid spacing. To maintain a
constant speed of sound cs when passing from level L to the finer level L+ 1, the timestep ∆t
is halved

∆xL+1 = ∆xL/2 , ∆tL+1 = ∆tL/2. (2.121)
The kinematic viscosity must remain constant on all levels, hence the lattice relaxation fre-
quency is adjusted

ωL+1 = 1
2
ωL
− 1

2
. (2.122)
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Since waLBerla runs on a block structured mesh, only whole blocks can be refined. Each
block has the same shape and holds the same number of grid cells. The algorithm for treating
the transition between blocks of different refinement levels requires a minimum block size is
16× 16× 16 cells. Additionally the block size has to be divisible by two. Further information
on the the time stepping algorithm and communication patterns can be found here [24].

Complex geometries with arbitrary shapes are meshed by covering the fluid domain with
equally sized blocks of the coarsest level. Blocks that have been marked for refinement are
divided into eight finer blocks. This process continues recursively until the desired refinement
level is reached throughout the domain. Blocks that contain reside entirely outside the geometry,
i.e. hold zero fluid cells, are discarded. Note that this meshing mechanism can be executed
during the initialization phase of each simulation since it is very fast and does not require
a volume mesh as input. The workload is balanced by distributing blocks among available
processes. A fully distributed data structure means that each process only has knowledge of
its own blocks and neighboring blocks on other processes. Because processes allocate cell data
exclusively for their own blocks ,the memory consumption of a process does not depend on the
entire simulation but only on the number of assigned blocks . Finally fluid cells are marked by
computing the signed distance to the surface mesh and boundary cells are set as a hull to the
fluid cells.

Fig. 2.10 illustrates the mesh creation procedures on the example of the swirler from Chap.
4. The block size is 32× 16× 16 cells and four refinement levels are used.

Figure 2.10 – Intermediate steps in the mesh creation process of waLBerla. The surface mesh
is colored black and the refinement level is indicated from blue to red. Green rectangles mark
the refinement zones on the corresponding level. Each block holds the same number of grid
cells (32× 16× 16).
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2.6.4 Fluid-solid coupling algorithm
Successfully simulating particulate flows requires the execution of presented methods in the
correct order. We start by initializing the fluid and placing the particles in the domain. Grid
cells that reside inside the particle radius are marked solid cells, the remaining cells are fluid.
All fluid cells in the direct vicinity of a solid are additionally marked as boundary cells, that
have to be treated during the treatment of boundary conditions.

As the particles move through the domain, this mapping of fluid and solid cells has to be
repeated at the beginning of each timestep. In the event that a cell, which was marked as solid
in the previous timestep, turns into a fluid cell the PDF refilling mechanism has to be called
(Sec. 2.4.1). Next, we perform the LB collision (Eq. (2.24)), communicate PDFs on the outer
cell layer of each block to its neighbors, apply the boundary condition for moving obstacles
(Sec. 2.4) and execute the LB streaming (Eq. (2.25)). Hydrodynamic forces and torque are
computed during the boundary treatment locally on each block and synchronized in the next
step to obtain the total force (Eq. (2.107)) and torque (Eq. (2.108)) acting on each particle.

Ladd [98] proposed to average force and torque on particles during two consecutive timesteps
because the bounce back type boundary conditions cause oscillation in the hydrodynamic inter-
action at the frequency of two timesteps. To dampen these undesired oscillations we store force
and torque at the current timestep t before averaging them with the values from the previous
timestep t− 1.

Now the granular solver is called for Nsub sub-intervals during which hydrodynamic force
and torque are kept constant. Particle overlaps are detected and resolved as collisions (Eq.
(2.116), (2.117)), their position and velocity is integrated in time and synchronized between
blocks. The evaluation of different inter-particle forces, such as a lubrication correction, can be
inserted here. The number of required sub-intervals depends on collision parameters.

Algorithm 1: Pseudocode of the LBM-DEM coupling approach
Initialize fluid and particles; map particles into the domain
for every time step t do

Update particle mapping
Refill PDF in empty fluid cells
Perform LB collision step
Communicate PDFs between blocks
Apply boundary conditions
Perform LB stream step
Compute total hydrodynamic force and torque on particle and average them
for every sub-interval Nsub do

Evaluate inter-particle forces (e.g. lubrification correction)
Detect and resolve particle collisions
Integrate particle position and velocity in time
Synchronize particles between blocks

end
end
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This chapter presents restrictions of the LBM approach in various Navier-Stokes
problems, where analytic or high fidelity numerical solutions are available. Most
cases are unsteady in order to stress the method more and allow us to verify its
limits. We will investigate the interaction of fluid and solid walls, the particle
response to sudden velocity changes in the carrier fluid and oscillating external
forces in the Stokes limit. Furthermore, the Segré-Silberberg effect and the granu-
lar drag coefficient of a cylinder are validated. Finally, we compare three differ-
ent strategies (BGK-SGS, entropic stabilized MRT, cumulants) for modeling the tur-
bulent flow between two parallel plates. Verifying the accuracy of these basic fluid
flow problems gives us the confidence to continue with more complex configurations.
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3.1 First Stokes problem
The first Stokes problem, also known as Rayleigh problem, is one of the few unsteady flows for
which we can find an exact solution of the Navier-Stokes equations [99]. Consider an infinitely
long plate at y = 0, that is at rest at t = 0 and abruptly starts moving at constant velocity
u(y = 0, t > 0) = u0 in tangential (x) direction. Initially, the fluid is at rest throughout the
domain u(y > 0, t = 0) = 0 and is driven only by the plate motion, not by any external pressure
gradient. A no-slip boundary condition is applied on the wall, causing the fluid in direct vicinity
of the plate to move at velocity

u(0, t > 0) = u0.

This condition does not influence the fluid at infinity, where u(y = ∞, t) = 0. Under these
assumptions, the incompressible Navier-Stokes equations can be reduced to the one-dimensional
diffusion equation

∂u

∂t
= ν

∂2u

∂y2 . (3.1)

The self-similar solution is found by introducing the variable

η = y√
νt
,

such that u = f(η). Substitution into Eq. (3.1) reduces the partial differential equation to an
ordinary differential equation

f” + 1/2ηf ′ = 0.
Integrating the function

f ′ = Ae−η
2/4

yields
f = B + A

∫ η

0
e−k

2/4dk,

with the integration constants A and B. Considering the boundary condition mentioned earlier,
the solution to the initial problem is [29]

u

u0
= 1− erf

(
y

2
√
νt

)
, (3.2)

with the error function

erf(x) = 2√
π

∫ x

0
e−k

2
dk and erf(+∞) = 1.

The wall shear stress between plate and fluid is obtained by [100]

τw = µ

(
∂u

∂y

)
y=0

= −
u0
√
ρµ√
πt

. (3.3)

We choose
τt = ν

u2
0

as the characteristic time scale. The motion of the plate is progressively transported through
vorticity diffusion to the outer fluid regions. But the velocity profile is geometrically similar at
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different points of time and always a function of η. Fig. 3.1 depicts the velocity profiles in terms
of η obtained from our simulations with u0 = 0.1 in lattice units. We present the results for a
lattice relaxation frequency of ωLBM = 0.4, because problems in the Stokes regime are typically
run at the lower limit of lattice relaxation frequency. At high relaxation rates ωLBM → 2 the
convergence towards the analytic solution takes longer in terms of characteristic time scale.
The simulation domain spans 60 cells in the direction of the plate motion (x) and 120 in wall
normal direction (y). The domain is periodic in x and the velocity is imposed via no-slip
condition at the bottom and top boundaries. We observe that the numerical results deviate
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Figure 3.1 – Left: velocity profiles of LBM and theory for different timesteps (characteristic
time scale τ = 66.7); Right: Wall shear stress; Top: BGK; Bottom: TRT (Λ = 3/16)

.

considerably from the analytic solution at the initial phase of the simulation but approach the
correct velocity profile after t = 1

2τt. The LBM requires approximately half a characteristic
time scale to react to the sudden change in velocity at the boundary. The BGK collision model
underestimates the velocity profile during the initial transient period, while the TRT model
(Λ = 3/16) under- and overestimates for different times (see Fig. 3.1 left).
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3.2 Second Stokes problem
The second Stokes problem is similar to the first one, except that the plate is not moving
with constant velocity but oscillating at frequency ωt/π. The Navier-Stokes equations can be
simplified in the same manner as Eq. (3.1). The motion of the plate is prescribed as

u(0, t) = u0 cos(ωtt)

and the fluid is quiescent at infinite distance from the wall u(∞, t) = 0 [28]. The velocity is
expressed as the real part of the complex function

u = u0<
(
eiωttf(y)

)
Substitution into the partial differential equation yields

f ′′ − iωt
ν
f = 0.

Considering the boundary conditions, the function

f(y) = exp
(

1 + i√
2

√
ωt
ν
y

)

is a solution to the differential equation and leads to the fluid velocity profile [29, 100]:

u

u0
= exp

(
−
√
ωt
2ν y

)
cos

(
ωtt−

√
ωt
2ν y

)
. (3.4)

The penetration depth

δ =
√

2ν
ωt

is a measure of how far the oscillating motion of the plate reaches into the fluid. It decreases
with frequency for a fluid at constant kinematic viscosity. We choose the characteristic timescale

τt = L2

ν

and the longitudinal displacement as characteristic lengthscale

L = 2u0

∫ π/2
ωt

0
cos(ωtt) = 2u0

ωt

for this problem. The wall shear stress

τw = µ

(
∂u

∂y

)
y=0

= µu0

√
ωt
ν

cos
(
ωtt−

3π
4

)
(3.5)

has a phase lag of 3π/4 relative to the wall velocity [28].
The simulation domain spans 60 cells in the direction of the plate motion (x) and 120

in wall normal direction (y). The domain is periodic in x and the velocity is imposed via
no-slip condition at the bottom and top boundaries. All simulations are conducted at lattice
relaxation frequency ωLBM = 0.4 and the wall velocity amplitude is determined by satisfying
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Re = u0L
ν

= 0.1. Analytic velocity profiles along the wall normal direction for three exemplary
times are presented in Fig. 3.2, along with the numerical solution using the BGK collision
model . The analytic solution does not consider the initial transient but the simulation is
initialized with zero fluid velocity throughout the domain. Hence, there is a deviation between
LBM and theory at the beginning of simulation. At later times the LBM approaches the
predicted velocity profile, but will always lag behind the analytic solution. The phase shift
between numerical and analytic solution in terms of the force exerted on the plate increases
with the plate oscillation frequency as illustrated on the right side of Fig. 3.3. At ωt = 0.5 the
penetration is of the same order of magnitude as the lattice grid size δ/∆y = 1.6 and thus the
boundary layer is not sufficiently resolved. The ratio of wall shear stress amplitude between
LBM and analytic is shown on the left side of Fig. 3.3. Results are presented for the BGK
and the TRT collision model (Λ = 3/16). TRT consistently delivers better results than BGK,
especially in terms of the amplitude at high plate oscillation frequencies.

3.3 Particle response
A spherical particle immersed in a viscous fluid experiences a force that seeks to diminish the
relative velocity between the two phases. In order to verify our numerical approach we need to
check if the particle reacts accurately to the surrounding fluid. The typical momentum response
time, or particle time scale is [88, 101]

τp = (ρp + ρf/2)d2

18µf
, (3.6)

with the fluid viscosity µf , fluid density ρf and particle density ρp. This is the characteristic
time over which a particle responds to a change of velocity of the carier fluid. The term ρf/2
is due to the added-mass effect. Heavy and large particles need a longer time to adapt to the
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Figure 3.3 – Wall shear stress amplitude ratio of LBM to analytic solution ALBM/AAnalytic and
phase lag φLBM − φAnalytic for the second Stokes problem.

fluid phase and increasing the fluid viscosity leads to faster response. Not considering gravity
and assuming that the Reynolds number Re = dρfw

µf
� 1 is low, the total force acting on the

sphere is

F (t) = 3πµfdw(t)︸ ︷︷ ︸
steady drag

+ 3πµfd
∫ t

0

dw

dt′
Kµ(t− t′)dt′︸ ︷︷ ︸

history force

+ 1
12ρfπd

3dw

dt︸ ︷︷ ︸
added-mass effect

, (3.7)

where w(t) = uf (t)− up(t) is the slip velocity between uniform fluid flow and particle and Kµ

is the memory kernel [102, 103]. It can be computed for solid spherical particles (µ∗ =∞) as

Kµ (t, µ∗ =∞) = 1√
πt/τν

, (3.8)

with the viscous time scale τν = d2/4νf .

F (t)
up(t)

ρp, µp

uf

ρf , µf

Figure 3.4 – Sphere immersed in a carrier fluid with slip velocity w = uf − up

The first term, also called Stokes’ law, is the drag, which is mainly caused by the viscosity
of the fluid and pressure distribution. We will comment on the second term - the history force -
in detail in Sec. 3.4. As the sphere accelerates, it moves into the physical space that is occupied
by fluid. The additional inertia of the fluid that is pushed away by the particle is the added
mass, also called virtual mass. It has been shown for incompressible fluid, that it is equivalent
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Figure 3.5 – Relative velocity of a particle that is subject to a sudden change in velocity of
the carrier fluid. Particle is being kept fixed until the flow has converged and the particle
is released at t = 0. Numerical prediction takes steady drag, added-mass effect and history
force into account. Simulations conducted with varying spatial d/∆x and temporal resolutions
τp/∆t.

to half the mass the fluid would obtain within the particle volume [101]. It is further assumed
that the sphere is rigid and therefore has no viscosity µ∗ = µp/µf =∞.

For our simulation a single sphere is placed in the center of a domain, which spans 20
particle diameters d in every spatial direction. A uniform and constant velocity uin = uf is
imposed at the inlet and a constant pressure at the outlet. The domain is periodic in cross-
stream direction. During the initial phase of the simulation, the sphere is kept fixed in space
until the drag force has converged to the steady Stokes drag. Then the sphere is released and
its velocity is recorded. Fig. 3.5 shows the slip velocity between fluid and particle for neutrally
buoyant (ρ∗ = ρp/ρf = 1), slightly inertial (ρ∗ = 1) and highly inertial (ρ∗ = 10) particles.
The fluid viscosity µf and fluid velocity uf are adjusted to ensure a constant Reynolds number
Re = 0.05 for all simulations. We employed the TRT collision model with Λ = 1/4. The
particle’s trajectory is compared to theoretical predictions that are computed by integrating
Eq. (3.7) in time.

We examine the influence of resolution for this flow problem in space d/∆x and time τp/∆t.
The particle acceleration is well captured by the LBM simulation except when the particle has
to respond quickly (τp/∆t is low). This deviation intensifies with increasing relative particle



38 Chapter 3. Validation

density ρ∗. The influence of lattice cells per sphere diameter is small in the investigated range
(8<d/∆x<16) compared to the influence of the particle time scale.

3.4 Basset history force
The so-called Basset history force, also known as Boussinesq–Basset force [30, 31], is a con-
sequence of the unsteady diffusion of vorticity as the particle starts accelerating. The Basset
force arises from viscous effects and depends on the particle’s acceleration history, from the
beginning t = 0 to the present time t hence the name "history" force:

F (t) = 3πµfd
∫ t

0

dw

dt′
Kµ(t− t′, µ∗)dt′. (3.9)

For the definition of the memory kernel, see Eq. (3.8). To examine the history term in particu-
lar, we fix the sphere in space and expose it to a sudden change in velocity of the carrier fluid.
In this case the slip velocity is constant w(t) = w0, which eliminates the added-mass term and
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Figure 3.6 – Hydrodynamic force F (consisting of steady drag FSt and history force FBH) acting
on a fixed sphere as reaction to a sudden change in the carrier fluid velocity. Simulations
conducted with varying spatial d/∆x and temporal resolutions τν/∆t.

leads to the total force on the particle

F (t) = 3πµfdw0︸ ︷︷ ︸
steady drag

+ 3πµfdKµ(t)w0︸ ︷︷ ︸
history force

. (3.10)

The simulation setup is identical to the one in the previous chapter: the domain spans 20 particle
diameter, the Reynolds number is fixed to Re = 0.05 and TRT with Λ = 1/4 is used. The
forces in figure Fig. 3.6 are normalized by the steady drag force FSt. The history force is clearly
present in the LBM simulations, but can deviate from the theoretical prediction depending on
spatial and temporal resolution. We observe that for the smaller characteristic time scale
τν = 50, the history force is underestimated for resolutions greater than d/∆x ≥ 16 during
the first few time steps of the simulation. This error is even bigger at resolution d/∆x = 32.
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At time scale τν/∆t = 200 the force during the first few iterations is underestimated for
d/∆x = 32 and overestimated for d/∆x = 8. All computations at τν/∆t = 50 and τν/∆t = 200
roughly converge to the analytic prediction after t/τν = 0.5 and t/τν = 0.1, respectively.
Small viscous time scales and high spatial resolutions lead to dangerously low lattice relaxation
frequencies ωLBM. This behavior demonstrates that increasing the spatial resolution does not
always improve the accuracy when using the LBM because it will decrease the lattice relaxation
frequency even further.

3.5 Oscillating particle
We now investigate the particle’s unsteady response to an external oscillatory force F ext =
3πµdu0 sin(ωt), where ω/2π is the oscillation frequency, u0 is a constant vector and µ is the
dynamic viscosity. A single sphere is embedded in a fluid at rest with no gravity. The theoretical
particle velocity can be obtained by solving the Maxey-Riley equation [103]

mp
dup
dt

=− 3πdρfν (up − uf ) +mf
Duf
Dt

+ mf

2

(
Duf
Dt
− dup

dt

)

− 3
2d

2ρf
√
πν
∫ t

t0

1√
t− τ

(
dup
dτ
− duf

dτ

)
dτ,

(3.11)

following the approach of Wang et al. [104]. Eq. (3.11) is only valid for the Stokes regime
(Re � 1) and does not incorporate the Faxén terms in added mass, drag and history force
contributions.

The resulting oscillating motion of the particle is expressed as

up(t) = αu0 sin(ωt+ ϕ), (3.12)

with amplitude α and phase shift ϕ. When the particle is embedded in a quiescent fluid,
the analytical solution gives a relation between the amplitude of external oscillatory forcing
(written as F (t) = F̂ eiωt) and the particle velocity as

F̂ = ûp

[
(mp + 1

2mf )iω + 3πµd(1 + δeiπ/4)
]
eiϕ. (3.13)

The terms on the right hand side of eq. (3.13) correspond respectively to particle inertia, added
mass, steady and unsteady drag forces. The contribution of Basset history force is important
for neutrally buoyant particles and when the particle-to-fluid density ratio is low to moderate.
The amplitude and phase shift of the particle velocity are presented in Fig. 3.7 for particle-
fluid density ratios up to ρ∗ = 5 with ψ2 = ωd2/ν. The purely viscous contribution of the
hydrodynamic force (in the absence of added mass term) is also plotted. This dimensionless
frequency ψ2 can be interpreted as a Stokes number corresponding to the ratio of the particle
relaxation time to the fluid oscillation time scale. It is also the square of the ratio of the
particle diameter to the Stokes layer thickness. The cubic simulation domain spans 10 particle
diameters and is periodic in all directions. The BGK and TRT collision operator with Λ = 1/4
are compared for this setup.

Additionally, numerical results from the JADIM code [105] are depicted, which is a incom-
pressible finite volume method solver. It employs the Force-Coupling method (FCM) [106, 107,
108], which is a numerical model for the simulation of suspension flows, which is able to couple
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Figure 3.7 – Amplitude and phase shift of external force to particle velocity. ψ2 = ωd2/ν is
the dimensionless frequency. The resolution is given by the number of lattice cells per particle
diameter d/∆x.

simultaneously the solution of the fluid flow equations and the Lagrangian tracking of the par-
ticles. The FCM is based on a low-order, finite multipole expansion of the velocity disturbance
induced by the presence of the particles. FCM results are found in [104].

Our fluid-solid-coupling approach delivers good results for a resolution of d/∆x = 20, but
exhibits a slight overestimation of amplitude and significant underestimation of the phase shift
for d/∆x = 10 because for high ψ2, the Stokes layer is too thin to be accurately resolved.
The deviation is stronger for smaller particle density and faster oscillation. It is clear that
LBM predictions become gradually closer to the theoretical prediction while particle density
is increased because the relative contribution of unsteady Basset drag reduces. The TRT
model produces significantly better outcome than the BGK model, especially in terms of the
amplitude. This is consistent with the earlier results from the second Stokes problem (Fig. 3.3).
Since the FCM was especially designed for particulate simulations at low Reynolds numbers,
it is not surprising that it yields more accurate results.
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3.6 Segré-Silberberg effect
The Segré-Silberberg [32] effect is another relevant way to test implementation of the fluid solid
coupling strategy. A neutrally buoyant sphere is immersed in a steady laminar flow between two
parallel plates. The fluid exerts a drag force which carries the sphere in streamwise direction
and the parabolic flow field generates a lift force making the sphere migrate towards one of
the channel walls. Close to the wall a hydrodynamic interaction between the two objects acts
counter to the lift force and eventually the sphere will reach an equilibrium position relative to
the wall. This phenomenon depends on the ratio between the sphere diameter and the channel
width, as well as the Reynolds number. Fig. 3.8 depicts the lateral migration of the particle
towards the equilibrium state.
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Figure 3.8 – Lateral position Y of a particle with d/∆x = 8 over 200000 timesteps in a laminar
parallel channel flow. Reynolds number Re = ūH

ν
is based on the mean fluid velocity ū, the

channel height H and the kinematic fluid viscosity ν. Y is equal to 0 at the channel center and
H/2 at the wall.

The Guo force model (Eq. (2.99)) is used to drive the flow with an acceleration correspond-
ing to the pressure gradient

a = −dp
dx

= τw
H/2 , (3.14)

where the wall shear stress is equivalent to τw = 6νū/H. We need to use the TRT collision model
with Λ = 3/16 to obtain the correct Poiseuille velocity profile in this flow configuration. The
channel is 16d high, 14.4d long and 6d wide. Different resolutions, i.e. number of lattice cells
per particle diameter d/∆x, of our computations are compared to the prediction of Asmolov
[109] from matched asymptotic theory.

Fig. 3.9 shows the particle’s relative position inside the channel when reaching an equilib-
rium state. The underlying physical mechanism is well recovered, but error increases at higher
resolutions. This behavior seems arbitrary, but it has been shown for TRT with Λ = 3/16 that
the drag force acting on spheres packing is underestimated below d/∆x = 10 and overestimated
above. It is converging to the expected value at much higher resolution d/∆x > 60 [111]. With
the number of lattice cells per diameter d/∆x = 10 that is chosen for the following simulations
the accuracy is better than 4%.
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3.7 Granular drag coefficient
Granular drag, unlike fluid drag, depends mainly on the Knudsen number

Kn = d

6
√

2Θ∞D
(3.15)

but also on material properties. The drag coefficient of a granular system on a cylinder of
diameter D

cD,G = FD,p
1/2ρpΘ∞u2

∞(D + d)Lz
(3.16)

is calculated from the drag force FD,p, which is made dimensionless by using the particle density
ρp and diameter d, the upstream solid volume fraction Θ∞ and velocity u∞.
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Figure 3.10 – Schematic presentation of the simulation domain.

We perform simulations of purely granular flows - without the presence of a fluid - to compare
the value of granular drag coefficient to experiments from literature. The computational domain
spans 20 cylinder diameters in streamwise direction, 12 cross-stream, and 5 spanwise and is
periodic in spanwise direction (see Fig. 3.10). At initialization the domain is empty but
particles will be injected at the inlet at random location with velocity ux = u∞. They are
removed from the simulation once they leave the domain. No velocity fluctuations are added
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to the particles, so that the upstream granular temperature is T∞ = (u2
y + u2

z)/2 [112]. The
simulation duration is equal to six flow-through times τt = Lx/u∞ and the initial transient
phase, which is not considered for the computation of the average drag force, is tinit = 1τt. We
will test particles of two different sizes: d = D/5 and d = D/10.

Snapshots of the instantaneous particle position in Fig. 3.11 reveal the formation of a bow
shock in front of the cylinder, which is typical of granular flows [113].

Figure 3.11 – Instantaneous snapshot of particle positions of size d = D/5 at Kn = 0.1 (left)
and Kn = 0.5 (right).

Wassgren et al. [112] presented a theoretical derivation of the expected drag coefficient for
different coefficients of restitution e. Their prediction for a uniform, non-interacting stream
of particles cD,G = 4 (e+ 1) /3 is depicted in Fig. 3.12 (left) together with our simulations of
frictionless particles.

The prediction becomes more accurate as the Knudsen number increases, due to fewer inter-
particle collisions taking place. The relation between drag coefficient and Knudsen number
has been examined by Boudet & Kellay [114]. In their experiments, they used an aluminum
cylinder in combination with steel spheres (e = 0.93), for cylinder to particle diameter ratios
D/d = 27, 110 and glass beads at D/d = 92. The line in Fig. 3.12 (right) represents their
best fit over all experimental results. Our simulations do not follow the curve exactly but
show the same trend. Simulations with and without friction do not show a notable difference.
Even though these experiments were conducted with very small particles compared to the
cylinder size d� D, we did not find a significant difference between size ratio 5 and 10 in our
computations including friction. No dependence of the upstream particle velocity on the drag
coefficient has been observed.
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3.8. Turbulent flow between two parallel plates 45

3.8 Turbulent flow between two parallel plates
Finally, we need to validate turbulent flow properties for later computation of the swirled flow
in Chap. 4. Turbulent flows are inherently more complex than laminar flows due to their
chaotic nature. This is a difficulty in the main part of the flow, where turbulence models are
needed. It is an even bigger difficulty near walls, where spatial resolution becomes an issue.

To check how our LBM approach behaves, we perform a wall resolved LES of the channel
flow between two infinite plates at distance H. Even though this is a turbulent flow, this case
is a classical test for all LES CFD codes and the expected solutions are well known [115, 116].
First we introduce the dimensionless wall distance and velocity

y+ = yuτ
ν
, u+ = ū

uτ
, (3.17)

where y is the normal distance to the wall and u the mean velocity in flow direction. The skin
friction velocity

uτ =
√
τw
ρ

(3.18)

is defined by the wall shear stress τw. In the viscous sublayer, which is close to the wall, y+ < 5,
the flow is dominated by viscous stresses and turbulent stresses are negligibly small [33]. The
dimensionless velocity is equal to the dimensionless wall distance

u+ = y+ (3.19)

Further away from the wall, in the so-called log-law region y+ > 30 the Reynolds shear stresses
become dominant and we find the logarithmic relationship

u+ = 1
κ

log y+ + C (3.20)

with the von Kármán constant κ = 0.41 and C = 5.0. In between lies the buffer layer, which
marks the transition between viscous and turbulence dominated regions. The high fidelity
numerical data from Moser et al. [117] will be used as a reference to our simulations in this
part of the flow. They also provide the different components of the Reynolds stresses tensor.

There are two characteristic Reynolds numbers for this problem - the bulk Reynolds number

Rebulk = ū(H/2)
ν

, (3.21)

which measures the mean flow velocity ū and the friction Reynolds number

Reτ = uτ (H/2)
ν

, (3.22)

which considers the wall shear stress. Furthermore, the skin friction coefficient

cf = τw
1
2ρū

2 , (3.23)

describes the dimensionless drag force exerted by the fluid onto the solid walls.
The grid spacing ∆y+ = ∆yLBMuτ

ν
in the LBM simulations is uniform throughout the domain

except at the walls, where the boundary is placed in between two grid cells such that the first
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fluid node is found at 1
2∆y+. This is different from finite volume codes, which continuously refine

the mesh near the walls because smaller eddies appear at walls, requiring increased resolution.
Such wall adapted meshes can not be used in waLBerla due to the block-structured mesh
(see Sec. 2.6.3).

The flow is driven by an external fluid acceleration corresponding to the pressure gradient

a = −dp
dx

= τw
H/2 , (3.24)

which is imposed via the Luo force model (Eq. (2.97)). The simulation domain size is
πH/2, H, 0.289πH/2 in streamwise, cross-stream and spanwise direction, respectively with pe-
riodic boundary conditions in x, z directions. Time averaging is performed over one turnover
period T = H/uτ and the initial transient time is 8 T . The flow is initialized with a one-seventh
power-law velocity profile

u = umax

(
1− |y −H|

H

)1/7

(3.25)

with random perturbation added to the mean velocity at time t = 0.
We examine three different LBM models for turbulent flows:

• The single relaxation time collision operator with a Smagorinsky type sub-grid scale
turbulence model (BGK-SGS)

• The multi relaxation time collision operator, which is stabilized by relaxing third and
fourth order moments according to the entropy condition (see Sec. 2.3.6)

• The cumulant relaxation model (see Sec. 2.3.4)

The biggest difference between these models is that BGK-SGS employs an explicit sub-grid
turbulence model in the sense that the local shear viscosity is adjusted. In contrast, entropic and
cumulant models do not modify the shear viscosity, but achieve increased stability by adjusting
the higher order moments (entropic) or the relaxation of statistical independent quantities
(cumulant). One might interpret these methods as "implicit" turbulence models.

x

y z

Figure 3.13 – Instantaneous snapshot of the velocity (left) and vorticity (right) magnitude of
the turbulent flow between two parallel plates.

The dimensionless velocity and components of the Reynolds stress tensor are presented for
a wall resolved grid spacing of ∆y+ = 1 in Fig. 3.14 and an underresolved grid with ∆y+ = 6.
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v is the velocity component normal to the wall and w is the velocity component in spanwise
direction. All simulation results are normalized by the friction velocity uτ obtained from Moser
et al.

At grid spacing ∆y+ = 1 all three methods recover the correct mean velocity profiles and
Reynolds stresses. Deviation in the simulated bulk velocity and wall shear stress are below 1%
and 3%, respectively compared to the reference from Moser et al. This is a remarkable result
considering that the LBM code does not use mesh refinement near walls. Results deteriorate
for the coarser grid spacing ∆y+ = 6. Nonphysical stresses appear for the BGK-SGS model
and the bulk velocity is significantly underestimated for the entropic model. The cumulant
method presents good velocity profiles but the predicted wall shear stress is too low. At even
coarser grid resolution the fluctuations in the BGK-SGS model cause the simulation to become
unstable, whereas the entropic and cumulant methods were able to robustly simulate turbulence
up to a grid spacing of ∆y+ = 6.

∆y+ = 1 ∆y+ = 6

Reference BGK-SGS Entropic Cumulant BGK-SGS Entropic Cumulant

Rebulk 10000 10039 10042 10057 10329 9047 10174

Reτ 543 551 555 557 454 512 456

cf × 10−3 5.908 6.020 6.011 6.131 3.991 6.432 4.046

Table 3.1 – Comparison of bulk Reynolds number Rebulk, friction Reynolds number Reτ and
friction coefficient cf for different resolutions against numerical data from Moser et al. [117]
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3.9 Conclusion
We have presented the capabilities of the LBM to solve fluid problems from the Stokes regime
up to turbulent flows, even near walls. In the realm of low Reynolds numbers the LBM has
difficulties maintaining high accuracy, especially when characteristic time scales are small. We
observed that a fine resolution is necessary to compete with methods like the FCM, which is
designed to deliver high accuracy especially in the Stokes regime. Attention needs to be taken
to ensure that the lattice relaxation frequency does not approach zero. Generally values lower
than ω = 0.4 should be avoided. The TRT model shows an advantage over th BGK model in
terms of accuracy for most of the tested configurations. We use Λ = 3/16 to find the correct
velocity profile in channel flows and Λ = 1/4 for highest stability.

The particle response to a sudden change in fluid velocity is well captured by the LBM
except when the particle time scale is small and the relative density is high. Similarly, the
unsteady response to an oscillatory force becomes worse for higher frequencies. The Basset-
History force is present, but difficult to recover accurately. Increasing the spatial resolution
improves the results for the oscillating particle, but has little impact on the response to a
sudden change in velocity. The Segré-Silberberg effect is well predicted for a spatial resolution
of 10 grid cells per sphere diameter.

Three different LBM approaches in waLBerla have been generated using lbmpy (BGK-
SGS, entropic and cumulant relaxation) for computing turbulent flows using an LES-type ap-
proach. The turbulent flow between two parallel plates has been tested and compared to the
DNS of Moser et al. [117], which is the reference in this field. All three are able to accu-
rately predict mean velocity and turbulent flow quantities with a fine resolution of the viscous
sublayer. For underresolved grids the entropic and cumulant methods exhibit better stability.
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This chapter corresponds to a common CERFACS / IMFT / EM2C work on a swirler
developed and tested at EM2C. It was submitted to Computer and Fluids in 2020 under
the reference [118]. We will present the experimental setup and briefly introduce the
solvers AVBP, ProLB and waLBerla. The numerical results are compared to mean
and RMS velocities of PIV measurements and their power spectrum is compared to LDV
measurements for the confined flow. The three codes are benchmarked in terms of their
computational efficiency and parallel scalability. Lastly, we perform some additional
simulation with waLBerla to check the mesh convergence and find the velocity profile
of the unconfined configuration.
All experimental data presented in this chapter have been provided by EM2C at the start
of this study. Numerical simulations using AVBP were conducted by Andrea Aniello
and simulations using ProLB were conducted by Paul Werner, whereas my main contri-
bution was to perform simulation using waLBerla. The choice of numerical methods,
mesh resolution and the physical interpretation have been carved out together as a team.
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4.1 Introduction
The question of the efficiency of CFD solvers is an issue which has virtually disappeared for clas-
sical RANS (Reynolds Averaged Navier-Stokes) methods but remains essential when it comes to
Large Eddy Simulation approaches [119, 120] as pointed out recently by Löhner [17]. Arguing
that a certain class of CFD methods is the fastest to solve LES critical problems is a game
played by multiple teams worldwide: in most cases, these discussions focus on the theoretical
reasons which should make such or such approach faster than others for LES. However, the
actual speed of CFD solvers for LES does not depend only on the theoretical efficiency of the
method: in most cases, the mesh management, the boundary conditions, the sub models, the
parallel implementation of the method also play critical roles so that the determination of an
exact CPU efficiency is difficult before running real simulations. Furthermore, when simula-
tions are run, the comparison itself between methods becomes difficult: in many cases, each
author runs his or her own code and does not try to compare fully with competing methods.
Workshops are commonly organized to compare methods but their conclusions are rarely clear
because the collaboration to ensure a proper comparison remains difficult to set up (see for
example [121] for such a workshop on compressible methods for LES of turbomachinery).

This chapter compares three LES solvers (Tab. 4.1) which were all run by the same group
of people at IMFT and CERFACS: an incompressible finite volume solver: AVBPpgs and two
Lattice Boltzmann (LB) codes: ProLB and waLBerla. All computations were performed
on the same machines, with the same number of processors and a systematic comparison was
organized to ensure a fair evaluation of methods. The target configuration was the internal
turbulent flow in a swirling burner but all cases correspond to a non reacting situation. Unlike
many previous studies, the present one focuses on an internal flow, at moderate Reynolds
numbers, as found in combustion chambers and not on external flows as found in aerodynamic
and aeracoustic studies. Experiments were performed by the EM2C laboratory and include
enough detailed data to evaluate the precision of the solvers in terms of pressure losses and full
mean and RMS velocity fields.

Code Formulation Method

AVBPpgs Incompressible Finite volume
(Galerkin)

ProLB Athermal Lattice Boltzmann

waLBerla Athermal Lattice Boltzmann

Table 4.1 – Presentation of solvers used for LES simulations

Of course, the first difficulty in such an exercise is the definition of the rules of the game.
In the present case they can be explained as follows: "for each code, build a numerical setup
which provides a minimal accuracy in terms of flow field resolution (pressure loss as well as
mean and RMS velocity profiles within experimental accuracy levels) and compare the CPU
efficiency". Since multiple solvers are used, with different meshes, different algorithms and
different submodels, the notion of minimal accuracy remains arbitrary: here, long discussions
between CFD and experimental teams members have lead to a minimum quality which was
expected from the match between experimental and LES results in terms of average and RMS
velocity fields for multiple locations. This was used for the three solvers to determine the mini-
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mum grid size required to reach this sufficient level of agreement. Once all solvers were found to
provide comparable agreement with the experimental data (taking into account experimental
uncertainties), CPU efficiencies were determined. This procedure still contains a clear level of
arbitrariness that authors do not want to deny. The error bars expected on the results are
certainly significant and of the order of tens of percents.

4.2 Experimental setup
The configuration (Fig. 4.1) was designed to analyze the response of swirled flames to flow rate
modulations in [122, 123].

Dry air is injected from two diametrically opposed apertures at the bottom of a plenum. The
flow crosses a grid and a honeycomb to break the largest turbulent scales. A convergent section
produces a top-hat laminar velocity profile with a boundary layer of about 1 mm thickness
that was characterized by a hot wire probe (Dantec Dynamics - Probe 55P16 with a mini-CTA
54T30). The diameter of this section is D = 22 mm and the bulk flow velocity is fixed to
ub = 5.44± 0.05 m s−1 corresponding to a Reynolds number ReD = 7 620 at room temperature
T = 300 K. The pressure drop with respect to ambient conditions is recorded in front of
the hot wire probe with a differential pressure gauge and indicates ∆p = 335 ± 15 Pa. The
setup was originally designed to analyze effects of geometrical modifications of the injector on
flame dynamics and the burner replaceable components are represented in Fig. 4.1. In the
configuration explored, the radial swirling vane consists of n = 6 cylindrical tangential inlets
of diameter Ds = 6 mm with an offset H = 6 mm as indicated in Fig. 4.1c. The flow leaves
the swirler into a central injection tube. The diameter of this tube is D = 22 mm, over a first
section of length δ1 = 16 mm, followed by a central insert of length δ2 = 34 mm and diameter
D0 = 20 mm. A central rod of diameter d = 6 mm ending with a cone of diameter at the
top C = 10 mm is inserted in the injection tube. The distance between the swirler exit and
the combustion chamber back plane is here fixed at δ = δ1 + δ2 = 50 mm. The central rod
protrudes inside the combustion chamber and the distance between the top of the cone and the
backplane is 1.5 mm. The combustion chamber, made of 4 transparent quartz windows, has
a 82 mm squared cross-section and length 150 mm. It is extended by a nozzle with a square
inlet section and a circular outlet section of diameter 70 mm. Transition between this square
to circular sections is made over a 104 mm length. This device ensures that there is no reverse
flow at the setup outlet. The cartesian system of reference used through the paper is presented
in Fig. 4.2: z corresponds to the symmetry axis of the injector, while the plane defined by axes
x and y corresponds to the backplane of the combustion chamber (z = 0 mm).

Particle Image Velocimetry (PIV) is used to measure the cold flow velocity fields. For these
measurements, the flow is seeded with small oil droplets of diameter 1-3 µm. PIV data are
gathered on both axial and transverse planes within the combustion chamber. The first is
identified by z and x directions (y = 0 mm), while the second one is parallel to the burner
backplane and located at z = 3.5 mm. No PIV data is available at lower axial coordinates. The
PIV system consists of 2× 400 mJ Nd:YAG laser doubled at 532 nm operated at 10 Hz and a
2048× 2048 pixels CCD camera (Dantec Dynamics, FlowSense EO 4M). Two different optical
setups are used with a time interval between the two laser pulses ∆t = 10 µs and a pixel pitch
of 27.88 pixels mm−1 for measurements in the axial plane and ∆t = 25 µs and a pixel pitch of
40.14 pixels mm−1 for measurements in a transverse plane. Eight hundred images are taken to
assure the convergence of the mean and RMS values of the velocity field, which is computed
from the cross-correlation of the PIV images by a three passes window deformation technique
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Figure 4.1 – Experimental setup with detailed representation of the injector region and swirler
geometry. All dimensions in mm.
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Figure 4.2 – Presentation of cartesian system of reference (left). Identification of points P and
Q used for modal analysis (center) and representation of PIV transverse and axial planes of
investigation (right)

(from 64× 64 pixels to 16× 16 pixels interrogation areas), with an uncertainty of 0.1 pixels on
the calculated displacement.

The measurements are completed by Laser Doppler Velocimetry (LDV) to capture the time
resolved velocity profiles at z = 3 mm above the top central insert (see Fig. 4.2). The Power
Spectral Density (PSD) of the axial velocity is calculated to detect the presence of potential
hydrodynamic or acoustic modes. To ease optical access the combustion chamber is removed
for those latter measurements and LDV data are collected in unconfined configurations. Two
laser beams at λ = 514.5 nm (green) allow to probe the axial velocity. Two other beams
at λ = 488 nm (blue) are used to measure the velocity component along x direction. The
data collection rate is always greater than 10000 s−1 and for each measurement point at least
250000 particles are considered, in order to obtain fully converged mean and RMS values for
all components of velocity. The statistical bias is corrected by the transit time of each particle.
The analysis of time traces and PSD of these signals does not reveal any specific coherent
structures associated to helical flow instabilities.

4.3 Presentation of solvers

4.3.1 High-order finite volume solver

AVBP is a multi-species LES explicit solver for Navier-Stokes compressible equations developed
at CERFACS (www.cerfacs.fr/avbp7x). This Cell-Vertex (CV) high-order Finite Volume (FV)
code [124, 125] is able to handle structured, unstructured and hybrid grids in both two and three
space dimensions. It is a world standard code to compute turbulent reacting flows in combustion
chambers [126] or explosions in confined domains [127]. A critical aspect of compressible codes
is the treatment of numerical boundary conditions where acoustic reflections must be controlled
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to avoid spurious phenomena. In order to fulfill those requirements, AVBP exploits Navier-
Stokes Characteristic Boundary Conditions (NSCBC) [128, 129, 130, 131].

Like any explicit compressible code, AVBP tends to be less efficient for low Mach number
simulations. The problem arises from the large disparity between time scales associated to
sound waves propagation and convection: the CFL stability condition imposed by the sound
speed is uselessly severe with respect to the limit established by convection alone, resulting in
an unnecessarily small time step. In order to overcome this limitation and to be representative
of another class of FV solvers, which use incompressible or low-Mach number formulations,
a modified version of AVBP, called here AVBPpgs is used to remove the acoustic time step
limitation: the governing equations solved are manipulated according to the Pressure Gradient
Scaling (PGS) technique [132]. PGS rescales the pressure gradient in the momentum equations
to reduce the computational sound speed, so that the time step is not limited by the true sound
speed which is irrelevant. The PGS methodology is limited to low-speed incompressible flows
like the present configuration. Overall, the procedure is equivalent to the α-transformation de-
veloped in [133], but with the advantage of both easier implementation and wider applicability.
Since the Lattice Boltzmann solvers are used here in their athermal weakly compressible form,
it seems reasonable to utilise AVBPpgs which uses similar assumptions.

4.3.2 Lattice-Boltzmann solvers
A key difference between FV and LBM algorithms is that the FV solver uses the same time
step in the whole computational domain, whereas in LBM the time step depends on the level
of refinement. A cell on the coarser grid level has twice the size but also the time step is two
times bigger compared to the finer level. To take this effect into account we generally use the
term Equivalent Fine Nodes (EFN) which counts cells on coarser levels L as a fraction of the
finest level (Eq. (4.1)). This quantity reflects the workload equivalent of a mesh using only the
minimal mesh size min(∆x) and is therefore more suitable for comparison between the codes.

EFN =
∑
L

Nnodes on L

(1
2

)L−1
(4.1)

Another consequence is that the main part of the workload is generated by the finest level in
the domain. In order to do a fast computation it is essential to minimize the regions with
minimal cell size. The differences between the two LBM meshes are summarized in Tab. 4.2.
The ProLB algorithm typically needs fewer EFN to accurately resolve a given problem, whereas
the approach of waLBerla generates a non negligible amount of excess cells, that are not part
of the fluid domain but are computed anyway.

ProLB

ProLB is a commercial suite of tools which emerged from LaBS and CLIMB [134] French
research projects carried out by a consortium of industrial companies, universities, research
laboratories and institutes. Its inherent massively-parallel solver includes an octree mesher
which efficiently handles both complex geometries [135] and multi-resolution refinement layers
[136].

In the present case, a modified version of the commercially available ProLB software is used.
The numerical resolution of the Lattice-Boltzmann equation is performed through the D3Q19
lattice with a Hybrid Recursive Regularized (HRR) collision operator proposed by Jacob et al.
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Code ProLB waLBerla

Number of nodes [M] 26.3 39.3

Number of fluid nodes [M] 26.3 30.2

Octree level distribution fluid nodes
[%]

[67, 25, 5, 3, 0, 0] [59, 24, 13, 1.9, 1.5]

Equivalent Fine Nodes [M] 21.4 29.8

Equivalent Fluid Fine Nodes [M] 21.4 22.6

Table 4.2 – Total number of nodes and level distribution of fluid nodes in LBM solvers is
determined by grid size and spatial layout of refinement zones.

[137] which enhances better accuracy, stability and convergence for high-turbulent flows than
the classical Bhatnagar-Gross-Krook (BGK) collision model [3] by filtering out the spurious
and non-hydrodynamic components that could be amplified at grid transitions. Moreover, to
accurately handle mesh refinement, a Direct-Coupling (DC) algorithm is employed instead of
the classical overlapping method [138]. By ensuring mass and momentum conservation at the
transition nodes, a singular equilibrium distribution function is computed to recover the missing
distributions at both coarse and fine sides. This combination of the HRR collision model and
the DC algorithm offers better accuracy and locality in complex configurations.

The boundary nodes need a specific treatment in LBM approaches: since the mesh is
completely cartesian, an immersed boundary condition is implemented to handle the solid walls
[139] allowing first the automatic generation of the mesh and second to flag the interface nodes.
Then, a Grad’s approximation algorithm combined with a Dirichlet condition is chosen to treat
the walls nodes and to recover the missing populations at the boundary nodes. This yields a
more stable and accurate approach than the well-known interpolated bounce-back [140].

Thanks to the octree multi-resolution mesher, the ultimate grid is built upon a static adap-
tive refinement strategy [141] where the considered sensor is the dissipation of kinetic energy
[142]. From an initial coarse simulation, the time-averaged field of this sensor is computed.
Therefore, a smoothed iso-volume based on a lower case-dependent threshold of the sensor
yields a finer resolution domain which is directly reintroduced in the octree mesher. Thereby,
this process is repeated twice in order to predict pressure losses and optimize the number of
fluid nodes by refining only the relevant areas and minimizing computational costs.

4.3.3 Numerical setups
The three solvers were applied to the same swirler geometry of EM2C but they employ different
meshes (Tab. 4.3): AVBPpgs uses body-fitted unstructured tetrahedral mesh with 18.1 M cells in
total, while ProLB relies on cartesian unstructured mesh, offering a local refinement possibility
but requiring up to 26.3 M grid elements, which amounts 21.4 M EFN to represent the same
geometry. This tendency is exacerbated in waLBerla, where the structured cartesian mesh
is only able to refine whole blocks of the mesh, which leads to 39.3 M, or 22.6 M EFN cells
overall.

A detailed representation of each grid, including swirler, injector and near-backplane region,
is displayed in Fig. 4.3. It exhibits an axial cut for each code to show the local mesh structure:
the swirler region has the highest resolution to predict the correct velocity field and pressure
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Code Topology Cell type min(∆x)
[µm]

Total elements
[M]

AVBPpgs Unstructured Tetrahedral 80 18.1

ProLB Unstructured Cubic 110 26.3 (21.4*)

waLBerla Structured Cubic 110 39.3 (22.6*)

Table 4.3 – Overall description of mesh parameters for the three solvers (* marks the number
of Equivalent Fine Fluid Nodes (EFFN))

AVBPpgs ProLB waLBerla

80

200

300

400

500

∆
x

[µ
m

]

Figure 4.3 – Mesh comparisons via ∆x contour maps for the three solvers: AVBPpgs, ProLB,
waLBerla. Differences among structured and unstructured grids, as well as between cubic
and tetrahedral elements are highlighted.

losses.
In this region AVBPpgs adopts a minimum cell parameter (∆x) of 80 µm that increases

along z up to the burner backplane with an average ∆x ≈ 180 µm. While ProLB mesh is
refined through adaptive unstructured blocks of minimal mesh size ∆x = 110 µm, waLBerla
uses a block of constant ∆x = 110 µm in both swirler and injector. With these meshes, the
time steps are adjusted to obtain CFL numbers based on the maximum convective velocity of
the order of 0.1 for all codes.

AVBPpgs adopts Lax-Wendroff scheme [143], second-order in both space and time. The
CFL number (based on the modified sound speed) is set to 0.9. Temperature and volumetric
flow rate are fixed at the inlet, while ambient pressure (101325 Pa) with a proper relaxation
coefficient is imposed at the outlet. Although the temperature equation is solved in AVBPpgs,
the impact on its computational speed is assumed to be marginal. The SIGMA model is used
for subgrid Reynolds stresses [144]. Both turbulent Prandtl number Pr and Schmidt number
Sc are fixed to 0.6 and only one inert species representative of air is computed. The PGS
parameters are set to obtain a maximum computational Mach number of 0.3.
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While ProLB employs a HRR collision operator combined with a DC mesh transition algo-
rithm, waLBerla is using a classical BGK collision model. Both solvers impose a one-seventh
power law velocity profile at the inlet to match the experimental flow rate and a constant
pressure of 1 bar at the outlet. The geometry is extended in axial direction at inlet and outlet
to dampen non-hydrodynamic reflection waves inside the domain. Walls are treated differ-
ently: ProLB uses a Grad’s approximation and waLBerla a bounce-back scheme to treat the
"missing populations".

Since acoustics do not contribute significantly to the flow behavior, the non-dimensionalized
Newtonian sound speed c∗s is artificially minimized by being cautious that the maximal Mach
Number does not exceed the critical value of 0.4 [145]:

Mamax = umax

c∗s

∆t
∆x < 0.4. (4.2)

This requirement is similar to the CFL condition for classical Navier-Stokes numerical
schemes [146]. This process intends to increase the time step to its maximal value and therefore
allows to lower the computational time while the accuracy is still conserved.

LES in ProLB are performed using a Shear-Improved Smagorinsky turbulence model (LES-
SISM) [147] which accounts for the dissipation of the unresolved turbulent scales through an
eddy viscosity. waLBerla relies on the SGS turbulence model described in Sec. 2.3.5.

4.4 Comparison with experimental data
This section presents a comparison of experimental and numerical results to validate the entire
set of simulations. The results of all three codes are averaged over a minimum of 12 flow-
through times (τt) to obtain fully converged averaged solutions which are time-independent in
terms of mean and RMS results. The flow-through time, i.e. the physical time taken for a flow
element to travel through the chamber in the high velocity zone at 8 m s−1, equals τt = 10 ms
for this configuration.

The first quality indicator for swirler flows is the pressure loss ∆p through the swirler (Tab.
4.4) which controls its performances in a real engine. ∆p is calculated between the pressure
tap location (see Fig. 4.2) and the outside ambient pressure.

∆p (Pa)

Experiment 335± 15

AVBPpgs 330

ProLB 368

waLBerla 313

Table 4.4 – Injector head pressure losses due to swirler

The agreement of AVBPpgs with the experiment is slightly better than for LBM codes, as
expected for a code which uses body-fitted meshes. ProLB and waLBerla predict a ∆p of 368
Pa and 313 Pa, respectively above and below the experimental confidence interval. To qualify
codes, measuring the pressure loss is not sufficient, however, and the next sections focus on a
detailed analysis of the velocity fields.
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Figure 4.4 – Contour map comparison of experimental and numerical results of the axial (z)
component of the velocity on the axial plane. First row exhibits the mean velocity field ūz,
while second row displays the RMS distributions uz,RMS

4.4.1 PIV
Velocity profiles are compared on two planes: the axial zx plane and the transverse plane
z = 3.5 mm (see Fig. 4.2). In the first case data are displayed over a 40× 50 mm2 rectangular
window symmetrically located with respect to the z axis. For the second, results are presented
over a 40× 40 mm2 squared area centered in the middle of the combustion chamber with sides
oriented along x and y directions.

Furthermore local one-dimensional, velocity profiles extracted at constant z are also re-
trieved from both PIV data and simulations.

Axial plane

Fig. 4.4 exhibits two rows of images: the top row shows the mean axial velocity component
ūz. The second one shows its RMS noted uz,RMS. From left to right experimental data and
numerical results are displayed, as specifically reported on top of each plot.

The experimental mean velocity contour map of Fig. 4.4 highlights a large Inner Recircula-
tion Zone (IRZ), typical of high swirling flows. This region of negative axial velocity is created
by the vortex breakdown and is delimited by iso-velocity lines at ūz = 0 m s−1. Moreover two
high velocity branches develop in the wake of the injector annular channel, identified by isolines
at 8 m s−1.

The comparison with numerical results show that the three solvers properly capture the flow
characteristics, for both width and intensity of the IRZ. Minor differences can be highlighted:
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Figure 4.5 – Contour map comparison of experimental and numerical results of the horizontal
(x) component of the velocity on the axial plane. First row exhibits the mean velocity field ūx,
while second row displays the RMS distributions ur,RMS
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Figure 4.6 – Mean velocity profiles and related RMS of ūz and ūx for different solvers with.
Obtained at constant axial coordinate on the axial plane. First and second rows correspond to
z = 5 mm and z = 15 mm, respectively.

the extension of the high mean velocity regions is slightly overestimated by LBM codes, where
8 m s−1 and 4 m s−1 isolines develop further downstream than in experimental data. In addition,
RMS maps obtained with the three solvers highlight less regular contour plots, potentially linked
to averaging times which are much smaller in the LES than in the experiment. AVBPpgs shows
slightly higher RMS with respect to other codes and experiment, especially in the high velocity
region.

The horizontal component (x) results (Fig. 4.5) confirm the axial component conclusions
of Fig. 4.4: the three solvers are able to match the experimental results and all solvers provide
results which are within the experimental range of precision for PIV results (typically 0.3 m/s
here). However Fig. 4.4 and 4.5 are not sufficient to provide an appropriate evaluation of
the precision: it is worth considering one-dimensional profiles showing local ūz and ūx velocity
profiles sectioning the axial plane at specific z locations.

Fig. 4.6 displays mean and RMS profiles of ūz and ūx, where in the first row profiles are
extracted at z = 5 mm and in the second one at z = 15 mm.

First, the ūz profile reveals that experimental data are not exactly symmetric with respect
to the z axis: the left-hand velocity peak is higher than the other, while simulations do not show
the same differences. Numerical predictions show that at both z coordinates, the slope and the
minimum of the axial velocity profile, which define the IRZ structure, are correctly represented.
On the other hand the maximum axial velocity values at z = 15 mm are slightly overestimated
by LBM codes by roughly 0.5 m s−1, which corroborates the little discrepancy highlighted in
Fig. 4.4. ūx profiles are generally hard to match in swirled flows since the mean velocity
intensity is comparable to its RMS values. This emphasizes the fidelity of all simulations put



4.4. Comparison with experimental data 63

−20

−10

0

10

20

y
[m

m
]

Experiment

-4.0

0
.0

4
.0

8.0

AVBPpgs

-8.0 -4.0

0.0

4.
08.0

ProLB

-8
.0

-4
.0

0
.0

4.
0

8.0

waLBerla

-8.0

-4.0

0
.0

4
.0

8.0

−20 −10 0 10 20

x [mm]

−20

−10

0

10

20

y
[m

m
]

-4
.0

0.0

4
.0

8
.0

−20 −10 0 10 20

x [mm]

-8
.0

-4
.0

0.0

4
.0 8

.0

−20 −10 0 10 20

x [mm]

-8
.0

-4
.0

0
.0

4
.0

8
.0

−20 −10 0 10 20

x [mm]

-8
.0

-4
.0

0.0

4
.0

8
.0

−8

0

8

ū
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Figure 4.7 – Contour map comparison among experimental and numerical results on transverse
plane. The first row exhibits mean velocity component ūx, while second row displays the mean
velocity component ūy

in place. In fact the maximum difference between experimental data and simulations is only of
the order of few tenths of meters per second. Furthermore, the RMS profiles for both ūz and
ūx at both z coordinates confirm the AVBPpgs little overestimation at peak velocity locations,
which in any case remains largely within the experimental accuracy margin.

Transverse plane

Fig. 4.7 displays ūx and ūy mean velocity profiles on the transverse plane z = 3.5 mm.
The good agreement between computational and experimental velocity fields confirms the

previous findings. Only a slight overestimation of absolute maximum and minimum for both
ūx and ūy can be pointed out looking at iso-velocity lines of ±8 m s−1.

Furthermore the two high/low velocity symmetric patches result slightly counterclockwise-
rotated due to the square shape of the combustion chamber. Remarkably, the flow field is
correctly captured by numerical computations.

4.4.2 Power Spectral Density (PSD) of axial velocity
In addition to the mean and RMS values, it is also interesting to look at axial velocity spec-
tra and compute Power Spectral Density (PSD) from local time signals: PSD are obtained
experimentally from LDV velocity signals acquired along the x axis: from x = −15 mm to
x = 15 mm with 0.5 mm step. It is worth mentioning that in contrast with simulations, mea-
surements have been performed without combustion chamber. However it has been verified that
experimental mean and RMS axial velocity are comparable with both PIV data the numerical
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predictions obtained in confined configuration. This feature is attributed to the weak impact
of the confinement on the flow structure close to the injector outlet, at z = 3 mm.

Simulations and experimental signals are extracted for axial velocity over a span of 120 ms
in order to share the same numerical frequency resolution of 8.3 Hz. Even though the upper-
limiting frequency of the spectra is mathematically fixed by the sampling frequency, this limit
could be misleading since oil particles used to seed the flow act like a low-pass filter, not
responding to high perturbation frequencies. In the present case, the cut-off frequency of the
small oil particles is of the order of 4 kHz: above this value, experimental spectra can not be
physically considered.

Fig. 4.8 displays the PSD at two locations (values in mm): P = (3, 0, 3) is located in
the wake of the central bluff-body and Q = (7, 0, 3) lies in the shear layer of the swirling jet
(Fig. 4.2). The gray scale marks the fact that at high frequencies only numerical results can
be interpreted.
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Figure 4.8 – Axial velocity spectra of kinetic energy for the different solvers at P = (3, 0, 3)
(top row) and Q = (7, 0, 3) (bottom row)

For the present flow rate, experimental PSD results (left column in Fig. 4.8) do not exhibit
peaks associated to coherent structures such as Precessing Vortex Cores (PVC) which are
frequently found in swirling flows [148, 149, 150, 151]. Similarly all three simulations do not
reveal any peak related to hydrodynamic modes. The PSD decay above 1 kHz shows that
calculations exhibit a higher dissipation with respect to experimental results, maybe due to
the LES subgrid model used in the three codes. Limited differences are observed among codes
at point P . For point Q, a difference emerges in the high frequency range: the two LBM
codes introduce less dissipation than the finite volume solver but it is difficult to say if this is
physically right or not.
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4.5 Comparison of computational costs
The code performances are given by Tab. 4.5. A first parameter, which is independent of mesh
size and time step is the reduced computational time, i.e. the time required to perform one cell
update. The last line of Tab. 4.5 displays a second parameter which is the most important one
for the user: the total CPU time required by each code to compute 1 ms of physical time.

Code AVBPpgs ProLB waLBerla

Time step [s] 4.4× 10−7 8.5× 10−7 7.1× 10−7

Equivalent Fine Fluid Nodes [M] 18.1 21.4 22.6

CPU time per iteration [ms] 83 90 24

Reduced computational time
[µs iteration−1 cell−1 core]

1.67 1.50 0.38

Cost 1 ms physical time [CPUh] 19.1 10.6 3.4

Table 4.5 – Comparison of computational efficiency of the three different solvers on a 360 of
the Kraken cluster1

All outputs and post-processing routines are disabled: only the fluid solver itself is consid-
ered. The earlier discussed performance measure MFLUPS is the inverse of the here presented
reduced computational time. All codes run on 360 processes on the Kraken cluster1, which uses
a Intel Xeon Gold 6140 Skylake chipset.

Tab. 4.5 shows that the LBM solvers are faster than the finite volume solver but the speed
ratios are not different by orders of magnitude: the fastest code waLBerla goes 5 times faster
than the AVBPpgs solver.

4.5.1 Scaling
In addition to the computational cost at a fixed number of cores, scalability is an important
question in HPC: the strong scaling behaviour of the three codes was tested here from 36 to
900 cores. We measure the parallel efficiency E by relating the the computational time per
iteration TP on a given number of cores NP to the time per iteration T36 on 36 cores, which is
equivalent one full node on the utilized architecture.

E = 36
NP

T36

TP
(4.3)

Fig. 4.9a shows that AVBP scales almost ideally over the whole range of cores, while the
LBM solvers efficiencies drop by 30-40% when increasing the number of cores by a factor of
25. In this particular configuration, parallel scalability is controlled by the spatial distribution
of grid cells to achieve an even workload balance among all processes. In AVBP there are
few constraints on the decomposition of the computational domain as long as the surface area
between subdomains is kept at a minimum. Moreover, AVBP remains efficient even when only
a few thousand mesh nodes are handled by each core.

1https://cerfacs.fr/en/cerfacs-computer-resources/

https://cerfacs.fr/en/cerfacs-computer-resources/


66 Chapter 4. Solver comparison for swirled flows

ProLB preserves performance up to 72 cores but then loses efficiency beyond 144 cores
because of an increase in waiting time: the solver has an optimum scalability estimated between
105 and 106 fluid elements per core to efficiently manage industrial configurations that require
much larger grids. In other words, while weak scaling works well in ProLB, the present strong
scaling exercise is more difficult since the order of magnitude of fluid elements per core is 104

at 900 cores.
Whole blocks are assigned to processes in waLBerla . When using an excessive amount

of cores, there are not enough blocks per process to construct an even workload distribution.
On the other hand waLBerla exhibits excellent weak scaling until almost half a million cores
[21, 94]. Furthermore in the LBM scheme the different levels of refinement have to be executed
sequentially. This is an inherent obstacle to achieving even workload distribution and it limits
strong scaling capabilities. The strong scaling limit of the LBM codes may affect the overall
conclusion: at 900 cores, ProLB becomes less efficient than AVBP. waLBerla maintains the
lowest computation time over the whole range of cores (Fig. 4.9 right).
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Figure 4.9 – Parallel performance of the three codes up to 900 cores, normalized by the perfor-
mance at 36 cores.

4.6 Additional computations with waLBerla

4.6.1 Mesh convergence
The influence of mesh resolution on the quality of the results obtained by the waLBerla solver
is investigated by repeating earlier simulations with varying minimum grid cell size. By only
changing the grid size and keeping refinement zones constant, the resulting meshes hold the
same block layout. Tab. 4.6 presents the number of EFFN and the pressure loss of simulations
conducted with min(∆x) = 440, 220, 110 and 55 µm minimum grid cell size. The corresponding
velocity profiles at constant axial coordinate on the axial plane are depicted in Fig. 4.10.

At finer resolution, the prediction of pressure loss deviates further from the experimental
value, highlighting once again the difficulty of finding the correct pressure loss with non-body-
fitted meshes. A strong deterioration of simulated velocity profiles becomes apparent at a grid
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min(∆x) [µm] 440 220 110 55

EFFN [M] 1.0 3.8 22.6 169.4

Cost 1 ms physical time [CPUh] 0.058 0.41 3.4 51

∆p (Pa) 345 316 313 307

Table 4.6 – Number of EFFN, CPU cost and pressure drop for different mesh resolutions using
waLBerla

resolution of 440 µm. Most significant are the differences of different grid sizes for uz,RMS, ūx
and ux,RMS at z = 5 mm. Velocity peaks at x ± 10 mm are more pronounced at high grid
resolution and even overestimated compared to experimental results at min(∆x) = 55 µm. The
selected grid size of min(∆x) = 110 µm is a reasonable compromise between capturing the
experimental results and keeping CPU cost low.
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Figure 4.10 – Mean velocity profiles and related RMS of ūz and ūx for different mesh resolutions
using waLBerla. Obtained at constant axial coordinate on the axial plane. First and second
rows correspond to z = 5 mm and z = 15 mm, respectively..

4.6.2 Unconfined configuration
Finding the experimental measurements of the LDV with numerical simulation is more difficult
because the flow is unconfined. The air can freely circulate in the experimental setup , which
needs to be accounted for in the simulation. Therefore, a cylindrical domain with radius 880 mm
(approximately 10 times the confinement wall cross-section) is placed at the backplane of the



68 Chapter 4. Solver comparison for swirled flows

Figure 4.11 – Two different mesh layouts used for the unconfined configuration. Left: finest
level at the injector; right: finest level at the swirlers channels.

combustion chamber. A free-slip boundary condition is set at the radius of the cylinder and
the extension of an inlet condition with uin = 0.05ub is set at the extension of the chamber
backplane to ensure that there is no fluid being sucked in or out of the simulation domain.

The mesh resolution has to be fine to capture LDV results, especially for the radial compo-
nent. Two different meshes, showed in Fig. 4.11, are investigate - mesh A with the finest grid
level (min(∆x) = 27.5 µm) in the vicinity of the injector and mesh B with the finest grid level
at the swirler channels. Both meshes are composed of 9 grid levels in total and contain 234 M
EFFN and 368 M EFFN, respectively.

Fig. 4.12 illustrates the simulation results of the two meshes against experimental measure-
ments. The peaks in the radial mean velocity ūx at x±10 mm are considerably underpredicted,
but slightly better captured with mesh A. Placing the finest resolution at the injector also in-
creases the peaks of RMS velocities ūz,RMS and ūy,RMS at the inner peak x±6 mm. For ūx,RMS

however, this peak is overpredicted with mesh A. Using a small grid size at the injector is
important to accurately reproduce the sharp edge at the injector lip with the non body-fitted
mesh. To find the exact velocity profile of ūx an even finer grid will be required.
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4.7 Conclusions
One finite volume and two Lattice-Boltzmann solvers suitable for LES have been compared
in terms of accuracy and CPU efficiency in a swirling flow test at CentraleSupelec EM2C, a
typical aeronautical application.

The fidelity of the three solvers was demonstrated by comparing numerical and experimental
PIV data in terms of: injector head pressure losses, mean and RMS velocity profiles and
axial velocity spectra. Despite minor differences, the three solvers provide very similar and
accurate results: the discrepancies with respect to experimental results are limited to the tenth
of m s−1 on velocity profiles. For pressure losses, the finite volume solver using body-fitted
meshes captures the experimental result very well (330 Pa for AVBPpgs versus 335 Pa for the
experiment) but the two LBM codes using structured meshes are also close to measurements
(368 Pa for ProLB and 313 Pa for waLBerla). These results confirm that LES formulations
provide high accuracy results for swirled flows, much better than usual RANS codes especially
in terms of RMS data for all components. Furthermore LDV data at two specific locations are
used to create PSD analysis of axial velocity: the three solvers as well as the LDV data do not
reveal any hydrodynamic mode. Moreover, AVBPpgs shows higher numerical dissipation in the
high frequency range with respect to LBM solvers.

Strong scaling tests from 36 to 900 cores reveal that the finite volume solver maintains its
performance, whereas the LBM codes exhibit some loss in efficiency as the workload per core
decreases. On 360 cores the CPU times necessary to compute 1 ms of physical time are: 3.4 for
waLBerla, 10.6 for ProLB and 19 CPU hours for AVBPpgs. The three solvers offer similar
orders of magnitude in terms of absolute performance, especially considering the fact that the
finite volume solver carried more equations (energy and chemical species) as well as complex
thermochemical models.

A point which has been left for further studies is the importance of the mesh quality on
the results. The results of AVBPpgs and ProLB shown in this chapter were obtained with user-
optimized meshes which play a crucial role in the final results, maybe as important as the solvers
themselves. The Lattice-Boltzmann equation is discretized on cartesian cubic grids automat-
ically generated in most solvers which alleviates cumbersome and time-demanding meshing.
The block structured approach of waLBerla leaves less potential for mesh optimization, but
it is easier to set up. Its scaling capabilities make it possible to efficiently perform simulations
in the range of 1 M to over 300 M EFFN.

Finally I would like to give my personal recommendation to the reader. When results are
needed quickly, when there is only few computational resources available and high accuracy is
not the highest priority it is beneficial to employ a highly optimized, block-structured LBM
code like waLBerla. On the other hand, when high fidelity results are desired a body-fitted
FV code like AVBPpgs is the best choice, since it was the only solver to accurately find the
pressure loss from measurements. The algorithmic design of ProLB with its unstructured grid
layout, which allows for refinement of individual grid cells, constitutes a good middle ground
between the two other codes.
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This chapter corresponds to the work on an academic generic configuration, which
was submitted to Physical Review Fluids in 2021 under the following reference [152].
In the introduction we motivate the topic by highlighting the importance of dispersed
two-phase flows. The following section presents the numerical setup, including ma-
terial properties, simulation parameters and the modeling of hydrodynamic interac-
tion between particles. A comparison to data from literature is given for the sin-
gle phase flow. Results are presented in terms of global flow parameters rational-
ized by means of effective suspension properties for water and three different parti-
cle materials: Hydrogel, Glass and Iron. The contributions of hydrodynamics and
collisions to the drag force are discussed and the transition to granular flow is in-
vestigated. At last, we illustrate the performance of the fully coupled LBM-DEM al-
gorithm for different particle volume fractions and the scalability up to 20480 cores.
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5.1 Introduction

Dispersed two-phase flow are a widespread fluid dynamics problem that is encountered in
various industrial (petroleum or nuclear engineering, concrete, food products, cosmetics and
pharmacy) and natural processes (river flow, avalanches, dust storms) and even in biological
fluids like blood. Suspensions of non-Brownian particles and granular flows are known to exhibit
intricate behavior in response to shear flows. A large portion of today’s energy transformation
still relies on burning fossil fuels. Pulverized coal combustion is a gas-solid flow, that has been
intensively studied to improve numerical predictions [153]. These simulation methods can be
used to enhance efficiency of burners and boilers, such as the circulating fluidized bed [154,
155]. There have been recent efforts to compute small scale models with a few thousands
particles by means of direct numerical simulation (DNS) [156, 157]. In medical research, red
blood cells can be modeled by extending the numerical model to allow interfaces to deform. A
combination of the Lattice Boltzmann method (LBM), immersed boundary method and finite
element method has been used to simulate blood flow through an array of obstacles [158].
Most recently, humanity is fighting against a new thread that is propagated via dispersed
particles in air. A deeper understanding of virus-laden droplet and aerosol flow patterns helps
in creating guidelines to reduce COVID-19 transmission rates [159]. Particulate flows are also
found in environmental engineering, such as sediment transport and dune formation in riverbeds
[160] or erosion processes in geomorphological patterns [161]. There are also applications to
astrophysics, where planet formation is explained by the hydrodynamics of dust grains in
gaseous disks [162].

The insights gained by particle resolved DNS can help to improve closure models of un-
resolved methods such as the discrete particle method (DPM), where the size of particles is
typically much smaller than the computational grid, and the two fluids model (TFM), where
both fluid and solid phases are represented as a continuum. In large scale industrial applications
this Eulerian-Eulerian approach is usually the only viable option due to the high computational
demands of particle resolved methods.

We are aiming at providing information on the flow response due to the presence of particles
by means of numerical simulations. The flow around a cylinder is one of the most generic flow
configurations and it is well documented for the single phase configuration. By adding solid
particles into the fluid we want to understand the interplay between fluid transport, particle
inertia and collisions among individual particles as well as with the obstacle. This information is
particularly relevant because the flow contains regions of particle impact in front of the obstacle
and shear layers in the wake. The dynamics of neutrally buoyant particles in a stagnation point
flow has been carefully studied by [163, 164]. When approaching an obstacle the particle motion
strongly depends on it’s size compared to the boundary layer thickness.

The granular phase in our simulations are resolved with a discrete element method (DEM)
and tested against granular flow experiments [114] and numerical simulations [112, 165]. If the
density ratio between particles and fluid is high and the suspension is sufficiently dilute there are
only few interactions among particles and the fluid flow is unaffected by the presence of particles.
Under these assumptions it is relevant to use one-way coupling between fluid and solid phases
[166, 167, 168]. In this study, we make use of a fully-coupled approach, where fluid-particle and
particle-particle interactions plus the feedback effect of particles on the fluid flow are captured.
The physics changes when considering liquids instead of air as the carrying fluid (density ratio
becomes close to unity for most solid materials), as shown by experiments of grain-water flows
around a cylinder [169]. The presence of liquid (wet granular flow) modifies significantly the
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flow behavior compared to granular media in the same situation [114]. Numerical simulations
using Lattice Boltzmann method (LBM) have been conducted for suspension over an obstacle
at Reynolds numbers well below the onset of unsteadiness [170]. They observed that isolated
finite size particles released inside the recirculating wake region migrate towards a stable limit
cycle at the boundary between wake and free stream. At low concentration, the wake remains
depleted of particles. At higher density the limit cycle becomes unstable due to the particle’s
increased inertia [171]. Eventually this process will deplete the wake of particles, especially
for particles of larger size. With many particles the hydrodynamic interactions and collisions
among flowing particles can cause trajectory fluctuations which lead to an exchange of particles
between the wake and the free stream.

Our work will utilize the computational efficient LBM coupled with a discrete element
method to investigate this generic configuration over a wide range of Reynolds numbers and
particle inertia to highlight the specific response of the fluid-solid mixture around an obstacle.
We will test the applicability and limits of the assumption that a suspension can be interpreted
as an equivalent Newtonian fluid whose viscosity and density depend on particle loading in the
range of dilute to semi-dilute regime.

5.2 Numerical setup
The particle laden flow conditions of this study are characterized by low impact Stokes numbers

Stkimp = (ρp + ρf/2)u∞d
9µ , (5.1)

hence fluid drainage before contact has a significant contribution to collisions. Momentum is
being dissipated by the fluid as two obstacles approach each other. Particle interactions are
strongly affected by hydrodynamic interaction and lubrication forces, which causes a reduction
in the post-collision rebound velocity [86].

Including the calculation of short range hydrodynamic interactions into the algorithm, as
discussed in [172], is numerically costly. Instead we model the effect of wet collisions by an
effective rebound coefficient in the DEM simulations. The effective coefficient of restitution

e = edry exp
(
− β

Stkimp

)
, (5.2)

with β = 35, is calculated [173] from the restitution coefficient without the presence of fluid
edry and the impact Stokes number, which characterizes fluid drainage. At low Stokes numbers
Stkimp → 0 the viscous forces of the fluid slow down the particle so far, that it will not come
in contact or at least not rebound from the obstacle. At high Stokes numbers the influence of
the fluid is negligible such that e = edry.

Three different sets of material properties will be utilized that resemble three materials
commonly used in experimental suspension flows. Hydrogel, which corresponds to neutrally
buoyant particles in water and glass, iron for inertial particles. The corresponding parameters
for the rigid body dynamic solver can be found in Tab. 5.1. The fixed cylinder is always
assigned the properties of glass material. The effect of gravity is neglected.

The simulation domain size spans 40 cylinder diameters in streamwise direction (x), 24
cross-stream (y), and 5 spanwise (z). The domain is periodic in cross-stream and spanwise
directions. The cylinder has length Lz, the initial fluid velocity is equal to the upstream
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Material Density g cm−3 edry,p−p edry,p−c µs,p−p µd,p−p µs,p−c µd,p−c

Hydrogel 1 0.05 0.1 0.01 0.01 0.5 0.1

Glass 2.5 0.68 0.68 0.9 0.4 0.9 0.4

Iron 7.8 0.4 0.55 1.1 0.15 0.7 0.5

Table 5.1 – DEM material parameters used in this study1,2,3

velocity u∞ and the fluid has density ρf . A constant, uniform velocity uin = u∞ is prescribed
at the inlet and a constant pressure condition (see Sec. 2.3.8) is applied on the outlet to mimic
a free exit of fluid and particles. Non-reflective boundary conditions are not required because
under current flow conditions, vortices leaving the domain are not expected to be strong enough
to cause stability problems or unphysical behavior.

Particles are seeded in front of the domain inlet at random positions regarding y and z
coordinates and their initial velocity is equivalent to the fluid inlet velocity uin. The number
of particles seeded per time step is

ṅ = uinΘA
Vp

, (5.3)

where A = LyLz is the cross section area and Vp = πd3/6 is the particle volume, is set in order
to achieve the desired solid volume fraction Θ . Particles will be removed from the computation
when their volume is entirely outside of the fluid domain.

To ensure that the boundary conditions have no influence on simulation results, the domain
size in each spatial direction has been varied to find the dimensions at which global flow
parameters remain constant. The extent of the simulation domain in the cross-stream direction
is large enough to consider the cylinder as isolated. For specific test cases, such as the oscillating
particle or the Segré-Silberberg effect, the collision model with two relaxation times (TRT) gave
better results. However, we employ the single relaxation time model (BGK) for the suspension
flow around a cylinder, since it provides sufficiently accurate results.

x
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Figure 5.1 – Schematic presentation of the simulation domain.

The initial transient of the simulation is assumed to be completed once drag force, lift force
RMS and recirculation length have reached a constant average value. From then, temporal

1https://engineeringlibrary.org/reference/coefficient-of-friction
2https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
3https://en.wikipedia.org/wiki/Coefficient_of_restitution

https://engineeringlibrary.org/reference/coefficient-of-friction
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://en.wikipedia.org/wiki/Coefficient_of_restitution
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signals and mean flow fields are recorded for 20 periods of the expected vortex shedding oscilla-
tion. The instantaneous fluid velocity is recorded at three points that are located one diameter
in cross-stream and 1, 5, 20 diameters in streamwise direction away from the cylinder center
in order to evaluate the vortex shedding frequency through fast Fourier transform. This is an
unambiguous procedure for single phase flows since there is one distinct shedding frequency,
but the introduction of particles creates noise in the velocity spectrum. At flow states close to
the bifurcation, it becomes difficult to decide whether or not a flow is unsteady. We declare a
configuration to be unsteady if we can find one distinct peak in the frequency spectrum.
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Figure 5.2 – Single phase flow past a circular cylinder: Top/left - Dimensionless vortex shedding
frequency; top/right - drag coefficient; bottom/left - R.M.S. of lift coefficient; bottom/right
- wake recirculation length under steady regime. Our results are compared to data from
Williamson [174], Norberg [175], Dennis and Chang [176], Wieselsberger [177], Jayaweera and
Mason [178], Tritton [179], Persillon and Braza [180], Coutanceau and Bouard [181].

For accuracy reasons we want particles to be resolved with at least 10 d/∆x, so to achieve a
ratio of D/d = 5 the cylinder needs to have 50 cells per diameter. The total number of lattice
cells amounts to 600M and at the highest solid volume fraction of 20% there are more than
220,000 particles simultaneously resolved inside the domain, increasing to 1.76 M for D/d = 10.
The dimensionless frequency of particle oscillation due to vortex shedding in the wake of the
cylinder can be estimated as Ψ2 = 2πStkRe(d/D)2 which ranges from 1 to 5 for D/d = 5 and
is always below 1.25 when D/d = 10. The effects of the size of the simulation domain and the
spatial discretization have been tested on a reference case of particle laden flow (see Tab. 5.2).
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Lx Ly d/∆x St cD cL,RMS

40 24 10 0.1401 1.392 0.100

80 24 10 0.1401 1.386 0.098

40 48 10 0.1401 1.383 0.099

40 24 15 0.1417 1.396 0.099

Table 5.2 – Effect of domain size and mesh discretization on particle laden flow properties.
Fluid Reynolds number is Re = 80 with Θ = 10% volume concentration of neutrally buoyant
particles (D/d = 5).

We observe less than 1% variations of the Strouhal number or the drag and lift coefficients.
Four physical parameters from the classic single phase von Kármán vortex street are ex-

tracted and used to validate our computational methods. The vortex shedding frequency f is
characterized by the Strouhal number

St = fD

u∞
, (5.4)

fluid drag FD and lift FL forces are reduced to the dimensionless coefficients

cD = FD
(1/2) ρfu2

∞DLz
(5.5)

and
cL = FL

(1/2) ρfu2
∞DLz

, (5.6)

respectively and the recirculation zone length L, which is normalized by the cylinder diameter
D. The simulation results we obtained using the BGK collision model are documented in Tab.
5.3, 5.4 and a comparison with reference experiments and numerical computations is found in
Fig. 5.2.

Re cD L/D

20 2.134 0.94

50 1.45 2.92

100 1.123 6.08

150 0.979 9.14

Table 5.3 – Steady single phase cylinder flow parameters from our simulations.
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Re St cD cL,RMS L/D

50 0.127 1.489 0.045 2.42

60 0.139 1.451 0.100 2.04

80 0.156 1.401 0.177 1.64

100 0.168 1.374 0.241 1.40

150 0.187 1.357 0.382 1.04

Table 5.4 – Unsteady single phase cylinder flow parameters from our simulations.

5.3 Results

5.3.1 Neutrally buoyant particles (hydrogel)
By introducing rigid spherical particles into the fluid, a specific response of the flow is expected
relative to the solid volume fraction. A simple model of particle induced flow modification is
based on the concept of effective physical properties for the mixture. The stiffness of particles
allows them to resist compression and elongation generating hydrodynamic perturbations in the
flow field which dissipate additional energy. At higher volume fraction, particle interactions
such as lubrication effects and solid contact come into play. Close to packing volume fraction,
hydrodynamic stresses are dominated by friction forces. As we investigate flow up to 20%
volume fraction, this will not be the case for this study, except possibly for very localized
zones in the vicinity of the cylinder. There are a number of correlations for estimating the
effective suspension viscosity, namely Einstein [182], Batchelor & Green [183], Dougherty &
Krieger [184], Hsueh & Becher [185], Eilers [186]. For this study we employ Eilers’ equation
with Θmax = 0.64 corresponding to random assembly of spheres at close packing density

ηeff = η0

(
1 + 2.5Θ

2(1−Θ/Θmax)

)2

. (5.7)

The dimensionless shedding frequency St is represented as color map over the flow Reynolds
number Re and solid volume fraction Θ in Fig. 5.3. Filled symbols indicate unsteady flow
states and possibly vortex shedding, whereas open symbols and white area represent steady
flow states. When increasing the particle volume fraction, the effective suspension viscosity
increases causing flow oscillations to reduce. When accounting for the suspension viscosity
by using an effective Reynolds number Reeff = ρfu∞L

µeff
, the contour lines of St become vertical

indicating similar flow states for constant Reeff , corresponding to the behavior of an equivalent
fluid.

For the single phase flow the transition between steady and unsteady flow is marked by the
critical Reynolds number Recrit(Θ = 0) ≈ 48. The presence of particles triggers instabilities
in the flow field, which is why we can find flow unsteadiness at sub-critical Reynolds numbers
Reeff < Recrit(Θ = 0). These flows oscillate at lower frequency than the minimum vortex
shedding frequency found in single phase flows St < St(Θ = 0,Re = Recrit), but they are not
necessarily shedding vortices. Local vorticity production at the top and bottom of the cylinder
is not intense enough for the Kelvin-Helmholtz instability of the shear layer to set in. The wake
is weakly meandering periodically without occurence of roll-up that yields alternative vortex
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Figure 5.3 – Dimensionless shedding frequency St as map of Re, Θ for a suspension with
hydrogel particles. Closed symbols: unsteady flow; open symbols: steady flow.

shedding typically observed in the von-Karman street. At Reynolds numbers Reeff > Recrit(Θ =
0) the classic vortex shedding is observed again.
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Figure 5.4 – Recirculation length as function of Re for a suspension with hydrogel particles.
Closed symbols: unsteady flow; open symbols: steady flow. Instantaneous flow snapshots at Θ
= 10% and Reeff = 38, 114 colored by fluid velocity magnitude and particles are represented
as black points. Point size is not representative of particle size.

In an unsteady regime, the averaged recirculation zone will shrink as vortex shedding inten-
sifies. The evolution of recirculation length for different Re and Θ is shown in Fig. 5.4. Due to
the effect of effective viscosity a suspension can return to steady flow, which causes wake length
to follow the trend seen in Fig. 5.2. When transforming the plot to effective parameters, all
lines collapse onto a mastercurve that follows the steady single phase evolution up to Recrit and
the unsteady single phase curve beyond. Haddidi et al. [170] have shown a depletion of particles
in the recirculating wake for Reynolds numbers well below the onset of unsteadiness. We can
observe a similar behavior in our simulations at Re = 50, where the concentration of particles
in the wake is low. Simulations of neutrally buoyant particles in a confined channel using a
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Figure 5.5 – Drag and lift coefficients as function of Re for a suspension with hydrogel particles.
Closed symbols: unsteady flow; open symbols: steady flow.

Suspension Balance Direct-Forcing Immersed Boundary Model (SB-FD-IBM) by Dbouk [187]
also yield a depletion of particles in the wake region, which is in agreement with our results.
In their configuration, the onset of vortex shedding in terms of Reynolds number is delayed
due to the confinement by the walls and in contrast to our approach the vortices are void of
particles. This behavior indicates that particle-particle interactions play an important role in
transporting finite size particles towards the vortex center for unsteady regime.

Using effective viscosity collapses all the simulation results onto the single phase flow evo-
lution for cylinder drag and lift coefficients. Fig. 5.5 reveals a slight drag underprediction for
high solid volume fraction as well as high Reynolds numbers. For suspensions below Recrit, the
single phase lift coefficient RMS is equal to zero but nonzero fluctuations are found in the signal
for two-phase flows due to the random collisions of particles. A rolling average with window
length of T/10 corresponding to the period T of minimum Strouhal number Stmin = 0.12 was
applied to smooth out random fluctuations.
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Figure 5.6 – Time averaged flow fields of solid volume fraction and slip velocity of a suspension
with hydrogel particles, Θ∞ = 0.1 and Reeff = 38.
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Figure 5.7 – Time averaged flow fields of solid volume fraction and slip velocity of a suspension
with hydrogel particles, Θ∞ = 0.1 and Reeff = 114.

Time averaged flow field of the particle concentration and the slip velocity between particle
and fluid are presented in Fig. 5.6 and 5.7. When interpreting global flow parameters in terms
of the effective viscosity, the underlying assumption is that the resulting suspension viscosity
is uniform throughout the flow. The effective viscosity is proportional to the solid volume
fraction, which is not homogeneous but there is an accumulation of particles in the stagnation
zone in front of the cylinder and a lower concentration in the recirculation zone. We observe a
slightly increased particle volume fraction along the edge of the recirculation zone for the non-
oscillating case, whereas the recirculation zone is broken for the oscillating wake and instead we
find an accumulation of particles that are stuck right behind the cylinder. The cyclic movement
of particles inside the wake of Reeff = 38 compared to Reeff = 114 transports particles outwards
towards the limit cycle. Contrary, fluctuations in the flow and collisions at the edge can cause
particles to enter the recirculation zone. Slip velocity is largest at the stagnation point in the
front of the cylinder, where particles moving very slowly due to contact with the cylinder. Also
there is a slightly increased slip velocity along the edge of the recirculation length.

The effective viscosity correlation used here is derived from experiments of suspensions with
small particle diameter compared to the cylinder d� D. It is not obvious that they can hold
true for a diameter ratio of D/d = 5. To investigate the effect of particle size, we double
the cylinder and domain sizes but keep the previous particle diameter to achieve a D/d = 10
while maintaining the particle resolution of 10 lattice cells per diameter. As shown in Fig. 5.8,
the drag coefficient remains unchanged. However, the recirculation length evolution is closer
to the single phase flow data in the region close to the onset of unsteady flow. The increased
diameter ration brings us closer to the initial assumption of suspensions with minuscule particles
compared to the cylinder.

5.3.2 Glass particles
The material we investigate now is composed of glass particles, which have a relative density
ρ∗ = ρp/ρf = 2.5. Increasing the material density means particles will have more inertia
and less tendency to follow the flow streamlines. We recall that gravity is not considered.
The effect of inertia is not accounted for in the effective viscosity model and can have an
impact on the flow rheology, especially in the wake zone and in high shear stress regions at
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symbols: steady flow.

top and bottom of the cylinder. Contour lines of the dimensionless shedding frequency in
Fig. 5.9 reveal a slight inclination to higher Reeff at increasing volume fractions. Similarly to
hydrogel, there is a sub-critical region where the flow is unsteady but not shedding vortices.
Other quantities like drag and lift coefficients, recirculation zone length abide to the predicted
collapse on the single phase curve, except for points at the higher Reynolds numbers, which
show a slight deviation. It should be noted that the Reynolds number Reeff = ρeffu∞L

µeff
, as well

as the drag and lift coefficient cD,eff = F
ρeffu2∞A/2

, now have to incorporate the suspension’s
effective density ρeff = (1 − Θ)ρf + Θρp which is different from fluid density and evolves with
particle concentration.
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Figure 5.9 – Strouhal number and drag coefficient for a suspension with glass particles. Closed
symbols: unsteady flow; open symbols: steady flow.

Glass has similar density than sand and all features we observed in our simulations are
relevant to sediment transport in water. Inertia starts to come into play while effective density
reaches 1.3 for volume fraction Θ = 20%.



82 Chapter 5. Particles laden flow around a cylinder

5.3.3 Iron particles
At even higher relative density of ρ∗ = 7.8 we find the failure of effective viscosity modeling due
to significant inertia effect. Strouhal contour lines are heavily skewed with many simulations at
high volume fraction showing flow oscillation without vortex shedding or with vortices devel-
oping further downstream, as we will see later. Suspension drag coefficients in the supposedly
unsteady regime are deviating away from the single phase unsteady curve towards the steady
curve. This response is due to the increased inertia of particles, which yields a detachment
from fluid streamlines and inhibits the flow from developing its inherent flow structure. Similar
to Fig. 5.10, suspension recirculation length above Reeff = Recrit(Θ = 0) is drifting away from
the single phase unsteady curve and are approaching the steady curve. Lift RMS is strongly
dampened compared to single phase unsteady flow.

In this regime, particles impact the cylinder with significant momentum. The Stokes number
characterizing the particles is now sufficiently large to prevent the particles from following the
fluid elements and the wake region remains depleted of particles. This is consistent with the
simulation results of [171] which showed that when particle inertia is increased the limit cycle
of particle trajectories in the wake region becomes unstable. Although those simulations were
carried out for a single particle, here we observed the same response of the particle laden flow
for many particles interacting in the wake region.
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Figure 5.10 – Strouhal number and drag coefficient for a suspension with iron particles. Closed
symbols: unsteady flow; open symbols: steady flow.

Once again we observe an inhomogeneous distribution of particles in the averaged flow fields
in Fig. 5.11 and 5.12. The highest particle concentration is found at the stagnation point in
front of the cylinder while the wake is void of particles. Additionally, we can identify the form
of the bow shock, especially for the higher Reynolds number Reeff = 191. The edge of the
recirculation zone is distinctly recognizable by a thin layer of low slip velocity between particle
and fluid compared to higher slip velocities inside and outside the recirculation zone.
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Figure 5.11 – Time averaged flow field of solid volume fraction and slip velocity of a suspension
with iron particles, Θ∞ = 0.1 and Reeff = 64.
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Figure 5.12 – Time averaged flow field of solid volume fraction and slip velocity of a suspension
with iron particles, Θ∞ = 0.1 and Reeff = 191.

5.4 Discussion of the contributions to drag force
The reliability of effective fluid prediction for the three different materials is summarized in
Fig. 5.13 by relating the suspension drag coefficient to its single phase value at corresponding
Reeff . If the suspension is unsteady - even if it is not vortex shedding - we relate it to the
unsteady single phase drag, otherwise we compare it to the steady drag coefficient. Hydrogel
and glass suspensions are close to the ideal line, where the prediction matches the suspension
drag exactly. However, with iron particles there is an overprediction for steady cases and an
underprediction for unsteady cases.

From our simulations, we can extract separately the contribution to the drag force which
is exerted by the fluid phase and the rest which is caused by particle collisions transferring
momentum to the cylinder. We added another suspension material with particles of relative
density ρ∗ = 100 to verify if it approaches the response of a granular flow in a gas (ρ∗ � 1). Fig.
5.14 shows the suspension’s particle contribution as a granular coefficient, revisiting eq. (3.16).
Increasing the relative density brings the drag particle contribution closer to a dry granular flow.
At high Reynolds number the effect of fluid viscosity is low, thus the fluid has less resistance
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Figure 5.13 – Suspension drag coefficient compared to equivalent fluid prediction. Closed
symbols: unsteady flow; open symbols: steady flow.

against particles and more of their momentum is being transferred onto the cylinder through
collisions. This is especially true for the case of iron and ρ∗ = 100 but opposite for hydrogel.
Additionally, the particle contribution at high density ratio follows the trend of increased drag
at high Knudsen number, whereas hydrogel suspension shows the opposite trend. There are
two main distinctions in the flow structure that can be made responsible for these observations.
One is that low density ratio suspensions are more easily prone to unsteady vortex shedding
while particles are following fluid pathlines and the other one is the formation of a bow shock,
typically observed for granular flows at high solid volume fraction. The occurence of bow shock
points out the strong decorrelation of fluid and particles motion in the wake.
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Figure 5.14 – Particle drag contribution for different suspensions compared to granular drag
coefficient. Experiments from Boudet & Kellay [114].

Finally we give an overview on the ratio between fluid cD,f,sus and solid cD,p,sus drag contri-
butions of suspensions with different materials and how they compare to the equivalent single
phase fluid or granular flow respectively. The particle contribution cD,p,sus in Fig. 5.15 is small
for neutrally buoyant particles but grows with increasing density ratios. For suspensions of hy-
drogel and glass particles, the drag coefficient is equal to the single phase cD,sp at corresponding
effective Reynolds number. The same estimate is valid for iron but only in the steady regime.
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When Reeff > Recrit(Θ = 0) a suspension of iron particles can neither be described as an ef-
fective single phase steady nor unsteady flow, nor as granular media. At high density ratios
the particle influence on the drag force dominates, but the fluid part cannot be neglected. The
equivalent fluid model is no longer applicable, instead the suspension drag is approximately
equal to the pure granular drag cD,g.
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Figure 5.15 – Fluid cD,f,sus and particle cD,p,sus contributions to suspension drag coefficient
compared to single phase drag cD,sp, granular drag cD,g. All suspensions contain Θ = 20% solid
volume. Single phase drag coefficient at Re > 200 is an extrapolation from obtained simulation
results.

The observations on the drag also manifest in the local distribution of particles in the
instantaneous flow field, showed in Fig. 5.16. The fluid viscosity is kept constant while the
density ratio changes, leading to different Stokes numbers Stk = τpu∞

D
with τp = (ρp+ρf/2)d2

18µf
. We

can identify four unique flow states. Hydrogel particles are uniformly distributed throughout
the domain, even in vortex regions. On the other hand, glass particles at Stk = 1 yield vortices
depleted of particles. For low Stokes numbers Stk ≤ 1 no bow shock is present. For the
heavier iron particles we observe that vortex shedding is spatially delayed downstream due
to the formation of a subtle bow shock. The wake region and vortices are largely depleted
of particles. When the Stokes number increases further to Stk > 10, the wake is completely
free of particles and an apparent bow shock is visible similar to dry granular flow. Vortex
shedding is stalled or delayed so far that it is outside of the simulation domain. Shi et al.
[167] conducted numerical studies of one-way coupled particle laden flows around a cylinder
for high density ratios ρ∗ = 1000 and low volume fraction Θ = 10−6. The bow shock observed
in their simulations is wider than ours and fluid vortex shedding is not inhibited by particle
inertia, since the fluid is not influenced by the presence of particles. But we notice the same
downstream delay of vortex shedding in terms of the particles. Similarly the results of Luo et al.
[168] show unsteady vortex shedding for Stokes numbers up to 100. They examined dilute flows
with high density ratios and a one-way fluid-particle coupling, where only Stokes drag force is
considered. In agreement with our results, there is a depletion of particles in vortex regions
and an extended recirculation zone for Stk > 1. Snapshots from computations of pure granular
flows can be found in the work of Jalali [165], which depict a bow shock that is comparable to
our high density particles.
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Figure 5.16 – Snapshot of particle positions and vorticity field at volume fraction Θ = 20%.
Hydrogel (Stk = 0.5): top/left; Glass (Stk = 1): top/right; Iron (Stk = 2.8): bottom/left; ρ∗ =
100 (Stk = 33.5): bottom/right.

5.5 Performance aspects
The computational speed of our LBM-DEM approach will be presented in Million Lattice
Updates Per Second (MLUPS) in this section. This number involves not only the fluid solver
but the granular solver and all routines necessary for the coupling of these two. For single
phase, we achieve 5620 MLUPS on 15 nodes on the Intel Cascade Lake 6248 architecture
of the Jean Zay supercomputer1. When introducing Lagrangian particles into the domain,
the additional treatment of collisions, particles boundary conditions and refilling of missing
distribution functions slow down the performance to 1580 MLUPS at 20% volume fraction.
To complete a typical simulation of 200,000 time steps on 600 cores a total of 3660 (resp,
13030) CPU hours are required at Θ = 0% (resp., 20%), corresponding to a size ratio D/d =
5. These numbers do not include post processing routines. The number of lattice cells for
simulations at size ratio D/d = 10 amounts to 4,800 M with over 1.8 M particles inside the
computational domain at 20% solid volume fraction. These larger computations were performed
on the OCCIGEN supercomputer2 with Intel Haswell E5-2690V3 architecture using 4,800
cores.

We investigate the change in performance for increasing particle volume fraction in Fig.
5.17. At Θ = 0.05 the overall computational speed of the fully coupled algorithm is roughly
40% lower compared to the single phase and at Θ = 0.20 the speed is reduced by more than
two thirds. These numbers correspond to simulations of hydrogel particles with d/∆x = 10
and D/d = 5. We recall that the LBM algorithm iterates over all grids cells, regardless of the
cell status. Consequently the performance of the fluid solver stays constant when introducing
particles in the flow, but the number of bodies treated by the granular solver and the number of

1http://www.idris.fr/eng/jean-zay/
2https://www.cines.fr/en/supercomputing-2/hardwares/the-supercomputer-occigen/

http://www.idris.fr/eng/jean-zay/
https://www.cines.fr/en/supercomputing-2/hardwares/the-supercomputer-occigen/
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Figure 5.17 – Performance of the fully coupled algorithm for varying particle volume fraction
on the Jean Zay supercomputer.

.

boundary cells at the fluid-solid interface increases. Fig. 5.18 shows the percentage of consumed
CPU time of the three main components of the algorithm. The percentage of the fluid solver
decreases proportionally with the particle volume fraction, whereas the granular percentage
is almost constant when particles are present. The most CPU time at high volume fractions
is consumed by the treatment of boundary conditions. Not shown here are contributions of
the distribution functions refilling scheme, whose proportional consumption increases slightly
from 4% to 6% between Θ = 0.02 and Θ = 0.20. Additionally the continuous mapping of
particles into the simulation domain uses considerably more CPU time, increasing from 3% to
12% between Θ = 0.02 and Θ = 0.20.

Another important aspect of this configuration in terms of computational efficiency is the
parallel scaling. For this test we use slightly smaller dimensions, such that the required memory
will fit on a single computing node on the Jean Zay supercomputer. The simulations domain
spans Lx, Ly, Lz = 32D, 20D, 4D and contains 10% in volume of hydrogel particles with size
d/∆x = 8 at a cylinder to sphere size ratio D/d = 5. We consider three different scaling modes:
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Figure 5.18 – CPU time distribution of main components of the coupled algorithm for increasing
particle volume fraction
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• Weak scaling: Domain, cylinder and particle size increase proportionally to the number
of cores used

• Strong scaling: Domain cylinder and particle size stay constant

• A scaling which is specific to this configuration: Domain and cylinder increase propor-
tionally to the number of cores used but particles keep the same size

As the number of cores increases by a factor of 8, the cylinder diameter, particle diameter and
domain size doubles during weak scaling. The number of grid cells per block remains constant
for weak and configuration specific scaling, but reduces during strong scaling. One block holds
1283, 643, 323, 163 cells at 1, 8, 64, 512 nodes respectively in the strong scaling mode. Fig.
5.19 illustrates the nearly ideal parallel scaling of our approach until 20480 cores for weak and
configuration specific scaling. During weak scaling the performance can surpass ideal scaling
because larger particles entail fewer boundary cells than smaller particles at the same volume
fraction, which reduces the proportional CPU consumption of the boundary handling routine.
The loss of efficiency in strong scaling can be attributed to the increased communication between
processes. At 20480 cores, the computational speed is reduced by 72% compared to 40 cores.
A block size of 323 is generally a good target value, while 163 is too small to guarantee good
performance.
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Figure 5.19 – Parallel scaling of the fully coupled algorithm for hydrogel particles with Θ = 0.10,
d/∆x = 8 and D/d = 5 using 1, 8, 64, 512 nodes on the Jean Zay supercomputer
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5.6 Conclusions
This study utilizes efficient capabilities of the LBM to simulate particle-laden flows. Particle
resolved simulations allow to investigate the unsteady response of particulate flows around a
circular cylinder. To validate the computational model several configurations have been tested,
such as single phase flow past a cylinder, granular drag coefficients and particle response to
unsteady and shear forces. Our LBM-DEM delivers high accuracy since it is based on geometri-
cally resolved moving bodies, while remaining sufficiently efficient to perform large simulations
with hundreds of thousands of particles in decent computation time on a supercomputer.

The predicted global flow parameters using an effective viscosity are well recovered for
neutrally buoyant and slightly inertial particles (typically glass beads in water) at a cylinder
sphere diameter ratio equal to 5. Decreasing the particle size relative to the cylinder did not
significantly change the drag coefficient and recirculation length predictions, except for points
close to the onset of unsteady vortex shedding. We observe that steady wake is depleted
of neutrally-buoyant particle as previously observed in microfluidic experiments while higher
Reynolds flows are unsteady and von-Karman vortices are populated with particles because
their Stokes number is low. Increasing particle inertia shows that the simple modeling of
dispersed two-phase flows with mixture physical properties is not adequate to predict the drag
force experienced by the cylinder.

Suspensions with relative density higher than 2.5 are more complex to describe due to the
interplay between hydrodynamic and granular effects. In the steady regime, suspension flows
exert a drag force similar to an equivalent fluid, but in the unsteady regime the evolution of the
drag coefficient neither follows the prediction based on an equivalent fluid, nor as a granular
flow. Inertia of particles forces them to cross the flow streamlines, leading to a stabilization of
the wake zone depleted of particles and delaying the development of vortices. This yields global
flow parameters to evolve in an intermediate regime between unsteady and steady response.
We have observed that the spatial distribution of particles is depending on the Stokes number
characterizing the response time of particles. When Stokes number is equal to one or larger,
the vortices are depleted of particles. Further simulations and experiments will be necessary to
better predict flow parameters with a composite law including both hydrodynamic and granular
features of suspensions at moderate relative densities.

At specific density ratios of O(100) or higher, the suspension largely resembles a granular
flow, and a bow shock is present. The onset of von-Karman street is delayed. Drag coefficients
are closer to the prediction for a dry granular material, even though the fluid contribution
cannot be completely neglected.
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Chapter 6

Conclusions

6.1 Summary
The LBM is an alternative approach to solve hydrodynamic flow problems in an efficient man-
ner. While thermal and compressible flows remain difficult to handle and are an ongoing field
of research, this PhD work has put the focus on flows in the incompressible or weakly compress-
ible regimes. We were interested at flows from the Stokes regime (low Reynolds number) to
turbulent flows (high Reynolds number) and the coupling to a granular solver for simulating a
dispersed particle phase. Several test configurations were conducted and compared to analytic
or empirical predictions to verify the validity and the accuracy of our simulation techniques.

The code generation technique offered by waLBerla and lbmpy allows to execute different
collision operators (BGK, TRT, MRT, cumulants), include a SGS turbulence model or entropic
stabilization in the "stream & collide" scheme without loss of performance. On a uniform grid
with sufficiently large block size, the performance is optimized to attain the limit predicted by
the roofline model.

It was not possible to maintain this performance for a complex geometry with multiple levels
of refinement. That is a shortcoming that we found for the swirler simulations. Nevertheless, the
comparison with ProLB and AVBP has demonstrated the potential of the block structured grid
layout. All three codes were able to obtain highly accurate velocity profiles in terms of mean and
RMS quantities, but it remains a difficult tasks to obtain the correct prediction of pressure loss
with the non-body-fitted mesh, that is inherent to the LBM. Simulating the unconfined swirler
configuration required a finer mesh resolution and even then it was difficult to capture the peaks
in the mean radial velocity. We observed less energy dissipation in the high frequency range for
the two LBM codes compared to the finite volume solver AVBP. While waLBerla performed
3 to 5 times faster in terms of reduced efficiency, it suffers from two drawbacks compared to
the solvers using unstructured grids. Firstly, the refinement of whole blocks instead of single
cells (as is the case in ProLB) limits the flexibility of refining the mesh spatially, which leads to
more grid cells being required to obtain equivalent spatial accuracy. Secondly, the concept of
iterating on the whole block irrespective of the cells residing inside the domain or not generates
an overhead of non-fluid cells. Whether or not the higher computational efficiency outweighs
the excess amount of cells is not obvious and will depend on the specific geometry. The code
efficiency and the simplicity of creating a mesh for waLBerla makes it an ideal candidate
for when results are needed quickly.

We investigated the transition to unsteadiness of particulate flows around an obstacle. Sim-
ulations of particle resolved dynamics with up to 4,800 million grid cells and 1.8 million spher-
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ical particles have been carried out for different flow regimes and dilute to semi-dilute particle
concentrations. Particles are fully-coupled meaning that fluid-particle and particle-particle in-
teractions plus the feedback effect of particles on the fluid flow are resolved down to the particle
scale. We observed that flow regimes with neutrally-buoyant particles can be rationalized by
means of mixture material properties. Global flow parameters like drag and lift coefficients or
the mean recirculation length are equal to single phase value at corresponding effective Reynolds
number. The presence of particles trigger flow unsteadiness without shedding vortices at sub-
critical Reynolds number. Increasing the inertia of the particles leads to a progressive transition
to granular flow and an increased particle collision contribution to the drag force. At a rel-
ative particle density 2.5 we observe the depletion of particles from the vortices in the wake;
at relative density 7.8 the prediction with mixture material properties is no longer valid and
vortex shedding is delayed downstream; at relative density 100 the formation of a bow shock
and a complete particle depletion of the wake occurs. A cylinder to particle diameter ratio of 5
was sufficient to obtain accurate flow predictions. The scaling capabilities of the fully coupled
approach for up to 512 nodes (20480 cores) on the Jean Zay supercomputer were demonstrated.

6.2 Outlook
Evidently, the next step would be to study particle-laden, turbulent flows. While particle
resolved simulations of swirling flows seemed unfeasible in the past, they might become a
reality in the near future. Let us entertain the idea of injecting spherical liquid droplets of size
100 µm into the swirler configuration of Chap. 4. Adhering to the earlier proposed minimum
particle size d/∆x = 10, the required mesh resolution is 10 µm. Assuming that the code scales
ideally, the cost of a simulation of 5% particle volume and 100 ms of physical time will be
approximately 7.5 M CPU-hours. Today, we would have to use the entire computing power of
the SuperMUC-NG cluster1 to perform this simulation in 24 hours (the newer Intel Skylake
Xeon Platinum 8174 of SuperMUC-NG will perform better than the CPU of Kraken or Jean
Zay). In the future this type of simulation will also become possible on smaller computing
clusters.

To make waLBerla competitive in the context of industrial applications at very high
Reynolds numbers, an explicit model for the logarithmic law of the wall (e.g. [188]) will be
necessary. Moreover, non-reflecting boundary conditions such as the NSCBC in AVBP are
essential for damping spurious acoustic reflections and stabilizing the flow. Recursive Regu-
larized (RR) and Hybrid Recursive Regularized (HRR) collision operators have demonstrated
good properties and can be included in the code generation process of lbmpy. Incorporating
these features within waLBerla has the potential to create a highly efficient code with good
stability and accuracy to challenge software, that is already used in industry, such as ProLB
and AVBP.

1https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG

https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
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