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Summary

In recent years, our society has been preparing for a paradigm shift toward the hyper-
connectivity of urban areas. This highly anticipated rise of connected smart city centers
is led by the development of low-cost connected smartphone devices owned by each one of
us. In this context, the demand for low-cost, high-precision localization solutions is driven
by the development of novel autonomous systems. After Google announced the release of
Android GNSS raw data measurements on mobile devices, the enthusiasm around those
low-cost positioning devices quickly grew in the scientific community. The increasing need
of Location Based Services (LBS) provoked the rapid evolution of smartphones embedded
low-cost Global Navigation Satellite System (GNSS) chipsets within the last few years.
Most Android devices are now equipped with multi-constellation and multi-frequency po-
sitioning units. Preliminary studies explored the implementation of advanced positioning
algorithms aiming at answering the demand for precise navigation and positioning on
mobile devices.
However, various drawbacks prevent the realization of above-mentioned techniques on
hand-held mobiles. Smartphones positioning capabilities are limited by the tight-integration
of hardware components within the device. Integrated low-cost components, such as the
linearly polarized antenna, are unoptimized for acquiring multi-frequency GNSS signals
and their operation in constrained environment quickly becomes a challenge for mitigating
disruptive multipath events. Moreover, due to a fierce technological competition between
chipset manufacturers, embedded GNSS receivers have been conceived to act as ”black-
box” processes. The receiver parameterization is kept confidential and only GNSS raw
data measurements are outputted to the user.

In order to overcome those difficulties, this research work ambitions to develop a col-
laborative network positioning system between smartphones. A collaborative system is
defined as a set of inter-connected users exchanging GNSS data in order to enhance net-
work’s users positioning performance. The implementation of a cooperative smartphone
network takes advantage of the tremendous number of connected Android devices present
in today’s city centers for refining and improving users position accuracy and integrity in
urban environment.

This research thesis presents a thorough analysis of Android GNSS raw data measure-
ments aiming at lifting the ambiguity generated by receivers’ ”black-box” processes on a
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wide variety of Android smartphone brand and models. A wide data collection campaign,
on 7 different smartphone models in real-life urban conditions, has been conducted for
assessing the positioning performance of those contemporary low-cost devices.
After grasping the receivers’ mechanisms, the implementation of Android GNSS raw data
measurements in collaborative positioning algorithm has been investigated. An innova-
tive smartphone-based double code difference method has been employed to compute the
inter-phone distance between network’s users, named Inter-Phone Ranging (IPR). This
technique was tested for nominal and urban scenario cases and has demonstrated its re-
liability for collaborative positioning implementation.
Finally, a smartphone-based cooperative engine, called SmartCoop, was developed and
evaluated. This software-based engine is integrated within the cooperative network in-
frastructure for delivering accurate positioning solutions to network’s users. This collab-
orative estimation technique exploits the previously computed IPR ranges in a non-linear
constrained optimization problem. An experimental protocol has been put in place in or-
der to determine the estimation method efficiency through a series of simulation runs for
both nominal and urban scenarios. The presented results analysis supports our hypothesis
that smartphone-based collaborative engine enhances Android positioning performance in
urban canyon.



Résumé

Ces dernières années, l’usage fait de notre téléphone mobile a beaucoup évolué. En
effet, grâce aux développements technologiques ainsi qu’à l’hyper-connectivité de nos
activités quotidiennes, ces appareils connectés ont pris une place centrale dans notre
société. De nombreuses applications et services (Location Based Services : LBS) utilisent
nos données de positionnement afin de répondre au mieux à la demande de services
géolocalisés et personnalisés. Depuis de nombreuses années, nos smartphones sont équipés
d’un récepteur GNSS donnant accès à la position de l’utilisateur. Aujourd’hui, la majorité
de ces téléphones sont dotés d’un récepteur multi-constellations et multifréquences de plus
en plus puissant.

Après l’annonce faite par Google, d’une mise à jour Android permettant de récupérer les
mesures GNSS brutes, les smartphones sont rapidement devenus attrayant pour la com-
munauté scientifique, en tant que récepteur GNSS bas-coût grand public. Les premières
études menées sur ces appareils consistaient à transposer les algorithmes GNSS avancés
(RTK et PPP) sur ces périphériques.
Cependant, l’implémentation de ces techniques se heurte à la faible qualité des données de
positionnement mobiles. En effet, en raison d’une architecture restreinte et de composants
auxiliaires à bas-coût, la performance du positionnement sur mobile est rapidement im-
pactée par différents biais d’erreurs. Ce phénomène s’accentue en milieu urbain, notam-
ment à cause de l’antenne interne du téléphone dont les spécifications sont inadaptées aux
traitements de signaux multifréquences et au positionnement en environnement contraint.
De plus, les paramètres et réglages de ces récepteurs embarqués sont tenus secrets par les
constructeurs et seules les données GNSS brutes sont fournies à l’utilisateur, rendant leur
utilisation ambiguë.

Afin de surmonter ces difficultés, ce projet de recherche ambitionne le développement
d’un algorithme collaboratif dédié aux smartphones. La création de ce réseau coopératif
permettrait de tirer avantage du nombre croissant de téléphones mobiles connectés ag-
glomérés dans les rues des grands centres-villes.
Cette thèse présente une analyse complète et détaillée des mesures Android GNSS brutes
afin de lever l’ambigüıté créée par les procédés de ”boite-noire” employés par les récepteurs
embarqués. Une grande campagne de collecte de données fut organisée pour évaluer la
performance du positionnement sur téléphone en milieu urbain. Cette campagne a été
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réalisée sur 7 smartphones en conditions réelles. À la suite de cette étude, une méthode de
caractérisation des données GNSS brutes fut créée afin de couvrir le spectre de la plupart
des modèles de téléphone mobile Android.
Après avoir analysé les mécanismes de positionnement internes aux smartphones, la mise
en place d’un algorithme collaboratif a été instauré utilisant les données GNSS d’Android.
Une méthode de double différence sur les mesures de code a été proposée afin de perme-
ttre l’estimation des distances entre utilisateurs d’un réseau coopératif. Cette technique
innovante a été baptisée ”Inter-Phone Ranging” (IPR). La fiabilité et la précision de cette
méthode d’estimation sont démontrées par plusieurs études couvrant plusieurs environ-
nements. Enfin, après avoir méthodiquement caractérisé la mise en place d’un réseau
collaboratif de téléphones mobiles, un algorithme de positionnement collaboratif appelé
”SmartCoop” est présenté. Ce dispositif permet d’exploiter les mesures d’inter-distances
entre utilisateurs du réseau afin de résoudre un problème d’optimisation non-linéaire à
contraintes. Cette méthode d’estimation a pour but d’améliorer la précision et de dimin-
uer la dispersion de la position de tous les utilisateurs du réseau. Ce système coopératif
a été validé en simulation. L’analyse des résultats obtenus nous permet de penser que
cet algorithme coopératif innovant participe à l’amélioration globale de la performance
du positionnement sur téléphone mobile en milieu urbain.
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1.1 Research Context & Motivations
In recent years, the rapid development of satellite positioning systems observed with

the growth of GNSS constellations created an urge for precise positioning. The need
for high-precision localization solutions have been driven by the development of novel
autonomous systems in urban and constrained environments.
Nevertheless, classical GNSS-based positioning solutions have been proved to be highly
impacted by urban environment. In constrained environments made of canopy, narrow
streets and tall buildings, satellites signals reception quality often deteriorate. Indeed,
GNSS signals suffer from time varying signal blockage, multipath and NLOS occurrences
that directly impact the positioning estimation process. To this day, urban positioning
remains a challenge for GNSS-based systems and algorithms.

In the meantime, an exponential increase of wireless signals being used in today’s busy
urban areas was observed. The apparition of new SoOP signals created opportunities for
achieving robust precise urban positioning. The current development of the 5G technology
is the perfect example of the previous statement. These signals were naturally envisaged
for assisting GNSS algorithms in urban environments [20]. However, this promise relies
on the implementation of heavy hardware infrastructure which are not available at this
early deployment stage. On the other hand, smartphone devices capitalized on the hyper-
connectivity characteristics of our society and packed a plethora of sensors within their
core. This technological tool regroups the necessary capabilities and connectivity for
hybridizing GNSS measurements.

Furthermore, this research work has been motivated by the release of GNSS measurements
on Android devices and by observing the exponential development of LBS on those con-
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2 Chapter 1: Introduction

nected devices. In May 2016, Google announced during their I/O conference that GNSS
raw data measurements would be accessible on any Android devices running Android
Nougat (7.0) and above [21]. This announcement unlocked opportunities, for developers
and the scientific community, to capitalize on the embedded positioning chipset inside
smartphone devices. This trend reached chipsets manufacturers that engaged into a fe-
rocious technological race for developing the most precise and accurate location device.
This innovation race led to the normalization of multi-frequency and multi-constellation
chipset embedded GNSS receivers within Android device. Thus, making smartphones
positioning capabilities and specifications compete with COTS low-cost GNSS receivers.

The arrival on the market of smartphone devices with embedded low-cost GNSS receiver
created a paradigm shift in measurements availability, density and computational power.
This PhD thesis ambitions to develop a collaborative network positioning system be-
tween Android smartphone devices. Cooperative positioning localization has been re-
cently studied for applications in the autonomous vehicular transportation and the robotic
domains [22]. Only few studies have been made on smartphone-based networking. How-
ever, research works introduced preliminary groundwork concerning cooperative ranging
between smartphones showcased in [23] as well as a collaborative positioning technique
in [14]. Our intended collaborative network will take advantage of the tremendous number
of connected devices present in highly frequented city centers. In the context of smart-
phone hyper-connectivity, we assume that a reliable, secure and efficient communication
link is made available to network’s users.

1.2 Objectives
The main objective of this thesis is to define, design and develop a collaborative

positioning algorithm based on Android smartphone devices made for improving user
urban positioning performance. In order to achieve this goal, the presented research work
has been segmented around 3 phases:

1. Characterizing Android GNSS Raw Data Measurements

• Recording Smartphone GNSS Measurements

• Evaluation of Android GNSS Raw Data Measurements

2. Designing a Smartphone-based Collaborative Network

• Defining a Specific Smartphone Cooperative Network

• Developing a GNSS-based IPR Method

• Establishing a Smartphone-based Collaborative Positioning Engine

3. Evaluating a Smartphone-based Collaborative Positioning Engine

• Characterizing IPR Method in Multiple Environment

• Simulating and Analyzing Collaborative Positioning Solutions in an Urban
Environment

2
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1.3 Contributions
This research work contributed to the publication and presentation of multiple papers as
listed below:

[2021] Verheyde. T, Blais. A, Macabiau. C, Marmet. François-Xavier, ”SmartCoop Al-
gorithm: Improving Smartphones Position Accuracy and Reliability through Collaborative
Positioning” IEEEXplore, vol.2021, International Conference on Localization and GNSS
(ICL-GNSS 2021), pp. 1–6, doi: 10.1109/ICL–GNSS49 876.2020.9 115 564, 2021.

[2020a] Verheyde. T, Blais. A, Macabiau. C, Marmet. François-Xavier, ”Analyzing An-
droid GNSS Raw Measurements Flags Detection Mechanisms for Collaborative Positioning
in Urban Environment” IEEEXplore, vol.2020, International Conference on Localization
and GNSS (ICL-GNSS 2020), pp. 1–6, doi: 10.1109/ICL–GNSS49 876.2020.9 115 564,
2020.

[2020b] Verheyde. T, Blais. A, Macabiau. C, Marmet. François-Xavier, ”An Assess-
ment Methodology of Smartphones Positioning Performance for Collaborative Scenarios
in Urban Environment” Proceedings of the 33rd International Technical Meeting of the
Satellite Division of The Institute of Navigation (ION GNSS+ 2020), pp. 1893–1901.,
Sep. 2020.

[2019] Verheyde. T, Blais. A, Macabiau. C, Marmet. François-Xavier, ”Statistical Anal-
ysis of Android GNSS Raw Data Measurements in an Urban Environment for Smartphone
Collaborative Positioning Methods” International Navigation Conference (INC 2019), Ed-
inburgh, UK. 2019

1.4 Thesis Outline
This research work is organized in two parts:

1. Part I: Android Smartphone Positioning
The first part introduces the concept of Android smartphone positioning. A prelim-
inary analysis defines the positioning capabilities of Android mobiles and identifies
the strengths and weaknesses associated to this contemporary low-cost platform.
The newly accessible Android GNSS raw data measurements are characterized and
analyzed in order to provide an optimal groundwork for integrating smartphone
measurements in a collaborative system.

• Chapter 2: Smartphone Positioning Overview
This chapter provides a global assessment of Android devices architecture. A
first study compares the smartphone characteristics to COTS low-cost GNSS
receivers. Multiple smartphone’s sensors measurements are then presented,
identifying the strength of this low-cost device. On the other hand, smartphone
hardware analysis provides a root cause for the weaknesses associated with
smartphone positioning. Finally, a complete overview of Android GNSS raw
data measurement is displayed and highlights the retrieval process for accessing

3



4 Chapter 1: Introduction

smartphone GNSS measurements. Current Android software-based algorithms
are presented and characterized.

• Chapter 3: Smartphone Positioning Techniques
This chapter is dedicated to the positioning techniques and algorithms that can
be implemented for taking advantages of the embedded GNSS receiver. A data
collection campaign is presented where data measurements have been collected
from various collaborative scenarios. Finally, retrieved Android GNSS raw data
measurements are characterized for both nominal and urban environments.
This chapter will be concluded by an analysis defining the suitability of Android
data for collaborative purposes.

2. Part II: Collaborative Positioning
The second part of this research thesis explores the existing collaborative positioning
algorithms. Cooperative techniques aim at improving network’s users positioning
performance by processing additional shared GNSS measurements. The resulting
collaborative algorithm is referred as an engine. A smartphone-adapted collabora-
tive engine and network structure will be selected and discussed. Then, a double
code difference GNSS-based algorithm is developed for estimating inter-phone dis-
tances within the defined collaborative network. Finally, our proposed smartphone-
based collaborative engine called SmartCoop is presented and analyzed.

• Chapter 4: Definition & Methodology
This chapter is a throughout literature review concerning collaborative posi-
tioning techniques. The aim is to assess the compatibility of existing collab-
orative positioning methods with the implementation of a smartphone-based
cooperative network. The structure of the selected method is presented in this
chapter.

• Chapter 5: GNSS-based Collaborative Ranging
This chapter provides an adapted solution for computing Inter-Phone 3D Ranges
(IPR) within a collaborative network of smartphones. The presented method
is defined as a double differentiation technique on GNSS code measurements.
The innovation is supported by a new approach taking into account Android
GNSS raw data measurements specificities and by an adaptive algorithm.

• Chapter 6: Smartphone Collaborative Positioning
This chapter is a synthesis of previously presented analysis and algorithms re-
grouping smartphone positioning capabilities into a collaborative system. Our
proposed solution encapsulates a non-linear optimization problem constrained
by estimated IPR. A detailed analysis is displayed, underlining significant po-
sitioning performance improvements.

Figure 1.1 illustrates the thesis organization sequence and highlights the relation between
each chapter.
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Figure 1.1: Block Diagram of the Thesis Outline
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2.1 GNSS Low-cost Receivers
A GNSS receiver process signals from one designated or multiple satellites that are

part of a navigation system. The role of the receiver is to estimate its position, velocity
and time characteristics. A detailed description of GNSS receiver architecture and pro-
cesses is given in appendix chapter A. In recent years, the popularity of GNSS applications
were boosted by the appearance of mass-market GNSS receivers. Smartphones’ embedded
GNSS receivers became the norm for everyday positioning and thus potentially unlocking
the access to a vast connected network perfectly suitable for opportunistic collaborative
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10 Chapter 2: Smartphone Positioning Overview

positioning network.
In this chapter, a panorama of low cost receivers will be made by analyzing the origin of
such device and by looking at their characteristics. Smartphones will be also presented
as the newly developed low-cost GNSS devices made for daily applications and for Lo-
cation Based Services (LBS). Then, Android smartphone data features will be explained
and detailed. Those modern compact devices pack multiple sensors that can be recorded
and used for positioning, navigation and timing (PNT) purposes. Thereafter, a detailed
investigation of smartphones hardware will be performed through characteristics assess-
ment, performance analysis and embedded components characterization. Finally, Android
GNSS raw data measurements will be thoroughly presented. This final section will detail
the raw data characteristics and assessment. A complete understanding of Android GNSS
raw data measurements will be provided from how to access the data, to recording options
available to smartphone users.

2.1.1 Definition
Historically, GNSS receivers has been developed for military purposes in the late

seventies. The next step towards low-cost receivers was the first civilian GNSS receiver
made by Standford in 1980 for scientific and technical works [24]. By the end of the
20th century, more and more civilian receivers had been developed. However, their prices
varied between 25.000$ and 300.000$ making those instruments extremely expensive and
hard to acquire [1]. Another major change for the GNSS community happened on May
2nd, 2000. The selective availability feature on GPS was turned off. This feature, added
by the United States Department of Defense (DoD), would add a time varying error to
the broadcasted civilian measurements, intentionally. By removing this induced error
and with the rapid technology improvement, especially in the field of microelectronics,
receivers became smaller and smaller and were offered at a cheaper price for everyone as a
personal Position, Navigation and Timing (PNT) solution component (e.g personal GPS
for car navigation).

This change of users community made the manufacturers realized that the GNSS re-
ceiver business market size was significantly increasing. Following that, constructors made

Figure 2.1: Chronological Prices Evolution of GNSS Low-Cost Receivers. [1] [2]
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2.1 GNSS Low-cost Receivers 11

cheaper (few hundreds of dollars) receivers for an everyday use. Those kind of units were
defined as low-cost, opposed to high-end receivers used for geodetic purposes for example.
Nowadays, GNSS low-cost receivers are widely available. Those cheap devices can be
used for multiple application techniques such as: car navigation, pedestrian navigation,
positioning, search & rescue and more.

Smartphones’ embedded GNSS receiver is the most popular low-cost receiver. Everyone
has now access to positioning and navigation in the palm of their hands. GNSS low-cost
techniques are now part of many LBS and are part of the idea behind a more connected
world: the Internet of Things (IOT). By definition, GNSS low-cost receivers are cheap
hardwares priced at a few tens or hundreds of dollars. Figure 2.1 shows a graph on
prices evolution in time of GNSS low-cost receivers. This figure represents the retail
price of integrated GNSS receivers, their price evolution was mainly driven by the cost of
microelectronics constituting their hardware.

Low-cost receivers have been brought to market by well-implanted companies in the GNSS
domain. Off the shelf low-cost receivers usually comes on a circuit board with connec-
tors that surrounds the GNSS chipset module. Such low-cost receivers are paired with
standard patch antenna that are characterized as easy-to-use and reliable for standard po-
sitioning solutions. Nowadays, those devices costs tens of dollars and can deliver around
a meter accuracy positioning solution. As an example, we can cite Ublox receivers with
their ZED-F9P application board. According to the receiver description provided by the
company [25], this multi-constellation and multi-frequency receiver can be used for ad-
vanced GNSS algorithm (Precise Point Positioning (PPP), Real-Time Kinematic (RTK)).
In the literature, multiple research works test, analyze and evaluate performances of GNSS
low-cost receivers [26], [27].

Finally, a low-cost GNSS receiver is defined by its retail price and its performances. These
GNSS instruments were initially developed for fitting a market segment of layman con-
sumers looking for PNT services without a need for high-precision solutions. Nowadays,
the gap between high-end COTS devices and low-cost GNSS receivers is shrinking by
bringing scalable and affordable meter-level positioning accuracy performance. These
progresses have been driven by the study and implementation of advanced positioning
algorithms on those devices [28].

2.1.2 Smartphones
Smartphones contain the most recent technology embedded in their hardware due to

a ferocious competition between manufacturers. This rivalry pushes subcontractors such
as GNSS chip manufacturers to create innovative GNSS embedded products. The objec-
tive in the GNSS world is to be able to achieve centimeter level precision in mass-market
devices such as smartphones. This goal will be soon obtained thanks to the new gen-
eration of GNSS chips and their characteristics. However, positioning processes are not
prioritized over other smartphone features (e.g: Camera performance, battery saving, so-
cial experiences, etc.) Critical positioning components, such as antennas and processors,
are not developed exclusively for positioning and navigation purposes and tend to be mul-
tipurpose instead. Therefore, impacting the overall positioning performances. A detailed
characterization of smartphone data features is given below in section 2.2. Thereafter in
section 2.3, a review of smartphone hardware will be exposed, highlighting architecture
limitations and choices.

11



12 Chapter 2: Smartphone Positioning Overview

In the past years, technological improvements made on smartphone embedded GNSS re-
ceivers made those devices appealing to the scientific community in order to be used as
low-cost receivers. Furthermore, commercial opportunities rose from this technological
achievement, that led mobile manufacturers to compete in order to obtain the world’s
most precise smartphone. Multiple phone companies joined the race, releasing dozens
modern smartphones equipped with various chipset models, that are multi-frequency and
multi-constellation capable. Those technological progresses potentially unlocked the ac-
cess of a wide crowd-sourced and connected network of embedded smartphone receivers.
Indeed, the particularity of those low-cost GNSS receivers is the incredible rising num-
ber of devices in city centers. Key figures and numbers shows the hyper connectivity of
today’s urban areas and the role played by the smartphone industry in the positioning
domain. 3 billions mobile applications rely on positioning capabilities, 277 Galileo en-
abled smartphone models have been released and most recently European Union Agency
for the Space Program (EUSPA) claimed that an approximate number of 2 billion Galileo
enabled devices have been sold up to this date [29]. Those numbers show the degree of
involvement from the smartphone industry regarding the development of low-cost posi-
tioning devices made available for everyone. Those industrial developments were initiated
by the released of Android GNSS raw data measurements in late 2016, adding to the list
of Smartphone data features.

2.2 Android Smartphone Data Description
Android smartphone devices are data featured packed mobiles. In recent years,

smartphones have been equipped with a multitude of sensors that enable third-party
applications and additional features. Smartphones’ positioning estimation algorithm gain
from the variety of sensors present on mobile devices. Data ranges from GNSS raw data
measurements, IMUs, Signals of Opportunity (SoOP) to smartphone specific sensors. This
section will detail the type of data that can be recorded on Android smartphone devices.
In the purpose of this research we will solely focus on sensors and data that could be used
in navigation and positioning algorithms.

2.2.1 GNSS
The pre-requisite data necessary for positioning capabilities of modern smartphones

is GNSS data. Android GNSS raw data measurements is derived from the interpretation
of received satellite signals by the embedded positioning receiver. The recognized signal
model of GNSS signals is presented in equation 2.1.

ST (t) = ℜ(A d(t) cm(t) e−j2πfLt) = A d(t) cm(t) cos(2πfLt) (2.1)

with:

• A is the Amplitude of the transmitted signal

• d(t) represents the data component of the signal, carrying the binary data informa-
tion

• cm(t) is the PRN sequence of the mth satellite

12



2.2 Android Smartphone Data Description 13

• fL represents the carrier frequency

Classical GNSS receiver architecture and processing are detailed in appendix A. This
appendix chapter exposes the processes required to exploit satellite signal for positioning
purposes. The model shown is directly applicable for smartphone GNSS signal processing.

Smartphone GNSS processes have generally been executed by the embedded System-on-
a-Chip (SoC). Theoretically, SoC systems are made of different processor units such as:
Central Processing Unit (CPU), Graphics Processing Unit (GPU), Digital Signal Proces-
sor (DSP) and including GNSS receivers. The processor responsible for processing GNSS
signals will be referred in this thesis as: Smartphone embedded GNSS receivers. Further
details about smartphone’s GNSS receivers are provided in section 2.3.1.
Modern smartphones are now equipped with multi-constellation and multi-frequency
chipsets. The following subsections will present the type of signals received by Android
smartphones divided per constellation. The next description is based on the most recent
chipset specifications (Qualcomm Snapdragon 888, released end of 2020.) [30].

2.2.1.a GPS Signals

GPS signals are tracked by most Android smartphones. With the arrival of multi-
frequency capable Android devices, smartphone embedded chipsets are able to process
GPS L1 C/A and GPS L5 signals. The GPS L1 band is transmitted on a carrier frequency
centered at 1545.42 MHz whereas L5 signals are broadcasted on a carrier frequency cen-
tered at 1176.45 MHz. Signals characteristics are detailed for the GPS constellation in
table 2.2.

2.2.1.b Galileo Signals

Android smartphone embedded GNSS receivers are able to process Galileo E1 and
E5a signals. The Samsung S8 mobile was the first device capable of recording and pro-
cessing Galileo signals with the embedded Qualcomm Snapdragon 835 SoC when it was
released in late 2017. Signals characteristics are detailed for the Galileo constellation in
table 2.3.

13



14 Chapter 2: Smartphone Positioning Overview

Figure 2.2: GPS Signals Characteristics Recordable by Android
Smartphone. Table modified from [3]
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16 Chapter 2: Smartphone Positioning Overview

2.2.1.c BeiDou Signals

Android smartphones are now able to record BeiDou signals, B1C and B2a. The first
signal is part of the L1 band frequency plan with a central carrier frequency of 1575.42
MHz. BeiDou Navigation Satellite System (BDS) B2a has a central frequency at 1176.45
MHz, equivalent to the L5 band of Galileo and GPS frequency plan.

2.2.1.d GLONASS Signals

Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) Frequency Division
Multiple Access (FDMA) L1 signals can also be tracked by smartphone embedded GNSS
receivers. However, the GLONASS L1 band does not coincide with the GPS and Galileo
L1 band. Satellites from the Russian GNSS constellation emitting on the L1 band with a
frequency ranging from 1592.9525 MHz to 1610.485MHz can be used on modern smart-
phone device for positioning purposes.

2.2.1.e Other Signals

Recently, Quasi-Zenith Satellite System (QZSS) and Navigation Indian Constellation
(NAVIC) GNSS radio signals can also be processed by embedded smartphone devices.

2.2.2 Inertial Measurement Unit (IMU)
The integration of Inertial Measurement Unit (IMU) within smartphone devices was

firstly motivated by consumer needs (i.e: step counting, screen rotation capability). Sensor
fusion techniques, already present in the GNSS literature, were implemented in a second
time on smartphones taking advantage of the presence of low-cost IMU components.
Modern Android devices are equipped with Micro-Electro Mechanical Systems (MEMS)
IMU which role is to assist the positioning and navigation solutions in difficult situations.
A typical IMU consists of a 6-axis MEMS unit, combining a 3-axis gyrometer (on x, y
and z) and a 3-axis accelerometer (on x, y and z). Moreover, a 3-axis magnetometer is
usually added to the unit.

Figure 2.4: IMU Accelerometer Allan Standard Deviation Comparison between 1€ Smart-
phone’s IMU (Left) and a Higher-end 2000€ MEMS IMU (Right) [4]

16



2.2 Android Smartphone Data Description 17

Multiple research papers characterized the cheap IMU components against higher-end
products [31]. Figure 2.4 shows the Allan standard deviation comparison between a Xi-
aomi Mi8 embedded IMU and a high-end Xsens IMU. Two parameters are studied here:
the bias instability and the Velocity Random Walk (VRW). It has been found out that
smartphone’s MEMS IMU demonstrates a high level of bias stability. However, a clear
difference can be seen on the z-axis stability component. This behavior is explained in [32].
It is argumented that the manufacturing process of the three-axis MEMS accelerometer
on smartphone devices differ due to the lack of space in mobile device hardware. High-
end MEMS IMU device are incorporated in a set of 3 accelerometer chips orthogonally
arranged for a more accurate definition of 3D forces. Further research work [33], vali-
dated the stability and reliability behaviors of IMU to be integrated within RTK fusion
algorithms.

2.2.3 Smartphone Duty Cycle
As exposed above, positioning services are not the primary functions of a smartphone

device. In order to support low power consumption and battery drainage, a technique of
duty cycle power saving mode as been widely used on smartphones. The goal of this fea-
ture is to minimize the computational loads needed by the embedded GNSS chipset during
inactive periods. This function puts to sleep the positioning hardware and thus affects
the reception of GNSS carrier phase observation. Multiple studies demonstrated that this
mode increases cycle slip occurrences in the positioning engine by up to 90% [34] [35].
Fortunately, the possibility to turn off this feature was introduced by the Android P (9.0)
Open Service (OS). Turning off duty cycle allows the embedded receiver to continuously
track GNSS signals and thus reducing the number of ”battery-saving induced” cycle slips.
In recent devices, the option to turn off duty cycle is directly prompted to the user will
being asked to turn on the High-Precision Positioning option.

2.2.4 Signals of Opportunity (SoOP)
Signals of Opportunity (SoOP) are defined as non-GNSS signals that can be derived

from their primary function and used as a positioning signal. Those signals are only used
to improve the positioning performance and not as a substitute of GNSS radio signals
in positioning algorithms. The promise behind the use of SoOP would be to provide
resilient positioning and navigation solutions in any environment. A plethora of posi-
tioning techniques can be implemented such as: Angle-of-Arrival (AOA), Time-of-Arrival
(TOA), Time Difference of Arrival (TDOA), Frequency Difference of Arrival (FDOA) or
also Received Signal Strength (RSS). The main drawback from exploiting SoOP signals
for positioning purposes would be the complex hardware needed for processing multiple
signals ranging a wide frequency spectrum. However, the use of SoOP signals in smart-
phone can be easily envisioned since the hardware necessary to capture a variety of signals
is already present on our complex mobile devices. The two main signal of interest that
can be used in smartphone-based positioning are Bluetooth and WiFi.

2.2.4.a Bluetooth

Bluetooth wireless technology is widely available on Android devices. Two types
of data sharing can be made via this technology. The first one, called Classic, is used
for streaming audio. The second, Bluetooth Low Energy Consumption (LE), is used to

17



18 Chapter 2: Smartphone Positioning Overview

transmit data packets in battery operated sensors devices and thus is widely used on
smartphone devices. Bluetooth operates at frequencies around 2.4 GHz and are following
the IEEE 802.15.1 standard. Traditionally, Received Signal Strength Indicator (RSSI)
techniques are used to exploit Bluetooth signals for positioning purposes. Recently with
the arrival of Bluetooth 5.1, a direction finding feature was introduced allowing higher
accuracy solutions in the positioning domain. Such techniques and algorithms are used
for improving indoor positioning, way finding, assets tracking and more [36] [37]

2.2.4.b WiFi

WiFi is characterized as a technology using wireless radio signals based on the IEEE
802.11 standards. Wireless Local Area Networking (WLAN) signals operate in a 2.4
and 5 GHz frequency bandwidth. This technology has been popularized for its used on
computers and smartphone. Multiple positioning methods can be used: Trilateration,
fingerprinting, TOA and more [38]. Recently, an emerging positioning technique is used
for localization purposes using WiFi signals. The Round-Trip Time (RTT) measures a
distance between the device and a nearby router without requiring time synchronization
between the two instruments and is specified by the IEEE standard 802.11 mc. Since the
release of Android 9.0 (Pie), smartphones can provide WiFi RTT measurements using
RTT-ready surrounding devices. Such methodology can be implemented for phone-to-
phone localization and for aiding traditional positioning methods in harsh conditions [39].

2.2.5 Smartphone Sensors
Other type of data can be retrieved from Android smartphone. Specific smartphone

sensors and features can be relevant for positioning and navigation algorithms. Those
extra sensors are being implemented by smartphone industries in order to empower cus-
tomers with additional information and data to be shared on social medias. Furthermore,
the technological battle fought by mobile constructors led to technological innovations
being introduced to mass-market consumers.

2.2.5.a Motion

Motion sensors are typically derived from MEMS IMU device. Although, raw mea-
surements can be retrieved, recorded and used for the purpose of localization. Moreover,
through the use of its Application Programming Interface (API), Android gives access to
motion derivative type of information. User activity (standing, walking, running, biking)
can be retrieved, thus providing accurate users motion states that can be adapted to the
system dynamic.

2.2.5.b Environmental

Environmental awareness can become an important parameter for advanced position-
ing algorithm. Android smartphones provide information data of four parameters:

• Ambient air and internal temperature [°C]

• Pressure [hPa]

• Relative Humidity [%]

18



2.3 Smartphone Hardware 19

• Light [lx]

An an example, we can the barometric measurements given by smartphone environmental
sensors for demonstrating their benefit in positioning computations. Pressure measure-
ments can be used for estimating user dynamic and relative vertical movement. It has
been shown, [40], that the derivative of the barometric measurements is highly reliable
for estimating user dynamic.

2.2.5.c LiDAR

The innovation war fought by smartphone manufacturers allows users to be gifted
with surprising features to their newest smartphone. In march 2020, Samsung released a
smartphone with an embedded LiDAR. LiDAR stands for Light Detection and Ranging,
it is a remote sensing method that utilizes pulsed laser for measuring distances. LiDAR
positioning methods are employed in the automotive industry and could be exported and
applied to the smartphone domain [41].

2.3 Smartphone Hardware
Smartphone can be described as complex hardware devices. In order to better ap-

prehend Android GNSS raw data measurements, a study of smartphone hardware spec-
ification will be made in this section. Smartphones are defined as portable device that
combines communication and computing functions. They are distinguished from their
features packed and hardware capabilities. GNSS positioning and navigation capabilities
are one of many features, it has to be reminded that smartphone are not GNSS specific
devices. This precision is important to be made in order to understand the technical and
architecture choices made by mobiles constructors.

By definition, smartphone hardware main limitation is the lack of space on the main
Printed Circuit Board (PCB). Therefore the integration of new feature components is
often made in detriment of other components. Since GNSS positioning and navigation are
not the smartphone’s main feature, it can be expected that GNSS receivers components
takes a smaller space on the portable device’s motherboard. Furthermore, components
selected for such positioning operations are often cheap and not optimal for position
computations. Figure 2.5 shows the hardware architecture of a Samsung S8 that as been
dismounted for the purpose of this research. The Samsung S8 flagship smartphone was
the first Galileo ready device, equipped with a SoC Snapdragon 835 chipset. The list
of components have been studied [42] in order to identify GNSS receiver components
highlighted in figure 2.5. The first conclusion that can be drawn is the size of the GNSS
receiver components compared to the camera module for example.
This section will explore the specification of a GNSS embedded receiver. This analysis
will be focused on the embedded chipset receiver and on the antenna characteristics.

2.3.1 Embedded Chipset
Computations and operations are made on the embedded SoC processor of the smart-

phone device. SoC are considered by most the brain of the smartphone. SoC chipsets are
built around multiple processing units. The main processing units are listed below:

• CPU: Runs the Android Operating System (OS).

19



20 Chapter 2: Smartphone Positioning Overview

Figure 2.5: Samsung S8 Hardware - Motherboard Architecture Key Components Layout.
a) Smartphone Backside with a Frame Mounted Motherboard. b) Front-face of the Stan-
dalone Motherboard

• GPU: Handles graphic related content.

• Image Processing Unit (ISP): Process phone’s camera data

• DSP: Records and process the numerous digital signals received by the device.

SoC chipsets are then paired with GNSS sensor hub microcontroller. The Microcontroller
Unit (MCU) is tightly integrated with multiple sensors for achieving precise positioning.
The goal of such hardware architecture is to limit the MCU PCB footprint and to keep
low system-level power consumption. Figure 2.5 shows the SoC of the smartphone, paired
with various sensors.
Currently, smartphone embedded GNSS receivers have multi-constellation and multi-
frequency capabilities achieving meter-accuracy positioning. Constructors are achieving
such performances while keeping the price of their SoC chipsets at a couple dollars baseline,
making those devices very low-cost GNSS receivers. Broadcom, Qualcomm and HiSilicon
are the market leaders among integrated GNSS chip manufacturers. Their MCU chipsets
are equipping most Android smartphone.

2.3.2 Antenna Design
The main constraint to overcome in smartphone-based positioning is to comply with

a very low grade GNSS embedded antenna. Typical GNSS antenna are designed taking
into account GNSS signal characteristics. Most of the time, such antenna are Right-
Hand Circular Polarization (RHCP) with a spherical spatial reception pattern. This
configuration allows the reception of satellite signals from any azimuthal directions. On
the other hand, smartphone antenna have a patch configuration. Smartphone antenna
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Figure 2.6: Simulated 3D Radiation Pattern of a Smartphone Antenna in hand-held
Conditions at 1795 MHz. a) d = 0mm. b) d = 100mm. Figure taken from [5]

are low-profile thin microstrip embedded with the motherboard PCB. An example of such
antenna can be seen on figure 2.5 on the top left corner of the left picture. This antenna
specification is considered linearly polarized due to the previously explained configuration
with the motherboard. Linearly polarized antennas tend to under perform compared to
RHCP antenna, especially in urban areas where multipath signal distortion greatly impact
linearly polarized antenna performances.

Multiple studies were made in order to characterize smartphone’s antenna performances.
In his paper [43], Pesyna tested and characterized antenna’s behavior compared to differ-
ent antenna classes. It has been found that smartphone’s antenna loses between 5 and 15
dB in sensitivity compared to other products. Such results demonstrate the poor quality
of linearly polarized patch antenna and the anticipated difficulty encountered by the re-
ceiver to retain lock of GNSS signals. Figure 2.7 represents the gain pattern of a Samsung
S3 embedded antenna. This analysis, [6], has been made in reference to a survey-grade
antenna. The antenna radiation pattern seems to be irregular. Patches of blue colors
indicate a difference of at least 10 dB-Hz between the signal strength characteristics re-
ceived by the smartphone. Even when the smartphone is not hand-held, it appears that
the effect of local multipath cannot be mitigated by the smartphone embedded GNSS
patch antenna. Further analysis have been made in order to characterize real life appli-
cation conditions, namely when the smartphone is hand-held [5]. Figure 2.6 shows the
simulated 3D radiation pattern of the antenna while the phone is being held by the users
(represented by the distance d on the image). It is now clear that the smartphone embed-
ded antenna design is not optimal for recovering and tracking GNSS signals. However,
this design choice can be explained by the tight integration characteristics of the small
motherboard device.
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22 Chapter 2: Smartphone Positioning Overview

Figure 2.7: Relative C/N0 Skyplot for a Samsung S3 Antenna with respect to a High
Grade Antenna [dB-Hz]. Figure extracted from [6]

2.4 Android GNSS Raw Data

A promising initiative, led by Google, allowed developers and the GNSS community
to access GNSS raw data measurements from Android smartphones devices. This innova-
tion granted access to the embedded GNSS chipset data outputs. For years before that,
smartphone positioning solutions were given to the user as an output of a ”black-box”
process made by the device OS.
In may 2016, during the ”I/O” conference, Google announced that GNSS raw data mea-
surements will be accessible with their updated smartphone operating system (OS) An-
droid Nougat (7.0). In previous Android versions, only GPS status, satellite PRN and the
final position could be used by potential applications and users. The chipset embedded
in the smartphone could then choose to select GNSS constellations and PVT algorithms
based on protocols directly implemented in the hardware [7]. The arrival of GNSS raw
data measurements permits users to unlock the full capacities of their GNSS chipset.
Even if users do not have a direct control of the chipset itself, they have access to decisive
GNSS informations such as pseudoranges, carrier-phase and the estimated Doppler fre-
quency in order to derive a more accurate position [44]. GNSS Raw data measurements
corresponds to the input data of the PVT algorithm. Having control over this information
could lead the design of a controlled environment where a data quality monitoring could
be made. This initiative has been warmly welcomed by the GNSS community as it was a
real opportunity to obtain sub-metric positions on smartphones.

The section will provide the description of the Android Location API structure before
introducing GNSS raw data measurements that can be recorded and processed by an An-
droid Smartphone. Finally, a review of data recording options will be presented; including
ENAC’s own Android application called SmartLogger.
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2.4.1 Android Location API Structure

The Android Location API allows smartphone users to retrieve smartphone’s GNSS
raw data measurements. An API is defined as a collection of protocols and functions
listed in a package class accessible by developers. Since the launch of the Android 7.0 OS,
GNSS raw data measurements are accessible from the android.location API. As discussed
in Appendix chapter A, section A.1.3, GNSS raw data measurements are the data output
of the signal processing block of GNSS receivers. Figure A.4 shows the graphical repre-
sentation of a typical GNSS receiver highlighting the chain process for recovering those
raw data measurements.
According to Google [21], currently 84% of existing Android devices have the possibility
of recording GNSS raw data measurements. As of today (end of 2021), the technical
support of Android raw data measurements is mandatory for all new smartphones since
Android 9.0. The diagram description of the API structure is depicted in figure 2.8. This
structure has been implemented since Android 7.0 and is still used today with more recent
OS Android updates. As a reminder, the recorded GNSS data comes directly from the
embedded GNSS chipset unbiased. Users do not have a direct access to the chipset itself.

Figure 2.8: Android Location API Diagram. Valid since Android 7.0 (Nougat) [7]
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24 Chapter 2: Smartphone Positioning Overview

2.4.2 GNSS Raw Measurements Description
The Android API gives access to the smartphone embedded GNSS receiver raw data

measurements. These GNSS raw data measurements can be recorded, replayed and used
by the scientific community or by software application developers for developing advanced
positioning and navigation products. The interaction between users and the chipset is
limited to basic executable commands (e.g: ON/OFF, Cleaning Assisted GNSS (AGNSS)
data, Turn OFF Duty Cycle). On the other hand, configuration settings and positioning
estimation algorithm are driven by the chipset itself. Measurements data given by the
Android device are directly outputted by the embedded GNSS receivers. Raw Measure-
ments can be divided into different categories, GNSS Measurements, Clock measurements,
Antenna Information data and Navigation messages. A detailed description of recordable
data can be found in table 2.10 and 2.11. Most typical GNSS data measurements needed
for Position, Velocity and Timing (PVT) computations are not directly provided by the
Android API (e.g: Pseudoranges, GNSS Time, Carrier-Phase and Doppler Frequency).
Thus, GNSS data measurements needs to be estimated with the raw measurements pro-
vided by the Android API. GNSS data measurements computations are provided below
for the main parameters necessary in positioning algorithm. Their associated models
are shown in appendix chapter B.1. Classical measurements model can be applied to
smartphone-based positioning.

2.4.2.a GNSS Time Generation

The generation of GNSS time is defined by the equation 2.2. The following expression
is given in nanoseconds. The internal hardware clock and the bias to the true GPS time is
provided by Android. We also have to take into consideration that all GNSS constellations
have different time of reference. All reference time are calculated based on the GPS time.
Once the GPS time is calculated, adjustments are made to fit the constellation of the
tracked satellite.

tGP S = TimeNanos − (FullBiasNanos + BiasNanos) − InterSystemsBias (2.2)

where the italic text represents the field of Android raw measurements. All parameters
are retrieved from the GNSSClock Android Class.

2.4.2.b Pseudoranges Computation

Pseudoranges represents the pseudo distance between the receiver and the transmit-
ting satellite. This distance can be affected by diverse biases in the propagation channel.
Pseudoranges are calculated by differentiating the transmitted time (tT x) and the received
time (tRx) at the speed of light c. The pseudorange is then computed as:

ρ = (tRx − tT x) × c (2.3)

where:

• tT x is the ReceivedSvTimeNanos in nanosecond.

• tRx is computed as follows:

tRx = TimeOffsetNanos + tGP S(1) (2.4)
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• TimeOffsetNanos represents the offset between the GPS TOW (Time of Week) and
the current measurement epoch.

In the smartphones’ embedded GNSS receiver case, pseudoranges generation methods
assume a common reception time. This assumption implies that tGP S(1) indicates that
the first value of FullBiasNanos and BiasNanos are used in the computation until the
phone is turned off. tT x and tRx must be in the same time reference, usually in GPS time.

2.4.2.c Carrier-Phase Measurements

Carrier-phase measurements are directly provided by the Android API under the
name getAccumulatedDeltaRangeMeters in meters. A set of flags have been created to
detect cycle slips and are provided under the name AccumulatedDeltaRangeState. These
flags insures a sanity check from the obtained measurements.

2.4.2.d Doppler-Shift

The Doppler shift, resulting from satellite movement and/r receiver movement and/or
frequency offset, can be computed as follows:

DopplerShift = PseudorangeRateMeterperSecond × Carrier FrequencyHz
c

(2.5)

2.4.3 Smartphone GNSS Data Collection
Nowadays, numerous Android smartphones with accurate GNSS chipset are available

on the market. A non-exhaustive list of Android smartphone GNSS capabilities can be
found in [21]. Following the release of GNSS raw data measurements, Google released
a Matlab based program, GNSSAnalysis [11], in order to analyze and evaluate GNSS
raw data measurements. The program and the open source code is free and available for
everyone. In [45], a detailed explanation is provided on how to use and interpret raw data
parameters using Google’s source code. The collection of raw data measurements can be
made directly from any smartphones via an Android application. Multiple applications
exists allowing users to record smartphone’s data and features (refer to section: 2.2).
Concerning GNSS data, two format types are used: Raw data measurements and Receiver
Independent Exchange Format (RINEX).

2.4.3.a Raw Measurements Format

Raw measurements is a simple format that logs and records each individual smart-
phone data measurements (exposed in table 2.10 and 2.11) for every epoch at 1 Hz fre-
quency. This data is then stored in a .csv file. This file configuration is straightforward
and easy to use in any post-processing program. Furthermore, since every single chipset
output is recorded by this logging format, it is considered the most adequate recording
format. Google released an application called, GNSSLogger, that is capable of recording
smartphone’s GNSS raw data measurements in a .csv file. Other commercial applications
can be found directly on the Google Play store.

2.4.3.b RINEX Format

By definition, the RINEX format is a well-known file format exploiting GNSS data in-
dependently of the receiver. The file format is universally used by the scientific community
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for logging and processing GNSS data. Unfortunately, the strict formating policy of this
recording format do not allow to report all GNSS information given by the smartphone.
The newest version (v3.1.0.0) of the GNSSLogger application give users the choice to
record or convert smartphone’s data using the universal RINEX format. Geo++ RINEX
Logger application also allow user to log GNSS data from their smartphone exclusively
into a RINEX file.

2.4.3.c SmartLogger, an ENAC Android APP

For the purpose of this research, an Android application has been developed. The
goal was to better understand and apprehend the functionality and usage of the Android
API. Furthermore, we wanted to be able to record any smartphone’s data and features
using a single application only. Indeed, this ENAC’s Android application allows users to
record GNSS raw data measurements from the android.location API, plus recording ad-
ditional sensors data (including but not limited to: IMU, barometer and Light parameter
measurements) synchronously. This application has been developed by Laetitia KESSAS
as a part of an internship, supervised by Thomas VERHEYDE and Antoine BLAIS. The
application is in the beta development phase and is ambitioned to be soon published on
the Google Play Store for free.

Figure 2.9: SmartLogger Android Application - Settings and Logging
Interfaces - Github Project Link for .apk Beta Application Download in [8]
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2.5 Chapter Conclusions
This chapter depicted the current situation of the low-cost GNSS receivers market.

It has been noted that low-cost receivers quality and accuracy is improving with time. For
the scope of this research, the growing market of embedded smartphone GNSS receivers
could potentially unlock an opportunity to create a wide collaborative network. Thanks to
the recent accessibility of GNSS raw data measurements on smartphones, GNSS param-
eters are easily record-able and could be easily transferable or exchanged. Smartphones
location capabilities and accuracy are improving, and sub-metric positioning is envisioned.
However, cheap hardware components in smartphone (such as the antenna) prohibit the
easy transition to high-end geodetic-like smartphone positioning.
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Figure 2.10: Android Clock and Antenna Data Measurements Description [9], [10].
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Figure 2.11: Android GNSS Raw Data Measurements Description [11].
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Smartphones contain the most recent technology embedded in their hardware due
to a ferocious competition between manufacturers. This rivalry pushes subcontractors
such as GNSS chip manufacturers to create innovative GNSS embedded products. The
objective of the GNSS community is to be able to achieve centimeter level precision in
mass-market devices such as smartphones. This goal will be soon obtained thanks to the
new generation of GNSS chips and their improved characteristics (explored in chapter 2).
Contrastingly, it is well understood that smartphones are mainly used for communica-
tion and entertainment purposes. Components, such as antenna and SoC processor, will
never be prioritized for positioning purposes and will impact the overall positioning per-
formance. Since the release of Android GNSS raw data measurements, efforts have been
made toward high-precision smartphone-based positioning performance. Inspired by the
GNSS literature, advanced positioning algorithm have been implemented and studied for
smartphone-based positioning in order to achieve sub-metric position solutions.

This chapter will describe various smartphone-based positioning algorithm and perfor-
mance. Firstly, a section will review the state of the art for Android smartphone posi-
tioning techniques and algorithms for past, current and future devices. The next section

31



32 Chapter 3: Smartphone Positioning Techniques

will present the data collection campaign organized for studying smartphones behaviors
in urban environment. Furthermore, in anticipation to our research work, we conducted
specific collaborative scenarios that will be detailed here. Finally, a study of smartphone
main positioning parameters will be made for nominal and urban conditions. This study
will also be the occasion to assess the quality of Android GNSS raw data measurements
in constrained conditions.

3.1 State of the Art: Smartphone Positioning
A complete state of the art on smartphone positioning techniques is explored in

this section. The objective of this section is to present the various methods employed
for smartphone-based positioning. Historically, AGNSS technique was adapted to smart-
phone devices for enhancing their positioning performances. Nowadays, hybrid position-
ing methods are used for determining the user position. In the meantime, the adaptation
of well-known GNSS advanced algorithms to mobile devices are currently under develop-
ment. This analysis will be divided between conventional and advanced smartphone-based
algorithms.

3.1.1 Conventional Methods
A complete overview of current smartphone positioning algorithms is given here. It

turns out that AGNSS fit perfectly the need and constraints linked with smartphone-based
positioning. This method was one of the first smartphone positioning algorithms to be
adopted on those devices. Later on, Google improved smartphone localization capabilities
by hybridizing multiple sensors and data that can be retrieved on modern smartphone.
It is today considered by most, the reference method for smartphone-based positioning.

3.1.1.a Assisted GNSS (AGNSS)

AGNSS is a method that improves standard GNSS capabilities of a GNSS receiver.
Satellite data are transmitted via an alternative communication channel, different than the
GNSS signal propagation channel. Those transmitted information allow the receiving user
to faster compute his location. Aiding data given by the AGNSS protocol encompasses
acquisition assistance, almanac and ephemeris [12]. AGNSS assists GNSS receivers in
obtaining a position estimation more efficiently by reducing Time To First Fix (TTFF)
from approximately 1 minute to 1 second [46]. Furthermore, an assisted GNSS receiver
increases its sensitivity enabling it to acquire signals at much lower signal strength.
This method has been exported on mobile smartphones mainly for the three following
reasons. First of all, smartphone devices are by definition always connected to a cellular
network. Thus, providing an ideal communication channel for transmitting and receiving
AGNSS data. A secure protocol has been put in place for transmitting satellite data to
multiple users in real-time. The Secure User Plane Location (SUPL) protocol is an IP
based protocol for AGNSS. A smartphone embedded GNSS receiver uses SUPL server to
download up-to-date almanac and/or satellite ephemeris data. The most used and trusted
SUPL server today is the one operated by Google. Secondly, the increase in embedded
receiver sensitivity allowed by this method, makes acquiring weak signals in constrained
environment much easier. Finally, this method also allows smartphone device to reduce
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their energy consumption by saving the need to decode navigation data from received
satellite signals that are already obtained via the AGNSS network.

Figure 3.1: AGNSS Graphical System Representation. Figure extracted from [12].

3.1.1.b Fused Location Provider (FLP)

The Fused Location Provider (FLP) positioning service is only made available on
Android device via a specific location API. Google describes this service as an intelligent
method that combines different signals for producing the most accurate location solution.
This algorithm is often described as a tight integration design between cellular, Wi-Fi,
Bluetooth and the IMU data. In the future, it is expected that FLP service will be
improved with the arrival of 5G technology and the rapid development of WiFi RTT pro-
tocol [47]. Originally, the FLP engine was defined as the combination and improvement of
two API services: the GPS Location Provider (GLP) and the Network Location Provider
(NLP) [48]. FLP output positions are intended to be the best available positioning solu-
tion obtainable by a given Android device.
However, the black-box processes used by Android for obtaining this solution while com-
bining GNSS, cellular network and sensors informations, makes them ambiguous and
unreliable for scientific analysis. Indeed, Google describes the conception of FLP position
estimation as a complex process that automatically changes the appropriate system set-
tings to what was requested by the user. The main motivations for Android to keep this
method as a ”black box” process for the users and developers are privacy and limitation of
power consumption. By keeping FLP processes unknown they ensure the privacy protec-
tion of their users while accepting in-application requests for this API. They also keep the
upper hand on the trade-off that can be applied between the device power consumptions
and accuracy. On the other hand, Android FLP positioning solutions provide a good ref-
erence for intrinsic quality of smartphones positioning capabilities. This position solution
can be accessible by every Android smartphone that will be tested later on during this
research study, and Android FLP position estimation will be used for reference purposes.
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3.1.2 Advanced Techniques
Advanced smartphone positioning techniques are GNSS positioning methods that dif-

ferentiate themself from the previously presented classical smartphone-based positioning
solutions. These advanced method are derived from well-known GNSS algorithm, adapted
to smartphone devices. Advanced techniques can also be referred as high-precision posi-
tioning algorithms. High precision positioning is defined as a technique capable of posi-
tioning a user/receiver with centimetric precision level. Those methods employ a combina-
tion of carrier-phase and pseudoranges GNSS measurements in order to achieve accurate
results. Advanced positioning algorithms have been developed for application that re-
quires higher accuracy solutions, such as surveying. The next subsections will present
the most known advanced algorithms applied in smartphone-based positioning, followed
by a brief presentation of future algorithms being developed for answering smartphone
positioning limitations.

3.1.2.a PPP and RTK

The two most used advanced positioning algorithms in the GNSS domain today
are PPP and RTK. These two correction-oriented type methods take advantage of the
measurements that can be made on the carrier wave of the GNSS signal. Carrier-based
positioning algorithms rely on the physical proprieties of the carrier wave allowing for
precise localization estimation. However, measurements of the carrier phase is ambiguous
since the number of cycles is unknown. Resolving these carrier phase ambiguities is key
and a prerequisite for both PPP and RTK in order to achieve precise positioning. The
description of the two methods is described below:

• Real-Time Kinematic (RTK)
RTK is a high-precision Differential GNSS (DGNSS) positioning technique. This
method is articulated around the use of carrier-phase measurements from a rover
station and the transmission in real-time of corrections coming from a nearby fixed
base station. Measurements differentiation between the rover and the base station
allows for mitigating most propagation errors. The base station is considered as a
reference GNSS receiver with an established location. This reference station, then,
broadcast its position and the code and carrier measurements of all in-view satellites.
This process will allow the rover to fix phase ambiguity and thus to determine a
precise localization estimation.

• Precise Point Positioning (PPP)
PPP positioning technique is based on precise clock and orbit corrections sent to
the rover. Corrections are generated in real-time from a network of GNSS reference
stations located all over the world. As an example, the International GNSS Service
(IGS) organization ensures open access, high-quality GNSS data products daily with
a network of more than 500 stations. Precise PPP position solutions are obtained
through the combination of undifferentiated GNSS observables with precise satellite
orbits, positions and clocks.
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RTK Vs PPP
This direct comparison between these two techniques will allow to better draw the ad-
vantages and disadvantages for both methods. RTK provides at the moment the highest
level of accuracy at the local level while the PPP generated solution are more versatile on
a global scale. However, most RTK solutions requires additional hardware which is not
adapted for smartphone users. Moreover, PPP algorithms requires long convergence time
and are also not compliant with smartphone standards.

Nowadays with the arrival of new smartphone embedded technologies and the permanent
emulation of the scientific community for higher positioning performance of mass-market
devices, the implementation of advanced positioning techniques in the smartphone do-
main has been extensively studied [32] [33] [4]. Modern smartphones embedded GNSS
receivers are able to reach very impressive standards for both static or kinematic posi-
tioning, opening the doors to an enormous quantity of application domains and research
fields. The release of carrier phase measurements and dual-frequency chipset on Android
smartphones accelerated the efforts made toward the integration of advanced GNSS al-
gorithms on Android smartphone device.
Current works mostly focus on the feasibility for integrating PPP and RTK algorithms
on smartphone platform [49]. Post-precessing tests have been carried out testing smart-
phones ability to perform under different environment [50]. Results from the literature
show that smartphone raw data measurements are compatible with the development of
advanced GNSS algorithms. However, it is pointed out that smartphone-based positioning
constraints cannot be mitigated by the application of such advanced algorithms. Cycle
slip events tends to be frequent on Android portable devices, [51], which makes the pro-
cedure for carrier ambiguity solving challenging. Smartphone hardware components and
usual operating environments produces drawbacks (such as: multipath occurrences, signal
blockage, Non-Line of Sight (NLOS) and more) that do not comply with advanced GNSS
algorithms operation requirements.

3.1.2.b Other Smartphone-based Positioning Research Fields

Additional research fields have been explored in the domain of smartphone-based
positioning. The following research topics represent leads that have been explored toward
higher-precision positioning capabilities for smartphone.

• Visual Positioning System (VPS)
During the I/O Tech Conference organized by Google in 2018, a new technology
for pedestrian urban navigation called Visual Positioning System (VPS) was intro-
duced [52]. The VPS algorithm uses smartphone’s camera in order to recognize
places and buildings characteristics that surround the users during urban naviga-
tion. Such characteristics are compared and correlated with Google’s image database
built within the Street View service. The embedded algorithm, then, uses an hy-
bridization process between the a priori position given by the GNSS chip and the
image point features analyzed by the camera. Thus, allowing smartphone users to
follow navigation instructions on his phone thanks to an Augmented Reality display.
This feature has been integrated to Google Map and is accessible to most Android
users under the name ”Live View”. Other research works utilize smartphone’s cam-
era for implementing VPS techniques but strictly for answering indoor positioning
problematics [53] which is outside the scope of this research project.
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• 3D City Mapping Aided Positioning Algorithms
One of the main constraints of smartphone-based positioning is that most smart-
phone activities are achieved in urban and sub-urban areas. The regular environ-
ments in which portable devices are putted in, induce multiple constraints that need
to be addressed. Deep urban navigation has become one of the toughest challenge
for the GNSS community. This type of environment is favorable to the generation
of errors due to NLOS tracked signals and multipath events.
The main 3D Mapping Aided (3DMA) methods, exploitable by smartphone devices,
are presented below. All the following methods requires the access to a detailed 3D
city model of the user city.

Shadow Matching
Shadow matching technique was firstly introduced by Groves in [54]. The principle
of the presented method is that at a specific epoch in time, each visible satellite
signals can be predicted given a rough estimation of the user street position. A
set of visible signals is compared to the predicted one in order to incrementally
estimate user final position. Research work implemented this method on Android
smartphone device finding out that cross-street positioning error can be significantly
improved [55].

3DMA Pseudoranges Matching
3DMA pseudoranges matching is a similar technique to shadow matching except
that we are here predicting expected satellite pseudoranges. In order to do so,
a grid is created around a first rough position estimate. Then, at each point of
the grid a comparison between the observed pseudoranges and the predicted ones,
including NLOS signals, is made. A correlation statistical analysis delivers the final
position solution. This solution was explored in [56] and has not yet been tested for
smartphone-based positioning in constrained environment.

Google’s Approach on 3DMA
The above 3DMA method presented a unique flaw for smartphone-based position-
ing. The computational power required for exploiting 3D city models and generating
ray tracing processes cannot be managed by the phone internal hardware. It is in
this optic that Google decided to release their own solution to smartphone urban
positioning. One of Google’s advantage is the abundance of 3D city models used for
other services, on Google Maps and Google Earth, covering more than 4000 cities
worldwide. The second advantage from them, is the availability of the processing
power needed for delivering such solutions, on dedicated Google servers. By us-
ing similar 3DMA techniques as the one presented above, Android directly sends
corrections to the embedded smartphone GNSS chipset plus integrates 3DMA cor-
rection to their FLP service (see 3.1.1.b). During their testing campaign, Google
claimed that wrong-side-of-street events have dropped by 75% [57]. This feature
was launched on Google Pixel devices (4a and 5) in December 2020. However, it
seems that this method was not adapted on other Android devices.
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3.2 Data Collection Campaign
As presented in chapter 2, smartphone embedded GNSS receivers have a unique archi-

tecture trade-off design compared to Commercial Off-the-Shelf (COTS) GNSS receivers.
Advanced Smartphone-based positioning became a trend when Google announced the re-
lease of Android GNSS raw data measurements.
Multiple studies were made in the smartphone positioning domain aiming at applying
advanced GNSS-based positioning techniques, as presented in section 3.1.2. Most studies
drawn their conclusions based on one smartphone brand and model in optimal open-sky
conditions. Although, most smartphone-based positioning activities are achieved in urban
and sub-urban areas. In urban conditions, signals are degraded from disruptive multipath
and NLOS interferences that represent the main challenge associated with urban position-
ing. Apprehending those difficulties become even more challenging when using a low-grade
smartphone antenna (in section 2.3.2) and coping with the embedded receiver black-box
processes (see: 2.3.1). Characterizing different smartphone and embedded chipset models
in urban environment remains an unaddressed challenge.

Part of this research study aims at addressing smartphone-based urban positioning
and at characterizing smartphones positioning parameters. A data collection campaign
has been orchestrated in the interest of outlining multiple smartphone behaviors in various
urban scenarios. This data collection has been conducted with the active support of ENAC
and the French Space Agency (CNES). Both entities provided hardware equipments,
personnel, and vehicles for the success of this campaign. The following list underlines the
goals and highlights the contributions for this data collection campaign.

• Validate a reliable recording techniques for Android GNSS raw data measurements

• Characterize multiple smartphone and embedded chipset brands and models

• Assess smartphones’ behaviors in various conditions (urban/open-sky & static/dynamic)

• Assess and analysis the impact of smartphone’s embedded antenna on recorded
GNSS raw data measurements using an unique asset.

• Create collaborative scenarios for post-processing analysis

• Compare smartphone and low-cost COTS GNSS receivers positioning performance
in ”real-life” environments

The first subsection will present the experimentation protocol put in place for achieving
a successful data collection campaign. The selected group of tested smartphones will
be presented. Secondly, the presentation of vehicles and equipments used for this data
collection campaign will be exposed. Finally, pre-selected collaborative scenarios will
be introduced in anticipation for the implementation of cooperative techniques later on
during this research work.

3.2.1 Experimentation Protocols
The success of any data collection campaign comes from the redaction of strict pro-

tocols for ensuring the correct replayability of the collected data during post-processing
and analysis cycles. Therefore, this data collection campaign took place in urban areas
around Toulouse in France, for a total duration of 2 hours and 10 minutes. Two research
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Figure 3.2: Data Collection Campaign Trajectory. Letters and encapsulated
photos depict the locations and conditions encountered for the different

collaborative scenarios.

vehicles were used during this experimentation. The main benefit for using two cars was
to simulate two different users in a collaborative setting. Both vehicles embarked high-end
GNSS receivers for reference purposes. Tested smartphones were splited into two groups
and placed on the roof of each vehicle. A total of 7 smartphones have been tested during
this data collection campaign. The selected array of smartphones represent the variety of
brands and models found in today’s market. Finally, the chosen campaign trajectory has
been selected for its versatility in terms of reception conditions and constraints that can
be found in modern city centers. Along this trajectory, pictured in figure 3.2, collaborative
scenarios have been created and are depicted by letters on the above mentioned figure.

3.2.1.a Smartphones Selection

During this data collection campaign, the array of selected smartphones needed to
best represent the diversity of Android smartphone brands and models available on the
market. All the 7 tested Android devices are shown in picture 3.3. Moreover, most SoC
and smartphone embedded GNSS receiver manufacturers are represented by our analysis
(Qualcomm, HiSilicon and Broadcom). All smartphones were running Android Q (10.0)
OS. Similarly, all of them were multi-constellation and multi-frequency (except for the
Google Pixel 3 that was single-frequency).

Although, one device presents a particularity that need to be explained. The Xiaomi
Mi 8 devices was the world’s first dual-frequency and multi-constellation GNSS capable
smartphone. In order to obtain such achievement, Xiaomi decided to fit two SoC units
to their device. The phone was mainly developed around the Qualcomm Snapdragon
technology. Whereas, the Broadcom BCM47755 chipset was fitted exclusively for its
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Figure 3.3: Smartphones Selection Tested during the Data Collection Campaign

positioning capabilities. Thus, the Xiaomi Mi 8 obtained the title of world’s first dual-
frequency and multi-constellation smartphone making the device the benchmark reference
in the smartphone-based positioning domain.

3.2.1.b Vehicles Configuration Setup

As part of the data collection campaign, two research vehicles were used. These
vehicles allowed to carry heavy equipments but also to carry collaborative scenarios in low-
dynamic urban scenarios. During the entire collect, both cars were following each other.
Static and dynamic scenarios were performed in both urban and sub-urban environment,
thus replicating best real life events encountered by smartphone users. The sketch shown
in figure 3.4 represents the overall configuration of both cars. This plan is supported by
the picture below, 3.5, that shows the rooftop setup on both experimental vehicles. Both
figures are linked by the number identifying each car.

For reference and comparison purposes, multiple COTS hybridized GNSS receivers were
fitted inside both vehicles. Two high-end COTS GNSS receivers, NovAtel SPAN Inertial
Navigation System, were assigned to each car and used as positioning and navigation ref-
erence solution. Additionally, three Ublox F9P low-cost GNSS receivers have been fitted
inside the vehicles (as shown on figure 3.4) and were used for comparison purposes. Other
equipments present in the car were either used as backup receivers or were exploited for
other research purposes, outside the scope of this thesis.
Smartphones were split into two groups, in function of their brand and model, and were
attached to the roof of both cars. Figure 3.5 shows the exact layout configuration. All
smartphones were recording Android GNSS raw data measurements (as a .csv file) us-
ing the GNSSLogger application [58]. Moreover, all sensors information available were
recorded using the AndroSensor application at minimum frequency of 1 Hz up to 10
Hz for specific phones. One of the unique feature of this smartphone data collection
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Figure 3.4: Schematic Representation of Both Research Vehicles Configuration used for
the Smartphone Data Collection Campaign

campaign was to assess and characterize the impact of the smartphone antenna on the
recorded GNSS raw data measurements. One of the Xiaomi Mi8 was open, exposing its
internal components, while still being able to function. An antenna adaptator was weld
into place at the smartphone embedded antenna output port, thus allowing the roof-
mounted geodetic antenna to feed signals to the smartphone embedded GNSS receiver.
Furthermore, three geodetic antennas were placed also on the top of the cars, GNSS sig-
nal splitters redistributed captured signals to the on-board equipments as shown by the
connected lines. Finally, two fisheye cameras aiming straight at the road were placed on
both vehicles to gage for cars trajectories and scenarios length in post-processing.

Figure 3.5: Vehicles Rooftop View Showing Smartphones Layout Configuration
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3.2.2 Collaborative Scenarios
Early on in this research work and after carefully reviewing the state-of-the-art of

smartphone-based urban positioning (see 3.1), it has been decided that the implementa-
tion of collaborative algorithms would be the best fit for overcoming and mitigating most
urban smartphone-based positioning issues. It was ambitioned to develop a collaborative
user network taking advantage of the tremendous number of connected Android devices
in today’s busy city centers. A whole thesis segment, part II, is dedicated to argument
the benefits of collaborative algorithms applied for urban smartphone-based positioning,
and also include a complete literature review of existing collaborative process in the po-
sitioning domain 4.
In order to achieved this objective, various collaborative scenarios needed to be studied for
the implementation of smartphone cooperative techniques. Four collaborative scenarios,
depicting real-life cases, were implemented along the trajectory during the data collection
campaign. The two vehicles would represent two cooperating smartphone users. The
creation of scenarios was based on urban pedestrian low dynamic positioning, referencing
real-life positioning application mostly used by smartphone users. The following items
describe the implemented collaborative scenarios and their respective real-life application
case.

• Collaborative Scenario A: Nominal-Static in Open-Sky
Scenario A has been thought to be the baseline case scenario for collaborative
smartphone-based positioning. Both vehicles were in an open-sky environment while
being static. Collaborative scenario A lasted for 20 min during the data collection
campaign.

• Collaborative Scenario B: Low Dynamic in Deep Urban Canyon
Scenario B represents a collaborative structure between two users in a deep urban
canyon environment. Both users were close to each other and navigated around a
block of flats. The recording of the collaborative scenario B lasted for 10 min.

• Collaborative Scenario C: The French Bistro Café
Collaborative scenario C, so called French Bistro Café, characterizes a real-life sit-
uation where one user would be static in a reasonably open-sky environment, while
the second user is navigating around him in a more constrained urban conditions.
This case scenario is inspired from real-life situations where people would be sitting
in a city square or park (e.g: in open-sky reception conditions) and who could co-
operatively help other network users navigating in deep urban environment nearby.
The implementation of this scenario was achieved by setting one of the car on the
final open floor of a silo parking lot in Toulouse city center, while the second car
was navigating streets around the same car park. This collaborative scenario lasted
for 20 min during the data collection campaign.

• Collaborative Scenario D: Low Dynamic in Urban Environment
The final collaborative scenario D, depicts a low dynamic situation (pedestrian ve-
locities) under a path surrounded by both trees and buildings, blocking satellite
signals. This collaborative scenario lasted for 10 min during the data collection
campaign.

Collaborative scenarios locations selected during the data collection campaign are depicted
on figure 3.2 by environmental snapshots.
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3.3 Android GNSS Raw Measurements Evaluation
Smartphone positioning engine architecture advantages and flaws have been pre-

sented above, in chapter 2. The state of the art review made on smartphone advanced
positioning techniques suggested that the implementation of such algorithm was achiev-
able on Android devices. A focus on collaborative positioning techniques will be made by
this research work, taking advantage of the increasing number of connected smartphones
in busy city centers, for mitigating positioning errors in urban environment on Android
smartphones. Thus, characterizing Android GNSS raw data measurements remains an
important task for ensuring the reliability of collaborative transmitted GNSS data within
a network of smartphone users. Smartphone’s measurements recorded during the data
collection campaign, detailed in section 3.2, will be used for developing this characteriza-
tion method in both nominal and urban environments. Few studies developed assessments
analysis on Android GNSS raw data measurements, [59] [60]. Plus, most of them drawn
their conclusions based on one smartphone brand and model in optimal open-sky condi-
tions despite the fact that most smartphone-based positioning activities are achieved in
urban and sub-urban areas.

The following, in depth, characterization of smartphone’s GNSS measurements will aim at
analyzing multiple smartphones embedded GNSS receivers behaviors and performances in
”real-life” urban scenarios. The first objective will be to better cope with Android GNSS
raw measurement and better understand their impact on the final positioning solution
while navigating deep urban environment. A study of Android GNSS raw data measure-
ments output will be made, as well as a thorough investigation on Android flag detection
mechanisms will be provided. Then, smartphones nominal positioning performances will
be tested, supported by a statistical analysis. After, smartphone positioning characteri-
zation will be made for urban environment positioning, while discussing on the feasibility
of implementing urban collaborative smartphone algorithms.

3.3.1 GNSS Observables Preparation
One of the main pillar for characterizing smartphone positioning performance pa-

rameters is to exhaustively understand Android GNSS raw data measurements and how
to properly manipulate its derivatives. Android GNSS raw data measurements are the
outputs of the signal processing block of the embedded chipset receiver. This subsection
will present the post-processing algorithm developed for converting those raw data mea-
surements into usable GNSS observables. The following analysis will show in details the
particularities and features associated with the manipulation of Android GNSS raw data
measurements.

3.3.1.a Pre-processing Procedure

The creation of a Matlab script was initially developed for fully exploiting Android
GNSS raw data measurements and to convert them into GNSS observables. This algo-
rithm has been inspired and modified from the open-source code developed by Google
via their GNSS Analysis Tool. This process allows for keeping full control on the in-
terpretation of the recorded measurements and thus, completely apprehending recorded
smartphone measurement from the output of the chipset to the post-processing use of the
generated observables.
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Android GNSS raw data measurements are recorded in a log file, in a Comma-Separated
Values (CSV) format. This file is written and saved by an application called GNSSLogger.
This application has been developed by Google exclusively for recording the embedded
chipset measurements outputs. The main advantage is that, the application directly
transcribes GNSS raw data measurements in an unbiased way. The file CSV format is
standard; with firstly a header describing file’s elements followed by the data. In this
document, every line starting with the word ”RAW” corresponds to the registered informa-
tion for one particular received signal. The nature and number of raw data measurements
recorded are listed in 2.4.3.a on figures 2.10 and 2.11. The Matlab post-processing algo-
rithm global architecture is described step by step below:

1. Extract and reading raw data measurements from the log file

2. Inspection of measurements quality for clock and raw GNSS data

3. Filter each received signal measurement individually

4. Convert Android raw measurements into GNSS observables

5. Store GNSS observables into output structures epoch by epoch

Moreover, during step 3, a particular Android field measurement is specifically used for
assessing the current signal synchronization state for the associated satellite. This Android
field is called State and comes from the GNSSMeasurement Android class (see figure
2.11). This class will return an integer value that indicates the current tracking state of the
signal. The final value returns by State is a combination state status, each represented
by a unique integer number. The list of state status can be found in [11]. If State
parameter takes any value above 16384, then the current signal measurements is reliable
and can be processed. Whereas on the other hand, if State takes any value below the
threshold value, then the current signal measurements is discarded. This numerical value
signifies that at least the current measurement Time-of-Week (ToW) has been decoded
and is known. As a general rule of thumb, only in 5% of the time a GNSS measurement
is ruled out due to its State status. This number increases in urban environment where
loss of lock events become more frequent.

The converted GNSS observables measurements are stored in a structured format. The
output array is organized into two categories. First, an header array is created regrouping
general observations and data such as: number of observations, observation types (C1,
L1 and more...), system time reference and the first epoch time. The second category is
formed into an array structure that includes GNSS observables. The generation of GNSS
observables is made in step 4 of the algorithm process and is presented in detail in section
2.4.2. Equation 3.1 provides a template of the observation array structure for outputting
GNSS observables.

OBS OUTPUT
N×M

= [t, SvId, C1, C5, L1, L5, S1, S5, D1, D5, Flags] (3.1)
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where:

• N is the total number of epochs.
• M represents the number of GNSS observable types.
• t stands for the receiver time of the current observables in GPS time.
• SvId is the satellite identifier that includes the constellation and PRN numbers for

each satellite
• C represent pseudorange measurements per frequency band (L1 or L5).
• L are carrier phase measurements per frequency band (L1 or L5).
• S stands for signal strength indicators per frequency band (L1 or L5).
• D are Doppler offsets per frequency band (L1 or L5).
• Flags represent extra state parameters indicating measurements quality (multipath

and cycle slip)

The output structure can also be reconfigured into a RINEX type format. This ensure
the replayability of the collected smartphone data by other researchers on various existing
algorithms. However, due to the strict nature of the structure of a RINEX file, multiple
measurements and information are lost while using this configuration (e.g: Multipath and
cycle slip flags).

3.3.1.b Processing Android State Flag Mechanisms

Smartphones’ embedded GNSS receiver architecture is mostly similar to COTS GNSS
receivers, from capturing the signal to estimating its position. Android allowed their users
to have access to raw data measurements outputted by the baseband signal processing
unit of the chipset receiver. Raw data measurements range from the most basic parame-
ters (i.e code, phase, Doppler, C/N0) to more complex ones (i.e Automatic Gain Control
(AGC), signals states and indicators). Among these complex measurements it was found
that the Multipath Indicator and the AccumulatedDeltaRangeState parameters. Few
information are released by Android and/or by chipset manufacturers concerning their
computation algorithms. In a time where smartphone GNSS receiver’s technology ad-
vance rapidly, it became crucial to understand and evaluate those flags reliability in order
to better characterize smartphones’ positioning performances. Android GNSS raw data
measurements are obtained through the use of the Android.location API. Within this API,
a public class called GnssMeasurement contains GNSS data coming directly from the em-
bedded chipset. This class is divided into two data groups. The first one, called Public
methods, regroups all GNSS raw data measurements. The second one named Constant,
gathers information about received signals characteristics. Within this second group, it
was found that a Multipath Indicator and an AccumulatedDeltaRangeState that pro-
vide multipath and cycle slip flags detection mechanism to the informed user. A thorough
study has been conducted for determining the nature and efficiency of Android detection
mechanisms [61].

1. Multipath Flag Detection Mechanism
The Android multipath indicator state flag can take three different values. If the
flag takes the value of 1, a multipath interference has been detected for that mea-
surement. On the other hand, when the indicator is set to the value 2 it signifies
that multipath was not detected. Moreover, the indicator can also take the value
of 0, meaning that the presence or absence of multipath is unknown. In our study,
the multipath detection mechanism is simply activated when the indicator shows
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Figure 3.6: AccumulatedDeltaRangeState Constant States Indicator List. Adapted from
[11], updated on 03/08/2021.

a value of 1. It has to be noted that only Honor View 20 smartphones reported
signals being unaffected by multipath (i.e Multipath Indicator = 2).

2. Cycle Slip Flag Detection Mechanism
Android phase measurement characterization is based on the combination value of
six state indicators. Each indicator corresponds to a constant value, and the overall
addition of those states is prompted to the user by the AccumulatedDeltaRangeState
parameter. Those states are listed below in table 3.6. Processing cycle slip flag de-
tection is done by identifying ADR STATE CYCLE SLIP and ADR STATE RESET
constants presence in the final AccumulatedDeltaRangeState value.

Valid State = [1, 8, 9, 16, 17, 24, 25] (3.2)

Thus, after checking every possible combination values, an array of ”Valid State”
has been determined and it is shown in equation 3.2.
If the current AccumulatedDeltaRangeState indicator value falls out of our selec-
tion then a flag is raised on our current measurement indicating a cycle slip.

3.3.2 Android Flag Reliability Analysis
Previously, the Android state flag parameters were introduced. Two types of flag are

provided by the Android API: multipath and cycle slip detection mechanisms. However, a
performance assessment is needed to determine the reliability of the provided information.
This section aims at analyzing the performance of the Android flag mechanisms through
correlation of detection events and an evaluation of the detection performance.

3.3.2.a Correlating Android Flags Detection Events

Figure 3.7 shows a preliminary signal analysis over the entire data collection cam-
paign. In this example we took one of our tested smartphone the Huawei Mate 20X.
Due to the rapid evolution of the user-to-satellite propagation channel, fast varying C/N0
values was observed. The top graph of Figure 3.7 illustrates those C/N0 fast fluctuations
observed over time. For each smartphone, the minimum, median and maximum C/N0
value has been computed in function of each individual received signal (considering all
frequencies and all constellations simultaneously) for every epochs. For the Huawei Mate
20X, the median value of C/N0 ranges between 30 and 35 dBHz. The bottom graph of
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Figure 3.7: Signal Analysis of the Huawei Mate 20X. a) Upper Figure: C/N0 Analysis.
b) Lower Figure: Percentage of Android Flags Activation

figure 3.7 shows the percentage of signals where a multipath and/or a cycle slip detec-
tion has been recorded in function of time. The percentage computation was obtained
by dividing the number of flags detected by the total number of received signals for that
specific epoch. The first observation made here is that cycle slip events seem to be often
detected by the embedded smartphone receiver whereas multipath detections remain less
frequent. The mark, labeled C, on figure 3.7 highlights collaborative scenario C. During
this time, the second car was parked on the last floor of a parking garage in open-sky
condition. C/N0 values of all signals improved, while both cycle slip and multipath flag
detection decreased as expected. On the other hand, uncorrelated situations between
C/N0 and flags detection have been observed during multiple occasions. This situation
can be observed on figure 3.7 between epoch 400 and 1000, where median signal strength
remains constant during that time period whereas flags activation numbers suddenly de-
crease.
Similar analysis has been performed for all tested smartphones. It is worth noting that
the Google Pixel 3 and the Xiaomi Mi 9 did not record any phase measurements data, due
to constructors choices that decided not to release this data in their units. It is then safe
to state that cycle slip detection is not possible for those devices. Moreover, no multipath
flags have been raised during our data campaign by either phone. This evidence suggests
that the Multipath Indicator algorithm is not a naive linear correlation of C/N0 variation
but exploits the phase measurement to detect multipath.
Independently of those phones, it appeared that both Xiaomi Mi 8 and the Huawei Mate
20X exhibit similar behaviors. However, both Honor View 20 (equipped with the same
chipset as the Huawei Mate 20X) generated fewer cycle slip flags. All related figures for
this analysis will be exposed in Appendix C.
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Figure 3.8: Cycle Slip Flags Detection Distribution in function of C/N0

Following our preliminary analysis, multiple basic GNSS measurements have been tested
through a series of correlation events. The following hypothesis was made: multipath and
cycle flag detection algorithms are not solely linearly correlated to C/N0. To validate this
hypothesis, flags distributions in function of C/N0 and elevation were analyzed. Figure 3.8
represents the cycle slip flag detection distribution in function of C/N0. Histograms and
cumulative density functions (cdf) are drawn here. Cycle slip detection distribution seems
to be quite uniformly distributed over C/N0 values. Even though our tested smartphones
are not equipped with the same chipset component, they tend to have similar detection
behaviors (increased detection activity between 13 and 16 dBHz, before peaking around
the C/N0 value of 22 dBHz). However, Honor View 20s did not detect as many cycle slip
flags as other devices and their distributions are surprisingly shifted towards higher C/N0
values (around 35 dBHz). Multipath flag detection distribution in function of C/N0 have
similar characteristics as the one observed in the case of cycle slip flag distribution. The
distribution of multipath and cycle slip flags have also been studied in function of satellite
elevation. Those figures are listed in Appendix C.
Overall, Android flag detection systems are not naively only interpolated from C/N0 and
satellite elevation value of the current signals. Detection mechanisms might be as complex
as the one found in modern COTS GNSS receivers. All smartphone brands and models
shown similar distribution patterns making us believe that those estimation algorithms
may be using the same detection techniques at the chipset level and/or that these flags
might be computed at a common low-level Android layer.

3.3.2.b Android Flag Detection Performance

Furthermore, in order to get a sense on those indicators efficiency, the Code-Minus-
Carrier (CMC) of the two highest satellites for each smartphone has been computed. An
analysis made on satellite reception conditions (C/N0 and elevation) defined the Galileo
PRN 12 and GPS PRN 27 satellites as the best available satellites on both frequencies for
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the study of Android device in dense urban canyons. Both satellites have been selected
because they were at the highest elevation angle and visible during an extensive part of
our data collection campaign. The CMCs are then computed to visualize potential large
cycle slips and multipath degradation. Pseudorange model are described in equation 3.3
and phase measurement models in equation 3.4 [7]. Equations 3.5 and 3.6 model the differ-
ence between the code and phase measurements for a satellite SV at epoch i. Both ϵP hase

and ϵϕ
Multipath terms have been neglected since ϵCode >> ϵP hase and ϵρ

Multipath >> ϵϕ
Multipath.

ρSV
i = r + c(trx − ttx) + ϵIono + ϵT ropo + ϵcode + ϵρ

Multipath (3.3)

φSV
i = r + c(trx − ttx) − ϵIono + ϵT ropo + Nλ + ϵP hase + ϵφ

Multipath (3.4)

CMCi = ρSV
i − φSV

i = 2ϵIono − Nλ + ϵcode + ϵρ
Multipath (3.5)

CMCdetrended
i ≈ ϵcode + ϵρ

Multipath (3.6)

where:

• r = User-satellite range
• (trx − ttx) = Receiver minus satellite clock offset
• ϵIono = Ionospheric error
• ϵT ropo = Tropospheric error
• ϵCode = Delay Lock Loop (DLL) Jitter
• ϵP hase = Phase Lock Loop (PLL) Jitter
• Nλ = Ambiguity term
• ϵMultipath = Multipath error

Equation 3.5 presents also the detrended CMC model where the influence of the iono-
spheric error and the ambiguity terms have been removed. The ambiguity term Nλ has
been fixed by computing a sliding CMC mean for continuous observation segments and
rounding to the nearest integer. Thus, satellite continuous tracking segments being shorts,
our mean ambiguity fixing computation also corrects for the ionospheric term (ϵIono) since
ionospheric error is a slow varying component. The remaining parameters of the detrended
CMC expression in 3.5 are then multipath errors plus Gaussian noise.
Figure 3.9 exhibits CMC computations for one of the tested Xiaomi Mi 8. Other smart-
phones CMC plot analysis can be found in Appendix C. On this graph, the top plot
represents the CMC evolution in time, while applying the sliding mean fixing method
on segments where the satellite was physically visible by the receiver. This implies that
cycle slip should still be visible on that plot (e.g. red boxes on figure 3.9), and red dots
show where a cycle slip flag activation has been reported by Android. Thereafter, the
bottom plot illustrates the computed CMC values still corrected by the sliding mean fix-
ing method per segments. However this time, segments were said to be continuous if the
satellite was physically visible and if the Android flag algorithm did not detect any cycle
slip. In this case, visible cycle slips remaining on the figure would mean that Android
failed to correctly detect cycle slips. Theoretically at this stage, cycle slips should have
been removed, leaving multipath and noise characteristic behaviors on the CMC plot.
Purple dots indicates Android multipath flag detection events.
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Figure 3.9: Code-Minus-Carrier Correlation Analysis between real Multipath and Cycle
Slip Occurrences and Android Flags Detection Mechanisms

On the top figure 3.9, cycle slip flags have been activated 761 times over 8350 seconds.
The overall flag activation seems to be over proportionate and too strict to detect real
occurrences. However, the few cycle slips that happened during our data collection seem
to have been successfully detected by Android. Cycle slips occurrences, shown by red
boxes, can be identified on figure 3.9 top plot whereas they do not appear on the bottom
graph. Figure 3.9 also highlights the use of multipath flags. Firstly, multipath flag al-
gorithm only detected 191 occurrences. This number is supposedly underestimating the
reality of our deep urban environment data collection. Moreover, a significant multipath
event is visible on both top and bottom graph. A typical multipath oscillation can be
seen (depicted by purple boxes) and not being detected at any moment by the Android
algorithm. This phenomenon was often seen for other satellites and other smartphones,
implying that the multipath indicator is not triggered by a simple threshold on the CMC.

In conclusion, the computation processes of Android flags mechanisms seem to not be
exclusively based on a naive interpolation of C/N0 or satellite elevation parameters. More-
over, the similarities observed between smartphone brands make us believe that detection
algorithms might be computed at a low-level Android layer. Multipath flags tend to be
inconsistent whereas cycle slip flags were proven to be coherent despite their apparently
high false alarm rate. However, Android multipath and cycle slip indicators might not be
used as reference parameters to qualitatively assess smartphone positioning performance.
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3.3.3 Quality Assessment in Nominal Conditions
In order to explore the feasibility of smartphone collaborative positioning, accurate

and realistic simulations must be developed. Classic GNSS error models measurements
needs to be re-evaluated for smartphone-based positioning. Android GNSS raw data
measurements are outputted by embedded chipsets receiver that use undisclosed signal
processing techniques. Those ”black-box” processes do not allow to specifically charac-
terize measurements errors based on classical criterion. Therefore, a statistical analysis
of retrieved smartphone GNSS measurements will be developed in open-sky nominal con-
ditions. Plus, smartphone positioning performance parameters will be evaluated against
low-cost GNSS receivers.

3.3.3.a Measurements Error Statistical Analysis

The characterization of Smartphones’ GNSS measurements starts with the statistical
analysis of measurements errors derived from the internal hardware processes. As exposed
in 2.3, smartphone embedded GNSS receivers operates, for the most part, similarly to any
other GNSS receivers. A typical GNSS receiver architecture and processes are shown in
Appendix A.2. The main goal of our nominal conditions analysis is to determine whether
Android GNSS measurements are suitable to be used for smartphone-based collaborative
applications. The focus here is put on measurements related errors that are directly gen-
erated by the receiver instrumentation. This low-level error analysis will provide valuable
and accurate information in the perspective of simulating smartphone-based collaborative
techniques. Theoretical error models on GNSS receivers tracking loop parameters have
been extensively studied and developed in the literature [24] [62] [63]. However, those
standard models depends on specific receiver architecture information that is not always
available. In the smartphone positioning domain, receiver architecture and tracking loops
parameters are generally kept secret for confidentiality reasons. Hence, classical measure-
ments models cannot be applied to characterize smartphone’s measurements. Moreover,
due to the large plurality of embedded GNSS receivers chipset brands and models, it is
impossible to predict or simulate all smartphones’ positioning behaviors.
Consequently, the evaluation of receiver-originated measurements errors for smartphone
GNSS receivers black-box processes will be made from a statistical analysis of real-life
recorded measurements. From there, an assessment method will be introduced for facili-
tating the characterization of GNSS measurements for future and present Android devices.
This analysis has been made in nominal open-sky environment in order to easily isolating
receiver instrumentation errors.

This study will mainly focus on the main smartphone receiver’s parameters, driving the
smartphone positioning performances. GNSS receivers highly rely on the quality of their
embedded Numerically-Controller Oscillators (NCO). This receiver’s element is used for
generating a signal replica correlating the incoming received signal. Loop filters, Phase
Lock Loop (PLL) and Delay Lock Loop (DLL) are used for controlling the generated
NCO signal code and carrier. Those components are recognized to be the main source of
receiver-based error within the outputted raw data measurements. Therefore, this study
will focus of the modeling of the uncorrelated errors of the PLL, DLL and Frequency
Lock Loop (FLL) also referred as jitter. Moreover, a review of smartphone clock stabil-
ity will be made. The characterized receiver’s parameters of this study are detailed below:
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• Phase Jitter: σP LL

• Code Jitter: σDLL

• Doppler Jitter: σF LL

• Clock Drift: cδ̇t

This characterization is based on field measurements extracted mainly from the data col-
lection campaign in section 3.2. Only the scenario A will be considered in this analysis.
As a reminder, both vehicles and thus all smartphone were recording Android raw data
measurements in an open-sky/static case. Additionally, two more sets of raw data mea-
surements were captured in clear, open-sky environment. Those recordings were made
after the data collection campaign and were used for assessing and comparing measure-
ments error of newly acquired Android smartphones. Thus, the Samsung S10+ and a
third Xiaomi Mi8 will be analyzed, totaling 9 tested smartphones.

1) Error Modeling: Clock Drift

GNSS receivers provides the capabilities to compute user position, timing as well as
velocity. In most GNSS receivers, including smartphone devices, Doppler measurements
are obtained through the processing of carrier-phase measurements. Receiver’s clock drift
can be derived from the estimation of user’s velocity. Detailed derivation of user velocity
estimation can be found in [64]. Smartphones raw data measurements give access to pri-
mary GNSS observable data (including: Pseudoranges, Pseudorange Rate and Doppler).
The pseudorange rate can be modeled according to the equation 3.7.

ρ̇i
SV = vxi · axi + vyi · ayi + vzi · azi + cδ̇t + ϵρ̇i

(3.7)

where:

• vSV
ui = [vuix, vuiy, vuiz]: user-satellite relative velocity vector knowing that:
– vSV

u = [vux, vuy, vuz]: user velocity vector
– vSV

i = [vix, viy, viz]: satellite velocity vector
• aSV

i = [axi, ayi, azi]: user-satellite direct line of sight unit norm
• cδ̇t = receiver clock drift
• ϵρ̇i

= observation residual error

After scaling the pseudorange rate equation, we set dSV
i representing the Doppler shift

(Equation 3.8) taking the form of the difference between the observed Doppler and the
predicted Doppler parameter. In our case, the predicted Doppler value can be computed
since the exact position of the user is known (estimated from the high-end COTS GNSS
receiver, the NovAtel SPAN, on-board both vehicles). Finally, the design-matrix of the
Doppler-based velocity model can be expressed, as in equation 3.9.

dSV
i = ρ̇i

SV − vSV
i · aSV

i (3.8)

Equation 3.9 is written in function of four unknown parameters vux, vuy, vuz and cδ̇t.
This equation can be solved using well-known estimation techniques such as the Kalman
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Figure 3.10: Receiver Clock
Drift in [m/s] and [ppm] (cδ̇t)

Figure 3.11: Clock Drift
Fast Component (cδ̇tfast)

Filter (KF) or the Weighted Least Square (WLS). As a results we obtained the estimated
receiver’s clock drift parameter. Moreover, due to the static property of our study, a
quick verification of our estimation method was to confirm that our estimated velocity
were approximately equal to zero.
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The estimated clock drift is assumed to impose the same clock error regardless of the
constellation. Therefore, we can rewrite our clock drift term cδ̇t = cδ̇tGP S = cδ̇tGalileo =
cδ̇tGLONASS = cδ̇tBeidou. The estimated clock drift, presented in figure 3.10, shows two
clear components: the fast and the slow varying component. It is assumed that the slower
component of the clock drift is due to a satellite clock offsets that develop slowly in time.
Thus, the estimated cδ̇t can be divided in two terms (equation 3.10). As stated above,
we are interested in the receiver-based error that reside in the clock drift fast component.

cδ̇t = cδ̇tfast + cδ̇tslow (3.10)

Results obtained by this characterization analysis are shown in figure ranging from 3.10 to
3.14. The presented results are the one obtained for the Honor View 20 smartphone. All
of the other tested Android devices statistical results presented similar characteristics and
distribution. Figure 3.10 shows the estimated receiver clock drift in both [m/s] and [ppm]
units. On this image, the distinction between the fast and slow varying component are
clearly visible. This first observation validates our previous hypothesis on the clock drift
component division. Hence, the red and blue lines represent the fitting strategies used
for estimating and removing the slow-varying component of cδ̇t. As a result, figure 3.11
presents the clock drift fast component cδ̇tfast. Two fitting methods were tested in order
to accurately estimate the slow-varying part of the clock drift: the polynomial fitting
and the spline fitting. A third order spline fit seems to better match the slow-carying
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Figure 3.12: Cubic Spline
Fitting of Clock Drift Fast
Component Distribution

Figure 3.13: 4th Order Polynomial
Fitting of Clock Drift Fast
Component Distribution

component whereas the polynomial fitting still exhibits residues of the slow-varying error.
Figures 3.12 and 3.13 present the distribution of clock drift error according to the chosen
fitting technique. Both histogram distribution reflect Gaussian-like distribution features.
The standard deviation of the clock drift error is presented on those figures for the Honor
View 20.

Table 3.14 represents the estimated standard deviation of the receiver’s clock drift for
all tested smartphone. Moreover, the comparison is complemented by a previous analysis
in [65] indicated by the asterisks. Both results from the Google Pixel 3 and the Xiaomi Mi
9 are highlighted in red due to their inconsistency with the rest of the tested devices. It is
important to note that both Android devices do not have and do not grant access to phase
measurements. Thus, the error biases present in their recorded Doppler measurements
can explain the error repercussion on the estimated clock drift error. On the other hand,
all other tested smartphones seem to have the same magnitude of clock drift error as a
low-cost COTS GNSS receiver, the u-blox M8T. This results is encouraging and shows
that embedded smartphone GNSS receivers have similar clock performance error resulting
in accurate velocities solutions. Finally, similar smartphone models displays consistent

Figure 3.14: Estimated Standard Deviation of Receiver’s Clock Drift (σcδ̇t in [m/s])
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results (e.g: Both Honor View 20 and the Xiaomi Mi 8 trio). This observation comfort
the measurements modeling hypothesis made above and proves that the implementation
of a strict assessment method for characterizing smartphone positioning performance is
realistic.

2) Error Modeling: DLL Jitter

The receiver-based code measurement error, or DLL jitter, will be analyzed and quantified
in this study. This error can be estimated by taking the time derivative of the difference
between the code and phase measurements. Code and phase measurements models have
been exposed in equation 3.3 above. Plus, the CMC model remains unchanged and is
shown in equation 3.5. After simplification, the remaining terms of the CMC model are
two times the ionospheric error and the code error. Indeed, the error related to the phase
measurement has been neglected since the error magnitude of the code measurements is
larger. Also, the multipath error is disregarded since our measurements were taken in an
open-sky environment where the impact of multipath interferences is limited.

CMC = (ρSV
i − φSV

i ) = 2ϵIono + ϵCode (3.11)

Equation 3.11 exposes the remaining terms of the taken difference between the phase and
code measurements and the first order time derivative of the CMC model is described in
equation 3.12.

d

dt
(ρSV

i − φSV
i ) = d

dt
ϵCode (3.12)

The time derivative of the CMC allows to mitigate the ionospheric error since ionospheric
error variation are considered slow ( d

dt
(ϵIono) ≈ 0). Thus, leaving us with the expected

DLL jitter estimation. Results analysis are presented on figure 3.15 and on 3.16. DLL
jitter error distribution appears to follow a Gaussian distribution. According to the lit-
erature standard and for simulation purposes, DLL jitter has been computed in function
of the C/N0. The obtained DLL errors appear to be exponentially decreasing with the

Figure 3.15: DLL Jitter
Error Distribution

Figure 3.16: DLL Jitter in
function of C/N0 (ϵCode in [m])
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Figure 3.17: Estimated Standard Deviation of Receiver’s DLL Jitter (σϵCode
in [m/s])

increasing signal strength. The exponential fit f(C/N0), corresponds to a thermal model
of the DLL jitter [66]. However, we can note a ”bump” on the curve centered at 35
dB/Hz that remains unexplained at this time. Table 3.17 shows the estimated receiver’s
DLL jitter for all tested smartphone. Once again, those results shows the consistency
and the performance level of the tested Android device. It appears that smartphone code
measurements are of the same magnitude as the one on low-cost COTS GNSS receivers.
However, smartphones equipped with similar chipset models (the Xiaomi Mi9 and the
Samsung S10+ stocked with a Qualcomm Snapdragon 855) shows differences. The esti-
mated error is 4 times lower on the Xiaomi Mi9 device. It is suspected that the Xiaomi
OS operates and manage the chipset raw measurements differently. This would signify
that two smartphones with identical chipset could perform and handle positioning duty
differently.

3) Error Modeling: PLL Jitter

The receiver-based phase measurement error, or PLL jitter will be analyzed and quantified
in this study. This error originate from the PLL tracking loop in charge of keeping the
input and output phase in lock. Firstly, the PLL noise can be estimated by taking the
triple time difference of the phase measurements (also known as: PLL jerk) [67]. Starting
from the phase measurement model (φSV

i ) of equation 3.3, the triple time difference is
modeled as in equation 3.13.

d3φSV
i

dt3 = d3

dt3

(
(r + c(trx − ttx)) − ϵIono + ϵT ropo + Nλ + ϵP hase + ϵφ

Multipath

)
(3.13)

The above mentioned equation can be simplified by setting the following hypothesis. The
first term of the equation d3

dt3 r is mitigated since the observations are made in a static
scenario. Furthermore due to the slow variability of tropospheric and ionospheric errors,
these terms d3

dt3 ϵIono and d3

dt3 ϵT ropo are dismissed. In this scenario we will also assume that
the ambiguity are fixed and that cycle slips occurrences have been detected, removing the
term d3

dt3 Nλ. Then, we assume that the measurements have been collected in an open-sky
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Figure 3.18: Estimated Standard Deviation of Receiver’s PLL Jitter (σϵP hase
in [m/s3])

environment thus the term d3

dt3 ϵφ
Multipath can be neglected.

Finally, equation 3.13 can be approximated by the third time derivative of the phase
measurement error d3

dt3 ϵP hase as the sole unmitigated term. The standard deviation of the
PLL jitter σϵP hase

can thus be estimated by applying a normalization factor of 1√
20 as

demonstrated in [67]. This estimation process is resumed in equation 3.14

σϵP hase
≈

d3φSV
i

dt3√
20

(3.14)

The presented PLL jitter estimation technique assumes that cycle slips are not present
in the phase observations. In this dissertation, we assume that the Android cycle slip
flag detection mechanism can be used for determining phase segment without cycle slips;
despite the high false alarm detection rate discussed in section 3.3.2.b.
Figures exposing the PLL jitter histogram distribution and PLL jitter as a function of
C/N0 are displayed in [68]. The table synthesizing the results and the associated figures
are also presented in [68]. Table 3.18 shows the estimated standard deviation of the PLL
(σϵP hase

= σP LL). As expected, the error level of the phase measurements is a thousand
times smaller than the one for the code measurement. Again, similar conclusion can be
drawn concerning the characterization of the phase measurements being similar to the
one of a low-cost receiver in nominal, static and open-sky conditions.

3.3.3.b Chipsets Performance Variability

The results obtained on the characterization method needs to be balanced with smart-
phone positioning performance variability. Among the tested Android devices, two of
them did not record phase measurements during the entirety of the data collection cam-
paign. As exposed in our analysis above, the Xiaomi Mi 9 and the Google Pixel 3 did
not record phase measurements of any tracked signals. This missing data is a deliberate
choice from the chipset manufacturer to not include and/or track phase measurements in
their receiver hardware. The most disturbing fact being that the Xiaomi Mi 9 is the direct
evolution model of the Xiaomi Mi 8, who was the first-ever multi-constellation and multi-
frequency smartphone and had phase measurements recording capability. Therefore, a
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characteristic analysis based on smartphone brand cannot be envisaged given the differ-
ences that can be encountered. An assessment method will be developed for characterizing
any Android smartphone following statistical results emanating from this complete smart-
phone study. Similar observations and conclusions have been drawn in [69].
Figure 3.19 highlights an other smartphone GNSS measurements feature characteristics
of smartphone-based positioning. This figure displays the captured signals C/N0 along
the collaborative scenario B during a short time (≈ 5 min). This shows a large variability
of measured C/N0 for all captured signals. This characteristic have been observed on all
tested Android smartphones. Moreover, few captured signals seems to be tracked at very
low C/N0. This might be due to the high sensitivity of the receiver setting explained
in 3.1.1.a. Signal consistency seems to be one of the main issues that we can observed
on smartphone embedded chipset. This signal and measurements analysis will be now
carried on urban environment.

3.3.4 Quality Assessment in Urban Environment
Urban environment positioning constitutes a great challenge for GNSS receivers.

Signals can easily get degraded either by disruptive multipath and by NLOS signals re-
ception. Those disruptions are mainly due to environment around the user made of tall
buildings and usually referred as “urban canyons”. These limiting factors are aggravated
by smartphone’s components. Indeed, the linearly polarized patch antenna, mounted on
a tight logic board inside our smartphones, is not optimized for acquiring circularly po-
larized GNSS signals in disruptive conditions. Our analysis aims at recognizing potential
limiting factors for developing a smartphone collaborative system. In the first place, a
global positioning performance study will be presented for all our tested devices. This will
allow to better draw the main picture of smartphone-based urban positioning. A specific
section will detail the impact of smartphone’s antenna in urban conditions thanks to the
unique setup of our data collection campaign. Finally, a short conclusion will assess the
suitability for Android GNSS raw data measurements for the future implementation of
collaborative positioning techniques.

Figure 3.19: Signal C/N0 of Recorded Signals during the Scenario B in [dB.Hz]
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3.3.4.a Positioning Performance

Smartphone positioning performance was expected to be greatly deteriorated in ur-
ban and constrained environment due to multiple architecture limitations, as exposed in
A.2. However, preliminary urban positioning analysis demonstrated that Android smart-
phone devices were achieving a position solution accuracy of a couple meters. This ac-
curacy performance can be directly confronted and compared to the level of performance
expected from a COTS GNSS low-cost receiver. In our urban environment analysis, most
tested smartphones were achieving the same level of positioning accuracy as the u-blox
M8T receivers on-board both vehicles. This level of performance is due to the smart
integration and hybridization of smartphone data within the Android FLP solution. FLP
positioning solutions will represent the benchmark of global smartphone positioning per-
formance, regardless of its ”black-box” nature. Figure 3.20 characterizes smartphone’s
GNSS-only positioning performance. This figure represents the positioning solutions out-
put of two smartphones and the trajectory reference during the collaborative scenario C,
in urban environment. The left graph, shows the vehicles trajectories with one being static
in open sky conditions (green dots) and the second car was circling the area. The blue
dots represents the GNSS-only solutions, computed with a WLS estimation technique,
of the Xiaomi Mi 9. The red trajectory pictures the high-end COTS receiver (NovAtel
SPAN: An IMU/GNSS coupled receiver) reference positioning solutions. As expected,
consequently to smartphone’s antenna specifications and local urban constraints, numer-
ous position outliers are present in the final solution. The graph on the right, shows the
smartphone positioning errors compared to the reference trajectory for the Xiaomi Mi
9. Mean positioning error for this smartphone is about 15 meters. This analysis will be
considered as the performance baseline of GNSS-only solutions.

The nature and quality of recorded smartphone’s measurements have also been studied
for urban environment. Signal availability in city center was higher than expected. 36
signals were tracked in average from our fleet of tested smartphones (compared to 38
for Ublox F9P). This phenomena can be explained by the fact that the phones are now
multi-constellation and multi-frequency which increases the number of tracked signals.
Moreover, it appears that signals are acquired and tracked down to very low C/N0. Up to
10% of tracked signals have a C/N0 below 15 dBHz, observable on figure 3.19. A signal

Figure 3.20: Smartphone FLP Positioning Solutions Compared to Reference
Trajectory during Collaborative Scenario C and the Associated Smartphone

Positioning Error Analysis in [m]
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strength analysis has been made for the strongest observable satellite signal for the two
Xiaomi Mi 8. Both tracked signals were observed during the entirety of the data collection
campaign, allowing the analysis of signals strength evolution over time. Those results are
exposed in figure 3.22. Moreover, it seems that E5a Galileo signals are more reliable over
time than other tracked signals. This observation led to inspecting the nature of the
most tracked signals per tested smartphones. This investigation is characterized by the
bar diagram in figure 3.21. The percentages showed on the figure correspond to the ratio
between the L1 and L5 frequency for GPS and Galileo. For some smartphones such as
the Honor View 20, the proportion of L5 signals tracked is up to 92% for Galileo. this
characteristic is observed to be only valid for Honor devices. Proportionally, on the L5
band, the most tracked signals are from the Galileo constellation. Certain signals and/or
constellations appear to be favored by Android, through a weighting process within their
positioning algorithm, according to signal reliability arguments allegedly.

3.3.4.b Impact of the Smartphone Antenna

As introduced during the presentation of the data collection campaign, one of the
specificity of our analysis was to be able to characterize the smartphone antenna impact
on the recorded measurements. One of our tested smartphone, the Xiaomi Mi 8 equipped
on the Citroen Jumpy car had a specific feature. An antenna port was hacked onto our
device in order to record GNSS signals from a geodetic antenna installed on the car’s roof.
A second Xiaomi Mi 8 smartphone with factory setting was used for benchmarking the
observation and results obtained from the modified Android device. Several researchers
attempted to characterize signal quality of smartphone’s antenna [43] [70]. Recorded
signals with low values of C/N0 (below 10 dBHz, observed in our analysis above) and
poor multipath suppression have been imputed to the antenna performance by those
cited research papers. Both Xiaomi Mi 8 devices, presented in this analysis, have similar
hardware components and are running identical Android OS level (Android 10.0). The two
smartphones are only differentiated by the antenna recording GNSS signals. Figure 3.23
shows the signal analysis of the Xiaomi Mi 8 connected to an external high-end antenna.
This figure is intended to be compared with the graph printed above (in 3.22) showing
the signal strength analysis for the second Xiaomi phone. It can be clearly identified that

Figure 3.21: Bar Diagram of the
Mean Number of Signals Received

per Smartphones
Figure 3.22: Signal Strength
Analysis for the Xiaomi Mi 8
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Figure 3.23: Signal Strength Analysis for a
Xiaomi Mi 8 Connected to an External

High-end Antenna

Figure 3.24: Multipath Android Flags
Detection Histogram Distribution for the

two Xiaomi Mi 8

L5 and E5a signals have been recorded with higher C/N0 values by the geodetic antenna,
proving that smartphone’s linearly polarized antenna is not optimized for recording GNSS
signals.
Figure 3.24 arguments the hypothesis that the smartphone embedded antenna does not
properly mitigate multipath interferences. This figure plots the histograms distribution
of Android multipath flag events in function of C/N0. The red histogram represents the
Xiaomi Mi 8 phone recording measurements with its original antenna, whereas the blue
histogram represents the distribution of multipath events for the hacked phone. It is
reminded, that regardless of the inconsistency of the Android multipath flag detection
algorithms (see section 3.3.1.b), the comparison between both phones holds since both
device use the exact same detection method. The distinction in multipath detection events
between both Xiaomi Mi 8 phones is clearly visible. Multipath events have been detected
more often on retrieved signals between 15 and 30 dB/Hz from the device running the
standard linearly polarized patch antenna. This observation is backed up by a similar
comparison between both tested Honor View 20, that did not show any differences in
multipath events distribution. Those figures are exposed in annex C.

3.3.4.c Android Measurements Suitability for Collaboration

The presented throughout analysis allowed us to better understand smartphones’
integrated chipset “black box” processes. The characterization methodology set during
our data campaign analysis enlightens differences in positioning performance between dif-
ferent smartphones. The estimation of key positioning performance parameters allowed
us to quantify those differences for both nominal and urban environments. Multiple
innovative research studies conducted here allow to precisely characterize smartphone
embedded chipset receiver. Android GNSS raw data measurements have been defined as
suitable and reliable for collaborative positioning usage. The statistical analysis made on
receiver-based error model will be used to simulate and implement innovative collabora-
tive positioning techniques. An assessment methodology has been developed for creating
a baseline method for characterizing any smartphone GNSS measurements. In urban
environment, smartphone’s embedded GNSS receivers exceeded positioning performance
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expectations. Indeed, it turns out that smartphone positioning solutions have similar ac-
curacy level of low-cost GNSS receiver such as the u-blox M8T. However, the smartphone
embedded antenna remains the main flaw in this hardware architecture design.

3.4 Chapter Conclusions
This chapter explored the past, current and future smartphone-based positioning

techniques. After the release of Android GNSS raw data measurements, multiple research
studies were launched for evaluating the implementation of advanced GNSS algorithms.
Well-know advanced positioning algorithms, such as PPP and RTK methods, have been
extensively studied in the literature and their implementation remain under-development
for smartphone-based positioning. Therefore, it was ambitioned to develop a collabo-
rative network positioning system between smartphone users. This technique has been
selected for its pertinence and its adaptability to smartphones’ hardware components.
Thus, a data collection campaign has been successfully carried out for characterizing
smartphone GNSS raw data measurements parameters in the interest of developing a
smartphone-based collaborative network. Our analysis highlighted smartphones capabil-
ities in nominal and urban environment. A characterization method was presented as a
benchmark method for testing and analyzing Android GNSS measurements. Those in-
novative research studies contributed to the better understanding of Android embedded
GNSS receiver operations within the scientific community.
Following the thorough review of smartphone-based positioning technique state of the art,
we aimed at developing a smartphone-based collaborative network in order to enhance
urban positioning. Our goal will be to take advantage of the increasing number of smart-
phones in today’s city center for developing a safe and secure network of smartphone
users exchanging GNSS data for increasing positioning performances. The following part
of this research thesis will elaborate on the existing collaborative methods and how they
can be transferable for smartphone purposes. Then, a proposed collaborative method will
be implemented, tested and validated for smartphone-based urban positioning.
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The previous research part, on Android smartphone positioning, thoroughly intro-
duced the theory behind smartphone-based positioning. After the presentation of smart-
phone positioning engine architecture, Android recorded GNSS measurements have been
studied in open-sky and urban environments during a post-processing analysis of our data
collection campaign. The literature reviewed revealed that the implementation of classical
advanced positioning algorithm was unsuitable for smartphone positioning. Cooperative
techniques aims at improving network’s users positioning performance by processing ad-
ditional shared GNSS measurements. Therefore, collaborative positioning was favored
to be developed for improving smartphone urban positioning performances. This choice
was motivated by two main factors. Firstly, the increasing number of connected Android
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devices in modern city centers is an undeniable advantage for developing a cooperative
network. The abundance of sharable data is expected to mitigate constraints linked with
smartphone positioning in urban conditions. Secondly, collaborative networking on An-
droid devices will also benefit from the hyper-connectivity of smartphone devices. This
implies that a safe and secure communication link will always be available to network’s
users for sharing data. Expectingly, the development of a smartphone-based collabo-
rative network will significantly increase Android devices positioning performances and
reliability.

This chapter is the preamble of the second part of this research thesis. Collabora-
tive positioning techniques will be thoroughly reviewed before proposing an innovative
smartphone-based collaborative algorithm. In the first place, collaborative positioning
will be introduced and defined. Then, existing network architectures, the nature of ex-
changed data and communication links will be described. Afterward, classical implemen-
tation levels for cooperative positioning are exposed. Finally, our proposed smartphone
collaborative network will be presented and argumented.

4.1 Introduction
Collaborative Positioning (CP) allows for the sharing of key information across a

network of authorized users for improving positioning performance criteria. CP meth-
ods are often referred to as augmentation techniques, used for improving receiver perfor-
mance [71] [72]. Fundamentally, the study of cooperative algorithms consists in exploiting
aiding data from users within the network infrastructure in order to either complement
or replace their own set of data allowing for faster computation and/or higher reliability
and accuracy solutions. GNSS performance criteria has been defined by civil aviation
regulation authorities as follows:

• Accuracy:
This criterion describes the exactness of the estimated position compared to the
true position. This quantity is often expressed as a statistical measure.

• Availability:
This parameter represents, in percentage of time, the usability of the service by the
user in the defined coverage area.

• Continuity:
The continuity criterion of the GNSS consists of the ability of the system to perform
its function for the intended period of time.

• Integrity:
The integrity performance parameter symbolizes the trust parameter that we put
into the obtained position. In Civil Aviation, this parameter measures the ability
of the receiver to send timely warnings when the system is not reliable.

• Time to First Fix:
This performance benchmark measures the time needed by the receiver to obtain the
first estimated position from the moment the receiver is turned on. The parameter
is used in order to compare receivers performance.
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CP methods are defined and characterized by three main parameters: network architec-
ture, nature of exchanged data and by the CP implementation level in the processing
chain [71]. The sharing of information data is organized around the network architecture.
It defines pathways between network’s users for establishing a framework for exchanging
useful data. The nature of exchanged data needs also to be accurately defined for char-
acterizing CP structure. Subsequently, a safe and secure communication link is required
to be identified and implemented for securing network transmissions. Our first approach
for introducing CP methods will be to compare similarities with well-known GNSS aiding
technique in the smartphone domain.

4.1.1 Comparison Against Traditional Methods

In this chapter, traditional augmentation technique are referred as a method that
aims at improving GNSS receiver performance using various techniques. This aiding
technique provides assistance and correction to a specific user. Typically, three categories
of augmentation systems are defined: Satellite-based, ground-based and DGNSS. All
those aiding methods share similarities with cooperative positioning algorithms, they aim
at assisting a pre-defined GNSS receiver via computational or correction mechanisms for
improving final positioning performance.
AGNSS is characterized as a receiver augmentation service, as defined in section 3.1.1.a.
This assistance method is well implemented on smartphone device and constitute a perfect
benchmark for comparing and analyzing collaborative positioning algorithms. CP and
AGNSS methods shares common characteristics and attributes, such as:

• The AGNSS and CP methods share the same goal by aiding an user through per-
formance criteria improvements (improving accuracy and TTFF).

• The two aiding methods provide a multi-constellation aiding service. Even though,
the AGNSS service results from the Assisted GPS (AGPS) method [12], the stan-
dardization of this method to other GNSS constellations is not yet completely im-
plemented.

However, cooperative positioning stands out in multiple ways. The differences with
AGNSS are depicted below:

• AGNSS provides GNSS data only aiding. In contrary, CP method allows for the ex-
change of data from other sensors combined with GNSS data (e.g: IMU, Bluetooth,
WiFi and more).

• The exchange of data within the CP protocol can be made while taking into ac-
count local environment. Indeed, method could be implemented for predicted and
describing the user environment. Thus, making CP techniques interesting for urban
positioning. On the opposite, AGNSS correction service are not specifically adapted
for urban navigation and positioning.

• Specific CP structure can be implemented without additional hardware. Peer-to-
peer CP does not require the use of an infrastructure outside the network, whereas
AGNSS requires a global infrastructure to distribute information to the users.
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4.2 Network Architecture
The first characteristic of CP to be explored is the network architecture. It exists

two distinctive collaborative network architectures. The first one is called a Peer-to-Peer
(P2P) network and is depicted on the left side (a) of figure 4.1. The theoretical principle
of this network is based on the free sharing of data between authorized network’s users.
The second architecture, illustrated on the right side (b) in figure 4.1, is described as a
centralized network. As opposed to the previous principle, a centralized server gathers all
the information and data from the network back into a server. In this centralized process
unit, the data and informations are processed and evaluated before being sent back into
the network. The main difference between the two architectures is that users directly
interact with each other in a P2P solution; whereas in a centralized network, users only
communicate with a centralized unit. This processing unit could take the form of a cloud
computing server, taking over the required computational power. The centralized network
architecture is represented in figure 4.1 b) on the right.

4.2.1 Peer-to-Peer (P2P)

The P2P collaborative network is, in opposition to the other type of network, a
decentralized communication web. The principle of this network, is that every users are
able to share and communicate with every other users. The main advantages of this
sharing technique is that it allows great scalability of the structure and the creation of an
heterogeneous temporal network. On the other hand, the downside of this architecture is
that shared data can be unreliable in certain cases and that a quality monitoring chain
cannot be implemented. Moreover, all data processing power and computations are now
dependent on individual user devices. In [73], a P2P network structure have been used to
reduce the Mean Acquisition Time (MAT) of peers inside the network by sharing GNSS
aiding data.

Figure 4.1: Collaborative Network Architecture Representations. a) CP P2P
Network Architecture. b) CP Centralized Network Architecture
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4.2.2 Centralized Network
A centralized collaborative network consists of peers communicating with a central

processing unit gathering data and information. The main advantage of this exchange
method is to outsource computational power to a dedicated server resulting in battery and
computation power saving for every users of the network. Furthermore, the centralization
process allows for integrity and quality checking of the data given by network’s peers. The
server unit will gather all the data information, check for redundancy, and make enhanced
data solution available to peers in the network. Many well-known applications utilize
server-based networks. Cloud-based snapshot GNSS receiver can be used as an example to
illustrate centralized network techniques. The goal of this techniques is to outsource all the
computation to a remote server. The snapshot receiver will simply operate only for a very
short amount of time, collecting signal digital samples, before sending these data to the
cloud for the signal processing and position estimation processes [74] [75]. Furthermore,
a framework for centralized augmented system for smart cities has been developed and
tested in [76] demonstrating the efficiency of a dedicated centralized network architecture.

4.3 Exchanged Data Packets
The nature of exchanged data within a CP algorithm can take various forms and

are organized in data packets which are then exchanged within the collaborative net-
work. In this study case, GNSS measurements are in the center of this exchange process.
Other data and information types can also be exchanged and constitute added benefits
for assisting the estimation process of collaborative positions. Two types of data packets
configurations exist for characterizing the nature of exchanged data in any collaborative
network. The first configuration, described as required, encapsulates GNSS-only observ-
ables. The second configuration regroups GNSS observables plus the addition of various
measurements, called hybrid data packet.

4.3.1 Required Packet Configuration
GNSS-only data type can be transmitted via a CP network. The nature of this

exchangeable data type is strictly limited to the transmission of GNSS observables between
network’s user. The following non-exhaustive list presents the main GNSS-only data
exchanged in CP methods.

• Signal strength (Carrier-to-noise ratio C/N0)
• Pseudoranges
• Doppler measurements
• Carrier phase measurements
• Visible satellites (numbers and identification (PRN))
• Time tags
• Estimated user position

Analysis and tests have been performed in [77] for assessing CP P2P network sharing
GNSS-only data. It has been confirmed that users in deep urban environment bene-
fited from the implementation of such positioning technique. However, simulation results
demonstrated that GNSS-only data exchange was not optimal for improving receivers
positioning solutions in a small collaborative networks.
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4.3.2 Hybrid Packet Configuration
An hybrid set of exchanged data is now considered as the most efficient data type

for a given CP network. An hybrid dataset contains multiple data products outputted
by network’s receivers. This configuration is constructed around the transmission of
GNSS measurements, similar as the one described in the subsection above. Additionally,
extra receiver’s data are included with the exchanged dataset such as: Terrestrial ranging
measurements between peers, Bluetooth, WiFi, IMU data and more. Modern receivers,
especially smartphone devices are now equipped with multi-sensors technology that can
easily record and exchange this data, giving insight about their local environment and or
peer’s location.

4.4 Communication Link
The selection and creation of a communication link within a CP network represent

the backbone for the successful implementation of this advanced positioning method. The
communication method can be independent from the CP algorithm. Designated commu-
nication channel are proven to be safe, fast and reliable. Users information and data are
required to be anonymously transmitted to other members of the network in order to
ensure user data protection and privacy as stipulated by European Union laws. Commu-
nication between users are preferred to be fast and with low-latency thus not affecting
the aging of transfered data. Finally, a reliable channel ensure the integrity of exchanged
data packets and prevents data packets losses during data transmission.
Multiple communication channels are available and are suited for the exchange of data.
Short range communication protocols have been demonstrated to be the most efficient link
supporting low-latency data transmission [78]. Ultra-Wide Band (UWB) communication
method are not taken into consideration in this study due to their characteristics incom-
patible with smartphone CP. Dedicated Short-Range Communication (DSRC) standard
have been developed for vehicular cooperative network. The Institute of Electrical and
Electronics Engineers (IEEE) is the official organization responsible for the standardiza-
tion of communication procedures. The DSRC has been standardized as IEEE 802.11p.
DSRC appears to support data rate from 3 to 27 Mb/s with a range of about 300 me-
ters [79]. Another popular communication link that can be envisaged for CP techniques is
WiFi protocol. It is defined by the IEEE 802.11b protocol in a similar way as for DSRC.
Finally, cellular network have been also considered as pathway for sharing data among
network’s user and defined as Ultra-Reliable Low-Latency Communication (URLLC) [80].

Assessing the characteristics and performance level of a chosen communication link falls
outside the scope of this research. During the remaining part of this thesis work, we
will assume that a safe, fast and reliable communication link exists and can be used for
collaborative exchange of data. This hypothesis is judged to be realistic considering the
numerous communication channels available to smartphone users.
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4.5 Implementation Strategies
CP methods can be implemented on different receiver levels. Two techniques for

exploiting specific GNSS are reviewed: Physical and the range layer. Physical layer
CP implementation refers to aiding techniques aiming at improving receiver’s processing
stages (DLL and PLL tracking procedures). On the other hand, the range layer covers
aiding techniques and methods applied during PVT estimation via the sharing of GNSS
observable data.

4.5.1 Physical Layer
This section will explore the different implementation opportunities to improve one

or more users position estimation by applying methods at the physical layer (at the signal
processing block) level of the GNSS receiver.
This method will be applied just before starting the acquisition phase, by receiving in-
formation about: Doppler frequency, Code delay and C/N0 from different peers in the
network. The aided user is expected to significantly reduce its acquisition time [71].
However, time synchronization between individuals in the network is needed and can be
achieved by following conventional approaches with limited complexity that can be used
for low-cost GNSS receivers. The following list shows examples of physical layer CP
techniques.

• Aiding with Doppler Frequency
Peers among the network share estimated doppler frequency for each visible satellite
seen by their receiver. This information would allow the aided receiver to decrease
the size of the search space, thus decreasing the number of frequency bins needed for
the computation of the cross-correlation function and finally leading to a decrease
of the receiver’s acquisition process time.

• Aiding with Code Delay
Code delay data exchange could also allow a user to reduce its own acquisition time.
Having information about neighbors receiver’s code delay grants the aided peer to
possibly remove data bit transitions while comparing received signal samples and
locally generated replicas [71].

• Aiding with C/N0
Aiding with C/N0 can be achieved by exchanging this parameter within the network.
The aided receiver can decide to acquire the satellites with only a high value of
C/N0. On the other hand, satellites with expected low C/N0 can be acquired by
increasing the integration time and by choosing the appropriate number of coherent
and non-coherent integrations in order to improve the detection ability. [71]

4.5.2 Range Layer
CP implementation methods at the range layer require aiding quantities that can be

used for integration and complexity reduction of the PVT computation process (presented
in B). It is assumed that an hybrid data exchange is possible between users inside the
network and that each of them possess a terrestrial ranging capability. The importance
of computing inter-user distances is further explained in chapter 5, as it is the first step
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toward the development of CP techniques. Examples of range layer CP methods from the
literature review are given below.

• Terrestrial Ranging used as N+1 Satellite
This technique uses an extra information, defined as a terrestrial ranging measure-
ment between two users. The estimated distance between two receivers can be used
as an extra pseudorange distance from a N+1 satellite. However, this method is
limited by additional errors made during the estimation of terrestrial ranging and
in the propagation channel. In order to implement this concept, an error estimation
parameter must be transmitted as well as the estimated positions of peers in the
network, as experimented in [81].

• Virtual Satellites & Pseudoranges
Part of the hybrid shared data are the pseudoranges and the visible satellites of dif-
ferent users in the network. The virtual satellite method takes advantage of those
extra information received by the aided peer. Satellite visibility and pseudoranges
given by other peers can allow the aided user to obtain an expected satellite position
that cannot be seen by its own receiver. From that estimated satellite position, the
aided peer receiver can calculate a virtual pseudorange from this particular virtual
satellite by estimating the distance between him and the aiding peer. Thanks to
this method, users can obtain a better satellite coverage and decrease his geomet-
rical dilution of precision therefore enhancing his receiver accuracy. This particular
techniques is described in [82].

• Collaborative Dilution of Precision
The Collaborative Dilution of Precision (CDOP) has been defined by [83] as a
theoretical performance analysis parameter. This parameter takes into account the
number and the repartition of all the users inside the network and the accuracy of
the terrestrial ranging computations. As the name indicates, this quantity is similar
to the Dilution of Precision (DOP) for a collaborative network.

4.6 Smartphone Collaborative Network Methodology
This section will present our proposed smartphone collaborative network. Our pre-

sented network have been thought out to take into consideration smartphone limitations
and strength associated with those connected devices. The previous CP state of the art
review revealed that any collaborative networks are characterized by three main parame-
ters: Architecture, data exchanged and communication link. Our presented smartphone
collaborative network will be articulated around those three main axes. Before the de-
scription of our smartphone cooperative algorithm structure, previous literature works
will be studied for highlighting smartphone collaborative networking strengths.

4.6.1 Literature Review
CP algorithm started to spark interest during the last decade and was first imple-

mented in the robotic domain. Recently, collaborative techniques were widely studied for
autonomous driving applications. This type of application requires high-accuracy level
that can be achieved by pairing a fleet of vehicles within a designated cooperative net-
work [84]. CP methods are used for exploiting Vehicle-to-Vehicle (V2V) communication
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in order to improve overall targeted vehicle position. These approaches are similar to what
we want to achieve with smartphone-based collaborative networking. However, very few
papers and research projects explored cooperative approaches on Android smartphone de-
vices. In [85], an analysis of three measurements sharing methods has been proposed in the
smartphone positioning domain in future cooperative approaches. Exchanged data were
simply used to increase the number of observations of one specific target smartphone.
Cooperative algorithms have been studied by [86] via clustering techniques leveraging
measurements based on fault detection mechanisms. Moreover, a project called Flamingo
developed a high accuracy techniques applied to the smartphone domain using a central-
ized network. Preliminary results exposed in [50] showed promising results and comfort
our idea to implement a centralized collaborative network for smartphone positioning.

4.6.2 Network Configuration
The main objective of our smartphone-based collaborative network will be to improve

one or more user smartphone’s positioning performances. Improving positioning perfor-
mance can be subject to the enhancement of the four parameters used to describe GNSS
receiver performance which are accuracy, availability, continuity and integrity. Limita-
tions and strengths of smartphone-based positioning, showed in chapter 3, will be put in
the center of our proposed network structure. The goal for our collaborative smartphone-
based network is to establish a cooperative structure taking advantages of smartphone’s
capabilities and volume in today’s dense city centers. We envision a low-cost structure
built around Android mobile phones positioning capabilities, scalable to the size of a city
center. Our network must be accessible easily to multiple users. The following describes
CP parameters chosen for our smartphone-based cooperative network.

• Network Architecture
The selected network architecture for smartphone-based CP technique is a central-
ized network implementation. There are two main advantages to choose this specific
architecture. First, similar network architecture have been successfully employed in
the smartphone domain. Secondly, the central processing unit will be in charge of
the computational tasks associated with CP algorithms. Smartphones will transmit
their data set to the central unit and receive back an updated collaborative position
estimate.

• Exchanged Data
The nature of exchanged data between the processing unit and the users will be
defined as hybrid. The shared data set is expected to contain Android GNSS raw
data measurements plus additional data components such as IMU or barometer
measurements. The data frequency of any recorded data will be limited to 1 Hz
due to the data recording frequency of Android GNSS raw data measurements.
Figure 4.3 shows the proposition made for an hybrid data packet template for a
smartphone-based collaborative network. This data format highlights all useful
sharable smartphone data, including multi-constellation and multi-frequency GNSS
measurements as described in this thesis.

• Communication Link
The data exchange link will be provided by a DSRC communication channel. Indeed,
smartphone offers multiple communication channels that can be used for transferring
data packets to the remote centralized server. A client-server type of service can be
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developed between multiple connected smartphones that are registered throughout
a predefined access point. Similarly, cellular network technology (4th generation and
the upcoming 5th generation i.e: 4G and 5G) can be exploited as low-latency com-
munication channels using Ultra-Reliable Low-Latency Communication (URLLC).

Our CP technique will be implemented on the range layer, given that smartphone only al-
lows to retrieve GNSS raw measurements. The selected collaborative positioning network
will regroup a variety of smartphone users exchanging Android raw data measurements.
An accurate ranging method needs to be put in place for estimating vectorial links between
all network’s users and thus creating a cooperative connection among them. Collaborative
ranging methods is explained and argumented in chapter 5.

The block diagram in figure 4.2 highlights the proposed CP method structure. Our col-
laborative network is constructed around the users that exchange measurements. In the
collaborative structure, each agent send the hybrid data packet to the central processing
unit. This cloud-based processing regroups the software-based cooperative engine. Our
collaborative algorithm can be described by three main steps. The first step is a mea-
surements pre-processing block that aims preparing the hybrid data packets sent by each
smartphone users. Afterward, the estimation of such vectorial links is expected to be
computed by the central processing unit leveraging data shared by users within the net-
work. This estimation method is referred as the Inter-Phone Ranging (IPR) technique in
the present dissertation. Afterward, the final collaborative users positions are estimated
based on an optimization process constrained by the aforementioned vectorial links. Fi-
nally, the newly estimated collaborative position are sent back to the participating users
with the cooperative network. Collaborative smartphone users will be receiving their own
updated positions without collecting any data from other agents. The main goal of our
collaborative network is to improve users individual positions through data sharing and
processing.

Figure 4.2: Smartphone-based Collaborative Network Structure Block Diagram
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4.6.3 Software-based Collaborative Engine

Our collaborative estimation engine is articulated around three main axes.

1. Measurements Pre-Processing
Hybrid data packet are being prepared by the pre-processing block. This preparation
includes the formation of Android raw data measurements as described in section
3.3.1.a.

2. Inter-Phone Ranging (IPR) Method
The IPR method allows to compute vectorial links strictly based on Android raw
data measurements. These measurements are estimated through the processing of
code double difference. This method is presented in section 5.2. The obtained
baseline vector estimates are employed to constraint the set of users position for
estimating collaborative positioning solutions

3. Constrained Collaborative Estimation Technique
The collaborative engine is described as an optimization technique that minimize the
positioning discrepancies between newly estimated collaborative positions and their
original fix positions. This optimization process is constrained by the previously
estimated vectorial links, IPR vectors. Our collaborative engine is defined in details
in chapter 4.

4.6.3.a Discussion on the Selected Collaborative Engine

Our collaborative estimation technique is based on a Maximum Likelyhood Estima-
tion (MLE) method. MLE are well suited for collaborative positioning as shown in [87]
and [88], respectively. On the account of the innovative aspect of smartphone-based col-
laborative estimation technique, the selected estimation method has been derived from the
automotive industry. Our collaborative estimation techniques is defined as a constrained
non-linear optimization problem solved via an MLE estimation method. This technique
allows for fast computation process without increasing computational complexity and ad-
ditional hardware that can be run on a centralized server. One of the drawbacks of using
MLE methods for CP is that due to the nature of multi-smartphone geometries, multiple
local minima can be present in the final solution. Nevertheless, during simulation analysis
of our collaborative solution, the minimization process was achieved 99% of the time.
Recent studies made in [14] explored other estimation methods applied to CP methods.
The study of a statistics-adaptive sequential Bayesian estimation filter, a.k.a Cognitive
Particle Filter, shows promising results compare to MLE estimation techniques. Indeed,
the recursive integration of shared GNSS observations and inter-user distances enhanced
positioning solution accuracy. However, Bayesian estimation filters require a-priori knowl-
edge of measurements statistical distribution that cannot be guaranteed for smartphone-
based measurement. In fact, this phenomenon has been highlighted by our data collection
campaign analysis that demonstrated that Android measurements characteristics vary be-
tween smartphone brands and models. Measurements statistical error distribution used
in Bayesian techniques would bias the final cooperative solution.
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4.7 Chapter Conclusions
This chapter presented the state of the art review of collaborative positioning. A

characterization method has been recovered and applied for designing an innovative
smartphone-based collaborative network. Literature assessment showed cooperative work
at the range layer (i.e: in the positioning domain) was possible. Moreover, range-based
collaborative positioning is heavily supported by the estimation of inter-user distances
within the network. From this first evaluation, our proposed smartphone-based collab-
orative network was revealed. This cooperative network has been thought out to take
into consideration smartphones constraints and advantages. The hyper connectivity of
smartphone devices allow for a reliable communication channel to be exploited for CP
methods. The following chapter will introduce Inter-Phone Ranging (IPR), a cooperative
user ranging method dedicated to smartphone.

Figure 4.3: Proposition of an Hybrid Data Packet Template for
Smartphone-based Collaborative Network
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Our proposed collaborative network exposed in 4.6 is dependent on a ranging method
that estimates vectorial links between smartphone’s users within the network. In the lit-
erature, baseline estimation methods between users has been studied extensively. This
problem is traditionally referred as baseline estimation [24] [89], alternatively in coopera-
tive works it is also known as inter-agent ranging or inter-user distance estimation [90] [91].
The aforementioned baseline refers to a distance vector between users, whereas the base-
line length is a scalar value representing the norm of that vector. The scope of this chapter
will be to assess GNSS-based baseline estimation techniques to be applied for smartphone
collaborative positioning.
Firstly, fundamentals of baseline estimation will be defined mathematically. Then, a
state-of-the-art review on baseline computation methods will be displayed with a focus
on GNSS-based solutions. Afterward, our proposed inter-agent estimation method called
Inter-Phone Ranging (IPR) will be presented. This method generates 3D vectorial links
that are required by our proposed smartphone-based collaborative positioning algorithm.
Finally, the Inter-Phone Ranging (IPR) method will be evaluated in both open-sky and
urban environment cases.
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5.1 Collaborative Ranging: Fundamentals
Collaborative ranging is defined as a general method for obtaining range information

of any form, either vector or scalar, using data exchanged by multiple sources within a
network. This section provides an overall introduction to ranging methods and charac-
terizes the differences between range vector and the range distance. A literature review
including various methods for obtaining range information is firstly presented. As defined
previously in section 4.6.3, our proposed collaborative network is built around the esti-
mation of a vectorial quantity for linking mobile users. Therefore, the focus is put on a
double difference technique that is commonly applied to DGNSS methods.

5.1.1 Ranging Definition
Classical GNSS literature refers to the term baseline as a vector between two re-

ceivers [24]. Historically, this notion is introduced in advanced positioning algorithms
(i.e: DGNSS, PPP and RTK) for estimating the vector from a GNSS base station to
a roving receiver. In this case, a ranging method is employed to estimate the baseline
vector. The standard mathematical expression for baseline computation is given below.

5.1.1.a Mathematical Definition

Two independent users, denoted as A and B, are defined here. Their true position
coordinates in ECEF reference frame is represented in equation 5.1. Each position is
expressed at a given time t.

PA(t) =

xA(t)
yA(t)
zA(t)

 and PB(t) =

xB(t)
yB(t)
zB(t)

 (5.1)

The baseline vector between receiver A and B is noted as in equation 5.2.

dAB(t) =

xB(t) − xA(t)
yB(t) − yA(t)
zB(t) − zA(t)

 =

∆xAB(t)
∆yAB(t)
∆zAB(t)

 (5.2)

By definition, the baseline length between the two receivers, dAB(t), is computed by taking
the norm of the vector dAB(t). As a note, in the following mathematical models the bold
characters in equations represent vectors. The obtained Euclidean distance is shown in
equation 5.3.

dAB(t) = ∥dAB(t)∥ =
√

∆x2
AB(t) + ∆y2

AB(t) + ∆z2
AB(t) (5.3)

5.1.1.b Alternative Ranging Techniques

Multiple baseline estimation techniques have been developed over the years. Most
of them utilize external hardware components capable of computing accurately distances.
Sensor-based ranging has been extensively implemented in vehicular and robotic appli-
cation domains. UWB, Light Detection and Ranging System (LIDAR) and ultrasonic
Sound Navigation and Ranging (SONAR) equipments have been used for providing en-
hanced performances to CP methods [92]. These methods are essentially based on TOA
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approaches and output highly reliable estimate solutions. However, sensor-based baseline
estimation techniques present multiple flaws that makes them impractical for smartphone-
based CP algorithms [93]. Indeed, the implementation of such methods requires additional
hardware equipments that greatly complexify the computational process chain. Further-
more, sensor-based ranging proves to be effective mostly for close-object localization and
thus could become inoperative for NLOS distance determination in urban environment.
GNSS-based baseline estimation technique might represent a better alternative for an-
swering and mitigating constraints generated with smartphone CP. Specific software al-
gorithms have been developed for estimating baseline length between two independent
GNSS receivers. The main advantage of this technique is to allow the computation of
inter-user ranging between multiple users using Android raw measurements data stream.
GNSS-based inter-user distance computation is detailed and argumented below.

5.1.2 Absolute Position Differencing (APD)
In the wake of developing collaborative positioning solutions for vehicular applica-

tion, GNSS-based user distance estimation has been considered. In [94], a state-of-the-art
approach allowed to set a typical case study for estimating baseline length between two
GNSS receivers. This approach is called Absolute Position Differencing (APD) and is
defined as a straightforward application of basic Euclidean distance definition shown in
5.1.1.a. The process is based on differentiating two position solutions derived from two
independent estimation procedures of the two selected GNSS receivers. Based on previ-
ous definitions, we can set receiver A with an estimated position P̂A(t) and receiver B
outputting P̂B(t). The remaining individual errors characteristic are represented by εA

and εB, whereas εAB shows the error characteristics of the difference. Equation 5.3 can
be rewritten as in 5.4.

∥d̂AB(t)∥ =
√

∆x̂AB(t)2 + ∆ŷAB(t)2 + ∆ẑAB(t)2 (5.4)

with: 
∆x̂AB(t) = x̂B(t) − x̂A(t) + εABx

∆ŷAB(t) = ŷB(t) − ŷA(t) + εABy

∆ẑAB(t) = ẑB(t) − ẑA(t) + εABz

(5.5)

The estimated baseline length ∥d̂AB(t)∥ is impacted by the overall uncertainties resulting
from the two estimation processes of both GNSS receivers. This error bias can be caused
by different events and is recognized to be greater in urban environment. Specific urban
environment errors are exposed and discussed separately in appendix B. True inter-user
distance can be retrieved if receiver and signal processing errors can be mitigated.

Furthermore, the retrieval of asynchronous measurements could lead to biased inter-user
ranging solutions. Time misalignment problematic is represented by equation 5.6. Where
ti and tj correspond to two different discrete times at which the positions are computed
and are defined in the same time frame. In this case, δt = ti − tj characterizes the time
misalignment between the two users in the GPS time frame. In our case, this is validated
through a pre-processing step that converts local receiver time into GPS time. In dynamic
scenarios, differentiating asynchronous and delayed measurements is directly impacting
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the quality of the estimated baseline length. Considering user dynamic, measurements
synchronization is conceded to be the most important parameter to be considered in
inter-user ranging method.

d̂ AB(ti) ≃ ∥P̂B(ti + δt) − P̂A(ti)∥ (5.6)

As demonstrated above, this direct GNSS-based inter-user ranging technique is limited
by two main constraining factors (i.e: overall positioning errors and asynchronous mea-
surements). Those difficulties are mostly mitigated while applying DGNSS methods.

5.1.3 DGNSS Baseline Computation
In opposition to the previously exposed APD method, DGNSS ranging techniques

are based on differencing of raw data measurements instead of differencing receiver posi-
tioning solutions. Multiple works investigated the implementation of DGNSS inter-user
ranging [95] [96].
This differential technique mainly rely on shared common received signals between two
agents. Indeed, the main advantage of DGNSS methodology is to mitigate common prop-
agation errors and satellite clock biases between two users receiving the same signals
simultaneously. In practice, the processing of asynchronous measurements is critical in a
complex multiple-agent cooperative network. Therefore a Doppler-based time compensa-
tion solution is explored in this section.
Inspired by RTK and advanced differential positioning algorithms, various methods have
been studied for estimating inter-user baseline vector. Such techniques extend from Raw
Pseudorange Ranging (RPR) [95] to Single Difference Ranging (SD) [97] and Double Dif-
ference (DD) [24]. An emphasis will be made on DD ranging methods and will be exposed
in this section.

5.1.3.a Measurements Data Exchange

As discussed in chapter 4.3, the nature of exchanged data contributes to the definition
of any CP technique. The following description of DGNSS baseline computation is based
on the exchange and processing of pseudorange measurements of multiple user’s receivers.
GNSS-only data is thus necessary to be exchanged within the cooperative network. We
set our collaborative framework by defining the aiding and the aided agent. In a two user
cooperative network, the agent that tries to improve its position through CP techniques
will be referred as the aided agent. The second user providing assistance data to any
network members will thus be named the aiding agent. The following example will expose
a two users network for simplification and illustration purposes. A simple extrapolation
can be made for applying similar technique to a bigger multi-user collaborative network.

5.1.3.b Doppler-based Measurements Synchronization

The most crucial processing step in any CP methods is the time synchronization
of exchanged measurements. In the context of a multiple users network, the Doppler-
based time compensation technique is a prerogative to any collaborative algorithms. An
offset between two retrieved pseudorange measurements from two different receivers in-
duces an error that cannot be mitigated by DGNSS techniques. The developed time-
synchronization technique was built around Doppler-based compensation algorithms, well
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known from the GNSS community. This method relies on the assumption that relative
movement between the satellite and the receiver remains constant over a short interval
of time. This hypothesis holds in the case of smartphone use in low-dynamic (pedestrian
and urban navigation) and static scenarios. In high dynamic scenarios, the resulting er-
ror from this time-compensation method has been shown to be negligible (e.g: vehicular
applications) [98]. Equation 5.7 shows the time-synchronization of a pseudorange ρ at a
time t expressed in a common GPS time frame. Time synchronization is achieved when
ρA(t) has been extrapolated at a time t+∆t corresponding to the time of ρB(t+∆t). The
following equation considers only the first order approximation of pseudorange variation.
The prevailing assumption is that measurements from A and B are taken in the same
time frame.

ρ(t + ∆t) = ρ(t) + (∆t . λ . ϕ̇(t)) (5.7)

where λ represents the wavelength of the carrier frequency of the retrieved signals. Signal
frequency and wavelength are linked according to the following formula λ = c

f
. The term

ϕ̇(t) characterizes the Doppler frequency shift observed at a time t, estimated by the
GNSS receiver. Finally, the associated expression λ . ϕ̇(t) stands for the pseudorange rate
estimation and is expressed in meter per second [m/s].

5.1.3.c Double Difference Ranging (DD)

After measurements synchronization has been achieved, double differences on code
measurements are being processed. Double Difference ranging (DD) operation allows
to mitigate common errors shared between users while estimating accurate inter-user
distance [22]. The integral computational process of DD ranging is defined as follows and
is illustrated by figure 5.1.

Figure 5.1: Double Difference Ranging Principle Illustration. Picture modified from [13].
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At first, a single difference denoted Di
AB is being computed between two agents and one

common GNSS satellite signal at a common time. Equation 5.8 shows a single pseudorange
(ρ) difference between users A and B with respect to satellite i at the same epoch. The
used pseudorange model is defined in equation 3.3.

Di
AB = ρi

B − ρi
A

= e i
B . ri

B − e i
A . ri

A + c . (trx,B − trx,A) + (ϵB − ϵA)
(5.8)

where e are the steering vectors from the receivers to the satellites. We consider that
baseline length dAB between both receivers (as defined in equation 5.3) is negligible com-
pared to ρi

B and ρi
A, thus e i

A ≃ e i
B = e i. The single difference Di

AB can be simplified as
shown in equation 5.9.

Di
AB = e i . dAB + c . ∆bAB + ∆ϵAB (5.9)

At this stage, satellite-based errors are removed including satellite clock bias and satellite
position offset. Tropospheric and ionospheric delays are also mitigated in the case that
both receivers are located within a short distance. Other non-correlated errors such as
multipath and hardware biases remain. The remaining terms in the equation are the differ-
ence in geometric range (ri

B −ri
A = dAB) multiplied by the steering vector, receivers clock

offset (∆bAB), and residual errors (∆ϵAB) such as thermal noise and receiver-dependent
environmental errors. The single difference reveals the parameter to be estimated: the
baseline vector dAB between two network’s users as defined in equation 5.2.

Afterward, a second differentiation operation is made between two single differences
of two satellites’ signals shared by both users. This phase is referred as a double dif-
ference and is denoted as dD. Equation 5.10 presents a double difference between two
satellites i and j in view of users A and B. At this step, the double difference process fur-
ther mitigates receiver dependent error terms including receiver clock offset and hardware
bias.

dDij
AB = Dj

AB − Di
AB

= (e j − e i) . dAB + ∆ϵij
AB

(5.10)

The term ∆ϵij
AB = ∆ϵj

AB − ∆ϵi
AB represents the remaining unmitigated errors. A list of m

common satellites signals between receivers A and B is established. Each received signal
is classified according to signal performance characteristics (i.e: Satellite elevation, signal
strength). For illustration purposes, we will define satellite j described in equation 5.10
as our reference signal and will be denoted as signal 1.
Thus, equation 5.10 generalizes as:

dDAB = H dAB + ϵ (5.11)

where:

• dDAB = [dD21
AB, dD31

AB, ... , dDm1
AB]T

[(m−1)×1] vector of double differences for all common signals between both users.
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• H = [(e 2 − e 1), (e 3 − e 1), ... , (e m − e 1)]T
[(m − 1) × 3] matrix of steering vector differences in the ECEF coordinate frame.

• dAB vector defines the 3D ranging vector between two users.

• ϵ = [∆ϵ21
AB, ∆ϵ31

AB, ... , ∆ϵm1
AB]

[(m − 1) × 1] vector of the double difference measurement residual error terms
including those caused by receivers thermal noise and multipath effect. Note that
each of these residual errors are composed of errors originated from measurements
coming from two satellites and two receivers and are expected to be greater than
the original undifferentiated measurements

Finally, the 3D baseline vector d̂AB can be estimated via a weighted least square solution,
described by equation 5.12.

d̂AB = (HT W H)−1 HT W (dDAB) (5.12)

with W being a diagonal weight matrix constructed based on the inverse of the previously
defined ϵ vector. This matrix is populated by weights coming from various techniques or
via apriori knowledge. At least 3 sets of satellite pairs (or 4 common signals) are required
to estimate our range.

5.2 Inter-Phone Ranging (IPR) Estimation Method
In the context of smartphone-based urban collaborative positioning, an innovative

ranging estimation technique dedicated to smartphone raw measurements processing was
developed, this algorithm has been baptized Inter-Phone Ranging (IPR). This method
allows to estimate 3D inter-user range vectors and has been inspired by the studies made
in [87] [91]. Inter-user range vector is defined as a mathematical vector composed by
three algebraic components between two distinctive users that are part of the cooperative
network. The IPR method has been developed explicitly around the exchange of Android
raw data measurements. At this stage, we assume that a communication link exists and
is available to every network’s users for a safe and reliable exchange of data. This section
will focus on the definition and methodology description of the IPR algorithm, while
emphasizing on the specificities for dealing with smartphone-based measurements.

5.2.1 Definition & Terminology
The presented IPR method is a DGNSS based method. This implementation offers

accurate estimation solution for processing GNSS raw data measurements. In [23], a first
approach on cooperative ranging was established between Android smartphone devices.
A double difference method allowed the authors to estimate inter-user baseline vector.
Their work was the first stepping stone for establishing a range estimation process between
Android devices. Figure 5.2 represents the implementation of IPR technique between two
smartphones. The outputted 3D range vector between smartphone A and smartphone B
is denoted IPRAB

3D.

As detailed previously, the IPR method is defined as the estimation process computing a
3D range vector between two users. The algorithm’s resulting vector will be referred as
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Inter-Phone 3D Range Vector (IPR3D). The quantity is mathematically defined in the
ECEF reference frame as in equation 5.13 and is illustrated in figure 5.2.

IPRAB

3D =


IPRAB

3D(x)
IPRAB

3D(y)
IPRAB

3D(z)

 (5.13)

As a result to the previous definition, the distance between two users can be computed by
taking the norm of IPR3D. This distance will be referred as Inter-Phone Range Distance
(IPRd) and will be used for assessing a specific aspect of the IPR estimation technique
performance.

Finally, the proposed IPR denotes from previous works by the following criteria. Those
differences outline the innovation behind the presented method.

• The IPR method was specifically designed to accurately process Android raw data
measurements.

• Design of a smoothing technique through the implementation of an Hatch Filter for
smartphone-based pseudorange measurements.

• Multi-constellation and multi-frequency signal processing.

• Covariance matrix of WLS estimation technique populated by Android-based mea-
surements.

Figure 5.2: Inter-Phone Ranging (IPR) Method Applied to Two Smartphone Users
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• Estimation of a 3D Inter-User Range Vector between two collaborating smartphones,
called IPR3D.

• Multi-smartphone brands and models analysis

• A detailed analysis of the IPR method, through testing and studying of IPR3D

and IPRd against other baseline estimation methods for both nominal and urban
environments

5.2.2 Methodology
IPR methodology details the procedure followed for implementing smartphone-based

ranging technique. The smartphone application domain brings limitation and constraints
that needs to be handled by our algorithm. The following guidelines acts as recom-
mendation for processing Android GNSS raw data measurements accurately for ranging
computations. For simplification purposes, our methodology presents n satellites to be
used as if only one signal was received per satellite. However, today’s smartphone em-
bedded positioning chipset are multi-constellation and multi-frequency. Then, multiple
signals from one individual satellite can be received at the same epoch. Moreover, the
multiplication of signals availability on smartphone favors the constructions of common
received signals pairing.

The following subsections will define smartphone-specific implementation steps necessary
for developing IPR algorithm. The presented process is divided into the next main stages:

• Formating data
• Establishing a list of common received signals
• Hatch filter
• Doppler synchronization of measurements
• Double difference
• WLS Estimation

This process is a recurrent mechanism incremented for every epochs and for all available
smartphone’s user pairs. Indeed, IPR estimation needs to be computed for every couple of
agents within the collaborative network. The number of pairs to be computed is directly
related to the number of network’s users n and is given by this expression: n(n−1)

2 . For
example, a collaborative network populated by 5 independent users will generate 10 unique
inter-phone ranging vectors, IPR3D.

5.2.2.a Data Exchange

As described above, IPR algorithm is dependent on the data exchanged between
users. IPR method is a DGNSS-based algorithm using agent’s code pseudorange mea-
surements. The nature of exchanged data within the cooperative network must thus
include raw GNSS measurements. As it turns out, Android raw data measurements can
be processed, retrieved and exchanged within a collaborative network.
Android raw data measurements are paramount for the computation of IPR3D. Figure
2.10 and 2.11 in chapter 2, remind the denomination for each recorded Android GNSS
measurement. Then, the first computation process consists of rendering Android measure-
ments into GNSS observables (i.e: Pseudorange, Doppler Frequency, Pseudorange Rate
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and more). Those measurements are processed and stored inside a matrix and constitute
the input of our range estimation system.

5.2.2.b Smoothing Measurements

Our analysis made during the data collection campaign exposed the inconsistent
behavior of retrieved Android GNSS raw data measurements (see section 3.3.4). This
inconsistency is contingent to multiple factors and can vary depending on the smart-
phone brand or model. This problem is accentuated by urban positioning constraints and
smartphone’s hardware architecture. Therefore, we implemented an Hatch filter capable
of smoothing smartphone’s estimated code pseudorange measurements [99]. The char-
acterization of this pseudorange smoothing method is established in equation 5.14 at an
epoch t in GPS time. In adequation with Android raw GNSS measurements rate (1 hz),
the term t has a time step of 1 second for continuous time segments.

ρ̃(t) = 1
h

ρ(t) + h − 1
h

[ ρ̃(t − 1) + λ . (ϕ(t) − ϕ(t − 1) ) ] (5.14)

where h is defined as a moving time window that represents the length of a continuous
time segment (in epochs) when a specific signal has been received and correctly retrieved
by our embedded smartphone GNSS receiver. Each time a signal loss of track is detected,
a reinitialization of the index h is made. This method also allows to account for non-
continuous signal segments when recorded signals are not visible for a short period of
time or during cycle slip events. The characterization of continuous time segment is
derived from the study made on Android flag detection mechanisms in 3.3.1.b. This
method mitigates the impact of outliers pseudorange data on the final IPR estimation
results.

5.2.2.c Synchronizing Android Measurements

The time-synchronization of pseudorange measurements is a mandatory step in any
CP algorithms. The developed time-synchronization technique was built around Doppler-
based compensation algorithms, well known from the GNSS community. This method
relies on the assumption that relative movement between the satellite and the receiver is
constant over a short interval of time. This hypothesis holds in the case of smartphone
use in low-dynamic and static scenarios. Equation 5.7 can be rewritten, following the
notation of Figure 5.2. Let smartphone user A being the aiding user assisting user B,
the aided agent. Time synchronization is achieved when ρB(tB) has been extrapolated at
a time tA from the measurements recorded from the aiding user ρA(tA) at time tA. The
relation between asynchronous time measurements is simply derived as tA − tB = ∆t

ρB(tA) = ρB(tB) + (∆t . λ . ϕ̇(tB)) (5.15)

The term λ . ϕ̇(t) representing the Doppler shift can be approximated by the pseudorange
rate measurements. This measurement can be easily retrieved from recorded Android
data as PseudorangeRateMetersPerSecond. Secondly, the generation of the term ∆t is
straightforward since the Android raw measurement, FullBiasNanos, is already synchro-
nized to the true GPS time and is expressed in nanoseconds [7]. ∆t is approximated by
taking the difference between the two Android measurements cited above.
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5.2.2.d IPR Estimation Algorithm

The IPR code differentiation estimation method starts by computing the single and
double differences between common received signals between the aided and aiding agents.
Once the list of common signals is established, a signal of reference is identified. Usually
said signals exhibits high C/N0 values coming from a satellite with a high elevation. Then,
single and double differences are taken according to the description made in 5.1.3.c. Equa-
tion 5.12 shows the parametrization of a WLS estimation method where the outputted
solution IPR3D was identified as dAB. The construction of the denominated, W, weight-
ing matrix is elaborated via specific Android-based data measurements. Most of the time,
in GNSS literature review, the computation of this matrix is made with respect to eleva-
tion and C/N0 parameters. However, in the smartphone domain case, the Android API
gives to the user a parameter estimating the uncertainty error for each received signal.
This data measurement is found in the Android class GnssMeasurements and is called
ReceivedSvTimeUncertaintyNanos, expressed in nanosecond.

σi,f
ϵ = ReceivedSvTimeUncertaintyNanos(t) . 10−9 . c (5.16)

Equation 5.16 shows the implementation of the Android data measurements for estimating
signal individual error standard deviation for a particular receiver, where i is the satellite
index and f indicates the frequency band.
However, for simplification purpose, the following mathematical models consider only
signals collected from one frequency band (f = L1).
A variance matrix of single-differenced measurements RsD is formed and populated by
retrieved sigma values, σi,f

ϵ , from the Android API. Equation 5.17 is constructed using
agent A and B as an example. Note that this matrix has a diagonal form since we assume
that the measurements from different satellites are uncorrelated. This matrix will be of
the size (m × m) with m being the number of satellites.

RsD
m×m

=


(σ1

ϵ A)2 + (σ1
ϵ B)2 · · · 0

... . . . ...
0 · · · (σm

ϵ A)2 + (σm
ϵ B)2

 (5.17)

Afterward, the double differences are taken. This procedure is performed by introducing
the following D matrix that subtracts the measurement of the reference satellite from
other tracked satellites. As exposed in equation 5.18, the first column is filled with ”-
1” as it represents the reference satellite [100]. This operation allows to account for the
correlation between double differentiated measurements. The number of double difference
measurements after this operation is equal to m − 1.

D
(m−1)×m

=


−1 1 0 · · · 0
−1 0 1 · · · 0
... ... ... . . . ...

−1 0 0 · · · 1

 (5.18)

The matrix H contains the steering vectors and is defined as in 5.11. The final covariance
matrix of double differenced measurements, written as RdD, is computed by equation
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5.19. The weight matrix W is computed by taking the inverse of the covariance matrix:
W = R−1

dD. Finally as defined in the previous equation 5.12, the IPR3D vector between
smartphone A and B is outputted by the updated equation 5.20 in the ECEF reference
frame.

RdD
(m−1)×(m−1)

= D RsD DT (5.19)

IPRAB

3D = (HT R−1
dD H)−1 HT R−1

dD (dDAB) (5.20)

5.3 IPR Performance Analysis
The performance analysis of our proposed IPR ranging technique is exposed in this

section. In order to draw a fair comparison analysis of our estimated inter-users ranges, we
take into consideration other means of range computation available to smartphone users.
As described in section 5.2, IPR3D is a vector estimated by a WLS based on double differ-
ences. In order to compare their performance against the other methods, the norm of the
IPR3D vector is estimated and will be denoted in this section as IPRd. The first process
is straightforward, it consists of estimating smartphones position by a WLS algorithm and
using the obtained positions to compute a range between two users. The second technique
is taking advantages of a unique feature available to Android mobiles’ users, the Google
FLP position solutions. Those retrieved positions will allow us to evaluate ranges between
two smartphone peers. FLP positions are intended to be the ultimate positioning solution

Figure 5.3: Estimated Ranging Error for Static & Open-Sky
Environment Scenario
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obtainable by a given Android device. However, the black-box processes used by FLP
measurements while combining GNSS, cellular network and sensors informations, make
them ambiguous and unreliable for scientific analysis. On the other hand, they provide a
good reference for intrinsic quality of smartphones positioning capabilities. This reason
justifies their use in our performance analysis for ranging purposes. Detailed description
of Android’s FLP position is given in 3.1.1.b.

Performance analysis provided below has been drawn using the data measurements col-
lected during the data collection campaign presented in section 3.2.1. Collaborative sce-
narios created during this data collection (exposed in section 3.2.2) will be used to char-
acterize the performance of our estimation technique in various environment, namely in
open-sky and urban conditions.

5.3.1 Nominal Case

Firstly, IPRd performance analysis will be based on a static scenario in open-sky
conditions. Measurements captured during the data collection campaign will be exploited
for this study. Collaborative scenario A, presented in 3.2.2, recreates an open-sky static
scenario between two users. Both users were simulated by two static vehicles. On the
roof of those vehicles were placed smartphone devices, as depicted by picture 3.4. This
scenario lasted for 10 minutes. The two vehicles were spaced by 17.65m and the reference
position of both agents was recorded by an high-end NovAtel SPAN INS GNSS receiver.
IPR3D vectors were computed and analyzed between multiple pairs of smartphones in
order to estimate the baseline length IPRd.
Preliminary results show that on average, 19 pairs of common received signals were seen
by our tested Android devices in static open-sky scenario with a minimum of 15 pairs.
Modern Android smartphones have multi-frequency and multi-constellation capabilities,
which facilitate the creation of pairs of common received signals and thus aids at the com-
putation of code pseudorange DD. The accessibility to GNSS measurements on Android
device eases computational processes of IPR ranging. Geometric Dilution of Precision
(GDOP) value was equal to 1.3 with an average of 15 satellites in view for all tested
devices.

Figure 5.3 exhibits the ranging performance of our proposed IPRd method compared
to other ranging techniques available to smartphone users. The displayed results have
been computed between users 1 and 2, exploiting two Xiaomi Mi 8. Three ranging meth-
ods are tested and exposed in this figure: PVT, FLP and IPRd ranging methods. On
the figure, norms of the computed range vectors (i.e: Baseline length) are plotted. The
blue line represents the reference baseline length computed with the high-end reference
receiver. Afterward, the red line shows the ranging solution obtained via Google’s FLP
positions solution. The green line stands for the estimated inter-user range computed
with positions estimated via a GNSS-only PVT algorithm. And finally, the thick orange
line shows the estimation results from the IPRd ranging method.
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Static & Open-Sky [600 s]

Ranging
techniques mean[m] std[m] 95%[m] (2σ)

IPRd 0.41 1.75 4.07
FLP 3.21 1.82 5.33
PVT 0.84 5.40 7.01

Table 5.1: Ranges Estimation Performance

Initial analysis depicts the excellent behavior displayed by our double-differenced ranging
technique (IPRd) compared to the estimated ranges computed with GNSS PVT solu-
tions. IPRd solution appears to be impacted by a residual noise component that does
not affect the readability of the overall solution. On the other hand, the IMU-based FLP
ranging solutions are less impacted by residual noise but shows a constant bias over time.
This bias can be explain by the FLP positioning process that seems to rely heavily on
tight coupling integration between GNSS and IMU data, hidden in Android ”black-box”
algorithms.
Statistical characteristics of tested ranging solutions are exposed in table 5.1. The statis-
tical error characterization confirms the observations made on figure 5.3. We observe a
standard deviation of 1.75 m and a mean error of 0.41 m for the IPRd estimated ranges.
In addition, the bias and noise characteristics of FLP and PVT based ranging solutions
are shown in table 5.1. IPRd statistical error analysis demonstrated that the ranging
error tends to follow a Gaussian distribution. Those results comfort our idea that Inter-
Phone Ranging (IPR) estimation technique is suitable and reliable for smartphone-based
collaborative positioning. In [23], authors tested various ranging techniques in similar
conditions also using Xiaomi Mi 8 smartphones. Both methods exposed validated this
analysis. Relying on their findings, our proposed IPRd ranging method appears to be
the most efficient technique for estimating inter-agent distances within a collaborative
network of modern Android smartphones.

Furthermore, a complementary study has been carried out for comparing error charac-
teristics of IPRd estimation between multiple smartphones brands and models. The goal
was to study the theoretical correlation between smartphones brands and models. This
study takes advantage of the variability of tested Android devices and echoes to the
demonstration made in 3.3.3.a. Table 5.4 regroups the error characteristics obtained by
estimating IPRd ranges with all presented smartphones. We consider a cooperative net-
work of 7 smartphones with two distinct and equidistant groups of devices (i.e: 4 phones
were placed on car 1 and 3 phones were stored in car 2). However, as shown on the
table, no clear correlation can be established between either similar smartphones brand
(Xiaomi Mi 8 and Xiaomi Mi 9), or between chipset brands (Honor View 20 and Huawei
Mate 20X). Nevertheless, identical devices (Both Xiaomi Mi 8 and both Honor View 20)
obtained the most accurate results in this controlled environment and scenario.
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Figure 5.4: IPRd Statistics with respect to Smartphone Brand &
Model for Nominal Scenario

5.3.2 Urban Environment
Similar analysis have been made for urban environment. During the data collection

campaign, collaborative scenario C was created to represent a low dynamic framework
in urban canyon. Collaborative scenario C, detailed in 3.2.2, depicts an aiding user in
static open sky condition assisting an aided second agent navigating in deep urban envi-
ronment. Figure 5.5 pictures the ranging performance analysis between all tested ranging
methods for urban environment. The tested ranging techniques are identical to the ones
used in the previous nominal analysis for comparison purposes. Plus, these methods are
plotted on the graph also using identical color codes. Left picture, noted a) on figure 5.5
shows the dynamic evolution of the estimated ranging solutions compared to a reference

Figure 5.5: Inter-Phone Ranging Methods Performance for Urban
Environment Scenario. a) Method Comparison against the

Reference Trajectory. b) Ranging Error Comparison for all Tested
Methods

91



92 Chapter 5: GNSS-based Collaborative Ranging

trajectory. The right picture b), directly exposes the estimated ranging error for the three
tested methods. Firstly, IPRd ranging solutions appear to be consistent with previously
exposed results. However, as highlighted by the error characteristic statistics in Table 5.2,
the error standard deviation significantly increased for this scenario. The performance of
IPRd can be explained by the level of user dynamic experienced in this scenario that does
not favor the user of DGNSS algorithm for baseline computation. Secondly, FLP based
ranging demonstrates the most accurate performance. Nevertheless, FLP ranging bias
appear during changes of direction in user’s navigation. As an example, between epochs
510 and 525, the outputted FLP-based range bias increases in time with the succession
of direction changes. This behavior can also be accredited directly to the computational
processes of Android FLP positions.
An other element should be taken into consideration for choosing the most optimal rang-
ing solution which is the solution availability. Indeed, during this urban analysis, IPRd
range solutions were not computed in 36 occurrences out of 701 epochs. This can be ex-
plained by a reduced number of common signals pairs between the two agents in critical
constrained environment. On average, 10 received signals were common to both users
(thus generating 9 differential pseudorange pairs). During 36 occurrences, less than 4
common satellites were seen by both users, thus prohibiting the estimation of IPR3D

vectors. Overall, the GDOP value was approximately equal to 2.1 during the entirety of
the scenario.

Urban Environment [600 s]

Ranging
techniques mean[m] std[m] 95%[m] (2σ)

IPRd 0.25 6.40 8.83
FLP 1.30 3.00 3.35
PVT 0.64 16.91 21.97

Table 5.2: Ranges Estimation Performance (cont’d)

In urban conditions, FLP-based ranging method is the most efficient technique to be used
for estimating inter-agent distance vector. However, Google’s ”black-box” process does
not allow to control the outputted positioning solutions. Thus, this method cannot be
kept and might become entirely dependent on Google’s future decisions on the handling
of self described ultimate positioning solution estimates. Therefore, we recommend to
implement IPR differential ranging techniques for estimating inter-phone distances. In
the case where FLP positions are available to the user then our emerging ranging technique
can be used as a complementary method in order to increase the robustness of IPR ranging
solutions.
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5.4 Chapter Conclusions
This chapter presented GNSS-based collaborative ranging methods applied in the

smartphone domain. Baseline estimation framework has been established and defined
early on. DGNSS ranging method is favored for accurately depicting inter-user ranging
and the technique is mathematically described. Moreover, our proposed smartphone-
based IPR innovative method was introduced. This technique reviewed the particularities
and advantages obtained by using Android GNSS raw data measurements for computing
inter-user ranges. Then, the performance of IPRd ranging estimation was established
through a nominal and urban study. The controlled conditions of our experiment setup,
and the repetition of previously shown results with other Android devices, demonstrate the
reliability of our analysis in nominal conditions. This analysis revealed that IPR ranging
technique is one of the most optimal algorithms to be implemented for smartphone-based
collaborative network. Statistical error analysis allow to generalize our results and to
exploit IPRd solution for future simulation studies.
Inter-phone ranging is considered the first stepping stone towards smartphone-based col-
laborative networking. In the next chapter, IPR3D estimated vectors play a crucial role
in our proposed smartphone collaborative engine, SmartCoop. Inter-phone ranges will be
used to constrain a set of agent positions within a cooperative network and thus setting
a constrained optimization problem. Outputted smartphone collaborative positioning
solutions will be proven to significantly increase agent’s position accuracy and reliability.
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This chapter aims at discussing the selection of a collaborative positioning filter
adapted to smartphone positioning for hybridizing GNSS raw measurements and IPR3D

estimated ranges. An estimation filter is defined as an algorithm that takes time de-
pendent measurements and statistical distributions for producing estimates of unknown
variables. In addition, this chapter is a complete synthesis of previously exposed research
parts that combines smartphone positioning (part I) and collaborative positioning tech-
niques (part II). This final chapter is divided as follows. First, Bayesian and non-Bayesian
hybridization filters will be presented, exposing their strengths and constraints for imple-
menting smartphone CP techniques. Then, our proposed smartphone-based collaborative
algorithm, named SmartCoop, will be introduced and its implementation method will
be fully described. Afterward, results analysis from simulations in open-sky and urban
environments will be displayed, highlighting positioning performance enhancement de-
rived from the implementation of our CP method. Finally, our method will be evaluated
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against other collaborative techniques. A discussion will be opened regarding the im-
pact of a system Anchor within the developed CP method and likewise, the effect of
cooperative network user’s geometry on newly computed collaborative mobile positions.

6.1 Collaborative Hybridization Filters
In the early years of the twenty first century, multiple algorithms and estimation tech-

niques have been used for solving positioning and navigation solutions of GNSS receivers.
Historically, Least Square (LS) estimation techniques have been favored for estimating
positioning solutions. Later on, advanced techniques have been developed for integrating
additional available data with GNSS measurements [101]. Recursive Bayesian algorithms,
whose canonical implementation for a Gaussian state space system model is the KF, be-
came the best known method for estimating GNSS receiver positions. The approach
proposed by this chapter aims at selecting a collaborative navigation filter adapted to
smartphones’ measurements by exposing existing CP methods.

In order to identify a suitable candidate for a collaborative filter, requirements for
smartphone-based collaborative system are laid out. A collaborative estimation engine
is defined as an algorithm capable of fusing multiple measurements and parameters from
different sources. In our case, GNSS measurements will be complemented by previously
computed cooperative ranges, IPR. Due to complex environment and compact smart-
phone’s hardware constraints, cooperation filter must be pursued at range level. How-
ever, smartphone computing capabilities might limit the implementation of such complex
filters. This is the reason why, a centralized cooperative network approach as been chosen
(see section 4.6.2) allowing the transfer of computational loads to a hub server empow-
ering the implementation of complex algorithms. In [102], centralized and distributed
channel cooperative techniques have been studied through direct and indirect multi-agent
systems. Cooperative positioning engines have been studied in different research fields
and constituted a first approach to our problem.

6.1.1 State-of-the-Art Review
The integration of additional measurements and information with GNSS data has

been developed at the end of the twentieth century, mainly targeting precise position-
ing applications and solution continuity. Historically, early contributions explored the
integration of GNSS techniques within simple estimation processes [103]. Hybridization
opportunities rose with the democratization of small IMU units that were hybridized with
GNSS measurements. Multiple estimation techniques have been employed to fuse various
types of measurements. The selection of these estimation tools represents the preliminary
phase for establishing a collaborative network.
In the GNSS literature, estimation techniques are typically defined as state estimators
which are based on linear steady state system model, applied to linearized measurement
models. Methods differ based on complexity, conditions and recurrence. These methods
can be categorized into two groups: Bayesian and Non-Bayesian estimation techniques.
The main difference between these two classes lies in the assumptions made on the esti-
mated state that inputs the two techniques. Comparisons between estimation techniques
have been widely studied when applied to the majority of distribution models [104]. In
GNSS, Bayesian processes have been thoroughly tested and analyzed for obtaining an
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Figure 6.1: Block Diagram of a PF used for a Tight Integration Scheme in a Cooperative
Engine. Picture extracted from [14].

efficient estimation of receiver position [105]. Popular Bayesian filters range from Kalman
filters to Particle Filter (PF). Collaborative capabilities of such estimation techniques
have been demonstrated in [94]. Intuitively, the non-Bayesian counterparts to KF and
PF estimators are the Least Squares (LS) and Maximum Likelihood (ML) estimators,
respectively. Estimation tools are presented below according to their respective class.

6.1.1.a Bayesian Approaches

Bayesian approaches account for prior information considering a state-space model.
This representation stands on a twofold model; The first covers the evolution of states in
time, whereas the measurements equation accounts for the dependency of given measure-
ments on unknown states. Multiple techniques utilize this method, we are focusing here
on the KF and the PF tools.

Kalman Filter (KF)

Kalman filters (KF, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF))
are widely used estimation algorithms in the GNSS positioning domain. the former al-
gorithm provides an optimal Bayesian technique for linear state and measurements equa-
tions. On the other hand, EKF and UKF provide a good approximation when the given
measurements are non-linear. The particularity of these techniques resides in the re-
cursiveness of their processes, allowing the estimation of linear or linearizable dynamic
models. In many cases (including GNSS positioning), the assumption needed for optimal
Bayesian estimation cannot be applied. Sub-optimal algorithms deal with measurements
that are neither considered white noise nor Gaussian distributed. The most used variation
of Kalman technique, the EKF, has been thoroughly reviewed in [105]. In [94], Kalman
filter estimation process has been tested for integrating DGNSS inter-agent measurements
with GNSS data in a collaborative manner. Promising results were exposed for integrating
various sensors while decreasing the overall estimation errors.

Particle Filter (PF)

The PF is based on a Monte Carlo approximation of optimal sequential Bayesian state
called particle processing. PF characterizes a posteriori distribution of the system. Figure
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6.1 describes the processing stages of PF for tight integration of inter-agent distances. This
method has been extensively studied in [14] and [106]. The main advantage of this solu-
tion is the ability to process non-linear measurements that follow unknown distributions.
On the other hand, this technique is known to significantly increase the computational
power and algorithm complexity compared to other estimation methods. In [106], the two
previously exposed Bayesian methods have been applied to GNSS collaborative scenarios.
The presented results show that despite the assumption that PF method would overcome
in performance Kalman technique, in dynamic simulated scenario, the increased complex-
ity brought by PF does not provide extensive advantages compared to the implementation
of an EKF method.

6.1.1.b Non-Bayesian Techniques

Non-Bayesian filters are often referred to as classical estimation techniques referring
to the earliest contributions of such method for position estimation purposes [24]. As
opposed to Kalman filter, Maximum Likelyhood (ML) and LS principles are the most
common non-Bayesian estimation methods in the positioning and navigation domain. ML
filters target approaches where measurements models are known and where a likelihood
function can be obtained. Most common to the GNSS domain, the LS technique is
used to estimate variable in a linear regression model that minimizes the sum of squared
measurement residuals. A LS estimation solution of a parameter denoted x̂ is shown in
equation 6.1.

x̂ = ( HT H )−1 HT y (6.1)

with y being a set of noisy observations linearly related to the vector parameter x.
H represents a design matrix constituted by a combination of linear coefficients with
respect to each parameter components. In GNSS the computation estimation of PNT
solutions are often performed using LS algorithms. This estimation technique is limited
by the epoch by epoch estimation characteristic while not supporting apriori information.
A WLS technique is exposed and detailed in appendix chapter B.

6.1.2 Selected Collaborative Engine
The previous section revealed the major estimation tools available for creating an ade-

quate collaborative engine that would fit the requirements for implementing a smartphone-
based cooperative network (such as: the network size, measurements versatility and in-
tegration). The investigation previously made on existing GNSS data fusing and coop-
erative positioning solutions highlighted various methods strengths and weaknesses. In
the automotive and robotic industry, complex algorithms have been put in place for hy-
bridizing rover GNSS position with additional sensors data (including additional hardware
equipments such as LIDAR and SONAR). However, those implemented solutions do not
correspond to smartphone-based collaborative network characteristics and measurements
constraints. A compromise between performance and agility needs to be found to best fit
smartphone-based collaborative engine.

Therefore, we argument that the most relevant estimation technique to be used for smart-
phone collaborative network is based on a non-Bayesian LS principle. Classical estimation
processes allow for developing, analyzing and expanding flexible algorithmic mechanisms.
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The following list records the advantages that supported our decision for implementing
LS estimation in place of other estimation tools.

• Reduces the computational complexity of the collaborative engine, decreasing com-
puting loads on the centralized processing unit.

• Better suited for hybridizing multiple smartphone measurements gathered from var-
ious brands and models. Fewer hypotheses are made on the evolution of the state
vector allowing for the implementation of an agile technique.

• A priori knowledge on measurements statistical distribution, required for Bayesian
techniques, cannot be guaranteed for smartphone-based measurements due to the
differences found in hardware components on past and future devices.

• Optimized scalability capabilities granting an easy implementation and analysis of
the smartphone cooperative network size.

• A well-established estimation tool shift focus to prioritize collaborative performance.
The estimated collaborative results will be less dependent on measurements model-
ing and parameter initialization (e.g: filter tuning).

• Provides a fair comparison with LS driven PVT solutions for GNSS standalone
positioning results.

Various studies, such as in [107] and [22], demonstrated the implementation of CP methods
based on LS estimation tool with promising results.

6.2 SmartCoop Algorithm
This section will present our proposed smartphone collaborative algorithm. This

SMARTphone COOPerative positioning technique has been baptized SmartCoop. Our
innovative cooperative engine aims at improving positioning performances of smartphones
within a defined network of users. Collaborative positions from network’s members will
be computed based on a first raw position estimate (computed or extracted from Android
GNSS data measurements) while being restrained by previously introduced inter-phones
vectors (IPR3D) between all smartphones users. The following methodology will charac-
terize the constitution of a constrained optimization problem to be solved for estimating
collaborative positions. This method has been inspired by works developed in the auto-
motive industry released in [22] and [87].
This section is providing a complete overview of our proposed collaborative engine. First
and foremost, the mathematical problem will be defined and initialized, explained in a
step by step procedure. Then, the following subsection will detail the assumptions made
by our cooperative engine. A focus will be given to the role played by IPR3D as constrain-
ing parameters in this optimization problem. Afterwards, the algorithm implementation
on the Matlab environment is presented. Finally, the innovative characteristics of the
developed SmartCoop algorithm are exhibited.
Figure 6.2 illustrates the principle of the SmartCoop algorithm. The general concept
and philosophy of the presented collaborative method is displayed by a simple two users
network.
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6.2.1 Mathematical Definition
The main goal of this subsection is to characterize our nonlinear constrained op-

timization problem built for estimating new cooperative positions. The objective is to
minimize the norm of the 3D position errors between the newly estimated users cooper-
ative positions p̂ and their reciprocal true positions ptrue. This minimization process is
leveraged by Inter-Phones vectors (IPR3D) computed between each individual forming
the collaborative network. The mathematical definition of the problem is detailed below,
after setting up parameters notation and initializing the problem.

6.2.1.a Problem Initialization & Notation

A set of connected smartphone devices true positions is denoted
P = [p1, p2, · · · , pu, · · · , pn] with n representing the total number of users and u repre-
sents the user index within the network. This position vector regroups all smartphones
positions in time. The absolute true location of Android mobiles are represented by a
3D coordinate vector ptrue,u. We consider that each device connected to the cooperative
network is able to communicate with the central processing unit. Android GNSS raw
data measurements, as discussed in section 4.6.2, are exchanged by mobile users. Thus,
a preliminary estimated position is computed or retrieved for each user using their trans-
mitted GNSS-only measurements. The following estimation process is characterized as
snapshot, meaning that each estimated collaborative positioning solution are epoch in-
dependent. This first estimate will be referred to as an original mobile GNSS fix and is
noted p̃u. The positioning error vector between the original fix and the true position is
set as δu = p̃u − ptrue,u. The goal of this cooperative engine is to estimate collaborative
position defined as p̂u.

Figure 6.2: Illustration of SmartCoop Constrained Non-Linear Optimization
Problem between two Smartphones u and v.
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3D inter-distance range vector are also a pre-requisite to the presented SmartCoop algo-
rithm. IPR3D range estimates are computed on the remote server for every user couple
present in the network. This GNSS-based collaborative ranging vectorial solution is de-
noted as IPRuv

3D between mobile users u and v.

6.2.1.b IPR-based Constraints Notation

The constraining equations play a key role in this optimization problem. The follow-
ing mathematical expression in equation 6.2 will show the notation that will be used for
describing the constraint equations


( p̂v,x − p̂u,x ) = IPRuv

3D,x

( p̂v,y − p̂u,y ) = IPRuv
3D,y

( p̂v,z − p̂u,z ) = IPRuv
3D,z

(6.2)

The right side of the equation represents the IPR3D vector components and are known
during the optimization process. The IPR computation method is exposed in section 5.2.
Those pre-established estimates are compared to the collaborative distance computed by
taking difference of tentative collaborative position between two phone candidates on x,
y and z coordinates. Those tentative collaborative norms are represented on the left side
of equation 6.2. The objective of these constraining equations is to match the tentative
position differences with the established IPR results.

6.2.1.c Collaborative Algorithm

Our SmartCoop algorithm is articulated around an optimization problem. The objec-
tive here is to minimize the sum of 3D position discrepancies between the newly estimated
collaborative positions (P̂) and their original positioning solutions (P̃) as defined in section
6.2.1.a. The minimization process will be constrained by nonlinear equations satisfying
the equality between our estimated IPR3D and the corresponding baseline vector of two
tentative positions, as expressed in equation 6.2. This collaborative process is described
by the following mathematical model.

Algorithm Hypothesis
The mathematical derivation is supported by the following two main hypotheses. The
impact of those hypotheses is further discussed in section 6.4.3.

• Independence between smartphones positioning error
In the following mathematical derivation, we will assume that the positioning errors
between different smartphone users within the collaborative network are indepen-
dent.

• Independence of GNSS positioning error on x, y and z
For the sake of simplification, we assume that the GNSS positioning errors on x, y
and z are independent in the ECEF reference frame. Even though we know that this
hypothesis does not hold, as demonstrated in this paper [24], it has been established
this way in the following mathematical derivation for creating a preliminary proof
of concept for our collaborative engine.
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We introduce the probability density function of the discrepancy between the original po-
sitioning solution (p̃u) and the true position solution for a specific user indexed by u. The
position solution difference is denoted as δu = p̃u − ptrue,u. Based on our hypothesis, this
quantity is assumed to follow a multivariate Gaussian distribution δu ∼ N (µu, Σu) char-
acterized by µu and Σu, respectively describing the mean and variance of this distribution
expressed in equation 6.3

µu =


µu,x

µu,y

µu,z

 and Σu
3×3

=


σ2

u,x 0 0
0 σ2

u,y 0
0 0 σ2

u,z

 (6.3)

In this case, the covariance matrix Σu is diagonal due to the assumptions stated previously
about the independence of GNSS positioning error on x, y and z.
The probability density function for a multivariate normal distribution is expressed as in
equation 6.4. In this equation, the determinant of the covariance matrix Σu is denoted
Det(Σu).

φ(δu) = 1√
2π[Det(Σu)]

. e− (δu−µu)T Σ−1
u (δu−µu)

2 (6.4)

Taking into account our previously stated assumptions, the above equation can be simpli-
fied as shown in equation 6.5, to express the probability density function of each individual
axis on x, y and z. Equation 6.5 exposes the probability density function on the x axis.

φ(δu,x) = 1√
2πσu,x

. e
− (δu,x−µu,x)2

2σ2
u,x (6.5)

The minimization of the sum of the squared 3D position solution differences is equivalent
to maximizing the probability density function of the established δu. Equation 6.6 pro-
vides an overview of this optimization problem with vectors P̂ and P as defined in section
6.2.1.a.

P̂ = arg max
P

n∏
u=1

φ(p̂u − p̃u) (6.6)

By taking into consideration the three independent axes, equation 6.6 can be further
rewritten as in equation 6.7.

P̂ = arg max
P

n∏
u=1

φ(p̂u,x − p̃u,x) . φ(p̂u,y − p̃u,y) . φ(p̂u,z − p̃u,z) (6.7)

The product of probability density functions, described in equation 6.7 can be isolated
and will be denominated U . Equation 6.8 describes the newly appointed quantity U .
Moreover, this equation is expanded by applying the definition of probability density
function given previously by equation 6.5.
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W = φ(p̂u,x − p̃u,x) . φ(p̂u,y − p̃u,y) . φ(p̂u,z − p̃u,z)

= 1√
2πσu,x

. e
− (p̂u,x−p̃u,x−µu,x)2

2σ2
u,x .

1√
2πσu,y

. e
− (p̂u,y−p̃u,y−µu,y)2

2σ2
u,y .

1√
2πσu,z

. e
− (p̂u,z−p̃u,z−µu,z)2

2σ2
u,z

(6.8)

The previous equation can then be simplified by executing the logarithmic expansion of
the term W giving log(W ) = −U + V . The logarithmic function W can be divided into
two distinctive terms, denoted by the arbitrary terms U and V . These two terms are
described by equations 6.9 and 6.10.

U = (p̂u,x − p̃u,x − µu,x)2

2σ2
u,x

+ (p̂u,y − p̃u,y − µu,y)2

2σ2
u,y

+ (p̂u,z − p̃u,z − µu,z)2

2σ2
u,z

(6.9)

V = log 1
√2πσu,x

+ log 1
√2πσu,y

+ log 1
√2πσu,z

(6.10)

According to the mathematical properties of the logarithmic function, we can characterize
each individual term. It appears that the term V is a constant with regards to our
minimization problem. Therefore, in order to maximize the product of W (showed in
equation 6.7), the quantity defined by V needs to be minimized. Finally, equation 6.7 can
be approximated as shown in equation 6.11 and represents our collaborative engine. This
final minimization process is completed by the constraining equations constructed as the
difference of tentative collaborative positions compared against estimated IPR3D vector
orthogonal components.

P̂ = arg min
P

n∑
u=1

(p̂u,x − p̃u,x − µu,x)2

2σ2
u,x

+ (p̂u,y − p̃u,y − µu,y)2

2σ2
u,y

+ (p̂u,z − p̃u,z − µu,z)2

2σ2
u,z

while satisfying:


( p̂v,x − p̂u,x ) = IPRuv

3D,x

( p̂v,y − p̂u,y ) = IPRuv
3D,y

( p̂v,z − p̂u,z ) = IPRuv
3D,z

(6.11)

The main processes used in our collaborative smartphone-based engine SmartCoop are
summarized as follows:

• Network’s smartphone users send, via the collaborative network, data packet con-
taining at minima Android GNSS raw data measurements.

• Central processing unit, computational head of the network, receive and analyze
data packet for all network’s mobiles.

• IPR3D vectors are computed for each network’s receiver couple.

103



104 Chapter 6: Smartphone Collaborative Positioning

• Network’s user collaborative data is gathered into an objective function for defining
our optimization problem.

• Estimated collaborative positions are being computed iteratively throughout a series
of tentative guesses aiming at minimizing the objective function and to satisfy an
IPR3D set of constraints.

• SmartCoop outputs newly collaborative solutions for each network’s member.

6.2.2 Constraints & Hypotheses
A successful outcome of collaborative estimation via our SmartCoop algorithm is

bounded by three main hypotheses. Those characteristics are detailed below. Following
that, the constraints system is explained in details, showing the impact of IPR3D on the
estimation process.

6.2.2.a Network Size

The size of the cooperative network limits the ability to communicate and/or ex-
change effective measurements. In this study case, we are focusing on low-dynamic urban
scenario, corresponding to a nominal smartphone’s user navigation behavior through ur-
ban canyons. A relevant communication link needs to be provided for connecting network’s
users. The total number of users on the cooperative network is anticipated to be large
due to the high density of smartphone devices in today’s city centers. This problematic
is answered with the development of a collaborative algorithm capable to be scaled to a
large number of users due to the flexibility nature of our chosen estimation method (e.g:
network size variation, difference in measurements quality, etc).

Secondly, network spatial size has also been determined specifically for our study case. The
limiting factors for determining such size are directly related to the computation of IPR3D

vectors between users. Indeed, the IPR estimation uses double difference computational
techniques for mitigating common error effects. In order to hold assumptions made in the
IPR estimation method, the network size needs to be small enough for users to observe
similar atmospheric and ionospheric biases. Our collaborative network is thus assumed
to be the size of cities hyper centers where users can be spread by an order of magnitude
of tens kilometers.

6.2.2.b Communication Link

We assume that a communication link exists between each individual constituting
the collaborative network and the central processing unit. Our hypothesis presumes that
this existing link is: Reliable, Secure and Efficient. Loss of data packets or bits during
the data transmission is assumed to be negligible. This hypothesis is supported by the
hyper connectivity of modern smartphones as stipulated in section 4.4.

6.2.2.c User’s System Anchor

A system anchor will be put in place in our collaborative engine. This role will be
taken by one of the network’s mobile. A user that shows outstanding standalone posi-
tioning capabilities will be selected as the collaborative system Anchor. In this research,
the designated smartphone will be identified as the Best Node of the network. Originally,

104



6.2 SmartCoop Algorithm 105

this idea was inspired by differential GNSS techniques (such as RTK) that employ refer-
ence stations for computing differential corrections. In a CP technique, the role of the
Best Node will be to correctly initialize the constraints structure of the collaborative sys-
tem. Indeed, the Best Node smartphone shows great positioning solutions translating to
a smaller positioning error. In the CP literature, multiple papers demonstrated the the-
oretical and practical use of defining system anchor in a collaborative system [108] [109].
In the real world, this hypothesis is supported by different scenarios. A variety of en-
vironments can be found in modern city centers. Also, it can be ambitioned that one
of the smartphone user possess a newer device compare to other or is positioned in an
open area. Those scenarios could justify the presence of a Best Node smartphone within
a collaborative network.

6.2.2.d Constraining a Non-Linear Optimization Problem

The objective function that we are minimizing is bounded by nonlinear constraints,
as seen in equation 6.11. A constraint is defined by the difference between two estimated
cooperative positions compared in opposition to their estimated IPR3D. It is then derived
on all the position and on all the IPR3D components: x, y and z axes, in order to bind
our system in the 3D positioning domain. For our collaborative engine, two independent
users, u and v, are constrained by a set of equations, shown in 6.12.

Set of Constraints =


( p̂v,x − p̂u,x ) = IPRuv

3D,x

( p̂v,y − p̂u,y ) = IPRuv
3D,y

( p̂v,z − p̂u,z ) = IPRuv
3D,z

(6.12)

The number of constraints sets needed for binding all smartphone users in the network
varies. The number of sets needed can be easily computed by equation 6.13. As an
example, if a network is made of 10 users (n = 10) then our collaborative system will be
bounded by 45 sets of constraints representing a total of 135 equality constraint equations.

Number of constraints’ sets = n(n − 1)
2 (6.13)

Example and Constraints Representation

Let us draw an example for demonstrating the role of constraints within the Smart-
Coop engine. A network of four cooperative smartphone users is created, with user 2
being selected to be the Best Node of the network. Figure 6.3 depicts a 3D represen-
tation of constraints bidding an array of positions. This example involves a network of
four smartphones, thus generating six sets of constraints totaling 18 equations restrain-
ing our minimization process. For analysis purposes, the true positions (represented by
black crosses) and true ranges (black lines) are pictured on this figure. Obviously, none
of those parameters were used in the collaborative engine and are defined here only for
evaluation purposes. The red lines and light colored spheres represent initial GNSS fix
positions, obtained via Android GNSS raw data measurements, and their resulting un-
satisfied constraints. On the other hand, the red lines represent the newly estimated
inter-user distances (evaluated by IPR3D estimates, after all constraining equations are
satisfied). Newly estimated collaborative positions are drawn in darker color and are
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Figure 6.3: Inter-Phone Range Vector (IPR3D) Constraint
Visualization in 3D - ECEF Coordinates in [m]

linked by the green lines. This figure demonstrates the importance of satisfying the pre-
viously defined constraints and shows how they properly impact the new estimation of
collaborative positions. As shown on this figure, the Best Node user is used as a sys-
tem Anchor for initializing the orientation for the polygon of constraints. Finally, this
short (single epoch) example illustrates how the newly collaborative positions have been
improved through the SmartCoop algorithm.

6.2.3 Algorithm Implementation
SmartCoop algorithm has been developed in a Matlab® environment. This program-

ming environment offers multiple ways to solve various types of optimization problems.
Two main approaches exist on Matlab for defining and solving optimization problems.
The first one is a ”solver-based” approach, the second is called ”problem-based” approach.
They both differentiate on how the optimization problem is set within Matlab environ-
ment and do not impact the estimation process. In general, an optimization problem is
represented in Matlab by following the next steps.

• Choosing an approach method

• Choosing an optimization solver (or solver function)

• Setting up the optimization problem (initialization, creating the objective function
and the corresponding constraints)

• Tune up the options of the solver method

• Launch the estimation process

MathWorks offers a complete database and a complete user manual for selecting the most
optimized method for a specific process. For developing a Non-linear constrained opti-
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mization problem, the best solver function is fmincon. This function can be interpreted as
a constrained minimization process outputting a vectorial value x, that is a local minima
to an objective function f(x) subjected to invariable constraints. Equation 6.14 gives the
general definition for the fmincon function.

min
x

f(x) given:



c(x) ≤ 0
ceq(x) = 0
A.x ≤ b

Aeq.x = beq
lb ≤ x ≤ ub

(6.14)

The expression on the right side of the bracket in equation 6.14 are constraining functions
that can be set up for defining any optimization problem. b and beq are vectors. c(x) and
ceq(x) are functions returning a vector solution. A and Aeq are in matrix form. It is to
be noted that ceq(x), c(x) and f(x) can be setup as non-linear functions. Moreover, this
minimization process holds only if one or more (defined by the user) constraining function
is satisfied, in equation 6.14.

The optimization problem is then initialized by setting the objective function (function to
be minimized) and the associated constraints. In our case, the objective function is defined
as in equation 6.11. Initial conditions (x0) are set by the initial GNSS fixes computed or
retrieved from Android GNSS raw data measurements for all network’s mobiles. At last,
the constraints are established in a matrix form arranged in nonlinear equality constraints
that the solver function will attempt to satisfy. Thus, the set of constraints are written
in ceq(x) in function of the iterative tentative collaborative position estimates x.

Moreover, the algorithm associated with the solver function, fmincon, needs to be selected
and adapted to the situation. Five algorithm options are available on Matlab. After
careful review and multiple comparison tries, the Sequential Quadratic Programming
(SQP) algorithm showed the highest efficiency performance for our SmartCoop method
compared to the other four techniques. This technique estimates the Hessian of the
Lagrangian function employing a quasi-Newton updating method for every iteration steps.
This procedure will allow to generate a searching direction for a line search procedure in
order to find the local minima of the objective function. Further details and testing
methodology can be found on SQP algorithm in [110] and [111]. The implementation of
the fmincon function is further discussed in section 6.4.3.

A complete and commented ”live” Matlab script is available in appendix D. This code
shows the exact steps taken in our SmartCoop algorithm for estimating smartphone col-
laborative positions.

6.3 Simulation and Real Data Analyses
After a thorough description of our innovative SmartCoop algorithm, the results of

our simulations will be displayed, demonstrating the intrinsic performance of this collab-
orative positioning method. This result analysis has been divided into two parts. The
first one exposes the results of a nominal case scenario, in static open-sky environment,
for a given number of cooperative network’s users. The simulation parametrization will
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be detailed before discussing SmartCoop positioning enhancement. In a second time,
a static urban scenario will be presented. For this simulation, smartphone urban posi-
tions impairments have been generated using a powerful 3D model-based GNSS software
simulator leveraging ray-tracing capabilities, named SPRING. This simulator has been
developed by Centre National d’Études Spatiales (CNES) and its access has been granted
for the purpose of this research in the Centre Spatial de Toulouse (CST) technological
center, under the supervision of CNES engineers. The following results analysis shows
the outstanding performance of our CP method for static Android mobiles in degraded
conditions.

6.3.1 Nominal Scenario
First and foremost, the implemented CP method has to be tested in optimal condi-

tions in order to assess the benefits of collaborative positioning for Android smartphone in
controlled environment. The nominal scenario generated in this simulation is based on the
statistical analysis made during the data collection campaign (see section 3.2.1). Nominal
environment depicts an open-sky and static conditions where multipath and NLOS occur-
rences are mostly absent. Simulation results analysis will be considered as a preliminary
framework for testing and investigating the implementation of SmartCoop. The simula-
tion initialization and parametrization is firstly discussed. Thereafter, smartphone-based
collaborative results will be revealed, exposing the performance of the CP method.

6.3.1.a Simulation Parametrization

The implemented algorithm is divided into two distinctive blocks. The first block,
referred as the simulation block, generates a random collaborative network of smartphone
users. The second block, called the estimation engine, defines the optimization problem
and iteratively solves for newly smartphone collaborative positions. The Block diagram
depicted by figure 6.4 shows the procedural steps for implementing this CP method.

The first block of this collaborative algorithm is in charge of randomly simulating net-
work’s users positions. The inputs to this block are: the desired number of users populat-
ing the network (n), the position error distribution parameters of p̃ (µ and σ) from section

Figure 6.4: Block Diagram of SmartCoop Collaborative Engine Algorithm
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3.3, the geometry of the network and the length of the simulated scenario (in epochs).
This block will then output each smartphone user position that would be considered as
their initial fix GNSS position by the SmartCoop algorithm. The last outputs of this
block are the unbiased ”true” users’ positions, that will be used for simulating IPR3D.
In practice, the simulation block randomly generates user positions at 1 Hz over a specified
geographical area. Initial fix smartphones positions are randomly generated following a
centered Gaussian distribution. Standard error deviation and a zero-mean Gaussian distri-
bution used to generate those positions have been selected based on previous observations
and analysis made on smartphones devices for static open-sky scenarios (see section 3.3.3).
The error position standard deviation has been selected as: σp̃ = [2.5, 2.5, 3.8] in meters
on x, y and z in a ECEF reference frame for all simulated smartphones except for the
Best Node user. Indeed, Best Node mobile is randomly selected within network’s users.
The error distribution for this phone has been set to σp̃BestNode

= [1, 1, 2] on x, y and z in
meters, representing an higher positioning performance compared to the rest of the field.

In a second time, IPR3D are generated from the unbiased ”true” positions fed by the
simulation block. Inter-user distances are computed by taking the norm of the difference
between two independent user positions. Then, IPR3D vectors are generated by adding
a randomly generated Gaussian noise. The open-sky analysis made earlier (see section
5.3.1) on IPR3D behavior in nominal cases, suggests that inter-phone distances can be
approximated by a Gaussian distribution with σIP R3D

= [1.75, 1.75, 2.5] in meters on x, y

Figure 6.5: Simulated Smartphone-based Collaborative Network for a Static
Open-sky Scenario - Positioning Performance Comparison in a LLA

Coordinate System

109



110 Chapter 6: Smartphone Collaborative Positioning

and z in a North, East, Up (NEU) reference frame. Simulating smartphones positions and
IPR3D independently ensure that the added Gaussian noises do not correlate. Therefore,
IPR3D can be fed into the next estimation engine block.

Finally, GNSS fix positions and the simulated IPR3D are inputted into the estimation
engine. The estimation process of the SmartCoop algorithm is detailed in 6.2.1.c and
in appendix D. Iteratively, collaborative positions are estimated on an epoch-by-epoch
basis. This approach allows us to experiment and test the constraining capabilities of the
algorithms with IPR3D. This simulation process outputs newly estimated smartphone
collaborative positions.
The implementation of this algorithm on the Matlab environment allows to compute
random cooperative networks with any number of users constituting the network. The
following presented simulations represents a collaborative network of 10 users over a 1 hour
time period, generating positions at 1 Hz (3600 epochs). During the computation process,
the estimation procedure ran by the fmincon function takes on average 5 iterations per
epochs for finding a local minimum that entirely satisfies all constraining equations.

6.3.1.b Results Analysis

This section will present the results analysis obtained for a nominal simulated scenario
for our SmartCoop algorithm. In the presented simulation scenario, a network of 10
collaborative smartphone users was generated. Their initially generated positions are
shown on figure 6.5, on the top graph. A random user geometry was used to position
each individual user. Each dot represents an estimated position at 1 Hz frequency and
the associated cross describes their reference position. Smartphone data and IPR3D

vectors have been simulated for 3600 epochs. In this scenario, smartphone user 2 has
been randomly selected to be the Best Node of the network, pictured on the right hand
side on Figure 6.5.

The above mentioned figure demonstrates the proof of concept for the SmartCoop algo-
rithm. The top graph shows the smartphone positions before collaboration. The compari-
son can be directly made with the plot below, displaying the newly estimated collaborative
positions. Collaborative positioning has improved all users position accuracy. Moreover,
the positions dispersion have been reduced, thus increasing smartphone position precision.

Table 6.1 presents a statistical characterization of positioning error of the newly es-
timated cooperative positions. The first two columns show the statistical distribution of
the newly estimated collaborative position error. Those parameters are to be compared
with the simulated standalone position errors exposed in the simulation parametrization
in 6.3.1.a as σp̃. Figure 6.6 supports the observation made in table 6.1 by showing the
position error distribution for a specific network user (phone 3) before and after collabo-
ration. Thus, the last two columns of the table display measures variation between initial
positions (p̃) and collaborative positions from SmartCoop (p̂). Negative values indicate
an improvement observed with our collaborative method. Essentially, this table validates
the improved positioning performance induced by SmartCoop. All smartphones (except
Phone 2 ) positions performances improve. In particular, the drastic improvement of the
95th percentile (≊ 2σ) parameter confirms the positioning performance enhancement.
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The Best Node phone represents an exception to the previous analysis, undeniably no
improvement has been made on the global estimation of this user’s position on its already
(assumed) best positioning performance.

A second analysis can be made on an epoch by epoch basis. It has been established along
multiple simulation runs, that our algorithm increases position accuracy more than 92%
of the time for all smartphones within the network (except for the Best Node user where
position accuracy was increased in 68% of the time). The average accuracy gain has been
shown to be of ≈ 3.3 meters. In the few cases where newly estimated positions have
not been improved, the investigation carried out pointed at a failure of the estimation
process. Indeed, it appears that in rare cases, the minimization operation converged to an
infeasible point where not all constraints could be satisfied and thus leading to erroneous
position estimation.

Overall, the proficiency of the SmartCoop algorithm has been illustrated for static open-
sky case scenario. This first analysis represents the framework for future work and acts
as a proof of concept for the use of LS-based CP positioning technique. Furthermore, the
constraining capabilities of the defined optimization process have been found to rely on
the accuracy of cooperative double-difference GNSS-based computation of IPR3D esti-
mated vectors. Indeed, the estimation of precise inter-phone vectors characterize the tight
implementation of the constraining equations. One could implement the SmartCoop al-
gorithm using a more complex ranging method (i.e: LIDAR) for refining the collaborative
position performance.

Figure 6.6: Position Error Distribution Analysis (combined error
on x, y and z coordinates) for a Static Open-sky Scenario - Before

and After Collaboration - Phone 3 - ENU Reference Frame
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SmartCoop Positions

Network’s
Smartphones µp̂[m] σp̂[m] ∆σ[m] ∆95%[m] (2σ)

Phone 1 0.06 1.61 -3.27 -4.60
Phone 2 (Best Node) 0.03 1.34 +0.11 +0.16

Phone 3 0.06 1.63 -3.26 -4.67
Phone 4 0.05 1.63 -3.23 -4.62
Phone 5 0.03 1.63 -3.31 -4.52
Phone 6 0.04 1.61 -3.22 -4.53
Phone 7 0.01 1.75 -3.27 -4.51
Phone 8 0.02 1.82 -3.29 -4.68
Phone 9 0.08 1.60 -3.21 -4.40
Phone 10 0.02 1.65 -3.22 -4.63

Table 6.1: SmartCoop Positioning Performance in Static Open-sky
Conditions - Position Error Statistics Comparison (combining errors on x, y

and z) between Standalone Position and Collaborative Position - ENU
Reference Frame

6.3.2 Urban Canyon Scenario
The following analysis depicts a collaborative scenario in a dense urban environ-

ment. The positions of network’s users have been selected within the core downtown
area of Toulouse in south-west France. The goal of this simulation analysis is to test our
SmartCoop algorithm in urban conditions where signals are affected by various disrup-
tions. In opposition to the previous analysis for the nominal case scenario, smartphones’
positions will be generated via a simulator tool called SPRING that takes into consid-
eration local environment (using a georeferenced 3D model of buildings) for generating
realistic masking and pseudorange impairments, and thus simulating life-like users’ po-
sitions. Firstly, the simulation parametrization will be exposed for this urban analysis.
Then, the generation of smartphone urban positions will be detailed with the introduc-
tion of the SPRING simulator. Finally, simulation results will be discussed, highlighting
SmartCoop collaborative algorithm performance in deep urban environment.

6.3.2.a Simulation Parametrization

The creation of an urban scenario started by pre-determining smartphone’s positions
within a geographical area. In order to better represent life-like situations, network’s
users have been placed in various environments found in deep urban areas. Those local
environments range from deep urban canyon (narrow streets) to dense urban (avenues),
to semi-open areas (city squares) to finally open-sky areas (a park or on top of a bridge).
For this scenario, 10 smartphones network users have been placed in the city center of
Toulouse, France for a total duration of 30 minutes. Their pre-defined positions represent
a wide variety of local environments. Figure 6.7 shows the created collaborative user
network over a satellite image of Toulouse city center. The selected geographical area
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represents the heart of Toulouse city center, where the two farthest cooperating users are
at a distance of 1.41 kilometers.
As previously exposed in section 6.3.1.a, the SmartCoop algorithm outputs the newly esti-
mated collaborative positions and remains identical compared to the previously presented
engine in the nominal case scenario. The main difference comes from the way users posi-
tions are generated. In this scenario, smartphone’s positions and associated pseudoranges
are simulated by a 3D model-based GNSS software simulator. Pseudoranges are then
used to compute IPR3D, following the algorithm presented in 5.2. Users network posi-
tions and estimated IPR3D are used as inputs for setting up the non-linear constrained
optimization problem in SmartCoop.

6.3.2.b Generating Smartphone Urban Positions

Simulating GNSS urban positions has always been a challenge for the research com-
munity. Urban environment navigation and positioning are heavily impacted by low
satellite availability, NLOS signals and multipath occurrences. In order to generate real-
istic urban position, the complete propagation channel needs to be simulated including
propagation effects due to buildings around the desired location. An advanced GNSS
software simulator has been used for generating urban smartphone positions. In cooper-
ation with CNES, SPRING 3D GNSS software was adopted for characterizing mobiles’
urban positions.

SPRING is a GNSS software algorithm that aims at estimating the error due to multi-
path taking into account adjoining buildings and surfaces [112]. Thanks to a powerful
implementation of a local 3D model, information about buildings geometry and surfaces
can be retrieved. This model is provided by precise geo-referenced measurements. The
detailed description of local geometry allows to individually simulate every signal of inter-
est. GNSS signal propagation computation in SPRING is based on ray tracing principle.

Figure 6.7: Simulated Collaborative Smartphone Network in an Urban
Scenario. Satellite image from Maxar, Microsoft.
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Figure 6.8: SPRING Urban Positioning Simulation for
Smartphone 1. a) Ray Tracing of Incoming GNSS Signals in the

Generated 3D Environment. b) Plot of Simulated Positions [LLA].

This method is well-known for modeling various effects during the propagation chan-
nel: free-space propagation, diffraction, shadowing, reflection and refraction. Each ray
is propagated in the scene until it intersects an object contained in the 3D modeled site
where the generated receiver is located. The implementation of such algorithm allows for
an accurate estimation of all available GNSS signals. Afterwards, realistic pseudoranges
(biased by uncorrelated multipath events) are computed. Finally, PVT computations are
made for estimating ”life-like” smartphone’s urban positions. Figure 6.8 captures the sim-
ulating processes used for estimating smartphone user 1. The figure on the left shows the
different rays computed for the given urban position taking into account local architecture
at a given epoch. The second picture on the right (b), shows the cloud of point positions
computed for the entire scenario duration.

Reasons for Simulating Urban Positions with SPRING

Android-based positioning is currently being studied by multiple entities and advanced
positioning algorithms taking advantage of this recent smartphone-based measurement
are still under development. Our data collection campaign focused on understanding and
analyzing urban positioning performances of Android devices. However, the collected data
hardly represent a global representation and measurements models for urban positioning
cannot be extracted from the samples of retrieved data.
One possible way forward consists of simulating urban positions from well-known prop-
agation models in order to accurately represent Android measurements. The use of the
SPRING simulator gives two main advantages to our study. First is the possibility to
control and monitor the entire chain of simulation processes, thus creating with confidence
a reliable collaborative network in constrained environment. And secondly, it offers the
opportunity to assess the theoretical performance of our collaborative algorithm Smart-
Coop in urban environment. The model used in the SPRING simulator is directly derived
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from low-cost processes (hardware + antenna) and reflect well the model tuning and er-
ror model characteristics for smartphone-based positioning. The simulation was done for
GPS L1 C/A observations at 1 Hz frequency.

6.3.2.c Results Analysis

The simulation has been performed applying the same method described in the sec-
tion above. The goal of this analysis is to assess the performance of the newly estimated
cooperative solutions compared to the initially generated urban positions. This study
will also highlight the strengths and weaknesses of our collaborative positioning engine in
degraded urban conditions.

The inputs to the SmartCoop algorithm remain similar to the ones exposed in 6.3.1.a.
First, a network of 10 users is constituted in Toulouse city center. For this scenario, the
SPRING GNSS software simulator was used for generating realistic GNSS pseudoranges
for all users in a 30 minutes scenario. Network’s users positions have been directly de-
rived from those generated raw GNSS measurements. Furthermore, we used the code
pseudorange from SPRING to estimate realistic IPR ranges. Both users’ positions and
IPR3D vectors are then inputted in the collaborative engine. Figure 6.9 demonstrates the
estimated inter-user distance between users 5 and 3. The obtained IPRd, figure a) on 6.9,
correlates with our previous analysis made on static scenario. The plot on the right side
of figure 6.9 b) characterizes the error distribution of our estimated IPRd between phones
5 and 3. The histogram of this error distribution (1800 samples per PRN) is characterized
by a Gaussian distribution.

Figure 6.10 presents the results of this urban simulated scenario. The top plot depicts the
initial positions of all network users. The bottom plot shows the newly estimated collab-
orative positions for each simulated individual. The first observation that can be drawn
from this figure is that our collaborative engine significantly improved overall positioning

Figure 6.9: SPRING-based Inter-Phone Range Baseline (IPRd) Estimation
between User 5 and 3.
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solutions. Secondly, the position dispersion decreased and thus allows users to obtain a
reliable positioning solution over time. All smartphones solutions have been improved by
the collaborative solution, except for phone 2 the Best Node of the network.
Furthermore, it appears that all newly estimated positions share similar dispersion pat-
terns. Figure 6.11 shows a zoomed view of the estimated collaborative positions of users 5
and 1. Both estimated positions dispersions are oriented in a north/south axis. This be-
havior is directly correlated to the constrained minimization process. This result demon-
strates that all positions solutions are correctly bounded by IPR3D vectors at every
epochs. The restriction coming from the processing of constraints creates a grid structure
(illustrated for a 4 user network in Figure 6.3) between network’s users and thus gener-
ates a ”network signature” on the resulting position dispersion. On the other hand, the
orientation of the position dispersions are mostly due to the network geometry of users.
This phenomenon is further discussed in section 6.4.2.

Moreover, this study compared the position solutions on a epoch by epoch basis. It has
been found that for all smartphones the collaborative process improved the horizontal
positioning solution in more than 75% of the time (except the Best Node). Plus, on
average a gain of more than 10 meters has been seen compared to their original position.
Table 6.2 describes individual smartphone positioning performance in function of their
reference position. Error statistical characteristics are here described by the mean µ,

Figure 6.10: Smartphones Collaborative Positioning Solutions from
SmartCoop Algorithm in Urban Environment
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Figure 6.11: Smartphone Collaborative Solutions Zoom on Users 5 and 1

the standard deviation σ and the 95th percentile value in meters. In this table, negative
values represent a gain compared to the error characteristics generated from the initial
position coming from SPRING. The presented results reveal that globally positioning
error has been enhanced by tens of meters compared to the generated urban positions.
This claim is supported by figure 6.12 comparing the positioning error of both original
and collaborative solutions in the NEU reference frame. In this figure, smartphone user
6 is used as an example and similar results are found for all remaining network’s users.

SmartCoop Positions

Network’s
Smartphones ∆µ[m] ∆σ[m] ∆95%[m] (2σ)

Phone 1 -11.16 -8.21 -13.80
Phone 2 (Best Node) +2.62 +1.10 +2.86

Phone 3 -7.30 -6.97 -9.93
Phone 4 -8.74 -9.22 -12.46
Phone 5 -8.88 -10.77 -13.57
Phone 6 -9.04 -8.32 -12.13
Phone 7 -4.54 -2.47 -5.17
Phone 8 -7.25 -2.19 -7.51
Phone 9 -21.94 -14.65 -26.35
Phone 10 -23.58 -11.64 -26.29

Table 6.2: SmartCoop Horizontal 2D Positioning Performance in Urban
Environment Conditions - Position Error Statistics Comparison between
Standalone Position and Collaborative Position - ENU Reference Frame
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Figure 6.12: Generated Versus Collaborative Positioning Error Comparison
in the NEU Coordinate Frame [m].

The positioning error is significantly reduced on the North and East components. The
improvement on the standard deviation presented above is clearly highlighted by this
figure. Furthermore, occurrences where the original position solution have been heavily
impacted by characteristic urban impairments have been smoothed and mitigated by the
collaborative estimation process. This event can be clearly identified on Figure 6.12, on
the East component plot between epochs 750 and 1150.

On the other hand, a large error remains on the Up component of the positioning error.
Similarly, the representation of the 3D error on adjacent figure 6.13 shows the impact of
this error on the resulting 3D error plot. The origin of this bias can be linked to two dis-
tinct phenomena. Firstly, the generation of positions heavily depends on the 3D models
implemented in SPRING. A wrongful setting of this model could have led to generate our
initial position on sea level (elevation = 0 meter). This hypothesis is suggested by the
error value on the vertical axis being equal to ≈120 to 130 meters, corresponding to the
actual elevation of the city of Toulouse.

A second hypothesis emerges from the creation of the previously mentioned grid struc-
tures. In this scenario, no major elevation difference can be reported between smartphone
position. Thus, naturally the created network of users sits on a common horizontal plane.
We can consider that the constraining algorithm with our optimization problem does
not account for the small variation on the vertical axis. The minimization process could
potentially only restrict the initial positions on the horizontal axis while neglecting the
change on the vertical component. This would explain why our SmartCoop algorithm did
not correct the positioning errors on the Up component.

118



6.3 Simulation and Real Data Analyses 119

Figure 6.13: Horizontal and 3D Positioning Error Comparison in the NEU Coordinate
Frame [m].

However, this issue can be tempered with the usage made by smartphone users. In-
deed, smartphone-based positioning and navigation are mostly conducted in urban and
sub-urban areas where elevation changes are minimal. Finally, smartphone-based posi-
tioning and navigation are mostly conducted in urban and suburban areas for users on the
ground so the altitude is often forced to be the assumed ground level (e.g. from a Digital
Elevation Model). For users that may not be on the ground, such as UAVs, altitude is
often supplied by means other than GNSS and/or the GNSS-based altitude is augmented
by additional sensors (e.g. barometer) [40].

Nevertheless, this problem can be mitigated via the implementation of additional mea-
surements for restraining the vertical axis. Smartphone device offers sensors capable of
constraining vertical user movements. It can be imagined that barometric measurements
variation could be used as a constraining solution in our optimization process, fixing the
vertical component on the cooperative grid structure.

In conclusion, urban smartphone-based positioning was successfully simulated and our
SmartCoop algorithm have been studied. Results analysis confirmed the assessment made
for nominal open-sky scenario. It was shown that the proposed collaborative algorithm
can be used for improving smartphone network’s users positions, in difficult environment
for most of the cooperative individuals. Horizontal positioning performances were en-
hanced in more than 75% of the time, increasing position accuracy by a about 4.8 meters
on average.
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These results validate a proof of concept for a collaborative smartphone network. However,
the presented conclusions rely on decisions and hypothesis made during the construction
of the presented smartphone collaborative algorithm. Therefore, the following section will
evaluated the collaborative algorithm outputs against the decision made and a detailed
discussion studies the impact of the different hypotheses previously presented in section
6.2.

6.4 Algorithm Design Discussion
After unraveling the innovative concept of the SmartCoop algorithm and the per-

formance through a simulation campaign, this section will evaluate our method against
previously stated hypothesis and other method results available in the literature. Firstly,
the concept of network Anchor or Best Node is revisited. This evaluation aims at assessing
the benefits associated with the selection of an Anchor within the collaborative system.
Then, the impact of network’s user geometry will be provided for explaining the positions
”signature” observed in previous analysis. Finally, a discussion will assert the impact of
hypotheses made in this dissertation.

6.4.1 Impact of the Anchor
Initially, the role of the network’s anchor was to mimic the reference position used in

DGNSS advanced algorithms. In this study, the anchor user was denominated Best Node.
The implementation of this anchor user was justified by real-life occurrences. A static
user in an open-area (e.g: a park) could show better positioning performance compared to
other users in adjacent urban environment. For this research work, the Best Node phone
was used for correctly setting our constrained optimization problem. Its role was to be
the anchor point for building around a network grid based on other satisfied constraints.
This process is illustrated in figure 6.3.

The impact of the Best Node feature can be assessed by coming back to the results
analysis in 6.3.1.b. The selected method for evaluating the effect of the network anchor
can be made by simulating a similar network in similar conditions without picking a Best
Node phone. Since positions are randomly selected within a certain area, the following
simulation results will not be identical to the one presented on figure 6.5.

Figure 6.14 presents the collaborative positions of a 10 users network in open-sky con-
ditions. Here, no Best Node phone has been selected and all smartphones have been
simulated using identical distribution characteristics. As demonstrated by the plot on
figure 6.14, newly estimated smartphone positions have all been improved by the Smart-
Coop algorithm. Thus, the selection of a system does not impact the final collaborative
solution.
However, it appears that the computational time and complexity have been increased. In
comparison to the analysis made above, the algorithm was found to be 35% slower. In
fact, the fmincon function responsible for the resolution of the optimization problem took
on average more iteration steps in order to both find a local minima and satisfying the
given constraints.

Finally, we can conclude that the selection of an anchor user is not a requirement in the
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Figure 6.14: Simulated Smartphone-based Collaborative Network
- Positioning Performance Comparison in a LLA Coordinate

System - without a Best Node Phone.

implementation process of the SmartCoop algorithm but is recommended, if the situation
allows, in order to reduce computational loads.

6.4.2 Impact of Users Geometry
In previous results analysis, we observed that the outputted collaborative positions

could have similar ground dispersion that shared an identical signature. All the repre-
sented point clouds were oriented on the North/south axis in figure 6.12. This behavior
could be correlated to the network geometry, meaning the geographical repartition of users
within the collaborative network. This concept directly echoes to the DOP parameters
computed in GNSS for assessing a sigma ratio between the precision of measurements
and the position. This ratio is computed for evaluating the geometric distribution of
satellites.
The goal of this analysis will be to evaluate the impact of users’ geometry within the
network. Two independent simulation analyses will be performed.

Firstly, a collaborative network of 6 mobiles is created for nominal test case scenario.
All users are placed along an imaginary line, thus depicting the worst network geometry
(on a single plane). In this case we expect the collaborative positions to be distributed
along this axis. Figure 6.15 illustrates that scenario. The bottom plot reveals the position
ellipses characterized by a semi-major axis along the East/West axis, as anticipated. This
behavior might originate from the constraining characteristics of the collaborative engine.
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Figure 6.15: Simulated Smartphone-based Collaborative Network
- Positioning Performance Comparison in a LLA Coordinate

System - without a Best Node Phone.

All positions seem to be locked onto the horizontal plane formed by the initial positions.
Afterward, the minimization process easily finds a local minima within the same plane. In
this situation, multiple local minima cannot be characterized as a point peak, but rather
as a line. The minimization process picks a local minima along the line and thus creates
this position East/West dispersion signature.

Figure 6.16 displays a visual 3D representation of the constraints role for this scenario.
At this epoch, a shift of all estimated collaborative positions took place. This bias is
represented by the red arrows on the figure. This plot visually supports the discussion
above.

Afterwards, a collaborative network with good user geometry was created in order to

Figure 6.16: Simulated Smartphone-based Collaborative Network
- Positioning Performance Comparison in a ECEF Coordinate

System - without a Best Node Phone.
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Figure 6.17: Simulated Smartphone-based Collaborative Network
- Positioning Performance Comparison in a LLA Coordinate

System - without a Best Node Phone.

confirm our hypothesis on the impact of user ground repartition. In this simulation, a
scenario of 6 users were simulated around a circle. This disposition corresponds to a good
geometrical distribution of network’s users. Figure 6.17 demonstrates that the outputted
collaborative positions point clouds have round shapes. The good user geometry allowed
the SmartCoop algorithm to efficiently solve our optimization problem. Outputted posi-
tions shows now centered Gaussian distribution, round behavior.

6.4.3 Hypotheses Discussion
This section is discussing the impact of all hypotheses formulated in this dissertation

for the creation of the presented collaborative algorithm. Moreover, this evaluation will
lay the groundwork for improvement in the development of a collaborative smartphone
network.

Independence of Smartphone Positioning Errors
During the mathematical derivation of the collaborative algorithm, it was assume that
users positioning error are independent between all members of the collaborative network.
This hypothesis is supported by the fact that users are mostly to be using different GNSS
receivers (i.e different smartphone) for receiving and processing GNSS measurements.
Moreover, for simplification purposes, we assumed that the user positioning error follow a
Gaussian distribution and that their statistical parameters (µ and σ) were selected based
on the characterization of smartphone measurements.
However, it can be argued that measurement errors between users are dependent. One
axis for future improvement would be to characterized smartphone measurements with
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a more complex statistical distribution that would take into account correlation between
collaborative users.

Independence of GNSS Positioning Errors
For simplification purposes, we assume that GNSS positioning errors on all components
(x, y and z) were independent. However, as demonstrated by [24], this assumptions does
not reflect real life applications. This hypothesis was formulated in order to validate a
preliminary proof of concept for the presented collaborative engine. In future study, the
error correlation between coordinates could be introduced by transforming the covariance
matrix Σu introduced in section 6.2.1.c.

Independent Positioning Solution
The presented collaborative solutions outputted by the SmartCoop algorithm are inde-
pendent in time. This process has been developed as snapshot technique, computing
positioning solutions without apriori knowledge. A future implementation of collabora-
tive positioning engine could be made recursively. A new collaborative position at an
epoch t could be estimated with an apriori knowledge such as: its own previous posi-
tioning solution at epoch t − 1 or the estimated IPR linking this agent to other network
users.

Equality Constraints of IPR Vectors in Matlab
As discussed in section 6.2.3, the presented collaborative engine is characterized as a con-
strained optimization problem. This optimization highly depend on the estimated IPR
vector constraining the tentative collaborative positions. In the current approach, the
IPR vectors are estimated independently from the optimization problem. These IPR vec-
tors are strictly constraining tentative positions without apriori knowledge of the previous
estimation method. In future works we could consider implementing a covariance matrix
of IPR vector estimates for weighting these constraints into the optimization process.

In Matlab, the fmincon function is used as the solver to our constrained optimization
problem. In our collaborative network model, the IPR estimated vectors are used as
strictly equality constraints. In theory, the Matlab solver tries to minimize the objective
functions while strictly applying the equality constraints. However in practice, the fmin-
con solver rarely manage to find a local minima to the objective functions while strictly
satisfying the equality equations set by the IPR vectors. A constraint tolerance ( equal
to 1−6) is enforce by the solver preventing unsolvable processes. Furthermore, other tol-
erances and stopping criteria prevents the fmincon function to solve for strict constrained
equations. The documentation concerning tolerance details for specific solver and algo-
rithm can be found on the MathWorks website [113]. Thus, a fine tuning of Matlab solver
could be studied for further improving the estimation of collaborative positions.

6.5 Chapter Conclusions
This chapter was introduced with a complete review of the state-of-the-art concerning

collaborative hybridization filters. It was then followed by an argumentation for selecting
the most adapted CP method to be implemented with Android devices. This led to the
presentation of an innovative smartphone-based collaborative engine, called SmartCoop.
A detailed description of this collaborative estimation engine was given. Android GNSS
raw data measurements were put in the center of the attention with the interpretation of
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constraints role within our non-linear constrained optimization problem.
In the wake of this presentation, simulations results analysis were displayed for two test
case scenarios: nominal and urban environment. Both simulations results showed that
newly estimated collaborative positions have reduced original horizontal position errors.
In difficult environment, a gain of a couple of meters was established on user’s positioning
solutions. SmartCoop collaborative engine showed reliable performance enhancing global
network positioning capabilities.
Future works will aim at mitigating resulting positioning error on the vertical axis. It is
ambitioned a second layer of restriction on the vertical axis can be applied to the charac-
terization of our collaborative engine. Additional smartphone’s sensors provide entrancing
measurements for constraining the future implementation of our algorithm. Furthermore,
SmartCoop remains to be tested with real Android GNSS raw data measurements for val-
idating the simulated results. After regrouping a fleet of tens of smartphones, a data col-
lection campaign could retrieve measurements from those devices placed on geo-referenced
points. This step is essential for characterizing SmartCoop algorithm in real conditions
before implementing a life-like collaborative network.

125



126 Chapter 6: Smartphone Collaborative Positioning

126



7
Conclusions

This chapter is concluding and synthesizing the presented research work of this PhD
thesis. A brief summary will display the progress and the scientific contributions made in
this research study. The conclusion highlights the completion of initially set objectives.
Firstly, a conclusion will epitomize the main steps and successes leading to the devel-
opment of SmartCoop positioning engine. Furthermore, implementation solutions and
commissioning strategies are exposed for exploiting our collaborative system. Finally, fu-
ture software implementation and future works are discussed for improving collaborative
estimation processes.

Conclusions

Overall, this research work successfully developed a smartphone collaborative posi-
tioning engine enhancing users positioning performance in urban environments. In the
first part of this thesis, smartphone positioning characteristics were studied for better ap-
prehending Android GNSS measurements. An assessment methodology, derived from our
data collection campaign, statistically described positioning performance in constrained
environments for a broad spectrum of smartphone brands and models.
In the second part of this research work, the selection of a smartphone-based collaborative
network has been introduced. A GNSS double difference technique was implemented and
optimized for efficiently estimating inter-phone 3D distance vectors. Finally, an innova-
tive smartphone cooperative positioning engine has been developed, named SmartCoop.
This algorithm is based on the previously estimated Inter-Phone vectors (IPR3D) used
as dynamic constraints in an non-linear optimization problem.

A detailed simulation result analysis revealed a significant positioning accuracy increase
in both open-sky and in urban conditions. Simulated network’s smartphone users re-
ported a positioning solution improvement more than 75% of the time. Moreover, our
smartphone collaborative positioning engine decreased position error standard deviation
by approximately a factor of 1.5, thus producing a reliable solution over time.

127



128 Conclusion

Applications for SmartCoop Positioning Engine
The following section debates the application opportunities that could fit the use of

a smartphone-based cooperative engine. The authors believe that this positioning algo-
rithm could be used within a pre-defined system.
A first suggestion would be to integrate the SmartCoop algorithm within Google services.
This implementation would profit from the computational capabilities of the American
firm, plus an unprecedented access to an abundance of measurements for creating local
cooperative networks. It can be envisaged that our collaborative solution could be di-
rectly added to the Google localization services for enhancing FLP positions in urban
environments.
A second suggestion could be the commission of our collaborative algorithm by a smart-
phone or a chipset manufacturer. The natively execution of our solution on branded
devices could assist the development of certain brands and would participate in the tech-
nological race engaged between manufacturers. These two propositions allow for better
understanding the role of a collaborative algorithm in the smartphone positioning domain.

Perspectives
This section explores the future studies to be conducted following up the presented

research work. The perspectives exposed below are direct contributions to be implemented
with the SmartCoop cooperative positioning engine.

• Extend the Data Collection Campaign for Refining Measurement Models
Additional data measurements would be needed for validating the results drawn by
the different analyses presented in this thesis. A future data collection campaign
would be necessary for assessing Android GNSS measurements characteristics of
new smartphone brands, chipset models and firmware updates. The constitution of
a dense and robust dataset would allow for the implementation of a regression system
dedicated to the improvement of measurement model and collaborative algorithm
performance.

• Analyzing Low Dynamic Scenario
The presented research focused on static scenarios in urban environment. Future
works should study the impact of dynamic scenarios on the navigation solution
outputted by SmartCoop. In urban conditions, low dynamic navigation scenarios
are mostly conducted with smartphone devices. Higher dynamics type of events
should be thoroughly analyzed. In this situation, we expect smartphones’ embedded
receivers to struggle due to untimely cycle slip events and frequent losses of lock.

• Real Condition Testing for SmartCoop
After a successful simulation result analysis made on the cooperative positioning
filter SmartCoop, these results should be validated in real condition testing. The
processing of Android GNSS recorded raw data measurements are to be implemented
within our given cooperative engine. It is ambitioned that a reduced collaborative
smartphone network can be created. Each smartphone should be placed on geo-
referenced points within an urban area for enabling a post-processing reference point.
Recorded data could then be inputted into our cooperative engine for analyzing
smartphone positioning performance.
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• Adding New System Constraints
The presented cooperative algorithm takes advantages of the Inter-Phone vectors
(IPR3D) for constraining a non-linear optimization problem. As shown in 6.3.2.c,
vertical position error remains high. A solution to that issue could be the intro-
duction of additional constraints to our system. Smartphone are equipped with
different environmental sensors that could be used in this interest. As an exam-
ple, the derivation of barometric measurements could be a source of information
concerning the vertical dynamic of the mobile. This measurements could be im-
plemented as a constraint, tightening our vertical position estimate on the correct
vertical plane.

• Implementation of a Collaborative Network for Direct Application
After validating the experimental results with real data measurements, the imple-
mentation of the SmartCoop engine in real-time could be the next achievement.
This implementation could be of different form. The creation of a dedicated An-
droid API for collaborative positioning could potentially lead to the release of the
presented algorithm on mass-market devices. The example of the European project,
Flamingo [114], could be taken as an initial release plan.
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Global Navigation Satellite System (GNSS) defines a satellite-based navigation and
positioning system with global terrestrial coverage. This type of system provides users
a three-dimensional positioning and timing solution in a georeferenced frame. Precise
processing of transmitted radio signals, continuously broadcasted by orbiting satellites,
allows for user positioning solutions. Positioning solutions are estimated by specialized
receivers using trilateration techniques.

This appendix chapter will present the different segments that define those navigation
and positioning systems. Satellite constellations and signals descriptions used in this re-
search will be described. Afterward, a detailed overview of GNSS receiver architecture
will be provided. Constellations and signals, used in this research work, will be explicitly
detailed in this chapter.

A.1 GNSS Systems
Global constellation refers to the composition of orbiting satellites family. Most con-

stellation are constituted of a core 27 or more Medium Earth Orbit (MEO) satellites. This
satellite-based positioning and navigation system provides pin-point location and timing
services. This systems is widely used worldwide for various daily operations. Multiple
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Figure A.1: GNSS Segmentation Structure

global positioning systems are currently in service. However, the structure of all GNSS
system is common. GNSS systems are composed of three distinct segments: the user seg-
ment, the space segment and the control segment. GNSS system architecture is described
in figure A.1. This system of satellites is often referenced as a passive structure, enabling
users to receive signals without interacting directly with the emitting spacecraft. This
particularity makes the system scalable resulting in a unlimited user capacity benefiting
from GNSS services.

A.1.1 Space Segment
The space segment is characterized by satellite constellation orbiting the Earth. A

constellation is made of multiple satellites broadcasting radio signals towards the planet’s
surface. Multiple GNSS constellations are already active and are presented below.

1.1.1.a GPS

The first GNSS developed is the American system called Global Positioning System
(GPS) in the end of the 20th century. It was originally created by the U.S Department
of Defense for military purposes. Nowadays, the system is owned by the United States
government and operated by the United States Space Force. Currently the GPS constel-
lation is constituted by 31 operational satellites. Satellites have been developed over the
last fifty years and are segmented in specific blocks. As of today, GPS satellites come
from 4 blocks ranging from legacy to modernized systems. All existing blocks are listed
below:

• Block IIR: 8 Operational Satellites
Launched between 1997 and 2004
2nd generation of legacy GPS satellites.

• Block IIR-M: 7 Operational Satellites
Launched between 2005 and 2009
Introduced 2nd civil signal on L2 band and a new military code signal.

• Block IIF: 12 Operational Satellites
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Launched between 2010 and 2016
Introduced 3nd civil signal on L5 band and an improved on-board atomic clock.

• GPS III/IIIF: 4 Operational Satellites
Current satellite generation. First Launch in 2018
Introduced 4th civil signal on L1 band (L1C).

Figure A.2 shows the GPS satellites orbital plane positions and is divided into their
respective blocks. Three frequency bands are available on GPS. The L1 band, centered at
a carrier frequency of 1575.42 MHz, is used to broadcast four signals (including code M).
The most commonly used is the L1 C/A signal. The second one is the encrypted precision
military signal called L1 P(Y). Most recently, the L1C signal has been implemented on the
newest generation of GPS satellites within the Block III. The second frequency band, L2
band centered at 1227.60 MHz, emits two signals: the L2C for civilian purposes and the
L2P(Y). Finally, L5 signals are transmitted on the 5th frequency band, centered around
1176.45 MHz.
GPS utilizes their numerous frequency bands to provide two main services to their users.
The first service is referred as Standard Positioning Service (SPS). This service is free of
charge and provide position, velocity and timing to a plethora of civil and commercial
users. The second service, called Precise Positioning Service (PPS), is an encrypted service
mainly for military and government purposes. Table A.1 regroups the characteristics of
the GPS space segment.

Figure A.2: GPS Satellites Orbital Locations [15]

1.1.1.b Galileo

At the beginning of the 20th century, the European Union wanted to pursue their
independence toward navigation solutions and developed their own satellite navigation
system called Galileo. The European system is currently operated by the European
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Union Agency for the Space Program (EUSPA). The main differentiating factor of the
Galileo system is the plurality of services that are offered by the navigation system. The
European GNSS system offers 4 services as listed below:

• Open Service (OS)
The service provides Position, Navigation and Timing (PNT) solutions free of charge
mainly targeting civil applications.

• High Accuracy Service (HAS)
This service aims at market application and can be used as a complement to the
OS Galileo service for professionals requiring high accuracy solutions.

• Public Regulated Service (PRS)
This service is intended to be used by authorized entities. It has been designed
as a robust and encrypted service that provides high accuracy PNT solutions to
European institution under all circumstances.

• Search and Rescue (SAR)
This unique service contributes to the international cooperative effort for search
and rescue activities. The particularity of this COSPAS-SARSAT service is that it
offers a return link service for distressed users directly built in within the satellites’
payload.

Navigation signals are broadcasted on four frequency bands by Galileo. These four fre-
quency bands are called E1, E5a, E5b and E6. The frequency plan of Galileo offers wider
bandwidth for signal transmission than GPS. Table A.1 regroups the characteristics of
the Galileo space segment.

1.1.1.c GLONASS

The Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) system has
been developed by the Soviet Union has a counterpart to the GPS during the historic
cold war. This constellation’s space segment is populated by 27 satellites in orbit. Satel-
lites deployed in the GLONASS constellation have been segmented into 3 specifications.
Currently, only the two most recent satellite blocks are in service. GLONASS-M satellites
are the second generation that modernized the characteristics of the orbiting payloads.
The current satellite generation is called GLONASS-K and was firstly launched in 2011.
The particularity of GLONASS is that the system was implemented via a legacy Fre-
quency Division Multiple Access (FDMA) technique for differentiating incoming satellite
signals. Table A.1 regroups the characteristics of the GLONASS space segment.

1.1.1.d BeiDou

The BeiDou Navigation Satellite System (BDS) architecture has been developed
by China. The original Chinese regional navigation system became a global navigation
system in 2011. Nowadays, the BDS space segment is constituted of 44 operational
satellites. This system offers multiple services that differ from other GNSS constellations,
due to its pedigree. BeiDou services can be divided into three categories:

• Radio Navigation Satellite Service (RNSS)
This service provides navigation solutions that are comparable to other GNSS sys-
tems. Similar to the Galileo constellation, an open service is available free of charge
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for civilian purposes. Encrypted positioning and navigation services are also imple-
mented via an authorized signals service.

• Radio Determination Satellite Service (RDSS)
This unique regional service gives users a positioning service computed by ground
stations via geostationary satellites. RDSS also provides short message radio com-
munication and other message communication capabilities.

• Wide-area Differential Service
This service is supported by BeiDou embedded augmentation system currently ac-
tivated on the constellation.

BeiDou RNSS service can be considered a global service, whereas RDSS and Wide-area
Differential services are referred as regional services and are directly embedded inside
the BeiDou global constellation. The development of satellites has been implemented in
three distinctive phases. Currently the BeiDou constellation has reached Full Operational
Capability (FOC) in the phase 3 of its development. Table A.1 regroups the characteristics
of the BDS space segment.

1.1.1.e Regional & Augmentation Systems

At first, the position accuracy delivered by GNSS was suitable for positioning and
navigation in open-sky environment. Then, complex requirements were established by the
civil aviation for aircraft precision landing that could not be met by standalone GNSS.
Structure and system were put in place in order to address those issues. Two types of
system were put in place for assisting already existing GNSS structures: Regional and
Augmentation systems. Regional satellite systems are small satellites constellation that
focus their operation on a specific geographical area and therefore cannot be considered
global. They are mainly used in addition to global satellite constellations. Augmenta-
tion systems are small independent satellite constellation whose role is to enhance GNSS
performance. Civil aviation system called Satellite-based Augmentation System (SBAS)
provides regional augmentation through the use of geostationary satellites that transmit
correction data.

• Quasi-Zenith Satellite System (QZSS) The Japanese regional system was de-
veloped by the Japan Aerospace Exploration Agency (JAXA) in order to answer
urban canyons problematic. This system is composed of four satellites (geosyn-
chronous and geostationary) that supportively allow users to permanently have a
satellite in view in deep Japanese urban environments.

• Navigation Indian Constellation (NAVIC) The Indian regional system, pre-
viously named Indian Regional Navigational Satellite System (IRNSS), possesses
seven orbiting satellites and is described as an independent and autonomous re-
gional navigation entity. Future developments suggest that NAVIC might be the
preliminary step toward an Indian global navigation system called Global Indian
Navigation System (GINS).

• European Geostationary Navigation Overlay System (EGNOS) The Eu-
ropean augmentation system, EGNOS, was developed to complement GPS. This
system service a wide continental area ranging from the north of Africa to the
northern part of Europe. EGNOS is being monitored by European Satellite Ser-
vices Provider (ESSP) and has been developed by European Space Agency (ESA).
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This European service allows to increase integrity and accuracy performances of
system users. Future evolution of EGNOS, labeled V3, is planed to augment multi-
constellation (GPS and Galileo) and multi-frequency data.

• Wide Area Augmentation System (WAAS) The American augmentation sys-
tem was the first one to be implemented and is operated by the Federal Aviation
Administration (FAA). The service area covers the continental United States plus
Canada and Mexico. Currently three geostationary satellites compose its space seg-
ment. Augmentation service is designed to provide augmentation solutions to the
American GPS system [115].

• Multi-functional Satellite Augmentation System (MSAS) The Japanese
SBAS is composed of two geostationary satellites. This system is intended to aug-
ment GPS L1 signals. The system coverage range through most Asia and Oceania.
The system was declared by the Japan Meteorological Agency (JMA) operational
in September 2007.

• GPS Aided Geo Augmented Navigation System (GAGAN) This augmen-
tation system has been created by the Indian government in early 2008. Three
geostationary satellites have been launched allowing the system to cover the Indian
country in totality.
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A.1.2 Control Segment
GNSS control segment role is to monitor the services offered by their global navigation

systems. Control centers of a specific satellite constellation are dispatched all over the
world in order to always be able to track the desired satellites. Their activity ranges from
monitoring signals characteristics, satellite orbital parameters, check health parameters,
update navigation messages and solve potential payload anomalies.
In order to illustrate the infrastructure necessary to perform all ground segment task the
Galileo control segment will be presented. Other GNSS constellations use similar type of
infrastructure for monitoring their global navigation systems.
The Galileo control segment is composed of two control centers: Galileo Control Centers
(GCS) and Galileo Mission Segment (GMS). A ground station network, pictured on figure
A.3, has been implemented for executing monitoring tasks.

Figure A.3: Galileo Ground Segment: Ground Station Network [16]

A.1.3 User Segment
The user segment is made of every GNSS’s user receivers that are able to process

GNSS transmitted signals. User’s receivers are devices that are capable of processing
radio signals broadcasted by orbiting satellites in order to estimate PNT solutions. Such
receivers are used by everyone on a daily basis. They can be found in vehicle navigation
devices, wearables and most importantly for this research thesis in all smartphones.
A GNSS receiver can be modeled into three blocks:

• Radio Frequency (RF) Front-end Block
Receive and digitize GNSS RF signals

• Signal Processing Block
Signal acquisition and tracking producing observables

• Data Processing Block
PNT computations are made in order to extract user’s position.

The principle of a GNSS user receiver is detailed below and illustrated by the block dia-
gram on figure A.4. First of all, the signal is captured by the receiver’s antenna; then, it
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A.2 GNSS Receiver Architecture 143

is processed by the Front-end block. This receiver’s function performs down-conversion,
filtering, amplification, and digitalization of the signal. Analog signals is inputed at the
entrance of function and digital signal samples typically, In-phase and Quadrature com-
ponents are outputted.
Afterward digital samples are processed by the signal processing (a.k.a baseband pro-
cessing) block. This part of the receiver is responsible for the acquisition and tracking
of the signal. This process produces observables (or GNSS raw data measurements) like
pseudoranges, Doppler frequency, carrier phase measurements ...
Finally, raw measurements are exploited by the data processing block of the receiver.
Navigation and observation data are gathered by the navigation solution filter in order to
estimate the user PNT solutions.

Figure A.4: Block diagram of a GNSS Receiver

A.2 GNSS Receiver Architecture
The core functionalities of a GNSS systems has been detailed in the section A.1. In

order to better understand smartphones’ embedded GNSS receiver, the detailed panorama
of a conventional GNSS receiver architecture will be given in this section. As mentioned
in A.1.3, a GNSS receiver is composed of three blocks: RF Front-end Block, the Signal
Processing Block and finally the Data Processing block. In this section, the specific tasks
dedicated to those blocks, such as Acquisition or Tracking, will be detailed.

A.2.1 RF Front-end Block
The RF Front-end goal is to provide digital samples of the received signal captured

by the antenna. Its role also involves the selection of the useful part of the signal, trying to
mitigate the impact of exterior interferences malicious or not. The classical architecture
of a RF front-end block is provided in A.5. The main steps taken by the RF front-end
are:

• Amplification of the incoming signal captured by the antenna.

• Down conversion of the incoming signal by mixing with local oscillators.

• Band-pass filter focus on the desired part of the signal.

• Analog to Digital Converter (ADC) device that convert the signal from analog to
digital coupled with an ADC device.

143



144 Appendix A: Global Navigation Satellite Systems

• Output signal digital samples

The digital samples outputted by the RF front-end can be mathematically modeled
as rout(t) by equation A.1. For simplification purposes, only one ray is being derived in
the equation below. Real life signal can be interpreted as a linear combination of rays.

rout(t) = hRF (t) ∗ [hc(u, t) ∗ ST (t) + n(t)] (A.1)

where:

• hc is the impulse response of the propagation medium. This parameter can by
modeled a delay varying in time δ(t − τ(t))

• hRF is the impulse response of the RF front-end filter.

• n is an additional signal parameter taking into account additional noise. It is refereed
to as White Gaussian Noise.

Figure A.5: Block diagram of the RF Front-end of a GNSS Receiver

A.2.2 Signal Processing Block
The signal processing block is in charge of estimating signals parameters that will

be used to produce GNSS raw data measurements. The basic principle of baseband
processing rely on correlation processes. Indeed, a local signal replica is generated at the
receiver level and is then synchronized and compared to the captured incoming GNSS
radio signal. Correlator outputs are then used in the three main stages of the signal
processing block: Acquisition, Tracking and data demodulation.
The signal acquisition phase targets at identifying the incoming signal and to obtain a first
rough estimate of time and frequency synchronization. Then, the tracking phase generates
a local replica that aims at synchronizing with the incoming signal. Such processes allow
for a refinement of previously roughly estimated signal parameters.

1.2.2.a Acquisition

The main goal of the receiver’s acquisition process is to detect and identify the
incoming signal while estimating the code delay and the Doppler frequency. Due to the
unicity nature of the Pseudo-Random Noise (PRN) sequences, each received signal is
processed independently. A common method is to create an acquisition search matrix.
The code delay denoted τ̂ and the Doppler frequency denoted f̂D are being roughly
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estimated throughout an acquisition search matrix [24]. This matrix is defined in size
by the uncertainties of the code delay and of the Doppler frequency. An example of
an acquisition matrix is shown by figure A.6. In this case, the receiver is receiving a
navigation signal from the GPS PRN 2 satellite. The graph on the left shows that a
correlation peak as been found for PRN 2. When similar test is performed for PRN 14,
no correlation has been found (right figure on A.6). Thus, once a correlation has been
established, the detection output process provide a rough estimate of Doppler frequency
and code delay at the location of the correlation peak.

Figure A.6: Acquisition Matrix with a Signal containing Data from GPS PRN 2, unnor-
malized.

1.2.2.b Tracking

The tracking process is responsible for estimating accurately the Doppler frequency
f̂D and the code delay τ̂ . The tracking process is achieved when the received signal is
synchronized with a local replica in a closed loop process. The closed loop operation con-
tinuously tracks those parameters. They are referred as: Phase Lock Loop (PLL) and as
Delay Lock Loop (DLL) . The DLL is in charge of tracking the code delay of the incoming
signal τ̂ and the PLL aims at tracking the phase. The generic tracking process of GNSS
receivers is represented by figure A.7.

The correlator output models are reminded in equation A.2 [24]. Those equations repre-
sents the In-Phase I(k) and the Quadrature-Phase Q(k) outputs. The phase is considered
tracked when ϵθ ≈ 0 and ϵf ≈ 0. On the other side, the code delay estimation is precise
when ϵτ ≈ 0. The measurements noise are nI(k) and nQ(k) are represented for both
In-Phase and Quadrature-Phase outputs. The term d(k) represents the data bits of the
navigation message

I(k) = A

2 d(k) cos(πϵfTI + ϵθ) Rc(ϵτ ) sinc(πϵfTI) + nI(k)

Q(k) = A

2 d(k) sin(πϵfTI + ϵθ) Rc(ϵτ ) sinc(πϵfTI) + nQ(k)
(A.2)
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Figure A.7: Block diagram of a Tracking Process in a GNSS Receiver. Modified diagram
from [17].

The tracking loops processes and goals are detailed below:

• Code Lock Loop (DLL)

The goal of the code tracking loop is to synchronize the incoming signal with a locally
generated PRN replica. The DLL block diagram can be seen on figure A.7 depicted
by the blue square. Synchronization error between both signals is estimated by code
delay discriminator. Three correlator outputs are used to assess code delay: the
early, prompt and late. The early discriminator correlates with an early version of
the local PRN code replica with a delay of d

2 . The late discriminator correlates with
a late version of the local PRN code replica with a delay of −d

2 . Most of the time,
the DLL uses the output of the prompt correlator to normalize the discriminator.
The parameter d represents the Early-Late spacing, as shown on the horizontal axis
on figure A.8.

• Phase Lock Loop (PLL) The goal of a PLL is to synchronize the phase of the
incoming signal with a locally generated signal carrier. Similar to what was pre-
sented above, a phase discriminator is used to evaluate the phase error between the
incoming signal carrier and the local replica. After the error has been found and
filtered, a Digitally Controlled Oscillator (DCO) generates a new locally generated
signal carrier. Modern PLL discriminators are developed in order to be insensitive
to the data component of the signal. Discriminator algorithm and definitions are
detailed in [24].
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Figure A.8: Code Delay Tracking. (a) Signal Synchronization not Achieved. (b) Perfect
Code Tracking. [17]

A.2.3 Data Processing Block

In parallel of the tracking processes displayed above, the data demodulation is put
in place during last processing block of a generic GNSS receiver. This process will allow
users to retrieve the navigation information contained within the received signal. The data
processing block aims at extracting and processing navigation messages and observables.

1.2.3.a Navigation Messages

Data components of the incoming signal can be retrieved once the received signal
is correctly tracked by the receiver. By looking back at equation A.2, the In-Phase and
Quadrature signal models can be simplified as in equation A.3 since ϵθ ≈ 0, ϵτ ≈ 0 and
ϵf ≈ 0 when the signal is correctly tracked.

I(k) = A

2 d(k) + nI(k)

Q(k) = nQ(k) (A.3)

Bit synchronization techniques are used to estimate the navigation message embedded
within the In-Phase correlator output. Such techniques aims at determining the start of
the navigation message data bits in order to observe the prompt correlation value over 20
ms (for GPS L1C/A) and therefore, estimate the navigation message.

1.2.3.b Observables

The generation of observable data is the last retrieval process made by the receiver.
Observables can also be referred as GNSS raw data measurements. Main observable
parameters are the Doppler frequency, pseudoranges, phase measurements and C/N0.
Doppler and phase measurements are directly derived from PLL or Frequency Lock Loop
(FLL) loops. On the other hand, pseudoranges are derived from the previously estimated
code delay. Pseudoranges are estimated by taking the difference between the Time of
transmission and the time of reception multiply by the speed of light.
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A.3 Chapter Conclusion
This chapter presented a global review of the GNSS structure. All existing satellite

constellation have been presented though the display of their proposed services. A clas-
sical system structure used by most of the global systems has been exposed by showing
the three main segments. Finally, a review was offered displaying a classical receiver ar-
chitecture.
The following appendix chapter will detail the positioning and navigation method of-
fered by GNSS. Measurements models and positioning principles will be laid out before
characterizing positioning constraints linked with urban environments.
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After defining GNSS system as a whole in previous chapter, this appendix will fo-
cus on presenting the method used for estimating user’s position with a GNSS system.
Firstly, the measurements model will be presented. The objective is to characterize the
outputted observation measurements of a classic GNSS receiver. Then, the User Equiva-
lent Range Error (UERE) total error budget will be displayed, explaining the sources of
biases affecting pseudorange measurements. In a second time, basic positioning principles
are exposed. This section will highlight the algorithmic processes used for computing a
PVT solution using GNSS signals. Finally, a section will discuss the challenges associated
with urban positioning. The characteristics of urban positioning are exposed.

B.1 Measurements Model
This section will present the measurement models for the GNSS observable outputted

by the signal processing block of the receiver. Measurement models are then used to com-
pute the residuals between the measures and the predicted phase and code pseudoranges.
These residuals will contain the measurements errors including the position and clock
biases. Thereafter, a set of equations containing all the residual measurements will form
a linear system which solutions the estimator filters. This estimation process allows to
decompose the error components and thus determining the receiver position. Therefore,
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it is of the utter importance that the measurements modeling accurately depicts the error
causes for then obtaining an accurate position estimation.

B.1.1 GNSS Observable Models
A GNSS receiver computes observation measurements from the retrieved GNSS sig-

nals. These measurements can be characterized by their respective mathematical models.
Equations B.1 and B.2 show the measurements model for the code measurement ρi(k) for
a satellite i at an epoch k and the carrier phase measurement model φi(k).

ρi(k) = ri(k) + c(dtrx − dti
sat) + ϵi

Iono + ϵi
T ropo + ϵi

Multipath + ni
ρ + bi

ρ (B.1)
φi(k) = ri(k) + c(dtrx − dti

sat) − ϵi
Iono + ϵi

T ropo + ϵi
Multipath + N iλ + ni

φ + bi
φ (B.2)

where:

• ri =
√

((x − xi)2 + (y − yi)2 + (z − zi)2) represents the geometric range with

– (x, y, z) are the user position coordinates to be estimated.

– (xi, yi, zi) represents the given satellite position.

• (dtrx − dti
sat) is the receiver-satellite clock offset multiplied by c the speed of light

in vacuum.

• ϵIono and ϵT ropo are the ionospheric and tropospheric delays.

• ϵMultipath is the multipath generated bias.

• ni
ρ and ni

φ are the noise components for the code and phase measurements respec-
tively.

• bi
ρ and bi

φ are the RF code and phase biases.

• N iλ represents an integer number of Ambiguity present on the phase measurement.

The exposed errors present in the above measurement models are corrected before PVT
computation. Indeed, those errors are either predicted via established models (e.g: Klobuchar
for the ionospheric component and the UNB3 model for the tropospheric delay) or by ap-
plying a correction from the ephemeris data for the clock drift.
A classical error budget for the presented errors has been standardized taking in example
the GPS L1 C/A signal model. The magnitude of these errors can be found in table B.1.

Error Sources: Satellite Clock Ephemeris Data Ionosphere Troposphere Multipath Thermal Noise
1 − σ Error [m] 1.1 to 2.1 1.1 to 2.1 4.0 to 7.0 0.2 to 1.4 0.2 to 1.4 0.1 to 0.5

Table B.1: GNSS Error Budget for GPS L1 C/A in Nominal Conditions.
Table derived from [19].

B.1.2 User Equivalent Range Error (UERE)
Pseudorange quality can be monitored by analyzing the UERE. The parameter is the

user equivalent sum of all residual errors that affects the receiver GNSS measurements.
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Equation B.3 presents the UERE quality parameter. The accuracy of a receiver measure-
ments directly correlates to 3 factors: measurement accuracy, satellite elevation and the
user local environment.

σ2
UERE = σ2

T ropo + σ2
Iono + σ2

Multipath + σ2
SatP os + σ2

Noise (B.3)

B.2 Positioning Principles
Global Navigation Satellite System (GNSS) offers a positioning and timing service

provided by a fleet of orbiting satellites. The main objective of this system is to estimate a
user position anywhere around the globe. The promise is based on a trilateration principle
illustrated by figure B.1. Satellites signal processing is used to determine the user position
intersecting a set of four or more spheres characterized by the user-to-satellite distance. A
GNSS receiver measures this distance by assessing the transmission time from the trans-
mitter (satellite) to the receiver (user) multiplied by the speed of light. This principle
relies on the time-synchronization between the two communicating devices.
However, in real scenarios, the time-synchronization condition is not met. It is of the
utmost importance that both measurements need to be expressed in the same GNSS
reference time. A clock bias exists between the receiver and the GNSS time whereas
the clock shift between the satellite and the reference time is revised by ephemeris data.
Thus, the corrected measured signal propagation delay is always biased by a clock error. In
this context, GNSS distance measurements are referred as pseudo-range measurements.
A positioning estimate results from the solution given to a set of equations bounding
our system. 4 parameters needs to be estimated in order to retrieved the user position:
[x̂, ŷ, ẑ, ∆t]. The first three parameters represent the estimated user’s position in a Carte-
sian coordinate frame. ∆t represents the receiver clock offset compared to the GNSS
reference time.

Figure B.1: Satellite Positioning Principle by Triangulation
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A PVT computation aims at estimating the previously exposed parameters in order to
estimate a position. Multiple estimation techniques exist for computing this solution. This
section will present the two most used estimation algorithms used in GNSS: Least Square
(LS) and Kalman Filter (KF). The former will be detailed in the following subsection for
complementing its use within this research work.

B.2.1 Positioning Estimation Techniques (PVT)
GNSS positioning computation is supported by the estimation process of PVT. A

GNSS receiver will output GNSS raw measurements from the signal processing block.
Those measurements will then be used to create a system of equations that solution the
user position. The two most widely used estimation technique in the GNSS domain are
described here: Least Square (LS) and Kalman Filter (KF). A focus will be made on the
WLS estimator, supporting previously exposed PVT results.

First we set a range length measurement P i between the receiver antenna and the i-th
satellite. Its model has been derived above in B.1.1. The aim is to obtain the estimate
of the receiver position defined by its coordinates (x, y, z) and the clock offset ∆t. In the
meantime, the coordinates of the satellite have been transmitted through the navigation
message and are expressed as (xi, yi, zi). The pseudorange can then be written as in
equation B.4.

P i =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 + ∆t (B.4)

As described above, a set of 4 equations represents the minimal requirements for solving
our 4 unknowns. As the presented equation in B.4 defines a non-linear system, the set of
equations is solved by iteratively linearizing this system starting from an initial position
of the receiver defined as (x0, y0, z0). The linearization process is made by Taylor series
approximation to the first term and is presented in equation B.5.

P i(x, y, z, τ) ≊ P i(x0, y0, z0, τ0)+(x−x0)
∂P

∂x
+(y−y0)

∂P

∂y
+(z−z0)

∂P

∂z
+(τ −τ0)

∂P

∂τ
(B.5)

The residual measurements are obtained by taking the difference between the retrieved
measurements and the predicted measurements computed with initial position values.
Therefore, for a single satellite the residual measurements are expressed as in equation
B.6.

∆P =
(

∂P
∂x

∂P
∂y

∂P
∂z

∂P
∂τ

)


∆x = (x − x0)
∆y = (y − y0)
∆z = (z − z0)
∆τ = (τ − τ0)

 + ϵ (B.6)

We can now generalized this expression for an n number of satellites corresponding to a
system of n equations. The following equation B.7 is expressed in matrix form.
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(B.7)

The linear relationship can then be rewritten in matrix form as δx = Hx + e where
δx represents the residual observation (observed minus predicted measurements), x are
the equation unknowns that we are looking to solve for and the matrix e contains the
remaining noise terms. Moreover, the ”design matrix” H can be re-written by deriving
the partial differentiation of the observation equation and is presented in equation B.8.

H =



x0−x1

ρ
y0−y1

ρ
y0−y1

ρ
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ρ
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ρ
y0−y3

ρ
y0−y3

ρ
c

... ... ... ...
x0−xn

ρ
y0−yn

ρ
y0−yn

ρ
c


(B.8)

2.2.1.a Weighted Least Square (WLS)

The LS estimation method is based on a MLE process. The goal of this method is to
minimize the residual positioning error from our previously presented system of equations.
A variant method called WLS is described below for estimating user position from GNSS
measurements.

Let set x̂ defined as the solution to the system δx = Hx̂ + e. The least square estimator
iteratively compute a value of x that minimizes the sum of squares of the estimated
residuals.

f(x) = arg min
x̂

n∑
i=1

e2
i = eT e = (δx − Hx)T (δx − Hx) (B.9)

Therefore, the weighted least square solution results from equation B.10.

x̂ = (HT W H)−1 HT W D (B.10)

where:

• x̂ represents the set of solutions for each epoch corresponding to the positioning
coordinates in a Cartesian reference frame

• H is the design matrix

• W is the weighting matrix

• D representing the residual measurements
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The particularity of the WLS algorithm resides in the formation of a weighted matrix
denoted W . The role of this matrix is to qualitatively assess the measurements used
by the estimation algorithm. In the case where measurements errors are uncorrelated,
the weighting matrix is built as the inverse of the covariance matrix. Those variances
can be obtained either via apriori knowledge or by a derivation of stochastic models.
Traditionally, the properties of GNSS signals have been provided by geometrical and
signal quality parameters (satellite elevation and signal carrier to noise ratio). A weight
will then be assigned to a specific measurement. The final W matrix will be a diagonal
matrix expressed as in equation B.11 with wi representing the weights associated to each
received signals.

D =


w1

. . .
wn

 (B.11)

2.2.1.b Kalman Filter

Kalman Filter (KF) is a Bayesian recursive estimation method integrated in a dy-
namic model of equations. The KF has been firstly described in [116]. Since then, the
method is one of the most popular data fusion algorithm in the GNSS domain. Its use has
been derived for integrating GNSS measurements with IMU sensor data. KF technique
is considered a recursive estimator of an initial state in a dynamic system where apriori
knowledge comes from the measurements models and uses previous state estimates to
refine the current estimates.

2.2.1.c Assessing Positioning Performance

The expected accuracy resulting from GNSS positioning algorithm is dependent of
two factors: Measurement quality (assessed by UERE) and by the satellite geometry. For
a given user, satellite geometry is qualified by the DOP value. A low DOP value indicates
a well distributed grid of satellites in the sky over the receiver, enhancing positioning
accuracy performance. On the contrary, a high DOP value shows a bad repartition of
satellites. Recently, with the increase of GNSS satellites orbiting the Earth, a DOP is
considered good when its value does not exceed 2. The DOP parameter translates how the
error in the measurements propagates to errors in the position and time domain. Multiple
DOP values exist and are listed below.

• The Geometric DOP quantifies the 4D error standard deviation

• The (3D) Position DOP assesses the 3D position standard deviation of the error

• The Horizontal DOP assesses the horizontal positioning error

• The Vertical DOP quantifies the vertical error standard deviation

• The Time DOP shows the receiver time error standard deviation

All the presented DOP parameters can be retrieved from the weighted least square esti-
mation technique, their computation processes are presented in equation B.12
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DOP = [HT H]−1 =
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(B.12)

B.3 Urban Positioning

In the world of GNSS, positioning in an urban area represents a challenge. In this
constraint environments made of narrow streets and tall buildings, signals quality often
deteriorates. Recently, the development of new GNSS constellations improved globally
urban positioning. During this overview, the first part will describe in details the chal-
lenges associated to GNSS urban positioning. Then, existing techniques will be explored
in order to mitigate the previously described errors. Finally, the advantages brought by
the arrival of new GNSS constellation will be studied.

B.3.1 Characteristics of Urban Positioning

GNSS receivers have been designed for operating in open-sky conditions where satel-
lite signals can be retrieved directly by the receiver in Line of Sight (LOS) conditions.
However due to environmental constraints in urban conditions, GNSS signals are heav-
ily impacted by interferences causing signals delays and errors. The local surrounding
environment of the receiver defines its reception condition. Urban environment are char-
acterized by various type of reception conditions. Sub-urban areas are assimilated to
difficult situations where signals can be blocked by small constructions, dense canopy
and houses. Deep urban areas, usually referred as urban canyon, present high blocks
of buildings forming narrow streets and usually navigating through dense traffic. For a
GNSS receiver, positioning and navigation capabilities are significantly reduced in those
environments since GNSS satellites signals are mostly blocked by the above mentioned
blockage.
Furthermore, giant buildings are also acting as reflectors on which signals can bounce mul-
tiple times. Those physical phenomenon are referred as signal refraction and diffraction.
Those impacted signals replicas are called multipath and highly disrupt the tracking pro-
cesses of a GNSS receiver. This section will review the impact of the two most disruptive
scenarios that can handicap urban positioning: NLOS and multipath events.
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Figure B.2: Principle of a NLOS event caused by Building Blockage

2.3.1.a Impact of Urban Buildings Blockage

Historically, the main issue associated with urban positioning and navigation comes from
the insufficient number of satellites in sight for the receiver. As reminded in the section
above, a minimum of 4 satellites are needed for performing the user PVT. Satellite avail-
ability restriction can be explained by the masking occurrences induced by buildings in
the receiver vicinity. Satellite signal blockage can become disruptive for the receiver ac-
quisition process, especially when the number of tracked signals drops. This phenomenon
requires the receiver to re-acquired lost signals and thus penalizing its positioning per-
formance. In some cases, this non visible signal can be diffracted by adjacent buildings
and still be acquired by the receiver. This principle is referred as NLOS. In this case,
the received signals path is modified and induces an error on the computed pseudorange
measurements. This principle is depicted by figure B.2.
In order to overcome signal availability in LOS conditions, satellites constellation needs to
be optimized. Increasing the number of GNSS satellites will provide a chance to the user
to obtain measurements from high elevation satellites and thus reducing the occurrences
of NLOS signal acquisition. Moreover, since the development of new GNSS constellations
such as BDS, GLONASS, Galileo and QZSS, the satellites visibility significantly increased
in urban environment. A study realized by [117] shows that by using a multi-constellation
receiver, satellite geometry GDOP was improved and thus increased the position accuracy
of the tested system. In this context, the QZSS constellation has been developed so that
high elevation Geosynchroneous Orbits (GSO) satellites should always be visible in dense
Japanese urban canyons.

2.3.1.b Impact of Multipath Disruption

Multipath occurrences are defined as an accumulated signal sum between direct line
of sight and a single or multiple reflected counterpart signals. These additional signal
paths are created by reflected or diffracted replicas of the GNSS signal. The multipaths
are originated from multiple objects in the local environment of the receiver such as:
buildings, canopy, vehicles, ... Figure B.3 is a schematic representation of a multipath
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Figure B.3: Principle of Multipath Event

scenario.
The unpredictable nature of multipath events makes their prediction and detection diffi-
cult for the receivers. Indeed, the added bias paths are exact copies of the original signal
that cannot be differentiated by a GNSS receiver due to their coherent behaviors. The
main impact of multipath interference is seen in the correlation function in the signal ac-
quisition process. Figure B.4 illustrates the effect of multipath events on the correlation
function. The blue plot represents the correlation output of an unbiased signal whereas
the red plot shows its reflected counterpart correlation function. As described by the red
and orange plots, the effects of multipath interferences can either be a constructive or
disruptive effect on the code and carrier tracking processes.

B.3.2 Detection & Mitigation Techniques
After reviewing the main challenges of urban positioning, the consequences of those

phenomenons will be discussed and mitigation techniques will be described. Due to the
complexity of detecting those phenomenons in urban areas, multiple mitigations tech-
niques are combined to mitigate the resulting errors.

Figure B.4: Effect of Multipath Interferences on the Correlation Function for
both Constructive and Disruptive Effects. Pictured extracted from [18]

157



158 Appendix B: GNSS Positioning

2.3.2.a Detecting & Mitigating Multipath

Mitigation techniques for multipath rely mainly on the separation of the line of sight
signal and its reflexion. In the literature, multiple works highlight the main mitigation
techniques used for multipath events [118]. These methods have been classified according
to the specification characteristics of Multipath error.

• Changes in signal polarization
GNSS signals are characterized as Right-Hand Circular Polarized (RHCP). When a
signal is reflected, its polarization attribute can change and become Left-Hand Cir-
cular Polarization (LHCP). However if the signal is reflected twice, the polarization
of the signal could remain unchanged. The detection of polarization can be detected
at the antenna level [119] [120]. However this would require a specific antenna de-
sign that, most of the time, is not available for low-cost receivers. If a different
polarization could be detected in an urban environment that could designate that
multipath signals have been potentially received.

• Distorts the correlation function
At the signal processing level, the correlation function role is to synchronizes the
received signal Pseudo-Random Noise (PRN) code with a local replica. By receiv-
ing a multipath infected signal, the correlation function will be distorted and thus
the tracking process (code and phase) of the receiver will be degraded resulting
in major accuracy errors. Figure B.4 shows the distortions that can be observed
when multipath phenomenon is present. Multiple techniques exist in order to detect
and mitigate multipath at the correlation function level [121]. The implementation
of multiple early and late correlators could detect the distortion of the correlation
function and prevent tracking errors.

• Affects the power to noise ratio (C/N0)
The power-to-noise ratio (C/N0) represents the ratio between the received power of
a specific signal compared to noise. Multipath induces a change of this C/N0 value
(either an increase or a decrease). The variation of C/N0 impacts the performance
of the receiver’s tracking process. The most common method for multipath detec-
tion would be to compare the C/N0 measure from two different frequencies for the
expected satellite elevation angle [122].

• Impacts pseudoranges measurements
Due to reflection, multipath will impact the pseudoranges measurements by adding
travel time between the satellite and the receiver for the reflected signal. Pseu-
doranges measurements of one or more satellites could vary from epoch to epoch
because of the presence of that phenomenon. A consistency check between different
pseudoranges of one particular satellite could lead to the detection of the error. Then
by applying a weighting process and by excluding faulty signals, multipath errors
could be reduced. In [123], a Random Sample Consensus (RANSAC) consistency
based algorithm has been developed for mitigating multipath events.

2.3.2.b Detecting & Mitigating Non-Line-of-Sight

Detecting and mitigating NLOS is a complex task. A simple detection process would
be to simply set a C/N0 threshold in order to reduce the received reflected signals; this
method is however very limited since the received C/N0 could be affected by numerous
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factors. Most of known techniques require external hardware devices. One of those tech-
niques consists on using an external camera in order to map the environment around the
receiver/user. By doing so, satellites with low elevation angle, supposedly not seen by the
receiver, are excluded.
However, alternative methods inspired by Receiver Autonomous Integrity Monitoring
(RAIM) checking algorithm have been developed to mitigate NLOS. A method of consis-
tency checking of C/N0 weighting have been developed in [118]. By revising consecutive
measurements, NLOS signals can be excluded. The downside of this method is that with
a multi-constellation receiver faulty exclusion could be frequent [124].
In his paper [125] states that NLOS detection/mitigation can be either achieved by a
statistical approach. By knowing the initial position of the user (within a street) the
probability of being able to see a specific satellite and not its reflexion is computed. From
there, the algorithm decides or not to exclude faulty signals.

B.3.3 Alternative Methods
As characterized above, urban environment conditions impact the resulting user po-

sitioning capabilities. GNSS signals quality are highly dependent on the receiver position
in the street or of its local environment. This section will expose and discuss existing
alternative methods and techniques used for enhancing receiver’ positioning performance.
The aim is to accurately determine the receiver position within the street in order to
better detect multipath and NLOS signals before correcting their effects.

2.3.3.a 3D City Modeling

3D cities model are now being integrated with GNSS observable in order to mitigate
multipath and NLOS events [54] [126]. Those models allow the user to estimate satellites
visibility and level of signal degradation due to multipath. Models include geometry
information, location and dimensions of the physical objects (building) around the user
[127]. The receiver approximative position allows the algorithm to locate its position
within the 3D city model. This process will give the user a priori characteristics of
buildings surrounding his receiver. It will allow the user to estimate if the received signal
from a satellite is actually visible or if it should be mask by the adjacent structure.
Additional informations such as edifices surface orientation, can be added to the model. If
the surface orientation is known, then given the satellite trajectory, a multipath detection
techniques could be executed. However, the use of 3D city modeling method is limited
by the model accuracy and location.

2.3.3.b Shadow Matching

The shadow matching technique answers a common pedestrian positioning problem;
On which side of the street am I located ?. Most of the received signals are defined as
along-track (along a street) in a urban canyon, and the cross-track signal are most of
the time masked by adjacent natural or man-made obstacles. The arrival of new GNSS
constellations would only increase satellite availability on the along-track segment.
The shadow-matching positioning method reverses 3D city models positioning as exposed
in [54] [55]. The 3D city model computes the expected visible signals within the receiver’s
street. The shadow-matching tool will determine whether or not the signal is in line of
sight of the user. Then, the user can localize his position on the street. This algorithm
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is a simple comparison between received signals and signals that should be seen by the
receiver. Although, this method requires an accurate 3D city model where the receiver
stands. Nowadays, only a very few cities have the needed decimeter precision city model.
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This chapter is dedicated to provide additional resources complementing the anal-
ysis presented in section 3.3.1.b. This appendix is a collection of results derived from
the presented analysis for different smartphone models and brands. This analysis archive
is organized as a library for each directed investigation. The aim is to record and clas-
sify smartphone’s measurement behaviors for quality monitoring checking and regression
analysis that will be conducted in future works. All the work and analysis presented in
this annex have been derived from the data collection campaign exposed in 3.2.

First and foremost, the complementary signal analysis of the remaining tested smartphone
is shown. This study highlight the retrieved signal strength in function of time completed
by the flags activation frequency over time. Then, a correlation analysis is performed
for characterizing flags events on different smartphones and embedded chipsets. Finally,
the continuation of the CMC study will be presented for the main tested smartphone on
various constellation signals.

C.1 Smartphone Signal Analysis & Flags Detection
Contingency

This section complements the preliminary signal analysis detailed in 3.3.2.a. The
aim for this study was to correlate flag detection events with typical signal parameters.
Firstly, the flag detection events are compared with received signal strength. Then, flag
activities are compared against signal frequencies and satellite constellation in order to
retro-engineer the algorithmic mechanisms of Android flag detection system. The anal-
ysis in 3.3.2.a presented the Huawei Mate 20X results for illustrating purpose. In this
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appendix, the processed results from the other smartphones are exposed.

C.1.1 Signal Analysis

This subsection complements the analysis made on received signal power against flag
detection mechanisms. Here, the analysis results are exposed for all tested smartphones
during the data collection campaign. Figure C.3 through figure C.6 display the study
results for a specific smartphone model.

All figures are organized as follow: The top plot represents the C/N0 fast fluctuations
observed over time. Three parameters are shown on this plot: minimum, median and
maximum C/N0 values has been computed as a function of each individual received signal
(considering all frequencies and all constellations simultaneously) for every epoch.
The bottom plot shows the Android flag activation frequency as a function of received
signals for both multipath and cycle slip events. The activation process is characterized
in percentage of flag activation per received signals. As an example: Let a total of four
signals being received by a smartphone receivers, if a multipath flag has been activated
on three of those signals then our frequency parameter would show a 75% activation for
the Android multipath mechanism.

Figure C.1: Signal Analysis of the
Xiaomi Mi8 (1). a) Upper Figure:
C/N0 Analysis. b) Lower Figure:

Percentage of Android Flags
Activation

Figure C.2: Signal Analysis of
the Xiaomi Mi8 (2). a) Upper

Figure: C/N0 Analysis. b)
Lower Figure: Percentage of

Android Flags Activation

Figures C.1 and C.2 represent the signal analysis for both Xiaomi Mi 8. Signal analysis
characteristics have similar patterns to the one exposed in section 3.3.2.a. The bottom plot
depicts a high frequency of cycle slip flag detection mechanisms. The observed variation
in activation frequency can be easily explained by the local constraining environment.
Furthermore, despite a low activation frequency, multipath flags detection seems to have
similar characteristics as the one of cycle slip. Both activation events seem to be correlated
with each other.
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Figure C.3: Signal Analysis of
the Honor View 20 (1). a)

Upper Figure: C/N0 Analysis.
b) Lower Figure: Percentage of

Android Flags Activation

Figure C.4: Signal Analysis of
the Honor View 20 (2). a)

Upper Figure: C/N0 Analysis.
b) Lower Figure: Percentage of

Android Flags Activation

Figures C.3 and C.4 depict the signal analysis performed on both Honor View 20. As
a reminder, Honor devices are equipped with the same chipset as the Huawei Mate 20X
(HiSilicon Kirin 980). However, the cycle slip mechanism exhibits a drastically different
behavior. Cycle slip activations are nearly inexistent, while the multipath detection fre-
quency remains on the same order of magnitude to previously exposed analysis. This
demonstrates that Android flags mechanisms algorithms are implemented at a lower level
in the Android API and can drastically change in function of the smartphone model and is
independent of the operation of the chipset itself. This observation needs to be confirmed
by future analysis work.

Figure C.5: Signal Analysis of the
Xiaomi Mi9. a) Upper Figure: C/N0

Analysis. b) Lower Figure:
Percentage of Android Flags

Activation

Figure C.6: Signal Analysis of
the Google Pixel 3. a) Upper
Figure: C/N0 Analysis. b)

Lower Figure: Percentage of
Android Flags Activation

Finally, figures C.5 and C.6 displays the signal analysis on the Xiaomi Mi 9 and the Google
Pixel 3. The similarity between those two devices is that they do not allow the collection
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and processing of phase measurements. The bottom plot demonstrates the inactivity of
flag detection mechanisms on both devices. Therefore, it is assumed that flag detection
mechanism are directly dependent on phase measurements extracted from the smartphone
embedded GNSS receiver.

C.1.2 Flags Mechanism Detection Frequency
The following study presents the flags detection frequency as a function of signal

frequency and satellite constellation. This analysis aims at defining is some particular
signals is being deliberately targeted by the system. The presented tables show the
activation frequency [in % of the time] of both multipath and cycle slip flagging events
for all tested smartphones.

Figure C.7 shows the cycle slip and multipath activation frequency in function of two
signal frequencies: L1/E1 and L5/E5a. The first observation that transpire from this
analysis is that the results presented above are being confirmed. Moreover this table
highlights that cycle slip activation are reduced by 2 on the L5 signals and that multipath
events are non existent on L5 signals for both Honor devices.
Those characteristics can be associated with the results presented in figure C.8. This table
shows the cycle slip and multipath activation frequency in function of satellite constella-
tion: GPS and Galileo. However, no major correlation characteristics can be extracted
from this table. No major differences exist between the two constellation systems in terms
of flags activities.

In conclusion, multipath and cycle slip flag detection mechanisms behaviors have been
analyzed. The following list highlights the main characteristics of Android flag detection
mechanisms.

• Both parameters appear to be co-dependent

• The implementation of those measurements are made in a lower level of the Android
API. This detection technique seems to be an option that could be activated by
smartphone manufacturer.

Figure C.7: Multipath and Cycle Slip Flag Detection Events in function of
Signal Frequency for all Tested Smartphones
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Figure C.8: Multipath and Cycle Slip Flag Detection Events in function of
Signal Constellation for all Tested Smartphones

• The similarities observed during the analysis makes us think that the implementa-
tion of flags detection algorithms has been implemented by Google services.

• Flag detection algorithms do not only account for the C/N0 values but are rather
integrated in a complex method.

C.2 Correlating Flag Detection Mechanisms
Following our preliminary analysis, multiple basic GNSS measurements have been

tested through a series of correlation events. We made the hypothesis that multipath and
cycle flag detection algorithms were not solely linearly correlated to C/N0. To validate this
hypothesis, flags distributions in function of C/N0 and elevation were analyzed. Section
3.3.2.a presented the cycle slip flags in function of C/N0. This study exposes the activation
of both multipath and cycle slip flags in function of satellite elevation.

Figure C.9: Cycle Slip Flag Detection
Events in function of Satellite

Elevation

Figure C.10: Multipath Flag
Detection Events in function of

Satellite Elevation
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Figure C.11: Multipath Flag Events Distribution in function of C/N0 for the
Honor view 20 (1&2)

Figures C.9 and C.10 respectively show the distribution of cycle slip and multipath flagged
events in function of satellite elevation. It is expected that cycle slip and multipath
occurrences are less detected when a satellite is at high elevation (> 65°) since direct
line of sight between the receiver and satellite can be anticipated. These figures confirms
our expectation with a decreasing detection rate when satellites reach an elevation angle
above 60°. Moreover, no definite correlation can be established between flag detection
systems and satellite elevation.

Figure C.11 depicts the multipath flag events distribution in function of C/N0 for both
Honor View 20. It appears that both devices show similar properties signature in the
detection of multipath events. This observation confirms the hypothesis made above,
that flag detection algorithms are dependent of the smartphone brand

In conclusion, this study validates the hypothesis that the generation of multipath and
cycle slip flag detection mechanisms is not linearly correlated with either signal strength
C/N0 or satellite elevation parameters.

C.3 Code-Minus-Carrier Analysis
This analysis complements the study made in section 3.3.2.b. This study aims at

assessing the global efficiency of flag detection mechanisms. Figures C.12, C.14 and
C.16 exhibit the CMC computation for both Xiaomi Mi 8 devices with the two strongest
satellite signals present during the data collection campaign: GPS PRN 27 and Galileo
PRN 12. On the above mentioned figures, the top plot represents the CMC evolution in
time, while applying the sliding mean fixing method on segments where the satellite was
physically visible by the receiver. This implies that cycle slip events should be visible on
those plots. The red dots show where a cycle slip flag activation has been reported by
Android. Thereafter, the bottom plot illustrates the computed CMC values still corrected

166



C.3 Code-Minus-Carrier Analysis 167

Figure C.12: Code-Minus-Carrier
Correlation Analysis for the Xiaomi

Mi8 (1) - Galileo PRN 12 E5a

Figure C.13:
Code-Minus-Carrier

Distribution Analysis for the
Xiaomi Mi8 (1) - Galileo PRN

12 E5a

by the sliding mean fixing method per segments. However this time, segments were said
to be continuous if the satellite was physically visible and if the Android flag algorithm
did not detect any cycle slip. In this case, visible cycle slips remaining on the figure would
mean that Android failed to correctly detect cycle slips. Theoretically at this stage, cycle
slips should have been removed, leaving multipath and noise characteristic behaviors on
the CMC plot. Black dots indicates Android multipath flag detection events.
Figure C.13, C.15 and C.17 shows the CMC distribution errors histograms characterizing
the DLL jitter.

The overall flag activation seems to be over proportionate and too strict to detect
real occurrences. However, the few cycle slips that happened during our data collection
seem to have been successfully detected by Android. Firstly, multipath flag algorithm
have been activated only under 250 occurrences for all tested smartphones. This number
is supposedly underestimating the reality of our deep urban environment data collection.
Moreover, a significant multipath event is visible on both top and bottom graph. A
typical multipath oscillation can be seen (depicted by purple boxes on all figures) and not
being detected at any moment by the Android algorithm. This implies that the multipath
indicator is not triggered by a simple threshold on CMC.

Figure C.14: Code-Minus-Carrier
Correlation Analysis for the Xiaomi

Mi8 (1) - GPS PRN 27 L1

Figure C.15:
Code-Minus-Carrier

Distribution Analysis for the
Xiaomi Mi8 (1) - GPS PRN 27

L1
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168 Appendix D: Android Flags Detection Mechanisms Analysis

Figure C.16: Code-Minus-Carrier
Correlation Analysis for the Xiaomi

Mi8 (2) - GPS PRN 27 L1

Figure C.17:
Code-Minus-Carrier

Distribution Analysis for the
Xiaomi Mi8 (2) - GPS PRN 27

L1

In conclusion, the computation processes of Android flags mechanisms seem to not be ex-
clusively based on a naive interpolation of C/N0 or satellite elevation parameters. More-
over, the similarities observed between smartphone brands make us believe that detection
algorithms might be computed at a low-level Android layer. Multipath flags tend to be in-
consistent whereas cycle slip flags were proven to be coherent despite their high false alarm
activation frequency. However, Android multipath and cycle slip indicators might not be
used as reference parameters to qualitatively assess smartphone positioning performance.
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D
SmartCoop Algorithm: A live Matlab® Script

The following document is a live script from the Matlab® environment. Live scripts
document are been conceived to be interactive documents. This scripts carefully ex-
plain the choices and the implementation procedure used for creating the SmartCoop
smartphone-based collaborative technique. This document represents a well commented
version of our functioning algorithm. This is included in this research report for its ped-
agogical character.
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Constrained Nonlinear Optimization - Problem-Based

Collaborative Positioning (VERHEYDE 2021) - 

I - INTRODUCTION
Matlab offers multiple ways to solve optimization problems (ranging from Least-square, to minimization 
algorithms).

2 types of approaches exists in Matlab: 

• Solver-based (see solver-based nonlinear problem)
• Problem-based (see problem-based nonlinear problem)

Characteristics of the two approaches are listed in the table below or following this link. 

After choosing your approach, you need to select a solver function that depends on the definition of you 
problem. Solver function could be used for multiple problems such as: Quadratic functions, multiobjectives 
optimization problems and more. 

1



Follow this table, in order to choose the Matlab solver that best fit the definition of your problem. 

Link to MATLAB Optimization Videos: Master Class with Loren Shure & Example of Problem-based Nonlinear 
Programming.

I - DEFINITION OF OUR COLLABORATIVE PROBLEM
Create a Collaborative Algorithm for Smartphone Positioning in Urban Environement. 

Given a set of estimated position (rough estimate made using Android Raw Data Measurements), 
with being the number of users in the network, and the distance between smartphones (defined by 

 ). 

The distance between smartphone users has been Previously Estimated by performing double differences of 
each GNSS raw data measurements retrieved for each users. Those distance will be refered as Inter-Phone 
Ranges (IPR).

We now set our optimization. The goal is to minimize the 3D position error between the collaborative 
newly estimated positions and the initial calculated positions (Position Fix). 

Our minimization process will be constrained by nonlinear equations satisfying the equality between IPR and 
positions distances (ex: ) of the newly estimated collaborative positions. 
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Objective Function to Minimize is: 

while satisfying: 

Number of Constraints = 

with  and  being the variance and mean of position error in 3D. 

Inputs & Outputs
System Inputs: 

• Smartphones' Positions (coming from the first estimation process obtained by a PVT algorithm using 
Android Raw Data Measurements)

• Inter-Phone Ranges (IPR)
• Number of smartphone users                           

System Outputs:

• Collaborative Smartphones' Positions

Optimization Algorithm (Simulated Data)
Hypothesis: 

• Data are simulated following smartphone STD and mean from real data
• Distances between smartphones are assumed have been previously estimated via IPR Algorithm       
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Generating Simulated Data
global Range
global RangeVector
global ECEF

NumPhones = 4;
Scenario = 'OpenSky';
Geometry = 'Square';
RangeType = 'SPAN';
RangeVector = 'ON';
Length = 60; %Length of the scenario in Epochs(sec)

[LLA, ECEF, Range, NEU] = DATA_GENERATOR(NumPhones, Scenario ...
                    , Geometry, RangeType, Length, RangeVector);

[ErrorStats, Global] = PositionStats(ECEF);

Mean = [0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0];
Var = [(0.5^2) (0.5^2) (1^2) ; (2.5^2) (2.5^2) (3.8^2) ...
    ; (2.5^2) (2.5^2) (3.8^2) ; (2.5^2) (2.5^2) (3.8^2)];

Problem-based Approach - NonLinear Optimization

Create optimization problem

prob = optimproblem

Create optimization variable (in this case: 1 matrix of 3xN representing N users' position in 3D)

x = optimvar('x');

To find the minimum value of a nonlinear objective function using the problem-based approach, first write the 
objective function as a file or anonymous function. The objective function for this example is

type objfunx

START a loop for computing collaborative solutions Epoch by Epoch (MLE method)

for epoch = 1:Length
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Create the objective function as an expression in the optimization variables.

fun = @(x) ( (x(1,1) - x0(1,1) - Mean(1,1))^2 ) / (2 * Var(1,1)) + ...  % X_Phone1 + 
           ( (x(1,2) - x0(1,2) - Mean(1,2))^2 ) / (2 * Var(1,2)) + ...  % Y_Phone1 + 
           ( (x(1,3) - x0(1,3) - Mean(1,3))^2 ) / (2 * Var(1,3)) + ...  % Z_Phone1 + 
           ( (x(2,1) - x0(2,1) - Mean(2,1))^2 ) / (2 * Var(2,1)) + ...  % X_Phone2 +
           ( (x(2,2) - x0(2,2) - Mean(2,2))^2 ) / (2 * Var(2,2)) + ...  % Y_Phone2 +
           ( (x(2,3) - x0(2,3) - Mean(2,3))^2 ) / (2 * Var(2,3)) + ...  % Z_Phone2 +  
           ( (x(3,1) - x0(3,1) - Mean(3,1))^2 ) / (2 * Var(3,1)) + ...  % X_Phone3 + 
           ( (x(3,2) - x0(3,2) - Mean(3,2))^2 ) / (2 * Var(3,2)) + ...  % Y_Phone3 + 
           ( (x(3,3) - x0(3,3) - Mean(3,3))^2 ) / (2 * Var(3,3)) + ...  % Z_Phone3 + 
           ( (x(4,1) - x0(4,1) - Mean(4,1))^2 ) / (2 * Var(4,1)) + ...  % X_Phone4 +
           ( (x(4,2) - x0(4,2) - Mean(4,2))^2 ) / (2 * Var(4,2)) + ...  % Y_Phone4 +
           ( (x(4,3) - x0(4,3) - Mean(4,3))^2 ) / (2 * Var(4,3));       % Z_Phone4     

The unused @fmincon parameters (lb, ub, A, b, Aeq and beq) are initialized to empty vectors

Defining our Non-linear equalitites constraints 

nonlcon = @nlcon_NEW;

while satisfying: 

The function @nlcon_NEW is shown at the bottom of this code. 

This function can be tested with our initial guesses 

Ouputs: c and ceq represents respectively the inequality and equality constraints

[c , ceq] = nlcon_NEW(x0);                                                                                  

Solving our Constrained Non-Linear Optimization Problem using fmincon 

We set optimization options for @fmincon. It has been determined that the most adapted algorithm for 
smartphone collaborative 

positioning is: "sqp". Further information can be found here, for choosing the @fmincon algorithm

options = optimoptions(@fmincon,'Algorithm','sqp','Display','iter-detailed');

Solving for x (Collaborative Positions in a N x 3 matrix) with N being the total number of users within the 
network. 

[x,fval,exitflag,output] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
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The process is then iteratively conducted, each solutions are saved in an output matrix for each computed 
epochs. 

END of the Epoch loop 

end

Analysing scripts and functions can be implemented showing the performance improvement of our algorithm. 

Creating a function for Setting Up Constraints
In a separate file, the constraints function is defined as follow:

function [c, ceq] = nlcon_NEW(x) 

global epoch
global Range

    for a = 1:3
    ceq(:,q) =  ( x(1,a) - x(2,a) ) - Range.R12(epoch,a);
    q = q+1;
    end 
    for a = 1:3
    ceq(:,q) =  ( x(1,a) - x(3,a) ) - Range.R13(epoch,a);
    q = q+1;
    end 
    for a = 1:3
    ceq(:,q) =  ( x(1,a) - x(4,a) ) - Range.R14(epoch,a);
    q = q+1;
    end  
    for a = 1:3
    ceq(:,q) =  ( x(2,a) - x(3,a) ) - Range.R23(epoch,a);
    q = q+1;
    end 
    for a = 1:3
    ceq(:,q) =  ( x(2,a) - x(4,a) ) - Range.R24(epoch,a);
    q = q+1;
    end  
    for a = 1:3
    ceq(:,q) =  ( x(3,a) - x(4,a) ) - Range.R34(epoch,a);
    q = q+1;
    end
    
c = []; % No inequality constraints    
end    

with Range vector containing the previously computed IPR 3D vector ranges and x representing the tentative of 
collaborative positions.

The newly estimated collaborative positions (x from fmincon) are outputted iteratively epoch by epoch at same 
Android raw data measurements rate (1Hz)

6
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Acronyms

IPR3D Inter-Phone 3D Range Vector. XII, 84–89, 92, 93, 97–103, 105–108, 111, 113,
115, 123, 125

3DMA 3D Mapping Aided. 36

ADC Analog to Digital Converter. 139

AGNSS Assisted GNSS. XI, 24, 32, 33, 67

AOA Angle-of-Arrival. 17

APD Absolute Position Differencing. 79, 80

API Application Programming Interface. XI, 18, 22–26, 33, 44, 45, 86, 125, 159, 160

BDS BeiDou Navigation Satellite System. 16, 134, 135, 152

CDOP Collaborative Dilution of Precision. 72

CMC Code-Minus-Carrier. 47–49, 53, 54, 157, 162, 163

CNES Centre National d’Études Spatiales. 104, 105, 111

COTS Commercial Off-the-Shelf. 2, 3, 11, 37, 39, 53, 55, 57

CP Collaborative Positioning. 66–75, 78–80, 86, 93, 94, 97, 101, 105, 108, 117, 121

CPU Central Processing Unit. 13, 19

CST Centre Spatial de Toulouse. 104

CSV Comma-Separated Values. 43

DCO Digitally Controlled Oscillator. 142

DD Double Difference. 80, 81, 89

DGNSS Differential GNSS. 34, 67, 78, 80, 83, 85, 91, 92, 95, 117
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DLL Delay Lock Loop. 50, 53–55, 71, 141, 142, 163

DOP Dilution of Precision. 72, 119, 150

DSP Digital Signal Processor. 13, 20

DSRC Dedicated Short-Range Communication. 70, 73

EGNOS European Geostationary Navigation Overlay System. 135

EKF Extended Kalman Filter. 95, 96

ESA European Space Agency. 135

ESSP European Satellite Services Provider. 135

EUSPA European Union Agency for the Space Program. 12, 133

FAA Federal Aviation Administration. 135

FDMA Frequency Division Multiple Access. 16, 134

FDOA Frequency Difference of Arrival. 17

FLL Frequency Lock Loop. 50, 143

FLP Fused Location Provider. 33, 36, 57, 88–92, 124

FOC Full Operational Capability. 135

GAGAN GPS Aided Geo Augmented Navigation System. 136

GCS Galileo Control Centers. 138

GDOP Geometric Dilution of Precision. 89, 92, 152

GINS Global Indian Navigation System. 135

GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema. 16, 134, 152

GLP GPS Location Provider. 33

GMS Galileo Mission Segment. 138

GNSS Global Navigation Satellite System. I, III, VII, IX, XI, XIII, 1–4, 9–13, 16, 17,
19–27, 29, 31, 32, 34–40, 42–44, 50, 51, 53, 55–61, 65–71, 73–75, 77–81, 83–86, 89,
90, 92–102, 104–106, 108, 111–113, 119, 121, 123, 124, 131–135, 138–155, 160

GPS Global Positioning System. XI, XIII, 10, 13, 14, 16, 22, 25, 44, 67, 132–136, 141,
146, 160, 162

GPU Graphics Processing Unit. 13, 19

GSO Geosynchroneous Orbits. 152

HAS High Accuracy Service. 134

IEEE Institute of Electrical and Electronics Engineers. 70
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Acronyms 179

IGS International GNSS Service. 34

IMU Inertial Measurement Unit. XI, 16–18, 26, 90, 94, 150

IOT Internet of Things. 11

IPR Inter-Phone Ranging. 2, 4, 74, 77, 83–86, 88, 89, 92, 94, 99, 101, 113

IPRd Inter-Phone Range Distance. 84, 88–92, 113

IRNSS Indian Regional Navigational Satellite System. 135

ISP Image Processing Unit. 20

JAXA Japan Aerospace Exploration Agency. 135

JMA Japan Meteorological Agency. 136

KF Kalman Filter. 51, 94, 95, 148, 150

LBS Location Based Services. 1, 10, 11

LE Low Energy Consumption. 17

LHCP Left-Hand Circular Polarization. 154

LIDAR Light Detection and Ranging System. 78, 96, 109

LOS Line of Sight. 151, 152

LS Least Square. 94, 96, 97, 108, 148, 149

MCU Microcontroller Unit. 20

MEMS Micro-Electro Mechanical Systems. 16–18

MEO Medium Earth Orbit. 131

ML Maximum Likelyhood. 96

MLE Maximum Likelyhood Estimation. 74, 75, 149

MSAS Multi-functional Satellite Augmentation System. 136

NAVIC Navigation Indian Constellation. 16, 135

NCO Numerically-Controller Oscillators. 50

NEU North, East, Up. XIII, 106, 115, 116

NLOS Non-Line of Sight. XIII, 1, 35–37, 57, 79, 105, 111, 151, 152, 154, 155

NLP Network Location Provider. 33

OS Open Service. 17, 22, 23, 38, 55, 59, 134

P2P Peer-to-Peer. 68, 69
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PCB Printed Circuit Board. 19, 20

PF Particle Filter. XII, 95, 96

PLL Phase Lock Loop. 50, 55, 56, 71, 141–143

PNT Position, Navigation and Timing. 10, 11, 96, 134, 138, 139

PPP Precise Point Positioning. 11, 34, 35, 60, 78

PPS Precise Positioning Service. 133

PRN Pseudo-Random Noise. XIII, 22, 44, 47, 69, 140–142, 162

PRS Public Regulated Service. 134

PVT Position, Velocity and Timing. 24, 71, 89, 90, 97, 112, 145, 146, 148, 152

QZSS Quasi-Zenith Satellite System. 16, 135, 152

RANSAC Random Sample Consensus. 154

RDSS Radio Determination Satellite Service. 134, 135

RF Radio Frequency. IX, XIII, 131, 138–140

RHCP Right-Hand Circular Polarization. 20, 21, 154

RINEX Receiver Independent Exchange Format. 25, 26

RNSS Radio Navigation Satellite Service. 134, 135

RPR Raw Pseudorange Ranging. 80

RSS Received Signal Strength. 17

RSSI Received Signal Strength Indicator. 18

RTK Real-Time Kinematic. 11, 17, 34, 35, 60, 78, 80, 101

RTT Round-Trip Time. 18, 33

SAR Search and Rescue. 134

SBAS Satellite-based Augmentation System. 135, 136

SD Single Difference Ranging. 80

SoC System-on-a-Chip. 13, 19, 20, 31, 38

SONAR Sound Navigation and Ranging. 78, 96

SoOP Signals of Opportunity. 1, 12, 17

SPS Standard Positioning Service. 133

SQP Sequential Quadratic Programming. 104

SUPL Secure User Plane Location. 32

TDOA Time Difference of Arrival. 17
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Acronyms 181

TOA Time-of-Arrival. 17, 18, 78

ToW Time-of-Week. 43

TTFF Time To First Fix. 32, 67

UERE User Equivalent Range Error. 145–147, 150

UKF Unscented Kalman Filter. 95

URLLC Ultra-Reliable Low-Latency Communication. 70

UWB Ultra-Wide Band. 70, 78

V2V Vehicle-to-Vehicle. 72

VPS Visual Positioning System. 35

VRW Velocity Random Walk. 17

WAAS Wide Area Augmentation System. 135

WLAN Wireless Local Area Networking. 18

WLS Weighted Least Square. 51, 58, 84–86, 88, 96, 148–150
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Cruces, José Luis Trigo, Marc Molina, Alejandro Pérez-Conesa, Joaqúın Gáñez-
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Abstract:

After Google announced the release of Android GNSS raw data measurements on mobile

devices, the enthusiasm around those low-cost positioning devices quickly grew in the

scientific community. The increasing need of Location Based Services (LBS) provoked

the rapid evolution of smartphones embedded low-cost Global Navigation Satellite Sys-

tem (GNSS) chipsets within the last few years. However, various drawbacks prevent the

realization of advanced positioning techniques on hand-held mobiles. Smartphones posi-

tioning capabilities are limited by the tight-integration of hardware components within

the device. This research work ambitions to develop a collaborative network positioning

system between smartphones. The implementation of a cooperative smartphone net-

work takes advantage of the tremendous number of connected Android devices present in

today’s city centers for refining and improving users position accuracy and integrity in ur-

ban environment. This research thesis presents a thorough analysis of Android GNSS raw

data measurements aiming at lifting the ambiguity generated by receivers’ ”black-box”

processes on a wide variety of Android smartphone brand and models. After grasping

the receivers’ mechanisms, the implementation of Android GNSS raw data measurements

in collaborative positioning algorithm has been investigated. An innovative smartphone-

based double code difference method has been employed to compute the inter-phone

distance between network’s users, named Inter-Phone Ranging (IPR). This technique was

tested for nominal and urban scenario cases and has demonstrated its reliability for col-

laborative positioning implementation. Finally, a smartphone-based cooperative engine,

called SmartCoop, was developed and evaluated. This collaborative estimation technique

exploits the previously computed IPR ranges in a non-linear constrained optimization

problem. An experimental protocol has been put in place in order to determine the esti-

mation method efficiency through a series of simulation runs for both nominal and urban

scenarios. The presented results analysis supports our hypothesis that smartphone-based

collaborative engine enhances Android positioning performance in urban canyon.

Keywords:

Smartphone, Collaborative Positioning, Inter-Phone Ranging (IPR), SmartCoop Engine,

Android GNSS Raw Data Measurements



Résumé:

Après l’annonce faite par Google, concernant la mise en service d’une mise à jour Android

permettant de récupérer les mesures GNSS brutes, les smartphones sont rapidement de-

venus attrayant pour la communauté scientifique, en tant que récepteur GNSS bas-coût

grand public. Cependant, la performance du positionnement sur mobile est rapidement

impactée par différent biais d’erreur. Ce phénomène s’accentue en milieu urbain, notam-

ment à cause de l’antenne interne du téléphone dont les spécifications sont inadaptées au

traitement de signaux multifréquences et au positionnement en environnement contraint.

Afin de surmonter ces difficultés, ce projet de recherche ambitionne le développement d’un

algorithme collaboratif dédié aux smartphones. La création de ce réseau coopératif perme-

ttrait de tirer avantage du nombreux croissant de téléphone mobile connecté aggloméré en

centre urbain. Après avoir analysé les mécanismes de positionnement interne aux smart-

phones, la mise en place d’un algorithme collaboratif a été instaurée utilisant les données

GNSS d’Android. Une méthode de double différence sur les mesures de code a été pro-

posée afin de permettre l’estimation des distances entre utilisateurs d’un réseau coopératif.

Cette technique innovante a été baptisée ”Inter-Phone Ranging” (IPR). La fiabilité et la

précision de cette méthode d’estimation sont démontrées par plusieurs études couvrant

plusieurs environnements. Enfin, après avoir méthodiquement caractérisé la mise en place

d’un réseau collaboratif de téléphone mobile, un algorithme de positionnement collaboratif

appelé ”SmartCoop” est présenté. Ce dispositif permet d’exploiter les mesures d’inter-

distances entre utilisateurs du réseau afin de résoudre un problème d’optimisation non-

linéaire à contraintes. Cette méthode d’estimation a pour but d’améliorer la précision et la

dispersion de la position de tous les utilisateurs du réseau. L’analyse des résultats obtenus

nous permet de penser que cet algorithme coopératif innovant participe à l’amélioration

globale de la performance du positionnement sur téléphone mobile en milieu urbain.

Mots-Clé:

Smartphone, Positionement Collaboratif, Inter-Phone Ranging (IPR), SmartCoop En-

gine, Android GNSS Raw Data Measurements
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