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𝐴 Membrane surface m2 

𝐶 Molar concentration mol m-3 

𝐷 Diffusivity m2 s-1 

𝐷0 Diffusivity : pre-exponential constant m2 s-1 

𝑑 Diameter m 

𝑑ℎ Hydraulic diameter m 

𝑑𝑜 External diameter m 

𝐸 Turbulent disspation  

𝐸𝑑  Diffusion activation energy J mol-1 

𝐸𝑆  Dissolution activation energy J mol-1 

𝐸𝑝 Permeation activation energy J mol-1 

ℎ Mass transfer coefficient m s-1 
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𝐾 Turbulent kinetic energy  

𝑘 Equilibrium constant  
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𝐾𝑃 Pressure gauge calibration constant (mol s-1 ) mbar-1 

𝐾𝑆  Sievert constant mol m-3 Pa-0.5 

𝐾𝑆0 Sievert constant : pre-exponential factor mol m-3 Pa-0.5 

𝐿 Length m 

𝑀 Mass kg 

𝑀𝑀 Molar mass g mol-1 

�̇� Mass flowrate kg s-1 

𝑁𝑇𝑈𝐵𝐸𝑆 Number of membrane tubes  

𝑃 Pressure Pa 

𝑝𝑒 Permeability mol m-1 s-1 Pa-0.5 

𝑝𝑒0 Permeability : pre-exponential constant mol m-1 s-1 Pa-0,5 

𝑄 Molar flowrate mol s-1 

𝑅 Gas constant J mol-1 K-1 
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𝑟𝑜 Membrane external radius m 
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𝑅𝑒 Reynolds number   

𝑆 Solubility mol m-3 or atom fraction 

𝑆𝑐 Schmidt number  
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𝑆𝑀𝑆 Mass spectrometer signal Torr 

𝑇 Temperature K 

t Time s 

𝑡 𝑝𝑒𝑟𝑚 Permeation time s 

𝑈 Equivalent mass transfer coefficient m2 s-1 

𝑉 Volume m3 

𝑣 Gas velocity m s-1 

�̇� Volumetric flowrate m3 s-1 

𝑣𝑃𝐼 Pumping speed of ionic pump m3 s-1 

𝑤 Na velocity m s-1 

𝑥 Spatial coordinate m 
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GREEK LETTERS 

 Description Units 

𝛿 Membrane thickness m 

𝜇 Dynamic viscosity Pa s 
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General introduction 
As author of this thesis, I would like to address some introductive remarks to the readers, in order to 

give them an idea of the guidelines and the interests which accompanied me, under the constant 

supervision of my directors, all along the development of this work. The results obtained during these 

years and the way to present them in this manuscript, reflect a deep commitment in trying to conciliate 

the scientific subjects with the specific technical application dedicated to the development of Sodium 

Fast Reactors, which actually is at the origin of this research work. 

The main objective of the work presented here is to study and model the entire hydrogen mass transfer 

process from a gas mixture to liquid sodium, including the permeation through a metallic membrane, 

which should provide a controlled hydrogen supply to the liquid sodium phase. The final goal is to have 

a global understanding of the main phenomena involved (from both a theoretical and experimental 

point of view) and to provide a validated simulation tool to enhance the development of an associated 

technological option. 

This subject, due to the implication of different physico-chemical phenomena, offered at the beginning 

several possible approaches: the micro-scale hydrogen-metal interaction analysis, the hydrogen-

sodium chemistry, the mechanical behavior of the manufactured nickel membrane, the 

thermodynamics, the overall integrated process. Trying to take into account all the above-cited 

approaches, which a priori could have a fundamental impact, the attention has been mainly focused 

on the study of the hydrogen global mass transfer process from a macroscopic point of view. A 

particular emphasis has been given to the experimental part: in fact, when we look a process in its 

entirety, it is always difficult to integrate an in-depth numerical and theoretical analysis of all the 

aspects of the problem. Therefore, in order both to obtain a better understanding of the physico-

chemical phenomena involved and to achieve an industrial objective, the attempt was to be very 

pragmatic, by developing an experimental study on a prototype at the pilot-scale. In this way, the 

obtained results could be integrated in an industrial scale-up process.  

The theoretical approaches as well as the modeling activity, have been largely involved in our study, in 

order to establish a better phenomenological comprehension and to assess a simulation tool, aimed 

to be in the future the basis of a design support tool. The maximum effort has been done in order to 

include the main physical processes, having a potential impact on the global hydrogen permeation 

process, according to the up to date knowledge resulting from an in-depth literature state of the art 

review. We found that this effort has produced results comparable with the experimental activity, 

under certain operating conditions. This experimental-modeling comparison approach could be a first 

important step in supporting the development of a design tool and later engineering of an industrial 

application.  

Nevertheless, following the scientific questioning, a strong commitment has been engaged in trying to 

explain some unattended behaviors, appeared during the experimental activity in a certain range of 

operating conditions. Different potential causes have been investigated and several questions have 

raised. Of course, the models here developed can not be exhaustive, because some hypothesis and 

simplifications are made. Since the focus at the beginning of this study was put more on a macroscopic 

process approach, a lack of information appears in the description of micro-scale phenomena 
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occurring inside the membrane and at its surface, which could be most probably the reasons of the 

observed deviations. Due to the complexity of this aspect, belonging more to the field of the materials 

expertise, we could only propose at the end of this work some interpretations and hypotheses, which 

could open new tracks of research, if it is necessary to extend the operational domain of the 

permeation device. 

Finally, this investigative approach on the unattended results has stimulated insights and rich 

discussions, providing interesting suggestions to be proposed for further studies in perspective. 

The present manuscript has been structured in different Chapters as follows: 

1. Context and motivation 

2. State of the art review 

3. Experimental methods 

4. Experimental results 

5. CFD study 

Chapter 1 presents the Sodium Fast Reactors (SFR) features and the associated R&D critical issues, 

describing the context and the technical reasons for which this study has been proposed. 

The state of the art review, presented in Chapter 2, gives a global comprehension of the physical 

phenomena that play a role into the hydrogen mass transfer process, with a main focus on the 

permeation through metals. Moreover, it presents the laws and models that describe the hydrogen-

sodium interaction in a SFR application’s operating conditions and identifies the key parameters that 

drive the overall process. Comparison with existing similar applications and membrane’s material 

choice is also a key point of this part. 

The experimental activity at pilot-scale, aims to verify the validity of the models applied to describe 

the permeation through a permeator prototype, as well as to obtain quantitative results in terms of 

permeability coefficients of the chosen material. At the same time, the objective is to evaluate the 

overall performances of the prototype into an experimental sodium loop, working under operating 

conditions typical of a SFR. Hence, the prototype and the related integrated process are validated for 

industrial scale-up.  

The experimental facilities and methods, the measurement techniques and a 1D analytical model, 

based on a multi-physics approach, supporting the prototype design activity, are presented in Chapter 

3.  

Chapter 4 reports the experimental results, their comparison with the theoretical models and the 

literature, together with a detailed analysis and a final critical discussion. 

CFD simulations, performed in a 2D axisymmetric domain with the software COMSOL Multi-physics, 

allow a better understanding of the transport phenomena taking place and provide a benchmark for 

the validation of the more elementary analytical model. The results are presented in Chapter 5. 

Finally, the main results obtained and the perspectives on the industrial scale-up of the permeator are 

resumed in the Conclusion chapter. 
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1.1 Sodium cooled Fast Reactors (SFR):  impact studies, necessity to master 
the tritium release to environment 

Among Fast Neutron Reactor Systems, developed within the framework of the Generation IV Nuclear 

Reactors, the Sodium cooled Fast Reactor (SFR) has the most comprehensive technological basis, 

thanks to the experience gained from worldwide operation of several experimental, prototype, and 

commercial size reactors since the 1940s. This experience corresponds to about 40 years of operation 

by end of 2017. Nevertheless, several studies are still carried out at CEA to demonstrate some 

innovative options and to improve its reliability, operability and safety. This reactor uses liquid sodium 

as a coolant to transport the energy produced by the fission reactions from the core to the Energy 

Conversion System (ECS). To do this, two main sodium circuits are set up (cf. Figure 1-1):  

 the primary circuit, a “pool type” vessel directly in contact with the fuel assemblies to extract 

thermal energy from them and to control the temperature of the hot and cold plenum. It is 

characterized by the presence of Intermediate Heat Exchangers and Primary Pumps, immersed 

in the primary sodium. 

 the secondary circuit, a closed loop where the liquid Na circulates and transfers thermal energy 

from the primary sodium to the tertiary loop, so-called Energy Conversion System (ECS), by 

means of two distinct heat exchangers. 

In a standard configuration, the tertiary loop is basically a steam/water circuit connected to a steam 

turbine which converts the thermal energy received from the sodium into mechanical and electrical 

power. The thermal exchange between the secondary sodium and the water cycle takes place into a 

steam generator (SGU). This Steam Generator can be monolithic or modular. Several secondary loops 

are connected to the primary vessel, through the Intermediate Heat Exchanger. 

 

Figure 1-1 Scheme of a SFR reactor: tritium production source and transport 
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1.1.1 SFR’s impurities 

A main issue of the SFR is the control of the sodium chemistry, in particular its purification from 

impurities. The main sodium impurity sources are constituted by oxygen, hydrogen and Tritium, mainly 

coming from: 

o any air and moisture ingress into the circuits, due to maintenance operations;  

o fuel assemblies handling, which provides metallic oxides, less thermodynamically stable than 

sodium oxide, according to Ellingham diagram. 

Additionally, other processes constitute a source of hydrogen isotopes, in particular 

 Hydrogen (1H or H or protium), is produced by the aqueous corrosion of the structural material 

of the pipes of the SGU and by the partial thermal decomposition of hydrazine (N2H4) used to 

limit the  dissolved oxygen content, and consequently the aqueous corrosion. The produced 

hydrogen permeates through the metallic wall and diffuses into the secondary sodium in 

contact with the steam generator, in the ionic form H-, thanks to a difference of H partial 

pressure between the secondary loop and the tertiary circuit. A part of the hydrogen produced 

at the interface between metal and magnetite, permeates directly through the metal towards 

the secondary sodium. 

 

 Hydrogen can be also introduced in the secondary sodium after a so-called "sodium-water 

interaction", induced by a crack or rupture of one or several pipes, which produces with a very 

high kinetic sodium hydroxide (NaOH), hydrogen and heat. NaOH then reacts with sodium to 

produce and dissolve O= and H- into liquid sodium, with kinetics depending on local conditions 

(i.e. temperature, hydrogen partial pressure) 

 

 Tritium (3H or T), is mainly produced (99%) into the core by plutonium ternary fission and by 

irradiation of boron control rods, then it partially diffuses inside the primary sodium. 

Oxygen contributes to corrosion of steel and the activated corrosion products are transported from 

the core towards the components and deposited mainly on the reactor structures, especially the 

coldest parts of the intermediate exchangers leading to their contamination. All the elements 

constituting steel (Fe, Cr, Ni, Mn, C) are susceptible to be dissolved in sodium. In order to limit the 

corrosion, it is generally considered that a SFR requires to be operated with [O] below 3 wppm, in 

steady state conditions. 

Hydrogen, produced continuously by aqueous corrosion in its most natural form H, needs to be 

controlled. In fact, in order to be able to detect as soon as possible a sodium-water reaction (which 

produces hydrogen) and to avoid a propagation of this event to the neighboring pipes, so-called 

“wastage effect”, the hydrogen concentration in sodium should be maintained as low as possible (< 

0.1 wppm), thanks to a purification system.  

It is then necessary to control as much as possible the content of these impurities, by means of 

purification devices [1]. In particular, this thesis focuses on the sodium purification from hydrogen 

isotopes protium (H) and tritium (T), in the secondary sodium loop. 
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1.1.2 Tritium 

Tritium is the hydrogen radioactive isotope containing one proton and two neutrons inside its nucleus. 

Characterized by β-type emission, it has a half-life of 12.3 years. It has the same chemical properties 

of hydrogen from a macroscopic point of view: it is extremely mobile into the environment and in all 

biological systems. In particular, its capacity to diffuse through metals at high temperature (i.e. above 

300°C) can be related to that of hydrogen. Often, to simulate the tritium behavior inside metals, 

hydrogen or deuterium are used in experimental studies. 

In a SFR, H and T are strictly related one to each other: both of them, in fact, have the capability to 

permeate through metallic piping walls of intermediate heat exchangers (IHX) and to diffuse through 

the liquid sodium.  

Due to its radioactivity, Tritium control is of a critical importance. As already said, it is produced inside 

the core and is transported by primary sodium until the walls of Na I/Na II IHX: thanks to its permeation 

capacity, it diffuses through the steel walls of the exchanger and it is then transported all around the 

secondary sodium loop, with a very limited contamination of both the water circuit and the 

environment. Nevertheless, it is necessary to control this contamination magnitude, in order to 

demonstrate that the release is in agreement with the environmental requirements. 

1.1.3 Tritium release mitigation 

All SFRs already built were equipped with SGU, the Energy Conversion system being based on a Rankine 

cycle. Thanks to aqueous corrosion developed in SGU, the hydrogen produced continuously allows to 

trap simultaneously H and T. 

The system adopted to purify the sodium from hydrogen is the so-called “cold trap” (CT): it exploits 

the fact that hydrogen is more or less soluble in sodium depending on the temperature. The respective 

solubility of oxygen and hydrogen is very low; the solubility reaching a value around nil, near the 

melting temperature i.e. 97.8°C (this is a property specific to sodium, in comparison with other liquid 

metals, used as coolants). 

For hydrogen, the solubility value is given by Wittingham law [2]:  

𝑙𝑜𝑔10[𝐻(𝑝𝑝𝑚)] = 6.467 −
3023

𝑇(𝐾)
 

When the sodium temperature is lowered below the saturation temperature, the hydrogen in excess 

crystallize forming NaH. Practically the sodium is cooled down under the saturation temperature 

corresponding to the desired concentration (cf. Figure 1-2), and the optimal condition for the 

nucleation and growth of NaH crystals is created in a cold vessel, on the cold walls, or in a metallic steel 

knitted mesh. The cold trap is installed on an auxiliary circuit and in this way it can purify sodium from 

hydrogen [3].Due to the fact that T has the same chemical properties as H and consequently the same 

solubility law, T is trapped in the form of NaT, thanks to a so called “co-crystallization” mechanism. 

Thus, the presence of H plays a fundamental role for the T trapping in cold traps. The crystallized NaT 

quantity in fact depends on the following relationship: 

[𝑇]𝑁𝑎
[𝐻]𝑁𝑎

=
[𝑁𝑎𝑇]

[𝑁𝑎𝐻]
   

 1-1 
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Moreover, a secondary potential trapping mechanism is supposed to exist, based on isotopic exchange 

between an H atom contained in NaH crystals and a tritium atom dissolved in sodium, as follows: 

𝑇− +𝑁𝑎𝐻 ↔ 𝑁𝑎𝑇 +𝐻−  

 
 1-2 

Therefore, it is obvious that a good control of hydrogen content inside the sodium circuit is necessary 

to correctly trap the tritium [4].  

 

Figure 1-2 Hydrogen solubility in sodium according to Wittingham [2] 

1.1.4 T and H mass transfer modeling 

The distribution of these two isotopes in the different media of the reactor is governing tritium 

activities in liquid and gaseous releases, as well as tritium activities built-up in units such as the cold 

traps. A code, called KUTIM, has been developed at CEA in the 70’s, in order to achieve the following 

objectives: 

 Assess tritium releases to the environment (gaseous and aqueous) at the operating stage, in 

order to guarantee that they are below the authorized limits. 

 Assess tritium activities in the different media, in particular tritium built-up in the CT in order 

to be able either to regenerate them for re-use or to reprocess them as wastes. 

The methodology used to model the T and H distribution in a SFR is based on the identification of the 

related T and H sources and pools, as well as the transport phenomena involved. The mathematical 

formulation of the problem, resolved by a differential equations system, has been validated by the 

comparison with experimental values issued from operating reactors (PHENIX and SUPERPHENIX).  

1.2 ASTRID project – Brayton cycle case: tritium issue 

In the already built and operated sodium reactors, the ECS is a Rankine Cycle based on water/steam 

circuit. However, for ASTRID project (Advanced Sodium Technological Reactor for Industrial 

Demonstration), a gas ECS has been proposed, based on a Brayton Cycle: a gas (pure nitrogen) will 

circulate inside the tertiary loop, receiving thermal energy from the secondary sodium through a 

95 ppm

400°C
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Na/gas heat exchanger, and moving a gas turbine . Thus, several issues linked to the potential sodium-

water reaction would be avoided, providing an easier and more reliable technology, even if the overall 

thermodynamic efficiency of a Brayton cycle is lower than the Rankine’s efficiency, respectively around 

0.37 and 0.42. On the other hand, due to the absence of water in the tertiary loop, corrosion of steels 

and its corresponding hydrogen production will not take place, thus making impossible the tritium 

trapping by co-crystallization in secondary loops. 

As basis for this study, we considered the ASTRID-600 design case: inside the secondary sodium loop, 

the lack of a hydrogen flux of around 40x10-6 g/s has been assessed by the KUTIM code calculations 

[5]. More precisely, this value corresponds to the equivalent hydrogen flux that would be provided by 

the corrosion of a hypothetical SGU, in case of a water/steam tertiary circuit.  

For these reasons, different solutions have been proposed by CEA to enable the tritium trapping in 

order to avoid its dispersion into the environment, like gas purification, permeation barriers or 

hydrogen introduction inside sodium. Among them, the voluntary introduction of hydrogen inside 

sodium has been identified as the most feasible solution in order to enable the tritium co-

crystallization inside the cold traps. 

Three main processes have been proposed to introduce a controlled hydrogen flux inside sodium [4]: 

a) Dissolution of solid NaH solid crystals  

b) Direct gaseous hydrogen injection (bubble column or gas nozzle)  

c) Gaseous hydrogen permeation through a dense metallic membrane. 

The first one presents some critical issues linked to the solid state of NaH. In this case, in fact, a non-

continuous introduction process would not guarantee a stable control of the injected flux, due to the 

fluctuation of NaH active surface, which induces variations of the dissolution rate.  

Concerning the gaseous hydrogen introduction, a former study [5] has analyzed and compared gas 

permeation (c) and gas injection (b) technologies. The two different physical principles were briefly 

presented and a process pre-design has been proposed for both solutions, based on the expected 

operating condition of ASTRID-600. Finally, a shell and tube type permeator has been compared to an 

absorbing bubble column, enlightening the main advantages and disadvantages as well as the 

feasibility of each technology. One main disadvantage of the direct injection is the risk of plugging for 

the nozzle, caused by the hydrogen crystallization on the nozzle surface; to avoid this an elevate 

dilution with inert gas is necessary, with a consequent risk of accumulation in the sodium loop. 

As a result, the permeation process through nickel membranes has been identified as the best choice, 

due to the following main advantages: 

 A better control of the hydrogen flux introduced in sodium. 

 Physical separation between gas and liquid phase, thus avoiding any risk of sodium dispersion. 

 Easier integration of a more compact device into the nuclear reactor. 

Furthermore, hydrogen dissolves in sodium in its ionic form H-, thanks to sodium high reducing 

behavior; the introduction by permeation should provide to sodium atomic hydrogen H, thanks to the 

H2 molecules dissociation that takes place inside the membrane. In this way, the direct contact 

between sodium and gaseous H2 molecules is prevented, thus avoiding the risk of non-complete H2 

dissociation and gas loss in the cover gas. 
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1.3  Thesis subject and motivation  

The previous studies carried out at CEA ([4], [5]) have proposed a preliminary design of a permeation 

device (permeator), which allows the introduction of hydrogen from a gaseous side to the liquid 

sodium. In particular, the design-concept consists of a nickel multi-tube permeator, where a gas 

mixture containing hydrogen (limited to a maximum concentration of 3% molar to respect ASTRID 

security issues) is put in contact with one side of the nickel membrane, while sodium flows on the other 

side. However, all the calculations made are based on several hypothesis and assumptions that need 

to be verified and analyzed more in detail, in order to provide a more reliable and solid technical 

solution. 

Therefore, these studies have expressed the need of a more in-depth analysis of the mechanisms 

involved in the hydrogen transport through the entire physical domain (gas phase, metallic membrane 

and liquid sodium). In particular, some hypothesis and simplifications have been made on some 

fundamentals aspects, thus leaving the following open points to be investigated: 

 The choice of Nickel as material for the permeator’s membrane is inspired by previous 

applications in the context of SFR, in particular the PRIAM [6] process and hydrogen-meters 

[7]. A more detailed study on permeation through different metals should be carried out, in 

order to properly justify this choice. 

 

 A calculation of the hydrogen permeation flux in stationary condition has been performed, 

depending on different operating conditions and parameters. It is based on the Richardson’s 

law [8], which is valid only under certain physical assumptions. The validity of them in the range 

of operating conditions of the permeator, should be proved by means of a careful detailed 

study on permeation; the comparison with other laws or models is necessary in order to find 

the most suitable for our scope. 

 

 The reference Nickel permeability to hydrogen is taken from a study made in 1964 by Webb 

[9] and confirmed by experimental measurements made at CEA in 1984 [10] on small-size 

membranes. A complete review of experimental measurements carried out on Nickel is 

advisable, as well as a new experimental campaign, if the uncertainties and their consequences 

on the understanding of the phenomena are significant. 

 

 Many physical phenomena were not considered, such as the hydrogen mass transfer 

resistance provided by the gas and sodium phase inside the permeator. A complete multi-

physics analysis should be then considered in order to individuate the phenomena that can 

influence the entire mass transfer process. 

To approach the comprehension of the hydrogen-to-sodium permeation, we can refer to some studies 

carried out at CEA on hydrogen transfer from sodium to a circuit under vacuum, in the framework of 

the development of a process called PRIAM[6], used for the regeneration of the cold traps. In the case 

of PRIAM, hydrogen is present into sodium as ionic form H- and diffuses through a Nickel membrane 

to a vacuum side. For this study, on the contrary, a transfer of hydrogen from a gas phase to liquid 

sodium is needed : gaseous hydrogen is in its diatomic state H2, it diffuses through Nickel in its atomic 
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form H and then dissolves to sodium as H- ions; therefore, the physical process involved here is quite 

different.  

Moreover, at LMCT laboratory the transfer of a deuterium-tritium mix from a gas phase to another gas 

phase, separated by a Pd-Ag membrane, has been studied so far and the permeation laws have been 

established [11]. However, because of the unconventional situation described in this study, mainly due 

to the presence of sodium on one side of the membrane, the mechanisms involved are probably 

different and have never been precisely studied before. In fact sodium, being a liquid metal, could 

provide a mass transfer resistance to hydrogen which could be potentially non-negligible if compare 

to that one of a gas phase. Additionally, Pd-Ag provides different permeation properties if compared 

to nickel. 

More recently, a similar application has been developed for the hydrogen isotopes injection into the 

lead-lithium (PbLi) blanket of a fusion reactor [12]: it consists of a multi-tube component made of 

niobium membranes, able to inject hydrogen into PbLi at temperatures around 500°C. However, the 

hydrogen behavior inside PbLi is very different from what happens inside sodium. Therefore, even if 

this study can be taken as reference in terms of approach, its application cannot be proposed for a 

SFR.  

Starting from all these considerations, the necessity to set up a R&D effort has been pointed out. In 

particular, the aim of this thesis is to study the above cited transfer mechanisms and to identify the 

important parameters that will allow a precise control of the hydrogen flux transferred from the gas 

to the liquid sodium. 
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When the thesis subject was initially approached from a theoretical point of view, it was immediately 

clear that its purpose involves several physical phenomena, each one studied by different scientific 

communities and object of more or less detailed studies, including articles or theses. It was obviously 

impossible to focalize on each single aspect with the same accuracy, but here is the attempt to give an 

overview of the general features for each of them.  

From a practical point of view, this review is divided in two categories, not necessarily independent 

one from each other. The first includes the fundamental studies of the physical phenomena at the base 

of our application, such as theoretical models or experimental investigations, while the second one 

concerns the state of the art of the industrial applications (typically from the nuclear power industry) 

which involve similar processes to that one analyzed here. 

The herein studied hydrogen permeation process consists in hydrogen interactions with three main 

systems: a gaseous medium, a metallic membrane and the liquid sodium. Among the physical 

phenomena appearing, two main were identified as significantly important for this study: the hydrogen 

permeation through the metallic membrane and the hydrogen transport inside the liquid sodium. We 

did not consider in detail the hydrogen transport inside a gaseous medium for one main reason: we 

deal with a binary gas mixture in ideal gas conditions (P <10 bar, 300°C<T<500°C) with low hydrogen 

concentrations (around 3% molar), which allow us to consider it as a dilute solution, where the 

conventional mass transfer mechanism by convection and diffusion take place. In terms of complexity, 

the mass transfer in such a domain is much better known, if compared to the transport phenomena 

inside the metallic membrane or the liquid sodium, that we will not dedicate an in-depth literature 

review to it. 

As anticipated, this state of the art review aims to:  

 investigate the main features of the above mentioned physics and understand them;  

 individuate the most significant issues that could impact on our specific application;  

 give the criteria and some hypothesis for a general model describing the entire transfer 

process;  

 give the basis for a correct approach for the development of an experimental investigation 

campaign. 

In view of the above reasons, this chapter is divided into the followings subchapters: 

 Hydrogen permeation through metals. 

 Focus on hydrogen-Nickel permeation parameters. 

 Hydrogen-Sodium system. 

 Hydrogen permeation through nickel membrane in contact with liquid sodium: technological 

state of the art. 

2.1 Hydrogen permeation through metals 

Before to start with a detailed analysis of the existent literature on the gas-metal permeation, it is 

advisable to make a few clarifications that can help in the follow-up and remove some typical doubts 

about this matter. 
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First clarification: permeation or diffusion? 

The permeation is generally defined as the penetration of a permeate (such as liquid, gas or vapor) 

through a solid, caused by a concentration or partial pressure gradient of the permeate across the solid 

barrier. Therefore we are dealing with a particular mass transfer mechanism. However, despite it is 

closely related to what is generally known as “diffusion”, particular attention should be payed to not 

confuse one phenomenon with each other. Many papers in fact talk erroneously about permeation 

confusing it with the simple diffusion term. 

The diffusion in fact is the exchange of a quantity (energy, mass, momentum) strictly due to a related 

potential gradient (temperature, chemical potential and pressure respectively) within a spatial 

domain, described by certain fundamental laws such as: Fourier’s law (energy diffusion), Fick’s law 

(mass diffusion) or Newton’s law of viscous fluids (momentum diffusion), which links the diffusion flux 

to a spatial gradient of the same quantity through a diffusion coefficient, depending on the material’s 

properties and operating conditions. So the diffusion can only take place through a certain medium 

(solid, liquid or gaseous) and does not include other transport or exchange phenomena besides that 

due to the potential gradient.  

For our particular case dealing with mass transfer domain, we will talk about diffusion always referring 

to the Fick’s laws formulation. 

In particular the first Fick’s law, which expresses the diffusive flux density (per surface area unit) under 

steady state conditions: 

𝐽 = −𝐷
𝜕𝐶

𝜕𝑥
 [mol m-2 s-1] 2-1 

And the second Fick’s law, which predicts how diffusion causes the concentration change with time:  

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕

𝜕𝑥
(
𝜕𝐶

𝜕𝑥
) [mol m-3 s-1] 2-2 

Where J is the diffusive flux, D [m2 s-1] is the diffusion coefficient, C is the molar concentration [mol 

m3], x is the spatial coordinate vector and t is time. 

On the other hand, the permeation through a solid membrane represents more broadly the entire 

mass transfer process through a series of multiple media (i.e. gas-solid-gas, gas-solid-liquid, gas-solid-

liquid metal, etc.) and can include different phenomena other than the Fick’s diffusion (such as surface 

reactions, adsorption, dissolution, desorption, lattice trapping, grain boundary and dislocations effect 

and so on), which can occur in some particular conditions especially for gas-metal permeation. 

Second clarification: the physical domain 

In the previous paragraph, we talked about different possible domains where the permeation can 

occur; as already said, the domain of application for this study is composed by a pure or diluted gaseous 

hydrogen, a solid metal (membrane) and liquid sodium, constituting a gas-metal-liquid (g-m-l) system 

(Figure 2-1 (b)). In particular, the hydrogen mass transfer takes place, thanks to a positive 

concentration gradient between the gaseous medium (pure or diluted hydrogen, high concentration 

side) and the liquid sodium (low concentration side). 
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(a) (b) 

Figure 2-1. Permeation across different domains: gas-metal-gas (a) and gas-metal-liquid (b) 

However, the most important part of the existent bibliography refers to gas-metal-gas (g-m-g) systems 

(Figure 2-1(a)), leading to permeation from a rich gas side to a poor gas side, or more commonly to a 

full vacuum side. This is substantially due to the fact that the most common application of hydrogen 

permeation is the hydrogen separation from a gas phase, which normally involves a membrane 

between two gas sides. Nevertheless, it is interesting to investigate this literature, naturally assuming 

an analogy between gas-metal interactions both for the g-m-g and for g-m-l system. We will assume 

that transfer phenomena of the two first steps at gas metal interface and in metal membrane are 

equivalent for both cases g-m-g and g-m-l systems. 

For these reasons, we now approach the gas-metal permeation as a general phenomenon, while we 

will investigate later in paragraphs 2.3 and 2.4 the interactions with the liquid sodium side. 

Third clarification: hydrogen solubility 

The solubility of a solute (in our case hydrogen) in a solvent (in our case both the metallic membrane 

and the liquid sodium) is generically referred as the saturation concentration, where adding more 

solute does not increase the concentration of the solution. In this study, the same word “solubility” is 

used both for hydrogen-metal interface and for hydrogen-sodium system, in accordance with the 

existing literature on both subjects. However, in order to avoid confusion, a distinction between these 

two needs to be clarified: 

 For the hydrogen-metal system (ref. to paragraph 2.1.1.2), the hydrogen solubility consists in 

the equilibrium concentration obtained at the interface for a given temperature and pressure, 

according to the Sieverts’ law. It is not linked to a saturation of the metal, with the consequent 

formation of a precipitate (i.e. hydrides). 

 

 For the hydrogen-sodium system (ref. to paragraph 2.3.3), the hydrogen solubility consists is 

the saturation concentration given at a certain temperature, where the addition of further 

hydrogen would not increase the concentration providing hydride precipitation. For lower 

hydrogen concentrations, a Sieverts’ law is effectively established, but on the contrary of 

hydrogen-metal system, we will not speak about solubility. 

2.1.1 Physics 

2.1.1.1 Permeation process 

The permeation leads to a hydrogen flux across the metallic membrane due to a difference of hydrogen 

chemical potential between the two membrane sides. In the case of two gaseous sides (g-m-g), under 

the hypothesis of ideal gas, the hydrogen concentration in the gas can be related to its partial pressure. 

GAS FEED SIDE 

DENSE METALLIC 

MEMBRANE 

GAS PERMEATE SIDE 

GAS FEED SIDE 

DENSE METALLIC 

MEMBRANE 

LIQUID PERMEATE SIDE 
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From a global thermodynamic point of view, the hydrogen transfer from a region of partial pressure 

P𝐻2,1 to a region of partial pressure PH2,2 (i.e. the two gas sides) is driven by a free molar enthalpy 

difference, ∆μ𝐻2 given by: 

∆𝜇𝐻2 = −𝑅𝑇𝑙𝑛
𝑃𝐻2,1

𝑃𝐻2,2
  2-3 

Where R is the gas constant and T is the absolute temperature. As long as PH2,1>PH2,2, ΔG is negative 

and the transfer process occurs spontaneously. However, in the case of permeation through a metallic 

dense membrane, this physical barrier (i.e. the membrane) prevents this simple process; anyway, it is 

possible that under certain conditions (namely high temperatures), dense metals become permeable 

to gas like hydrogen, whose atomic dimension is very small compared to the metal lattice, thus 

constituting a real transit medium for the gas.  

In the case of a diatomic gas like hydrogen, going into the physics details, it is largely recognized from 

many authors [11], [13]–[19] that the permeation process through a metallic membrane in a g-m-g 

system, without considering the transport phenomena inside the gaseous phase, takes into account 

the following steps (cf. Figure 2-2): 

1. Dissociative adsorption (or chemisorption) : the H2 molecules on the feed side at the interface 

with the membrane surface undergo dissociative adsorption on surface sites forming adsorbed 

atoms H; 

2. Absorption or dissolution (surface to bulk): H atoms infiltrate bulk lattice, occupying the sub-

surface interstitial sites; 

3. Bulk diffusion: the H atoms diffuse through the membrane bulk lattice, by interstitial diffusion 

in between the lattice structure of the membrane’s crystalline elements; 

4. De-solubilisation (bulk to surface) : approaching the permeate side, the H atoms exit from the 

bulk to the surface; 

5. Associative de-sorption (recombination): the absorbed H atoms associatively desorb at the 

surface as H2 molecules on the permeate side. 

 

Figure 2-2 Scheme of hydrogen permeation through metals [18] 
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Each one of the above steps takes place in a different region of the membrane: while the steps 1 and 

5 occur at the metallic surface in contact with the gas phase, the steps 2 and 4 involve the internal 

metallic layers and the step 3 is related to the central part (bulk). It is quite evident that each of them 

can influence the overall permeation process and be the rate-limiting step, depending on the particular 

conditions of the permeation. In 2.1.2 we will analyze how different authors try to model the 

permeation process, giving more or less importance to these mechanisms. 

IMPORTANT NOTE: It is also important to remark that the gas-metal-gas permeation normally refers 

to the H2 molecules, since that is the chemical state of hydrogen in gas phase both at feed and at 

permeate side, leading to a molar flux defined per H2 mole. However, as the bulk diffusion concerns H 

atoms, some authors report their results referring to the atomic hydrogen. That’s why some variables 

such as solubility or permeability coefficients, which depend on the hydrogen concentration, could be 

expressed both in term of molecular (H2) and atomic (H) hydrogen, depending on the authors. It’s easy 

to understand that a coefficient expressed by mole of molecular hydrogen [mol H2] is simply the half 

value of the same coefficient expressed in term of atomic hydrogen [mol H], since each mole of H2 

corresponds to two moles of H.  

For simplicity, when we will define a hydrogen flux or a related coefficient, we will generally refer to 

moles of hydrogen [mol], by specifying if it is defined for molecules or atoms to choose the most 

appropriate molar unit. 

2.1.1.2 Metal-hydrogen equilibrium: Sieverts’ law 

The steps 2 and 4 of permeation process, as described in paragraph 2.1.1.1, involve the dissolution of 

hydrogen atoms in the metal. When hydrogen dissolves in a metal, depending on temperature and 

hydrogen concentration, the metal-hydrogen system (called also M-H system) will reach different 

equilibrium states, corresponding to different phases. As example, below (Figure 2-3) is reported the 

Pd-H phase diagram [20], where the different phases are shown; at sufficiently low concentrations, 

the interstitial hydrogen is always found dissolved in solid lattice, usually called α-phase or solid 

solution. At higher hydrogen concentrations, the solid lattice becomes saturated and hydrides are 
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formed and co-exist with the metal in the so called β-phase. Between these two, a transition region 

where two phases with different hydrogen concentrations coexist.  

 

Figure 2-3 Palladium-hydrogen phase diagram [20] 

When the hydrogen is dissolved in low quantities in solid solution (α-phase), its concentration can be 

expressed  by means of the Sieverts’ law [21], commonly recognized and often cited by the authors to 

set up their model or as a comparison for their results. This law in fact describes the concentration 

equilibrium at gas-metal interface: 

½ (H2)g  H  2-4 

The solubility of gas in a material is defined as the concentration of the gas dissolved at the chemical 

equilibrium, under a given partial pressure and temperature. In particular, the Sieverts’ law establishes 

the relationship, at thermodynamic equilibrium, between the partial pressure Pi of the gas i and the 

gas atom concentration at the interface g-m. Practically this law describes the step 2 (dissolution) when 

it is at the equilibrium by means of a solubility coefficient Ks, commonly called Sieverts’ constant: 

𝐶𝐻−𝑚 = 𝐾𝑆(𝑇)√𝑃𝐻2 [mol m-3] 2-5 

with 

𝐾𝑆(𝑇) = 𝐾𝑆0 𝑒 
−𝐸𝑆
𝑅𝑇     

[mol m-3 Pa-0.5] 2-6 

where 𝐶𝐻−𝑚  is the hydrogen atoms molar concentration inside the metal (generically called 

“solubility” in all the permeation literature), Ks [mol m-3 Pa-0.5] is the Sieverts’ constant, function of 

temperature, 𝑃𝐻2[Pa] is the molecular hydrogen partial pressure inside the gas, and ES [J mol-1] is the 

heat of solution, including both dissociation and solution energy. This law is valid when a local 

equilibrium is reached at the interface between the gas and the metal, namely when the hydrogen 

contained in the gaseous layer in contact with the metal is dissociated and dissolved into the metallic 

substrate until reaching a fixed equilibrium concentration. 

This law has a theoretical explanation, argued by Ciampichetti in his review [22]: in fact, if we assume 

a reaction between the gaseous molecular hydrogen and the dissolved atomic hydrogen inside the 

metal, we obtain the following relationship: 
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𝐻2
𝑘
↔ 2𝐻  2-7 

where, at the equilibrium, the reaction equilibrium constant K can be expressed as 

𝐾(𝑇) =
𝐶𝐻

2

𝑃𝐻2
 

 2-8 

From this equation, we obtain easily the relationship by Sieverts’ law in Equation 2-5. 

The driving parameters of hydrogen dissolution into the metal are then its partial pressure and 

temperature; in particular, we can observe that: 

- At fixed temperature, 𝐶𝐻  increases linearly with the square root of the hydrogen partial 

pressure, 

- At fixed pressure, 𝐶𝐻 increases with temperature if the hydrogen dissolution is endothermic 

(ES>0), 

- At fixed pressure, 𝐶𝐻 decreases with temperature if the hydrogen dissolution is exothermic 

(ES<0). 

2.1.2 Available models 

2.1.2.1 Richardson’s law: the diffusion-limited permeation 

Permeation of gas through metals was initially treated as a metal bulk phenomenon only, modelling 

the permeation as a pure diffusive mechanism. In this first approach, a macroscopic point of view was 

applied, trying to set an expression of the whole permeation flux, without considering the micro-scale 

surface effects. Furthermore, this model describes only the g-m-g system and it is valid only at the local 

scale, since it gives expression of the molar flux per unit surface. Despite its simplifications, this 

approach could be valid under certain conditions and this explains why, even in more recent papers, 

we do not find a clear distinction between permeation and diffusion. However, it is known from the 

beginning that the bulk diffusion is conducted by atomic hydrogen and not by hydrogen molecules. 

The earliest model was proposed by Richardson [8], considering the steady state permeation of 

hydrogen across a membrane with a negligible hydrogen concentration downstream, typically 

maintained under vacuum for experimental purposes. The permeating flux is given by: 

𝐽 =
𝑎

𝛿
 𝑃𝐻2

1/2
𝑒−

𝑏
𝑇 [mol m-2 s-1] 2-9 

Where J is the hydrogen permeation flux for surface unit, 𝑃𝐻2  is the hydrogen partial pressure 

upstream, T is the temperature, δ is the thickness of the metal, a and b are constants for the gas-metal 

system. We find here the same proportionality to 𝑃𝐻2
1/2

 and to the exponential of temperature 𝑒−
𝑏

𝑇  as 

for the Sieverts’ law, and this is not random: Andrew [16] and Ciampichetti [22] well explained the 

physical meaning of the Richardson’s law, obtaining a slightly different formulation that is more 

commonly applied by most of the authors for generic permeation cases [23]. 

With reference to the scheme in Figure 2-4, if we assume the permeation as purely diffusive (no surface 

effects as adsorption, dissociation, etc.), in stationary conditions, we can write the permeation flux 

between two internal sides 1 and 2 of a flat membrane according to the 1st Fick’s law in Equation 2-1: 
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𝐽 = −𝐷
𝜕𝐶𝐻−𝑚
𝜕𝑥

 [mol m-2 s-1] 2-10 

which, once integrated in 1D across the membrane thickness δ, gives: 

𝐽 =
𝐷

𝛿
 (𝐶𝐻−𝑚,1 − 𝐶𝐻−𝑚,2) [mol m-2 s-1] 2-11 

where 𝐷  [m2 s-1] is the hydrogen-metal diffusivity, 𝐶𝐻−𝑚,1  and 𝐶𝐻−𝑚,2  [molH m-3] are the atomic 

hydrogen molar concentrations at the two membrane internal sides 1 and 2. Similarly to the Sieverts’ 

constant, also the diffusivity coefficient is expressed as function of temperature by means of an 

Arrhenius law: 

𝐷 = 𝐷0 𝑒 
−𝐸𝑑
𝑅𝑇  [m2 s-1] 2-12 

where Ed [J mol-1] is the diffusion activation energy. Assuming that hydrogen atom concentration in 

the metal substrate is locally in equilibrium with the gas molecule concentration at both membrane 

sides, we can express  𝐶𝐻−𝑚,1 and 𝐶𝐻−𝑚,2 according to the Sieverts’ law in Equation 2-5. So we obtain: 

𝐽 =
𝐷

𝛿
 𝐾𝑆(√𝑃𝐻2,1 −√𝑃𝐻2,2) [mol m-2 s-1] 2-13 

A new coefficient is defined as the product of D and KS, called permeability: 

𝑝𝑒 = 𝐷𝐾𝑆  [mol m-1 s-1 Pa-0.5] 2-14 

Since both D and KS vary with temperature in an Arrhenius manner, also pe can be written as: 

𝑝𝑒 = 𝑝𝑒0 𝑒 
−𝐸𝑝
𝑅𝑇  [mol m-1 s-1 Pa-0.5] 2-15 

𝐸𝑃 = 𝐸𝑆 + 𝐸𝐷  [J mol-1] 2-16 

where EP is the activation energy for the permeation. The equation 2-13 can be rewritten as follows: 

𝐽 =
𝑝𝑒0
𝛿
 𝑒 

−𝐸𝑝
𝑅𝑇 (√𝑃𝐻2,1 −√𝑃𝐻2,2) [mol m-2 s-1] 2-17 

which in case of PH2,1>> PH2,2 (negligible hydrogen concentration at the outlet side), reduces to the 

Richardson’s original formulation in Equation 2-11. However, the equation 2-17 is the one applied by 

the most of the authors who commonly call it Richardson’s equation, even it differs slightly from the 

original formulation. 



Chapter 2 - State of the art 
__________________________________________________________________________________ 

18 
 

 

Figure 2-4 Hydrogen permeation physics in a gas-metal-gas configuration with pure hydrogen on bot membrane’s 
sides 

Resuming, this formula expresses the hydrogen permeation flux per unit surface across a metallic 

membrane, under the following hypothesis: 

 Gas-metal-gas domain. 

 Steady state conditions. 

 Local uniform concentration on the membrane’s surface. 

 The metallic membrane is isothermal. 

 Gas side mass transfer resistance is negligible. 

 Atomic hydrogen interstitial bulk diffusion is the limiting step determining the permeation flux; 

therefore any other effect (such adsorption, absorption, desorption, trapping, grain boundary 

and dislocations or metal’s defects effects etc.) is neglected or considered much quicker than 

the diffusion, so that it cannot influence the overall process. Fick’s 1st law of diffusion is then 

applicable. 

 Mono-dimensional diffusion, across the membrane thickness.  

 The gaseous molecular hydrogen is in equilibrium with the dissociated atomic hydrogen inside 

the metal, on both sides of the membrane, so that Sieverts’ law is applicable. 

 Diffusion, solubility and permeability coefficients are not dependent from hydrogen 

concentration but only on metal temperature and physical properties. 

We will investigate in details in paragraph 2.1.3, in which experimental conditions these hypothesis 

can be considered true and which are the limits of applicability. But as a general rule this model can 

be applied when hydrogen concentration in metal is low, relatively high temperatures and thick 

membranes [18]. 

2.1.2.2 Complementary models: surface and trapping effects 

Despite its broad employment by several authors, many experimental results showed deviation from 

Richardson’s law, especially for very thin membranes (few microns), low temperatures and very low 

pressures. This explains why this law has been subject of different critics along the time, and many 

authors implemented more complete (and more complex) models in an attempt to obtain a model 

applicable on a larger range of conditions and comprehensive of all the physical phenomena involved. 
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However, in most of the cases, they show how their complex models can be reduced in some particular 

conditions to the Richardson’ law, recognized by all as the “father” of the permeation models. 

Smithells and Ransley [24] remarked that Richardson’s equation was not good to predict experimental 

results at very low pressure, when the permeation flux was find to be no more proportional to the 

square root of pressure but become directly proportional to P. The √𝑃  relation indicates that gas 

molecules undergo dissociation when entering into the metal. If this is no more valid, it means that 

another mechanism dominates on the permeation. They try to explain this behavior at low pressures 

adding an adsorption coefficient ϴ, dependent from pressure according to the Langmuir’s form, so 

modifying the Richardon’s law with success even at very low pressures. 

Successively Wang [13] developed a more complete model, including adsorption/desorption, ab-

sorption/desolubilsation effects at both membrane surfaces, atom recombination, as well as the 

atomic diffusion inside the membrane. For each of these micro-scale mechanisms, he set up an 

expression of the hydrogen flow rate as function of pressure. With the hypothesis that in steady state 

conditions, the flow rate is equal between each elementary mechanism, he equalized all the flow rate 

expressions from each single contribution, obtaining a global expression of the hydrogen flux as 

function of pressure. This approach is very important because several authors set up their model 

starting from Wang’s theory. 

Some decades later, Pick and Sonnenberg [15] set up a kinetic model for hydrogen/metals interaction 

with a focus on the difference between molecular hydrogen and atomic hydrogen incident flux on 

metal surface. As for Wang, they gave expression of the different flux rates due to the different 

permeation steps: chemisorption, defining a sticking probability, desorption, adsorption, surface to 

bulk dissolution and vice-versa, bulk diffusion. In this case, they gave the equation of hydrogen flux as 

function of hydrogen concentration (and not pressure). They demonstrated analytically that the 

recombination of these equations under the condition of the stationary state and equilibrium at gas-

metal, leads to Sieverts’ law: expression of the equilibrium concentration as function of gas pressure. 

They stated that this concentration is a material bulk property and should only depend on the solution 

energy; the surface barriers can only influence the rate at which equilibrium is reached. 

Andrew [16] provided a review of hydrogen permeation models, with a particular attention to the 

Wang’s model; he analyzed it for different limiting cases, demonstrating that: 

o For low fluxes, the hydrogen permeation flux is linear with pressure. Only half of the 

incident flux is permeating with a 50% probability for an atom to be desorbed, 

o For very high pressures, permeation flux is limited by adsorption rate and desorption 

rate,  

o For intermediate fluxes: if the membrane is thick enough, the permeation flux 

expression reduces to Richardson’s law. 

Ward and Dao [17] based their model on the Pick’s [15] one, considering both the diffusion and surface 

effects with some adaptation; they included also the external mass transfer (i.e. hydrogen in feed gas) 

contribution to the global permeation. In the same way, they obtained an expression for the 

permeation flux as function of hydrogen concentration, which takes into account all the different rate 

contributions. Moreover they compared the theoretical calculations for different operating conditions 

with some experimental results for palladium membranes. The objective was to find the physical limits 
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where the model does not follow the Sieverts’ law of equilibrium, while the surface effects become 

rate determining step. Their main conclusions are: 

 In the absence of external mass transfer resistance, nearly diffusion-limited permeation (well 

described by Richardson’s law) is expected for clean Pd for temperatures above approximately 

573 K and membrane thicknesses down to 1 micron; 

 Most of the existing permeation data for thick Pd membranes are consistent with the 

calculations for diffusion-limited permeation (discrepancies for membranes less than 10 

microns); 

 Low-temperature permeation is limited by desorption while adsorption is only expected to 

impact permeation at very low upstream H2 partial pressures, or under conditions of 

substantially reduced sticking due to surface contamination; 

 With thin membranes, external mass transfer can become a significant resistance under 

conditions where it would normally not be expected, especially on the low partial pressure 

side of the membrane and when porous support is present. 

More recently (2013), Deveau [18] provided an interesting study: after a literature review where he 

identified the limits of Richardson’s model in the range of low temperatures and thin membranes, he 

approached the model from Ward and Dao[17] as the global reference for the permeation. However, 

he found that even this one did not include the effect of non-ideal solution of metals, for which a peak 

of permeability is expected at the metal transition to  phase. Therefore he set up a model based on 

Ward and Dao[17] relationships, but including also a term for the phase transition, expressed in the 

more intuitive form of electrical analogy, where each step of permeation contributes as a “resistance” 

to the total hydrogen flow across the membrane. He compared as well his model with experimental 

results of permeation on Pd membranes; he found that for temperature above 200°C-250°C the 

diffusion step has the highest resistance on the permeation. This means that all the other resistances 

can be neglected and for this case, when the diffusion becomes the so called “rate determining step” 

or “RDS”, his complex model equation reduces to the most common Richardson’s law.  

His conclusion is very important because he stated that, despite diffusion of hydrogen has been 

investigated extensively since its discovery 150 years ago, the most common way to model permeation 

flux of hydrogen is the Richardson’ law (called improperly Sieverts’ law in his study), which is strictly 

applicable only at relatively high temperatures, thick membranes, and low hydrogen pressures. 

In addition to the surface phenomena, Cummings and Blackburn [25] introduced into their permeation 

model the so called “trapping” effect: they stated in fact that the atomic hydrogen could be trapped 

into the metal lattice under certain conditions. Therefore, they developed a model, which includes 

both surface effects, globally modeled as a dissociation reaction, and the trapping effect, modeled as 

a reaction between moving atoms and trapped atoms. Each reaction has its own rate constant which 

contributes to the entire permeation rate. Furthermore, they proposed an experimental technique, 

the pressure modulation, which allows individuating which is the determining rate under different 

experimental conditions. 

2.1.2.3 Conclusions 

Richardson’s law is the most primitive way to describe the hydrogen diffusion through metals, taking 

into account only the bulk diffusion phenomena as rate limiting step, hypothesis validated generally 

for high temperatures and thick membrane. Moreover, this model has been set up for a g-m-g system 
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and does not take into account the transport phenomena beyond the external sides of the membrane. 

With this model, one can obtain the local hydrogen flux per unit surface through a membrane under 

steady state conditions; if one wants to model only the diffusion under time-dependent conditions, 

the Fick’s 2nd law is necessary. 

More complex models describe the hydrogen permeation flux considering both surface and bulk 

phenomena. It is commonly accepted by the authors that the surface phenomena become important 

when the membrane temperature and thickness decrease. When the temperatures and the 

thicknesses are high, the bulk diffusion is the rate limiting process and many complex models reduce 

to the Richardson’s law. 

2.1.3 Experimental evidences 

The previous chapters describe how different gas/metal interactions take place during the permeation 

process, each one characterized by laws and parameters: the gas-metal dissolution, characterized by 

the Sieverts’ constant; the bulk lattice diffusion (diffusion coefficient) and the overall permeation 

(permeability coefficient). Each of these phenomena can be investigated with different techniques, 

which allow to obtain the coefficients for various operating conditions. For our purpose, we will try to 

give an overview on the main characteristics of the most common materials employed for permeation 

issues.  

If we consider the steady state permeation, the permeability coefficient indicates the metal’s capacity 

to be permeated by hydrogen for a given concentration (or partial pressure). At a fixed gas pressure, 

higher is the permeability, higher the hydrogen flux which go through the metal. As it is defined in 

equation 2-14, the permeability is the product between KS (and then the solubility) and diffusivity D. It 

is then obvious that a material with a good permeability should also has a good solubility or diffusivity.  

Historically, H2 separations in gas phase (on both sides of the membrane) were performed with Pd 

based membranes, since they naturally catalyze the surface dissociation/re-association processes and 

are highly permeable to H2 [19]. Among all the metals, the transition metals are generally recognized 

[26] to have great permeability to hydrogen. These include (but are not limited exclusively to) 

tantalum, niobium, and vanadium; moreover, unlike platinum and palladium, they are abundant and 

comparatively cheap.  

According to Santucci et al. [27], body-centered cubic (bcc) refractory metals like Nb, V and Ta exhibit 

exceptionally high permeability to hydrogen, order of magnitude higher than for face-cubic-centered 

(fcc) metals like Pd or Ni. However the high hydrogen solubility in these metals is responsible for their 

high levels of embrittlement under hydrogenation, which could result in membrane failure. For these 

reason, the alloying of metals has been studied in order to reduce hydrogen solubility. Another 

drawback of metals proposed as alternatives to Pd is the strong surface resistance to hydrogen 

transport, because of their high reactivity with gases. To avoid the formation of surface compounds, 

such as oxides and nitrides, membrane surfaces could be coated with thin Pd-based films. 

Since the membrane composition and configuration could be multiple, we decide here to concentrate 

our review on pure metals, trying then to individuate the most suitable for our application. 
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2.1.3.1 Solubility 

At fixed pressure, the solubility of hydrogen in certain transition metals is reported as function of 

temperature in Figure 2-5 [20] together with their enthalpy of solution (Figure 2-6)[20] (here positive 

for exothermic solution and negative for endothermic ones, due to a reversed sign taken by the author 

in his solubility equation). It is evident that metals with exothermic solution processes have higher 

solubility with regards to hydrogen. This leads to a higher capacity to store hydrogen inside them but 

also to easier hydrides formation, i.e. at a fixed temperature, the hydrogen pressure required to form 

hydrides is lower. This is negative from an applicative point of view, due to the embrittlement that 

hydrides induce to the metal as well as lattice expansion. In Figure 2-7 [19] some values of solubility at 

ambient temperature are reported: among the fcc (face-centered cubic) metals, Pd has the highest 

value, three orders of magnitude higher than Nickel, that confirm its excellent hydrogen affinity. 

Another consequence of hydrogen solubility that should be taken into account for industrial 

application is the lattice expansion; in fact, when a hydrogen atom occupies an interstitial site of the 

metal, a certain volume expansion occurs. It has been generally quantified [20], [28] that an increase 

of around 2.9 Å3 in fcc metal lattice occurs for each hydrogen atom absorbed. Obviously, higher the 

hydrogen content (due to a higher solubility), higher is the volume expansion of the membrane. This 

critical issue should be carefully considered into the fabrication process of a membrane, in order to 

avoid excessive mechanical stress induced by the presence of hydrogen inside the metal lattice. 

 

 
Figure 2-6 Hydrogen-metal enthalpies of solution 
[20] 

Figure 2-5 Hydrogen-metal solubilities as function 
of temperature at hydrogen pressure of 1 bar 
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Figure 2-7 Hydrogen-metal solubility and permeability [19] 

 
Figure 2-8 Hydrogen-metal diffusivity [20] 

2.1.3.2 Diffusivity and permeability 

Different techniques were adopted to study experimentally the permeation through metals: Altunoglu 

[29] distinguishes between microscopic and macroscopic techniques, depending on the objective of 

the study. Among the macroscopic techniques, the most commonly applied are the ones based on 

permeation flow measurements. Basically they measure the permeation through a specimen, more 

commonly a metallic disc of certain thickness. In the simplest form of permeation experiment, two 

chambers of known volume are separated by the specimen: the hydrogen enters one side of the 

specimen from a stable supply and is detected on the other side. In some cases, the pressure of the 

diffusing gas on the outlet side (under vacuum) is detected by a pressure gauge or by a mass 

spectrometer and converted to a flow measurement, by knowing the volume of the system. 

Alternatively, a Residual Gas Analysis can be applied: the permeate side is continuously evacuated by 

a pumping system, maintaining it under a proper vacuum level, and a mass spectrometer detects the 

permeating hydrogen flowrate. In both cases, a proper calibration of the mass spectrometer is 

necessary, in order to convert its signal into a hydrogen pressure or flowrate.  

As the gas is put in contact with the membrane, the measured permeation flux grows with an initial 

transitory starting from zero to an equilibrium value, which then characterizes the steady state 

permeation. The typical permeation flow evolution along the time is reported below [30]. 
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Figure 2-9 Permeation transient in a Nickel membrane (122 micron)  : comparison between theoretical 2nd fick’s law 
solution and experimental results [30] 

From the comparison of the flow measurements with their theoretical values, it is then possible to 

obtain the permeability characteristics of the material. If the permeation is limited by diffusion, the 

hydrogen concentration evolution follows the Fick’s laws, the 1st law in stationary conditions and the 

2nd law for transient conditions. From these laws, for a mono-dimensional case with a fixed hydrogen 

concentration at the high pressure side (C0) and negligible pressure on the other (vacuum side), one 

can express the permeation flux for: 

1. Steady state conditions, constant flux expressed by Richardson law 

𝐽 =
𝑝𝑒0
𝛿
 𝑒 

−𝐸𝑝
𝑅𝑇 √𝑃𝐻2,1 [mol m-2 s-1] 2-18 

2. Transient conditions, analytical solution of the 2nd Fick’s law with a Fourier transform [31]–[34] 

𝐽(𝑡) =
𝐷𝐶0
𝛿

[1 + 2∑(−1)𝑛 e
(−
𝐷𝑛2𝜋2𝑡

𝛿2
)

∞

𝑛=1

] [mol m-2 s-1] 2-19 

Therefore, having steady state measurements of the flux J at known gas pressures and temperatures, 

from the first relationship we can obtain the permeability coefficient at different temperatures. 

Knowing its Arrhenius dependence it is then possible to extrapolate a general expression of pe as 

function of temperature. Permeability is then obtained from steady state experiments. 

To have a value of the diffusivity coefficient D, the “time lag” technique is used: a “time lag” coefficient 

is extrapolated from the flux-time curve (Figure 2-9), and from this coefficient the diffusivity is 

calculated. As for permeability, experiments at different temperatures can give an Arrhenius law of D 

versus temperature.  

Furthermore, by performing these experiments, it is possible to verify if the permeation effectively 

follows or not the Fick’s laws, so, if the hypothesis of bulk diffusion as rate limiting step in the overall 

process is true or not. For example, for steady state isothermal permeation, if the measured flows at 

different conditions do not follow the √𝑃 dependence, it could mean that the Sieverts equilibrium in 

Richardson’s law is not respected: practically some surface effect may be rate controlling causing a 

non-equilibrium at the metal surface, so losing the Sieverts dependence from √𝑃. Authors agree on 

the fact that if the hydrogen dissociation is the rate limiting step, then the flux dependence from gas 
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pressure becomes linear; for other intermediate cases a pressure exponent between 0.5 and 1 should 

be expected [29], [35], [36]. 

Figure 2-8 [20] reports diffusivity measurements for some metals, showing that a good diffusivity is 

also generally linked to a good solubility; in fact metals like Vanadium and Niobium have higher 

diffusivity than Nickel.  

Several authors report result of permeability measurements [9], [14], [19], [37], [38] showing a good 

agreement between them. Looking at the Figure 2-10 and at the table reporting values at 500°C in 

Figure 2-7, in general we can say that Niobium, Vanadium and Tantalum are the most permeable 

metals respectively, followed by Palladium, one order of magnitude lower. Iron and Nickel are not so 

far from each other but they are 2 or 3 order of magnitude lower than Palladium. In the high 

temperature range, normally over 300 °C, authors generally found a good agreement with the 

Richardson’s law, so verifying the validity of Sieverts law and diffusion limited regime hypothesis.  A 

detailed analysis on the investigated experimental conditions for Nickel is provided in paragraph 2.2.3. 

 

Figure 2-10 Hydrogen-metal permeability dependence with temperature[37] 

2.2  Hydrogen-Nickel permeation 

2.2.1 Why Nickel? 

From the result shown in 2.1.3 it is evident that nickel has not the best characteristics in term of 

permeation. Despite this, it is often employed in membranes application for hydrogen. Moreover, for 

this study, we have to consider that the permeate side of the membrane will be constantly in contact 

with sodium at high temperatures: this particular condition could create some problems on the 

membrane due to material chemical compatibility with liquid sodium. Palladium, for example, 

dissolves into liquid sodium (6% of Pd mass weight percent at 400 °C [39]). Moreover, little quantities 
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of oxygen are dissolved into the sodium circuit, representing a corrosion risk for the metals which are 

in contact with it. This explain why in the past nickel was chosen for similar applications [6]: nickel in 

fact shows a very high corrosion resistance, contrarily to niobium, iron and palladium. Furthermore, if 

compared to materials with a higher permeability like palladium, nickel presents a lower solubility, 

characterized by an endothermic behavior: this means that during a permeation process, even when 

the membrane is cooled down at lower temperatures, a lower quantity of hydrogen is “trapped” into 

the metal. This means that lower lattice expansion takes place, thus reducing the risk of a mechanical 

failure. Another negative effect on the mechanical resistance of the membrane is represented by the 

hydride formation: Nickel can form hydrides only at very high pressures, far from the normal operating 

conditions of the membranes; hydride formation pressure in the range of 600 MPa is reported by the 

main reviews on Ni-H system [40], [41]. This fact allows its employment without a considerable risk of 

embrittlement due to hydrides.  

According to Santucci et al. [27], non-noble metals like Ni are easily oxidized, and the formation of an 

oxide layer disturbs the hydrogen dissociation on the metal surface, thus reducing the permeability. 

As a solution, they proposed a Ni dense membrane covered with Pd-Ag by diffusion welding. Others 

proposed a porous Ni membrane covered by a Pd film. However, no experimental demonstration of 

oxide formation and negative impact is provided by these authors. 

In the next paragraph, we focus on pure Ni, trying to find if experimental evidences show effectively 

results for Ni oxidation negative impact on permeation.  

2.2.2 Ni-H phase diagram 

According to Wayman and Weatherly [40], in equilibrium with H2 pressures on the order of 1 atm or 

less, Ni exhibits the features of a classical "endothermic occluder" of H; the result is a very low solubility 

(interstitial) of H in Ni (order of H/Ni=10-5 at room temperature) and a positive temperature 

dependence of solubility. 

Fukai [42] shows in his Ni-H phase diagram (Figure 2-11) that hydrides formation (phase β, on the right 

side of the curve) is possible for P>1GPa. If one operates at lower hydrogen pressure, the H atoms will 

be dissolved in Nickel as solid solution (phase α), increasingly with the temperature, without hydrides 

formation. This is confirmed also by a more recent theoretical study by Bourgeois [43], who provides 

a Ni-H phase diagram (Figure 2-12) focused on moderate hydrogen pressures (105 and 107 Pa), which 

is validated by comparison with several experimental measurements. We can observe that the two 

lines stay into the low values side of x (hydrogen concentration expressed as atomic ratio H/Ni) and, 

due to the Sieverts dependence with √𝑃, at lower pressure corresponds a lower H/Ni ratio (lower 

solubility). Moreover we can remark that at low concentrations, in the order of 10-3-10-4 molar 

fractions, the hydrogen dissolution is an endothermic process, i.e. at fixed pressure the solubility is 

increased by increasing temperature, confirming what reported by Wipf [20] in Figure 2-6 for Nickel. 

Furthermore, the (α) solid solution has the FCC crystal structure of Ni, with H dissolved interstitially. 

Because at 25 °C ~ (298 K), the maximum H content of the solid solution α-phase is low, lattice 

parameter changes are not expected to be large. 



Chapter 2 - State of the art 
__________________________________________________________________________________ 

27 
 

 
Figure 2-11 Ni-H phase diagram at high pressures [42]   

 

 
Figure 2-12 Ni-H phase diagram at low pressures [43] 

 

2.2.3 Experimental coefficients 

Hydrogen-Nickel permeation has been widely investigated, over different ranges of conditions and 

parameters: temperature, pressure, nickel purity, membrane thickness, surface conditions, 

geometries and measurements methods. All the studies presented here refer to an “ideal” single-

crystal or polycrystalline nickel; in the second case specifics preliminary annealing and a polishing 

processes, giving a desired grain sizes and surface finishing. Structural defects like dislocations or 

vacancies, typically produced by cold working, are not considered hereby. Moreover, we limit our 

analysis to high purity nickel, with a degree varying from 99.4% to 99.999%. Finally, all the experiments 

were conducted on a g-Ni-g system, where pure hydrogen is on the feed side and vacuum is provided 

on the permeate side. Unfortunately, quite different results for solubility, diffusivity and permeability 

can be found depending on the study. Robertson (1973) [44] provided probably the most cited review 

of coefficients, giving a literature “best fit” value for each one, obtained with a statistical analysis on 

around 20 previous result, covering a wide range of temperatures. For this reason, his work is often 

considered as a reference. Most recently (2000), Sakamoto [41] proposed a very detailed review of Ni-

H system, providing an updated list of coefficients, including Robertson’s ones, but without giving a 

detailed analysis or comparison. 

In this study we compare Robertson “best fit” with more recent coefficients (we considered only 

authors who measured in operating conditions close to our domain of interest, i.e. 300-500 °C). It is 

important to remark that all these authors have found that steady state permeation under the 

analyzed conditions follow the Richardson’s law stated in equation 2-17: 

𝐽 =
𝑝𝑒0

𝛿
 𝑒 

−𝐸𝑝

𝑅𝑇 (√𝑃𝐻2,1 − 𝑃𝐻2,2) 
[mol m-2 s-1] 2-17 

thus confirming that diffusion through Nickel bulk is the rate limiting step and hydrogen dissolution at 

interface follows Sieverts equilibrium. 
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2.2.3.1 Sieverts’ constant - Solubility 

We express the Sieverts’ constant pre-exponential factor in the molar volumetric concentration [molH2 

m-3 Pa-0,5], to be coherent with the permeability expressed as [molH2 m-1 s-1 Pa-0,5]. All the experiments 

were conducted on high purity Nickel, annealed, except for Ebisuzaki who analyzed a single-crystal 

nickel. Table 2-1 reports the main details of each study and the Sieverts constant pre-exponential 

factor and activation energy. It is worth noting that the activation energies are globally in accordance 

around 15 KJ/mol, except for Robertson “best fit” which includes  

Table 2-1 Sieverts constant for H-Ni system 

AUTHOR YEAR MATERIAL PROCESS TYPE DIAMETER THICKNESS RANGE T RANGE P KS0 ES 

          mm µm °C bar 
molH2 m-3  

Pa-0.5 
J mol-1 

Ebisuzaki[45] 1966 Ni 99.999% single-crystal disc   250-710 200-420 0.1-0.6 7.77 x10-1 15100 

Robertson[44] 1973 Ni 270 >99.98% annealed disc 50 150-250 25-500 1-3  8.02 x10-1 15492 

Louthan[46] 1975 Ni 99.995% annealed foils.rods   25-277 0.4-4 5.50 x10-1 15800 

Robertson "best fit"[44] 1973           85-1453   4.16 x10-1 12477 

 

In order to have a more precise view of the difference between each coefficient, we compare the 

hydrogen solubility, calculated by means of the Sieverts law in equation 2-5 taking the Sieverts 

constants from Table 2-1, in a given pressure and temperature range. The solubility obtained in molH2 

m-3 is then converted in the more conventional ratio H/Ni, by considering a nickel density of 8.908 

g/cm3 and molar mass of 58.693 g/mol. Figure 2-13 provides the solubility at three pressures (55 mbar, 

185 mbar and 1 bar) in the temperature range 200°C-500°C; the values obtained with the above 

literature coefficients are compared with the Bourgeois’ model [43], applied to these specific 

conditions. For the sake of clarity, the values at 400°C are reported in Table 2-2. 

 

Figure 2-13 H-Ni solubility isobar lines (55 mbar-185 mbar-1 bar) between 200°C and 500°C. Comparison between 
Bourgeois’ model [43] and solubility calculated with main literature coefficients  

175

200

225

250

275

300

325

350

375

400

425

450

475

500

0,0E+00 5,0E-05 1,0E-04 1,5E-04 2,0E-04 2,5E-04 3,0E-04

T 
[°

C]

H/Ni

55 mbar-Bourgeois

185mbar-Bourgeois

1 bar-Bourgeois

55 mbar- RobBF

185mbar - RobBF

1 bar - RobBF

55mbar- Ebi

185mbar-Ebi

1 bar - Ebi

55mbar-Lou

185mbar-Lou

1 bar-Lou



Chapter 2 - State of the art 
__________________________________________________________________________________ 

29 
 

Table 2-2 H-Ni solubility [H/Ni] at 400°C and 55 mbar-185 mbar-1 bar. Comparison between Bourgeois’ model [43] 
and solubility calculated with main literature coefficients  

P Bourgeois [43] Ebisuzaki [45] Robertson [44] 
Robertson Best 

fit [44] 

55 mbar 4.9788 x10-5 5.11 x10-5 4.92 x10-5 4.38 x10-5 

185 mbar 9.1324 x10-5 9.38 x10-5 9.02 x10-5 8.03 x10-5 

1 bar 2.12 x10-4 2.18 x10-4 2.10 x10-4 1.87 x10-4 

2.2.3.2 Diffusivity 

All the below coefficients were found in similar conditions; the only outlier is the analysis by Kuhn and 

Johnson [30], carried out on 99.5% purity Nickel, slightly lower than high purity Nickel (>99.9%). Figure 

2-14 shows the calculated diffusivity for each author in the temperature range 300°C-500°C. The 

relative standard deviation, related to a mean value, is of about 25%. This means that between the 

lower and the higher value there is a percentage deviation of 50%. Actually, we can assess that the 

difference is mainly due to the pre-exponential factor, since the deviation on the diffusion activation 

energy is minimum. 

Table 2-3 Diffusivity coefficients for H-Ni system 

AUTHOR YEAR MATERIAL PROCESS TYPE DIAMETER THICKNESS RANGE T RANGE P D0 ED 

          mm µm °C bar m2 s-1 J mol-1 

Ebisuzaki[45] 1966 Ni 99.999% single-crystal disc   250-710 200-420 0.1-0.6 5.22 x10-7 40028 

Robertson[44] 1973 Ni 270 >99.98% annealed disc 50 150-250 25-500 1-3  4.02 x10-7 39316 

Louthan[46] 1975 Ni 99.995% annealed Foils-rods   25-277 0.4-4 7.00 x10-7 39500 

Kuhn and Johnson[30] 1991 Ni 99.5% ann at 900°C disc   250-711 100-327 0.01-1 3.57 x10-7 37800 

Lee and Lee[47] 1986 Ni 99.97% annealed Plate-cylind   200-5000 100-400 1 7.50 x10-7 39100 

Altunoglu[48] 1991 Ni 99.98% ann at 427°C foil   300 100-400 0.07 max 7.12 x10-7 40640 

Lee[34] 2013 Ni 99.999% na na 15 1000 450-580   6.41 x10-7 40400 

Robertson "best fit"[44] 1973           0-1396   6.44 x10-7 40237 

 

 

Figure 2-14 H-Ni diffusivity : calculated values for temperatures 300°C-500°C from the main literature coefficients 
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2.2.3.3 Permeability 

As for the diffusivity, all the authors found similar values for the activation energy, in this case around 

55 KJ/mol, as reported in Table 2-4. Nevertheless, a non negligible deviation is found in the pre-

exponential factor: as a result, in the range of temperature 300-500 °C, we found a standard deviation 

varying from 5% to 28%, depending on the temperature. Some permeability values are reported as 

example in Table 2-5 and the entire dataset is represented in Figure 2-15. 

Finally, even if the several studies were carried out on different Ni purities, annealing conditions, 

thicknesses, we can conclude that a quite good agreement between authors is found. No correlation 

can be found between Nickel purity and permeability results, since both Gorman and Nardella [14] 

with Ni 99.4% and Kuhn and Johnson [30] with Ni 99.5%, found results in accordance with the others 

based on high purity Nickel. 

Table 2-4 Permeability coefficients for H-Ni system 

AUTHOR YEAR MATERIAL PROCESS TYPE DIAMETER THICKNESS RANGE T RANGE P pe0 Ep 

          mm µm °C bar 
molH2 m-1  
s-1 Pa-0.5 

J mol-1 

Gorman and Nardella[14] 1962 Ni 99.4% ann at 1000°C cilinder 12.7 1570 400-850 0.1-1 3.49 x10-7 55268 

Webb[9] 1964 Ni annealed tube 15.7 1000 420-850 1 3.84 x10-7 56106 

Ebisuzaki[45] 1966 Ni 99.999% single-crystal disc   250-710 200-420 0.1-0.6 4.02 x10-7 55101 

Robertson[44] 1973 Ni 270 >99.98% annealed disc 50 150-250 25-500 1-3 3.18 x10-7 54808 

Louthan[46] 1975 Ni 99.995% annealed foils,rods   25-277 0.4-4 3.95 x10-7 55300 

AD Le claire[49] 1983 Ni na       20-1060   3.33 x10-7 54598 

Desremaux/Laplanche[10] 1984 Ni222 99.8% ann at 800°C tube 7 300 200-362 1 3.46 x10-7 56106 

Altunoglu[48] 1991 Ni 99.98% ann at 427°C foil   300 100-400 0.07 max 3.35 x10-7 54240 

Kuhn and Johnson[30] 1991 Ni 99.5% ann at 900°C disc   15-122 0-327°C 0.01-1 5.92 x10-7 54900 

Lee[34] 2013 Ni 99.999% na ? 15 1000 450-580 1 4.52 x10-7 55300 

Robertson "best fit"[44] 1973           24-1060   3.33 x10-7 54598 

 

Table 2-5 H-Ni permeability : calculated values for 300°C-350°C-400°C-450°C with main literature coefficients 

T [°C] 300 350 400 450 500 

Gorman and Nardella   1.79 x10-11 3.55 x10-11 6.43 x10-11 

Webb    3.40 x10-11 6.22 x10-11 

Ebisuzaki 3.82 x10-12 9.67 x10-12 2.13 x10-11   

Robertson 3.22 x10-12 8.10 x10-12 1.78 x10-11 3.50 x10-11 6.30 x10-11 

Louthan      

AD Le claire 3.52 x10-12 8.83 x10-12 1.93 x10-11 3.79 x10-11 6.82 x10-11 

Desremaux/Laplanche 2.66 x10-12 6.85 x10-12    

Altunoglu 3.82 x10-12 9.51 x10-12 2.07 x10-11   

Kuhn and Johnson 5.87 x10-12     

Lee     8.30 x10-11 

Robertson "best fit" 3.52 x10-12 8.83 x10-12 1.93 x10-11 3.79 x10-11 6.82 x10-11 

Standard deviation % 28.68% 13.45% 8.22% 4.68% 12.61% 
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(a) 

 
(b) 

Figure 2-15 H-Ni permeability : calculated values for temperatures 300°C-500°C from the main literature coefficients 

2.2.4 Deviations from Richardson’s law for the H-Ni system: further studies 

As showed in paragraph 2.1.2.2, many authors found that Richardson’s law is not valid in some 

particular conditions. Concerning the H-Ni system, both the reviews of Wayman [40] and Sakamoto 

[41] report that a certain number of experimental studies found deviations from the ideal case, 

represented by the Richardson’s law, due to two main reasons:  

 Surface effects, which becomes important typically at low temperature, low hydrogen 

pressure and thin membranes. In particular, they affect the permeation dependence from the 

hydrogen partial pressure, modifying its exponent, which can vary from 0.5 (case of diffusion-

limited permeation, considered in the Richardson’s law) to 1 (case of surface-limited 

permeation). 
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 Trapping effects, which appear when hydrogen is put in contact with a non-ideal nickel crystal. 

This condition is typically reached when the membrane is cold-worked or deformed. In fact, 

the cold-working induces inside the crystal lattice different types of defects: grain sizes non-

uniformity, dislocations, vacancies. When such defects are present, the hydrogen, which in an 

ideal case would dissolve and diffuse only in the interstitial sites of the crystal structure, here 

find additional sites and ways to diffuse/dissolve. However, it is difficult to quantify the real 

impact on the permeation: normally, it is considered that the ideal solution/diffusion 

mechanism change (trapping, short-circuit diffusion, grain boundaries diffusion, etc), thus 

having an influence on the solubility and diffusivity coefficients. 

Several authors studied permeation in some specific conditions where these effects are supposed to 

appear. In this paragraph, we provide a brief review of the main studies, trying to identify if some limits 

can be identified for the Richardson’s law validity. Table 2-6 resumes the experimental conditions 

studied by the below-cited authors, together with their conclusion about the validity of Richardon’s 

law.  

Table 2-6 Literature studies concerning possible permeation deviation from Richardson’s law 

Author 
Measure 

technique 

Ni pre 

treatment 

Ni 

purity 
Thickness 

Range 

T 

Range 

P 
Effects studied 

Richardson 

validity 

   % µm °C bar   

Louthan  

(1975) [46] 
 

Cold 

worked / 

annealed 

99.98 na 
300-

550 
0.4-4 trapping Yes 

Kiyoshi 

(1986) [50] 

 

pressure annealed 99.45 50 400 

3*10-4 

e 2*10-

1 Pa 

surface Yes 

Lee and Lee 

(1986) [47] 
 

Annealed 

1150°C 
99.97 200-5000 400 1 trapping Yes 

Cummings 

and 

Blackburn 

(1987) [51] 

Mass 

spectrometer 

Outgassed 

at 850°C 
Low 500 

350-

480 
na Surface/trapping Yes 

Altunoglu, 

(1991) [48] 

Mass 

spectrometer 

Annealed 

at 427°C 
99.98 125 

100-

350 

0.053-

0.073 
surface No 

Altunoglu, 

(1996) [52] 

Mass 

spectrometer 

Cold 

worked / 

annealed 

99.98 75 
200-

650 

0.065-

2 
Trapping Yes 

Kizu and 

Tanabe 

(1999) [36] 

Mass 

spectrometer 
annealed 99.95 10-100 

527-

677 

10-3-

103 Pa 
surface 

Yes for 

P>10Pa 

Yamakawa 

(2001) [53] 

Mass 

spectrometer 

Annealed 

at 850°C 
99.99 125 

125-

440 

0.004-

0.064 
surface Yes 

2.2.4.1 Surface effects 

Kiyoshi[50] studied the effects of surface impurities on deuterium permeation through nickel at very 

low pressures at 400°C. He found that the permeation rate of nickel obeyed Richardson's equation, 
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meaning that the rate-limiting step is bulk diffusion. Neither carbon nor sulfur on the surface 

significantly affected the steady state permeation rate. 

Cummings and Blackburn [51] proposed a “pressure modulated” method which is able to distinguish 

the surface effects from the bulk diffusion and from the trapping as well. The experimental conditions 

were chosen so that the data for nickel demonstrate diffusion limited flow. The experimental results 

were effectively best fitted by the model of diffusion limited flow. Measures of diffusivity and solubility 

are in accordance with Robertson. 

Altunoglu [48] validated the Cummings and Blackburn models with experiments made on thinner 

membranes and lower temperatures and pressures. Firstly studying the influence of surface effects, at 

hydrogen pressures around 60 mbar, he found that for temperatures up to 623 K, the assumption that 

the permeation is proportional to P1/2 (Richardson’s law) is not valid and would give imprecise 

estimates of permeation parameters. However, he gave measures of pe and D that are in accordance 

with Robertson. 

Kizu and Tanabe [36] studied the surface effects on deuterium permeation through nickel at relatively 

high temperatures and extremely low pressures. They concluded that at above 10 Pa, the permeation 

flux shows the P1/2 dependence, indicating the diffusion limited process, whereas below 10 Pa the 

permeation flux deviates downwards and shows the relation of P0.7-0.9, suggesting the transition from 

the diffusion limited to the surface limited condition. 

Yamakawa [53] compared surface effects on Pd and Ni membranes. Whilst he found that for Pd the 

surface contamination has an effect on permeability coefficient, for Ni he reports that the Sieverts’ law 

is valid and that the results are in good agreement with Robertson. 

2.2.4.2 Trapping effects 

According to Wayman [40] and Sakamoto [41],  despite the number of experimental studies, the 

effects of grain boundaries and dislocations inside nickel remain uncertain. 

Robertson [44] assessed, with his permeation experiments on different type of poly-crystalline nickel, 

that the grain size (30 to 120 micron) has no effect on the results. On the other hand, Stafford and 

McLellan [54] found an higher solubility in poly-crystalline nickel compared to a nickel single-crystal: 

in particular, they link this to the hydrogen trapping at grain boundaries. However, they not found any 

effect on the diffusivity. Lee and Lee [47] concluded that dislocations in nickel act as trapping sites of 

hydrogen. Both trapping and short-circuit diffusion at grain boundaries is found. Nevertheless, the trap 

activation energy appears to be lower than the activation energy for bulk diffusion, so it means that 

the diffusion is the rate limiting step. 

Louthan [46] reported an increased permeability on cold-worked nickel and he interpreted the results 

as indicative of short-circuit diffusion through dislocation network. However, diffusion controlled 

permeation is measured in the steady state conditions. Similarly, Tseng [55] has observed higher 

permeation fluxes along dislocations and certain types of grain boundaries, concluding that it can be 

due either to higher diffusivity or higher solubility or to both. In a later study, Altunoglu [52] focused 

on trapping effects by cold-working, always with the modulated permeation technique: he found bulk 

diffusion limited flow for both nickel and nickel-thoria specimens. However, the diffusivity for cold 
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worked nickel is found to be lower than for annealed Ni, although the permeability is not affected by 

cold work. 

Only to give an idea of the complexity of this subject, a PhD thesis has been recently conducted by 

Oudriss [56], aiming to describe the effects of nickel defects on the hydrogen diffusion and trapping. 

In two articles [57], [58], he stated that grain boundaries act as preferential sites for diffusion and 

trapping, and both strongly depends on the nature of the grain boundaries. In some cases (high-angle 

boundaries), an enhanced diffusion is found, due to a large excess of free volume; on other cases (low-

angle boundaries), the high density of dislocations and vacancies represent potential traps for 

hydrogen. 

Finally, although our study does not aim to in-depth investigate the metallurgic aspects of the nickel-

hydrogen system, the above elements should be carefully considered in order to properly analyze and 

interpret our experimental results.  

2.2.5 Conclusion 

In the past many authors have studied experimentally the hydrogen permeation through Nickel, over 

high temperature range (>300 °C), with the hypothesis that the diffusion is the rate limiting step. The 

Richardson’s law was always followed by the experimental data, obtained for different conditions, 

thicknesses, pressures and measurements techniques. 

More recently several authors have tried to identify the influence of surface and trapping effects with 

sophisticated measurements techniques and models. Surface effects are more focused on lower 

temperatures (T<300 °C), very low pressures (few pascals) and thin membranes (<125 micron). 

Trapping effects, especially on cold-worked nickel, could have an influence on both hydrogen solubility 

and diffusivity and, as a consequence, on permeability. However, the diffusion-limited regime seems 

not affected and the Richardson’s law is always followed. 

Only two authors found a deviation from Richardson’s law, because of surface effects becoming more 

important than bulk diffusion: this behavior was identified at very low thicknesses (<125 micron) and 

at combination of relatively low hydrogen pressures and temperatures (60 mbar at 350 °C Altunoglu, 

0.1 mbar at 527 °C Kizu and Tanabe). Nevertheless, at least six authors studying similar 

pressure/temperature/thickness ranges did not found this deviation: looking at Table 2-6, we can 

conclude that Richardson’s law validity is observed up to temperature of 650°C and hydrogen partial 

pressure of 4 bar, for thickness down to 50 µm. It is worth noting that this range covers the entire 

application domain of this study (300°C<T<450°C; 0.05<PH2<0.3 bar; 300 µm thickness), which is 

detailed in Chapter 3. 

2.3 Hydrogen-Sodium system 

2.3.1 Pressure-composition equilibrium 

When gaseous hydrogen is put in contact with liquid sodium below the monotectic temperature (911 

K [22]), it dissolves in sodium up to a concentration beyond which solid sodium hydride (NaH), 

saturated with sodium metal, precipitates [59]. It is recognized that, below the saturation 
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concentration 𝐶𝐻,𝑁𝑎
𝑆  (also referred as the hydrogen-sodium solubility), hydrogen is dissolved in the 

ionic form H- [59], [60], as supposed by the solvation model of Thompson [61]; this is substantially due 

to the high reductive potential of sodium.  

 

Figure 2-16 Pressure-composition phase diagram for Na-H system [62] 

2.3.2 Sieverts’ constant 

In the single phase (zone (1) in the Figure 2-16, where liquid sodium at temperature T coexists with 

dissolved hydrogen at 𝐶𝐻,𝑁𝑎<𝐶𝐻,𝑁𝑎
𝑆 (𝑇), the following equilibrium with gaseous hydrogen exists:  

1

2
𝐻2(𝑔) + 𝑒− ⇔ [𝐻−]𝑁𝑎   2-20 

from where we can obtain a Sieverts equilibrium constant [59], similarly to hydrogen-solid metal 

equilibrium :  

𝐾𝑆,𝑁𝑎(𝑇) =
𝐶𝐻,𝑁𝑎

√𝑃𝐻2
 [wppm Torr-0.5] 2-21 

where 𝐾𝑆,𝑁𝑎  is the Sieverts’ constant, depending from temperature, 𝐶𝐻,𝑁𝑎  is the hydrogen 

concentration in sodium and 𝑃𝐻2is the equilibrium hydrogen partial pressure in the gas phase. When 

𝐶𝐻,𝑁𝑎, increasing with the square root of hydrogen partial pressure, reaches the saturation value at a 

certain temperature (i.e. solubility), it precipitates as solid hydride NaH.  

Measurements of Sieverts’ constant by several authors revealed a negligible temperature dependence 

in the range of 603-843 K [22]. The following two expressions will be considered in this study: 

 Whittingham [2] gives a constant value for the range 610-677 K :   

𝐾𝑆,𝑁𝑎 = 4.6 [𝑤𝑝𝑝𝑚 𝑇𝑜𝑟𝑟−0.5]  
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 Vissers [7],reports an expression valid for T=644 K to 773 K :   

𝑙𝑜𝑔10[𝐾𝑆,𝑁𝑎] = 0.860 −
122.0

𝑇[𝐾]
 (𝐾𝑆,𝑁𝑎  𝑖𝑛 𝑤𝑝𝑝𝑚 𝑇𝑜𝑟𝑟

−0.5) 2-22 

This formula gives calculated values varying from 4.58 to 4.79 in the temperature range 610-677 K, not 

so far from Whittingham result, effectively confirming a negligible temperature dependence. 

2.3.3 Solubility 

Several authors measured hydrogen solubility as function of temperature [52]. The most recognized 

expression is given by Whittingham [2], by combining its own results with those by other authors :  

𝑙𝑜𝑔10[𝐶𝐻,𝑁𝑎
𝑆 (𝑤𝑝𝑝𝑚)] = 6.467 −

3023

𝑇(𝐾)
  2-23 

where 𝐶𝐻,𝑁𝑎
𝑆  is the hydrogen concentration in sodium (expressed by weight part per million) at the 

saturation point, indicated by the “S” apex. This law is obtained from a least squares analysis in a range 

of T=423-673 K.  

2.3.4 Transport properties: diffusivity 

Trouvé and Laplanche [63] performed diffusion test through a sodium limited volume enclosed 

between two Nickel membranes, by measuring the time evolution of hydrogen permeating flow with 

a mass spectrometer. By the time lag technique, they found the following expression for hydrogen-

sodium diffusivity, valid in the temperature range 469-580 °C: 

𝐷𝐻,𝑁𝑎 = 2 ∙ 10−5 𝑒 
−49053
𝑅𝑇  

[wppm Torr-0.5]  2-24 

Presently, these data are the only availables in the whole literature. 

2.4 Hydrogen-Nickel-Sodium permeation applications: state of art 

In the nuclear research, in particular regarding the SFRs, different technologies were developed 

involving hydrogen permeation through a Nickel membrane in contact with liquid Sodium at high 

temperature. Here we resume the most studied and more coherent with our application.  

2.4.1 Membranes used for the « Hydrogen detection system » 

Following a sodium-water interaction event in a Steam-Generator Unit, one way to detect hydrogen 

produced by the interaction and dissolved in small quantities (<1 ppm) inside sodium, is to circulate 

the sodium in contact with one side of a Nickel membrane, while maintaining the other side under 

vacuum; the difference of partial pressure, i.e. of concentration, on the two sides lets hydrogen 

permeates across the metallic membrane. The hydrogen permeation flux or partial pressure is 

detected by an ionic pump and/or a mass spectrometer, both parts of the detection system, and can 

be related to hydrogen concentration in sodium by means of a permeation law. This kind of technology 

is generally called “hydrogen-meter” or often “hydrogen-detection system, because their main goal is 

to measure accurately and quickly a change in the hydrogen concentration.  

Roy and Rodgers [64] performed hydrogen measurement in a sodium loop between 425 °C and 700 °C 

by means of a 304 stainless steel tube (dimensions: 10 mm OD x 0.5 mm thickness x 500 mm length): 
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the sodium circulated around the tube while the inner side was maintained under vacuum by an ionic 

pump, whose current is proportional to permeating hydrogen pressure. The hydrogen concentration 

range is not specified, but the authors generically refer to values around 2 ppm. They verified that 

permeation from sodium to vacuum effectively follows Richardson’s law, demonstrating that 

permeation of hydrogen dissolved in sodium was a diffusion controlled process, in their range of 

operating conditions.  

Vissers [7], [65] performed similar measurements with a Nickel tubular membrane (6.8 mm OD x 0.25 

mm thickness x 228 mm length) installed in a sodium loop. A vacuum is drawn on the membrane by 

an ionic pump. From the partial pressure of hydrogen on the vacuum side, a measure of hydrogen flux 

and the hydrogen activity in the sodium are determined by the measurement of the current to the 

ionic pump. 

 

Figure 2-17 Hydrogen activity-meter by Vissers [7] 

In his first study [65], the hydrogen transfer from the sodium bulk to the membrane and from the 

membrane to the gas phase is considered negligible; the main rate-limiting step is the hydrogen 

diffusion through the membrane. Thus, the stationary hydrogen permeation flux is expressed by the 

1st Fick’s law; Vissers then expressed hydrogen concentrations at the membrane interface (both 

sodium and vacuum side) by means of the Sieverts’ law, accepting its validity both for sodium and gas 

phase. He calculates that the theoretical response time, i.e. the time to reach stationary flow, should 

be in the order of 10 seconds at 500 °C. Experimental measurements were made on sodium at 350 -

470 °C containing hydrogen between 0.1 ppm and 1 ppm. A good agreement was found between the 

hydrogen flux measurement, proportional to the ion pump current by mean of a calibration with 

standard leaks, and the Fick’s law, thus confirming his hypothesis that the flux through the membrane 

should be controlled by the rate of diffusion.  

In a later work [7], Vissers employed the same technology for the measurement of Sieverts constant 

in sodium-hydrogen system. Practically, he measured the hydrogen equilibrium pressure through the 

above-described activity-meter, relating this pressure to the a-priori known hydrogen concentration 

in sodium; the proportionality constant between them was the Sievert constant.  

Hydrogen-meters constituted by Nickel membranes were developed by CEA for research studies, as 

well as for measurements on SFR reactors such as Phenix and Superphenix [66], to monitor the Steam 
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Generators Units tightness. These membranes are based on the same principle, except the fact that 

sodium flows continuously inside the nickel tubes, which are fixed to an external shell maintained 

under vacuum. The measurement of the hydrogen permeation flowrate is performed by a mass 

spectrometer, previously calibrated with a so-called “calibrated hydrogen leak” providing a known and 

well mastered hydrogen flowrate. Even in this case, the hydrogen concentration in sodium is related 

to hydrogen permeation flowrate respecting the Fick’s diffusion equation and the Sieverts’ law of 

hydrogen pressure-concentration equilibrium. By combining these two, we obtain the permeation 

Richardson’s law in Equation 2-17, where the side 1 (feed) is constituted by liquid sodium and the side 

2 (permeate) by vacuum; if the hydrogen partial pressure in sodium is expressed as function of 

hydrogen concentration, by means of Sieverts law in equation 2-21, the Richardson’s law becomes: 

𝐽 =
𝑝𝑒0
𝛿
 𝑒 

−𝐸𝑝
𝑅𝑇 (

𝐶𝐻,𝑁𝑎
𝐾𝑆,𝑁𝑎

− √𝑃𝐻2,𝑔𝑎𝑠) [mol m-2 s-1] 2-25  

More recently, studies conducted at CEA [66], [67] compared the hydrogen detection by permeation 

through a membrane composed by four nickel tubes (SPHYNX) and an electrochemical detector 

developed by IGCAR [68]. The good agreement between the two methods suggests that the 

permeation equation used to convert mass spectrometer measurements into hydrogen 

concentrations is valid, thus confirming the validity of Fick’s diffusion law and Sieverts equilibrium 

hypothesis.  

 

Figure 2-18 SPHYNX system for hydrogen detection 

2.4.2 Cold trap purification: the PRIAM process 

A regeneration process for the removal of impurities (i.e. hydrogen) from the cold traps of SFRs, loaded 

with sodium hydride, was developed by Latgé [6]: it consists of a bundle of Nickel thimbles (closed end 

tubes; diameter: 1.5mm), where sodium polluted by dissolved hydrogen, within a cold trap, flows 

outside the thimbles. The internal side of thimbles is maintained under vacuum, in order to produce 

hydrogen permeation from sodium side to vacuum side, thus allowing the sodium purification. 

Hydrogen permeated is then recuperated and stored. Practically, a process similar to that one of 

hydrogen detection membranes occurs, but with a quite different goal. If for hydrogen-meter even 

small quantities of hydrogen are sufficient to have a very efficient concentration measurement, here 
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getting a very high hydrogen flux is necessary to promote a short duration for the whole removal 

process in order to purify the contaminated sodium and to get an un-loaded reusable cold trap. Here, 

this very high hydrogen flux is obtained, thanks to a large number of so-called “permeators”, 

developing a large permeation surface and a very high hydrogen concentration (up-to 10 to 50 ppm), 

compared to the previously described hydrogen-meter, aimed to measure a steady state hydrogen 

content (from about 0.040 to 0.200 ppm). 

Despite this difference, as for hydrogen meters, the permeation law expressed by equation 2-25 was 

employed for the design of the PRIAM permeators. This law, in fact, allows calculating the expected 

permeation flow as function of membrane surface, thickness, temperature and permeability 

coefficient; by these calculations, the correct membrane size was chosen in order to fulfill the desired 

PRIAM process performances. 

First tests were conducted on membranes of 100 μm of thickness, at different membrane 

temperatures (450-550 °C) and hydrogen concentrations in sodium (10 ppm-50 ppm), revealing that 

the membrane behavior is coherent with the theoretical results [69]. Later on, some other tests have 

shown some limited performances comparatively with the predicted ones: the difference was 

attributed to gaseous pressure drops inside the thimbles. Nevertheless, there was no additional tests 

to investigate the effect of the inner diameter of the thimbles, and to conclude that this limitation was 

only due to the pressure drop effect. 

2.4.3 Hydrogen injection with Ni membrane for calibration of hydrogen-meters 

Hydrogen-meters and PRIAM process both involved a hydrogen permeation flux moving from liquid 

sodium towards a gaseous side under vacuum. However, our study concerns the introduction of 

hydrogen in sodium, which involves a hydrogen flux moving in the opposite direction, i.e. from gaseous 

side towards liquid sodium. 

In this regards, an interesting application was developed at Argonne National Laboratory by McKee 

[70]; in order to calibrate the hydrogen-meters [71], known quantities of hydrogen need to be injected 

in sodium. A nickel membrane was then developed to inject hydrogen by permeation in atomic form, 

by permeation, thus avoiding plugging issues. This membrane is a coil of Ni201 (99.5% of purity) tubing 

(3.175 mm OD x 0.380 mm thickness x 3960 mm length) inserted into a pipe where sodium flows 

through, as shown in Figure 2-19. Pure hydrogen is supplied from a feed bottle inside the nickel tube, 

maintained at pressure <100 kPa (it is not specified if the pressure varies or not), thus producing steady 

hydrogen injection rate. Hydrogen permeation flow could be measured by a mass flowmeter placed 

on the gas supply line. The author generically reported that test were conducted at temperatures from 

430°C to 530°C, producing steady hydrogen injection rate of 3 to 5 std cm3/min (2.2x10-6 to 3.7x10-6 

mol/s). However, from this few data, it is not possible to verify if the permeation Richardson’s law is 

respected (thus confirming or not the hypothesis of a diffusion-limited regime), since precise 

information are not given neither on the hydrogen pressure (precise values, maintained constant or 

pressure drop during permeation) nor on the temperature-injection rate correspondence. Moreover, 

in his later paper [71] McKee talks about a calibration procedure performed with this device, where 

the hydrogen pressure inside the feed bottle drops from 103 to 17 kPa in 9 minutes, thus revealing 

that an unsteady state permeation was certainly provided.  
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Finally, this system was successfully tested by ANL (two years of operation with no pressure-related 

failure) and installed by General Electric in research prototypes, since it allows the injection a known 

amount of hydrogen inside sodium, exploiting the permeation advantages. Nevertheless, for the 

interest of our study, several unknowns remain: in particular, not enough elements are provided to 

prove if the permeation follows a certain law, if the injection rate can be precisely controlled and 

provided under continuous steady conditions, and which is the actual operational range flexibility in 

terms of pressure and temperature. In this sense, the provided information on the injection rate 

variation (2.2x10-6 to 3.7x10-6 mol/s) seems to be insufficient for an industrial application, where a 

much wider operational range should be necessary, in order to guarantee a successful operational 

control. 

 

Figure 2-19 On-line hydrogen meter calibration system [70] 

2.4.4 Conclusions 

Various applications involving hydrogen permeation between a gaseous medium and liquid sodium 

were developed in the past. The most developed and consolidated one is the hydrogen-meter 

technology; several studies confirmed that the hydrogen permeation flux coming from sodium towards 

a gaseous side follows the Richardson’s law, within the nominal conditions of use of this device, thus 

confirming that diffusion across the Nickel membrane is the rate limiting step and that Sieverts’ law 

for Sodium-Nickel interface equilibrium is valid.  

Some tests on PRIAM permeator confirmed as well the theoretical hydrogen flux established by 

Richardson’s law, even if some additional tests highlighted some limited hydrogen flux, phenomena 

attributed most probably to high pressure drop within the Ni thimble. 

Not only hydrogen detection systems or permeators dedicated to in-situ cold trap regeneration 

(PRIAM), involving a permeation flux originated from sodium side, but also a hydrogen introduction 

method through a nickel membrane has been already applied and its feasibility has been demonstrated 

by ANL. However, the operating conditions seems to be very limited and no elements about modelling 

or theoretical calculation have been provided, in order to verify if the Richardson’s law is the most 

suitable way to calculate hydrogen permeation fluxes. Therefore, it is our interest to verify its validity 

for this particular configuration and range of operating conditions. 
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3.1 Motivation and goals 

As pointed out by the state of art analysis (cf. Section 2.4.4), several applications involving hydrogen 

permeation between a gas mixture and liquid sodium were developed in the past, in particular 

hydrogen-meters, where hydrogen dissolved inside sodium permeates across a membrane towards a 

vacuum side, thanks to the partial pressure difference between the two sides. Nevertheless, the 

opposite case where hydrogen (pure or diluted in a gas mixture) is transferred to sodium by 

permeation has never been experimentally studied in detail: a very simple application to introduce 

hydrogen in sodium developed by ANL (Argonne National Laboratory), was limited to a single tube of 

nickel containing pure hydrogen in static condition; any detailed comparison with theory was provided 

by the authors. In this case, not enough details were provided in order to get an experimental 

validation of this application in a wide range of operating conditions.  

A new experimental facility has been set up in CEA Cadarache laboratories to determine, under 

different operating conditions, the permeation performance of a multi-tubular nickel membrane, 

which transfers in a controlled way an accurate hydrogen flowrate from a gaseous mixture to liquid 

sodium. This experimental part aims to validate whether a global permeation law as the “Richardson’s 

law” is suitable to represent the permeation at the pilot scale. 

The experimental study is divided into two steps: 

• Step 1 – gas-vacuum test: the case of a gas-vacuum permeation is performed, in order to compare 

the permeation performance to available literature results. 

• Step 2 – gas-sodium test: tests of permeation with sodium in the permeate side are carried out, to 

determine performances in operating conditions similar to a SFR and to evaluate the possible impact 

of sodium phase on the process. 

This chapter describes successively the design of the permeator prototype, respecting all the 

constraints required by an application to SFR reactors as well as its integration within an existing 

experimental sodium loop; the development of a 1D-model aiming to support the prototype sizing; 

the process definition and the measurement techniques employed to quantify the prototype 

performances; the methods to post-treat the results and to compare them to the theoretical laws. 

3.2 Prototype design  

3.2.1 Main features 

The permeator is a stainless steel shell and a nickel tubular bundle, which constitutes the so-called 

membrane. The gas mixture containing hydrogen is located within the tubes internal side, also called 

feed side, while the sodium is outside the tubes , confined by the external shell, in the so called 

permeate side. Since a continuous and stable hydrogen intake to sodium is needed, the use of static 

gas in the feed side is not possible, because the hydrogen consumption by permeation would reduce 

progressively its feed concentration and consequently the permeation rate, thus providing a non-

stationary condition. Therefore, a continuous gas flow is needed inside the tubular bundle, in order to 

maintain controlled conditions and a stable permeation rate through the membrane in steady-state 
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regime. To perform this, a gas supply system is connected to the permeator feed side, thanks to one 

gas inlet and one gas outlet.  

On the permeate side, inside the shell, one inlet and one outlet are provided as well, where the sodium 

circulating inside the experimental loop can get in and out the permeator respectively. When the gas-

vacuum test is performed, the shell inlet is closed and the outlet is connected to a vacuum system, so 

that the entire shell is maintained under vacuum. 

3.2.2 Design contraints 

The final scope of the study is to demonstrate the possibility to apply a permeation process to 

introduce hydrogen into a sodium circuit of a SFR in a controlled way; in particular, the cold trap outlet, 

placed in the auxiliary section of the secondary sodium circuit, has been identified as the most suitable 

location to install the permeator. Therefore, it is necessary to take into account the related constraints 

and parameters, in order to design a prototype which could be easily scaled-up for the final application. 

In Table 3-1 the main figures are resumed. 

Table 3-1 Design constraints of the SFR (as established in initial Astrid design) 

Parameter Range value Description 

T 320°C-450°C 
Sodium temperature in auxiliary cold section of SFR secondary 

circuit 

�̇�𝑁𝑎  4.8 kg/s Maximum sodium  mass flowrate in the auxiliary section 

𝑦𝐻,𝑁𝑎  46 ppb Hydrogen molar concentration at secondary cold trap outlet 

�̇�𝐻,𝑝 40 µg/s Target hydrogen mass flowrate introduced by permeation 

𝑋𝐻2,𝑔𝑎𝑠 3% molar 
Maximum hydrogen molar content into gas mixture to avoid 

explosion hazard with margin (4%) 

 

A second constraint is given by the actual operating conditions of the experimental sodium loop, where 

the prototype is effectively tested. In particular, the Superfennec facility which has been chosen for 

tests, is limited by the following elements: 

 Maximum sodium temperature in the test section of 450°C 

 Maximum sodium flowrate in the test section of 1 m3/h (about 0.25 kg/s) 

 Maximum free length of the test section of 800 mm 

If compared to the Astrid design reported in Table 3-1, the sodium flowrate available on the 

Superfennec facility is around 20 times lower; this has an obvious impact on the size of the prototype, 

which has to respect the standard criteria on the allowable sodium velocity. Moreover, the limited free 

length on the Superfennec test section constitutes a limit on the maximum length of the prototype.   

Finally, the prototype must respect the mechanical resistance criteria, in term of maximum pressure 

and temperature which will be applied, combined to the membrane geometry and dimension 

(diameter and thickness). As a simplified criteria for the design validation, we have considered the 

following formula, according to ASME B31.1: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =
𝑃2𝑟𝑜

2𝑆𝐸 + 2𝑌𝑃
+ 𝐶 [inch] 3-1 
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Where 𝑟𝑜  [inch] is the membrane external radius, P [psig] is the design pressure, S is the material 

allowable stress (psi), E is the joint factor, Y is the wall thickness coefficient and C [inch] is the corrosion 

allowance [inch]. For practical reasons, it is worth noting that not all the possible membrane thickness 

and diameter combinations are available from commercial suppliers; therefore, in view of an industrial 

application, the choice of the dimensions should be limited to the available commercial dimension. As 

reference for this study, we considered the Goodfellow catalogue for Nickel tubes, already used 

previously by CEA. 

3.2.3 Local modeling of the radial concentration profile 

3.2.3.1 Model’s equations and parameters 

As support to the design activity, in order to quantify the whole hydrogen mass transfer rate, it is 

necessary to set up a model which includes all the resistances affecting the mass transfer (see Figure 

3-1) occurring during the hydrogen permeation in a gas-metal-sodium configuration. In particular, the 

model here developed (called for simplicity “1D-model”) takes into account the resistances coming 

from:  

- the hydrogen mass transfer from the gas bulk to the gas-membrane interface; 

- the hydrogen permeation through the membrane, considering it as a diffusion-limited process 

(cf. section 2.1.1.1); 

- the hydrogen mass transfer from the membrane-sodium interface to the sodium bulk. 

The considered geometry is a tubular configuration, represented by a 2D axial symmetrical domain on 

the radial (r) and axial (z) coordinates, constituted by the following components (cf. Figure 3-1): 

- 𝑟 < 𝑟𝑖: a gas mixture containing molecular hydrogen (H2) as diluted species, flowing inside the 

tubular nickel membrane, with a given mass flowrate along the axial direction (z) at a given 

pressure; 

- 𝑟𝑖 < 𝑟 < 𝑟𝑜: a nickel tubular membrane, of a known thickness, separating the gas phase from 

the sodium phase. Atomic hydrogen (H) permeates through the membrane from the most to 

the less concentrated side; 

- 𝑟 > 𝑟𝑜: a liquid sodium phase, flowing with a given mass flowrate along the axial direction on 

the external side of the Ni membrane. Atomic hydrogen (H) is dissolved in Na phase in the ionic 

form H-. 
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-  

Figure 3-1 Hydrogen permeation physics in a shell and tube gas-Na configuration membrane 

The following hypotheses are considered: 

- the whole system is isothermal and adiabatic; 

- steady state conditions are established;  

- the membrane length is much greater than its thickness, thus the hydrogen diffusion through 

the membrane is only in the radial direction r; 

- gas mixture and liquid sodium density is constant over the domain; 

- ideal gas law is assumed to be valid over the whole experimental conditions field; 

- metal bulk diffusion is the rate limiting step of the permeation process through the membrane 

(diffusion-limited permeation) and no trapping or surface effect are considered, i.e. the 

permeation can be described by the Richardson’s law; 

- chemical-physical equilibria at interfaces follow the Sieverts law; 

- the competitive adsorption of Argon at the gas-membrane interface is neglected; 

- pressure drop on gas phase is neglected. 

Hence, we develop the so-called “1D-model”, considering the above hypothesis and an infinitesimal 

portion of tube length dz, where the hydrogen mass transfer rate in the radial direction can be defined 

as follows: 

Gas phase: diffusive/convective transport of diatomic hydrogen molecules (H2) from the gas phase 

bulk to the gas-membrane interface. The transfer flowrate is expressed in terms of hydrogen moles 

(H) in order to be compared with the others; this is why a factor 2 appears in the equation.  

 d𝑄𝐻, 𝑔𝑎𝑠 = 2 ℎ𝑔𝑎𝑠 (𝐶𝐻2𝑔𝑎𝑠 − 𝐶𝐻2𝑔𝑎𝑠
∗ ) ∗ 2𝜋𝑟𝑖  𝑑𝑧 [mol s-1] 3-2 

Where ℎ𝑔𝑎𝑠 [m s-1] is the hydrogen mass transfer coefficient of the gas mixture, obtained from a 

recommended mass transfer correlation for fluid-solid interfaces, for a laminar flow through circular 

tube [72]. It depends on the gas velocity, the hydrogen diffusivity in the gas mixture and the membrane 

diameter and length. 

 h𝑔𝑎𝑠(2𝑟𝑖)

𝐷𝐻2,𝑔𝑎𝑠
= 1.62 (

(2𝑟𝑖)
2𝑣

𝐿𝐷𝐻2,𝑔𝑎𝑠
)

1

3
 

   3-3 

Ni membrane: atomic hydrogen (H) bulk diffusion through the nickel membrane is defined by the 

following infinitesimal correlation for cylindrical geometry 
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 𝑑𝑄𝐻,Ni = D𝐻,𝑁𝑖(𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗ − 𝐶𝐻,𝑁𝑖−𝑁𝑎

∗ ) ∗
2𝜋

ln (𝑟𝑜/𝑟𝑖)
 𝑑𝑧 [mol s-1] 3-4 

Where D𝐻,𝑁𝑖  is the hydrogen diffusivity in nickel, estimated with the Robertson ‘best fit’ 

relationship [44]. 

D𝐻,𝑁𝑖 = 6.44𝑥10−7𝑒−
40237
𝑅𝑇              [m2 s-1] 3-5 

Na phase: diffusive/convective transport of atomic hydrogen (H) from the Na-membrane interface to 

the Na bulk. It depends on the Na physical parameters (density, viscosity, velocity), the hydrogen 

diffusivity in Na and the hydraulic diameter. 

 d𝑄𝐻, 𝑁𝑎 = ℎ𝑁𝑎 (𝐶𝐻,𝑁𝑎
∗ − 𝐶𝐻,𝑁𝑎) ∗ 2𝜋𝑟𝑜 𝑑𝑧 [mol s-1] 3-6 

Where ℎ𝑁𝑎 [m s-1] is the hydrogen mass transfer coefficient in liquid sodium, obtained from a 

recommended mass transfer correlation for fluid-solid interfaces, for a turbulent flow through circular 

pipe, given by Cussler [72].  

 h𝑁𝑎𝑑ℎ
𝐷𝐻,𝑁𝑎

= 0.026𝑅𝑒0.8𝑆𝑐
1
3  3-7 

Where 𝑑ℎ is the hydraulic diameter, which, in case of a multi-tubes membrane geometry, is calculated 

as the ratio between four times the wetted perimeter and the sodium flow cross section.  

In order to standardize the three above equations, an equivalent mass transfer coefficient U [m2 s-1] is 

defined for the three domains as follows: 

 𝑈𝑔𝑎𝑠 = ℎ𝑔𝑎𝑠 ∗ 2𝜋𝑟𝑖  [m2 s-1] 3-8 

 𝑈Ni = D𝐻,𝑁𝑖 ∗
2𝜋

ln (𝑟𝑜/𝑟𝑖)
 [m2 s-1] 3-9 

 𝑈𝑁𝑎 = ℎ𝑁𝑎 ∗ 2𝜋𝑟𝑜 [m2 s-1] 3-10 

Additionally, the following correlations for phase equilibrium defining hydrogen concentrations at the 

two membrane interfaces are considered: 

Ni-gas interface: Sieverts law equilibrium is respected between molecular H2 in gas phase and atomic 

H adsorbed in the membrane substrate, so that: 

𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗ = 𝐾𝑆,𝑁𝑖√𝑝𝐻2,𝑔𝑎𝑠

∗ = 𝐾𝑆,𝑁𝑖√𝑅𝑇 𝐶𝐻2,𝑔𝑎𝑠 
∗  [mol m-3] 3-11 

Where 𝐾𝑆,𝑁𝑖(𝑇) [mol m-3 Pa-0.5] is the Sieverts constant (or solubility) of atomic hydrogen in nickel. Its 

temperature dependency  is obtained by the Robertson ‘best fit’ relationship [44]: 

𝐾𝑆,𝑁𝑖 = 0.832 𝑒−
12477
𝑅𝑇  [molH m-3 Pa-0,5] 3-12 

Ni-Na interface: the concentrations of atomic hydrogen dissolved in nickel (𝐶𝐻,𝑁𝑖−𝑁𝑎
∗ ) and in sodium 

(𝐶𝐻,𝑁𝑎
∗ ) both follow the Sieverts law, so that they can be expressed as function of an “equivalent” 

partial pressure, which corresponds to a common equilibrium pressure that gaseous hydrogen 

molecules H2 would have if put in a gas phase in contact with both metals (either Ni or Na). Thus, if an 

equilibrium between Ni and Na hydrogen molecules exist, they should have the same equivalent partial 

pressure, corresponding to the following relationship:  

𝐶𝐻,𝑁𝑖−𝑁𝑎
∗

𝐾𝑆,𝑁𝑖
=
𝐶𝐻,𝑁𝑎
∗

𝐾𝑆,𝑁𝑎
  3-13 
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Where 𝐾𝑆,𝑁𝑎(𝑇) [mol m-3 Pa-0.5] is the Sieverts constant (or solubility) of atomic hydrogen in sodium, 

depending on temperature. 

If one eliminates in equation 3-4 the terms 𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗  and 𝐶𝐻,𝑁𝑖−𝑁𝑎

∗  by introducing the relationships 

3-11 and 3-13, and by considering the coefficients defined by 3-8, 3-9, 3-10, the three hydrogen 

flowrates become: 

 d𝑄𝐻, 𝑔𝑎𝑠 = 2 𝑈𝑔𝑎𝑠 (𝐶𝐻2𝑔𝑎𝑠 − 𝐶𝐻2𝑔𝑎𝑠
∗ )𝑑𝑧 [mol s-1] 3-14 

 𝑑𝑄𝐻,Ni = 𝑈𝑁𝑖 (𝐾𝑆,𝑁𝑖√𝑅𝑇 𝐶𝐻2,𝑔𝑎𝑠 
∗ −

𝐾𝑆,𝑁𝑖
𝐾𝑆,𝑁𝑎

𝐶𝐻,𝑁𝑎
∗ )  𝑑𝑧 [mol s-1] 3-15 

 d𝑄𝐻, 𝑁𝑎 = 𝑈𝑁𝑎 (𝐶𝐻,𝑁𝑎
∗ − 𝐶𝐻,𝑁𝑎) 𝑑𝑧 [mol s-1] 3-16 

In order to respect the global hydrogen mass balance at steady state, the three hydrogen flowrates 

should be equal: 

 d𝑄𝐻, 𝑔𝑎𝑠 =  d𝑄𝐻, 𝑁𝑖 =  d𝑄𝐻, 𝑁𝑎 =  d𝑄𝐻 [mol s-1] 3-17 

It is worth noting that, for a given hydrogen transfer rate, the higher is the mass transfer coefficient U, 

the lower is the difference in concentrations across the physical domain, according to the electrical 

resistances analogy (cf. Figure 3-2). Therefore, by comparing the values of the three mass transfer 

coefficients, the impact of each physics on the global hydrogen transfer rate can be assessed and 

compared.  

 

Figure 3-2 Schematic diagram of mass transfer resistance with electrical analogy 

3.2.3.2 Analytical resolution on the radial direction 

Let’s consider the system composed by equations 3-14 to 3-17. U coefficients depend on the physical 

and geometrical parameters of the system: gas and Na flowrates, temperature, pressure, tube 

diameter and thickness. If the values of these parameters are fixed, the values of U can be calculated 

and remain constant; moreover, by imposing the gas and Na bulk concentrations 𝐶𝐻2𝑔𝑎𝑠 and 𝐶𝐻,𝑁𝑎 as 

input, the 5 remaining unknowns of the system reduce to 𝐶𝐻2,𝑔𝑎𝑠 
∗  , 𝐶𝐻,𝑁𝑎

∗   and the 3 fluxes. The 5-

equations system can be solved analytically (Annexe I) 

The results obtained for a bundle constituted of 4 Ni tubes of diameter 7.2mm and 300µm thickness, 

which are usual dimensions for existing hydrogen-meters, are reported in Table 3-2. The physical input 

parameters are taken from common operation of the available experimental facilities, as well as from 

typical operation of a SFR (cf. Table 3-1): sodium bulk concentration (typically expressed in wppm for 

practical reasons) is very low, normally below 0.1 wppm depending on the sodium purification degree; 

𝑅𝑔𝑎𝑠 =
1

𝑈𝑔𝑎𝑠
 

𝑅𝑁𝑖 =
1

𝑈𝑁𝑖
 

𝑅𝑁𝑎 =
1

𝑈𝑁𝑎
 

𝑄𝑖~
∆𝐶𝑖
𝑅𝑖

 

 

𝑄𝑔𝑎𝑠 = 𝑄𝑁𝑖 = 𝑄𝑁𝑎 
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here we considered a 𝑦𝐻,𝑁𝑎  value of 0.05 wppm, then converted in the input molar concentration 

𝐶𝐻,𝑁𝑎. Sodium flowrate is coherent with the normal operation of the secondary loop of a SFR; the 

related sodium velocity is directly proportional to it and is obtained by knowing the above cited 

geometry. The same is done for the gas flowrate, typically expressed in Nml min-1, then converted in 

gas velocity by knowing the membranes number and diameter. The gas molar concentration 𝐶𝐻2𝑔𝑎𝑠 is 

obtained from the more practical molar percentage 𝑋𝐻2𝑔𝑎𝑠 , the gas pressure and the temperature by 

means of the ideal gas law.  

Table 3-2 Mass transfer resistance model’s parameters and variables 

Geometrical parameters input 

𝑟𝑖  mm 3.3 

𝑟𝑜 mm 3.6 

𝑟𝑆𝐻𝐸𝐿𝐿 mm 21.2 

𝑁𝑇𝑈𝐵𝐸𝑆 - 4 

𝑑𝐻 mm 17.5 

Physical parameters input 

T °C 450 

𝑄𝑔𝑎𝑠 
mol s-1 1.487x10-4 

Nml min-1 200 

𝑣𝑔𝑎𝑠 m s-1 0.013 

𝑃𝑔𝑎𝑠 Pa 5x105 

𝑋𝐻2𝑔𝑎𝑠 % mol 3 

𝐶𝐻2𝑔𝑎𝑠 molH2 m-3 2.495 

�̇�𝑁𝑎  m3 h-1 1 

𝑣𝑁𝑎  m s-1 0.3 

𝑦𝐻,𝑁𝑎  wppm 0.05 

𝐶𝐻,𝑁𝑎 molH m-3 0.042 

Physical parameters 

𝐾𝑆,𝑁𝑖 mol m-3 Pa-0.5 0.094 

𝐾𝑆,𝑁𝑎 mol m-3 Pa-0.5 0.357 

𝑈𝑔𝑎𝑠 m2 s-1 9.01 10-5 

𝑈𝑁𝑖 m2 s-1 5.77 10-8 

𝑈𝑁𝑎 m2 s-1 2.23 10-6 

Outputs 

𝐶𝐻2𝑔𝑎𝑠
∗  molH2 m-3 2.491 

𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗  molH m-3 11.626 

𝐶𝐻,𝑁𝑖−𝑁𝑎
∗  molH m-3 0.090 

𝐶𝐻,𝑁𝑎
∗  molH m-3 0.340 

 d𝑄𝐻/𝑑𝑧 molH m-1 s-1 6.65 10-7 
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A first remark is that, for these fixed physical conditions, there is a great difference between the three 

mass transfer coefficients; in particular, gas phase has the highest value, 3 orders of magnitude bigger 

than the nickel, which is by far the lowest. Sodium mass transfer coefficient is between them, one 

order of magnitude bigger than mass transfer through nickel membrane. This means that the highest 

resistance to the hydrogen mass transfer is given by the nickel membrane. The second remark 

concerns the impact of gas and sodium phase on the hydrogen transfer rate: by considering equation 

3-15, the terms in brackets corresponds to the difference (𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗ − 𝐶𝐻,𝑁𝑖−𝑁𝑎

∗ ) ; the ratio 

𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗ /𝐶𝐻,𝑁𝑖−𝑁𝑎

∗  is around 130 and their difference is nearly equivalent to 𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗ , since then the 

second term can be neglected. This is the physical result given by the so high mass transfer resistance 

of the membrane; moreover, the difference in concentrations across the membrane is so high that 

variations on the Na side seems to have no effect on the hydrogen transfer rate, while it is strongly 

dependent from the gas side concentration variations. 

3.2.3.3 Sensitivity analysis 

A sensitivity analysis is performed in order to evaluate the influence of each physical parameter 

variation on the calculated hydrogen mass transfer, by maintaining the other ones fixed at the values 

exposed in Table 3-2. The range of variation of each parameter is chosen in order to be coherent with 

the real operating conditions and with the membrane’s resistance criteria. For the flowrates, the 

corresponding velocities are reported, and for the concentrations, both the practical units (wppm and 

%mol respectively) and the SI units are reported. The effect of each parameter’s variation on the three 

mass transfer coefficients (𝑈𝑔𝑎𝑠, 𝑈𝑁𝑖 and 𝑈𝑁𝑎) and on the mass transfer rate per unit length ( d𝑄𝐻/𝑑𝑧) 

is studied. 

Table 3-3 1D model sensitivity analysis: main parameters variation range 

Parameter Units Minimum Maximum 

T °C 300 500 

𝑄𝑔𝑎𝑠 

𝑣𝑔𝑎𝑠 

Nml min-1 

m s-1 

100 

8x10-3 

800 

7x10-2 

𝑃𝑔𝑎𝑠 Pa 2x105 10x105 

�̇�𝑁𝑎  

𝑣𝑁𝑎  

m3 h-1 

m s-1 

0.1 

0.03 

1 

0.3 

Membrane thickness m 50x10-6 300x10-6 

𝑦𝐻,𝑁𝑎  

𝐶𝐻,𝑁𝑎 

wppm 

molH m-3 

0.05 

0.042 

10 

4.25 

𝑋𝐻2𝑔𝑎𝑠 

𝐶𝐻2𝑔𝑎𝑠 

% mol 

molH2 m-3 

0.1 

8.31 

10 

0.08 

 

Temperature 

Temperature effect is analyzed in the range of 300°C-500°C. With the increasing temperature, all the 

mass transfer coefficients increase (Figure 3-3-a), as well as the hydrogen transfer rate (Figure 3-3-b); 

the last one follows an exponential law with temperature. In fact, 𝑈𝑁𝑖 is directly proportional to the 

Nickel diffusivity, which vary with temperature according to an Arrhenius law. The fact that the 
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membrane transfer is by far the dominant effect is confirmed also by the value of 𝑈𝑁𝑖, which is always 

order of magnitudes lower than the others. 

 
(a) 

 
(b) 

Figure 3-3 Temperature effect on hydrogen mass transfer: mass transfer coefficients in gas, nickel, sodium (a) and 
global mass transfer rate per unit length (b) 

Q gas 

The gas phase is characterized by a laminar flow, due to the very low gas velocities; variations of gas 

flowrate are considered in the range 100 to 800 Nml/min, corresponding to gas velocities of 8x10-3 m/s 

and 7x10-2 m/s respectively. A velocity variation in this range can slightly affect the gas phase mass 

transfer coefficient, which is always orders of magnitudes higher than the others (Figure 3-4-a); as 

consequence, this does not have any influence on the calculated mass transfer rate per unit length, 

which does not vary at all (Figure 3-4-b). Physically it means that, whatever the gas velocity is, hydrogen 

is transferred in the radial direction much faster in gas phase than in sodium and in Nickel. 

 
(a) 
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(b) 

Figure 3-4 Gas flowrate effect on hydrogen mass transfer: mass transfer coefficients in gas, nickel, sodium (a) and 
global mass transfer rate per unit length (b) 

P gas 

The gas pressure can also affect the mass transfer resistance of the gas phase: in fact, for the same gas 

flowrate and geometry, if the gas pressure increases, the gas velocity lowers, thus producing a lower 

mass transfer coefficient U. Pressure variations between 2 and 10 bar are considered here. In terms of 

mass transfer coefficient, a pressure growth up to 10 bar is not able to substantially have an effect, 

since the gas coefficient is always much higher than Ni and Na ones (Figure 3-5-a). On the other hand, 

a gas pressure increase has a direct effect on the hydrogen transfer rate (Figure 3-5-b); in fact hydrogen 
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concentration in gas bulk 𝐶𝐻2𝑔𝑎𝑠 , which acts as a driving force of the mass transfer, is directly 

proportional to gas pressure. Therefore, if other parameters are fixed, at a higher gas pressure 

corresponds a higher hydrogen transfer rate. 

 
(a) 

 
(b) 

Figure 3-5 Gas pressure  effect on hydrogen mass transfer: mass transfer coefficients in gas, nickel, sodium (a) and 
global mass transfer rate per unit length (b) 

𝑣𝑁𝑎  and membrane thickness 

As for the gas phase, the Na velocity is directly proportional to the Na flowrate, and so the calculated 

Na mass transfer coefficient consequently; therefore, the lower is the Na flowrate, the lower is U. Na 

phase is characterized by a turbulent flow in SFR applications: here we analyze Na flowrates from 0.1 

m3/h to 1 m3/h, corresponding to Na velocities of 0.03 m/s and 0.3 m/s and Reynolds numbers of 2x103 

and 2x104 respectively, thus approaching the lower limit of a turbulent flow.  

Considering a membrane thickness of 300 µm, for the lower velocities we remark that the sodium 

coefficient approaches to the Nickel one, meaning that the two resistances could be comparable 

(Figure 3-6-a). This effect is imputable to the fact that sodium approaches the laminar regime. 

However, looking at hydrogen mass transfer rate variations (Figure 3-6-d, 300µm line), even if it is 

slightly reduced at lower Na flowrates, its variation (around -3%) is not comparable to the effect of the 

temperature and of the gas pressure.  

The same analysis was repeated for lower membrane thicknesses (Figure 3-6-b,c and d): for a value of 

50µm, which gets close to the minimum thickness for mechanical resistance, the Nickel mass transfer 

resistance is diminished by a factor 6; on the other hand, the sodium phase resistance can have a 

sensible effect only if the Na velocity approaches the laminar regime (Re~2000). In this particular 

condition (�̇�𝑁𝑎=0.1m3/h, 𝑣𝑁𝑎=0.03 m/s), the hydrogen mass transfer rate can be significantly reduced 

of 25% compared to the nominal case at �̇�𝑁𝑎 = 1 m3/h (𝑣𝑁𝑎=0.03 m/s). For an intermediate thickness 

of 150µm, the same Na flowrate decrease reduces the hydrogen transfer rate nominal value of about 

10%. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-6 Influence of Na velocity on mass transfer resistances of gas, Ni and Na phase, for three membrane 
thickness 50 µm (c), 150 µm (b) and 300 µm(a). Influence of thickness on the global mass transfer rate per unit length 
(d). 

Bulk concentrations 𝑦𝐻,𝑁𝑎 and 𝑋𝐻2𝑔𝑎𝑠  

From a practical point of view, it will be never possible to operate with hydrogen concentrations up to 

10% molar inside gas or 10 wppm inside sodium. Nevertheless, it is interesting to study the variation 

of these two parameters outside the limits fixed by the design constraints (cf. Table 3-3), for a scientific 

curiosity and to have a more complete analysis.  First of all, bulk concentrations has no effect on the 

value of the three mass transfer resistances, since they does not affect substantially the bulk properties 

like density, velocity, viscosity. On the other hand, they both directly influences the absolute value of 

hydrogen transfer rate per unit length. As shown in the graph below,  d𝑄𝐻/𝑑𝑧 strongly depends on  

𝑋𝐻2𝑔𝑎𝑠 while it is influenced by 𝑦𝐻,𝑁𝑎  variations only at very high values (>5 ppm); actually this range 

of concentration is not common at all for cooling sodium in a nuclear reactor. 
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(a) 

 
(b) 

Figure 3-7 Hydrogen bulk concentration of gas (a) and Na (b) phase influence on mass transfer rate per unit length 

3.2.3.4 Conclusion 

The hydrogen mass transfer along the radial direction from the bulk of a gas mixture to the bulk of a 

liquid sodium phase, separated by a Nickel membrane, has been analyzed through modeling of the 

various steps of mass transfer. The mass transfer resistance of each physical domain is evaluated 

depending on the physical and geometrical parameters of the system. An expression of the hydrogen 

mass transfer rate across the three domains is given with an analytical formulation. By fixing a 

geometry, for a membrane thickness of 300µm, if the gas phase is characterized by a laminar flow and 

the Na phase by a turbulent flow, the most important resistance to hydrogen transfer is found to be in 

the nickel membrane; it overcomes by far the resistances given by the gas and Na phase. A sensitivity 

analysis is performed by varying the main physical parameters of the system: no changes are found on 

the three mass transfer coefficients ratio, confirming that Ni membrane resistance has the most 

important effect. On the other side, the absolute value of the hydrogen mass transfer rate per unit 

length  d𝑄𝐻/𝑑𝑧 is mainly determined by the temperature and by the two gas phase parameters: gas 

pressure and hydrogen molar concentration; no significant influence can be provided by Na phase in 

the standard operation range. Only for a very low thickness, of the order of 50 µm, the Na phase 

resistance could have a significant influence on the mass transfer; however, the minimum membrane 

thickness should be imposed by mechanical constraints.  

We can evaluate in quantitative terms the influence of each physical parameter on the permeation 

rate, by defining the following “impact” ratio: 

𝐼 =
𝛥%( d𝑄𝐻/𝑑𝑧)

𝛥%(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)
  3-18 

Where the  𝛥%(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) is the percentage variation of the physical parameter from a reference 

status and 𝛥%( d𝑄𝐻/𝑑𝑧) is the corresponding percentage variation of the permeation rate. If 𝐼 <1, it 

means that the permeation percentage variation is lower than the corresponding parameter variation. 

For example, if a temperature variation of 30% produces a permeation variation of 60%, 𝐼 =2. The 

higher is the value of 𝐼, the higher is the impact of a parameter on the permeation, independently from 

their absolute values. In a practical regulation logic, parameters with a higher 𝐼 will easier produce 
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changes on the permeation. Table 3-4 reports, for each parameter, the maximum value of 𝐼, obtained 

by varying the parameter from its minimum (taken as reference status) to its maximum value (cf. Table 

3-3) and maintaining all the other parameters unchanged. 

Table 3-4 1D model sensitivity analysis: physical parameters impact on permeation  

Parameter 𝑰𝑴𝑨𝑿 Impact on permeation 

T 27.3 +++ 

𝑄𝑔𝑎𝑠 0.0002 - - - 

𝑃𝑔𝑎𝑠 0.41 + 

�̇�𝑁𝑎  0.04 - 

Membrane thickness 1.7 ++ 

𝑦𝐻,𝑁𝑎  0.001 - - 

𝑋𝐻2𝑔𝑎𝑠 0.9 ++ 

 

Moreover, this analysis demonstrates that, for enough thick membranes (>50 µm), the hydrogen mass 

transfer from the gas phase to liquid sodium is limited by the permeation through the Nickel 

membrane; its mass transfer resistance is so high and the concentration difference between gas and 

Na phase so important, that the single permeation equation (i.e. Richardson’s law) could estimate 

accurately the radial hydrogen transfer rate at a local axial coordinate z. The concentration difference 

between fluid bulk and membrane interface, both in gas and in sodium phase, could be neglected 

without any significant effect on the global hydrogen mass transfer, so that equation 3-15 becomes:   

 𝑑𝑄𝐻,Ni = pe𝑁𝑖(𝑇) ∗
2𝜋

ln (𝑟𝑜/𝑟𝑖)
(√𝑅𝑇 𝐶𝐻2𝑔𝑎𝑠 −

𝐶𝐻,𝑁𝑎
𝐾𝑆,𝑁𝑎(𝑇)

)  𝑑𝑧 [mol s-1] 3-19 

Where 𝐶𝐻2𝑔𝑎𝑠
∗ , 𝐶𝐻,𝑁𝑎

∗  (interface concentrations) are replaced by 𝐶𝐻2𝑔𝑎𝑠, 𝐶𝐻,𝑁𝑎  (bulk concentrations) 

and the product 𝐾𝑆,𝑁𝑖𝐷𝑆,𝑁𝑖  gives the permeability coefficient pe𝑁𝑖. 

3.2.4 Driving parameters 

In order to finalize the prototype design, all the physical and geometrical parameters which can drive 

the total hydrogen permeation flow through the membranes have to be identified. As a first 

approximation, it is reasonable to consider that for our experimental conditions the simple 

Richardson’s law is able to provide an expression of the permeation flowrate across the membrane 

locally at a given axial position of the membrane, as demonstrated by the 1-D model analysis (see 

3.2.3.4). In this regard, Equation 3-20 gives the hydrogen permeation flow in the radial 

direction 𝑑𝑄𝐻2,p(𝑖), corresponding to an infinitesimal tube length 𝑑𝑧 (at a particular position z) of a 

single tube. Furthermore, since the hydrogen concentration in gas phase decreases along the tube 

length, as an effect of the permeation flux at the membrane, its axial evolution along the z-coordinate 

has to be considered; to do this, a discretized total and hydrogen mass balance is applied to the gas 

phase, according to Equation 3-21. This gas phase mass balance underlies the hypothesis that the 

hydrogen axial diffusive transport is negligible. In fact, it is possible to verify by means of the diffusion 

coefficient of the Ar-H2 binary mixture (see table in section 5.8.3) for the conditions reported in Table 

3-5, that the hydrogen diffusive flux in the axial direction is three orders of magnitude lower than the 

convective flux provided by the gas flow. 
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Finally, if the total tube length L is discretized in n elements dz (i.e. 𝑑𝑧 = 𝐿 𝑛⁄ ), the total hydrogen 

permeation flowrate from gas phase to sodium for N tubes can be obtained adding the i-contributions, 

according to 3-22. 

 𝑑𝑄𝐻2,p(i) = 𝑝𝑒0𝑒
−
𝐸𝑝𝑒
𝑅𝑇

2𝜋

ln (𝑟𝑜/𝑟𝑖)
(√𝑃 𝑋𝐻2(𝑖) −

𝐶𝐻,𝑁𝑎
𝐾𝑆,𝑁𝑎(𝑇)

)  𝑑𝑧 [mol s-1] 3-20 

(
 𝑄𝑔𝑎𝑠 𝑖𝑛

𝑁𝑇𝑈𝐵𝐸𝑆
)
[𝑋𝐻2(𝑖 − 1) − 𝑋𝐻2(𝑖)]

[1 − 𝑋𝐻2(𝑖)]
=  𝑑𝑄𝐻2,p(i) [mol s-1] 3-21 

 𝑄𝐻2,p(𝐿, 𝑁𝑇𝑈𝐵𝐸𝑆) = 𝑁𝑇𝑈𝐵𝐸𝑆∑  𝑑𝑄𝐻2,p(𝑖)

𝑛

𝑖=1

 [mol s-1] 3-22 

 

Figure 3-8 Discretization of the radial hydrogen mass transfer along the membrane length 

All the driving parameters appearing in equations 3-20 to 3-22 are listed below: for each one a 

variability range is identified, between a minimum and a maximum value, in order to respect the 

constraints listed in 3.2.2.  

Table 3-5 Driving parameters for the permeator prototype design 

Variable parameters Range of values Fixed parameters Value 

T 300°C-450°C 𝑋𝐻2 𝑖𝑛 2.926% mol 

P 1-10 bar 𝑝𝑒0 Robertson “best fit” 

 𝑄𝑔𝑎𝑠 𝑖𝑛 100-1000 Nml/min 𝐸𝑝𝑒  Robertson “best fit” 

L 500-1000 mm 𝐶𝐻,𝑁𝑎 50 ppb 

𝑁𝑇𝑈𝐵𝐸𝑆 1-4 𝐾𝑆,𝑁𝑎  Vissers 

(𝑟𝑜; 𝑟𝑖) Obtained from Table 3-6   

 

For the membrane dimension (tube diameter and thickness), we considered the diameters above 5 

mm taken from Goodfellow, reported in Table 3-6: 

Table 3-6 Ni201 tubes diameter and thickness available commercial combination  (source Goodfellow) 

𝒅𝒐 δ Purity 

mm µm % 

9,5 1500 99,5 

8,4 125 99,5 

7,2 300 99,5 

6,5 500 99,5 

5,5 250 99,5 
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3.2.5 Sizing 

The final sizing of the permeator is obtained by an iterative procedure, which takes into account the 

following steps: 

 Choose membrane diameter and thickness. 

 Verify the respect of the mechanical resistance criteria (3-1). 

 Fix a membrane length and a number of tubes. 

 Calculate the total hydrogen permeation flux at different T, P and  𝑄𝑔𝑎𝑠 𝑖𝑛 in their variability 

range (3-20 and 3-22). 

 Verify if there is a sensible variation of the hydrogen concentration along the membrane 

(𝑋𝐻2 𝑜𝑢𝑡 ≪ 𝑋𝐻2 𝑖𝑛). 

 Fix a permeation test duration time. 

 Verify if there is a sensible variation of hydrogen concentration inside the sodium volume along 

the permeation test. 

In particular, the selected geometry is sized in order to transfer a minimum hydrogen flux, producing 

a significant variation of 𝑋𝐻2 and 𝐶𝐻,𝑁𝑎 during the permeation tests, both in gas and sodium phase 

respectively. This is necessary, because by measuring this variation we will be able to quantify the 

permeation rate. If a too small variation is provided, the measurements should be not enough accurate 

to give a reliable mass balance. 

The finalized geometry consists of:  

- L=500 mm; 𝑁𝑇𝑈𝐵𝐸𝑆=4 ; 𝑑𝑜=7.2 mm; δ=300 µm 

Since the membranes are fixed to tubesheets at the two opposite side of the permeator, a 90°C bend 

shape is chosen for the entire prototype length (shell and membranes), in order to better support the 

mechanical stress coming from temperature deformations (Figure 3-9). 

 

 
(a) 

 
(b) 

Figure 3-9 Permeator prototype: before installation (a) and section view (b)  
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3.3 Experimental setup  

3.3.1 Superfennec sodium loop 

The Superfennec loop in CEA Cadarache has been selected for the experimental campaign, thanks to 

its capacity to work under conditions close to those usually used in the secondary circuit of a SFR 

(T≤450 ° C). It can work with high temperature sodium, maintained in circulation by an electromagnetic 

pump, and with a purification system equipped with a “cold trap”, which can provide a very pure 

sodium (essential for our purpose). Moreover it is endowed with a demountable test section, where 

the prototype can be easily installed or removed. It is also possible to install in the test section a 

hydrogen-meter (also called “DH” meaning “Détection d’Hydrogène”, in French language), to measure 

the amount of hydrogen dissolved in sodium during permeation test. 

 

Figure 3-10 Superfennec overview 

Superfennec consists of a main loop where liquid sodium circulates and three auxiliary sections, 

disposed in parallel, which can be isolated or connected to the main circuit by opening or closing 

respectively some manual valves. As reported in Figure 3-11, the main components are: 

 The Test section (TS), where the permeator prototype and the hydrogen-meter (DH) are 

installed 

 The Plugging indicator (PI) section, where a rough measurement of sodium purity is provided 

(also called “Plugging-meter”) 

 The Cold trap (CT) section, where sodium is purified, by flowing through the cold trap 

The main loop is equipped with a magnetic pump, which provides a maximum volumetric flowrate of 

about 2.5 m3/h; it can be modified by regulating the pump intensity. A heating tank (HT) is installed on 

the main circuit, where sodium is heated up to the desired temperature by means of electrical 

resistances. The maximum temperature which can be reached inside the test section is limited by the 

heating capacity of the tank. The maximum temperature of 450°C can be maintained stable inside the 

test section for a maximum flowrate of about 1 m3/h. The distribution of the total flowrate into the 

auxiliary sections can be regulated manually by modifying the valves opening.  
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Figure 3-11 Superfennec sodium loop simplified diagram: circulation plan and main components. Cold trap (CT), 
Test Section (TS), Plugging Indicator (PI) and Heating Tank (HT)  

3.3.2 Gas-sodium test configuration  

The Test section, represented on Figure 3-12, is composed by the permeator prototype, which allows 

hydrogen introduction into sodium, and the hydrogen-meter (DH), which provides a measurement of 

the hydrogen concentration in sodium; both devices are based on hydrogen permeation property 

through nickel membranes. In the first one, a H2/Ar gas mixture circulates inside tubular membranes 

and a part of hydrogen is transferred by permeation, diffusing through nickel’s walls, to liquid sodium, 

which continuously flows outside the membranes. This happens thanks to the difference of hydrogen 

partial pressure (i.e. concentration) between gas and sodium phase, which is obtained for atmospheric 

or higher gas pressures and for relatively pure sodium (yH,Na<1 ppm); moreover, the membranes are 

maintained at a stable temperature, thanks to the hot sodium circulating outside them. In hydrogen-

meter, the reverse process takes place: liquid sodium containing hydrogen flows inside nickel 

membranes, while the outer shell is maintained under Ultra High Vacuum (UHV) conditions, in order 

to reach a very low pressure. Thanks to the partial pressure difference, hydrogen diffuses from sodium 

to vacuum side and, measuring its equilibrium pressure by mass spectrometry, hydrogen 

concentration in sodium can be measured, if the whole system has been properly calibrated. As 

showed by Figure 3-12 and Figure 3-13, permeator and DH are installed in series, so that sodium flows 

before through the permeator, then through Hydrogen-meter; moreover, permeator’s connections to 

the gas supply system (blue) and DH’s connection to the UHV system (green) are highlighted.  

PI TS CT

HT
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Figure 3-12 Gas-sodium permeation: test section diagram 

 
(a) 

 
(b) 

Figure 3-13 Test section before (a) and after (b) installation for gas-sodium test: details of sodium side (orange), gas 
side (blue) and UHV side (green) 

3.3.3 Gas-vacuum test configuration  

For the gas-vacuum permeation test, the permeator prototype is not connected to the sodium loop 

and no sodium circulates inside the shell. The high temperatures needed for the permeation to take 

place, without sodium, are provided by an electrical heating resistance placed on the permeator shell. 

As for gas-sodium test, the gas supply system feeds the permeator with a H2/Ar gas mixture flowing 

inside the nickel membranes, while the shell is isolated and maintained under vacuum by the UHV 

system. Due to the hydrogen partial pressure difference between the feed and the permeate side, a 

hydrogen flow is transferred by permeation through the membranes. As a result, the molar fraction at 
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the permeator outlet (gas retentate) will be lower than at the inlet. Figure 3-14 and Figure 3-15 shows 

the test section details as well as the connections to gas supply system (blue) and UHV system (green). 

 
Figure 3-14 Gas-vacuum permeation: test section diagram 

 
Figure 3-15 Test section installed for gas-
vacuum test: details of gas supply system 
(blue) and UHV (green) connections  

3.3.4 Gas supply system 

The gas supply system is connected to the permeator inlet and retentate gas sides; it must guarantee 

a continuous gas supply to the permeator, at controlled and adjustable pressure and flowrate. A 

detailed PID diagram is provided in Annex II. It consists of stainless steel piping with a diameter of 4-6 

mm; all fittings are Swagelock brand. It is equipped with a thermal-mass flow meter (FTC) and a 

pressure sensor (PT01) that controls a control valve (PCV04). A pressure relief valve (PSV01) is also 

provided for safety reasons, as well as a non-return valve (CV01) at the outlet to prevent the circuit 

from being contaminated by ambient air. A gas preheating system is provided and the gas temperature 

is measured at the inlet and outlet of the permeator by thermocouples (TT01, TT03). Two bottles 

(Crystal mixture by Air Liquide) can feed the circuit: one containing a mixture Ar (97% mol) - H2 (3% 

mol) for permeation tests, the other containing an inert gas (Ar) to purge the entire circuit before and 

after each test. In the "gas-sodium" configuration, two spark plugs for the detection of potential 

sodium leaks are installed on two "tees" just at the Permeator inlet and outlet, followed by coils to 

cool and freeze the possible leak.  

Gas pressure can be adjusted in the range of 1 to 10 bar by the pressure controller (PTC), while gas 

flowrate can vary from 100 to 1000 Nml/min by regulating the FTC.  

Two sampling lines are installed at permeator inlet and outlet respectively, connected to a gas 

chromatograph (µGC), which provides a measurement of the hydrogen molar concentration into the 

gas sample. Pneumatic automated valves and a control system allow remote operations during tests. 

3.3.5 Residual Gas Analysis (RGA) system  

The RGA system installed at Superfennec allows to analyze hydrogen permeation coming from a 

membrane: in particular, it is applied both to the hydrogen-meter during gas-sodium test (Figure 3-12) 
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and to the permeator prototype during gas-vacuum test (Figure 3-14). In both case, in fact, the shell is 

connected to the RGA system and maintened under vacuum by its pumps; the hydrogen flowing inside 

the membranes (dissolved in liquid sodium for the first or contained in a gas mixture for the second), 

permeates through them to the shell side, thanks to the hydrogen partial pressure difference 

maintained by the pumping system. The goal of RGA system is to provide a measurement of the 

hydrogen permeation flowrate which take place across the membranes, whatever its origin. 

As showed by Figure 3-16 and Figure 3-17  RGA system consist of: 

 An UltraHighVacuum (UHV) piping: length 3,5 m approximately, diameter CF63 (63 mm), 

connecting the shell containing permeation membranes to the pumping/analyse skid; 

 a turbo molecular pump (AGILENT/VARIAN – V81-M): it is connected to the UHV piping after 

the Pressure Gauge; a manual ON/OFF valve allows to isolate it from the vacuum system; 

 a ionic pump (AGILENT VACION PLUS150): connected to the end of UHV piping and isolated by 

an automatic valve with three possible position (OPEN/INTERMEDIATE/CLOSED). This pump is 

isolated during gas-vacuum test, since the pressure inside the system is too high; 

 A membrane pump: connected in series to the Turbopump, to provide the primary vacuum for 

start-up operations;  

 A Quadrupole Mass Spectrometer - QMS ( HIDEN – HAL201-RC): it is connected coaxially to the 

UHV piping coming from the membranes. The Ion Source is immerged into the molecular flux 

coming from the permeator. The maximum operating pressure is 1x10-4 mbar; 

 A Bayard-Alpert+ Pirani Pressure gauge ( INFICON – BPG400): for low pressures, the BA gauge 

is used; the Pirani system allows pressure measurement up to the atmospheric pressures. The 

gauge switch automatically between the two measurement systems. It is connected 

perpendicularly to the UHV piping, after the QMS; 

 A hydrogen calibrated leak: connected to the UHV piping next to the QMS and isolated by 

means of a manual valve. 

The entire UHV piping is thermally insulated and electrically traced to be warmed up by the electrical 

resistance to a maximum temperature of 200°C; in this way, by adjusting the system at a stable 

temperature, the influence on pressure and QMS measurement is minimized. As well as, the humidity 

and other gases trapped in the metal during stand-by periods, can be easily degassed before to start 

permeation test. 
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Figure 3-16 RGA system diagram 

 
Figure 3-17 RGA system installation on Superfennec 

3.4 Measurement techniques 

A dedicated metrological system has been set up in order to provide an evaluation of the permeator 

performance for all the tested operating conditions. Some variables are measured directly, while 

others are obtained by an indirect measurement. All these variables are so-called observed variables. 

Some variables are measured only during gas-vacuum test, while others are provided only for gas-

sodium test. The gas chromatography (µGC) on the gas retentate side is provided for both test types. 

3.4.1 Direct measurements 

3.4.1.1 Temperature  

In order to analyze the experimental results, it is fundamental to estimate with a good accuracy the 

temperature of the nickel membranes placed inside the permeator shell. To do this, temperature 

measurement on 4 locations is provided, as shown in Figure 3-18: 

- 3 type K thermocouples are placed on the external side of the stainless steel shell, containing 

the 4 nickel membranes; the shell is then thermally insulated. 

- 1 type K thermocouple is placed in the gas stream at the membrane outlet (gas retentate). 

A mean shell temperature is estimated as the arithmetic mean between TT1, TT2 and TT3 (Tmean). 

For gas-sodium test, since the shell is insulated and continuously fed with a hot sodium flow, which 

provides an excellent heat transfer, we can assume that the temperature is uniform elsewhere: this is 

confirmed by the fact that TT1, TT2 and TT3 have practically the same value, as showed in  

Table 3-7. Moreover, we can consider that nickel membranes and the external shell are at the same 

temperature, since both are in contact with the same sodium flow; therefore, Tmean is considered as a 

very good estimation of the membranes uniform temperature.   

Nevertheless, during gas-vacuum test, a non-uniform temperature distribution was measured on the 

shell: TT1 and TT2 were in agreement, while TT3 always reported a lower temperature. This is probably 

due to a non-perfect heat insulation provided in the lower part of the permeator.  
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Moreover, since the shell is maintained under vacuum in quasi-static conditions, it cannot be assumed 

that nickel membranes and the shell are at the same temperature, like for gas-sodium test. 

Additionally, the gas outlet temperature gives us a useful comparison between gas and sodium tests: 

since it flows directly in contact with nickel membranes, its temperature gives a quantitative 

estimation of the heat provided to the membranes. As reported in  

Table 3-7, for the same shell mean temperature, the gas outlet temperature is lower during gas tests 

than sodium tests; this could mean that, for a given shell temperature, the internal membranes are 

actually colder during gas tests, due to the heat loss to the vacuum side, which is not present during 

sodium tests.  

Nevertheless, even the comparison of Tgas,out  between gas-vacuum and gas-sodium test is not enough 

accurate; in fact, between the two test the heat tracing and the thermal insulation has been removed 

and re-installed, thus giving a possible bias on the outlet gas measurement. In conclusion, we have not 

enough elements to estimate more precisely the temperature of the membranes for gas-vacuum tests.    

 

Figure 3-18 Thermocouples positions on permeator 

 

Table 3-7 Temperature measurements during gas tests and sodium tests 

 
Test 

ID 
T imposed (°C) 

TT1 

(°C) 

TT2 

(°C) 

TT3 

(°C) 

T gas out 

(°C) 

T mean 

(°C)  

G
A

S-
V

A
C

U
U

M
 T

ES
TS

 T1 300 291.2 300 285 189.8 292.1 

T2 325 324.3 325 302.7 213.4 317.3 

T3 350 348.0 350 324.4 225.1 340.8 

T4 375 376.5 375 343.3 245 365.0 

T5 400 399.9 400.1 361.1 258.5 387.0 

T6 425 424.2 425 380.5 272.3 409.9 

T7 450 450.8 450 401.8 291.1 434.2 

 

G
A

S-

SO
D

IU
M

 

TE
ST

S 

T4 375 377.4 375.8 375.3 257.1 376.1 

T5 400 401.8 400.3 400.1 289.0 400.7 

T6 425 426.9 425.1 424.9 308.0 425.6 

T7 450 451.2 449.5 449.2 325.0 449.9 
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3.4.1.2 Pressure and gas flowrate 

The feed gas total pressure (𝑃𝑔𝑎𝑠) is measured by a Pressure Transmitter placed at the permeator inlet 

(see PT01). The pressure inside the permeator is considered to be the same as indicated by the PT, 

meaning that the pressure drop along the permeator is neglected. This hypothesis is confirmed by 

pressure measurements done on the permeator outlet as well. 

The inlet gas flowrate (𝑄𝑔𝑎𝑠 𝑖𝑛) is controlled and measured by a mass flow controller (Brooks): since it 

has been calibrated for pure Argon, we will apply a correction factor of 0.9886 (given by constructor) 

for measurements made on the gas mixture Ar/H2. For example, when the measured flowrate is 200 

Nml/min, the actual Ar/H2 flowrate is 198 Nml/min. 

Details on the uncertainty estimation are provided in Annex IV. 

3.4.1.3 Gas retentate hydrogen concentration 

Hydrogen retentate concentration ( 𝑋𝐻2 𝑟)  is measured during permeation test by a gas 

chromatograph (µGC), by sampling the gas at the permeator outlet. This measurement is performed 

both for gas-sodium and for gas-vacuum test, as showed in Figure 3-12 and Figure 3-14. Measurements 

are repeated all along the permeation duration, in order to have enough measurements for a robust 

statistical post treatment.   

The µGC is calibrated with a single point measurements, made on the feed bottle, which contains a 

2.926% H2/Ar mixture (Air Liquide Crystal). Details on the uncertainty estimation are provided in Annex 

IV. 

3.4.1.4 Gas-vacuum test: permeate pressure 

During gas-vacuum tests, the permeator shell, i.e. the permeate side, is maintained under vacuum by 

the turbomolecular pump and the Bayard-Alpert pressure gauge measures the permeate total 

pressure (𝑃𝑝 ), as showed in Figure 3-14. Under the condition that only the hydrogen permeating 

through the membranes goes into the vacuum system, the pressure gauge signal reaches an 

equilibrium value which is directly proportional to the permeate hydrogen flowrate (see details on RGA 

system in Annex III). A calibration procedure is performed with the hydrogen calibrated leak, in order 

to convert 𝑃𝑝 in a hydrogen molar flow. 

For gas-vacuum test this is the only way to have a measurement on the permeate side: in fact, the 

mass spectrometer signal is not available, since the vacuum pressure exceeds its maximum operating 

pressure of 1x10-4 mbar. 

3.4.1.5 Gas-sodium test: QMS signal 

During gas-sodium test, the hydrogen-meter shell is connected to the RGA system, where the 

Quadrupolar Mass Spectrometer measures the abundancy of each molecular mass from 1 to 40. For 

the interest of this study, the molecular mass 2, corresponding to H2, is given by the QMS signal 𝑆𝑀𝑆,𝐻2. 

Similarly to the permeate pressure for the gas-vacuum test, since hydrogen is the only element 

permeating through the hydrogen-meter, the QMS signal 𝑆𝑀𝑆,𝐻2 reaches an equilibrium value directly 

proportional to the permeate hydrogen flowrate coming from the DH. As for the B-A pressure gauge, 
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a calibration procedure is performed with the hydrogen calibrated leak, in order to convert 𝑆𝑀𝑆,𝐻2 in 

a hydrogen molar flow. 

3.4.2 Hydrogen permeation flowrate indirect measurements 

3.4.2.1 Mass balance on gas retentate side 

An indirect measurement of the hydrogen permeation flowrate through the permeator membranes is 

obtained by applying a mass balance on the feed/retentate side. This technique is applicable both in 

gas-vacuum and gas-sodium test. 

Hydrogen inlet concentration is equal to the feed bottle concentration: its value is of 2,926% molar. 

Hydrogen retentate concentration is given by the µGC measurement. 

 

Figure 3-19 Permeator simplified diagram: application of total and hydrogen molar balances 

The inside of nickel membranes is considered as a fixed volume, with one inlet (in), one retentate (r) 

and one permeate side (p), constituted by liquid sodium or vacuum depending on the test type; 

additionally, the following hypotheses are considered: 

 Stationary conditions: i.e. experimental conditions are stable (constant gas flowrate, gas 

pressure and membrane temperature), so that hydrogen permeation rate is constant as well 

during the test duration 

 𝑋𝐴𝑟,𝑝 = 0: only hydrogen can permeate through nickel walls, due to the non permeability of 

argon through metals 

Therefore, with reference to Figure 3-19, we can write the total and hydrogen molar balances 

equations as follows: 

𝑄𝑔𝑎𝑠 𝑖𝑛 =  𝑄𝑔𝑎𝑠 𝑟 + 𝑄𝐻2 𝑝 [mol s-1] 3-23 

𝑄𝑔𝑎𝑠 𝑖𝑛𝑋𝐻2 𝑖𝑛 = 𝑄𝑔𝑎𝑠 𝑟𝑋𝐻2 𝑟 + 𝑄𝐻2 𝑝 [mol s-1] 3-24 

and by combining 3-23 and 3-24 we obtain: 

𝑄𝐻2 𝑝 = 𝑄𝑔𝑎𝑠 𝑖𝑛
𝑋𝐻2 𝑖𝑛 − 𝑋𝐻2 𝑟
1 − 𝑋𝐻2 𝑟

 [mol s-1] 3-25 

Finally, 3-25 gives an indirect measurement of 𝑄𝐻2 𝑝, starting from the direct measurements of 𝑄𝑔𝑎𝑠 𝑖𝑛 

,provided by the FTC, and of 𝑋𝐻2 𝑟, provided by the µGC. 

3.4.2.2 Gas-vacuum tests: RGA on vacuum permeate side  

Only for gas-vacuum test, we can obtain a measurement of hydrogen permeation flowrate, starting 

from the pressure gauge signal, as follows: 

in r

p

Qgas in ; XH2,in ; XAr,in
Qgas r ; XH2,r ; XAr,r

QH2 p
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𝑄𝐻2 𝑝 = 𝐾𝑃𝑃𝑝 [mol s-1] 3-26 

Where 𝑃𝑝  is the permeate pressure given by the Bayard-Alpert gauge and 𝐾𝑃  is the calibration 

constant of the gauge, taken from a hydrogen calibrated leak measurement as follows:  

𝐾𝑃 =
𝑄𝑙𝑒𝑎𝑘
𝑃𝑙𝑒𝑎𝑘

 
[mol s-1 mbar-1] 3-27 

3.4.2.3 Gas-vacuum tests: data reconciliation 

During gas-vacuum tests, two different techniques can be used to obtain an indirect measurement of 

𝑄𝐻2 𝑝, by means of equations 3-25 and 3-26. The two techniques do not necessarily give the same 

result, for given experimental conditions, due to the different uncertainties which affect the 

measurements, depending on their range of operation: therefore, in order to obtain a “best estimated” 

measurement for each tested condition, a data reconciliation (RD) method is implemented. Details are 

provided in Annex IV. 

3.4.2.4 𝑄𝐻2 𝑝 measurements summary 

Finally, we distinguish three distinct measurements of the hydrogen permeation flowrate, according 

to the technique employed: 

  𝑄𝐻2 𝑝(µ𝐺𝐶): both for gas-sodium and gas-vacuum tests, obtained by Equation 3-25 (see 

3.4.2.1). 

 𝑄𝐻2 𝑝(𝑃 𝐺𝑎𝑢𝑔𝑒): only for gas-vacuum tests, obtained by Equation 3-26 (see 3.4.2.2). 

 𝑄𝐻2 𝑝(𝑅𝐷): only for gas-vacuum tests, obtained by data reconciliation (see Annex IV). 

3.4.3 Hydrogen concentration in sodium estimation 

During gas-sodium tests, a measurement of hydrogen concentration in the sodium (i.e. the permeate 

side of the permeator prototype) is given by a hydrogen-meter (DH), as shown in 3.3.2. Hydrogen-

meters based on nickel permeation membranes have been widely used for hydrogen detection in 

sodium reactors, as presented in paragraph 2.4.1. The DH used for our tests is made from the same 

design as the one used for a recent test on the Phenix reactor [66]: it is composed by four nickel 

membranes of 320 mm x 7.2 mm x 0.3 mm (length, outside diameter and thickness respectively). The 

hydrogen molar rate per unit surface permeating from liquid sodium, which circulates inside the DH 

membranes, to vacuum, outside the membrane, can be expressed by equation 2.25 (cf. Section 2.4.1) 

which combines the Richardson’s law and the Sieverts law for a hydrogen-sodium system. By assuming 

that the tubular geometry can be well approximated by a plane geometry (hypothesis valid when the 

tube thickness is much lower, at least 10 times, than the tube radius) and that the hydrogen 

concentration inside sodium 𝑦𝐻,𝑁𝑎  is homogeneous along the DH membranes, the total permeation 

flowrate becomes: 

𝑄𝐻2,𝐷𝐻 = (
𝐴

𝛿
)
𝐷𝐻

 𝑝𝑒0,DH 𝑒𝑥𝑝 
−𝐸𝑝,𝐷𝐻
𝑅𝑇 (

𝑦𝐻,𝑁𝑎
𝐾𝑆,𝑁𝑎

−√𝑃𝐻2,𝑣𝑎𝑐𝑢𝑢𝑚) [mol s-1] 3-28 

Where 𝐴 is the membrane’s surface at the mean diameter and 𝑃𝐻2,𝑣𝑎𝑐𝑢𝑢𝑚  is the hydrogen partial 

pressure on vacuum side. The permeability coefficient 𝑝𝑒0,DH and the activation energy 𝐸𝑝,𝐷𝐻, specific 

of the DH membrane, are obtained with a procedure described in 4.5.2. For our application, 𝑦𝐻,𝑁𝑎  
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varies in the range 50 ppb to 500 ppb, while 𝐾𝑆,𝑁𝑎  depends on the  temperature and its expression is 

given by Vissers [7]: 

𝑙𝑜𝑔(𝐾𝑆,𝑁𝑎) = 0.86 −
122

𝑇[𝐾]
 [ppm Torr-0.5] 3-29 

To have coherent units in equation 3-28, 𝐾𝑆,𝑁𝑎 is converted to [ppb Pa-0.5]. It is worth noting that the 

ratio 
𝑦𝐻,𝑁𝑎

𝐾𝑆,𝑁𝑎
 is orders of magnitude higher than the vacuum pressure, so that the term in brackets 

√𝑃𝐻2,𝑣𝑎𝑐𝑢𝑢𝑚  can be neglected, and equation 3-28 can be rewritten, making 𝑦𝐻,𝑁𝑎  explicit, as follows: 

𝑦𝐻,𝑁𝑎 =
𝑄𝐻2,𝐷𝐻𝐾𝑆,𝑁𝑎(𝑇)

(
𝐴
𝛿
)
𝐷𝐻

𝑝𝑒0,DH 𝑒𝑥𝑝 
−𝐸𝑝,𝐷𝐻
𝑅𝑇

 
[ppb] 3-30 

By considering that the hydrogen flux 𝑄𝐻2,𝐷𝐻 is proportional to the QMS signal corresponding to the 

molecular hydrogen (see details in Annex III), the expression of yH,Na becomes: 

𝑦𝐻,𝑁𝑎 =
𝐾𝑀𝑆𝑆𝑀𝑆,𝐻2𝐾𝑆,𝑁𝑎(𝑇)

(
𝐴
𝛿
)
𝐷𝐻

𝑝𝑒0,DH 𝑒𝑥𝑝 
−𝐸𝑝,𝐷𝐻
𝑅𝑇

 
[ppb] 3-31 

Where 𝑆𝑀𝑆,𝐻2 [Torr] is the mass spectrometer signal corresponding to mass 2 and 𝐾𝑀𝑆 [mol s-1 Torr-1] 

is the calibration constant obtained by calibrated leak measurement, as follows: 

𝐾𝑀𝑆 =
𝑄𝑙𝑒𝑎𝑘

𝑆𝑀𝑆 𝐻2 𝑙𝑒𝑎𝑘
 [mol s-1 Torr-1] 3-32 

Therefore, by means of equation 3-31, it is possible to obtain an estimation of hydrogen molar 

concentration in liquid sodium; it is worth noting that, for a given temperature, all parameters except 

for  𝑆𝑀𝑆,𝐻2  are constants: this means that 𝑦𝐻,𝑁𝑎  and any possible variation of it will be directly 

proportional to the QMS signal.  

3.4.4 Summary of measured variables and physical parameters 

Table 3-8 resumes all observed variables, together with the physical and geometrical parameters used 

in the formulas presented above.  
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Table 3-8 observed variables and physical parameters of the experimental study 

Directly measured variables 

Variable Units Instrument 

𝑃𝑔𝑎𝑠 bar a PT01 

𝑄𝑔𝑎𝑠 𝑖𝑛 Nml min-1 FTC 

𝑇1,2,3 °C Thermocouple 

𝑋𝐻2 𝑟  % mol µGC 

𝑆𝑀𝑆 𝐻2 Torr QMS 

𝑆𝑀𝑆 𝐻2 𝑙𝑒𝑎𝑘 Torr QMS 

𝑃 𝑝 mbar BA Pressure Gauge 

𝑃 𝑙𝑒𝑎𝑘 mbar BA Pressure Gauge 

Indirectly measured variables 

Variable Units Formula 

𝑄𝐻2 𝑝(µ𝐺𝐶) mol s-1 Equation 3-25 

𝑄𝐻2 𝑝(𝐺𝑃 𝑎𝑢𝑔𝑒) mol s-1 Equation 3-26 

𝑄𝐻2 𝑝(𝑅𝐷) mol s-1 Data reconciliation 

𝑦𝐻,𝑁𝑎 ppb Equation 3-31 

Constants 

 Units Value 

𝑋𝐻2 𝑖𝑛 % mol 2.926 

𝑄 𝑙𝑒𝑎𝑘  mol s-1 2.19x10-7 / 1.56x10-9 

Physical and geometrical parameters 

Parameter Units Value/Expression 

𝐾𝑆,𝑁𝑎(𝑇) ppm Torr-0.5 Equation 3-29 

(
𝐴

𝛿
)
𝐷𝐻

 m 72.2 

(
𝐴

𝛿
)
𝑝

 m 144.5 

𝑅 J mol-1 K-1 8.314 

𝑝𝑒0,DH mol m-1 s-1 Pa-0.5 7.84 × 10−8 

𝐸𝑝,𝐷𝐻 J mol-1 47782,7 

3.5 Conclusion 

The full design procedure of a permeator prototype has been presented, starting from scratch to the 

final sizing, with respect of the constraints coming from the final application (SFRs) and from the 

available experimental facility. 

An analytical model (called for simplicity 1D model) aiming to represent locally the permeation process 

in the radial direction through gas phase, nickel membrane and sodium phase has been developed as 

support for the prototype sizing. The hydrogen permeation through the nickel membrane is considered 

a diffusion-limited process and others mechanisms such as dislocation transport or surface effects are 
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not included in the model. As main result, we found that the gas and sodium phase resistances to 

hydrogen mass transfer can be neglected, when a turbulent sodium flowrate is provided and if the 

membrane thickness is >50 µm. Therefore, according to this model, the hydrogen diffusion across the 

nickel membrane could be considered as the mass transfer driving step. The main driving parameters 

have been identified and their impact on permeation has been quantified: temperature, membrane 

thickness, hydrogen concentration in gas and sodium phase, gas pressure, from the more to the less 

effective. A simplified theoretical law (Equation 3-19) has been assessed to describe the local hydrogen 

permeation through an infinitesimal membrane length. 

By integrating the Equation 3-19 over the prototype geometry, assuming a plug-flow in gas phase, the 

final sizing of the prototype has been assessed, with respect of all the technical and practical 

constraints, in order that the hydrogen permeation flowrate could be accurately measured during the 

experiments. 

The facility setup, the measurement techniques based on gas chromatography, RGA analysis and mass 

spectrometry have been set up, in order to quantify the hydrogen permeation flowrate through the 

prototype in two different configurations: gas-vacuum and gas-sodium. 
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The permeator prototype has been fabricated according to the features presented in Chapter 3. Once 

the experimental setup has been installed and all the preliminary activities realized (instrumentation 

calibrations, mechanical resistance and leakage tests, preliminary tests), the experimental campaign 

has been performed before in gas-vacuum and successively in gas-sodium configuration. 

In this chapter results for both gas-vacuum and gas-sodium are presented; a post treatment method 

is developed, in order to be able to assess the correspondence of the experimental results with the 

theoretical models; finally, an in-depth discussion is provided, consolidating the main results and 

proposing hypothesis of interpretation for some open points. 

4.1 Test procedure and tested conditions 

4.1.1 Gas-vacuum test 

Permeator is maintained at a stable temperature thanks to the electrical tracing system, placed on the 

shell; as for gas-sodium, the permeation test starts when the permeator is fed with Ar- H2 and it lasts 

1 hours. During this time, gas side and vacuum side measurement are performed. When a test ends, 

after purging with pure Argon, the next operating conditions are performed. 

Gas-vacuum permeation is experimentally investigated over seven temperatures (from 300°C to 

450°C); for each temperature different gas pressures are tested, ranging from 2 bar to 10 bar. The 

entire list of tested condition is provided in Table 4-1. 

The other main operating parameters are maintained constant for all the tested conditions. They are 

reported here below: 

 𝑋𝐻2,𝑔𝑎𝑠,𝐼𝑁 = 2.926% molar ; 

 𝑄𝑔𝑎𝑠 = 200 Nml min-1. 

Table 4-1 Gas-vacuum test: tested conditions temperature and gas pressure 

Test ID   T7- P2  T7-P3  T7-P4  T7 T7-P5  T7-P6  T7-P7  T7-P8   T6 - P2 T6 T6 - P6 T6-P7 T6-P8 

T °C 450 450 450 450 450 450 450 450   425 425 425 425 425 

Pgas bar a 2 3 4 5 6 7 9 10   2 5 7 9 10 

n° of  
repeats 

  3 2 3 2 3 3 3 3   1 2 1 1 1 

 

T5 - P2 T5 - P4 T5 T5-P6 T5-P7 T5-P8   T4 - P2 T4 T4-P6 T4-P7 T4-P8 

400 400 400 400 400 400   375 375 375 375 375 

2 4 5 7 9 10   2 5 7 9 10 

2 2 3 2 2 1   1 2 1 1 1 
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T3 - P2 T3 T3-P6 T3-P7 T3 - P8   T2 - P2 T2 T2-P6 T2-P7 T2 - P8   T1 - P2 T1 T1-P6 T1-P7 T1 - P8 

350 350 350 350 350   325 325 325 325 325   325 300 325 325 325 

2 5 7 9 10   2 5 7 9 10   2 5 7 9 10 

2 2 2 2 2   1 2 1 1 2   1 3 1 1 2 

4.1.2 Gas-sodium test 

When sodium is at stable temperature and at low hydrogen content (typically 𝑦𝐻,𝑁𝑎<100 ppb), the CT 

section is isolated, so that purification stops and a stable hydrogen concentration is set up; with 

reference to Figure 3-11, only TS and PI are open during a permeation test. Sodium circulates into the 

main circuit with a total flowrate of 2.5 m3/h, composed of 1 m3/h through TS and the remaining 1.5 

m3/h through the HT; a negligible flowrate of around 0,07 m3/h circulates through the PI.  

Permeation test starts when Ar-H2 gas mixture starts to feed the permeator at given pressure and 

flowrate, so that hydrogen permeation takes place and measurements both in gas and sodium side are 

performed; these conditions are maintained stable for the entire test duration of 1 hour. Then, H2 

permeation is stopped by sending pure argon into the permeator, thus purging the membrane feed 

side from the residual hydrogen. As a new equilibrated hydrogen concentration is obtained inside 

sodium, the following test can be launched with the same procedure. When the maximum allowed 

hydrogen concentration inside sodium of 500 ppb is approached, a purification session is performed 

by connecting the CT section to the main circuit. 

Gas-sodium permeation is experimentally investigated over four temperatures (from 375°C to 450°C); 

for each temperature six gas pressures are tested, ranging from 2 bar to 10 bar. The entire list of tested 

condition is provided in Table 4-2. 

The other main operating parameters are maintained constant for all the tested conditions. They are 

reported here below: 

 𝑋𝐻2,𝑔𝑎𝑠,𝐼𝑁 = 2.926% molar ; 

 �̇�𝑁𝑎 = 1 m3 h-1, through the permeator test section ; 

 𝑄𝑔𝑎𝑠 = 200 Nml min-1. 

Additionally, the condition T7 is tested at two lower sodium flowrates: 0.5 m3 h-1 and 0.2 m3 h-1 

respectively. 

Table 4-2 Gas-sodium test: tested conditions temperature and gas pressure 

Test ID  T4-P2 T4-P3 T4 T4-P6 T4-P7 T4-P8 T5-P2 T5-P3 T5 T5-P6 T5-P7 T5-P8 

T °C 375 375 375 375 375 375 400 400 400 400 400 400 

Pgas bar 2 3,5 5 7 9 10 2 3,5 5 7 9 10 

              

Test ID  T6-P2 T6-P3 T6 T6-P6 T6-P7 T6-P8 T7-P2 T7-P3 T7 T7-P6 T7-P7 T7-P8 

T °C 425 425 425 425 425 425 450 450 450 450 450 450 

Pgas bar 2 3,5 5 7 9 10 2 3,5 5 7 9 10 
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4.2 Measurement techniques validation on the gas-vacuum system 

4.2.1 Permeation transient 

When permeation test starts by feeding hydrogen into the permeator, both pressure gauge and µGC 

signals are recorded. In Figure 4-1, the typical signal evolution of pressure gauge is presented, revealing 

the hydrogen pressure evolution on permeate side during a test. 

 

Figure 4-1 Typical pressure gauge signal evolution during a gas-vacuum permeation test 

From this graph, we can identify three phases: 

1. Initial permeation transitory: as Ar/H2 mixture flows inside the permeator, hydrogen 

molecules begin to diffuse through Nickel membranes to the permeate side; therefore the 

pressure gauge, which is placed on permeate side, records an increment of hydrogen pressure, 

until the diffusion reaches its equilibrium 

2. Steady state permeation: when hydrogen diffusion is at its equilibrium, steady state 

permeation through Nickel membranes continues until the upstream conditions are modified 

3. Purge – permeation turn off transitory: pure Ar flows inside the permeator, in order to purge 

it from residual hydrogen and to stop the permeation test. The permeate pressure suddenly 

decreases since no more hydrogen is permeating through the membranes.  

The initial transitory (1) is of the order of a minute, while we take measurements of steady state 

permeation along one hour approximatively. The reason of a so long test comes from the slower 

measurement time required by µGC. In particular, it produces concentration measurement each two 

minutes, due to its intrinsically long period of analysis. This means that the initial transitory cannot be 

recorded with the µGC, but it can gives several measurements of steady state permeation, if the test 

duration is long enough. 

4.2.2 Measurement repeatability 

Repeatability of experiments is demonstrated by taking measurements of the same experimental 

conditions at different times and with different experimental procedures. For example, for a fixed 

temperature, we measure permeation at different gas pressures both by increasing the pressure from 
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P1 to P8 and by decreasing it from P8 to P1. Three measurement series are performed for the highest 

temperature T7 (here is reported its mean value of 434°C, see  

Table 3-7). In Figure 4-2 are reported the results of both 𝑄𝐻2,𝑝(µ𝐺𝐶)  and 𝑄𝐻2 𝑝(𝐺𝑎𝑢𝑔𝑒 𝑃) 

measurements, obtained according to Table 3-8. The hydrogen permeation flowrate 𝑄𝐻2,𝑝 is plotted 

on y axis versus the gas pressure on x axis. The uncertainty of each measured value is reported as well. 

We can remark that for both µGC and pressure gauge we have a very good repeatability among the 

three different series (1,2 and 3), since the variation between the points is much lower than the 

measurement uncertainty. 

 
(a) 

 
(b) 

Figure 4-2 Gas-vacuum test - Hydrogen permeation vs gas pressure: µGC (a) and pressure gauge (b) measurements 

The same is done for temperature variations. Two distinct series of measurements are performed for 

a fixed gas pressure (5 bar a) and temperatures varying from T1 to T7. Also in this case we notice a 

good repeatability of measurement (Figure 4-3). 

 
(a) 

 
(b) 

Figure 4-3 Hydrogen permeation vs temperature: µGC (a) and pressure gauge (b) measurements 

4.2.3 Retentate-permeate side comparison: validation of µGC measurements 

During gas-vacuum test, data of hydrogen permeation flowrate ( 𝑄𝐻2,𝑝 ) are obtained from 

measurements both by Pressure gauge on permeate side and by µGC on retentate side. It is important 

to compare the two techniques in order to validate them and to comprehend the data reconciliation 

(RD) results.  
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In Figure 4-4, we compare for each tested condition the permeation flowrate obtained with the two 

techniques (a) and we plot their percentage deviation (b), calculated as: 

∆𝑄𝐻2 𝑝% =
𝑄µ𝐺𝐶 − 𝑄𝐺𝐴𝑈𝐺𝐸

𝑄𝐺𝐴𝑈𝐺𝐸
∗ 100 

 
(a) 

 
(b) 

Figure 4-4 Gas-vacuum test - Comparison between µGC and pressure gauge measurements of hydrogen permeation 
flowrate for Tmean 293°C to 434°C 

It can be noticed that for higher permeation rates, the two techniques are quite well in accordance; 

then, the lower is the measured flowrate, the higher is the percentage deviation between µGC and 

pressure gauge; in particular µGC gives much lower estimations of 𝑄𝐻2 𝑝. The percentage deviation is 

below 10% for 𝑄𝐻2 𝑝>4x10-7 mol/s, while it reaches values of around 55% for the lowest permeation 

rates.  

This increasing deviation at lower flowrates can find a possible explanation in the measurements 

uncertainties (see Annex IV): on one side, pressure gauge has the same precision on the whole 

measurement range, since the calibration constant relative uncertainty (10%) does not change. On the 

other hand, 𝑄𝐻2 𝑝 measured from µGC is less precise at lower rates. Thus, we has to identify over which 

range of measurements µGC can be sufficiently reliable and if it has a correspondence with the 

pressure gauge measurements.  

From this perspective, it is interesting to see that µGC uncertainty seems to follow the deviation from 

pressure gauge measurements, as showed in Figure 4-5; typically, for 𝑄𝐻2 𝑝 >4x10-7 mol/s the 

uncertainty is below 10%, while it grows at lower flowrates. Finally it seems that more precise µGC 

measurements are better in accordance with gauge pressure measurements. This would confirm the 

coherence of both measurements techniques by considering their range of uncertainties.  
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Figure 4-5 µGC relative standard uncertainty on hydrogen permeation flowrate measurements  

This analysis is useful to validate the µGC technique: we can conclude that it is possible to obtain a 

coherent estimation of the hydrogen permeation flowrate with both techniques, if we stay in the range 

of 𝑄𝐻2 𝑝 >4x10-7 mol/s. This result comes not simply from an uncertainty analysis of µGC 

measurements, but it is confirmed also by the comparison with the pressure gauge results. This 

conclusion is very important to qualify the µGC measurement which is employed during gas-sodium 

test as well. 

4.2.4 Reconciled data 

Since we have a measurement redundancy, we search by data reconciliation the best estimation of 

𝑄𝐻2 𝑝, which is the most respectful of the hydrogen mass balances of the system, weighting each 

experimental measurement by its uncertainty. It is evident that reconciled data (RD) will be closer to 

measurements affected by the smaller uncertainty. In this case, we calculate RD for each experimental 

condition tested and we compare their percentage deviation from µGC and pressure gauge 

measurements. RD slightly differ (deviation of ±5%) from Gauge P for all measurements and from µGC 

for measurements higher than 4x10-7 mol/s (Figure 4-6). Instead, they deviate more and more from 

µGC measurements decreasing under this value. This behavior correspond perfectly to the fact that 

pressure gauge data have a fixed uncertainty, while µGC is less accurate in estimating lower hydrogen 

permeation fluxes, so that data reconciliation gives values much closer to pressure gauge in this range. 

According to the data reconciliation theory, the reconciled data uncertainty is always lower than the 

experimental measurement ones. Therefore, since the experimental relative uncertainty is of ±10% for 

pressure gauge and varies up to highest values for the µGC (see Figure 4-5), we can expect a relative 

uncertainty for reconciled data lower than ±10%. 
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(a) 

 
(b) 

Figure 4-6 Gas-vacuum test - Percentage deviation between reconciled data and experimental measurements with 
µGC (a) and pressure gauge (b) 

4.3 Results post treatment methods 

The goal of the results post treatment is to compare the experimental measurements, including their 

uncertainty, with a theoretical law, which is supposed to drive the permeation across the prototype 

over the tested conditions variability range. As highlighted by the state of the art study and following 

the 1-D model analysis (paragraph 3.2.3.4), the Richardson’s law is the most suitable reference to 

describe the local permeation under the experimental conditions tested here. This law, applied locally 

to an infinitesimal membrane length, has been integrated on a tubular geometry for the permeator 

design (paragraph 3.2.4); in fact, once the prototype geometry is fixed, by taking a theoretical 

permeability coefficient as input, it is possible to estimate the expected permeation flowrate for a 

given experimental condition. 

For the result post treatment, the reverse process is implemented: the local Richardson’s law is 

integrated on the prototype geometry and rewritten in a single-equation form (i.e. representing the 

whole prototype geometry and the physics with a single equation), valid under certain hypothesis 

(listed in Section 4.3.1); then, the experimental results are compared with it. As a result, if this law 

represents well the experiments, we can extrapolate from the experimental data the actual 

permeability coefficient of the prototype. In order to have a coherent comparison, the hypothesis 

made to set the theoretical law must be experimentally verified as well.  

4.3.1 An integrated law to represent experimental results 

The hydrogen permeation flowrate over an infinitesimal surface 𝑑𝐴, crossing the membrane from the 

Ar/H2 gas mixture to liquid sodium, is given by equation 4-1 under the following hypothesis: 

i. Steady state conditions 

ii. Bulk diffusion is the rate limiting step of permeation 

iii. H2 dissociation/recombination at membrane surfaces are at equilibrium (Sieverts law validity) 

and Argon competitive adsorption is neglected. 

iv. Gas and sodium phase mass transfer resistance is negligible 

v. Plane geometry approximation (see 3.4.3) 
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vi. Ar/H2 mixture is considered as an ideal gas 

𝑑𝑄𝐻2,𝑝 = (
𝑑𝐴

𝛿
)
𝑝
 𝑝𝑒0 𝑒𝑥𝑝 

−𝐸𝑝
𝑅𝑇 (√𝑃𝐻2,𝑔𝑎𝑠 −

𝑦𝐻,𝑁𝑎
𝐾𝑆,𝑁𝑎

) [mol s-1] 4-1 

Where the local hydrogen partial pressure in gas phase 𝑃𝐻2,𝑔𝑎𝑠 can be expressed as follows: 

𝑃𝐻2,𝑔𝑎𝑠 = 𝑃𝑔𝑎𝑠𝑋𝐻2,𝑔𝑎𝑠 [Pa] 4-2 

With reference to Figure 3-19, in our experimental conditions we have a constant gas flowrate with 

constant hydrogen concentration at the permeator inlet. Permeation is carried out through 4 Ni tubes: 

these 4 tubes constitute the so-called “membrane”. We consider the following additional hypothesis: 

vii. Temperature is uniform over the membrane (both in radial and axial direction) 

viii. Gas inlet flowrate is uniformly distributed over the 4 nickel tubes (membrane) 

ix. √𝑃𝐻2,𝑔𝑎𝑠 ≫
𝑦𝐻,𝑁𝑎

𝐾𝑆,𝑁𝑎
 

x. 𝑄𝐻2,𝑝 ≪ 𝑄𝑔𝑎𝑠 𝑖𝑛 

xi. The hydrogen axial diffusive transport in the gas phase is negligible (if compared to the axial 

convective transport). 

If we integrate the law reported in 4-1 along the membrane, coupled with the hydrogen convective 

mass transfer in gas phase in the axial direction only (gas assumed as plug flow), we can obtain an 

analytical solution, giving the global hydrogen permeation flowrate as a function of a mean hydrogen 

partial pressure:  

𝑄𝐻2,𝑝 = (
𝐴

𝛿
)
𝑝
𝑝𝑒0𝑒

−
𝐸𝑝𝑒
𝑅𝑇√𝑃𝐻2̅̅ ̅̅ ̅ [mol s-1] 4-3 

where 𝐴 = 2𝜋 (
𝑟𝑜+𝑟𝑖

2
) 𝐿𝑁𝑡𝑢𝑏𝑒𝑠  is the total membrane exchange surface calculated at the mean 

thickness diameter and the mean partial pressure square root is: 

√𝑃𝐻2̅̅ ̅̅ ̅ = √𝑃𝑔𝑎𝑠𝑋𝐻2̅̅ ̅̅ ̅=√𝑃𝑔𝑎𝑠
𝑋𝐻2 𝑟+𝑋𝐻2 𝑖𝑛

2
  [Pa0.5] 4-4 

where the mean hydrogen concentration 𝑋𝐻2̅̅ ̅̅ ̅ is calculated as the arithmetic mean between inlet and 

retentate side. This expression is valid if the hydrogen concentration varies linearly along the 

permeator. A mathematical demonstration of equation 4-3 is provided in Annexe V. 

4.3.2 √𝑃𝐻2̅̅ ̅̅ ̅ dependence 

According to equation 4-3, at a fixed temperature, the hydrogen permeation flowrate should increase 

linearly with the hydrogen mean partial pressure square root, since all the other parameters are 

constant. For each tested condition, we obtain experimental measurements of 𝑄𝐻2,𝑝 as explained in 

3.4.2.4, and the mean hydrogen partial pressure square root √𝑃𝐻2̅̅ ̅̅ ̅ according to Equation 4-4. 𝑃𝑔𝑎𝑠 is 

the measured gas pressure at permeator inlet, 𝑋𝐻2 𝑖𝑛 is equal to 2.926% and 𝑋𝐻2 𝑟  is the retentate 

hydrogen molar fraction measured by µGC. For each temperature distinctly, we plot on a x-y graph the 

𝑄𝐻2,𝑝 measurements as a function of √𝑃𝐻2̅̅ ̅̅ ̅, in order to verify the mathematical relationship between 

the two variables. If the dependence is linear, it means that the theoretical law in equation 4-3 is 

respected by the experimental results, over the pressure range of interest. In particular, it means that 

the Sieverts law is valid, since the hydrogen permeation flowrate increases linearly with the square 
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root of the hydrogen partial pressure, thus demonstrating that the hydrogen molecules dissociation at 

the membrane surface is at equilibrium (equilibrium between dissociation and recombination).  

To check the linearity between 𝑄𝐻2,𝑝  and √𝑃𝐻2̅̅ ̅̅ ̅ , a linear regression (Excel tool) is applied to the 

experimental data, for each temperature dataset separately; in particular a zero intercept is imposed 

(i.e. regression line of the type 𝑦 = 𝑎𝑥), in order to be coherent with the law in 4-3. However, the aim 

is to compare the linear regression with the law in 4-3 over the pressure range experimentally 

investigated only. We are not allowed to extrapolate data up to very low (approaching the zero) or 

very high pressures, where some hypotheses made to establish the permeation law (i.e. ii, iii, ix, x in 

paragraph 4.3.1) may not be valid any-more. Once the regression line is established, the linearity 

goodness is evaluated by means of the R2 coefficient; if clear deviation from linearity are found for 

some data, they should not be considered for the following analysis.  

4.3.3 Temperature dependence: permeability coefficient’s law 

For a fixed hydrogen partial pressure, the permeation should follow exponentially the temperature, 

due to the permeability coefficient Arrhenius law type. However, to verify this dependence we proceed 

by two steps: at first, we obtain the permeability coefficient at each temperature; then, we verify the 

temperature dependence of the set of coefficients. In fact, if we consider a single temperature, the 

permeability coefficient links linearly the permeation flowrate to the partial pressure square root; 

therefore, we can easily obtain its value from equation 4-3 as explained below.   

By considering the data which well respect the 𝑄𝐻2,𝑝  -√𝑃𝐻2̅̅ ̅̅ ̅ linearity, the expression in 4-3 can be 

rewritten as follows: 

𝑄𝐻2,𝑝

(
𝐴
𝛿
)
𝑝

= 𝑝𝑒(𝑇)√𝑃𝐻2̅̅ ̅̅ ̅ [mol s-1 m-1] 4-5 

where the permeability coefficient at the temperature T is 𝑝𝑒(𝑇) = 𝑝𝑒0𝑒
−
𝐸𝑝𝑒

𝑅𝑇 . Therefore, from the 

experimental data, we can obtain the values of 𝑝𝑒(𝑇) for each tested temperature: if we plot on y-x 

the ratio 𝑄𝐻2,𝑝/
𝐴

𝛿
 (y) versus √𝑃𝐻2̅̅ ̅̅ ̅  (x), the angular coefficient 𝑎  of the regression line 𝑦 = 𝑎𝑥 , 

corresponds precisely to 𝑝𝑒(𝑇).  

Then, the dependence from temperature can be checked by rewriting the permeability exponential 

law as follows: 

𝑙𝑛[𝑝𝑒(𝑇)] = −
𝐸𝑝𝑒

𝑅

1

𝑇
+ 𝑙𝑛(𝑝𝑒0)   4-6 

where the logarithm has been applied to both side of the equation. By plotting on a y-x chart 𝑙𝑛[𝑝𝑒(𝑇)] 

(y) versus 
1

𝑇
 (x), we can verify by a linear regression of the type 𝑦 = 𝑎1𝑥 + 𝑏1  if the law in 4-6 is 

respected. If so, it means that the permeability coefficient follows well the temperature exponential 

behavior as predicted from the theoretical permeation law. Moreover, by comparing the regression 

line with equation 4-6, we obtain the permeation activation energy and the pre-exponential factor, 

respectively, as follows: 

𝐸𝑝𝑒 = −𝑎1𝑅  [J mol-1 ] 4-7 
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𝑝𝑒0 = 𝑒𝑏1  [mol s-1 m-1 Pa-0.5] 4-8 

4.4 Permeation’s law assessment 

4.4.1 Gas-vacuum test 

Following the method presented in paragraph 4.3.2, by plotting the 𝑄𝐻2,𝑝(𝑅𝐷)  measurements as 

function of √𝑃𝐻2̅̅ ̅̅ ̅, for each tested temperature, we can verify if the experimental results follow the 

integrated permeation law form of equation 4-3. Figure 4-7 reports  𝑄𝐻2,𝑝(𝑅𝐷) for temperatures from 

T1 (Tmean=293°C) to T7 (Tmean=434°C) and at least five gas pressure (2, 5, 7, 9 and 10 bar a); the 

corresponding values of √𝑃𝐻2̅̅ ̅̅ ̅ are between 70 Pa0.5 and 170 Pa0.5. The relative uncertainty of the 

𝑄𝐻2,𝑝(𝑅𝐷) measurements is expected to be lower than ±10%, as explained in section 4.2.4. 

The following comments can be done: 

 at higher temperatures correspond higher permeation rates, as expected from theory;  

 from T1 to T5, 𝑄𝐻2,𝑝 increases linearly with √𝑃𝐻2̅̅ ̅̅ ̅ for all the gas pressures; 

 for T6 and T7, 𝑄𝐻2,𝑝 increases linearly up to √𝑃𝐻2̅̅ ̅̅ ̅=140 Pa0.5;  

 for T6 and T7, at √𝑃𝐻2̅̅ ̅̅ ̅>140 Pa0.5  𝑄𝐻2,𝑝  does not linearly increase, actually it is stable or it 

decreases (T7). Possible explanations of this behavior are provided in paragraph 4.6.5.  

 

Figure 4-7 Gas-vacuum test - Hydrogen permeation flowrate vs mean partial pressure square root: RD for 
temperatures from T1 to T7 with regression lines 

As explained in 4.3.3, by excluding the points which do not respect the linearity, we obtain the 

permeability coefficients for all temperatures from T1 to T7. Figure 4-8 reports the ratio 𝑄𝐻2,𝑝/
𝐴

𝛿
  

versus the partial pressure: for each temperature the corresponding regression line equation is 

reported, whose angular coefficient corresponds to the permeability coefficient expressed in [mol s -1 

m-1 Pa-0.5]. 
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Figure 4-8 Gas-vacuum test - 𝑄𝐻2,𝑝/
𝐴

𝛿
 ratio vs mean partial pressure square root: permeability coeff icient 

determination from T1 to T7 

If we consider Tmean as the average temperature of the membrane during tests, we can trace the 

permeability law coefficients from the linear regression showed in Figure 4-9 as function of 1/T, 

confirming the Arrhenius law of permeability. In particular, we obtain 𝐸𝑝 = 46309 [J mol-1] and 𝑝𝑒0 =

1.08 10−7 [mol m-1 s-1 Pa-0,5]. 

 

Figure 4-9 Gas-vacuum test - ln(pe) vs 1/T : permeability law with temperature 

As explained in paragraph 3.4.1.1 during gas-vacuum test, temperature is not uniform over the 

permeator shell length, presenting deviations of the order of 20°C to 50°C according to the test (see 

Table 3-7); moreover, there is no evidence that the membrane is at the same temperature of the shell, 

since radiative heat loss can occur in the vacuum, in absence of sodium, thus creating a temperature 

delta in the radial direction. Therefore, the mean temperature used to estimate the permeation 

coefficients is certainly not the “real” temperature of the membrane. Nevertheless, it is worth noting 
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that a good linear dependence between ln(pe) and 1/T is found, confirming the Arrhenius law of 

permeability. If we look at Figure 4-9, deviations seem to appear for the two highest temperatures 

(Tmean of 410°C and 434°C respectively). This means that, globally, the mean temperature estimations 

are coherent with each other. However, we may consider that the entire line could be shifted up or 

down, according to the possible mean temperature under or overestimation respectively. Of course, 

this will produce an estimation of the permeability coefficients different from that one proposed here. 

A comparison with gas-sodium result is provided in 4.6.1 in order to give more explanations.  

4.4.2 Gas-sodium test 

During gas-sodium test, the estimation of the hydrogen permeation rate is given exclusively by the 

retentate concentration measurement by gas chromatography, since there is no possibility to have a 

direct measurement on permeate side, as for gas-vacuum test. Moreover, the tested conditions 

provide a permeation rate high enough in order to have a low uncertainty and consequently a high 

confidence on µGC measurements (see paragraph 4.2.3). In particular, the relative standard 

uncertainty of 𝑄𝐻2,𝑝(µ𝐺𝐶) varies from a maximum of 15% to a minimum of 3%, for the lowest and the 

highest measured flowrate respectively. 

Measurements of 𝑄𝐻2,𝑝(µ𝐺𝐶) are plotted versus √𝑃𝐻2̅̅ ̅̅ ̅. As shown in Figure 4-10, we can highlight the 

following points: 

 For √𝑃𝐻2̅̅ ̅̅ ̅<140 Pa0.5, 𝑄𝐻2,𝑝 increases linearly with √𝑃𝐻2̅̅ ̅̅ ̅ for all the temperatures; 

 For √𝑃𝐻2̅̅ ̅̅ ̅>140 Pa0.5  𝑄𝐻2,𝑝 does not linearly increase, in fact it is stable or it decreases 

In particular, a clear discontinuity appears between the points corresponding to gas pressures of 7 bar 

and 9 bar, where the linear increment of permeation flux is no more respected and a pseudo-

saturation condition seems to be achieved. Moreover, the permeation decrease at 375 °C - 10 bar 

deviates from the theoretical fundamentals of permeation; this incoherence cannot be explained by 

the measurement incertitude and let us suppose that permeation could be limited at higher pressures 

by another resistance mechanism not considered by the integrated permeation law. Moreover, this 

behavior reflects the same results found for the higher flowrates and pressures measured during gas 

test.  



Chapter 4 - Experimental results 
__________________________________________________________________________________ 

84 
 

 

Figure 4-10 Gas-sodium test - Hydrogen permeation flowrate vs mean partial pressure square root: µGC 
measurements for temperatures from 375°C to 450°C  with regression lines 

We focus our analysis on the linear “region” (i.e. √𝑃𝐻2̅̅ ̅̅ ̅<140 Pa0.5) and we obtain, according to 4.3.3, 

the permeability coefficients and their relationship with the temperature. In particular, with reference 

to Figure 4-11 and Figure 4-12, we obtain 𝐸𝑝 = 40757 [J mol-1] and 𝑝𝑒0 = 4.80 10−8 [mol m-1 s-1 Pa-

0,5]. It is worth noting, as for the gas test, the good linearity between the permeability and the 

temperature, confirmed by the very high R2 value. 

 

Figure 4-11 Gas-sodium test - 𝑄𝐻2,𝑝/
𝐴

𝛿
 ratio vs mean partial pressure square root: permeability coeff icient 

determination from 375°C to 450°C 
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Figure 4-12 Gas-sodium test - ln(pe) vs 1/T : permeability law with temperature 

4.5 Gas-sodium test: permeate (sodium) side measurements 

4.5.1 Plugging indicator and sodium purification 

Before to start a permeation test, sodium is purified in order to reach a very low hydrogen 

concentration (typically below 100ppb), which depends from the coldest point inside the cold trap, its 

efficiency and the circuit global pollution content. During the purification phase, with reference to 

Figure 3-11, both plugging indicator (PI), cold trap (CT) and test section (TS) are open. The PI gives a 

qualitative estimation of the hydrogen content inside the circuit: during a measurement cycle, sodium 

which circulates inside PI is cooled down and, as the hydrogen contained in sodium crystallizes in the 

PI pellet’s grooves, the sodium flowrate decreases, as consequence of the PI pellet cross section 

reduction. The temperature corresponding to the first reduction of the flowrate is called Plugging 

temperature. Then the cooling is stopped, Na temperature increases and the impurities dissolve when 

the Na temperature is higher than the respective impurity’s saturation temperature. The highest the 

hydrogen content is, the fastest the sodium flowrate decreases inside PI grooves. As reported in Figure 

4-13, six PI cooling cycles are performed over about 36 hours (look at the green line, corresponding to 

sodium temperature at the coldest point of the PI: it can be seen that at the beginning of the 

purification campaign, the hydrogen content is high and the slope of the curve QNa = f (time), is also 

high; as the hydrogen content decreases, the slope is reduced and consequently the period of the cyclic 

measurement elongates. At the end, a stationary condition is reached, when the PI sodium flowrate 

does not decrease more, meaning that the sodium purification has allowed to trap all the impurities 

dissolved (Hydrogen saturation temperature in the sodium is equal to the cold point temperature in 

the cold trap, at equilibrium). 
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Figure 4-13 Gas-sodium test: plugging indicator (PI) temperature (green) and sodium flowrate (blue) evolution during 
sodium purification 

When the stationary condition, with regards hydrogen content is reached and a stable temperature is 

maintained inside the test section, the measurement with hydrogen-meter and permeation test can 

start. The PI is isolated in order to avoid any perturbation of the hydrogen content in the main loop 

due to partial retention induced by the hydrogen trapping in the PI during the measurement of the so-

called plugging temperature. 

4.5.2 Hydrogen meter permeability estimation 

For our experimental purpose, there are two ways to apply Equation 3-31, which links the hydrogen 

concentration inside sodium (𝑦𝐻,𝑁𝑎) to the mass spectrometer signal (𝑆𝑀𝑆,𝐻2): 

1. we know “a priori” the value of the hydrogen-meter permeability coefficients, i.e. 𝑝𝑒0,DH and 

𝐸p,DH, and we obtain 𝑦𝐻,𝑁𝑎 values corresponding to different 𝑆𝑀𝑆,𝐻2 measurements 

2. we know “a priori” the value of 𝑦𝐻,𝑁𝑎 and we obtain 𝑝𝑒0,DH and 𝐸p,DH values corresponding 

to different 𝑆𝑀𝑆,𝐻2 measurements  

In our case, we do not know a priori the DH permeability. Some literature references are available, 

with a certain dispersion between each other, but the “real” DH permeability could currently be 

different from the chosen literature reference, then the calculated 𝑦𝐻,𝑁𝑎  could be consequently 

affected by an error. Therefore we try, by means of a dedicated procedure, to estimate more precisely 

the “real” permeability coefficient of the hydrogen-meter. In practical terms, we perform hydrogen-

meter measurements of the same known hydrogen concentration at different temperatures, without 

any hydrogen injection or sodium purification, so that we can consider the 𝑦𝐻,𝑁𝑎 value as constant 

during the test. Therefore, we obtain the permeability law with temperature; in fact, we can rewrite 

equation 3-31 as follows: 

𝑝𝑒0,DH 𝑒𝑥𝑝 
−𝐸𝑝,𝐷𝐻
𝑅𝑇 = [

𝐾𝑀𝑆𝐾𝑆,𝑁𝑎(𝑇)

(
𝐴
𝛿
)
𝐷𝐻

𝑦𝐻,𝑁𝑎

] 𝑆𝑀𝑆,𝐻2 [mol m-1 s-1 Pa-0.5] 4-9 

Let us call the term in the brackets 𝐶. By dividing by 𝐶 and applying a logarithm on both side we obtain 

ln (𝑆𝑀𝑆,𝐻2) = −
𝐸𝑝,𝐷𝐻

𝑅

1

𝑇
+ ln (

𝑝𝑒0,𝐷𝐻

𝐶
)   4-10 

The term 𝐶  is calculated considering a mean 𝐾𝑆,𝑁𝑎  value (412 ppb Pa-0.5, calculated according to 

Equation 3-29) between the highest and the lowest temperature, 450°C and 375°C respectively; in 

particular, there is a relative deviation of ±2% between the mean and the minimum/maximum value. 

T(PI)  

Q_Na(PI)  
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The value of 𝑦𝐻,𝑁𝑎 is estimated at 450°C, after the injection T7-P8 (cf. Table 4-2), by means of Equation 

3-31, using a “first attempt” permeability value, taken from literature (Robertson “best fit”[44], i.e. 

𝐸𝑝 = 54560 [J mol-1] and 𝑝𝑒0 = 3.33 × 10−7[mol m-1 s-1 Pa-0.5]). In particular, we obtain 𝑦𝐻,𝑁𝑎 equal 

to 335 ppb, with a relative uncertainty of around 10% (cf. Annex IV-B). Therefore, since the term 𝐶 is 

constant and having measurements of 𝑆𝑀𝑆,𝐻2 at different temperatures, we can obtain the value of 

𝐸𝑝,𝐷𝐻 and 𝑝𝑒0,𝐷𝐻 by linear regression of experimental data compared to Equation 4-10. In Figure 4-14 

the experimental measurements of 𝑆𝑀𝑆,𝐻2  are reported as function of temperature: the perfect 

linearity between ln (𝑆𝑀𝑆,𝐻2) and 
1

𝑇
 demonstrates the validity of the Arrhenius law of the permeability. 

By comparing the regression line equation on the graph with Equation 4-10, we obtain the following 

permeability values: 𝐸𝑝,𝐷𝐻 = 45782,7  [J mol-1] and 𝑝𝑒0,𝐷𝐻 = 7.84 × 10−8 [mol m-1 s-1 Pa-0.5]. It is 

worth noting that 𝐸𝑝,𝐷𝐻  depends only on the constant parameter 𝑅, while 𝑝𝑒0,𝐷𝐻  depends on the 

value of  𝐶. In particular, the sensitivity of 𝑝𝑒0,𝐷𝐻 correspondent to the above reported variability of 

𝐾𝑆,𝑁𝑎  and 𝑦𝐻,𝑁𝑎 , is of ±1% and ±8% respectively. A comparison of 𝐸𝑝,𝐷𝐻  and 𝑝𝑒0,𝐷𝐻  with some 

literature values and with the experimental results obtained for the permeator prototype in gas-

sodium configuration is reported in Table 4-4.  

 

Figure 4-14 Hydrogen-meter permeability estimation : experimental measurements of 𝑆𝑀𝑆,𝐻2  at different 
temperatures for a given hydrogen concentration inside sodium 

4.5.3 Hydrogen concentration transient in sodium 

Figure 4-15 shows the mass spectrometer signal associated to the hydrogen-meter during a 

permeation test; we will call it DH-signal or QMS-signal indistinctly. In particular, time is reported on 

the x-axis, while a double y-axis is provided by the QMS analysis software: the total pressure given by 

the Bayard-Alpert gauge in mbar on the left and the QMS-signal in Torr on the right, with different 

colors according to the molecular mass detected. The red line corresponds to mass 2, i.e. molecular 

hydrogen; it is worth noting that the total pressure and the mass 2 signal are perfectly in accordance, 

thus confirming that hydrogen is the only element present in the system; this is confirmed also by the 

almost nil signals of mass 18 (water vapor) and mass 28 (air). Nevertheless, for our analysis we will 

refer only to the hydrogen signal (red line), called elsewhere 𝑆𝑀𝑆,𝐻2.  
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We can clearly identify three phases: at the beginning, when sodium purification has ended, the signal 

is stable meaning that the hydrogen concentration is not changing. The second phase, as the 

permeation test start hydrogen circulates inside the permeator membranes and diffuses to sodium, is 

characterized by the hydrogen-meter signal linear increase until the permeation test end; this behavior 

corresponds to a hydrogen concentration constant increase inside sodium, caused by a constant intake 

provided by the permeation. In the third phase, once the test ends, the signal becomes stable again, 

since no more hydrogen is introduced inside sodium. This analysis constitutes a very important result 

in qualitative terms, because it shows a coherent and nearly instantaneous response of the DH to the 

test which indicates a potentially good flexibility of this permeation system for a quick adjustment of 

hydrogen concentration in sodium.  

Moreover, by means of equation 3-31 the value of 𝑆𝑀𝑆,𝐻2  is converted into ppb concentration, 

therefore a quantitative analysis is possible; in particular, since the temperature is constant all along a 

permeation test, the 𝑦𝐻,𝑁𝑎 increase is directly proportional to the DH-signal one. 

 

 

Figure 4-15 Gas-sodium test: DH-mass spectrometer signal evolution during a single permeation test (T7 -P8) 

When a permeation test is over, the next one can be started unless the hydrogen concentration inside 

sodium is too high; when this happens, a purification is performed before to launch permeation tests 

again. The corresponding signal evolution during a purification is reported in Figure 4-16; this 

measurement is useful to validate the purification process and to demonstrate its effectiveness in 

reducing the hydrogen content inside sodium.  
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Figure 4-16 Gas-sodium test: DH-signal evolution during sodium purification between two permeation tests (T7-P2 
and T7-P3) 

4.5.4 Permeation flux estimation 

With reference to 𝑦𝐻,𝑁𝑎  measurements at the beginning and at the end of a permeation test, the 

hydrogen concentration variation over a test is defined as follows: 

∆𝑦𝐻,𝑁𝑎 = 𝑦𝐻,𝑁𝑎 (𝑡𝑒  ) − 𝑦𝐻,𝑁𝑎 (𝑡0 )  [ppb] 4-11 

The measured hydrogen increase is entirely imputed to the permeation flux intake coming from the 

permeator. From a theoretical point of view, since the sodium contained inside the circuit is in contact 

with a cover gas (Argon) for security reasons, a small part of the hydrogen dissolved inside sodium 

would then dissolve into the cover gas, thus causing a hydrogen loss. Nevertheless, a theoretical 

calculation based on the Sieverts equilibrium (see Annex VI) between sodium and the cover gas, 

demonstrates that this loss is negligible.  

Assuming that permeation is constant along the test (i.e. steady state), an estimation of the hydrogen 

permeation flowrate is given by: 

𝑄𝐻2 𝑝 = 𝜌𝑁𝑎𝑉𝑁𝑎
∆𝑦𝐻,𝑁𝑎 [𝑝𝑝𝑏]

2𝑡𝑝𝑒𝑟𝑚𝑀𝑀𝐻∗106
  [mol s-1] 4-12 

Where 𝑡𝑝𝑒𝑟𝑚 [s] is the duration of the permeation test, 𝜌𝑁𝑎  [kg m3] is the sodium density considered 

homogeneous, 𝑉𝑁𝑎  [m3] is the sodium volume circulating during the permeation test (calculated as 

internal piping volume of test section, Plugging Indicator section, main circuit and heating tank), 𝑀𝑀𝐻  

[g mol-1] is the hydrogen molar mass, the factor 2 is applied to convert H to H2 moles and the factor 106 

is to convert ppb to g/kg. However, data referring to sodium are affected by high uncertainty: in fact 

sodium temperature, and hence density, is not homogeneous over the different circuit parts; 

moreover the sodium volume is calculated making some approximations on the internal volumes. 

Details on volume calculation and the related uncertainty estimation is provided in Annex IV. 

Nevertheless, it is interesting to obtain this data in order to have a comparison with the retentate side 

measurements. 
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4.5.5 Retentate-permeate sides comparison 

A comparison between gas side measurements, by gas chromatography, and sodium side 

measurements, by mass spectrometer, is provided in Figure 4-17; it reports 𝑄𝐻2,𝑝 measured with both 

techniques (µGC and QMS) for all the tested conditions. A good agreement is found at the two highest 

temperatures, with a relative percentage difference between the two measurement techniques below 

10% (d) and 20% (c) respectively. At lower temperatures the deviation is of around 30% (b) and 40% 

(a), which is pretty high and denotes a worst agreement. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-17 Gas-sodium test, 𝑄𝐻2,𝑝 measurements : comparison between µGC and QMS measurements at 375°C (a), 

400°C (b), 425°C (c) and 450°C (d) 

However, QMS measurements should be considered by far less reliable, since they are affected by a 

quite high uncertainty, coming from the spectrometer calibration procedure, combined with 

uncertainty of sodium parameters composing equation 4-12, as reported in Annex IV. Ultimately, 

sodium side measurements can be useful to validate approximately the hydrogen mass balance 

through the permeator, but can not be used to obtain a precise estimation of the hydrogen permeation 

rate. Nevertheless, the role of the results showed in Figure 4-17, is then to confirm that hydrogen 

content variation of sodium corresponds to the hydrogen source coming from the permeator, at least 

as order of magnitude. This result could be trivial, but it demonstrates a reliable validation of the entire 

process application and measurement techniques and very promising perspectives for a precise 

control of dissolved hydrogen concentration in sodium circuits. 
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4.6 Discussion on results 

4.6.1 Gas-vacuum and gas-sodium comparison 

The comparison between gas-vacuum and gas-sodium results is useful especially if we want to have 

information on potential experimental deviation of membrane temperature during gas test. In fact, if 

we assume that the permeation integral law is valid, we should have the same results at the same 

temperature both for gas-vacuum and gas-sodium test. This is motivated by the following reasons: 

1. The membrane is the same and the permeability coefficient is assumed to be equal for both 

tests. 

2. The permeate partial pressure (i.e. vacuum side and sodium side respectively) is negligible in 

both cases if compared to the feed/retentate side partial pressure, so the integral law is 

reduced to the same form, giving the same permeation flowrate. 

3. No additional resistance in the sodium phase is theoretically predicted. 

If we look at Figure 4-18, in both cases the permeation looks to be driven linearly by the partial pressure 

square root only up to a certain partial pressure and temperature, where we can assume the 

permeation law validity. If we assume for the gas-vacuum test the mean temperatures from Table 3-7 

(i.e. T4=365°C, T5=387°C, T6=410°C, T7=434°C), the permeation flowrates seems to be incoherent if 

compared to the gas-sodium results. In particular, T7-gas results are between 425-Na and 450-Na, 

quite in agreement with the Tmean value of 434°C; T6-gas points are all below the 400-Na points, while 

Tmean is 410°C; T5-gas seems to coincide with the 375-Na points, while Tmean is 387°C. It seems that the 

Tmean is not a good estimation of the real equivalent membrane’s temperature during gas-test, since 

we cannot find a coherence in the results distribution compared to the gas-sodium results. 

 

Figure 4-18 Hydrogen permeation flowrate vs mean partial pressure square root: compar ison between gas-vacuum 
and gas-sodium results 

If we compare on the same graph the permeability coefficients at different temperatures, the above 

consideration are clarified: when Tmean is used to estimate the gas-vacuum test membrane 

temperature (gray points “Gas-T mean”), a lower permeability coefficient is found. This is not coherent 

with the hypotheses above listed: it would imply that the high-vacuum permeate side adds a higher 
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resistance to the permeation than the one provided by sodium, while the hydrogen partial pressure 

inside vacuum is much lower than that one inside sodium. On the other hand, it seems much more 

reasonable to think that the real membrane temperature is simply over-estimated by Tmean. 

As an example, we have plotted in Figure 4-19 the same permeability values as a function of an 

“equivalent” temperature (yellow line “Gas-T eq”), in such a way that the permeability regression line 

coincide with the gas-sodium results. Table 4-3 reports the equivalent temperature values and their 

deviations from Tmean. Except for T7, it seems reasonable to think that a constant bias of around 20°C 

separates the Tmean estimation from the membrane real temperature during gas-vacuum test, because 

of the temperature non-uniformity along the permeator and the probable heat losses. 

Table 4-3 Gas-vacuum temperature assessment: mean and equivalent temperature values  

  T4 T5 T6 T7 

Tmean [°C] 365 387 410 434 

Teq [°C] 344 366 390 430 

Teq-Tmean [°C] -21 -21 -20 -4 

 

Nevertheless, a much lower deviation is found for T7, meaning that or the temperature is less 

underestimated or a real change in permeation takes place. In particular, it is worth noting that gas-

vacuum tests were performed before gas-sodium tests, starting from the lower temperature (T1) to 

the highest (T7). The above results could be explained by the hypothesis that a “aging” process of the 

membrane occurs, for sufficiently high temperature and high pressure, producing microstructural 

changes inside the membrane affecting the hydrogen permeation. In our case, this could happen 

during gas tests at T6 for the two highest pressures, where the linearity is not respected, then providing 

a modified permeation behavior for the following tests performed at T7. A more in-depth analysis on 

this point is provided in section 4.6.5. 

 

Figure 4-19 ln(pe) vs 1/T : permeability law with temperature – comparison between gas-vacuum and gas-sodium 
test. Estimation of an equivalent temperature for gas-vacuum test 
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4.6.2 Comparison with the literature 

The objective of this experimental study is not to give a precise estimation of the nickel coefficients 

concerning hydrogen permeation, diffusion and solution properties. The aim is rather to evaluate the 

global performance of the prototype, in comparison with a theoretical law. Nevertheless, it is 

interesting to compare the permeability coefficients obtained for the permeator prototype during gas-

sodium experiments (par 4.4.2) with previous literature results, in order to understand if our results 

are coherent with them, at least qualitatively. Moreover, the permeability coefficient obtained for the 

hydrogen-meter membrane (par. 4.5.2) is reported for comparison. We will not consider gas-vacuum 

results for this analysis, which request a precise knowledge of the membrane temperature, since they 

are affected by a considerable uncertainty on the temperature measurements, as explained in 

paragraph 4.4.1 .  

Permeability-temperature dependence, already presented in Figure 4-12, is here compared in Figure 

4-20 with main literature correlations, reported both in paragraph 2.2.3 and in Sakamoto’s review [41], 

concerning nickel permeation properties. The corresponding pre-exponential factors and activation 

energies, together with calculated permeability between 375°C and 450°C are reported in Table 4-4. It 

is worth noting that our experimental results for the prototype and the hydrogen-meter are globally 

in accordance with the dispersion of previous results. In particular, the literature dispersion is due to 

differences both on the pre-exponential factor (oscillating between 1x10-7 and 8x10-7 mol m-1 s-1 Pa-0.5) 

and on the activation energy (50000-60000 J mol-1). It is worth noting that the hydrogen-meter and 

the prototype activation energies are both lower than all the literature values. In particular, focusing 

on the permeator prototype, two main evidences can be highlighted: 

1. Our permeability coefficients are higher than the majority of the literature analyzed. Only 

Belyakov and Ionov, Gel’d and Smithells and Ransley report higher values. 

2. Both our permeation pre-exponential factor and activation energy are considerably lower than 

all previous results and out of the observed variability range. Even if this double deviation leads 

to a permeability coefficient in accordance with or slightly higher than previous results, we 

cannot ignore this discrepancy. 
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Table 4-4 Permeability pre-exponential factors, activation and calculated values between 375°C and 450°C. 
Comparison between main literature, gas-sodium experimental results for the permeator prototype and hydrogen-
meter 

Author Range T pe0 Ep 𝒑𝒆𝟎𝒆
−

𝑬𝒑
𝑹𝑻[𝑲] 

  °C °C molH2 m-1 s-1 Pa-0,5 x107  J mol-1  molH2 m-1 s-1 Pa-0,5 x1011 

  Tmin Tmax   375°C 400°C 425°C 450°C 

 

Lombard 370 693 4.48 59410 0.73 1.10 1.61 2.29 

Deming and Handricks 403 745 3.94 62130  0.59 0.88 1.28 

Borelius and Lindblom 180 550 7.26 57740 1.61 2.40 3.4 4.90 

Ham 376 600 4.65 55310 1.62 2.37 3.38 4.70 

Smithells and Ransley 248 750 3.42 50380 2.97 4.21 5.81 7.84 

Shcherbakova 350 600 3.18 53350 1.60 2.31 3.24 4.46 

Gorman and Nardella 400 850 3.60 55230  1.86 2.65 3.68 

Belyakov and Ionov 350 600 5.42 53140 2.83 4.08 5.73 7.86 

Gel'd 360 850 7.55 50210 6.78 9.59 13.2 17.8 

Fischer 150 723 1.99 52430 1.19 1.70 2.38 3.25 

Robertson "best fit" 24 1060 3.33 54560 1.34 1.95 2.76 3.82 

AD Le claire 20 1060 3.33 54598 1.33 1.93 2.74 3.79 

Desremaux/Laplanche 200 362 3.46 56106     

Altunoglu 100 400 3.35 54240 1.42    

Kuhn and Johnson 0 327 5.92 54900     

This study 

 Prototype (exp gas-Na) 375 450 0.48 40757 2.49 3.30 4.28 5.46 

Hydrogen-meter 375 450 0.78 45783 0.98 1.34 1.80 2.36 

 

 

Figure 4-20 ln(pe) vs 1/T : permeability law with temperature - comparison between main literature and gas-sodium 
experimental results 
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Trying to give an explanation to the difference between our experimental permeability coefficients 

and the literature, we should remember that the permeability is a conventional parameter, originally 

defined as the product of the diffusion coefficient and the Sieverts constant. Therefore, a deviation on 

the permeability coefficient underlies a deviation on diffusivity or on Sieverts constant (and 

consequently on the hydrogen solubility in nickel) or on both. In this study we do not have the 

possibility to measure nor the diffusivity nor the solubility of hydrogen inside nickel, since it needs a 

time-dependent analysis of the permeation in the initial transitory and more complex measurement 

techniques; therefore, we can only try to give qualitative explanations in this sense.  For example, it is 

interesting to compare our permeability with the diffusivity and solubility coefficients presented in 

chapter 2 (ref to paragraph 2.2.3). In fact, we can rewrite the permeation flow as follows: 

𝑄𝐻2,𝑝 = (
𝐴

𝛿
)
𝑝
(𝐷0𝑒

−
𝐸𝐷
𝑅𝑇) (𝐾𝑆0𝑒

−
𝐸𝑆
𝑅𝑇)√𝑃𝐻2̅̅ ̅̅ ̅ [mol s-1] 4-13 

Where the product (𝐾𝑆0𝑒
−
𝐸𝑆
𝑅𝑇)√𝑃𝐻2̅̅ ̅̅ ̅ gives the hydrogen solubility in nickel. At a fixed temperature, 

since the diffusivity is constant, the permeation increases linearly with the partial pressure square root; 

in particular the increase should be directly proportional to the solubility increase. Practically, when 

we increase the hydrogen partial pressure, while the diffusivity is maintained constant, we increase its 

solubility inside the membrane, thus increasing the permeation: we could say that, when working on 

an isotherm, we ideally should have a “solubility” driven permeation. Therefore, it is interesting to 

compare on an isotherm the rates of increase of the measured hydrogen permeation flows with the 

hydrogen-nickel solubility provided by the literature. Figure 4-21 reports on the same graph the 

experimental hydrogen permeation flowrates (expressed in term of H moles), compared with the H-Ni 

solubility given by Bourgeois [43], expressed as atomic ratio H/Ni. Both values are plotted on the x-axis 

(upper and lower respectively), against the hydrogen partial pressure square root on the y-axis. 

Although it is not possible to do a comparison in absolute terms, it can be clearly noticed that, for each 

temperature, the rate of increase with the partial pressure is different for the two datasets: in 

particular, the experimental flowrates reach a maximum percentage increase (at a partial pressure 

between 140 Pa0.5 and 150 Pa0.5) of about 70% of its minimum value at 75 Pa0.5. Instead, the Bourgeois 

theoretical solubility increases linearly all over the pressure range, with a percentage increase of 120% 

between 75 Pa0.5 and 160 Pa0.5. This result clearly denotes that, even if a good linearity with the partial 

pressure square root is maintained up to 140 Pa0.5, the solution mechanism found in our experiments 

is different from what is provided by the literature. 
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Figure 4-21 Experimental hydrogen permeation rates compared with hydrogen-nickel solubility on isotherm lines 
(375, 400, 425 and 450°C) given by Bourgeois’ model[43] 

However, once noticed that the observed solution behavior is not in line with previous results, we have 

not explained yet why we found a relatively higher permeability coefficient, with a lower activation 

energy. In fact, without having information on the solubility absolute values or on the diffusivity value, 

we can not state if it is a product of a higher solubility, or a higher diffusivity or both.  

Nevertheless, a reflection about the nature of the literature studies is necessary at this stage. It is 

worth noting that Bourgeois work [43] refers to an ideal single crystal system, where the hydrogen is 

dissolved only in the interstitial sites. Moreover, main literature experiments, which are globally in 

accord with Bourgeois model, are mainly conducted by measurements on small-size nickel samples of 

plane geometry, with a static pure hydrogen in contact with the membrane, in well controlled and 

homogeneous conditions (i.e. the sample is placed in a closed hot cell with stable temperature, 

hydrogen partial pressure is uniform on the membrane). Both single crystal and polycrystalline nickel 

were analyzed: in the second case, the grain sizes is well known and normally is obtained by means of 

a dedicated annealing process. On the influence of the grain size on the permeation properties, no 

clear interpretation is available. On one side Robertson[44] stated that there is no influence of the 

grain size on the permeation in a polycrystalline nickel; however, in his very detailed review, 

Sakamoto[41] reports that some authors found that hydrogen solubility can be affected by the 

presence of grain boundaries and dislocations inside nickel; as a result, the permeability also is 

affected. In particular Louthan [46] found a higher permeability for a cold worked membrane, due to 

the higher presence of dislocations if compared to an annealed membrane. He interpreted the results 

as indicative of short-circuit diffusion through dislocation network. Other authors also have observed 

higher fluxes along dislocations and have concluded that the higher hydrogen permeability can be due 

either to larger diffusivity or to a higher solubility or both. 
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These considerations give as a possible explanation of our data. In fact, the tubular membrane of the 

permeator prototype is obtained by rolling nickel sheets. Moreover, in order to obtain the specific 

prototype 90° bended geometry, a cold-working is provided during the commercial fabrication 

process, being certainly source of dislocations inside the nickel lattice and non-uniformity in terms of 

grain boundary. Since annealing was not provided after the cold-working, due to technological reasons, 

it is reasonable to think that, due to the strong deformation, a high degree of dislocation was still 

present during our test. If a higher content of hydrogen can be dissolved when dislocations are present, 

this could approximately explain the fact that we obtain a permeability higher than the main literature 

results. In particular, this could be linked to a higher solubility inside the nickel imperfections such as 

grain boundaries and dislocations. If this hypothesis is true, we could also explain the fact that the 

relative solubility increase during the experiments is lower than what is found in the literature: it is 

possible that, since the solution mechanism includes the dislocations in addition to the interstitial sites, 

a different solubility law takes place. 

Finally, when doing a comparison with literature results, particular regard should be payed to the fact 

that our experiments were conducted on a multiple tubular membranes prototype at the pilot-scale, 

taking into account hydrogen partial pressure variation along the membrane due to the gas circulation, 

an extended 3D geometry and possible non uniformities in terms of temperature and hydrogen 

concentration. Moreover, our coefficients are obtained by comparison with an integrated law 

(Equation 4-3) which is based on theoretical hypothesis and assumptions, potentially not fully 

respected during experiments. For example, we have no demonstration that the gas flowrate is 

perfectly equally distributed over the four nickel tubes. These elements are simple example of 

parameters that are not under our control and which were not deeply investigated in this study, which 

is more focused on process issues. Therefore, without any other clear explanation, they could be 

proposed for further investigations.  

Actually, the most likely conclusion is that our results do not correspond to the “ideal” local 

permeability coefficient that can be measured on a nickel sample without defects with a dedicated 

study, but they rather include some “pilot-scale” and non-ideality effects which slightly deviates from 

the main literature measurement. Nevertheless, the permeability coefficient obtained in this study 

should be considered as an empirical parameter, which allows us to accurately represent the prototype 

performances by means of the theoretical law proposed in Equation 4-3. 

4.6.3 Comparison with theoretical models 

In this chapter we have used two approaches to describe the permeation from a theoretical point of 

view:  

- The first is the 1D model, which takes into account the gas and Na phase convective/diffusive 

resistances as well as the membrane diffusion resistance. It needs as input the hydrogen 

diffusion coefficients into the three domains, the fluid dynamic characteristics and the 

geometry of the system, which directly determines the mass transfer coefficients, by means 

of literature relationships between the main dimensionless numbers. Moreover, it has to be 

integrated along the permeator, in order to provide the expected permeation over the entire 

geometry. This implies a certain numerical complexity and effort. 
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- The second is the integrated permeation law, a single equation relationship which links the 

permeation flow to the temperature and the hydrogen mean partial pressure inside the 

permeator. It needs as input the membrane’s geometrical factor and it directly depends from 

the permeability coefficient. It is a simplification of the more complex 1D model, which reduces 

to this law when some specific conditions are verified (see paragraph 4.3.1). In particular, the 

gas and Na phase mass transfer resistances are not considered by this law. From a numerical 

point of view, its application is immediate, since a single equation explicitly connects all the 

parameters. However, if one wants to obtain the permeation flow at certain conditions (T and 

gas pressure), the hydrogen mean partial pressure has to be given as an a-priori input, since 

this simpler approach is not able to calculate it, as the 1D model does.  

When we compare the experimental results to these two theoretical models, it is also necessary to 

assess if the two models are coherent with each other, i.e. if the simplifications made to obtain the 

integrated law from the 1D model are valid. 

At this purpose, Figure 4-22 reports the comparison between gas-sodium experimental results and the 

two above models, assessed considering the Robertson “best fit” permeation coefficients 

(permeability for the integrated law, diffusivity and Sieverts constant for the 1D model). The following 

evidences can be pointed out: 

- The 1D model and the integrated law are well in accordance over the entire pressure and 

temperature domain; a very slight deviation is present mainly at higher temperatures, where 

the 1D model provides a smaller permeation flux (2% to 5% lower than integrated law). This is 

due to the impact of the higher hydrogen partial pressure in Na phase, which occurs when 

higher permeation fluxes are provided, producing a higher hydrogen content inside sodium 

during the test. Nevertheless, despite of this slight deviation which is even lower than the 

measurement uncertainty, it can be assessed that the two models provides globally the same 

result. 

- Experimental results are not in accordance with the models based on Robertson best fit 

coefficients, in particular they shows higher permeation fluxes for every temperature/pressure 

combination. This reflects the facts that the actual experimental permeability is higher than 

the Robertson best fit one.  
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Figure 4-22 Hydrogen permeation flowrate vs mean partial pressure square root : comparison between gas-sodium 
experimental results, 1D model and integrated permeation law. Model’s permeability coefficient is taken from 
Robertson “Best fit”[44] 

Since an experimental permeability coefficient has been obtained in this study (reported in Table 4-4), 

it is interesting to provide model predictions taking as input the experimental permeability coefficient, 

instead of a literature one. Figure 4-23 reports the comparison between the same experimental results 

and the integrated law model, calculated with the experimental permeability coefficient. It is not 

possible here to compute the 1D model, since it is based on the diffusivity coefficient and Sieverts 

constant, which are not available from our experimental results. However, as showed in Figure 4-22, 

we can assume that the 1D model is in accordance with the integrated law results. Two main points 

can be highlighted: 

- In this case, the integrated law predict very well the experimental results at every temperature 

up to a partial pressure square root of around 140 Pa0.5. This is a trivial result, since the 

experimental permeation coefficient has been obtained by comparing experimental results 

with the integrated law; nevertheless, this analysis confirm the fact that, using the appropriate 

permeability coefficient, we are able to correctly predict a-priori the permeation performances 

of the system in a certain interval range. 

- At pressures higher than 140 Pa0.5 the model is not able to correctly predict the experimental 

performance of the permeator. A detailed discussion on this point is provided in paragraph 

4.6.5.   
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Figure 4-23 Hydrogen permeation flowrate vs mean partial pressure square root : comparison between gas-sodium 
experimental results and integrated permeation law. The law’s permeability coefficient is taken from experimental 
results regression 

4.6.4 A surrogate model: effect of non-ideality on the integrated permeation law 

All along this analysis, the experimental results are represented in comparison with the integrated 

permeation law of Equation 4-3, which is basically a linear relationship in the form “y=ax”, where “y” 

is the permeation flux, “x” is the hydrogen partial pressure square root. Therefore, by imposing a linear 

regression of the results in the form “y=ax”, we obtain a permeability coefficient and we find that the 

experimental results are pretty well in accordance with the theoretical law, up to √𝑃𝐻2̅̅ ̅̅ ̅~140 Pa0.5. 

However, by looking more in-depth the linear regression “y=ax” (see Figure 4-10 and Figure 4-11), it 

can be noticed that the lines do not perfectly fit the experimental points. In particular, the regression 

lines are lower than the experimental data at low pressures and higher at high pressures, as a result of 

the fact to force the regression to the form “y=ax”, passing from the axis origin.  

Actually, a better fitting (i.e. a higher regression coefficient R2) would be found if a linear regression in 

the form “y=ax+b” is applied to data at √𝑃𝐻2̅̅ ̅̅ ̅<140 Pa0.5, as showed by Figure 4-24. It is worth noting 

that the lines fit better the experimental points all over the linear pressure range. However, the 

existence of a non-zero “b” coefficient in the regression, does not match with Equation 4-3. Therefore, 

in order to keep a link between the experimental data and the theory, it can be rewritten in the form: 

𝑄𝐻2,𝑝 = (
𝐴

𝛿
)
𝑝
𝑝𝑒0𝑒

−
𝐸𝑝𝑒
𝑅𝑇√𝑃𝐻2̅̅ ̅̅ ̅ + 𝑏 [mol s-1] 4-14 

Where the coefficient b, written in this form, would correspond to a non-zero permeation flowrate for 

a zero √𝑃𝐻2̅̅ ̅̅ ̅. 
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Figure 4-24 Gas-sodium test - Hydrogen permeation flowrate vs mean partial pressure square root: µGC 
measurements for temperatures from 375°C to 450°C with regression lines in the form “y=ax+b”  

Actually, this interpretation has not a physical meaning, for the following reasons: 

 When the hydrogen partial pressure in the feed side is zero, the permeation is nihil by 

definition. 

 The integrated permeation law can not be extrapolated at very low pressures, approaching 

zero, where some of the hypothesis done to set it up are no more valid (cf. paragraph 4.3.1, 

hypothesis ii, iv and ix). 

However, the fact that the experimental measurement does not reflects perfectly the Equation 4-3 

form, could be explained by the hydrogen transport mechanism along the dislocations induced in the 

nickel membrane by the cold-working, as reported in paragraph 4.6.2. In particular, the hydrogen 

which eventually is trapped by the membrane dislocations and defects, could produce an hysteresis 

effect in the permeation-√𝑃𝐻2̅̅ ̅̅ ̅  dependence, which results in a deviation from the “y=ax” ideal form. 

In order to have a quantitative evaluation of this deviation, we compare the surrogate model 

(regression “y=ax+b”) with the regression based on the theoretical law (regression “y=ax”). Figure 4-25 

reports the experimental data with their uncertainty bars and both the regression methods, for the 

temperatures 375°C to 450°C, at √𝑃𝐻2̅̅ ̅̅ ̅ ranging from 75 Pa0.5 to 140 Pa0.5. Although the surrogate 

model lines are better in accordance with the experiments, the difference between the two methods 

is always smaller than the measurement uncertainty. In particular, the percentage deviation varies 

from a maximum of 12% to a minimum of 1%. 

Therefore, we can conclude that the low difference between the surrogate model and the ideal law in 

the regression of the experimental results, being below the measurement uncertainty, together with 

the fact that the surrogate model has not a strong theoretical basis (but is only based on hypothesis) 
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and can not be implemented in physical models, bring us to consider the theoretical law (regression 

“y=ax”) as the reference for our analysis.  

 

Figure 4-25 Gas-sodium test - Hydrogen permeation flowrate vs mean partial pressure square root: experimental 
measurements (Exp) with regression “y=ax” (solid) and regression “y=ax+b” (dashed)  

4.6.5 Deviations from the linearity at high pressure 

As pointed out by paragraphs 4.4.1 and 4.4.2 and resumed in Figure 4-18, the hydrogen permeation 

flowrate does not increase linearly with √𝑃𝐻2̅̅ ̅̅ ̅ over the entire measurement range, as it is predicted 

from the integrated permeation law (equation 4-3), both in gas-vacuum and gas-sodium tests. In 

particular, the linear increase is constant up to √𝑃𝐻2̅̅ ̅̅ ̅~140 Pa0.5, corresponding to a hydrogen partial 

pressure of around 2x104 Pa (equivalent to 200 mbar and to a gas pressure of 7 bar), then the 

permeation flowrate deviates below the linear trend at the two highest pressure tested. This behavior 

appears for all the temperatures tested in gas-sodium configuration (375°C<T<450°C), while it 

concerns only the two highest temperatures (T6 and T7) in gas-vacuum test, corresponding to a Tmean 

of 410°C and 434°C respectively (ref. to Table 4-3). Therefore, it can be established that deviation from 

the integrated permeation law occurs at hydrogen partial pressures over 200 mbar (i.e. gas pressures 

over 7 bar) and temperatures over 375°C. Additionally, this phenomenon has been clearly measured 

by two distinct and independent measurement techniques and instruments: in fact for gas-vacuum 

test, both µGC on retentate side and pressure gauge on permeate side revealed the same result, a 

repeated number of times (ref to Figure 4-2). We cannot explain this behavior as a simple 

measurement error or an instrument detection limit. Therefore, it can be assessed that a physical 

reason of this behavior, independent from the permeate side (it appears both with vacuum and 

sodium), should reside in some phenomenon affecting the nickel membrane or the gaseous 

feed/retentate side. 
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Even if we are interested in validating the permeator prototype operation in the “linear region”, it is 

of scientific interest to search an explanation to this deviation from theory. Moreover, a more in-depth 

analysis will consolidate the results which are coherent with the theoretical law. The above 

considerations bring us to propose and discuss the following possible reasons, which could lead to a 

deviation from theory as observed experimentally: 

1. The saturation of the membrane’s surface active sites, which could appear at high pressures.  

Waelbroek [73] proposes a theoretical model which takes into account this effect, finding that the 

permeation flux does not depend more from the hydrogen partial pressure over a certain 

saturation level. It reports that for nickel membranes, the hydrogen partial pressure leading to 

saturation should be around 10-4 mbar. Nevertheless, several experimental results showed that 

the hydrogen permeation flowrate grows linearly up to partial pressures of the order of the bar 

(see paragraphs 2.2.3 and 2.2.4). These values cannot explain our experimental results, since we 

find a possible saturation over a hydrogen partial pressure of around 200 mbar, for temperatures 

ranging from 375°C up to 450°C. Without more precise elements we are not able to establish if this 

could be the real cause of the deviation from the theoretical law; nevertheless, we propose it as 

possible explanation which has to be investigated more in detail in further studies. 

 

2. The polarization effect, which could affect the permeation when hydrogen is diluted in a gas 

mixture flowing in the feed/retentate side.  

Practically it consists into the limitation of the permeation due to the gas phase resistance 

becoming important inside the boundary layer, when the permeating hydrogen flow is comparable 

to the inlet hydrogen flow. In principle, this could be coherent with our results at high pressures, 

when the gas velocity is lower and the permeation rate higher. According to some literature 

studies [74], [75], this effect is observed when very thin membranes (thickness of the order of few 

microns) with a high permeability coefficient, typically Pd/Ag membranes, which have a 

permeability coefficient 2 or 3 orders of magnitude higher than nickel. This effect makes the 

hydrogen permeation to not linearly follow the partial pressure square root and limits the 

permeation to an asymptotic value with the growing pressure. In particular, Catalano[74] found 

both theoretically and experimentally, for different hydrogen concentrations in the feed gas 

mixture, this non-linear behaviour with the hydrogen partial pressure, driving to an upper 

asymptotic limit. His study concerns a Pd/Ag membrane of 2.5 µm thickness, tested between 400°C 

and 500°C and at hydrogen partial pressures between 100 and 600 mbar. Despite his experimental 

results could qualitatively be similar to our results (i.e. permeation saturation to an asymptotic 

value at high pressures), it is worth noting that the very low thickness (2 orders of magnitude lower 

than our prototype) and the Pd/Ag higher permeability than Ni, provide a permeation flux around 

103 to 104 times higher than our study, for the same temperature and pressure. Consequently, the 

gas polarization effect is much more fostered in his conditions. Moreover, his model, which shows 

predictions in agreement with his experimental results, is qualitatively similar to our 1D mass 

transfer model, but includes into the gas phase mass transfer equation an extra convective term 

in the radial direction, linked to the permeation stream flow. This is typical when one refers to a 

concentrated solution (i.e. he models the gas phase boundary layer as a hydrogen concentrated 

solution) and when the permeation convective contribution is comparable to the gas convection. 
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Despite this fundamental difference, we have applied Catalano’s model to our experimental 

conditions, considering the same mass transfer parameters of our 1D model; nevertheless, we did 

not find evidence of a possible polarization effect in our experimental conditions. Actually, we 

obtain the same results given by our 1D model, reported in part 3.2.3.3, which does not show any 

influence of the gas phase resistance on the permeation. 

 

3. The competitive adsorption of Argon at the gas-membrane interface 

In order to set up our models (cf. sections 3.2.3.1 and 4.3.1), we made the hypothesis that the 

hydrogen contained in the Ar-H2 mixture is adsorbed at the nickel surface according to the Sieverts 

law, without taking into account an interaction of argon molecules at the surface, which potentially 

could affect the H-Ni equilibrium (i.e. competitive adsorption effect). This choice was justified by 

some literature studies reported in section 2.2.4.1. Nevertheless, some literature studies [76], [77] 

on palladium-based membranes reported that the hydrogen permeation could be reduced by the 

competitive adsorption of other gases present in the gas mixture (e.g. CO and CO2). Even though 

our study concerns nickel instead of palladium, we cannot exclude the hypothesis that the 

competitive adsorption of Argon could take place, producing a non-negligible impact on the 

hydrogen permeation, above a certain critical pressure. 

 

4. The non-ideal membrane’s dislocations effect induced by high mechanical constraints 

In paragraph 4.6.2, we present the hypothesis that an additional hydrogen transport mechanism 

through nickel defects, such as dislocations, could take place depending on the experimental 

condition tested. We call it a non-ideal transport mechanism, to distinguish it from the diffusion-

limited permeation (i.e. Richardson’s law) considered as basis for our theoretical analysis. Firstly, 

it seems likely that dislocations and defects (e.g. vacancies) are introduced inside nickel lattice by 

the strong deformation provided by the cold working of the membrane before the tests. Clearly, 

such defects could modify the hydrogen permeation process, i.e. diffusion process, at all 

experimental conditions tested, by comparison to a non-deformed membrane. However, the 

deviations from the “ideal” permeation rate observed at high pressures, from temperatures higher 

than T6 (Tmean=410°C) in gas-vacuum and 375 °C in gas-sodium tests, could be explained by 

hydrogen transport mechanism along the mobile dislocations introduced in the nickel membrane 

due to the high pressures. This has to be related to Ashby maps showing the evolution of the 

mechanical properties of pure nickel as a function of temperature and stress. For an adequate 

temperature range, taking into account the thickness of the membrane, plastic deformation of the 

nickel membrane probably occurs for high pressures leading to the production of mobile 

dislocations. This would suggest that hydrogen permeation would be associated with both 

diffusion and transport processes in this pressure range and for this temperature range. However, 

recovery process should modify the density of mobile dislocations during the experiments so that 

a decrease in the permeation rate at high pressures would be observed. Furthermore, hydrogen 

trapping by dislocations and defects (e.g. vacancies) could not be neglected. This suggested that , 

for sufficiently high temperatures, two different pressure regions have to be defined, where two 

different mechanisms drive the permeation: the first, up to a gas pressure of 7 bar, limited by the 
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classical interstitial sites diffusion, the second, at gas pressures higher than 7 bar, affected by the 

dislocations transport mechanism. However, with the data available, it is not possible to evaluate 

the contribution of each process, i.e. diffusion from one side and transport on the other side. 

Moreover, it is of high importance to consider that the deformation processes affecting the 

membrane at high pressures and high temperatures correspond to aging processes. Considering 

that the experiments are all conducted with the same membrane, the experiments being 

performed from low to high temperatures, and low to high pressures, this means that, when the 

aging process occurs, for sufficiently high temperature and high pressure, the membrane remains 

then affected by the microstructural changes. This could explain that the deviation from the ideal 

law is observed for temperatures higher than 410 °C in gas-vacuum, whereas it is observed even 

at low temperature, i.e. 375 °C in gas-sodium configuration, considering that gas-vacuum 

experiments had been performed before those in sodium. For more clarity, for a same set of 

experiments, e.g gas-vacuum or gas-sodium, during an experiment conducted at a given but 

sufficiently high temperature, the density of mobile dislocations increases from a sufficiently high 

pressure, then it decreases due to recovery process as explained before. Therefore, when another 

experiment is conducted at a higher temperature, the permeation is controlled by diffusion 

process only for low pressures, but with a deformation-affected membrane. When a critical 

pressure is reached, additional plasticity is introduced and the deviation from the linear law is 

observed. For an aged membrane, i.e. after a large number of experiments, the critical 

temperature required to observe such a deviation is decreased due to microstructural changes, 

explaining why the deviation from the linear law is observed even at 375 °C for experiments 

conducted in sodium. 

Finally, a combination of hypotheses presented at points 3 and 4 seems to be the most reasonable and 

coherent with our experimental results, but further experimental studies, more focused on these 

particular behavior at high pressures should be provided, in order to give more data and eventually a 

clearer interpretation. In particular, some tests where the gas pressure is fixed at a low value (for 

example at 2 bar) and different hydrogen concentrations inside the gas mixture are used (up to 15%), 

could be performed. In this way, the same hydrogen partial pressure range could be investigated 

without applying an increasing mechanical constraint on the membrane. Moreover, by increasing the 

hydrogen concentration in the gas mixture, the potential competitive adsorption of Argon would be 

reduced. By means of these tests, it could be verified if the deviation from linearity is effectively linked 

to the increasing gas pressure effect or not. 

4.7 Conclusion 

The main results of this chapter can be resumed by the following highlights: 

 Permeation through a multi-tube nickel membrane prototype has been observed at pilot-scale 

and the measurement techniques have been validated with an experimental campaign in a 

gas-vacuum configuration, by measuring the permeation of hydrogen both on retentate (µGC) 

and permeate (Pressure Gauge) side. In particular, a good agreement is found between 

measurements on retentate and permeate side, validated by means of data reconciliation. An 

uncertainty analysis establish that the µGC measurements on retentate side are enough 
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accurate alone (uncertainty <10%), for 𝑄𝐻2 𝑝>4x10-7 mol/s. This result validate the use of µGC 

by itself for the gas-sodium campaign. 

 

 A results post-treatment method have been proposed, which allows to compare the 

experimental results with a single-equation law, obtained by the integration of the theoretical 

diffusion-limited permeation law over the prototype geometry. This so-called “integrated 

permeation law”, reported by Equation 4-3, links the hydrogen permeation flowrate to the 

temperature and to the hydrogen mean partial pressure. 

 

 The prototype performances in gas-vacuum configuration have been established: a good 

agreement with the integrated permeation law has been found for hydrogen partial pressures 

up to 2x104 Pa (√𝑃𝐻2̅̅ ̅̅ ̅=140 Pa0.5, Pgas=7 bar). A non-uniform temperature is measured along the 

membrane length, thus not allowing to establish accurately a permeability coefficient value 

(mean temperatures between 293°C and 434°C). Nevertheless, if we consider the average 

temperature of the membrane during tests, the permeability law coefficients are a linear 

function of 1/T, confirming the Arrhenius law of permeability. In particular, we obtain 𝐸𝑝 =

46309 [J mol-1] and 𝑝𝑒0 = 1.08 10−7 [mol m-1 s-1 Pa-0,5]. 

 

 The prototype performances in gas-sodium configuration have been established: a good 

agreement with the integrated permeation law has been found for hydrogen partial pressures 

up to 2x104 Pa (√𝑃𝐻2̅̅ ̅̅ ̅=140 Pa0.5, Pgas=7 bar) and for temperatures from 375°C to 450°C. By a 

linear regression on the experimental data coherent with the theoretical law, an experimental 

permeability coefficient has been obtained: 𝐸𝑝 = 40757 [J mol-1] and 𝑝𝑒0 = 4.80 10−8 [mol 

m-1 s-1 Pa-0,5]. 

 

 Measurements of hydrogen concentration inside sodium have been provided during gas-

sodium test, based on the well-known hydrogen-meter technology. Despite the high 

uncertainty on several parameters, thanks to a dedicated estimation of the hydrogen-meter 

permeability ( 𝐸𝑝,𝐷𝐻 = 45782,7  [J mol-1] and 𝑝𝑒0,𝐷𝐻 = 7.84 × 10−8 [mol m-1 s-1 Pa-0.5]), 

together with a transient analysis during the permeation tests, coherent results have been 

found. In particular, the global hydrogen mass balance between gas and sodium phases is 

respected (in particular better agreement is obtained for 450°C and 425°C, than for 400°C and 

375°C), thus confirming that the entire hydrogen transferred by permeation is dissolved inside 

sodium. 

 

 Finally, an in-depth discussion on the mains results has been provided, in order to given 

insights and perspectives for further studies: 

o The comparison between gas-vacuum and gas-sodium provides globally the same 

permeation features: this demonstrates the theoretical prediction that the sodium 

phase does not add a significant mass transfer resistance.  Moreover, it allows to 

identify an overestimation of the temperature during the gas-vacuum test of around 

20°C, except for T7. 
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o A comparison of the gas-sodium permeability coefficient, related to the full prototype, 

with previous literature results for small-size nickel samples, showed that some non-

ideal hydrogen transport mechanism, probably linked to the membrane deformation 

by cold-working, could affect the hydrogen permeation in this study. In fact, quite 

higher permeation with a lower activation energy is found here if compared to the 

literature. 

o The gas-sodium experimental results are well predicted both by the integrated 

permeation law and by the 1D-model presented in Chapter 3, when the experimental 

permeability coefficient is used as input for the models. This is valid up to hydrogen 

partial pressures of around 2x104 Pa. 

o A surrogate model is proposed to represent the experimental results without taking 

into account a theoretical law. Although it fits better with the experimental data, its 

precision is weakly higher than the integrated permeation law, therefore is not 

considered for further developments. 

o Experimental results deviate from the linear dependence of 𝑄𝐻2 𝑝 from √𝑃𝐻2̅̅ ̅̅ ̅, when 

√𝑃𝐻2̅̅ ̅̅ ̅>140 Pa0.5 and Pgas>7 bar, for all the temperature tested in gas-sodium (T>375°C) 

and for the two highest temperatures in gas-vacuum (Tmean 410°C and 434°C). Some 

hypotheses are provided for further investigations, but one reasonable explanation of 

this deviation could be the modification of the membrane crystalline structure (caused 

by the presence of dislocations), induced by the higher mechanical constraint, 

obtained at the higher pressures and temperatures. In addition, the competitive 

adsorption of Argon at the membrane surface at high pressure could also be 

considered. Further studies at a fixed gas pressure and variable hydrogen 

concentration should be carried out to confirm the validity of these hypotheses. 
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5.1 Motivation and goals 

An analytical model aiming to evaluate the hydrogen mass transfer resistance in three adjacent 

domains (gas, nickel and liquid sodium) was presented in Chapter 3. It was based on mass transfer 

correlations taken from literature and it provided an estimation of the hydrogen mass transfer in the 

radial direction on an infinitesimal membrane length (1D). To support the design of the permeator 

prototype, this model was integrated axially along a tubular geometry, coupled to the axial gas phase 

flow (assumed to be a plug-flow), while sodium flowrate was found to not provide a significant mass 

transfer resistance.  

Although the 1D analysis provided results in agreement with the experimental tests under certain 

conditions, some aspects remains neglected. In particular, the gas and sodium mass transfer 

resistances should be analyzed in more detail, paying a particular attention to the boundary layer’s 

effect to the radial hydrogen mass transfer. The 1D model is based on literature correlations specific 

to one particular geometry (flow through pipes), which is not necessarily perfectly representative of 

the whole prototype shell and tube configuration. Hence, the coupling of gas and sodium axial flows 

with the radial hydrogen permeation through the nickel membrane, should be taken into account over 

the entire domain, including the radial dimension. In both phases, a distinction between bulk and 

boundary layer should be taken into account.  

Therefore, a CFD model is set up: the aim is to have a more complete comprehension of the hydrogen 

mass transfer in both radial and axial directions, without using pre-established correlations, but 

implementing the fundamental transport equations over a discretized domain. 

COMSOL Multyphysics has been chosen as modeling tool, due to the strong multi-physical structure of 

the problem. 

The simulations are performed for the conditions selected for the experimental tests in gas-sodium 

configuration (cf. Section 3.7.1). A comparison with 1D-model results is presented, in order to assess 

if the assumptions and simplifications which were drawn are acceptable or not.  

5.2 Model’s equations and parameters 

5.2.1 Hypothesis and features 

The following hypotheses are considered: 

i. steady state conditions are established; 

ii. the whole system is isothermal and adiabatic; 

iii. the ideal gas law is valid; 

iv. liquid sodium density is constant over the domain; 

v. gas mixture and liquid sodium properties (viscosity, hydrogen diffusivity) are constant over the 

domain; 

vi. metal bulk diffusion is the rate limiting step of the permeation process through the membrane 

(diffusion-limited permeation) and no trapping or surface effects are considered; 

vii. chemical-physical equilibria at interfaces follow the Sieverts law; 

viii. the membrane length is much greater than its thickness, thus the hydrogen diffusion through 

the membrane is mainly in the radial direction r; 
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ix. the competitive adsorption of Argon at the gas-membrane interface is neglected. 

Under steady state condition and (vi) assumption, the permeation process through the metallic 

membrane follows the Richardson’s law. This leads to the well-known stationary linear concentration’s 

profile along the membrane thickness, between the two hydrogen concentrations at the two 

membrane’s interfaces. Due to this trivial result, there is no benefit in modelling the membrane 

thickness as a geometrical and physical domain, but it can be simply reduced to a domain boundary 

separating gas and Na phases, where the permeation law equation is applied. In fact, we have no 

interest in visualizing the linear profile concentration within the metal membrane, but rather we want 

to study the boundary layer distribution in the gas and sodium phases. Moreover, by considering a 

diffusion-limited permeation, the model  does not take into account any additional hydrogen transport 

effect inside the membrane, such as the dislocations transport or the trapping inside vacancies, which 

could affects the membrane at the highest pressures and temperatures (cf. Section 4.6.5).  

Finally, three domains are considered in the model as showed in Figure 5-1; for the sake of clarity, the 

corresponding physical meaning of each variable in the three domains is reported in Table 5-1. 

Table 5-1 Summary of bulk and interfacial hydrogen molar concentrations  [mol m-3] on the gas, membrane and 
sodium domains 

Variable name Physical meaning Physical domain 

𝐶𝐻2,𝑔𝑎𝑠 Molecular hydrogen (H2) concentration in gas phase bulk Gas phase 

𝐶𝐻2,𝑔𝑎𝑠 
∗  Molecular hydrogen (H2) concentration in gas phase at membrane interface Gas phase 

𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗  Atomic hydrogen (H) concentration in Nickel at Ni-gas interface Membrane boundary 

𝐶𝐻,𝑁𝑖−𝑁𝑎
∗  Atomic hydrogen (H) concentration in Nickel at Ni-Na interface Membrane boundary 

𝐶𝐻,𝑁𝑎
∗  Atomic hydrogen (H) concentration in Na phase at Ni-Na interface Liquid Na phase 

𝐶𝐻,𝑁𝑎 Atomic hydrogen (H) concentration in Na phase bulk Liquid Na phase 

 

 

Figure 5-1 Schematic representation of the physical domains for the CFD study 

5.2.2 Gas phase 

The inlet gas phase is a Ar-H2 mixture with 2.926% of hydrogen molar content. The gas density is 

calculated by means of the ideal gas law (valid in this operational range). Gas viscosity and hydrogen 
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diffusivity in argon are provided by the Chapman-Enskog relationships [78]. Since the system is 

isothermal and the pressure drop across the permeator is negligible (cf. Sections 3.4.1.1 and 3.4.1.2), 

we can assume constant temperature and pressure in the gas phase: consequently, gas viscosity and 

hydrogen diffusivity are constant. Nevertheless, even though the density can be considered a constant, 

the compressible gas model is used in Comsol, thus producing negligible density variations in the gas 

phase. Moreover, as already reported for the 1D-model analysis (cf. Section 3.2.3.1), the operational 

gas flowrates lead to a Reynolds number range of 5 to 20, thus providing a laminar flow.  

Due to its low concentration (<3% molar), the hydrogen mass transport, referring to the molecular 

hydrogen H2, is taken into account in the Comsol “transport of diluted species” model. Practically, it 

consists of a mass transport equation for the chemical species H2, which includes the diffusive and 

convective term; since no chemical reactions occurs, a zero rate of production is imposed. 

Finally, we apply the following transport equations to the gas phase domain: 

 Gas mass transport – continuity. 

 Momentum transport: compressible gas and laminar flow. 

 Hydrogen mass transport: molecular H2 transport as diluted species. 

The following boundary conditions are imposed: 

 Inlet:  

o gas mass flow normal to the gas inlet;  

o H2 uniform concentration. 

 Outlet:  

o the gas pressure at the gas outlet: since a negligible pressure drop is produced 

between inlet and outlet (see Section 3.4.1.2), the imposed outlet pressure 

corresponds to the experimentally measured inlet pressure. 

 Membrane boundary:  

o wall no-slip condition; 

o outward H2 flux by permeation. 

5.2.3 Sodium phase 

Sodium phase is considered as an incompressible liquid, according to hypothesis (iv). Its density and 

viscosity are calculated by mean of recommended relationships given by the IAEA NAPRO [79]. The 

operational sodium flowrates lead to a Reynolds number range of 3500 to 18000, thus providing a 

turbulent flow. The 𝑘 − 휀 turbulence model is employed for this study; the sodium boundary layer in 

contact with the membrane surface is modeled by means of wall functions, reported in section 5.8.1.  

Hydrogen is dissolved inside liquid sodium under its atomic form (H-) at very low concentrations 

(between 50 and 500 wppb). Therefore, as for the gas phase, the “transport of diluted species” model 

is used to describe the H transport inside sodium.  

Here below, the transport equations applied to the sodium phase domain are summarized: 

 Sodium mass transport – continuity. 

 Momentum transport: incompressible liquid and turbulent flow. 
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 𝑘 − 휀 turbulence model. 

 Hydrogen mass transport: atomic H transport as diluted species. 

The following boundary conditions are imposed: 

 Inlet:  

o Na mass flow normal to the sodium inlet;  

o H uniform concentration. 

 Outlet:  

o the sodium pressure at the sodium outlet. 

 Membrane boundary:  

o wall no-slip condition; 

o inward H flux by permeation. 

5.2.4 Membrane boundary 

The nickel membrane thickness is condensed in the mono dimensional boundary (no geometrical 

thickness) which separates the gas phase from the sodium phase. Therefore, since it does not 

represent a physical domain, no transport equations are applied to it. Nevertheless, some hypothesis 

allows writing on this boundary the expression of the hydrogen permeation flux, which goes through 

the membrane. In particular, by considering the hypothesis (vi), (vii), (viii) and, since the membrane 

thickness (0.3 mm) is 24 times lower than the membrane external diameter (7.2 mm), the tubular 

geometry is well approximated by a plane geometry (see Section 3.4.3). Therefore, the hydrogen 

permeation flux can be written as follows: 

 𝐽𝐻,𝑝 =
1

𝛿
2𝑝𝑒𝐻2,𝑁𝑖 (√𝐶𝐻2,𝑔𝑎𝑠

∗ 𝑅𝑇 −
𝐶𝐻,𝑁𝑎
∗

𝐾𝑠,𝑁𝑎
) [molH s-1 m-2] 5-1 

Where the molar flux  𝐽𝐻,𝑝 is referred to atomic H moles; 𝛿 is the thickness of the membrane (assumed 

to be plane); 𝑝𝑒𝐻2,𝑁𝑖  is the hydrogen permeability through nickel given for H2 moles and the factor 2 

is to be coherent with 𝐽𝐻,𝑝; 𝐶𝐻2,𝑔𝑎𝑠
∗  is the variable solved at the membrane’s boundary by the hydrogen 

mass transport equation in the gas phase; 𝑅 is the universal gas constant and 𝑇 is the temperature; 

𝐶𝐻,𝑁𝑎
∗  is the variable solved at the membrane’s boundary by the hydrogen mass transport equation in 

the sodium phase; 𝐾𝑠,𝑁𝑎  is the Sieverts constant of H-sodium system converted in [molH m-3 Pa-0.5]. 

The expression in 3-28 defines the output and input hydrogen fluxes, which respectively leave the gas 

phase and penetrates into the sodium phase. 

5.2.5 Model synthesis 

For readability reasons, the synthesis of the model (model’s equations, parameters and variables) is 

given in Section 5.8. 
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5.3 Geometry and mesh 

5.3.1 Geometry 

The experimental prototype geometry (cf. Section 3.2.5) consists of a four-nickel tubes membrane, 

disposed axially in a tube shell; gas and sodium phases flow co-currently from the permeator inlet to 

the outlet. Nevertheless, the entire system is 90° bended between inlet and outlet. The only way to 

represent the whole system is to set-up a 3D geometry. Nevertheless, the purpose of this study is to 

analyze the influence of the gas and sodium phases on the hydrogen mass transfer; in particular, the 

focus is on the effects of boundary layers, which need a very fine mesh to be correctly represented. 

Moreover, the most critical point is the turbulence solving in the Na phase, which demands the higher 

computational effort. In this sense, a 3D geometry represent a critical issue: for our purpose, the effort 

to set up and solve a very detailed 3D model could not be compensated by the benefits that we should 

have. To have an in-depth comprehension of the hydrogen mass transfer at the membrane’ interfaces, 

a 2D model seems to be sufficient, in the first instance. Therefore, we set-up, with some simplifications, 

a 2D axial-symmetric model. In particular, we make the following assumptions: 

 The prototype 90° bended geometry can be represented by a linear geometry with the same 

tubes length; 

 The permeation is distributed equally among the four nickel tubes and they are independent 

from each other; therefore, for simplification, the study can be reduced to a single nickel 

membrane only. 

The CFD studied system is then constituted by a single nickel tube, included coaxially in a tube shell. 

Since the geometry is straight, we can represent it with a 2D axial-symmetric geometry, as showed in 

Figure 5-2-a. In order to respect the similitude criteria between the experimental prototype (Figure 

5-2-b) and the CFD study, an appropriate geometry must be chosen. 

CFD STUDY EXPERIMENTAL PROTOTYPE 

 
(a) 

 
(b) 

Figure 5-2 Geometry comparison between CFD study (a) and experimental prototype (b). Gas phase is marked in blue 
and sodium phase in orange. 
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For the gas phase, we change from four tubes to one single tube: if we maintain the same tube radius, 

the cross sectional area is reduced by four. To maintain the similitude (same Reynolds number), the 

inlet gas flowrate has to be divided by four as well. Actually, since the membrane is modeled in 

COMSOL as a 1D boundary (no geometrical thickness), the mean radius (rm=3.45 mm) between the 

internal (ri) and the external (ro) is chosen, in order to be coherent with the simplification of the tubular 

geometry using a plane geometry. 

Regarding the sodium phase, since the permeation coming from gas phase is reduced by a factor four, 

the sodium flowrate should be consequently reduced, to have the same mass-flow ratio between 

hydrogen and sodium. Nevertheless, if we want to maintain the same sodium Reynolds number, the 

shell radius (rsh) should be reduced to 4.6 mm. In this case, there would be a free space of only 1.15 

mm between the nickel membrane and the shell; this condition is not representative at all of the 

reality. Therefore, we chose to keep the sodium velocity constant (and not the Reynolds number): in 

this case, we have a rsh of 9.2 mm, which is much more coherent with the real geometry. The 

correspondent Reynolds number is of the same order than the experimental one. A dedicated study 

will demonstrate the impact of the sodium Reynolds number on the permeation.  

The final geometry dimensions and flow features at a given operating condition at 450°C, compared 

with the experimental prototype, are resumed in Table 5-2: 

Table 5-2 Comparison between CFD study and experimental main dimensions and flow features at 450°C 

Parameter Units CFD Study Experimental prototype 

Length mm 500 500 

N° of nickel membranes - 1 4 

Membrane radius mm 3.45 (rm) 3.3/3.6 (ri / ro) 

Membrane’s thickness mm 0.3 0.3 

rsh mm 9.2 18.4 

Gas cross-sectional area m2 3.74x10-5 1.37x10-4 

Na cross-sectional area m2 2.29x10-4 9.04x10-4 

�̇�𝑁𝑎  m3 h-1 0.25 1 

vNa m s-1 0.3 0.3 

ReNa - ≈12000 ≈18000 

Qgas Nml min-1 50 200 

Regas - ≈4 ≈4 

5.3.2 Mesh 

Three meshes have been set-up with a different refinement degree: here, they will be called  “coarse”, 

“normal” and “fine”. The elements are both quadrilateral and triangular type: the first ones are 

employed at the wall boundaries (i.e. membrane boundary and shell wall), in order to describe with a 

higher resolution in the radial direction the boundary layers; the second ones cover the rest of the 

domains (i.e. the gas bulk and sodium bulk). The main elements of each mesh are reported in Table 

5-3 and a visual comparison of the mesh refinement is provided in Figure 5-3. 
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A sensitivity study on the mesh refinement is presented in Section 5.5.3.1, which justify the use of the “normal” mesh 
four our simulations.Table 5-3 CFD study mesh: main elements of coarse, normal and fine meshes 

 Coarse Normal Fine 

N° of elements 27795 71574 111946 

N° of triangles 16800 50499 85621 

N° of quads 10995 21075 26325 

Edge elements 1881 3498 4380 

1st BL element thickness [mm] 0.07 0.035 0.02 

 

 
(a) 

 
(b) 

Figure 5-3 CFD study mesh: coarse (a) and fine (b) 

5.4 Simulation cases and solver settings 

Simulations are performed for the same experimental conditions tested in gas-sodium configuration 

(cf. Section 4.1.1). The inlet H2 molar fraction in the gas phase is always set at 2.926%. The inlet H  

fraction in sodium is taken as the mean value between the initial and the final value measured during 

the experiments; this value depends on the experimental test. The gas and sodium inlet flowrates are 

set to 50 Nml/min and 0.25 m3 h-1 respectively, i.e. one fourth of the corresponding experimental ones. 

Nevertheless, a sensitivity study on the flowrates variation is provided in paragraph 5.5.3, where higher 

and lower flowrates are considered for simulations. The mesh “fine” is used to compute all the 

conditions; additionally, a dedicated sensitivity study is provided to validate the use of this mesh. 

The permeability coefficient is taken from the Robertson “best fit” [44]. 

The simulated cases are resumed in Table 5-4. 
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Table 5-4 CFD study: simulated cases and input parameters 

Sim ID  T4-P2 T4-P3 T4 T4-P6 T4-P7 T4-P8 T5-P2 T5-P3 T5 T5-P6 T5-P7 T5-P8 

T °C 375 375 375 375 375 375 400 400 400 400 400 400 

P gas bar 2 3.5 5 7 9 10 2 3.5 5 7 9 10 

𝑦𝐻,𝑁𝑎 ppb 137 76 173 243 140 191 98 83 171 279 418 124 

              

Sim ID  T6-P2 T6-P3 T6 T6-P6 T6-P7 T6-P8 T7-P2 T7-P3 T7 T7-P6 T7-P7 T7-P8 

T °C 425 425 425 425 425 425 450 450 450 450 450 450 

P gas bar 2 3.5 5 7 9 10 2 3.5 5 7 9 10 

𝑦𝐻,𝑁𝑎 ppb 137 114 264 435 267 463 139 163 192 224 232 201 

 

Simulations are performed with the COMSOL Multiphysics®solver: it solves simultaneously the gas 

laminar flow and sodium turbulent flow, coupled to the diluted species mass transport in both 

domains. The relative tolerance for the convergence criteria is set at 5x10-5. 

5.5 Results 

Results are analyzed and compared in qualitative terms, by plotting on different section lines the values 

of the more relevant variables: hydrogen concentration, velocity, partial pressure and permeation flux. 

Both radial and axial profiles are provided. This analysis is provided in Section 5.5.1 for the case T7 as 

an example, but it is representative, qualitatively, of all the other simulated cases reported in Table 

5-4. 

Additionally, since we are mainly interested in the hydrogen permeation, a quantitative evaluation of 

the global and hydrogen mass balances is provided by computing the mass flux surface integrals at the 

inlet, outlet and at the membrane’s interface.  

5.5.1 1D plot profiles 

5.5.1.1 Gas and sodium velocity 

The radial profiles of gas and sodium velocity magnitude are reported at three axial coordinates: z=0 

mm (inlet), z=250 mm (half-tube) and z=500 mm (outlet). For each condition, the same behavior is 

found: the typical laminar parabolic profile of the gas phase does not evolve axially, meaning that the 

flow fluid dynamics is suddenly established. Instead, the sodium profile at the inlet (where an almost 

flat profile is found) is quite different from the profiles at half-tube and outlet; this means that the 

sodium flow takes the first 100-200 mm to reach a stable condition. Moreover, it is worth noting that 

COMSOL does not plot the sodium velocity at the walls (where the velocity is zero by the imposition of 

the no-slip condition), but it arrives up to the first boundary layer cell. Since we have used a turbulent 

model including the wall functions, the velocity profile inside the boundary layer is mathematically 

computed by the wall functions, but Comsol cannot give it graphically as output plot. The plot of the 

condition T7 is given as example in Figure 5-4. 
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(a) 

 

 
(b) 

Figure 5-4 CFD study: radial profiles of gas (a) and sodium (b)  velocity at inlet, half tube and outlet 

5.5.1.2 H2 and H molar concentration 

Similarly to the velocity, the H2 and H concentration, in gas and sodium phase respectively, are 

reported on the three axial coordinates inlet, half-tube and outlet. For practical reasons, the molar 

concentrations are converted to molar fractions, for the gas phase, and mass fractions (expressed in 

wppm), for the sodium phase. 

Concerning the gas phase H2 concentration, two main evidences are found: 

 the radial profile, at each axial coordinate, is constant (Figure 5-5-a). This means that the gas 

phase, for every simulated case, does not provide a mass transfer resistance in the radial 

direction sufficient to produce a concentration gradient between the bulk and the membrane’s 

boundary.  

 The axial evolution is coherent with the permeation physics, i.e. the hydrogen concentration 

progressively reduces from the permeator inlet to the outlet, since a part of hydrogen moves 

by permeation from the gas to the sodium phase. This is confirmed both by Figure 5-5-a and 

by Figure 5-5-c, which shows the axial profile at the membrane’s boundary. In particular, the 

profile is linear along the entire axial coordinate. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5-5 CFD study: hydrogen concentration radial profiles in gas (a) and sodium (b) at inlet, half tube and outlet. 
Axial profiles at the membrane’s boundary in gas (c) and sodium (d). 

For the H concentration in sodium phase, similar considerations can be done: 

 the radial profile (Figure 5-5-b) at the inlet is constant at the given inlet H concentration, since 

the permeation does not take place yet. Then, at half tube and at the outlet a strong 

concentration gradient is concentrated in the first 2-3 mm adjacent to the membrane’s 

boundary, in correspondence of the boundary layer. In particular, the concentration at the 

membrane’s boundary is 3 to 5 times (depending on the axial coordinates) higher than the 

bulk concentration. This denotes that the sodium mass transfer resistance is mainly due to the 

presence of the laminar boundary layer. Outside the boundary layer, the H concentration is 

practically constant all over the sodium bulk up to the shell wall, at the same value of the inlet 

concentration; 

 in the axial direction the concentration increases, since the hydrogen permeation flux coming 

from the membrane provides an increase of the global hydrogen content inside sodium. 

However, this increase is obtained only in the nearest of the membrane’s wall. Figure 5-5-d 

represents the axial profile at the membrane’s boundary: after the first 100-200 mm, where 

the sodium flow is not established yet, the H concentration increase is quite linear. It is worth 

noting that the values here reported are slightly higher than the corresponding values in Figure 

5-5-b. This is because COMSOL, as for the sodium velocity, plots the H concentration in sodium 

only up to first boundary layer cell.  

As general comment, these results are well in accordance with the 1D-model presented in Chapter 3; 

in fact, similar results are found for the gas and sodium phase radial concentration profiles (see Table 

3-2).  

5.5.1.3 Permeation flux 

The hydrogen permeation flux per unit surface (𝐽𝐻2,𝑝) is evaluated at the membrane’s boundary. Figure 

5-6 shows its axial profile: it decreases linearly along the axial coordinate, in accordance with the H2 

concentration in the gas phase. This indicates, qualitatively, that the main driving force of the 

permeation is given by the hydrogen concentration, and consequently its partial pressure, in the gas 

phase. A rough numerical evaluation between z=0 and z=500, shows that the same percentage 
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variation (around -15%) is found for the hydrogen concentration in gas phase (Figure 5-5-c) and for the 

permeation flux (Figure 5-6). 

 

Figure 5-6 CFD study: axial profile of hydrogen permeation flux at the membrane’s boundary 

5.5.1.4 Hydrogen partial pressure 

In order to have a clearer view on the impact of gas and sodium phases on the permeation, it is 

interesting to compare on the same graph the hydrogen partial pressure at the membrane’s boundary, 

both in gas and sodium phase (equivalent partial pressure in equilibrium with hydrogen concentration 

in sodium). With reference to equation 3-28, the square root of these two partial pressures are given 

by the term√𝐶𝐻2,𝑔𝑎𝑠
∗ 𝑅𝑇, for gas phase, and 

𝐶𝐻,𝑁𝑎
∗

𝑘𝑠,𝑁𝑎
 for sodium phase.  

Figure 5-7 shows their axial profile at the membrane’s boundary, as well as their difference, i.e. the 

term in brackets in equation 3-28, which actually drives the permeation. It can be underlined that from 

the permeator inlet to outlet, the hydrogen partial pressure in the gas phase is around two orders of 

magnitude higher than the sodium phase one. In particular, for the lower gas pressure tested (2 bar) 

√𝐶𝐻2,𝑔𝑎𝑠
∗ 𝑅𝑇 is around 75 Pa0.5, while 

𝐶𝐻,𝑁𝑎
∗

𝑘𝑠,𝑁𝑎
 is at around 2 Pa0.5, when the 𝐶𝐻,𝑁𝑎

∗  concentration is at 1 

ppm. As a result, the difference (red line) between them is practically equal to the gas phase partial 

pressure. Even if the sodium phase provides a certain resistance in the boundary layer, which leads 

𝐶𝐻,𝑁𝑎
∗  at values around 1 ppm (see Figure 5-5-d), this is not sufficient to provide a enough high partial 

pressure, so that it could have a significant impact on the permeation.  

Finally, the permeation is essentially driven by the hydrogen partial pressure in the gas phase.  

It is worth noting that this result confirms the conclusion obtained from the 1D-model analysis (Section 

3.2.3.4). 
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Figure 5-7 CFD study: axial profile of hydrogen partial pressure [Pa0.5] at the membrane’s boundary in gas (blue) and 
sodium (green) phase. The difference is marked in red. 

5.5.2 Permeation flowrate and mass balances 

A quantitative evaluation of the total hydrogen permeation flowrate 𝑄𝐻2,𝑝  [mol s-1], can be performed 

in COMSOL by means of the following methods: 

1. Surface Integral (SI) of the hydrogen permeation flux ( 𝐽𝐻,𝑝) on the membrane’s boundary. 

2. Balance of the molar flow on the H2 species in the gas phase; SI on gas inlet – SI on gas outlet. 

3. Balance of the molar flow on the H species in the sodium phase; SI on Na outlet – SI on Na 

inlet. 

where the surface integral of the molar flow, in gas and sodium phase respectively, is defined by the 

following relationships: 

∫ 𝐶𝐻2,𝑔𝑎𝑠(𝑣 ∙ n) 𝑑𝑆
𝜕Ω

 [mol s-1] 5-2 

∫ 𝐶𝐻,𝑁𝑎(𝑤 ∙ n) 𝑑𝑆
𝜕Ω

 
[mol s-1] 5-3 

The permeation flowrates obtained with methods 1 to 3 are all converted into H2 moles and compared 

with each other. To illustrate, Table 5-5 summarizes the permeation flowrates obtained for the 

simulations cases at 450°C. Despite the negligible differences due to the numerical resolution and the 

finite discretization of the system, we can conclude that the three methods are in good agreement. 

This result validates the convergence of the mass and momentum transport equations solving. 

We will consider the method 1 to evaluate the permeation flowrate for the rest of the analysis. 
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Table 5-5 CFD study - Hydrogen permeation flowrates [mol s -1] evaluated according to three different methods 

Test 
METHOD 1 

 𝑱𝑯,𝒑 Surface Integral 
METHOD 2 

H2 gas Mass Balance  
METHOD 3 

H Na Mass Balance  

 x10-7 mol/s  x10-7 mol/s   x10-7mol/s  

T7-P2 1.01 1.00 1.00 

T7-P3 1.32 1.31 1.32 

T7 1.57 1.56 1.57 

T7-P6 1.84 1.83 1.84 

T7-P7 2.08 2.06 2.08 

T7-P8 2.19 2.17 2.18 

5.5.3 Sensitivity study 

5.5.3.1 Mesh refinement 

The three meshes presented in paragraph 5.3.2 are tested on the same simulation case (T7), in order 

to provide a mesh refinement convergence study. Figure 5-8 provides a comparison of the H-Na mass 

fraction profiles for the three meshes. It is worth noting that, the more the mesh is refined, the better 

the profiles resolution; moreover, the coarse mesh provides lower values in general, while the normal 

and the fine mesh have nearly the same profiles. This means that the convergence is reached for the 

fine mesh, i.e. a finer mesh would not provide a more accurate solution. For this reason, all the 

simulation presented in this chapter are performed with the fine mesh. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 5-8 Mesh refinement study - H mass fraction radial and axial profiles in sodium for three mesh refinements: 
coarse (a, b), normal (c, d) and fine (e, f) 

5.5.3.2 Sodium flowrate and Reynolds number 

The geometry and Na flowrate taken as input data for the present CFD study  (cf. paragraph 5.3.1), give 

the same average velocity but a slight different Reynolds number of the sodium phase, if compared to 

the experimental study. This is due to the geometry simplification from 4 to 1 membrane with axial-

symmetry. Therefore, it is important to evaluate the effect of a sodium Reynolds number variation on 

the permeation. To do this, a sensitivity study on the input sodium flowrate is performed with 

reference to the case T7: the main data are reported in Table 5-6. Sodium flowrates varies in order to 

obtain Reynolds numbers up to the experimental value (T7-0.375), and down to the minimum value 

approaching the laminar regime (T7-0.075).  

It can be noticed that the Reynolds variation has a small impact (<1% of percentage variation) on the 

hydrogen permeation flow: in particular, the lower the Re number, the lower  the permeation flow. As 

represented on Figure 5-9(Na velocity and hydrogen mass fraction radial profiles) , when the Na 

flowrate is higher (e), the hydrogen concentration at the membrane is around 0.6 ppm (f). When the 

Na flowrates is lowered (a), the lower Reynolds number induces an increase of the sodium mass 

transfer resistance; therefore, the hydrogen concentration gradient in the Na boundary layer 

increases, thus giving higher H concentrations at the membrane, about 1.2 ppm (b). As a result, the 

higher hydrogen partial pressure (see column
𝑪𝑯,𝑵𝒂
∗

𝒌𝒔,𝑵𝒂
 in Table 5-6) in sodium adds resistance to the 

permeation, resulting in a lower permeation flowrate. However, as showed by Figure 5-7, the partial 

pressure difference with the gas phase is high enough not produce significant permeation variations, 

even if the sodium partial pressure doubles (as it is the case hereby).  

Finally, we can conclude that the sodium flowrate effect on the permeation is negligible. 
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Table 5-6 Sodium flowrate sensitivity study: simulated cases with related values of sodium flowrate, velocity, Re and 
hydrogen permeation flow 

Case Ref Figure 5-9 �̇�𝑁𝑎 𝒗𝑵𝒂- average 𝑹𝒆𝑵𝒂- average 𝑪𝑯,𝑵𝒂
∗

𝒌𝒔,𝑵𝒂
 

𝑸𝑯𝟐,𝒑 

  m3 h-1 m s-1 - Pa0.5 mol s-1 

T7-0.375 e, f 0.375 0.45 18000 1.42 1.573 x10-7 

T7 na 0.25 0.3 12000 1.61 1.570 x10-7 

T7-0.125 c, d 0.125 0.15 6000 2.03 1.565 x10-7 

T7-0.075 a, b 0.075 0.09 3600 2.40 1.560 x10-7 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 5-9 Sodium flowrate sensitivity study - Na velocity and mass fraction radial profiles for three Q Na [m3h-1]: 
0.075 (a, b), 0.125 (c, d), 0.375 (e, f). 

5.5.3.3 Gas flowrate 

A sensitivity study for the gas phase flowrate is provided as well; even if in the experimental test a 

fixed gas flowrate is tested (i.e. 200 Nml/min for the 4 tubes), it is interesting to see which impact it 

has on the permeation. Taking the case T7 as reference, three additional gas flowrates are tested: data 

on velocity, Reynolds number, hydrogen retentate concentration, mean partial pressure and 

permeation are reported in Table 5-7. Unlike the sodium flowrate, the gas flowrate can have a non 

negligible impact on the permeation: in fact, all the other parameters unchanged, the hydrogen 

permeation flowrate variation is of around 7% between the T7-25 and the T7-200 case. This effect is 

essentially due to the higher axial convective transport of the hydrogen in the gas phase: as a result, 

the hydrogen concentration in the retentate (i.e. gas outlet) is higher and, since the inlet concentration 

and the gas pressure are the same, the mean hydrogen partial pressure in the gas phase is higher. This 

is demonstrated by the gas phase mean partial pressure values (√𝐶𝐻2,𝑔𝑎𝑠
∗ 𝑅𝑇) reported in Table 5-7, 

increasing with the gas flowrate. Moreover, this is confirmed by the axial profile of the hydrogen 

permeation flux on the membrane (Figure 5-10- b, d and f): for the same permeation flux 𝐽𝐻2,𝑝 at the 

inlet (z=0), the higher is the gas flowrate, the lower is the reduction of the flux along the z-coordinate, 

thus giving a higher global permeation flowrate 𝑄𝐻2,𝑝  (i.e. the surface integral of 𝐽𝐻2,𝑝  along the 

membrane’s length). 

Finally, it is worth noting that this permeation increase is not linear with the gas flowrate over the 

observed range: in particular, a much higher increase of 𝑄𝐻2,𝑝 is found between 25 and 50 Nml/min 

(+4.6%), than between 100 and 200 Nml/min (+1%). This is because, at higher flowrates, 𝑋𝐻2,𝑟  

approaches more and more to the inlet molar fraction of 2.926%; theoretically, for an infinite gas 

flowrate, 𝑋𝐻2,𝑟 will be equal to 2.926%. In practical terms, the more the gas flowrate is augmented, 

the more 𝑋𝐻2,𝑟  tends to the asymptotic value of 2.926% and, consequently, the hydrogen permeation 

increases asymptotically as well. In this practical case, we can state that increasing the gas flowrate 

above 200 Nml/min, would not produce any significant permeation increase. 
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Table 5-7 Gas flowrate sensitivity study: simulated cases with related values of gas flowrate, velocity, Re; hydrogen 
partial pressure and permeation f low 

Case 
Ref Figure 

5-10 
𝑸𝒈𝒂𝒔 

𝒗𝒈𝒂𝒔- 

average 

𝑹𝒆𝒈𝒂𝒔- 

average 
𝑿𝑯𝟐,𝒓 √𝐶𝐻2,𝑔𝑎𝑠

∗ 𝑅𝑇 𝑸𝑯𝟐,𝒑 

  Nml min-1 m s-1 - %mol Pa0.5 mol s-1 

T7-200 e, f 200 0.052 17 2.82 119.8 1.617 x10-7 

T7-100 na 100 0.026 8 2.71 118.6 1.601 x10-7 

T7 c, d 50 0.012 4 2.50 116.3 1.570 x10-7 

T7-25 a, b 25 0.006 2 2.12 111.8 1.508 x10-7 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 5-10 Gas flowrate sensitivity study - Na velocity and mass fraction radial profiles for three Qgas [Nml min-1]: 
25 (a, b), 100 (c, d), 200 (e, f). 

5.6 Comparison with 1-D model and experimental results 

Results for all the simulated cases of Table 5-4 are reported in Figure 5-11: in particular, since we are 

mostly interested in comparing the hydrogen permeation, 𝑄𝐻2,𝑝 is plotted against the hydrogen mean 

partial pressure square root in the gas phase. In order to have a coherent comparison with the 1D 

model results applied to the full permeator prototype (cf. Section 3.2.3), the 𝑄𝐻2,𝑝  obtained with 

COMSOL is multiplied by four. Both for CFD simulations and 1D model the Robertson “best fit” 

permeability coefficient is taken as input. 

It is worth noting that, for each case (corresponding to a tested experimental case), the 1D model and 

the CFD simulation results are in perfect agreement. This means that, for the considered assumptions, 

the 2D axial-symmetric modelling,  does not reveal further resistance mechanisms to the hydrogen 

mass transport over the physical domain external to the membrane. In particular, the 2D simulations 

of the gas and sodium phase, including their boundary layers, corresponds to the simpler 1D analytical 

model. In other words, the approximations and assumptions made to develop the 1D model are 

acceptable to describe correctly the mass transfer resistance in the gas and sodium phase. 

These results confirm the results of the analysis of the axial and radial profiles (cf 5.5.1) and the 

sensitivity study (par 5.5.3). In fact, the main observations regarding the gas and sodium phase can be 

resumed as follows: 

 Gas phase: it does not provide a significant mass transfer resistance in the radial direction. It 

mainly affects the permeation in the axial direction, where the hydrogen concentration 

decreases, depending on the gas pressure, flowrate and temperature. 

 Sodium phase: a significant resistance in the boundary layer is found, which actually provides 

a hydrogen concentration radial gradient between the bulk and the membrane boundary. 

However, this has a negligible effect on the permeation, since the hydrogen equivalent partial 

pressure at the membrane boundary in the sodium phase, is always orders of magnitude lower 

than the gas phase one. 

Considering the two former conclusions, it is easy to understand why the CFD 2D modelling coincides 

with the 1D model presented in Section 3.2.3. In fact, although both the axial and radial coordinates 
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are considered in the CFD model, it does not add any significant effect on the permeation to the simpler 

1D model, which takes into account only the radial coordinate.  

Moreover, since the CFD and the 1D model coincide if the same permeability coefficient is taken as 

input, it is trivial to compare CFD and experimental results. In fact, it is sufficient to perform CFD 

simulations with the experimental coefficient of gas-sodium tests as input (𝐸𝑝 = 40757 [J mol-1] and 

𝑝𝑒0 = 4.80 10−8  [mol m-1 s-1 Pa-0,5]) and to compare them with experimental results, how it was 

presented in section 4.6.3. In particular, the same result presented in Figure 4-23 would be found. We 

did not repeat the procedure here for the sake of simplicity. 

Nevertheless, both 1D model and CFD 2D simulations do not take into account some additional mass 

transfer mechanisms inside the nickel membrane, such as dislocations transport, or at the gas-

membrane’s interface, such as argon competitive adsorption. Moreover, we can reasonably suppose 

from the experimental results analysis (cf. Sections 4.6.4 and 4.6.5) that these effects could potentially 

affect the gas-sodium permeation, thus producing deviations from the models represented in Figure 

5-11 at √𝑃𝐻2̅̅ ̅̅ ̅>140 Pa0.5 (i.e. Pgas>7 bar). Therefore, particular attention should be payed when the CFD 

simulations are used for predictions. As perspective, further developments of the models could be 

provided.  

 

Figure 5-11 CFD study: permeation flowrate (x4 tubes) against hydrogen mean partial pressure square root in gas 
phase. Comparison with 1D model for all simulated cases 

5.7 Conclusion 

A CFD model has been developed in order to describe the hydrogen mass transfer through the gas 

phase, the nickel membrane and the sodium phase. The experimental prototype described in Section 

3.2.5 has been simplified to a 2D axial-symmetric geometry, considering one nickel tube only, instead 

of four. Transport equations of mass, momentum and hydrogen as diluted species are solved for 
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different operating conditions, representing the gas-sodium experimental tests presented in Section 

4.1.1. A sensitivity analysis on the mesh refinement, sodium and gas flowrate is reported as well. 

Results show details of the hydrogen radial and axial concentration profiles over the different domains; 

thanks to these results, a better comprehension of the mass transfer phenomenology is obtained. 

Nevertheless, the evaluation of the global hydrogen permeation flowrate validates what was provided 

by the simpler 1D model, presented in Section 3.2.3. This result confirms that the assumptions and the 

simplifications made to set up the 1D model are consistent, for what concerns the gas and sodium 

phase mass transfer resistance, in the case of a diffusion-limited permeation inside the membrane. 

Moreover, to obtain an estimation of the global permeation in this operating condition range, the 1D 

model is recommended, due to its simpler application and the lower computational cost.  

Particular attention should be payed to the application of the model and CFD simulation over the full 

operating conditions, since some deviations were found experimentally at √𝑃𝐻2̅̅ ̅̅ ̅>140 Pa0.5 (i.e. Pgas>7 

bar). They could be attributed to some additional transport mechanisms inside the membrane such as 

dislocations transport, or at the gas-membrane’s interface, such as argon competitive adsorption, not 

considered in our models. Further developments of the models, taking into account these mechanisms, 

are recommended as a perspective. 
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5.8 Annex: summary of model’s hypotheses, equations, parameters and variables 

5.8.1 Hypotheses 

In order to simplify the consultation of this Annex independently from the rest of the Chapter, the model’s hypotheses presented in Section 5.2.1 and the 

scheme in Figure 5-1 are reported here below. The following hypotheses are considered: 

i. steady state conditions are established; 

ii. the whole system is isothermal and adiabatic; 

iii. the ideal gas law is valid; 

iv. liquid sodium density is constant over the domain; 

v. gas mixture and liquid sodium properties (viscosity, hydrogen diffusivity) are constant over the domain; 

vi. metal bulk diffusion is the rate limiting step of the permeation process through the membrane (diffusion-limited permeation) and no trapping or 

surface effects are considered; 

vii. chemical-physical equilibria at interfaces follow the Sieverts law; 

viii. the membrane length is much greater than its thickness, thus the hydrogen diffusion through the membrane is mainly in the radial direction r; 

ix. the competitive adsorption of Argon at the gas-membrane interface is neglected. 
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5.8.2 Equations 

Domain Dominant 

variable 

 Units Physical-

chemical 

parameters 

(explicit) 

State 

variables 

(implicit) 

CONTINUITY 

Gas phase (r=0 - rm) 𝜌𝑔𝑎𝑠  ∇(𝜌𝑔𝑎𝑠𝑣) = 0 [kg m-2 s-2] 𝑣 [ 𝑣𝑧; 𝑣𝑟]  

 

na 

Na phase (r=rm- rsh) 𝜌𝑁𝑎  𝜌𝑁𝑎∇ ∙ (𝑤) = 0 [kg m-2 s-2] 𝑤 [𝑤𝑧 ; 𝑤𝑟]  na 

MOMENTUM TRANSPORT 

Gas phase (r=0 - rm)  𝑣 [ 𝑣𝑧; 𝑣𝑟]  

𝑃𝑔𝑎𝑠 
𝜌𝑔𝑎𝑠(𝑣 ∙ ∇𝑣) = −∇𝑃𝑔𝑎𝑠 + ∇ ∙ [𝜇𝑔𝑎𝑠(∇𝑣 + ∇𝑣𝑇) −

2

3
𝜇𝑔𝑎𝑠(∇ ∙ 𝑣)𝐼]

+ 𝐹 

[kg m-2 s-2] 𝜌𝑔𝑎𝑠  ; 𝜇𝑔𝑎𝑠   T 

Na phase (r= rm- rsh)  𝑤 [𝑤𝑧 ; 𝑤𝑟]  𝜌𝑁𝑎(𝑤 ∙ ∇𝑤) = −∇𝑃𝑁𝑎 + ∇ ∙ [(𝜇𝑁𝑎 + 𝜇𝑁𝑎,𝑇)(∇𝑤 + ∇𝑤𝑇)] + 𝐹 [kg m-2 s-2] 𝜌𝑁𝑎  ; 𝜇𝑁𝑎 ; 

 𝜇𝑁𝑎,𝑇 ; 𝑃𝑁𝑎  

T, k , ε 

𝐤 − 𝛆 TURBULENCE MODEL 

Na phase (r= rm- rsh) 𝑘 𝜌𝑁𝑎(𝑤 ∙ ∇𝑘) = ∇ ∙ [(𝜇𝑁𝑎 +
𝜇𝑁𝑎,𝑇
𝜎𝑘

)∇𝑘] + 𝑃𝑘 + 𝜌𝑁𝑎휀 [kg m-1 s-3] 𝜌𝑁𝑎 , 𝜇𝑁𝑎 ,  

𝜎𝑘, 𝑃𝑘, 휀 

 

Na phase (r= rm- rsh) 휀 
𝜌𝑁𝑎(𝑤 ∙ ∇휀) = ∇ ∙ [(𝜇𝑁𝑎 +

𝜇𝑁𝑎,𝑇
𝜎𝑘

)∇휀] + 𝐶1
휀

𝑘
𝑃𝑘 + 𝐶2𝜌𝑁𝑎

휀2

𝑘
 

[kg m-1 s-4] 𝜌𝑁𝑎 , 𝜇𝑁𝑎, 𝜎𝑘 ,  

𝐶1, 𝐶2, 𝑃𝑘, 𝑘  
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BOUNDARY CONDITIONS 

Gas inlet (r=0 - rm); 

z=0 

𝑣 [ 𝑣𝑧; 𝑣𝑟]  
∫ 𝜌𝑔𝑎𝑠(𝑣 ∙ n) 𝑑𝑆 = �̇�𝑔𝑎𝑠,𝐼𝑁
𝜕Ω

 
[kg s-1] �̇�𝑔𝑎𝑠,𝐼𝑁   

Gas outlet (r=0 - rm); 

z=L 

𝑃𝑔𝑎𝑠 𝑃𝑔𝑎𝑠 = 𝑃𝑔𝑎𝑠,𝑂𝑈𝑇 [Pa] 𝑃𝑔𝑎𝑠,𝑂𝑈𝑇   

Wall (r= rm) 𝑣 [ 𝑣𝑧; 𝑣𝑟]  𝑣 = 0 [m s-1]   

Na inlet (r= rm- 

rsh);z=0 

𝑤 [𝑤𝑧 ; 𝑤𝑟]  

 

𝑘, 휀 

∫ 𝜌𝑁𝑎(𝑤 ∙ n) 𝑑𝑆 = �̇�
𝜕Ω

 

𝑘 =
3

2
(𝑈𝑟𝑒𝑓𝐼𝑇)

2
, 휀 = 𝐶𝜇

3/4 𝑘3/2

𝐿𝑇
 

 

[kg s-1] �̇�  

Na outlet (r= rm- 

rsh);z=L 

𝑃𝑁𝑎  𝑃𝑁𝑎 = 𝑃𝑁𝑎,𝑂𝑈𝑇 

∇𝑘 = 0 

∇휀 = 0 

[Pa] 𝑃𝑁𝑎,𝑂𝑈𝑇  

Wall (r= rm) 𝑤 [𝑤𝑧 ; 𝑤𝑟] 

 

Wall 

functions 

𝑤 ∙ 𝑛 = 0 

[(𝜇𝑁𝑎 + 𝜇𝑁𝑎,𝑇)(∇𝑤 + ∇𝑤𝑇)]𝑛 = −𝜌𝑁𝑎
𝑤𝜏
𝑤+𝑤𝑡𝑎𝑛𝑔 

𝑤𝑡𝑎𝑛𝑔 = 𝑤 − (𝑤 ∙ 𝑛)𝑛 

∇𝑘 ∙ 𝑛 = 0, 휀 = 𝜌𝑁𝑎
𝐶𝜇𝑘

2

𝜅𝑣𝛿𝑤
+𝜇

 

 

[m s-1]   
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TRANSPORT OF DILUTED SPECIES 

Gas phase (r=0 - rm) CH2 
(𝑣𝑧

𝜕𝐶𝐻2
𝜕𝑧

+ 𝑣𝑟
𝜕𝐶𝐻2
𝜕𝑟

) = 𝐷𝐻2,𝑔𝑎𝑠 [
𝜕

𝜕𝑧
(
𝜕𝐶𝐻2
𝜕𝑧

) +
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝐶𝐻2
𝜕𝑟

)] 

 

[molH2 s-1 m-3] 𝐷𝐻2,𝑔𝑎𝑠 , 𝑣𝑔𝑎𝑠 T, P, gas 

components 

Na phase (r=rm- rsh) CH 

 
(𝑣𝑧

𝜕𝐶𝐻
𝜕𝑧

+ 𝑣𝑟
𝜕𝐶𝐻
𝜕𝑟

) = 𝐷𝐻,𝑁𝑎 [
𝜕

𝜕𝑧
(
𝜕𝐶𝐻
𝜕𝑧

) +
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝐶𝐻
𝜕𝑟

)] 
[molH s-1 m-3] 𝐷𝐻,𝑁𝑎  , 𝑣𝑁𝑎  T 

BOUNDARY CONDITIONS 

Gas-membrane 

interface (r= rm) 

C∗H2 
(𝑣𝑧

𝜕𝐶∗𝐻2
𝜕𝑧

+ 𝑣𝑟
𝜕𝐶∗𝐻2
𝜕𝑟

) − 𝐷𝐻2,𝑔𝑎𝑠 [
𝜕

𝜕𝑧
(
𝜕𝐶∗𝐻2
𝜕𝑧

) +
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝐶∗𝐻2
𝜕𝑟

)]

= −
 𝐽𝐻,𝑝

2
 

[molH2 s-1 m-3] 𝐷𝐻2,𝑔𝑎𝑠  , 𝑣𝑔𝑎𝑠 , 

𝐽𝐻,𝑝  

T, P, gas 

components, 

𝑝𝑒𝐻2,𝑁𝑖, 𝛿 

Gas inlet (r=0 - rm); 

z=0 

CH2 
𝐶𝐻2 = 𝐶𝐻2,𝐼𝑁 

[molH2 m-3] 𝐶𝐻2,𝐼𝑁  

Na-membrane 

interface (r= rm) 

C∗H 

 
(𝑣𝑧

𝜕𝐶∗𝐻
𝜕𝑧

+ 𝑣𝑟
𝜕𝐶∗𝐻
𝜕𝑟

) − 𝐷𝐻,𝑁𝑎 [
𝜕

𝜕𝑧
(
𝜕𝐶∗𝐻
𝜕𝑧

) +
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝐶∗𝐻
𝜕𝑟

)]

=  𝐽𝐻,𝑝 

[molH s-1 m-3] 𝐷𝐻,𝑁𝑎  , 𝑣𝑁𝑎,   

𝐽𝐻,𝑝 

T, 𝑝𝑒𝐻2,𝑁𝑖 , 

𝛿 

Na inlet (r= rm- 

rsh);z=0 

CH 
𝐶𝐻 = 𝐶𝐻,𝐼𝑁 

[molH m-3] 𝐶𝐻,𝐼𝑁  
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5.8.3 Variables and parameters 

Symbol Description Definition / value Units Reference 

MEMBRANE 

𝛿 Membrane thickness 3x10-4 [m]  

𝑝𝑒𝐻2,𝑁𝑖  Hydrogen - Nickel permeability 
𝑝𝑒0 𝑒𝑥𝑝 

−𝐸𝑝
𝑅𝑇  

[molH2 m-1 s-1 Pa-

0,5] 

 

𝑝𝑒0 Pe pre-exponential factor 3.33x10-7 [molH2 m-1 s-1 Pa-

0,5] 

Robertson « best fit » 

𝐸𝑝 Pe exponential factor – Activation 

energy 

54598 [J mol-1] Robertson « best fit » 

 𝐽𝐻,𝑝 H permeation molar flux 
 𝐽𝐻,𝑝 =

1

𝛿
2𝑝𝑒𝐻2,𝑁𝑖 (√𝐶𝐻2,𝑔𝑎𝑠

∗ 𝑅𝑇 −
𝐶𝐻,𝑁𝑎
∗

𝑘𝑠,𝑁𝑎
) 

[molH m-2 s-1]  

𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗  Molar concentration of H atoms in 

nickel at the membrane-gas 

interface 

 [molH m-3]  

𝐶𝐻,𝑁𝑖−𝑁𝑎
∗  Molar concentration of H atoms in 

nickel on the membrane-Na 

interface 

 [molH m-3]  
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SODIUM 

𝑤 Na velocity  [m s-1]  

𝐶𝐻 Atomic hydrogen (H) molar 

concentration 

 [molH m-3]  

𝐶𝐻,𝑁𝑎
∗  Atomic hydrogen (H) molar 

concentration in Na phase at 

membrane-Na interface 

 [molH m-3]  

𝑦𝐻,𝑁𝑎 H atoms mass fraction  [wppm]  

𝜌𝑁𝑎  Na density 

 
219 + 275.32 (1 −

𝑇[𝐾]

2503.7
) + 511.58 (1 −

𝑇[𝐾]

2503.7
)

0.5

 
[kg m-3]  

𝜇𝑁𝑎  Na viscosity 
𝑙𝑛𝜇 = −6.4406 − 0.3958 ln(𝑇[𝐾]) +

556.835

𝑇[𝐾]
 

[Pa s]  

𝜇𝑁𝑎,𝑇 Na turbulent viscosity 
𝜇𝑁𝑎,𝑇 = 𝜌𝑁𝑎𝐶𝜇

𝑘2

𝜖
 

  

k Na turbulent kinetic energy  [m2 s-2]  

ε Na turbulent disspation  [m2 s-3]  

𝐾𝑠,𝑁𝑎 Hydrogen-in-Na solubility constant 
10

(0.86−
122
𝑇[𝐾]

)
 

[ppm Torr-0.5] Vissers 

𝑘𝑠,𝑁𝑎 Hydrogen-in-Na solubility constant 
𝐾𝑠,𝑁𝑎

𝜌𝑁𝑎 

𝑀𝑀𝐻 

1

√133.322
10−6 

[molH m-3 Pa-0.5]  

𝐷𝐻,𝑁𝑎  Hydrogen-in-Na diffusivity 
2𝑥10−5𝑒(−

49053
𝑅𝑇 ) 

[m2 s-1] Trouve et Laplanche 
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GAS 

𝑣 Gas velocity  [m s-1]  

𝐶𝑔𝑎𝑠 Gas molar concentration  [mol m-3]  

𝐶𝐻2 H2 gas molar concentration  [molH2 m-3]  

𝐶𝐻2,𝑔𝑎𝑠
∗  H2 molar concentration in gas phase 

at gas-membrane interface 

 [molH2 m-3]  

𝑥𝐻2,𝑔𝑎𝑠 H2 gas molar fraction  [%]  

𝑀𝑀𝐻2 H2 molar mass  [g mol-1]  

𝑀𝑀𝑔𝑎𝑠 Mass molaire gas  [g mol-1]  

𝑃𝑔𝑎𝑠 Gas pressure  [Pa]  

𝜌𝑔𝑎𝑠 Gas density  [kg m-3]  

𝜇𝑔𝑎𝑠 Gas viscosity  [Pa s]  

𝐷𝐻2,𝑔𝑎𝑠 Hydrogen-in-gas diffusivity  [m2 s-1]  
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5.8.4 Relationships between variables and parameters 

Variables of interest Relationship Reference Hypothesis 

Hydrogen partial pressure in gas 𝑃𝐻2,𝑔𝑎𝑠 = 𝑥𝐻2,𝑔𝑎𝑠𝑃𝑔𝑎𝑠 = 𝐶𝐻2,𝑔𝑎𝑠𝑅𝑇  Ideal gas 

H2-gas molar fraction 
𝑥𝐻2,𝑔𝑎𝑠 =

𝐶𝐻2,𝑔𝑎𝑠

𝐶𝑔𝑎𝑧
 

 Ideal gas 

H2-gas molar concentration 
𝐶𝑔𝑎𝑠 =

𝑛

𝑉
=
𝑃𝑔𝑎𝑠

𝑅𝑇
 

 Ideal gas 

H-Na molar concentration 
𝐶𝐻,𝑁𝑎 = 𝑦𝐻,𝑁𝑎[𝑝𝑝𝑚]

𝜌𝑁𝑎  [𝑘𝑔 𝑚−3]

𝑀𝑀𝐻 [𝑘𝑔 𝑚𝑜𝑙−1]
10−6 

 Constant density 

Hydrogen diffusivity in a gas X 

(X=N2, Ar, etc.) 
𝐷𝐻2,𝑔𝑎𝑠 = 𝐷𝐻2−𝑋 =

0.00266𝑇[𝐾]3/2

𝑃[𝑏𝑎𝑟]𝑀𝑀1/2𝜎2𝛺𝐷
 

The properties of gases 

and liquids 

Binary gas system at low pressure; 

Ideal gas law; 

Nonpolar, spherical, monoatomic 

molecules 

 

Gas viscosity 
µ𝑔𝑎𝑠 =

26.69 (𝑀𝑀 𝑇[𝐾])1/2

𝜎2𝛺µ
 

Chapman-Enskog 

Viscosity collision integral 𝛺µ = 1.604(𝑇∗)−0.5 Kim and Ross  

Molar mass 
𝑀 = 2[(

1

𝑀𝑀𝐻2
) + (

1

𝑀𝑀𝑋
)]

−1

 
  

Characteristic lenght 
𝜎 =

𝜎𝐻2 + 𝜎𝑋
2

 
Lennard-Jones 𝜎𝐻2, 𝜎𝑋 given tabulated values 

Characteristic Energy 휀 = (휀𝐻2휀𝑋)
1/2 Lennard-Jones 휀𝐻2,휀𝑋 given tabulated values 

Diffusion collision integral 
𝛺𝐷 =

𝐴

(𝑇∗)𝐵
+

𝐶

exp (𝐷𝑇∗)
+

𝐸

exp (𝐹𝑇∗)

+
𝐺

exp (𝐻𝑇∗)
 

Neufield (1972) A,B,C,D,E,F,G,H given constants 

T* 
𝑇∗ =

𝑘𝑇

휀
 

Neufield (1972) K Boltzmann Constant 

Equilibium membrane – gas 

(Sieverts law) 
𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠
∗ = 𝐾𝑠,𝑁𝑖√𝑃𝐻2,𝑔𝑎𝑠

∗  
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Equilibrium membrane – Na 

(Sieverts law) 
𝐶𝐻,𝑁𝑖−𝑁𝑎
∗ = 𝐾𝑠,𝑁𝑖√𝑃𝐻2,𝑁𝑎

∗  
  

Hydrogen partial pressure in 

sodium 
√𝑃𝐻2,𝑁𝑎

∗ =
𝐶𝐻,𝑁𝑎
∗

𝑘𝑠,𝑁𝑎
 

Whittingham (1976)  
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Conclusions and perspectives 
In the perspective of an hypothetical design of Sodium Fast Reactor (ASTRID-600 project), the 

possibility to realize a permeator at the industrial scale has to be studied, in order to transfer a 

continuous hydrogen flux from a gas phase to the secondary sodium circuit. 

In this work, the hydrogen injection in a liquid sodium stream by permeation through a nickel 

membrane has been investigated, thanks to a theoretical analysis of hydrogen transfer associated with 

an experimental validation at the pilot scale, by means of an original permeator prototype.  

A detailed state of the art review has shown that Richardson’s law is the most well-known way to 

describe the steady state hydrogen diffusion through metals, in case of a gas-gas configuration on both 

sides of the membrane, when enough thick membranes are considered, leading to a diffusion-limited 

permeation. With this model, one can obtain the local hydrogen flux per unit surface through a 

membrane under steady state conditions. 

In the past many authors have studied experimentally the hydrogen permeation through small size 

Nickel membranes, in gas-gas configuration, over high temperature range (>300 °C). The Richardson’s 

law was always followed by the experimental data, obtained in well-controlled conditions, for different 

membrane thicknesses, pressures, temperatures and measurement techniques. 

Furthermore, various applications involving hydrogen permeation through a multi-tubes Nickel 

membrane, between a gaseous medium and liquid sodium, were developed in the past. The most 

studied and consolidated one is the hydrogen-meter technology, exploiting the hydrogen permeation 

from sodium towards a gaseous side. Several studies confirmed that, in this case, the hydrogen 

permeation flux follows the Richardson’s law, within the nominal conditions of use of this device, thus 

confirming that diffusion across the Nickel membrane is the rate limiting step and that Sieverts’ law 

for Sodium-Nickel interface equilibrium is valid.  

Nevertheless, a gas-to-sodium hydrogen introduction method through a nickel membrane has been 

already developed. However, the operating conditions was very limited and no elements about 

modelling or theoretical calculation has been provided. Additionally, no information about the validity 

of the Richardson’s law has been reported.  

Therefore, an experimental study of a permeator prototype at the pilot scale has been developed in 

this work, with respect of the constraints coming from the aimed application (Sodium Fast Reactors) 

and from the available experimental facility. The goal was to demonstrate the feasibility of a gas-to-

sodium controlled hydrogen introduction, and to identify the key parameters to properly describe the 

process. 

First, an analytical model (called for simplicity 1D model) aiming to represent locally the permeation 

process in the radial direction through gas phase, nickel membrane and sodium phase has been set up 

as support for the prototype sizing. The hydrogen permeation through the nickel membrane is 

considered a diffusion-limited process and others mechanisms such as dislocation transport or surface 

adsorption effects are not included in the model. As main result, we found that the gas and sodium 

phase resistances to hydrogen mass transfer can be neglected, when a turbulent sodium flowrate is 
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provided and if the membrane thickness is >50 µm. Therefore, according to this model, the hydrogen 

diffusion across the nickel membrane could be considered as the mass transfer driving step. Under this 

condition, a simplified theoretical law (Equation 3-19) has been identified to describe the local 

hydrogen permeation through an infinitesimal membrane length. By integrating the Equation 3-19 

over the real prototype geometry (multi-tube membrane), assuming a plug-flow in gas phase, the final 

sizing of the prototype has been defined, with respect of all the technical and practical constraints, so 

that the hydrogen permeation flowrate can be accurately measured during the experiments by means 

of mass balances in both gas and sodium phase . 

The facility configuration, the measurement techniques based on gas chromatography, RGA analysis 

and mass spectrometry have been set up, in order to quantify the hydrogen permeation flowrate 

through the prototype in two different configurations: gas-vacuum and gas-sodium. A data 

reconciliation method has been applied to gas-vacuum tests in order to validate the different direct 

and indirect measurements on the retentate (µGC ) and permeate (pressure gauge) side. With both 

techniques, a maximum relative uncertainty of the order of 10% has been assessed for hydrogen 

permeation flowrates in the range 𝑄𝐻2 𝑝  > 4x10-7 mol/s, by a detailed measurement uncertainty 

analysis. 

A results post-treatment method have been proposed, which allows to compare the experimental 

results with a single-equation law (Equation 4-3), called “integrated permeation law”, which links the 

global hydrogen permeation flowrate to the temperature and to the square-root of the hydrogen 

mean partial pressure in the feed/retentate side. 

For gas-vacuum tests, a good agreement is found between measurements on retentate (µGC) and 

permeate (pressure gauge) sides, by means of data reconciliation, thus validating the use of µGC by 

itself for the gas-sodium campaign. The prototype performances in gas-vacuum configuration follows 

the integrated permeation law for all the pressure tested up to the average temperature of 387°C, 

while for the two highest temperatures (410°C and 434°C) the law is followed only up to hydrogen 

partial pressure of2x104 Pa (√𝑃𝐻2̅̅ ̅̅ ̅=140 Pa0.5, obtained for a gas pressure of 7 bar). However, a non-

uniform temperature is measured along the membrane length, thus not allowing to establish precisely 

a global permeability coefficient value for the mean temperatures between 293°C and 434°C. An 

overestimation of around 20°C of the effective membrane temperature probably occurs. If we consider 

the average temperature of the membrane during tests, the permeability law coefficients are a linear 

function of 1/T, confirming the Arrhenius law of permeability. In particular, we obtain 𝐸𝑝 = 46309 [J 

mol-1] and 𝑝𝑒0 = 1.08 10−7 [mol m-1 s-1 Pa-0,5]. 

In gas-sodium configuration, a good agreement with the integrated permeation law has been found 

for hydrogen partial pressures up to 2x104 Pa (√𝑃𝐻2̅̅ ̅̅ ̅=140 Pa0.5) and for temperatures from 375°C to 

450°C. Permeation flowrates (𝑄𝐻2 𝑝)in the range 3x10-7–1.1x10-6 mol/s have been measured. By a 

linear regression on the experimental data coherent with the theoretical Arrhenius law, the 

experimental permeability law coefficients have been obtained: 𝐸𝑝 = 40757  [J mol-1] and 𝑝𝑒0 =

4.80 10−8 [mol m-1 s-1 Pa-0,5]. 

The comparison between gas-vacuum and gas-sodium tests provides globally the same permeation 

features: this demonstrates the theoretical prediction stating that the sodium phase does not add a 

significant mass transfer resistance.   
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Furthermore, measurements of hydrogen concentration inside sodium have been provided during gas-

sodium test, based on the well-known hydrogen-meter technology. Thanks to a dedicated estimation 

of the hydrogen-meter permeability, together with a transient analysis during the permeation tests, 

coherent results have been found. In particular, for a given hydrogen permeation rate, a coherent 

concentration increase is found, thus confirming that the entire hydrogen transferred by permeation 

is dissolved in sodium.  

A comparison of the gas-sodium permeability coefficient, related to the full prototype, with previous 

literature values for small-size nickel membranes, showed that some non-ideal phenomena, probably 

linked to the membrane deformation by cold-working, could affect the hydrogen permeation in this 

study. In fact, quite higher permeation with a lower activation energy is found here if compared to the 

literature (as reference Robertson “best fit” coefficients 𝐸𝑝 = 54560 [J mol-1] and 𝑝𝑒0 = 3.33 10−7 

[mol m-1 s-1 Pa-0,5]) . Moreover, results deviate from the linear dependence of 𝑄𝐻2 𝑝 with √𝑃𝐻2̅̅ ̅̅ ̅, both 

for gas-vacuum and gas-sodium tests, when √𝑃𝐻2̅̅ ̅̅ ̅ > 140 Pa0.5 and Pgas > 7 bar. Some hypotheses are 

provided for further investigations, but one reasonable explanation of this deviation could be the 

modification of the membrane crystalline structure (caused by the presence of dislocations), induced 

by the higher mechanical constraint, obtained at the higher pressures and temperatures. In addition, 

the competitive adsorption of Argon at the membrane surface at high pressure could also be 

considered.  

As a perspective, further studies at a fixed total gas pressure and variable hydrogen concentrations 

should be carried out, in order to investigate these various mechanisms. Furthermore, test on a small-

size nickel sample, before and after a cold-work induced deformation, could assess the effect of cold-

working in quantitative terms, in comparison with our results. 

Finally, a CFD model has been developed in order to describe the hydrogen mass transfer through the 

gas phase, the nickel membrane and the sodium phase. The experimental prototype has been 

simplified to a 2D axial-symmetric geometry, considering one nickel tube only, instead of four. 

Transport equations of mass, momentum and hydrogen as diluted species are solved for different 

operating conditions, representing the gas-sodium experimental tests. Results show details of the 

hydrogen radial and axial concentration profiles over the different domains, with particular regard to 

the boundary layers at both the membrane’s sides; a better comprehension of the mass transfer 

phenomenology is provided. Nevertheless, the evaluation of the global hydrogen permeation flowrate 

over all the tested conditions validates what was provided by the simpler 1D model. This result 

confirms that the assumptions and the simplifications made to set up the 1D model are consistent, for 

what concerns the gas and sodium phase mass transfer resistance, in the case of a diffusion-limited 

permeation inside the membrane.  

In summary, different numerical or analytical methods have been assessed to provide, at the pilot 

scale, an estimation of the hydrogen permeation rate in a gas-sodium configuration, depending on the 

operating conditions considered. We can resume these methods here below: 

1. The analytical 1D-model (chapter 3). 

2. The integrated permeation law (chapter 4). 

3. The CFD simulations (Chapter 5). 

These three methods have been compared with each other and with the experimental results: it has 

been found that they are substantially equivalent and that, if the experimental permeability coefficient 
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obtained for gas-sodium test (𝐸𝑝 = 40757 [J mol-1] and 𝑝𝑒0 = 4.80 10−8 [mol m-1 s-1 Pa-0,5]) is used as 

a model input parameter, the numerical results are in good agreement with the experimental results, 

for temperatures from 375°C to 450°C and up to √𝑃𝐻2̅̅ ̅̅ ̅ > 140 Pa0.5 and Pgas > 7 bar 

One of the above-cited methods can be used for the prototype scale-up, for what concern the 

hydrogen mass transfer performance. In particular, the required H input from ASTRID-600 is around 

20 to 60 times higher than the performance obtained by our experimental prototype (20 for the 

highest and 60 for the lowest prototype operational points, in terms of hydrogen permeation 

flowrate). Since the three methods above listed give the same results for the same input parameters, 

in a first attempt it is advisable to employ the less computational and time consuming one, i.e. the 

integrated permeation law. It can be applied to different physical parameters in the range of validity 

proved by this study (i.e. =375°C<T<450°C, gas pressure up to 7 bar) and geometry combinations, in 

order to quickly compare different solutions. The CFD simulations could be used only in a second step, 

if one wants for example to study some particular thermal-hydraulics features of the permeator, 

always in the same validity range. Nevertheless, it is not recommended to employ any of the three 

methods listed above for design purpose out of the validity range, in particular at higher gas pressures. 

In fact, they do not take into account the effect of the dislocations induced by a potential membrane’s 

deformation and of the gas competitive adsorption at the surface, which could be sources of 

degradation in the permeation performances at high gas pressures, as revealed by our experimental 

results. Particular attention should be payed as well to the membrane design pressure and 

temperature which, combined with the dislocation transport mechanisms, could affect its mechanical 

resistance with an aging process. If possible, gas mixtures with higher hydrogen concentrations (> 3% 

mol) and a lower operating pressure could be recommended, instead of low concentrations and high 

pressures. 

In particular, the scale-up approach should consider a combination between a full compact and a 

modular solution, playing on the module’s size and on the number of modules, in order to give more 

flexibility and reliability to the entire system. 

Moreover, a periodical calibration of the measuring devices and of the permeator should be carried 

out in order to support the performances assessment of the system and guarantee the hydrogen mass 

balance in the system. 

In order to limit the number of modules, a strategy could consist in using a single module (if possible) 

and pure hydrogen, the permeator being inserted into a vessel under vacuum or inert gas (to avoid 

any explosion hazard). This option, which could reduce significantly the complexity of the system, could 

be investigated, after checking the limited impact of pure hydrogen, into the Nickel membrane. This 

option could also prevent from any poisoning effect due to the inert gas (“competitive” adsorption on 

the surface) if this phenomenon is confirmed in a certain range of operating conditions. 
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I. Analytical resolution of the 1D model on the radial direction 

The analytical resolution of the model presented in 3.2.3.1 follows the below described steps: 

1. by equalizing Eq. 3-14 and 3-16, 𝐶𝐻,𝑁𝑎
∗  can be expressed as function of 𝐶𝐻2,𝑔𝑎𝑠 

∗ ;  

2. equalize Equations 3-14 and 3-15; 

3. substitute in b) the expression of 𝐶𝐻,𝑁𝑎
∗  obtained in a); 

4. resolve the 2nd grade equation to obtain the unknown 𝐶𝐻2,𝑔𝑎𝑠 
∗  ; 

5. calculate 𝐶𝐻,𝑁𝑎
∗  with the expression obtained in a); 

6. obtain 𝐶𝐻,𝑁𝑖−𝑁𝑎
∗  and 𝐶𝐻,𝑁𝑖−𝑔𝑎𝑠

∗  by substituting 𝐶𝐻,𝑁𝑎
∗  and  𝐶𝐻2,𝑔𝑎𝑠 

∗  in Equations 3-11 and 3-13; 

By fixing the geometry and physical parameters, the system can be solved: hydrogen concentrations 

and hydrogen mass transfer rate per unit length  d𝑄𝐻/𝑑𝑧 are calculated analytically. 
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II. Gas supply system PID diagram 
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III. Residual gas analysis (RGA) technique 

Before to start permeation tests, the system is continuously pumped off until a very low pressure is 

obtained, typically 1x10-8 to 5x10-7 mbar (pressure indicated by the BA Pressure Gauge), depending on 

the pumping time (1 night, 2 days during weekend, etc). The spectrometry analysis reveals the 

presence of hydrogen in the system (which is progressively outgassed by the piping surface), and of 

small traces of water (residual humidity) and nitrogen (residual air).  

At this pressure levels (High Vacuum), a molecular flow is established in the system, which means that 

single molecules flow independently with very few interactions between them, depending on the value 

of their “mean free path and the geometry of the system. 

A. Pumping speed and throughput 

The turbomolecular pump continues to evacuate the system according to its operational curve: in 

particular we can see that for pressures <=10-4 mbar the pumping speed (volumetric flow expressed in 

l/s) is constant at its maximum value, then it decrease with increasing pressure; for pressures between 

10-4 and 10-3 mbar the pumping speed is reduced of only 10% approximately (see pump curve in 

attachment).  

During system conditioning (2-3 days of pumping or 1 night of pumping between permeation tests), 

the pressure continues to slowly decrease towards to a minimum value, which represents the 

maximum pump capacity (ultimate pressure). For our system we reach pressures of 1x10-8 to 5x10-7 

mbar.  

During permeation test the system pressure reaches a maximum of 1x10-5 to 5x10-4 mbar; so we can 

approximate that pump speed is constant at his maximum value all along the pressure range of our 

interest. This is confirmed also by the rotational frequency of the pump, visualized on the screen during 

tests, which is always at his maximum value of 1350 Hz.  

The given pumping speed for H2 is of 50 l/s. This is a mean value given by constructor; the uncertainty 

is not given. 

According to perfect gas low, if the temperature inside the UHV piping is maintained constant, for a 

given pumping speed we can calculate the molar flow rate of the pump (also called “throughput” in 

vacuum system) as: 

𝑄 =
𝑛

𝑡
[
𝑚𝑜𝑙

𝑠
] =

𝑃[𝑃𝑎]
𝑉
𝑡
[
𝑚3

𝑠
]

𝑅𝑇
 

 

 0-1 

So, for a fixed pumping speed V/s, at a fixed temperature, the molar flux evacuated by the pump 

increase with the pressure established in the system. 
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B. Pressure measurement : QMS vs Pressure Gauge Bayard-Alpert 

As “system pressure” we shall consider the total pressure of the system, given by all the gases present 

in it; in our particular case, whitouth or with hydrogen permeation, the main gas present in the system 

is hydrogen, since we have only small traces of other gases. This is constantly verified by the mass 

spectrometry analysis. Therefore, we can approximate that the system “total” pressure correspond to 

the hydrogen pressure. 

To measure this pressure, two instruments are installed in the RGA system, directly in contact with the 

flow coming from permeator: the Quadrupolar Mass Spectrometer (QMS) and the Bayard-Alpert (BA) 

Pressure Gauge. Both are based on the ionization of molecules flowing through a ionization chamber: 

electrons emitted by a hot cathode ionize a number of molecules proportional to the pressure in the 

measuring chamber. The ion collector collects the thus generated ion current and feeds it to the 

electrometer amplifier of the measurement instrument.  

The main difference between QMS and BA Gauge is that the QMS filters the ionized molecules in the 

quadrupole filter according to their mass, before to send them to the collector (Figure 0-1). In fact, as 

a molecular flow is established at high vacuum, each single ionized molecule pass through the filter 

with a trajectory depending on its mass, and then impact on the ion collector, which detects the ion 

current.  

For the proper functioning of QMS, a maximum pressure of 1x10-4 mbar is accepted; over this value in 

fact the mean free path of molecules decrease. Depending on the filter geometry, the ionized 

molecules flowing through it can have more probability to collide the one with the other, rather than 

flow across the filter directly to the ion collector. For this reason, the QMS signal loses its linearity with 

the increasing pressure and for pressures above 1x10-4 mbar the signal can be inverted (decreasing 

instead of increasing). 

 

Figure 0-1 QMS principle 

The BA Gauge instead counts directly all the ionized molecules in the chamber, since no filter is used 

to separate molecules (Figure 0-2). For this reason, its maximum allowable pressure is higher than the 

QMS’s one. In particular it can measure up to 2.7x10-2 mbar.   
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Figure 0-2 Pressure Gauge Bayard-Alpert principle 

C. System behavior during hydrogen permeation 

When permeation take place, a hydrogen flux starts (𝑄𝐻2 𝑝 [mol/s]) flowing into the vacuum system 

from the permeator membranes. As the pressure of vacuum side is extremely lower than H2 partial 

pressure on feed side, we can consider that, after an initial transitory time, the hydrogen permeation 

incoming flow is constant as long as the feed side is maintained stable (gas Pressure, gas flowrate and 

membrane T).  

Considering 𝑄𝐻2 TP as the molar flow evacuated by the turbo-pump, according to mass conservation 

we can say that: 

- If 𝑄𝐻2 𝑝> 𝑄𝐻2 TP  P system increases 

- If 𝑄𝐻2 𝑝< 𝑄𝐻2 TP P system decreases 

- If 𝑄𝐻2 𝑝 = 𝑄𝐻2 TP P system is stable 

As the hydrogen flow starts coming into the system:  

1. the pressure increases;  

2. as a consequence, the pump, which turns at constant speed, evacuates a higher molar flux;  

3. if the molar flux evacuated is not enough (Q,H in > Q,H out), the pressure continues increasing;  

4. as pressure increases, molar flux evacuated increases; 

This process continues as long as an equilibrium is reached: in particular, the system pressure will 

increase until the pump evacuates the same flux coming into the system; at this moment, the pressure 

is stable at an equilibrium value. This is confirmed by the experimental measurements effectuated.  

As conclusion, we can say that the “equilibrium pressure” value depends from the hydrogen 

permeation flow; namely, it is the pressure value that allows the pump to maintain the system in 

equilibrium.   
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D. Hydrogen permeation flow calculation 

Therefore, from the “equilibrium pressure” measurement, we can calculate indirectly the value of the 

hydrogen permeation flux by means of two methods: 

1. By leak calibration and pressure measurement. In particular, we introduce into the system a 

known hydrogen molar flow (opening the calibrated leak) and we measure its equilibrium 

pressure. Assuming the linearity between the hydrogen molar flow and the equilibrium 

pressure in the system we have the following proportionality : 

𝑃𝑙𝑒𝑎𝑘
𝑄𝑙𝑒𝑎𝑘

=
𝑃𝑥
𝑄𝑥

  0-2 

Where Px and Qx correspond to the x condition tested.  

2. By estimation from the pumping speed (V/t) and the system pressure/temperature, as 

follows: 

𝑄𝑥 =
𝑃𝑥  

𝑉
𝑡

𝑅𝑇𝑥
 [
𝑚𝑜𝑙

𝑠
]  0-3 

The method 2, without precise information on the pump speed uncertainty, and involving the 

temperature, is to be considered an approximation. 

The method 1, by means of calibration leak, is normally used in literature to extrapolate results of 

hydrogen flux. This method is the only used in this work, as presented in par. 3.4.2.2. 

Anyway, it is interesting to compare the two calculation methods for each tested condition, in order 

to verify the coherence with the physic of the system. In Table 0-1, we report two different calculation 

for two operational cases (T1 and T7 of gas-vacuum test) and for the leak calibration. For the method 

2 we consider a pumps speed of 50 l/s and a temperature of 150°C, since the vacuum system was 

maintained at this constant temperature along all tests. Since the only variable is the pressure 

measured by the gauge in both methods, we have a constant ratio between the flow calculated with 

method 1 and 2. In particular, we find a molar flow 1.47 times higher with method 2. This difference 

can be reasonable if we consider high uncertainties on pump speed and on the effective temperature 

of the gas inside piping.  

Table 0-1 Hydrogen molar flowrate calculation methods  in the RGA system 

 

Test T P gas P gauge

method 1 method 2

°C bar a mbar mol/s mol/s

T1 300 5 5,20E-05 1,20E-07 1,77E-07

T7 450 5 3,27E-04 7,54E-07 1,12E-06

Calibrated leak na na 9,50E-05 2,19E-07 3,24E-07

H2 flow

Molar flow comparison
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E. HIDEN – HAL 201-RC Mass spectrometer technical data 
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F. INFICON - BPG400 (Bayard-Alpert Pressure Gauge) technical data 
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IV. Experimental uncertainties and data reconciliation 

A. Generalities 

A physical system can be theoretically described by a mathematical model, namely a certain number 

of equation combining different variables and parameters. When all or part of these variables are 

experimentally measured, being affected by uncertainties, the system of equations is not necessarily 

satisfied by the measured variables, because of the errors that affect them. Therefore, a data 

reconciliation method can be applied, in order to find the best estimation of the variable’s “true” value, 

which normally will satisfy the physical system model. Data reconciliation is the estimation of process 

variables based on information contained in the process measurements and models.  

When experiments take place, raw measurements of some variables are recorded. For each condition 

tested, we will have then datasets randomly dispersed around mean values of X i. The experimental 

mean of each dataset will be taken as the measured value of the i-variable, here called 𝑋�̅�. Moreover, 

an instrument rarely directly measures a physical variable, but their measurement comes from the 

application of conversion laws to the instrument signal. Therefore, they can be affected by further 

uncertainties coming from the instrument calibration procedure, constant determination and so on.  

Hypothesis: only random errors exist, no systematic errors affect measurements. The measured 

variables Xi follow a Normal distribution  

For an observed system, we define the following parameters:  

Table 0-2 Data reconciliation parameters 

n Number of measured variables 

Xi Measured variable i 

𝑋�̅� Experimental mean of measured variable i 

𝑋𝑖
∗ Reconciled value of measured variable i 

𝜎2(𝑋𝑖) Variance of the mean measured variable i 

 

According to data reconciliation theory, the reconciled values 𝑋𝑖
∗ of each measured variable can be 

obtained by the following system:   

𝑚𝑖𝑛∑√
(𝑋�̅�−𝑋𝑖

∗)
2

𝜎2(𝑋𝑖)

𝑛

𝑖=1

  0-4 

𝑓(𝑋𝑖
∗) = 0  0-5 

Where 𝑓(𝑋𝑖
∗) constitutes the system constraints, i.e. the model’s equations involving the measured 

variables. The constraints can both contain measured variables only or measured and unmeasured 

variables. In both cases, to be allowed to apply data reconciliation, the system must have two 

characteristics: 

 Observability : all variables can be measured or estimated from the physical model 

 Redundancy : measured variable can be estimated by other measured variables via process 

models, in addition to its measurement 
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To apply data reconciliation, it is necessary to correctly estimate the variance 𝜎2(𝑋𝑖), indicating the 
 uncertainty of the measured variable. According to GUM [80], an experimental variance estimation 
 defined 𝑢2(𝑋𝑖) can be done by two different methods, according to the available information : 
 

 TYPE A STANDARD UNCERTAINTY 

“The estimated variance u2 characterizing an uncertainty component obtained from a Type A 

evaluation is calculated from series of repeated observations and is the familiar statistically estimated 

variance s2 . The estimated standard deviation u, the positive square root of u2, is thus u = s and for 

convenience is sometimes called a Type A standard uncertainty”. 

Where the experimental variance of the mean or Type A variance is :  

𝑢𝐴
2(𝑋𝑖) = 𝑠2(𝑋�̅�) =

1

𝑁(𝑁 − 1)
∑(𝑋𝑖,𝑗 − 𝑋�̅�)

2
𝑁

𝑗=1

  0-6 

Where N is the number of independent repeated observation of the variable X i. 

And the Type A standard uncertainty is :  

𝑢𝐴(𝑋𝑖) = √𝑢2(𝑋𝑖)  0-7 

It is evident that Type A standard uncertainty can be evaluated only when repeated observations of 

the variable 𝑋𝑖  are available; therefore it represent the random variation during repeated tests in the 

same conditions, linked to the variable observation. In our case, this type of evaluation will be applied 

to all the directly measured variables. 

 TYPE B STANDARD UNCERTAINTY 

When a quantity Xi has not been obtained from repeated observations, GUM introduce the TYPE B 

evaluation, stating that “the associated estimated variance 𝑢2(𝑋𝑖) or the standard uncertainty 𝑢(𝑋𝑖) 

is evaluated by scientific judgement based on all of the available information on the possible variability 

of Xi”. Such information may include: 

- Previous measurements data 

- Experience or general knowledge of the instrument behavior 

- Manufacturer’s specifications 

- Data provided in calibration and other certificates 

- Uncertainties assigned to reference data taken from handbooks or literature 

This type of evaluation is applied to measured variables for which information are available about the 

instrument accuracy, to calibration constants and to non-measured physical parameters affecting 

indirectly some variable measurement.  

 COMBINED STANDARD UNCERTAINTY 

When a variable Y is obtained by combining through a function f more variables Xi, for which the 

standard uncertainties 𝑢(𝑋𝑖) are known, the combined standard uncertainty 𝑢𝐶(𝑌) is given by :  

𝑢𝐶(𝑌) = √∑(
𝜕𝑓

𝜕𝑥𝑖
)
2

𝑢2(𝑋𝑖)

𝑛

𝑖=1

  0-8 



Annexes 
__________________________________________________________________________________ 

161 

When f is composed by only multiplications and rapports : 

𝑢𝐶(𝑌)

𝑌
= √∑(

𝑢(𝑋𝑖)

𝑋𝑖
)

2𝑛

𝑖=1

  0-9 

Where 
𝑢(𝑋𝑖)

𝑋𝑖
 is called the “relative” standard uncertainty of the variable 𝑋𝑖.  

The combined uncertainty is typically applied to indirectly measured variables and to model 

parameters depending from a measured physical variable (for example the Temperature), affecting 

the parameter with its uncertainty.  

In conclusion, different types of uncertainty can be estimated for a certain variable, according to the 

variable nature. If more uncertainties are affecting a variable, their combination will be considered to 

establish the global uncertainty.  

For a directly measured variable, a type A uncertainty is estimated as well as the type B when 

information are available. Combination of type A and type B gives its global standard uncertainty.  

For physical parameters, a type B uncertainty is estimated when information are available. 

For indirectly measured variables, a combined uncertainty is calculated by combining the uncertainties 

of directly measured variables and parameters from which it depends. 

B. Uncertainty of measured variables 

For each measured variable Xi listed in Table 0-3 a global standard uncertainty is evaluated by 

combining the effect of different sources. 

 GAS FLOWRATE 

TYPE A : As for all the directly measured variables, we obtain during the experiments a certain number 

of repeated observations. Thus, we can calculate a Type A standard uncertainty according to equation 

0-6. 

TYPE B : The gas molar flow is measured in Nml/min by a Gas Mass Flowmeter - Brooks SLA 5850, which 

has a precision of 0.9% of measured value, declared by the constructor. Without an indication by the 

constructor, according to GUM-2008 we consider for this precision a confidence interval at 95% (1.96 

of coverage factor); we obtain a relative standard uncertainty of uB(Qgas)/Qgas =0.045%=0.0045.  

 GAS RETENTATE HYDROGEN CONCENTRATION 

The Micro-GC is able to give a measurement of hydrogen concentration inside the gas flow coming 

from the sampling lines at the permeator inlet and outlet. Basically it gives a spectrum where a peak 

reveals the abundancy of the detected molecule. To give a consistent value of H2 concentration, it has 

to be calibrated with a standard leak of known hydrogen concentration. Thus the measured H2 peaks, 

compared with the calibration peak value, can give an absolute value of H2 concentration.  
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The Ar-H2 2,926% gas bottle from Air Liquide (Crystal mixture) has a relative uncertainty of 2%, 

calculated with a 2-sigma confidence interval. This means that its corresponding type B standard 

uncertainty is 𝑢(𝑋𝐻2,𝑖𝑛) =1%.  

Actually, for the data reconciliation procedure, we do not consider 𝑋𝐻2,𝑖𝑛 as an unknown variable of 

the system, since its value is not measured for each experiment, but we consider it as a constant value 

of 2,926%  given by the gas bottle, which actually never changes during experiments. It is of course 

affected by its uncertainty, but if we consider an uncertainty for it, the data reconciliation would treat 

it as a variable of the system giving it a different value for each tested condition, which is not physical. 

The gas chromatograph is calibrated by multiple measurements of a known mixture; in our case we 

used the Ar-H2 2,926% bottle as calibration mixture. The µGC signal is then automatically calibrated at 

this given concentration, for which we consider the bottle uncertainty of 1%. Additionally we consider 

the type A uncertainty obtained experimentally on multiple observations, estimated at 0,5% of 

measured value. 

Therefore we have 
𝑢𝐴(𝑋𝐻2,𝑟)

𝑋𝐻2,𝑟
= 0,5% and 

𝑢𝐵(𝑋𝐻2,𝑟)

𝑋𝐻2,𝑟
= 1%. 

 QMS SIGNAL 

The mass spectrometer gives a spectrum of peaks, whose amplitude is proportional to the abundancy 

of the corresponding molecular mass. Here we consider only the analysis of the mass m/z=2, 

corresponding to H2 molecules. The corresponding H2 signal given by MS, here called SMS [Torr], can be 

considered proportional to hydrogen flowrate coming into the MS chamber. 

We consider for the measured SMS a Type A standard uncertainty only, resulting from its observations 

during the experiments: the considered value is of 
𝑢𝐴(𝑆𝑀𝑆)

𝑆𝑀𝑆
= 0,5%. No information are available about 

the sensibility of the signal, so a Type B estimation is not possible.  

 PRESSURE GAUGE BAYARD-ALPERT 

The Bayard-Alpert pressure gauge measures the pressure of an ultra-vacuum system. If in the system 

there is only hydrogen (and this can be verified by the mass spectroscopy), the pressure increase 

linearly with the hydrogen flowrate coming into the system, i.e. the permeation flowrate. The TYPE A 

relative standard uncertainty of pressure measurement is of  
𝑢𝐴(𝑃𝑝)

𝑃𝑝
= 0,5%. 

 MASS SPECTROMETER/ PRESSURE GAUGE CALIBRATION CONSTANT 

In order to obtain a flowrate measurement, it is necessary to calibrate the MS and the pressure gauge 

with a hydrogen standard leak, giving a known H2 flowrate and then calculate the linearity constant, 

which links the hydrogen flowrate to the measured signals, as follows: 

𝐾𝑀𝑆 =
𝑄𝑙𝑒𝑎𝑘
𝑆𝑆,𝑙𝑒𝑎𝑘

  0-10 

𝐾𝑃 =
𝑄𝑙𝑒𝑎𝑘
𝑃𝑝,𝑙𝑒𝑎𝑘

  0-11 
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Where 𝐾𝑀𝑆 [(mol/s)/Torr] and 𝐾𝑃 [(mol/s)/mbar] are the linearity constant for mass spectrometer and 

Gauge BA respectively, 𝑄𝑙𝑒𝑎𝑘  [mol/s] is the standard leak hydrogen flowrate, 𝑆𝑆,𝑙𝑒𝑎𝑘  [Torr] and 𝑃𝑝,𝑙𝑒𝑎𝑘  

[mbar] are the output signals corresponding to the standard leak analysis. 

We calculate for the signals 𝑆𝑆,𝑙𝑒𝑎𝑘  and 𝑃𝑝,𝑙𝑒𝑎𝑘  a type A uncertainty, resulting from its observations 

during the calibration procedure. 

While on the value of 𝑄𝑙𝑒𝑎𝑘  we have a Type B uncertainty, coming from constructor certificate, 

corresponding to 10%.   

Therefore, for 𝐾𝑀𝑆  and 𝐾𝑃 a combined uncertainty is calculated as follows: 

𝑢(𝐾𝑀𝑆)

𝐾𝑀𝑆
= √(

𝑢(𝑄𝑙𝑒𝑎𝑘)

𝑄𝑙𝑒𝑎𝑘
)

2

+ (
𝑢(𝑆𝑆,𝑙𝑒𝑎𝑘)

𝑆𝑆,𝑙𝑒𝑎𝑘
)

2

  0-12 

𝑢(𝐾𝑃)

𝐾𝑃
= √(

𝑢(𝑄𝑙𝑒𝑎𝑘)

𝑄𝑙𝑒𝑎𝑘
)

2

+ (
𝑢(𝑃𝑝,𝑙𝑒𝑎𝑘)

𝑃𝑝,𝑙𝑒𝑎𝑘
)

2

  0-13 

 

 GAS-VACUUM TEST : PERMEATE HYDROGEN MOLAR FLOWRATE 

Once the calibration is set up, the permeate hydrogen flowrate under different conditions can be 

obtained pressure gauge measurements as: 

𝑄𝐻2,𝑝 = 𝐾𝑃𝑃𝑝  [mol/s] 0-14 

For the 𝑄𝐻2,𝑝 uncertainty evaluation we can use the combined uncertainty formula: 

𝑢(𝑄𝐻2,𝑝)

𝑄𝐻2,𝑝
= √(

𝑢(𝐾𝑃)

𝐾𝑃
)

2

+ (
𝑢(𝑃𝑝)

𝑃𝑝
)

2

  0-15 

The so obtained relative uncertainty is about 10%. 

NOTE : it is important to remark that this combined uncertainty affecting 𝑄𝐻2,𝑝  includes both the 

calibration procedure uncertainties, defined before the experimental campaign on the basis of 

available information (Type B estimation), and the uncertainty of 𝑃𝑝 (Type A), which is calculated for 

every experimental condition analyzed by means of repeated measurements. 

GAS-SODIUM TEST 

 SODIUM TEMPERATURE 

The Type B relative standard uncertainty for K-type thermocouples in our temperature range is 

u(T)/T=0.004. 

 SODIUM LOOP VOLUME 

It represents the total volume of sodium circulating inside the circuit during the permeation test. With 

reference to Figure 3-11, It includes the test section, pump, piping, plugging indicator and heating tank. 

The volume is calculated for each test according to the sodium level measured in the heating tank; in 

fact, due to temperature variations and to operation activities, the sodium volume circulating is not 

always the same. During sodium tests we measured volumes varying from 32 to 36 liters. However, 

uncertainties still exist on the part of piping which are isolated from the closed loop during the 
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permeation test (i.e. cold trap branches, plugging indicator). It is really difficult to give an estimation 

of this uncertainty: for this study, we take as a reasonable value 5%. 

 SODIUM DENSITY 

The sodium density standard uncertainty is calculated with the combined uncertainty formula, 

considering the effect of temperature uncertainty. The so obtained relative standard uncertainty is 

around 2%. 

 SODIUM SIEVERTS CONSTANT 

As for sodium density, a combined uncertainty is estimated due to the effect of temperature 

uncertainty on its calculation. The so obtained relative standard uncertainty is around 0.2%. 

 DH NICKEL MEMBRANE PERMEABILITY 

In this case the DH permeability is estimated by means of experimental measurements (cf. par 4.5.2). 

Many parameters are used for this analysis and also in this case is not possible to calculate an 

uncertainty value. For this study we take as a reasonable value 5%. 

 HYDROGEN CONCENTRATION IN SODIUM 𝑦𝐻,𝑁𝑎  

The combined relative standard uncertainty on 𝑦𝐻,𝑁𝑎, calculated according to Equation 3.31, can be 

expressed as : 

𝑢(𝑦𝐻,𝑁𝑎)

𝑦𝐻,𝑁𝑎
= √(

𝑢(𝐾𝑆,𝑁𝑎)

𝐾𝑆,𝑁𝑎
)

2

+ (
𝑢(𝑝𝑒)

𝑝𝑒
)

2

+ (
𝑢(𝐾𝑀𝑆)

𝐾𝑀𝑆
)

2

 

 

 0-16 

Its value is about 10%-15%. 

 HYDROGEN PERMEATION FLOWRATE 

Finally, the combined relative standard uncertainty on 𝑄𝐻2 𝑝, calculated according to Equation 4-12, 

can be expressed as : 

𝑢(𝑄𝐻2 𝑝)

𝑄𝐻2 𝑝
= √(

𝑢(𝑦𝐻,𝑁𝑎)

𝑦𝐻,𝑁𝑎
)

2

+ (
𝑢(𝑉𝑁𝑎)

𝑉𝑁𝑎
)

2

+ (
𝑢(𝜌𝑁𝑎)

𝜌𝑁𝑎
)

2

 

 

 0-17 

Its value is about 15%. 

C. Gas-vacuum test data reconciliation 

Hypothesis 1: stationary conditions   

We consider that the initial transitory phase of permeation is very small if compared to the permeation 

test duration. Furthermore, we can consider that the imposed stable conditions (i.e. constant gas 

flowrate, gas pressure and membrane temperature) will give a constant hydrogen permeation rate 

during the test duration, so that stationary condition hypothesis is respected. 

Therefore, we can write the instantaneous molar balance equations as follows: 
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 Equation 1 – total molar balance : 𝑄𝑖𝑛 − 𝑄𝑟 − 𝑄𝑝 = 0 [mol/s]  

 Equation 2 – hydrogen molar balance : 𝑄𝑖𝑛𝑋𝐻2,𝑖𝑛 − 𝑄𝑟𝑋𝐻2,𝑟 − 𝑄𝑝𝑋𝐻2,𝑝 = 0 [mol/s] 

 Equation 3 – argon molar balance : 𝑄𝑖𝑛𝑋𝐴𝑟,𝑖𝑛 − 𝑄𝑟𝑋𝐴𝑟,𝑟 − 𝑄𝑝𝑋𝐴𝑟,𝑝 = 0 [mol/s] 

 Equation 4 – gas inlet composition : : 𝑋𝐻2,𝑖𝑛 + 𝑋𝐴𝑟,𝑖𝑛 = 1 

 Equation 5 – gas outlet composition : : 𝑋𝐻2,𝑟 + 𝑋𝐴𝑟,𝑟 = 1 

 Equation 6 – gas permeate composition : : 𝑋𝐻2,𝑝 + 𝑋𝐴𝑟,𝑝 = 1 

Where Qi are the gas mix molar flux expressed in [mol/s] and Xi are the molar fractions [moli/molmix] 

of hydrogen and argon.  

Hypothesis 2: 𝑿𝑨𝒓,𝒑 = 𝟎 

We consider that only hydrogen can permeate through Nickel walls, due to the non permeability of 

Argon through metals. 

Equation 6 and 2 reduces to:  

 Equation 6 : 𝑋𝐻2,𝑝 = 1 

 Equation 2 : 𝑄𝑖𝑛𝑋𝐻2,𝑖𝑛 − 𝑄𝑟𝑋𝐻2,𝑟 − 𝑄𝑝 = 0 

Practically 𝑄𝑝 coincides with the permeate hydrogen molar flow, here defined 𝑄𝐻2,𝑝. 

By considering the here-above hypothesis, the system reduces to 5 equations: 

 Equation 1 : 𝑄𝑖𝑛 − 𝑄𝑟 − 𝑄𝐻2,𝑝 = 0 [mol/s]  

 Equation 2 : 𝑄𝑖𝑛𝑋𝐻2,𝑖𝑛 − 𝑄𝑟𝑋𝐻2,𝑟 − 𝑄𝐻2,𝑝 = 0 [mol/s] 

 Equation 3 : 𝑄𝑖𝑛𝑋𝐴𝑟,𝑖𝑛 − 𝑄𝑟𝑋𝐴𝑟,𝑟 = 0 [mol/s] 

 Equation 4 : 𝑋𝐻2,𝑖𝑛 + 𝑋𝐴𝑟,𝑖𝑛 = 1 

 Equation 5 : 𝑋𝐻2,𝑟 + 𝑋𝐴𝑟,𝑟 = 1 

The total number of variables is 7. Four of them are measured (directly or indirectly), while the 

remaining three are non-measured, as listed in the below table:  
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Table 0-3 List of measured and non-measured variables for gas test 

Measured variable 

(Xi) 

 Units Instrument 

𝑄𝑖𝑛 Gas molar flow inlet mol/s Gas Mass Flowmeter 

𝑋𝐻2,𝑖𝑛 Hydrogen molar concentration 

inlet 

molH2/molmix Gas Chromatograh (µGC) 

𝑋𝐻2,𝑟  Hydrogen molar concentration 

retentate 

molH2/molmix Gas Chromatograh (µGC) 

𝑄𝐻2,𝑝 Hydrogen molar flow permeate mol/s Bayard-Alpert Pressure 

Gauge 

 

Non Measured 

variable (Xi) 

 Units  

𝑄𝑟  Gas molar flow retentate mol/s  

𝑋𝐴𝑟,𝑖𝑛 Argon molar concentration inlet molAr/molmix  

𝑋𝐴𝑟,𝑟  Argon molar concentration 

retentate 

molAr/molmix  

  

In conclusion, all variables are observable: the measured for definition and the non-measured can be 

obtained from the 5 equations describing the system. Moreover, the system is redundant, since for 3 

non-measured variables we dispose of 5 equations. Therefore, data reconciliation can be applied to 

the system.   

For the gas-vacuum test, the constraint 𝑓(𝑋𝑖
∗) is given by the equations 1,2,3 and 5 simultaneously.  

It depends from reconciled values of both measured and non-measured variables.  

This optimization problem is solved with the Excel Solver. In order to have an easier convergence, the 

gas flowrates are expressed in Nml/min and not in mol/s (conversion factor Nml/min to mol/s 

7.43625Ex10-7).  

  



Annexes 
__________________________________________________________________________________ 

167 

V. Integrated permeation law demonstration 

Demonstration of the correlation given in Equation 4-3, developed from the analogy with heat transfer 

LMTD. 

1. Hydrogen axial mass transfer in the gas phase – integrated form: 

𝑄𝐻2,𝑝 = 𝑄𝑔𝑎𝑠 𝑖𝑛(𝑋𝐻2 𝑖𝑛 − 𝑋𝐻2 𝑟) 

2. Hydrogen axial mass transfer in the gas phase – discretized form: 

𝑑𝑋𝐻2 = −
𝑑𝑄𝐻2,𝑝

𝑄𝑔𝑎𝑠 𝑖𝑛
 

3. Hydrogen permeation at the axial coordinate z – discretized form:  

𝑑𝑄𝐻2,𝑝(z) = [
1

𝛿
(𝑝𝑒0𝑒

−
𝐸𝑝𝑒
𝑅𝑇 )√𝑃𝑔𝑎𝑠  ]𝑑𝐴 √𝑋𝐻2(𝑧) 

4. Define U: 

1

𝛿
(𝑝𝑒0𝑒

−
𝐸𝑝𝑒
𝑅𝑇 )√𝑃𝑔𝑎𝑠 = 𝑈 

5. Combine (2)+(3)+(4) : 
𝑑𝑋𝐻2

√𝑋𝐻2(𝑥)
= −

𝑈𝑑𝐴 

𝑄𝑔𝑎𝑠 𝑖𝑛
 

6. Integration of (5) between “in”- gas inlet and “r”-gas retentate + (1): 

2(√𝑋𝐻2 𝑟 − √𝑋𝐻2 𝑖𝑛) = −𝑈𝐴
(𝑋𝐻2 𝑖𝑛 − 𝑋𝐻2 𝑟) 

𝑄𝐻2,𝑝
 

From this expression, we obtain the form presented in equation 4-3, where: 

√𝑃𝐻2̅̅ ̅̅ ̅ = √𝑃𝑔𝑎𝑠√𝑋𝐻2̅̅ ̅̅ ̅=√𝑃𝑔𝑎𝑠
𝑋𝐻2 𝑟−𝑋𝐻2 𝑖𝑛

2(√𝑋𝐻2 𝑟−√𝑋𝐻2 𝑖𝑛)
  [Pa0.5] 0-18 

It corresponds to a mean partial pressure difference between inlet/retentate and permeate side, in 

analogy with the heat transfer LMTD, where the permeate contribution is neglected; in particular, 

√𝑃𝐻2̅̅ ̅̅ ̅ is a combination of the gas total pressure, which is uniform during a permeation test, and the 

hydrogen concentration which varies along the permeator between inlet and retentate side. However, 

this expression obtained analytically as, can be replaced by the following simplified form: 

√𝑃𝐻2̅̅ ̅̅ ̅ = √𝑃𝑔𝑎𝑠𝑋𝐻2̅̅ ̅̅ ̅=√𝑃𝑔𝑎𝑠
𝑋𝐻2 𝑟+𝑋𝐻2 𝑖𝑛

2
  [Pa0.5] 0-19 

Where the mean hydrogen concentration 𝑋𝐻2̅̅ ̅̅ ̅ is calculated as the arithmetic mean between inlet and 

retentate side. This expression has not an analytical basis, but it is mathematically equivalent to the 

previous one if the hydrogen concentration varies linearly along the permeator. In fact, for our 

experimental conditions, a negligible difference is found in calculating √𝑃𝐻2̅̅ ̅̅ ̅ according to equation 

0-18 or equation 0-19. The practical advantage in using the second expression is that a lower 

uncertainty is associated to √𝑃𝐻2̅̅ ̅̅ ̅ (around 10 times lower), since a simpler expression is employed and, 

as a consequence, a lower combined uncertainty is produced. 
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VI. Hydrogen equilibrium at the sodium-cover gas interface 

This calculation has been performed in order to demonstrate that, consequently to the hydrogen 

injected inside sodium during gas-sodium test, any possible hydrogen dispersion in the circuit cover 

gas (Argon) can be neglected in our mass balance. The calculation is based on Sieverts’ equilibrium for 

a Na-Ar system, constituted by the sodium circulating in the circuit and the heating tank and the Ar 

cover gas contained in the heating tank upper part.  

The example reported in Figure 0-3 done at 450°C, considering a variation of 200 ppb of hydrogen 

concentration between the start (t0) and the end (teq) of the test. These are typical values obtained 

during gas-sodium tests. Equilibrium hydrogen partial pressures in the Argon cover gas are calculated, 

according to the Sieverts law. 

Both in sodium and in gas phase, there is an obvious increase of hydrogen mass during the test. 

However, the hydrogen mass dissolved inside sodium, is 0.007% and 0.02% of the mass dissolved inside 

argon, at the test beginning and end respectively. This shows that, despite a certain amount of injected 

hydrogen diffuses to the cover gas, this quantity is absolutely negligible if compared to the hydrogen 

mass dissolved inside sodium. Therefore, we are allowed to not consider it in the global hydrogen-

sodium mass balance. 

 

Figure 0-3 Hydrogen equilibrium at the Na-Ar interface, calculated at 450°C for a hydrogen injection of 200 ppb 

 

HEATING TANK V Na V Ar

D int= 0,2 m m3 m3

Test tank 0,02657787 0,013006194

Main loop 0,006

h Ar= 0,414 m PI 0,0025

TS 0,0015

Stockage

TOT 0,03657787 0,013006194

T °C 450

h Na= 0,846 m K 723,15

MM H g/mol 1,007

y H Na (t0) ppb 100

y,H,Na(t eq) ppb 300

R J/mol K 8,314

P Ar bar a 1,05

Pa 105000

ρ,Na kg/m3 846,2178588

Ks,Na ppb/Pa^0,5 425,4443259

t 0 t eq

M,H,Na g 0,003095285 0,009285855

P,H2,Ar Pa 0,055247741 0,497229673

X,H2,Ar - 5,26169E-07 4,73552E-06

ppmv 0,526168966 4,735520693

n,H2,Ar mol 1,19516E-07 1,07564E-06

M,H,Ar g 2,40705E-07 2,16635E-06

%M Ar/Na % 0,007776517 0,023329552

INPUT VALUES

CALCULED PARAMETERS

VOLUMES

OUTPUT VALUES

Ar

Na

PI TS

Ar

Na
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Numerical and experimental study at the pilot scale of the hydrogen injection into liquid sodium by 

permeation through nickel membrane 

Abstract 

In the framework of the SFR, in order to control tritium contamination in sodium circuits, it is fundamental to 

maintain a certain amount of hydrogen dissolved in the liquid sodium stream. To do this, the hydrogen injection 

by permeation through nickel dense membranes has been proposed. In this study, an original permeator 

prototype has been designed and an experimental activity at pilot-scale has been carried out on an experimental 

sodium loop, up to 450°C. The measuredl hydrogen permeation flowrate depends linearly on the square root of 

the hydrogen partial pressure in the feed side up to 20 kPa, thus demonstrating that the process in this range is 

limited by the hydrogen diffusion inside the nickel membrane. In particular, the presence of sodium in the 

permeate side does not affect significantly the whole mass transfer process. A comparison with literature results 

for small nickel samples, showed that some metal-lattice phenomenon could affect the hydrogen permeation in 

this study. Nevertheless, the experimental process has been successfully validated, thus demonstrating the 

feasibility of this application at the pilot-scale. An analytical 1D model has been set up with a multi-physics 

approach, in order to assess the radial hydrogen mass transfer in steady conditions over three physical domains, 

as support of the design activity. CFD simulations, performed in a 2D axial-symmetric geometry with the software 

Comsol Multi-physics, have provided a better comprehension of the transport phenomena taking place and have 

confirmed the results of the straightforward 1D model under certain conditions. Finally, the experimental results 

have shown a good agreement with both the 1D model and CFD simulations in the whole temperature interval 

and up to a hydrogen partial pressure of 20 kPa. By resuming all the elements provided by this study, a single 

equation law has been defined to describe the prototype performance and to enhance the industrial scale-up 

design activity. 

Keywords: Hydrogen, Permeation, Nickel membrane, Sodium Fast Reactor, Tritium 
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Etude numérique et expérimentale à l’échelle pilote de l’injection d’hydrogène dans le sodium 

liquide par perméation à travers une membrane de nickel 

Résumé 

Dans le cadre des RNR-Na, pour le contrôle de la contamination du tritium dans les circuits sodium, il est 

fondamental de maintenir une quantité minimale d’hydrogène dissous dans le sodium liquide. Pour cela, 

l’injection d’hydrogène par perméation à travers une membrane dense de nickel a été proposée. Dans cette 

étude, un nouveau prototype de perméateur a été conçu et testé expérimentalement à l’échelle pilote dans un 

circuit sodium expérimental, jusqu’à 450°C. Le flux de perméation mesuré dépend linéairement de la racine 

carrée de la pression partielle d’hydrogène en alimentation jusqu’à 20 kPa, démontrant ainsi que, dans cet 

intervalle, le processus est limité par la diffusion de l’hydrogène à travers la membrane de nickel. En particulier, 

la présence du sodium dans le côté perméat ne semble pas avoir d’influence significative sur le transfert de masse 

de l’hydrogène. La comparaison avec les résultats de la littérature, concernant des petits échantillons de nickel, 

révèle que des phénomènes ayant lieu dans le réticule cristallin de la membrane, probablement liés à la 

déformation à froid subie lors de sa fabrication, pourraient avoir un impact sur la perméation. Globalement, le 

processus expérimental a été validé avec succès tout en démontrant la faisabilité de cette application à l’échelle 

pilote. Un modèle analytique 1D a été développé avec une approche multi-physique, afin d’établir le transfert 

de masse radial de l’hydrogène à travers les trois domaines physiques. Des simulations CFD, réalisées dans une 

géométrie 2D axisymétrique avec Comsol-Multi-physics, ont fourni une meilleure compréhension des 

phénomènes de transport ayant lieu et ont confirmé les résultats obtenus par le plus simple modèle 1D sous 

certaines conditions. En conclusion, l’activité expérimentale a montré un bon accord avec le modèle 1D et les 

simulations CFD tout au long de l’intervalle de température et jusqu’à des pressions partielles d’hydrogène de 

20 kPa. En rassemblant les éléments expérimentaux et numériques obtenu par cette étude, une loi constituée 

d’une simple équation a été définie pour décrire les performances du prototype afin d’aider l’activité de 

conception de cette application à l’échelle industrielle. 

Mots clefs : Hydrogène, Perméation, Membrane de nickel, Réacteurs à Neutrons Rapides refroidis à Sodium, 

Tritium 
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