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Abstract 

Ethylene is a phytohormone controlling many processes of plant development. The 

importance of this hormone in fruit set regulation has been reported, but there are still gaps in 

our knowledge. 

The first chapter is dedicated to a review of the role of ethylene in the different stages 

of fruit set, as well as the role of auxin. Briefly, ethylene is involved in the pollen germination 

in the stigma, the pollen tube growth through the transmission tissues in the style and finally 

the fertilization of the ovule. 

The second chapter is centered on pollen tube (PT) elongation. Two opposite lines of 

Ethylene Receptors (ETRs) mutants were used: etr3-ko, a loss-of-function (LOF) mutant; and 

NR (Never Ripe), a gain of function (GOF) mutant. We showed that PT of etr3-ko grew faster 

than WT (Wild Type). On the contrary, NR PT elongation was slower than WT. Moreover, we 

confirmed that PT growth is enhanced by exogenous ethylene and inhibited by an ethylene 

perception inhibitor, 1-methylcyclopropene (1-MCP). The transcriptome profiling of PTs in 

etr3-ko and NR mutants, revealed that ethylene perception has major impacts on cell wall- and 

calcium signaling-related genes. 

The third chapter is focused on the role of 1-aminocyclopropane-1-carboxylic acid 

(ACC), a precursor of ethylene, as a signal by itself, independent of ethylene perception, on PT 

growth. We discovered that exogenous ACC stimulated PT growth even when ethylene 

perception was inhibited by 1-MCP treatment or the NR mutation. Furthermore, in EBS:GUS 

transgenic pollen, GUS activity was stimulated by ACC in the presence of 1-MCP. These data 

suggest that ACC signaling can bypass the ethylene receptor step to stimulate PT growth. 
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Résumé 

L'éthylène est une phytohormone contrôlant de nombreux processus de développement des 

plantes. L'importance de cette hormone dans la régulation de la mise à fruit a été décrite, mais 

il y a encore des points non éclaircis. 

Le premier chapitre constitue une synthèse sur le rôle de l'éthylène dans les différentes 

étapes de la mise à fruit, ainsi que le rôle de l'auxine. En bref, l'éthylène est impliqué dans la 

germination du pollen dans le stigmate, la croissance du tube pollinique à travers les tissus du 

style et enfin la fécondation de l'ovule. 

Le deuxième chapitre porte sur l'allongement du tube pollinique (TP). Nous avons 

utilisé deux lignées opposées de mutants des récepteurs de l'éthylène (ETR): etr3-ko, un mutant 

perte de fonction (LOF); et NR (Never Ripe), un mutant gain de fonction (GOF). Nous avons 

montré que les TPs de etr3-ko se développaient plus rapidement que ceux du WT (Wild Type). 

Au contraire, l'allongement des TPs de NR était plus lent que ceux du WT. De plus, nous avons 

confirmé que la croissance du TP est stimulée par l'éthylène exogène et inhibée par un inhibiteur 

de la perception de l'éthylène, le 1-méthylcyclopropène (1-MCP). L’analyse transcriptomique 

des TPs de mutants etr3-ko et NR, a révélé que la perception de l'éthylène a des impacts majeurs 

sur les gènes liés à la modification de la paroi cellulaire et de la signalisation calcique. 

Le troisième chapitre est axé sur le rôle de l'acide 1-aminocyclopropane-1- 

carboxylique (ACC), un précurseur de l'éthylène, en tant que signal en soi (indépendant de la 

perception de l'éthylène) sur la croissance du TP. Nous avons découvert que l'ACC exogène 

stimulait la croissance des TPs même lorsque la perception de l'éthylène était inhibée par le 

traitement au 1-MCP ou la mutation NR. De plus, dans le pollen transgénique EBS:GUS, 

l'activité GUS a été stimulée par ACC en présence de 1-MCP. Ces données suggèrent que la 

signalisation ACC peut contourner l'étape du récepteur de l'éthylène pour stimuler la croissance 

de TPs. 
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GOF: Gain-Of-Function 

 
GUS: β-Glucuronidase 
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PCR: Polymerase Chain Reaction 

qPCR: quantitative PCR 

WT: Wild Type 

 
WTB: Wild Type Brazil 



9 
 

Content 

Acknowledgements ............................................................................................. 2 

Publications ......................................................................................................... 4 

Abstract ............................................................................................................... 5 

Résumé................................................................................................................. 6 

Abbreviations ...................................................................................................... 7 

General Introduction ....................................................................................... 12 

Chapter I: Review: Auxin and Ethylene Regulation of Fruit Set ................ 14 

Abstract ............................................................................................................................................ 15 

1. Introduction ............................................................................................................................. 15 

1.1. Auxin biosynthesis, transport and signaling pathway ....................................................... 17 

1.2. Ethylene biosynthesis and signaling pathways ................................................................... 18 

2. Ethylene and auxin regulate the formation of plant male and female organs .................... 19 

2.1 Male reproductive organs ..................................................................................................... 19 

2.2. Female reproductive organs ................................................................................................ 23 

3. Ethylene and auxin regulate pollination-dependent fruit set ................................................... 24 

3.1. Pollen germination and tube growth ................................................................................... 24 

3.2. Changes to ovary development ............................................................................................ 26 

4. Ethylene and auxin roles in parthenocarpy ...................................................................... 28 

5. Conclusions and perspectives ..................................................................................................... 29 

Chapter II: Ethylene signaling modulates tomato pollen tube growth, 

through modifications of cell wall remodeling and calcium gradient ......... 32 

Abstract ............................................................................................................................................ 33 

1. Introduction ............................................................................................................................. 33 

2. Material and methods ............................................................................................................. 36 



10 

 

2.1 Plant material and growth conditions .................................................................................. 36 

2.2 In vitro pollen grain germination assay ............................................................................... 36 

2.3 Ethylene and 1-MCP ............................................................................................................. 37 

2.4 RNA extraction and RT-qPCR ............................................................................................ 37 

2.5 RNA-seq analyses .................................................................................................................. 37 

2.6 Differential expression and downstream analyses .............................................................. 38 

2.7 Pectin immunolabeling and PME activity measurement ................................................... 39 

2.8 Intracellular calcium detection and imaging....................................................................... 40 

2.9 ACCESSION NUMBERS ..................................................................................................... 41 

3. Results .......................................................................................................................................... 42 

3.1 Expression of ETRs in germinating pollen grains .............................................................. 42 

3.2 ETRs modulate pollen tube growth, but not ethylene production by pollen tubes .......... 44 

3.3 Ethylene stimulates pollen tube growth, whereas 1-MCP inhibits it ................................ 44 

3.4 Transcriptome profiling of etr3-ko and NR pollen tubes ................................................... 45 

3.5 Transcriptomic analysis of the cell wall-related genes in etr3-ko and NR pollen tubes .. 48 

3.6 Transcriptomic analyses of calcium signaling-related genes in NR and etr3-ko pollen 

tubes .............................................................................................................................................. 51 

3.7 Immuno-localization of homogalacturonans in etr3-ko and NR pollen tubes .................. 53 

3.8 Calcium load in pollen tube tips is modulated by ETRs .................................................... 54 

4. Discussion ..................................................................................................................................... 57 

4.1 Ethylene signaling modulates pollen tube growth .............................................................. 57 

4-2-Transcriptome profiling of NR and etr3-ko PTs revealed that the GOF mutation has a 

stronger impact than the LOF mutation ................................................................................... 58 

4-3-Cell wall remodeling is a main output of ethylene signaling in pollen tubes: A focus on 

pectins ........................................................................................................................................... 58 

4-5-Calcium signaling is a main target of ethylene signaling in pollen tubes ......................... 61 

Chapter III: 1-aminocyclopropane-1-carboxylic acid (ACC) stimulates 

tomato pollen tube growth independently of ethylene perception ............... 65 

Abstract ............................................................................................................................................ 66 

1. Introduction ................................................................................................................................. 67 

2. Material and methods ................................................................................................................. 68 



11 

 

2.1 Plant material and growth conditions ................................................................................. 68 

2.2 Pollen grain germination in vitro assays .............................................................................. 69 

2.3 ACC content ........................................................................................................................... 69 

2.4 GUS activity assay and GUS staining .................................................................................. 70 

2.5 Statistical treatments ............................................................................................................. 70 

3. Results .......................................................................................................................................... 71 

3.1 Ethylene perception stimulates pollen tube growth ........................................................... 71 

3.2 ACC stimulates PT growth, even when ethylene perception is blocked ........................... 72 

3.3 ACC stimulates GUS driven by EBS, independently of ethylene perception................... 76 

4. Discussion ..................................................................................................................................... 78 

General Conclusion and Perspectives ............................................................ 80 

Annex I .............................................................................................................. 82 

Annex II ............................................................................................................. 95 

Annex III ........................................................................................................... 96 

               References of the PhD manuscript ................................................................ 103 



12 
 

General Introduction 

My doctorate work covers ethylene roles in tomato fruit set. My main topic was the study of 

the effects of ethylene signaling on tomato pollen tube elongation by using transcriptome 

profiling, and also by looking at the potential role of the ethylene precursor, 1- 

aminocyclopropane carboxylic acid, which has recently been identified a potential signal by 

itself. 

In recent years, the research in plant reproduction has gained interest as it is a key 

element to control plant yield and food production to match the growth of world population 

(Pereira and Coimbra, 2019). The transition from flower to young fruit, namely fruit set, is an 

initial step of fruit development to ensure successful sexual plant reproduction, and fruit set 

efficiency which is important features to determine the production and yield of various crops 

(An et al., 2020). Fruit set starts by the landing of pollen grains on stigma and the pollen grain 

germination, then the pollen tube grows through the style towards the ovule where the 

fertilization occurs (An et al., 2020). 

This latter review article, the first chapter of my PhD work, covers the roles of ethylene 

and auxin in fruit set, as I co-authored it with a companion PhD student, Jing An, working on 

the auxin roles. Many reports pointed the role of ethylene in fruit set including pollen 

germination, pollen tube elongation and fertilization (Holden et al., 2003; Jia et al., 2018; Zhang 

et al., 2018). In mature pollen grain the content of the ethylene precursor, 1- aminocyclopropane 

carboxylic acid (ACC), start to increase, one day before anthesis, which may induce pollen 

germinationethylene. Also, ethylene led to transmission tissues degradation in the style, which 

facilitates pollen tube growth. After pollination, the ethylene initiates egg cell differentiation in 

ovules. Finally, ethylene promotes programmed cell death of synergid cells, which prevent 

other pollen tube attraction. 

In chapter two, I describe our studies about the role of ethylene perception in pollen tube 

elongation by using two ETR3 mutants with opposite effects, a loss-of-function (LOF) 

mutation, the etr3-ko mutant, and a gain-of-function (GOF) mutant, called NR for Never Ripe. 

We discovered that ethylene receptors block PT growth, in absence of ethylene. The 
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transcriptome profiling analyses for etr3-ko and NR mutants showed that cell wall-related genes 

and calcium signaling-related genes were mostly affected. Moreover, the distribution of the 

methylesterified homogalacturonan pectic motifs in the pollen tubes were modified in NR. 

Additionally, the calcium gradient was differently altered in etr3-ko and NR mutants. All these 

results reveal that the ethylene signal is able to remodel cell wall structureand calcium gradient 

in the pollen tubes. 

Finally, my third chapter focuses on ACC, a biosynthetic precursor of ethylene, which was 

often used as a tool to identify the genetic and molecular mechanisms regulating the ethylene 

response. Recently, some studies showed that ACC can act as a signal by itself, independent of 

ethylene signaling or bypassing ethylene perception. Here, we provide additional evidence for 

the role of ACC in the regulation of pollen tube growth, independently of ethylene perception. 

ACC treatment stimulated PT growth despite ethylene perception was blocked either 

chemically by treating with 1-methylcyclopropene (1-MCP) or genetically by using the 

ethylene-insensitive NR mutant. Reducing endogenous ACC levels by 

aminoethoxyvinylglycine (AVG) treatment led to a reduction of PT growth. Moreover, GUS 

activity driven by an EIN3 Binding Site promoter (EBS:GUS transgene) was triggered by ACC 

in the presence of 1-MCP. Taken together these results suggest that ACC signaling can bypass 

the ethylene receptor to induce PT growth. 

Finally, I was also involved in the development of methods to detect the different stages of 

tomato fruit set by using deep learning. This work will provide a new method to help the 

researchers detect the different flower stages by image analyses, which could replace the visual 

method. This work is in progress and has been added in Annex. 
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Review: Auxin and Ethylene Regulation of Fruit Set 

 

 
Abstract 

With the forecasted fast increase in world population and global climate change, it becomes a major 

challenge for human society to provide sufficient amounts of quality food. Seed and fruit crop 

yield is determined by developmental processes including flower initiation, pollen fertility and 

fruit set. Fruit set is defined as the transition from flower to young fruit, a key step in the 

development of sexually reproducing higher plants. Plant hormones have important roles during 

flower pollination and fertilization, leading to fruit set. Moreover, it is well established that fruit 

set can be triggered by phytohormones like auxin and gibberellins (GAs), in the absence of 

fertilization, both hormones being commonly used to produce parthenocarpic fruits and to 

increase fruit yield. Additionally, a number of studies highlighted the role of ethylene in plant 

reproductive organ development. The present review integrates current knowledge on the roles 

of auxin and ethylene in different steps of the fruit set process with a specific emphasis on the 

interactions between the two hormones. A deeper understanding of the interplay between auxin 

and ethylene may provide new leads towards designing strategies for a better control of fruit 

initiation and ultimately yield. 

 

 
1. Introduction 

Fruit set is known as the initial step of fruit development in sexual reproduction of 

flowering plants, a process by which the flower turns into a fruit. The transition from flower to 

fruit corresponds to a developmental shift that is naturally triggered upon flower fertilization 

and leading to the activation of a high number of metabolic pathways and anatomical 

transformations that result in the change in organ identity. Fruit set relies on successful 

pollination of the stigma, followed by pollen germination and subsequent growth of the pollen 

tube towards the ovule (Vriezen et al., 2008). Then, the fertilization of the ovule triggers the 

division and expansion of the cells surrounding the embryo (Vriezen et al., 2008), and it is 



16 
 

widely accepted that the whole process is regulated by plant growth substances, such as 

phytohormones, with auxin playing a pivotal role in the regulation of this developmental shift 

(Wang et al., 2005; Pandolfini, 2009). 

Notably, the role of auxins in the development of fruit from unfertilized ovules, a process 

called parthenocarpy, has been largely documented, and it was proposed that auxin can serve 

as alternative signal replacing pollination and fertilization to initiate the fruit growth program. 

It was also shown that auxins interact with the GAs, and that both hormones stimulate cell 

division and expansion during the fruit set. In particular, auxin was reported to increase GA 

content, by upregulating GA biosynthesis genes (Serrani et al., 2008). Further insights into the 

molecular mechanisms involving the two hormones in the regulation of fruit initiation were 

provided by the discovery of SlARF7, an auxin response factor, which mediates a crosstalk 

between auxin and GA signaling (Jong et al., 2011). Recent studies showed that abscisic acid 

also plays an important role in regulating tomato fruit set, further adding to the complexity of 

the network that regulates this process (Serrani et al., 2008; Jong et al., 2011; Vriezen et al., 

2008). 

Ethylene has been recognized as an important hormone in several plant development 

processes and ethylene production increases in the flowers of many plant species after 

pollination (Holden et al., 2003), although it was also reported that ethylene biosynthesis starts 

to decrease once fruit set is completed (Pandolfini, 2009). However, our understanding of the 

function of ethylene during carpel development and fruit set in tomato is mostly limited to 

transcriptome profiling of tomato ovaries which revealed alterations in a high number of 

ethylene related genes involved in the flower-to-fruit transition (Pascual et al., 2009; Vriezen 

et al., 2008). The role of ethylene in pollination-independent fruit set has also been suggested 

based on treatments with the ethylene perception inhibitors, silver thiosulphate and 1- 

methylcyclopropene (1-MCP) or with the ethylene biosynthesis inhibitor, 2-aminoethoxyvinyl 

glycine, that leads to parthenocarpic fruit formation (Carbonell-Bejerano et al., 2011). Taken 

together, these findings support the idea that ethylene plays an active role in the regulation of 

fruit set, although its precise contribution to this process and its mode of action remain to be 

further clarified. 
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The present review addresses various aspects of the regulation of the fruit set by ethylene 

and auxin, and provides new leads towards unravelling the mechanisms underlying this 

hormonal crosstalk. For a better clarity, the roles of ethylene and auxin are considered at 

different stages of fruit set, including sexual organ formation, pollination, fertilization, and in 

parthenocarpic fruit formation. 

1.1. Auxin biosynthesis, transport and signaling pathway. 

In higher plants, there are two major routes for indole acetic acid (IAA) biosynthesis: the 

tryptophan (Trp)-dependent and the Trp-independent pathways (Normanly et al., 1993; Zhao, 

2014; Wang et al., 2015). In the Trp-dependent pathways, IAA is biosynthesized from L-Trp 

by a two-step process: the first step corresponds to the transformation of Trp to indole-3-pyruvic 

acid (IPA) catalyzed by TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 

(TAA/TAR) family, then IPA is decarboxylated by YUCCA flavin monooxygenase enzymes 

to form IAA (Zhao, 2014). The Trp-independent pathway was discovered two decades ago. It 

assumes that IAA can be produced de novo without Trp (Normanly et al., 1993). In this pathway, 

the indole-3-glycerol phosphate (IGP) is converted to indole by indole synthase, which initiates 

IAA synthesis without Trp (Wang et al., 2015). 

Auxin transport can be operated either by diffusion (passive movement) or by specific 

transporters (active movement) (Zazímalová et al., 2010). IAA is protonated in the apoplasmic 

compartment, crossing the plasma membrane to diffuse into the cell. Once in the cytosol, IAA 

is mainly deprotonated due to the higher pH, and the resulting charged molecule (IAA-) is 

membrane impermeable. Then transporters are required to help auxins to to cross the plasma 

membranes. Several auxin carrier families have been identified, such as AUXIN-RESISTANT 

1/LIKE AUX1 (AUX1/LAX) influx carriers, PIN-FORMED (PIN) and ATP-BINDING 

CASSETTE (ABCB) auxin efflux carriers which mediate auxin distribution in and between 

cells (Zazímalová et al., 2010). 

Auxin is perceived by the cytoplasmic F-box-domain-containing proteins named 

TRANSPORT   INHIBITOR   RESPONSE1/AUXIN   SIGNALING   F-BOX   (TIR1/AFB) 

(Dharmasiri et al., 2005). The pathway linking auxin perception to gene expression involves 

the   ubiquitination   of   AUXIN   RESISTANT/INDOLE-3-ACETIC   ACID   INDUCIBLE 
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(Aux/IAA) proteins by the TIR1/AFB subunit of the SCFTIR1/AFB ubiquitin ligase and their 

degradation by the 26S proteasome. Then the Aux/IAA-mediated inhibition of AUXIN 

RESPONSE FACTORs (ARFs) is released, which allows ARFs to modulate the expression of 

their downstream target genes, known as auxin-responsive genes (Chapman and Estelle, 2009). 

 
1.2. Ethylene biosynthesis and signaling pathways. 

The biosynthesis of ethylene includes three steps, the first leading from methionine to S- 

Adenosyl-Methionine (SAM) catalyzed by the S-adenosyl-methionine synthetase (SAM 

synthetase), the second transforming SAM into 1-aminocyclopropane-1-carboxylic acid (ACC) 

by ACC synthase (ACS) and finally the production of ethylene from ACC by ACC oxidase 

(ACO). The pool of ACC is also regulated by conjugation via ACC acyl-transferases leading 

to the formation of ACC derivatives like malonyl-ACC, glutamyl-ACC, and jasmonyl-ACC, 

which affects the pools of free ACC and hence ethylene biosynthesis (Van de Poel et al., 2015). 

Ethylene is perceived by different ethylene receptor proteins (ETRs), located in the 

endoplasmic reticulum membrane. The number of ETRs varies among species with five 

receptors reported in Arabidopsis, ETR1, ETR2, EIN4, ERS1, and ERS2 (Binder et al., 2007) 

and seven ethylene receptors in the tomato, ETR1, ETR2, ETR3, ETR4, ETR5, ETR6, and 

ETR7, each having a distinct pattern of expression throughout development and in response to 

external stimuli (Liu et al., 2015). The ETRs are negative regulators of ethylene responses and 

interact with other protein partners like CONSTITUTIVE TRIPLE RESPONSE (CTRs) protein 

kinases which are also negative regulators of the downstream signal. In the absence of ethylene, 

the ETR-CTR complex maintains  the ETHYLENE INSENSITIVE2 protein (EIN2) in a 

phosphorylated state at its C-terminus domain which prevents its cleavage (Stepanova and 

Alonso, 2009). In the presence of ethylene, the protein complex (ETR-CTRs) is 

dephosphorylated and inactivated, thus causing the cleavage of the EIN2 C-terminus domain 

by proteases, and this C-terminus domain moves into the nucleus, promoting the accumulation 

of EIN3/EILs by preventing its degradation via EBF1 and EBF2 (Binder et al., 2007). The 

EIN3/EIL3 proteins activate the transcription of ethylene response factors (ERFs), which in 
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turn lead to expression of hundreds of ethylene responsive genes, through binding to GCC- 

boxes and other cis-acting elements (Liu et al., 2015; Stepanova and Alonso, 2009). 

Ethylene and auxin can interact synergistically or antagonistically to control a variety of 

plant development processes, such as fruit development, fruit ripening, root formation and 

hypocotyl elongation (Shin et al., 2019; Růzicka et al., 2007). 

 

2.  Ethylene and auxin regulate the formation of plant male and female 

organs. 

2.1 Male reproductive organs 

In flowering plants, the stamen male reproductive organ is made of the filament and the 

anther where pollen is produced (Figure 1A). The formation and development of normal 

stamens are essential for male fertility, and therefore for successful fruit set. A number of studies 

highlighted the expression dynamics of genes encoding various components of ethylene signaling 

and responses in male reproductive organs suggesting an active role for ethylene in pollen 

development (Hua et al., 1998; Yau, 2004). For instance, in Arabidopsis, AtEIN4 and AtERS2 

exhibit high expression at the transcript level in stamen, including pollen and tapetum cells. 

These latter form a specialized cell layer feeding the developing pollen grains. High expression 

of ethylene receptors in these tissues suggests that ethylene is important in these processes (Hua 

et al., 1998). AtERS2 gene shows a similar expression pattern to the ethylene receptor gene Os-

ERS1 in rice that is up-regulated during early pollen development, corresponding to meiotic and 

microspore stages (Yau, 2004). In tomato, the ethylene production capacity of pollen grains is 

consistent with the expression of ethylene biosynthesis and signaling genes in these tissues 

(Jegadeesan et al., 2018a). Moreover, the application of high concentration of exogenous 

ethylene on male gametophyte induces the degradation of the generative cell at meiosis stage 

resulting in male sterility (Kovaleva et al., 2011). Regarding auxins, many studies showed that 

they are involved in pollen development. For example, IAA accumulates in anthers prior to 

pollination, specifically in pollen grains, tapetum, endothecium and epidermis cells of anther 

(Feng et al., 2006). Moreover, the repression of the iaaL gene 
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encoding indoleacetic acid–lysine synthetase, which converts free IAA to its inactive form IAA-

lysine, results in low free IAA content in anther and reduced pollen viability due to defective 

mitosis (Feng et al., 2006). In tomato, the down-regulation of SlPIN8, a gene encoding an auxin-

transporter specifically expressed in tomato pollen, resulted in up to 80% abnormal pollen 

grains with extremely poor viability (Gan et al., 2019). Altogether, these data suggest that 

ethylene and auxin play important roles in pollen development, and that high amount of 

ethylene may have detrimental effect on the process. 

Additionally, several studies showed that ethylene has critical roles in pollen release. The 

process of anther dehiscence involves two main steps sequentially consisting of (i) degeneration 

of the middle layer and tapetum; (ii) breakage of the anther wall at the region of stomium 

between the two locules of each anther (Goldberg et al., 1993). It has been reported, using 

transgenetic tabacco plants, that the mutant melon ethylene receptor gene Cm-ERS1/H70A 

exhibits delay in tapetum programmed cell death, resulting in the production of abnormal pollen 

(Takada et al., 2006). In the Arabidopsis ethylene insensitive mutant etr1-1, the (i) stomium 

cells showed delayed degeneration and then (ii) anther dehiscence is delayed (Rieu et al., 2003). 

These two events have been related to ethylene production peaks in petunia (Kovaleva et al., 

2011). Moreover, application of ethylene-perception inhibitors 2,5-norbornadiene and 1-MCP 

impaired anther dehiscence in petunia and tobacco, respectively, whereas ethylene treatment 

accelerated this process (Rieu et al., 2003). Similarly, in Petunia, the down-regulation lines 

of ethylene receptor gene PhETR2 hastened stomium degeneration and anther dehiscence, 

making these process happened before anthesis, which is earlier than in wild type, indicating 

that PhETR2 regulates the timing of anther dehiscence (Wang and Kumar, 2007). This seems 

to indicate that through promoting anther dehiscence, ethylene promotes pollen release. It was 

shown that auxin also involves in anther dehiscence process, the quadruple mutant tir1/ afb1/ 

afb2/ afb3 displaying auxin perception defects shows early anther dehiscence due to premature 

lignification of endothecium cell walls and precocious breakage of the stomium (Cecchetti et 

al., 2008). 

Regarding male sterility, ethylene and auxin also appear to be involved in the arrest of 

stamen development (Rieu et al., 2003; Okada., 1991). In Arabidopsis, it shows the stamen 
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development arrest in CsACO2 overexpressed lines, suggesting that the increase in ethylene 

production inhibits stamen development (Duan et al., 2008). Also, down regulation of 

cucumber ETR1 ethylene receptor gene induced abnormal stamen development leading to 

female flower only (Wang et al., 2010). Moreover, it was shown in tobacco that ethylene 

perception is critical for filament elongation (Takada et al., 2005). However, it was shown that 

auxin positively regulates stamen development, including filament elongation and pollen 

maturation (Takada et al., 2005; Okada et al., 1991). Indeed, in the Arabidopsis yuc2-yuc6 

double mutant, the down regulation of auxin biosynthesis caused the failure of filament 

elongation and pollen maturation (Cheng et al., 2006), similar observations were performed 

when auxin perception were altered (Cecchetti et al., 2008). When auxin transport is affected, 

in Arabidopsis pin1-1 and pin1-2 mutants, no stamen developed (C). 

Finally, cross-talks between auxin and ethylene, have been observed in Gaillardia 

grandiflora at the stamen level, as auxin promotes pollen tube elongation and ethylene 

production at the same stage. This auxin-induced ethylene has an important role in the later 

stigma opening stage (Koning, 1983). Taken together, these findings support the idea that 

ethylene and auxin play important roles in male reproductive organs of higher plants. 
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Figure. 1. Ethylene and auxin regulate the development of plant male and female organs. Green 

lines stand for positive regulations. Red lines stand for negative regulations. (A) Ethylene and auxin 

regulate stamen formation and development. This panel illustrates ethylene and auxin roles detailed 

in the 2.1 paragraph. Briefly, ethylene and auxin participate in pollen formation and development, and 

play important roles at the meiosis stage; ethylene induces the programmed cell death (PCD) of the 

tapetum and middle layer, which leads to anther dehiscence and pollen release; auxin may induce anther 

dehiscence; ethylene and auxin may promote filament elongation. (B) Ethylene and auxin regulates 

pistil formation and development. This panel illustrates ethylene and auxin roles detailed in the 2.2 

paragraph. Briefly, ethylene induces the early stage of ovule development; auxin synthesis in apical 

domain of gynoecium plays an important role in style and ovary formation. 

2.2. Female reproductive organs 

In female reproductive organ, the pistil (Figure 1B) provides protection for the ovules, 

enables pollen capture and pollen tube guidance, and supports self- and inter-specific 

incompatibility. Following fertilization of the ovules, in true fruit, such as grape and tomato, 

the gynoecium develops into a fruit, which protects the developing seeds and ultimately 

facilitates mature seed dispersal; in false fruit, such as apple and pears, the fruit derives from 

other flower parts, after fertilization (Ferrándiz et al., 2010). Gynoecium development involves 

the differentiation of specialized functional modules, including the stigma which forms at the 

apex of pistil, and will capture and stimulate the pollen grain germination (Martínez-Fernández 

et al., 2014). The style or pistil is located immediately below the stigma and contains 

transmitting tissues that conduct pollen tubes to the ovary, the basal structure containing the 

ovules (Martínez-Fernández et al., 2014). The formation of normal and functional gynoecium 

is essential for female fertility, and hence for successful fruit set. The role of ethylene in female 

gametophyte development, and ultimately in promoting ovule fertilization, has been addressed 

in several studies (Martínez-Fernández et al., 2014; Martinis and Mariani, 1999). In tobacco, the 

ethylene biosynthesis gene, ACO, is expressed during early stages of ovule development 

(meiosis stage), and its silencing results in the arrest of ovule development and failure to reach 

the maturity stage. Similar effect was obtained by the application of the ethylene 
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biosynthesis inhibitor, silver thiosulfate (Martinis and Mariani, 1999). Notably, upon 

exogenous ethylene treatment, the ovules recover their functionality and restore the guidance 

of pollen tubes to the ovule micropyle (Martinis and Mariani, 1999). 

The role of auxin in female reproductive organ was revealed through the characterization 

of the AGAMOUS-clade of MADS-box genes showing that members of MADS-box B3 domain 

transcription factors NGATHA (NGA1 to NGA4) play an essential role in style development; the 

loss-of-function of these four NGA genes results in complete loss of style and stigma 

development, and this phenotype is due to the failure of activating YUCCA-mediated auxin 

synthesis in apical domain of gynoecium (Trigueros et al., 2009). These studies emphasize the 

role of auxin in apical-basal gynoecium pattern. 

 
 

3. Ethylene and auxin regulate pollination-dependent fruit set 

3.1. Pollen germination and tube growth 

In plants, pollination refers to the release of the pollen from the anther and its deposition 

at the surface of the stigma (Figure 2A). When the pollen grain rehydrates and germinates on 

the stigma, the pollen tube starts to grow inside the style. The pollen grain contains a nucleus 

and a generative cell, which divides into two sperm cells (Edlund et al., 2004). The pollen tube 

grows navigating through transmitting tissue in the style towards the ovule where it releases the 

sperm cells for double fertilization (Palanivelu et al., 2003). The reality and the nature of the 

pollination signal remains a matter of debate, even though auxin, or ACC, have been proposed 

as the acting molecular signals (Whitehead et al., 1983; Zhang & O’Neill, 1993). In petunia, 

the level of ACC increases 100 fold in mature pollen grain and in anthers one day before 

anthesis (Lindstrom et al., 1999). In tomato, it was shown that pollen grain has the capacity to 

produce and sense ethylene before germination, as suggested by the expression of several 

ethylene biosynthesis and signaling genes including SlACS3, SlACS11, SlETR3 and SlCTR2 

(Jegadeesan et al., 2018a). Nevertheless, exogenous application of ACC in flowers cannot 

induce the post-pollination development (O’Neill et al., 1993). When applying the synthetic 

auxin, NAA, to the stigma of orchids, the ethylene production was stimulated in flowers (Zhang 

& O’Neill, 1993). Although these findings support the idea that auxin and ethylene are 
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important for pollination initiation, other factors might also contribute to the regulation of this 

process. 

It was suggested that auxins regulate pollen germination (Wu et al., 2008a; Aloni et al., 

2006). In support to this hypothesis, IAA accumulates at high levels in the stigma when most 

pollen grains germinate (Chen and Zhao, 2008) and, free IAA is high in the growing tip of the 

pollen tube where it was suggested to promote rapid pollen tube growth (Aloni et al., 2006). It 

has also been reported that IAA treatment results in straighter and more slender pollen tube 

growth which facilitates its elongation (Wang et al., 1996; Wu et al., 2008b). Notably, plasma 

membrane H+ ATPase has been shown to interact with 14-3-3 proteins, an interaction that is 

important for pollen germination (Pertl et al., 2001). However, when the pollen tube enters the 

style, the amount of auxin decreases in the style tissues (Chen and Zhao, 2008). 

 

 
The growth and elongation of the pollen tube is essential for successful fertilization and 

subsequent fruit set since it carries two male gametes to the ovary and ovule over a long distance 

in the pistil (Figure 2B). The transmission tissues in the style play an important role in providing 

nutrition and mechanical support for pollen tube growth and, after pollination, transmission 

tissues begin to be malformed and deteriorate, which could provide nutrition to surrounding 

tissues (Wang et al., 1996). In addition, the cellular degeneration of transmission tissues in the 

style provides more space, allowing the penetration of the pollen tube in the stigma. This 

degeneration facilitates the passage of pollen tube in the style to reach the ovary, and these 

events are considered as a programmed cell death process (Wang et al., 1996). Several studies 

have shown the important role of ethylene in pollen tube growth (Kovaleva and Zakharova, 

2003; Holden et al., 2003). Both ACC and ethylene have a role in the degeneration of 

transmitting tissues, by promoting the shortening of the polyA tail of some RNAs specific to 

these transmitting tissues (Wang et al., 1996). On one hand, the treatment with 1-MCP reduces 

pollen tube growth in petunia (Holden et al., 2003). On the other hand, it was shown that 

ethylene promotes pollen tube growth by increasing the relative amount of F-actin, which is 

important for the polarized growth of this tube (Jia et al., 2018). Upon pollination, the increase 
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in ethylene production reaches a maximum in the stigma and is associated with enhanced 

expression of ACS and ACO genes in the ovary. By contrast, control emasculated flowers did 

not exhibit such a change in ethylene production (Llop-Tous et al., 2000). In orchid gynoecium, 

ACS and ACO genes reach an expression peak 24 to 48 hours after pollination, and then decline 

(O’Neill et al., 1993), and similar expression patterns for ACS or ACO were observed in petunia 

and carnation (Tang and Woodson, 1996). 

 
 

3.2. Changes to ovary development 

The presence of auxin and ethylene is required to initiate changes in ovary development 

and to induce ovule differentiation (Figure 2C). It has been found that following pollination 

with fresh pollen, enhanced ethylene synthesis and auxin transport are necessary to initiate the 

egg cell differentiation in maize ovules (Mól et al., 2004). Before fertilization, auxin production 

is suppressed by FIS-PRC2 in the central cell, and this suppression is released upon fertilization. 

In fis mutants impaired in the FIS-PRC2 block system, auxin biosynthesis is induced before 

fertilization and initiates autonomous endosperm formation (Figueiredo et al., 2015). 

In flowering plants, when the pollen tube reaches the ovule, two male sperm cells are 

released to fuse with two female gametes, the egg cell and the central cell (Figure 2D). The 

fused egg cell will develop into an embryo, and the fused central cell will give the endosperm, 

which provides nutrition and support to embryo (Berger et al., 2008). The two synergids are 

responsible for pollen tube attraction, but only one pollen tube will fertilize the ovule 

(Maruyama et al., 2015). Recent studies demonstrate that ethylene signal is critical to prevent 

the attraction of a second pollen tube and it was shown that egg cell fertilization induces the 

activation of EIN3- and EIN2-dependent ethylene response pathway necessary for the 

programmed cell death of the synergid cell (Völz et al., 2013). In addition, the over- 

accumulation of EIN3 in synergid cells leads to the block of pollen tube attraction (Zhang et 

al., 2018). Auxin has been suggested to regulate maize endosperm proliferation. A study in the 

maize mutant defective endosperm18 (de18) showed that IAA biosynthesis is impaired and the 

total cell number is lower in the endosperm, and the level of endoreduplication of the endosperm 

is reduced (Bernardi et al., 2012). 
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Figure 2. Ethylene and auxin regulate plant pollination and fertilization process. Green lines stand 

for positive regulations. Red lines stand for negative regulations. (A) Pollen germination. This panel 

illustrates ethylene and auxin roles detailed in the 3.1 paragraph. Briefly, mature pollen grain contains 

ACC and auxin, which may induce pollen germination; ethylene and auxin both induce pollen 

germination in stigma, and auxin stimulates ACC synthesis. (B) Pollen tube growth in style. This panel 

illustrates ethylene and auxin roles detailed in the 3.2 paragraph. Briefly, ethylene helps degradation of 

transmission tissues in the style, which facilitates pollen tube growth. Auxin accumulates in the tip of 

pollen tube, and this facilitates pollen tube growth. (C) Ovary before fertilization. This panel illustrates 

ethylene and auxin roles detailed in the 3.2 paragraph. Briefly, the increase of ethylene and auxin 

concentrations are necessary to initiate egg cells differentiation in ovules after pollination. 

(D) Ovary after fertilization. This panel illustrates ethylene and auxin roles detailed in the 3.2 paragraph. 

Briefly, ethylene promotes programmed cell death of synergid cell, which prevents second pollen tube 

attraction; auxin is important for endosperm development, especially in endoreduplication. 

 

 

 

4. Ethylene and auxin roles in parthenocarpy 

Parthenocarpy corresponds to the ovary development in the absence of pollination and 

fertilization (Varoquaux et al., 2000). In this regard, it is considered as a desirable agronomic 

trait to improve fruit set in adverse climate conditions. In addition, the seedless fruits due to 

parthenocarpic development are preferred by consumers (Varoquaux et al., 2000). It has long 

been known that applying synthetic phytohormones like auxin and gibberellic acid (GA) to 

unpollinated flower buds induces parthenocarpic fruit set (Sjut and Bangerth, 1982). However, 

exogenous application of plant hormones to get seedless fruits is costly, thus genetic 

engineering strategies are promoted, aiming at altering hormone biosynthesis or signaling in 

order to obtain parthenocarpic fruits. Pioneering work, in this domain, targeted the up- 

regulation of the iaaM gene to promote the synthesis of indolacetamide, which can be converted 

to IAA (Rotino et al., 1997). The expression of this auxin biosynthesis gene, driven by the 
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promoter of DefH9, a MADS-box gene expressed specifically in ovules, resulted in 

parthenocarpic fruit development in both tobacco and eggplant (Rotino et al., 1997). Thereafter, 

the same gene was used to obtain parthenocarpic fruit in several horticultural crops, like tomato 

and cucumber (Plcader et al., 2006). Another successful approach to produce parthenocarpic 

fruit dealt with the down-regulation of SlIAA9, encoding a negative regulator of auxin- 

dependent gene transcription (Wang et al., 2005). Subsequently, the parthenocarpic trait was 

also achieved through up or down-regulation of members of auxin response factors in different 

species (Goetz et al., 2006). In Arabidopsis, the loss of function mutation of AtARF8 produced 

dehiscent and parthenocarpic siliques (Goetz et al., 2006). In tomato, the down-regulation of 

SlARF8 and SlARF7 formed parthenocarpic fruit, and the over-expression of SmARF8 in 

eggplant produced the same seedless trait (Du et al., 2016; Goetz et al., 2007; Jong et al., 2011). 

Overall, auxin biosynthesis and signaling genes provide efficient targets to engineer 

parthenocarpic plants in a variety of species. 

Most studies showed that ethylene acts as a negative regulator of parthenocarpy in plants 

(Carbonell-Bejerano et al., 2011). For example, in Arabidopsis, ethylene is responsible for 

ovule senescence by preventing GA perception; hence, ethylene indirectly leads to the 

degradation of ovule tissues, thus reducing parthenocarpic fruit set (Carbonell-Bejerano et al., 

2011). On the other hand, preventing ethylene perception in emasculated flowers of tomato, 

either by using 1–MCP, or by using ethylene insensitive mutants (etr1-1), led to more 

parthenocarpic fruits (Shinozaki et al., 2015). Similarly, blocking ethylene synthesis, by using 

2-aminoethoxyvinyl glycine, or blocking ethylene perception, by using silver thiosulphate, 

induced parthenocarpy in zucchini squash (Martínez et al., 2013). 

To date, there is no study focusing on the crosstalk of auxin and ethylene during 

parthenocarpic fruit set. 

 
 

5. Conclusions and perspectives 

A large set of data supports the notion that both ethylene and auxin play active roles in 

controlling the fruit set process, at different steps of the flower-to-fruit transition. But there is a 
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need for research to detail the potential crosstalk between auxin and ethylene signals in the 

control of this transition. The two hormones impact all stages of stamen development, including 

elongation of stamen filament bringing anthers close to stigma, pollen maturation, and anther 

dehiscence to release pollen on stigma. Proper completion of these events is critical to the 

formation and development of reproductive sexual organs and then to successful initiation of 

the fruit set process (Kumar et al., 2013). Ethylene and auxin are also involved in most events 

associated with the germination of pollen in the stigma, the growth of pollen tube through the 

transmission tissues in the style and finally the fertilization of the ovule. The use of mutant lines 

impaired in both auxin and ethylene responses will allow to better decipher the roles of auxin 

and ethylene in initiating and controlling the flower-to-fruit transition. By building on studies 

about crosstalk in other developmental processes, like root formation and hypocotyl elongation 

(Růzicka et al., 2007), future research will allow to further detail the dialogue engaged between 

the two hormones in the different phases of the fruit set. For example, it was shown that mutants 

altered in AUX1 and EIR1/AGR/PIN2 with impaired auxin transport, and those affected in 

TIR1 auxin receptor, exhibit ethylene insensitive root growth, which supports the idea of 

interdependence of both hormones (Luschnig et al., 1998; Muday et al., 2012). More recently, 

it was reported that ERF109 binds directly to the promoters of ASA1 and YUC2 auxin 

biosynthesis genes, and ERF1 could bind with the promoter of ASA1, leading to auxin increase 

and ethylene-induced root growth inhibition (Cai et al., 2014; Mao et al., 2016). Similarly, the 

expression of Sl-IAA27 is regulated by direct binding of ERF.B3 to its promoter (Liu et al., 

2018). The regulation of ACS expression by ARFs, and of TAA1 by EIN3 have been 

documented (Robles et al., 2013) . Finally, the impaired expression on SlSAUR69 in the tomato 

results in altered auxin distribution and change in ethylene sensitivity (Shin et al., 2019). All 

these examples should lead to new studies about potential ethylene and auxin crosstalks in fruit 

set. These studies should cover the parthenocarpic fruit formation, which is becoming an 

important trait, offering a mean to ensure yield stability in unfavorable environmental 

conditions, these latter reducing pollen viability and depressing flower fertilization. 

Additionally, the epigenetic control is an emerging theme in developmental biology and its 

contribution to the fruit set process needs to be unveiled. It is therefore important to investigate 
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how epigenetic components impact the transcriptomic reprogramming underlying different 

steps of fruit set. Finally, while the present review emphasizes the role of ethylene and auxin in 

fruit set, input from gibberellins is also critical to control this process (Serrani et al., 2008; Jong 

et al., 2011). Thus, it will be interesting to expand the crosstalk studies to such hormones. 
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Chapter II: Ethylene signaling modulates tomato pollen 

tube growth, through modifications of cell wall remodeling 

and calcium gradient 

(Published in Plant Journal by Althiab-Almasaud et al., 2021) 

The supplementary data of this chapter have been placed in 

Annex I 
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Ethylene signaling modulates tomato pollen tube growth, through 

modifications of cell wall remodeling and calcium gradient 

 
Abstract 

Ethylene modulates plant developmental processes including flower development. Previous 

studies have suggested ethylene participation in pollen tube (PT) elongation, and both ethylene 

production and perception seem critical at fertilization time. The full gene set regulated by 

ethylene during PT growth is unknown. To study this, we used various EThylene Receptors 

(ETRs) tomato mutants: etr3-ko, a loss-of-function (LOF) mutant; and NR (Never Ripe), a gain 

of function (GOF) mutant. The etr3-ko PTs grew faster than its wild type, WT. Oppositely, NR 

PT elongation was slower than its wild type, and PTs displayed larger diameters. ETR mutations 

created feedbacks on ethylene production. Furthermore, the ethylene treatment of germinating 

pollen grains increased PT length in etr-ko mutants and WT, but not in NR. Treatments with the 

ethylene perception inhibitor, 1-MCP, decreased PT length in etr-ko mutants and wild types, but 

had no effect on NR. This confirmed that ethylene regulates PT growth. The comparison of PT 

transcriptomes in LOF and GOF mutants, etr3-ko and NR, both mutated on the ETR3 gene, 

revealed that ethylene perception has major impacts on cell wall- and calcium-related genes as 

confirmed by microscopic observations showing a modified distribution of the methylesterified 

homogalacturonan pectic motif and of calcium load. Our results establish links between PT 

growth, ethylene, calcium and cell wall metabolisms, and also constitute a transcriptomic 

resource. 

 
 

1. Introduction 

The human population growth and increasing food demand make food security a priority for 

the future (Gustavsson et al., 2011). Therefore, research on plant reproduction is critical for 

increasing crop productivity and fruit/seed yields. Sexual plant reproduction starts with pollen 

grain landing onto the stigma where it hydrates and starts to germinate; then, the pollen tube 
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(PT), carrying the two sperm cells, grows rapidly through the style and the ovary (Figure S1), 

to reach the ovule where the fertilization takes place (An et al., 2020). PT elongation is essential 

for fertilization (Michard., et al., 2017). Many studies suggested that ethylene participates in 

this process (An et al., 2020). For example, a few hours after the penetration of PTs in the 

tomato stigma, a burst of ethylene was detected in the pistil (Llop-Tous et al., 2000). Ethylene 

signaling starts with the binding of ethylene to specific receptors (Chang, 2016, Binder, 2020). 

In tomato, there are seven EThylene Receptors (ETRs), SlETR1-7, which are located in the 

endoplasmic reticulum, and their amount varies over plant development (Chen et al., 2020a). 

ETRs are negative regulators of ethylene responses. In absence of ethylene, they maintain the 

downstream signaling partners in a “OFF” status, but in presence of ethylene their 

phosphorylation level changes and this turn “ON” the signaling partners (Bisson and Groth, 

2015; Chang, 2016; Binder, 2020). 

 

 

Some studies have highlighted the critical role of ethylene perception in PT elongation. For 

example, in Petunia inflata, ethylene perception was shown to be correlated with PT elongation 

(Holden et al., 2003). Indeed, the treatment with 1-MethylCycloPropene (1-MCP), an ethylene 

perception inhibitor, led to a strong inhibition of PT growth during the first six hours after 

pollination. Besides, Jia et al. (2018) have observed that ethylene promotes PT growth by 

interacting with cyclic Guanosine MonoPhosphate (cGMP) in Arabidopsis thaliana, thus 

leading to an increased number of actin filaments in PTs, which are important for their polarized 

growth. Moreover, in an ethylene-insensitive mutant (etr1-1), PT growth was reduced (Jia et 

al., 2018). 

 

 

During PT growth, a number of cell wall components like pectins, cellulose, hemicelluloses 

and callose are required to build up the cell wall architecture (Mollet et al., 2013). Pectins 

constitute a major component of the PT apical region, and the pectin methylesterase (PME) 

activity is critical for PT growth (Bosch, 2005). During fruit ripening, ethylene was shown to 
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modulate the expression of genes encoding cell-wall modifying enzymes such as PMEs and 

polygalacturonases (PGs) (Brummell, 2006). PGs are also known to be critical for PT growth 

(Dearnaley and Daggard, 2001). But a clear link between ethylene and cell wall remodelling 

during PT growth is yet to be demonstrated. 

 

 

PT elongation, morphology, and orientation have been shown to be highly dependent on ions 

choreography. Namely, the combination of potassium, chloride, calcium and proton gradients 

play crucial roles in the development of pollen grains (Michard et al., 2017). Tip-focused Ca2+ 

gradients generated by the interplay of Ca2+ pumps and channels are observed during PT 

elongation and are correlated with pulses in growth rate (Zheng et al., 2019). The link between 

Ca2+ and ethylene has been reported, in other organs than flowers. It was found that Ca2+ is 

required for ethylene biosynthesis (Jung et al., 2000; Petruzzelli et al., 2003; Li et al., 2018). 

Moreover, it was shown that ethylene could enhance the endogenous Ca2+ concentration in 

tobacco cell suspension cultures by activating a plasma membrane Ca2+-permeable channel 

(Zhao et al., 2007). A recent study has shown that exogenous application of Ca2+ to root tissues 

was able to down-regulate the expression of ETR genes, and up-regulate gene expression of 

downstream elements of the ethylene signaling pathway (Yu et al., 2019). 

 

 

In the present study, we aimed at investigating the role of ETRs during PT growth in tomato. 

After identifying the main ETRs expressed during PT growth, we studied the effects of 

mutations affecting ETRs with opposite effects, a loss-of-function (LOF) mutation in the etr3 

mutant, and a gain-of-function (GOF) mutant carrying a constitutive functional ETR (NR, for 

NEVER RIPE). A RNA-seq comparative study between etr3-ko, NR and their respective wild- 

types, led us to focus on Ca2+ signaling- and cell wall-related genes, and on pectin remodeling 

to understand the observed phenotypes. In this study, we show links between metabolisms 

related to ethylene, calcium and cell wall during PT growth. 
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2. Material and methods 

2.1 Plant material and growth conditions 

Tomato lines (Solanum lycopersicum cv MicroTom): the etr3-ko and etr4-ko mutant lines were 

generated in our laboratory using the CRISPR-Cas9 technology, as described (Chen et al., 

2020a), these ko lines are Loss-Of-Function (LOF). Briefly the sgRNAs 

“GAATCCTGTGATTGCATTGAGG” and “GCGATGTAACTGTGATGATGAGG” were 

designed to knock out ETR3 and ETR4, respectively. The etr3-ko used in this study has an 

adenine missing at the 4th position before the PAM (protospacer adjacent motif) resulting in a 

frameshift mutation. For etr4-ko, a guanine was deleted at the 4th position before the PAM. The 

comparisons of the amino acid sequences of the mutated ETR proteins in etr3-ko and etr4-ko 

to their wild types are shown in Figure S8. Unfortunately, we did not succeed in the mutagenesis 

of ETR5. WTB and NR mutant lines were obtained from the L.E. Pereira Peres laboratory 

(Carvalho et al., 2011), the NR line is a Gain-Of-Function line (GOF), due to a point-mutation 

in ETR3. All lines are MicroTom cultivar, but WTB and NR might have evolved slightly 

differently over the last 20 years since they were distributed by the Avi Levy’s laboratory 

(Weizmann Institute, Israel). Thus, we used two wild-type lines, WT and WTB. WT is the wild 

type we used in the laboratory over the last 20 years, with which we performed the CRISPR- 

Cas9 constructs for etr-ko. In WTB, the “B” stands for Brazil. Plant sowing and growing 

conditions are detailed in Chen et al. (2020a). 

 
2.2 In vitro pollen grain germination assay 

For germination assays, pollen was sampled from flowers at one and two days post-anthesis 

(DPA) (Figure S9), at second and third positions of flower clusters. Pollen grains from 10 

anthers were collected in 1.5 mL centrifuge tubes using an electric toothbrush body (Oral-B, 

France). The germination medium (GM) as in Firon et al., (2012), containing 0.5 % (w/v) 

agarose or not. Pollen grains were spread over solid GM or suspended in 0.5 mL of liquid GM, 

and incubated at 25°C for various times in the dark. Images were acquired with an inverted 

microscope (Leitz DMIRB, Leica Microsystems, Germany) equipped with a 10M pixel CMOS 

camera (MC 190HD, Leica), with a 10x/0.22NA NPLAN objective (Leica). PT length and 
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diameter were measured with ImageJ (Abràmoff et al., 2004). The lanthanum was applied at 

50 µM LaCl3 in liquid GM as described in Qu et al., (2016). 

 

 
2.3 Ethylene and 1-MCP 

Pollen grains were spread on solid GM as described above, the Petri dishes were sealed with an 

electric tape, and ethylene or 1-MCP were injected in the headspace at the desired concentration, 

and incubated for 4 h before germination or PT length measurements. Preliminary experiments 

were performed to validate optimal concentrations, as in (Figure S7). Endogenous ethylene 

measurements by PTs were performed by sampling the headspace in a 2 mL brown glass vials 

containing around 10 mg of pollen grains in 0.5 mL of liquid GM, 4 h after imbibition, and 

analysing the headspace gas sample as previously detailed (Chen., et al., 2020b). A vial with 

GM only was used as control. Numbers of pollen grains per µL were assessed by microscopy. 

 

 
2.4 RNA extraction and RT-qPCR 

Pollen grains (20 mg) were suspended 0.5 mL of liquid GM. After 4 h of germination at 25°C 

in the dark, PTs were centrifuged at 16,000 g for 5 min. The supernatant was removed and the 

pellet was frozen into liquid nitrogen and stored at -80°C. Samples were ground with a ball 

grinder using Tissue Lyser II (Qiagen, France) for 1 min. The pollen powder (20 mg) was used 

to extract total RNA using the ReliaPrep™ RNA Tissue Miniprep System kit (Promega, France) 

and treated with DNase I (Invitrogen, France). RT-qPCR analyses were performed as described 

(Chen et al., 2020a). Primers are listed in Table S1. ETR6 transcripts were always below 

detection threshold. Thus, ETR6 was not used in correlation analysis between RNA-seq reads 

and RT-qPCR results. 

 

 
2.5 RNA-seq analyses 

For each line (WT, WTB, etr3-ko and NR), four biological replicates were prepared, and RNA 

quality was checked on Agilent 2100 Bioanalyzer System, using the RNA 6000 Nano kit 

protocol (Agilent Technologies, Germany). RNA samples with RNA Integrity Number (RIN) 
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values greater than 7.5 were sent to the GENEWIZ company (Germany) for sequencing 

(standard service, 2x150bp, HiSeq Illumina Platform). Raw sequenced reads were treated using 

the pipeline described in Figure S10, implemented inside a data-driven computational pipeline 

called NextFlow (Tommaso et al., 2017): raw sequenced reads in Fastq format were cleaned 

after quality check using fastQC version 0.11.05 (Andrews, 2010). To use only high-quality 

sequences, reads were cleaned by removing all left sequencing adaptors and by trimming low 

quality bases. This step was made using Trim Galore 0.6 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), a wrapping tool based on 

Cutadapt (Martin, 2011). Cleaned sequences were mapped to a new and improved reference 

tomato genome produced and assembled by the GBF lab with the annotation Slmic1.1 

(http://tomatogenome.gbfwebtools.fr/) using STAR 2.5.1b, a spliced-aware mapper (Dobin et 

al., 2013). The mapping parameters took into account each library size when paired-end 

sequencing was performed. Finally, featureCounts 1.6.0 (Liao et al., 2014) was used to 

calculate read counts for each gene from the mapping file. The homologies between Slmic 1.1 

(Sly nomenclature) and ITAG 2.4  (Solyc) annotation 

(https://solgenomics.net/organism/Solanum_lycopersicum/) is  available at 

http://tomatogenome.gbfwebtools.fr/correspondence, and in Table S3A. The homologies 

between Slmic 1.1 and ITAG 4.1 are available in Table S3B, and all RNA sequences are 

available from the European Nucleotide Archive, accession number E-MTAB-9660. 

 

 
2.6 Differential expression and downstream analyses 

Without a priori knowledge of gene expression variances, we optimized our experimental 

design with four biological replicates for each condition of interest (Lamarre et al., 2018). 

Differential expression (DE) analysis was performed with R software using DESeq2 package 

with default Relative Log Expression (RLE) normalization method, encompassing biases 

caused by library size and relative size of transcriptomes (Love et al., 2014; Maza et al., 2013; 

Maza, 2016). False discovery rate was limited by using a threshold for adjusted p-values equal 

to 0.05 (Benjamini and Hochberg, 1995). To visualize distances between samples, a PCA of 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://tomatogenome.gbfwebtools.fr/
https://solgenomics.net/organism/Solanum_lycopersicum/
http://tomatogenome.gbfwebtools.fr/correspondence
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normalized expressions was performed with plotPCA function (DESeq2 package), to check the 

homogeneity of the biological replicates and relative distances between conditions. The RLE 

normalization method used in DESeq2 for the DE analysis, considering that transcripts have the 

same length in all conditions, do not normalize counts by transcript length. Thus, normalized 

counts generated by DESeq2 need to be normalized by transcript length to allow comparison 

between transcript levels within a condition. Then, DESeq2 normalized samples were multiplied 

by 100 (rough magnitude of read lengths, in bp) and divided by the transcript length (in bp). 

Finally, the mean of the biological replicates for a given condition was calculated. This mean 

relates to the number of transcripts produced in this condition (Zouine et al., 2017). Venn 

diagrams were generated with JVENN software 

(http://jvenn.toulouse.inra.fr/app/example.html). The RNA-seq results are available in Table S3. 

 

 

The MAPMAN annotation (https://mapman.gabipd.org/mapman) and the ProtAnnDB 

(http://www.polebio.lrsv.ups-tlse.fr/ProtAnnDB/) tools were used to identify functional 

categories of genes and to determine genes that could be related to calcium signaling and cell 

wall modification. TAIR 11 annotation was selected to search for homologous genes in 

Arabidopsis by using BLAST+ tool, version 2.9.0. The calcium signaling-related genes are 

listed in Table S5. The proteins predicted to be secreted and having no more than one 

transmembrane domain and no intracellular retention signal have been selected as cell-wall 

related proteins (Table S4). They have been named following the nomenclature of WallProtDB, 

a database dedicated to cell wall proteins identified in cell wall proteomes (San Clemente and 

Jamet, 2015) and the CAZy database (http://www.cazy.org/). 

 

 

 

2.7 Pectin immunolabeling and PME activity measurement 

The immunolabeling was performed as described (Hocq et al., 2020). Briefly, after 4 h of 

growth in liquid GM, PTs were treated with a fixation medium: 100 mM PIPES, 4 mM MgSO4, 

7 H2O, 4 mM EGTA, 10% (w/v) sucrose, and 5% of paraformaldehyde pH 7.5 and stored at 

4°C until use. The fixed PTs were centrifuged at 4,000 g for 7 min and washed 3 times with 

http://jvenn.toulouse.inra.fr/app/example.html
https://mapman.gabipd.org/mapman
http://www.polebio.lrsv.ups-tlse.fr/ProtAnnDB/)
http://www.polebio.lrsv.ups-tlse.fr/ProtAnnDB/)
http://www.cazy.org/
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250 µL PBS, pH 7.4, incubated in a blocking solution (PBS containing 3% fat-free milk) for 30 

min at room temperature. After three washes, PTs were incubated overnight with the primary 

antibody, LM19 or LM20, for weakly or highly methylesterified HGs, respectively 

(PlantProbes, http://www.plantprobes.net/) (Verhertbruggen et al., 2009) at 1:5 dilution in PBS 

at 4°C in the dark. After washing the pellet 3 times, it was incubated for 3 h at 30°C in the dark 

with the secondary Alexa488 anti-rat antibody at 1:50 dilution in PBS, followed by 3 washes 

with PBS. Controls were incubated with the secondary antibody only. Images were acquired 

with a Leica DMI6000 B inverted microscope equipped with DFC 450C camera and LAS V3.8 

software. Alexa488 was detected with a filter cube L5, λ excitation at 460-500 nm and λ 

emission at 510–540 nm. All the samples were observed at the same exposure time. 

 

 

For PME assays, the protein extraction from PT was carried out with 2M NaCl buffer according 

to Baldwin et al. (2014). After desalting, protein concentration was measured with the Bradford 

assay (Bio-Rad, France). The total PME activity was assayed according to Baldwin et al. (2014) 

by quantifying the amount of methanol released from citrus pectin with a degree of 

methylesterification > 85% (Sigma-Aldrich, France). The mean ± SD of PME activity is from 

3 biological replicates. 

 

 
2.8 Intracellular calcium detection and imaging 

Intracellular Ca2+ was detected using Fluo-4 AcetoxyMethyl ester (Fluo-4/AM, Invitrogen, 

USA) as described (Qu et al., 2016) with the following adjustments. Stock aliquots of fluo- 

4/AM were made of 50 μg fluo-4/AM dissolved in 91.2 μL anhydrous dimethyl sulfoxide 

solution, stored at -20°C. PTs were imbibed for 1 h in liquid GM at a concentration of 8 × 105 

cells·mL-1, treated with a final concentration of 1 μM fluo-4/AM, and incubated for 30 min at 

22° C in the dark. Images were acquired with CLSM confocal microscope Leica SP8, driven 

by LAS X software, with water immersion objective 25x/0.95. Fluo-4/AM was excited at 488 

nm and fluorescence was collected on photomultiplier between 500 and 690 nm. Images were 

acquired on one plan, every 2 s for a 30 min total duration. The maximum fluorescence intensity 

http://www.plantprobes.net/)
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observed over the time course, for one PT apex, was selected for quantification with ImageJ 

(Abràmoff et al., 2004), using the mean grey value, over a constant area, shown in figures with 

a yellow dashed line. The mean of maximum fluorescence of 10 individual PTs for each 

genotype was measured. 

2.9 ACCESSION NUMBERS 

All RNA-seq data were deposited in the European Nucleotide Archive under the accession 

number E-MTAB-9660. 
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3. Results 

3.1 Expression of ETRs in germinating pollen grains 

In WT PTs, we observed that ETR3, ETR4, and ETR5 were the ETR genes with the highest 

expression levels 4 h after pollen imbibition, without significant differences between them 

(Figure 1A). ETR1, 2 and 7 were expressed at significantly lower levels, and ETR6 transcripts 

were below the detection threshold. A preliminary experiment showed that 4 h after imbibition 

was the optimum time at which we were able to collect a sufficient amount of raw material and 

extract total RNA of good quality, with PTs being still in a linear phase of growth (Figure S2). 

In the following parts, we will focus on etr3, since we have LOF and GOF mutants for this 

gene, in the search for changes in gene expression between the two mutant types, to reveal the 

metabolisms driving PT growth under ETR control. Moreover, ETR3 has been shown to be 

involved in PT growth (Jegadeesan et al., 2018a). 
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Figure 1. Regulation of germinating pollen grains by ethylene. (A) Expression levels of ETR genes 

in germinating tomato pollen grains. Total RNA was extracted from WT PTs 4 h after pollen harvest 

and imbibition, n = 4 biological replicates, LOD stands for lower limit of detection, Relative expression 

was calculated with regard to ETR1. The sequences of the gene-specific primers used for PCR are listed 

in Table S1. (B) PT length in WT, WTB, NR and etr3-ko, 4 h after pollen grain imbibition; and effects 

of 100 ppm ethylene and 2 ppm 1-MCP treatments on PT length. n = 90 PTs. (C) Ethylene production 
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by germinating pollen grains, 4 h after pollen grain imbibition, n = 6 biological replicates. For all panels, 

error bars show SE, different small letters indicate a significant difference between means at P = 0.05 

(Tukey’s HSD for panels A and B, Dunn’s test for panel C). 

 

 

 

 
3.2 ETRs modulate pollen tube growth, but not ethylene production by pollen tubes 

To test whether ETRs modulate PT growth, we used two ETR3 mutants: the etr3-ko line, a LOF 

mutant, and the NR line, a GOF mutant of etr3, and their corresponding wild types, i.e. WT and 

WTB, respectively (see Experimental Procedures for details). After 4 h of imbibition, PT 

growth was increased in etr3-ko, whereas PT growth was reduced in NR (Figure 1B). We 

observed a weak ethylene production by PTs, but without any significant difference between 

the tomato lines (Figure 1C). A similar stimulation of PT growth was also observed in another 

LOF affecting ETR4, etr4-ko (Figure S2A detailing growth kinetics), and in addition, we 

observed that the PTs of the etr3-ko/etr4-ko double mutant were growing faster than those of 

WT, but not significantly faster than those of etr3-ko or etr4-ko single mutants (Figure S2B). 

 
3.3 Ethylene stimulates pollen tube growth, whereas 1-MCP inhibits it 

We decided to check the impact of adding an ETR effector, the ethylene itself, or adding an 

ETR inhibitor, 1-methylcyclopropene (1-MCP) in the headspace above germinating pollen  

grains. In etr3-ko, and in both WT lines, the ethylene treatment stimulates PT elongation (Figure 

1B). This was not the case in NR, which is ethylene-insensitive. On the contrary, the addition 

of 1-MCP limited PT growth in etr3-ko (Figure 1B), but no significant change was observed in 

both WT and NR lines. After showing that functional ETRs limit PT growth, an effect reversed 

by adding ethylene, we performed an RNA-seq experiment to look at changes in gene 

expression possibly driven by ETR signaling and impacting PT growth. 

 
 

3.4 Transcriptome profiling of etr3-ko and NR pollen tubes 

We compared the PT mRNAs of two etr3 mutant lines, etr3-ko (ETR3 LOF) and NR (ETR3 

GOF), and their respective WTs. Total RNA was extracted from PTs collected 4 h after pollen 
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grain imbibition. The overall quality of sequencing data was very good with a mean read quality 

of 35 (Illumina 1.9 encoding) (Figure S3A). A cleaning step was performed as 40.8% of the 

reads still had sequencing adaptors. After this step, more than 94% of the reads were mapped 

without ambiguity and less than 4 % were mapped at more than one location (Figure S3B). This 

showed a very good specificity of sequences confirmed by RNA-seq quantification. As shown 

in Figure S3C, more than 90% of sequenced reads were assigned to genes after the mapping 

process, making the analysis even more robust. 

 

 
A principal component analysis (PCA), carried out on normalized RNA-seq counts, showed 

that the four biological replicates were well-clustered in the four conditions WT, WTB, etr3- 

ko, and NR (Figure 2A). This showed that all samples were of good quality, and that the 

biological variability was smaller than differences between the four conditions of interest. 

Moreover, the PCA revealed that the horizontal axis (first axis of the PCA), carrying 42% of 

the variability, discriminated the NR mutant from the three other conditions, which meant that 

NR was the condition creating the biggest differences. On the second axis carrying 26% of the 

variability, this PCA also underlined that both WT lines were close to each other. It could also 

be seen that etr3-ko was closer to WTs than NR. 



46 
 

There were 2452 Differentially Expressed Genes (DEGs) in NR vs WTB and 551 DEGs in etr3- 

ko vs WT (Figure 2B): 1131 were up-regulated genes in NR vs WTB, and 253 in etr3-ko vs WT, 

whereas the numbers of down-regulated genes were 1321 and 298, respectively. To validate the 

quality of the RNA-seq data by RT-qPCR analyses, we chose 15 genes, encoding proteins 

possibly impacting PT growth, and ranging from low to high expression levels in the RNA-seq 

experiment (Table S2). The chosen genes were associated to functions about ethylene 

perception or synthesis, or related to cell wall metabolism or calcium signaling. The data were 

generated with the same RNA samples as for the RNA-seq analysis. The values obtained from 

the four biological replicates were averaged, thus the correlation calculation between RNA-seq 

and RT-qPCR values was performed over 60 data points. The results showed a Pearson 

correlation coefficient of 0.864, a P value of 6.7 10-19 and a power of 1 (Table S2). These were 

good indicators of transcriptomic data quality. Because previous studies showed that tomato 

ETRs expression is altered in ETR mutants (Tieman et al., 2000, Chen et al., 2019), we checked 

if this was the case for the seven ETRs in PTs. The expression level of three ETRs was altered 

in the mutants: ETR4 and ETR5 were up-regulated in NR, whereas ETR3 was down-regulated 

in etr3-ko (Figure 2C). These results were confirmed by RT-qPCR (Table S2). The expression 

of the other genes, tested in the qPCR check, did not reveal any trend or will be described below. 

 

The full list of DEGs, genes with a P < 0.05, is available in Table S3. In the following part of 

the study, we focused on cell wall modification and calcium signaling based on the observation 

of DEG families (Figure 2D). This revealed that cell wall-related genes were up-regulated in 

etr3-ko vs WT and down-regulated in NR vs WTB, whereas calcium signaling-related genes 

were strongly down-regulated in NR vs WTB. The key genes attracting our attention, with 

opposite differences between GOF and LOF mutants were: pectin methylesterases (PMEs) 

involved in cell wall remodeling, and calcium-dependent protein kinases (CPKs), calcium- 

pumps (ACAs), and calcium channels (CNGCs) for calcium signaling. They will be detailed 

below. 



47 
 

 
 

Figure 2. Transcriptome profiling of etr3-ko and NR PTs. (A) PCA of normalized samples. Axes 1 

and 2 represent 68% of data information. Colored dots underline the four conditions of interest and the 

four biological replicates analysed by RNAseq. See Figure S3 for additional RNAseq quality indicators. 

(B) Venn diagrams showing the numbers of differentially expressed genes (DEGs) in NR vs WTB and 

etr3-ko vs WT, up-regulated DEGs, and down-regulated DEGs, base means of normalized counts > 5, 

and adjusted P-value <0.05. (C) ETRs are differentially expressed in etr3-ko and NR. Bar plot 

representing log2(fold change) shows differences in expression level between (i) NR vs WTB, and (ii) 

etr3-ko vs WT, * shows significant changes at P < 0.05 using Tukey HSD. (D) Functional classification 

of DEGs. The down-regulated genes are in blue (log2 fold change < 0, P < 0.05), and the up-regulated 

genes in red (log2 fold change > 0, P < 0.05). Four biological replicates were analyzed. 
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3.5 Transcriptomic analysis of the cell wall-related genes in etr3-ko and NR pollen tubes 

In both comparisons (NR vs WTB and etr3-ko vs WT), around 10% of genes showing modified 

transcript levels encode proteins involved in cell wall protein or polysaccharide biosynthesis, 

in signaling at the plasma membrane interface or in cell wall metabolism, e.g. cell wall 

polysaccharides modifications (Table S4). Among these genes, there were 192 DEGs in NR vs 

WTB, and 59 in etr3-ko vs WT. The encoded cell wall-related proteins belong to five main 

functional classes: proteins acting on cell wall polysaccharides (29% in NR and in etr3-ko), 

proteases (11 vs 16%), proteins possibly related to lipid metabolism (9 vs 11%), proteins with 

interaction domains with cell wall polysaccharides or proteins (5 vs 10%) and proteins of yet 

unknown function (33% vs 20%). Only a few genes encoding oxido-reductases, mostly 

multicopper oxidases showed modified transcripts levels (Sedbrook et al., 2002). Among the 

proteins of yet unknown function, six DEGs in NR encoded proteins with six conserved 

cysteines exhibiting the same spacing as thionins (Silverstein et al., 2007). 

 

A main feature regarding the cell wall-related genes was that 17% and 28% of them encoded 

proteins possibly involved in the pectin metabolism in NR vs WTB and in etr3-ko vs WT, 

respectively (Figure 3 and Table S4). These proteins belong to several families: 

polygalacturonases (PGs), of the glycosyl hydrolase family 28 (GH28), pectin methylesterases 

(PMEs), of the carbohydrate esterase family 8 (CE8), pectate lyases (PLs) of the PL1 family, 

PME inhibitors (PMEIs), trichome birefringence-like (TBLs) protein family and Pro-rich, 

Arabinogalactan conserved Cysteines (PAC) proteins (Hocq et al., 2017; Stranne et al., 2018). 

The number of DEGs encoding PGs and PMEs was higher in NR vs WTB than in etr3-ko vs 

WT. In NR, four PG genes had increased transcript levels, whereas four had decreased levels. 

Regarding the PME genes, three genes among the most highly expressed had slightly increased 

transcript levels, whereas seven PME genes were down-regulated (Table S4). In etr3-ko, four 

PME genes had higher transcript levels than in WT, among which two of the most highly 

expressed (Table S4). The PL genes showed the same kind of regulation in NR and etr3, with 

decreased transcript levels for four genes in NR and two in etr3-ko, and increased transcript 
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levels for one gene in each case. In etr3-ko, two of the most highly expressed genes, 

Solyc01g068120 and Solyc06g084620, encode PMEs and showed increased transcript levels 

compared to WT. The transcript level of two PMEI genes was decreased in NR whereas the 

situation was more contrasted in etr3-ko with one gene having more transcripts and another one 

less. TBL genes also exhibited a complex situation with a reduced transcript levels for one gene 

in NR and an increased transcript levels for two genes in NR or of one gene in etr3-ko. This 

could be due to the fact that the encoded enzymes could have different types of substrates, either 

hemicelluloses or pectins. Finally, the transcript levels of two genes encoding PAC proteins 

showed opposite variations in NR, whereas one of them had less transcripts in etr3-ko. 

 

Altogether, a significant proportion of the cell wall-related DEGs encoded proteins (i) 

exhibiting enzymatic activities (PG, PME, PL, PAE, and possibly TBL) directed against pectin 

polymers such as homogalacturonans (HGs) or rhamnogalacturonan I (RG-I) (Hocq et al., 2017, 

Stranne et al., 2018), (ii) regulating the enzymatic activity of PME (PMEI) (Giovane et al., 

2004) or (iii) able to interact with RG-I (Hijazi et al., 2014). 

 

Moreover, we observed that exogenous ethylene application stimulated the expression of three 

genes encoding PMEs (Solyc01g057220, Solyc05g052120 and Solyc12g099410) previously 

identified in the RNA-seq data set, and the application of 1-MCP slightly lowered their 

expression (Figure S4A). This further indicates that the expression of these genes is modulated 

by ethylene signaling. 
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Figure 3. Changes in the level of transcript accumulation of genes possibly related to pectin 

modifications, in NR (upper part) and etr3-ko (lower part) compared to WTB and WT, 

respectively. These bar plots represent log2 (fold change) for the pectin-related DEGs (P <0.05). They 

are grouped in different families: PG (polygalacturonases), PME (pectin methylesterases), PAE (pectin 

acetylesterases), PL (pectate lyases), PMEI (PME inhibitors), TBL (trichome birefringence-like) and 

PAC (Proline-rich Arabinogalactan proteins conserved Cysteines). The pectin-related genes are listed 

in Table S4C. 
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3.6 Transcriptomic analyses of calcium signaling-related genes in NR and etr3-ko pollen 

tubes 

The expression of 47 Ca2+ signaling-related genes was significantly altered in NR and etr3-ko 

(Figure 4). There were 34 DEGs (26 down- and 8 up-regulated) in NR, and 13 DEGs (6 down- 

and 7 up-regulated) in etr3-ko PTs. According to homologies with TAIR 11 annotation (Table 

S5), they belong to classes of Ca2+ pumps, Ca2+ channels, and Ca2+ sensors such as calmodulin- 

binding proteins (CaMBPs), calmodulin-like proteins (CMLs) or Ca2+ effectors including Ca2+- 

dependent protein kinases (CPKs) and CBL-interacting protein kinases (CIPKs). The DEGs 

coding for some proteins of similar function, were up-regulated in NR and down-regulated in 

etr3-ko, or inversely. This could be related to inverse PT growth response in these mutants. 

Among these, CPKs were down-regulated in NR and up-regulated in etr3-ko. In contrast, CIPKs 

were down-regulated in NR, but not significantly affected in etr3-ko. Globally in NR, there were 

more down-regulated CML and CaM genes than in etr3-ko. Some of these down-regulated 

genes exhibited a high number of RNA copies, like Solyc06g068960, Solyc05g050750 and 

Solyc02g067220, when looking at the ‘base mean’ (Table S5), thus even DEGs with a small 

log2 fold change may have an impact on cell functions. 

 

Additional results showed that exogenous ethylene application stimulated the expression of 

three Ca2+ signaling-related genes previously identified in the RNA-seq data set 

(Solyc01g010020, and Solyc02g063340, encoding calmodulins, and Solyc03g123890 encoding 

a Ca2+-transporting ATPase 1), and that the application of 1-MCP inhibited their expression 

(Figure S4B). This further shows that expression of these calcium signaling-related genes is 

modulated by ethylene signaling. 
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Figure 4. Changes in the level of transcripts related to calcium signaling, in NR (upper part) and 

etr3-ko (lower part) compared to WTB and WT, respectively These bar plots represent log2 (fold 

change) for the calcium-related DEGs (P <0.05). The genes are grouped in families: CIPKs (CBL- 

interacting protein kinases), CPKs (calcium-dependent protein kinases), CaMBPs (calmodulin binding 

proteins), CaBPs (calcium-binding proteins), CMLs (calmodulin-like proteins). The calcium signaling- 

related genes are listed in Table S5. 



53 
 

3.7 Immuno-localization of homogalacturonans in etr3-ko and NR pollen tubes 

To check possible modifications of HGs in etr3-ko and NR PTs, we assessed the distribution of 

weakly and highly methylesterified HGs using LM19 and LM20, respectively. Labeling with 

LM20 revealed that the highly methylesterified HGs was, as expected, mainly located at the tip 

of the WT, WTB and etr3-ko PTs (Figure 5A). However, an unusual ring-like labeling pattern 

was observed along the NR PT cell wall (Figure 5A). Fluorescence intensity was measured in 

PT tips, using the same delimited area. The LM20 fluorescence intensity in etr3-ko PT apex 

slightly decreased compared to the WT, without being significant, while in NR PT tip, the 

intensity was significantly higher than in WTB and other lines (Figure 5B). Finally, the 

diameters of PTs grown in liquid and solid germination medium (GM) were measured in the 

tip region (Figure 5 C-D). No difference was observed in solid GM (Figure 5D), whereas in 

liquid GM, the diameters of etr3-ko PTs were smaller than in WT, while NR PT diameters were 

larger than in WTB (Figure 5 C-D). 

 

The immuno-localization with LM19 of epitopes associated with weakly methylesterified HGs 

gave no significant difference (Figure S5A and B): 50% and 57% of the PT tips of WT and 

WTB were labeled, respectively. In NR, 39% of the PT tips were labeled, vs 67% in etr3-ko. 

More LM19 labeling means an increase in cell wall stiffness (Parre and Geitmann, 2005), but 

no conclusion can be taken here. In addition to immuno-localization, the total PME activity was 

assayed on whole protein extracts of PTs, but no significant difference was observed, neither 

looking at activity per fresh mass (Figure S5C), nor looking at specific activity per µg proteins 

(Figure S5D). 
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Figure 5. Immunolocalization of highly methylesterified homogalacturonan (HG) epitopes. (A) 

Immunolabeling of PTs of WT, etr3-ko, WTB and NR using LM20. (B) Fluorescence intensity was 

measured at PT apex. n = 80 PTs for each line, error bars show SE, different letters show significant 

differences at P = 0.05 (Dunn’s test). The area delimited by a yellow dashed line (as shown on WTB) 

indicates the chosen zone for measuring the fluorescence mean intensity. (C) A representative picture 

of PTs cultured in the liquid germination medium for each line. (D) Measurement of PT length and 

diameter, in solid and liquid germination medium, 4 h after pollen grain imbibition, in the four tomato 

lines, n = 50 PTs for each line. Error bars show SE and different letters show significant differences at 

P = 0.05 (Tukey’s HSD). Scale bars = 50 µm in panels A and C. 

 

 
3.8 Calcium load in pollen tube tips is modulated by ETRs 

To verify the ethylene signaling ability to change Ca2+ ion dynamics in PT apex, PTs were 

loaded with fluo-4/AM to highlight Ca2+ gradient from the tip to the base (Figure 6). Calcium 
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loading was observed in WT, WTB, NR and etr3-ko PT tips (Figure 6: panels A-D) and the 

zone over which fluorescence intensity was quantified is delimited by a yellow dashed line (see 

Methods for timing details). The fluorescence intensity in the apex region was higher in etr3- 

ko compared with WT, while it was lower in NR compared with WTB (Figure 6E), indicating 

that ethylene signaling modulates the Ca2+ accumulation in the PT apex. This corroborates 

RNA-seq results, as ethylene signaling modulates the expression of several genes encoding 

pumps and channels involved in Ca2+ homeostasis, or sensors (CaMs, CMLs) and effectors 

(CDPKs, CIPKs) involved in Ca2+ decoding. In addition to microscopic imaging, we observed 

the effects of lanthanum, an inhibitor of calcium transport (Qu et al., 2016) on the PT growth 

of the different lines. Figure S6 shows that the application of ethylene increased Ca2+ 

accumulation in the WT PTs and that application of 1-MCP decreased it. We also observed that 

the growth of all PTs was stopped after 2 h of lanthanum (La3+) treatment, regardless of the 

tomato line and that the Ca2+ accumulation in PT decreased within 30 min following the La3+ 

treatment. 
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Figure 6. Effects of ETR mutations on the Ca2+ gradient in the apical regions of pollen tubes. (A, 

B, C, D) Representative images of Ca2+ gradient at maximal fluorescence over a 30 min growth period 

in WT, etr3-ko, WTB and NR respectively, scale bars = 10 µm. (E) Means of maximum fluorescence 

intensity measured in PT apex loaded with Fluo-4/AM over a 30 min growth period, n = 10 PTs, error 

bars are SE, different small letters show significant differences at P = 0.05 (Tukey’s HSD). The zone 

delimited by a yellow dashed line indicates the region where the maximum fluorescence intensity has 

been measured. (F) Model showing that ethylene signaling regulates PT elongation through cell wall 

reshuffling by affecting activities of pectin methylesterases (PME) and through modifications in calcium 

gradient by affecting calcium channels (CNGC), calcium pumps (ACA) and Ca2+ effectors (CPK). Only 

enzyme families showing strong regulation in ETR LOF or GOF mutants are represented. 
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4. Discussion 

4.1 Ethylene signaling modulates pollen tube growth 

A few previous studies have suggested a role for ethylene in PT growth (Holden et al., 2003; 

Jia et al., 2018), but the expression of ETRs in PTs has been rarely analysed. We observed that 

three genes, ETR3, ETR4 and ETR5, are expressed in tomato growing PTs, confirming recent 

observations showing expression of the same three ETRs in tomato flower tissues (Jegadeesan 

et al., 2018). 

Using various etr mutants, we observed that LOF etr3-ko and etr4-ko led to longer PTs, and 

GOF NR, led to shorter PTs. This latter result confirms recent observations of shorter PTs in 

the Arabidopsis etr1-1 GOF mutant (Jia et al., 2018). The ethylene being produced without 

significant difference between all lines, this suggests that PT growth depends on signaling 

arising from ETRs. Then, PT growth enhancement observed in WT and WTB after adding 

ethylene suggests that ethylene releases the blocking effect imposed by ETRs, while the 

dominant NR mutation imposes a strong inhibition that ethylene cannot release at the chosen 

dose. Additionally, our results showing a significant increase in PT length upon ethylene 

treatment of the etr3-ko line, suggest that, as expected, knocking-out one ETR renders PTs more 

sensitive to ethylene signaling. PT growth stimulation in LOF mutants was modulated with a 

low dose of 1-MCP, and a significant decrease in PT length was observed in etr3-ko, whereas 

no significant decrease in PT length was observed in WT and WTB. Here, we confirm results 

regarding the effects of 1-MCP on PT growth in P. inflata (Holden et al., 2003), but unlike 

Arabidopsis (Jia et al., 2018), tomato PT growth does not appear to be governed by ETR1 alone. 

Altogether, it seems that ethylene signaling partially governs PT elongation. Indeed, blocking 

ethylene action by 1-MCP led to minimal PT growth, whatever the ETR alteration. 

 

 

Before these experiments with LOF and GOF mutants, we ran preliminary trials with WT at 

various doses of ethylene and 1-MCP to determine optimal concentrations (Figure S7). The best 

stimulation of PT growth by ethylene was observed at 100 ppm, but adding ethylene up to 1000 

ppm led to a decreasing effect on PT growth, may be due to slight toxicity. For 1-MCP, the 
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dose chosen for all trials was 2 ppm, as the PT growth decrease seems to saturate beyond 4 ppm. 

It can be postulated that the remaining PT growth is independent of ethylene signaling. 

 

 
4-2-Transcriptome profiling of NR and etr3-ko PTs revealed that the GOF mutation has 

a stronger impact than the LOF mutation 

Then we detected gene expression changes in ETR3 mutants using a RNA-seq survey. We 

showed that the number of DEGs between NR and WTB was higher than between etr3-ko and 

WT. These observations are logical considering that in NR, the ethylene-insensitive ETR3, 

dominates the signaling of the surrounding ETRs and blocks ethylene signaling (Chen et al., 

2019), while the etr3-ko mutation impairs only one out of the three mostly expressed ETRs in 

PTs. 

 

 

In addition, the expression of ETR3 was repressed in etr3-ko, without any consequence as a 

functional ETR3 protein is not produced. This negative feedback on other ETRs is not similar 

to recent observations in etr7-ko fruit tissues in which the expression of ETR3, ETR4, ETR5 and 

ETR6 was increased at the inception of ripening (Chen et al., 2020a). Thus, it is possible that 

the regulation of ETR expression is tissue-dependent. It is also possible that ETR3 and ETR7 

do not exert similar feedback on ETR expression. In NR, the ETR4 and ETR5 transcripts are up-

regulated. The related proteins would increase the potential blockage of PT growth. 

 

 
4-3-Cell wall remodeling is a main output of ethylene signaling in pollen tubes: A focus 

on pectins 

The transcriptomics study revealed the importance of the changes observed in the expression 

levels of cell wall-related genes in both NR and etr3-ko PTs. The expression of genes encoding 

proteins involved in HG remodeling was the most impacted, as expected since HGs are 

abundant pectin components of PT cell walls (Dehors et al., 2019). Consequently, two kinds of 

enzymes could be modulated: HG-modifying enzymes demethylating or deacetylating HGs, 

such as PMEs and PAEs; or enzymes degrading HGs, thus producing oligogalacturonides, such 
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as PGs or PLs (Hocq et al., 2017). In NR PTs, seven PME-, four PG-, and four PL-encoding 

genes were down-regulated. This observation is consistent with PT length reduction. Indeed, 

PT elongation requires cell wall flexibility brought in part by the active remodeling of HGs at 

the PT tip, such as demethylation and reduction of HG chain length. When these modifications 

do not happen, the cell wall remains stiff, thus inhibiting PT elongation. Conversely, only a few 

genes encoding pectin-related genes were DEGs in etr3-ko PTs. Four PMEs were only slightly 

up-regulated, suggesting a little effect on HG methylesterification, but sufficient to explain the 

fastest growth compared to the other lines. Only one of these four PMEs was clearly down- 

regulated in NR, Solyc05g054360. Its level of expression went down from a log2 of 0.74 in 

etr3-ko to 0.1 in NR. Thus, the massive decrease in PME expression levels in NR was related to 

other genes. 

 

 

Besides, transcript levels of TBL-encoding genes were strongly modified in NR and in etr3-ko. 

The precise role of the Arabidopsis 46 TBLs is unknown. However, they were grouped in five 

clusters, and clusters IV and V are linked to O-acetylation of hemicelluloses, like xyloglucan, 

mannan and xylan, whereas the other clusters gather TBLs possibly involved in O-acetylation 

of pectins (Stranne et al., 2018). The two TBL genes up-regulated in NR are homologous to 

Arabidopsis TBLs of cluster IV and V (Solyc07g053330, 2-fold; Solyc10g009590, 52-fold), 

suggesting a re-organization of the cell wall to cope with changes occurring at the pectin level. 

The third TBL gene with modified level of transcripts is down-regulated (about 2-fold) and is 

homologous to Arabidopsis TBL genes of cluster II among which the TBL44/PMR5 gene was 

shown to play a role in pectin esterification (Vogel et al., 2004). The expression of the 

Solyc07g053330 gene, coding for a putative cell wall polysaccharide O-acetyltransferase, was 

lower in etr3-ko than in NR, also suggesting modifications of hemicelluloses. 

 

 

Since pectins are critical components for cell wall changes at the PT apex (Mollet et al, 2013), 

mainly by affecting cell wall rheological properties (Parre and Geitmann, 2005), and since 



60 
 

regulation of genes involved in HG remodeling was affected in NR and etr3-ko, our study 

focused on HG distribution in PT cell walls. In WT, the weakly methylesterified HGs are 

located in the PT shank where they can be cross-linked by Ca2+ ions, promoting cell wall 

stiffness and providing mechanical support for the tip-polarized elongation (Lehner et al., 2010; 

Chebli et al., 2012; Mollet et al., 2013; Dehors et al., 2019). In contrast, the highly 

methylesterified HGs are mainly located at the PT apical region providing sufficient flexibility 

required for the turgor-driven PT elongation (Parre & Geitmann, 2005; Vogler et al., 2013; 

Mollet et al., 2013) 

 

 

The surprising LM20 labeling has revealed rings of highly methylesterified HGs all along NR 

PTs. These observations could be related to the down-regulation of eight PMEs and associated 

to the pulsating-growth of PTs. As such, in Arabidopsis pme48 pollen grains, in which PME 

activity was reduced and the degree of methylesterification of HGs was higher than in WT, 

germination was delayed and PT length was reduced (Leroux., et al., 2015). On the other hand, 

in Solanum chacoense, exogenous application of PME to germinating pollen grains induced a 

reduction of PT growth, an increase of cell wall stiffness and a reduction of its visco-elasticity 

(Parre and Geitmann, 2005), suggesting that tight regulations of PME activity are required for 

proper cell wall remodeling and PT growth. The fact that no change in global PME activity was 

observed among the various lines is not surprising, as temporal and spatial changes revealed by 

the immuno-localization of methylesterified HG are more refined than the measurement of 

global activity after crushing whole PTs. 

 

 

The rate of PT elongation is determined by the equilibrium between turgor-pressure and cell 

wall ability to extend under this pressure (Kroeger et al., 2011). We observed that PTs exhibited 

larger diameters in NR than in WTB in liquid medium only. In contrast, in etr3-ko, the diameter 

of PTs in liquid medium was smaller than in WT. The down-regulation of PMEs in NR 

presumably did not allow the proper demethylesterification of HGs in the sub-apical dome of 
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the tip and consequently the normal Ca2+ bridging of deesterified HGs, thus decreasing the 

stiffness of the cell wall in the shank of PTs. This led to an increase of PT diameter under the 

internal turgor-pressure. This increase was also observed in liquid medium in pme48 (Leroux 

et al., 2015). These data demonstrate that solid medium can provide a mechanical support to 

PTs and that the stiffness of the medium can also differently modulate PT growth (Gossot and 

Geitmann, 2007; Reimann et al., 2020). 

 

 

Taken together, our results suggest that ethylene signaling can modify the cell wall structure of 

PTs by regulating the transcription of genes encoding enzymes involved in pectin and 

hemicellulose modifications. These changes, especially those observed in the degree of 

methylesterification of HGs, induce a reduction in the length of PTs and an increase in their 

diameters when ethylene perception is constitutive as in NR, and the reverse phenotype when 

one of the major ETRs present in PTs is inactive like in etr3-ko. 

 
4-5-Calcium signaling is a main target of ethylene signaling in pollen tubes 

Tip-focused Ca2+ gradients generated by interplay between Ca2+ pumps and channels are 

observed during PT elongation and correlated with pulses in growth rates (Pierson et al., 1996 

and for a recent review see Zheng et al., 2019). In our study, more than 30 genes coding for 

proteins involved in Ca2+ homeostasis and decoding were de-regulated in the two ETR mutants. 

Such a high DEG number indicates the tight link that exists between ethylene and Ca2+ signaling, 

and highlights the importance of the latter in modulating tomato PT elongation. More than 25 

of these DEGs were repressed in NR. 

 

 

Interestingly, a few DEGs were inversely de-regulated in NR and etr3-ko, in agreement with 

the observed opposite growth and tip-focused Ca2+ gradient phenotypes. This is the case for the 

calreticulin gene (Solyc01g100380), which expression is down-regulated in etr3-ko and up- 

regulated in NR. This protein was already shown to be important for Ca2+ homeostasis during 

PT growth in P. hybrida (Suwińska et al., 2017). Conversely, CPK17 (Solyc12g099790) is up- 
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regulated in etr3-ko and down-regulated in NR. CPK17 was shown to be preferentially expressed 

in Arabidopsis PTs and to have a redundant function with CPK34 during PT growth and tropism 

(Myers et al., 2009). The PTs of the double mutant cpk17/cpk34 display a slower growth and 

impaired tropism. The CPK17 ortholog being up-regulated in etr3-ko and down- regulated in 

NR could fit with longer PTs observed in etr3-ko and shorter PTs observed in NR. Genes 

encoding two other Ca2+ effectors, CPK20 (Solyc10g076900) and calcineurin B-like protein3 

(CBL3) (Solyc07g065820) are also up-regulated in etr3-ko PTs. These two Ca2+ effectors have 

been reported to be associated with PT growth by activating the slow anion channel SLAH3 at 

the PT tip (Gutermuth et al., 2013), whereas CBL3 activates CIPK12 to promote a fast PT 

growth (Steinhorst et al., 2015). The gene (Solyc10g086060) that showed the strongest amplitude 

between inhibition (in NR) and stimulation (in etr3-ko) is homologous to the Arabidopsis gene 

At5g03040. This gene encodes the Ca2+-calmodulin binding protein IQD2, of the large IQD 

family. These family members participate in microtubule organization during plant development 

and are modulated by auxin (Bürstenbinder et al., 2017). Here, it appears that removing the 

ETR3, in the LOF, leads to the up-regulation of IQD2 that could promote PT expansion by 

favoring the cytoskeleton organization required for a proper elongation of the cell. 

 

 

Regarding NR, there were only a few up-regulated genes: two encoding Ca2+-ATPases, 

calcium-transporting ATPase 4 (ECA4) (Solyc11g072880), ACA9 (Solyc03g123890) and one 

encoding CML7 (Solyc06g083000). Considering that PTs were shorter in NR than in etr3-ko, 

we can speculate that these ATPases and CML7 could contribute to dissipate the Ca2+ gradient 

by extruding the Ca2+ ions from the cytosol. Indeed, in NR, the Fluo-4 fluorescence is 

systematically lower than in WTB, indicating a lower Ca2+ concentration in PT tips. However, 

we cannot exclude a membrane permeability disturbance due to the mutation, which would 

affect the loading of the probe in PTs. 
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In NR, there were down-regulated genes encoding the CMLs 3, 13, 16, 27, 28 and 46 

(Solyc05g050750, Solyc11g072270, Solyc01g010020, Solyc06g068960, Solyc02g063340 and 

Solyc02g067220, respectively) and two genes encoding cyclic nucleotide-gated ion channels, 

CNGC8 and 16 (Solyc03g116850 and Solyc03g114110, respectively). CNGCs together with 

iGLUr channels are the main players in generating the Ca2+ influx in PTs (Michard., et al., 2017; 

Gu et al., 2017; Tunc-Ozdemir et al., 2013)(Michard., et al., 2017). CNGC8 was recently shown 

to be involved in PT growth by antagonizing CNGC18 (Pan et al., 2019). With respect to shorter 

PTs observed in NR, a reduced activity of these CNGC channels in conjunction with a supposed 

increased activity of Ca2+-ATPases could result in a disruption/mitigation of the tip- focused Ca2+ 

gradient as confirmed by the lower Fluo-4 fluorescence observed in PT tips. Concerning CMLs, 

little is known about their targets in plants but most of the genes cited above have been already 

shown to be up-regulated during pollen germination and/or PT growth (Wang et al., 2008). 

Moreover, it is not excluded that one of these down-regulated genes encode CMLs that could 

participate in either a positive or a negative regulation of one of the two identified Ca2+-ATPases 

as already shown (Astegno et al., 2017). In addition, several other genes belonging to the Ca2+ 

toolkit are also down-regulated including several genes encoding CIPKs or cation exchangers. 

These are known to be directly involved in the regulation of ions channels governing ion 

homeostasis during PT growth. The Arabidopsis gene homologous to the down- regulated 

annexin 5 gene (Solyc04g008270) was shown to be involved in pollen development and PT 

growth by promoting Ca2+-dependent membrane trafficking necessary for PT elongation (Zhu 

et al., 2014). The additional experiment, using La3+ to block calcium fluxes, proved that calcium 

is downstream of the ethylene signal, as no PT elongation was observed in any of the tomato 

lines in the presence of lanthanum, whatever the signals delivered by ETRs. 

 

 

Overall, the calcium signaling-related DEGs in the two ETR mutants similarly point out the 

crucial role of ethylene in controlling the tip-focused Ca2+ gradient required for PT growth. The 

fact that the application of lanthanum inhibits calcium transport in all lines, wild types and loss- 
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or gain-of-function ETR mutants, is a proof that calcium transport is downstream of the ethylene 

signaling. 

 

 

In summary (Figure 6F), our work suggests that ETR signaling blocks PT growth, in absence 

of a sufficient amount of ethylene. This blockade is notably mediated by cell wall modifying 

enzymes acting on the methylesterification status of HGs, and by an alteration of Ca2+ loading 

in PTs. Changes in ethylene signaling is also altering expression of other gene families, 

particularly related to hormone metabolism, that were not detailed in this study. Contributions 

of the ethylene precursor, 1-aminocyclopropane carboxylic acid, also has been suggested to 

play crucial roles in ovular PT attraction (Mou et al., 2020). Ethylene has long been known to 

be involved in many plant development processes, and its contribution to fruit set has been 

under scrutiny over the last decades (An et al., 2020). Here, we unravel part of its crucial role 

in PT growth. 

 

 

By altering ethylene perception, we show that ethylene signal acts on both cell wall- and 

calcium-related genes. Specific effects on HG methylesterification and calcium signaling were 

demonstrated. 
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1-aminocyclopropane-1-carboxylic acid (ACC) stimulates tomato 

pollen tube growth independently of ethylene receptors 

 

 
Abstract 

The plant hormone ethylene plays vital roles in plant development, including pollen tube (PT) growth. 

Many studies have used the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), as a 

tool to trigger ethylene signaling. Several studies have suggested that ACC can act as a signal molecule 

independently of ethylene, inducing responses that are distinct from those induced by ethylene. In this 

study, we confirmed that ethylene receptor function is essential for promoting PT growth in tomato, but 

interestingly, we discovered that ACC itself can act as a signal that also promotes PT growth. Exogenous 

ACC stimulated PT growth even when ethylene perception was inhibited either chemically by treating 

with 1-methylcyclopropene (1-MCP) or genetically by using the ethylene-insensitive Never Ripe (NR) 

mutant. Treatment with aminoethoxyvinylglycine (AVG), which reduces endogenous ACC levels, led 

to reduction of PT growth, even in the NR mutant. Furthermore, GUS activity driven by an EIN3 Binding 

Site promoter (EBS:GUS transgene) was triggered by ACC in the presence of 1-MCP. Taken together 

these results suggest that ACC signaling can bypass the ethylene receptor step to stimulate PT growth 

and EBS driven gene expression. 
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1. Introduction 

Enhancing crop yields to ensure global food security is becoming a pressing challenge, 

and in most crop species, flowers, fruit and seeds are key components for yield control 

(Dhankher and Foyer, 2018). As such, research efforts on plant reproduction are essential to 

increase fruit/seed yields. 

Ethylene is a phytohormone regulating reproduction and the development of fruits and 

seeds, among numerous other processes (An et al., 2020; Binder, 2020). The biosynthesis of 

ethylene starts from methionine and the immediate precursor of ethylene is 1- 

aminocyclopropane-1-carboxylic acid (ACC), generated by ACC synthase (ACS) from S- 

adenosyl methionine. Oxidation of ACC to ethylene is then catalyzed by ACC oxidase (ACO) 

(Polko and Kieber, 2019). Plant ethylene responses are typically observed upon treatment with 

exogenous ACC, but several studies have indicated that ACC can act as an ethylene- 

independent signal (Xu et al., 2008; Tsang et al., 2011; Yin et al., 2019; Vanderstraeten et al., 

2019; Mou et al., 2020).   Xu et al. (2008) suggested that ACC is involved in the regulation of 

a cell wall function in Arabidopsis roots even when ethylene perception is blocked by 1-MCP. 

Tsang et al. (2011) demonstrated that the isoxaben-induced inhibition of Arabidopsis primary 

root elongation depends on ACC biosynthesis, but does not depend on the perception of 

ethylene. An accumulation of recent studies has uncovered potential signalling roles of ACC in 

a number of other processes. Vanderstraeten et al. (2019) found that ACC can function as a 

negative regulator of Arabidopsis early vegetative development, i.e. reducing rosette 

development, hypocotyl elongation in darkness, and root growth, independently of ethylene 

signalling. In another study, it has also been shown that ACC itself positively regulates the 

symmetric division of guard mother cells into two guard cells (Yin et al, 2019). ACC signalling 

in Arabidopsis ovules was found to be involved in pollen tube (PT) attraction, by stimulating 

the secretion of the PT attractant LURE1.2 (Mou et al., 2020). Additionally, ethylene- 

independent ACC signalling has been demonstrated in the liverwort Marchantia polymorpha 

(Li et al., 2020). 

Sexual plant reproduction necessitates pollen germination, the elongation of PTs 

through the style to reach the ovule and the release of sperm cells into the ovular embryo sac 
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for fertilization, among other steps (An et al., 2020). There is evidence that ethylene plays a 

role in this complex process. For example, increased ethylene production was detected in the 

pistil after pollination in Petunia (Holden et al., 2003). This ethylene burst is correlated with 

the expression of ACS and ACO genes in the pistil (Llop-Tous et al., 2000). Another study 

showed that PT growth is stimulated by an ethylene-driven metabolism leading to higher levels 

of actin filaments (Jia et al. 2018), which are important for the polarized growth of PTs (Mollet 

et al., 2013). The role of ethylene perception on PT elongation was first observed using 1-MCP 

(Holden et al., 2003), and later in Arabidopsis etr1-1 ethylene-insensitive mutants (Jia et al., 

2018). 

In light of the emerging differences between ethylene- and ACC-induced responses, in 

this study we used various strategies to investigate the potential roles of ethylene versus ACC 

in tomato PT growth. 

2. Material and methods 

2.1 Plant material and growth conditions 

This study was carried out with four lines of Solanum lycopersicum, cv. MicroTom: 

wild type (WT), NR, EBS:GUS in WT and EBS:GUS in the NR mutant. NR is a dominant 

ethylene receptor mutant that displays ethylene insensitivity (Wilkinson et al., 1995). We 

obtained NR and its corresponding wild-type background from the L.E. Pereira Peres laboratory 

(Carvalho et al., 2011). The EBS:GUS plasmid was obtained from A. Stepanova laboratory 

(Stepanova et al., 2007) with EBS standing for EIN3 Binding Site. The EBS:GUS WT line was 

generated in our laboratory by transformation with Agrobacterium tumefaciens (Jones et al., 

2002). The EBS:GUS:NR line was generated by crossing the homozygous EBS:GUS:WT line 

with NR. Two homozygous lines were chosen. Both EBS:GUS:WT and EBS:GUS:NR plant 

transformation were selected with the antibiotic hygromycine B  (100 mg.l−1). Seeds were 

sterilized with 5% NaClO for 8 min, then washed 3 times with sterilized water, and were sown 

directly on soil and maintained in a culture room, with a 16h day: 8h night cycle, associated 

with temperature 22°C:18°C cycle, respectively, under 80% relative humidity and a day light 

intensity of 250 µmol·m-2·s-1. 
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2.2 Pollen grain germination in vitro assays 

Pollen grains were collected from ten anthers, from approximately five plants, at one 

and two days post-anthesis, in 1.5 ml centrifuge tubes, by using an electric toothbrush body 

(Oral-B, France). For imbibition, pollen grains were placed on the pollen germination medium 

(300 mM sucrose, 2 mM boric acid, 2 mM calcium nitrate, 2 mM magnesium sulfate and 1 mM 

potassium nitrate), as described previously (Firon et al., 2012). The pollen grains were 

incubated at 25°C, 80% relative humidity for various times, in the dark, in 2 ml vials with 

septum and screwed caps (Interchim, France). For the ACC and AVG treatments, solutions 

were added in the germination medium at 10 μM final concentration, unless otherwise stated. 

For the ethylene and 1-MCP treatments, these gases were injected at 100 ppm and 2 ppm final 

concentration, respectively, based on previously-described dose effects (Althiab-Almasaud et 

al., 2021). 1-MCP, which inhibits ethylene perception (Binder, 2020), was obtained from 

AgroFresh (Fran Nguyen-Kimce) and prepared according their recommendations. All other 

chemicals were from Sigma-Aldrich (France). 

The germination medium was transferred onto a glass slide prior to microscopic 

observations. The images were acquired using an inverted microscope (Leitz DMIRB, Leica 

Microsystems, Germany) equipped with a camera CMOS 10Mpixels (LEÏCA MC 190HD). The 

objective in place was an NPlan 10x:0.22NA. The length of pollen tubes was measured using 

ImageJ software (Abràmoff et al., 2004). 

 

 
2.3 ACC content 

For pollen tube free ACC content, we optimized the protocol of Bulens et al., (2011) 

with the following modifications. Two mg of crushed frozen pollen tube were placed in 1.5 ml 

centrifuge tubes, 1 mL of 5% sulfosalicylic acid solution was added to the frozen sample, and 

incubated and centrifuged as described. The supernatant was collected in a 5 ml glass vial. The 

ethylene was measured using a gas chromatograph and the following conditions: 2 m x 3 mm 

80/100 alumina column, injector at 110°C, N2 as carrier gas at 30 ml/min in an isocratic oven 

temperature at 70°C, and FID detector at 250°C. 
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2.4 GUS activity assay and GUS staining 

GUS activity was assayed according to Melo et al., (2016) with the following 

modifications. For each sample, two mg of crushed frozen pollen tubes were homogenized with 

300µL mL extraction buffer composed of 50 mM Hepes-KOH (pH 7.0), 5 mM DTT and 0.5% 

PVP (w/v), then the samples were incubated at 4°C for 30 min with gentle shaking and spun at 

16,000 g for 10 minutes at 4°C. Supernatants (100µl) were mixed with 100 µl of GUS extraction 

buffer containing 2 mM 4-methylumbelliferyl-b-D-glucuronide (MUG) and incubated at 37°C 

for 30 min. Then 30 µl of this reaction were mixed with 270 μl of stop reagent 0.2 M Na2CO3 

(pH 9.5). 

Pollen tubes of EBS:GUS transgenic plants were vacuum infiltrated for 5 min in GUS 

staining buffer (100 mM sodium phosphate buffer, pH 7.0, 10 mM EDTA, 0.1 % Triton X-100, 

and 1 mg/mL X-Gluc) and then incubated for 24 h at 37 °C. After staining, the pollen tubes 

were washed in distilled water. GUS-positive samples were examined with an inverted 

microscope (Leitz DMIRB, Leica Microsystems, Germany) equipped with a camera CMOS 10 

Mpixels (LEÏCA MC 190HD). The objective was an NPlan 10x:0.22NA. 

 

 
2.5 Statistical treatments 

All data were processed with the R package (R Core Team, 2021), using ANOVAs and 

Tukey multiple comparison tests. 
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3. Results 

3.1 Ethylene perception stimulates pollen tube growth 

The impact of ethylene perception on pollen tube elongation in tomato was studied in 

the WT and ethylene-insensitive NR mutant, 4h after imbibition. We used exogenous ethylene 

and 1-MCP treatment as effector or inhibitor of ethylene receptors, respectively. We found that 

in WT, exogenous ethylene stimulates PT growth, and by contrast, 1-MCP inhibits it (Figure 

1A), consistent with the results obtained by Holden et al. (2003) in Petunia inflata. Ethylene- 

stimulated growth was prevented by 1-MCP+ethylene treatment, in which ethylene was applied 

30 min after adding 1-MCP, showing that the simulation of PT growth by ethylene goes through 

ethylene receptors as expected. This also demonstrated that even a small dose of 1-MCP is able 

to counteract the effect of large concentrations of ethylene. In contrast, NR pollen tube growth 

was not affected by the treatments (Figure 1B), consistent with NR being disrupted in ethylene 

perception (Wilkinson et al. 1995). 

 

 

 
 

 
Figure 1. The effect of exogenous ethylene (ET) (100 ppm), 1-MCP (2 ppm), on PT growth in A) WT 

and B) NR, n=50 individual PTs, 4h after imbibition. In both panels, horizontal dashed lines show 

medians, and black dots show outliers, and different small letters show significant differences at the 0.05 

level (Tukey’s HSD). 
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3.2 ACC stimulates PT growth, even when ethylene perception is blocked 

We next investigated the effect of ACC on PT growth by first performing dose-response 

experiments. We found that ACC stimulates WT PT growth with an optimal dose of 100 µM 

(Figure 2A). This biphasic response caused by ACC has already been observed in Marchantia 

with growth stimulation at 1 µM and growth inhibition at 100 µM (Li et al., 2020). Although 

this treatment likely causes PT growth due to the conversion of ACC to ethylene, we discovered 

that ACC can also stimulate PT growth (albeit to a lesser extent) in the NR mutant (Figure 2B). 

This result was unexpected given that NR cannot perceive ethylene, and it suggested that 

exogenous ACC can stimulate PT growth independently of ethylene perception. 

We then investigated whether endogenous ACC plays a similar role as treatment with 

exogenous ACC. We began by first measuring the free (non-conjugated) ACC content in PTs 

(Figure 2C). We did not assay conjugated ACC content, as this has not been shown to play a 

signaling role in plants. In WT PTs, the endogenous content of free ACC was found to decrease 

over the imbibition time to 50 nmoles.g-1 (Figure 2C). This corresponds roughly to 50 µM, 

which fits with a previous determination of ACC in plant tissues (Bulens et al., 2011). Next, we 

hypothesized that if endogenous ACC induces PT growth, then AVG, an inhibitor of ACC 
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Figure 2. Effects of different concentrations of ACC (A, B) and AVG (D, E) on PT length in WT and 

NR, respectively, 4h after imbibition, n = 50 individual PTs. C) Free ACC content of pollen grains and 

PTs. In all panels, horizontal dashed lines show medians, and black dots show outliers, different small 

letters show significant differences at the 0.05 level (Tukey’s HSD). 

 

 
synthase, should exhibit reduced PT growth. By performing an AVG dose response in 

both WT and NR, we found that PT growth linearly decreased with increasing AVG doses up 

to 10µM (Figures 2D and 2E). We next confirmed that the effect of AVG (10 µM) was based 

on ACC content, rather than, say, a toxic effect; by adding ACC 30 min after the imbibition 

start in the presence of AVG, we found that ACC restored PT growth in the presence of AVG 
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in both the WT and NR (Figures 3A and 3B). Moreover, by measuring the free ACC content in 

PTs of both lines, we confirmed that free ACC is indeed reduced by AVG (Figure 3C). Taken 

together, these results indicated that the stimulation of PT growth by endogenous ACC is 

partially independent of ethylene perception. 

Finally, to confirm that ACC action on PT growth is partially independent of ethylene 

perception, we treated PTs with exogenous ACC 30 min after imbibition in the presence of 1- 

MCP, which blocks ethylene perception. We found that we still observed the stimulating effect 

of ACC on PT growth in the WT and NR (Figure 3D). In this case, the relatively shorter PT 

lengths of all the samples were due to the inhibition of ethylene perception, because1-MCP did 

not affect the free ACC content (Figure 3E) and likely did not affect ethylene biosynthesis from 

ACC. These results confirmed that ACC stimulation of PT growth is partially independent of 

ethylene perception. 
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Figure 3. The effect of exogenous ACC (10µM) or AVG (10µM) on PT growth in A) WT and B) NR, 

n = 150 individual PTs. C) Free ACC content in WT and NR PTs with or without AVG, n = 12 biological 

replicates of 0.5 mg of pollen grains each. D) Effects of ACC on PT growth in presence of 1-MCP, n = 

50 individual PTs. E) Effect of 1-MCP (2ppm) on ACC content in PTs, n = 3 biological replicates of 

0.5 mg pollen grains each. All panel measurements were performed 4h after imbibition, horizontal 

dashed lines show medians, and black dots show outliers, different small letters show significant 

differences at the 0.05 level (Tukey’s HSD). 
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3.3 ACC stimulates GUS driven by EBS, independently of ethylene perception. 

Given that ethylene and ACC each stimulate PT growth, we asked if ACC is able to 

trigger a downstream step of the ethylene signaling pathway, i.e., EIN3-LIKE (EIL)-dependent 

transcription. EILs are primary transcription factors of the ethylene signal cascade (Liu et al., 

2015). We observed the effects of various treatments on EBS:GUS activity in pools of pollen 

grains, germinating grains and PTs. This GUS construct was shown to work in tomato fruit 

tissues (Bianchetti et al., 2017), but had not been tested in pollen cells. Firstly, we observed a 

degree of GUS activity and staining in the control WT (Figure 4), probably due to endogenous 

levels of ethylene (Althiab-Almasaud et al., 2021) or to free ACC (Figure 2C). Treatments with 

exogenous ACC and ethylene were able to stimulate the GUS activity, whereas 1-MCP 

repressed this activity (Figure 4A and 4B). Moreover, 30 min after applying 1-MCP, the ACC 

treatment was able to stimulate GUS activity and staining, despite ethylene perception being 

blocked (Figure 4A and 4B). Finally, 30 min after applying 1-MCP, the ethylene treatment was 

not able to stimulate GUS activity. These results suggest that ACC is able to activate EIL- 

dependent transcription, independently of the ethylene receptor step. To further confirm this, 

we conducted experiments in the NR mutant background, into which we crossed the 

EBS:35S:GUS transgene, and observed that ACC was able to stimulate GUS activity as in the 

WT, without or with 1-MCP application (Figure S1). The GUS activity profiles were similar 

between WT and NR lines (Figure 4B and Figure S1B). This should drive further research to 

better understand EBS activation in tomato pollen cells. 
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Figure 4. (A) Images of WT tomato pollen grains and tubes expressing the EBS:GUS reporter after 

various treatments. Scale bar = 30 µm. (B) GUS activity assayed 4h after imbibition in WT PTs. n = 3 

biological replicates of 0.5 mg pollen grains each, horizontal dashed lines show medians, different small 

letters show significant differences at the 0.05 level (Fisher’s LSD). (C) Proposed model showing ACC 

signaling bypassing ethylene perception to stimulate PT growth. 

4. 
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4. Discussion 

Our results confirmed previous studies showing the essential role of ethylene in PT 

growth (Holden et al., 2003; Jia et al., 2018). However, we discovered that the ethylene 

precursor ACC can promote PT growth independently of ethylene perception, adding to the 

growing evidence that ACC itself can act as a signal. Indeed, when the ethylene receptors were 

either blocked by 1-MCP or genetically inhibited in the NR mutant, the addition of exogenous 

ACC was able to stimulate PT growth. It is possible that NR only partially blocks block ethylene 

perception as stated in Negi et al. (2010).  Furthermore, the use of AVG to inhibit ACC synthesis 

in the NR mutant demonstrated that endogenous ACC plays a role in promoting PT growth 

independently of ethylene perception. In future experiments to further prove ACC roles 

independent of ethylene action, pyrazinamide, which blocks ACC oxidase (Sun et al., 2017), 

could be tested. 

Ethylene-independent signaling by ACC has already been recently described in various 

plant organs (Polko and Kieber, 2019; Vanderstraeten et al. 2019; Mou et al. 2020; Li et al., 

2020). In contrast to previous findings, where ACC and ethylene induced distinct responses, we 

found that ACC and ethylene both promote tomato PT growth. Jia et al. (2018) also showed 

that exogenous ACC was able to promote Arabidopsis PT growth; they observed a reduced PT 

growth in the etr1-1 mutant, a gain-of-function ethylene-insensitive mutant similar to NR, but 

they did not observe any stimulation effect by ACC in this mutant. Additionally, they neither 

tested the effect of ACC in the presence of 1-MCP or other ethylene perception inhibitors, nor 

measured free ACC content. 

In our experiments, we found that there was less free ACC in the NR mutant. Thus the 

slower PT growth in this mutant compared to WT could be due to a combined effect of impaired 

ethylene perception and lower free ACC levels. 

By testing the downstream activation of the EBS:GUS reporter in various conditions 

impacting the ethylene perception step, we observed results suggesting that ACC can modulate 

reactions downstream of the ethylene receptor steps. The ACC targets could be signaling steps 

related to CTR1, EIN2 or EIN3/EILs, which all function upstream of EBS, as outlined in a 
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tentative model (Figure 4C). Previous results by Vanderstraeten et al. (2019) suggest that ACC 

signaling by-passes the ethylene receptor step and branches to EIN2. Indeed, Vanderstraeten et 

al. (2019) showed that exogenous ACC reduces Arabidopsis rosette area in Col-0, even when 

1-MCP was applied, but the ein2-1 ethylene-insensitive mutant was less responsive to the ACC 

effect. In contrast, Mou et al. (2020) showed that ACC action bypasses the ein2-5 null mutant 

in ovules. Additionally, Mou et al. (2020) found that ACC can stimulate an intracellular Ca2+ 

increase in Arabidopsis ovules, and Ca2+ is known to enhance PT elongation (Michard et al., 

2017). Whether or how Ca2+ connects with EBS remains an open question, and checking Ca2+ 

signaling after adding ACC and 1-MCP would be an interesting perspective for a further study. 

In conclusion, we observed that both ethylene perception and ACC itself can stimulate 

tomato PT growth. These findings, particularly the newly uncovered role of ACC that is 

independent of ethylene perception, open new research perspectives, such as identifying the 

direct targets of ACC signalling upstream of the EIN3/EIL binding site and elucidating the 

underlying signalling mechanisms. 
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General Conclusion and Perspectives 

With my doctorate work, I contributed to better characterize the involvement of ethylene 

and ACC signaling in the pollen tube germination and growth. 

A large set of data supports the hypothesis that ethylene plays active roles in reproductive 

sexual organs formation and development which is critical to the successful initiation of the fruit 

set process (Vriezen et al., 2008; Pascual et al., 2009; Carbonell-Bejerano et al., 2011). I wrote 

a bibliographic review showing that ethylene is involved in the pollen germination once the 

pollen is released from anther and lands on the stigma, and the ethylene also regulates the pollen 

tube growth in the style by the transmission tissues degradation to facilitate pollen tube 

elongation, and finally the fertilization of the ovule (An et al., 2020). 

In this study, I focused on the effect of ETR signaling on tomato PT growth. The data set 

of my main article (published in Plant Journal) showed that PT elongation was repressed in 

absence of a sufficient amount of ethylene. This repression related to the modification in the 

expression of cell wall and calcium related genes. Moreover, the ethylene perception mutants 

display specific effects on cell wall modifying enzymes acting on the methylesterification status 

of HGs, and effects on Ca2+ gradient alteration.  

In the third chapter, I showed that ACC itself can stimulate tomato PT growth 

independently of ethylene signaling, as this ethylene precursor stimulated PT growth even when 

ethylene perception was blocked by NR mutant or 1-MCP. Furthermore, in the presence of 1-

MCP, GUS activity driven by an EIN3 Binding Site promoter (EBS:GUS transgene) was 

stimulated by exogenous ACC treatment. These results suggest that ACC stimulates PT growth, 

independently of ethylene perception. 

Further works could be performed to understand why the profile of HG 

methylesterification presents a ladder pattern in the NR ethylene insensitive mutant. Moreover, 

it would be interesting to check whether there is a correlation between the PMEs structure 

(presence of an PMEI domain (PME type I / group2) or absence (PME type 2 / group 1)) and the 
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regulation of these gene expression during pollen tube growth. 

Analyses of ETRs expression patterns showed that ethylene receptor genes are 

differentially expressed in various tissues and organs (Chen et al., 2020a). Therefore, the 

ethylene receptor genes could show different responses to PTs growth. We generated series of 

ETR LOF mutants by using CRISPER CAS9 technology: etr4-ko, etr5-ko and etr7-ko as single 

mutants, and etr1_2-ko, etr3_4-ko and etr5_7-ko as double mutants. These mutants could be 

used to understand how the different ethylene receptor regulate the PTs growth.  

Recently, it was found that ethylene plays a role in tomato pollen thermotolerance. They 

demonstrated that ethylene treatment, prior to heat-stress exposure, increased pollen quality 

(Jegadeesan et al., 2018). During my study, we aimed to investigate the role of ethylene receptors 

in pollen thermotolerance. Preliminary experiments showed that pollen tube growth was sill 

enhanced in etr3-ko at 34°C, when control PT growth wazs reduced compared to ambient 

temperature. We aimed also to check, pollen germination in vivo, the rate of burst, the callose 

plug formation in pollen tube, sperm cells division, and RNAseq analysis in NR and etr3-ko 

under heat stress. This study was blocked because of the Covid lockdown. 

Our study was performed in vitro, studying the effect of ETRs on PTs growth in vivo 

would be helpful to extend our knowledge into the plant reproduction. I generated an ETR4-

VENUS mutant, and preliminary fluorescence experiment showed strong fluorescence in the 

stigmatic papilla of pistil one day before anthesis (A-1) for ETR4-VENUS lines, suggesting that 

ETR4 play critical role for pollen germination in the stigma and may be PT elongation in the 

style.  

Finally, further works could be performed to check what transcription factors activate the 

EBS:GUS expression, and to identify the direct targets of ACC signaling. 

Moreover, studying whether ACC affect cell wall-modifying enzymes and calcium 

gradient in PTs, independently of ethylene perception in Arabidopsis by using 1-MCP or etr1-1 

for ethylene perception disruption, and acs octuple mutants in which ACC production is reduced.  
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Annex I 
 

 

 

 

 

 

 

 

 

 

 

 
Figure S1. Flower morphology of Solanum lycopersicum (cv. MicroTom). The pictures show male and female 

reproductive parts of the tomato flower (stamen and pistil). Pictures were acquired with a ZEISS Axio ZoomV16 

Microscope. 

https://www.zeiss.com/microscopy/int/products/stereo-zoom-microscopes/axio-zoom-v16-for-materials.html
https://www.zeiss.com/microscopy/int/products/stereo-zoom-microscopes/axio-zoom-v16-for-materials.html
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Figure S2. Tomato pollen tube (PT) growth as a function of time after imbibition. A) Five tomato line PTs were 

tested: WT, etr3-ko, etr4-ko, WTB, and NR grown on solid germination medium. n = 100 PTs. Error bars show SE and 

different letters indicate significant differences at P < 0.05 level (Tukey’s HSD). B) Similar results of a different 

experiment, 4h after pollen grain imbibition, showing preliminary results with the etr3,4-ko double mutant. n = 50 PTs. 

Error bars show SE and different letters indicate significant differences at P < 0.05 level (Tukey’s HSD). 
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Figure S3. Quality indicators of RNAseq experiment. A. FastQC result describing quality scores across all bases 

along with the 150 bp long reads (Illumina 1.9 encoding). B. Percentage of reads mapped without any ambiguity. C. 

Percentage of the sequenced reads assigned to genes after the mapping process. In panels B and C, the four biological 

replicates are labeled a, b, c, and d. ETR3 stands for etr3-ko. 
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Figure S4. Expression levels of A) PME genes, and B) calcium related genes in germinating tomato pollen grains. ET 

stands for ethylene and 1-MCP for 1-methylcyclopropene, applied on WT pollen grains at 100 and 2 ppm, respectively, 

for 4 h over the imbibition and germination processes. n = 4 biological replicates, error bars show SE, different letters 

show significant differences at 0.05 level (Fisher’s LSD). Relative expression was calculated with regard to each 

“Control”, set as 1. 
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Figure S5. Immunolabeling of weakly methylesterified HG epitopes probed with LM19, and PME acitivity. A. 

Immunolabeling of wild-type PTs grown in liquid germination medium showing two cases: unlabeled PT tip (1-2) and 

labeled PT tip (3-4); 1 and 3: LM19 labeling; 2 and 4: bright field. B. Distribution of the two types of labeling: labeled 

and unlabeled PT tips, in the different tomato lines; n = 50 PTs were measured in each tomato line. Chi-square of 

independence between tomato lines and % labeled tips, P = 0.072. C. PME activity per PT fresh weight and D. Specific 

PME activity per µg protein; n = 3 biological replicates of 50 PTs, error bars show SE, absence of difference tested by 

Tukey’s HSD at P = 0.05. 
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Figure S6. Ca2+ gradients in apical regions of pollen tubes. A, B, C, D are representative images of Ca2+ gradient 30 

min after adding lanthanum (La3+) in four tomato lines WT, etr3-ko, WTB and NR respectively, scale bars = 10 µm. 

Images of the controls without La3+ are shown in Figure 6. E) Tomato pollen tube (PT) growth on solid medium over 

time after imbibition and after La3+ application, same lines as above, n = 50 PTs. Error bars show SE and different letters 

indicate significant differences at P < 0.05 level (Tukey’s HSD). La3+ was applied at 50 µM, two hours after imbibition 

of pollen grains, after the readings at “2h”. F) Effect of 1-MCP (2 ppm) and exogenous ethylene ET (100 ppm), on Ca2+ 

gradient in WT pollen tubes, fluorescence intensity was assessed as in Fig. 6, n = 12 PTs for each line. Error bars show 

SE and different letters show significant differences at 0.05 level (Tukey’s HSD). 
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Figure S7. Effects of ethylene concentrations on (A) the rate of pollen germination and (B) the pollen tube growth of 

WT. Effects of 1-MCP concentration on (C) the rate of pollen germination and (D) the pollen tube growth of WT. These 

gases were added in the headspace over solid GM at the time of pollen grain imbibition and the measurements were 

performed 4 h after. n = 150 pollen grains. Error bars show SE. Different letters show significant differences at P = 0.05 

(Tukey’s HSD). 



90 
 

 
 

 

 

 

 

Figure S8. etr3-ko and etr4-ko tomato protein sequences with their relative wild-type sequences, the beginning of the 

ethylene binding pocket starts at AYFSIP, which is not translated in the mutants. 
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Figure S9. Pollen viability at different stages of flower development. A. Rate of pollen germination at 1, 2 and 3 days 

post-anthesis (DPA) (n = 100 pollen grains). B. Aspect of a tomato flower at 2 and 1 days before anthesis (A-2 and A-1, 

respectively), 0 day of anthesis (A) and 1, 2 and 3 DPA. The rate of pollen germination in solid germination medium at 

1 and 2 DPA was about 90% and slightly decreased at 3 DPA. Error bars show SE. Different letters show significant 

differences at P < 0.05 level (Tukey’s HSD). 
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Figure S10. Overview of the RNA-Seq analysis pipeline. Different tools were used for the pre-processing steps of the 

raw sequencing data. FastQC is used to check the quality of raw reads, then the reads cleaning and filtering are performed 

by Trim Galore, Cleaned sequences are then mapped to the reference genome using STAR, gene expression are 

quantified by featureCounts, and differentially expressed genes are identified by DESeq2. 
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Table S1. Genes and primer sequences used for RT-qPCR analyses 

Sly Solyc Description Gene name Forward primer Reverse primer 

Sly12g0054571 Solyc12g011330 Ethylene receptor 1 ETR1 5’-GCCTTTTATCTTCCATCGTGGA-’3 5’-GATACTTCATTAGCAAGTCGTCAGCA-’3 

Sly07g0127601 Solyc07g056580 Ethylene receptor 2 ETR2 5’-TGGCATTCCTGGTCGCTTA-’3 5’-TCTGCATGTGATTTGCAGGC-’3 

Sly09g0098021 Solyc09g075440 Never ripe-2 ETR3/NR 5’-GCTTTGGCTCTGGATTTACCTATTC-’3 5’-TTCCCGCCACGTTTAAGAGA-’3 

Sly06g0363951 Solyc06g053710 Ethylene receptor homolog (ETR4) ETR4 5’-GCCATACTGGTTTTGGTTCTACCTA-’3 5’-CCACAACCCTGACTATCTCAATTTC-’3 

Sly11g0287841 Solyc11g006180 Ethylene receptor homolog (ETR5) ETR5 5’-TGTTCAGATGATGCAGGGAAAT-’3 5’-ATGAGTGTCATCCCCTGCG-’3 

Sly05g0160141 Solyc05g055070 Ethylene receptor homolog ETR7 5’-CGCTTTTCCACGGATGTTCC-’3 5’-ATCATTCCCGCCCTCGATTC-’3 

Sly01g0036821 Solyc01g101060 S-adenosyl-L-methionine synthetase SAM1 5’-CCCATCTGGCCGATTCGTTA-’3 5’-GAGCACCCCAACCACCATAA-’3 

Sly09g0079511 Solyc09g008280 S-adenosyl-L-methionine synthetase Z24743 SAM2 5’-AGGCATTGGGTTCGTCTCAG-’3 5’-AACTCCTTGGGCGATGTCAG-’3 

Sly10g0167081 Solyc10g011660 Auxin-responsive GH3 family protein JAR1 5’-TCTGAAGGATGGGTCGGAGT-’3 5’-TGCTCCACGCCAATGAGATT-’3 

Sly03g0228041 Solyc03g123890 Calcium-transporting ATPase 1 ACA1 5’-AGGCTTGGCAAGATCTGACT-’3 5’-CCAGCCATCAAGAAAGGTGC-’3 

Sly01g0005421 Solyc01g010020 Calmodulin 1 CAM1 5’-ACTAGAGTTAGCCGCGCTTC-’3 5’-TCGATGAACCCGTTGCCATT-’3 

Sly02g0324371 Solyc02g063340 Calmodulin 4 CAM4 5’-CGCGAACGAATCTTCAAGCG-’3 5’-AGGCTTGCAATGTCTCTCCA-’3 

Sly01g0015111 Solyc01g057220 Pectin Methylesterase PME 5’-GCCAGCAATACAAAGAGCGG-’3 5’-GTTCTTAGGGTACGCAGCCA-’3 

Sly05g0156841 Solyc05g052120 Pectin Methylesterase PME 5’-CAGCACCAAGACCAGATGGA-’3 5’-CATGTGCTGTTACCATTGCCA-’3 

Sly12g0075751 Solyc12g099410 Pectin Methylesterase PME 5’-GCATTCGCTAACACGACTGG-’3 5’-GCCTTGCAACCCAACCATTT-’3 
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Table S2. A. Correlation between RNAseq and RT-qPCR data; B. Feedback of ETR mutations on ETR expressions 
sorted from low to high expression levels in RNAseq 

A. gene RNAseq counts qPCR deltaCt line B. Down- or up-regulation of ETR expression in ETR mutants, checked by RT-qPCR 

etr3-ko vs WT   NR vs WTB 
ETR1 0.16 0.06 

ETR2 0.21 0.25 

ETR3 0.64 1.51 

ETR4 0.59 1.30 

ETR5 0.76 2.24 

ETR6 too low too low 
ETR7 0.63 0.52 

 

 ETR2 0.000087 0.29 etr3-ko  

 ETR2 0.000262 1.36 WT  

 ETR2 0.000262 0.41 NR  

 ETR2 0.000698 1.65 WTB  

 ETR1 0.001342 0.27 etr3-ko  

 ETR1 0.002505 0.07 NR  

 ETR1 0.002774 1.08 WTB  

 ETR1 0.003132 1.73 WT  

ETR7 0.001850 1.53 etr3-ko  

 ETR7 0.004183 1.41 NR  

 ETR7 0.004263 2.74 WTB  

 ETR7 0.004344 2.43 WT  

 ETR3 0.007987 47.80 etr3-ko  

 ETR3 0.014137 91.70 WTB For full names of the genes see Table S1. 

 ETR3 0.016374 75.14 WT Genes in black: associated with ethylene perception 
 ETR3 0.020687 138.42 NR Genes in red: associated with ethylene synthesis and ACC conjugation 

 ETR5 0.030096 88.24 etr3-ko Genes in blue: associated with calcium signaling 
 ETR5 0.036425 116.72 WT Genes in green: associated with cell wall modification 

 ETR5 0.036489 106.07 WTB  

 ETR5 0.090351 238.60 NR  

 ETR4 0.042133 56.77 etr3-ko  

 ETR4 0.046418 83.32 WTB  

 ETR4 0.057724 96.60 WT  

 ETR4 0.059926 108.35 NR  

 sam1 0.073538 9.76 etr3-ko coeff Pearson 
 sam1 0.088719 12.99 WTB with Excel 0.86 
 sam1 0.137187 2.85 NR  

 sam1 0.202089 25.69 WT  

 CAM1 0.238729 209.96 NR Pearson Product Moment Correlation 
 CAM1 0.259468 626.70 etr3-ko with SigmaPlot v11.0 
 CAM1 0.297791 340.74 WT 

 

Correlation Coefficient 0.864 
 CAM1 0.300271 391.97 WTB 

 

P Value 6.681E-19 
 ACA1 0.195509 128.08 WTB Number of Samples 60 
 ACA1 0.226300 502.51 etr3-ko Power 1 
 ACA1 0.238905 109.84 WT  

 ACA1 0.406972 161.37 NR  

 sam2 0.352383 200.60 NR  

 sam2 0.368920 1189.29 etr3-ko  

 sam2 0.481639 276.46 WT  

 sam2 0.487476 311.09 WTB  

 CAM4 0.251938 236.89 NR  

 CAM4 0.406202 1069.21 etr3-ko  

 CAM4 0.510078 708.22 WT  

 CAM4 0.598450 832.25 WTB  

 PME Solyc01g057220 1.493015 937.34 NR  

 PME Solyc01g057220 1.707009 6245.20 etr3-ko  

 PME Solyc01g057220 2.158357 6202.50 WTB  

 PME Solyc01g057220 2.265294 2645.31 WT  

 PME Solyc05g052120 1.368004 805.35 NR  

 PME Solyc05g052120 1.958763 8455.75 etr3-ko  

 PME Solyc05g052120 2.404271 1986.78 WT  

 PME Solyc05g052120 2.576031 3153.37 WTB  

 JAR1 3.379268 1148.04 WTB  

 JAR1 3.511792 4281.60 etr3-ko  

 JAR1 3.659816 2293.50 WT  

 JAR1 4.486860 3959.67 NR  

 PME Solyc12g099410 41.865520 16355.93 NR  

 PME Solyc12g099410 44.722125 74966.51 etr3-ko  

 PME Solyc12g099410 47.019965 52546.94 WTB  

 PME Solyc12g099410 49.204294 25254.70 WT  

 

9
3

 



94  

See https://doi.org/10.1111/tpj.15353 for 

 

Supplemntal table 3 

 
Supplemntal table 4 

 
Supplemntal table 5 
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Annex II 
  

Figure S1. (A) Pictures showing expression of the EBS:GUS reporter  in NR tomato pollen grains and 

tubes, after various treatments. Scale bar = 30 µm. (B) GUS activity assayed 4h after imbibition in NR 

PTs. n = 3 biological replicates of 0.5 mg pollen grains each, horizontal dashed lines show medians, 

different small letters show significant differences at the 0.05 level (Fisher’s LSD). 

B A 
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Annex III (article in preparation) 

 
Fruit set stages identification using deep learning 

 
Abstract 

 
The research in the plant reproduction was rapidly progressed considering the growth of population. For 

scientific research, the identification of different fruit set stages in tomato is important methods. Traditional 

detection methods of different stage of fruit set are identified manually by tagging and observation of the 

development stages, these methods consume time to precise the different growth stages. In recent years, AI 

(Artificial Intelligence) has been introduced in agriculture research, especially in the field of automated image 

analysis, which have shown their efficiency in image processing with high accuracy. In this study, we propose 

an improved YOLOV3-tiny model for detecting different fruit set stages in tomato. Our dataset contains more 

than 1145 images and 3315 annotations in total. The dataset contains class information for seven stages of a 

tomato fruit set. Images are initially collected, and subsequently augmented. The augmented images are used 

to create training sets with 3000 annotations. The training of the model was performed by 800 epochs, the 

trained model is tested on a test dataset. The test results show that the proposed improved YOLOV3-tiny 

model is superior to the original YOLOV3 and YOLOV3-tiny models, with average detection time of the 

model is 0.203 s per frame, which can provide real-time detection of tomato fruit set stages however under 

overlapping flowers. Moreover, this model is small and efficient that it would increase the applicability of 

real-time even when small hardware devices are used. 

 

 
1- Introduction 

 
In recent years, the research in the plant reproduction was rapidly progressed considering the growth of 

population (Pereira & Coimbra, 2019). Tomato is one of the most popular vegetables that play a significant 

role in the agricultural economy. Previously, the studies focus on plant reproduction processes for increasing 

crop productivity. The transition from flower to young fruit, namely fruit set, is an initial step of fruit 
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development to ensure successful sexual plant reproduction, and fruit set efficiency is important features that 

determine the production and yield of various crops (An et al., 2020). 

 

Besides its importance as an economically important crop with large production, and its nutritional 

importance, tomato (Solanum lycopersicum L.) has been considered as a model for scientific research (Sun et 

al., 2006). Most of these researchers based on the application of molecular biology techniques to understand the 

genetic and molecular mechanisms that regulate plant reproduction (Hu et al., 2020). 

 

The accurate identification of the different stage of tomato fruits set as well as the identification of their 

ripening stage is considered challenging and essential tasks for the researchers: Althiab-almasaud et al 2021 

studied the impacts of Ethylene signaling on pollen tubes collected from 1DPA and 2DPA stages. In the usual 

case, the different stage of fruit set is identified manually by tagging and observation of the development 

stages which could take several days. Moreover, tagging preselected flowers constraint the independency in 

the experimental plan if several stages are required. 

Recently, the interest in the development of deep learning as a powerful technique in the artificial intelligence 

field for various agricultural procedures was increased. 

 

The beginning of its applications was in the diseases and fruit detection, which can solve the main problems 

with fruit-and vegetable-picking robots, like the complex scenes such as backlighting, direct sunlight, 

overlapping fruit and branches, blocking leaves, etc. (Xu et al, 2020) 

 

Li et al (2019) purpose a deep learning-based system to identify and count a very small pest, wheat mites. 

Similarly, in tomato for the early detection of gray leaf spot disease (Liu & Wang, 2020a, b). Also, Tsironis 

et al, (2020) demonstrated that deep learning-based classification and detection could provide information for 

the ripening stage of tomato fruit. Moreover, deep learning methods can effectively provide apple fruit 

detection under overlapping apples and identify their growth stages for yield estimation (Tian et al, 2019). 

 

In this study, we aim to develop a robust tool, based on deep learning, provide an accurate detection and 

identification of seven different fruit-set stages and able to be used by researchers in real time application. 
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2- Materials and methods 

 
2-1. Dataset used in the research 

 
This study was performed on Solanum lycopersicum, cv. MicroTom: wild type (WT), Seeds were 

sterilized with 5% NaClO for 8 min, then washed 3 times with sterilized water, the seedling were grown in a 

culture room, with a 16h day: 8h night cycle, associated with temperature 22°C:18°C cycle, respectively, 

under 80% relative humidity and a day light intensity of 250 µmol·m-2·s-1. Seven different stages of flower 

development were used, at two and one days before anthesis (A-2 and A-1), 0 day of anthesis (A), one, two, three and 

four days post-anthesis (DPA). We check the different stages by tagging and observing the flower over all their 

development stages. The images of flowers were captured using a digital camera Panasonic, DMC-FZ62. To ensure the 

diversity of tomato flower image dataset, the images are obtained from different patches and different greenhouse. The 

aforementioned dataset is annotated using the “makesense.ai tool” which it is given output files that correspond 

relationship between labels and data, the dataset is randomly divided into training and test datasets according to the 

proportion of 80 and 20% respectively. The training and detection of the tomato fruit set object detection network model 

was programmed in Python. We use the precision, f1-score parameters and time (s) evaluation indexes to evaluate our 

method. The calculation formulas of precision (P) and f1-score (F1) are shown in formula (1) 

(1)                                  

 
where TP is the number of true positive samples 

 
2.3 Models: 

 

The YOLO (“You Only Look Once”) algorithm was proposed by Redmon et al. in 2016 and based on Darknet 

object detection neural network architecture. In a single pass through its network, YOLO combines detection, 

classification, and localization of objects inside an image. This makes it more computationally efficient and 

robust than other networks that only perform one or two of these tasks simultaneously. 

 

 

Principle of YOLOv3 model 

 
YOLOv3 is the third generation of YOLO with faster object detection network and improved detection 

precision compared with that of YOLO1 and YOLOv2. YOLOv3 uses darknet-53 for feature extraction, with 

https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
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74 CNN and 32 more deep learning layers (Figure1), which is more powerful than the YOLOv2 with darknet- 

19. The model size of YOLOv3 is approximately 247 MB, with detection speed is only 1-2 frames/s on an 

embedded platform, which makes it undesirable for embedded devices. YOLOv3-tiny is the lightweight 

version containing a reduced number of layers that led to accelerate the detection much more comparing to 

YOLOv3 model. The model size is only 34.7MB. It can run on embedded or mobile devices. However, its 

backbone network has only 7 layers, and then features are extracted by using a small number of 1x1 and 3x3 

convolutional layers so it cannot extract higher level semantic features, and its precision is low. 

 

 
Figure1. YOLOv3 network model 

 

How it works: 

 
YOLO v3 makes prediction at three scales given by downsampling the dimensions of the input image 

following three ratios: 32, 16 and 8 which are the strides of the network. For example, if we have an input 

image with 416X416, the resultant feature map would be of size 13 x 13 at first scale then of dimensions of 

26 x 26 and 52 x 52 at both second and third scale. To perform the prediction, YOLO uses 9 anchor boxes to 

trace of bounding box corresponding to three at each grid cell. Those bounding box have similar shape and 

size is to those of objects in the training dataset. The network applies the anchor to the following formulae to 

obtain bounding box predictions: 
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Where: bx, by, bw, bh are the x,y center co-ordinates, width and height of the prediction. tx, ty, tw, th are the 

parameters predicted by the network to fit the detected object. cx and cy are the adding offset of the cell origin 

from the image origin. pw and ph are width and height of the anchor box. 

 

 

 

 

 

For an input image of size 416 x 416, YOLO predicts ((52 x 52) + (26 x 26) + 13 x 13)) x 3 = 10647 bounding 

boxes. However, the algorithm predicts the “objectness” score for each bounding box, which presents the 

likelihood that the predicted bounding box contains an object, as well as its class score. Thus, Yolo filter out 

detections with low probability below a predefined probability threshold (e.g., 0.15). However, the network 

still ends up with a lot of duplicate detections since it makes 3 predictions at each cell. Those could be filtered 

out via non-maximum suppression (NMS) which calculates the Intersection over Union IOU to identify the 

level of overlapping between predicted bounding boxes and keep only those with highest confidence score. 
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3- Results 

 
After the training of the model, the test results are shown in (Figure2). In our model, F1 score is increased by 

2 %, and the mean average precision (mAP) was increased from 80.7 to 86.5% comparing with the YOLOv3- 

tiny.   Moreover, the average detection time of our model is 0.205 s per frame comparing with 1s per frame in 

original YOLOv3. 
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Figure2. A) Precision, Recall and FI curves of the original YOLOv3, tiny and tiny improved models which were 

evaluated on tomato fruit set images. B) Images show the detection results of YOLOv3-tiny improved in tomato fruit- 

set stages. 

 

4- Conclusion 

 
Considering that the deep network model increases the detection time, which is not feasible to real-time 

performance. Thus, deepening the network layer of YOLOv3-tiny can make it more abundant convolution 

features. In this study, we combine the high precision of original YOLOv3 and the fast detection of YOLOv3- 

tiny to provide at the end a real-time detection that is based on improved convolutional neural networks. Our 

data show that YOLOv3-tiny improved model detects the different stages of tomato fruit set with high 

accuracy in real time that could be used it to embedded devices, mobile devices and other smaller systems. 
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