N
N

N

HAL

open science

NoC-based Architectures for Real-Time Applications:
Performance Analysis and Design Space Exploration

Frédéric Giroudot

» To cite this version:

Frédéric Giroudot. NoC-based Architectures for Real-Time Applications: Performance Analysis and
Design Space Exploration. Networking and Internet Architecture [cs.NI]. Institut National Polytech-

nique de Toulouse - INPT, 2019. English. NNT: 2019INPT0141 . tel-04172279

HAL Id: tel-04172279
https://theses.hal.science/tel-04172279
Submitted on 27 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04172279
https://hal.archives-ouvertes.fr

| -

3
)
4
f
Y
|
S

THESE

Université
de Toulouse En vue de I'obtention du
DOCTORAT DE L'UNIVERSITE DE TOULOUSE

Délivré par:
Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :
Informatique et Télécommunication

Présentée et soutenue par:
M. FREDERIC GIROUDOT
le vendredi 13 décembre 2019
Titre :

NoC-based Architectures for Real-Time Applications: Performance
Analysis and Design Space Exploration

Ecole doctorale :
Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Unité de recherche :
Département Modéles pour I'Aérodynamique et I'Energétique (DMAE-ONERA)

Directeur(s) de Thése :
M. AHLEM MIFDAOQUI
M. EMMANUEL LOCHIN

Rapporteurs :
M. FREDERIC MALLET, INRIA SOPHIA ANTIPOLIS
M. LAURENT GEORGE, UNIVERSITE MARNE LA VALLEE

Membre(s) du jury :
M. LAURENT GEORGE, ESIEE NOISY LE GRAND, Président
M. AHLEM MIFDAOUI, ISAE-SUPAERO, Membre
M. CLAIRE PAGETTI, ONERA TOULOUSE, Membre
M. EMMANUEL LOCHIN, ISAE TOULOUSE, Membre
M. MARC GATTI, THALES AVIONICS, Membre

Abstract

Monoprocessor architectures have reached their limits in regard to the computing power
they offer vs the needs of modern systems. Although multicore architectures partially
mitigate this limitation and are commonly used nowadays, they usually rely on intrinsi-
cally non-scalable buses to interconnect the cores.

The manycore paradigm was introduced to tackle the scalability issue of bus-based
architectures. It can scale up to hundreds of processing elements (PEs) on a single
chip, by organizing them into computing tiles (holding one or several PEs). Intercore
communication is usually done using a Network-on-Chip (NoC) that consists of

interconnected on-chip routers on each tile.

However, manycore architectures raise numerous challenges, particularly for real-time
applications. First, NoC-based communication tends to generate complex blocking
patterns when congestion occurs, which complicates the analysis, since computing
accurate worst-case delays becomes difficult. Second, running many applications on
large Systems-on-Chip such as manycore architectures makes system design particularly
crucial and complex. It complicates Design Space Exploration, as it multiplies the
implementation alternatives that will guarantee the desired functionalities. Besides,
given an architecture, mapping the tasks of all applications on the platform is a hard
problem for which finding an optimal solution in a reasonable amount of time is not

always possible.

Therefore, our first contributions address the need for computing tight worst-case delay
bounds in wormhole NoCs. We first propose a buffer-aware worst-case timing analysis
(BATA) to derive upper bounds on the worst-case end-to-end delays of constant-bit rate
data flows transmitted over a NoC on a manycore architecture.

We then extend BATA to cover a wider range of traffic types, including bursty traffic
flows, and heterogeneous architectures. The introduced method is called G-BATA for
Graph-based BATA. In addition to covering a wider range of assumptions, G-BATA
improves the computation time; thus increases the scalability of the method.

In a third part, we develop a method addressing design and mapping for applications
with real-time constraints on manycore platforms. It combines model-based engineering
tools (TTool) and simulation with our analytical verification technique (G-BATA) and
tools (WoPANets) to provide an efficient design space exploration framework.

Finally, we validate our contributions on (a) a series of experiments on a physical plat-
form and (b) a case study taken from the real world, the control application of an

autonomous vehicle.

Résumé

Les architectures mono-processeur montrent leurs limites en termes de puissance de
calcul face aux besoins des systémes actuels. Bien que les architectures multi-coeurs
résolvent partiellement ce probléme, elles utilisent en général des bus pour interconnecter
les coeurs, et cette solution ne passe pas a 1’échelle.

Les architectures dites pluri-coeurs ont été proposées pour palier les limitations des
processeurs multi-cceurs. Elles peuvent réunir jusqu’a des centaines de coeurs sur une
seule puce, organisés en dalles contenant une ou plusieurs entités de calcul. Elles sont gé-

néralement munies d’un réseau sur puce permettant les échanges de données entre dalles.

Cependant, ces architectures posent de nombreux défis, en particulier pour les appli-
cations temps-réel. D’une part, la communication via un réseau sur puce provoque des
scénarios de blocage entre flux, ce qui complique l'analyse puisqu’il devient difficile
de déterminer le pire cas. D’autre part, exécuter de nombreuses applications sur
des systémes sur puce de grande taille comme des architectures pluri-coeurs rend la
conception de tels systémes particuliecrement complexe. Premierement, cela multiplie
les possibilités d’implémentation qui respectent les contraintes fonctionnelles, et I'ex-
ploration d’architecture résultante est plus longue. Deuxiéemement, déterminer de fagon
optimale la répartition des taches a exécuter sur les entités de calcul n’est pas toujours

possible en un temps raisonnable.

Ainsi, nos premiéres contributions s’intéressent & cette nécessité de pouvoir calculer des
bornes fiables sur le pire cas des latence de transmission des flux de données emprun-
tant des réseaux sur puce dits « wormhole ». Nous proposons un modele analytique,
BATA, prenant en compte la taille des mémoires tampon des routeurs et applicable a
une configuration de flux de données périodiques générant un paquet a la fois.

Nous étendons ensuite le domaine d’applicabilité de BATA pour couvrir un modele de
traffic plus général ainsi que des architectures hétérogenes. Cette nouvelle méthode,
appelée G-BATA, est basée sur une structure de graphe pour capturer les interférences
possibles entre flux de données. Elle permet également de diminuer le temps de calcul
de ’analyse, améliorant la scalabilité de I'approche.

Dans une troisieme partie, nous proposons une méthode pour la conception de systemes
temps-réel basés sur des plateformes pluri-cceurs. Cette méthode intégre notre modele
d’analyse G-BATA dans un processus de conception systématique, faisant en outre in-
tervenir un outil de modélisation et de simulation de systémes reposant sur des concepts
d’ingénierie dirigée par les modeles, TTool, et un logiciel pour 'analyse temps réel des
réseaux, WoPANets.

Enfin, nous proposons une validation de nos contributions grace a (a) une série
d’expériences sur une plateforme physique et (b) une étude de cas d’application réelle,

le systéme de controle d’un véhicule autonome.

Acknowledgements

A hero can be anyone.

—Bruce Wayne, The Dark Knight Rises

To my supervisors, Ahlem and Emmanuel — I want to express my profound and
genuine gratitude. I have never been a role model PhD student, so having role
model supervisors was some kind of undeserved blessing. Many thanks for cheering
me up in my worst days of discouragement, for believing in me and my work, for
your immensely valuable input on papers and job applications, and most of all for
letting me pursue my second passion.

To Guillaume, Stephen and Vincent, with whom I had the pleasure of working
when I was in Sydney — thanks for making my experience at Data6l so amazing
and valuable. I hope I see you again soon Down Under.

To Ludovic, who dragged me away from the vortex of my first contributions and
opened to me the doors of TTool — I learnt so much working with you, and your
efficiency at work was and continues to be an inspiration.

I would like to thank my thesis referees, Laurent George and Frédéric Mallet, for
their feedback and the fresh look they provided on my work. Thanks, also, to my
examinators, Claire Pagetti and Marc Gatti, for your input on my presentation

and report.

Things would not have been the same without my work colleagues and friends,
fellow PhD students and Doctors — I particularly want to mention:

Antoine, my equally-long-legged-sitting-in-front-of-me mate, mentor and famous
WiFi expert, for joining me in the constant claim that 31000 is better than 31400;
Eyal, fellow psytrance-listener, who left to another office too soon; Franco, the
other bicycle-to-work-addict of my office; Ilia, for reminding me that no matter how
much I struggle with red tape, there is always someone having it worse; Narjes, for
her concerns about my (in)sanity and her inversely-proportional-to-her-size smile;
Zoe, fellow adopted Aussie, for her knowledge about vermicomposting; Bastien,
pilot, astrophysicist, TCP-specialist, seasoned artist in obnoxious puntastic jokes,
for the always-appreciated observation nights that unveiled Saturn’s rings, Jupiter’s
satellites, Mars and blinding views of the Moon; Doriane, Earth-explorer and sneaky

raccoon who stole my NFC tag reader, for her shared love of electronic music and

vi Acknowledgements

for reminding me that there are no dumb questions; Henrick, inspirational alpha-
vegetarian with a dash of perfectionism I sometimes wish I had, for what will go

down in history as the °

‘prank-that-went-too-far”; Lucas, for preventing my body
from melting during the hottest days of summer, and whose will to experiment
with bleekehain rum was always appreciated; Clément, watercooling/lockpicking
referent; John, whose PhD defence was even more impressive than his ability to
ingest large amounts of junk food. Thanks for the shared laughs, meals, coffees,
drinks, concerts, home parties, work hours; and for the many more things that
helped me get through each day.

I also want to thank Christophe and Tanguy for trusting me with teaching part
of their respective course in C and Java — it has been incredibly rewarding and I

learnt a lot — as well as Odile, Alain, Rob and everyone at the DISC.

To Edo, Pauline, Eunbee and Lana — thanks for bearing your fair share of the
living-under-the-same-roof-as-Fred pain. Your undiscontinued support makes you
family to me now.

To my friends from prep class and engineering school — thanks for being part of the
journey that brought me here. May you remain as brilliant as you are humble.

To my friends in Toulouse, in Sydney and elsewhere, and to my family — a thousand
of thank yous for your comforting presence and for not asking too much about how

my PhD was going. I can’t name y’all but you know who you are.

To my aerial friends and acquaintances — I am so grateful for your support and for
the breath of fresh air you have been when I was drowning under work. I still can’t
believe I managed to get through this PhD while being able to train and compete.
It was worth every struggle, injury, breakdown and freakout.

Thanks Maureen, Popo, Anne-Claire, Chacha, Olivia, Marion, Max, Cami, Dennis,

Matt, Adam; and all the boys and girls I met around the world.

Special thanks to those who helped with the corrections of this manuscript:

Alexandra, Ants, Béné, Charles, Lana, Taylor — you are the best.

I dedicate this thesis to my best friend Rhita, who, hopefully, will never have to go
through the agony of reading it.

Fred

I

1

2

11

Contents

Problem Statement and State of the Art
Introduction

Context and Problem Statement

2.1 Real-Time Systems Context
2.1.1 Characteristics
2.1.2 Exampleso
2.1.3 Requirements and Challenges

2.2 Manycore Platforms oo L
2.2.1 Topologies. e
2.2.2 Forwarding Techniques and Flow Control
2.2.3 Arbitration and Virtual Channels
2.2.4 Routing Algorithms
225 NoCExamples

2.3 Discussion: NoCs and Real-Time Systems

2.4 Conclusion

State of the Art

3.1 Timing Analysis of NoCs
3.1.1 Overview
3.1.2 Scheduling Theory
3.1.3 Compositional Performance Analysis
3.1.4 Recursive Calculus
3.1.5 Network Calculus
3.1.6 Discussion

3.2 System Design and Software/Hardware Mapping
3.2.1 Design Space Exploration
3.2.2 Task and Application Mapping on Manycore Architectures
3.23 Discussion Lo

3.3 Conclusion

Contributions

BATA: Buffer-Aware Worst-Case Timing Analysis

4.1 Introduction

4.2 Assumptions and System Model
4.2.1 Network Model
422 Flow Model

4.3 Approach Overview
4.3.1 Buffer-Awareness: An Example

© o o 00

10

15
18
20
23
26
29

31
32
32
33
36
37
38
40
41
42
44
48
48

51

viii Contents
4.3.2 Main Steps of BATA 59

4.4 Indirect Blocking Analysis L. 61
4.5 End-to-End Service Curve Computation 65
4.5.1 Direct Blocking Latency 65
4.5.2 Indirect Blocking Latency 67
4.5.3 Computation Algorithm 69

4.6 Tlustrative Example L Lo 70
4.7 Performance Evaluation 0. 73
4.7.1 Sensitivity Analysis oo 74
4.7.2 Tightness Analysis 7
4.7.3 Computational Analysis 79
4.74 Comparative Study Lo 82

4.8 Conclusions e 84
5 G-BATA: Extending Buffer-Aware Timing Analysis 87
5.1 Problem Statement L L 88
5.1.1 IMlustrative Example 88
5.1.2 Main Extensions 90

5.2 Extended System Model 91
5.2.1 Traffic Model L 91
5.2.2 Network Model, 91

5.3 Interference Graph Approach for Indirect Blocking Set 93
5.4 Refining Indirect Blocking Latency 96
5.5 G-BATA: Illustrative Example 98
5.6 Performance Evaluation 100
5.6.1 Computational Analysis 101
5.6.2 Sensitivity Analysis Lo 107
5.6.3 Tightness Analysis 112

5.7 Conclusions L 115
6 Hybrid Methodology for Design Space Exploration 117
6.1 Introduction 117
6.2 Overview and Extended Workflow 118
6.3 System Modeling: Adding a NoC Component in TTool 119
6.3.1 TImplementation L. 119
6.3.2 Functional View, 120
6.3.3 Architecture L 124

6.4 Verification, NoC Generation and Simulation 124
6.5 Performance Evaluation 126
6.5.1 Example Modeling 126
6.5.2 Analysisand Results 128

6.6 Conclusion 131

Contents ix

7 Practical Applications 133
7.1 Experiments on TILE-Gx8036 134
7.1.1 Platform Characteristics 134
7.1.2 Traffic Generation 134
7.1.3 Latency Measurements 136
7.1.4 Results and Discussion 137

7.2 Control of an Autonomous Vehicle: Timing Analysis and Compara-
tive Study L 138
7.3 Control of an Autonomous Vehicle: Modeling and DSE 143
7.3.1 Functional Description 144
7.3.2 Architecture Modeling 145
7.3.3 Simulation 145
7.4 Results and Conclusion 146
IIT Conclusion 149
8 Conclusion 151
8.1 Summary of Contributions 151
81.1 BATA 151
8.1.2 G-BATA o 152
8.1.3 Hybrid Design Space Exploration 152
8.1.4 Validation o 153
8.2 Perspectives e 153
8.2.1 Models and Approaches 153
8.2.2 Tools e 155
IV Appendix 157
A Résumé en frangais 159
A1l Introduction 160
A2 Contextedelathese, 162
A.2.1 Systémes temps-réel 162
A.2.2 Architectures pluri-ceeurs L. 163
A3 Etatdelart, 166
A.3.1 Analyse temps réel des réseaux sur puce 166

A.3.2 Exploration d’architectures et mapping logiciel /matériel sur
architectures pluri-cceurs. Lo 170

A.4 Analyse temporelle pire cas des réseaux sur puce wormhole intégrant
I'impact des mémoires tampon 173
A.4.1 Modélisation du réseau et des flux 173
A.4.2 Tlustration du probleme 175
A.4.3 Formalisme et calculs 176
A.4.4 Résumé de l'analyse de performance 178

A45 Conclusion 182

X Contents

A5 Analyse temps réel des NoCs wormhole hétérogenes par graphe d’in-

terférences L 182

A.5.1 Formalisme étendu, . 182

A.5.2 Définition et construction du graphe d’interférence 183

A.5.3 Analyse de performance 185

A54 Conclusion 186

A.6 Approche hybride pour ’exploration d’architectures 186
A.6.1 Workflow étendu, 187

A.6.2 Modélisation systeme du NoC 187

A.6.3 Performance, 189

A6.4 Conclusion 191

A.7 Validation des contributions 193
A7.1 Analysepirecas 193

A.7.2 Modélisation sous TTool 195

A8 Conclusion 196
A.8.1 Résumé des contributions 196

A8.2 Perspectives 198

B Network Calculus Memo 201
B.1 Basics e 201
B.2 Notations e e e e 203

C Case Study Data 207
D List of Publications 211
E List of Abbreviations 213

Bibliography 215

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9
5.10

5.11
5.12
5.13
5.14

List of Figures

Ring network topology 12
Mesh and Torus topologies 13
Flattened Butterfly topology 14
Bypass mechanism L Lo L L Lo 19
A typical deadlock scenario L. 21
Intel SCC overview: grid and tile 23
Tilera TILE-Gx8036 overview 24
Kalray MPPA overview 25
Typical 2D-mesh router L. 55
Architecture of an input-buffered router and output multiplexing

with arbitration modeling choices 56
Example configuration and packet stalling 58
Another configuration where flow 1 cannot be blocked by flow 3. . . 59
Subpath illustration for the foi k 62
Flow configuration on a 6x6 mesh NoC 74
Buffer size impact on BATA end-to-end delay bounds 75
Packet length impact on BATA end-to-end delay bounds 75
Rate impact on BATA end-to-end delay bounds 76
Results of the BATA computational analysis. 80
Number of calls to the function endToEndServiceCurve() 81
A simple configuration from [1].o 82
Predicted bounds for different values of bandwidth 83

Delay bounds of flow 1 vs buffer size under CPA and NC approaches 83

Example configuration and subpaths computation with BATA 89
Packet configuration with two instances of flow 2 89
Main steps of G-BATA 90
Subpaths computation with G-BATA approach 100
Compared runtimes of BATA and G-BATA approaches. 101
Comparative study of the algorithmic complexity 103
Scalability of G-BATA on large flow sets 103
Quadrants of the NoC and illustration of flows from families A, B

and C 104
Runtimes vs flow number 0000000 106
Studying the correlation between average DB index (resp. average

IB index) and total runtime for 32-flow configurations 107
Compared buffer size impact on end-to-end delay bounds 108
Packet length impact on G-BATA end-to-end delay bounds 110
Packet length impact on BATA end-to-end delay bounds 110

Compared flow rate impact on end-to-end delay bounds 111

xii

List of Figures

5.15 Determining which approach should beused 114
6.1 Workflow of the hybrid approach 118
6.2 Extended workflow with implementation details 120
6.3 NoC functional view L 121
6.4 Functional structure of a router 121
6.5 Read and Write operations in the router model 123
6.6 Control events in the router model 123
6.7 Architectural view of the presented router (with task mapping) . . . 124
6.8 Example configurationo L Lo 126
6.9 Functional view of the example 127
6.10 Activity diagrams 127
6.11 Mapping example 128
6.12 Distribution of end-to-end delays 130
7.1 Main application algorithmic view 135
7.2 TX and RX processes o 136
7.3 Experiment configurations 1and 2 137
7.4 Experiment results for configuration 1and 2. 138
7.5 Worst-case end-to-end delay bounds comparative 140
7.6 Delay bounds with 4, 2 and 1 VC with buffer size = 2 flits 141
7.7 Task graph of the casestudy 144
7.8 Activity diagram of control task 12 145
7.9 Architecture of the platform 146
7.10 End-to-end delay measurements on the case study 147
A.1 Topologies en grille et tore 2D 164
A.2 Architecture d’un router de mesh 2D et niveaux d’arbitrage 174
A.3 Exemple de blocage avec étalement des paquets 175
A.4 Calcul d’un sous-chemin relativement au flux & 177
A.5 Configuration test sur un réseau sur puce en grille 6x6 179
A.6 Résultats de analyse de scalabilité 181
A.7 Processus de 'approche hybride 187
A.8 Description fonctionnelle du réseau sur puce 188
A.9 Description fonctionnelle d’'un routeur 2 entrées, 2 sorties, 2 canaux
virtuelso 189
A.10 Configuration considérée 189
A.11 Vue fonctionnelle 190
A.12 Diagrammes d’activitéo 190
A .13 Architecture et mapping 191
A.14 Distribution des délais mesurés 192
A.15 Comparatif des bornes sur le délai de bout en bout 194
A.16 Architecture de la plateforme L. 196

A .17 Distribution des délais de bout en bout normalisés 197

21
2.2
2.3
2.4

3.1
4.1
5.1
6.1

7.1
7.2
7.3

Al
A2
A3

B.1

C.1
C.2
C.3

List of Tables

Summary of main NoC topologies. 14
Forwarding techniques Lo L. 17
Flow control techniques, 18
Summary of design choices and their impact 26
Summary of approaches for timing analysis of wormhole NoCs . . . 41
Tightness ratio results for the tested configuration 78

Tightness Summary for both approaches, buffer size 4 flits and 16 flits113
Request times, injection times, ejection times and delays for all flows 129

Average tightness and tightness differences for various buffer sizes . . 139
Relative increase of the worst-case end-to-end delay bounds for B = 2142
Runtimes of BATA and G-BATA for different NoC configurations . . 143

Résumé des choix de conception et leur impact 166
Indices de finesse pour les configurations testées 180
Résultats de simulation 0oL 190
Summary of notations 205
Original task-core mapping 208
Flow set characteristics 209

Computed tightness ratios for buffer size values 2, 100 and co 210

Part 1

Problem Statement and
State of the Art

Anything that can go wrong, will go wrong.
—Murphy’s Law
Do you dance, Minnaloushe, do you dance?

—W.B. Yeats, The Cat and the Moon

CHAPTER 1

Introduction

For a long time, processor architectures have been organized around a single pro-
cessing element (PE). As performance requirements consistently increase, various
optimizations and improvements have been made on such architectures. Adding
specialized components and various controllers or coprocessors to handle repeti-
tive tasks (such as network interfacing) or computationally expensive tasks (such
as cryptographic functions) can unload the processing element, without fundamen-
tally improving its performance.

Increasing the clock frequency is an option as well, but it comes at the price of a
higher power consumption that causes more thermal dissipation. As such, it may
not be appropriate for systems where only a passive cooling system is available, and
is inherently limited by the physical resiliency of the chip.

Optimizing the processor pipeline, or using out-of-order execution and branch pre-
diction techniques has also led to significant performance increase. However, it
introduces undeterminism and additional design complexity. Moreover, attacks ex-
ploiting out-of-order execution and/or speculative execution (Meltdown [2], Spectre
[3]) have recently been implemented, which compromise memory isolation on many
widely used processors. The immediate solutions to mitigate those vulnerabilities
have a significant negative impact on performance [3].

Besides, none of the aforementioned techniques implements actual parallelism.
Multiprocessor architectures have addressed this aspect. In addition to the
various external devices or components, they classically feature several CPUs

interconnected by a bus, but they are inherently limited in terms of scalability.

To cope with these limitations, the manycore paradigm was proposed [4]. It was
made possible because chip technology has evolved to allow the integration of more
and more transistors on the same silicon die. A manycore architecture is a set

of “many”! simple processors on a single chip, usually organized as an array of

1Usually, “many” is understood as “in the order of magnitude of 10 and above”

4 Chapter 1. Introduction

tiles. To avoid bottleneck issues, each tile holds its local memory and cache, hence
cache coherency mechanisms and more generally memory requests must rely on an
interconnect allowing inter-tile communication. Core-to-core message passing and
access to external devices must be handled in a scalable way as well.

Several of such architectures are commercially available [5, 6, 7, §].

In critical systems (e.g. avionics, aerospace and automotive), operating reliability
is ensured through various costly certification processes. Therefore, there is still
a strong trend to reuse components and architectures that are already certified;
thus little incentive to migrate to a different architecture paradigm. Moreover,
the multiplicity of processing elements and the concurrent execution of tasks make
predictability of the system behavior harder to guarantee.

Nonetheless, the transition to manycore architecture seems unavoidable. Monopro-
cessor architectures are likely to become scarcely available as their performance will
be outranked by more recent manycore chips. Besides, monoprocessor architectures
also struggle to meet the increasing computing power requirements in critical and
mixed-criticality systems. The current paradigm in avionics is to multiply the
number of monoprocessor computers, however such a solution decreases inherently

the system scalability.

Therefore, ensuring predictable execution of critical applications on manycore plat-
forms appears as one of the main challenges of the transition from monoprocessor
to manycore architectures. There are several ways to contribute to this challenge.
Mostly, they regard aspects of executing an application on a processing resource,
with a particular focus on the specificities of manycore platforms compared to
monoprocessor architectures (shared memory, shared communication media, and
concurrent execution). In particular, these aspects include:

o enforcing task and memory isolation;

e mapping applications and tasks onto cores in a way that ensures tasks execute
within their deadlines, while taking into account the dependencies between
tasks;

e getting guarantees on communication delays between tasks;

e handling various levels of criticality among the applications running on the
platform, and ensure least critical tasks do not impact the safe execution of
most critical tasks;

This thesis will present our work on several specific aspects of real-time applica-

tions execution on manycore chips, but try as much as possible to broaden the

applicability of our models to various platforms.

We start by giving the background we need for our work, and stating the problem
we will be working on (Chapter 2). Then, we discuss the state-of-the art and
the opportunities for possible contributions in Chapter 3. We then develop our
contributions as follows:

o First, we address the intercore communication issue by introducing a timing
analysis method applicable to a wide range of manycore architectures. Know-
ing an upper bound on the traffic generated and/or consumed by each task
running on a manycore platform, such an approach allows to derive worst-case
performance bounds relative to the data flows.

e The result can be exploited to prove whether the communication require-
ments are feasible with the given configuration and help orienting necessary
alterations of the chosen architecture. In that respect, Chapter 4 presents a
first approach, called BATA, for worst-case timing analysis of data flows on
wormhole Networks-on-Chip, taking buffer size into account. We thoroughly
evaluate BATA performances and find out that while it yields safe bounds
with a tightness up to 80% on average for the tested configurations, the com-
putation time needed grows rapidly with the number of flows, and it can only
model constant-bit rate traffic.

e Second, in Chapter 5, we extend the first approach by introducing G-BATA,
for “Graph-based BATA”. It simultaneously allows to model bursty traffic
and heterogeneous architectures, and improves the computation time of the
delay bounds. We evaluate its performances as well and compare them to
the first model. We find out computations are up to 100 times faster than
BATA for relatively small configurations, and the method is able to analyze
large configurations (800 flows) with a reasonable analysis time (9 seconds
per flow). G-BATA approach also provides bounds with a similar tightness
compared to BATA.

e Third, we tackle task mapping and Design Space Exploration in Chapter 6.
We integrate our intercore communication analysis approach into a system
design methodology. Our proposal allows to model complex manycore-based
systems and determine early in the design steps whether the real-time con-
straints are met. To that end, we introduce additional models in the toolkit
TTool [9] for design space exploration and implement our methodology using
WoPANets [10, 11], a software for worst-case timing analysis of networks, to

which we add a plugin supporting our timing analysis model.

Chapter 1. Introduction

e Fourth, in Chapter 7, we validate our contributions by confronting them to
real-world applications. We perform experiments on a Tilera TILE-Gx8036
manycore chip to measure data flow end-to-end latencies and compare them
to the bounds yielded by our model. We are able to prove that our approach
is practically applicable to physical configurations and provides safe delay
bounds on the configuration. We then apply our timing analysis and de-
sign space exploration methodology to a case study of an autonomous vehicle
control application.

e Finally, Chapter 8 concludes the thesis and unveils the future developments

and perspectives of our work.

Pour cet écrit, j’ai di aux sciences
Offrir mon dame et trois années.
Permets qu’il t’emmene, en apnée,

O1 les fils de ma pensée dansent.

*
Xk

CHAPTER 2

Context and Problem

Statement

Contents
2.1 Real-Time Systems Context 8
2.1.1 Characteristics oo 8
2.1.2 Exampleso e 8
2.1.3 Requirements and Challenges 9
2.2 Manycore Platforms 10
2.2.1 Topologies e 11
2.2.2 Forwarding Techniques and Flow Control 15
2.2.3 Arbitration and Virtual Channels 18
2.24 Routing Algorithms 20
2.2.5 NoC Examples 23
2.3 Discussion: NoCs and Real-Time Systems 26
2.4 Conclusion i i e e 29

In this chapter, we narrow down the context of our work and we specify the prob-
lem statement. We start by discussing the specificities of real-time systems in
Section 2.1, and provide a few examples. We underline the main requirements and
challenges raised by such systems. Then, we focus on manycore platforms and
Networks-on-Chip, from an architectural and functional perspective, in Section 2.2.
Afterwards, we discuss the relevance of the different paradigms in regard to real-
time systems requirements and challenges in Section 2.3. Finally, based on the
insight from the first sections, we conclude this chapter by a summary of the area

we will explore in our research.

8 Chapter 2. Context and Problem Statement

2.1 Real-Time Systems Context

2.1.1 Characteristics

A system is a real-time system when “the correctness of the system depends
not only on the logical result of the computation but also on the time at which
the results are produced” [12]. In other words, the result must be within a
timing constraint (also called deadline) to be relevant. A computationally correct

result that does not comply with the timing constraint may be useless, or dangerous.

Contrarily to non real-time systems (e.g. best effort systems), that seek to
optimize average performance, real-time systems require first of all that all timing

constraints are met, even in the worst-case execution scenario.

The impact of a deadline miss determines the criticality of the system or appli-
cation, i.e. it quantifies how important it is that the system shall comply with
its real-time constraints. If failure to meet the deadline leads to catastrophic
consequences — death or huge material loss — the system is said to be hard real-time.
If the deadline miss is of lesser importance and does not impact significantly the
functionalities of the system, the system is said to be soft real-time. Finally, a
system or part of a system that will be severely impacted by a deadline miss

without catastrophic consequences is sometimes referred to as firm real-time.

Sometimes, complex systems are mized-criticality systems. This means that they
comprise several subsystems, applications or tasks that have different criticality
levels. Analysis of such systems raises additional challenges, as the execution of a

non-critical task should not impact the execution of a critical one.

2.1.2 Examples

In Aeronautics, Full Authority Digital Engine Controller (FADEC) [13] is an ap-
plication in charge of controlling an aircraft jet engine. It receives information
from sensors located in the engine, processes them, and, if need be, performs the
appropriate action. Failure of this application to work properly may prevent an
engine malfunction from being detected and mitigated. The possible consequences
include the loss of an engine, damage to the aircraft and/or to the people on board.
Therefore, FADEC is a hard real-time application.

The control application of an autonomous vehicle detailed in [14] is in charge of

2.1. Real-Time Systems Context 9

(i) processing information from a stereo photogrammetric set of sensors; (ii) deriv-
ing the absolute position of detected obstacles and adding them to its database;
(iii) adapting trajectory and monitoring vehicle stability. As these functions are
critical to guarantee the integrity of the vehicle (and, whenever it is relevant, of the
obstacles that may be humans), the system is hard real-time.

The video streaming service of Netflix is a real-time system, as failure to deliver
the video frames in a timely manner could cause the movie being watched to freeze.
However, a non-optimal streaming experience at home will not cause anything more
serious than a few curse words being pronounced. It is certainly not critical. There-
fore, such a system is soft real-time.

Australian Government’s Department of Home Affairs is a best-effort system for
visa applications. For instance, 75% of applications for a subclass 407 training visa
will be processed in 84 days or less, and 90% of applications will be processed in 4
months or less [15]. 1 There is no guarantee on the worst-case response time of the

System.

2.1.3 Requirements and Challenges

Expected properties of real-time systems include in particular [16]:
1. Timeliness — results must not only be correct in terms of value, but also
meet the associated deadline;
2. Design for peak load — the system must comply with its requirements even
in the worst case scenario;
3. Predictability — to ensure that the performance requirements are met, the
behavior of the system must be predictable;
4. Safety — we expect a valid behavior of the system in all circumstances. This
includes fault tolerance and resilience to malicious attacks.
We consider safety issues as beyond the scope of this thesis, thus we choose to focus
on the first three requirements.
Requirement 3 (predictability) is greatly impacted by design choices. For instance,
common cache mechanisms improve the average execution time of a memory re-
quest, but introduce undeterminism. When a cache miss occurs, the latency to
perform the memory request can increase by several orders of magnitude. As we
have to account for the worst case (Req. 2), it may be relevant to deactivate cache

mechanisms to improve worst-case performance.

!These informations are updated on a regular basis and may have evolved by the time this
manuscript is read.

10 Chapter 2. Context and Problem Statement

We will mostly rely on the predictability requirement to narrow down our study and
leave out architecture paradigms and mechanisms that introduce undeterminism in
the execution.

Additionally, real-time systems raise challenges that must be addressed, such as:

1. Scalability — with the increasing demands and foreseen size of real-time
systems in the short term, both the architecture paradigm and the related
analysis methods must scale when considering large systems;

2. Complexity — to facilitate reconfiguration and decrease development and
maintenance costs, designers favor simple architectures, from both a hard-
ware and software point of view. For instance, industrials in avionics and
automotive tend to prefer using commercial off-the-shelf (COTS) technolo-
gies to reduce costs.

Fulfilling real-time requirements should therefore not prevent these challenges to be
taken into account.

Regardless, design choices will not be enough to ensure all real-time requirements
are satisfied. Moreover, a trade-off must be found between addressing the afore-
mentioned challenges while complying with the requirements of real-time systems.
That is why there is a strong need for analytical models that are able to prove
that the system complies with all requirements, particularly 1 and 2. In the fol-
lowing sections, we will review design choices of manycore platforms and determine
which of them are most suitable to help with real-time systems requirements and

challenges.

2.2 Manycore Platforms

Manycore architectures need efficient intercore communication to make the most out
of the additional computing power provided by the multiplicity of their processing
elements. To avoid creating bottlenecks, they usually follow a NUMA (Non-Uniform
Memory Access) paradigm, where each computing tile (holding one or several pro-
cessing elements) has its local L1 cache and memory. Memory requests are thus
addressed either locally or to a distant tile, and tiles are interconnected to allow not
only distant memory requests, but also cache coherency mechanisms, core-to-core
message passing and I/0O and external devices access. Therefore, the choice of an
interconnect is crucial from a performance point of view.

A simple interconnect such as a bus may be sufficient when there are only a few
cores, but such a paradigm does not scale well over a few to a dozen of cores:

e the per-user available bandwidth is inversely proportional to the number of

2.2. Manycore Platforms 11

users competing for the use of the bus;
e the bus clocking frequency and synchronization are constrained by electrical
properties of the chip technology.
Point-to-point wired communication, although solving the bandwidth issue, has a
quadratic wiring complexity, thus does not scale well either. Essentially, an effi-
cient interconnect will be a trade-off between hardware complexity and paradigm
scalability, while guaranteeing communication predictability and timeliness.
In that respect, Networks-on-Chip, proposed in [17, 18, 19], appear as a promis-
ing solution for distributed, scalable interconnects. Networks-on-Chip, abbreviated
NoC(s), follow a paradigm similar to classic switched networks — routers intercon-
nected by links receive and forward data packets — but the on-chip nature of these
networks carries specific constraints and characteristics, including mainly:
e the topology of the interconnection;
o the protocol(s) used to forward data from node to node and to handle con-
gestion;
e the arbitration policy;
o the algorithm(s) used to compute packet routes;
e the limited on-chip area;
e the place and route complexity and power consumption.
e the hardware complexity;
e the amount of memory needed at each node;
e the wiring complexity.
In the next sections, we will review the existing NoC architectures from these various

points of view.

2.2.1 Topologies

It is generally not easy, or even impossible, to modify the hardware of an on-chip
component. In that respect, and unless they are designed to be reconfigurable,
NoCs topologies are static. To the best of our knowledge, there are no COTS
architectures offering reconfigurable topologies, but it is something that could be
imagined. Hereafter, we will only consider static topologies. The choice of the NoC
topology impacts the scalability of the architecture (Challenge 1). To exhibit this
impact, we consider a NoC A that we can assimilate to a directed, finite graph. We
assume routers are vertices of the graph, denoted nodes(N'), while links are edges
of the graph, denoted edges(N'). We present two metrics to characterize a NoC :

network diameter and router radix. We will first need the following definition.

12 Chapter 2. Context and Problem Statement

Definition 1. Minimal Path Length

Given any two routers Ry, Ro in the network, the minimal path length from Ry to
Ry is the minimal number of “hops” or inter-router links that a packet must use
to go from Ry to Ra. We denote it L(R1, R2). In graph terms, for any Ri, Rs €
nodes(N'), L(R1, Re) is the shortest path from vertex Ry to vertex Rs.

Definition 2. Network Diameter

The network diameter Dy is defined as:

Dy = max L(R, R
N Ri,R2€nodes(N) (b 2)
In other words, network diameter is the maximum of all minimal path lengths over

the network.

Definition 3. Router Radix

Considering only routers with the same number of inputs and outputs, the radix of
router R is the number of input/output pairs of R. In graph terms, the router radix
of R is the degree of vertexr R.

With these notions, we now review several topologies described in the literature.
The ring consists of N routers in a circular disposition. KEach of them has 2
input /output pairs with its 2 closest neighbors (in a full duplex configuration) and
an input/output pair with the local processing element (Figure 2.1). The radix of
each router is constant and equals 3, but the diameter of this network topology
is linear in the number of nodes (L%J in a full duplex configuration, N when the
links to the neighbors are unidirectional). Moreover, the last point implies that

the available bandwidth on a link can decrease rapidly with the number of flows.

Figure 2.1 — Ring network topology

2.2. Manycore Platforms 13

A mesh consists of routers disposed at the intersections of a grid, most commonly
a 2D grid ([20, 21, 22, 23, 24, 25]), although 3D meshes also have been thoroughly
studied [26, 27], and higher dimension meshes are possible as well [20]. Routers
are connected to the local tile and to their 2n neighbors (n being the dimension of
the mesh), except for the border/corner routers (Figure 2.2). They have a constant
radix, while the network diameter grows as O(v/N) (provided the NoC is a square).
A torus is similar to a mesh, but the border routers are connected to the routers
of the opposite border (Figure 2.2). The radix remains the same, and the network
diameter has the same asymptotic complexity (up to a constant multiplier).

Both these topologies exhibit a good scalability, mainly due to their acceptable
router complexity. The main limiting factor is the diameter : for a 16 x 16 mesh
NoC (256 nodes), the diameter is 31.

Figure 2.2 — Mesh and Torus topologies

Ring and n-dimensional torus are part of a larger family of topologies called the
k-ary n-cubes [20, 28]. A k-ary n-cube contains k™ nodes. For k > 2, each node has
2n neighbors (one in each dimension). For instance, a k-ary l-cube is a ring with
k nodes, a k-ary 2-cube is a 2D torus with k2 nodes, a 3-ary 3-cube is a 3D torus
with 27 nodes.

In [29], the authors propose to adapt flattened butterfly topology to NoCs to
prevent network diameter from increasing that fast with the number of nodes, and
compare it to mesh topologies. The idea is that each router is connected to all
routers on the same line and on the same column (Fig. 2.3, represented without the
links to the tiles) and to one or more cores. If we connect each router to 4 cores, we
are able to interconnect an 8 x 8-core chip using only 16 routers of maximum radix
10. The network diameter falls down to 2. Although this solution is not highly

scalable, since following the same paradigm causes routers radix to explode rapidly

14 Chapter 2. Context and Problem Statement

Topology Router radix Diameter Scalability
Ring constant = 3 O(N) Limited
n-dimensional mesh constant < 2n+1 O(Y/N) Good
n-dimensional torus constant =2n +1 O(Y/N) Good

2D Flattened Butterfly O(v/N) constant, 2 for a 2D grid Limited

Table 2.1 — Summary of main NoC topologies vs scalability issue

(O(y/(n))), solutions for connecting several 8 x 8 flattened butterfly topologies
together are presented. However, they are not evaluated in detail and may suffer
from a non-optimized application mapping since they lead to non-uniform NoC

topologies.

| ,I ,' ,I ‘~~.i_l __.—"i ,I
l'l' l'l' l'l' lll'
:1— _—‘—:$F=_:::-n- -——-_+'L-~
1| .—” T =~ L ==,
] n .~~ LI} -. ,LI’.
T A \ et S W \ WL ag T |
1 \ 1 \ X 1 \
\ \ K \
1y Iy 1y |y 1y iy 1y Iy
Y R [\ v
1\ J‘——-F:c:“':"!')! "‘---i-.\t \
Nlar 20 B Bkl S I &
1 H o | 1 T
| | il Y B o Sl B
1] i] i] 1]
i] i] i] i]
1 ! ___..I—_ - .I'.___ 1 ,’
L-f-=soa= =~~~} -

Figure 2.3 — Flattened Butterfly topology

Finally, let us mention that for large platforms, it is possible to design a hierarchical
interconnect. For instance, the Kalray MPPA Bostan [7, 30] has 256 processing
cores and uses a 2D mesh NoC. The NoC is a 4 x 4 grid, connecting 16 tiles. Each
tile holds 16 cores that are interconnected and share the local network interface
to access the NoC. Hybrid interconnects combining a mesh and buses have been
mentioned in [31] to improve performance, but the scalability issue has not been

addressed for larger interconnects.

We summarized our quantitative insights of NoC topologies in Table 2.1. Network

diameter is the limiting factor for the ring topology as it increases linearly with the

2.2. Manycore Platforms 15

number of routers.

Flattened butterfly fixes this issue by ensuring a constant diameter, at the expense
of the router radix. Router radix depends on the size of the network, therefore
flattened butterfly is not suitable for direct use in a NoC topology.

Mesh and torus appear to be a good compromise. They allow for simple routers
with a constant radix (similar to what a ring topology offers) while keeping the
diameter reasonable as the number of router increases.

For larger platforms, hierarchical topologies can be explored. The most common
approach is to group several (2 to 16) processing elements on each tile [8, 32, 7].
This allows to increase the number of interconnected processing elements without
needing more routers, which means the diameter does not increase. This implies
an increased utilization rate of the routers at the network interface, as several
processing elements will use the same router to access the NoC. More complex

hybrid interconnects have not been thoroughly evaluated.

2.2.2 Forwarding Techniques and Flow Control

Forwarding packets and managing data flows on the NoC can be done in many
ways. The characteristics of the chosen techniques impact:
o the timeliness (Req. 1) and particularly the traffic latency;
o the platform complexity (Challenge 2) and specifically the needed on-chip
memorys;
o the predictability (Req. 3), regarding lossless transmission.
There are several ways to transmit packets over a network. The classical way of
doing so is Store-and-Forward (S&F): at every hop, each packet is forwarded to the
next network node. Once it reaches the next node, the routing decision is made
and the packet can be forwarded to the next node, and so on until it reaches its
destination. With this technique, it is necessary to:
e have enough memory at each router to hold at least the largest packet;
e walit until each packet is completely stored to start forwarding it to the next
node.
This last point causes an additional latency on the transmission of a packet, that
depends on the link bandwidth, packet length, and number of nodes to cross. For
instance, if a packet of length L is transmitted over a path of N nodes connected
by links of bandwidth C, the latency to transmit the packet over the network
without congestion is %N . It is proportional to the path length.

16 Chapter 2. Context and Problem Statement

Circuit switching [20, 33] addresses this issue. The idea of Circuit switching is
that the sender of a packet uses a (smaller) control packet to request the needed
resources along the path and establish a circuit before transmitting the packet from
source to destination. The packet will then travel without experiencing congestion,
and thus will not need to be buffered in any intermediate node. If the size of the
control packet is L., the network latency is %N + % If L. is small compared to
L, the length of the path has a minor impact on the network latency. However,
this mechanism requires to reserve the whole path of a packet to proceed to the
transmission. This fact may be problematic on heavy-utilized networks, because it
blocks all other packets from using even one part of the reserved path during the

whole packet transmission.

Virtual Cut-Through (VCT), presented in [34], also reserves links on the path using
a header, but without requiring to wait until a complete circuit is established. The
packet is sent right away and will be entirely buffered in an intermediate node if
contention occurs ahead. As with circuit switching, there is no need to wait for the
whole packet at each node. However, the packet has to be entirely removed from
the network if it is blocked at some point. If the header length is Ly, the network
latency without congestion is %N + é, with a negligible impact of the path length
when Lj, is small compared to L. VCT has the same buffer requirements as S&F,
since to cover worst-case congestion, it must be able to buffer an entire packet at

each node.

Wormbhole Routing proceeds with the same idea, by dividing a packet into flits of
size Ly. The header progresses along the path, with the rest of the flits following
in a pipelined way. The main difference with VCT is that when the header is
blocked, the packet does not have to be entirely buffered in the corresponding
node. Instead, a flow control mechanism blocks the remaining flits where they are,
and the transmission resumes when the header flit can move again. This drastically
reduces the amount of memory needed at each node. The network latency without

congestion has the same form as VCT and circuit switching: %N + %

As far as memory use is concerned, wormhole routing has an advantage over other
techniques as it requires only enough memory to store one flit at each router. It
exhibits a low network latency when no congestion occurs, and the packet buffering
in case of congestion can be tweaked by varying the available buffer size at each

router. For instance, increasing the buffer size will allow to store a packet in fewer

2.2. Manycore Platforms 17

Technique Packet Latency Per-node memory Path reservation
S&F LN >L no
circuit switching % + %N none yes
VCT LiLN L no
wormhole % + %N Ly no
bufferless é + %N none no

Table 2.2 — Forwarding techniques and their requirements

nodes if it is blocked (or even more than one packet at each node), at the expense
of memory requirements. For an on-chip system, carefully dimensioning memory

will favorably impact power consumption and on-chip area.

Finally, we mention that bufferless techniques exist besides circuit switching,
as described in [35, 36]. In [37], such a technique relies on a mechanism called
deflection routing (also referred to as hot-potato routing). The idea is similar
to wormhole routing, except that flits are never buffered. If the requested
output is not available, flits are routed to a different one and never remain in
a router. Such a technique is intrinsically limited to unicast transmission, be-

cause at each router, there has to be at most as many exiting flits than entering flits.

We synthesized the characteristics of forwarding techniques in Table 2.2, in terms
of packet latency, buffer memory needs and path reservation.

To handle packets when congestion occurs, forwarding techniques rely on a mech-
anism called flow control (see [33]). We can mainly distinct 3 types of flow control
mechanisms:

Delay-based or Credit-based: when a packet requests a resource that is unavail-
able, it is buffered and waits until it is granted the use of the resource. Delay-based
flow control can be implemented using a system of credits issued from each input
that grant the upstream output the ability to forward one flit. Such a mechanism
enables lossless transmissions and can be used with most of the forwarding tech-
niques mentioned earlier (S&F, VCT, wormhole). This mechanism induces a higher
end-to-end delay when there is congestion to guarantee lossless transmission.
Loss-based: when a packet requests a resource that is unavailable, it is dropped
after a certain time and has to be retransmitted. The retransmission is usually

managed by a higher layer. Such a mechanism can be used with S&F, VCT and

18 Chapter 2. Context and Problem Statement

Flow control Predictability

Delay-based good
Loss-based limited
Deflection-based limited

Table 2.3 — Flow control techniques and their predictability

wormbhole routing as well. It may help reduce congestion in the network during
periods of heavy utilization and improve the average latency, but introduces un-
determinism due to the drop and retransmission issues. In particular, it is hard
to bound the worst-case latency of a packet, considering it may be dropped an
arbitrary number of times due to congestion.

Deflection-based: when a packet requests a resource that is unavailable, it is
deflected from its original route. This mechanism also allows lossless transmission
and improves load-balancing, because of its ability to reroute packets towards non-
utilized links. Similarly to loss-based flow control, it comes at the price of an
additional unpredictability regarding the delay experienced by a packet, because it
is difficult to bound the number of times a packet may be deflected from its original
path to destination.

We recap these characteristics in Table 2.3.

2.2.3 Arbitration and Virtual Channels

When several packets are competing for the use of one resource, the router has to
decide which of them will be granted the use of the resource. The arbitration levels
in the router may vary depending on the router architecture, but the underlying
policies to favor one packet over another are generally among the following:
First-Come First-Served (FCFS): flits arriving at a router are served according
to the time they arrived at the router, in a First-In First-Out way. This is the
simplest policy.

Round-Robin (RR): at each router, all entities requesting the use of a resource
are each allocated a certain amount of credit. Each of them is served until its
credit runs out. Then, the arbiter serves the next entity, and so on. Each entity
recovers its full credit amount when the arbiter switches to the next entity.
Weighted Round-Robin (WRR): WRR is the same as RR, except that the
amount of credit assigned to the various entities may differ and favor some entities
over others. The weight of an entity is the ratio of its amount of credit to the total
amount of credit. This way, the sum of all weights equals 1. WRR and RR exhibit

2.2. Manycore Platforms 19

[l = I one flit of packet 1 can move
—(T T (T1TH+
—TT1T1TH+ —HTTTH+
— 1T R buffer is now full, packet 1 is blocked
—(T T (T1TH+
—I11TH —HTTTH
il o —
11T T packet 2 can move while 1 is blocked
—TT1TH+ —HTTT+

Figure 2.4 — Bypass mechanism

a good predictability (Req. 3) in terms of granted service.

Fixed Priority (FP): this policy requires packets to have a priority attribute. In
case of concurrent request for the same resource, a packet with a higher priority
will be served before a packet of a lower priority. This impacts the predictability.
For higher priority packets, it increases predictability, as they are guaranteed a
certain service. As such, it also improves timeliness (Req. 1) for higher priority
levels. For lower priority packets, it decreases predictability, as their granted
service depends a lot on the presence of higher priority packets competing for the

sale resources.

Virtual Channels (VCs), introduced in [38], are a way to share one physical link
into separate logical channels, by implementing separate buffer queues at each
router [39]. Packets in different VCs will use the same links from node to node but
they will queue in different buffers. This especially allows one packet to bypass
another that is blocked instead of having to queue behind it. On Figure 2.4, we
present an example of a bypass scenario enabled by VCs. Initially, packet 1 is
using the link and forwarding one flit to the next buffer, while packet 2 has to wait
because the link is being used by packet 1. The next buffer on the path of packet
1 is then full, so packet 1 cannot move further. However, packet 2 is using another
VC, and the next buffer of this VC is not full. Therefore, packet 2 can resume its
transmission. Such a mechanism improves overall link utilization while reducing
congestion. It may help with system scalability (Challenge 1), but at the expense

of an increased complexity (Challenge 2).

Typically, VCs are used to provide different guarantees to different traffic classes,
but they can also be used for preventing deadlocks (packets being forever blocked

in the network, see Section 2.2.4), by breaking cyclic dependencies between the

20 Chapter 2. Context and Problem Statement

resources requested by packets [40]. Packets may be statically assigned to one VC,
or change VC during their transmission, depending on what VCs are used for.

A typical use of VCs is to implement a FP arbitration policy. To do that, one can
map one priority level to a VC (this is done in [41]), or several priority levels to one
VC. Another way, mentioned in [42], is to do a local mapping of priority levels to
VCs at each node, depending on the flow communication pattern. Provided there
are enough VCs, this can ensure only one flow is mapped to each VC at each router
and/or minimize the number of needed VCs. This requires to know the path of the
flows, and do an offline static mapping of priority levels on VCs.

Note that in routers, depending on the architecture, there may be several arbi-
tration levels. For instance, one can arbitrate between packets depending on the

input they come from or on the VC they use, with a different arbitration policy.

Arbitration policies that favor predictability are mostly (weighted) round-robin and
fixed priority. FCFS, although simpler, provides a service that depends a lot on
how many packets request the same resource, and at what time they do. RR is
relatively simple to implement and provides the best fairness to all traffic classes.
Fixed priority requires to handle priority attributes that can either be read from
each packet, or determined using virtual channels, and in that way may increase
hardware and/or software complexity. It is less fair than RR and degrades the
predictability of the service granted to lower priority classes, but this may be a
possibility worth exploring when dealing with mixed criticality traffic or flows with

different timing requirements (real-time and best-effort).

2.2.4 Routing Algorithms

Knowing the flow control mechanism and forwarding technique used to transmit a
packet from node to node is not enough to successfully transmit a packet over the
NoC. In order for a packet to reach its destination, each node should know where
a flit is supposed to be forwarded. This is ensured by choosing an appropriate way
of determining the path of a packet from source to destination. Such a principle is

called a routing algorithm. In this section, we will review different algorithms.

A routing algorithm, along with the chosen flow control mechanism, must ensure
that all packets reach their destinations, and as such it should prevent two phenom-
ena: deadlock and livelock. The former occurs when a packet or a flit is waiting

to be granted the use of a resource used by another flit or packet, that is in turn

2.2. Manycore Platforms 21

waiting for a resource to be freed, and so on so forth, with ultimately a packet or
flit waiting for the resource used by the packet or flit of interest to become avail-
able. It occurs when resource requests dependencies form a cycle. Such a scenario

is represented on Figure 2.5.

Figure 2.5 — A typical deadlock scenario

Here, each head flit of the purple, green, blue and red packet respectively is waiting
for a resource used by a flit of green, blue, red and purple packet, respectively.
The situation cannot evolve and the packets are blocked forever. A livelock occurs
when a packet progresses in the network without ever reaching its destination.
Typically, such a scenario is imaginable with bufferless techniques (a packet is
never blocked) if the packet keeps being deflected from its destination due to an

unfair arbitration policy with packets of contending flows.

Hence, the choice of a routing algorithm will impact the predictability requirement
(Req. 3). We can distinct several characteristics of routing algorithms, as detailed
in [33].

Central vs distributed: central routing relies on one common entity to compute
the routes for all packets. Distributed routing has multiple entities capable of
deciding all or part of the route a packet will use. Central routing can be done
either offline for configurations where all data flows are known, or online when
meaning the computing entity receives a request for each packet to be sent. The
latter option does not scale well because it creates a bottleneck at the computing
entity (Challenge 1). The former option allows to balance link utilization, but
implies that all data flows must be known in advance. Distributed routing can also

be done offline e.g. with the used of routing tables at each node, or dynamically.

22 Chapter 2. Context and Problem Statement

It shows better scalability than centralized routing.

Source routing ws hop routing: both can be classified as subfamilies of dis-
tributed routing algorithms. Algorithms based on source routing compute the whole
path of a packet before it is sent. Algorithms based on hop routing rely on each
node to make the decision for the next hop. Choosing one or the other may slightly
impact complexity, but the way it does depends on other factors.

Deterministic vs adaptive: Given a source SRC and a destination DST, a de-
terministic routing algorithm will always give the same route from SRC to DST.
Running an adaptive algorithm twice with the same SRC and DST may, however,
output different routes depending on the circumstances. It can adapt the path to
live or unpredictable events, e.g. congestion or link failure. Adaptive routing can
help mitigate congestion at the expense of predictability. In that respect, determin-
istic routing will fit better for real-time systems (Req. 3).

Minimal vs nonminimal: the path computed can be either (one of) the shortest
paths available, or not. It is interesting to notice that in the general case of a
k-ary m-cube, a deterministic, deadlock-free, minimal routing algorithm does not
exist, but nonminimal routing algorithms have been introduced for such topologies
[40, 20].

Routing algorithm possibilities are partly conditioned by the topology. For mesh
and torus of an arbitrary dimension, the dimension-ordered routing (DOR) is a
typical example of a deterministic, distributed and deadlock-free algorithm. We
choose an order on the n dimensions of the topology, from 1 to n. Knowing the
position of the current node, (z1,--- ,x,), and the position of the destination node,
(2}, ,), the packet is first routed along the dimension 1 until z; = 2. Then,
it is routed along dimension 2, and so on, until finally z,, = «/,. For a 2D mesh (or
torus), the two possible DOR are X first and Y first, depending on which dimension
is picked first.

Deflection routing, used especially in bufferless architectures, can be based on a
preferred route, e.g. computed using a minimal routing algorithm. In the case
two packets compete for the same output, the arbiter will deflect one of them from
its preferred route. To avoid a packet being unfairly or endlessly deflected (which
could cause a livelock), dedicated arbitration mechanisms have been developed when
deflection is necessary [37].

Finally, the turn model, introduced in [43], allows to design partially adaptive or

deterministic routing algorithms for n-dimensional meshes and k-ary n-cubes.

2.2. Manycore Platforms 23

2.2.5 NoC Examples

2.2.5.1 Intel SCC

CPUO Tile CPU 1
(=1 =1 =1 =1 =1 $L1 MPB $L1
i ! !
CCl— MU F—{cc
@ $L2 $L2
2 4 10
@W Router

i
Figure 2.6 — Intel SCC overview: grid (left) and tile (right)

Intel’s Single-chip Cloud Computer is a manycore chip developed for research pur-
poses [44, 8]. It features 24 2-core tiles interconnected via a 4 x 6 mesh NoC. Routing
policy is XY. Apart from the tiles, the SCC contains four memory controllers (MC)
and an FPGA.

An overview of the SCC architecture is shown on Figure 2.6. On each tile, the two
cores have their own L1 cache for data and instructions, and a L2 data cache with
the associated cache controller (CC). A mesh interface unit (MIU) allows cores to
access the NoC and handles the buffer that stores incoming packets, the message
passing buffer (MPB).

Intel SCC has been widely used for research purposes, including in real-time-

oriented papers [45, 46].

2.2.5.2 Tilera TILE-Gx8036 and TILE-Gx Series

The TILE-Gx8036 [5] is a 36-core chip with a 2D-mesh NoC. The NoC is constituted
of several independent networks for various types of traffic, but the user mostly has
control over one of them, called UDN (User Dynamic Network). Among the other
subnetworks, the I/O Dynamic Network (IDN) handles I/O devices access, while
the memory system uses the QDN (reQuest Dynamic Network), RDN (Response

24 Chapter 2. Context and Problem Statement

‘ I/0 (12C, SPI, UART, USB, ...) ‘

] =10520530540550 N

5 ML T TOC T 5

S °

g g

5 5

E E) ' Miss in home

: [L T 0T] 2 ——— oo

il
EEEEE 55 | L2 Cache | 2o DDR

‘ 4x GigaBit Ethernet ‘ ‘ 3x PCle 2.0 ‘

Figure 2.7 — Tilera TILE-Gx8036 overview: NoC and devices (left) and memory
requests handling (right)

Dynamic Network) and the SDN (memory snoop network) to handle various oper-
ations. The UDN has no virtual channels and supports dimension-ordered routing
(either X-first or Y-first). Buffers are located at the input of routers and can hold
3 flits. The technological latency of the routers is one cycle.

The arbitration mechanism of routers is central. Therefore, if two flits cross the
router using different inputs and requesting different outputs, one of them will
experience an additional delay of one cycle, as the arbitration mechanism will
handle them one after the other. A far as arbitration mechanisms between input
ports are concerned, the chip offers a classic Round-Robin policy and a Network
Priority policy. The latter favors traffic that is already on the NoC over traffic

requesting a local input port (injection).

Note that similar chips with more cores are also available, such as Mellanox TILE-

Gx72 [6]. An overview of the TILE-Gx with 36 cores is shown on Figure 2.7.

2.2.5.3 Kalray MPPA series

Kalray MPPA-256 [7] is a 256-core chip. It is organized in 16 tiles connected by two
4 x 4 2D-torus NoC. One, the Data-NoC, is dedicated to data transfers, the other
handles small control messages (Control-NoC'). Buffers are located at the outputs
routers, and there are 4 of these buffers at each output (one for each of the 4 other
interfaces). The arbitration between contending flows is round-robin, and unlike

the TILE-Gx, flows crossing a router without interface conflict do not delay each

2.2. Manycore Platforms 25

4 N
| North IO cluster | :
FEFEFE
_ e | ST
Q‘@J () j‘) (i) s | 3
Cilf— z
& = =
m || %L
IRy
S ()
~ - router router
5O) S 4 : | J
C10 C1i - ~
North
By i“ (ool ‘éé
(x5

2
P

Q

(o

—

S
e—1o
S
[0

South 10 cluster |

South

N J

Figure 2.8 — Kalray MPPA overview: NoC (top left), tile (top right) and router
(bottom)

other.

Both NoCs support source routing. All turns a packet must take to reach its
destination are written by software in the header before the packet is sent. Flow
control relies on traffic shapers, that can throttle the injection rate of flows in
the NoC and subsequently ensure that buffers are never full (thus no backpressure
happens).

NoCs also handle multicast (deliver the packet to some of the nodes on its route) and
broadcast (deliver the packet to all nodes on its route). Note that these definitions
of multicast and broadcast differ from what is usually assumed in classical networks.
Each tile contains 16 general purpose cores, an additional core to manage resources
of the local tile (resource manager or RM), a DMA device to send data over the
NoC, and memory.

We present the architecture of the Kalray MPPA on Figure 2.8. We also included
the architecture of a router, as it is significantly different from many other manycore

NoC routers.

26 Chapter 2. Context and Problem Statement

Predictability Scalability Complexity Restriction

Topology v’ v’ mesh and torus

Forwarding v’ v’ wormbhole

Flow control v’ delay-based

Arbitration v’ v’ RR, WRR, FP

VCs v’ implementing FP

Routing v’ v’ deterministic, dis-
tributed

Table 2.4 — Summary of design choices and their impact

2.3 Discussion: NoCs and Real-Time Systems

In this section, we first summarize our study of NoCs architectures and design
choices and their impact on real-time requirements and challenges. Then, with
the insight of existing architectures, we explain what our focus will be in the next
sections. We tackle the predictability requirement by considering paradigms that
favor deterministic behavior, so that bounding the worst-case is possible (Req. 3).
Similarly, we discard paradigms that would prevent the system to scale (Challenge
1). Finally, we favor solutions that decrease memory requirements and on-chip

complexity (Challenge 2).

Table 2.4 recaps the various design choices in NoCs for manycore architectures. We
highlight the main impacts they have on requirements and challenges by putting a
check mark v in the appropriate cell, and use this insight to determine whether we
restrict the focus of our work to specific paradigms. These restrictions are shown
in the last column. No check mark in a column does not mean the considered
design paradigm has no impact on the corresponding requirement, but rather that
its impact is limited or considered not crucial, and therefore will not restrict the

focus of our work.

From a predictability point of view, we want to avoid techniques that do not provide
worst-case guarantees. In terms of topologies, there is no predictability-related
incentive to pick one topology over another. The relevant criteria to favor one
paradigm over another have to do with scalability and on-chip place-and-route
complexity. Commercially available chips remain generally based on 2D-mesh and
torus, and occasionally 3D-mesh. They keep the on-chip wiring simple, are adapted

to routing algorithms that are simple to implement, and they scale well, especially

2.3. Discussion: NoCs and Real-Time Systems 27

if they interconnect tiles with several PEs (like Intel SCC and Kalray MPPA). In
that respect, they comply with Challenges 1 and 2. To the best of our knowledge,

there is no strong incentive to use more complex topologies, at least not yet.

Forwarding techniques we reviewed impact predictability, but none of them has a
decisive advantage over the other on predictability-related issues. Congestion, when
it happens, will cause delays that are challenging to predict. The most relevant
criteria in that matter regard other performance metrics (energy consumption,
on-chip area, complexity. ..). We favor wormhole routing because it is widely used

and allows to reduce the amount of memory needed at each router.

Deflection-based and loss-based flow control mechanisms suffer from an intrinsic
unpredictability that makes worst-case scenarios extremely difficult to anticipate,
and therefore are not adapted to a real-time context. Besides, most NoCs
implement lossless transmission. The latter is usually credit-based, although some
platform (like Kalray MPPA) additionally provide traffic shaping mechanisms at
the injection level to leverage congestion-related delays. Thus, in the remainder of

this report, we will consider wormhole NoCs with credit-based flow control.

Arbitration mechanisms also impact predictability, without being deciding fac-
tors. Round-Robin, Weighted Round-Robin and Fixed Priority exhibit a better
predictability than First-Come First-Served. Fixed-Priority also allows to provide
different services to traffic or tasks of different criticality levels, which may justify
the additional complexity it induces. Many COTS platform use Round-Robin.
Hence, we will consider the most common arbitration policies: Round-Robin and
Fixed-Priority. We will also assume Fixed-Priority arbitration is implemented

using virtual channels.

Finally, adaptive routing algorithms are not ideal choices as they introduce a lot
of possible outcomes in a packet transmission that are hard to anticipate. More-
over, scalability concerns favor distributed routing algorithms over centralized ones.
Routing algorithms are generally dimension-ordered when they are hardware-based.
Kalray MPPA relies on software configurable source routing, which is highly config-
urable and allow to implement many different algorithms, but always in a source-
routing way. Most of the available routing algorithms are deterministic, and as
such comply with the derived requirements for NoC-based real-time systems. It

appears, reading the literature, that adaptive routing may be justified only for non

28 Chapter 2. Context and Problem Statement

critical systems, or systems that do not require real-time guarantees. Moreover,
such a choice in routing algorithm should be motivated by an appropriate study to
confirm it can improve overall performance.

Therefore, we will do our best to make our work routing algorithm-independent,

and instead only assume the chosen one is deterministic and distributed.

Finally, we want to point out that a certain number of works in the literature
introduce architectures specifically designed to provide real-time guarantees. For
instance, authors in [47] present a NoC architecture able to handle critical commu-
nication with service guarantee needs while using the residual service for best-effort
traffic. The work of [48] focuses on providing support for hard real-time traffic with
a circuit-switching-like forwarding technique. More recently, an approach based on
a dynamic path establishment was proposed in [49]. It is implemented at network
layer and relies on a centralized control node to handle requests, to determine if
adding a new real-time flow to the existing set while ensuring deadlines are met is
possible.

Although such works are very interesting, we focus our work on providing perfor-
mance bounds on architectures that do not have any special support for real-time
applications and are suitable for best-effort traffic. The reason to that is that most
widespread COTS architectures that we are aware of are originally designed with
no primary focus on real-time applications [7, 6, 5, 8]. Second, exclusive real-time
environment is often not suitable for best effort traffic [48], or causes resources
to be underutilized in the average case, which may lead to overdimensioning the

resources for best effort communication.

As a result, it appears that design choices alone do not allow to fulfill and favor the
desired requirements and challenges mentioned in Section 2.1.3.

There is a strong need for means and formal proof to guarantee Requirements 1 and
2 to run real-time applications on manycore architectures. Besides, predictability
will also be impacted by other factors that are not platform-related, for instance,
mapping applications and tasks on a manycore chip. We outline two fields that are

worth investigating.

First, real-time analysis of a wormhole NoC is a difficult problem, due to sophisti-
cated congestion patterns that are (i) hard to avoid without severely impacting the
utilization rate of the network links; (ii) hard to predict and model, because of the

number of different configuration that can delay one packet; (iii) crucial to take into

2.4. Conclusion 29

account, as NoC delays directly impacts the execution of tasks that communicate
using the NoC.

Second, design Space Exploration (including resource dimensioning, choosing
between several COTS architectures) and task mapping (assigning application
and tasks to processing elements of the chip) are sensitive to NoC communication
performance bounds. They also have a huge impact on the network load (and
therefore on the delays experienced by the flows), as geographical location of tasks

generating a lot of traffic considerably changes the flow pattern.

2.4 Conclusion

Even assuming deterministic routing, lossless transmission and appropriate arbi-
tration, many challenges remain to provide real-time guarantees for on-chip com-
munication and consequently ensure safe execution of a real-time application on a
manycore platform.

These challenges mostly regard timing analysis of NoCs and system design — both
design space exploration and software/hardware mapping.

We see these two aspects as central and relevant issues to tackle in order to provide
methods and tools for analysis and design of manycore, NoC-based architectures
for real-time applications. Hence, in the next chapter, we will review the existing

works addressing these two issues.

Jadis sur le sable normand,
Alors que se couchaient le soleil et la lune,
D’amitié nous fimes serment,

Enveloppés des sourds grondements de Neptune.

*
X ok

CHAPTER 3

State of the Art

Contents
3.1 Timing Analysisof NoCs v v v v v v 32
3.1.1 Overview 32
3.1.2 Scheduling Theory 33
3.1.3 Compositional Performance Analysis 36
3.1.4 Recursive Calculus, 37
3.1.5 Network Calculus 38
3.1.6 Discussion 40
3.2 System Design and Software/Hardware Mapping 41
3.2.1 Design Space Exploration 42
3.2.2 Task and Application Mapping on Manycore Architectures . 44
323 Discussiono Lo 48
3.3 Conclusion ittt e e 48

In this chapter, we review the main existing works in NoC timing analysis and
design space exploration. We identify the pros and cons of each approach and
highlight our contributions, that will be developed in the following chapters.
There are two main parts to this review. Section 3.1, on one hand, focuses on
timing analysis of NoCs. First, we explain why some methods of performance
analysis are unfit for real-time and critical systems. Then, we recap the main
approaches that are relevant to Timing Analysis of wormhole NoCs. We detail each
of them in Sections 3.1.2 to 3.1.5, by briefly explaining the underlying theoretical
elements before reviewing the most significant contributions in the field. Finally,
Section 3.1.6 presents a synthetic table of relevant approaches and their limitations,
and gives an overview of our main contributions for timing analysis of NoC-based
platforms.

Section 3.2, on the other hand, is dedicated to problematics of system design and

mapping software elements onto hardware platforms. We first review general DSE

32 Chapter 3. State of the Art

approaches. Then, we focus on real-time application mapping on manycore ar-
chitectures. We detail the main methods that address the problem and the most
recent contributions. We also review a few approaches based on execution models
and environments for predictable execution. We recap this part with an outline of

our contributions.

3.1 Timing Analysis of NoCs

3.1.1 Overview

To evaluate the performance of a NoC, it is possible to use simulation. The aim is
to reproduce the behavior of the system according to a model of its functionalities
and architecture and measure metrics that are relevant to the evaluation goals.
The more detailed and accurate the model is, the more insight the simulation
will yield, but the more time- and resource-consuming it will be. Examples of
NoC simulators include Noxim [50], Booksim, HNOCS. Some of them, like Noxim,
are cycle-accurate. Although simulation does not provide worst-case bounds on
end-to-end delays, it may be used to assess the tightness of the worst-case bounds

obtained with analytical models.

If the system is too complex for simulation to give relevant results in a reasonable
time, another approach is to use probabilistic models. Queueing theory-based
models of NoCs have been developed in the past [51, 52]. For instance, a model
detailed in [52] takes as input an application communication graph, a topology
graph of the NoC, a mapping of the applications and a routing matrix, and outputs
the average latency for each packet. The approach in [51] is different: the authors
develop an algorithm based on a queueing model to assign an optimal depth value
to each buffer. However, an inherent limitation of probabilistic models is that they

give statistical results. Thus, they are not able to provide worst-case delay bounds.

For real-time systems, timing analysis is even more crucial. Neither simulations and
experiments nor probabilistic approaches are sufficient to prove the system works as
expected in the worst case, 7.e. they do not guarantee that the worst-case execution
time (in the case of an application) or the worst-case delay (for communications
or data transmission) is covered. Instead, formal proof of the safe behavior of the
system is needed. In particular, this requires to bound NoC communication delays,

which can be done by computing (a bound on) the worst-case end-to-end delays

3.1. Timing Analysis of NoCs 33

for all data flows using the NoC.

The exact worst-case end-to-end delay is generally hard to compute for complex
systems. Hence, a classical approach is to determine an upper bound to the worst-
case, which essentially comes down to a trade-of between complexity of the model
and tightness of the result. On one hand, the more complex the model is, the more
accurate the bound will be, but the more time it needs to output results. It is also
more error-prone and harder to formally verify. On the other hand, overestimating
the worst-case bound may incite to overdimension the resources, which will impede
the efficiency of the system.

The most relevant worst-case timing analysis methods are mainly: Scheduling The-
ory (ST), Compositional Performance Analysis (CPA), Recursive Calculus (RC),
and Network Calculus (NC). In the following sections, we will review ST-based,
CPA-based, RC-based and NC-based methods for timing analysis of NoCs, as well

as a couple of specific approaches.

3.1.2 Scheduling Theory

Scheduling Theory is originally used to bound response times of a set of tasks
competing for the use of one or several computing resources [53, 54]. The idea
is as follows [54]. We consider a set of tasks with priorities that must execute
on a computing resource, and for each task ¢ (periodic or sporadic), the following
associated parameters:
e (;, the worst-case execution time, i.e. the time needed to execute the task
with the available resource(s) when there is no interference;
o T;, the lower bound on the time between two consecutive arrivals of ¢ (if the
task is periodic, T is its period);
e D,;, the deadline of the task.
The worst-case response time (WCRT) of the task ¢, that is the maximum time
(counted from the task release) after which the task has been executed, is denoted
R;. We also use hp(i) to denote the set of tasks of a higher priority than i. To
simplify the notations and focus only on the computation principle, we consider
the task ¢ can only be delayed by the execution of higher priority tasks, and we
neglect the overhead due to context switches and other interferences with a constant
duration. To bound the worst-case interference on task ¢ from other tasks, one can

notice that during the duration of i response time, there may be n; arrivals of a

34 Chapter 3. State of the Art

task j, with

The corresponding duration of execution of this task would then be n;C;. Since
only higher priority tasks may preempt the execution of task 7, the total interference

suffered by task ¢ over its execution due to higher priority tasks, denoted I;, equals:

R;

Vichp J

Then, we can write the worst-case response time of i as:
R, =C; + I;

that is the sum of the computation time of 7 and the interference from other tasks.

Combining these two equations, we get:

R, =C; + Z {?“ Cj

Vjehp(i) 1 77

This can be solved using an iterative computation, based on a sequence (R})nen

that may converge under the right conditions. The task set is schedulable if, for
any task 7, the sequence converges and R; < D;.

Enhancements of this result include for instance accounting for a release jitter J;
for each task, that is considering the maximum duration the task may have to
wait upon its arrival before being released; integrating other constraints, such as
task dependencies; modeling other interference types, such as concurrent memory

access in multiprocessor systems, etc.

Principles of Scheduling Theory have been adapted to bound message transmission
delays in networks in [55]. The idea is to consider that flows need to use resources
to reach their destination, and as such are conceptually similar to a task and its
execution needs; while resources are network elements. The main problematic in
that case is to refine interference model to accurately capture the complex blocking
phenomenons that occur in a wormhole NoC.

In [56], these principles were applied to worst-case timing analysis of wormhole NoCs
supporting multiple VCs and with no priority sharing. It is based on distinguishing

two types of impact on the flow under analysis, called flow of interest (fot), caused

3.1. Timing Analysis of NoCs 35

by higher priority flows:

e direct interference — the foi shares a physical resource with the contending
flow, and can be delayed by it;

« indirect interference — the foi does not share any resource with the contending
flow, but there is at least one intermediate contending flow between them that
has a direct relationship with the foi or an intermediate flow on one hand,
and the contending flow or another intermediate flow on the other hand.

This method has been extended in [41] to support priority sharing. It allows to
consider that several flows can have the same priority level and share the associated
VC. To handle this extended hypothesis, the authors introduce direct and indirect
blocking, that refer to the previously defined notions of direct and indirect inter-
ference respectively, but caused by same-priority flows (instead of higher-priority
flows).

However, the latter approach may lead to overly pessimistic results for large NoCs
with a high number of flows and a limited number of virtual channels. Moreover,
the authors in [57] have proved later that the method in [56] could be optimistic in
specific situations. They refined the response time analysis through the distinction
between downstream and upstream indirect interferences, which leads to a deeper
understanding of the problem. Essentially, this distinction takes into account
whether indirect interference propagates to the flow of interest by going upstream
the path of intermediate flow, or downstream. Although the authors exhibited
a case of the “multi-point progressive blocking” (MPB) problem that caused the
optimism in previous ST-based works, their initial approach still suffered from
optimistic behaviour, that they later corrected in [58]. However, they focus only
on configurations with no priority sharing, which limits the applicability of such a

proposal.

Enhancements of the work in [41] have been detailed in [59], where refined inter-
ference patterns between flows have been introduced through accounting for the
physical contention domain impact, but considering only one-flit size buffers. Fi-
nally, [60] attempted to refine the model of [58], noticing that the amount of flits
causing MPB-related latency to the foi cannot exceed the total buffer size on the
considered part of the foi path to its destination. Nonetheless they provided no for-
mal proof to their approach and instead relied on experimental results to support
the validity of their model.

A more thorough work was presented in [42], but still suffered from the non-priority

shared assumption. Authors instead rely on a per-node mapping allowing each

36 Chapter 3. State of the Art

flow to have the exclusive use of its VC. They claim the number of available VCs
in modern platforms and the foreseen number of VCs on manycore chips in a near
future would be sufficient to make such mappings possible, allowing this method
to scale. This assumption could be difficult to maintain for configurations with
many traffic lows. Moreover, it requires the mapping to be done offline, prior to
the system being deployed, and offers little to no possibility of dynamically adding

flows (even flows with no real-time constraints).

3.1.3 Compositional Performance Analysis

Compositional Performance Analysis [61, 62] was introduced as a framework to
derive worst-case timing behavior of embedded real-time systems. The formalism
it uses is similar to ST-based approaches, but it allows in addition to use existing
models for local, independent analysis of a part of the considered system, and link
the results of different parts to get a global model. CPA is based on event-based
models for resources and tasks, and provides performance bounds for different

metrics such as buffer size and end-to-end delay.

Recently, the authors in [63] have developed a model for wormhole NoCs worst-case
analysis based on CPA. The underlying timing analysis is based on the busy window
approach [64]. They account for different types of blocking that the foi can undergo
at a given router. These are as follows:
e Direct output blocking — the foi shares an output port with another flow, but
no input port;
e Direct input blocking — the foi shares an input port with another flow, but
no output port;
e Overlapping — the foi shares an input port and an output port with another
flow;
e Indirect output blocking — the foi experiences direct output blocking from a
flow j that experiences direct input blocking from another flow k, without the
foi experiencing any direct blocking from flow k.
All blocking delays are bounded and summed over the path of the foi to compute
the end-to-end delay bound. This approach supports priority sharing and VC

sharing, but ignores buffer backpressure.

Afterwards, this work was extended in [1] to support backpressure by modeling the

3.1. Timing Analysis of NoCs 37

additional blocking delay caused by feedback control when buffers are full. This
approach also refines the computation of the blocking delay caused by contending
flows. However, the presented analysis has considered only a single VC and buffer
sizes that do not go below one packet. This analysis has also ignored the flows

serialization phenomena.

3.1.4 Recursive Calculus

Recursive Calculus was introduced in [65] to bound end-to-end flow delay on
SpaceWire Networks, that also use wormhole routing. It relies on considering the
possible contention on each link of the path of the foi. The authors compute a delay
for each link of the path, integrating the impact of contending flows (flows sharing
resources with the foi). Since these contending flows may be delayed as well, the
inferred delay on the foi will be impacted. That is why the approach to compute
the delay on a link is recursive.

This method as it is presented did not account for traffic specificities such as flow

rate. It also did not cover priority mechanism for flows.

A recent work [66] proposed a revision of Recursive Calculus. They first exhibit a
scenario with buffers that can hold more than one single flit and show RC gives an
optimistic bound on that counter example. Then, they detail a revision of RC to
cover such cases. The main idea of the approach is to refine the possible occupation
of buffers. Noticing that one buffer can contain flits of packets belonging to different
flows, they use a bound on the number of partial packets and complete packets in
a given buffer. They integrate this result into a corresponding “maximum buffer
delay”. This term can either be computed using Integer Linear Programming, or
bounded for a less computationally-expensive result (at the expense of tightness),
and integrated when performing the analysis. They are also able to model packet
fragmentation (absent from most other approaches). Packet fragmentation is the
way to transmit an amount of data exceeding the maximal packet size by splitting
the data chunk into several packets.

However, their work has a similar limitation as in [65]. Traffic specificities such as
packet inter-arrival time are not taken into account. Moreover, the model does not

allow to have multiple VCs.

In [67], the authors present an ad hoc method for deriving worst-case traversal time

of wormhole NoCs in Tilera-like manycore platforms. Their approach improves

38 Chapter 3. State of the Art

Recursive Calculus method by taking into account the pipeline effect in wormhole
routing. They present three properties to refine possible contention effects on the
foi and they integrate them in a recursive algorithm to compute a bound on end-
to-end delay. The first one derives the local worst-case scenario at a given router
from the point of view of the foi, allowing to make the general assumption that this
type of scenario happens at every contention point and thus covering the worst-
case delay. The second and third one bound the delay undergone by the foi¢ due the
contention with a flow sharing resources, depending on the contention undergone by
these flows. In particular, the third property partially captures the packet spreading
phenomenon in the NoC when contention occurs, but only when assuming buffers
are one flit deep.

Besides, the model does not support Virtual Channels and considers only Round-

Robin as the arbitration mechanism between router inputs.

Finally, we mention the work in [13] as an interesting enhancement of [67]. It
extends the NoC analysis method to data flows between the cores and the I/0O
devices. In a context where external data streams are received by the chip, this
approach allows to ensure that incoming Ethernet frames are not dropped due to

congestion on the NoC.

3.1.5 Network Calculus

Network Calculus (NC) is a deterministic queueing theory based on (min, +) alge-
bra. It was first introduced in [68] and developed in [69].

The main principle of this theory is to model traffic using cumulative functions,
that is a function of time counting the amount of data injected in the network at
one point. The cumulative function of a traffic flow can be bounded with an arrival
curve, whereas the minimal service that can be provided by each of the network
elements is modeled with a service curve. Subsequently, one can derive a bound
on (i) the worst-case delay, that is the maximal duration it takes for a flit entering
the system to be delivered at the output; (ii) the worst-case backlog, that is the
maximal amount of data held inside the system.

NC has had a certain number of additional analytic contributions. We will particu-
larly use one of these principles, known as “Pay Multiplexing Only Once” (PMOO),
introduced in [70]. It models the serialization phenomenon of data flows when they

cross several consecutive network nodes. This result improves the tightness of the

3.1. Timing Analysis of NoCs 39

timing analysis by allowing to pay the additional delay caused by multiplexing flows
only once.
Basics of NC and theorems relevant to the work in this report are presented in

Appendix B.1, along with the notations used throughout the next pages.

Recent works based on Network Calculus have tackled timing analysis of wormhole
networks, including SpaceWire Network [71, 72] and NoCs. Authors in [73]
develop a NC-based analysis of delay bounds in a NoC, based on the work in
[74] for sink-tree networks. They distinguish three basic contention patterns
(nested, parallel, crossed) between the foi and two contending flows, and detail
the associated service curve computation using Theorem 5 in Appendix B.1 for
residual service with aggregate traffic. They construct a contention tree to capture
impact of contending flows on one another and account for indirect interference,
and apply the results of the basic patterns analysis to derive the end-to-end service
curve. However, their model does not take into account the buffer size and ignore

the effect of backpressure.

They refined their work in [75], focusing on wormhole NoCs and solving the chain
blocking problem resulting from backpressure in a recursive way. They model
the flow control system as a router component, whose behavior depends on the
following router. This method infers complex fixed-point problems solving and has
been validated only on relatively small NoCs with a simple flows configuration;
thus limiting the applicability and scalability of their approach. Moreover, they

have considered only a single-VC NoC routers.

Authors in [76] have provided tighter delay bounds, using improved arrival and
service curves while taking buffer size and flows serialization into account. How-
ever, their approach seeks to provide a buffer size threshold to avoid the buffer
backpressure. In addition, they do not consider wormhole routing as the switching
technique; thus avoiding the complex chain blocking issue.

In [77], the authors computed end-to-end delay bounds on the Kalray MPPA2
Processor based on Network Calculus. This work is interesting from a practical
perspective but it remains very specific to one architecture. The authors also rely
on the Kalray MPPA on-chip traffic shapers to avoid backpressure, and the buffer

size is significantly bigger than all considered packet sizes.

In [78] authors have started the exploration of the buffer size impact on the

40 Chapter 3. State of the Art

interference patterns. The considered wormhole routers do not support the VC
concept and the presented approach does not integrate the flows serialization

phenomena.

3.1.6 Discussion

In the light of our review, we summarize the main advantages and drawbacks of
reviewed approaches. We particularly consider: (i) the use of wormhole routing
with multiple VCs; (ii) the support of VCs Sharing (i.e. several traffic classes
per VC) and priority Sharing (i.e. several traffic flows per priority level) in each
router; (iii) the integration of the buffer size and the flows serialization impacts
; (iv) the applicability for general traffic model and heterogeneous architectures

assumptions.

We present a synthesis of the applicability of recent work in Table 3.1. Essentially,
ST-based approaches suffer from their theoretical complexity that lead to optimism
in the timing analysis in some previously published papers [57, 41]. Most recent
works addressed this problem [58, 42] but do not take into account priority sharing
and VC sharing, which may be a problem when implementing priority classes on
NoCs with a limited number of VCs.

CPA-based and RC-based approaches that we are aware of usually lack the generic-
ity that would make them applicable to a wide range of NoCs (VC support, arbitrary
buffer size).

NC-based approaches show drawbacks in the limited applicability of the results

[75, 77, 78], and occasionally in the surrounding analysis.

We choose to use Network Calculus for our contributions in worst-case timing anal-
ysis of NoCs for the following reasons:
¢ Network Calculus provides advanced theoretical results for worst-case timing
analysis of networks. These cover not only the modeling of the service of-
fered by network elements but also combinations of network elements, with
principles such as pay burst only once and PMOO,
e NC is a field-proven method. It has been used to certify AFDX (Avionic
Full Duplex Switched Ethernet). AFDX is featured in particular in the most
recent Airbus aircraft such as A380;

e Due to the modularity of the way network elements are modeled, a NC-

3.2. System Design and Software/Hardware Mapping 41

based model can be updated and improved without having to alter the whole
methodology.
Our first contribution in worst-case timing analysis will be an analytical model
for NoC worst-case analysis, based on Network Calculus. It will integrate buffer
size impact, flow serialization, VC sharing and priority sharing, be applicable to
homogeneous platforms and support a basic traffic model.
Our second contribution will aim at tackling limitations of the first one. First, we
will extend the network model to heterogeneous architectures and generalize the
traffic model to cover a wider range of data flows. Second, we will improve the

computational aspect of the model to improve the scalability of our approach.

Approach ST CPA RC NC
Contribution [58] [41] [59] [42] | [1] [63] | [65] [66] [67] | [75] [76] [77]
wormbhole v v v VvV vV Vv v V|V v’
multiple VCs v v v v’ v
priority sharing v v v v v Vv

VCs sharing v’

flows serialization v’ v’ v’ v v
B =1 1lit v’ v’ v’ v Vv v’

L<B v’ v ol vV Vv’ v Vv
B<L v’ v’ v’ v’

Table 3.1 — Summary of approaches for timing analysis of wormhole NoCs (N.E.S.:
not explicitly specified)

3.2 System Design and Software/Hardware Mapping

This section focuses on the design of NoC-based systems, especially — but not limited
to — manycore-architecture-based systems, and keeping in mind real-time problem-
atics. Essentially, system design involves two different areas of focus. First, starting
from a relatively high level view (e.g. system-level), one should be able to narrow
things down to one or a few architectures that are best suited to run all the appli-
cations constituting the system.

Second, given a hardware, general purpose architecture and a set of software-
implemented (or implementable) functions, e.g. applications and tasks, another
problem is to map the tasks to the processing elements of the architecture. This
aspect has a particular importance when the chosen platform is very generic (for
instance a COTS, general purpose manycore chip) or when many functions of the

system will be software-implemented and run on a general purpose processing ele-

42 Chapter 3. State of the Art

ment instead of a specialized hardware component (for instance an ASIC).

These two aspects cannot always be clearly separated in the design process, but we
believe the underlying challenges raised by each of them deserve a section on their
own. Therefore, we will tackle general DSE considerations in Section 3.2.1, and
more specific mapping of tasks on NoC-based manycore architectures in Section
3.2.2.

3.2.1 Design Space Exploration

Increasing complexity of systems, coupled with the necessity to reduce production
costs and design-to-market time, motivated the development of systematic and rig-
orous design methodologies.

Design space exploration has been thoroughly tackled with various approaches.
Relevant aspects to take into account when considering an approach are (i) the
level (or levels) of abstraction offered — system-level, Transaction Level Modeling
(TLM), RTL (Register Transfer Level), CABA (Cycle-Accurate Bit-Accurate) —
and how they are adapted to the steps of the design process; (ii) the orthogonality
of functional and architectural models, as design process rapidly becomes tedious
if these two views are not independent; (iii) the available design space exploration
and mapping technique(s), if applicable.

One should also consider some practical aspects of the chosen methodology and/or
the tool implementing it: (i) the input format (SysML, SystemC...); (ii) the avail-
able models for architecture components (processing components, communication
media, memories, etc.); (iii) the ability to automatically generate code from a higher
level view;

Several works have tackled NoC design. In [79], the author presents a design flow
for telecommunication NoC-based systems. The method uses an application graph
and an architecture graph to first perform an Algorithm-Architecture Adequation
phase and determine several parameters for the NoC (size of the FIFO queues,
network interface dimensioning, topology choice...). The design flow includes a
tool to generate SystemC code for simulation and validation. However, real-time
constraints of the system can only be checked with simulation results.

The approach detailed in [80] also considers an application-focused methodology to
design a NoC. The tool presented, based on Arteris, allows designers to identify
the limitations of an architecture in regard to the application considered and its
requirements, and iterate the process to converge towards an implementation that

satisfies the requirements. It also features a practical use case to show the applica-

3.2. System Design and Software/Hardware Mapping 43

bility of the approach on a real design problem. The focus on a specific application
makes it hard to determine if such an approach would be adequate to tackle design
space exploration using more generic NoC architectures.

In [81], the authors propose an extension to the MPSoCSim simulator that
integrates a SystemC NoC model. It extends the original mesh NoC model of
MPSoCSim to support multi and manycore clustered architectures, with more
than one processor per node. Nodes architectures can be heterogeneous and the
extension allows more flexibility than the original approach, but the architecture

remains constrained.

Other works provide frameworks or toolkits for systematic design flow and they
allow to model systems at different abstraction levels. Ptolemy [82, 83] addresses
heterogeneous systems modeling and simulation. Its primary intent is not DSE.
Ptolemy framework models heterogeneous systems that cannot be described with a
global approach by using different models of computation.

Artemis [84] provides an environment for design space exploration of heterogeneous
embedded systems with different abstraction levels, allowing to manage the mod-
eling effort depending on the accuracy goal and the stage of design. It complies
with the Y-chart model [85] by separating architecture and application models at
the highest abstraction levels, and integrating an explicit mapping step.

Authors in [86] present MoPCoM, a co-design methodology for real-time embedded
systems based on the Marte UML profile [87], offering three abstraction levels,
the lowest of which can be used for VHDL code generation. This approach also
separates, at each abstraction level, the application model from the platform model.
A third “allocation” model is used for the mapping.

Another interesting work, particularly adapted to systems such as tiled manycore
platforms and NoCs, is detailed in [88]. It consists of a package called Repetitive
Structure Modeling (RSM), integrated in the Marte profile and allowing a compact
representation of large systems with a regular structure. RSM was successfully used
in the framework GASPARD [89] to model massively parallel embedded systems.
In [90], the authors develop a system level environment to perform DSE at a
higher abstraction stage than RTL models, allowing simulations that are less time
consuming at a stage where some aspects can be left unspecified. The presented
approach complies with the Y-chart model: the functional abstraction of the
system and the architecture model are handled separately before performing
mapping and DSE. The design work flow can be practically implemented using the
toolkit TTool [9].

44 Chapter 3. State of the Art

An extended contribution was presented in [91] with an approach enabling to de-
fine system partitioning (hardware and software) before refining the models into
behavioral and architectural models. The approach is also supported by TTool.
Finally, there has been recent effort to integrate network models and simulation
in system design workflows and DSE. In [92], authors take network design aspects
into account by adding a dimension to the design space exploration at the TLM
refinement step. The proposed methodology allows to model system /network inter-
actions and dependencies. It starts with a system /network partitioning, followed by
a specification of system/network interactions. Cosimulation is then made possible
using the introduced framework and existing simulation tools synchronized with
one another.

In [93], authors tackle the limits of existing modeling approaches for communica-
tion architectures by proposing a formal model for network functional architectures.
They detail an additional design space exploration step focused on network aspects,
integrated in a design flow prior to the mapping and “classic” design space explo-
ration phases. The presented formal model includes an abstraction for communi-
cation channels. Nonetheless, the approach does not address algorithmic aspects
of DSE. Besides, decoupling network-related DSE from the remaining of the design
flow may hide possible interactions or interference between communication infras-
tructure and system architecture.

The work presented in [94] pursued network architecture integration in design flow
tools, using UML models.

Unfortunately, none of these approaches have integrated formal verification of real-

time constraints in their workflows.

3.2.2 Task and Application Mapping on Manycore Architectures

Given a set of applications, each of which is composed of tasks with various
constraints and needs (real-time deadlines, use of memory or external devices,
precedence constraints), the problem is to assign each task to a processing resource
so that the application(s) can run while satisfying the execution requirements.
As mentioned in [95], a distinction is to be made between design-time mapping
and run-time mapping strategies. The latter are able to generate a mapping or
modify a previously generated mapping at runtime. They can react dynamically
to a change in the workload to optimize resource utilization, while design-time

mapping strategies are used offline and target systems requiring more determinism

3.2. System Design and Software/Hardware Mapping 45

in their execution. As we are mostly interested in real-time applications and

critical systems, we will only focus on design-time mapping strategies.

3.2.2.1 Heuristics and Optimum Approximations Methods

Finding an optimal mapping of a set of tasks on a set of processing resources is a
NP-hard problem [96, 95]. Beyond a certain problem size, exhaustive algorithms
take too long to run to be used in practice. Hence, many approaches rely on
an heuristic to orientate the search when exploring possible mappings. Others
use branch-and-bound algorithms. Algorithms based on heuristics converge to a
solution that may not be optimal but is good enough and can be obtained in a
reasonable time. Choosing an heuristic depends on the sought goal, and may regard
performance metrics (such as execution time, delay, latency, throughput, etc.) or
cost concerns such as energy consumption. In this section, we will review several
approximation- and heursitic-based algorithms for task mapping. We stress out,
however, that in a real-time context, such algorithms are not sufficient and must be

paired with am adequate method of timing analysis to ensure the deadlines are met.

The use of a Genetic Algorithm to converge towards a near-optimal mapping is
presented in [97]. The author’s approach can be applied to heterogeneous, NoC-
based SoCs, limited to mesh topologies. However, the underlying communication
timing analysis is very rough, overestimates the delay for wormhole communications
and is not congestion aware.

Authors in [98] have detailed an algorithm to map processing cores onto a mesh
NoC, ensuring bandwidth requirements are met while minimizing the average com-
munication delay. They extensively evaluate their approach with video processing

application and provide comparisons with other state-of-the art algorithms.

In [99], the authors propose a branch-and-bound algorithm to yield a mapping
minimizing energy consumption. Their approach uses an application graph to
model processing cores and inter-core communication, and an architecture graph to
model the tiles and communication channels of the target platform. They express
the performance constraint as a condition on the aggregated bandwidth on each of
the communication links. This approach suffers from applicability limitations, e.g.
one computing tile can host at most one core. Besides, the model relies heavily on

platform-specific parameters such as XY routing and mesh topology.

46 Chapter 3. State of the Art

The work in [100] takes contention into account in the mapping algorithm. It
is based on the formulation of an Integer Linear Programming (ILP) problem,
taking into account the number of shared links in the cost function. The presented
solving relies on a linear programming approximation of the ILP problem followed
by an heuristic, so that the cores that communicate the most are picked first,
and mapped to a tile in such a way that reduces path-based interference and
distance to the tiles they communicate with. This solution outperforms by far the
exhaustive ILP solving algorithms, and the resulting mappings also allow higher

packet injection rates than those yielded by the energy-aware approach in [99].

Notice that these last three works [98, 99, 100] make no distinction between a
processing core, or IP (Intellectual Property) and the task(s) it performs. In the
light of Section 3.2.1, this impacts the flexibility of the approach because changing
the task assignments of cores will change the application graph even though the

cores remain the same.

More recently, the work presented in [101] explored the impact of mapping on
NoC contention and introduced a mapping algorithm minimizing the number of
shared paths. The approach uses a task graph to build a tree that models the
dependencies and communications between tasks. The tree is then optimized
before serving as a basis to map tasks on processing elements. This method can
achieve significant predictability, making it interesting in a real-time context.
However, its computation of the end-to-end latency when no contention occurs is

pessimistic because it doesn’t take into account pipeline effect.

The work in [13] tackles task mapping on mesh-based, general purpose manycore
chips, but additionally considering the core-to-1/O data flows, and mixed-criticality
applications. The mapping strategy follows two steps: (i) assigning rectangular
regions of the mesh to applications, starting with critical applications, and placing
the corresponding regions next to external interfaces (Ethernet, etc.) when they
most need them; (ii) mapping tasks within application regions, minimizing the
distance of tasks using I/O ports with the aforementioned ports, and taking into
consideration the XY routing policy to avoid congestion on core-to-1/O data flows.
This approach remains quite platform-specific, although the presented principles
can be applied to similar 2D-mesh-based chips. Noticeably, real-time constraints

are accounted for and verified in this approach.

3.2. System Design and Software/Hardware Mapping 47

Predictability has been addressed as well in the approach of [102]. Different heuris-
tics can be used for task mapping (which tasks to select first during the mapping
phase) and core mapping (where to map the selected task). The presented task
mapping heuristics focus either on how much a task communicates, or on defining
partitions of tasks that communicate a lot between each other and much less with
tasks in other partitions. Core mapping is done either on selecting cores on the
basis of their position in the NoC (middle, edge, corner) or by picking adjacent
consecutive cores, in a spiral way.

Comparison of the heuristic-based approach with an exhaustive solver is provided,
as well as experimental results obtained with a physical 64-core Tilera chip. Al-
though the model does not guarantee deadlines, an interesting contribution of this
paper is the proposed temporal frame abstraction (similar to a TDMA technique)
that provides additional predictability in the execution.

These last works have in common improving predictability through task mapping.
Additionally, [102] provides an additional mechanism to enhance predictable com-
munication on the NoC. Providing predictability guarantees with dedicated mech-
anisms is one way to tackle determinism in manycore-based real-time systems. We

will give an overview of relevant contributions in this area in the next section.

3.2.2.2 Predictability-Enhancing Techniques

In the real-time and critical systems context, some approaches seek to make ap-
plications execution as predictable as possible. This is particularly challenging in
manycore-based systems, as most of the available platforms are originally designed
for best-effort applications, or lack some elements to enforce real-time guarantees.
A first approach is to use hardware extensions. This is what authors in [103]
rely on. They add a controller component in the NoC routers to override default
arbitration. Alongside, they use hardware locks and split each local RAM into
banks, so that several initiators can access the local memory without interfering with
one another. Finally, they define a set of mapping rules and use scheduling tables
for NoC communication. Their method generates the mapping and the appropriate
code to control the multiplexers of the NoC routers and the execution on each core.
The main drawback of such a method is that it relies on hardware extensions, thus

limiting its applicability and preventing the use of COTS chips as target platforms.

Another solution was presented by the authors in [46]. Using an execution model

48 Chapter 3. State of the Art

based on 4 rules, they formalized the mapping problem and were able to execute
a set of real-time tasks on three different COTS architectures, with guarantees on
the timing requirements.

Their approach takes into account the precedence constraints between tasks and
the cost of inter-task communication. The model outputs a spatial mapping and
an offline schedule ensuring safe execution of the task set.

Similarly, the thesis of Quentin Perret [30] investigated the predictable execution
of real-time applications. In particular, it determines requirements for predictable
execution and implements an execution model for the Kalray MPPA 256 manycore

processor.

3.2.3 Discussion

Many approaches in the literature have tackled DSE for NoC-based architectures.
Multi-level design space exploration is less common, and overall, to the best of our
knowledge, integrating formal real-time constraints checking in the workflow has
not been done before.

As far as mapping heuristics are concerned, several methods have been proposed
and tested. They are able to provide a good trade-off between obtaining an optimal
solution and reducing the computation costs. Incentives to use one heuristic over
the other depends mainly on the target system requirements. It appears the great-
est limitation of these approaches is their specialization. Moreover, few of them
take into account real-time constraints or formally prove the mapping they obtain
complies with timing requirements.

Therefore, our third contribution will present a generic and modular system design
methodology for NoC-based architectures, allowing to verify real-time constraints
at an early design step. Such a methodology will combine Network Calculus and
Simulation to evaluate system performance and can be used for timing-aware design
space exploration. It will not be our focus to propose or implement a mapping

heuristic, but rather to allow the use of any mapping heuristic in the workflow.

3.3 Conclusion

Our review of state-of-the-art approaches in NoC worst-case timing analysis and
design space exploration for NoC-based architectures exhibited mostly two aspects.
First, existing worst-case timing analysis techniques for wormhole NoCs generally

rely on hypotheses limiting their applicability. Hence, we will present an approach

3.3. Conclusion 49

addressing these limitations. Then, we will extend it to improve its scalability and
its applicability domain.

Second, design space exploration approaches of NoC-based systems do not often
integrate analytical methods to verify timing constraints. Hence, we will propose a
methodology combining both our timing analysis approach and classic design space
exploration workflow to speed up the design process. We will not tackle mapping
algorithms, as many works have addressed this problem. Instead, we aim at making
our methodology able to integrate such algorithms.

The next chapters detail our contributions.

Eveillé tot, ordonné, vif,
De nature arrangeante, il m’a subi deux ans.

01 est sa mystérieuse griffe ¢

Cherchez l'alpha des vers : son nom y est présent !

*
* ok

Part 11

Contributions

We need not to be let alone. We need to be really
bothered once in a while. How long is it since you

were really bothered? About something important,

about something real?

—Ray Bradbury, Fahrenheit 451

I find that answer vague and unconvincing.

—K-2S50, Rogue One

CHAPTER 4

Buffer- Aware Worst-Case

Timing Analysis of Wormbhole

NoCs for Homogeneous
Platforms and CBR Traffic

Contents
4.1 Imtroduction 54
4.2 Assumptions and System Model 54
4.2.1 Network Model oL 54
422 FlowModel L o7
4.3 Approach Overview ¢ v i v v v v v v v v v v v v 57
4.3.1 DBuffer-Awareness: An Example 57
4.3.2 Main Steps of BATA 59
4.4 Indirect Blocking Analysis, 61
4.5 End-to-End Service Curve Computation 65
4.5.1 Direct Blocking Latency 65
4.5.2 Indirect Blocking Latency 67
4.5.3 Computation Algorithm 69
4.6 Illustrative Example 0., 70
4.7 Performance Evaluation 73
4.7.1 Sensitivity Analysis L 74
4.7.2 Tightness Analysis 7
4.7.3 Computational Analysis 79
4.7.4 Comparative Study 82

4.8 Conclusions i i i i i it e e e e e e e e e e e e e e e e 84

54 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

4.1 Introduction

This first contribution regarding worst-case timing analysis of wormhole NoCs orig-
inated from the necessity to account for buffer size in wormhole NoCs. A classic
assumption in networks is to assume buffer overflow never happens, i.e. all buffers
are large enough to hold traffic that stalls.

While this may be a reasonable assumption in Store and Forward Networks, achiev-
ing lossless transmission through a backpressure mechanism in wormhole NoCs with
relatively small buffers may lead to the buffers being quickly full when contention
occurs.

As pointed out in Chapter 3, most existing approaches in this area have limitations
usually related to buffer size, flow serialization or limited applicability of the model.
Therefore, our approach detailed in this chapter, based on Network Calculus, will
address these issues. We will focus herein on homogeneous platforms and Constant
Bit Rate (CBR) traffic.

The remainder of this chapter is organized as follows. We present the assumptions
of our approach and the system model in Section 4.2. Then, in Section 4.3, we
propose an example to illustrate the importance of buffer awareness and provide an
overview of our approach, called Buffer-Aware worst-case Timing Analysis (BATA).
In Sections 4.4 to 4.6, we detail the main steps of BATA approach and present an
illustrative example. In Section 4.7, we evaluate our model through analytical
studies (4.7.1, 4.7.2 and 4.7.3) and provide some comparative analyses with a state-
of-the-art approach (4.7.4). Finally, Section 4.8 concludes this chapter. Network
Calculus results as well as notations used in this chapter are recalled in Appendix
B.

4.2 Assumptions and System Model

4.2.1 Network Model

Our model can apply to an arbitrary NoC topology as long as the flows are routed
in a deterministic, deadlock-free way, and in such a way that flows interfering on
their path do not interfere again after they diverge. Nonetheless, we consider the
commonly used 2D-mesh topology with input-buffered routers and XY-routing,
known for their simplicity and high scalability.! Besides, XY-routing is widely used

!Note that this model is also applicable without changes to 2D torus topologies and NoCs using
a source routing algorithm that verifies the aforementioned properties.

4.2. Assumptions and System Model 55

in COTS architectures, e.g. on most Tilera-like chips [5].

We consider typical input-buffered 2D-mesh routers with 5 pairs of input-output,
namely North (N), South (S), West (W), East (E) and Local (L), as shown on Figure
4.1. Output-buffered routers have buffers located at the output ports instead of the

input port but remain similar otherwise.

North
!

T
West il XC I East

=

f Local
South

Figure 4.1 — Typical 2D-mesh router

It is worth noticing that NoCs using output-buffered routers can be modeled sim-
ilarly to input-buffered routers NoCs. The idea is that from a flow point of view,
whether the buffer is located at the input or at the output does not change the
number of buffers and links crossed by the flow on its path, as introduced in [66].
The notations used in this paper will be introduced as they are needed and are
also gathered in Table B.1 in Appendix B.2. As a general rule, upper indexes of a
notation X refer to a node or a subset of nodes, while lower indexes refer to a flow.
X}Z means “X at node r for flow f”.

The considered wormhole NoC routers are similar to the architecture presented in
[24], illustrated in Figure 4.2 (left). They implement a priority-based arbitration of
VCs and enable flit-level preemption through VCs. The latter can happen if a flow
from a higher priority VC asks for an output that is being used by the foi. Hence,
when the flit being transmitted finishes its transmission, the higher priority flow is
granted the use of the output while the foi waits. Moreover, each VC has a specific
input buffer and supports many traffic classes, i.e., VCs sharing, and many traffic
flows may be mapped on the same priority-level, i.e., priority sharing. Finally, the
implemented VCs enable the bypass mechanism, previously mentioned in Section
2.2.3 and illustrated in Figure 2.4.

We consider an arbitrary service policy to serve flows belonging to the same VC
within the router, 7.e., these flows can be from the same traffic class or from different

traffic classes mapped on the same VC. This assumption allows us to cover the

56 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

inputs VCs outputs arbitrary multiplexing

/—:||— J: FP multiplexing
1 I R s fpieintuing bt (e +
— T N H+—— |]

i Qe E : = output E

T 5 S=mllle ;
2. L2 DA N :
— AH — o — — 5

;S | [§

E . ' ; N :
g, " L — :

A — —[—]: g i

D . AN 5

Figure 4.2 — Architecture of an input-buffered router (left) and output multiplexing
(right) with the arbitration modeling choices

worst-case behaviors of different service policies, such as FIFO and Round Robin
(RR) policies.

Hence, we model such a wormhole NoC router as a set of independent hierarchical
multiplexers, where each one represents an output port as shown in Figure 4.2
(bottom). The first arbitration level is based on a blind (arbitrary) service policy
to serve all the flows mapped on the same VC level and coming from different
geographical inputs. The second level implements a preemptive Fixed Priority (FP)
policy to serve the flows mapped on different VC levels and using the same output
port. It is worth noticing that the independence of the different output ports is
guaranteed in our model, due to the integration of the flows serialization phenomena.
The latter induces ignoring the interference between the flows entering a router
through the same input and exiting through different outputs, since these flows
have necessarily arrived through the same output of the previous router, where we
have already taken into account their interference.

Based on Network Calculus [68, 69] (see Appendix B for the main concepts used in
this thesis), each router-output pair r (that we will refer to as a node from now on)

has a processing capacity that we model using a rate-latency service curve.
Br(t)=R(t-T1")"

R" represents the minimal processing rate of the router for this output (which is
typically expressed in flits per cycle, fpc) and 7" the maximal experienced delay
by any flit crossing the router before being processed (which is commonly called

routing delay and takes one or few cycles).

4.3. Approach Overview 57

For now, we assume the considered NoC architectures are homogeneous, meaning
all buffers of all routers have the same size, denoted B, and all inter-router links

have the same capacity, denoted R.

4.2.2 Flow Model

The characteristics of each traffic flow f € F are modeled with the following leaky
bucket arrival curve, which covers numerous different traffic arrival events, such as
CBR traffic with or without jitter :

ap(t)=of+ps-t

This arrival curve integrates the maximal packet length Ly (payload and header in
flits), the period or minimal inter-arrival time P (in cycles) and the release jitter

Jy (in cycles) in the following way :

Ly
Pf = ?f
o = Ly+Jy-py

For each flow f, its path P is the list of nodes (router-outputs) crossed by f from
source to destination. Moreover, for any k in appropriate range, P¢[k] denotes the
k 4 1" node of flow f path (starting at index 0). Therefore, for any r € P, the
propagated arrival curve of flow f from its initial source until the node r, computed

based on Theorem 6 in Appendix B.1, will be denoted:
af(t) =of +p}-t
The end-to-end service curve granted to flow f on its whole path will be denoted:

Br(t) =Ry (t =Ty)"

4.3 Approach Overview

4.3.1 Buffer-Awareness: An Example

The key element to take into account the backpressure phenomenon induced by
limited buffer size is based on how packets can spread in the network when stalled.
We consider an illustrative example to better understand the impact of the buffer

size on the packet spreading (Figure 4.3) and how it affects the interference a flow

58 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

can have on another flow when they do not share resources. We make the following
assumptions: (i) each buffer can store only one flit; (ii) all flows have 3-flit-long
packets; (iii) all flows are mapped to the same VC; (iv) the foi is flow 1.

R11

R11
*,
R1G 4 RIO
RO
: B packet A of flow 3 movin R
RS é I packet B of flow 2 waitin RS
I:\ i packet C of flow 1 waiting
R7E]
I
Rl R2 R3 R4 R5H R6:E Rl R2 R3 R4 R
I I - 5 OrE——E |
AN *e ANED)
1 o A 3 2 3

Figure 4.3 — Example configuration (left) and packet stalling (right)

We assume there is a packet A of flow 3 that has just been injected into the NoC
and granted the use of the North output port of R6. Simultaneously, a packet B of
flow 2 is requesting the same output, but as A is already using it, B has to wait.
B is stored in input buffers of R6, R5 and R4. Finally, a packet C of flow 1 has
reached R3 and now requests output port East of R3. However, the West input
buffer of R4 is occupied by the tail flit of B. Hence, C has to wait. In that case, A
blocks C wvia packet B. We say that flow 3 can indirectly block flow 1 even though
they do not share resources. Note that such a scenario can happen only if all flows
use the same VC. If they do not, one flow can bypass another that is blocked.
Now suppose flow 3 source is one hop further (Figure 4.4). While the modification
seems minor, it impacts the indirect blocking possibilities. Consider that flow 3
has a packet A that has just been injected in the network and is using output port
North of R7. As before, flow 2 has a packet B in the network that competes with A
and has to wait. This time, however, the output requested by B is one hop further
on flow 2 path. As a result, B is stored in input buffers of R7, R6 and R5. Finally,
flow 1 has injected a packet C into the NoC. Since B is stalling one hop further
than before on its path, C can request output port East of R3 and use input buffer
West of R4 to reach its destination without contention.

An approach that does not consider buffer sizes would consider that flow 3 may

impact flow 1 regardless of the configuration, because both of them share resources

4.3. Approach Overview 59

R11 R11
i

RIG 4 R10

R9 R9

B packet A of flow 3 moving___

RS T B packet B of flow 2 waiting__ RS

I.k i packet D of flow 1 can may
R7k R7 l

RI R2 R3 R4 R R6|'3 RI R2 R3 R4 RbH R 9

‘éﬁ"“-----’ i o P_ 3

1 Ny A 9

*

(@2}

Figure 4.4 — Another configuration (left) where flow 1 cannot be blocked by flow 3
(right)

with flow 2. However, we just showed that it is not necessary. This illustrates the
impact of the buffer size on packet spreading.
Hence, the limited buffer size reduces the section of the path on which a blocked

packet can in its turn block another one; thus the indirect blocking delay as well.

4.3.2 Main Steps of BATA

In order to compute the end-to-end delay bound of a flow f € F, we present the
following high-level view, that we will detail in the next sections. It consists of
three parts: the buffer-aware analysis of the indirect blocking set, the service curve

computation and the end-to-end delay computation.

Step 1 — Buffer-aware analysis of the indirect blocking set: To account for
the impact of flows that do not physically share any resource with the foi f, but
can delay it because they impact (directly or indirectly) at least one flow directly
blocking f, we introduce the Indirect Blocking set of f, abbreviated IB set and
denoted IBy.

Definition 4. The indirect blocking set of a flow f is the set of flows that do not
physically share any resource with f, but cause a delay to f because they impact
(directly or indirectly) at least one flow sharing resources with f. It is denoted IBf
and contains pairs of the form {flow id, subpath} to specify, for each flow id, the
subpath where a packet of that flow can cause blocking that may propagate to f

through backpressure.

60 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

This step takes into account the impact of the limited buffer size on the way a

packet can spread on the NoC; thus on /By, and will be detailed in Section 4.4.

Step 2 — End-to-end service curve computation: to get a bound on the end-
to-end delay for a foi f, we need to compute its end-to-end service curve along its

path Py. This service curve is denoted:

Bp(t) =Ry (t=Tp)"

where Ry represents the bottleneck rate along the flow path, accounting for directly
interfering flows of same and higher priority than f, and latency T consists of
several parts :

Ty =Tpp+Tip+ Tp, (4.1)

where:

o Tp, is the “base latency”, that any flit of f experiences along its path due
only to the technological latencies of the crossed routers;

e Tpp is the maximum direct blocking latency, due to interference by flows
sharing resources with the flow of interest (foi). We denote the set of such
interfering flows DBy;

e Tip is the maximum indirect blocking latency, due to flows in the indirect
blocking set IBf, that can indirectly block f through the buffer backpressure
phenomenon.

Aside from the base latency, there are two main components to the end-to-end
service curve latency, namely the direct blocking latency and the indirect blocking
latency.

Flows contributing to the direct blocking latency are said to be part of the Direct
Blocking set of the foi, abbreviated DB set, and defined as follows:

Definition 5. Let f be the foi. The set of flows that share resources with f on
their paths is called the Direct Blocking set of f and denoted DBy. Moreover, the

subset of flows in DBy sharing resources with f along path is denoted DB}path.

This step integrates the flows serialization effects using the Pay Multiplex Only
Once (PMOO) principle [70], detailed in Appendix B.1, and will be detailed in
Section 4.5.1.

Flows contributing to the indirect blocking latency have been determined at the

previous step. At this point, we use the IB set to compute T;p.

4.4. Indirect Blocking Analysis 61

Step 3 — End-to-end delay bound computation: Finally, knowing the initial
arrival curve of the foi and the end-to-end service curve granted to the foi computed
in Step 2, we derive the bound on the worst-case end-to-end delay, denoted Dj.

Applying Theorem 6 of Appendix B.1, the delay bound in cycles is as follows:

Pf o O-Pf[()]
! Ry

+Tp, + Tpp+ T (4.2)

The reason we use the ceiling function is because a latency of half a clock cycle has
no physical value.

In the next sections, we will detail each of the three steps of the analysis.

4.4 Indirect Blocking Analysis

In this section, we detail the first step of our approach BATA. To account for
indirect blocking due to backpressure, we have to account for the effect of limited
buffer size. Consider k and [two flows that are directly interfering with one another,
Py, P; their paths, and let dv(Pg,P;) be the last node they share:

dV(Pk,]Pl) = Pk[max{i, P [Z] S Pl}]

Similarly, the first common node of P, and IP; is called the convergence node of k
and [and denoted cv (P, Py).

Suppose the path of | continues after dv(Py, ;). Even if the head flit of [is not
stored in a router of Py NIP;, the limited buffer size available in each router can lead
to storing the tail flit of [in a router of P, N P; under contention. In that case, [
blocks k.

Therefore, we need to quantify the way a packet of flow f spreads into the network
when it is blocked and stored in buffers. We denote B the size of the buffer.

Definition 6. Spread Index
Consider a flow f of maximum packet length Ly flits. The spread index of f, denoted

Ny, is defined as follows:
Ly
Nf=|—=
! [BW

where B is the buffer size at node r in flits.

Ny is the number of buffers needed to store one packet of flow f.
Using this notion and the last intuitive example, we call the section of the path of
flow k from dv(Pg, ;) through N nodes (at most) “subpath of k relatively to ”:

62 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

Definition 7. The subpath of a flow k relatively to a flow 1 is:

subpath(Py, B)) = [Py[Last(Py, Pr) + 1], Py[Last(Py, P1) + Ny]|

where Last(Py,P;) = max{n, Px[n] € P;} is the index of the last node shared by k
and l along Py, i.e. Py[Last(k,l)] = dv(Py, P;).

We can extend this notion and define, in a similar fashion, the subpath of any flow
k relatively to a subpath S; C P; of any flow | (with [# k or | = k). The previous

notation still holds:

Definition 8. The subpath of a flow k relatively to any subpath S; of any flow | is:
subpath(Py,S;) = []P)k [Last(IP’k, S + 1], e, Py [Last(IP’k, Si) + Nk”

where Last(Py,S;) = max{n, Pg[n] € S;} is the index along Py of the last node
shared by k and | within S;. By abuse of notation, we may denote subpath(k,l) to
refer to subpath(Py,P;), and similarly subpath(k,S;) to refer to subpath(Py,Sy).

If P; ends before reaching the Nj-th node after dv(Pg,P;), then we ignore the out-
of-range indexes. The notion of subpath is illustrated in Figure 4.5 for the foi k

and a spread index for the interfering flow [equal to 3, i.e., N; = 3.

CV(]}Dk7]Pl) dV(IP)k7]Pl) P [Last(]P’l,]Pk) + 1]

v

v

subpath(l, k)

Figure 4.5 — Subpath illustration for the foi k

The main steps to determine the IB set for a flow f are detailed in Algorithm 1 and
are as follows:
1. with sp(f) denoting the set of flows with same priority as f, determine all
subpaths of flows in DBLEPf N sp(f) relatively to flow f (Line 2);
2. for each of these subpaths, check if they intersect with other flows. If they
do, determine the subpaths of these other flows relatively to the subpath they

intersect (Line 8);

4.4. Indirect Blocking Analysis 63

3. add the new found subpaths to the set and reiterate until no new subpath is
found (Line 11).
The function call computeDBset(j, path) returns all the flows of DBL-p ath o sp(j) and

their associated subpath relatively to j.

Algorithm 1 Determining /By and the associated subpaths
indirectBlockingSet(f, Py)

Input: f, the flow of interest, P; the associated path
Output: /By, a set containing flow indexes and associated subpath involved in
indirect interference on Py
1: IBy is initially empty
2: init_set DBlfpf Nsp(f)
// initialize S
for i € init set do
Append {i,i.subpath(f)} to S
end for
while S # @ do
Pop a pair {j,subj} from S
/] Compute subpaths relatively to j on subj :
8 currentDB < computeDBset(j, subj)
9: for (k,subk) € currentDB N sp(j) do
10: if (k,subk) ¢ IB; then
11: Append (k,subk) to IBf and S
12: end if
13: end for
14: end while
15: return By

Notice that flows in DBy N sp(f) have no subpath in /By, since the influence of
directly-interfering, same-priority flows is already integrated through the compu-
tation of the direct blocking latency Tpp, as explained in Section 4.5.1, Eq. 4.6b.
Moreover, this algorithm can be used to compute the subset of IB; containing only
flows that can cause indirect blocking on a subpath subP C P;. In that case,
we need to consider DB instead of DB #, and we will note the result “partial

indirect blocking set” I B}SUbP.

Property 1. (Complezity of IB set computation algorithm,)
The complexity of Algorithm 1 for a flow set F, denoted C(F), and expressed as the

number of calls to computeDBset, is bounded according to the following expression:

C(F) <1+|F| D [Pyl
fer

64 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

The mazimal complezity of computeDBset (), denoted C(computeDBset), is:

C teDBset) = O P
(computeDBset) <r;16a;(| f\>

Proof. Assume that, at every call of the function computeDBset () on line 8, we store
the result so that we don’t have to compute the subpaths of all flows relatively to
the same subpath twice. Then, the number of calls to the function computeDBset ()
is at most the number of possible subpaths in the whole flow set.

The subpath of a flow relatively to an arbitrary subpath is determined by only
two factors: the divergence point (where the subpath starts) and the spread index
(the length of the subpath). Thus, for any flow f € F, there are as many possible
subpaths as there are nodes on the path of f, i.e. there are |Py|.

Therefore, the total number of possible subpaths in F is:

D Py

feFr

Finally, we call computeDBset () once before the while loop, hence the final result.

We now evaluate the complexity of computeDBset(). Applied to a flow f, this
function computes the subpaths of the flows in DBy relatively to f. Assuming we
have a preprocessed dictionary listing, for every node, the indexes of flows using
this node,?> we only have to run our algorithm through the path of f and check if
there are contending flows at this node. Comparing the indexes of the current node
with those of the previous node, we can find divergence nodes of contending flows
relatively to the flow of interest. We assume that, knowing the divergence point
of a contending flow relatively to the flow of interest, it takes a constant time to
find its subpath (we only need to compute the spread index). The complexity of
computeDBset () called on a flow f is thus proportional to the path length of f.

Thus, we can bound its complexity as follows:

C teDBset) = O P
(computeDBset) <r}1€aﬁ>§| f|>

*We do run such a preprocessing on the configuration.

4.5. End-to-End Service Curve Computation 65

4.5 End-to-End Service Curve Computation

In this section, we detail the second step of BATA, consisting of the computation

of the end-to-end service curve.

4.5.1 Direct Blocking Latency

The first component of the end-to-end service curve latency is the base latency.

Theorem 1. The base latency for a flow f on its path Py in a NoC with strict

service curve nodes of the rate-latency type Brr is equal to:

Tp, = > T (4.3)

’I"E]Pf
where T is the latency of the service curve for node r.
Proof. The proof will be done with the proof of Theorem 2. O

To account for the flow serialization impact, we use results of [70], recalled in

Appendix B.1 for FP policy. In that respect, we will need the following definitions:

Definition 9. Let f be the foi.

hp(f) is the set of flows mapped to a VC of strict higher priority than f.
sp(f) is the set of flows mapped to the same VC as f, f excluded.

Ip(f) is the set of flows mapped to a VC of strict lower priority than f.

Moreover, we define slp(f) = sp(f) Ulp(f) (resp. shp(f) = sp(f) U hp(f)), that is
all flows with a priority lower or equal (resp. higher or equal) than f, f excluded.

Definition 10. (Extended convergence node) Consider k,l two flows sharing re-
sources, and their respective paths P, P;. If we consider subsections of the paths of
k and l, denoted S and S; respectively, the previous definition of the convergence
node still holds. The first common node of Sy and S; is denoted cv(Sy,S;). By
abuse of notation, we may denote cv(k,l) to refer to cv(Py,P;) and simplify the

eTPTeSSIONS.

The maximum direct blocking latency, part of the maximum service latency defined
in Eq. (4.1), is defined in the following Theorem.

Theorem 2. (Mazimum Direct Blocking Latency)
The mazimum direct blocking latency for a foi f along its path P¢, in a NoC under

66 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

flit-level preemptive FP multiplexing with strict service curve nodes of the rate-

latency type Brr and leaky bucket constrained arrival curves ag), is equal to:

I%p'+’1;p +‘1}p

with:
v(i,f) r 1 Eonn)
o, +pi IP’ZQIP’ " + —Rr
re i
Trp= > ;z (4.4a)
i€ DBsNhp(f) f
. L’V‘
relPNP;
Tp= > ;z (4.4Db)
1€ DByNsp(f) f
Lip(s)
Tp= >, —2& (4.4¢)
TGPf
where:

ste(f) = (ﬁ;ﬁg}) (L5 aptpyory) St 1{lp(f)37"}>

sz%l;{”— p> Pﬂ}
jar.j€shp(f)
Proof. The main idea is to integrate the impact of the flow serialization phenomena
on the granted end-to-end service curve for the foi f along its path Py. To achieve
this aim, we adapt the results of the existing Theorem 7, Appendix B.1, based on
the PMOO principle, to take into account the specificities of wormhole NoCs, in
comparison to classic switched networks.
The wormhole NoCs allow the flit-level preemption during transmission, which mod-
ifies the lower priorities impact on the fo7 in comparison to the non-preemptive mode
in classic switched networks. Hence, a lower priority flow that is being transmitted
at any node can delay the foi f by at most the maximum transmission time of one
flit. Consequently, the term max;s;, jesip(r) Li in Eq. (B.1) must be modified for
each node on Py as follows:
o if there is one or more same-VC contending flow(s), this term becomes the
maximum packet size of the contending, same priority flow(s) ;
o if there is one or more lower-VC flow(s), it equals the size of one flit Sy ;

o if there is no same or lower-VC flow, it equals zero.

4.5. End-to-End Service Curve Computation 67

Therefore, the flit-level preemption property of NoCs infers that a foi f will suffer
from lower priority flows within any crossed node r € P; during the maximum

transmission time of L;lp() which is defined as follows:

Litp(g) = max (ggg;) (L Lstrrom) + Sy l{lp(f)DT}>

Afterwards, we apply Theorem 7, Appendix B.1, while taking into account such
modification (the impact of lower priority flows due to flit-level preemption). In
doing this, we obtain the end-to-end service curve of flow f along its path Py,
which integrates only the impact of (i) the base latency (or technological latency)
and (ii) the direct blocking set of f, DBy, as follows:

Ry =min{ R" — j 4.6a
' ’”EP"{ > <f)pj} o

jor,jEshp

7 - N [Eew)

;= Z + Rr

TEPf
. LT
O’Z-CV(Lf)"i_pi' IPZP (Tr+ sﬁff))
elPrNP;

+ > — (4.6b)

i€DB;Nshp(f) f

We can split the first sum in the expression of Ty (Eq. 4.6b) into the following

contributions:

Tp, = Y T"

TE]Pf
LT’
slp(f)
Ty = 2 "R~
TEIP’f

From this point on, the computation of the different parts of the direct blocking
latency defined in Theorem 2 is straightforward. O

4.5.2 Indirect Blocking Latency

Knowing the IB set, the Indirect Blocking Latency 175 is computed using the fol-

lowing Theorem:

Theorem 3. (Mazimum Indirect Blocking Latency)
The mazimum indirect blocking latency for a foi f along its path Py, in a NoC

under flit-level preemptive FP multiplexing with strict service curve nodes of the

68 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

rate-latency type Sr and leaky bucket constrained arrival curves aq p, is as follows:

subP|0]

g FsubP
T[B = Z }%subP + i:u (47)
(k,subP)eIB; 'k

where:

R — min { R" — Z Pj (4.8a)
resubP)

jor.j€hp

- St {1p(k) or
Toor = 3 (Tr | Dt {m(k):})

T
resubP R
"k S il r
o Mg (1 S
resubPNP;
+ > TP (4.8b)
i€ DB Mhp(k) k

Proof. The maximum indirect blocking latency for a foi f is induced by the flows
set IBy, computed in the previous section using Algorithm 1. Any flow j € IBy
will impact the foi f during the maximum time it occupies the associated subpath
subP;, At;"‘”‘ . Hence, a safe upper bound on the indirect blocking latency is as

follows:

max
Tip< Y Al
jEIBf

On the other hand, for any flow j € 1By, At}”‘” is upper bounded by the end-to-end

delay bound of flow j along its associated subpath subP;, D;prj , which infers the
following:
Tp< Y. DM (4.9)

(j,subP;)€IBy

Based on Theorem 6, Appendix B.1, the delay bound of flow j, D;ubpj , is computed
as the maximum horizontal distance between:

o the maximum arrival curve of flow j at the input of the subpath subPj,
subP;[0]

%
fered by flow j upstream the node subP;[0], i.e., the propagated arrival curve

, which takes into account the impact of all the interferences suf-

of flow j until the input of subP;[0] using Theorem 6;

~subP;
ju 7 called

VC-service curve, when ignoring the same-priority flows (which are already

o the granted service curve to flow j by its VC along subP;,

included in IBy). The latter condition is due to the pipelined behavior of
the network, where the same-priority flows sharing subP; are served one after

another if they need shared resources. Hence, the impact of flows with the

4.5. End-to-End Service Curve Computation 69

same priority as flow j is already integrated within the sum expressed in Eq.
(4.9).
To compute the granted service curve Bjubpj for each flow j € IBy along subPj,
we follow similar approach than in the proof of Theorem 3 through applying the
existing Theorem 7, Appendix B.1, when:

o ignoring the same-priority flows in sp(j), thus all shp(j) will become hp(j)
and slp(j) will become Ip(j) in Egs. (B.1a) and (B.1b);

o considering the flit-level preemption, thus the impact of lower-priority flows in
Eq. (B.1a) is bounded by the maximum transmission time of Sy - 1gip(k)or}
within each crossed node r € subFP;;

« considering only the direct blocking flows of j intersecting P; on subP;, thus
considering DB‘jsuij Nhp(j) in Eq. (B.1b).

Hence, we obtain E;ubpj and T;prj described in Egs. (4.8a) and (4.8b), respectively.
Consequently, the maximum indirect blocking latency in Eq. (4.9) can be re-written

as follows:
subP; (0]
o

< Y, Loy T (4.10)

Rsuij J
(j,suij)EIBf 7

d

4.5.3 Computation Algorithm

The computation of the end-to-end service curve is recursive. To understand this,
we present Algorithm 2 that details the computation.
There are two cases in which the function calls itself:

1. when computing Tpp, we need to know the burst of the contending flow at
the convergence point with the foi. Thus, we compute the service curve for
the contending flow from its source to the convergence point with the foi
(Algorithm 2, line 6);

2. when computing T7p, we need to know the arrival curve of each flow in the IB
set at the beginning of its subpath. Thus, we compute the service curve of this
flow from its source to the beginning of the appropriate subpath (Algorithm
2, Line 15).

Because of these two recursive calls and the fact that they depend a lot on the
flow pattern configuration, it may be hard to analytically bound the complexity of
the algorithm. Therefore, we will estimate it during the computational analysis of
Section 4.7.3. However, we can conjecture that these two recursive calls may be the

main contribution to the algorithm computational complexity.

70 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

Algorithm 2 Computing the end-to-end service curve for a flow f
endToEndServiceCurve(f, Py)

Input: f, the flow of interest, P; the associated path
Output: 3¢(t), the end-to-end service curve granted to flow f on P

1: Compute Ry

2: Compute Tp,
/] Compute Tpp:
Tpp <+ 0
for k € DBy do

ro < cv(k, f) /] Get convergence point of f and k

Br < endToEndServiceCurve(k, [Px[0],- - ,70])

af) « initial arrival curve of k

o} + computeArrivalCurve(ay,)

Tpp < directBlocking(a;”)
10: end for

/] Compute Tip:
11: IBy < indirectBlockingSet(f)
12: Tip+ 0
13: for {k,S} € IBy do
14: Bk: + VC-service curve of k on S
// Compute the service curve of k from its first node to the beginning of S:
15: By < endToEndServiceCurve(k, [P[0],-- -, S[0]])
16: a,f[o} + computeArrivalCurve(a, ;)
// Now add the delay over the subpath to Tip :

17: Tip < Tip+ delayBound(ay, B,f[o])
18: end for
19: return Ry(t — (Tp, + Tpp + Tig))*+

4.6 Illustrative Example

We propose an example to illustrate the method for computing the worst-case delay
bound of a flow. We consider the configuration of Figure 4.3 and assume that:
o all routers have a service curve 8(t) = R(t — T)T;
o flow ¢ has a packet length L; = L and the initial arrival curve a;(t) = o + pt;
o all flows are mapped to the same VC;
« all packets are 3 flit-long and all buffers hold one flit, so that the spread index
for any flow is 3;
e The flow of interest is flow 1.
Step 1: IB analysis
We start with flow 1 and notice it is directly blocked by flow 2. The divergence

point of these two paths is R3 (last shared output). Thus, we compute the subpath

4.6. Illustrative Example 71

of flow 2 relatively to flow 1 and initialize S as follows:
S = {{2,[R4,R5,R6]}}

We then enter the while loop:
1. we pop the pair {2, [R4,R5,R6]} from S. The subpath intersects the path of
flow 3 and their divergence point is R6.
2. we compute the subpath of flow 3 relatively to [R4,R5,R6], and add the cor-

responding pair to S and IB;. Now, we have:
S ={{3,[R7,R8,RIJ}}

3. we pop {3, [R7,R8,RI]} from S. It does not intersect any path that we haven’t
crossed yet, so there is nothing to be done. Now S = @ and we exit the loop.

Finally, we have:
IB; = {{3,[R7,R8,RI|}}

Step 2: End-to-end service curve computation
DB latency computation:
All flows are mapped to the same VC, thus T}, = Tj, = 0. We then have:

Tp, = 4T
o o AT+)
sp R—p
B J—&-p-(T-i-%)
- "

Hence :

o T+ L

Tpp = AT L

DB + R—p +p R-p
= 7,368421053 cycles

with R =1 flit/cycle, T'=1 cycle, p = 0.05 flits/cycle, o = 3 flits and L = 3 flits.
IB latency computation:

To compute the indirect blocking latency for flow 1 on the configuration of Figure
4.3, we need to compute the arrival curve of flow 3 at R7 (more precisely we are

interested in the burst of this flow at the input of R7). This leads to recursive calls.

72 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

The service curve granted to flow 1 on [R1, R2] is:
£R1,R2} — R(t—27)*
The burst of flow 1 at R3 is thus
o = o +2pT

The service curve granted to flow 2 on [R3, R4, R5] is:

R3 T Ly\ T
IB£R3,R4,R5]:(R_p) (t—BT—Ul + p(+R)>

R—p

The burst of flow 2 at R6 is thus:

J§6ZU+p<3T+

The service curve granted to flow 3 on [R6] is:

R6 L\t
B _ (R_ p) (t—T—UQ +p(T + R))

Finally, the burst of flow 3 at R7 is:

R6 T L
0§7:o+ﬂ<T+02 Tl +R)>

R—p

Numerically, with R = 1 flit/cycle, T' = 1 cycle, p = 0.05 flits/cycle, o = 3 flits and
L = 3 flits, we have :

ol =34+2x0.05x1
=3.1

3.1+ 0.05(1 + 3/1
a§6=3+0.05x<3x1+ ks 09(5+ /))

=3+ 0.05 x (3+3.3/0.95)
= 3.323684211

3.323684211 + 0.05(1 + 3/1
057:3+0.05><<1+ +0.05(1 + /)>

0.95
=3+ 0.05 x (1 + 3.709141275)

= 3.235457064

4.7. Performance Evaluation 73

—~ [R7,R8,RY]

Then we compute T3 . Since there are no higher or lower priority flows on

the configuration, we have :

Tg[R?,R&RQ} -
E)[R?,R&RQ} _ &

Finally:
Tig = 3T+ 0%"/R

= 6.235457064 cycles

We had to perform 3 additional calls to the function computing the end-to-end
service curve.

Step 3: End-to-end delay bound:

Once we computed all latencies, we can infer the end-to-end delay bound using
Equation A.1:

o
Dyt = ZR71+TIP’1+TDB+TIB
1
o o T+ L ol
= AT Boy37+ 2
R, Tt g, g, P g
= 17 cycles

The end-to-end delay bound for flow 1 is thus 17 cycles.

4.7 Performance Evaluation

In this section, we conduct a performance evaluation of our model. First, we con-
duct a sensitivity analysis of BATA (Section 4.7.1) to identify the configuration
parameters that have the highest impact on the delay bounds. In Section 4.7.2, we
assess the tightness of the delay bounds yielded by BATA, for different values of the
identified parameters. Then, we evaluate computational aspects of the approach in
Section 4.7.3. Finally, we provide a comparative analysis with a CPA-based state-

of-the-art approach in Section 4.7.4.

74 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

4.7.1 Sensitivity Analysis

5 I . Flow Source Destination
— 4 = 1 (0,5) (5 4)
4 R 2 (1,5) (2,3)
o el 3 (2,5) (3,2
3 L] R 4 (3,5) (4,3)
— i 5 (5,5 (5,1
2 L] 6 (2,4) (2,1
i 7 (2,2) (2,0)
1 R R R NI 8 (3,4 (3,1
i ; 9 (3,3) (3,0
0 R J 10 (4,4 (4,1
o 1 2 3 4 5 11 (4,2) (4,0
12 (5,2) (5,0)

— flow of interest
====> other flows

Figure 4.6 — Flow configuration on a 6x6 mesh NoC

For the sensitivity analysis, we will analyze the end-to-end delay bounds when
varying the following parameters:

o buffer size for values 1, 2, 3, 4, 6, 8, 12, 16, 32, 48, 64 flits;

o total packet length (including header) for values 2, 4, 8, 16, 64, 96, 128 flits;

o flow rate for values between 1% and 40% of the total link capacity (so that

the total utilization rate on any link remains below 100%).

To achieve this aim, we consider the configuration described on Figure 4.6. This
configuration remains quite simple but exhibits sophisticated indirect blocking pat-
terns. We assume flows are periodic with no jitter, and have the same period and
packet length. We also assume each router can handle one flit per cycle and it takes
one cycle for one flit to be forwarded from the input of a router to the input of the
next router, i.e., for any node r, 7" = 1 cycle and R" = 1 flit/cycle. Finally, to
maximize indirect blocking, we consider that all the flows are mapped on the same
VC. Our flow of interest is flow 1, because it is one of the flows that is most likely
to undergo indirect blocking.
Figure 4.7 illustrates the end-to-end delay bounds of the foi when varying buffer size.
For the left graph, we keep each flow rate constant at 4% of the total bandwidth;
whereas for the right graph, we keep each flow packet length at 16 flits.
We notice on both graphs that end-to-end delay bounds decrease with buffer size,

with occasional stalling from one value to another. This is something we could

WC delay bound (cycles)

WC delay bound (cycles)

4.7. Performance Evaluation

75

1200 -

1000 -

800 -

—8— PKT_LEN=2, BATA
PKT_LEN=16, BATA
PKT_LEN=32, BATA

—< PKT_LEN=64, BATA

600

400 4

2004

T T T
0 10 20 30 40 50 60
BUFFER_SIZE

WC delay bound (cycles)

1200 -

1000 -

800

600

400 4

2001

—e— RATE=0.02, BATA

RATE=0.16, BATA
—&— RATE=0.32, BATA
—< RATE=0.4, BATA

3

T T
5 10 15

T
20

BUFFER_SIZE

T
25 30

Figure 4.7 — Buffer size impact on BATA end-to-end delay bounds

expect because at a given packet length, the greater the buffer, the less a packet

can spread in the network. Consequently, the IB set tends to be smaller, or to

contain smaller subpaths. We notice that past a certain buffer size, the end-to-end
This results from the fact that

delay bounds stay constant with larger buffers.

the IB set remains the same once buffers are big enough to hold an entire packet.

Therefore, adding buffer space after a certain point does not improve end-to-end

delay bounds. Hence, over-dimensioning the buffers within routers is not efficient

to enhance NoC performance.

—8— RATE=0.02, BATA

RATE=0.16, BATA
—<— RATE=0.32, BATA
—¥— RATE=0.4, BATA

4000 -

3000 A

2000 A

1000 -

30 40 50 60
PKT_LEN

WC delay bound (cycles)

2500 1

2000 1

1500 -

1000 -

500

—e— BUFFER_SIZE=1, BATA
—¥— BUFFER_SIZE=8, BATA
BUFFER_SIZE=16, BATA
BUFFER_SIZE=32, BATA
BUFFER_SIZE=48, BATA

T
0 20 40 60

T T
100 120

Figure 4.8 — Packet length impact on BATA end-to-end delay bounds

Next, we focus on the packet length impact on the end-to-end delay bound, as

illustrated in Figure 4.8. The left graph presents results when the buffer size is

WC delay bound (cycles)

76 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

constant (4 flits) and the right one when the rate of each flow is constant (4% of
the link capacity).

The first observation we can make from both graphs is that the delay bounds evolve
in an almost linear manner with the packet length. For instance, on the left graph,
with 8 flits of buffer size and packet length equal to 16, 64, 96 and 128 flits, the
ratio of packet length and end-to-end delay bound is 17.2, 19.9, 19.8, 19.7.

On the right graph, we observe further interesting aspects of sensitivity at a rela-
tively low rate (4%):

o For a given packet length, the buffer size has a limited impact on the end-to-
end delay bounds. For instance, for packet length 64 flits, the delay bounds
decrease by less than 25% when the buffer size increases by 480%;

e For packet lengths that are significantly larger than buffer size, the delay
bound remains constant regardless of the buffer size, e.g., it is the case for

packet length 128 flits.

1200

—e— PKT_LEN=2, BATA | —e— BUFFER_SIZE=1, BATA
PKT_LEN=16, BATA BUFFER_SIZE=8, BATA
4000 4 PKT_LEN=32, BATA BUFFER_SIZE=16, BATA
—< PKT_LEN=64, BATA 1000 | —¢~ BUFFER_SIZE=32, BATA

3000 800 4

2000 A 600

WC delay bound (cycles)

1000 4 4001

200 1 «_«__"_<__<——4/
0] ee—ee—e oo ° o °

0.00 0.05 0.10 015 0.20 0.25 030 0.35 0.40 0.00 0.05 0.10 015 0.20 0.25 030 0.35 0.40
RATE RATE

Figure 4.9 — Rate impact on BATA end-to-end delay bounds

Finally, we study the impact of the flow rate on the end-to-end delay bounds, as
illustrated on Figure 4.9. The buffer size is fixed to 4 flits on the left graph and
the packet length to 16 flits on the right one. Both graphs show that the delay
bounds increase with the rate. Based on the left graph, one can notice that at
a constant rate, increasing the packet length usually causes the end-to-end delay
bound increase. The right graph confirms the conclusion drawn from Figure 4.7:
increasing buffer size does not improve delay bounds after a certain value. Moreover,
for small buffer sizes, delay bounds seem more sensitive to the rate variation. For
instance, for buffer size equal to 1 flit, delay bounds are 321 cycles and 1178 cycles

(x3.7) for rates equal to 1% and 40% (x40), respectively. Whereas, for buffer size

4.7. Performance Evaluation 77

equal to 32 flits, the delay bounds are multiplied by only 1.6 when considering the
same rate values.
The conducted sensitivity analysis reveals two main interesting conclusions:

e The configuration parameters having the highest impact on the derived delay
bounds are the buffer size and the flow rate; Thus, both parameters will be
considered for the tightness analysis;

¢ Increasing the buffer size within routers after a certain point does not improve
the NoC performance; Thus, over-dimensioning the buffers is not considered

as an efficient solution to decrease the delay bounds.

4.7.2 Tightness Analysis

To assess the tightness of the delay bounds yielded by BATA, we consider herein
a worst-case simulation using Noxim simulator engine [50]. Knowing no method to
compute the exact worst-case for wormhole NoCs, we derive an achievable worst-
case delay through simulation, that we compare to the analytical end-to-end delay
bounds.

In order to approach the worst-case scenario, we run each flow configuration many
times while varying the flows offsets and we consider the maximum worst-case delay
over all the simulated configurations. Afterwards, we compute the "tightness ratio”
for each flow f, denoted 7y, that is the ratio of the achievable worst-case delay Dwc
and the worst-case delay bound Dy:

_ Dwc
"Dy

A tightness ratio of 100% means the worst-case delay bound is the exact worst-
case delay. However, it is worth noticing that a tightness ratio below 100% does
not necessarily mean that the worst-case delay bound is inaccurate, but it can
simply reveal that the worst-case scenario has not been reached by the simulation.
Therefore, the determined tightness ratio is a lower bound on the exact tightness
ratio.
To perform worst-case simulations, we have configured Noxim simulator engine [50]
to control the traffic pattern using the provided traffic pattern file option. For each
flow, we have specified:

e the source and destination cores;

e pir, packet injection rate, i.e. the rate at which packets are sent when the

flow is active;

78 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

Rate 8% 32%
Buffer 4 8 16 4 8 16

Tightness Statistics
Average 70.1% 172.1% 80.8% 49.7% 64.2% 79.8%

Max 91.7% 92.0% 88.3% 95.6% 88.9% 97.3%
Min 40.6% 38.1% 48.9% 20.8% 33.3% 43.8%
Per flow tightness ratios

1 44% 46% 79% 44% 66% 87%
2 41% 38% 79% 24% 47% 97%
3 64% 69% 85% 51% 59% 54%
4 68% 1% 86% 64% 81% 87%
5 7% 80% 85% 46% 53% 64%
6 75% 79% 86% 21% 46% 86%
7 89% 90% 87% 44% 69% 97%
8 68% 70% 70% 46% 65% 1%
9 47% 49% 49% 24% 33% 44%
10 88% 90% 88% 70% 88% 88%
11 92% 92% 88% 96% 79% 96%
12 89% 90% 87% 66% 85% 88%

Table 4.1 — Tightness ratio results for the tested configuration

e por, probability of retransmission, i.e. the probability one packet will be

retransmitted (in our context, this parameter is always 0);

ton, the time the flow wakes up, i.e. starts transmitting packets with the
packet injection rate;

e tof, the time the flow goes to sleep, i.e. stops transmitting;

e P, the period of the flow.
Moreover, since we want to simulate a deterministic flow behavior to approach the
worst-case scenario, we use the following parameters for each flow:

o Maximal packet injection rate : 1.0;

e Minimal probability of retransmission : 0.0;
To create different contention scenarios and try approaching the worst-case of end-
to-end delays, we randomly chose the offset of each flow and perform simulations
with uniformly distributed values of offsets for each flow. We generate 40000 differ-
ent traffic configurations for each set of parameters and simulate each of them for
an amount of time that allows at least 5 packets to be transmitted.
We simulate the configuration of Figure 4.6, when varying buffer sizes to 4, 8 and
16 flits, and flow rates to 8% and 32% of the total available bandwidth. We extract

the worst-case end-to-end delay found by the simulator and compute the tightness

4.7. Performance Evaluation 79

ratio for each flow. The obtained results are gathered in Table 4.1. As we can see,
tightness ratio is up to 80%. We also notice the average tightness ratio improves
when the buffer size increases. For 8% rate, the average tightness ratio varies
between 70.1% and 80.8%. For 32% rate, the average tightness ratio varies between
49.7% and 79.8%.
According to our sensitivity analysis, the indirect blocking patterns covered by our
model tend to become simpler when the buffer size increases, making the IB latency
smaller. Moreover, we can expect a correlation between the tightness ratio and the
1B set size:
o first, for each {flow index, subpath} pair in the IB set, the analysis may
introduce a slight pessimism in the IB latency computation;
e second, the more complex the potential blocking scenarios are, the harder

it is to reach or approach the worst-case delay by simulations: it requires a

precise synchronization between flows to achieve those scenarios. Moreover,

the greater the IB set, the less such a synchronization statistically happens

over random offsets.
Therefore, we can infer that the greater the buffer size, the easier it is to approach
the worst-case delay by simulating the configuration. This is confirmed by the
general trend of the average tightness ratio. It is also backed up by the following
fact: in our analysis, flow 1 and 2 have the largest IB sets and are the most likely
to undergo indirect blocking. We notice that at 8% rate (resp. 32% rate), their
delay bounds tightness rises from 44% to 79% (resp. 44% to 87%) and 41% to 79%
(resp. 24% to 97%) when the buffer size increases from 4 flits to 16 flits.

4.7.3 Computational Analysis

We now assess how well BATA scales on larger configurations by evaluating the
computation time. To achieve this aim, we consider a NoC larger than the one
considered for tightness analysis, while varying the number of flows. We particularly
consider a 8 x 8 NoC with 4, 8, 16, 32, 48, 64, 80, 96 and 128 flows and generate
20 configurations for each fixed number of flows N. To do so, we randomly pick
2N (x-coordinate, y-coordinate)-couples, where each coordinate is uniformly chosen
in the specified range (here, from 0 to 7). We use N of these couples for source
cores and the other N for destination cores. All other parameters (flow rate, packet
length, buffer size, router latencies) are kept constant.

For each considered configuration, we focus on the following metrics:

o At, the total analysis runtime (computation time);

80 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

Runtime of complete analysis (s)

104
+ RUN_TIME_TOTAL BATA +
----- Average RUN_TIME_TOTAL BATA 4
103 4 - - e .
10 § +
+
+
+ +
10! 4 ¥
#
+
10°] + -
-1 +
10 i +
1073 4 %
10 20 30 40 50 60
FLOW_NB values
Runtime of IB analysis (s)
74 + RUN_TIME_IB BATA +
---- Average RUN_TIME_IB BATA
+
6<
5 -
1
4 +
+

w
)
“H

. £
" +
0 At e $ -
0 20 40 60 80 100 120
FLOW_NB values
" Runtime of service curve computation (s)
10
+ RUN_TIME_TIMING BATA N
w0] Average RUN_TIME_TIMING BATA . .
102 4 .
+
¥
10 4 + +
*
+
100 4 v 5 N
+
1071 4 + % I
1073 4 %
10 20 30 20 s -

FLOW_NB values

Figure 4.10 — Results of the BATA computational analysis

4.7. Performance Evaluation 81

e Atrp, the duration of the IB set analysis;

o Ateo., the duration of all end-to-end service curves computations.
The derived results are illustrated in Figure 4.10: the top graph for At, the middle
one for At;p and the bottom one for At.9.. For each flow number, we have plotted
the average runtime for all the configurations with this number of flows, as well
as the computed metric for each configuration (one dot per configuration). Only
configurations with runtime up to 10* s have been considered.
The left graph shows that the runtime grows rapidly with the number of flows
(we're using a logarithmic scale on the Y-axis). Moreover, we notice that runtimes
may vary a lot for the same number of flows. For instance, for 32 flows, they range
between 67ms and 110s. For 48 flows, they go from 1.5s to more than 1h10min.
To further assess what impacts the complexity of BATA, we plot the contributions
to the total runtime of the IB set analysis and the end-to-end service curve compu-
tation. We notice that the IB set analysis alone (middle graph) runs in less than 8
seconds for all tested configurations. This shows that BATA approach complexity
is mostly due to the end-to-end service curve computation as shown in the right
graph. This fact is mainly due to the recursive call to end-to-end service curve
function in Algorithm 2, as discussed in Section 4.5.3.
To highlight this aspect, we measured the number of calls to the function computing
a service curve during the analysis. The results displayed on Figure 4.11 clearly

show the expected trend.

Calls to endToEndServiceCurve()

+ CALL_NB BATA +
10%3 ----- Average CALL_NB BATA

+H++ +

105 4

104 4

+ +
+ H o+t

103 4

+

102 4

101 4

+H+
i+

10 20 30 40 50 60
FLOW_NB values

Figure 4.11 — Number of calls to the function endToEndServiceCurve()
We can also notice that when all flows are mapped to a different VC, no indirect

blocking is possible, i.e. IBy = @& for any flow f. Hence, there is no computation

to be done for Ty, which drastically reduces the complexity of the approach in this

82 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

case. In Algorithm 2, this means that lines 12 to 18 are not executed.

The derived results show that BATA gives accurate delay bounds for medium-scale
configurations in less than one hour. However, the complexity of BATA increases
with the number of flows due to the recursive calls to end-to-end service curve
function. This fact is inherent to the large panel of NoCs, i.e., priority-sharing,
VC-sharing and buffer backpressure, covered by BATA.

4.7.4 Comparative Study

We performed a comparison based on the configuration presented on Figure 4.12
taken from [1] using CPA approach, where all flows have a packet length of 4 flits.
We have reproduced different scenarios of [1] to compute the delay bounds with our

proposal with respect to the flow rate and buffer size.

Figure 4.12 — A simple configuration from [1].

First, we vary the requested bandwidth per sender (i.e. the rate of each flow
relatively to the maximal rate). Since the packet length is constant, we adjust the
flow period to get different values of rate. The full bandwidth corresponds to a rate
of one flit per cycle.

For each bandwidth value, we compute the corresponding delay bound predicted
by our model for all 4 flows for a buffer size equal to 4 flits and the derived results
are in Figure 4.13. For each flow, we also plotted a vertical line representing the
saturation point of [1] CPA model : when the CPA-predicted latency is greater
than 10 cycles®, we consider that the model diverges.

We first notice that the curves of our predictions are smoother than [1]. Moreover,
for low bandwidths (below 10%), our predictions are similar to [1], or even tighter.
They also grow smoother for higher bandwidths and do not present any saturation

point like in [1]. Specifically, for flow 1, which may suffer from buffer backpressure,

3This value is similar in this case to infinity since it is very high in comparison to the flows
deadline

4.7. Performance Evaluation 83

N}
X
—
o
[

6 x 10t

Predicted hound on
end-to-end latency (cycles)
S,

4 x 10!

0 10 15 20 25 30 35 40
Requested bandwith per sender (%)
Figure 4.13 — Predicted bounds for different values of bandwidth

the CPA approach predicted upper bound reaches 103 cycles shortly after 12.5%
bandwidth. Our bound, on the other hand, is 54 cycles for 12.1% and 57 cycles for

16% bandwidth, very tight in comparison to the simulation results in [1].

Next, we study the impact of buffer size with a constant requested bandwidth per
sender (12.5%) for flow 1. We compute the predictions of our model for the same
buffer sizes in the experiment by [1] and for additional values, especially for all
buffer sizes lower than packet size which are not handled in the CPA model [1].

The derived results of both approaches are illustrated in Figure 4.14.

3 x 102

)

" —e— Network Calculus approach

cycles

ox102l - CPA approach

102_

Predicted hound on
end-to-end latency (

6 x 101 *—0

1 2 3 45678 12 32 64 128 256
Buffer size (flits)
Figure 4.14 — Delay bounds of flow 1 vs buffer size under CPA and NC approaches

As we can notice, our approach allows much tighter delay bounds for small buffer
sizes. For buffer sizes lower than 12 flits (3 packets), we obtain a bound tightness
improvement of 45.5% with our model in comparison to the CPA one, and it is more
than 80% for the lowest buffer size (4 flits). We also notice that increasing buffer

size does not improve the delay bound past a certain point under our approach. For

84 Chapter 4. BATA: Buffer-Aware Worst-Case Timing Analysis

instance, the end-to-end delay upper bound remains constant for buffer sizes above
4 flits (the size of one packet for any flow in the configuration).

This is due to the fact that the spread index of a flow remains constant when the
buffer size exceeds the length of one packet. With a constant spread index, the
indirect blocking set analysis remains the same; thus the indirect blocking latency
(and the end-to-end delay bound).

4.8 Conclusions

We presented BATA, a worst-case timing analysis approach for wormhole NoCs
integrating the impact of buffer size and flow serialization. It is applicable to any
wormhole NoC with direct topology, using deterministic routing and such that
flows sharing resources on part of their path do not interfere again after their
divergence point. It works with input-buffered routers with VCs and can also
model output-buffered routers with no major changes. It covers FP arbitration
between traffic classes and any arbitration policy between inputs, and supports

both priority sharing and VC-sharing.

To evaluate the tightness, we first studied how the various system parameters
impact the computed end-to-end delay bounds. We found our model to be most
sensitive to rate and buffer size. Consequently, we proceeded the tightness analysis
with a set of different buffer sizes and flow rates. We were able to achieve a

tightness ratio up to 80% on average, with reference to worst-case simulation.

We then estimated the scalability of our approach in terms of computation time
when increasing the number of flows. We found that the main complexity of the
analysis lies in the indirect blocking latency computation, as it leads to additional
recursive calls to the function computing the end-to-end service curve. While this
complexity comes from the fact that the model is able to cover configurations with
shared priority and shared VCs, it causes the method to be hardly scalable past 64
flows. Most configurations we tested with 64 flows or more exceeded the two-hour
limit we set on the computation time. Therefore, such a limitation needs to be
addressed.

Our next focus will be to generalize BATA to cover a larger panel of NoC con-
figurations (heterogeneous platforms with links of different transmission capacities
and different buffer sizes within routers), in addition to considering a more general

traffic model covering bursty traffic. Furthermore, we will cope with the complexity

4.8. Conclusions

85

issue to improve the approach scalability.

Croyant que repartir calmerait mes sanglots,

Au futur j’ai promis de faire mes baggages.

Mais quand vient le moment de traverser les flots,
Il n’y a que des adieux pour celui qui voyage.

*
Xk

CHAPTER 5

Extending Buffer-Aware
Worst-Case Timing Analysis:
Interference Graph Approach

Contents
5.1 Problem Statement 0000000 88
5.1.1 TIlustrative Example, 88
5.1.2 Main Extensions oo 90
5.2 Extended System Model 91
5.2.1 TrafficModel oo 91
5.2.2 Network Model oo 91
5.3 Interference Graph Approach for Indirect Blocking Set .. 93
5.4 Refining Indirect Blocking Latency 96
5.5 G-BATA: Illustrative Example 98
5.6 Performance Evaluation 100
5.6.1 Computational Analysis 101
5.6.2 Sensitivity Analysis oL 107
5.6.3 Tightness Analysis 112
57 Conclusions i e e e e 115

In this chapter, we present a series of extensions of BATA approach to cover het-
erogeneous platforms and general traffic model, while improving BATA scalability
(computational complexity). The proposed approach stems from BATA and uses
an interference graph structure in the indirect blocking analysis; thus we called it
G-BATA, that can either stand for Graph-BATA or Generalized-BATA.

The remainder of this chapter is organized as follows. We first present the problem
statement in Section 5.1, with an illustrative example to highlight a situation in

which BATA cannot be applied anymore (Section 5.1.1), and we outline the main

88 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

extensions proposed by the new approach (Section 5.1.2). In Section 5.2, we detail
how we extend the system model to cope with the new assumptions on the traffic
(5.2.1) and the network (5.2.2). Afterwards, Section 5.3 presents our new method for
indirect blocking analysis. In Section 5.4, we explain the associated computation
of the indirect bocking latency. Section 5.5 illustrates an application of the new
method on an example. Finally, we proceed to a performance evaluation of G-
BATA in Section 5.6 and conclude the chapter in Section 5.7.

5.1 Problem Statement

5.1.1 Illustrative Example

To exhibit the impact of considering general traffic model, e.g. bursty traffic, when
applying BATA, we propose the configuration detailed on Figure 5.1 (left). We
assume each buffer can hold one flit and all flows have 3-flit packets, so that each
packet can be stored in three buffers. Furthermore, we consider all flows are mapped
to the same VC and take flow 1 as the foi. When performing the IB analysis
as described in Algorithm 1, Section 4.4, we first compute the subpath of flow 2
relatively to flow 1, denoted S, on Figure 5.1 (right). We then notice that S, does
not intersect any path of another flow, and in particular it does not intersect the

path of flow 3, P3. Therefore, the algorithm terminates and we have:
IB; ={}

which means flow 3 cannot directly block flow 1.

However, this conclusion relies on the fact that there can be at most one packet of
flow 2 in the network. Consider the scenario depicted in Figure 5.2. We suppose a
packet A of flow 3 is being transmitted. It requested the North output port of R7
and was granted access. Now its header flit has reached the input port of R8. At
the same time, there is a packet B of flow 2 which header flit has reached node R7
input. It also requested the North output of R7, but as A is using it, it has to wait.
B is immediately followed by another packet of flow 2, denoted C, which header flit
is in R4. C previously requested R3 East output port and was granted it. Here,
C has not been completely injected into the network. In fact, B has its last flit in
R5 buffer, and is blocked. Consequently, C has to wait that B moves forward to
be able to move too. Finally, flow 1 has injected a packet D into the NoC. D has
its header flit in R3 and is requesting R3 East output port. However, as C already

requested and got the use of that same port, D has to wait.

5.1. Problem Statement 89

R11 R11
i" :‘.
RI1GE 4 RIG 4
R9 R9
: P;sNS, =<
RS - RS :
[Sq = subpath(Py, IPy) ;
R7E —— RT7 :
: e
Rl R2 R3 R4 Rb R6|"‘3 Rl R2 R3 R4 R5H R6..°‘3
e —] K B N B |
N
1 o 4 9

Figure 5.1 — Example configuration (left) and subpaths computation with BATA
(right)

In that case, D is indirectly blocked by A. This means that if we assume it is possible
to have two consecutive packets of flow 2 in the network, flow 3 may impact flow 1,
which was not detected when computing /B; with BATA.

R11
R10
B packet A of flow 3 moving
B packet B of flow 2 waiting R
Ml packet C of flow 2 waiti R3
i packet D of flow 1 waiting
ST e

R1 R2 R3 R4 R5 R N 3
O ééésg—luf \

2

Figure 5.2 — Packet configuration with two instances of flow 2

We refer to this assumption as “Consecutive Packet Queueing” (CPQ). CPQ can
happen when considering bursty traffic, i.e. flows that can generate and inject a
burst of several packets one after the other. Example of such flows include real-time
audio and video streams. It can also occur when a packet of a periodic CBR flow

experiences enough congestion for the next packet to “catch up” on it. CPQ is not

90 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

taken into account by the BATA model.

5.1.2 Main Extensions

In the light of the example above, we propose the main following extensions:

e First, we extend the traffic model of BATA to integrate possible CPQ and
model bursty traffic flows. We also generalize notions such as spread index
to cover heterogeneous architectures, that is NoCs buffer size, link capacities
and processing latencies may differ from one router to another. This extended
system model will be detailed in Section 5.2.

e Then, we will update the indirect blocking analysis to take into account the
changes in the traffic model and integrate CPQ. In that respect, we propose a
new method based on a graph structure to model indirect interference. This
method is called Interference Graph Approach and will be detailed in Section
5.3.

e Finally, we will adapt the computation of the indirect blocking latency and
consequently the end-to-end delay bound. Compared to the original BATA
approach, the indirect blocking analysis and the indirect latency computa-
tion will change, slightly impacting the end-to-end service curve computa-
tion. However, the direct blocking latency computation remains identical.
This point will be presented in Section 5.4.

We summarized the steps of G-BATA on Figure 5.3 and highlighted the ones that
differ from BATA.

s N
Indirect blocking set analysis

\ l J

e B\
Direct blocking latency computation

& l J

(2\
Indirect blocking latency computation

& l J

4 2\
End-to-end service curve computation

\ l J

e B\
End-to-end delay bound computation

& J

Figure 5.3 — Main steps of G-BATA. Highlighted steps are the differences with
BATA approach

5.2. Extended System Model 91

5.2 Extended System Model

In this section, we present the extended system model that is the base of G-BATA.
We first detail the traffic model, then present the network model.

5.2.1 Traffic Model
As in BATA, the characteristics of each traffic flow f € F are modeled with the

following leaky bucket arrival curve:

ap(t)=or+pyp-t

This arrival curve can model a bursty traffic flow. It integrates the maximal packet
length L (payload and header in flits), the period or minimal inter-arrival time Py
(in cycles), the burst (number of packets the flow may release consecutively) by and

the release jitter J; (in cycles) in the following way :

Ly
pf = Ff
of = bf Lf+Jf pof

If f is CBR flow, we have by = 1.
We keep other notations identical to BATA. For each flow f, its path Py is the list
of nodes (router-outputs) crossed by f from source to destination. The end-to-end

service curve granted to flow f on its whole path is still denoted:
By(t) =Ry (t =Ty)"

5.2.2 Network Model

To account for heterogeneous architectures, we generalize the model of the router.
More specifically, instead of considering buffer size, processing capacity and techno-
logical latency to be homogeneous, we denote, for any node r on the path of a flow,
B" the available buffer size, R" the processing capacity, and 7" the technological
latency.

From there on, to model the way a packet can spread in the network, we propose

an extended definition for the spread index:

Definition 11. Extended Spread Index
Consider a flow f of maximum packet length Ly flits. The spread index of f at

92 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

node i, denoted N}, is defined as follows:

-1
N} min {z, L; < ;)B }

where B" the buffer size at node r in flits.

NJZ} is the number of buffers needed to store one packet of flow f from node P[i]
onwards on the path of f.

Using this notion, we extend the definition of the “subpath of k relatively to I” to
refer to the section of the path of flow & from dv(Pg, ;) through NSV(P’“’PZ)

(at most). We keep the same name and notation as in Definition 7, because the

nodes

following definition of the subpath is backward-compatible with the previous one.

Definition 12. The subpath of a flow k relatively to a flow 1 is:

subpath(P,) = [Pk [Last(Py, ;) +1],. ..,

Py[Last(Pg, ;) + NkL‘lSt(PkJP’z)H]]

where Last(Py,P;) = max{n, Px[n] € P;} is the index of the last node shared by k
and l along Py, i.e Py[Last(Py,P;)] = dv(Pg, Py).

As previously, we extend this notion and define the subpath of any flow k relatively
to a subpath S; C P; of any flow | (with [# k or [= k):

Definition 13. The subpath of a flow k relatively to any subpath S; of any flow |

18:
subpath(Py,S1) = |Py[Last(P,S) + 1],
Pi[Last(Py, Si) + Ny 50+
where Last(Py,S;) = max{n, Px[n] € S;} is the index along Py of the last node
shared by k and | within S;. In a similar fashion as in Chapter 4, by abuse

of notation, we denote subpath(k,l) to refer to subpath(Py,P;), and similarly
subpath(k,S;) to refer to subpath(Py,S;).

5.3. Interference Graph Approach for Indirect Blocking Set 93

5.3 Interference Graph Approach for Indirect Blocking
Set

To handle CPQ assumption, we start from two modifications. First, we allow to
compute the subpath of any flow f relatively to a subpath Sy C Py of f to model
several packets of the same flow queuing in the network. Second, we use a graph
structure to maintain the dependency information between the subpaths. By doing
so, we are able to know how each subpath was computed, and we also can explore
all possible interference patterns more easily.

We use a directed graph where each vertex corresponds to a subpath of a flow and
holds the following information :

o fkey : the flow identifier;

e path : the subpath;

» dependencies : the list of all edges (v, u) where v is the current vertex and u
is such that v.path is the subpath of flow v. fkey relatively to subpath w.path;

o dependents : the list of all edges (w,v) where v is the current vertex and w
is such that w.path is the subpath of flow w. fkey relatively to subpath v.path.

The two functions to construct the graph are detailed in Algorithms 3 and 4. The
main steps of Algorithm 3 are as follows:

1. We create a graph with one vertex corresponding to the foi (Line 1);

2. We compute all subpaths relatively to the foi and create a vertex depending
on the foi’s vertex for each non-empty subpath (Lines 2 and 7);

3. We add these vertices to the graph, making sure there are no duplicates and
merging the dependencies of the new vertex with the existing one if needed
(Line 5);

4. We iterate these steps on each new vertex, in a breath-first manner, until no
new vertex is created (loop on Line 3).

Once the graph is created, we extract the pairs (k, subk) from all vertices such
that k ¢ DBy U {f}, that is from vertices that do not correspond to flows directly
interfering with the foi f.

To construct the graph, we rely on an auxiliary function detailed in Algorithm
4. Tts role is to construct new vertices from the previously constructed vertices of
the graph. Essentially, it loops over a list of vertices (Line 1. For each vertex,
it computes the possible subpaths relatively to the subpath of the current vertex,
creates the corresponding vertex (Line 5) and appends it to a list (Line 6, that is

returned at the end.

94 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

Algorithm 3 Computing the indirect blocking graph for flow f
constructIBGraph(f, P, F)

Input: f, the flow of interest, P, the associated path, F the set of flows
Output: Gy, a graph of all subpaths involved in indirect blocking patterns impact-
ing f
vy < vertex(f, Py, [],[])
Ly < getNextVertices([vo], F) // Initialize a list
while £y # [] do

for v € Ly do

addVertex(Gy,v)

end for

Ly < getNextVertices(Lo, F)
end while
return Gy

Algorithm 4 Computing vertices and adding them to the graph

getNextVertices(L;,, F)

Input: L£;,, a list of vertices, F the flow set

Output: Ly, a list of the vertices depending on the vertices of L;,
1: for v € L;, do

2 for k € F do

3: S < subpath(k,v.path)
4: if S # @ then

5 w < vertex(k, S, [v], [])
6 append w to Loyt

7 end if

8: end for

9: end for

10: return L+
addVertex(G, v)

Input: G, a graph, v, a vertex to add
Output: void, graph G is updated

1: if Jw € G such that w.path = v.path and w.fkey = v.fkey then
2: merge v with w

3: else

4 add v to @

5. end if

5.3. Interference Graph Approach for Indirect Blocking Set 95

The computational complexity of Algorithm 3, when considering a flow set F on
the NoC, is denoted as C(|F|) and is defined in the following property.

Property 2. Consider a flow set F, the computational complexity of Algorithm 3
1s as follows:

c(F) =0 (rpf sl Y \Pfr) (51)

fer

and can be roughly bounded as follows :
C(|F))=0 Ps))? - | F) 5.2
(IF1) <(I}1€a7__X’ f|) |7 (5.2)

Proof. We first notice that vertices of the graphs are defined only by their flow index
and subpath. For a flow f, there are |[P¢| possible subpaths (each of them starting
at a different node of the path of f). Therefore, there are at most 3 ;¢ z [Pf| distinct
subpaths for the flow set F.

We can thus bound the number of vertices of the computed graph. For each of
these vertices, the algorithm computes all possible subpaths relatively to the current
vertex’ subpath (in getNextVertices() main loop).

Assume this subpath is S and that we have a preprocessed dictionary listing, for
every node, the indexes of flows using this node.! Although we wrote the secondary
loop of getNextVertices() as a loop over all flows in F for clarity reasons, all we
have to do to get all possible subpaths relatively to S is run through the nodes of
S and check for intersection with another flow’s path. Comparing the indexes of
the current node with those of the previous node, we can find divergence nodes of
contending flows relatively to S. We assume that, knowing the divergence point of
a contending flow relatively to S, it takes a constant time to find its subpath (we
only need to compute the spread index).

Thus, the complexity of finding all subpaths relatively to any subpath is
O(maxser [Py|), hence the final result. The last bound is found bounding each
path length of the sum by the maximal path length in the whole flow set. O

The reason we can account for more than one packet of the same flow stalling in
the network is because we allow to compute the subpath of a flow relatively to a

subpath of that very same flow.

'We do run such a preprocessing on the configuration.

96 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

5.4 Refining Indirect Blocking Latency

When using the G-BATA approach, we take into account the possible queueing of
several packets of each flow through the consideration of multiple consecutive sub-
paths for one flow. Therefore, when computing 775, the main difference compared
to the BATA approach is that, for each {flow index, subpath} pair of the derived
IB set, we do not need to compute the arrival curve at the beginning of the subpath
and instead use the initial arrival curve of one packet of the corresponding flow.
Having several consecutive subpaths for the same indirectly interfering flow allows
to take into account a burst of more than one packet.

Computation of the indirect blocking latency T7p is done using the following The-

orem :

Theorem 4. (Maximum Indirect Blocking Latency)
The mazimum indirect blocking latency for a foi f along its path Py, in a NoC
under flit-level preemptive FP multiplexing with strict service curve nodes of the

rate-latency type Br 1 and leaky bucket constrained arrival curves oy, is as follows:

Ly + Jepr | msubp
Tiz= >, T mar + T (5.3)
{k,subP}cIBy k

where:

R{™P — min {RT— Z pj} (5.4a)
)

resubP jarjehp(f
Tpor — 3 (Tr + Sﬂtlgpwb}) +
resubP
U;:v(i,k) S (Tr I W)
Z TESUngP;iubP (54b)
k

LsubPﬂhp(k)

i€DB

Proof. For any pair {j, subP;} € IBy, a packet of flow j will impact the foi f during
the maximum time it occupies the associated subpath subP;, At;mm . Hence, a safe

upper bound on the indirect blocking latency is as follows:

max
Tip < > At
{j,subP;}€IB;

On the other hand, for any pair {j, subP;} € IBy, At"** is upper bounded by the

end-to-end delay bound of one packet of flow j along its associated subpath subPj,

5.4. Refining Indirect Blocking Latency 97

DS-Uij

g , which infers the following:

Tip < Z D;?prj (5.5)
{j,subP; }c€IBy

Based on Theorem 6, Appendix B.1, the delay bound of flow j, D;uij , is computed
as the maximum horizontal distance between:

e the maximum arrival curve for a single packet of flow j at the input of the
subP; 0]
J

the fact that each subpath holds one packet (from the definition of the spread

subpath subP;, o . We consider one packet per subpath. This is due to
index). The multiple number of packets is taken into account through the
multiple consecutive subpaths of the same flow. Thus, the considered arrival
curve is the initial arrival curve of flow j with b; equal to one, that is with a
burst equal to L; + J;pj;

» the granted service curve to flow j by its VC along subPj, Bjuij

, called
VC-service curve, when ignoring the same-priority flows (which are already
included in IBy). The latter condition is due to the pipelined behavior of
the network, where the same-priority flows sharing subP; are served one after
another if they need shared resources. Hence, the impact of the same-priority
flows than flow j is already integrated within the sum expressed in Eq. (5.5).

To compute the granted service curve Bjuwj for each flow j € IBy along subP;,

we follow similar approach than in the proof of Theorem 2 through applying the

existing Theorem 7, when:

o ignoring the same-priority flows in sp(j), thus all shp(j) will become hp(j)
and slp(j) will become Ip(j) in Egs. (B.1a) and (B.1b);

o considering the flit-level preemption, thus the impact of lower-priority flows in
Eq. (B.1a) is bounded by the maximum transmission time of Syt - 10050}
within each crossed node r € subP;;

« considering only the direct blocking flows of j along subP;, thus considering
DB A hp(j) in Eq. (B.1b).

Hence, we obtain Rjubpj and f}subpj described in Egs. (5.4a) and (5.4b), respectively.

Consequently, the maximum indirect blocking latency in Eq. (5.5) can be re-written

as follows: Lot J

J iPj FisubPj
s {j,sub%e[Bf R h (56)

O]

What is interesting, compared to the BATA approach, is that we do not need to

98 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

Algorithm 5 Computing the end-to-end service curve for a flow f
endToEndServiceCurve(f, Py)

1: Compute Ry
2: Compute Tp,
/] Compute Tpp:
Tpp+ 0
for k € DBy do
ro < cv(k, f) // Get convergence point of f and k
Bi < endToEndServiceCurve(k, [Pg[0],- - ,70])
af « initial arrival curve of k
ay < o @ B
Tpp « directBlocking(cy”)
10: end for
/] Compute Tip:
11: Compute /By according to G-BATA
12: Tip+ 0
13: for {k,S} € IBy do
14: Bk: + VC-service curve of k on S
15: «y < initial arrival curve of k for bp=1
// Now add the latency over the subpath to Typ :
16: Tip < T+ h(a, Br)
17: end for
18: return [= Rf(t — (T[pf + Tpp + jv]B))+

propagate the arrival curves of flows in /By at the beginning of the subpaths when
computing T7p. Consequently, our new approach does not need to compute service
curves upstream the subpaths, which decreases the number of recursive calls to
endToEndServiceCurve() in Algorithm 2. For that reason, we expect a complexity
gain, that we will show and estimate in Section 5.6.1.

To illustrate this last aspect, we rewrite the algorithm for service curve computation,
but this time assuming G-BATA approach is used (Algorithm 5). The differences
with Algorithm 2 are in Line 11, when computing the indirect blocking set using
the interference graph approach, and in Line 15, when we consider the initial arrival

curve instead of the propagated one.

5.5 G-BATA: Illustrative Example

In this section, we detail the complete G-BATA approach on the example configu-
ration displayed on Figure 5.1.
We assume all routers have a service curve 8 = R(t — T)* and flow i has a packet

length L; = L and the initial arrival curve a; = o + pt. All flows are mapped to

5.5. G-BATA: Illustrative Example 99

the same VC, thus T}, = T}, = 0. We also assume all jitters equal zero, and the
burst of flows is 2. Furthermore, although G-BATA is able to handle buffers with

different sizes, we assume all buffers can hold one flit.

Step 1: Extended buffer-aware analysis of the indirect blocking set
We first apply Algorithm 3. The subpaths corresponding to the computed vertices
are represented on Figure 5.4:

1. starting from flow 1, we create vertex v; with index 1 and path Py and we
call getNextVertices() on [vi]. We get va = vertex(2,S,). Since vy was
computed from vy, we add vo in vy.dependents and vy in vo.dependencies.

2. we call getNextVertices() on [vg]. We get v, = vertex(2,Sp), add v} in
vo.dependents and vy in vh.dependencies;

3. we call getNextVertices() on [v2]. We get vz = vertex(3,S,);

4. we call getNextVertices() on [v3]. We get v} = vertex(3,Sy).

5. we call getNextVertices() on [v5]. It returns the empty list [] and the
algorithm terminates.

The final graph is the following:
]-7 I[Dl

™

27811 A 25Sb 37SC 37811

and the associated IB set :

1B = {{37 Sc}v {3’ Sd}}

Step 2: End-to-end service curve computation

Direct blocking latency computation

As this step is almost identical to BATA, except for the fact that b1 = 2, which
implies 07 = 2L1, we do not detail it and instead simply give the final result. The

astute reader is more than welcome to check that:

L

g1 + ,OT + r

R—p R—p
= 10,526315789 cycles

Tpp = 4T +

Indirect blocking latency computation

We now use Theorem 4 and the computed IB set IB; to derive the indirect blocking

100 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

R11
Sy = subpath(PPs3, S,) "
L BN NN | R/]-O
S. = subpath(Ps, Sp) ;
EEEER Rgz
Sy, = subpath(Ps, S,) ;
LU R&-
Sq = subpath(Py, IPy) =,
- e
RIL R2 R3 R4 R5 Rﬁg 3

2

Figure 5.4 — Subpaths computation with G-BATA approach

latency.

L+ J. L+ J.
3 3P3 4 TSe 4 B sd3p3+TSd

Ry e
L L
5+ T+ = T
R3 R3

2§ 4+ 6T since there are no higher priority flows

12 cycles

Step 3: End-to-end delay bound computation

We now compute the end-to-end delay bound for flow 1 with Equation A.1:

Py
Dl

-y a—

T+% L
2 L 6T
R—p R_p PR_p TRT

= 29 cycles

5.6 Performance Evaluation

In this section, we first analyse the computational effort of G-BATA and partic-

ularly on heavy configurations, with reference to BATA. Afterwards, we conduct

a sensitivity analysis of the proposed approach when varying the system parame-

ters and analyze their effect on the end-to-end delay bound. Finally, we assess the

tightness of the derived bounds, using the insight we got thanks to the sensitivity

analysis.

5.6. Performance Evaluation 101

Unlike the performance evaluation phase of the previous chapter, we chose to start
with the computational analysis to assess the enhancement in terms of complexity
with reference to BATA. Moreover, this analysis highlights some new parameters

which have a great impact on the tightness analysis.

5.6.1 Computational Analysis

In this section, we study the computational aspect of G-BATA. We will first run
G-BATA on the same randomly-generated configurations as in Section 4.7.3, with
4, 8, 16, 32, 48, 64, 80, 96 and 128 flows on a 8 x 8 NoC, to compare it with BATA.
There are 20 configurations for each flow number, and we set a time limit of two
hours for the analysis.
For each configuration, we will focus on the following complexity metrics, that give
an idea of the cost of analyzing a configuration:

o At, the total analysis runtime;

o Atrp, the duration of the IB analysis (for BATA, determining IB set; for

G-BATA, constructing the interference graph);

Atese, the duration of all end-to-end delay bounds computation;

e Ny, the number of calls to the function endToEndServiceCurve();

e Niter, the number of calls to a representative IB analysis function:

— for BATA, the number of while iterations;

— for G-BATA, the number of calls to the function getNextVertices();

. Compared runtimes of complete analysis (s) Compared runtimes of IB analysis (s)
10 17.5
X + RUN_TIME_IB G-BATA +
3 . X X RUN_TIME_IB BATA +
10%4 ;;/’ 1501 ... Average RUN_TIME_IB G-BATA +
K ‘ === Average RUN_TIME_IB BATA $
102 4 X /I 12.5 A
/% %
/
10 4 A S ' 10.0 1 ’
¥ -
100 4 x % 7.5 B
N p i o
10-1 1 .§',"4 5.0
+§.~";, + RUN_TIME_TOTAL G-BATA
1024 %0 % RUN_TIME_TOTAL BATA 2.51 =
;/ ----- Average RUN_TIME_TOTAL G-BATA § e
1031 --- Average RUN_TIME_TOTAL BATA 0.0 ;ﬁ.«p--‘gu*;'&'_"_’:'_i———‘-———‘\’
0 20 40 60 80 100 120 0 20 40 60 80 100 120
FLOW_NB values FLOW_NB values

Figure 5.5 — Compared runtimes of both approaches: total runtimes (left) and IB
analysis runtimes (right)

We begin the comparative study by plotting the total analysis runtime At as well

102 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

as the duration of IB analysis At;p as a function of the number of flows in the
configuration (Figure 5.5). The first thing we can notice, on the left graph, is that
BATA takes more time than G-BATA, especially for flow sets of more than 32
flows. For instance, the total analysis of 48-flow configurations is on average 766
times faster with G-BATA than with BATA. There were no timeouts for G-BATA,
whereas BATA timed out for most configurations with 64 flows or more.

However, we expect the IB analysis part of BATA approach to be computationally
less expensive than G-BATA. Since the IB analysis is independent from the end-
to-end service curve and delay bound computation, we were able to do it with no
time-outs. We have plotted the runtimes of IB analysis part vs flow number for
the two approaches to check this intuition (right graph of Figure 5.5). The result is
very explicit: IB analysis of BATA is faster than G-BATA. For instance, on 48-flow
configurations, BATA is on average 5.7 times faster than G-BATA.

In an attempt to be more platform-independent, we have used other metrics than
runtimes to estimate the complexity of analyses. To do so, we counted the number
of calls of relevant functions. For the end-to-end delay bounds computations, we
counted the total number of calls to the function endToEndServiceCurve (), which
is used in both approaches. For the IB analysis part, the two approaches are
significantly different; thus, we counted the number of iterations of the while loop
for BATA and the number of calls to the function addVertex () for G-BATA when
this function creates a new vertex.? The number of calls to addVertex() in G-
BATA is roughly the equivalent of the number of while iterations of BATA.

We gathered the results in Figure 5.6. We plotted two graphs: one for the service
curve computation (left), the other one for the IB analysis (right). The results
match what the runtime graphs showed: G-BATA is way faster on the end-to-end
service curve computation, while BATA is faster on IB analysis. More precisely, for
the total analysis of 48-flow configurations, BATA performs on average 1883 times
as many calls to endToEndServiceCurve () as G-BATA does. For the IB analysis,
G-BATA performs on average 1.5 times as many IB analysis iterations as BATA
does.

We then performed additional experiments on randomly generated configurations
for G-BATA approach, on a 8 x 8 NoC, with a number of flows from 20 to 800, to
study how well the new method scales on large flow sets. As before, we perform the
analysis and measure total runtime, runtime of the IB analysis and runtime of the

service curve computation. We plot the results on Figure 5.7. What comes out of

It can also merge the vertex passed in argument with an existing one; in that case we do not
count this call as significant.

40 60 80
FLOW_NB values

100 120

5.6. Performance Evaluation 103
Compared endToEndServiceCurve() call number Compared IB analysis function call number
+ CALL_NB_VERTEX_NEW G-BATA 1
WHILE_ITERATIONS BATA :
50007 Average CALL_NB_VERTEX_NEW G-BATA
-—- Average WHILE_ITERATIONS BATA ¥
4000 %
3000 1
. £
+ .'. ,/
K e
* e
................ 2000 . ’
...... *.,....-+ + ,,/
%
CALL_NB G-BATA 1000 4 w8
CALL_NB BATA -5
Average CALL_NB G-BATA
—== Average CALL_NB BATA 04

20 40 60 80
FLOW_NB values

100 120

Figure 5.6 — Comparative study of the algorithmic complexity

Runtime of G-BATA approach (s)

Detailed runtime of G-BATA approach (s)

+ RUN_TIME_TOTAL G-BATA i 20004+ RUN_TIME_IB G-BATA
70001 ... Average RUN_TIME_TOTAL G-BATA % [| - Average RUN_TIME_IB G-BATA %
$ X RUN_TIME_TIMING G-BATA
6000 60001 ___ Average RUN_TIME_TIMING G-BATA
5000 - 50007
4000 4000
3000 § : 3000 1 é :
2000 - 2000 - ‘
1000 - 1000 -
. L]
k¥ ==k S
0 AHrekeket 0 ok~ ok =R MK =K — == ==
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
FLOW_NB values FLOW_NB values
Figure 5.7 — Studying the scalability of G-BATA on large flow
sets. RUN_TIME_IB denotes the duration of the IB analysis, while

RUN_TIME_TIMING denotes the duration of the service curve computa-
tion.

this additional study is that G-BATA analysis scales well: without parallelization,
on a laptop powered by an Intel core i7 processor, computing end-to-end delay
bounds for each of the 800 flows takes around 7200 seconds in the worst case (2
hours), i.e. around 9 seconds per flow, as shown on the left graph of Figure 5.7.
Moreover, the IB analysis runtime is the more computationally expensive phase:

for the 800-flow configurations, it represents on average 97.1% of the total runtime,

104 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

as illustrated on the right graph of Figure 5.7.

Key points: G-BATA approach scales way better than BATA approach. The
difference is especially visible for flow sets of 32 and 48 flows, where the average
runtime of the total analysis for BATA is 10 to 100 times higher than G-BATA. For
bigger configurations, we have not been able to get much comparative information
as running one analysis with BATA takes more than two hours. Moreover,
G-BATA approach performs well on heavy configurations (600 and 800 flows)
with an average total runtime of 2647 and 6935 seconds, respectively. Finally, we
notice that depending on the approach, the more computationally expensive step
is either the indirect blocking analysis (G-BATA) or the service curve computation
(BATA). For the latter case, it is what limits BATA approach scalability for large

flow sets.

quadrant 1

L

~

o)
pt
o
N
o)
=
o,
—
A
o
ja
B
—

OO
OO

I
OO LT
== L 1]
I .

LU

quadrant 4

00000 EOOs
OpOO0moo:

_H
=
o
=
=
=
w

~

o)
—
=
~
v}
~

Figure 5.8 — Quadrants of the NoC and illustration of flows from families A, B and
C

From these illustrated results, we can notice that for a given number of flows,
runtimes can vary significantly from one configuration to another. For instance,
on the left graph of Figure 5.5, for 48-flow configurations, runtimes differ by up to
57% and up to 99% for G-BATA and BATA, respectively. Hence, the configuration
complexity seems to not only depend on the number of flows, but also on at least
another hidden parameter.

In an attempt to better understand what are the configuration parameters impact-

ing the approach complexity, we define two congestion indexes.

Definition 14. Given a configuration F and a foi f, the direct blocking index (DB

5.6. Performance Evaluation 105

indez) of f, denoted Ipp(f), is the number of flows in the direct blocking set of f:

Ipp(f) = | DByl

Definition 15. Given a configuration F and a foi f, the indirect blocking index
(IB index) of f, denoted Irp(f), is the number of {flow index, subpath} pairs in the
indirect blocking set of f:

Iip(f) = 1Byl

The value of one such index is specific to one flow. Hence, to quantify how complex
a configuration is, we introduce the following average indexes:
o |F|, the number of flows of the configuration;

o I;p= ﬁ > Irg(f), the average IB index of flow set F;
ferF

e Ipp = ﬁ fg}_IDB(f), the average DB index of flow set F.
To evaluate the impact of these introduced indicators on the runtime of BATA
and G-BATA, we randomly generated another series of 4-; 8-, 16- and 32-flow
configurations (20 configurations per number of flows), but this time following a
different paradigm. We split the NoC into 4 quadrants (Figure 5.8). Then, we
randomly choose flows according to 3 different sets, A, B and C:
o flows in A have their source in the 3'9 quadrant and their destination in the
4% quadrant;
o flows in B have their source in the 4" quadrant and their destination in the
1%¢ quadrant;

27 quadrant and their destination in the

e flows in C have their source in the
15¢ quadrant.

It is worth noticing that these communication patterns favor direct and indirect
blocking, which impact the introduced direct and indirect blocking indexes.
We perform the same analysis as before and compare the results we get for both
approaches, on these constrained configurations (referred to as “constrained”) and
the previous 4-, 8-, 16- and 32-flow configurations.
We first plot total runtime as a function of flow number, and the average curve
(Figure 5.9). We notice that for both G-BATA and BATA approaches, there is a
noticeable difference between the constrained and the uniformly distributed config-

urations. For a given number of flows, constrained sets generally require greater

106 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

Using |F| as configuration metric

0.5

+ RUN_TIME_TOTAL BATA + RUN_TIME_TOTAL G-BATA
103 4 RUN_TIME_TOTAL constrained_BATA RUN_TIME_TOTAL constrained_G-BATA
----- Average RUN_TIME_TOTAL BATA * --+--+ Average RUN_TIME_TOTAL G-BATA
-=-=- Average RUN_TIME_TOTAL constrained_BATA ,” 0.49 . Average RUN_TIME_TOTAL constrained_G-BATA
102 4 % ;
/, <
e ,]
10! 4 7 ¥ 0.3 1 pid
4 % // t
’ . P ;
// e R
10° 4 g i ,’/ ;
ol % 0.2 A L
7 + e +
1071 4 £,7 e
< * A
/’ @ . 4 o
1072 5 :::eﬁ::“”l £ /",’,"-5""'.
e | y oo R
B~ ’ TR o
1073 4 004 ¥ M
5 10 15 20 25 30 5 10 15 20 25 30
FLOW_NB values FLOW_NB values

Figure 5.9 — Runtimes vs flow number for both configuration types for BATA (left)
and G-BATA (right)

runtimes than the previous sets. We did not include the plots of other runtimes (IB
analysis and service curve computation) vs flow number for the two configuration
types, but they exhibit the same trend as total runtimes.
Hence, to better understand the correlation between the runtime and the congestion
pattern, we focus on the 32-flow configurations and we plot, for both approaches,
all points (x,y) where:

o x is the average DB index (resp. IB index) of the configuration, Ipg (resp.

Irp);

e 1y is the total analysis runtime.
The results are gathered in Figure 5.10. For both approaches, we notice that the
runtime tends to increase with the average congestion index (direct or indirect).
We conclude that a higher average congestion index (direct or indirect) tends to
characterize configurations that require a higher computation time.
Moreover, the average IB index does not bring more insights than the average DB
index on how computationally expensive the analysis of a configuration may be. So,
given that it is computationally more expensive to compute the average IB index
than the average DB index, especially for G-BATA approach, we conclude that
average DB index is a good configuration indicator to quantify the complexity of a
configuration in addition to the number of flows.
Key points: Although there is a correlation between the number of flows of one

set and the runtime needed to perform its analysis, we find that it is not sufficient

5.6. Performance Evaluation 107

Scattered plot of runtimes (s) vs Ips Scattered plot of runtimes (s) vs s
A RUN_TIME_TOTAL BATA
103 4 RUN_TIME_TOTAL constrained_BATA 10% 4
102 4 A 102 4 A
10* 4 A 10! 4 A
A A a A
A
0 J
10 N 4 4 10° 4 A
A A A,
AL A A mia 4
10-1 4 A A RUN_TIME_TOTAL BATA
A A 107 4 AA RUN_TIME_TOTAL constrained_BATA
1.0 1.5 2.0 2.5 3.0 3.5 4.0

0 1 2 3 4 5

DB_INDEX_AVG values IB_INDEX_AVG values

A RUN_TIME_TOTAL G-BATA

0.45 RUN_TIME_TOTAL constrained_G-BATA 0.45 -
_ 0.40 4
0.40 ™ A A
0.35 1 0.35 1
A -
A A A !
0.30 1 w 0.30 A WA ‘
A AA
A A AA
0.251 A4 a 025{ A A
A A
A
0.20 A At 0.20 A L A RUN_TIME_TOTAL G-BATA
A A RUN_TIME_TOTAL constrained_G-BATA
1.0 1.5 2.0 25 3.0 35 4.0 1 2 3 4 5
DB_INDEX_AVG values IB_INDEX_AVG values

Figure 5.10 — Studying the correlation between average DB index (resp. average
IB index) and total runtime for 32-flow configurations, for BATA (top graphs) and
G-BATA (bottom graphs)

to characterise how long the timing analysis may take. In that respect, we propose
two configuration indicators to refine the quantitative aspect of the complexity
of a flow set: the average DB and IB indexes. We show that both are adequate
complementary configuration parameters. Nonetheless, the average IB index
is computationally more expensive while not bringing much more information.
Hence, the DB index and the size of the flow set are considered as sufficient to

represent a configuration complexity.

5.6.2 Sensitivity Analysis

In this section, we study the impact of different parameters on the end-to-end delay
bounds yielded by G-BATA. We will process as we did with BATA in Section 4.7.1,
and plot the same graphs. To better highlight the impact of the various parameters
on G-BATA in reference to BATA, we display the results of G-BATA along with
the existing results obtained with BATA.

We still consider the configuration described on Figure 4.6, with 12 flows and an

WC delay bound (cycles)

2000

17501

1500 1

12501

1000 A

5001

2501

108 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

average DB index of 2. We recall our assumptions:
e each router can handle one flit per cycle and it takes one cycle for one flit to
be forwarded from the input of a router to the input of the next router, i.e.,
for any node r, T" =1 cycle and R" = 1 flit/cycle;
 all the flows are mapped on the same VC;
e our flow of interest is flow 1.
Figure 5.11 illustrates the end-to-end delay bounds of the foi when varying buffer
size. For the left graph, we keep each flow rate constant at 4% of the total band-
width; whereas for the right graph, we keep each flow packet length at 16 flits.

—8— PKT_LEN=2, G-BATA
PKT_LEN=16, G-BATA
PKT_LEN=32, G-BATA

—< PKT_LEN=64, G-BATA

--@- PKT_LEN=2, BATA

PKT_LEN=16, BATA 12001 paad--a —e— RATE=0.02, G-BATA
PKT_LEN=32, BATA X RATE=0.25, G-BATA
-4+ PKT_LEN=64, BATA ; —k— RATE=0.4, G-BATA

10004 : --®@- RATE=0.02, BATA
e t RATE=0.25, BATA
- ; A~ RATE=0.4, BATA
8
" PRT < S 5004
£
o
< T A
o K
Q S A "
. 7 6001 y -
« C > ®
€] -
= "
400 4 B
000 @
COREE L N A
200
00 0 8 o o . e .
6 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 6 é lb 1‘5 2‘0 2‘5 3‘0
BUFFER_SIZE BUFFER_SIZE
(a) Constant rate (b) Constant packet length

Figure 5.11 — Compared buffer size impact on end-to-end delay bounds

First, on both graphs, we notice an opposite trend between G-BATA and BATA
approaches. The former predicts that delay bounds increase when buffer size in-
creases, whereas the latter predicts that delay bounds decrease. This is mainly due
to the variation of the spread index of flows and its impact on each approach. When
buffer size increases, spread indexes of flows decrease, causing the subpaths to be
smaller.

For BATA, this generally makes the IB set smaller: as this approach does not
consider CPQ, reducing the length of a subpath reduces the possibility that this
subpath intersects with the paths of other flows. Consequently, the derived IB

latency tends to decrease, as well as the end-to-end delay bound.

5.6. Performance Evaluation 109

For G-BATA approach, however, the interference graph takes CPQ into account,
and in that respect, the number of consecutive packets is not bounded. Therefore,
reducing the size of the subpaths increases their number. The extracted IB set
thus contains more subpaths of smaller size. Consequently, there are more terms in
the indirect blocking delay sum (Equation 5.3), which may increase the end-to-end

delay bound.

Second, we notice that with both approaches, the end-to-end delay bounds increase
with the packet length and rate. Moreover, we observe that past a certain value of
buffer size, the end-to-end delay bounds remain constant. This corresponds to the
IB set remaining constant once buffers are large enough to hold one packet (spread
index of 1 for all flows).

Finally, on the right graph, we notice that BATA is more sensitive to rate
than G-BATA: for buffer sizes below 6 flits, BATA predicts delay bounds between
327 and 1178 cycles, while G-BATA gives delay bounds between 357 and 486 cycles.

Key points: Although increasing buffer size may improve end-to-end delay
bounds when no CPQ happens (under BATA), we find that it does not impact
favorably the end-to-end delay bound when CPQ can occur and the number of
consecutive packets queueing is not limited. Moreover, G-BATA is less sensitive to

rate variations than BATA for small buffer sizes.

Next, we focus on the packet length impact on the end-to-end delay bound for G-
BATA and BATA, as illustrated on Figure 5.12 and 5.13, respectively. For clarity
reason, we plotted separate graphs for the two approaches. On each figure, the left
graphs present results when the buffer size is constant (4 flits) and the right ones
when the rate of each flow is constant (4% of the link capacity).
The first observation we can make from all graphs is that the delay bounds evolve
in an almost linear manner with the packet length. For instance, on the right G-
BATA graph, with 8 flits of buffer size and packet length equal to 64, 96 and 128
flits, the ratios of packet length and end-to-end delay bound are 20.9, 20.7 and 20.6,
respectively.
Still on the same right graph, we observe further interesting aspects:
o At a given packet length, the buffer size has a limited impact on the end-
to-end delay bounds. For instance, for a packet length of 64 flits, the delay
bounds increase with less than 30% when the buffer size increases with 480%;

e For packet lengths that are significantly larger than buffer size, the delay

110 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

3000 A

—e— RATE=0.02, G-BATA —e— BUFFER_SIZE=1, G-BATA
1600 1 RATE=0.16, G-BATA —¥— BUFFER_SIZE=8, G-BATA
—< RATE=0.32, G-BATA 2500 4 BUFFER_SIZE=16, G-BATA
1400{ —¥— RATE=0.4, G-BATA BUFFER_SIZE=32, G-BATA
= = —— BUFFER_SIZE=48, G-BATA
< 12004 < 2000 | i
> >
o z
1000 1 2
§ § 1500 4
> 800 =
© ©
g 3
o 6001 S 10001
= =
400 -
500 1
200
T T T T T T T 0‘ T T T T T T T
0 10 20 30 40 50 60 0 20 40 60 80 100 120
PKT_LEN PKT_LEN

Figure 5.12 — Packet length impact on G-BATA end-to-end delay bounds

—e— RATE=0.02, BATA 2500 —8— BUFFER_SIZE=1, BATA
RATE=0.16, BATA —¥— BUFFER_SIZE=8, BATA
4000 —& RATE=0.32, BATA BUFFER_SIZE=16, BATA
—%— RATE=0.4, BATA 20004 BUFFER_SIZE=32, BATA
= - —— BUFFER_SIZE=48, BATA iz
K 3
£ 3000 S
=z = 15001
c c
3 3
o o
Q Qo
2 2000 1 >
ks £ 1000
o he)
o o
2 2
1000 500
0 - 0
0 10 20 30 40 50 60 0 20 40 60 80 100 120
PKT_LEN PKT_LEN

Figure 5.13 — Packet length impact on BATA end-to-end delay bounds

bound remains constant regardless of the buffer size, e.g., it is the case for a
packet length of 128 flits.
Similar observations can be made for BATA approach.
However, looking at the left graphs for BATA and G-BATA, we notice that BATA
is more sensitive to rate variations than G-BATA: for a packet of 64 flits, when
the rate increases from 2% to 40%, the end-to-end delay bound yielded by BATA
increases from 1226 cycles to 4630 cycles (+278%) while the delay bound predicted
by G-BATA increases only from 1326 cycles to 1698 cycles (+28%).

Key points: at a given rate and packet length, we observe that buffer size has

a limited impact on the end-to-end delay bound, and this observation is valid

WC delay bound (cycles)

1200 -

1000 -

800

600

400 4

200 4

5.6. Performance Evaluation 111

for both G-BATA and BATA approaches. We also notice that the evolution of
the delay bound with the packet length follows an almost linear trend, for both
approaches as well. Finally, we further confirm that BATA is more sensitive to

rate variations than G-BATA, especially for large packet lengths.

—e— BUFFER SIZE=1, G-BATA . —e— PKT_LEN=2, G-BATA
BUFFER_SIZE=8, G-BATA PKT_LEN=32, G-BATA
—— BUFFER_SIZE=16, G-BATA 4000 —— PKT_LEN=64, G-BATA
--@- BUFFER_SIZE=1, BATA --@- PKT_LEN=2, BATA
BUFFER_SIZE=8, BATA 5 PKT_LEN=32, BATA
--&- BUFFER_SIZE=16, BATA < -k~ PKT_LEN=64, BATA E
S 3000 X
. - -
c
o 3
°
:"A Q
M & 20001
o ©
o}
o °
8]
"""""""" - / =
eg gt 0 T 1000
oo
............ a
............. A‘Ar‘A
Akhke A 0
000 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035
RATE RATE

Figure 5.14 — Compared flow rate impact on end-to-end delay bounds

We now focus on the impact of the flow rate on end-to-end delay bounds (Figure
5.14). The left graph represents the evolution of delay bounds when packet length
is fixed (16 flits) for different values of buffer size, and the right graph shows the
evolution of delay bounds with a fixed buffer size (4 flits) and values of packet length
from 2 to 64 flits. As expected, with both approaches, the end-to-end delay bound
increases with the rate. What is more interesting is that delay bounds with G-
BATA approach increase much less rapidly than with BATA approach for buffers of
1 and 8 flits: at a 40% flow rate, BATA gives bounds that are 26% to 162% greater
than bounds given by G-BATA approach (left graph on Figure 5.14). Therefore,
we can confirm one more time that BATA is more sensitive to rate variations than
G-BATA.

Although there is generally no strict order between the bounds given by the two
approaches, for instance for B = 8 flits, we can notice a trend regarding the relative
position of the bounds: BATA predicts smaller bounds than G-BATA for large
buffer sizes and small rates, and the trend is opposite for small buffer sizes, especially
as the rate increases. When the rate of flow p increases with all other parameters
constant, the propagated burst of an arrival curve increases by p - T per node with
a service curve latency of T. Results obtained with BATA are especially impacted

by this burst propagation since the burst is propagated at the beginning of the

112 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

subpaths when computing 775 (Algorithm 2, Line 16). This explains why BATA-
predicted bounds increase faster than graph-predicted bounds when increasing the
rate.

Key points: Both approaches predict an increase of the end-to-end delay bound
with the rate, however this increase is significantly different depending on the
approach. Burst propagation at the beginning of subpaths in BATA approach
leads to important bound increase when the flow rate is high. For instance, the
computed bounds are up to 275% higher with BATA than with G-BATA at 40%

flow rate.

5.6.3 Tightness Analysis

To assess the tightness of the delay bounds yielded by G-BATA, we consider herein
a worst-case simulation using Noxim simulator engine [50]. We proceed as in Section
4.7.2. We run each flow configuration many times while varying the flows offsets
and we consider the maximum worst-case delay over all the simulated configurations
and compute the tightness ratio for each flow.

We simulate the configuration of Figure 4.6, when varying buffer sizes in 4, 8 and
16 flits, and flow rates in 8% and 32% of the total available bandwidth. We extract
the worst-case end-to-end delay found by the simulator and compute the tightness
ratio for each flow. The obtained results are gathered in Table 5.1.

We recall the computed tightness ratios obtained with BATA. Additionally, we
computed and included the congestion indexes associated with G-BATA approach.
We only displayed results for buffer sizes 4 and 16.

We notice that the lower the congestion indexes are, the greater the tightness
is. Low congestion indexes mean that the contending possibilities are reduced.
Hence the worst case is simpler to find and thus more likely to be achieved or
approached with randomly chosen offsets. We stress out the fact that there are
many possibilities for the wake up time of each flow, and that our series of simu-

lations may not have been able to approach or achieve the worst-case for every flow.

For a buffer size of 4 flits and a flow rate of 8%, G-BATA and BATA give similar
results (with a slightly better average tightness for BATA). However, for a 32%
rate, G-BATA gives tighter bounds. For 16 flits of buffer size, BATA gives tighter
results for both rates. However, we want to stress out that in this case, for 32%

rate, we might not be able to verify that no CPQ can occur. Thus the results

5.6. Performance Evaluation 113

B=14
rate = 8% rate = 32%
Flow G-BATA BATA G-BATA BATA Ipg Iip
1 40% 44% 74% 44% 4 11
2 42% 41% 87% 24% 2 12
3 63% 64% 75% 51% 3 5)
4 64% 68% 93% 64% 2 3
b 2% 7% 68% 46% 2 0
6 73% 75% 57% 21% 2 0
7 85% 9% 100% 43% 1 0
8 66% 68% 67% 46% 2 0
9 45% 47% 37% 24% 2 0
10 84% 8% 8% 70% 2 0
11 7% 92% 81% 69% 1 0
12 85% 89% 91% 66% 1 0
avg 67.36% 70.11% 76.52% 47.41% -
min 40.20% 40.61% 36.51% 20.77% - -
max 87.19% 91.71% 99.74% 70.46% - -
B =16
rate = 8% rate = 32%
Flow G-BATA BATA G-BATA BATA IDB I[B
1 24% 79% 44% 87% 4 22
2 18% 79% 43% 97% 2 27
3 35% 5% 48% 75% 3 14
4 34% 86% 51% 87% 2 8
5 66% 5% 47% 64% 2 0
6 63% 86% 45% 86% 2 0
7 83% 87% 78% 97% 1 0
8 60% 70% 46% 1% 2 0
9 40% 49% 27% 44% 2 0
10 80% 8% 76% 88% 2 0
11 86% 88% 100% 96% 1 0
12 83% 7% 76% 88% 1 0
avg 56.08% 80.76% 56.73% 81.60% -
min 18.07% 48.94% 26.96% 43.83% - -
max 86.50% 88.32% 100.00% 97.34% - -

Table 5.1 — Tightness Summary for both approaches, buffer size 4 flits (top) and 16

flits (bottom)

114 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

yielded by BATA should be taken with caution.

Key points: On the tested configuration, with 4-flit-large buffers and at 8% flow
rate, both models give similar results. With the same buffer size and a higher
rate (32%), G-BATA gives tighter results than BATA, showing that BATA tends
to be pessimistic for high flow rates. With larger buffer sizes, BATA performs
better, but when flow rates are high, BATA might not be applicable. Overall, the
tightness is good. G-BATA averages at 72% when the buffer size is 4 flits and
56% for 16 flits, whereas BATA averages at 59% and 81%, respectively. For flows
subject to the more complex congestion patterns, the worst-case may not have
been approached as closely as for flows undergoing little to no interference, hence
the derived tightness ratio is smaller. This conjecture is supported by the fact that

the measured tightness is lower for flows with higher congestion indexes.

In order to determine whether BATA or G-BATA should be used, we propose a
decision-making graph (Figure 5.15). Essentially, G-BATA should be used whenever
the model hypothesis do not allow to use BATA, or when analysis results should
be obtained as quickly as possible. In the absence of such limiting factors, one can

use BATA under the assumption that CPQ cannot occur.

O—
[’I‘raﬂﬁc type J
CBR | other
[Platform type J
homogeneous | heterogeneous

[Assume CPQ can occur? J

no | yes

[Need a fast analysis? J

no | yes

]

Flow set size j

less than ~ 100 ~ 100 or more
[BATA J [G-BATA]

Figure 5.15 — Determining which approach should be used

5.7. Conclusions 115

5.7 Conclusions

To improve the scalability and the applicability of BATA approach, we proposed
G-BATA. G-BATA extends the flow model to support bursty traffic and extends
the network model to cover heterogeneous architectures. Furthermore, we re-
engineered the indirect blocking analysis to support the bursty traffic assumption
and the consecutive packet queueing scenarios that can result, using a graph
structure to capture interference patterns. We consequently adapt the service
curve computation method. The graph structure allows us to reduce the number

of recursive calls.

Then, we study the computational aspect of our new approach. We find that G-
BATA exhibits a much better scalability than BATA, with average computation
times 10 to 100 times lower on 32- and 48-flow configurations. Moreover, G-BATA
scales well and is able to compute all end-to-end delay bounds of 800-flow configu-
rations in less than two hours (around 9 seconds per flow).

We then seek to estimate the complexity of flow sets by introducing and evaluating
two congestion indexes, namely the DB index and the IB index. These two
indicators aim at quantifying the congestion a flow is likely to undergo. We show
that for a given number of flows, the average DB and IB indexes of a flow set are
correlated with the duration of G-BATA and BATA analysis on the flow set, and

therefore can give further insight on how complex the configuration is.

Afterwards, we perform a sensitivity analysis of G-BATA, and compare it with
BATA. We find that G-BATA is less sensitive than BATA to flow rate. Contrarily
to BATA, the bounds yielded by G-BATA increase when buffer size increases.
This stems from the fact that G-BATA considers that consecutive packet queueing
(CPQ) can happen and does not bound the number of packets that can stall in
the network. Consequently, increasing buffer size also increases the potential CPQ),

hence the end-to-end delay bound.

Finally, tightness study results on the test configuration show an average tightness
ratio up to 72% for G-BATA. For flows with a high rate, G-BATA yields tighter
end-to-end delay bounds than BATA. We also find that tightness ratio is higher for

flows with lower congestion indexes, for both approaches.

116 Chapter 5. G-BATA: Extending Buffer-Aware Timing Analysis

Auz sourdes percussions mes doigts se sont levés,
Nourris de rythmes fous et de nappes criardes.
Tantot les cliquetis sur les touches blafardes

Se muent en mots, en nombre, en matiére achevée.

*
* ok

CHAPTER 6
Hybrid Methodology for Design
Space Exploration: Simulation

and Network Calculus

Contents
6.1 Introduction 117
6.2 Overview and Extended Workflow 118
6.3 System Modeling: Adding a NoC Component in TTool . . 119
6.3.1 Implementation L. 119
6.3.2 Functional View 000, 120
6.3.3 Architecture Lo 124
6.4 Verification, NoC Generation and Simulation 124
6.5 Performance Evaluation 126
6.5.1 Example Modeling 126
6.5.2 Analysisand Results 128
6.6 Conclusion i 131

6.1 Introduction

In this chapter, we tackle design space exploration. As previously noticed, few of
the existing methods integrate the verification of real-time constraints in the design
space exploration workflow. Besides, most of the timing requirements are checked
using simulation results instead of a formal approach. Therefore, our aim is to
provide a methodology allowing to verify the compliance with the deadlines early

in the design process.

118 Chapter 6. Hybrid Methodology for Design Space Exploration

We present an extended workflow compatible with the Y-chart approach, in which
real-time constraints can be verified during the design process. We present the
high-level view of our approach and the updated workflow in Section 6.2.

Then, we implement this approach. To this end, we use an existing toolkit for
design space exploration, TTool [9, 90, 91], to which we add certain features, and a
tool for worst-case timing analysis of networks called WoPANets [10, 11], in which
we integrate our model for NoC analysis G-BATA.

We add a NoC model in TTool’s architecture description tool to allow simulation
of NoC-based systems. We detail the system modeling aspect in Section 6.3. In
Section 6.4, we present the NoC generation step and the verification capabilities of
the approach. In Section 6.5, we demonstrate the use of the approach and assess
its performance in terms of computation time and scalability. Finally, we conclude

on our approach (Section 6.6).

6.2 Overview and Extended Workflow

The typical workflow for NoC-based system design using our methodology is shown
on Figure 6.1. The gray boxes refer to steps of the regular Y-chart approach. The
colored ones refer to our extensions: the green one refer to system modeling, while

the blue one denotes steps related to timing analysis.

[Application model J [Architecture model JJ NoC model]

| |
IS

[I\:Iappir]g J
1

[Simulation }7 [Timing Analysis }

timing OK timing not OK

Figure 6.1 — Workflow of the hybrid approach

The functional and architectural description of the system constitute the first step,
and they are done independently. The functional structure defines the different
tasks of the system, their relationships between each other, and their behavior.
The architecture model consists of processing elements, interconnects and commu-

nication media that will execute the functional model. The mapping step assigns

6.3. System Modeling: Adding a NoC Component in TTool 119

each task of the functional description to an architecture module.

Once a mapping is generated, the timing analysis step can be performed, in order
to discard infeasible mappings. If the mapping complies with the timing require-
ments, simulation will allow to get additional insight on the system behavior and
further refine the design. Otherwise, either the mapping or the architecture should
be changed, and checked again, until a configuration compatible with the timing
constraints is reached.

We expect that performing the timing analysis early in the design flow will speed
up the design space exploration process, because it avoids to simulate configura-
tions that do not meet the timing requirements. In the next section, we detail the

practical implementation of our approach.

6.3 System Modeling: Adding a NoC Component in
TTool

6.3.1 Implementation

We base our implementation on a set of existing tools, to which we add certain
functionalities: (i) TTool [9], a toolkit for design space exploration, and its profile
for system-level modeling, DIPLODOCUS [90]; (ii) WoPANets [10, 11], a software
for worst case performance analysis of networks, and more specifically a plugin we
added for NoC worst case analysis, implementing our approach G-BATA.

As TTool already complies with the Y-chart approach, we use it to describe the
functional behavior, the architecture and the mapping. At this point, the one or
several NoC component(s) used in the architecture description phase are considered
to be black boxes. We also use TTool for the simulation phase.

The formal real-time analysis relies on WoPANets, and it can be done once a map-
ping is generated. We will detail it later on, in Section 6.4.

If the timing analysis validates the mapping, the designer can proceed to the sim-
ulation to gain more insight on the system. This step uses the TTool simulator
engine. We add the NoC-removal step before the compilation step to generate all
the components and tasks that constitute the NoC. Then, we use TTool to gen-
erate, compile and run the simulation code. Additional metrics and informations
obtained using simulation can be used to propose modifications of the architecture
or mapping.

The implemented approach workflow is presented on Figure 6.2. Green boxes still

refer to our extensions in TTool, and blue ones to the timing analysis step.

120 Chapter 6. Hybrid Methodology for Design Space Exploration

[Application model J [Architecture model J] NoC model]

||
[1:4apping J

C++ code generation
Compilation

|

Simulation

[WoPANets import J

[Timing analysis J

)
Z
o
Q
g
z
>
~.>m.)........m.).........T-'
>
=)
[e]
M
b}
5
N

timing OK timing not OK

Figure 6.2 — Extended workflow with implementation details

To include a NoC component in TTool, we also follow the Y-chart approach and
separate the NoC functional description from its architecture. The next sections

detail the NoC model we implemented.

6.3.2 Functional View

We distinct two basic elements that constitute a NoC: the router and the network
interface. Routers are interconnected to one another to create the NoC topology,
and they handle packets in a flit-per-flit manner. Network interfaces allow to link
flit-unaware senders and receivers, that only deal with packets, to routers of the
NoC. The input network interface is in charge of injecting packets into the NoC and
perform arbitration between different senders, while the output network interface
will consume incoming flits and notify the appropriate receiver when a complete
packet is available. This way, the final NoC component can be connected to other
components available in TTool without any changes. We synthesize the general
functional architecture on Figure 6.3.
The router model is an input-buffered router with VC support. Such a router must
be able to:

o dispatch incoming traffic to appropriate VC queues;

e make the routing decision for each packet;

o arbitrate between different inputs;

6.3. System Modeling: Adding a NoC Component in TTool 121

NoC
Other routers
North South West East
il ol 1] +
1 ¢ 1 ¢ 1 ¢ 1 ¢
Router

,Network interface Network interface‘

ouT IN

[t
]
v]

(Local tile]

Figure 6.3 — NoC functional view

o arbitrate between different VCs;
To perform these actions, we propose the functional structure displayed on Figure

6.4, for a simplified router with two VCs, two inputs and two outputs.

INO VCO OUTO VCO

INO OUTO
INO VC1 / OUTO VC1
IN1 VCO OUT1 V(0

IN1 OUTI
IN1 VC1 \(mm

Figure 6.4 — Functional structure of a router

This view consists of several stages in charge of a particular aspect of flit forwarding.
Such an organization simplifies each stage and allows for more flexibility in the
design. It also makes modification of arbitration policies easier, as most of them
require alteration to only one block. Note that each block has a behavior specified
using activity diagrams. We do not show them here and summarize the behavior of
the blocks instead.

First, the IN functions receive incoming traffic and dispatch it to the appropriate
VC. The INVC functions compute the routing decision and request for the appro-
priate output port. Note that, at this stage, we perform XY routing. We haven’t

implemented other routing policies yet and leave this aspect as an improvement

122 Chapter 6. Hybrid Methodology for Design Space Exploration

perspective. However, due to the modularity of the functional architecture, imple-
menting a different routing algorithm can be easily done modifying only the IN_VC
function.

The next stage is the OUT_VC function. It receives output requests from different
inputs of one VC and arbitrates in a FCFS manner. It sends output requests to the
0UT module that performs the multiplexing of traffic from different VCs requesting
the same output. We assume Fixed-Priority arbitration between VCs, as it allows
to provide different QoS to different traffic types. We leave other arbitration
policies as a future work and note that our architecture makes it possible to alter

the VC arbitration policy by only modifying the OUT function.

We now detail the way the different functional modules interact with each other, in
relationship to the expected behavior of a router. TTool offers two types of ports
that we will use: channels and events. Channels, on one hand, correspond to data
transfers between tasks (data being read/written). They have to be mapped on a
medium and they consume bandwidth during the transfer. In TTool, however, the
value of the data is abstracted, and only its size is relevant. Events, on the other
hand, represent the control aspect of the application. They do not consume any
bandwidth and do not need to be mapped.

A router performs reads and writes when it handles a flit, as shown on Figure
6.5. In our model, there is a first read/write operation at the IN function when an
incoming flit is dispatched to the appropriate queue. Then, the flit is read from the
buffer by the IN_VC module, and will be later written by the OUT module to the
input of the downstream router. These stages also use events for feedback control
and to transmit information about the current packet to downstream modules, as
detailed hereafter.

We use events for the control functions of the router, as illustrated on Figure 6.6.
This is especially the case for the modules IN_VC and OUT_VC, that use events to
notify downstream modules that a flit is available and transmit information about
the packet (length, destination, VC, channel ID). We also use events to implement
a feedback control mechanism and arbitration (input selection and VC selection).
Initially, IN_VC modules send as many feedback control credits as the number
of flits their buffer can hold. Afterwards, all modules consume one credit before
forwarding a flit downstream. Once the flit is forwarded, they generate a credit for

the upstream module.

Within routers, each event corresponds to either a flit or a feedback control token.

6.3. System Modeling: Adding a NoC Component in TTool 123

INO VCO

feedback VCO

INO

OouUTo

ctrl IN

feedback VC1

Figure 6.5 — Read and Write operations in the router model. Blue ports correspond
to channels, purple ports are events.

INO VCO OUTO0 VCO

Figure 6.6 — Control events in the router model

Outside of the NoC, each event corresponds to a packet. One of the roles of the
network interface modules is to perform the appropriate conversion between packet-
view and flit-view.

The input network interface receives one event for each packet. This event con-
tains information about the packet length, its destination, the VC it is mapped on
and a channel identification corresponding to the identity of the flow. This last
information is used to separate flows with the same destination core but that are
handled by different tasks. The input network interface sends one event before each
flit. This event contains all the information of the packet, and a field eop (end of
packet) to indicate whether the corresponding flit is the last one.

Conversely, the output network interface receives packets flit after flit. Once it has

read a whole packet, it notifies the receiving task with an event containing all the

124 Chapter 6. Hybrid Methodology for Design Space Exploration

™ <<MEMORY>>
Mern_INO_\CO

<<CPURR>> *
L IRE e routervC:inputd_ved D
FOUEEN/CiINO_VCD D‘ channet

<<CPURR>>
CPU_OUTO_WCO

routertyC:: OUTD_WCO D

- «<<BUS-RR>= = <<BUS-RR>>
Bus IND WO Bus_OUTO_WCO
T ‘-<BUS-RR>>
++<BUS-RR:>> # <<CPURR>> # <<CPURR>> s e
Bus_INO CPU_IND CPU_OUTD
| routeryC:OUT_O |
routervc:IN_0 D -
T
‘ - <<BUS-RR>%> ~ <<BUS-RR=:>
- <<MEMORY=>> Bus_INO_VC1 Bus_OUTO_VCL
Mem_[ND .
routervC:output_0_0_ input_0
pHiEETPEE D # =<CPURR-> W <<MEMORY>> # <<CPURR=>
CHERTE) CPU_IND_VCL Mearn_IND_\WC1 CPU_OUTD_C1

routervC: OUTO_WCl D

routeryC:ING_VC1 D
routerviCiinputd_vel D
channe!

Figure 6.7 — Architectural view of the presented router (with task mapping)

information of the packet (length, destination, VC and channel ID).

6.3.3 Architecture

The architecture we designed for the NoC components must ensure each task of the
routers and network interfaces can run without concurrency. A partial view of the
architecture and mapping is shown on Figure 6.7. For a router with two VCs, there
are as many such parts as there are input/output pairs. We map each task on one
processing element, thus the architectural view has a structure very similar to the
functional diagram. We use memory for the input buffers, the network interface
buffers, and for the IN module (that must be able to read and write one flit).

Notice that the architecture model is an abstraction of the real architecture at a
higher level, hence the processing elements used are CPUs here, but it does not
matter much. In a real router, these would be implemented on lighter, dedicated

hardware.

6.4 Verification, NoC Generation and Simulation

The first verification is the worst-case timing analysis based on G-BATA (Figure
6.2). It is done after the mapping step, once the model is syntactically checked,
in order to ensure the mapping is compliant with the real-time constraints. In

practice, the model is exported to a XML file that can be read and processed by

6.4. Verification, NoC Generation and Simulation 125

WoPANets. Afterwards, the worst-case timing analysis is performed to determine
whether or not the mapping can satisfy all real-time constraints. At this point,
unfeasible mappings are discarded. For now, our integration work does not allow
WoPANets to propose alternative mappings or modifications of the architecture
when the system does not satisfy real-time constraints. However, this could be
implemented and used in the near future.

The main challenge of this part is to compute the flows arrival curves from the
functional description of the system. There is no explicit description of the flows
per se in the functional model, therefore, we consider each channel corresponds to
a flow. The length of the packets can be extracted from the XML file by looking at
the Write instructions on the corresponding channel. Henceforth, the computation
of the maximum packet length is straightforward.

However, timing characteristics (period or maximum inter-packet time, and jitter)
of the flow model we use may not be explicitly specified, and hard to derive from
the activity diagram of the task generating the flow.

To cope with this difficulty, we require that attributes specifying at least the period
and packet length of each flow are present in the functional description; either in
the task generating the flow, or in one or several control tasks handling the flow
generation. We may develop tools to drop this requirement in the future, but for
now, this simplifies the import of the XML file in WoPANets.

The second verification technique is based on transactional simulation. Transac-
tional simulation allows to get a detailed, cycle-accurate behavior of the system
running on the target platform. While it does not provide guarantees on the real-
time constraints as such, it can be used to further refine some design choices, beyond
the compliance with deadlines.

To handle the NoC component, we add features to the TTool entity in charge of
generating the simulation code. At the NoC removal step, it generates all tasks
of the different components of the NoC (routers tasks, network interfaces) and the
corresponding architecture and mapping of the NoC component, according to the
pattern of Figure 6.7.

Then, it generates C++ code for the simulator engine. From this point onwards,
the simulator can be run from TTool graphical interface or from a terminal.

The main challenge at this point is to interpret simulation traces, that can be very
large due to the number of devices and tasks a NoC represents. For instance, a 4 x 4

square NoC with 2 VCs represents 448 tasks and as many devices to run them.

126 Chapter 6. Hybrid Methodology for Design Space Exploration

6.5 Performance Evaluation

In this section, we detail the modeling, analysis and simulation of a small example
to demonstrate the capabilities of our approach (Section 6.5.1). Then, in Section
6.5.2, we use the results to evaluate the computational cost gain from integrating
the timing analysis step in the workflow.
We model a target configuration, shown on Figure 6.8. It consists of three flows on
a small 2 x 2 tiled platform with a NoC.

0 >
1 2

Figure 6.8 — Example configuration

6.5.1 Example Modeling

Figure 6.9 shows the functional view of one flow, consisting in a TX task, an RX
task and a control task. The displayed model is replicated two times to obtain
three similar schemes in total, corresponding to three flows. We present the activity
diagrams of the ctrl, src and dst tasks on Figure 6.10. The src tasks generate
traffic, 7.e. they send one packet when instructed to do so by an event. The dst
task consume traffic, i.e. they wait for a packet to be read when instructed to do
so by an event. Events are generated by three “control tasks” (ctrl) so that each
flow transmits exactly two packets with given period and offset.

Notice that src tasks write 3 flits while dst tasks read 4 flits. This is due to a
choice we made to represent the additional flit needed for the header of the packet
to be sent.

We map the functions according to figure 6.11. Each CPU has enough cores for
each task to run without concurrency. Note that the control tasks are mapped on
a dedicated CPU so that they do not interfere with the src and dst tasks. We set
the buffer size to 2 flits.

To get the NoC end-to-end latency of a flow, we focus on two particular instants:
(i) the time at which the first flit of the packet is read by the IN module of the

first router local input, called injection time and denoted t;; and (ii) the time at

6.5. Performance Evaluation 127

srcO dsto

A 4;
;,

ctrl 0

+ offset = 20 Matural;
+ period_cycles = 300 : Natural; —§|7
o

3

—

Figure 6.9 — Functional view of the example

2]
sendpkt_o0)

2]
sendpkt_sreol)
Il [i -
period_cycles-1
(a) TX task (b) RX task (c) Control task

Figure 6.10 — Activity diagrams

which the last flit of the packet is written by the OUT module of the last router local
output, called ejection time and denoted t.. The remaining part of the delay is not
taken into account by the timing analysis model since it is due to the traversal of

network interfaces. The end-to-end delay can thus be expressed as:

Dm:te*ti

However, when two packets are originating from the same tile at the same time,
one will be delayed by the other before the injection time. Hence, the delay D,,
measured in this case may be lower than the actual delay experienced by the blocked
packet. To take this particularity into account, we first get the time when the packet
requests the use of the network interface, denoted t,, and referred to as request
time hereafter. This time corresponds to an event sent by the source task after it
performed the “Write” of the packet to the NoC, so it is relatively easy to extract.

Then, we measure the time taken by the first flit to cross the network interface

128 Chapter 6. Hybrid Methodology for Design Space Exploration

#* <<CPURRPB:: E 3 <=<CPURRPB:=>:>
CPUOD CPULO
TestApplication::srel D Testapplication: dstd D

TestApplication::srcl D

Testapplication: sre2 D

+=»=BUS5-PB=> +=»=BUS5-PB=>

Bus00 BuslO
M HNoCe=
MoC
==cBLIS-PB> > wa=BUS-PB==
Bus0l1 Busll
| I
#* << CPURRPB:>> E <<CPURRPB>>
CPUOL CPULL

TestApplication::ctrl_0 D

TestApplication::ctrl_1 D TestApplication::dstl D

Tastapplication::ctrl_2 D TestApplication: dst2 D

Figure 6.11 — Mapping example

when there is no congestion, denoted A,. We finally obtain the measured delay

with the following expression:
Dy, =te— (ty +Ay)

Notice that for flows not experiencing a delay of their injection time, we have
D,,=D,,.

6.5.2 Analysis and Results

With the mapping shown of Figure 6.11, we proceed to the timing analysis step.
First, we determine the characteristics of the nodes of our router model using ex-
amples with one flow and no congestion. We find that the service curve for one

router is:

_ 1
13

We stress out that these characteristics depend on the model of the router we

B(t) (t—5)"

designed. We can vary them by adapting the clock frequency of the NoC relatively
to the clock frequency of the platform CPUs. Besides, it is possible to propose

another router model for the NoC to obtain different characteristics, but this is a

6.5. Performance Evaluation 129

future development perspective. We run G-BATA on the configuration and derive
the end-to-end delay bounds.

Afterwards, we proceed to the simulation, first setting all offsets at zero. We extract
injection and ejection times from simulation traces for the two first packets (Table

6.1), compute the corresponding delays and compare them to the worst-case bound.

Flow 0 Flow 1 Flow 2
ty (cycles) 8 208 11 211 8 208
t; (cycles) 13 213 43 243 13 213
te (cycles) 75 275 139 339 75 275
Dy (cycles) 62 62 9% 96 62 62
D!, (cycles) 62 62 123 123 62 62
Delay bound (cycles) 199 199 455 455 288 288

Table 6.1 — Request times, injection times, ejection times and delays for all flows

We first notice that flow 1 delay bound is greater than its deadline (455 cycles vs 300
cycles). The analysis of the traces also reveals that flow 0 and 2 do not undergo any
congestion in the simulated scenario. This is further confirmed by three elements.
First, as the offsets are zero, flow 2, injected from tile (1,0), is initially the only one
requesting the use of the link from (1,0) to (1,1), and therefore can proceed to its
destination without congestion.

Second, packets of flow 0 and 1, released at the same time, compete for the use
of the link between (0,0) and (1,0). One of them will not experience any delay,
while the other will wait. As both flows originate from the same tile, this blocking
scenario occurs before the injection time. Since D,, and D/, are the same for the
packets of flow 2, we infer that no congestion occurs for this packet right before
injection time.

Third, we compute the base latency for flows 0 and 2, and find it is the exact

same value as the measured delay, which denotes a transmission without congestion.

To vary the transmission scenarios, we perform a series of additional simulations
with random offsets. To that end, we randomly chose an offset for each flow,
according to a uniform distribution, then simulate the configuration so that 10
packets of each flow are transmitted. We repeat this process 3000 times with offsets
between 0 and 299, and 3000 times with an offset between 0 and 50. We plot the
distribution of the delays for each flow on Figure 6.12.

On the machine used, the NoC removal, code generation and compilation were done

. . .
130 Chapter 6. Hybrid Methodology for Design Space Exploration
—— maximum measured delay —— maximum measured delay
0.4 0.14
0.12
0.3 0.10
> >
= o
c <
s 2 0.08
02 g
w “0.06
0.04
0.1
0.02
0.0 0.00 —
60 80 100 120 140 60 80 100 120 140 160
End-to-end delay (cycles) End-to-end delay (cycles)
(a) Flow 0
0.175 —— maximum measured delay —— maximum measured delay
0.08
0.150
0.125 0.06
> >
2 2
$ 0.100 b
& =
9 @ 0.04
£ 0.075 x
0.050
0.02
0.025
0.000 0.00 -
60 80 100 120 140 160 18 60 80 100 120 140 160
End-to-end delay (cycles) End-to-end delay (cycles)
(b) Flow 1
0.35 —— maximum measured delay —— maximum measured delay
0.25
0.30
0.25 0.20
> >
2 2
g 020 g 0.15
o o
o o
w 0.15 w
0.10
0.10
0.05
0.05
IS | e o o S
0.00 0.00
60 70 80 90 100 110 12(¢ 60 70 80 90 100 110 120
End-to-end delay (cycles) End-to-end delay (cycles)
(c) Flow 2

Figure 6.12 — Distribution of end-to-end delays with random 0- to 299-cycle offsets
(left) and 0- to 50-cycle offsets (right)

in less than two minutes. The 3000 simulations and associated trace processing took

approximately 44 minutes, and were not able to exhibit a deadline miss for flow 1.

6.6. Conclusion 131

The timing analysis of the system took 602 us.
We can make two observations about this experiment:

o If the flow offsets are known, controlled or constrained in a certain way, sim-
ulation may be used to refine the timing analysis results, identify blocking
scenarios that actually happen and help mitigate them. We exhibit a case
of controlled offsets where simulation is able to refine the bound given by G-
BATA. Moreover, simulation shows that most delays are distributed around
the minimal latency. It also shows that blocking scenarios often impact flow
1 for small offsets (left graph of Figure 6.12b).

e However, in the case where flow offsets are unknown, for instance if flows
are not synchronized, even this simple configuration becomes complicated to
analyze on the basis of simulation, because all three flows injection times may
impact the blocking scenarios. In that case, relying on the analytical approach
avoids costly simulations.

We conclude that the benefits of the hybrid approach are already visible on a simple
example with a small number of flows. Therefore, we can expect even more benefits
on realistic case studies. Simultaneously, simulation results provide more insight on

transmission scenarios and can help refine the results from the timing analysis.

6.6 Conclusion

We presented a general hybrid approach, using simulation and Network Calculus,
for design space exploration. The workflow we propose complies with the Y-chart
approach and integrates worst-case timing analysis in the design process. To the
best of our knowledge, this has not been done before.

Then, we implemented our methodology on the base of existing tools, WoPANets
and TTool. To this end, we added a NoC component in TTool. It may be used
in architectural descriptions as a black box for the timing analysis, and turned
into a functional NoC for the transactional simulation. We interfaced TTool with
WoPANets via an XML export/import, and performed simulation trace filtering
and processing to derive information such as end-to-end latencies of flows from the
trace data. We developed the tools to be as modular as possible; as such, our work

can be used as a base for various developments.

In the next chapter, we will validate our methodology by applying it to the study of
an autonomous vehicle control application. We will show that our implementation

of the hybrid design space exploration approach can successfully model a complex

132 Chapter 6. Hybrid Methodology for Design Space Exploration

application running on a manycore platform, validate the mapping of the tasks, and
gain more detailed insight on the system behavior once the timing constraints are

satisfied.

Bien assis, le dos droit, et la téte
Evoquant constamment | ’élégance,
Nous maintenons l'allure, et la béte

Fquine se déplace en cadence.

*
* Xk

CHAPTER 7

Practical Applications

Contents

7.1 Experiments on TILE-Gx8036 134
7.1.1 Platform Characteristics 134
7.1.2 Traffic Generation 134
7.1.3 Latency Measurements 136
7.1.4 Results and Discussion 137

7.2 Control of an Autonomous Vehicle: Timing Analysis and
Comparative Study 000 138
7.3 Control of an Autonomous Vehicle: Modeling and DSE . . 143
7.3.1 Functional Description 144
7.3.2 Architecture Modeling L. 145
7.3.3 Simulation 145
7.4 Resultsand Conclusion 146

In this chapter, we validate our methodology using a real platform, as well as a

realistic case study. First, we present the results of our experiments on a Tilera

TILE-Gx8036 36-core chip in Section 7.1. These experiments aim at proving that

our model can be practically used on a real platform, and confronting the predicted

bounds to physically measured delays. We then confront our methodology to a

realistic case study, the control application of an autonomous vehicle, running on

a 4 x 4 manycore chip. In Section 7.2, we first perform the timing analysis and

compare our results with a state-of-the-art approach based on scheduling theory

and detailed in [42]. Section 7.3 presents the modeling phase using our hybrid

approach and the simulation results based on the same case study. Finally, Section

7.4 concludes the chapter.

134 Chapter 7. Practical Applications

7.1 Experiments on TILE-Gx8036

7.1.1 Platform Characteristics

To gain deeper insights into our approach G-BATA, we performed experiments on
a manycore chip. The idea is to generate traffic on the NoC of a TILE-Gx8036
chip according to a known configuration, measure the latency for a sample of pack-
ets, and confront the theoretical bound derived using G-BATA to actual latency
measurements.

We used a Tilera TILE-Gx8036. It is a 36-core chip with a NoC that has sev-
eral subnetworks, all decoupled from one another. We will use the User Dynamic
Network (UDN). Other subnetworks include the I/O Dynamic Network (IDN) and
those used by the memory system to handle memory requests (QDN, RDN, SDN).
Thanks to this, the data flows we monitor in our experiments will not suffer from
memory-related interference.

The UDN has 3-flit-deep buffers and no VCs. There is a centralized arbiter for each
router, meaning two flows crossing the same router without sharing any inputs or
outputs may cause a one-cycle interference to one another. This will be taken into
account in our model by adding this extra-cycle latency to the technological latency

whenever needed.

7.1.2 Traffic Generation

To generate traffic, we define two process types, TX and RX. TX processes generate
packets and send them on the NoC, while RX processes consume packets at the
destination core.

To assign these processes to the appropriate cores and generate the defined traffic,
we follow the steps illustrated on Figure 7.1. We use a configuration file containing
all the traffic pattern information. We load the file onto the platform before running
the code. This file is then read and its information is stored in a shared memory
zone.

Then, the application forks as many time as there are TX and RX processes, and
each process assigns itself to the appropriate core according to the information
loaded from the configuration file.

We want the behavior of the application to be as predictable as possible. Therefore,
when we generate and receive traffic, we want to make sure that nothing will inter-
rupt the execution of the corresponding processes. Especially, we don’t want any

interference from the operating system. Thus, each process switches to “dataplane

7.1. Experiments on TILE-Gx8036 135

Read configuration file

Fork and assign
processes to cores

Execute TX or RX task
accordingly

Synchronize with other
processes

Print stats and free
memory

Exit

o

Figure 7.1 — Main application algorithmic view

mode” once it is assigned to the appropriate core. This way, it will not suffer from
OS interruptions and will be granted the exclusive use of the tile resources.

We add a synchronization step between each RX/TX pair to ensure the RX process
is ready to consume packets before the TX process starts transmitting.

Moreover, to test our model, we want to maximize the possibility of interference
between the flows of our configuration. Therefore, we add a synchronization barrier
between TX processes to make sure that they will not start transmitting packets
before they are all ready to do so.

The behavior of the TX and RX processes is shown on Figure 7.2. The green
background boxes correspond to the code executed in dataplane mode. The TX
process first waits until its associated RX process is ready to receive packets. Then,
it synchronizes with the other TX processes so that all of them start to transmit
packets simultaneously. After a warm-up time, it measures the sending time of
each packet before executing the send instruction. Once the appropriate number
of measurements has been made, it keeps sending packets until the end. Finally,

the process switches out of dataplane mode to print the sending times of the packets.

The RX process notifies its TX process when it is ready to receive, and consumes the

136 Chapter 7. Practical Applications

exact number of packets corresponding to the warm-up period. Then, it measures
the receive time of each packet after the receive instruction is executed. It keeps
consuming incoming packets until the end, and switches out of dataplane mode to

print the receive times of the packets.

RX task ready ? H

Y

Synchronize with other
TX tasks

Repeat n times

¢

Notify TX

[

Warm-up time

Sample timer
Send remaining packets Wiermets i (e

Send packet

Time since last u

packet < Py ?

= I — Receive packet
Receive remaining

packets I

Print results to stdout

I Sample timer

Print results to stdout ‘

o

Figure 7.2 — TX and RX processes

7.1.3 Latency Measurements

To measure packet end-to-end latency for each flow, we proceed as follows. Each TX
(or RX) process samples the cycle counter right before sending a packet on the UDN
(or right after receiving a packet from the UDN). It stores the value in an array at the
position corresponding to the packet number. We sample only a certain number of
packets for each flow, allow a warm-up period before measuring latency, and ensure
all flows continue transmitting for a while after all the measurements have been
made for all flows. Consequently, there is always a possibility of interference when
we measure an end-to-end latency.

We print the measured values to the standard output. Since the printf () function
is a system call, we have to switch out dataplane mode first. We do this after the
flow has finished transmitting to avoid interference with the current process. After
the execution, we process these values to get the measured end-to-end latency for

each packet of each flow.

7.1. Experiments on TILE-Gx8036 137

However, the measured latency includes the time needed by the application to access
the UDN, at TX and RX ends. This latency is not taken into account in our model.
To determine it, we measure end-to-end latency on a 15-flow configuration where
the UDN latency is known (no congestion). We ran the experiment 100 times, and
we found that the minimal UDN access latency is a piecewise affine function of
the packet length, and that 99.99% of the packets are at most 5 cycles above the
minimal UDN access latency.!

Therefore, we consider the 99.99%-accurate measured bound, i.e. the latency such
that 99.99% of the flows have a latency below this value.

7.1.4 Results and Discussion

31[5
3 1 1
|
2
|
1] []2
|

Figure 7.3 — Experiment configurations 1 (left) and 2 (right)

We test two configurations, shown in Figure 7.3. The first configuration is a simple
one with only 3 flows, with a period of 200 cycles and packets of 8 flits. In this
configuration, flow 1 can undergo indirect blocking from flow 3. The second one has
5 flows. Flow 1 can experience indirect blocking from flow 4 via flow 3. Flow 3 can
experience indirect blocking from flow 2 via flow 1. All flows are 100-cycle-periodic
and their packets are 8-flit-long.

For each flow, we compute the theoretical bound on end-to-end latency and the
99.99%-accurate measured bound. The derived results are in Figure 7.4.

We notice that for the simple configuration of 3 flows, our delay bounds are tight,
in comparison to the measured ones. For instance, the tightness bound for flow 1 is

97.6%. However, for the more complex configuration (5 flows), our analytical delay

"'We were not able to get a deterministic value for this additional latency, hence the 99.99%
bound.

138 Chapter 7. Practical Applications

— 100

g™ 2

(&) o

= z

~—50 :

? S 50

4}; or| HEEM Predicted bound = B Predicted bound
— P Measured bound = [Measured bound

0= 2 3 S N R R R
Flow index Flow index

Figure 7.4 — Experiment results for configuration 1 (left) and 2 (right)

bounds are less tight, especially for flows 1 and 3, that are subject to more complex
indirect blocking. This fact is mainly due to the difficulty of catching the theoretical
worst-case scenario, which requires all interfering flows to be synchronized in an
unfavorable way along the shared paths. Although this may seem counter-intuitive,
the more flows are involved in one congestion pattern, the more difficult it will be
to reach a proper synchronization between the interfering flows at least once during

the experiments.

7.2 Control of an Autonomous Vehicle: Timing Analy-

sis and Comparative Study

This case study was presented in [14] and used in [42]. The application controls an
autonomous vehicle. It features several tasks in charge of processing data from the
sensors, managing the obstacle data base, controlling the actuators and stabilizing
the vehicle. Various data flows are exchanged between these tasks. Further descrip-
tion of the application can be found in [14], but we recall the details in Appendix
C, Tables C.1 and C.2. We took the same 33 tasks mapped on a 4 x 4 2D-mesh
NoC, and the same mapping of the 38 data flows between tasks, routed in a XY
fashion.
The parameters used are the following:

e The duration of a cycle is 0.5 ns;

o All routers have a technological latency of 3 cycles;

e The link capacity is one flit per cycle;

o Flows’ priority assignment follows a rate monotonic policy;

e Each router supports 4 Virtual Channels with no priority-sharing and no VC-

sharing, i.e., one flow per VC;

o To compare our results to the ones in [42], we performed the analysis for

7.2. Control of an Autonomous Vehicle: Timing Analysis and
Comparative Study 139

B=2 B=100 B=ox

Average tightness 64% 67% 1%

Average tightness difference +0.07% +0.08% -0.03%
Maximum tightness difference +3.70% +3.49% +0.01%
Minimum tightness difference ~ -0.10% -0.10% -0.10%

Table 7.1 — Average tightness and tightness differences for various buffer sizes

different buffer sizes (2, 100 and 1000000 flits, the latest being large enough

to assume buffer size is infinite).
All flows have a different priority. As they are mapped to VCs in such a way that at
each router, all VCs are non-shared, there is no indirect blocking. Thus, we expect
BATA and G-BATA to give the exact same results for the worst-case delay bounds,
which we checked was the case. We then plotted comparative graphs on Figure
7.5 and computed the average tightness of our approach (Table 7.1), using results
from simulations performed by Nikoli¢ et al. [42]. All the computed tightness ratios
are shown on Table C.3, in Appendix C. The average tightness ratio for G-BATA
approach with buffer size 2, 100 and infinite are 64%, 67% and 71% respectively.
We first notice that our approach gives similar results to [42]. To further quantify
the similarity of the results, we subtracted the tightness ratio obtained by the two
approaches on each bound to obtain what we call “tightness difference”, denoted
AT. For a given flow:

AT = TG.BATA — TST

where T7¢_paTa is the tightness ratio of the bound yielded by G-BATA, and 7g7
is the tightness ratio of the bound yielded by the method of [42]. The tightness
difference At is positive when G-BATA gives the tighter bound and negative oth-
erwise. We synthesized the differences in Table 7.1. We computed the minimum,
maximum and average tightness difference.

Even though they are based on fundamentally different theories, we can notice both
approaches yield very close results, giving credit to both models.

Authors in [42] have shown that only 4 VCs are sufficient to find a mapping of flows
to VCs that ensures each flow has exclusive use of the VC within each router, which
greatly simplifies the computation. However, having only one flow per VC at each
node can raise scalability problems: with larger and/or less favorable configurations,

ensuring each flow has the exclusive use of a VC within each router would require

140 Chapter 7. Practical Applications

70
+ BATA WC bound, B=2 *
X Nikoli¢ et al. WC bound ¥
6071 L Simulated WC -
X
50
n Lo
2
> ¥
© 40 A *
© * * * i
o A
©
& 30 1
g * %
° * S ¥
G20 ww ® wwoww + HFLNE f*
101
04 *4 LodAxx X
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37
Flow index
70
+ BATA WC bound, B=100 *
X Nikoli¢ et al. WC bound ¥
601 . simulated wC -
[N
50 1
n i ¥
£l |
> ¥
@ 40 1 *
© * * *
o A
©
$ 30 1
. ¥
] £ ¥
¥ * KL
20 kx * KWKk L L% 5**
101
0 LA ox ¥
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37
Flow index
70
+ BATA WC bound, B=inf *
% Nikoli¢ et al. WC bound ¥
601 . simulated WC -
[
50 1
T X
E
> *
© 40 1 |
3 * x % o
T
3 30
2
°
& 20
101
0_

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37
Flow index

Figure 7.5 — Worst-case end-to-end delay bounds comparative

7.2. Control of an Autonomous Vehicle: Timing Analysis and
Comparative Study 141

a number of different VCs that is not reasonable any more.
In that respect, we want to stress out that our model allows priority sharing and
VC sharing (several flows sharing priority levels and VCs). Therefore, we have
performed another analysis on the same configuration using only 2 VCs, with the
following priority mapping:

e Flows 1 to 19 have the higher priority and are mapped to VCO;

e Flows 20 to 38 have the lower priority and are mapped to VCI.
We also analyze a configuration with only 1 shared VC.
We have plotted the results with the different VC configurations on Figure 7.6. We
only displayed the results for a buffer size of 2 flits, but the trend is similar with
other sizes. To get an insight into the impact of reducing the number of VCs on
delay bounds, we also computed, for each flow and for each n VC configuration, the
relative increase of the worst-case delay bounds compared to the delay bound with

4 VCs, as follows:

delay with n VCs — delay with 4 VCs
delay with 4VCs

mnec =

The results are on Table 7.2.

+ BATA, original 4 VCs configuration, B=2
140 - BATA, 2 shared VCs
~ BATA, single shared VC

1204

100 4

801

60

End-to-end delay (us)

401

20

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37
Flow index

Figure 7.6 — Delay bounds with 4, 2 and 1 VC with buffer size = 2 flits

First, as we can notice from Fig. 7.6, all flows have delay bounds less than their
periods (the shortest period is 40 ms); thus remain schedulable. More particularly,
when we reduce the number of VCs, the computed delay bound for each flow either
increases (34 and 32 times out of 38 under 2 VCs and 1 VC, respectively) or remains
the same (4 and 1 time out of 38 under 2VCs and 1VC, respectively). However,

for 5 flows cases with one VC, the computed bound decreases compared to the

142 Chapter 7. Practical Applications

2 VCs 1VC

Average bound increase 101.11% 145.13%
Minimal bound increase 0.00% -95.05%
Maximal bound increase 464.16% 2293.01%

Table 7.2 — Relative increase of the worst-case end-to-end delay bounds for B = 2

original configuration with no shared VC (4 VCs). The concerned flows are among
the flows that have the lowest priorities in the original configuration. Mapping all
flows to the same priority allows more fairness. This means it tends to increase the
delay bounds of the flows that had the highest priorities in the original mapping,
and conversely to decrease the waiting time of lower priority flows. However, for 5
flows cases with one VC, the computed bound decreases compared to the original
configuration with no shared VC (4 VCs). The concerned flows are among the flows
that have the lowest priorities in the original configuration. Mapping all flows to
the same priority allows more fairness. This means it tends to increase the delay
bounds of the flows that had the highest priorities in the original mappin
Moreover, as shown in Table 7.2, the average bound increase stays reasonable (up to
150 %) when the number of available VCs is divided by up to 4. Hence, BATA and
G-BATA yield noticeable improvements to decrease the platform complexity (less
Virtual Channels) while guaranteeing schedulability, in comparison to the state-of
the-art method in [42].

Finally, we provide some insights into the runtime of our methods. For each buffer
size and number of VCs, we measured the runtime of our analysis and summarized
our results in Table 7.3. We notice that runtimes with non-shared VCs are in the
order of 10 times lower than runtimes with 1 and 2 VCs for BATA. This confirms
our conclusions regarding the inherent complexity of BATA to handle the priority-
sharing and VC-sharing assumptions.

With G-BATA, we observe a similar trend. Runtimes when VCs are shared face
a significant increase and are even higher than those of BATA for the maximal
value of buffer size. This may be due to the inherent additional complexity of the
interference graph construction with G-BATA, shown in Section 5.6.1, Figure 5.5
(especially for large buffer sizes), and the fact that the configuration used is not
large enough to fully witness the computational gain from using G-BATA instead
of BATA. In the studied cases, G-BATA still performs in an acceptable duration.

When no VC is shared between several flows, the IB latency is zero, and conse-

7.3. Control of an Autonomous Vehicle: Modeling and DSE 143

4VCs 2VCs 1VC

Runtime of BATA (ms) B=2 6.36 55.4 84.6
B =100 6.30 125.0 1444
B=x 6.20 624 844
Runtime of G-BATA (ms) B =2 4.77 62.2 316
B =100 4.95 55.8 306
B =00 4.78 217 1346

Table 7.3 — Runtimes of BATA and G-BATA for different NoC configurations

quently, computing the end-to-end service curve is faster. This also explains the
similar runtimes between both approaches in that case. On the contrary, when
VCs are shared, there are (i) additional recursive calls to end-to-end service curve
function needed to compute the IB latency with BATA; and (ii) a more complex in-
terference graph to construct with G-BATA. Therefore, we can expect an increase in
the analysis duration, for both approaches, but due to different reasons. Although
G-BATA is generally faster than BATA, we observe the opposite in the configura-
tion with 2 VCs and 1 VC. We stress out that in this particular case, the duration
of the end-to-end service curve computation does not take much longer with BATA
compared to G-BATA. Therefore, most of the analysis duration with G-BATA cor-
responds to the IB analysis and takes longer than the IB analysis BATA.

7.3 Control of an Autonomous Vehicle: Modeling and
DSE

We now model the case study, assuming buffers can hold 2 flits. We proceed to
a few alterations of the system according to our results from the previous section.
First, we consider a platform with one single shared VC. It still allows flows to meet
their deadlines and it reduces the complexity of the platform, therefore we want to
further explore this option.

Second, we reduce the packet lengths and periods of the flows so that the rates of all
flows remain constant. This way, we can observe more packet transmissions within
the same amount of simulated cycles. For instance, a flow with a packet length of
1024 flits and a period of 40ms has the same rate as a flow with a packet length of
4 flits and a period of 156,25us.

Third, we consider the tasks run on CPUs clocked at 200MHz while the NoC is
clocked at 2GHz. We compute the delays in cycles of 0.5ns.

144 Chapter 7. Practical Applications

7.3.1 Functional Description

We first define the different tasks and create channels between them to model the
data flow they exchange. Then, we specify the behavior of each task. Figure 7.7
shows the task graph. Each edge represents a flow.

Figure 7.7 — Task graph of the case study

As we did with the example in Section 6.5.1, and to abstract the exact behavior
of the tasks in between data exchanges, we trigger periodic packet emissions and
receptions with dedicated control tasks. We sometimes used control events to several
Read or Write operations, depending on the nature of the task(s) involved. We did
so in a way that was reasonable considering the task description (Table C.1) and
the graph, but we will not detail it here. As such, there are only 13 control tasks for
the 38 flows, and consequently flow offsets are not all independent from each other.
For instance (Figure 7.8), the control task 12 triggers two flows on task obdb: obdb
to obmg and obdb to navc. It also triggers packet reception on task obmg, for the
flow obdb to obmg.

Besides, some tasks will wait for a packet before sending one, which is consistent

with the idea that the data sent by a task depends on the data it receives.

7.3. Control of an Autonomous Vehicle: Modeling and DSE 145

offset = RANDOMO(D, 15000) |

£2y]
sendpkt_obdb_obmgl

=N
sendpkt_obdb_nave()
=N
recvpkt_obdb_ohmg()

period_cycles-3

L

Figure 7.8 — Activity diagram of control task 12

7.3.2 Architecture Modeling

As the previously-conducted timing analysis showed the original mapping of the
tasks complies with the deadlines on a single-VC platform, we will use the TTool
based-approach to explore this option further. The architecture of the platform is
shown on Figure 7.9.

To prevent control tasks from interfering with the real tasks, we map them on
dedicated CPUs, or CPUs with enough cores to run all tasks independently. We

use the same mapping as the original case study.

7.3.3 Simulation

Before entering the main loop of each control task, we randomly choose an offset and
wait the corresponding duration. This allows us to simulate different scenarios of
flow release each time we run a simulation from ¢ = 0. We perform 300 simulations
for 500000 cycles.

We derive the end-to-end delay of the flows as we did for the approach assessment
(Section 6.5), by extracting packets request, injection and ejection times.

We present the results on Figure 7.10. Since there are 38 flows with end-to-end

delays of different orders of magnitude, we do not show the distribution of the

146 Chapter 7. Practical Applications
+=+=BUS-PB== +=+=BUS-PB=: +2=BUS-PB== +=2=BUS-PB=:
Bus03 Busl3 Bus23 Bus3z

<<CPURRPB:=>
CPUOZ

+==»<BLUS-PB=>
Busd2

<<CPURRPB>>
CPULS

===BUS-PB=:
Busl2

<<CPURRPB=>
CPUD2

<<CPURRPB:=>
CPULZ

) I

<<CPURRPB:>:>
CPU23

<<CPURRPB>>
CPU33

Mol
MoC_dx4

+==BUS-PB=>
Bus22

+=2=BUS-PB==
Bus3z

<<CPURRPB:=>
CPU22

==CPURRPB:=:=
CPU32

Bus2l

~=+=<BUS-PB=>=> ~<BUSPB=="" |
Busol f——— | Busll |]
T T
<<CPURRPB>:> # <<CPURRPB=>>
CPUDL CPU11
===BLUS-PB== +=»<=BUS-PB=>=
Bus00 EBusl0

<<CPURRPB:=:
CPUOD

<<CPURRPB:=>
CPULQ

wscBUS-PB==ll — +s<BUS-PB=>

Bus3l

<<CPURRPB:>>

<<CPURRPB:=>

CPUZ21 CPU31
w»=BUS-PB=> +=2=BUS-PB=:
Bus20 Bus30

<<CPURRPB:>>
CPUZ0

<<CPURRPB>>
CPUZ0

Figure 7.9 — Architecture of the platform

measured delays for all flows. Instead, we first “normalize” all delay measurements
to a value between 0 and 1 using an affine transformation (0 corresponds to the base
latency, and 1 to the delay bound). Then, we plot all “normalized” delays of all
flows on the same graph. We can see that most values are close to 0, which denotes
an end to end delay close to the base latency. This means that statistically, most
flows experience little congestion, if any. There are values near 1 as well. They

correspond to a flow that has its base latency equal to its worst-case delay bound.

7.4 Results and Conclusion

We were able to use our model to accurately bound the transmission time of flows

on a physical manycore chip, with a reasonably good tightness, which proves both

7.4. Results and Conclusion 147

Frequency
= N N w w H
(6] o (6] o w o

=
o

ul

0.0 0.2 0.4 0.6 0.8 1.0
Normalized end-to-end measurements

Figure 7.10 — End-to-end delay measurements on the case study

BATA and G-BATA are able to model real-world configurations.

On the autonomous vehicle case study, G-BATA allowed us to improve the
state-of-the-art approach by extending the analysis applicability to shared virtual
channels, proving that a single-VC platform can be used while satisfying the timing
constraints. Even then, the worst-case delay bounds are at least 280 times smaller
than the deadline. This suggests that the platform network capabilities could

handle a heavier traffic load.

Following this analysis, we performed additional modeling and simulation with
TTool, varying the flow offsets. We showed that end-to-end delays are statistically
likely to be close to the base latency of the flows. Considering the flow rates are
very low (0.00048 flits per cycle at most), this result is not surprising, and suggests
it would be reasonable, on the presented case study, to use a way of synchronizing
flows to avoid congestion when possible. Doing so would reduce the worst-case
delay bounds of the flows and improve predictability of the application. It would

also allow to better use the residual service offered by the NoC.

In terms of performance, the code generation and compilation for the model took

around 8 minutes, while simulating 2 million cycles was done in approximately 53

148 Chapter 7. Practical Applications

minutes, that is more than 3000 times the duration of the timing analysis (under a
second at most).
This confirms the conclusions of Chapter 6 and stresses out the relevance of inte-

grating formal worst-case timing analysis at early design stages.

Heure par heure, alors que décroit la lumiére,
Assis parmi les murs de livres, nous plissons
Nos yeuz, jusqu’a ce que ’horloge nous libére

A Détreinte furtive ot se meurt un frisson.

*
k%

Part 111

Conclusion

In three words: Think before deploying.
In two words: Think first.

In one word: Don’t.
—James Mickens

All we have to decide is what to do with the time

that is given us.

—J.R.R. Tolkien, The Fellowship of the Ring

CHAPTER 8

Conclusion

Contents
8.1 Summary of Contributions 151
8.1.1 BATA e 151
81.2 G-BATA 152
8.1.3 Hybrid Design Space Exploration 152
8.1.4 Validation Lo 153
8.2 Perspectives. i i e e 153
8.2.1 Models and Approaches 153
8.2.2 Tools 155

8.1 Summary of Contributions

8.1.1 BATA

Our first works addressed worst-case timing analysis of flit-preemptive wormhole
Networks-on-Chip. We introduced BATA, an approach to derive worst-case delay
bounds of flows on a mesh NoC with shared virtual channels implementing priority
classes. This approach takes into account serialization phenomena and arbitrary
buffer sizes. It uses Network Calculus results to model traffic flows and network
elements, combined with a formalism to analyze “indirect blocking” scenarios,
when packets of different flows may queue one after the other and block several

links of the network.

We then evaluated the tightness of the approach by performing simulations of a test
configuration and comparing the delays with the worst-case delay bounds computed

using BATA. On the tested configuration, the average tightness of the end-to-end

152 Chapter 8. Conclusion

delay bounds reaches 80%. However, we found that BATA computational complex-
ity limits its scalability. For instance, computing bounds for configurations with 48

flows on a 8 x 8 2D mesh NoC usually takes two hours or more.

8.1.2 G-BATA

Therefore, we presented G-BATA approach to tackle the complexity issue of
BATA. We also improved the applicability of the approach: we used an extended
traffic model and we adapted our formalism to cover bursty traffic flows and
heterogeneous architectures. Subsequently, we modified the indirect blocking
analysis to integrate these extensions. We rely on a graph structure to model

interference between flows.

Our performance evaluation of G-BATA found that it yields similar tightness results
as BATA. The indirect blocking analysis based on interference graph takes longer
than the one in BATA but allows to speed up the computation of the end-to-end
delay bound. The total analysis with G-BATA on 48 flows configurations exhibits a
computation time 10 to 100 times lower than BATA. Moreover, G-BATA performs
well on large configurations, with computation times around 9 seconds per flow for

scenarios with 800 flows on an 8 x 8 NoC.

8.1.3 Hybrid Design Space Exploration

To improve the techniques of design space exploration for real-time applications
on NoC-based platforms, we presented a workflow complying with the Y-chart
approach integrating our work on timing analysis. The aim is to trim down the
design space at an early design stage and avoid to simulate mappings that do not

satisfy timing constraints.

We implemented our proposal on the base of existing tools, TTool and WoPANets.
We were able to show that on a simple configuration, simulation alone turned out
to be more costly than timing analysis by several orders of magnitude. It also was

unable to detect a potential deadline miss for one flow.

However, simulation allows to gain a deeper insight on the distribution of delays
among the tested scenarios. It can also be used to refine timing analysis results. For
instance, if some flows are synchronized in such a way that they do not interfere,

simulations will show it and help the designer orientate his effort to formally prove

8.2. Perspectives 153

it.
This exhibits the interest of combining a formal approach with simulation at

system-level when performing design space exploration.

8.1.4 Validation

Finally, we confronted our approaches to practical applications. We successfully
generated and analyzed traffic patterns on a Tilera TILE-Gx8036 manycore chip
and showed that G-BATA and BATA provided safe delay bounds in regards to the
latencies we measured. This proves our timing analysis methods can be practically

applied to real-word systems.

Then, we focused on a case study, the control application of an autonomous
vehicle. We compared our delay bounds results to those obtained by a state-of-the
art approach based on scheduling theory. Our results are similar although the
underlying theory is fundamentally different. This further confirms our bounds are
safe. Moreover, our approach can also analyze configurations with shared virtual

channels, which is not possible with the scheduling theory based approach.

Following this, we were able to model and simulate a configuration based on the
same case study, but with shared VCs. To this end, we used part of our implemen-
tation of the hybrid design space exploration workflow we presented. We detailed
the modeling choices we made and estimated the distribution of the delays of the

different flows.

8.2 Perspectives

We now present some development perspectives that stem from our contributions.
These either regard the analysis and models we use, or the tools that implement

our approaches.

8.2.1 Models and Approaches

On the modeling and analysis aspect of our contributions, we see three axes
of improvement regarding: (i) the indirect blocking computation in the timing
analysis approach; (ii) the timing analysis step of the hybrid DSE methodology;

and (iii) the mapping selection strategy and the system modeling paradigm of the

154 Chapter 8. Conclusion

DSE approach.

In our G-BATA analysis, subpaths are computed relatively to any flows. This
means that given a subpath S of a flow f, the algorithm will compute the subpath
of f relatively to S, and iterate this computation of consecutive subpaths until the
computed subpath is empty. The consequences of this were exhibited during the
sensitivity analysis, when we noticed that in the IB set of a given flow, the shorter
the subpaths (i.e. the larger the buffer size), the greater their number.

The number of consecutive subpaths of the same flow is not bounded in the al-
gorithm in its current state. This is what allows us to cover the bursty traffic
assumption and account for consecutive packet queueing. However, we could try
to find a way of bounding the maximum number of consecutive packets in a given
flow. One way to do this would be to use the end-to-end service curve to derive the
burst of all lows at the end of their path using the output arrival curve expression
in Theorem 6. We can use the value of the burst to derive the maximum number of
consecutive packets of each flow that can queue in the network at all times. Then,
we inject that value it in the interference graph construction algorithm to limit the
number of consecutive subpaths it computes for each flow, and recompute the delay
bounds according to the new updated graph.

Iterating this step would ultimately converge to a new value of the end-to-end
delay that should improve G-BATA tightness, particularly for short subpaths
(large buffers and/or small packets).

For now, our DSE approach uses G-BATA only to get a binary answer on
whether or not the considered mapping satisfies the timing constraints. A possible
improvement of the approach would be to consider the insight we gained with the
G-BATA sensitivity analysis to perform optimizations related to the architecture
characteristics. We expect this to orientate the design space exploration and save
additional time by converging more rapidly towards a system satisfying the timing

requirements.

Our workflow does not specify a strategy to generate mappings. We could work on
that aspect as well, for instance by proposing different strategies to select the next
mapping to be evaluated. Combined with optimization approaches, this could also
help speed up the exploration process.

Besides, in our DSE approach, the code generation and compilation steps repre-

sent a major computational cost relatively to the timing analysis step. Since our

8.2. Perspectives 155

methodology targets NoC-based systems, we could consider using Repetitive Struc-

ture Modeling or a similar paradigm in the workflow to simplify the system model.

8.2.2 Tools

Our contributions lead us to use, extend or implement tools. There is still
room for improving our work and make it easier to practically use the approaches

we presented in this thesis. These improvements regard either TTool or WoPANets.

In WoPANets, there are perspectives in the technologies supported. Although our
timing analysis approaches mostly target NoCs with input-buffered routers, we
mentioned that they can be applied to NoCs with output-buffered routers because
this paradigm does not change the number of links and buffers that a given flow will
cross along its path. The only difference is a change of node indexing in the com-
putation of the subpaths. We have not implemented this feature, but it would be

possible and interesting to integrate it in the NoC worst-case timing analysis plugin.

Still on the WoPANets end, the timing analysis step of the DSE workflow is based
on the extraction of certain characteristics needed for the timing analysis from
the functional view of the system provided by TTool. For now, it requires to
manually compute the period or inter-packet arrival time of the flows. We could
work on this aspect as well, and design a piece of software (either integrated in
WoPANets or as a standalone project) to process the system functional description
and activity diagrams in a more advanced manner. This is related to interop-
erability issues and connecting different representations of the same realities.
Addressing this aspect actually outgrows the sole scope of a software interfacing
problem. It would contribute to bridge the gap between system-level view and

timing analysis view of NoC-based platforms and more generally networked systems.

On the system modeling aspect, our NoC model can be extended. For instance, it
is possible to code additional router models that can be used in place of the input-
buffered router with VCs we designed. Similarly, we can add other possibilities for
NoC topology, network interface behavior and routing algorithm.

With the experience we gained when adding the NoC model in TTool, we could
also try to improve the NoC model we designed. This could offer more flexibility to
the designer in terms of parameter choices, in particular regarding the technological

latency and processing capacity.

156 Chapter 8. Conclusion

In its current state, the simulation engine of TTool does not offer trace processing
capabilities adapted to NoC-based systems. Therefore, we wrote a series of Python
and bash scripts to extract relevant data from the simulation traces and derive
values of metrics such as end-to-end delays. We also pipelined simulation steps
and trace processing steps to avoid using too much disk space when performing
simulations. However, since they were developed as they were needed, these tools
are not always user friendly and do not have a unified usage syntax. It would be
worth improving their usability and integrating them into T'Tool to help designers

getting insight on the NoC-based system they are working on.

Rien ne laissait penser que j’irai jusqu’d faire
Huit ans pour un diplome.
1l m’a fallu le soutien d’une quasie-frere,

Transcendant le génome !

*
* ok

Part 1V

Appendix

La théorie et la pratique c’est la méme chose,

sauf qu’en pratique ce n’est pas vrai
—Etienne Klein
They died from terminal stupidity.

—VFrank Castle, The Punisher

ANNEXE A

Plateformes pluri-cceurs avec
réseau sur puce pour les
applications temps réel :
Analyse de performance et

exploration d’architectures

Contents
A1l Imtroduction e 160
A.2 Contextedelathése. 162
A.2.1 Systemes temps-réel oL 162
A.2.2 Architectures pluri-ceeurso 163
A3 EtatdelPart v v v v ittt e e e e e e 166
A.3.1 Analyse temps réel des réseaux sur puce 166

A.3.2 Exploration d’architectures et mapping logiciel/matériel sur

architectures pluri-coeurs.o oL 170

A.4 Analyse temporelle pire cas des réseaux sur puce wormhole

intégrant I’impact des mémoires tampon 173
A.4.1 Modélisation du réseau et des flux 173
A.4.2 Tlustration du probleme 175
A.4.3 Formalisme et calculs 176
A.4.4 Résumé de l'analyse de performance 178
A45 Conclusion L 182

A.5 Analyse temps réel des NoCs wormhole hétérogénes par

graphe d’interférences o 00000 182

A.5.1 Formalisme étendu L. 182

A.5.2 Définition et construction du graphe d’interférence 183

160 Annexe A. Résumé en francgais

A.5.3 Analyse de performance 185
A54 Conclusion 186
A.6 Approche hybride pour 1’exploration d’architectures 186
A.6.1 Workflow étendu oo 187
A.6.2 Modélisation systeme du NoC 187
A.6.3 Performance L. 189
A6.4 Conclusion 191
A.7 Validation des contributions 193
A71 Analysepirecas e 193
A.7.2 Modélisation sous TTool 195
A8 Conclusion it 196
A.8.1 Résumé des contributions oL 196
A.82 Perspectives 198

A.1 Introduction

Les architectures des processeurs ont longtemps été organisées autour d’un unique
composant capable d’exécuter des opérations. Désormais, ce paradigme montre ses
limites devant 'augmentation ininterrompue des besoins des systemes en matiere
de puissance de calcul, et ce malgré les diverses améliorations (pipeline, exécution
spéculative, prédiction de branchement, augmentation de la fréquence d’horloge).
Les architectures dites multi-coeurs (intégrant plusieurs coeurs de calcul) ne résolvent
que tres partiellement le probléme puisque l'interconnexion des processeurs repose
sur un bus, intrinsequement incapable de passer a 1’échelle.

Les architectures de type pluri-cceurs [4] ont été proposées pour pallier ces limites.
Elles consistent en un grand nombre de processeurs sur la méme puce, souvent
organisés selon une matrice de dalles regroupant un ou plusieurs processeurs. Les
dalles sont interconnectées par un réseau sur puce, ou Network-on-Chip (NoC) afin
d’assurer les mécanismes de cohérence de cache, et plus généralement les requétes
mémoire et ’échange de messages d’un coeur a l'autre, tout en garantissant un
maintien des performances pour plusieurs dizaines ou centaines de coeurs. De telles

puces sont désormais proposées par plusieurs fabricants [5, 6, 7, 8].

Les systémes critiques (dans l’automobile ou l’avionique notamment) assurent

leur siireté de fonctionnement par des processus de certification colteux qui

A.1. Introduction 161

favorisent la réutilisation de composants éprouvés et certifiés. Il y a, au contraire,
peu d’incitations a utiliser des architectures plus performantes. Néanmoins,
la transition vers des architectures pluri-ceeurs parait inévitable en raison de
(i) Pabandon progressif des architectures mono-processeurs devenues obsolétes, qui
risque de limiter leur disponibilité; (ii) les limites déja apparentes de ces mémes

architectures, considérant les besoins présents et futurs des systémes critiques.

Il est donc crucial, pour assurer la transition vers des architectures pluri-coeurs,
d’étre en mesure de garantir la bonne exécution d’applications critiques sur de telles
plateformes. Il existe plusieurs moyens de tendre a ce but, tous devant prendre en
compte les spécificités des architectures pluri-coeurs quant au partage des ressources
(mémoire, média de communication) et d’exécution concurrente.

Le présent rapport propose des contributions visant a faciliter la transition vers
des architectures pluri-cceurs dans un contexte temps-réel. Nous nous efforcons de
proposer des solutions adaptables & de nombreuses plateformes différentes, en tra-
vaillant dans un premier temps sur I’analyse temporelle pire cas des communications
sur un réseau sur puce. Une telle analyse permet, connaissant le trafic généré et/ou
consommé par les taches s’exécutant sur une architecture pluri-coeurs, de borner les
délais de transmission des messages sur le réseau sur puce et de déterminer si la
configuration donnée permet de respecter les contraintes temps-réel associées. Nous
proposons deux modeles & cette fin (A.4, A.5). Nous évaluons leur sensibilité aux
parametres d’entrée, leur finesse dans 'estimation du pire cas, et leur capacité a
passer a 1’échelle.

Dans un second temps, nous nous intéressons a ’exploration d’architecture pour les
systémes basés sur des réseaux sur puce. Nous proposons (A.6) une méthodologie
pour intégrer le respect des contraintes temps-réel dans le processus de conception
d’un systeme.

Enfin, nous procédons a des expériences sur une plateforme pluri-coeurs pour prou-
ver 'applicabilité de nos modeles d’analyse temporelle et valider les résultats qu’ils
génerent, et nous appliquons nos contributions a deux études de cas réalistes. Nous
détaillons une partie de la validation de nos travaux en section A.7.

La section A.8 conclut ce rapport et présente les perspectives futures découlant de

nos contributions.

162 Annexe A. Résumé en francgais

A.2 Contexte de la theése

Face a cette nécessité de fournir des outils pour 'analyse et le design des systéemes
temps-réel basés sur des architectures pluri-coeurs, nous définissons dans un premier
temps le cadre propre aux systémes temps-réel. Puis, nous nous intéressons aux
différents paradigmes existants dans les réseaux sur puce et a leur pertinence dans
un cadre temps réel, afin de justifier le contexte restreint que nous considérons dans

les sections suivantes.

A.2.1 Systemes temps-réel

Un systeme est dit temps-réel si la validité du résultat fourni est conditionnée non
seulement par sa validité logique mais aussi par I’obtention dudit résultat selon une
contrainte temporelle [12].

Contrairement aux systemes dits best effort, qui cherchent a optimiser un temps de
réponse moyen, le principal enjeu des systémes temps-réel est de garantir le respect

des échéances dans le pire des cas possibles, méme si cela doit impacter le cas moyen.

On distingue, parmi les systemes temps-réel, différents niveaux de criticité qui es-
timent la gravité des conséquences d’un non-respect des contraintes temporelles. Les
systemes temps-réel durs sont les plus critiques. Une défaillance d’un tel systéeme est
grave et peut entrainer d’importants dommages matériels ou la mort d’étres vivants.
A contrario, les systemes temps-réel mous peuvent tolérer un échec occasionnel a
respecter les contraintes temporelles sans que cela compromette le fonctionnement
du systéme, ou sans que cela ait de conséquences sérieuses. On trouve parfois la
notion de systéme temps-réel ferme pour désigner les systémes dont le fonctionne-
ment est grandement compromis en cas de non-respect des contraintes temporelles,
mais ce sans conséquence grave sur le reste du monde.

En aéronautique, par exemple, 'application FADEC (Full Authority Digital Engine
Controller) contrdle les turbofans d’un aéronef. C’est un systéme temps-réel dur, car
sa défaillance peut entrainer la perte d’un moteur ainsi que des dégats sur ’appareil
ou les humains qu’il transporte.

Le systéeme de vidéo a la demande de Netflix est un systeme temps-réel mou. Les
conséquences d’'une partie des photogrammes (trames vidéo) n’arrivant pas a desti-
nation a temps peuvent étre imperceptibles, ou au pire provoquer la frustration de

I'utilisateur et quelques jurons.

A.2. Contexte de la thése 163

A.2.2 Architectures pluri-coeurs

Pour éviter les goulots d’étranglement, les architectures pluri-coeurs reposent sur un
paradigme d’accés mémoire non uniforme (NUMA, Non-Uniform Memory Access).
Chaque dalle posséde son propre cache L1 et/ou sa propre mémoire. Ainsi, un
processeur peut adresser des requétes localement ou vers une dalle distante, que
ce soit pour les opérations mémoire, les mécanismes de cohérence des mémoires
caches, 'envoi de message d’un cceur a l'autre, ou encore ’acces aux périphériques
externes et aux entrées/sorties (I/O). C’est pourquoi le choix du moyen de faire
communiquer les coeurs entre eux est crucial pour les performances de la puce.
Utiliser un bus devient assez vite problématique puisque la bande passante offerte a
chaque composant diminue linéairement avec le nombre de composants partageant
le bus. Une interconnexion point-a-point, elle, nécessite un nombre de cables qui
croit de facon quadratique avec le nombre d’entités connectées. Contrairement a
ces deux paradigmes, les réseaux sur puce permettent un certain maintien de la
bande passante et du débit offerts lorsque le nombre de nceuds augmente, tout en
gardant une complexité de cadblage raisonnable. Ainsi, ils constituent une solution
privilégiée pour I'interconnexion des dalles d’une puce pluri-coeurs.

Ces réseaux sont similaires aux réseaux commutés classiques, puisqu’ils sont compo-
sés de routeurs connectés aux dalles de calculs et & d’autres routeurs, grace auxquels
sont transmis des paquets. Cependant, leur nature « sur puce » les rend particuliere-
ment sensibles a des parametres comme la consommation électrique et la dissipation
énergétique, la quantité de mémoire tampon nécessaire dans chaque routeur, la sur-
face occupée sur la puce ou la complexité de cablage. Les parametres possibles pour
un réseau sur puce concernent :

e la topologie du réseau;

le(s) protocole(s) utilisé(s) pour la transmission des données d’un nceud a
lautre, et la gestion du trafic;

e les politiques d’arbitrage ;

o lutilisation ou non de canaux virtuels (VCs, Virtual Channels) ;

o le(s) algorithme(s) de routage.
Nous restreignons notre étude aux réseaux sur puce utilisant des paradigmes :

e permettant de maintenir une certaine prédictabilité de fonctionnement ;

e prenant en compte les contraintes liées a la nature sur puce;

o garantissant la scalabilité du systeme;

 utilisés, voire courants, dans les composants sur étagere.

Les sections suivantes résument et justifient nos choix.

164 Annexe A. Résumé en francais

A.2.2.1 Topologie

La topologie désigne la facon dont les routeurs sont connectés entre eux et aux
dalles de calcul ou autres composants. Dans les réseaux sur puce, celle-ci est statique
et souvent réguliere. La grille, ou mesh, et le tore [20, 21, 22, 23, 24, 25] sont les
paradigmes les plus courants (Figure A.1). Tous deux constituent un bon compromis
entre simplicité, scalabilité et performances. On les trouve principalement en 2D,

et occasionnellement en 3D [26, 27].

Ny AE\IN‘:%

F1cURE A.1 — Topologies en grille et tore 2D

A.2.2.2 Transmission et contrdle de flux

La technique de transmission des données d’un routeur a I’autre impacte la latence
d’un paquet transmis et la quantité de mémoire dite tampon nécessaire dans chaque
routeur. Nous nous intéressons ici au routage chenille (en anglais wormhole swit-
ching) [20]. Le principe est de découper les paquets en mots de taille fixe, appelés
flits, qui sont transmis d’un routeur a ’autre, a la queue leu-leu. Contrairement a la
technique du Store-and-Forward (S&F) utilisée dans les réseaux classiques, il n’est
pas nécessaire de mettre en mémoire tampon la totalité du paquet a chaque routeur
avant de commencer la transmission vers le routeur suivant.

Cette technique est couramment utilisée car elle ne nécessite que de quoi stocker
un flit par routeur (utiliser le S&F nécessite de pouvoir stocker au moins un paquet
entier) et permet une transmission plus rapide que le S&F.

La technique de transmission est associée a un mécanisme de controle de flux, qui
peut étre un controéle de flux :

Par crédit, ou bloquant — le router en aval autorise ’envoi d’un flit par un
systéme de crédits. Lorsque tous les crédits sont consommés (i.e. que la mémoire

tampon est pleine en aval), les flits doivent attendre.

A.2. Contexte de la thése 165

Par perte — si un router ne peut pas accueillir de flit, il peut choisir de I'ignorer.
La retransmission des flits perdus est gérée par une couche supérieure du réseau.
Par déflection — si un flit ne peut étre envoyé vers le lien qu’il demande, il est
détourné de sa route initiale vers une route disponible.

Les deux derniéres techniques rendent le pire cas difficile & borner (techniquement,
un paquet peut étre jeté ou dévié un nombre arbitraire de fois consécutives). Ainsi,
pour favoriser un comportement déterminisme, on privilégiera ci-apres le contréle
de flux bloquant. Il est a noter que le contréle de flux bloquant entraine, en cas de
congestion, une propagation du blocage a d’autres flux. En effet, un paquet bloqué
occupe de l’espace en mémoire tampon parfois réparti sur plusieurs routeurs. Ce

phénomene est appelé propagation du blocage en amont dans la suite de ce rapport.

A.2.2.3 Politique d’arbitrage et canaux virtuels

Lorsque deux paquets demandent 1’utilisation de la méme ressource, un routeur
doit décider lequel des paquets sera le premier a utiliser la ressource. On parle
alors d’arbitrage. Il peut y avoir plusieurs niveaux d’arbitrage au sein d’un routeur,
par exemple entre les différentes entrées, ou entre différents types de paquets. Les
politiques possibles, néanmoins, restent les mémes. On distingue en particulier le
premier arrivé premier servi, le tourniquet et sa variante le tourniquet pondéré, ou
I’arbitrage par priorité fixe.

Cette derniere politique peut étre implémentée en utilisant des canaux virtuels
[38, 39]. Les canaux virtuels consistent & partager un lien physique en plusieurs
liens logiques, en introduisant des files d’attentes séparées dans la mémoire tampon
d’un routeur. Les flits de canaux différents empruntent donc le méme lien entre

deux routeurs, mais sont stockés et font la queue dans des files distinctes.

A.2.2.4 Algorithmes de routage

Pour qu’un paquet arrive a destination, il est nécessaire de calculer le chemin qu’il
doit emprunter. On appelle algorithme de routage un algorithme permettant de réa-
liser cette tache. Il doit avant tout assurer qu’aucun blocage irréversible (deadlock)
n’ait lieu et que tout paquet arrive a destination dans un temps fini, et peut faire
partie de différentes familles ([33]) :

Centralisé vs distribué — dans le premier cas, le calcul est fait par une entité
centrale pour tous les flux. Dans le second cas, tout ou partie du calcul de route est
réalisé par des entités différentes.

A la source wvs par saut — dans le premier cas, ’entité émettrice d’un paquet cal-

166 Annexe A. Résumé en francgais

Prédictabilité Complexité Scalabilité Restriction

Topologie v’ v’ mesh, tore

Transmission v’ v’ wormbhole

Controéle de flux v’ par crédit

Arbitrage v’ v’ RR, WRR, FP

VCs v’ implémentation FP

Routage v’ v’ déterministe, distri-
bué

Tableau A.1 — Résumé des choix de conception et leur impact

cule la totalité du chemin qu’il doit emprunter. Dans le second cas, chaque routeur
décide du lien vers lequel il doit envoyer un paquet recu sans se préoccuper de la
suite. Ces deux techniques font partie du routage distribué.

Déterministe vs adaptatif — pour une source et une destination données, un
algorithme déterministe donnera toujours la méme route, tandis qu’un algorithme
adaptatif pourra réagir dynamiquement a d’autres parametres comme la congestion
ou la défaillance d’un lien.

Minimal vs non-minimal : le chemin calculé peut étre ou non I'un des chemins

les plus courts, en nombre de sauts.

A.2.2.5 Résumé

Pour faciliter I’analyse et 'obtention de garanties temps-réel, nous sommes amenés a
restreindre les types d’architectures considérés. Le tableau A.1 résume les principaux
impacts de chacun des choix de conception et les restrictions dans la suite de ce

rapport.

A.3 Etat de l’art

Deux domaines principaux sont au coeur de notre étude : 'analyse temporelle des
réseaux sur puce, et ’exploration d’architectures. Dans les sections suivantes nous

résumons les principales contributions dans chacun de ces domaines.

A.3.1 Analyse temps réel des réseaux sur puce

Etant donnée une configuration de flux de données transitant par un réseau sur puce,
I’analyse temps réel doit permettre, pour chaque flux, de déterminer une borne

supérieure du pire temps de transmission d’un paquet. A ce titre, les méthodes

A.3. Etat de l’art 167

stochastiques ou basées sur la simulation seule ne sont pas adaptées a ’obtention
de telles garanties.

Ce sujet a été abordé dans la littérature, en utilisant des méthodes comme la théorie
de 'ordonnancement, le calcul récursif, la Compositional Performance Analysis, et
le calcul réseau. Nous proposons une vue d’ensemble des contributions les plus

pertinentes par approche dans les sections suivantes.

A.3.1.1 Théorie de I’ordonnancement

La théorie de I'ordonnancement traite a l'origine de problématiques liées a 'exécu-
tion de taches sur des ressources de calcul. On peut I'appliquer a ’analyse tempo-
relle des réseaux sur puce en faisant un parallele entre les ressources d’exécution
et les liens, mémoires et routeurs d’'un réseau d’une part, et les taches a exécuter
et les messages a transmettre d’autre part. Le principal enjeu est alors de raffiner
le modele d’interférences pour capturer au mieux 'impact des flux les uns sur les
autres.

Shi et Burns proposent [56] une analyse des réseaux sur puce avec routage chenille
prenant en compte des niveaux de priorité implémentés grace a des canaux virtuels,
mais sans possibilité d’attribuer un méme niveau de priorité a plus d’un flux, puis
une extension [41] couvrant le partage d’un canal virtuel par plusieurs flux. Ces
travaux prennent en compte les interférences dues a la propagation du blocage en
amont, existant entre des flux qui ne partagent pas de ressources, et désignées par
le terme « blocage indirect ».

Néanmoins, ce modele entraine une sous-estimation des délais dans certains cas
particuliers mis en évidence dans [57], travail lui-méme revu et corrigé [58], mais
sans prendre en compte le partage des canaux virtuels pour les classes de priorité.
Des améliorations des travaux de [41] ont été proposées dans [59] & travers une prise
en compte plus fine du domaine physique de contention, mais ’analyse se limite a
des mémoires tampon pouvant contenir un flit.

Finalement, les travaux les plus récents sont ceux de [42], qui raffinent ceux de [58],
mais qui toutefois ne prennent toujours pas en compte les canaux virtuels partagés.
Les auteurs considerent que cette limite peut étre compensée par le fait que les
futures architectures disposeront d’assez de canaux virtuels pour qu’il soit possible,
a chaque neeud, d’assigner un unique flux a chaque file d’attente. Cependant, rien ne
garantit qu’une telle répartition soit toujours possible, en particulier pour un grand
nombre de flux. De plus, cette politique nécessite d’attribuer chaque flux & un canal

virtuel hors ligne et n’offre donc peu ou pas de marge pour 'ajout dynamique de

168 Annexe A. Résumé en francgais

flux non critiques ou non temps réel.

A.3.1.2 Compositional Performance Analysis

La Compositional Performance Analysis (CPA) a été proposée comme un cadre per-
mettant de combiner différentes approches pour l'analyse de systémes temps-réel
embarqués complexes [61]. Elle utilise un formalisme voisin de la théorie de I’'ordon-
nancement mais permet en sus 'utilisation de modeles existants pour ’analyse de
parties spécifiques du systeme, et lie les résultats obtenus par différentes approches
pour obtenir un modele global.

Les travaux de [63] développent un modele CPA pour 'analyse des réseaux sur puce
avec routage chenille, basé sur 'approche de [55]. Ils distinguent différents types de
blocage selon que le flux d’intérét partage une entrée, une sortie, ou les deux avec
un autre flux, et introduisent une notion de blocage indirect.

Cette approche prend en compte le partage des classes de priorité et des canaux
virtuels, mais ignore le phénomene de propagation du blocage en amont lors des
phénomenes de congestion.

Une extension de ces travaux modélise 'impact du controle de flux bloquant, mais
en considérant un seul canal virtuel et des mémoires tampon de taille supérieure a

un paquet.

A.3.1.3 Calcul récursif

Utilisé notamment pour l'analyse du réseau SpaceWire [65], cette technique repose
sur une analyse de la contention subie par le flux d’intérét sur chaque lien de son
chemin, en prenant récursivement en compte la contention subie par les flux qui
peuvent le bloquer.

La méthode telle qu’elle était présentée sur ces premiers travaux ne modélisait pas
certains parametres des flux comme le débit, et ne permettait pas de prendre en
compte les mécanismes de priorité.

Des travaux plus récents [66] ont proposé une révision du calcul récursif pour couvrir
des configurations avec des tailles de mémoire tampon supérieures a un flit (qui
donnaient lieu a des résultats optimistes avec les approches basiques).

Plus récemment, les travaux de [67] étendent le calcul récursif en prenant en compte
la sérialisation de la transmission dans les réseaux sur puce avec routage chenille
et proposent un algorithme récursif intégrant leur approche, mais sans modéliser
de canaux virtuels. Le modeéle a néanmoins été appliqué a ’analyse temporelle des

flux entre coeurs et entrées/sorties [13], sur des architectures pluri-coeurs du type

A.3. Etat de l’art 169

des puces Tilera [5].

A.3.1.4 Calcul réseau

Le calcul réseau est une théorie basée sur l'algebre (min, +) introduite par [68] et
développée par Le Boudec et Thiran [69]. Les principaux résultats sur lesquels nos
travaux reposent sont présentés en annexe B.1. La théorie sous-jacente utilise des
courbes d’arrivée pour borner le trafic cumulé en un point en fonction du temps,
et des courbes de service pour modéliser le service minimal cumulé garanti par
un élément de réseau en fonction du temps. A partir de ces deux types de courbes,
pour un flux donné, des théoremes (¢f Annexe B.1) permettent d’obtenir une borne
supérieure du délai de bout en bout ainsi que de la quantité de données présente
dans le réseau a tout instant.

Le calcul réseau est utilisé dans [71, 72| pour I'analyse temporelle des réseaux Spa-
ceWire. Dans [73], les auteurs proposent une analyse basée sur le calcul réseau en
appliquant aux réseaux sur puce les travaux de [74] sur les réseaux en arbre. Leur
approche distingue trois schémas de contention possible entre le flux d’intérét et
deux flux concurrents (en inclusion, paralléle, croisé) et se base sur la construction
d’un arbre de contention. Elle ne prend pas en compte la taille finie des mémoires
tampon et la propagation du blocage en amont qui en résulte.

Les auteurs prolongent leurs travaux dans [75] en analysant le blocage dans les
réseaux sur puce avec routage chenille de fagon récursive. Le systeme de controle
de flux est modélisé comme un composant du réseau dont le comportement dépend
du routeur aval. Cette méthode nécessite la résolution de probléemes de point fixe
et sa capacité a passer a 1’échelle n’est pas claire. De plus, elle ne considére que des
réseaux sur puce sans canaux virtuels.

Les travaux de [76] raffinent les courbes classiquement utilisées (seau percé et débit
latence), et prennent en compte la sérialisation des flux, mais sans considérer de
routage chenille, évitant ainsi de devoir modéliser la propagation du blocage en
amont.

Dans [77], les auteurs proposent une méthode de calcul des délais de bout en bout
sur une puce Kalray MPPA2 [7]. Cette méthode reste néanmoins spécifique a une
architecture, d’autant qu’elle suppose d’utiliser les composants de mise en forme du
trafic offerts par la puce Kalray pour assurer qu’il n’y ait pas de propagation du

blocage en amont.

170 Annexe A. Résumé en francgais

A.3.1.5 Discussion

La plupart des approches connues s’appuient sur des hypotheses limitant leur appli-
cabilité, restreignant notamment la technique de transmission (routage chenille ou
autre), I'utilisation de canaux virtuels ou leur partage par plusieurs flux. De plus,
beaucoup de modeles ne prennent pas en compte les phénomenes de sérialisation
des flux ou la taille des mémoires tampon.

Nous proposons donc une approche aussi générale que possible pour pallier les
limites des travaux existants. Un premier modele permettra d’analyser : (i) les
réseaux sur puce wormhole homogenes, de topologie quelconque fixe et munie d’'un
algorithme de routage déterministe (typiquement, un mesh 2D muni d’un routage
XY); (ii) des routeurs avec des mémoires tampon de taille quelconque et des canaux
virtuels implémentant des classes de priorité partagées par un nombre arbitraire de
flux, et permettant la préemption au niveau flit ; (iii) des flux de données périodiques
ou sporadiques.

Un second modele permettra, en outre, d’étendre le premier pour couvrir : (i) les
réseaux hétérogenes; (ii) les flux de données dits bursty , ou en rafale, i.e. pouvant
injecter plusieurs paquets consécutivement.

Nous choisissons d’utiliser le calcul réseau pour les raisons suivantes :

¢ la théorie sous-jacente offre de puissants résultats théoriques pour la modéli-
sation des réseaux ;

e le calcul réseau est une méthode éprouvée, il a notamment servi a certifier
le réseau AFDX utilisé dans les plus récents appareils produits par Airbus
comme 1’A380 ;

e sa modularité permet de mettre a jour ou améliorer les modeéles sans devoir

repenser toute 'organisation de ’analyse.

A.3.2 Exploration d’architectures et mapping logiciel /matériel sur

architectures pluri-ccoeurs

Concevoir un systeme temps réel basé sur une architecture contenant un réseau
sur puce présente principalement deux aspects distincts. D’une part, a haut niveau,
il est nécessaire de pouvoir restreindre les choix d’architecture a une ou quelques
plateformes qui conviennent le mieux au systéme envisagé.

D’autre part, étant donné une architecture matérielle et un ensemble de fonctions
implémentées logiciellement (applications et taches), un autre probléme est d’as-
socier chaque fonction a un élément matériel chargé de son exécution. On appelle

cette étape mapping logiciel /matériel.

A.3. Etat de l’art 171

Ces deux aspects peuvent étre liés dans le processus de conception d’un systéme.
Néanmoins, nous nous intéressons dans un premier temps aux méthodologies géné-
rales d’exploration d’architectures (section A.3.2.1), puis nous résumons les princi-

pales techniques de mapping dans la section A.3.2.2.

A.3.2.1 Exploration d’architectures

L’exploration d’architectures suppose une modélisation du systéeme en cours de
conception. Différents facteurs sont a considérer dans la modélisation d’un sys-
teme : le(s) niveau(x) d’abstraction offert(s) — system level, transaction level mo-
deling (TLM), register transfer level (RTL), cycle-accurate bit-accurate (CABA) —,
I'indépendance des modélisations fonctionnelles et architecturales, et les techniques
d’exploration et de mapping disponibles (si applicable). D’autre part, il est im-
portant de considérer les aspects pratiques des méthodes choisies (format d’entrée,
modeles disponibles pour les composants, possibilité de générer du code).

La conception de systémes basés sur des réseaux sur puce a été abordée dans
plusieurs travaux. Dans le domaine des systémes de télécommunications, les travaux
de [79] présentent un processus de conception permettant en outre la génération de
code SystemC pour la validation du systéme. Dans [80], les auteurs proposent un
outil reposant sur Arteris, permettant d’identifier les limites d’une architecture au
regard des contraintes de performances d’une application, et d’itérer le processus
pour converger vers une architecture qui satisfait les contraintes. Les travaux
présentés dans [81] détaillent une extension du simulateur MPSoCSim intégrant un

modele de NoC étendu et plus flexible que son prédécesseur.

D’autres travaux se concentrent sur des outils plus génériques pour la conception de
systemes et leur modélisation a différents niveaux d’abstraction, comme Ptolemy
[82, 83] pour les systémes tres hétérogenes; Artemis [84], qui permet de détailler
ou d’abstraire plus ou moins le systéme selon le stade de conception, et qui est
compatible avec 'approche Y-chart [85] ; MoPCoM, une méthode de co-design avec
trois niveaux d’abstraction pour les systémes embarqués temps réel permettant de
générer du code VHDL; ou encore TTool [9], qui supporte divers environnements
SysML/UML, comme DIPLODOCUS [90], permettant notamment la modélisation

au niveau systeme suivant ’approche Y-chart.

Enfin, certaines approches integrent des modeles de réseau dans les processus de

conception et d’exploration d’architectures, permettant de distinguer les fonctions

172 Annexe A. Résumé en francgais

relevant du réseau de celles relevant du systéme, d’analyser les interactions

réseau/systéme, ou de proposer des abstractions pour les canaux de communication
[92, 93, 94].

Essentiellement, aucune de ces approches ne prend en compte la vérification des

contraintes temps réel autrement que par simulation.

A.3.2.2 Mapping logiciel/matériel

Etant donné un ensemble d’applications composées de taches éventuellement as-
sorties de contraintes (temps réel, utilisation de composants externes, précédence),
et un ensemble de ressources, le probléme du mapping est d’attribuer chaque tache
a un élément de calcul pour garantir la bonne exécution de chaque tache tout en
respectant les contraintes. Le mapping peut étre fait en ligne ou hors ligne [95],
et cette derniere solution est la plus adaptée au contexte temps réel pour des

questions de déterminisme.

Le mapping sur architectures pluri-coeurs est un probleme NP-hard [96, 95]. En rai-
son de la complexité des systemes basés sur des NoCs, trouver un mapping optimal
devient rapidement déraisonnable du point de vue du temps de calcul.

Une premiere famille d’approches s’attele a proposer des méthodes basées sur des
algorithmes d’exploration approximatifs, qui fournissent une solution en un temps
raisonnable sans garantir son optimalité, comme des algorithmes génétiques [97],
par séparation et évaluation [99] ou par optimisation linéaire [100].

Certaines approches sont construites sur des heuristiques prenant en compte les
contraintes de bande passante [98] ou la contention [100], favorisant la prédictabilité
[101, 102], ou les contraintes d’entrées-sorties [13].

Une autre famille de travaux s’attache a offrir des garanties de prédictabilité sur
I’'exécution des taches. Ces techniques reposent parfois sur 'utilisation d’extensions
matérielles [103], ce qui limite 'applicabilité d’une telle approche et empéche lar-
gement l'utilisation de composants sur étageres. D’autres travaux formalisent les
contraintes de mapping et proposent un modele d’exécution qui génére un mapping
spatial et un ordonnancement permettant d’exécuter un ensemble de taches temps
réel sur trois architectures sur étagere, avec les garanties temporelles associées [46].
Des travaux similaires dans la these de Quentin Perret [30] ont permis de proposer
et d’'implémenter un modele d’exécution prédictible pour les applications temps réel

sur une puce pluri-cceurs Kalray MPPA 256.

A.4. Analyse temporelle pire cas des réseaux sur puce wormhole
intégrant 'impact des mémoires tampon 173

A.3.2.3 Discussion

Le principal manque des approches d’exploration d’architectures existantes concerne
I’analyse pire cas des contraintes temporelles, en particulier dans le cas des archi-
tectures basées sur des réseaux sur puce. La vérification des contraintes tempo-
relles, lorsqu’elle est abordée, est faite par simulation. A notre connaissance, aucune
contribution n’intégre la vérification formelle des contraintes temporelles dans son
processus de design et d’exploration d’architectures.

Ainsi, nous proposons comme troisiéme contribution (section A.6) une approche
hybride d’exploration d’architectures, combinant la modélisation systeme et le cal-
cul réseau. Son principal objectif est de réduire la durée du processus en éliminant

au plus vite les configurations ne satisfaisant pas les contraintes temporelles.

A.4 Analyse temporelle pire cas des réseaux sur puce

wormbhole intégrant I’impact des mémoires tampon

Notre premiere contribution est un modele d’analyse temps-réel pour les réseaux sur
puce wormhole, appelé BATA (Buffer-Aware worst-case Timing Analysis). Nous
présentons dans un premier temps les principaux éléments de notre modélisation
basée sur le Calcul Réseau (section A.4.1).

L’idée centrale de ce modele est de prendre en compte 1’étalement des paquets dans
le réseau afin de prendre en compte I'impact d’un paquet en attente dans le réseau
sur le chemin des autres flux, et de prévoir les possibles blocages en cascade. La
taille du paquet et des mémoires tampons des routeurs impacte directement les
possibles scenarii de blocage. Nous montrons cet aspect sur un exemple, section
A.4.2.

Une fois les configurations de blocage déterminées, on peut déduire une estimation
haute du délai subi par un paquet du flux d’intérét le long de son chemin. Ce calcul
comprend 3 étapes, que nous présentons section A.4.3.

Enfin, nous procédons a une évaluation du modele, section A.4.4.

A.4.1 Modélisation du réseau et des flux

Nous considérons un réseau sur puce de type wormhole, avec controle de flux blo-
quant, a topologie statique. Le réseau est constitué de routeurs avec mémoires en
entrée, supportant des canaux virtuels qui implémentent des classes de priorité.
L’arbitrage entre les entrées est supposé quelconque, et 'arbitrage entre canaux

virtuels suit une politique de priorité fixe. Nous ne spécifions pas d’algorithme de

174 Annexe A. Résumé en francais

routage, mais celui-ci doit étre déterministe. On suppose de plus que deux flux dont
les chemins divergent ne se rencontrent pas de nouveau apres leur point de diver-
gence. Pour fixer les idées, nos exemples considereront des réseaux de type mesh
2D, routés selon un algorithme XY. L’architecture typique d’un routeur, similaire
a celle présentée dans [24], est illustrée Figure A.2.

arbitrary multiplexing
North FP multiplexing

| o i ey I

: =t S output .

N P '

iy =19

West l— East -]
L oL

1 Local — (11 - .

South e o 5

FIGURE A.2 — Architecture d’un router de mesh 2D et niveaux d’arbitrage

Pour modéliser les deux niveaux d’arbitrage, on considere que chaque sortie du
routeur se comporte comme une multiplexeur avec deux niveaux d’arbitrage. Dans
le reste de ce rapport, nous appelons neud tout couple routeur,sortie. Ainsi, on
modélise un neeud 7, avec le formalisme du calcul réseau, par une courbe de service

de type rate latency, ou débit-latence :
F(t) = R (t—T)*

R" représente le débit minimum de données que peut traiter le nceud 7 (typiquement
exprimé en nombre de flits par cycle d’horloge) et T représente le retard infligé
par le noeud 7 & un flit qui le traverse (typiquement, un ou quelques cycles).

Nous considérons ici que 'architecture est homogene, c’est-a-dire que tous les liens,

mémoires tampon et routeurs du réseau ont les mémes caractéristiques.

Le trafic considéré est périodique ou sporadique. On modélise un flux f par une

courbe d’arrivée de type seau percé (leaky bucket) :
af(t) =05+ pst

dont les parametres s’expriment en fonction de la période du flux Py, de sa jigue

A.4. Analyse temporelle pire cas des réseaux sur puce wormhole
intégrant 'impact des mémoires tampon 175

Jy et de la taille maximale d’'un paquet Ly :

_ Ly
7
o = Ly+Jp py

Pr

Etant donné un flux f, on désigne son chemin, i.e. la liste des noeuds qu’il traverse
entre sa source et sa destination, par la notation Py. Pour un indice k approprié,
IP¢[k] désigne le k—1° noeud sur le chemin de f. De plus, pour tout r € Py, la courbe
d’arrivée de f propagée jusqu’au noeud r conformément au théoréme 6 (B.1) est
notée :

ah(t) = ol + -t

La courbe de service offerte au flux f sur son chemin complet est notée :
+
Br(t) = Ry (t =Ty)

A.4.2 Tllustration du probléme

Pour illustrer le probleme, nous considérons la configuration décrite figure A.3,
a gauche. Elle comprend trois flux. Nous supposons que chaque paquet contient
3 flits et chaque mémoire tapon peut contenir un flit, de telle sorte qu’il faut 3
mémoires tampon pour stocker un paquet. En outre, nous considérons que tous les

flux utilisent le méme canal virtuel.

R11

0

77
—
=N
| 3

=

—

(e}

é B packet A of flow 3 movin R
RS é Il packet B of flow 2 waitin RS
A i packet C of flow 1 waiting
R7k R7

RL_R2 R3 R4 R5 Rk Rl1 R2 R3] R4 Pi
I

S D T G IIF
* RSO0

1 Ny A "3 2 3

FIGURE A.3 — Configuration typique (gauche) et étalement des paquets (droite)

Supposons qu'un paquet A, du flux 3, vient d’étre injecté dans le réseau, et qu’il a

176 Annexe A. Résumé en francgais

été autorisé a utiliser le port de sortie Nord du routeur R6. Au méme moment, un
paquet B, du flux 2, demande 'utilisation de la méme sortie. Comme le paquet A
I'utilise, le paquet B doit attendre. Enfin, un paquet C du flux 1 vient d’attendre R3
et demande 'utilisation du port de sortie Est de R3. Cependant, comme la mémoire
d’entrée du port Ouest de R4 est occupée par un flit du paquet B, le paquet C doit
attendre.

Dans ce cas, A bloque indirectement C, alors méme que les flux correspondants, 1

et 3, ne partagent pas de ressources. Nous appelons ce phénomene blocage indirect.

A.4.3 Formalisme et calculs

Le calcul de la borne sur le délai de bout en bout pour un flux d’intérét f € F
s’effectue en 3 étapes : l'analyse du blocage indirect subi par f, le calcul de la
courbe de service, et le calcul du délai de bout en bout.

Etape 1 — analyse du blocage indirect : Cette étape détermine quels flux

impactent le flux d’intérét sans partager de ressources avec celui-ci.

Definition 16. Le set de blocage indirect d’un flur f, appelé également IB set,
est ’ensemble des flur ne partageant aucune ressource avec f mais qui peuvent
impacter son temps de transmission parce qu’ils impactent (directement ou non) un
fluz partageant des ressources avec f. On le note IBy. Il contient des paires {indice
de flux, sous-chemin} afin de spécifier, pour chaque indice de fluz, la portion de
chemin sur laquelle un paquet de ce flux peut impacter le flux d’intérét f, par le

biais du phénoméne de propagation du blocage en amont.

Pour quantifier ’étalement d’un paquet dans le réseau, nous introduisons la notion
d’indice d’étalement, qui représente le nombre de mémoires tampons nécessaires

pour contenir un paquet du flux considéré.

Definition 17. L’indice d’étalement du flux f est noté Ny et défini par :
Ly
Ny=|—
! M

Puis, nous définissions le subpath, ou sous-chemin, d’un flux par rapport a un autre.

Definition 18. Etant donnés deuz fluz k et | dont les chemins s’intersectent, le
sous-chemin de k relativement a | est la portion de Py, de longueur au plus Ny,

sttuée apres le point de divergence de Py et P; :

subpath(Py,B) = [Py[Last(Py, P1) + 1], Pi[Last(Py, B,) + N]|

A.4. Analyse temporelle pire cas des réseaux sur puce wormhole
intégrant 'impact des mémoires tampon 177

ot Last(Py,P;) = max{n, Py[n] € P;} est lindice du dernier neud partagé par k et
[sur le chemin de k, soit l'indice tel que Px[Last(k,l)] = dv(k,l). Par convention,
si k et l ne s’intersectent pas, les sous-chemins subpath(k,l) et subpath(l,k) sont

vides.

Nous étendons cette notion en définissant de la méme maniére le sous-chemin d’un
flux k quelconque relativement & n’importe quel sous-chemin §; C P; d’un flux [

quelconque (avec [# k ou l = k). On a alors :
subpath(Py,S;) = []P’k[Last(IP’k, Si) +1],...,Pe[Last(Pg,S;) + Nk]}

ou Last(Py,S;) = max{n, Pgln] € S;} est l'indice (dans Py) du dernier nceud
partagé par k et [sur le sous-chemin S;. Par abus de notation, on pourra uti-
liser subpath(k,l) pour désigner subpath(Py,P;) et subpath(k,S;) pour désigner
subpath(Pg,S;).

Nous illustrons la notion de sous-chemin sur la figure A.4, en considérant le flux

d’intérét k et un indice d’étalement égal a 3 pour le flux .

cv(Py, Py) dv(Py,Py) | Pi[Last(P, Py) + 1

v

v

subpath(l, k)

FIGURE A.4 — Calcul d’un sous-chemin relativement au flux &

Pour déterminer le set de blocage indirect d’un flux f, nous calculons les sous-
chemins de chaque flux k # f par rapport a f. Puis, nous itérons ce calcul re-
lativement aux sous-chemins nouvellement calculés, jusqu’a n’obtenir plus aucun
sous-chemin non vide. Le calcul est détaillé section 4.4, algorithme 1. L’on y trou-
vera également une borne supérieure de la complexité de l'algorithme.

Etape 2 — courbe de service de bout en bout : La deuxiéme étape consiste
en deux calculs : le calcul de la latence de base et de la latence de blocage direct,
puis le calcul de la latence de blocage indirect.

Le premier calcul prend en compte 'impact de la sérialisation des flux. Il s’appuie

178 Annexe A. Résumé en francgais

sur un résultat de [70] pour une politique d’arbitrage par priorité fixe, que nous
rappelons Annexe B.1. Le résultat est quelque peu lourd a écrire et fait appel a
des définitions supplémentaires, aussi nous ne le rappelons pas ici et renvoyons la
sagace lectrice a la section 4.5.1.

Ensuite, nous calculons la latence de blocage indirect Tp, en utilisant 1By calculé a
I’étape 1. L’idée est d’additionner des délais de bout en bout sur chacun des sous-
chemins de IBy. La encore, la lectrice pourra se référer a la section correspondante
(4.5.2) pour les théorémes et preuves détaillés.

Il est a noter que le calcul de la courbe de service est doublement récursif : il
nécessite le calcul de courbes de services intermédiaires a la fois lors du calcul de
Tpp et de Tip . Cet aspect est détaillé section 4.5.3.

Etape 3 — calcul du délai de bout en bout : Connaissant la courbe de service
offert au flux f de bout en bout, nous utilisons le théoréme 6, annexe B.1, pour

calculer une borne supérieure du délai de bout en bout :

Py O'Pf[o]

! Ry

+Tp, + Top+ 1B (A1)

Nous utilisons la fonction partie entiére supérieure pour obtenir un nombre entier

de cycles (un demi cycle d’horloge n’a ici pas de réalité physique).

A.4.4 Résumé de ’analyse de performance

Nous procédons a une évaluation de notre modele selon trois axes : (i) la sensibilité
aux parametres d’entrée; (i) I’évaluation de la finesse, c’est a dire de I’écart entre
la borne calculée et le pire cas réel; (iii) et enfin, ’aspect calculatoire, en particulier
la scalabilité du modele. Pour les deux premiers axes, nous utilisons une méme
configuration de 12 flux sur un NoC 6 x 6, détaillée figure A.5, sur laquelle nous
varierons certains parametres. Cette configuration, relativement simple, présente
néanmoins des possibilités de blocage direct et indirect. Pour le troisieme axe, notre
étude est basée sur des configurations d’'un nombre de flux variable, sur un NoC
8 x 8.

Sensibilité : Nous étudions dans un premier temps la sensibilité du modele a trois
parametres d’entrée : la taille des mémoires tampon, le débit des flux et la taille des
paquets. Chaque flux a la méme période et la méme taille de paquet, ainsi qu’une
jigue nulle. Nous varions chacun des parametres pour tous les flux et étudions l'effet
de cette variation sur le délai de bout en bout d’un flux représentatif, le flux 1, car

celui-ci subit du blocage indirect suffisamment complexe pour mettre en évidence

A.4. Analyse temporelle pire cas des réseaux sur puce wormhole

intégrant 'impact des mémoires tampon 179
5 Y . Flux Source Destination
— 4 = 1 (0,5) (5, 4)
4]] 2 (1,5) (23)
o 3 (2,5 (3,2
3 HIENENE 4 (3,5 (4,3)
— i 5 (5,5 (5 1)
2 LoLLREL] 6 (2,4) (2,1
oo s s 7 (2,2 (2,0
1 oLl re]] B 8 (3,4) (3,1
i ; 9 (3,3) (3,0
0 N : 10 (4,4) (4,1)
0o 1 2 3 4 5 11 (4,2) (4,0
12 (5,2) (5,0)

— flow of interest

====> other flows

F1GURE A.5 — Configuration test sur un réseau sur puce en grille 6x6

les particularités de notre modele.

Nous faisons varier la taille des mémoires tampons entre 1 et 64 flits, la taille de
paquet entre 2 et 128 flits, et le débit des flux entre 1% et 40%. Les résultats obtenus
montrent en particulier les aspects suivants :

e Augmenter la taille des mémoires tampons n’est bénéfique pour les délais de
bout en bout que jusqu’a un certain point. Une telle augmentation diminue
I'indice d’étalement des flux, entrainant une diminution de la taille du set de
blocage indirect et de la latence correspondante, et donc du délai de bout en
bout. Cependant, pour des mémoires tampons plus grandes que la taille d’un
paquet, cette diminution n’a plus lieu car I'indice d’étalement devient alors
stationnaire ;

e Le débit des flux et la taille des mémoires tampons sont les parametres im-
pactant le plus significativement les délais de bout en bout.

Pour plus de détails, nous renvoyons la sagace lectrice vers la section 4.7.1.

Finesse : La finesse du modele correspond a I’écart entre la borne pire cas calculée
et le pire cas réel. Comme le pire cas réel est difficile voire impossible & détermi-
ner, nous évaluons la finesse des bornes en utilisant la simulation. Nous simulons
une configuration de nombreuses fois, en variant aléatoirement ’offset des flux, i.e.
Iinstant relatif ou chaque flux commence & transmettre. Ainsi, nous modifions les

configurations de blocage. Pour chaque flux, nous prenons ensuite le pire cas obtenu

180 Annexe A. Résumé en francgais

Rate 8% 32%
Buffer 4 8 16 4 8 16

Statistiques sur I'indice de finesse

Moyen 70.1% 72.1% 80.8% 49.7% 64.2% 79.8%
Max 91.7% 92.0% 88.3% 95.6% 88.9% 97.3%
Min 40.6% 38.1% 48.9% 20.8% 33.3% 43.8%

Tableau A.2 — Indices de finesse pour les configurations testées

par simulation et calculons son indice de finesse défini comme le ratio du pire cas
obtenu sur la borne calculée. Plus cet indice est proche de 100%, plus la borne est
fine. L’indice de finesse calculé est donc une borne inférieure de la finesse réelle,
puisque le pire cas obtenu par simulation peut étre inférieur au pire cas réel.
L’étude de sensibilité conduite a mis en évidence que la taille des mémoires tampon
et le débit des flux ont un impact déterminant sur la borne calculée. Ainsi, nous
considérons des valeurs différentes pour ces deux parametres lors de I'étude de
finesse : mémoires tampon de 4, 8 et 16 flits, débits de 8% et 32% pour une taille
de paquet de 16 flits.

Nous utilisons Noxim [50] pour effectuer les simulations et présentons les résultats
obtenus dans le tableau A.2. Sur les différentes simulations, I'indice de finesse moyen
mesuré atteint 80%. Pour un débit de 8%, l'indice de finesse moyen se situe entre
70.1% et 80.8%, tandis que pour un débit de 32%, il varie entre 49.7% et 79.8%.
Nous observons également que la valeur moyenne de l'indice de finesse augmente
avec la taille des mémoires tampons. Ce dernier point est cohérent avec les résultats
de I’étude de sensibilité. En effet, les configurations de blocage indirect prédites par
le modeéle tendent & devenir plus simples a mesure que I'indice d’étalement diminue
(donc que la taille des mémoires tampon augmente). Ainsi, le léger pessimisme
introduit par le calcul de la latence de blocage indirect est d’autant moindre que
le set de blocage indirect est petit. De plus, les scenarii de blocage indirect les plus
complexes et défavorables sont également les moins susceptibles de se produire
sur un ensemble d’offsets aléatoires, car ils supposent une synchronisation fine des

différents flux entre eux.

Scalabilité : Nous mesurons le temps nécessaire pour ’analyse compléte sur
diverses configurations comprenant un nombre de flux variable. Pour ce faire, nous
considérons un réseau sur puce 8 X 8, et un nombre de flux prenant les valeurs
4, 8, 16, 32, 48, 64, 80, 96 et 128. Nous générons au hasard 20 configurations

par valeur du nombre de flux N, en choisissant 2N couples d’entiers (x,y) avec

A.4. Analyse temporelle pire cas des réseaux sur puce wormhole
intégrant 'impact des mémoires tampon 181

les coordonnées tirées uniformément dans I'intervalle idoine (ici [0,7]). N couples
sont utilisés pour les sources des flux, et les N autres pour les destinations. Tous
les autres parametres (mémoire tampon, taille de paquet, débit des flux, latences

technologiques des routeurs) sont fixés.

Pour chaque configuration, nous nous intéressons a la durée totale de I'analyse, At,
ainsi qu’a la durée de l'analyse de blocage indirect, At;g, et a la durée du calcul

des courbes de service, Ateoe.

. Runtime of complete analysis (s) Runtime of IB analysis (s)
10
+ RUN_TIME_TOTAL BATA + 74 + RUN_TIME_IB BATA +
5 Average RUN_TIME_TOTAL BATA . + -+ Average RUN_TIME_IB BATA
103 4 cee +
I 6
102 4 +
+ 51
¥
10! 4 * T T
+ 4 I
+ +
+

100 4

HHHH W+ +
H

w

+ - +H

102 4

it N IR S

103 4

10 20 30 40 50 60 0 20 40 60 80 100 120
FLOW_NB values FLOW_NB values

Runtime of service curve computation (s)

104

+ RUN_TIME_TIMING BATA +
Average RUN_TIME_TIMING BATA .

103 4 +
102 4 +

.

i

10! 4 N I
+

+

+

1071 4 +

“lr !

10 20 30 40 50 60
FLOW_NB values

HHHE G+
e

FIGURE A.6 — Résultats de I'analyse de scalabilité

Nous obtenons les résultats présentés en figure A.6. Le graphique en haut a gauche
représente la durée de 'analyse totale en fonction du nombre de flux, celui en haut &
droite concerne I'analyse de blocage indirect uniquement, et le dernier isole la durée
du calcul des courbes de service. Chaque point représente la durée de 'analyse pour
une configuration. Nous calculons aussi les valeurs moyennes de ’analyse pour un

nombre de flux donné et relions les valeurs par une courbe en pointillés.

182 Annexe A. Résumé en francgais

Cette étude montre dans un premier temps que la principale source de complexité
est le calcul des courbes de service. Pour des configurations de 64 flux et plus,
I’analyse totale nécessite plus de deux heures. Au vu de I’évolution du temps total
d’analyse avec le nombre de flux, on peut conjecturer que le calcul a une complexité
exponentielle. A contrario, I’analyse de blocage indirect est relativement rapide par
rapport a ’analyse totale (au maximum 7 secondes pour des configurations de 128

flux), et son évolution confirme la borne calculée section 4.4.

A.4.5 Conclusion

Ce premier modele permet de déterminer des bornes supérieures du délai pire cas
de transmission de flux CBR sur un réseau sur puce homogene, en prenant en
compte la taille des mémoires tampon des routeurs. L’indice de finesse du modele
atteint jusqu’a 80% en moyenne, mais la méthode montre une certaine limite dans sa
capacité a passer a ’échelle. Ainsi, pour les configurations testées comprenant plus
de 64 flux, la durée nécessaire a 'analyse dépasse les deux heures. De plus, le seul
trafic supporté est de type CBR, et les architectures sont supposées homogenes. Par
la suite, nous cherchons donc a étendre ce modele pour prendre en compte plus de
types de trafic différents, et améliorer ses performances calculatoires afin d’analyser

des configurations plus complexes en une durée moindre.

A.5 Analyse temps réel des NoCs wormhole hétéro-

genes par graphe d’interférences

La deuxieéme contribution de cette thése est de proposer une extension du modele
précédent. Cette extension concerne (i) le modele de trafic pris en compte dans
lanalyse; (ii) les architectures sur lesquelles est applicable le modeéle; et (iii) le
calcul de la latence de blocage indirect. Ce dernier point repose sur I'utilisation sur
des graphes d’interférence ; aussi nous baptisons I’approche G-BATA (Graph-based
BATA). Nous soulignons les principales extensions dans la modélisation du systéme
(section A.5.1). La section A.5.2 présente notre nouvelle approche pour 'analyse
de blocage indirect. Enfin, nous donnons un apercu des résultats de I’analyse de

performance du modele.

A.5.1 Formalisme étendu

Cette partie differe légerement du formalisme de BATA. Nous étendons le modele

de trafic pour couvrir les flux bursty. En plus des caractéristiques précédemment

A.5. Analyse temps réel des NoCs wormhole hétérogeénes par graphe
d’interférences 183

mentionnées (taille de paquet Ly, période Py, jigue Jy), chaque flux f est caractérisé
par un burst noté by, correspondant au nombre maximal de paquets qu’il peut

générer consécutivement. Sa courbe d’arrivée s’exprime alors ainsi :

af =05+ pst
Ly
avec : py = Ff

Pour la partie réseau, la différence majeure est que la courbe de service d’un
élément de réseau dépend du nceud considéré et les tailles des mémoires tampon
ne sont plus supposées uniformes. Ainsi, on notera R" la capacité de traitement
du noeud 7, T" la latence technologique du noeud r, et B” la taille de la mémoire

tampon.

Puisque le réseau n’est plus considéré comme homogene, 'indice d’étalement d’un
flux dépend du nceud a partir duquel il est calculé, et sa définition doit donc étre

revue.

Definition 19. Indice d’étalement étendu
Considérons un flux f de taille de paquet maximale Ly. L’indice d’étalement étendu

de [au neud d’indice i, noté N} est défini comme suit :

-1
S Pt
N}_rznzl(l)l Z7Lf§jz%Bf[z 7]

o, B" désigne la taille de la mémoire tampon au neud .

Nous étendons ensuite la définition du sous-chemin de k relativement a [pour
intégrer 'indice d’étalement étendu. La définition détaillée se trouve section 5.2.2,

définition 12 et est tres similaire a celle présentée dans la section précédente.

A.5.2 Définition et construction du graphe d’interférence

Afin de capturer la particularité du trafic bursty, nous définissons une structure de
graphe orienté, telle que chaque sommet correspond a un sous-chemin représentant
I’étalement d’un paquet d’un certain flux dans le réseau. Les sommets sont connectés
entre eux par des arétes orientées représentant les dépendances d’un sous-chemin
par rapport a un autre. Ainsi, une arréte d’un sommet a vers un sommet b signifie

que le sous-chemin du sommet a a été calculé relativement au sous-chemin de b.

184 Annexe A. Résumé en francgais

Comme le trafic bursty autorise que plusieurs paquets consécutifs d’'un méme flux
se suivent dans le réseau, il est possible de calculer le sous-chemin d’un flux k par
rapport & un autre sous-chemin de ce méme flux k. Notons que ce dernier point
permet également de modéliser un scénario dans lequel un paquet d’un flux CBR
est retardé suffisamment pour que le paquet suivant le « rattrape », voire se retrouve
bloqué derriéere le premier.
Formellement, un sommet v possede donc les attributs suivants :

e fkey : l'indice du flux;

e path : le sous-chemin de ce flux;

o dependencies : la liste des arétes (v,u) ou u est le sommet tel que v.path

est le sous-chemin de v. fkey relativement a w.path ;
o dependents : la liste des arétes (w,v), ol w est le somment tel que w.path
est le sous-chemin de w.fkey relativement au sous-chemin v.path.

Pour construire le graphe (cf section 5.3, algorithmes 3 et 4 pour les détails), 1'on
construit d’abord un sommet dit « racine » correspondant au flux d’intérét sur
son chemin total, duquel ne part aucune aréte. Puis, pour chaque flux k¥ € F, on
calcule le sous-chemin de k par rapport & f. Si ce sous-chemin est non vide, on
crée un sommet qui contient le sous-chemin calculé et une aréte vers le sommet de
f. On ajoute ce sommet au graphe (s’il n'y est pas déja). On itére ensuite cette
approche sur les nouveaux sommets obtenus. L’algorithme termine lorsqu’aucun
nouveau sommet n’est créé.
Nous déterminons, section 5.3, propriété 2, une borne supérieure de la complexité

de ce nouvel algorithme.

Une fois le graphe construit, on extrait le set de blocage indirect correspondant
en faisant la liste des sommets du graphe, et en éliminant le sommet racine et les

sommets correspondant a des flux qui partagent des ressources avec le flux d’intérét.

Le reste de ’analyse (courbe de service et délai de bout en bout) est similaire, & une
légere différence pres pour le calcul de Tz. Au lieu de calculer la courbe d’arrivée
propagée au début de chaque sous-chemin du set de blocage indirect, nous prenons
a cet endroit la courbe d’arrivée initiale pour un burst d’un paquet (b = 1). Cette
modification entraine en particulier une réduction du nombre de calculs de courbes
de service intermédiaires, que nous ne détaillons pas ici. Cet aspect est développé
section 5.4 (voir en particulier I'algorithme 5) et ses conséquences seront observées

dans I'analyse de performance.

A.5. Analyse temps réel des NoCs wormhole hétérogeénes par graphe
d’interférences 185

A.5.3 Analyse de performance

L’analyse de performance de G-BATA suit un processus similaire a celui de BATA.
Nous proposons ici un résumé des principaux résultats de cette analyse, selon les
trois axes présentés section A.4.4. Pour 'analyse de sensibilité et 1’évaluation de la
finesse, nous utilisons les mémes configurations et valeurs de parameétres.
Sensibilité : La principale différence observée concerne I’évolution des délais de
bout en bout avec les tailles des mémoires tampon. En raison de ’hypothése supplé-
mentaire sur le trafic, le nombre de sous-chemins consécutifs du méme flux n’est pas
limité. La diminution des longueurs des sous-chemins entraine une augmentation de
leur nombre et, en conséquence, Tz et les délais de bout en bout augmentent éga-
lement. En revanche, on assiste toujours a un phénomene de palier au-dela d’une
taille de mémoire tampon permettant de contenir en entier un paquet de n’importe
quel flux.

L’autre aspect intéressant est que G-BATA est moins sensible au débit des flux
que BATA. Cela est di au fait qu’avec I’approche BATA, pour un flux d’intérét
f, et pour {k,S} € IBf, on calcule la courbe d’arrivée de k propagée au début
du sous-chemin S, alors qu’avec G-BATA, on utilise la courbe d’arrivée initiale
de k pour un burst égal & un paquet. Or, pour les types de courbes utilisés,
I’expression du burst de la courbe d’arrivée propagée contient un terme supplémen-
taire pT' (cf théoreme 6, annexe B.1), qui se retrouvera dans la borne sur le délai

de bout en bout. Pour plus de détails, nous renvoyons la lectrice vers la section 5.6.2.

Finesse : Nous évaluons la finesse de G-BATA sur les mémes configurations que
BATA. Les résultats sont résumés dans le tableau 5.1. En moyenne, l'indice de
finesse de G-BATA est de 72% pour des mémoires tampon de 4 flits et de 56%
pour des mémoires tampon de 16 flits. Pour des flux de débit 8% et des mémoires
tampon de 4 flits, les deux modeles donnent des résultats similaires. Pour un débit
de 32%, G-BATA donne des bornes plus fines. Au contraire, lorsque la mémoire

tampon est plus grande, BATA donne des bornes plus fines.

Scalabilité : Nous évaluons les performances de G-BATA d’abord avec les mémes
configurations utilisées pour BATA dans la section précédente. Les courbes com-
paratives montrent que G-BATA est bien plus performant : par exemple, la durée
moyenne de 'analyse totale de configurations contenant 48 flux est 766 fois moindre
avec G-BATA. Le calcul des courbes de services est I'étape ot G-BATA montre plei-

nement son avantage sur BATA. En revanche, on constate que ’analyse du blocage

186 Annexe A. Résumé en francgais

indirect est en moyenne 5.7 fois plus rapide avec BATA qu’avec G-BATA.

Puis, nous évaluons les performances de G-BATA sur des configurations plus grosses
(de 20 a 800 flux). L’approche reste performante a grande échelle, puisque sur
un ordinateur portable équipé d’un processeur Intel core i7, le calcul de toutes
les bornes des configurations contenant 800 flux prend autour de deux heures au
maximum (soit environ 9 secondes par flux). Nous observons également que I’analyse
du blocage indirect représente la majorité du coiit de I'analyse totale (97.1% de la

durée totale en moyenne pour les configurations de 800 flux).

A.5.4 Conclusion

Notre modele d’analyse temporelle pire cas basé sur des graphes d’interférences
permet de traiter des architectures hétérogenes et de prendre en compte un modele
de trafic plus général que le précédent, tout en gardant une bonne finesse sur les
bornes calculées. En outre, il permet d’obtenir des résultats en 10 a 100 fois moins
de temps que BATA pour des configurations de 32 et 48 flux. Le calcul des bornes
pire cas sur des configurations de 800 flux prend moins de 2h sur un ordinateur
portable, soit 9 secondes par flux, ce qui valide la possibilité d’utiliser le modele a
grande échelle.

Comme résumé en figure 5.15, il convient d’utiliser G-BATA lorsque les hypothéses
nécessaires a l'application de BATA ne sont pas vérifiées ou lorsqu’on cherche &
obtenir des résultats rapidement. En ’absence de telles contraintes, I’on peut utiliser
BATA & condition qu’il n’y ait pas plusieurs paquets consécutifs d’'un méme flux

dans le réseau.

A.6 Approche hybride pour DP’exploration d’architec-

tures

Nous nous intéressons maintenant aux problemes liés a ’exploration d’architectures.
Comme mentionné précédemment, la plupart des approches considérées n’integrent
pas la vérification de contraintes temps réel dans leur processus de conception.
L’objet de cette section est de proposer une méthodologie prenant en compte cet
aspect.

A cette fin, nous proposons un processus hybride respectant I’approche Y-chart, bati
autour d’un outil existant, TTool [9]. Ce processus de conception et d’exploration
étendu nécessite l'ajout d’'un modele de réseau sur puce dans 'outil TTool, ainsi

qu'une liaison avec notre modele d’analyse G-BATA, que nous intégrons a 1’outil

A.6. Approche hybride pour 1’exploration d’architectures 187

WoPANets, destiné & la modélisation et I’analyse temporelle pire cas de réseaux.
Nous évaluons ensuite I'intérét de notre méthode sur un exemple simple montrant
le gain de temps par rapport a une étude du systéme basée uniquement sur la

simulation transactionnelle.

A.6.1 Workflow étendu

[Application model j [Architecture model jj NoC model j

I |
| |

[Mapping }—

|]
1

‘ Simulation }7 ‘ Timing Analysis ’

timing OK timing not OK

F1GURE A.7 — Processus de ’approche hybride

La figure A.7 montre le processus de conception étendu pour intégrer la vérification
des contraintes temps réel.

La modélisation du systéme sépare ’aspect architectural de l'aspect fonctionnel.
A ce stade, le composant réseau sur puce est utilisé comme une boite noire pour
la description de l’architecture. Une fois un mapping choisi, on peut exporter le
modele sous format XML vers WoPANets pour calculer les bornes sur le délai de
bout en bout de chacun des flux.

Si un mapping ne permet pas de satisfaire les contraintes temps réel, il est ignoré
et on peut alors agir sur ’architecture ou le mapping pour proposer une autre
possibilité. Si, au contraire, le mapping satisfait les contraintes, ’on peut simuler le
systeme.

Pour cela, on transforme d’abord le NoC en ses sous-composants et taches, avant
de générer et compiler le code de simulation. Ces fonctionnalités sont implémentées

dans TTool. Le reste du processus est semblable & I’approche Y-chart classique.

A.6.2 Modélisation systéeme du NoC

Pour ajouter un composant NoC dans TTool, nous définissons ses deux sous-
composants : le routeur et I'interface réseau, selon ’architecture résumée en figure
A.8. Les routeurs gerent les paquets flit par flit et s’interconnectent entre eux pour

former la topologie du NoC. Les interfaces réseau permettent de lier des émetteurs

188 Annexe A. Résumé en francgais

et récepteurs de trafic qui ne manipulent que des paquets avec les routeurs du NoC,
et ainsi d’autoriser la connexion d’'un NoC & des composants existants sous TTool
par 'intermédiaire d’un bus. L’interface réseau d’entrée se charge d’injecter les pa-
quets dans le NoC et d’arbitrer entre les différents émetteur. L’interface réseau de

sortie lit les flits qu’elle recoit et notifie le récepteur lorsqu’un paquet complet est

disponible.
NoC
Other routers
North South West East
4] t 4] t]
1 ¢ 1 ¢ 1 ¢ 1 ¢
Router
,Network interface Network interface‘

\

[t
]
+

[Local tile]

FI1GURE A.8 — Description fonctionnelle du réseau sur puce

Le modeéle de routeur choisi est un routeur avec mémoire tampon en entrée sup-
portant les canaux virtuels. Nous le scindons en plusieurs blocs fonctionnels (figure
A.9), chargés en particulier de répartir les flits requs dans les différentes files d’at-
tente, d’arbitrer entre les différentes entrées et canaux virtuels, et de router le flit
vers sa destination. Nous spécifions le fonctionnement de chaque bloc fonctionnel
grace a un diagramme d’activité (non détaillé ici). Une telle organisation modulaire
permet de proposer une modification d’un aspect du router (e.g. politique d’arbi-
trage ou algorithme de routage) sans devoir repenser l'intégralité de la structure.

Comme le modele de données de TTool ne permet pas de spécifier leur valeur,
nous réalisons le controle de flux grace a des événements. Au sein d’un routeur et
entre ceux-ci, un événement correspond a un flit ou un crédit de contréle de flux,
tandis qu’en dehors du réseau sur puce, un événement correspond a un paquet.
Les événements correspondant a des paquets contiennent les informations relatives

a sa destination, sa taille, ainsi qu’un identifiant unique servant a distinguer les flux.

L’architecture matérielle que nous proposons est tres similaire a ’architecture fonc-

tionnelle, puisque chaque tache au sein du routeur doit s’exécuter sans concurrence.

A.6. Approche hybride pour 1’exploration d’architectures 189

INO VCO OUT0 VCO
— —
INO OouUTo
____J ___
INO VC1 OUT0 VC1
_____J —
IN1 VCOo OUT1 VCO
IN1 OUT1
_____J —
IN1 VC1 OUT1 VC1
— —
| |

F1GURE A.9 — Description fonctionnelle d’un routeur 2 entrées, 2 sorties, 2 canaux
virtuels

A.6.3 Performance

Nous proposons un exemple simple pour mettre en évidence les capacités de modéli-
sation de notre approche et évaluer le gain qu’elle offre. La configuration considérée

est schématisée en figure A.10. Elle comprend trois flux sur une plateforme 2 x 2.

0 >
1 2

F1GURE A.10 — Configuration considérée

La vue fonctionnelle d’un flux, décrite en figure A.11, est constituée d’une tache
émettrice, d'une tache réceptrice, et d’une tache de controle chargée de déclencher
I’envoi et la réception périodiques d’un paquet. Les diagrammes d’activité corres-
pondant sont représentés en figure A.12.

Le modele d’architecture et le mapping des taches est présenté en figure A.13.

La courbe de service d’un routeur du réseau sur puce considéré est la suivante :

8t) = 75 (6= 5)"

Pour mesurer le délai obtenu par simulation pour chaque flux, nous traitons auto-
matiquement les traces de simulation pour extraire 'instant ou le premier flit d’un
paquet est injecté dans le réseau et 'instant ou le dernier flit du méme paquet quitte

le réseau.

190 Annexe A. Résumé en francgais

srcO dsto

A 4;
;,

ctrl 0

+ offset = 20 Matural;
+ period_cycles = 300 : Natural; —§|7
o

3

—

FIGURE A.11 — Vue fonctionnelle

2]
sendpkt_o0)

recupkt_dstol)

period_cycles-1
L
(a) TX task (b) RX task (¢) Control task

FIGURE A.12 — Diagrammes d’activité

Nous simulons ’envoi et la réception de 2 paquets par flux et comparons les résultats

obtenus aux bornes pire cas calculées (tableau A.3).

Flux 0 Flux 1 Flux 2
Délai de bout en bout mesuré (cycles) 62 62 123 123 62 62
Borne sur le délai pire cas (cycles) 199 199 455 455 288 288

Tableau A.3 — Résultats de simulation

A priori le flux 1 ne respecte pas sa contrainte temporelle (borne pire cas supérieure
a sa période). On constate de plus que le délai mesuré pour les flux 0 et 2 est égal
au temps de transmission d’un paquet sans congestion, ce qui indique que lors du
scénario simulé, ces flux n’ont pas subi de congestion.

Pour varier les scenarii de transmission, nous effectuons une autre série de simula-
tions en décalant aléatoirement l'instant d’envoi du premier événement de controle

de chaque flux par rapport a I'instant 0. Nous présentons la distribution des délais

A.6. Approche hybride pour 1’exploration d’architectures

191

#* <<CPURRPB::
CPUQD

TestApplication::sred D

TestApplication::srcl D

E 3 <=<CPURRPB:=>:>
CPU1D

TestApplication:: dst0 D

Testapplication: sre2 D

+=»=BUS5-PB=>
Bus00

+=»=BUS5-PB=>
BuslO

M HNoCe=
HoC

==cBLIS-PB> >
Bus0l1

wa=BUS-PB==
Busll

* =<<CPURRPB=:>
CFUOL

TestApplication::ctrl_0 D

TestApplication::ctrl_1 D

TestApplication::ctrl_2 D

E] =<CPURRPB=>>
CPULL

TestApplication: dstl D

TestApplication:: dst2 D

FIGURE A.13 — Architecture et mapping

mesurés sur les graphiques de la figure A.14. On constate que statistiquement, les

flux 0 et 2 sont moins susceptibles de subir de la congestion que le flux 1. En re-

vanche, la simulation n’a pas été en mesure d’exhiber un scénario ou le flux 1 ne

respecte pas sa contrainte temporelle. A titre indicatif, la génération, compilation

et exécution du code de simulation pour les 3000 scenarii testés a duré environ 44

minutes, alors que I'analyse pire cas n’a nécessité que 602 us. On peut donc faire

deux remarques sur cet exemple :

o Si les offsets des flux sont connus ou contraints d’une certaine fagon, la simu-

lation permet de raffiner les résultats de I'analyse temporelle et peut aider le

concepteur a identifier les scenarii de blocage qui se produisent le plus pour

tenter de les éviter.

e Si au contraire les offsets ne sont pas connus ou ne peuvent pas étre controlés,

simuler méme une configuration aussi simple peut prendre du temps et ne pas

étre en mesure de prouver que les contraintes temporelles sont respectées.

A.6.4 Conclusion

L’approche hybride que nous présentons combine le calcul réseau et la simulation

dans un processus d’exploration d’architecture compatible avec le Y-chart.

192 Annexe A. Résumé en francais

—— maximum measured delay

Frequency
o © ° ©
o = = =
=<} o N B

o
o
=

0.04
0.02
0.00 —
60 80 100 120 140 160
End-to-end delay (cycles)
(a) Flux 0
—— maximum measured delay
0.08
0.06
>
[°)
=
[
=
@ 0.04
w
0.02
0.00 |
60 80 100 120 140 160
End-to-end delay (cycles)
(b) Flux 1
—— maximum measured delay
0.25
0.20
>
o
o
2 0.15
o
<
w
0.10
0.05
0.00 S SRt LTI LI O b, o
60 70 80 90 100 110 120
End-to-end delay (cycles)
(c) Flux 2

FIGURE A.14 — Distribution des délais mesurés

A.7. Validation des contributions 193

Nous proposons une implémentation de cette méthodologie sur la base des outils
TTool et WoPANets. Une telle implémentation s’attache a rester aussi modulaire
que possible afin de permettre de futures améliorations.

Enfin, nous mettons en évidence l'intérét d’intégrer une méthode formelle d’analyse

pire cas dans ’exploration d’architecture sur un exemple simple.

A.7 Validation des contributions

Pour démontrer 'applicabilité de nos contributions, nous avons d’abord effectué des
expériences sur une puce pluri-coeurs pour mesurer les délais de bout en bout de flux
de données et les comparer aux prédictions du modele. Puis nous avons appliqué
notre approche d’exploration d’architecture a un cas d’étude. Nous proposons ici
de détailler uniquement 1’étude de cas portant sur l'application de contréle d’un

véhicule autonome, utilisée en particulier dans [14, 42].

A.7.1 Analyse pire cas

Nous analysons dans un premier temps la configuration avec les méme caractéris-
tiques que dans [42] & des fins de comparaison. Le mapping des 33 taches ainsi que
les caractéristiques des 38 flux sont détaillés Annexe C. L’architecture contient un
réseau sur puce 4 X 4 et 'on suppose que les canaux virtuels ne sont pas partagés.
La latence technologique des routeurs est de 3 cycles, la capacité des liens est d’un
flit par cycle, et un cycle dure 0.5 ns. Nous calculons les bornes sur les délais pire
cas pour une taille de mémoire tampon de 2, 100 et 1000000 de flits (cette der-

niére étant suffisamment grande pour considérer la mémoire tampon comme infinie).

Comme les flux ne partagent pas de canaux virtuels, il n’y a pas de blocage indirect.
Ainsi, BATA et G-BATA doivent donner les mémes résultats, ce qui est bien le cas.
Nous tracons les graphes comparatifs entre les résultats de notre approche et ceux
de [42] figure A.15. L’indice de finesse moyen des bornes calculées par G-BATA pour
des mémoires tampon de 2 flits (resp. 100, infinie) est de 64% (resp. 67%, 71%).
Nous renvoyons au tableau C.3, annexe C, pour le détail des indices de finesse de
tous les flux.

Notre approche donne des résultats tres similaires & ceux de [42]. En moyenne,
la différence entre 'indice de finesse de notre approche et de celle de [42] se situe
entre -0.03% et +0.08%.

194

Annexe A. Résumé en francais

70
+ BATA WC bound, B=2 *
X Nikoli¢ et al. WC bound ¥
6071 L Simulated WC -
X
50
) i ¥
El |
> ¥
© 40 A *
] . * i
o A
©
& 30 1
2 * %
° * S ¥
201 ww w wkwk ~ KELUR f*
101
04 *4 LodAxx X
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37
Flow index
70
+ BATA WC bound, B=100 *
X Nikoli¢ et al. WC bound ¥
601 . simulated wC -
[N
50 1
n i X
E 1
> ¥
@ 40 1 K
© * * *
o A
©
$ 30 1
. ¥
] £ ¥
¥ P e
G209 ww * wkwm L S 5**
101
0. LA XL
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37
Flow index
70
+ BATA WC bound, B=inf *
% Nikoli¢ et al. WC bound ¥
601 . simulated WC -
[
50
T X
=2 i
> *
© 40 1 |
3 * x % o
T
3 30
2
°
& 201
101
0 4

11 13 15 17 19 21 23 25 27 29 31 33 35 37
Flow index

F1GURE A.15 — Comparatif des bornes sur le délai de bout en bout

A.7. Validation des contributions 195

Toutefois, notre approche permet en sus d’analyser la méme configuration sans
I’hypothése de non-partage des canaux virtuels. Nous avons donc refait les calculs
pour une plateforme avec 2, puis un VC. Les résultats, détaillés section 7.2, montrent

que les contraintes temporelles sont toujours respectées dans ces deux cas.

A.7.2 Modélisation sous TTool

Nous modélisons maintenant le systeme pour des mémoires tampon de 2 flits avec
notre approche. Nous considérons une plateforme avec un seul canal virtuel et ré-
duisons les tailles de paquets et les périodes des flux de sorte a conserver le méme
débit pour chaque flux.

Comme en A.6.3, nous utilisons un modele d’application composé d’émetteurs, de
récepteurs et de taches de controle, que nous ne détaillons pas ici.

Notons simplement que certaines taches sont a la fois émettrices et réceptrices d’un
ou plusieurs flux. Ainsi, certains événements de controle sont mutualisés, et il n’y

a que 13 taches de contréle pour 38 flux.

Le modele d’architecture de la plateforme est présenté en figure A.16. Le mapping
est le méme que celui de I’étude de cas originale. Pour éviter I'interférence des taches
de contrdle avec les autres taches, nous les exécutons sur des CPUs dédiés.

Pour la simulation, nous introduisons un offset aléatoire dans chaque tache de
controle, afin d’obtenir des scenarii de transmission différents. Nous effectuons 300
simulations de 500000 cycles chacune.

Pour chaque flux, nous normalisons les valeurs mesurées pour le délai de bout en
bout par transformation affine, pour obtenir une valeur entre 0 (correspondant a la
latence de transmission minimale, sans congestion) et 1 (correspondant a la borne
pire cas). Nous pouvons ainsi représenter la distribution des délais de bout en bout
pour tous les flux. Le graphique correspondant est présenté en figure A.17.
Statistiquement, on constate que les délais sont proches des latences de transmission
minimales. Cela suggere que la plupart du temps, les paquets ne subissent pas de
congestion. Cette conclusion n’est pas surprenante puisque les flux considérés ont
des débits tres faibles (0.00048 flits par cycle au plus).

Une telle observation est également cohérente avec le fait que les bornes sur les
délais pire cas sont de l'ordre de 280 fois moindres que les périodes des flux (si ce

n’est plus).

Notons également qu’en termes de performance, 2 millions de cycles de simulation

196 Annexe A. Résumé en francgais
+=+=BUS-PB== +=+=BUS-PB=: +2=BUS-PB== +=2=BUS-PB=:
Bus03 Busl3 Bus23 Bus3z

<<CPURRPB:=>
CPUOZ

+==»<BLUS-PB=>

<<CPURRPB>>
CPULS

== BLUS-PB>=:

) I

<<CPURRPB:>:>
CPU23

<<CPURRPB>>
CPU33

+==BUS-PB=>
Bus22

+=2=BUS-PB==
Bus3z

<<CPURRPB:=>
CPU22

Mol
MoC_dx4

==CPURRPB:=:=
CPU32

Bus2l

Bus02 Busl2
I T
<<CPURRPB>= # <<CPURRPB:>:=
CPUD2 CPUL2
~=+=<BUS-PB=>=> ~<BUSPB=="" |
Busol f——— | Busll |]
T T
<<CPURRPB>:> # <<CPURRPB=>>
CPUDL CPU11
===BLUS-PB== +=»<=BUS-PB=>=
Bus00 EBusl0

<<CPURRPB:=:
CPUOD

<<CPURRPB:=>
CPULQ

wscBUS-PB==ll — +s<BUS-PB=>

Bus3l

<<CPURRPB:>>

<<CPURRPB:=>

CPUZ21 CPU31
w»=BUS-PB=> +=2=BUS-PB=:
Bus20 Bus30

<<CPURRPB:>>
CPUZ0

<<CPURRPB>>
CPUZ0

FIGURE A.16 — Architecture de la plateforme

nécessitent environs 53 minutes de calcul, contre moins d’une seconde pour I’analyse
formelle correspondante.
Ce dernier point conforte I'intérét d’utiliser une approche hybride pour ’exploration

d’architecture.

A.8 Conclusion

A.8.1 Résumé des contributions

Nos contributions concernent deux domaines : 'analyse temporelle pire cas des
réseaux sur puce avec routage chenille et canaux virtuels implémentant des classes

de priorité fixe, et ’exploration d’architectures avec réseau sur puce pour les

A.8. Conclusion 197

Frequency
= N N w w H
(6] o (6] o w o

=
o

ul

0.0 0.2 0.4 0.6 0.8 1.0
Normalized end-to-end measurements

FIGURE A.17 — Distribution des délais de bout en bout normalisés

applications temps réel.

Dans la premiére partie, nous proposons une premiere approche, BATA, prenant
en compte 'impact de la taille des mémoires tampon et la sérialisation des flux
de données, et permettant de calculer des bornes sur le délai de bout en bout de
chaque flux dans le pire cas, pour des flux CBR. Cette approche permet d’obtenir
des bornes avec une bonne finesse mais son point faible est sa capacité a passer a
I’échelle.

Nous étendons donc cette approche en proposant G-BATA, pour modéliser en sus
les architectures hétérogenes et couvrir un type de trafic plus général (bursty).
G-BATA utilise des graphes pour modéliser les interférences entre flux, permettant
d’accélérer le calcul des bornes pire cas d'un facteur pouvant atteindre 102 des
quelques dizaines de flux. Il offre également une finesse similaire & celle de son

prédécesseur.

Dans une seconde partie, nous présentons un processus de conception et d’explo-
ration d’architecture hybride, intégrant notre approche d’analyse temporelle pire
cas. Cette méthodologie est compatible avec le Y-chart et vise a réduire I'espace
a explorer en éliminant dés que possible les configurations qui ne satisfont pas les

contraintes temporelles.

198 Annexe A. Résumé en francgais

Nous implémentons notre approche sur la base d’outils existants, TTool et WoPA-
Nets, auxquels nous ajoutons les fonctionnalités nécessaires.
Nos exemples mettent en évidence le gain de temps de calcul résultant de 1'inté-

gration d’une méthode formelle dans le processus de conception.

Enfin, nous proposons une validation de nos contributions a travers une série d’ex-
périences sur une puce pluri-cceurs et ’étude d’une application de contréle d’un

véhicule autonome.

A.8.2 Perspectives

Les perspectives de nos travaux concernent deux aspects : les modeles et approches
présentés, et 'outillage développé. Nous présentons ici une perspective de chaque
aspect et renvoyons la sagace lectrice a la conclusion générale du chapitre 8 pour

plus de détails.

Notre méthodologie d’exploration d’architectures utilise I’analyse temporelle pore
cas pour obtenir une réponse binaire sur le respect des contraintes temporelles.
Il serait possible d’utiliser les résultats de ’analyse de sensibilité pour proposer
des modifications de I’architecture proposée en cas d’impossibilité de satisfaire les

contraintes temporelles.

En matiere d’outillage, WoPANets utilise un import basique des fichiers XML issus
de TTool pour générer un modele et 'analyser. En particulier, il est nécessaire
d’avoir préalablement calculé les périodes des flux et de les avoir intégrées dans le
modele du systéme réalisé avec TTool sous la forme d’attributs dans les composants
de la vue fonctionnelle. Pour améliorer I'interopérabilité des logiciels utilisés, il serait
intéressant de proposer un outil plus puissant, intégré a WoPANets, permettant de
faire le lien entre la vue « systéme » d’une application et la vue « réseau » des
flux de données générés par ’application. Le probleme sous-jacent concerne le lien
entre deux représentations d’une méme réalité physique et dépasse largement le

développement d’un outil logiciel.

A.8. Conclusion

199

Lemons and limes on a poster
Are not enough to impress you
Nevermind — can you look closer

And tell me if you see “you” through?

*
* Xk

APPENDIX B

Network Calculus Memo

1l fallait, c’est compliqué,
Maitriser les seaux percés
—J.-Y. Le Boudec

B.1 Basics

Network Calculus describes data flows by means of cumulative functions, defined
as the number of transmitted bits during the time interval [0, ¢]. Consider a system
S receiving input data flow with a Cumulative Arrival Function (CAF), A(t), and
putting out the same data flow with a Cumulative Departure Function (CDF),
D(t). To compute upper bounds on the worst-case delay and backlog, we need
to introduce the maximum arrival curve, which provides an upper bound on the

number of events, e.g., bits or packets, observed during any interval of time.

Definition 20. (Arrival Curve)[69] A function o is an arrival curve for a data
flow with the CAF A, iff:

Vt,s > 0,8 <t,A(t) — A(s) < aft —s)

A widely used curve is the leaky bucket curve, which guarantees a maximum burst
o and a maximum rate p, i.e., the traffic flow is (o, p)-constrained. In this case,
the arrival curve is defined as v,,,(t) = 0 + p -t for t > 0. Furthermore, we need to
guarantee a minimum offered service within crossed nodes through the concept of

minimum service curve.

Definition 21. (Simple Minimum Service Curve)[69] The function [is the simple
service curve for a data flow with the CAF A and the CDF D, iff:

Vit > 0,D(t) > inf(A(s) + S(t — s))

s<t

202 Appendix B. Network Calculus Memo

A very useful and common model of service curve is the rate-latency curve fgr,
with R the minimum guaranteed rate and 7' the maximum latency before starting
the service. This rate-latency function is defined as Srr(t) = [R- (t — T)]*, where
[z] is the maximum between z and 0.

This service curve is easy to define in the case of one input/output node serving one
or many traffic flows coming from the same source and going to the same destination.
Moreover, to model a node implementing aggregate scheduling, i.e., multiplexes
the crossing flows at the input and demultiplexes them at the output, we need to
define the left-over service curve guaranteed to each flow within the crossed node,
considering the impact of contention with other traffic flows. The computation of
such a left-over service curve depends on the implemented scheduling policy, and

its derivation needs strict service curve property in the general case.

Definition 22. (Strict service curve)[69] The function 8 is a strict service curve
for a data flow with the CDF D(t), if for any backlogged period * |s,t], D(t)—D(s) >
Bt~).

The main results concerning the left-over service curves computation are as follows:

Theorem 5. (Left-over service curve - Arbitrary Multiplex)[104] let f1 and fo be
two flows crossing a server that offers a strict service curve B8 such that f1 is aq-

constrained, then the left-over service curve offered to fo is:

P2 = (B —a1)

where f1(t) = max{0, SUPp<s<t f(s)}

Corollary 1. (Left-over service curve - FP Multiplex)[105] Consider a system with
the strict service 8 and m flows crossing it, fi,fs,..,fm. The mazximum packet
length of fi s li max and f; is o-constrained. The flows are scheduled by the non-
preemptive fized priority (NP-FP) policy, where f; = f; < i < j. For each i €

{2,..,m}, the strict service curve of f; is given by:

(B =2 — maxlkmar)t

j<i

Knowing the arrival and service curves, one can compute the upper bounds on

performance metrics for a data flow, according to the following theorem.

' A backlogged period]s,t] is an interval of time during which the backlog is non null, i.e.,
A(s) = D(s) and Yu €]s, t], A(u) — D(u) >0

B.2. Notations 203

Theorem 6. (Performance Bounds) Consider a flow constrained by an arrival
curve a crossing a system S that offers a service curve 3, then:

Delay 2: ¥ t: d(t) < h(a, 3)

Backlog 3: ¥V t: q(t) < v(a, B)

Output arrival curve *: o*(t) = a @ B(t)

In the case of a leaky bucket arrival curve and a rate-latency service curve, the
calculus of these bounds is greatly simplified. The delay and backlog are bounded
by % +T and o + p- T, respectively; and the output arrival curve is o + p- (T +1).
Finally, we need the following results concerning the end-to-end service curve of a
flow of interest (foi) accounting for flows serialization effects in feed-forward net-
works, based on the Pay Multiplexing Only Once (PMOO) principle [70], under
non-preemptive Fixed Priority (FP) multiplexing.

Theorem 7. The service curve offered to a flow of interest f along its path Py,
in a network under non-preemptive FP multiplering with strict service curve nodes
of the rate-latency type Brr and leaky bucket constrained arrival curves oy ,, is a

rate-latency curve, with a rate R*7 and a latency T/, as follows :

Pr = mj ko ;
R ’greupr; (R Z pl> (B.1a)

i2k,i€shp(f)

it
T]Pf _ Z Tk? + haesiply)
k
kGPf R
cv(P;,Py) iak,imei)l(p(f) b
o Ut X TR
kE]P’fﬁ]P)i
Ly . (B.1b)
i€ DB¢Nshp(f) L

where the required notations are defined in Table B.1.

B.2 Notations

Hereafter are gathered all notations used throughout this report. As a general rule,
upper indexes of a notation X refer to a node or a subset of nodes, while lower

indexes refer to a flow. X% means “X at node r for flow f.

2h(f,g): the maximum horizontal distance between f and g
3u(f,g): the maximum vertical distance between f and g

1f @ g(t) = supy, o {F(t +u) — g(u)}

204 Appendix B. Network Calculus Memo

Notation Definition

F The set of flows on the NoC

St The size of one flit

BT The buffer size at node r

P The list of nodes crossed by f from source to destination
P[] The k + 1** node of f path

subpath(Py,P;) The subpath of flow k relatively to flow I after dv(Pg,P;)

Last(Py, ;) The index of dv(Pg, ;) in Py

cv(Pg, Py) The convergence node of P, and [P

dv(Pg, ;) The divergence node of P, and P,

far Flow f crosses node r

For There is a flow f € F such that f > r

Licary equals 1 if cdt is true and zero otherwise

Ly The maximal packet length of f

Jr The release jitter of f

Py The period of f

by The number of packets in a burst of flow f
ay(t) The initial arrival curve of f

o’y (t) The arrival curve of f at the input of node r
o The burst of o

Py The rate of o

Br(t) The end-to-end service curve of f

Bjc“bp (t) The VC-service curve of f on subP

Ejp“bp The rate of Eg“bp

f’f“bp The latency of B;z“bp

DBy The set of all flows directly interfering with f
DBl}Dath Flows i € DBy such that IP; N path # @

hp(f) Flows mapped to a VC of strict higher priority than f

B.2. Notations 205

sp(f) Flows mapped to the same VC as f

Ip(f) Flows mapped to a VC of strict lower priority than f

slp(f) All flows with a priority lower or equal than f

shp(f) All flows with a priority higher or equal than f

1By Indirect blocking set of flow f

N} Number of buffers needed to store a packet of f from node i on Py
D;P:f End-to-end delay bound of f

Table B.1 — Summary of notations

Compliqué de te mettre en quatre,

Hormis si j’ote quelques lettres.

Remplis les trous si tu veux étre

Le poéte que j’idolatre.

APPENDIX C

Case Study Data

This section details the parameters and characteristics of the case study used in
chapter 7, as well as per-flow results of the tightness analysis conducted on the

same configuration.

208 Appendix C. Case Study Data
Task Core RX TX Description
fbul 0,0 v Frame buffer left camera
fbu2 0,1 v~ Frame buffer left camera
fbud 0,2 v Frame buffer left camera
fbud 0,3 v~ Frame buffer left camera
fbub 3,0 v~ Frame buffer right camera
fbu6 3,1 v~ Frame buffer right camera
fbu7 3,2 v Frame buffer right camera
fbus8 3,3 v~ Frame buffer right camera
fdf1l 2,1 v’ v Feature data fusion 1
fdf2 1,2 v’ v~ Feature data fusion 2
bfel 1,0 v’ v~ Background estimation and feature extraction 1
bfe2 1,1 v’ v~ Background estimation and feature extraction 2
bfe3 1,2 v" v Background estimation and feature extraction 3
bfed 1,3 v’ v~ Background estimation and feature extraction 4
bfeb 2,0 v’ v~ Background estimation and feature extraction 5
bfe6 2,1 v’ v~ Background estimation and feature extraction 6
bfe7 = 2,2 v’ v~ Background estimation and feature extraction 7
bfe8 2,3 v’ v~ Background estimation and feature extraction 8
vodl 1,0 v’ v~ Visual odometry 1
vod2 2,3 v’ v~ Visual odometry 2
nave 1,1 v’ v~ Navigation control
thre 1,3 v’ Throttle control
stph 2,2 v’ v~ Stereo photogrammetry
usos 0,3 v~ Ultrasonic sensor
obmg 0,1 v’ v~ Obstacle database manager
spes 3,2 v~ Speed sensor
stac 3,1 v v Stability control
dirc 3,3 v’ Direction control
vibs 2,0 v~ Vibration sensor
obdb 0,2 v’ v~ Obstacle database
tpms 0,3 v~ Tyre pressure monitoring
posi 0,0 v~ Position sensor interface
tpre 3,0 v’ Tyre pressure control

Table C.1 — Original task-core mapping

209

Flow Denomination SRC DST Ly (flits) P; (ms)
1 fbud — vodl 0,2 1,0 38400 40
2 fbu8 — vod2 3,3 2,3 38400 40
3 fbul — bfel 0,0 1,0 38400 40
4 fbu2 — bfe2 0,1 1,1 38400 40
5 fbu3 — bfe3 0,2 1,2 38400 40
6 fbud — bfed 0,3 1,3 38400 40
7 fbub — bfeb 3,0 2,0 38400 40
8 fbu6 — bfeb 3,1 2,1 38400 40
9 fbu7? — bfe7 3,2 2,2 38400 40

10 fbu8 — bfe8 3,3 2,3 38400 40
11 fdfl — stph 2,1 2,2 8192 40
12 fdf2 — stph 1,2 2,2 8192 40
13 stph — obmg 2,2 0,1 4096 40
14 bfel — fdfl 1,0 2,1 2048 40
15 bfe2 — fdf1 1,1 2,1 2048 40
16 bfe3 — fdfl 1,2 2,1 2048 40
17 bfe4d — fdf1 1,3 2,1 2048 40
18 bfes — fdf2 2,0 1,2 2048 40
19 bfe6 — fdf2 2,1 1,2 2048 40
20 bfe7 — fdf2 2,2 1,2 2048 40
21 bfe8 — fdf2 2,3 1,2 2048 40
22 vodl — navc 1,0 1,1 512 40
23 vod2 — navc 2,3 1,1 512 40
24 navc — thre 1,1 1,3 1024 100
25 usos — obmg 0,3 0,1 1024 100
26 spes — stac 3,2 3,1 1024 100
27 stac — thrc 3,1 1,3 1024 100
28 navc — dirc 1,1 3,3 512 100
29 spes — navc 3,2 1,1 512 100
30 vibs — stac 2,0 3,1 512 100
31 obdb — navc 0,2 1,1 16384 500
32 obdb — obmg 0,2 0,1 16384 500
33 navc — obdb 1,1 0,2 2048 500
34 tpms — stac 0,3 3,1 2048 500
35 posi — navce 0,0 1,1 1024 500
36 posi — obmg 0,0 0,1 1024 500
37 obmg — obdb 0,1 0,2 4096 1000
38 stac — tprc 3.1 3,0 2048 1000

Table C.2 — Flow set characteristics

210 Appendix C. Case Study Data

B=2 B =100 B =00
Flow G-BATA [42] G-BATA [42] G-BATA [42]

1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 99.95% 100.00% 99.95% 100.00% 99.95% 100.00%
4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
) 99.95% 100.00% 99.94% 99.99% 99.94% 99.99%
6
7
8

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
9 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
10 89.13% 89.17% 89.12% 89.16% 89.12% 89.16%
11 85.64% 85.69% 85.64% 85.69% 85.64% 85.69%
12 99.88% 99.95% 99.88% 99.95% 99.88% 99.95%
13 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
14 5.09% 5.09% 17.711% 17.72% 5.09% 5.09%
15 99.93% 100.00% 99.93% 100.00% 99.93% 100.00%
16 73.00% 73.05% 73.00% 72.91% 73.00% 73.05%
17 89.42% 89.49% 89.42% 89.49% 89.42% 89.49%
18 12.07% 12.08% 78.66% 78.74% 31.49% 31.53%
19 13.67% 13.68% 78.18% 78.26% 13.65% 13.66%
20 67.33% 67.41% 48.38% 48.43% 20.96% 20.98%
21 53.31% 53.38% 13.79% 13.81% 44.30% 44.35%

22 1.21% 1.21% 59.38% 59.42% 75.17% 75.22%
23 39.45% 39.47% 1.30% 1.30% 45.711% 45.73%
24 87.69% 83.99% 86.77% 83.28% 86.46% 86.52%
25 2.38% 2.38% 2.38% 2.38% 71.86% 71.91%
26 96.53% 96.58% 96.52% 96.57% 96.52% 96.57%
27 3.02% 2.95% 3.26% 3.18% 53.02% 53.05%

28 14.76% 14.75% 14.76% 14.35% 14.76% 14.75%
29 34.47% 34.49% 34.46% 34.48% 34.46% 34.48%
30 25.52% 25.53% 14.57% 14.57% 14.57% 14.57%
31 69.92% 70.00% 69.92% 69.99% 69.92% 69.99%
32 95.43% 95.53% 95.43% 95.53% 95.43% 95.53%
33 44.90% 44.90% 48.22% 48.21% 72.64% 72.63%

34 9.13% 9.14% 4.59% 4.60% 4.59% 4.60%
35 43.85% 43.88% 43.88% 43.8™% 43.85% 43.88%
36 2.44% 2.45% 2.75% 2.75% 60.45% 60.49%

37 92.64% 92.69% 92.63% 92.67% 92.63% 92.67%
38 95.73% 95.77% 95.72% 95.76% 95.72% 95.76%

Table C.3 — Computed tightness ratios for buffer size values 2, 100 and oo

APPENDIX D

List of Publications

Published

e F. Giroudot, A. Mifdaoui, “Buffer-Aware Worst-case Timing Analysis of
Wormbhole NoCs Using Network Calculus”, in IEEE 24th Real-Time and Em-
bedded Technology and Applications Symposium, April 2018

e F. Giroudot, A. Mifdaoui, “Work-in-Progress: Extending Buffer-Aware
Worst-Case Timing Analysis of Wormhole NoCs”, in IEEE 39th Real-Time
Systems Symposium, December 2018

e F. Giroudot, A. Mifdaoui, “Tightness and Computation Assessment of Worst-
Case Delay Bounds in Wormhole Networks-On-Chip”, in 27th International
Conference on Real-Time Networks and Systems (RTNS), November 2019

Under review
e F. Giroudot, A. Mifdaoui, “Extending Buffer-Aware Worst-Case Timing Anal-
ysis of Wormhole NoCs with Interference Graph Approach”, in IEEE Access

To be submitted

e F. Giroudot, L. Apvrille, A. Mifdaoui, “An Hybrid Methodology Using
Simulation and Network Calculus for Design Space Exploration of NoC-
based Architectures Under Real-Time Constraints”, in IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems

APPENDIX E

List of Abbreviations

ASIC
BE
CABA
CAF
CDF
COTS
CPA
CPQ
DSE
FCFS
FIFO
foi

FP
FPGA
HW
ISAE
MDE
NC

NI
NoC
NUMA

RC

Application Specific Integrated Circuit
Best-effort

Cycle-Accurate Bit-Accurate
Cumulative Arrival Function
Cumulative Departure Function
Commercial Off-The-Shelf
Compositional Performance Analysis
Consecutive Packet Queueing
Design Space Exploration
First-Come First-Served

First-In First-Out

flow of interest

Fixed-Priority

Field-Programmable Gate Array
Hardware

Institut Supérieur de I’Aéronautique et de I’Espace
Model-Driven Engineering

Network Calculus

Network Interface

Network-on-Chip

Non-Uniform Memory Access
Quality of Service

Recursive Calculus

214 Appendix E. List of Abbreviations

RR Round-Robin

RTL Register Transfer Level

S&F Store and Forward

SoC System-on-Chip

ST Scheduling Theory

SW Software

TCP Transmission Control Protocol

TDMA Time-Division Multiple-Access

TLM Transaction Level Modeling
UML Unified Modeling Language
vC Virtual Channel

VCT Virtual Cut-Through

WCET Worst-Case Execution Time
WCRT Worst-Case Response Time
WRR Weighted Round-Robin

[1]

[10]

Bibliography

S. Tobuschat and R. Ernst, “Real-time communication analysis for networks-
on-chip with backpressure,” in Design, Automation Test in Europe Conference
Ezhibition, 2017. (Cited in pages xi, 36, 41, 82 et 83.)

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Melt-
down: Reading kernel memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18), (Baltimore, MD), pp. 973-990, USENIX
Association, 2018. (Cited in page 3.)

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-
gard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” CoRR, vol. abs/1801.01203, 2018. (Cited in page 3.)

M. B. Taylor, Tiled microprocessors. PhD thesis, Massachussets Institute of
Technology, February 2007. (Cited in pages 3 et 160.)

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-
tina, C. C. Miao, J. F. B. III, and A. Agarwal, “On-chip interconnection ar-
chitecture of the tile processor,” IEEE Micro, vol. 27, pp. 15-31, Sept 2007.
(Cited in pages 4, 23, 28, 55, 160 et 169.)

Mellanox Technologies, “TILE-Gx72 processor.” http://www.mellanox.com/
related-docs/prod_multi_core/PB_TILE-Gx72.pdf. (Cited in pages 4, 24,
28 et 160.)

Kalray Corporation, “The MPPA hardware architecture,” 2012. (Cited in
pages 4, 14, 15, 24, 28, 160 et 169.)

Intel, “The SCC programmer’s guide.” https://www.intel.cn/content/
dam/www/public/us/en/documents/technology-briefs/intel-labs-
single-chip-cloud-program-guide.pdf, May 2010. (Cited in pages 4, 15,
23, 28 et 160.)

TTool GitLab. (Cited in pages 5, 43, 118, 119, 171 et 186.)

“Wopanets: Worst case performance analysis of embedded networks tool.”
https://websites.isae-supaero.fr/wopanets/. (Cited in pages 5, 118
et 119.)

http://www.mellanox.com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
http://www.mellanox.com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
https://www.intel.cn/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-program-guide.pdf
https://www.intel.cn/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-program-guide.pdf
https://www.intel.cn/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-program-guide.pdf
https://websites.isae-supaero.fr/wopanets/

216

Bibliography

[11]

[12]

[13]

[14]

[18]

[21]

A. Mifdaoui and H. Ayed, “Wopanets: A tool for worst case performance
analysis of embedded networks.” (Cited in pages 5, 118 et 119.)

J. A. Stankovic, “Misconceptions about real-time computing: a serious prob-
lem for next-generation systems,” Computer, vol. 21, pp. 10-19, Oct 1988.
(Cited in pages 8 et 162.)

L. Abdallah, Worst-case delay analysis of core-to-10 flows over many-cores
architectures. PhD thesis, 2017. These de doctorat dirigée par Fraboul, Chris-
tian et Jan, Mathieu Réseaux, Télécommunications, Systémes et Architecture

Toulouse, INPT 2017. (Cited in pages 8, 38, 46, 168 et 172.)

A. Burns, L. S. Indrusiak, and Z. Shi, “Schedulability analysis for real time
on-chip communication with wormhole switching,” Int. J. Embed. Real-Time
Commun. Syst., vol. 1, pp. 1-22, Apr. 2010. (Cited in pages 8, 138 et 193.)

Australian Government Department of Home Affairs, Subclass 407 Training
Visa. https://immi.homeaffairs.gov.au/visas/getting-a-visa/visa-

listing/training-407. (Cited in page 9.)

G. Buttazzo, Hard Real-Time Computing Systems. Springer US, 2004. (Cited
in page 9.)

P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
’in Proceedings Design, Automation and Test in
Europe Conference and Exhibition 2000 (Cat. No. PR00537), pp. 250-256,

March 2000. (Cited in page 11.)

switched interconnections,’

W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection
networks,” in Proceedings of the 38th Design Automation Conference (IEEE
Cat. No.01CHS7232), pp. 684-689, June 2001. (Cited in page 11.)

L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, pp. 70-78, Jan 2002. (Cited in page 11.)

L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in
direct networks,” Computer, vol. 26, pp. 62-76, Feb 1993. (Cited in pages 13,
16, 22 et 164.)

J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and L. S.
Peh, “Research challenges for on-chip interconnection networks,” IEEE Micro,
vol. 27, pp. 96-108, Sept 2007. (Cited in pages 13 et 164.)

https://immi.homeaffairs.gov.au/visas/getting-a-visa/visa-listing/training-407
https://immi.homeaffairs.gov.au/visas/getting-a-visa/visa-listing/training-407

Bibliography 217

[22]

[24]

28]

[29]

[30]

N. Ni, M. Pirvu, and L. N. Bhuyan, “Circular buffered switch design with
wormhole routing and virtual channels,” in ICCD, pp. 466-473, 1998. (Cited
in pages 13 et 164.)

NOCS 2010, Fourth ACM/IEEE International Symposium on Networks-on-
Chip, Grenoble, France, May 3-6, 2010, IEEE Computer Society, 2010. (Cited
in pages 13 et 164.)

N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen, “A virtual channel router for
on-chip networks,” in Proceedings 2004 IEEFE International SOC Conference,
September 12-15, 2004, Hilton Santa Clara, CA, USA, pp. 289-293, IEEE,
2004. (Cited in pages 13, 55, 164 et 174.)

G. P. Nychis, C. Fallin, T. Moscibroda, O. Mutlu, and S. Seshan, “On-chip
networks from a networking perspective: Congestion and scalability in many-
core interconnects,” SIGCOMM Comput. Commun. Rev., vol. 42, pp. 407—
418, Aug. 2012. (Cited in pages 13 et 164.)

M. B. Healy, K. Athikulwongse, R. Goel, M. M. Hossain, D. H. Kim, D. L.
Lewis, B. Ouellette, M. Pathak, H. Sane, , D. H. Woo, G. H. Loh, and H. S.
Lee, “Design and analysis of 3d-maps: A many-core 3d processor with stacked
memory,” in IEEE Custom Integrated Circuits Conference 2010, pp. 1-4, Sep.
2010. (Cited in pages 13 et 164.)

G. Sun, C. Chang, B. Lin, and L. Zeng, “An oblivious routing algorithm
for 3d mesh networks to achieve a new worst-case throughput bound,” IEEE
Embedded Systems Letters, vol. 4, pp. 98-101, Dec 2012. (Cited in pages 13
et 164.)

W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks,”
IEEFE Transactions on Computers, vol. 39, pp. 775785, June 1990. (Cited in
page 13.)

J. Kim, J. D. Balfour, and W. J. Dally, “Flattened butterfly topology for
on-chip networks,” Computer Architecture Letters, vol. 6, no. 2, pp. 3740,
2007. (Cited in page 13.)

Q. Perret, Predictable execution on many-core processors. Theses, Institut
Superieur de I’Aéronautique et de ’Espace (ISAE) ; Université de Toulouse,
Apr. 2017. (Cited in pages 14, 48 et 172.)

218

Bibliography

[31]

[36]

[39]

R. Das, S. Eachempati, A. K. Mishra, N. Vijaykrishnan, and C. R. Das, “De-
sign and evaluation of a hierarchical on-chip interconnect for next-generation
cmps,” in 15th International Conference on High-Performance Computer Ar-
chitecture (HPCA-15 2009), 14-18 February 2009, Raleigh, North Carolina,
USA, pp. 175-186, IEEE Computer Society, 2009. (Cited in page 14.)

LIP6, “Tsar architecture overview.” https://www-soc.lip6.fr/trac/tsar/

wiki/Specification. (Cited in page 15.)

A. Agarwal and R. Shankar, “Survey of network on chip (noc) architectures

9

and contributions,” Journal of Engineering, Computing and Architecture,

vol. 3, 01 2009. (Cited in pages 16, 17, 21 et 165.)

P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer com-
munication switching technique,” Computer Networks (1976), vol. 3, no. 4,

pp. 267 — 286, 1979. (Cited in page 16.)

G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis, “Eval-
uating bufferless flow control for on-chip networks,” in NOCS 2010,
Fourth ACM/IEEE International Symposium on Networks-on-Chip, Greno-
ble, France, May 3-6, 2010, pp. 9-16, IEEE Computer Society, 2010. (Cited
in page 17.)

B. Daya, L. S. Peh, and A. Chandrakasan, “Towards high-performance buffer-
less nocs with scepter,” IEEE Computer Architecture Letters, vol. PP, no. 99,
pp. 1-1, 2015. (Cited in page 17.)

C. Busch, M. Herlihy, and R. Wattenhofer, “Routing without flow control,”
in SPAA, pp. 11-20, 2001. (Cited in pages 17 et 22.)

W. J. Dally, “Virtual-channel flow control,” in Proceedings of the 17th Annual
International Symposium on Computer Architecture, ISCA ’90, (New York,
NY, USA), pp. 60-68, ACM, 1990. (Cited in pages 19 et 165.)

T. Bjerregaard and S. Mahadevan, “A survey of research and practices of
network-on-chip,” ACM Comput. Surv., vol. 38, June 2006. (Cited in pages 19
et 165.)

W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor
interconnection networks,” IEEE Trans. Comput., vol. 36, pp. 547-553, May
1987. (Cited in pages 20 et 22.)

https://www-soc.lip6.fr/trac/tsar/wiki/Specification
https://www-soc.lip6.fr/trac/tsar/wiki/Specification

Bibliography 219

[41]

[44]

[45]

[46]

[48]

[49]

[50]

Z. Shi and A. Burns, “Real-time communication analysis with a priority share
policy in on-chip networks,” in 21st Euromicro Conference on Real-Time Sys-
tems, pp. 3-12, July 2009. (Cited in pages 20, 35, 40, 41 et 167.)

B. Nikolic, S. Tobuschat, L. Soares Indrusiak, R. Ernst, and A. Burns, “Real-
time analysis of priority-preemptive nocs with arbitrary buffer sizes and router
delays,” Real-Time Systems, 06 2018. (Cited in pages 20, 35, 40, 41, 133, 138,
139, 142, 167, 193 et 210.)

C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in Proceed-
ings of the 19th Annual International Symposium on Computer Architecture,
ISCA '92, (New York, NY, USA), pp. 278-287, ACM, 1992. (Cited in page 22.)

M. Gries, U. Hoffmann, M. Konow, and M. Riepen, “Scc: A flexible archi-
tecture for many-core platform research,” Computing in Science Engineering,
vol. 13, pp. 79-83, Nov 2011. (Cited in page 23.)

W. Puffitsch, E. Noulard, and C. Pagetti, “Mapping a multi-rate synchronous
language to a many-core processor,” in 2013 IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), pp. 293-302, April
2013. (Cited in page 23.)

W. Puffitsch, E. Noulard, and C. Pagetti, “Off-line mapping of multi-rate de-
pendent task sets to many-core platforms,” Real-Time Syst., vol. 51, pp. 526—
565, Sept. 2015. (Cited in pages 23, 47 et 172.)

K. Goossens, J. Dielissen, and A. Radulescu, “Aethereal network on chip: con-
cepts, architectures, and implementations,” IEEE Design Test of Computers,
vol. 22, pp. 414-421, Sep. 2005. (Cited in page 28.)

D. Wiklund and D. Liu, “Socbus: Switched network on chip for hard real time
embedded systems,”
Parallel and Distributed Processing, IPDPS ’03, (Washington, DC, USA),

pp. 78.1—-, IEEE Computer Society, 2003. (Cited in page 28.)

in Proceedings of the 17th International Symposium on

D. Bui, A. Pinto, and E. A. Lee, “On-time network on-chip: Analysis and ar-
chitecture,” Tech. Rep. UCB/EECS-2009-59, University of California, Berke-
ley, May 2009. (Cited in page 28.)

V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Cycle-accurate
network on chip simulation with noxim,” ACM Trans. Model. Comput. Stmul.,
vol. 27, pp. 4:1-4:25, Aug. 2016. (Cited in pages 32, 77, 112 et 180.)

220

Bibliography

[51]

[52]

[54]

[55]

[58]

J. Hu and R. Marculescu, “Application-specific buffer space allocation for
networks-on-chip router design,” in Proceedings of the 2004 IEEE/ACM In-
ternational Conference on Computer-aided Design, ICCAD ’04, (Washington,
DC, USA), pp. 354-361, IEEE Computer Society, 2004. (Cited in page 32.)

A. E. Kiasari, Z. Lu, and A. Jantsch, “An analytical latency model
for networks-on-chip,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 21, pp. 113-123, Jan 2013. (Cited in page 32.)

C. L. Liuand J. W. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. ACM, vol. 20, pp. 4661, Jan. 1973. (Cited
in page 33.)

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Apply-
ing new scheduling theory to static priority pre-emptive scheduling,” Software
Engineering Journal, vol. 8, pp. 284-292, Sep. 1993. (Cited in page 33.)

K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard
real-time systems,” Microprocess. Microprogram., vol. 40, pp. 117-134, Apr.
1994. (Cited in pages 34 et 168.)

Z. Shi and A. Burns, “Real-time communication analysis for on-chip networks
with wormhole switching,” in Networks-on-Chip, Second ACM/IEEE Inter-
national Symposium on, April 2008. (Cited in pages 34, 35 et 167.)

Q. Xiong, Z. Lu, F. Wu, and C. Xie, “Real-time analysis for wormhole noc:
Revisited and revised,” 2016 International Great Lakes Symposium on VLSI
(GLSVLSI), pp. 75-80, 2016. (Cited in pages 35, 40 et 167.)

Q. Xiong, F. Wu, Z. Lu, and C. Xie, “Extending real-time analysis for worm-
hole nocs,” IEEE Transactions on Computers, vol. PP, no. 99, pp. 1-1, 2017.
(Cited in pages 35, 40, 41 et 167.)

M. Liu, M. Becker, M. Behnam, and T. Nolte, “Tighter time analysis for real-
time traffic in on-chip networks with shared priorities,” in 10th IEEE/ACM
International Symposium on Networks-on-Chip, 2016. (Cited in pages 35, 41
et 167.)

L. S. Indrusiak, A. Burns, and B. Nikoli¢, “Buffer-aware bounds to multi-point
progressive blocking in priority-preemptive nocs,” in 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 219-224, March 2018.
(Cited in page 35.)

Bibliography 221

[61]

[62]

[65]

[66]

[69]

[70]

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “Sys-
tem level performance analysis - the symta/s approach,” IEE Proceedings -
Computers and Digital Techniques, vol. 152, pp. 148-166, March 2005. (Cited
in pages 36 et 168.)

R. Hofmann, L. Ahrendts, and R. Ernst, CPA: Compositional Performance
Analysis, pp. 721-751. Dordrecht: Springer Netherlands, 2017. (Cited in
page 36.)

E. A. Rambo and R. Ernst, “Worst-case communication time analysis of
networks-on-chip with shared virtual channels,” in Proceedings of Design, Au-
tomation Test in Europe Conference Exhibition, 2015. (Cited in pages 36, 41
et 168.)

K. W. Tindell, A. Burns, and A. J. Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6,
pp. 133-151, Mar 1994. (Cited in page 36.)

T. Ferrandiz, F. Frances, and C. Fraboul, “A method of computation for
worst-case delay analysis on spacewire networks.” (Cited in pages 37, 41
et 168.)

M. Liu, M. Becker, M. Behnam, and T. Nolte, “Buffer-aware analysis for
worst-case traversal time of real-time traffic over rra-based nocs,” in 27th

Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, March 2017. (Cited in pages 37, 41, 55 et 168.)

L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Wormhole networks prop-
erties and their use for optimizing worst case delay analysis of many-cores,” in
10th IEEE International Symposium on Industrial Embedded Systems (SIES),
pp. 1-10, June 2015. (Cited in pages 37, 38, 41 et 168.)

R. L. Cruz, “A calculus for network delay. i. network elements in isolation,”
IEEE Transactions on Information Theory, vol. 37, pp. 114-131, Jan 1991.
(Cited in pages 38, 56 et 169.)

J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. Berlin, Heidelberg: Springer-Verlag, 2001.
(Cited in pages 38, 56, 169, 201 et 202.)

J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving performance

bounds in feed-forward networks by paying multiplexing only once,” in 14th

222

Bibliography

[71]

[72]

[73]

78]

GI/ITG Conference - Measurement, Modelling and FEvalutation of Computer
and Communication Systems, pp. 1-15, March 2008. (Cited in pages 38, 60,
65, 178 et 203.)

T. Ferrandiz, F. Frances, and C. Fraboul, “Modeling spacewire networks with
network calculus,” in Proceedings of the 1st International Workshop on Worst-
Case Traversal Time, WCTT ’11, (New York, NY, USA), pp. 51-57, ACM,
2011. (Cited in pages 39 et 169.)

T. Ferrandiz, F. Frances, and C. Fraboul, “A network calculus model for
spacewire networks,” in 17th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA 2011, Toyama,
Japan, August 28-81, 2011, Volume 1, pp. 295-299, IEEE Computer Society,
2011. (Cited in pages 39 et 169.)

Yue Qian, Zhonghai Lu, and Wenhua Dou, “Analysis of communication de-
lay bounds for network on chips,” in 2009 Asia and South Pacific Design
Automation Conference, pp. 7-12, Jan 2009. (Cited in pages 39 et 169.)

L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “Tight end-to-end per-
flow delay bounds in {FIFO} multiplexing sink-tree networks,” Performance
Evaluation, vol. 63, no. 9-10, pp. 956 — 987, 2006. (Cited in pages 39 et 169.)

Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for best-

)

effort communication in wormhole networks on chip,” in Networks-on-Chip,
3rd ACM/IEEFE International Symposium on, May 2009. (Cited in pages 39,

40, 41 et 169.)

F. Jafari, Z. Lu, and A. Jantsch, “Least upper delay bound for vbr flows in
networks-on-chip with virtual channels,” ACM Trans. Des. Autom. Electron.
Syst., vol. 20, pp. 35:1-35:33, June 2015. (Cited in pages 39, 41 et 169.)

M. Boyer, B. Dupont De Dinechin, A. Graillat, and L. Havet, “Computing
Routes and Delay Bounds for the Network-on-Chip of the Kalray MPPA2
Processor,” in ERTS 2018 - 9th Furopean Congress on Embedded Real Time
Software and Systems, (Toulouse, France), Jan. 2018. (Cited in pages 39, 40,
41 et 169.)

A. Mifdaoui and H. Ayed, “Buffer-aware worst case timing analysis of worm-
hole network on chip,” arXiv, vol. abs/1602.01732, 2016. (Cited in pages 39
et 40.)

Bibliography 223

[79]

[81]

[83]

[84]

J. Delorme, Methodology of modeling and architectural exploration of Network
on Chip applied to telecommunications. Theses, INSA de Rennes, Feb. 2007.
(Cited in pages 42 et 171.)

J.-J. Lecler and G. Baillieu, “Application driven network-on-chip architecture
exploration & refinement for a complex soc,” Design Automation for Embed-
ded Systems, vol. 15, pp. 133-158, Jun 2011. (Cited in pages 42 et 171.)

M. M. Real, P. Wehner, J. Rettkowski, V. Migliore, V. Lapotre, D. Géhringer,
and G. Gogniat, “Mpsocsim extension: An ovp simulator for the evaluation
of cluster-based multi and many-core architectures,” in 2016 International
Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), pp. 342-347, July 2016. (Cited in pages 43 et 171.)

J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Readings in hardware/-
software co-design,” ch. Ptolemy: A Framework for Simulating and Prototyp-
ing Heterogeneous Systems, pp. 527-543, Norwell, MA, USA: Kluwer Aca-
demic Publishers, 2002. (Cited in pages 43 et 171.)

C. Ptolemaeus, ed., System Design, Modeling, and Simulation using Ptolemy
II. Ptolemy.org, 2014. (Cited in pages 43 et 171.)

A. D. Pimentel, L. O. Hertzbetger, P. Lieverse, P. van der Wolf, and E. E.
Deprettere, “Exploring embedded-systems architectures with artemis,” Com-
puter, vol. 34, pp. 57-63, Nov 2001. (Cited in pages 43 et 171.)

B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. Vissers, A Method-
ology to Design Programmable Embedded Systems - The Y-Chart Approach,
vol. 2268, pp. 321-324. 04 2002. (Cited in pages 43 et 171.)

J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J. Diguet, “A co-design
approach for embedded system modeling and code generation with uml and

”

marte,” in 2009 Design, Automation Test in Europe Conference Exhibition,

pp. 226231, April 2009. (Cited in page 43.)

“UML profile for MARTE specification.” https://www.omg.org/spec/
MARTE/. (Cited in page 43.)

A. Gamatié, V. Rusu, and E. Rutten, “Operational semantics of the marte
repetitive structure modeling concepts for data-parallel applications design,”
in 2010 Ninth International Symposium on Parallel and Distributed Comput-
ing, pp. 25-32, July 2010. (Cited in page 43.)

https://www.omg.org/spec/MARTE/
https://www.omg.org/spec/MARTE/

224

Bibliography

[89]

[90]

[91]

[92]

[93]

[96]

[97]

A. Gamatié, S. Le Beux, E. Piel, R. Ben Atitallah, A. Etien, P. Marquet,
and J.-L. Dekeyser, “A model-driven design framework for massively parallel
embedded systems,” ACM Trans. Embed. Comput. Syst., vol. 10, Nov. 2011.
(Cited in page 43.)

D. Knorreck, L. Apvrille, and R. Pacalet, “Formal system-level design space
exploration,” vol. 25, pp. 1 — 8, 07 2010. (Cited in pages 43, 118, 119 et 171.)

L. W. Li, D. Genius, and L. Apvrille, “Formal and virtual multi-level design

)

space exploration,” in Model-Driven Engineering and Software Development
(L. F. Pires, S. Hammoudi, and B. Selic, eds.), (Cham), pp. 47-71, Springer

International Publishing, 2018. (Cited in pages 44 et 118.)

N. Bombieri, F. Fummi, and D. Quaglia, “System/network design-space ex-
ploration based on tlm for networked embedded systems,” ACM Trans. Em-
bedded Comput. Syst., vol. 9, 03 2010. (Cited in pages 44 et 172.)

F. Fummi, D. Quaglia, F. Stefanni, and G. Lovato, “Modeling of communi-
cation infrastructure for design-space exploration.,” vol. 2010, pp. 92-97, 01
2010. (Cited in pages 44 et 172.)

E. S. M. Ebeid, F. Fummi, D. Quaglia, H. Posadash, and E. Villar, “A frame-
work for design space exploration and performance analysis of networked em-
bedded systems,” 01 2014. (Cited in pages 44 et 172.)

A. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-
core systems: Survey of current and emerging trends,” 05 2013. (Cited in
pages 44, 45 et 172.)

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness. 1979. (Cited in pages 45 et 172.)

Tang Lei and S. Kumar, “A two-step genetic algorithm for mapping task
graphs to a network on chip architecture,” in Furomicro Symposium on Digital
System Design, 2003. Proceedings., pp. 180-187, Sep. 2003. (Cited in pages 45
et 172.)

S. Murali, S. Murali, G. De Micheli, G. De Micheli, and G. De Micheli,
“Bandwidth-constrained mapping of cores onto noc architectures,” in Proceed-
ings of the Conference on Design, Automation and Test in Furope - Volume
2, DATE '04, (Washington, DC, USA), pp. 20896—, IEEE Computer Society,
2004. (Cited in pages 45, 46 et 172.)

Bibliography 225

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Jingcao Hu and R. Marculescu, “Energy- and performance-aware mapping for
regular noc architectures,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, pp. 551-562, April 2005. (Cited in
pages 45, 46 et 172.)

C.-L. Chou and R. Marculescu, “Contention-aware application mapping for
network-on-chip communication architectures,” pp. 164 — 169, 11 2008. (Cited
in pages 46 et 172.)

A. Kanduri, A. Rahmani, P. Liljeberg, and H. Tenhunen, “Predictable ap-
plication mapping for manycore real-time and cyber-physical systems,” in
2015 IEEFE 9th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip, pp. 135-142, Sep. 2015. (Cited in pages 46 et 172.)

C. Zimmer and F. Mueller, “Low contention mapping of real-time tasks onto
tilepro 64 core processors,” in 2009 15th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, p. 2012. (Cited in pages 47 et 172.)

T. Carle, M. Djemal, D. Potop-Butucaru, and R. De Simone, “Static map-
ping of real-time applications onto massively parallel processor arrays,” in
14th International Conference on Application of Concurrency to System De-
sign, Proceedings ACSD 2014, (Hammamet, Tunisia), June 2014. (Cited in
pages 47 et 172.)

A. Bouillard, L. Jouhet, and E. Thierry, “Service curves in Network Calculus:
dos and don’ts,” Research Report RR-7094, INRIA, 2009. (Cited in page 202.)

A. Bouillard, N. Farhi, and B. Gaujal, “Packetization and aggregate schedul-
ing,” Research Report - INRIA, 07 2011. (Cited in page 202.)

	I Problem Statement and State of the Art
	Introduction
	Context and Problem Statement
	Real-Time Systems Context
	Characteristics
	Examples
	Requirements and Challenges

	Manycore Platforms
	Topologies
	Forwarding Techniques and Flow Control
	Arbitration and Virtual Channels
	Routing Algorithms
	NoC Examples

	Discussion: NoCs and Real-Time Systems
	Conclusion

	State of the Art
	Timing Analysis of NoCs
	Overview
	Scheduling Theory
	Compositional Performance Analysis
	Recursive Calculus
	Network Calculus
	Discussion

	System Design and Software/Hardware Mapping
	Design Space Exploration
	Task and Application Mapping on Manycore Architectures
	Discussion

	Conclusion

	II Contributions
	BATA: Buffer-Aware Worst-Case Timing Analysis
	Introduction
	Assumptions and System Model
	Network Model
	Flow Model

	Approach Overview
	Buffer-Awareness: An Example
	Main Steps of BATA

	Indirect Blocking Analysis
	End-to-End Service Curve Computation
	Direct Blocking Latency
	Indirect Blocking Latency
	Computation Algorithm

	Illustrative Example
	Performance Evaluation
	Sensitivity Analysis
	Tightness Analysis
	Computational Analysis
	Comparative Study

	Conclusions

	G-BATA: Extending Buffer-Aware Timing Analysis
	Problem Statement
	Illustrative Example
	Main Extensions

	Extended System Model
	Traffic Model
	Network Model

	Interference Graph Approach for Indirect Blocking Set
	Refining Indirect Blocking Latency
	G-BATA: Illustrative Example
	Performance Evaluation
	Computational Analysis
	Sensitivity Analysis
	Tightness Analysis

	Conclusions

	Hybrid Methodology for Design Space Exploration
	Introduction
	Overview and Extended Workflow
	System Modeling: Adding a NoC Component in TTool
	Implementation
	Functional View
	Architecture

	Verification, NoC Generation and Simulation
	Performance Evaluation
	Example Modeling
	Analysis and Results

	Conclusion

	Practical Applications
	Experiments on TILE-Gx8036
	Platform Characteristics
	Traffic Generation
	Latency Measurements
	Results and Discussion

	Control of an Autonomous Vehicle: Timing Analysis and Comparative Study
	Control of an Autonomous Vehicle: Modeling and DSE
	Functional Description
	Architecture Modeling
	Simulation

	Results and Conclusion

	III Conclusion
	Conclusion
	Summary of Contributions
	BATA
	G-BATA
	Hybrid Design Space Exploration
	Validation

	Perspectives
	Models and Approaches
	Tools

	IV Appendix
	Résumé en français
	Introduction
	Contexte de la thèse
	Systèmes temps-réel
	Architectures pluri-cœurs

	État de l'art
	Analyse temps réel des réseaux sur puce
	Exploration d'architectures et mapping logiciel/matériel sur architectures pluri-cœurs

	Analyse temporelle pire cas des réseaux sur puce wormhole intégrant l'impact des mémoires tampon
	Modélisation du réseau et des flux
	Illustration du problème
	Formalisme et calculs
	Résumé de l'analyse de performance
	Conclusion

	Analyse temps réel des NoCs wormhole hétérogènes par graphe d'interférences
	Formalisme étendu
	Définition et construction du graphe d'interférence
	Analyse de performance
	Conclusion

	Approche hybride pour l'exploration d'architectures
	Workflow étendu
	Modélisation système du NoC
	Performance
	Conclusion

	Validation des contributions
	Analyse pire cas
	Modélisation sous TTool

	Conclusion
	Résumé des contributions
	Perspectives

	Network Calculus Memo
	Basics
	Notations

	Case Study Data
	List of Publications
	List of Abbreviations
	Bibliography

