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Titre: Découverte de règles expressives pour le ra�nement de graphes de connaissances
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Résumé: Les graphes de connaissances (KG) sont des
structures de graphes hétérogènes représentant des
faits dans un format lisible par une machine. Ils trou-
vent des applications dans des tâches telles que la
réponse automatique aux questions, la désambiguï-
sation et liaison d’entités. Cependant, les graphes de
connaissances sont intrinsèquement incomplets et il
est essentiel de les ra�ner pour améliorer leur qual-
ité. Pour compléter le graphe de connaissances, il
est possible de prédire les liens manquants dans un
graphe de connaissances ou d’intégrer des sources
externes. En extrayant des règles du graphe de con-
naissances, nous pouvons les exploiter pour com-
pléter le graphe tout en fournissant des explications.
Plusieurs approches ont été proposées pour extraire
e�cacement des règles. Or, la littérature manque
de méthodes e�caces pour incorporer des prédi-
cats numériques dans les règles. Pour répondre
à cette lacune, nous proposons REGNUM, qui per-
met d’extraire des règles numériques avec des con-
traintes d’intervalle. REGNUM s’appuie sur les rè-
gles générées par un système d’extraction de règles
existant et les enrichit en incorporant des prédicats
numériques guidés par des mesures de qualité. En

outre, la nature interconnectée des données web of-
fre un potentiel signi�catif pour compléter et ra�ner
les KG, par exemple, par le liage des données, qui con-
siste à trouver des liens d’identité entre des entités
de KG di�érents. Nous présentons RE-miner, une ap-
proche qui extrait des expressions référentielles (RE)
pour une classe dans un graphe de connaissances.
Les REs sont des règles qui ne s’appliquent qu’à une
seule entité. Elles facilitent la découverte de connais-
sances et permettent de lier les données de manière
explicable. De plus, nous visons à explorer les avan-
tages et les opportunités de l’a�nage des modèles
linguistiques pour combler le fossé entre les KG et
les données textuelles. Nous présentons GilBERT, qui
exploite le �ne-tuning sur des modèles linguistiques
tels que BERT en optimisant une fonction de coût par
triplet pour les tâches de prédiction de relation et de
classi�cation de triple. En prenant en compte ces dé�s
et en proposant des approches novatrices, cette thèse
contribue au ra�nement des KG, en mettant partic-
ulièrement l’accent sur l’explicabilité et la découverte
de connaissances. Les résultats de cette recherche
ouvrent la voie à de nouvelles questions de recherche
qui font progresser vers des KG de meilleure qualité.

Title: Expressive rule discovery for knowledge graph re�nement

Keywords: Knowledge graph, Rule mining, Knowledge graph re�nement, Knowledge discovery

Abstract:
Knowledge graphs (KGs) are heterogeneous graph
structures representing facts in a machine-readable
format. They �nd applications in tasks such as ques-
tion answering, disambiguation, and entity linking.
However, KGs are inherently incomplete, and re�n-
ing them is crucial to improve their e�ectiveness in
downstream tasks. It’s possible to complete the KGs
by predicting missing links within a knowledge graph
or integrating external sources and KGs. By extract-
ing rules from the KG, we can leverage them to com-
plete the graph while providing explainability. Vari-
ous approaches have been proposed to mine rules
e�ciently. Yet, the literature lacks e�ective meth-
ods for e�ectively incorporating numerical predicates
in rules. To address this gap, we propose REGNUM,
whichmines numerical rules with interval constraints.
REGNUM builds upon the rules generated by an ex-
isting rule mining system and enriches them by incor-
porating numerical predicates guided by quality mea-
sures. Additionally, the interconnected nature of web
data o�ers signi�cant potential for completing and
re�ning KGs, for instance, by data linking, which is

the task of �nding sameAs links between entities of
di�erent KGs. We introduce RE-miner, an approach
that mines referring expressions (REs) for a class in
a knowledge graph and uses them for data linking.
REs are rules that are only applied to one entity. They
support knowledge discovery and serve as an explain-
able way to link data. We employ pruning strategies
to explore the search space e�ciently, and we de-
�ne characteristics to generate REs that aremore rele-
vant for data linking. Furthermore, we aim to explore
the advantages and opportunities of �ne-tuning lan-
guagemodels to bridge the gap between KGs and tex-
tual data. We propose GilBERT, which leverages �ne-
tuning techniques on language models like BERT us-
ing a triplet loss. GilBERT demonstrates promising re-
sults for re�nement tasks of relation prediction and
triple classi�cation tasks. By considering these chal-
lenges and proposing novel approaches, this thesis
contributes to KG re�nement, particularly emphasiz-
ing explainability and knowledge discovery. The out-
comes of this research open doors to more research
questions and pave the way for advancing towards
more accurate and comprehensive KGs.
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I N T R O D U C T I O N

0.1 motivation

We live in an age of rapid change and transformations, where data, technology,
innovation, and artificial intelligence dominate, and large language models
(LLMs) and generative AI have emerged as significant players. Conversations
in our daily lives revolve around these topics, shaping our experiences. Wit-
nessing constant evolution and revolutions, we find ourselves in an exciting
era. However, as these advancements become deeply ingrained in our lives,
ethical concerns and demand for accurate and explainable solutions remain
essential.

For months now, central attention has been revolving around the implications
of language models like GPT-3. How will they transform our lives? How
close are we to achieving intelligent AI systems? At the same time, we
acknowledge the limitations of these systems, such as hallucinations and their
potential for providing incorrect information while sounding convincingly
fluent. Moreover, the biases embedded within these models are a topic of
concern. LLMs can also provide outdated information and lack precision in
their query responses. They are overwhelmed by the amount of data they’ve
been trained on and may be unable to memorize the complete set of items
that should be obtained, as is done with databases. Additionally, they cannot
offer explainability, meaning they cannot explain the reasoning behind the
information they provide.

There can be potential to enhance the quality of answers provided by LLMs
while achieving some level of explainability by coupling LLMs with knowledge
graphs which can store factual information and offer reasoning capabilities.
Knowledge graphs have extensive applications in question-answering, rule
mining, disambiguation, and entity-linking tasks. For instance, when we
query a search engine such as Google to ask, ”Who is the CEO of OpenAI”, it
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2 introduction

directly replies, ”Sam Altman”. It may also provide an info box specifying his
birth date, education, etc., all retrieved from a knowledge graph. ChatGPT,
however, responds to the same question: ”As of my knowledge cutoff in
September 2021, the CEO of OpenAI is Sam Altman. However, please note
that executive positions can change over time, so it’s always a good idea to
verify the latest information”. Showing how the information provided by
LLMs can be outdated.

Knowledge graphs are heterogeneous graph structures that contain infor-
mation representing facts in a machine-readable format. The industry and
academia have witnessed the popularity of large-scale knowledge graphs,
such as those developed by Amazon, Google, Microsoft, YAGO, and Wikidata.
These knowledge graphs serve as repositories for structured facts, represented
as triples, for instance, (GPT3, developedby, OpenAI). Despite containing mil-
lions of facts, knowledge graphs are incomplete and contain erroneous data.
Thus, refining the KGs to improve their usefulness in various applications
such as the ones mentioned above is essential. To complete the knowledge
graph, research focuses on predicting missing links within a knowledge graph
or integrating external sources and KGs.

In the knowledge graph, there are patterns that can be extracted as logical
rules, supported by quality measures like confidence. For example, the rule
”if someone is the CEO of a company, then they work in that company”. This
example also demonstrates the potential of mining such rules to complete
the missing information in the knowledge graph with the advantage of ex-
plainibility. Various approaches have been proposed in the literature to mine
such rules efficiently, considering different language biases and expressive
levels and employing pruning and optimization strategies to cope with the
exponential search space. However, existing approaches encounter limitations
when it comes to handling numerical predicates. These limitations include
being restricted to constants or only allowing simple comparisons between
constant values. Currently, no approaches in the literature can effectively mine
more complex and interesting numerical rules that involve constraints on
intervals. Such constraints can be highly relevant in domains such as finance,
public health, or life sciences. They can help uncover useful information, such
as the increased likelihood of a patient with heart disease having taken mood
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stabilizers for over five years. This gap in the literature motivates us to study
this problem and the impact numerical rules can bring for KG completion.

Moreover, the data on the web is interconnected, giving rise to significant
potential for completing and refining KGs. The linked open data (LOD) is a
global network of interconnected knowledge graphs that continues to grow.
LOD enables the integration of several knowledge graphs allowing for a
connected and accessible web of data (Bizer et al., 2018). Within LOD, identity
links (such as the owl : sameAs relation) establish connections between entities,
signifying that two IRIs represent the same real-world entity (Beek et al., 2018).
Hence, data linking, which is the task of finding such sameAs links between
entities, is a vital refinement task. Various data-linking techniques exist in
the literature, with several methods relying on linkage rules such as keys.
Some keys are valid within a class but do not involve constants (e.g., for
universities, their location accompanied by their year of establishment forms
a key). Others are valid for class expressions that may involve constants
(e.g., for French universities, the number of graduate students is key). While
efficient mining techniques have been developed to extract these rules from
a knowledge graph, the use of such link rules often results in a low recall,
meaning that many entities do not have corresponding links identified. When
instantiated, these rules or keys provide unique references to individual
entities and can be considered as referring expressions for them (e.g., the
university that is located in Cambridge, Massachusetts, and was established
in 1636, is Harvard university). Hence each key can generate a set of referring
expressions. However, the literature has not explored referring expressions as
graph patterns that uniquely identify an instance in the KG for data linking
that a key cannot express (e.g., The University of Caen is the university where
Pierre-Simon de Laplace studied). The question arises whether such referring
expressions can be beneficial for data linking and contribute to an increase in
recall. This question will be further investigated in this thesis.

Moreover, there are other refinement tasks such as relation prediction, which
predicts the relation holding between two entities, or triple classification,
beneficial for fact-checking, which is a binary classification problem to predict
whether a triple is correct. Rules and other techniques have been extensively
used for these downstream tasks; nevertheless, very few have tried to leverage
the potential of language models (LMs). The motivation behind our research is
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to investigate the effectiveness of using language models for these downstream
tasks. We seek to explore the potential advantages and opportunities that
arise from fine-tuning language models and adapting them to address various
tasks that bridge the gap between knowledge graphs and textual data.

This thesis is dedicated to addressing the aforementioned research questions
and overcoming the limitations identified.

0.2 contribution and thesis outline

This thesis aims to enhance the expressivity of existing approaches in rule
mining on knowledge graphs, to generate more effective rules for knowledge
graph completion and data linking. We also embark on an initial exploration of
integrating information from the knowledge graph with language models.

Fundamentals. Chapter 1 provides an overview of the key concepts related to
knowledge graphs and their representation. It briefly explores the integration
of knowledge graphs through notions of ontology matching and data linking.
The chapter also delves into rule mining on knowledge graphs, defining
logical rules, and introducing some quality measures for evaluating them.
Additionally, it explores the use of vector representations for entities and
relations, i.e., knowledge graph embeddings, highlighting the characteristics
and procedures involved in obtaining such representations.

Related work. In Chapter 2, we consider the refinement tasks of knowledge
graph completion and data linking. Knowledge graph completion can be
achieved using logical rules mined from the knowledge graph, a symbolic
approach that offers explainability and interpretability. We explore the current
state-of-the-art rule-mining techniques, examining their language biases, prun-
ing strategies, and individual characteristics. Then, we explore subsymbolic
knowledge graph embedding techniques as a popular method for knowledge
graph completion. We categorize KG embedding techniques based on their
scoring functions and discuss the characteristics of each of the methods. More-
over, we take a close look at data linking as a refinement task, specifically
examining key-based approaches in the literature. Additionally, we briefly
discuss KG embedding-based methods for data linking.
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Numerical Rule Discovery on Knowledge graphs. After an extensive review
of the related work on rule mining in Chapter 2, a clear gap emerges in
effectively incorporating numerical predicates, such as age or population, into
the rule mining process. This arises from the large search space associated
with numerical predicates as they take many different distinct values. To
address this gap, we propose a novel approach called REGNUM in chapter
3. REGNUM builds upon the rules generated by an existing rule mining
system and enriches them by incorporating numerical predicates that constrain
the values to specific intervals. The process is guided by quality measures
that assess the confidence and significance of the rules. REGNUM is the
first approach to focus specifically on numerical rules in knowledge graphs,
uncovering patterns related to membership or non-membership within an
interval.

Referring Expression Mining on Knowledge graphs. Chapter 4 introduces
RE-miner, an approach for mining referring expressions on knowledge graphs.
Referring expressions can be regarded as rules that are only applied to a single
entity. We employ pruning strategies to explore the search space efficiently. We
also define characteristics such as minimality and diversity to help generate
referring expressions that are more relevant for data-linking tasks. We conduct
comprehensive experiments to demonstrate the advantages of using referring
expressions in data linking.

Knowledge Graph Refinement based on Triplet BERT-Networks. In Chap-
ter 5, we present a novel approach that involves fine-tuning LMs using knowl-
edge graph information to generate clusters of desired entities, relations, and
referring expressions (as future work). We leverage the embedding space
and measure the proximity between embedded entities/relations in order
to perform downstream tasks such as relation prediction, and triple classi-
fication. This approach can give rise to new possibilities for enhancing the
performance and capabilities of knowledge graph-driven tasks such as implicit
entity linking.

Conclusion. Chapter 5.4 summarizes the thesis and elaborates on future
perspectives.





1
F U N D A M E N TA L S

1.1 introduction

Knowledge graphs (KGs) are repositories of facts and model information
about entities and the relations between them. They are usually, not always,
accompanied by ontologies, which are also known as schemas. When an
ontology is present, the term “Knowledge Graph” is often referred to as
“Knowledge Base” (KB). An ontology provides domain knowledge that fa-
cilitates logical inference and reasoning, detects inconsistencies, and infers
implicit knowledge.

KGs are a realization of the semantic web, which emerged from the need
to make sense of the vast amounts of data available on the web, enabling
machines to read and interpret it and ushering in the data and knowledge era.
The Semantic Web addresses the challenge of ”things, not strings,” facilitating
more advanced searches on the web, disambiguation, providing intelligent
answers, and linking data. The World Wide Web Consortium (W3C)1 is the
main international standards organization for the World Wide Web. It is
responsible for developing and maintaining the web’s standards, including
HTML, CSS, and JavaScript. The W3C also plays a key role in developing
Semantic Web technologies, such as RDF, OWL, and SPARQL, which provide
the foundation for building and sharing semantic data on the web2.

This chapter recalls essential concepts and notations used throughout this
thesis. In this section 1.2, we provide an overview of the RDF graph data
model and explore how it can be accompanied by ontological knowledge using
RDF Schema or more expressive languages. In section 1.3, emphasizing the
importance of integrating data and ontology from diverse sources, we briefly

1 https://www.w3.org/

2 https://www.w3.org/standards/semanticweb/
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touch on data linking and ontology matching notions. Moreover, we introduce
logical rules that facilitate inductive reasoning on KGs and quality measures to
assess their performance in section 1.4. Furthermore, in section 1.5, we delve
into knowledge graph embedding, an alternative way to represent entities
and relations as vectors, and the procedures involved in obtaining them.

1.2 knowledge representation

The semantic web relies on the Resource Description Framework (RDF) data
model, the World Wide Web Consortium (W3C) standard for representing
web data, which allows making statements about entities. In the RDF graph, a
triple (s, p, o) is a directed edge from the subject s to the object o labeled with
the property p.

Definition 1. RDF Knowledge Graph. In an RDF knowledge graph G, a collec-
tion of facts F is represented as triples of the form {(subject, predicate, object) | subject
2 I [ B, predicate 2 P , object 2 I [ L [ B } where the set of entities is denoted as
I , the set of predicates is denoted as P . The set of literals is denoted as L.

Entities I , such as https://dbpedia.org/page/Rumi, are uniquely iden-
tified by Internationalized Resource Identifiers (IRIs). A namespace can
be defined within the RDF graph to simplify these IRIs, with the prefix
used as an abbreviation. For example, by defining the namespace db for
https://dbpedia.org/page/, we can refer to Rumi as db:Rumi. Literals
L, such as ”1212” and ”Saadi Shı̄rāz ”3, represent primitive type constants
like numbers or strings. Blank nodes B represent unknown IRIs or literals4; in
other words, it denotes the existence of an entity.

Terminology-wise, in a triple or fact, the subject is also referred to as the head,
the predicate as the property or relation, and the object as the tail. In this thesis,
we use these terms interchangeably.

3 In this thesis, we distinguish literals using quotation marks (” ”).
4 We do not consider blank nodes in this thesis.
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...

Figure 1.1.: Part of a knowledge graph, an example

RDF is a powerful tool for representing data on the web. However, it has its
limitations when modeling more complex structures such as classes, hierar-
chies, or domain and range constraints. Ontologies, on the other hand, provide
a more formal and structured way of representing knowledge. As described in
(Gruber, 1995), an ontology is an explicit specification of a conceptualization.
The conceptualization typically involves key concepts and relationships within
a particular domain and organizing them into a hierarchical structure that
reflects their dependencies. RDF Schema is commonly employed for this
purpose.

RDF Schema (RDFS). RDFS is an extension of the RDF data model that
adds semantic capabilities by introducing the concept of class and supporting
ontological constraints. A class is a named collection of entities with particular
characteristics or attributes. The predefined properties in RDFS include rdf:type,
which is used to indicate that an entity is an instance of a class, rdfs:subClassOf
and rdfs:subPropertyOf, which define hierarchies between classes and properties
respectively, and rdfs:domain, which specifies that any entity having a certain
property is an instance of one or more classes, and rdfs:range, which specifies
that the values of a property are instances of one or more classes.
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Taxonomy. In a knowledge graph, a taxonomy is a hierarchical arrangement
of concepts or classes using rdfs:subClassOf relation that categorizes and
organizes entities based on their characteristics.

Figure 1.1 illustrates a part of a knowledge graph featuring factual information
about two entities, Saadi Shirazi and Voltaire. The facts (Saadi Shirazi, rd f :
type, PersianPoet) and (Voltaire, rd f : type, FrenchWriter) represent class con-
straints. The relations within the box in the graph denote rdfs:subClassOf
relations, which provide a hierarchy of classes, i.e., taxonomy.

RDF graph Saturation. While a knowledge graph contains explicit facts
(triples), saturation operations can also reveal implicit facts that are not ex-
plicitly stated. This process involves inferring implicit RDF triples based
on logical entailments that conform to RDF schema constraints. Forward
chaining (Salvat and Mugnier, 1996) is one technique for graph saturation,
which begins with the initial facts in the RDF graph and applies inference
rules incrementally to derive new facts. This yields a more comprehensive
data graph, but the process can be computationally expensive. The graph is
considered fully saturated when no more new facts can be derived.

For example, in the graph depicted in Figure 1.1, the facts (Saadi Shirazi, rd f :
type, Poet), (Saadi Shirazi, rd f : type, Writer), . . . , (Saadi Shirazi, rd f :
type, Person), . . . , and (Voltaire, rd f : type, Person) can be included in the
KG to create a fully saturated version of it.

OWL. RDFS provides some flexibility in expressing ontological constraints
but has limitations in expressing certain properties like class disjointness
and functional properties. To overcome these limitations, W3C endorsed
the Web Ontology Language (OWL), a more expressive language based on
description logics. OWL provides a rich set of logical axioms to define
relationships between classes and individuals. These axioms are defined in
TBox, which provides a vocabulary of concepts and properties. For instance,
OWL properties include owl:sameAs for declaring that two resources represent
the same thing, owl:disjointWith for stating that two classes are disjoint and
have no instances in common, owl:hasKey allows keys to be defined for a given
class, owl:FunctionalProperty states that a property can have only one (unique)
value Y for each instance X. Moreover, OWL defines two types of properties:
owl:ObjectProperty and owl:DatatypeProperty. An owl:ObjectProperty has an
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entity in I as its object. For example, the birthPlace relation shown in Figure
1.1 is an instance of owl:ObjectProperty. Conversely, an owl:DatatypeProperty
has a literal value in L as its object. OWL also allows axioms to assert facts
associated with the TBox’s conceptual model, called an ABox (Assertion Box).
OWL has three sub-languages: OWL Lite, OWL DL, and OWL Full, which
differ in expressiveness and complexity.

Unique Name Assumption (UNA). The unique name assumption is a simpli-
fying assumption made in some ontology languages and description logics
that states that a distinct name or identifier uniquely identifies each entity
or concept. In other words, no two different names or identifiers refer to the
same entity or concept.

Queries on RDF graphs. To retrieve data from RDF graphs, SPARQL queries5

are used. SPARQL (a W3C recommendation) is a declarative query language
similar to SQL. A SPARQL query includes a graph pattern that is utilized
for data selection. It supports various query capabilities, including pattern
matching, filtering, grouping, and aggregating data.

The following simple query retrieves all instances with a birth place
with their respective locations. In Figure 1.1, this results would be
{(Saadi Shirazi, Shiraz), (Voltaire, Paris)}.

SELECT ?instance ?location {

?instance birthPlace ?location .

}

A comprehensive study of knowledge graphs and models by which data can
be structured, represented, and queried can be found in (Hogan et al., 2021).

1.3 ontology matching and data linking

Ontology Matching (OM) or ontology alignment identifies correspondences
between classes, properties, or individuals in two or more ontologies/KGs.

5 https://www.w3.org/TR/sparql11-query/



12 chapter 1. fundamentals

The resulting links can be used to integrate data from multiple knowledge
graphs, creating a unified and coherent representation of knowledge within
the graph. A comprehensive study of OM can be found in (Euzenat and
Shvaiko, 2013).

Correspondence A correspondence or mapping is usually represented as a
tuple he1, e2, ri where e1 and e2 are entities ( classes, properties, or individuals)
of the two ontologies o1 and o2, r, is the semantic relation between them (such
as equivalence (⌘), more general (�), less general (), or disjointness (?)6).
Optionally, a confidence score c indicating the correspondence’s certainty is
attributed to the tuple.

Alignment The term used to refer to the set of correspondences between
ontologies is ”alignment”. An alignment is not necessarily limited to a one-
to-one (1:1) relationship; instead, it can take various forms, including one-to-
many (1:m), many-to-one (m:1), or many-to-many (n:m) cardinalities.

The goal of ontology matching, achieved through a matcher, is to obtain an
alignment for the ontologies o1 and o2.

Schema Matching and Instance matching. When alignment is at the TBox
level (schema or ontological knowledge level), it is called schema matching,
which involves matching classes or relations. On the other hand, aligning at
the ABox level (assertion level or factual knowledge) is known as instance
matching or data linking, which involves determining if two individuals refer
to the same real-world entity.

1.4 rule mining

Ontology enables deductive reasoning to be applied to a knowledge graph,
where new facts can be inferred by applying axioms and logical inferences
in a top-down manner. For instance, given the knowledge that all poets are
writers and that db:Rumi is a poet, we can deduce that db:Rumi is also a writer.
On the other hand, inductive reasoning relies on observations and data, using
a bottom-up approach to detect patterns that can lead to new facts. In this

6 In this thesis, the focus is on correspondences with equivalence relations.
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context, rule mining mines patterns defined on the knowledge graphs that do
not necessarily fit perfectly to the whole KG but allow exceptions. We define
the notions in this context.

Definition 2. Atom. An atom is a basic well-formed first-order logic formula
of the form p(t1, t2, ..., tn) where p is a predicate of arity n and t1, t2, ..., tn are
its arguments that can be either variables or constants7. Any atom of arity
n > 2 can be transformed to n binary relations p(t1, t2, ..., tn) rewritten as
p2(t1, t2), p3(t1, t3), p4(t1, t4), ..., pn(t1, tn) (Hernández et al., 2015). Also, the
unary predicates, such as class membership, can be represented with a binary
predicate, i.e., type(x, y). If an atom’s arguments are constants, the atom is
said to be grounded and can be treated as a fact.

The atom birthPlace(x, y) is an atom with two variables x and y. The
atoms birthPlace(Voltaire, Paris), hasPopulation(Paris, ”2.1M”) are grounded
and are facts in the KG.

Definition 3. (Horn) Rule. A rule r : B ) H is a first-order logic formula
where the body B is a conjunction of atoms B1, ..., Bn and the head H is a
single atom. A rule is closed if every variable appears at least twice in the
rule. Two atoms are connected if they share at least one variable. A rule is
connected if all atoms are transitively connected.

Figure 1.2 depicts a part of a knowledge graph. We can consider the rule
R1 : worksIn(x, y)) bornIn(x, y) to be mined from this small KG. This rule
is connected and closed.

Definition 4. Prediction of a Rule. Consider a rule r : B1, . . . , Bn ) H,
a substitution (a partial mapping from variables to constants) s, and s(r)
an instantiation of r which maps all variables in the body of r such that
s(Bi) 2 G 8i 2 {1, . . . , n}. s(H) is a prediction of r where G ^ r |= s(H). A
prediction is correct if s(H) 2 G.

7 This manuscript represents variables using lowercase letters, whereas capitalized letters denote
constants.
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Figure 1.2.: Part of a knowledge graph, an example for rule mining

A prediction of the rule R1 : would be bornIn(Marie Curie, Paris).

For a rule r : B ) H, different measures to assess their qualities can be
considered. We define the following quality measures as in (Lajus et al., 2020).
In the absence of identity links (i.e., owl:sameAs), we assume that the Unique
Name Assumption (UNA) is fulfilled. If identity links exist, a pre-processing
step is required to compute the quality measures and functionality score
accurately.

Definition 5. Support. The support supp(r) := |{(x, y) : B ^ H(x, y)}|
measures the number of correct predictions made by the rule.

The support of rule R1 on the small knowledge graph of 1.2 is 2 be-
cause we have worksIn(Alan Turing, London), bornIn(Alan Turing, London)
and worksIn(Pierre Curie, Paris), bornIn(Pierre Curie, Paris). In other words,
bornIn(Alan Turing, London) and bornIn(Pierre Curie, Paris) are correct pre-
dictions of R1 since they exist in the knowledge graph.

Definition 6. Head coverage. Head coverage represents the proportion of
instantiations of the head atom that are correctly predicted by the rule.

hc(r) =
supp(r)

|{(x, y) : H(x, y) 2 G}|
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In other words, the head coverage of a rule is the fraction of predicted head
atoms that appear in the actual graph, i.e., the support divided by the total
number of predicted head atoms (i.e., head size).

For instance, the head coverage of rule R1 mined on the graph of Figure 1.2
is 2

3 = 0.66 because the rule correctly predicts 2 out of the 3 facts in the head
relation bornIn; since bornIn(Ada Lovelace, London) is not among the correct
predictions of the rule.

To calculate the confidence of a rule, counter-examples are necessary. Yet,
we know that knowledge graphs are based on the Open World Assumption
(OWA), meaning they only contain positive examples, and missing facts are not
necessarily false. Hence it is necessary to come up with strategies to consider
counter-examples. The Closed World Assumption (CWA) is implemented in
many contexts, such as in relational databases. This implies that what is
currently not known to be true (not present in the database), is incorrect.

Definition 7. Standard confidence. The standard confidence of the rule r
measures the precision of the rule under the CWA.

stnd con f (r) =
supp(r)

|{(x, y) : B}|

For instance, the standard confidence of rule R1 mined on the graph
of Figure 1.2 is 2

5 = 0.4 because we have correct predictions of
bornIn(Alan Turing, London), bornIn(Pierre Currie, Paris) and incorrect pre-
dictions bornIn(Alan Turing, Cambridge), bornIn(Ada Lovelace, Cambridge),
bornIn(Marie Curie, Paris).

The CWA is not appropriate in the context of KGs as it assumes that all
knowledge about a domain is already known and represented in the KG.
Nevertheless we know that KGs can be incomplete or inaccurate due to various
reasons such as limited data sources, noisy data, or errors in data integration,
also new knowledge is constantly being discovered or added to the KGs.
To find triples that can account for counter-examples, we follow the Partial
Completeness Assumption (PCA) (Galárraga et al., 2013), which necessitates the
introduction of a predicate’s functionality score.
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Definition 8. Functionality Score. The functionality score of a predicate is a
value between 0 and 1 that measures the ratio of subjects that the property is
related to in G to the total number of triples with that predicate. The inverse
functionality score i f un(p) is the functionality score for the inverse of the
predicate p.

f un(p) :=
|{x : 9y : p(x, y) 2 G}|

|{(x, y) : p(x, y) 2 G}|

Under PCA, if a fact p(x, y) 2 G and if f un(p) > i f un(p), then no other
fact for x holding with the predicate p is correct and can be considered as a
counter-example (i.e., p(x, y0) /2 G). On the other hand, if i f un(p) > f un(p),
then all p(x0, y) /2 G.

Consider the KG in Figure 1.2. Since f un(bornIn) > i f un(bornIn) and we
have information that Alan Turing was born in London, then any other
birthplace for Alan Turing would be a counter-example. In contrast, since we
have no information about Marie Curie’s birthplace, we cannot consider any
counter-examples for her place of birth under the PCA.

Definition 9. PCA confidence. The PCA confidence of the rule r measures
the precision of the rule under the PCA, i.e., the ratio of correct predictions or
support to the total number of predictions made by the rule. More precisely,
if f un(H) > i f un(H),

pca con f (r) =
supp(r)

|{(x, y) : 9y0 : B ^ H(x, y0)}|

Based on definition of counter-examples under PCA, if i f un(H) > f un(H),
then the denominator, namely PCA body size, becomes |{(x, y) : 9x0 : B ^
H(x0, y)}| in the above equation.

For instance, the PCA confidence of rule R1 mined on the graph
of Figure 1.2 is 2

4 = 0.5 because we have correct predictions of
bornIn(Alan Turing, London), bornIn(Pierre Currie, Paris) and incorrect pre-
dictions bornIn(Alan Turing, Cambridge), bornIn(Ada Lovelace, Cambridge).
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It can also be noted that using ontology matching as a pre-processing step
for rule mining can help address the inherent incompleteness of knowledge
graphs to some extent and also help in better counterfactual selections.

1.5 knowledge graph embedding

Symbolic knowledge representation, which encodes knowledge using logical
expressions, rules, and axioms, can be useful for rule-based reasoning and
interpretability. Yet, knowledge graphs often contain noise and are incomplete,
and this representation is not well-suited for such settings. Therefore, subsym-
bolic knowledge representation, which encodes knowledge using numerical
vectors, has gained popularity, and much research has been devoted to this
area.

One common approach to subsymbolic knowledge representation is knowl-
edge graph embeddings (KGE), which involves mapping entities and relations
in a knowledge graph to a numerical vector space of a pre-defined dimension
of embedding space d. The primary objective of KGE techniques is to preserve
the underlying structure of the knowledge graph and capture the seman-
tics of entities and relations between them. Different relation patterns KGE
techniques try to capture as presented in (Sun et al., 2019), are as follows:

• A relation p is symmetric if 8x, y : (x, p, y) =) (y, p, x). Let
x =Emmanuel Macron and y =Brigitte Macron, and let p = married
to. (x, r, y) denotes ”Emmanuel Macron is married to Brigitte Macron”,
which implies (y, r, x) or ”Brigitte Macron is married to Emmanuel
Macron”.

• A relation p is antisymmetric if 8x, y : (x, p, y) =) ¬(y, p, x). Let
x =Brigitte Macron and y = Tiphaine Auzière, and let p =has child.
(x, p, y) denotes ”Brigitte Macron has child Tiphaine Auzière”, which im-
plies ¬(y, p, x) or ”Tiphaine Auzière doesn’t have child Brigitte Macron”.

• A relation p1 is inverse to relation p2 if 8x, y : (x, p1, y) =) (y, p2, x).
Let x =Emmanuel Macron, y =Estelle Macron, p1 =has sister, and
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p2 =has brother. (x, p1, y) denotes ”Emmanuel Macron has sister Es-
telle Macron,” which implies (y, p2, x) or ”Estelle Macron has brother
Emmanuel Macron”.

• Relation p1 is a composition (transitive) of relation p2 and relation p3 if
8x, y, z : (x, p2, y) ^ (y, p3, z) =) (x, p1, z). Let x =Emmanuel Macron,
y =Amiens, z =France, p2 =is born in, p3 =located in, and p1 =has
nationality. (x, p2, y)= Emmanuel Macron is born in Amiens ^(y, p3, z)=
Amiens is located in France implies (x, p1, z)= Emmanuel Macron has
nationality France.

Different knowledge graph embedding techniques can capture several or
all the above-mentioned relation patterns. This is highly dependent on the
representation space and the scoring function used. A comprehensive survey
by Wang et al. (Wang et al., 2017b) investigates some of the prominent
options explored in the literature. Knowledge graph embedding techniques
are generally distinguished by their representation space selection, scoring
function, and loss function.

Representation space. Knowledge graph embedding involves mapping enti-
ties and relations in a knowledge graph to low-dimensional numerical vectors
in a vector space. The choice of representation space is crucial in determining
the patterns that KGE can capture and hence, the overall performance of
knowledge graph embedding models. Various techniques for knowledge
graph embedding use different representation spaces, such as Euclidean space,
complex vector space, manifold, and Gaussian.

Scoring Function. The scoring function fr(h, t) in knowledge graph embed-
ding is a function used to measure the plausibility of a triple or a fact (h, r, t).
It is also called the energy function in the energy-based learning framework.
It maps the triple (h, r, t) to a score that reflects the likelihood of the triple
being true. The score must be high for correct triples and low for incorrect
triples. The scoring function is key in training and evaluating knowledge
graph embedding models. It will be discussed in more detail in the chapter
2.2.2.

Negative Sampling and Optimization. As previously mentioned, the scoring
function is optimized during training to learn embeddings for entities and
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relations, assigning higher scores to correct triples in the knowledge graph and
lower scores to incorrect triples. As discussed in section 1.4, KGs implement
the Open World Assumption and do not contain incorrect/negative triples.
There are different ways to corrupt facts to obtain false triples to do the
training; two commonly used negative sampling methods are introduced in
(Wang et al., 2014a). For a golden triple (i.e., a fact of the KG), unif method
creates negative triples by randomly sampling a pair of entities (h0, t0) from
the KG to construct the corrupt triple (h0, r, t0). However, this method can
introduce many false negative triples. To address this issue, the bern is
introduced, which assigns Bernoulli distributed probabilities for replacing
head or tail according to the type of property (1-to-1, 1-to-N, N-to-N).

To learn entity and relation embeddings, an optimization problem must be
solved that maximizes the plausibility of correct facts and minimizes the
probability of negative triples. This is achieved by minimizing the sum of
the loss function over the training set of facts. Different loss functions can
be used for this purpose. For instance, margin loss and logistic loss are two
common loss functions used. Given the positive set of triples D and negative
(i.e., corrupted) set of triples D0 constructed according to heuristics like those
discussed above, the margin loss or pairwise ranking loss can be defined as

L = Â
(h,r,t)2D

Â
(h0 ,r0 ,t0)2D0

max(0, g + fr(h, t)� fr0(h0, t0))

This function maximizes the score of correct facts by at least a margin g > 0
higher than incorrect triples. The logistic loss minimizes the negative log-
likelihood of logistic models

L = Â
(h,r,t)2D[D0

log(1 + exp(�yhrt · fr(h,t)))

where yhrt ± 1 is the triple instance’s label (positive or negative).

The performance of a knowledge graph embedding model is influenced
significantly by choice of the loss function (Nayyeri et al., 2019) and the
negative sampling technique (Kotnis and Nastase, 2018; Bansal et al., 2020).





2
A N O V E RV I E W O N S O M E K N O W L E D G E G R A P H
R E F I N E M E N T A P P R O A C H E S

This chapter centers on overviewing some previous studies on refining knowledge
graphs. We organize this exploration into two main categories: knowledge graph
completion in section 2.2, which focuses on the link or relation prediction to refine
a knowledge graph, and data linking in section 2.3, which refines the graph by
identifying sameAs links to entities in other knowledge graphs. We review previous
works on both tasks using symbolic and subsymbolic methods.

2.1 introduction

Knowledge graphs are inherently incomplete; this may be due to the failure to
capture certain information during the construction of the KG or the absence of
certain facts in the available resources. Hence, in the KG, not all information
about every entity is incorporated, and not all the facts contained within
them are necessarily correct. The process of refining a knowledge graph

21
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involves identifying and correcting erroneous facts, as well as adding missing
information, and integrating new data sources.

A detailed survey on knowledge graph creation, curation, and refinement
is available in (Weikum et al., 2021; Cimiano and Paulheim, 2017). This
chapter focuses on existing work addressing knowledge graph completion and
data linking. Usually, knowledge graph completion is the task of predicting
missing statements: for the subject (?, p, o), object (s, p, ?), or both, as well as
relation prediction (s, ?, o). Data linking or ontology matching aims to uncover
owl:sameAs relations between entities within various knowledge graphs.
For each of these refinement tasks, we examine symbolic and subsymbolic
approaches suggested in the literature.

2.2 knowledge graph completion

Around 71% of the roughly 3 million people in the Freebase knowledge graph
have no known place of birth, 94% have no known parents, and 99% have
no known ethnicity (West et al., 2014). By completing knowledge graphs, we
can improve the accuracy and effectiveness of applications and downstream
tasks that rely on them. For example, using a more comprehensive knowledge
graph, a question-answering system can provide more accurate and complete
answers to user queries.

The knowledge graph completion comprises predicting an entity with a
specific relation with another given entity (link prediction) or predicting a
relation between two existing KG entities (relation prediction). In this chapter,
we focus on link prediction.

Developing an automated technique for curating the triples of the Knowledge
Graph (KG) is crucial due to the high cost associated with manual curation
(Paulheim, 2018). Knowledge graphs can be completed using logical rules
on KGs or knowledge graph embeddings. Rules offer the benefits of being
explainable, interpretable, and easily transferable to unseen entities. On the
other hand, embeddings are less intuitive. Still, they have the advantage of
being more scalable, more flexible (they can capture complex patterns and
relationships between entities), and less sensitive to noise.
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We can informally consider the following procedures for knowledge graph
completion using rule-based and embedding-based approaches.

Rule-based Knowledge Graph Completion. Assuming we have a knowl-
edge graph G consisting of facts F and a rule r of the form B ) H, the
completion of G by r is a knowledge graph Gr such that Fr is extended
by the predictions of the rule Fr = F [ {H(a1, b1), . . . , H(an, bn)|G ^ r |=
H(a1, b1), . . . , H(an, bn)}.

KGE-based Knowledge Graph Completion. Assuming we have a knowledge
graph G and a scoring function fr(h, t) learned through a KG embedding
technique, we can apply the following method to predict missing triples
(h, r, t) in G . First, we replace the head/tail entity of the triple with all entities
in the set I . We then use the scoring function fr(h, t) to rank each of these in
descending order and select the one with the highest score.

Knowledge graph Completion Performance Indicators. Consider a KG em-
bedding or rule-based model and a set of known true facts Q. For each fact
(h, r, t) in Q, the predictions (h, r, ?) are ranked using the scoring function
for the KG embedding model; and for the rule-based model, a measure such
as confidence of the rule can be used to rank the predictions. rankq denotes
the position of the ground-truth tail t in the sorted rank of entities. Various
metrics are employed to evaluate the effectiveness of a technique in predicting
new facts:

• Mean Rank (MR) measures the average rank at which the correct entity
is predicted.

MR =
1
|Q|

Â
q2Q

rankq

• Mean Reciprocal Rank (MRR) measures the average of the inverse
ranks of the correct entity that is predicted.

MRR =
1
|Q|

Â
q2Q

1
rankq
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• Hits@K measures if the correct entity appears within the top-k elements
ranked.

Hits@K =
1
|Q|

Â
q2Q

1(rankq  K)

Besides the commonly used evaluation methods for KG completion, there
have been other proposed measures that are noteworthy. For instance, in a rec-
ommendation scenario, it may be crucial to identify the correct ground-truth
entity and suggest related ones from a vast catalog. In a recent publication,
(Hubert et al., 2022) argues that recommending semantically related entities
to the correct one is valuable. To address this issue, they introduce Sem@K, a
new semantic-oriented metric.

2.2.1 Rule Mining Techniques on KGs.

Several works have addressed finding logical rules in large knowledge graphs.
They can be roughly categorized into two classes: top-down and bottom-up.
Top-down rule mining starts with the head of the rule and constructs the
body iteratively by refining it by analyzing the data. Bottom-up rule mining
is a data-driven approach that starts with observing individual instances and
then generalizing the observations (e.g., paths) to extract common patterns or
rules. In other words, bottom-up rule mining starts from the data and moves
toward a higher level of abstraction. In contrast, top-down rule mining starts
from general concepts or high-level rules and moves towards a more detailed
understanding of the data.

These approaches employ specific language biases, pruning criteria, and
optimization strategies to scale up the rule-mining process. The level of ex-
pressivity of the rules can vary depending on the language bias used, which
allows for the search space restriction. For example, reflexive atoms of the
form r(x, x) are often excluded from most rule-mining approaches. Another
common language bias is to limit the number of atoms in a rule. Addition-
ally, these systems propose various optimization techniques and pruning or
parallelization strategies to cope with the large size of RDF graphs. Examples
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include pruning based on quality measures, optimization of calculation of
quality measures, and approximation. A less restrictive language bias or
pruning strategy can produce more expressive rules but a slower performance
due to the large search space. We will provide an overview of the existing
literature on the topic and elaborate on these different aspects.

AMIE introduced in (Lajus et al., 2020; Galárraga et al., 2013; Galárraga et al.,
2015) is a state-of-the-art rule mining system for KGs that is fast and exhaustive.
Its language bias allows it to discover all connected and closed rules, subject to
predetermined thresholds for quality measures like confidence, head coverage,
and a specified maximum number of atoms (e.g., minhc, minC).

AMIE is a top-down approach. It initializes a queue of rules containing all pos-
sible head atoms with an empty body (q = [> ) r1(x, y), . . . ,> ) rm(x, y)]).
The algorithm then explores the search space by iteratively extending rules
using three different refinement operators. These include: adding a Dangling
Atom, which introduces a new atom with one fresh variable (e.g., r(x, z));
adding an Instantiated Atom, which introduces a new atom with one argu-
ment being instantiated and the other a variable of the rule(e.g., r(x, Z)); and
adding a Closing Atom, which introduces a new atom with both variables
already present in the rule (e.g., r(x, y)).

AMIE+ (Galárraga et al., 2015) is successor of AMIE (Galárraga et al., 2013).
While it does not mine all rules satisfying its language bias, it significantly
reduces computation time by implementing new pruning and approximation
strategies such as approximate confidence calculations and query rewriting
techniques. As a result, AMIE+ can achieve computation speeds that are
orders of magnitude faster than the original version.

AMIE3 (Lajus et al., 2020), the newest version of AMIE, manages to speed
up the rule mining process by a factor of 15, compared to the state-of-the-art
methods, all while maintaining exhaustiveness. It accomplishes this by em-
ploying techniques such as lazy computation of the denominator of confidence
until the rule is sure to be pruned based on the given threshold, using an
in-memory database to store the KG, and optimizing query plans based on
variable order.
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RUDIK (Ortona et al., 2018) proposes a non-exhaustive approach to mine
closed, connected logical rules with a maximum body size of maxPathLen.
RuDiK is more expressive than AMIE as it can also mine negative rules (with
negation in the head) that can be used to find erroneous triples in the KG; for
instance, if a person is vegetarian, they cannot eat meat. RuDiK also allows us
to perform comparisons beyond equality by using relationships from the set
rel 2 {<,, 6=,�,>}. An example of such rules would be: has spouse(x, y) ^
date o f birth(x, v0) ^ date o f birth(y, v1) ^ v0 > v1 ) has wi f e(y, x).

RuDiK also adopts a top-down approach to construct rules. RuDiK is designed
to find a set of rules that cover the majority of positive and as few negative
examples as possible. Specifically, it generates a generation set and a validation
set under PCA for each predicate. The former contains positive examples (e.g.,
all parent-child pairs), while the latter holds counter-examples (e.g., pairs of
individuals without the hasChild relation). To identify negative rules, RuDiK
swaps the two sets’ roles. For each pair of entity (x, y) where (x, rel, y) in
the generation set (and hence in the KG), it applies a depth-first search to
retrieve all nodes within a distance no greater than maxPathLen. This search
allows the construction of the rule body, which can be viewed as a path in
the undirected graph, and then computes the rule’s coverage. RuDiK aims
at generating robust rules (that do not overfit) that cover as many examples
in the generation set and as few examples in the validation set. A weight
w(r) that captures the coverage over the generation and validation sets is
computed. RuDiK maintains a rule queue, which selects the rule with the
minimum estimated weight using a greedy approach. It removes facts that a
rule covers to ensure that subsequent rules predict new facts. This also serves
as a pruning strategy.

AnyBURL (Meilicke et al., 2019) is a bottom-up approach that initially samples
paths and applies generalization techniques to expand them to obtain rules.
AnyBURL’s language bias focuses exclusively on rules based on graph paths,
with the maximum rule length n as an input parameter. The rules generated
by AnyBURL are not necessarily closed.

More precisely, the approach taken by AnyBURL involves sampling paths
from the KG and constructing a bottom rule. A generalization lattice rooted
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in the bottom rule is then built, and all useful rules that appear in the lattice
are stored.

An extension of AnyBURL (Meilicke et al., 2020) uses reinforcement learning
to sample better paths from the start. The advantage of these approaches
is that they are anytime, meaning they can trade time for rule quality and
quantity.

Ontological Path finding (Chen et al., 2016) generates paths that will be used
to obtain candidate rules. Still, it exploits the information of the ontology,
especially the domain and range axioms, to reduce the search space to predi-
cates coherent with the domain and range of previously mentioned predicates
and enumerates all conjunctions of atoms allowed by the schema. Ontological
Path finding’s language bias is also to find connected and closed rules.

To achieve scalable mining, Ontological Path finding employs a range of
optimization and pruning strategies, such as partitioning candidate rules
into smaller independent sets, parallelizing join queries through Spark, and
eliminating untrustworthy rules that yield large intermediate results due to
involving large-degree variables in the joining predicates.

NeuralLP. Another family of rule mining systems that are differentiable is
based on TensorLog (Cohen, 2016), which can learn the confidence and struc-
ture of rules simultaneously. These approaches mostly operate under the
Open World Assumption and are only trained using only positive examples.
They map each entity to a one-hot encoded vector and each relation to an
adjacency matrix, and rules are obtained through matrix multiplications. Neu-
ralLP (Yang et al., 2017) defines a (differentiable) operator for each relation.
These operators (relations) are chained to compute a score for each triple
and learn rules and their confidence by maximizing this score using gradient-
based optimization. However, this formulation is only able to generate rules
with fixed lengths. To address this limitation, NeuralLP utilizes LSTM and
attention mechanisms to learn variable-length rules. An extension of Neu-
ralLP, NeuralLP-num (Wang et al., 2020b), can learn rules involving numerical
features. Another extension is DRUM (Sadeghian et al., 2019). DRUM is able
to learn a high-rank approximation of the rule confidences, whereas NeuralLP
is limited to learning a rank-1 tensor approximation. Moreover, DRUM uses
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bidirectional RNNs to share helpful information across the tasks of learning
rules for different relations.

Because NeuralLP (and their extensions) is end-to-end differentiable, it can be
easily parallelized on GPUs to learn rules quickly.

Recap and Conclusion.

We discussed some of the standard scalable techniques used for mining rules in
knowledge graphs. These methods use refinement or generalization operators
to discover rules and are influenced by various language biases and different
pruning strategies or quality measures. There are other works in the literature
with different twists in the rules they mine or quality measures they define.
For instance, (Gad-Elrab et al., 2016) proposes post-processing/revision to the
horn rules mined on a KG by adding exceptions (i.e., negated atoms) into their
bodies to improve the quality of the rules. (Simonne et al., 2021) presents a
first approach to discovering differential causal rules in Knowledge Graphs.
In (Tanon et al., 2018), the authors propose a novel rule ranking measure,
namely the completeness-aware confidence. This measure takes advantage of
the cardinality information related to the expected number of edges in the
knowledge graph to evaluate the quality of learned rules more effectively.

Despite extensive research on rule mining, several challenges remain. One
of these challenges is the absence of negative information in the knowledge
graph (KG). Although this issue can be partially addressed by imposing
assumptions like PCA, it can still lead to the inclusion of many correct facts
as negatives (and many incorrect facts are not considered as negative). Some
works have suggested using ontology and background knowledge to improve
the negatives, but more research is needed to develop approaches that do
not compromise scalability. Another challenge is ensuring scalability as KGs
continue to grow; indeed, with the existing approaches, the number of atoms
and their expressivity is limited to be able to scale. Additionally, there is
room for enhancing the expressivity of the rules to capture more interesting
information, as well as biases and trends in the data. Examples of possible
enhancements include incorporating negated atoms, numerical rules with
existing mathematical functions (e.g., sigmoid function, greater than, less
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than, etc.) or aggregations (e.g., sum, average, etc.), and the definition of
more interesting built-in predicates (e.g., domain-related functions or temporal
predicates extracted from existing data in the KG). Lastly, it is important to
develop methods that enable the updating and enhancement of rules as the
KG evolves.

2.2.2 Knowledge Graph Embedding Techniques.

Much research has been aimed at discovering embeddings representing enti-
ties and relations of a knowledge graph (KG) in a low-dimensional continuous
vector space. Various scoring functions have been proposed to capture dif-
ferent types of relations such as symmetry, anti-symmetry, inversion, and
composition, as discussed in Chapter 1.5. Surveys such as (Ji et al., 2021;
Dai et al., 2020; Wang et al., 2014b) provide comprehensive reviews of recent
developments in this area.

KG embedding techniques can be classified into three main families based on
their scoring functions, and this section provides an overview of recent works
in each of these categories. The novelty of each approach is briefly discussed,
along with the types of relations they can capture.

Translational models

The first type of KG embedding techniques proposed are translational models,
representing relations as translations between two entities. To put it simply,
these models aim to satisfy the equation ~h +~r ⇡ ~t for a given fact (h, r, t),
where the embedding vector of the head entity added to the embedding vector
of the relation should be approximately equal to the embedding vector of the
tail entity. Various versions of this family of models will be explored.

TransE (Bordes et al., 2013) is the first work to view relations as translations
from a head entity to a tail entity. This approach is motivated by hierar-
chical relationships being common in KGs and translations being natural
transformations for representing them. Given a triple (h, r, t), TranE embeds
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~h,~r,~t 2 R
d such that ~h +~r ⇡~t. The scoring function of TransE measures

the proximity of the embeddings and is defined as fr(h, t) = �k~h +~r �~tk,
where the L1 or L2 norm can be used to measure proximity. The embeddings
are learned by minimizing a margin-based criterion, as described in 1.5.

TransE naturally captures antisymmetry, inversion, and composition (by
adding the vectors of the relations), but it is not expressive enough to capture
symmetric relationships. This is because the only way to capture symmetry
(h, r, t) ) (t, r, h) is to have k~h +~r �~tkL1/L2= 0, which means ~r = 0. As a
result, the embeddings of h and t become identical (~h =~t), despite being dis-
tinct entities. Moreover, TransE cannot model one-to-many (or many-to-one)
relations (e.g., (h, r, t1) and (h, r, t2)) because the scoring function will assign
the same embedding to t1 and t2, even though they are different entities.

TransH, TransD, and TransR. To overcome the shortcoming of TransE rising
from modeling translations of any relation in the same embedding space,
TransH (Wang et al., 2014b) proposes to model a relation as a hyperplane with
a translation operation. More specifically, for a triple (h, r, t), the embedding
~h and~t are first projected to the relation-specific hyperplane wr denoted by
(~h?) and (~t?). The translation vector ~dr on the hyperplane is used in the score
function denoted by fr(h, t) = �k(~h?) + (~dr)� (~t?)k2. One shortcoming of
TransH is that translating on relation-specific hyperplanes results in~h? =~t?
for modeling one-to-many (and many-to-one) without the actual embeddings
of the head and tail becoming identical. TransH still assumes that the relation
and entity embeddings belong to the same embedding space, which fails to
capture that an entity may have distinct aspects depending on the relation it
appears within a fact.

Following a similar approach, TransR (Lin et al., 2015) represents entities
and relations in separate embedding spaces and learns embeddings through
translation between projected entities. TransR incorporates a translation
relation vector~r 2 R

d and a projection matrix Mr 2 R
k⇥d for each relation,

while entities are modeled as vectors in R
d. To obtain the projected entity

vectors, TransR applies the matrix Mr to the original entity vectors resulting in
~hr = Mr~h and ~tr = Mr~t. In this transformed space, TransE intuition is applied
with the score function defined as fr(h, t) = �k(~hr) + (~r)� (~tr)k2. CTransR
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follows the same approach, but it clusters all entity pairs (h, t) concerning a
specific relation r into different groups, and the pairs in the same group share
the same relation vector rc. It learns a matrix Mr for each relation. Due to the
use of separate spaces for each relation, the compositional nature of relations
cannot be captured.

TransD (Ji et al., 2015) addresses the issue of expensive matrix-vector multipli-
cations and excessive parameters in TransR. TransR uses a shared mapping
matrix Mr for all entities linked by a relation r, which may not be suitable
for relations involving diverse types and attributes of entities. To overcome
this limitation, TransD creates two vectors for each entity and relation, namely
~h, ~hp,~t, ~tp 2 R

n and~r, ~rp 2 R
m, respectively. Moreover, TransD dynamically

constructs two mapping matrices Mrh, Mrt 2 R
m⇥n for each triple to project

entities from entity space to relation space (i.e., the mapping matrices are
determined by both entities and relations).

RotatE, QuantE, and DualE. To address the limitation of TransR in modeling
the compositional nature of relations and capturing symmetry/antisymmetry
and inversion, researchers have proposed using complex vector embeddings
instead of real vector embeddings. RotateE (Sun et al., 2019) maps the head
and tail entities h, t to the complex embeddings~h,~t 2 C

k. Inspired by Euler’s
identity eiq = cosq + isinq, RotateE defines each relation as a rotation from the
head entity to the tail entity in the complex vector space.The score function
is fr(h, t) = �k~h �~r �~tk2 where � is the Hadamard product. RotateE can
capture all patterns described in Chapter 1.5.

QuantE (Zhang et al., 2019) expands on using complex vector embeddings
by exploring hypercomplex space for learning KG embeddings. While it is
more closely related to semantic matching models, it draws inspiration from
RotateE. In this approach, entities and relations are represented as quaternion
embeddings, which are vectors in the hypercomplex space H with three
imaginary parts i, j, and k, as opposed to C, which has two components of
imaginary and real, and has two planes of rotation, unlike RotateE’s single
plane.

To summarize, the translation family is insufficient for modeling all three
fundamental patterns. The rotation family has limited effectiveness on hier-
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archical and multiple relation patterns; DualE (Cao et al., 2021) offers a new
approach that combines both rotation-based and translation-based models
in 3D space. The embeddings in DualE are represented as vectors in the
hypercomplex space Hd, a dual quaternion space of the form a + eb, where a
and b are two quaternions representing the real and dual part of the vector,
respectively.

ManifoldE, TorusE, and MobiusE. Various approaches propose alternative
geometric or algebraic structures for embeddings in knowledge graph em-
bedding models. One such approach is ManifoldE (Xiao et al., 2015), which
extends the point-wise modeling used in translation-based models to manifold-
wise modeling. In this model, a manifold function M(h, r, t) = D2

r is defined,
where Dr is a relation-specific parameter and M is the manifold function. The
score function is then calculated as fr(h, t) = �kM(h, r, t)� D2

r k
2. ManifoldE

considers two types of embeddings, namely, Sphere and Hyperplane. A
manifold is a topological space defined as a set of points with neighborhoods
determined by set theory.

TorusE (Ebisu and Ichise, 2018) uses a special algebraic structure and embeds
entities and relations on a torus ~h,~r,~t 2 T which is a compact Lie group. It
fixes the problem of regularization in TransE. Inspired by TorusE, MobiusE
(Chen et al., 2021) proposed to embed entities and relations to the surface of a
Mobius ring.

Many other models have been proposed in the literature for translational
knowledge graph embedding, which employs different representation spaces
and score functions. For instance, KG2E (Wang et al., 2017a) represents each
entity/relation as a multi-dimensional Gaussian distribution in probability
space. This approach helps model the uncertainty present in the knowledge
base. Or HAKE (Zhang et al., 2020b), which considers and preserves the
semantic hierarchies of entities in KGs. HAKE achieves this by mapping
entities into the polar coordinate system.
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Semantic matching models

In contrast to the translational models discussed earlier, which use distance
as their scoring function, another category of knowledge graph embedding
methods is the semantic matching or bilinear models that utilize similarity-based
scoring functions fr(h, t). Semantic matching models measure the similarity
or relatedness between two embedded entities for a given relation (e.g., cosine
similarity).

RESCAL and DistMult. RESCAL is regarded as one of the initial knowledge
graph embedding methods and the first and simplest bilinear model. It
computes a three-way factorization of an adjacency tensor representing the
knowledge graph. In the tensor X , if a relation rk exists between entities ei and
ej, the entry Xijk = 1, whereas if the relation does not exist, Xijk = 0. RESCAL
factorizes each side of X using a rank r factorization. A vector represents each
entity, and each relation is represented by a matrix Mr = R

d⇥d. The model’s
scoring function is defined by fr(h, t) = hT Mrt. RESCAL has a large number
of parameters and is computationally expensive.

DistMult (Yang et al., 2015) is a simplified version of RESCAL that uses
bilinear diagonal matrices and fewer parameters, making it more efficient. In
DistMult, entities are represented as vectors that capture their latent semantics,
while relations are represented as diagonal matrices Mr that model pairwise
interactions between the latent factors. DistMult can model symmetry but
not anti-symmetry due to the commutativity of summation and product.
Also, it is incapable of modeling inverse relations, such as r1 and r2, because
fr1(h, t) = hh, r1, ti = hh, r2, ti = fr2(h, t), which forces r1 to be equal to r2.
Furthermore, DistMult is limited in its ability to model compositional relations,
as it defines a hyperplane for each (h, t) and the union of these hyperplanes,
such as for (r1, r2), cannot be expressed using a single hyperplane.

ComplEx (Trouillon et al., 2017) is a generalized version of DistMult that
represents entities in the complex space C

d and relations as diagonal bilinear
forms Mr = diag(r), r 2 C

d. This allows it to capture asymmetric and
inversion patterns of relations. The scoring function is similar to DistMult,
but it takes the real part of the Hermitian product: fr(h, t) = RE(< h, r, t >).
However, ComplEx still lacks the ability to model compositional relations.
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HoleE and ANALOGY. The aim of HoleE or Holographic Embeddings of
Knowledge Graphs (Nickel et al., 2016) is to address the scalability issues of
RESCAL caused by tensor products. To achieve this, it introduces circular cor-
relation of embeddings, which is like a compressed form of the tensor product,
to learn compositional representations. This approach is more efficient and
scalable than RESCAL.

ANALOGY (Liu et al., 2017) also extends RESCAL to further model the
analogical properties of entities and relations (e.g., A is to B as C is to D) and
address its scalability issues.

Deep models

Deep models are a popular category of knowledge graph embedding tech-
niques. They enable the creation of more expressive representations of entities
and relations by applying multiple layers of non-linear transformations and
utilizing more complex score functions.

Typically, the training process for deep models consists of two phases. The first
phase creates vectors for each entity and relation (encoding~h,~r,~t). The second
phase involves evaluating the plausibility of these vectors in a layer-by-layer
learning approach (scoring).

Many approaches are proposed in the literature, relying on different ar-
chitectures. For instance, some approaches leverage Convolutional Neural
Networks (CNNs) to learn deep expressive features. Others rely on Recurrent
Neural Networks (RNNs/LSTMs) to capture long-term relational dependen-
cies within knowledge graphs. Some approaches adopt transformers to excel
in learning contextualized text representations. Graph Convolutional Net-
works (GCNs) use the topological structure of knowledge graphs and update
node representations by aggregating and propagating node features within
the graph.

Deep models also facilitate the integration of external information, such
as types, literal attributes, and texts, which can further enrich the learned
embeddings. We will briefly overview some of the proposed approaches in
the literature.
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ConvE, ConvKB, and HypER. ConvE (Dettmers et al., 2018) is the first model
to use CNNs for knowledge graph completion. It uses 2D convolutions over
the concatenated entity and relation embeddings. More specifically, ConvE
reshapes and concatenates ~h and ~r into a 2-D matrix (Mh, Mr) fed to the
convolution layer later. The resulting feature maps are reshaped into a vector.
The dot product of this vector and the~t is used to compute the score function
fr(h, t) = s(vec(s([Mh, Mr] ⇤ w))W).~t where w represents the convolutional
filters.

ConvKB (Nguyen et al., 2018) extends ConvE by removing the reshaping oper-
ation in the encoding of representations in the convolution operation. ConvKB
employs a 3-column matrix of ~h,~r, and~t to pass through the convolutional
layer. Subsequently, the feature maps generated are concatenated to produce
a vector concatenated with a weight vector to obtain a score for (h, r, t). The
score function can be formulated as fr(h, t) = concat(s([~h,~r,~t]) ⇤w).w where
w is the weight vector. ConvKB can capture global relationships and transi-
tional characteristics between entities and relations in knowledge bases which
is not the case for ConvE.

HypER (Balažević et al., 2019) extends ConvE by proposing relation-specific
convolution filters. Unlike ConvE and ConvKB, it does not perform any
reshaping or concatenating. It adopts hyper-networks based on ConvE, gener-
ates relation-specific convolutional filters, and applies them to subject entity
embeddings. It needs fewer parameters than ConvE and is more efficient.

More recently, ConEx (Demir and Ngomo, 2021) proposed to apply the convo-
lution operation on complex-valued embeddings of subjects and predicates.

DOLORES, KG-BERT, R-MeN, and CoKE. Knowledge graph embedding
techniques based on RNNs/LSTMs typically aim to capture more than just
a single triple by incorporating paths in the knowledge graph. These paths
of varying lengths can be obtained by performing random walks (or similar
techniques) on the graph. For example, DOLORES (Wang et al., 2020a)
generates chains of entity-relations through random walks on the KG and uses
a Bi-Directional LSTM architecture to learn entity and relation embeddings
that can capture context dependence.
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Transformer-based models have been recently employed to capture contextual
information in knowledge graphs. KG-BERT (Yao et al., 2019) adopts the
pre-trained BERT (Bidirectional Encoder Representations from Transformer)
language model as an encoder for entities and relations and can easily incor-
porate external information (e.g., entity types or descriptions). The model
creates different inputs depending on the refinement task. For link prediction
or triple classification tasks, the head, relation, and tail entities are concate-
nated and separated by the [SEP] token, and the [CLS] token is added at the
beginning. The entities can be replaced with their textual descriptions. To
fine-tune BERT, the final hidden state C corresponding to [CLS] is used as the
aggregate sequence representation for computing triple scores, which are then
passed to a classification layer. The inputs are created for relation prediction
using the head and relation entities. The final hidden state corresponding to
[CLS] is used to perform multi-class classification on the whole set of relations
in the knowledge graph.

Similarly, R-MeN (Nguyen et al., 2020) passes triples of fact with their posi-
tional embedding as the input to a transformer-based architecture. Each input
vector generates an encoded vector fed to a decoder based on a CNN. The
decoder produces a score for the triple that is used for triple classification.

CoKE (Contextualized Knowledge Graph Embedding) (Wang et al., 2020c)
generates paths in the form of h * r1 · · · * rn * t, and for the task of
link prediction, it applies a mask with the token [mask] to either h or t. The
resulting sequence is then passed through Transformer encoding blocks, and
the final hidden state, corresponding to the [MASK] token, is used to predict
the masked entity.

Recap and Conclusion.

We discussed various knowledge graph embedding techniques, primarily fo-
cusing on their scoring function and architectures. These techniques fall under
three families: translational, semantic matching, and deep models. While we
did not delve into their performance or adaptations to different downstream
tasks, the approaches discussed are commonly used for knowledge graph
completion tasks.
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Many KG embedding techniques are still proposed in the literature, each with
unique architectures designed to address specific shortcomings of previous
approaches and with varying levels of expressivity and integration of external
information. For instance, Relational Graph Convolutional Networks (RGCN)
(Schlichtkrull et al., 2018) is an extension of Graph Convolutional Networks
that can operate on large-scale relational data by incorporating local graph
neighborhoods. Another example is OTKGE (Cao et al., 2022), which pro-
poses embeddings for multi-modal knowledge graphs where text, image, and
video information coexist. This approach is based on the Optimal Transport
problem.

While KGE techniques have seen a lot of advancements, there are still several
challenges that need to be addressed. One such challenge is their limited
effectiveness in zero-shot or few-shot settings for link prediction or relation
prediction tasks. The entities or relations are either unseen or have very few
occurrences in the training data. Some recent works have been proposed to
address this issue (Xiong et al., 2018; Zhang et al., 2020a). Another challenge is
the flawed evaluation of KGE techniques, as some studies in the literature have
pointed out. The calibration studies are not well-defined, and the datasets
often involve semantically inverse relations, which are unsuitable for proper
evaluation (Pezeshkpour et al., 2020). Some efforts have been made to address
these evaluation challenges by introducing new benchmark datasets designed
explicitly for knowledge graph completion. For instance, the CoDEx dataset
(Safavi and Koutra, 2020) has been developed to overcome the challenges
faced with previous datasets. Similarly, there is the WD-Known dataset (Veseli
et al., 2023), designed to assess the potential of knowledge graph completion
for language models. These new datasets help researchers better understand
and evaluate the performance of knowledge graph completion techniques. In
addition, studies such as the one in (Teach et al., 2020), re-implement prior
KGE approaches and scrutinize their performance, revealing that training
parameters play an important role. In addition, knowledge graph embedding
(KGE) techniques lack interpretability, and their use in downstream tasks,
such as knowledge graph completion, does not explain the results obtained.
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2.3 data linking techniques

In Section 2.2, we explored both symbolic and subsymbolic approaches pro-
posed in the literature for knowledge discovery and enhancing the comprehen-
siveness of knowledge graphs. In this section, we will shift our focus to data
linking, which involves determining whether entities from different datasets
refer to the same real-world entity.

In Section 1.3, we introduced the concept of ontology matching, and a compre-
hensive survey of different approaches can be found in (Rahm and Bernstein,
2001; Euzenat and Shvaiko, 2013). Ontology matching encompasses two main
tasks: schema matching and instance matching. Schema matching involves
establishing alignments between classes and relations in different knowledge
graphs. On the other hand, instance matching, also known as data linking,
focuses on determining, with a certain degree of confidence, whether two
individuals refer to the same real-world object (Ferrara et al., 2011).

Numerous approaches have been proposed for both schema matching and
instance matching. These link discovery approaches can be categorized into
three different groups based on how they incorporate schema and instance
matching into their workflow.

Some systems solely concentrate on instance matching. Among these systems,
some depend on declared linkage rules that can be used to logically infer
identity links (Al-Bakri et al., 2015; Fan et al., 2015) while others compute a
similarity score thanks to complex rules that can involve simple similarity
measures and aggregation functions, like LIMES or Silk (Ngonga Ngomo
and Auer, 2011; Volz et al., 2009a). These rules are typically based on sets
of discriminative properties or more complex graph patterns, such as OWL2
keys and schema mappings. However, specifying such properties can be
challenging. To address this, certain approaches aim to discover discrimina-
tive properties using one or multiple knowledge graphs, assuming that the
mappings are known (Symeonidou et al., 2011, 2014, 2017), or by allowing the
discovery of keys involving property mappings (Atencia et al., 2019).

Some systems only focus on schema matching. These systems typically
leverage terminological similarities, structural similarities, instance similarities,
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external resources, or logical axioms to identify more or less complex schema
mappings (Doan et al., 2000; Aumueller et al., 2005).

On the other hand, certain systems perform both instance matching and
schema matching in their ontology matching processes. Examples include
PARIS (Suchanek et al., 2011), and ILIADS (Udrea et al., 2007), which employ
interleaved schema matching and instance matching in iterative iterations,
with mappings from one task assisting in refining the mappings of the other
task.

In this section, our focus will be on instance-matching techniques. We will
delve into key-based and rule-based approaches, which belong to the sym-
bolic paradigm. We will also explore data-linking methods that leverage
embeddings and machine learning-based models.

Key-based and Rule-based approaches

KD2R and SAKey. KD2R (Pernelle et al., 2013) is the first key discovery
approach specifically designed for knowledge graphs. These approaches
assume that UNA is fulfilled. It first finds a set of maximal non-keys and
then derives the minimal keys from them. However, one limitation of KD2R
is its scalability to large knowledge graphs. SAKey (Symeonidou et al., 2014)
extends KD2R to make it more scalable and introduces the concept of almost
keys, which relaxes the traditional key constraint by allowing a specified
number n of exceptions. The value of n is user-defined, and in the strictest
scenario, 0-almost keys do not permit any exceptions to the key constraint.
For a class C and a set of properties P = p1, . . . , pn, the exception set EP is
defined as:

EP = {X|9Y(X 6= Y) ^ C(X) ^ C(Y) ^
^

p2P
9U(p(X, U) ^ p(Y, U))}

A set of properties is an n-almost key if there exist at most n instances that
share values for this set of properties. More formally, for a class C, a set of
properties P = {p1, . . . , pn}, and an integer n, P is an n-almost key for C if
|EP|  n and it’s an n-non key if |Ep| � n. SAKey finds first the maximal
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(n + 1) non-keys and then derives the minimal n-almost-key. A maximal
(n+1) non-key has at least (n + 1) exceptions. The discovery of maximal n-
non keys follows a depth-first exploration principle, incorporating mappings
and pruning strategies while traversing the exception sets. Since as soon
as n exceptions are found for a set of properties P, it’s sure that Ep � n
and the exploration shall stop. Once SAKey has identified and obtained all
non-keys, it deduces that all remaining combinations of properties are keys,
thereby generating the output of the SAKey algorithm. The instantiation of
n-almost keys is used for data linking. We highlight that SAKey focuses on the
discovery of S-keys (OWL2 semantics of a key), meaning that in the context of
multi-valued properties within a key, SAKey considers it sufficient for them
to share at least one common value for each property in the key.

ROCKER (Soru et al., 2015a) presents a refinement operator for Key Discovery.
The refinement operator r is used to refine candidate keys based on a scoring
function that compares sets of properties. The scoring function calculates the
rate of distinguishable instances in a class given a set of properties representing
a candidate key. The scoring function induces a quasi-ordering 4 over the
set of all candidates. In other words, if P 4 Q, it means that min

p2P
score(p) 4

min
q2Q

score(q) and the other way around. The algorithm employed by ROCKER

computes the score for all properties and sorts them based on their scores.
This heuristic approach aims to discover keys earlier in the refinement process,
allowing for the pruning of descendant keys in the refinement tree and
reducing the number of score calculations. To iteratively search for keys, a
priority queue is used, where the priority is determined by the scores. The
algorithm also utilizes key monotonicity to prune branches during the search
process. It is worth mentioning that, unlike SAKey, ROCKER specializes in
discovering F-keys. This means that in the case of multi-valued properties,
all values of each property in the key must be shared for it to be considered
a valid key. In their experiments, it has been demonstrated that ROCKER
exhibits faster execution times on larger datasets in comparison to SAKey.
Moreover, the researchers also reported lower memory consumption.

VICKEY (Symeonidou et al., 2017) considers situations where there may be
a scarcity or absence of valid keys throughout the knowledge graph. They
define the concept of ”conditional keys” – keys that are only applicable
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to specific subsets of data. Examples of conditional keys include the date
of creation as a key for museums located in Paris. Or the restriction of
each doctoral student to having only one advisor professor within German
universities where universityLocation(x, Germany) is a conditional property.
More formally, a conditional key for a knowledge graph G is a non-empty set
of conditional properties {cd1, . . . , cdn}, and a non-empty set of key properties
{p1, . . . , pm} disjoint from those in conditions, such that:

8x8y8z1...zm(
n̂

i=1
(cdi(x) ^ cdi(y)) ^

m̂

i=1
(pi(x, zi) ^ pi(y, zi))) x = y)

To ensure scalability, VICKEY adopts a strategy of exploring minimal condi-
tional keys by focusing on the maximal non-keys identified by SAKey. This
approach limits the consideration of property combinations to those derived
from the maximal non-keys. The rationale behind this restriction is that adding
conditional properties to a key is not relevant, whereas adding conditions to
non-key properties can result in relevant conditional keys.

VICKEY proceeds by constructing a collection of conditional key graphs,
considering all possible conditions p = a that combine a property p from the
maximal non-keys with an instance or literal a from the dataset. However,
these conditions are bound by a threshold q, ensuring that they have a support
exceeding the specified threshold. In a subsequent step, these conditional
key graphs are systematically mined to identify the minimal conditional keys.
This mining process involves traversing the nodes of the graph level by level
(breadth-first strategy). Initially, nodes with a single property are considered,
followed by nodes with two properties, and so on. During each traversal,
the validity of the nodes is assessed, taking into account the definition of a
conditional key and ensuring that the identified keys are minimal compared
to the keys discovered thus far.

Link Key (Atencia et al., 2014b) aims to discover sets of property pairs that
simultaneously characterize equivalence between two knowledge graphs.
A link key between a pair of classes hC, Di is defined by pairs of
corresponding properties {hp1, q1i, . . . , hpn, qni} that collectively identify
unique entities. For example, consider the classes hAlbum, MusicAlbumi.
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One possible link key for the pair of classes hAlbum, MusicAlbumi is
{hname, albumNamei, hpublishdate, releaseDatei}. It is important to high-
light that link keys can be categorized into different types based on their
characteristics, such as weak and strong. For instance, if {p1, . . . , pn} and
{q1, . . . , qn} are keys for classes C and D, respectively, then they are consid-
ered strong link keys. To gain a deeper understanding of link keys and their
relationship with keys and different types of link keys, extensive research has
been conducted, as discussed in (Atencia et al., 2021).

The Link Key approach follows a two-step process. First, it extracts all
candidate link keys, which are maximal sets of property pairs where at least
two instances share a common value. In (Atencia et al., 2020), Formal Concept
Analysis and Relational Concept Analysis are employed to generate these
candidate link keys. In the second step, measures such as discriminability and
coverage are applied to select the most promising link keys. The resulting
link keys can then be used for generating links between the entities of the two
knowledge graphs.

Unlike key-based approaches discussed earlier, which require schema align-
ment (matching classes and properties) beforehand, the Link Key approach
does not rely on pre-aligned schemas.

LIMES and Silk. In the literature, some approaches require manual rules and
user-specified configurations. These approaches take a link specification (LS)
or linkage rule as input, defining the conditions data items must meet to be
linked.

One such approach is LIMES (Link Discovery Framework for metric spaces)
(Ngonga Ngomo and Auer, 2011) (Ngonga Ngomo et al., 2021), which takes
a configuration file provided by the user as input. LIMES employs triangle
inequality to estimate entity similarity. It approximates the similarity of entity
pairs and computes the actual similarity for pairs with high approximated
similarity to choose the pair with the highest similarity. LIMES leverages vari-
ous similarity metrics to compute the relatedness between entities’ attributes
based on user-specified thresholds.

The Silk Link Discovery Framework (Volz et al., 2009b), also offers a declarative
language for defining link discovery tasks. Users can specify the sources,
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attributes, similarity metrics, and rules for matching entities. Silk supports a
range of similarity metrics, providing flexibility in the link discovery process.

Machine learning and Knowledge Graph Embedding-based approaches.

EAGLE and GenLink. Discovering useful link specifications and rules is
a challenging task, prompting the development of new approaches in the
literature that focus on learning rules through supervised learning.

One such approach is EAGLE presented in (Ngonga Ngomo and Lyko, 2012),
which extends the LIMES framework. EAGLE introduces a machine learning-
based approach for link specification of varying complexity, utilizing genetic
programming techniques.

Another approach, GenLink, builds upon the SILK framework. It leverages
a supervised learning algorithm employing genetic programming to learn
linkage rules from a set of existing reference links.

AttrE (Trisedya et al., 2019);Entity Alignment between Knowledge Graphs
Using Attribute Embeddings, is an approach that introduces a novel embed-
ding model that combines entity structure embedding and attribute character
embedding for aligning entities between knowledge graphs. In this approach,
the embedding of relations and entities of the two KGs (to be matched) are in
the same vector space. By jointly learning structure embedding and attribute
character embedding, the proposed approach ensures that similar entities
in G1 and G2 have similar embeddings. This enables the computation of
similarities between entities in the two KGs. A similarity threshold b is then
used to filter out entity pairs that are not similar enough to be inked.

KERMIT (Hertling et al., 2022), KnowlEdge gRaph MatchIng with Trans-
formers, is a matching technique that builds upon sentence BERT (SBERT)
(Reimers and Gurevych, 2019). The use of transformer-based language models
allows for semantical textual comparison rather than relying on pure string
sequence matches. The process involves fine-tuning a cross-encoder model us-
ing S-BERT by generating positive and negative correspondences through two
methods: (1) sampling from the reference and (2) utilizing a high-precision
matcher. The generated inputs are then passed to SBERT for fine-tuning.
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Subsequently, the fine-tuned model is applied within the matching pipeline.
The obtained results benefit from a logic-based alignment repair step, which
enhances precision.

Recap and Conclusion.

We explored different data-linking methods, with a particular emphasis on
key-based approaches, and briefly touched upon embedding-based techniques.
Despite various works addressing ontology matching and data linking, partic-
ular challenges persist.

One challenge pertains to the evaluation process and the scarcity of ground
truth in many scenarios. Additionally, knowledge graphs are dynamic and
continuously expanding as the Linked Open Data (LOD) expands. This
highlights the significance of scalable approaches that can effectively handle
the evolving nature of knowledge graphs without excessive effort.
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3.1 introduction

Context and Motivation

Chapter 2 examined how knowledge graphs can provide valuable insights by
extracting logical rules. These rules can be used for predicting facts (Galárraga
et al., 2017), curating the KG (Loster et al., 2021), identifying trends or biases,
ontology alignment (Galárraga et al., 2013), or fact-checking (Qudus et al.,
2022; Ahmadi et al., 2019). In section 2.2.1, we investigated various scalable
rule-mining techniques with different language biases. However, rule mining
systems face challenges when dealing with numerical data due to the many
values that numerical predicates can take, resulting in a significantly large
search space (Galárraga and Suchanek, 2014).

In this chapter, we first provide an overview of the related work in the
literature that focuses on rule mining with numerical predicates/attributes

45
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before presenting our own contributions. We have observed that the current
numerical rule mining techniques are either unsuitable for large knowledge
graphs or are not expressive enough. As a result, we have been motivated to
address this gap in the literature through the work presented in this chapter.
To categorize our literature review, we have divided it into three groups.

Association Rule mining. Association rule mining (ARM) (Agrawal et al.,
1993) is a widely used data mining technique that identifies frequent patterns
among items and transactions based on a minimum number of observations.
It typically generates if-then patterns, represented by association rules X ! Y,
indicating that the presence of X suggests the presence of Y in the same transac-
tion. However, ARM faces challenges when dealing with numerical attributes
since the values of these attributes rarely repeat themselves. To address this,
a special type of association rule called quantitative association rules has been
developed, which involves at least one numerical attribute in the rule, such
as (25 < age < 40) ^ (3K < salary < 5K) ! (120K < loan < 200K). Quanti-
tative Association Rule Mining (QARM) can be achieved through different
strategies, including discretization-based approaches such as pre-processing
steps to partition numerical data (Srikant and Agrawal, 1996) or statistical
analysis of variables and distribution of the numerical variables (Aumann and
Lindell, 1999), and optimization-based approaches where numeric attributes
are optimized during the mining process, for instance with the use of genetic
algorithms (Salleb-Aouissi et al., 2007), (Jaramillo et al., 2021), (Minaei-Bidgoli
et al., 2013). Nevertheless, these patterns or dependencies are restricted to sin-
gle variables and differ from the logical rules relevant to complex relationships
in knowledge graphs.

Inductive Logic Programming (ILP) is a method for automatically deriving
rules from positive and negative examples. For instance, WARMR (Dehaspe
and Toironen, 2001) is an ILP system that extends the Apriori algorithm to
mine association rules across multiple relations. Other ILP-based techniques,
such as DL-Learner (Bühmann et al., 2016), concentrate on learning com-
plex concept definitions, including numerical range restrictions. To discover
rules with numerical attribute intervals, (Melo et al., 2014) proposes an ILP
extension that involves a pre-processing step to compute correlation lattices
for numerical and categorical attributes, thereby reducing the search space.
Nonetheless, ILP is not well-suited for the open world assumption (OWA) in
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large knowledge graphs, where counter-examples are not explicitly stated, and
missing information cannot be considered negative but rather unknown.

First-Order Logic (FOL) Rules in Knowledge Graphs. In Section 2.2.1, we
provided a comprehensive overview of FOL rule mining in knowledge graphs.
However, when it comes to numerical rules, existing methods such as AMIE
(Galárraga et al., 2013), AnyBURL (Meilicke et al., 2019), Ontological Path
finding (Chen et al., 2016), and their extensions can only extract rules that
involve constants (e.g., age(x,53)). These rules can be overly specific and
uninteresting when it comes to numerical predicates. RuDik (Ortona et al.,
2018), on the other hand, can perform comparisons beyond equality by utiliz-
ing relationships from rel 2 {<,, 6=,�,>}. For instance, a rule generated
by RuDik may appear as follows: p1(x, v0) ^ p2(y, v1) ^ v0 > v1 ) p3(x, y),
where v0 and v1 are values from the knowledge graph, not thresholds. In
the category of differentiable rule-based methods, NeuralLP-num (Wang
et al., 2020b) can learn rules involving numerical features. Like RuDik,
these rules may make pair-wise comparisons between the numerical val-
ues of different atoms in the rules. Additionally, the rules produced by
NeuralLP-num may include classification operators, which are sigmoid func-
tions over numerical values of atoms with numerical predicates in the rule.
For instance, a rule with a classification operator could appear as follows:
f {y1, y2 : p1(X, y1), p2(X, y2)} > 0.5 ^ p3(X, Z) ) p4(X, Z) where f is the
sigmoid function and p1 and p2 are numerical predicates. To the best of
our knowledge, RuDik and NeuralLP-num are the only techniques in the
literature that can extract interesting rules with numerical predicates on large
knowledge graphs. However, both approaches are limited to using numerical
values from the knowledge graph and applying functions or comparisons
between them. They cannot discover numerical intervals or thresholds as
constraints to improve the quality of rules and derive additional knowledge.

Contributions

This chapter presents our approach REGNUM to address the gap in incorpo-
rating numerical predicates into logical rules mined on KGs. Our approach
involves two main steps. First, we obtain the FOL rules using efficient rule
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mining tools (like those presented in section 1.4). Second, we enrich the rules
with numerical predicates and interval constraints. We focus on constraints
that express the membership or non-membership to a value interval (e.g., the
country’s population between 1M to 5M or the country’s GDP not less than
1 trillion dollars). One way to incorporate these constraints is by discretiz-
ing the numerical predicates’ values in a pre-processing step. Unsupervised
techniques like EqualWidth and EqualFrequency can be used for this purpose,
as they do not rely on instance labels unavailable in this setting. However,
this approach may not provide relevant constraints for each rule and could
result in information loss. Moreover, calculating constraints while the rule
mining technique explores the search space (as it generalizes or refines the
rule) results in having to re-calculate the interval at each step, making the
approach time-consuming over large graphs. Hence, we propose a novel
approach that, for this second step, we consider the problem as a classification
problem to obtain the intervals based on the correct and incorrect predictions
of the rule, guided by the quality of the rules. This way, we can use supervised
discretization techniques while restricting the search space. Various tech-
niques can be employed to discretize numerical values, including supervised
discretization methods (Kohavi and Sahami, 1996; Garcı́a et al., 2013). One
family is the Chi-square-based supervised discretization (Kerber, 1992), a
statistical technique involving a bottom-up merging process of intervals after
an initialization step. This technique is univariate and supervised. Another
family is the entropy-based supervised discretization, such as the Minimum
Description Length-based discretized (MDLP) (Fayyad and Irani, 1993). This
approach uses the entropy of class information to determine the discretization
boundaries and employs the MDL principle as a stopping criterion. How-
ever, most discretization methods are univariate and consider only a single
attribute at a time. Another option would be to consider sequential covering
approaches, e.g., RIPPER (Cohen, 1995) or FURIA (Hühn and Hüllermeier,
2009). These approaches use the separate-and-conquer strategy, learning one
rule at a time and gradually repeating the process to cover the complete set
of positive examples. They tend to have high precision and avoid creating
numerous rules that overlap in the instances they cover. Alternatively, QARM
techniques introduced in section 3.1 can also be used. In this work, the search
strategy to obtain interval constraints on the numerical predicates relies on
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tree-based algorithms that can consider membership and non-membership to
an interval.

The main contributions of the work presented in this chapter are:

• REGNUM is a novel approach that enhances the expressiveness of the
rules generated by a rule mining system by incorporating numerical
constraints expressed through value intervals. To our knowledge, REG-
NUM is the first approach to utilize intervals in rules mined from large
RDF graphs.

• REGNUM efficiently selects intervals that increase the rule’s confidence
using existing supervised discretization techniques that best distinguish
the correct and incorrect predictions made by the rule.

• Since some value intervals can be too specific to lead to relevant rules,
REGNUM considers both the membership and the non-membership of
a value to an interval to offer more possibilities of generating a rule with
high quality.

• The experimental evaluation shows that the numerical rules generated by
REGNUM using the rules provided by two state-of-the-art rule mining
systems, AMIE and AnyBURL, have a higher overall quality score and
can potentially improve prediction results.

3.2 regnum: generating logical rules with numerical predi-
cates

In this section, we describe REGNUM, a system that automatically enriches
connected and closed rules mined on a given knowledge graph, regardless
of the method used to mine them, with numerical predicates by constraining
the introduced numerical values to specified intervals. REGNUM aims to
enhance the PCA confidence defined in Definition 9 in the considered rules
while ensuring that the rules do not become overly specific.
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3.2.1 Problem statement

REGNUM aims to mine numerical rules that are defined as follows:

Definition 10. Numerical Rule. A numerical rule is a first-order logic for-
mula of the form: B ^ C ) H, where B is a conjunction of atoms of the
KG. The range values of the numerical atoms of B can be constrained us-
ing C, which are conjunction (resp. disjunction) of atoms that express their
membership (resp. their non-membership) to an interval [in f , sup].

Example. Here are two examples of numerical rules with constraints defined
on numerical predicates:

r1 : worksIn(x, y) ^ hasPopulation(y, w) ^ w 2 [1000, 5500] ^
hasHusband(x, z)) worksIn(z, y)

r2 : worksIn(x, y) ^ hasHusband(x, z) ^ age(z, a) ^ hasPopulation(y, w) ^
(w /2 [1000, 5500] _ a /2 [50, •))) worksIn(z, y)

Generating all numerical rules that fulfill quality measure thresholds (e.g.,
minHC and mincon f in (Lajus et al., 2020)) can be very time-consuming. This
is because the intervals used to constrain the range of numerical predicates
must be recalculated each time a rule is generalized or refined as the search
space is explored. This ensures that the constraints applied to the rule are
appropriate for the updated rule.

To overcome this issue, we propose REGNUM, an approach that builds on the
shoulders of the rules mined by an existing rule-mining technique, namely
parent rules. It expands the body of these rules through an enrichment process
to generate numerical rules. More precisely,

• A numerical rule is considered relevant if it improves the PCA confi-
dence of its parent rule by at least a marginC without its head coverage
decreasing more than marginHC. This criterion guarantees that the
rule has higher PCA confidence than its parent rule while preventing
over-fitting the KG.



3 .2. regnum : generating logical rules with numerical predicates 51

• The enrichment process of a parent rule is driven by considering diverse
sets of numerical predicates. If a numerical rule involving a specific
numerical predicate p is deemed relevant in a constraint containing a
number of numerical atoms, the method will not generate any further
numerical rules by considering additional numerical predicates that
contain p. In other words, diversity is an intuitive heuristic to prune the
search space and avoid searching for more relevant rules with additional
numerical predicates once a rule meeting the desired quality criteria is
identified.

3.2.2 Rule Enrichment with Numerical Predicates

Given a knowledge graph G, a set of closed rules R mined from G, called
parent rules, and thresholds marginC and marginHC as introduced in 3.2.1,
our approach REGNUM is able to enrich the parent rules in R to obtain
relevant and diverse numerical rules. The algorithm, described in Algorithm
1, performs the following steps.

(1) Pre-processing step

[line 1 in Algorithm 1]. As a pre-processing step, we first identify the set of
numerical predicates, denoted as Pnum in G. We use the domain and range
definition axioms if they are available in the ontology, and if not, we discover
them by considering the Datatypes of values they take as their range (e.g.,
numbers, time and date). We also compute the functionality score, as defined
in Definition 8, for all predicates in the head of the parent rules R.

Then, for each parent rule r 2 R, we proceed with the following steps.
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Algorithm 1: REGNUM
Input:

• G: knowledge graph

• R: set of parent rules mined on G

• marginHC, marginC: margins on head coverage and PCA confidence

Output: E : set of enriched rules
1 Identify Pnum and compute functionality degree of predicates P
2 E = ∆
3 foreach r : B ) H in R do
4 compute quality measure hc(r) and pca con f (r); compute minHC and

minC; create an empty queue qatoms;
5 for pnum 2 Pnum do
6 if hc(pnum(xi, xnew) ^ B ) H) > minHC then
7 Enqueue pnum(xi, xnew) in qatoms
8 end
9 ln = 1 // number of numerical atoms

10 while |qatoms| > ln do
11 for Bnum created by combining ln atoms from qatoms do
12 rs : Bnum ^ B ) H
13 if hc(rs) > minHC then
14 < X, Y > construct prediction classes(G, rs);
15 rnodes  discretize(< X, Y >, minHC, minC);
16 foreach rnode in rnodes do
17 if hc(rnode) > minHC and pca con f (rnode) > minC then
18 add rnode ) H to E ;
19 end
20 end
21 remove from qatoms atoms that resulted in a numerical rule;
22 ln+ = 1
23 end
24 end
25 return E ;
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(2) Computation of minHC and minC

[line 4 in Algorithm 1]. A numerical rule obtained by enriching a parent rule
r is considered relevant if its PCA confidence increases by at least marginC
and if its head coverage does not decrease by more than marginHC. We first
query the KG to compute pca con f (r) and hc(r) if the rule mining system
does not provide them, and we calculate the minHC : (1�marginHC) ⇤ hc(r)
and minC : (1 + marginC) ⇤ pca con f (r) that the enriched rule must satisfy to
be considered relevant. For instance, if the parent rule has a PCA confidence
of 0.8 and a head coverage of 0.3, and the marginC = 10%, marginHC = 20%,
the numerical rule’s confidence should be at least minC = 0.88 and its head
coverage at least minHC = 0.24 to be considered relevant.

(3) Enqueue Numerical Atoms

[lines 5–8 in Algorithm 1.] In this step, we find all possible numerical atoms
that can enrich the parent rule and store them in qatoms. We consider the set of
all variables vars = {x1, . . . , xn} that appear in the rule r, and enqueue all the
atoms pnum(xi, xnew) with xi 2 vars, xnew is a new variable and such that the
head coverage of pnum(xi, xnew) ^ B ) H is greater than minHC. Otherwise,
the atom is discarded since its conjunction with other atoms will only lead to
lower head coverage due to monotonicity.

Example. Let r1 : workPlace(x1, x2) ) birthPlace(x1, x2), be a parent rule
with head coverage of 0.4 and the maginHC = 10%. The atom involving the
numerical predicate hasPopulation with variables x1 will be pruned as the
rule hasPopulation(x1, x3) ^workPlace(x1, x2)) birthPlace(x1, x2) will have
a head coverage of 0.01, which does not satisfy the minHC = 0.36.

(4) Selection of numerical atoms and generation of the best intervals

[lines 11–20 in Algorithm 1]. We aim to identify relevant numerical rules
that meet the quality measure requirements by utilizing the fewest numerical
predicates. To construct these numerical rules, we iteratively search through
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the space of possible conjunctions of atoms in qatoms. We begin with a single
numerical atom (ln = 1) and continue until the queue qatoms does not contain
ln atoms or more. At iteration ln, we apply the following steps:

(4.1) Enriching r with ln numerical atoms

[lines 11–12 in Algorithm 1] We retrieve ln atoms from qatoms and consider
their conjunctions Bnum : pnum1(xi, xn+1) ^ . . . ^ pnuml (xj, xn+l) to construct:

rs : Bnum ^ B ) H

We query the knowledge graph and proceed with the enrichment process
only if rs satisfies the minHC as constraining the values of these numerical
predicates will not satisfy minHC either.

Example. At iteration 3, we can have rs : worksIn(x, y) ^ hasHusband(x, z) ^
hasPopulation(y, w) ^ age(x, v) ^ hasRevenue(x, u)) worksIn(z, y) involv-
ing three different numerical predicates hasPopulation, age and hasRevenue
that satisfies the minHC.

(4.2) Classification problem based on rule predictions

[line 14 in Algorithm 1]. The rules rs created in the previous step are used
to classify the instantiations of Bnum : pnum1(xi, xn+1)^ . . .^ pnuml (xj, xn+l) as
correct or incorrect examples and define a binary classification problem.

In this classification step, we build a class A to represent the set of instanti-
ations (xn+1, ...., xn+l) of the numerical values of Bnum that lead to a correct
prediction H(xa, xb) for the rule rs. The examples of A are defined as fol-
lows:

{(xn+1, . . . , xn+l) | B(x1, . . . , xn)^Bnum(xi, . . . , xj, xn+1, . . . , xn+l)^H(xa, xb)}
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Moreover, we build a class B to represent the set of instantiations
(xn+1, ...., xn+l) representing the numerical values of Bnum that result in an
incorrect prediction for the rule rs under PCA, provided that f un(H) >
i f un(H). In other words, the predictions H(xa, xb) such that H(xa, xb) /2
G ^ 9x0b H(xa, x0b) 2 G .

{(xn+1, . . . , xn+l) | B(x1, . . . , xn)^Bnum(xi, . . . , xj, xn+1, . . . , xn+l) ^9 xb0H(xa, x0b)}

If i f un(H) > f un(H), we classify the instantiation as incorrect if a fact does
not exist in the KG for the target object and if there exists at least one subject
for this object (i.e., H(xa, xb) /2 G ^ 9x0a H(x0a, xb) 2 G .).

We generate a data structure < X, Y > that represents for each correct and
incorrect prediction H(xa, xb), the set of numerical values per numerical
predicate of Bnum (since the numerical predicates can be multi-valued), and
the label Y.

The correct and incorrect example values are retrieved from the KG through
the queries defined for the label A and B.

Example. Let r2 : worksIn(x, y) ^ hasHusband(x, z) ) worksIn(z, y)
be the considered parent rule. One possible refinement rs of
this rule to consider in step 2 would be: hasPopulation(y, w) ^
worksIn(x, y) ^ hasHusband(x, z) ^ hasRevenue(z, r) ) worksIn(z, y)
In this rule, the target variable is z since i f un(worksIn) <
f un(worksIn). Consider the following facts in G: {worksIn(Marie, Lyon),
worksIn(Marie, Gordes), worksIn(Joe, Lyon), hasPopulation(Lyon, 513 000),
hasPopulation(Gordes, 2 000), hasHusband(Marie, Joe),
hasRevenue(Joe, 1 500), hasRevenue(Joe, 800)}. The triple worksIn(Joe, Lyon)
is a correct prediction of rs, and for the introduced numerical fea-
tures < hasPopulationy, hasRevenuez > the two sets of numerical values
(513 000, 800), and (513 000, 1 500) are examples that belong to class A.
worksIn(Joe, Gordes) is an incorrect prediction. The numerical values
(2 000, 800) and (2 000, 1 500) are examples that belongs to class B. If we
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do not know where Joe works, the possible instantiations of the numerical
values do not belong to any class.

(4.3) Constraining the numerical rule to intervals

[lines 16–19 in Algorithm 1]. To obtain a set of rules for classes A and B defined
by a rule rs, we can discretize the values of the numerical predicates.

We aim to find the purest intervals that can effectively differentiate between
examples in class A and class B. However, if we limit ourselves to constraints
that only express interval membership for correct groundings of class A, the
resulting rule may have low head coverage if the interval is too specific. On
the other hand, if we exclude intervals that lead to incorrect predictions, we
may overlook rules with high confidence that can enhance the accuracy of
predictions in KG completion tasks.

Therefore, we consider both candidate rules. For instance, it is common for
people to work in the city where they were born if that city has between 50,000
and 500,000 inhabitants. Moreover, this rule is usually not true for megacities,
so we can also consider another rule that excludes cities with over 1,000,000
inhabitants.

Hence, we decided to employ a supervised method to discretize the continu-
ous values of numerical predicates in Bnum and keep track of the number of
correct and incorrect predictions falling in each interval to consider both mem-
bership and non-membership constraints. This method involves constructing a
univariate CART Decision Tree (DT), where the numerical predicates serve as
features. The DT is binary and built using impurity-based criteria, specifically
entropy, as the splitting criteria.

The root of the tree corresponds to the numerical rs : Bnum ^ C ^ B ) H
where C is initially empty. At each split, the instance space is divided into
two subspaces by constraining the range values of one of the atoms in Bnum to
the split threshold and hence updating C. The rules at each child node rnode
are created according to the rule of the parent node and the split made at that
node.



3 .2. regnum : generating logical rules with numerical predicates 57

Figure 3.1.: Example of a part of the DT and the considered rules at each node

More specifically, if a split is made using a numerical atom p(x, y) and a
threshold a at node i, a membership constraint creates a rule for the left
child by updating C with ^ y 2 (�•, a] and ^ y 2 [a, •) for the right child.
A non-membership constraint, however, creates the rule for its left child by
updating C with _ y /2 (�•, a] for the left child and _ y /2 [a, •) for the right
child.

Example. Consider the parent rule r : worksIn(x, y) ) livesIn(x, y)
and enriching the body of r with two predicates r0 : worksIn(x, y) ^
hasPopulation(y, w) ^ hasRevenue(x, z). Figure 3.1 depicts the construction
of the rules at each node for a part of the tree to constrain the values of w
and z with membership or non-membership. The minHC = 0.23 and the
minC = 0.5. Node n1 shows the inclusion and exclusion rules as well as their
respective head coverage and PCA confidence constructed using the constraint
hasPopulation(y, w) ^ w < 500K.

Furthermore, we ensure that each node only contains the most concise rule.
This means that if an atom p(x, y) has already been selected for a split in the
path from the root to the child nodes, the constraint already exists in the body
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of the parent node. Therefore, instead of adding the constraint, we update the
constraint on y (i.e., the range values of the atom p(x, y)).

Example. At node n5, the rule r23 is expressed as worksIn(x, y) ^
hasPopulation(y, w) ^ w 2 [50K, 500K] ^ hasRevenue(x, z). At node
r21, the rule is worksIn(x, y) ^ hasPopulation(y, w) ^ w /2 (�•, 50K] ^
hasRevenue(x, z). At node n4, the rule r26 is expressed as worksIn(x, y) ^
hasPopulation(y, w) ^ hasRevenue(x, z) ^ (w /2 [500K, •) _ z /2 [3k, •)).

We use the stopping criteria based on minHC and minC of each node’s
inclusion and exclusion rules to decide when to stop splitting further. The
sizes of class A and B are determined using < X, Y > from the previous
step. First, we check head instantiations belonging to class A are less than
minHC ⇤ headsize(r). This means that the support for the membership rule is
insufficient to meet the minHC requirement, and since support is monotonic,
we can safely prune the splitting process for inclusion rules.

Next, we propose a heuristic for excluding rules based on their performance.
The heuristic suggests that if the number of incorrect predictions (i.e., instances
classified as class B) falls below a certain threshold at a particular node, the
minimum coverage requirement minC cannot be satisfied. The ideal scenario
for satisfying minC while using non-membership constraints is to retain all
correct instances (supp(rs) unchanged). In this case, the maximum size PCA
body size would be supp(rs)

minC . To achieve this, in the best-case scenario of only
excluding incorrect instances, we must remove at least pca bodysize(rs) �
supp(rs)

minC instances. Therefore, if the number of head instantiations for class B
falls below pca bodysize(rs)�

supp(rs)
minC , we can be sure that by splitting further

(and hence reducing pca bodysize(rs)), the marginC can never be obtained and
we can prune the splitting process.

In other words, if none of the rules can fulfill the expected marginC and
marginHC, we stop splitting.

Example. In Figure ??, rule r24 will not appear in node n5 because general-
izing r12 with the constraint of the split would not exclude enough incorrect
predictions to satisfy the minC.
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We could select all nodes that meet the requirements of minHC and minC
(note that the root node with an empty C and free variables for numerical
predicates can also be kept, so our language bias involves rules that are not
closed). However, to limit the number of generated numerical rules and avoid
redundant rules covering the same instances, we have implemented a strategy
that selects the most general rules along each path from the root to the leaves.
Specifically, we choose the rules with the highest PCA body size.

Example. In Figure 3.1, rules corresponding to nodes n1, n3, and n4, namely
r11, r21, and r25 respectively, meet the requirements of minHC and minC. We
include r11 and r25 in E because nodes r11 and r21 are along the same path
from the root, and r11 is the more general rule.

(5) Rule Diversity

[line 21 in Algorithm 1]. To maintain diversity, as explained in Section 3.2.1,
after each iteration, we remove any atoms that have led to a numerical rule
with parent rule r that meets the conditions of minHC and minC from qatoms
This also serves as a pruning strategy.

3.3 experimental evaluation

We have conducted two groups of experiments. First, we evaluate the quality
of the set of enriched rules vs. their parent rules. The parent rules have been
obtained by running rule mining techniques of AMIE (Lajus et al., 2020) and
AnyBURL (Meilicke et al., 2020). Secondly, we have evaluated the performance
of KG completion task using these enriched rule sets.

Datasets. We consider three different benchmark datasets that involve nu-
merical values. FB15K-237-num and DB15K-num are variants of Freebase
and DBPedia knowledge graphs involving numerical predicates and values
proposed in (Garcı́a-Durán and Niepert, 2018). LitWD19K is one of the three
datasets proposed in LiterallyWikidata (Gesese et al., 2021), a recent dataset
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Dataset |I| |P| |Pnum| |G| |Gt|

DB15K-num 12,867 278 251 79,345 9,789
FB15K-237-Num 14,541 237 116 272,115 1,215

LitWD19K 18,986 182 151 260,039 14,447

Table 3.1.: Statistics of the benchmark datasets.|Gt| denotes the size of test set.

gathered from Wikidata and Wikipedia with a special focus on literals. Table
3.1 shows the statistics for these datasets.

Experimental Setup. All experiments are run on a single machine with a
processor 2.7GHz, 8 cores, and 16GB of RAM that runs Mac OS X 10.13. REG-
NUM is written in Python, and we have used Stardog1 RDF data management
system. The source code and the datasets used in our experiments are publicly
available2. The time taken for rule generation ranges from 20 minutes to 15
hours, depending on the number of parent rules, their quality, and the KG.

3.3.1 Rules Quality Assessment

In this first set of experiments, we compare the quality of the parent rules that
could be enriched with the set of enriched rules. Specifically, we compare the
percentage of gain regarding PCA confidence and head coverage. To measure
the overall quality of the rules, we rely on Fr = 2 ⇤ pca con f (r)⇤hc(r)

pca con f (r)+hc(r) , which is
a harmonic mean between the pca con f and hc. This is because just a high
pca con f or a high hc is not a good indicator of the overall quality of a rule
(i.e., the rule can be too specific or not yield good predictions).

Setup. We have run AMIE with default values minHC = 0.01 and minC = 0.1,
and maximum rule length of 3, on the LitWD19K and DBPedia15K datasets.
To limit the number of parent rules, we used an increased minHC = 0.1 when
running AMIE on FB15K-237-num. As AMIE mines only closed rules, no
post-processing of the rules obtained was needed. We have run AnyBURL
with default parameters except for the maximum rule length being set to 3,

1 https://www.stardog.com/

2 https://github.com/armitakhn/REGNUM

https://www.stardog.com/
https://github.com/armitakhn/REGNUM
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and the rules are learned for 100s with the min con f = 0.03. We performed
post-processing on the obtained rules to retain only closed rules. REGNUM
enriches the parent rules with marginC = 20%, marginHC = 10%.

Dataset |R| |Renriched| |E | level 1 level 2 level 3 gcon f ghc gF
DB15K-num 4,163 402 2,783 2,747 36 0 +38.3% -1.2% +9.9%

FB15K-237-num 9,591 1,187 5,434 4,640 789 5 +28.6% -4.2% +9.8%
LitWD19K 2,481 859 9,068 7,764 1,272 12 +31.2% -2.5% +3.5%

Table 3.2.: Statistic of rules mined by AMIE, compared to numerical rules in
terms of the quality measure.

Table 3.2 and Table 3.3 detail the number of parent rules mined R by AMIE
and AnyBURL, respectively. The number of parent rules that could be en-
riched with numerical predicates Renriched and the number of numerical rules
obtained by REGNUM E are also presented. On the three datasets, we com-
pute the average of the rules’ pca con f , hc, and F measure of Renriched and on
the numerical rules E . In the tables, 3.2 and 3.3, we provide the percentage
of improvement of PCA confidence, head coverage, and F measure of E over
parent rules Renriched, denoted by gcon f , ghc, and gF, respectively. The results
indicate that the pca con f of the numerical rules increased significantly across
all benchmark datasets, irrespective of the rule mining technique used for
obtaining parent rules. This improvement has been achieved without sacri-
ficing much head coverage, and the overall quality of the rules (F measure)
increased.

When we set a more relaxed value for marginHC, we noticed a decrease in
the overall quality of rules. However, we were able to obtain more numerical
rules. For instance, setting marginHC to 20% on FB15K-237-num in table 3.2
reduces the gF from 9.8% to 6.22%, but the number of enriched rules increases
to 10,141 with 1,744 parent rules that could be enriched.

Approximately 25% of the rules on across all datasets incorporate membership
constraints that include intervals. For example, the LitWD19K dataset mines
2,585 rules with membership constraints and 6,483 rules with non-membership
constraints using parent rules from AMIE. Similarly, the AnyBURL dataset
comprises 2,157 numerical rules with membership and 5,564 numerical rules
with non-membership. As elaborated in Section 3.2.2, we expect that member-
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Dataset |R| |Renriched| |E | level 1 level 2 level 3 gcon f ghc gF
DB15K-num 1,539 515 2,184 2,052 132 0 +30.4% -3.5% +3.3%

FB15K-237-num 7,959 1,688 7,252 6,597 654 1 +29.1% -3.5% +8.1%
LitWD19K 1,758 787 7,721 6,407 1,266 48 +29.0% -3.8% +4.5%

Table 3.3.: Statistic of rules mined by AnyBURL, compared to numerical rules
regarding the quality measure.

ship rules will generally have lower head coverage and higher PCA confidence
compared to non-membership rules, which exclude incorrect predictions. This
is demonstrated to be true when we limit the rules to only inclusion or only
exclusion rules. For instance, for the LitWD19K dataset, the membership
rules obtained from AMIE parent rules show gcon f of 36.8%, and ghc of -3.0%,
whereas for non-membership rules gcon f is 30.1%, and ghc is -2.2%. We observe
the same trend in all datasets.

We have also explored the use of the Minimum description length principle
(MDLP) (Fayyad and Irani, 1993) and Optimal Binning (Navas-Palencia, 2020)
as supervised discretization techniques. However, these methods can only dis-
cretize a single numerical predicate at a time and cannot handle combinations
of numerical predicates. To ensure a fair comparison, we have limited the rules
of REGNUM to level 1. We have found that DT can enrich more parent rules
by providing more relevant intervals. For example, on the FB15K-237-num
dataset in Table 3.2, using MDLP results in the enrichment of 940 parent rules
(|Renriched|), leading to a total of 7,005 numerical rules (|E |) with a gF of 11.7%.
On the same dataset, the results of Optimal Binning are |Renriched| = 874, |E | =
3,832, and gF = 12.0%. Finally, using only REGNUM rules with one numerical
predicate (level 1) enriches 1,042 parent rules, resulting in 4640 numerical
rules and a gF of 10.13%. Using DT can enrich more parent rules and this
shows the relevance of the intervals it proposes.

3.3.2 KG Completion

In this second set of experiments, we focus on the task of knowledge graph
completion, where we aim to evaluate the effectiveness of integrating the
numerical rules obtained via REGNUM with the parent rules for knowledge
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graph completion. KG completion aims to predict a missing object o in a fact
(s, p, o) /2 G.

For each test data (s, p, o), we examine all the rules mined with predicate p
in the head of the rule, i.e., p(x, y). For each such rule, we execute a SPARQL
query by substituting x with the subject of the test data s and obtain a set
of predictions generated by the rule. Each candidate c can be given by a
set of rules C = {r1, ..., rn}. We use four different aggregation strategies to
assign a score to each candidate based on the rules that predicted them. The
aggregation methods we considered are:

1. The democracy aggregation where the score depends on the number of
rules that fired a candidate Sc = |C|.

2. The max-aggregation Sc = max{pca con f (r1), ..., pca con f (rn)} where
the rule with the highest PCA confidence defines the score.

3. The noisy-or aggregation Sc = 1�’n
i=1(1� pca con f (ri)).

4. The weighted-F aggregation Sc = Sn
i=1

1
#Prediction(ri)

⇥ F(ri) which penal-
izes the rules that result in many predictions (candidates).

The rules with statistics reported in Table 3.2 are used to find the candidates.
To assess the performance of the rules, we report the Hits@10 result, which
is the number of correct head terms predicted out of the top 10 predictions.
Table 3.4 shows the results of KG completion on three datasets using the rules
mined by AMIE vs. the numerical rules of REGNUM added to the set of rules
of AMIE. The four different aggregations are used to score the candidates and
report the hits@10 results in the filtered setting (i.e., a prediction that already
exists in G or Gt will not be ranked).

FB15K-237-num DBPedia15K LitWD19K
AMIE AMIE+REGNUM AMIE AMIE+REGNUM AMIE AMIE+REGNUM

Democ 61.6 61.0 33.8 35.8 31.9 31.6
Max 70.5 71.7 34.5 36.9 32.4 32.6

Noisy-or 68.1 66.9 34.7 37.0 32.5 32.4
Weighted-F 69.1 68.3 34.7 37.0 32.9 32.8

Table 3.4.: Hits@10 results of KG completion with rules of AMIE (R) and
numerical rules of REGNUM with the rules of AMIE (R [ E )
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AMIE AMIE+REGNUM
Hits@1 Hits@10 Hits@1 Hits@10

DBPedia15K 4.6 7.7 6.4 10.2
FB15K-237-num 5.5 14.7 6.3 15.3

LitWD19K 12.6 22.5 13.9 23.6

Table 3.5.: Hits@1 and Hits@10 results of KG completion with Renriched and
Renriched [ E

On all three datasets, we found that adding the rules of REGNUM to the set of
rules from AMIE improved the performance of knowledge graph completion
when using the Max aggregation method. This suggests that numerical rules
can improve predictions. With the Max aggregation method, we know that
whenever a candidate is selected, it is because a numerical rule of REGNUM
with higher confidence than its parent rule has been chosen. If no numerical
rule exists, the parent rule will be chosen.

The marginal benefit of numerical rules on these benchmark datasets can
be attributed to the small number of rules that could be enriched, as well
as the generic nature of the datasets that do not heavily rely on numerical
predicates for accurate predictions. Hence, to better understand the impact of
the enriched rules, we focus only on the rules that could be enriched, Renriched,
and use them for knowledge graph completion. Table 3.5 shows the results
using the Max aggregation method, indicating improvements in the accuracy
of knowledge graph completion when enriched rules are combined with their
respective parent rules.

3.4 conclusion

This chapter presented REGNUM, a new approach that enhances rule mining
systems by adding numerical predicates to parent rules. These numerical
predicates include constraints for membership or non-membership to intervals
obtained through supervised discretization. The enriched rules are considered
relevant if they have a higher PCA confidence than the parent confidence
without significantly reducing the head coverage. We demonstrated that the
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enriched rules have higher average quality and can improve the accuracy of
rule mining systems for the knowledge graph completion task.

Future research will explore alternative methods of obtaining constraints,
such as using sequential covering approaches. Also applying numerical rules
to other domains where numerical values play a critical role in predictions.
We also plan to investigate more complex aggregation techniques, such as
latent-based Aggregation (Betz et al., 2022), and consider using an in-memory
database to improve query run-time, as proposed in AMIE3 (Lajus et al., 2020).
Ultimately, we intend to compare our approach’s run-time and optimality
with an approach that mines numerical rules while finding optimal intervals.
We expect our approach to be faster but less accurate.

Another potential avenue for future research is to take a more strategic ap-
proach to selecting which numerical atoms to add to a rule. Instead of
evaluating all possible combinations, it may be beneficial to consider factors
such as correlation and semantics when assessing the independence of numer-
ical predicates. For instance, one could avoid adding both hasPopulation(x, y)
and hasResidents(x, z) due to their high correlation or avoid adding both
hasPopulation(x, y) and hasAltitudeFromSea(x, z) due to their dissimilar se-
mantics. Such a strategic approach could enhance the discovered rules’ quality
while reducing the search space.
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The work presented in this chapter has been done with Nathalie Pernelle, Fatiha
Saı̈s, and Gianluca Quercini and has been published and presented at:

Armita Khajeh Nassiri, Nathalie Pernelle, Fatiha Saı̈s, Gianluca Quercini.
“Generating Referring Expressions from RDF Knowledge Graphs for Data Linking”.
Full paper at International Semantic Web Conference (ISWC) 2020 (Khajeh Nassiri

et al., 2020).

Armita Khajeh Nassiri, Nathalie Pernelle, Fatiha Saı̈s, Gianluca Quercini.
“RE-miner for data linking results for OAEI 2020”, OAEI Paper at Ontology

Matching (OM) Workshop 2020 - co-located with ISWC (Khajeh Nassiri et al., 2020).

4.1 introduction and contributions

In Chapter 2, we explored two tasks for refining KGs: knowledge graph
completion and data linking. In Chapter 3, we proposed a novel approach that
leverages logical rules with numerical predicates to complete the KG. While
logical rules (as defined in Definition 3) can be used for knowledge graph
completion, they are not inherently suitable for the data linking task. To adapt
them for data linking, rules should be designed to conclude on head atom
sameAs(x, y) or B ) x = y, resembling keys used for data linking introduced
in Chapter 2.3. However, previous works have shown that such rules are not
always efficient and do not necessarily yield better results for data linking
(Symeonidou et al., 2017). To address this, we propose a new approach in this
chapter that focuses on mining rules that are valid for only one instance in the
knowledge graph: referring expressions. If a description uniquely identifies

67



68 chapter 4. mining referring expressions on knowledge graphs

an entity in a source KG, applying the same rule in a target knowledge graph
should also identify the same entity.

More precisely, a referring expression (RE) is a description in natural language
or a logical formula that can uniquely identify an entity. For instance, the state-
ment “president of the United States who was born in Hawaii” is a referring
expression that unambiguously characterizes Barack Obama. It is possible
that multiple logical expressions can be used to identify an entity uniquely.
This chapter embarks on automatically discovering REs for each entity within
a class of a knowledge graph that possesses specific characteristics making
them more suitable for data linking.

Contribution

These referring expressions explored in this chapter are conjunctions of
atoms, e.g., isPresident(x) ^ isPoliticianO f (x, USA)^ bornIn(x, Hawaii)1.
They can also contain existentially quantified variables, e.g., isPresident(x)
^ marriedTo(x, y) ^ hasName(y, “Michelle”). Such conjunctions of atoms are
not all relevant when exploited in a data-linking task. As knowledge graphs
are built independently and autonomously, individual IRIs are rarely re-used
in different knowledge graphs. This is the reason why a referring expression
that involves a specified IRI may not be useful for the task of linking instances.
Additionally, since data are usually incomplete and generally several referring
expressions can be associated with an individual, to foster the utility of REs,
it is preferable to diversify the properties involved in the referring expressions
of a given individual.

In order to reduce the enormous search space of referring expressions, our
approach relies on defining types of graph patterns and quality measures
that focus on REs that are more suitable in a data-linking task. Moreover, we
direct our attention to REs that cannot be found by instantiating the keys.
As a reminder, the keys of a class are sets of properties whose values can
uniquely identify one entity of that class. Hence, if the properties of the
keys are instantiated, they can each be considered a referring expression. For

1 USA and Hawaii are IRIs (Internationalized Resource Identifier) that refer to the country USA
and to the state of Hawaii, respectively.

USA
Hawaii
USA
Hawaii
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instance, take the class “book” and imagine that ISBN is key to this class. If
we instantiate the books with their corresponding ISBNs, we can be sure to
find them each uniquely. Recent approaches in the literature can efficiently
discover keys in knowledge graphs (Symeonidou et al., 2014, 2017; Soru et al.,
2015b; Atencia et al., 2021), some of which do so by first finding the maximal
non-keys (Symeonidou et al., 2014, 2017). Hence, our proposed RE-miner
algorithm is based on the search space defined by these non-keys.

More precisely, our contributions are as follows:

• We define graph patterns and quality criteria that specify REs relevant
for data linking. This is the first approach in the literature to consider
referring expressions for data linking.

• We propose an algorithm, called RE-miner, that computes complemen-
tary REs to those that correspond to instantiated OWL2 keys.

• We conduct an extensive set of experiments to evaluate our approach.
Our results demonstrate that our algorithm scales well to large datasets
and that the discovered REs significantly improve recall in data linking
tasks.

4.2 related work on referring expressions

In section 2.3, we discussed the related work for data-linking. This section
focuses on the related work of generating referring expressions. Various al-
gorithms have been proposed to automatically discover referring expressions
with different objectives, depending on the expressivity of the logical formu-
las they can generate. For example, some approaches, such as (Dale, 1992;
Krahmer et al., 2003), create referring expressions as conjunctions of atoms,
while others, such as (Ren et al., 2010b), discover more complex expressions
represented in description logics that may involve the universal quantifier. To
improve efficiency and reduce the search space, some methods prioritize the
minimality of the expression they discover, while others focus on predicate
preferences (Galárraga et al., 2020). We take a closer look at the literature on
this topic.
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The problem of identifying the properties required to refer to an entity was first
introduced in (Dale, 1989), where the Full Brevity algorithm was proposed to
generate the shortest possible referring expression by testing all combinations
of properties. However, finding the shortest RE is NP-hard, and a more
efficient algorithm was later proposed in (Dale, 1992). The greedy algorithm
iteratively adds properties with the most discriminative power to an empty
expression; although it does not necessarily produce the shortest RE, it is
much more efficient than Full Brevity.

While both algorithms prioritize the number of properties, the length of the
RE is not the only criterion for generating a good RE. Sometimes, a slightly
longer and more informative RE may be preferable. The Incremental Algorithm
adds properties to an expression based on a preference order and does not
necessarily produce the shortest RE (Dale and Reiter, 1995). (Deemter, 2002)
has extended this algorithm to include the generation of (Boolean) expressions
referring to sets of target entities (instead of just one) and using negations and
disjunctions.

Although logic optimization techniques are used to shorten the resulting REs,
in some cases, this algorithm might produce overly lengthy REs; a problem
addressed in further research (Gardent, 2002; Horacek, 2004). Incremental
algorithms do not lend themselves well to generating relational REs (Krahmer
and Van Deemter, 2012), that identifies a target through a relation to another
entity (e.g., “the dog near the house”). Relational REs are best modeled with a
graph (the scene graph), where relations between entities are represented as
edges that link the corresponding nodes; the generation of referring expres-
sions reduces to searching a subgraph (the description graph) that uniquely
identifies the target (Krahmer et al., 2003).

(Croitoru and Van Deemter, 2007) takes this graph approach a step further and
propose the use of conceptual graphs, a logic-based knowledge representation
model that enriches the factual knowledge with ontological or background
knowledge( e.g., “a cup is a vessel”). Ontological knowledge is particularly
useful for performing automatic inference. Other approaches turn to descrip-
tion logic as an alternative knowledge representation model (Areces et al.,
2008; Ren et al., 2010a).
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Similar to conceptual graphs, description logic can model background knowl-
edge and apply reasoning. However, these methods have difficulties scaling
to today’s large knowledge graphs.

REMI (Galárraga et al., 2020) is an algorithm that mines intuitive REs from
a knowledge base by computing the intuitiveness of an expression with the
Kolmogorov distance. It operates a trade-off between its length and the use of
properties that people are familiar with (e.g., ”Paris is better described as the
capital of France than the birthplace of Voltaire”). REMI represents expressions
in a tree structure representing conjunctions of atoms (e.g., cityIn(x,y) ^
officialLanguage(y, z) ^ langFamily(z, Romance)) and identifies the RE with
the least cost in terms of intuitiveness through a depth-first search with
backtracking.

Our proposed approach, goes beyond discovering a single referring expression
and uncovers all the REs that complement those obtained by instantiating
key properties. As far as we know, this is the first work to mine referring
expressions that are beneficial for linking instances across two knowledge
graphs.

4.3 re-miner

In this section, we begin by defining the referring expressions in section 4.3.1
and their characteristics, namely minimality and diversity, which are relevant
for our mining purposes.

Subsequently, we present our proposed method for automatically discovering
REs that are both minimal and diverse for each instance within a given class of
a knowledge graph. Our approach to generating such REs involves two distinct
steps, as outlined in section 4.3.2. First, we explain generating a set of minimal
and diverse REs for each instance, which is accomplished using the RE-miner
algorithm. We concentrate on discovering REs that complement instantiated
keys, as several recent techniques have been developed for discovering keys.
Second, we describe how to expand each RE, leading to a more detailed
expression.
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In section 4.3.3, we demonstrate how these REs can be applied to data link-
ing.

4.3.1 Problem Statement

This section will define the referring expressions relevant to our study. We
focus on referring expressions that pertain to an individual u within a class C

in a given knowledge graph G. First, to reduce the search space, we focus on
referring expressions that can not be obtained by instantiating an OWL2 key
can be defined as follows:

Definition 11. (Key). A key {p1, . . . , pn} for a class C expresses that:

8x8y8z1...zn(C(x) ^ C(y) ^
n̂

i=1
(pi(x, zi) ^ pi(y, zi))! x = y)

By definition, each instantiation of the key properties for a class C will uniquely
identify an individual present in C. This instantiation will potentially yield
many REs. Nevertheless, this does not represent the complete set of possible
minimal REs that can be discovered. Thus, we are interested in enriching this
set with REs that only involve non-key properties. To this end, we will only
exploit sets of properties included in one of the maximal non-keys of class C

to construct complementary REs.

Definition 12. (Maximal Non-Key). A maximal non-key for a class C in a
knowledge graph G is a set of properties P such that P is not a key, but the
addition of any property to P makes it a key for that class.

Specifically, we define these expressions as follows:
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 G1(x)

diedInCity

Vienna

x Musiciantype
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(-)

cityName

"Salzburg"
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(-)

x Musiciantype

wasBornIn

(-)

cityName

"Salzburg"

 G2(x)

Figure 4.1.: Two graph patterns. G1(x) is compliant with definition 14, and
G2(x) is not.

Definition 13. (Referring Expression). Given a knowledge graph G, a refer-
ring expression, denoted by REk(u) for the kth RE of a given individual u of a
class C can be expressed by the following first-order logic formula:

C(x) ^
^

pi2OP[DP

pi(w, y)

Such that the formula, existentially closed, is restricted to those conjunctions of
atoms (with properties that can be owl:ObjectProperty or owl:DatatypeProperty)
that form a connected graph pattern rooted at x with the leaves being either
an individual in I or a literal in L and the other nodes being variables.

Definition 14. (Referring Expression Validity). A referring expression
REk(u) is valid in a graph G if it holds when x is instantiated by u and
does not hold for any other individual v 6= u of C in G.
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Example. Figure 4.1 shows two graph patterns, G1(x) and G2(x). G1(x) is a
valid referring expression for Mozart, who was a musician born in Salzburg
and died in Vienna and is compliant with Definition 13. It can be expressed
as:

Musician(x) ^ wasBornIn(x, c) ^ cityName(c, “Salzburg”) ^ diedInCity(x, Vienna)

However, G2(x) is not compliant with Definition 13 as it includes variables
in the leaves of the graph pattern. Therefore, it cannot be considered as a
referring expression:

Musician(x) ^ wasBornIn(x, c) ^ cityName(c, “Salzburg”) ^ diedInCity(x, z)

Our goal, driven by data linking, is to discover minimal referring expressions.
These expressions represent the simplest graph patterns that distinguish one
individual from all the others.

Definition 15. (Referring Expression Minimality). A referring expression
REk(u) is minimal iff:

6 9 REj(u) s.t. (REk(u) [F [A) |= REj(u)

where F is the collection of triples and A is a set of axioms.

To address the challenge of linking incomplete datasets, we narrow our focus
to REs that are particularly useful for this task. We utilize various properties
to achieve this while keeping the number of REs and their complexity in check.
Hence, we do not construct REs that involve different instantiations of the
same property, and we only consider diversified REs, simply meaning that
when a valued property appears in a RE for an individual, it cannot reappear
in another RE for the same individual having more atoms. This should not be
confused with the notion of minimality.
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Example. Take the valid RE1(u) for the film Ocean’s Eleven: Film(x) ^
hasActor(x, George Clooney)^wasCreatedOnYear(x, “2001”). Then the follow-
ing RE2(u), although valid for this movie and minimal, will not be discov-
ered. Film(x) ^ hasActor(x, Julia Roberts) ^ wasCreatedOnYear(x, “2001”) ^
editedBy(x, Stephen Mirrione). Because RE2(u) is not diversified; since
it has more atoms than RE1(u) while sharing the subgraph pattern
wasCreatedOnYear(x, “2001”) with it.

Definition 16. (Diversified Referring Expression) A referring expression
REi(u) is diversified if there is no REj(u) with fewer number of atoms
that contains a subgraph p1(x, t1) ^ . . . ^ pi(ti�1, ti) ^ pm(tm�1, vm) of REi(u),
where vm 2 L [ I .

Additionally, in the data linking task, one might argue that graph patterns
that involve mostly IRIs of individuals are not relevant. Indeed, individuals
that are described in two knowledge graphs are rarely represented with the
same IRI. This is why we also consider Expanded REs that are not minimal but
where the individuals’ IRIs in a RE are replaced by a description constructed
from instantiated key properties.

Definition 17. (Referring Expression Expansion). The expansion
exp(REk(u)) of a referring expression REk(u) is a set of referring ex-
pressions in which, each leaf node ni of REk(u) that represents an individual
i is replaced by an existential variable xj. These variables are recursively
expanded by a subgraph G rooted by ni representing one possible instantia-
tion of a key K for the class typing i, such that exp(REk(u)) leads to a graph
pattern whose leaves are only literals.

Example. Consider the following referring expression for Marie Curie:
Scientist(x) ^ wasBornOnYear(x, “1867”) ^ isCitizenO f (x, Poland). We ob-
serve that Poland is a leaf node representing an individual, thus we can expand
it by creating keys for the class country (range of the property isCitizenO f ).
Suppose it has two sets of keys, namely {hasName} and {hasArea,
isLocatedIn}. We obtain the following RE when Poland is replaced by an
instantiation of the first key set: Scientist(x) ^ wasBornOnYear(x, “1867”) ^
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isCitizenO f (x, y)^ hasName(y, “Poland”). And the following RE, when using
the second set of keys for country, and subsequently expanding Europe by
considering {hasName} as a key for the class location (range of the property
isLocatedIn): Scientist(x) ^ wasBornOnYear(x, “1867”) ^ isCitizenO f (x, y) ^
hasArea(y, “312, 696 < km2 > ”) ^ isLocatedIn(y, z) ^ hasName(z, “Europe”).

4.3.2 Referring Expression Generation

We outline the procedure of mining the complete set of complementary, mini-
mal, and diversified REs in Algorithm 2. To retain a reasonable search space
and to prevent the REs from becoming too complex for data linking, the depth
of the aimed REs is restricted to 2. Nevertheless, this restriction can be dropped
by applying a recursive adaptation of the function existentialRE(G, REnew) (see
line 10 of algorithm 1). The algorithm takes as input a knowledge graph G, a
class C, and a Boolean E which is set to True if we aim to mine REs at depth 2
(i.e., REs that contain at least an existential quantifier). If the E is False, the
REs will not contain any existential quantifiers.

To generate the set of REs for a given class C in a knowledge graph G , we start
by creating a dataset for that class (line 1). The dataset D, which serves as the
search space, consists of all the facts (s, p, o) in G where the subjects s belongs
to C.

Next, we use SAKey (Symeonidou et al., 2014), a key discovery approach,
to create the maximal non-key sets NK from the dataset D (line 2). We
then construct the powerset of each set in NK, excluding the empty set, and
group them according to their cardinality (line 3). To illustrate, suppose
NK = {{p1, p2}, {p3, p4, p5}}. At level 1, we have subsets of cardinality 1,
namely {{p1}, {p2}, {p3}, {p4}, {p5}}. Level 2 consists of subsets of cardi-
nality 2 {{p1, p2}, {p3, p4}, {p3, p5}, {p4, p5}}, and level 3 contains subsets of
cardinality 3, namely {{p3, p4, p5}}.

Since we aim to find minimal REs, the algorithm proceeds level by level (line
4), starting from level 1, which results in REs containing only one atom. To
mine REs at level l, we take one set of properties P within that level at a time
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(line 6). The algorithm generates subgraph patterns from the search space
with instantiated properties P (e.g., p1(x, v) for level 1 and p1(x, y) ^ p2(x, z)
for level 2) as candidate expressions (line 7). We keep the valid REs, among the
candidates in REnew (line 8); these expressions are compliant with definition
14 and hence uniquely identify an individual of the class C. If we also aim to
find REs of depth 2, i.e., if E is True, the existentialRE algorithm detailed in 3
is called on the knowledge graph G and REs found at level l with properties
P (line 10). We add all the recently discovered REs composed of properties
P to RElevel (line 12) and reiterate until all sets of properties at this level are
covered. Then RElevel is added to the resulting REs (line 14), and all the facts
(s, p, o) involved in these referring expressions are removed from the search
space; to ensure both minimality and diversity (line 15).

Algorithm 2: RE-miner
Input: A knowledge graph: G, a class: C, a Boolean:E
Output: The set of minimal REs for instances of type C: REset

1 D  createData (G, C) // serves as the search space

2 NK generateNK(D), REset  ∆
3 createRankedPowerset(NK) // Dictionary level to props
4 for level = 1 to |longestNonKey| do
5 RElevel  ∆
6 foreach P 2 propslevel do
7 REcandidates  constructSubgraphs (D, P)
8 REnew  validSubgraphs(REcandidates)
9 if E = True then
10 REnew.add(existentialRE(G), REnew)
11 end
12 RElevel .add(REnew)
13 end
14 REset.add(RElevel)
15 D  suppressFacts (D, RElevel) // reduce the search space to

preserve minimality and diversity

16 end
17 return REset
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As described in algorithm 2, we can mine more complex REs containing the
existential quantifier where the depth of the subgraph patterns will be 2. To
do so, all the REs at a level l composed of properties P, are passed to the
existentialRE algorithm. The output of this algorithm will be a set of referring
expressions, each containing one or more existential quantifiers. The details
are sketched in algorithm 3.

Algorithm 3: existentialRE
Input: A knowledge graph: G, a set of REs having properties P: REnew
Output: The set of REs with existential variable : REexistential

1 REexistentialCands  REnew.copy()
2 foreach p 2 P do
3 C 0  getRange(G, p)
4 if exists an instance of C 0 2 I then
5 inducedSubgraphs RE-miner(G, C 0, E= False)
6 foreach RE 2 REexistentialCands do
7 REexistentialCands.add(replaceNodeSubgraph(RE, p,

inducedSubgraphs))
8 end
9 end

10 REexistentialCands.remove(REnew)
11 REexistential  validSubgraphs(REexistentialCands)
12 end
13 return REexistential

The existentialRE algorithm maintains a copy of REnew in the RE existential
candidate set (line 1), which will grow as the algorithm progresses. For each
property p in P (line 2), the algorithm retrieves the range of p using G’s schema
(line 3). Let the range of p be the class C 0. If not all instances of the range
class C 0 are literals, a subgraph pattern is added to the leaf node to expand it
(line 4). These subgraph patterns must be selected to ensure that the resulting
pattern is a valid RE when replaced. To this end, using RE-miner, algorithm 2,
we construct REs of depth one by setting E to False for the class C 0 (line 5). It
should be noted that to have the complete and minimal resulting REexistential
when creating the dataset for C 0 (line 1 of algorithm 2), we only keep those
instances o 2 C 0 that are involved in such facts (s, p, o)|s 2 C. The resulting
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REs from RE-miner are kept in inducedSubgraphs (line 5). Then for each
referring expression in the candidate set (line 6), we replace the applicable
node, based on p, with the appropriate subgraph in inducedSubgraphs (line 7).
In the end, we remove the REs of depth one REnew we had added initially to
the existential candidate set (line 10) and return the unique subgraphs, which
are valid referring expressions having depth 2 (line 11).

We have implemented a post-processing step to obtain the expansion of
referring expressions discovered by RE-miner, as defined in Definition 17. This
step involves using the set of minimal keys of the class to which each IRI u
in the leaves of a given RE belongs. We exploit the set of minimal keys of
the class u belongs to and expand the RE by instantiating properties of every
minimal key. If the keys involve object properties, this step is re-performed
recursively on the generated IRIs until either a maximum depth d specified
beforehand is reached, or the leaves only correspond to literal values. To avoid
regenerating the minimal keys each time, we store them on disk and generate
them only when a new class is considered. Finally, the resulting graphs from
the expansion of each IRI are combined with other IRI expansions to construct
the expanded REs.

4.3.3 Referring Expressions for Data Linking

Each RE(u) declared for an individual u in the source knowledge graph G1
can be expressed by a linking rule as follows :

8xRE(x)! sameAs(x, u)

where RE(x) can be rewritten using the classes and properties of a target
KG G2 at the linking step. These rules can be represented in SWRL2. Hence,
to discover identity links between individuals described in two given KGs,
we focus on referring expressions that only involve mapped properties and
individuals belonging to classes that have been aligned. Such mappings can
be obtained using schema-matching techniques, some of which are discussed
in section 2.3. It should be noted that in data linking approaches that rely on

2 https://www.w3.org/Submission/SWRL/

https://www.w3.org/Submission/SWRL/
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Figure 4.2.: Bottom-up linking with REk(u). (a) is a valid RE for the Film
Ocean’s Eleven in the source dataset. We adopt a bottom-up ap-
proach where the traversal begins from leaf nodes. (b,c) For each
of the RE’s leaf nodes ni in (x, p, ni), verifies the matches (s, p, o)
in the target dataset for the class of x; such that o has a high
similarity with ni. (d) The matches are intersected at the internal
nodes until those intersections at the root are reported as links.

schema matching, having a complete set of mappings between properties and
classes is not always necessary, and very simple approaches can suffice. For
instance, in the OAEI 2019 Knowledge Graph track (Algergawy et al., 2019),
a baseline solution that adopted a terminological approach and used only
schema labels achieved an F-measure of 0.79 for mapping properties.

The linkage rules introduced above can be used either logically to deduce
identity links or by linking tools where simple similarity measures and aggre-
gation functions can be introduced. Since available existing linking tools like
(Ngonga Ngomo and Auer, 2011; Volz et al., 2009a; Ma et al., 2019) do not
consider such intricate graph patterns (i.e., not just paths of properties), we
have developed a simple bottom-up approach explained in Figure 4.2, where
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normalizations or classical similarity measures can be declared and applied to
datatype properties.

We consider a data linking problem between a source KG in which the REs are
discovered and other target KGs/datasets with a non-empty set of properties
mapped to the source dataset (that can be obtained using ontology alignment
tools (Euzenat and Shvaiko, 2013)). The linking process is comprised of
exploiting, for every individual u in the source KG, the set of distinct RE(u)s
to find all the individuals x in the target datasets that check RE(u). When a RE
is discovered in the source dataset, it cannot necessarily be assumed valid for
other target datasets. Indeed, even if the source dataset is voluminous, several
distinct individuals that can instantiate a RE may exist in the other dataset.
Theoretically, when the unique name assumption (UNA) is fulfilled, only one
sameAs(u, x) link can be found for a given RE(u) in the target dataset. If this
is the case, the quality of RE(u) has to be weakened. Therefore, we assign
to every RE(u) a confidence degree inverse proportional to the number of
distinct links the RE(u) finds.

To select the best identity link(s), we adopt a voting strategy that assigns
weight to each link based on the sum of the confidence degrees of the REs that
can instantiate the link. The instance(s) associated with the link(s) having the
highest score is selected as the best identity link(s). These confidence degrees
can be stored and updated for future data-linking tasks on the source KG.

4.4 experimental evaluation

We conduct two experiments to evaluate RE-miner. The first set of experiments
is quantitative and investigates the average number of REs discovered for each
entity in a class C of a knowledge graph, the average number of nodes in the
graph representation of REs, and the algorithm’s scalability. The second set of
experiments examines the potential of the discovered REs in enhancing the
data-linking task.
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All experiments run on a machine with a processor 2.7GHz, 8 cores, and 16GB
of RAM that runs Mac OS X 10.13. The source code and the datasets used in
our experiments are publicly available3.

4.4.1 Datasets

Below, we summarize the key characteristics of the four datasets used in our
experiments.

DBpedia-YAGO.4 We use 10 different classes of YAGO and DBpedia knowl-
edge graphs. The data for these 10 classes are the same data used in VICKEY
(Symeonidou et al., 2017), where the properties of the two knowledge graphs
have been aligned manually. Moreover, the properties of YAGO have been
rewritten using their DBpedia counterparts. This dataset contains 206,736
ground truth entity pairs.

IM@OAEI2019.5 We use the Sandbox SPIMBENCH dataset of the instance
matching track at OAEI 2019, its gold standard is available and consists of
300 entity pairs. This dataset is composed of a Tbox and an Abox for each of
the source and target ontologies. The goal of the task is to match instances
describing the same Creative Work, which can be a news item, blog post, or
program.

IM@OAEI2020.6 We participated in the OAEI campaign of 2020, and hence
we could use both Sandbox and the MAINBOX of SPIMBENCH dataset of
the instance matching track at OAEI 2020. The SANDBOX dataset has about
380 instances and 10000 triplets, and the MAINBOX dataset with about 1800
instances and 50000 triplets.

IM@OAEI2011.7 We use IIMB (ISLab Instance Matching Benchmark) dataset
which consists of a set of interlinking tasks used by the instance matching
track of OAEI 2011. The source dataset (File 000) describes movies, locations,

3 https://github.com/armitakhn/RE-miner

4 https://github.com/lgalarra/vickey

5 https://project-hobbit.eu/challenges/om2019/

6 https://project-hobbit.eu/challenges/om2020/

7 http://oaei.ontologymatching.org/2011/instance/index.html

https://github.com/armitakhn/RE-miner
https://github.com/lgalarra/vickey
https://project-hobbit.eu/challenges/om2019/
https://project-hobbit.eu/challenges/om2020/
http://oaei.ontologymatching.org/2011/instance/index.html
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actors, etc. Files 001 to 080 are generated by applying several transformations
to the source dataset. A gold standard containing around 12.3k identity links
has been provided for each of these files.

4.4.2 Quantitative Results

Here, we study the scalability of our approach and will report the number
of REs found on average for each individual in the considered knowledge
graph, as well as the average number of nodes in the graphs representing
the discovered REs; first at depth 1 and then at depth 2. Initially, we run
RE-miner on the 10 classes of YAGO at depth 1, i.e., without allowing for any
existential variables. Table 4.1 details the characteristics of each of these 10
classes. Furthermore, this table shows the number of discovered referring
expressions for each class and their run time. We can observe that the process
takes less than 2 minutes for all classes except for organization, which took
more than 3 hours to complete8. To compute how many REs each instance of
C has on average, we divide the number of REs to the number of instances for
class C. On average, there are less than 7 REs per individual for all classes,
except for the most voluminous class organization, with almost 158 REs for
each individual. Without having limited the number of discovered REs’ atoms,
these expressions do not tend to be complex; the maximum number of atoms
among all 10 classes is 4, and on average, each RE has two atoms or less9.

Similar results have been obtained on OAEI2011 and OAEI2019 datasets with
1.19 and 3.75 average atoms and a maximum of 4 and 8 atoms, respectively
(see Table 4.4).

Example. The following examples translated to natural language, have been
chosen among the REs of depth 1: (i) Yellow Submarine is an album created
by the Beatles on date 1966-05-26. (ii) MIT university’s motto is mind and hand.
(iii) Charles Louis Alphonse Laveran is a scientist who was born in year 1845

8 Note that the non-key sets had been computed beforehand in all experiments.
9 Note that the rd f : type properties are not being counted in the number of atoms.
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Class #triples #instances #properties #NKs #REs runtime max#atoms avg#atoms

Museum 81.6k 21.1k 7 5 53.5k 2.6s 3 1.23
Mountain 116.7k 32.9k 6 4 59.2k 1.4s 3 1.28

Book 123.6k 41.8k 7 6 66.3k 3.5s 3 1.27
University 131.8k 23.3k 9 9 161.8k 17.7s 3 1.62
Scientist 335.6k 93.1k 18 92 309.9k 64.0s 4 1.58
Album 381.1k 137.1k 5 2 212.1k 14.7s 3 1.30
Actor 514.7k 108.4k 16 69 725.6k 95.1s 3 1.74
Film 533.5k 123.9k 9 7 690.9k 102.3s 4 1.77
City 1.1M 83.5k 17 29 1.2M 109.7s 3 1.23

Organization 2.2M 430.3k 17 43 68.3M 3.48h 4 2.05

Table 4.1.: Class statistics, number of non-keys (#NKs), number of discovered
REs at depth 1 (#REs), runtime, and size of the REs

in Paris, graduated from university of Strasbourg and has won the Nobel
prize in Physiology or Medicine.

To show how many more REs can be found at depth 2 (i.e., REs that contain at
least an existential quantifier), we run RE-miner with the Boolean E set to True
on the three classes of YAGO having the least number of referring expressions
at depth 1. As described in section 4.3.2, the algorithm should create the
dataset for the class the variable belongs to. To this end, we use instances of
this class and all its sub-classes in the non-saturated (i.e., no OWL2 entailment
rule has been applied) YAGO version 3.110 to ensure having a dataset with
at least 1000 instances whenever possible. Table 4.2 shows that, as expected,
many additional REs can be generated at depth 2. However, the proportion
of REs with only literals values at leaf nodes is rather small, and we can use
those REs for data linking. On average, these referring expressions have 2
atoms more than REs of depth 1.

4.4.3 Data Linking

Here, we evaluate data linking on the 3 datasets, each time comparing the
results with the previous works in the literature that used the same datasets.

10 http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yago3.1_entire_tsv.

7z

http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yago3.1_entire_tsv.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yago3.1_entire_tsv.7z
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Class #REs runtime %AllLiterals max#atoms avg#atoms

Mountain 150.8k 3006s 13.4% 6 3.03
Museum 1.4M 3143s 5.2% 5 3.57

Book 1.3M 1.2h 2.50% 6 3.47

Table 4.2.: The number of additional REs detected at depth 2 (#REs), runtime,
percentage of REs having only literals in leaf nodes, the maximum
and average number of atoms.

We study the advantage of using REs of depth 1 and 2, REs plus keys (i.e.,
the complete set of referring expressions), and expanded REs. For each of the
datasets, we compare the results with a baseline approach that picks random
subgraph patterns (i.e., random expressions) and uses them for linking just as
it is done with referring expressions. To be fair when comparing the random
baseline results to that of REs for data linking, for each dataset, a) the number
of generated random expressions is the same as that of discovered REs. b) the
size of the random baseline’s subgraphs comes from the same distribution
as the discovered referring expressions. In other words, the same number of
random subgraphs and referring expressions with n atoms exist. c) the results
for the random baseline are averaged over three runs.

DBpedia-YAGO. We report our linking results on those 8 classes of this
dataset for which other approaches had previously published results. We have
used all REs of depth 1 whose statistics were delineated in Table 4.1, with strict
string equality. The quality of linking results is reported in terms of precision,
recall and F-measure, and is compared to the results of linking with keys
(Ks), keys and conditional keys (Ks + CKs) reported in (Symeonidou et al.,
2017), ontological graph keys (OGK) reported in (Ma et al., 2019), and the
random baseline (RBL). A conditional key is a valid key for a specified part of
a class’s instances (Symeonidou et al., 2017). Ontological graph keys defined
in (Ma et al., 2019) are a variant of keys defined by a graph pattern extended
by ontological pattern matching. Table 4.4.3 shows that RE-miner outperforms
the other approaches regarding recall and F-measure on all classes except
book. More precisely, only using REs of depth 1, we can detect much more
correct links without significantly changing the precision. We also observe
that the baseline solution – taking thousands to millions of random subgraphs,
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depending on the dataset, and using them for linking – results in much lower
scores than REs; showcasing that using the referring expressions discovered
through RE-miner are indeed effective for linking.

IM@OAEI2011. We first evaluate our data linking results on the entire IIMB
dataset. IIMB is made of 13 different classes (e.g., person, actor, location, etc.); 5
of which are at the top of the ontology according to the schema. We create the
saturated dataset for these five classes and discover all minimal and diversified
REs of depth 1 and 2 on the source file 000. We use these REs to find identity
links in the files 001 to 010. The accuracy measures reported in Table 4.4 are
averaged over these ten files to compare to the results of the Combinatorial
Optimization for Data Integration (CODI) system (Huber et al., 2011), which
reformulates the alignment problem as a maximum-a-posteriori optimization
problem. We can observe that RE-miner outperforms CODI by a large margin
of 12% to 7% in recall and F-measure. Also, the baseline solution, which
generates 1.3 M random expressions regardless of being RE or not, exhibits
poor results. Similar to the previous datasets, this performance reassures us
that the RE-miner algorithm is beneficial for linking. We also investigated the
effects of using expanded RE and observed that it helps increase the recall by
5.1% on average over REs of depth 1.

Moreover, we compare data linking results using the discovered REs, on the
class Film, against data linking with keys reported in (Atencia et al., 2014a).
We obtained a high F-measure of 99% and gained about a 70% increase in the
recall.

IM@OAEI2019. We report the linking results using the discovered REs of
depth 1 for the Creative Work class on the source dataset of SPIMBENCH; as
the datasets were not saturated, we could not mine and use REs of depth
2 for linking. We compare our results to the three systems with the best
performances in the competition11: Lily (Wu et al., 2019), AML (Faria et al.,
2019), and FTRLIM (Wang et al., 2019), as well as the baseline solution.
Looking at Table 4.4, we observe that the random baseline approach is the
least effective and that REs alone have comparable performance to the other
three systems. However, when combined with the instantiation of keys,
resulting in the full set of REs, they outperform all other systems achieving an

11 http://ceur-ws.org/Vol-2536/oaei19_paper0.pdf

http://ceur-ws.org/Vol-2536/oaei19_paper0.pdf


4 .4. experimental evaluation 87

C
la

ss
R

ec
al

l
Pr

ec
is

io
n

F1
K

s
K

s+
C

K
s

O
G

K
R

BL
R

Es
K

s
K

s+
C

K
s

O
G

K
R

BL
R

Es
K

s
K

s+
C

K
s

O
G

K
R

BL
R

Es
A

ct
or

0.
27

0.
60

0.
66

0.
19

0.
69

0.
99

0.
99

1.
00

0.
37

0.
99

0.
43

0.
75

0.
79

0.
25

0.
81

A
lb

um
0.

00
0.

15
-

0.
35

0.
65

1.
00

0.
99

-
0.

22
0.

98
0.

00
0.

26
-

0.
27

0.
78

Bo
ok

0.
03

0.
13

0.
85

0.
12

0.
80

1.
00

0.
99

0.
97

0.
38

0.
98

0.
06

0.
23

0.
90

0.
18

0.
88

Fi
lm

0.
04

0.
39

-
0.

30
0.
73

0.
99

0.
98

-
0.

73
0.

94
0.

08
0.

55
-

0.
43

0.
82

M
ou

nt
ai

n
0.

00
0.

29
-

0.
05

0.
78

1.
00

0.
99

-
0.

08
0.

99
0.

00
0.

45
-

0.
06

0.
87

M
us

eu
m

0.
00

0.
29

0.
42

0.
20

0.
85

1.
00

0.
99

0.
99

0.
34

0.
99

0.
00

0.
45

0.
58

0.
25

0.
91

Sc
ie

nt
is

t
0.

00
0.

29
0.

67
0.

24
0.
70

1.
00

0.
99

0.
99

0.
14

0.
99

0.
00

0.
45

0.
80

0.
18

0.
82

U
ni

ve
rs

ity
0.

09
0.

25
0.

50
0.

29
0.
68

0.
99

0.
99

0.
96

0.
64

0.
98

0.
16

0.
40

0.
66

0.
40

0.
80

Ta
bl

e
4.

3.
:

Li
nk

in
g

re
su

lts
w

ith
ke

ys
(K

s)
,c

on
di

tio
na

lk
ey

s
an

d
ke

ys
(K

s+
C

K
s)

,o
nt

ol
og

ic
al

gr
ap

h
ke

ys
(O

G
K

),
ra

nd
om

ba
se

lin
e

(R
BL

),
an

d
R

Es
of

de
pt

h
1.



88 chapter 4. mining referring expressions on knowledge graphs

Dataset #classes #triples #props #NKs #REs System Precision Recall F-measure

IIMB
OAEI 2011 13 87.3k 23 17 1.3M

REs 0.92 0.87 0.90
REs+Ks 0.93 0.88 0.91
CODI 0.94 0.76 0.84
RBL 0.69 0.29 0.41

Film
OAEI 2011 1 11.8k 13 4 1.2M

REs 0.99 0.98 0.99
Ks 1.00 0.27 0.43

REs +Ks 0.99 0.98 0.99
RBL 0.89 0.03 0.06

SPIMBENCH
OAEI 2019 1 6.2k 18 3 1.6k

REs 0.98 0.84 0.91
REs + Ks 0.99 0.99 0.99

Lily 0.84 1.00 0.91
AML 0.83 0.89 0.86

FTRLIM 0.85 1.00 0.92
RBL 0.78 0.87 0.82

Table 4.4.: Class statistics and linking results of REs + keys, random baseline
(RBL), and other systems compared to results with REs of depth 1
and 2 on IM@OAEI2011 dataset and the class Film of IM@OAEI2011,
and with REs of depth 1 on IM@OAEI2019 dataset.

F-measure of 99%. The average confidence of the discovered links is 85.5%,
whereas this number increases to 97.9% among the links picked through the
voting strategy described in section 4.3.3.

IM@OAEI2020. We report the linking results using the full set of REs of
depth 1 for the Creative Work class on the source dataset of SPIMBENCH.
The MELT (Hertling et al., 2019) framework is used for evaluation. Matching
EvaLuation Toolkit (MELT) is a framework optimized for OAEI campaigns,
facilitating submissions to the SEALS and HOBBIT evaluation platforms. The
SPIMBENCH track, on which we evaluate our performance, is available on
the HOBBIT, Holistic Benchmarking of Big Linked Data, platform12. We used
MELT to wrap it as a HOBBIT package, and as our implementation is in
Python, we used MELT’s External Matching. We evaluated our performance
against AML (Faria et al., 2019), Lily (Wu et al., 2019), FTRL IM (Wang
et al., 2019), and LogMap (Jiménez-Ruiz, 2019), who also participated in
this track in 2020, and compared the results in Table 4.4.3. For the Sandbox
dataset, we created 6920 REs, while for the Mainbox dataset, there were 39892
REs, including 14085 from key instantiation. Our system outperformed the
other systems regarding precision and F-measure on both datasets, exhibiting

12 http://project-hobbit.eu/

http://project-hobbit.eu/
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slightly better performance than Lily. However, our system’s time performance
was slower due to the necessity of computing the keys and non-keys of a
given class using a Java-based application before finding the REs. Further
optimization can be done to decrease the runtime.

Precision Recall F-measure Time

SANDBOX

AML 0.8348 0.8963 0.8645 6446
Lily 0.9835 1.0 0.9917 2050
FTRL-IM 0.8542 1.0 0.9214 1525
LogMap 0.9382 0.7625 0.8413 7483
RE-miner 1.0 0.9966 0.9983 7284

MAINBOX

AML 0.8385 0.8835 0.8604 38772
Lily 0.9908 1.0 0.9953 3899
FTRL-IM 0.8558 0.9980 0.9214 2247
LogMap 0.8801 0.7094 0.7856 26782
RE-miner 0.9986 0.9966 0.9976 33966

Table 4.5.: Comparison of Performance in SPIMBENCH track of OAEI 2020 on
Sandbox and Mainbox datasets. The time performance is reported
in ms.

Relevancy of diversity. We also performed another set of experiments to
observe the effects discovering diversified REs brings to the data-linking task.
By modifying the RE-miner algorithm, we discovered all minimal REs on
the same three classes of the DBpedia-YAGO dataset presented in table 4.2.
We observed a considerable increase in the number of discovered REs (e.g.,
it almost doubled for the class book); whereas the recall and F-measure of
the linking task either remained the same or slightly decreased (e.g., for the
class book, it dropped by 2%). These results support that using diversity as a
quality criterion for referring expressions is beneficial in limiting the number
of REs while preserving the quality of data linking.

To sum up, we showed that using REs improves data linking results compared
to previous works and the random baseline. The results were verified on
different datasets containing classes with 5 to 23 properties and 300 to 137k
instances.
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4.5 conclusion

In this chapter, we proposed an approach that efficiently discovers referring
expressions by reducing the search space by leveraging non-keys. The gener-
ated REs are adapted to a data-linking task through the notions of minimality
and diversification. We showed that RE-Miner can scale to classes consisting
of millions of triples. The defined REs can significantly improve the perfor-
mance of instance matching and boost the recall of rule-based data linking
methods.

In future work, we plan to extend RE-miner to incorporate various similarity
measures (e.g., Jaccard, Levenstein, Jaro, etc.) for comparing Literal values
based on their nature (e.g., time, date, etc.).

Another area of future work is to explore the use of REs for other downstream
tasks. One intriguing task is implicit entity linking, where the goal is iden-
tifying the entity to which a given text refers. This can also be helpful for
disambiguation of a text.



5
K N O W L E D G E G R A P H R E F I N E M E N T B A S E D O N T R I P L E T
B E RT- N E T W O R K S

The work presented in this chapter has been done with Nathalie Pernelle, Fatiha
Saı̈s, and Gianluca Quercini and has been presented at:

Armita Khajeh Nassiri, Nathalie Pernelle, Fatiha Saı̈s, Gianluca Quercini.
“Knowledge Graph Refinement based on Triplet BERT-Networks”. Full paper at Deep

Onto NLP workshop 2022- co-located with ESWC (Nassiri et al., 2022).

5.1 introduction and motivation

In this chapter, we propose GilBERT, an approach for Knowledge Graph
Refinement based on Triplet BERT-Networks.

Motivation

In the previous chapter 4, we introduced RE-miner, a technique for mining
referring expressions on knowledge graphs, which we used for data linking
and demonstrated its efficacy for this refinement task. In the future work
of chapter 4.5, we discussed the potential of using referring expressions for
other tasks, such as implicit entity linking. Implicit entity linking pertains to
identifying and linking an entity from a text to a corresponding entity in a
knowledge graph without explicitly mentioning or annotating the target entity.
While there is limited research on this topic, (Perera et al., 2015) highlights
the prevalence of implicit mentions in clinical documents, underscoring the
need to address them for disambiguation, for instance, acute inflammation
of appendix is used for appendicitis. In (Perera et al., 2016), the ubiquity of

91
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implicit mentions of entities in tweets is discussed and it’s mentioned that
these references can be very much time and trend dependent. The problem
they aim to address is when given a tweet with an implicit entity mention of a
particular type (e.g., Movie, Book), the output should be the entity mentioned
by the tweet for a given knowledge base. For instance, Ellar Coltrane on his
12-year movie role refers to the movie Boyhood. Implicit entity linking usually
relies on analyzing the context and leveraging other information available in
the text and can be helpful for the disambiguation of a text.

With this in mind, we conceive the idea of constructing an em-
bedding space in which the embeddings of textual sequences,
formed from referring expressions of entities, are positioned close
to one another. For example, let us consider these 3 REs for
Marie Curie: Scientist(x) ^ isMarriedTo(x, PierreCurie), Scientist(x) ^
wasBornIn(x, Warsaw) ^ hasAcademicAdvisor(x, GabrielLippmann),
Scientist(x) ^ wasBornOnYear(x, ”1867”) ^ isCitizenO f (x, Poland). By
creating textual sequences from these REs and embedding them in close
proximity to each other in the embedding space, when a sentence like ”the
female scientist born in 1867 in Poland and living in Paris” is embedded, we
can potentially associate the implicit entity with Marie Curie by examining its
neighbors in the embedding space.

The factors mentioned above, coupled with the remarkable achievements of
transformers and language models, serve as strong motivation for this chapter.
We propose a method based on fine-tuning language models designed for two
important KG refinement tasks. The absence of a benchmark dataset for im-
plicit linking and the importance of relation prediction and triple classification
as refinement tasks set the motivation for the proposed approach. Relation
prediction (i.e., predicting the missing relation (h, ?, t)) assists in completing
the knowledge graph and retrieving more comprehensive query answers,
including the identification of hyperlinks and sameAs relations. Triple classifi-
cation (i.e., binary classification of whether a fact (h, r, t) is true or not) plays
a crucial role in fact-checking. Therefore, our approach involves generating
textual sequences and clustering facts related to entities or relations.

As discussed in Chapter 2, knowledge graph embedding techniques are
commonly employed for addressing these downstream tasks. They learn a
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scoring function that assigns high scores to true triples and low scores to
false ones. However, these techniques often have computational overhead
during evaluation. For example, in link prediction tasks, the tail entity is
replaced with all available entities in the KG, and the scores of the resulting
triples are computed and ranked to choose the tail entity. Similarly, in relation
prediction tasks, the relation is substituted with all possible relations in the
KG, and the relation belonging to the triple with the highest score is chosen.
To mitigate this overhead, we propose an approach that minimizes the need for
substitutions during evaluation in the relation prediction tasks. During model
training, we only consider the head and tail entities (and possibly related
external information for them). Consequently, there is no longer a need to
consider all relations in the KG, rendering the substitutions, as mentioned
before, unnecessary. More precisely, we focus on generating textual sequences
from each relation’s head and tail entities and creating clusters using a triplet
network. This aligns perfectly with our idea of using referring expressions
for implicit entity linking in the future. For triple classification, we examine
the one-hops of each entity to create the textual sequence from the facts of
that entity and create clusters for it. Traditional knowledge graph embedding
techniques employ a threshold value, denoted as s, where triples with scores
below this threshold are labeled as incorrect, and those above it are labeled as
correct. In this chapter, we will follow a similar approach for evaluation, as
elaborated further in Section 5.3.

Contribution.

This chapter proposes a novel approach that utilizes a triplet architecture of a
pre-trained language model like BERT to cluster facts related to a specific en-
tity or relation in an embedding space. By fine-tuning BERT with a triplet loss
that takes textual sequences created from facts as input, GilBERT addresses
some of the limitations of previous methods. The evaluation protocol utilizes
FAISS (Johnson et al., 2017), a spatial semantic search technique, to compute
the proximity of a test example’s embedding to the points in the embedding
space, reducing the overhead caused by candidate substitutions. Experiments
show that GilBERT is more suitable for few-shot learning settings in relation
prediction. Additionally, unlike translational and semantic matching-based
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models presented in 1.5 that require additional efforts to incorporate supple-
mentary information like entity descriptions, types, or paths, our approach
easily integrates such information. Finally, we propose techniques to generate
more challenging negative information for the triplet network, capturing some
of the KG’s semantics.

5.2 gilbert

We introduce GilBERT, an approach that involves fine-tuning BERT to embed
information about entities or relations closer together in clusters, depending
on the refinement task. This is achieved by using textual sequences obtained
from different parts of a triple as the ”information”. However, for some
downstream tasks, not all triple parts may be known during evaluation, such
as when the relation is unknown in relation prediction. Therefore, to create
the embedding space, we only use the available parts of the facts during
evaluation to ensure that the test data is embedded in the same way as during
training.

Let us define a partial fact PF as a sequence of text generated
from a triple (h, r, t) by concatenating different parts of either the
entities or entities and relations. For instance, consider the triple
(Barack Obama, isMarriedTo, Michel Obama). In this case, PFrt would
be ”isMarriedTo Michel Obama”, and PFht would be ”Barack Obama
Michel Obama”. We can also replace the entity with its corresponding de-
scription wherever possible to enrich the model with additional background
knowledge.

We employ a triplet network architecture of BERT, inspired by Sentence-BERT
(Reimers and Gurevych, 2019), to generate the clusters in the training data.
The network maps partial facts of an entity (or relation) closer to each other,
while partial facts of other entities (or relation) are mapped farther apart.
The network takes three partial facts PF as input, one as the anchor, one as
positive (similar to the anchor), and one as negative (dissimilar to the anchor).
To obtain a fixed-sized embedding vector for the input PF, we apply a mean
pooling layer to BERT’s output layer instead of using the output of the [CLS]
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Figure 5.1.: (a) Overview of fine-tuning BERT using the partial facts of triples
in G. (b) Overview of evaluation, clusters obtained on FB15K
dataset for the relation prediction task, illustration with UMAP.

token produced in the last layer of BERT, as done in KG-BERT. Experiments
and (Reimers and Gurevych, 2019) show that the pooling layer output provides
better embeddings for the given input than the [CLS] token embedding. This
architecture clusters all the information about an entity or relation.

Utilizing PFs as model inputs enables us to use only the fact parts available
during evaluation, such as the head and tail, for a relation prediction task.
This eliminates the evaluation time overhead of previous models that required
generating all possible substitutions and ranking their plausibility using the
learned scoring function.

Figure 5.1 illustrates the fine-tuning process of BERT through the triplet
network. The network consists of three identical networks with shared pa-
rameters and takes in three input textual sequences: the anchor, positive,
and negative partial facts. The objective is to place the anchor and positive
in the same cluster while separating the anchor and negative into different
ones. Specifically, the embedding vectors of the anchor Ea and positive Ep are
pushed closer together, while the distance between the anchor Ea and negative
En is increased. The triplet loss function is defined as follows:
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L = max(0, dist(Ea, Ep)� dist(Ea, En) + g),

where g is the safety margin ensuring that the embedding of the negative is
at least g further from the anchor than the positive.

For each gold triple (h, r, t) in G, we create n sets of input partial facts (PFs),
including anchor, positive, and negative PFs, to train the model. As discussed
in Chapter 1.5, creating negative examples can significantly impact the per-
formance of knowledge graph embedding (KGE) techniques. Therefore, it
is crucial to generate hard negative examples to prevent the loss function L

from being too easy. In the literature, negative examples are typically created
by corrupting a gold triple by replacing its h or t. Other methods, such as
(d’Amato et al., 2021), using background knowledge, such as the KG schema,
to select better negatives.

Our approach assumes a schema is unavailable and aims to capture the KG’s
semantics when generating input data. The data creation process varies
depending on whether the clustering is based on entities or relations.

Clustering based on Relation:

We use the partial fact PFht to create the anchor for relation-based clustering.
For each positive sample, PFhiti is generated by randomly selecting a fact from
the set {(hi, r, ti) |(hi, r, ti) 2 G}, while the negative samples PFhjtj are created
from the set {(hj, r0, tj) |(hj, r0, tj) 2 G ^ r0 2 closer}. We aim to create hard
negative samples to avoid trivial solutions. We achieve this by creating PFs
from triples whose relation is semantically similar to that of the anchor and
positive.

We define the set Fr as the set of all triples in G having the relation r. We use
two criteria to select the set closer: (1) the percentage of tail entities shared
with Fr among all relations in R, and (2) the percentage of head entities shared
with Fr among all relations in R. These percentages reflect the domain and
range of the relation, and we consider the set closer as the set of all relations
whose computed sharing percentage is greater than a given threshold. For
example, if closeBornIn = {worksIn, diedIn, locatedIn, studiedIn}, we choose
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relations that have a high semantic similarity to ”BornIn” based on the shared
entities in their corresponding triples.

For instance, given a triple (Maryam Mirzakhani, bornIn, Tehran) the anchor
is Maryam Mirzakhani Tehran, a positive sample can be Albert Einstein Ulm
constructed from the triple (Albert Einstein, bornIn, Ulm) and a negative sam-
ple Paris France from (Paris, locatedIn, France).

Clustering Based on Entity:

The clusters are based on the head entities, and they can be readily expanded
to include the tail entities by generating reverse relations. For a triple (h, r, t),
the anchor is either the partial fact PFrt or PFhrt or the combination of both.
The positive sample is a partial fact created from a triple with the same head as
the anchor, given by (h, ri, ti)|(h, ri, ti) 2 G. To generate more difficult negative
samples, we follow the idea that entities with the same type are semantically
related to each other. Therefore, we select an entity that is likely to have
the same type as the head entity h and create PFrtj or PFhjrtj from the set
(hj, r, tj)|(hj, r, ti) 2 G ^ (h, r, tj) /2 G. This approach avoids separating a city
from a person, which would be too easy.

To create a cluster for an entity, such as Albert Einstein in the example
(Albert Einstein, bornIn, Ulm), we generate a positive sample by selecting
another fact about Einstein, such as (Albert Einstein, studiedIn, ETH), and
create the textual sequence studiedIn ETH or Albert Einstein studiedInm ETH.
To generate a negative sample, we select a fact with the same relation as the
anchor, in this case, bornIn, and ensure that it is not true for Albert Einstein
due to multi-valuation. For instance, we select (Pierre Currie, bornIn, Paris)
and create the negative sample bornIn Paris or Pierre Currie bornIn Paris.

The evaluation pipeline for the relation prediction task is summarized in
Figure 5.1. To begin, a partial fact of the test triple (h, r, t) is generated in the
same manner as the training inputs. The fine-tuned model is then used to
obtain the vectorized embedding Etest. Euclidean distance is used to determine
the similarity between Etest and the embeddings of the training inputs for
evaluation purposes. Let D and De denote the set of embeddings for all
training anchors and those corresponding to entity e, respectively.
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For triple classification, the distance of Etest is calculated with the reference
set of its head entity Dh. Meanwhile, the K closest points to Etest in D are used
to determine the most plausible relation for relation prediction. To find the
nearest points to Etest in the corresponding reference sets, we rely on FAISS
(Johnson et al., 2017), a library for efficient similarity search that prioritizes
speed over precision. Further details regarding the evaluation process for each
refinement task will be provided in Section 5.3.

5.3 experimental results

Dataset

In this study, we utilize three benchmark datasets that are widely used in the
literature: WN11 (Socher et al., 2013), FB13 (Socher et al., 2013), and FB15K
(Bordes et al., 2013). These datasets are subsets of real-world KGs, namely
Wordnet and Freebase. We adopt the same training/validation/test splits
as (Socher et al., 2013) and (Bordes et al., 2013). The test sets of WN11 and
FB13 consist of both positive and negative triples, while FB15K only includes
correct triples. The table of the datasets’ statistics is presented in Table 5.1.

In our experiments, we fine-tuned the pre-trained RoBERTa-Base model for
four epochs using a batch size of 64, Adam optimizer with a learning rate
of 2e-5, and a margin g of 5. It is worth noting that we did not use any
external information, such as entity descriptions or paths, during the training
process, which could potentially improve the results. All experiments were
conducted on a single machine with a 2.6GHz processor, 12 cores, 64 GB of
RAM, and an Nvidia TITAN V GPU. The source code and the datasets used
in our experiments are publicly available1.

Triple Classification

This task assesses whether a given triplet (h, r, t) is correct or not, i.e., binary
classification on a triplet. We evaluate our approach on two benchmark

1 https://github.com/armitakhn/gilbert/

https://github.com/armitakhn/gilbert/
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Dataset #R #E #Facts (Train/Valid/Test)
WN11 11 38,696 112,581 2,609 10,544
FB13 13 75,043 316,232 5,908 23,733
FB15K 1345 14,951 483,142 50,000 59,071

Table 5.1.: Statistics of datasets

datasets: WN11 and FB13. To form clusters for the entities appearing as the
head in the graph G , we follow the method outlined in Section 5.2. The partial
facts PFhrt are randomly used with a 30% probability. For WN11 dataset, we
add the reverse versions of relations (t, r�1, h) to the KG to overcome the cold
start problem caused by some test data’s heads not appearing as the head to
any fact in the training. We create five positive and five negative samples for
each anchor in all datasets.

To evaluate a triple (h, r, t), we calculate the distance between the embedding
of PFhrt and the embeddings of all facts in the cluster of the head entity h, i.e.,
the reference set Dh. We use three different decision strategies, Mean, Max,
and Min, to aggregate the computed distances to the reference set. We tune
the threshold s on the validation data and report the best results obtained by
the Min strategy.

We have not used any external information such as entity descriptions or
paths while training the model. The results of triple classification on WN11
and FB13 datasets are presented in Table 5.2. Our approach, GilBERT, achieves
the best performance on average and for FB13 dataset and is second best after
KG-BERT for the WN11 dataset. We compare our approach’s results with the
state-of-the-art methods and take their reported results from the cited papers,
except for TransE and DistMult, whose results are taken from the papers (Lin
et al., 2015) and (Yao et al., 2019), respectively.

Relation Prediction

The objective of the relation prediction task is to predict the relation between
two entities given their head and tail, i.e., (h, ?, t). To accomplish this task,
clusters are created based on relations. The network is trained to learn
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Method WN11 FB13 Avg.
TransE (Bordes et al., 2013) 75.9 81.5 79.2
TransH (Wang et al., 2014b) 78.8 83.3 87.7
TransR (Lin et al., 2015) 85.9 82.5 83.9
DistMult (Yang et al., 2015) 87.1 86.2 86.7
DOLORES + ConvKB (Wang et al., 2020a) 87.5 89.3 88.4
KG-BERT (Yao et al., 2019) 93.5 90.4 91.9
R-MeN (Nguyen et al., 2020) 90.5 88.9 89.7
GilBERT 92.7 92.5 92.6

Table 5.2.: Triples classification Accuracy results (in %) reported on the WN11,
FB13 test sets.

embeddings that yield small distances for partial facts belonging to the same
relation and large distances for different ones. We generate five positive and
five negative samples for each anchor during experiments.

For the evaluation, the correct relation r is determined given its head and tail.
For this purpose, the PFht’s embedding Etest is derived. The k closest points in
the embedding space (using all training points in the reference set D) to Etest
are computed. The true relations of the closest points are known from the
training data. We propose two different strategies for assigning a relation to
our test point of interest. The strategy Min assigns the relation of the closest
point to Etest. And the strategy K-mode chooses the relation that has most
frequently appeared among the k-closest points of Etest.

Method MR Hits@1
TransE (Bordes et al., 2013) 2.5 84.3
TransR (Lin et al., 2015) 2.1 91.6
ProjE (listwise) (Shi and Weninger, 2017) 1.2 95.7
TKRL (Xie et al., 2016b) 1.7 92.8
DKRL(CNN) (Xie et al., 2016a) 2.5 89.0
DKRL (CNN) + TransE (Xie et al., 2016a) 2.0 90.8
KG-BERT (Yao et al., 2019) 1.2 96.0
GilBERT 1.3 92.0

Table 5.3.: Relation prediction MR and HITs@1 results on FB15K dataset.
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Figure 5.2.: Comparison of KG-BERT and GilBERT hits@1 results on long-tail
relations of the training data.

The results of the relation prediction task on the FB15K dataset are reported
in Table 5.3. All results are taken from their respective paper, except TransE
and TransR whose results are taken from (Xie et al., 2016b). The evaluation
metrics used are Hits@1 (proportion of correct relations in top 1 ranking)
and Mean rank MR. Note that the reported results are after filtering. If a
suggested triplet is already known to be true, i.e., if it already exists in the
train, validation, or test data of the knowledge graph, it is not correct to rank it
among the suggestions. The best results with GilBERT, tuned on the validation
data, were obtained using the K-mode strategy with K being set to 10. The
Hits@1 results obtained by our approach are comparable to the state-of-the-art,
without integrating any external information, with a very competitive Mean
Rank.

In addition, as mentioned in the introduction, GilBERT is more suited to a
few-shot learning scenario than KG-BERT, which treats relation prediction as
a classification task. To investigate this, we compared the Hits@1 results of the
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two approaches on long-tail relations, defined as those with less than 10, 15, 20,
25, and 30 facts in the training data, covering 37.8%, 43.2%, 48.4%, 51.8%, and
54.9% of the relations in the training data, respectively. The Hits@1 results on
these proportions of relations in the test data are plotted in Figure 5.2 for KG-
BERT and GilBERT. The plot shows that GilBERT is more robust in predicting
relations that have been observed only a few times during training

To elaborate more, we look at 664 relations (almost half of the relations) with
less than 20 facts, comprising 8.4% of FB15K instances. Our Hits@1 result on
the test data involving these properties is 64% (best results obtained with Min
strategy) compared to KG-BERT, which gives a Hits@1 of 53%.

5.4 conclusion

This chapter proposed GilBERT, a new approach that fine-tunes a triplet
network of pre-trained transformer-based language models by passing textual
sequences created from facts as input.

As discussed in the motivation section of this chapter (Section 5.1), our goal
is to modify a network like GilBERT to group referring expressions (REs) of
the same entity together in clusters. By doing so, we can potentially use our
network for implicit entity linking.

In addition, we plan to apply our approach to other KG refinement tasks,
such as link prediction. Moreover, considering the issues of data leakage in
widely used benchmark datasets like FB15K, we will explore other benchmark
datasets like CoDEx (Safavi and Koutra, 2020) and investigate the impact of
adding external information to our training process.



C O N C L U S I O N A N D P E R S P E C T I V E S

5.4.1 Conclusion

In this thesis, we have proposed novel techniques for refining KGs. We
summarize our main contributions and highlight their originality.

REGNUM took a step forward in introducing numerical rules with mem-
bership or non-membership constraints on intervals. The originality of our
approach lies in building upon existing rule mining techniques such as AMIE
and AnyBURL, eliminating the need for updating and maintaining optimal
intervals while exploring the search space. REGNUM is guided by quality
measures of PCA confidence and head coverage to determine which numerical
atoms should be added to a parent rule. The numerical predicates integrated
into rules serve as features for a classification task that distinguishes correct
and incorrect predictions of the parent rule. This approach allows REGNUM
to discover relevant intervals for each parent rule, promoting knowledge dis-
covery rather than relying on a pre-processing step that generates intervals for
numerical predicates independent of the rules. We conducted experiments on
three benchmark datasets; we demonstrated that the quality of the generated
set of numerical rules is increased on average compared to that of the parent
rules. We also observed improvements in knowledge graph completion using
the numerical rules.

We introduced RE-miner that mines referring expressions for a class in a
knowledge graph. The referring expressions are subgraph patterns that are
valid for one entity in the KG, they are existentially closed, minimal, and
diverse (for each entity). The mining process is guided by exploring combina-
tions of maximal non-keys, ensuring that the obtained referring expressions
are specific to each entity rather than being instantiations keys, allowing for
more entity-specific expressions. For each entity in the class, the approach
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first identifies referring expressions involving a single property and then tra-
verses the search space to discover more complex patterns. We demonstrated
the effectiveness of mining referring expressions on large knowledge graphs
through quantitative and qualitative experimental evaluations on 15 bench-
mark datasets. These expressions proved valuable in identifying sameAs links
between different knowledge graphs, significantly improving recall without
compromising precision.

We also introduced GilBERT, a system that employs the fine-tuning of lan-
guage models such as BERT using a triplet loss. The objective is to create
an embedding space where facts about a relation/entity are embedded close
to each other. We also explored techniques for obtaining more challenging
negative examples to improve the learning process. GilBERT was applied
to two downstream tasks: relation prediction and triple classification. The
evaluation strategy employed relies on the distance between the embeddings
of test data and the embeddings of the training data. The chapter demon-
strated the effectiveness of GilBERT in these refinement tasks on 3 benchmark
datasets, highlighting its suitability for few-shot settings for relation precision
compared to a system that treats this task as multi-class classification.

We structure our future perspectives into short-term and long-term perspec-
tives with regard to the work carried out during this thesis.

5.4.2 Short-Term Perspectives

Evaluation In order to fully explore the capabilities and potential limitations
of the presented works in this thesis, it is essential to conduct more compre-
hensive evaluations and experiments.

Regarding REGNUM discussed in Chapter 3, it is important to run REG-
NUM on more domain-related datasets where numerical data plays a crucial
role, such as financial or health data rather than general benchmark datasets.
By doing so, we think that REGNUM can outperform other rule-mining
techniques that may not effectively capture interesting numerical patterns.
Conducting evaluations on such datasets will provide deeper insights into the
capabilities of REGNUM. Moreover, in our experiments, we did not consider
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parent rules that involved constants (e.g., livesIn(x, France)^worksIn(x, y))
bornIn(x, y)) that can be discovered by some existing approaches such as
AMIE and AnyBURL. Adding such rules can lead to many more parent rules,
yet considering them may have a positive impact on the performance of KG
completion task. This is to be verified in future experiments. Furthermore, in
the context of KG completion, we explored various aggregation techniques, in-
cluding democracy, exaggeration, noisy-or, and weighted F-score aggregation.
However, it is worth noting that other aggregation methods exist that have
demonstrated better results and are better at scaling, such as the approach
presented by Betz et al. (2022). This method introduces end-to-end trainable
aggregation functions that combine rules into a confidence score to answer
queries. In this approach, the rules are encoded with latent feature vectors
and a sparse aggregator is learned through supervised learning.

In Chapter 4, we explored a post-processing technique aimed at expanding Re-
ferring Expressions (REs) to enhance their usefulness for data linking purposes
by reducing IRIs involved in the REs. However, the resulting expanded REs
can become quite complex, making tracking and using them for data linking
challenging. To address this issue, we plan to study the effect of implementing
a heuristic that can replace IRIs (that cannot be matched with high confidence
by applying similarity measures) with a subgraph consisting of predicates
that have literal values as their range for that node, even if the combination of
these predicates is not a key. The resulting subgraph is without IRIs and can
be used for data linking without becoming too complex. It should be noted
that this subgraph will not necessarily be a referring expression.

To extend the capabilities of GilBERT of Chapter 5, we plan to make the
necessary adaptations to enable link prediction as well. To achieve this, we
propose clustering all entities (i.e., all entities that appear as the head and
tail of facts in the knowledge graph (KG)), similar to the approach used for
triple classification tasks. Based on the specific prediction task, whether it is
(h, r, ?) or (?, r, t), we create partial facts denoted as Phr and Prt and generate
their respective embeddings. We examine the nearest embeddings during the
evaluation and determine the associated entities to them. To obtain a score for
each candidate entity, we can calculate the sum of distances to test partial fact’s
embedding, which serves as a sorting mechanism to select the best candidate.
Furthermore, to address the concerns regarding data leakage in commonly
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used benchmark datasets such as FB15K, we will broaden our exploration to
include alternative benchmark datasets like CoDEx Safavi and Koutra (2020).
We will specifically examine the effects of incorporating external information,
such as entity type and textual data like entity descriptions, into our training
process.

Alternative strategies for Generation of Intervals for Numerical rules. In
Chapter 3, the numerical rules discussed involve interval constraints. These
constraints are derived by constructing a decision tree that effectively dif-
ferentiates between correct and incorrect predictions (under PCA) made by
the parent rules. Quality measures such as head coverage and confidence
guide the decision tree construction process. However, there exist alternative
strategies for obtaining interval constraints as elaborated in Chapter 3.1. One
such alternative is the use of RIPPER or its extensions. These rule induction
algorithms can be employed to generate rules with interval constraints based
on a given dataset that can be directly used to enrich the parent rule. Ad-
ditionally, we will explore the application of Quantitative Association Rule
Mining techniques, which offer another way to obtain interval constraints by
relying on genetic algorithms or discretization techniques. These strategies
are completely different from DT as we have used in REGNUM. Hence com-
pletely different intervals can be obtained, and it’s interesting to see how their
resulting rules differ and how they impact the KG completion.

Scalability and Pruning strategies In order to enhance the efficiency and
scalability of REGNUM (Chapter 3) and RE-miner (Chapter 4), several po-
tential improvements can be implemented. Firstly, integrating an in-memory
database, as done in AMIE3, to store the data can significantly improve per-
formance. Using an in-memory database, facts can be indexed based on
subject, object, relation, and pairs of relation/subject and relation/object. This
indexing allows for faster data retrieval and more efficient query execution.
Additionally, more pruning strategies can be employed to reduce the search
space and improve run-time. In the case of REGNUM, one strategy is to cal-
culate the correlation between numerical predicates and prune combinations
of predicates that are highly correlated for the same variable. This pruning
technique helps to eliminate redundant and uninteresting combinations of
predicates and even potentially yields more interesting numerical rules.
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Implicit Linking In chapters 4 and 5, we have discussed the potential appli-
cation of referring expressions (REs) for implicit linking. We have proposed
an approach demonstrating promising results in relation prediction and triple
classification on a knowledge graph, namely GilBERT. This approach involves
creating textual sequences from facts in the knowledge graph and clustering
them based on relations or entities. Additionally, RE-miner allows the gener-
ation of multiple REs for each entity, and these REs can be easily converted
into textual sequences. We think that GilBERT can be rather directly used for
the implicit entity linking using REs. More precisely, we can cluster entities
based on their referring expressions by leveraging the proposed triplet net-
work architecture of GilBERT. In this process, each RE serves as an anchor,
with another RE for the same entity as a positive example and a RE for a
different entity as a negative example. Once the chosen LM is fine-tuned, we
can embed a given text (e.g., ”The famous scientist who was born in Ulm and
made significant contributions to the theory of relativity”) using the trained
network. By examining the neighboring embeddings (corresponding to some
referring expressions) and the entities they refer to, we can, in this case, Albert
Einstein.

5.4.3 Long-term Perspectives

Expressivity. There are various avenues to explore in order to enhance the
expressiveness of the numerical rules discussed in Chapter 3. As suggested by
Galárraga and Suchanek (2014), an interesting future work would be consider-
ing numerical constraints on the head atom instead of only on the atoms in
the body. For example, a rule like isLocatedIn(x, Europe) ^ hasGDP(x, y) )
y 2 [5K, 4M] can be considered. However, it is not straightforward to adapt
REGNUM to discover such rules. Nevertheless, if parent rules concluding on
numerical predicates are available, it is possible to discover rules where the
head atom is enriched. To this end, in REGNUM, the features to be considered
for the decision tree for classification are the numerical predicate of the head
atom.The challenge lies not in finding intervals for the numerical predicate
of the head atom but rather in identifying parent rules that conclude on a
numerical predicate. Another possible way to enhance the expressivity of
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rules is to use aggregates such as sum or average calculations in the body
or head atoms. However, strategies are needed to explore the search space
using such aggregations and to use such rules for data completion, when the
numerical predicate appears in the head of the rule.

Evolving KGs and Integrating KGs. Another potential challenge arises when
knowledge graphs evolve. As the KG evolves, the referring expressions may
no longer be minimal or valid. In future, it would be interesting to deploy
strategies for updating the referring expressions as the KG evolves. For
instance, if a triple is removed from the KG, the obtained REs remain referring
expressions, but they might not be minimal anymore. On the other hand, if
triples are added to the KG, some referring expressions may become invalid.
Studying the effects of changes in the KG bring to referring expressions and
what are the most efficient ways of updating them remains as a future work.

Furthermore, investigating the updating and fusion of referring expressions
(REs) when merging two knowledge graphs is an interesting area of study.
Additionally, considering the linking step, when the UNA is satisfied and
a single RE of an entity links to multiple entities in a target KG, it suggests
that there may be numerous missing pieces of information in the source KG.
Therefore, proposing approaches that simultaneously complete the KG and
perform linking represents another envisioned future direction of research.

Reduction of Rule Redundancies. In Chapter 3, REGNUM can generate
multiple numerical rules based on a single parent rule. These numerical
rules can vary regarding numerical properties and constraints related to
membership or non-membership. We implemented a simple strategy to limit
rules with a semantic overlap. Once the decision tree is constructed, we select
the most general rules (with the highest PCA body size) for membership or
non-membership predicates. However, it is still possible for multiple rules
with different constraints and intervals to have a semantic overlap. Such
redundant rules are not ideal for two reasons. Firstly, if the rules are intended
for use by an expert, they would likely prefer fewer rules with high quality
and minimal overlap between the instances they cover. Secondly, various
strategies were introduced for selecting an entity for link prediction among
candidate entities when using the rules. Some of these strategies consider all
the rules pointing to an entity (e.g., democracy), which may result in counting
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the same rule multiple times, thereby reducing the robustness of the approach.
In our experiments, we used the max-aggregation that is immune to this
setting. However, it is important to acknowledge that other strategies may
treat redundant rules as independent, leading to an overestimation of the final
score.

Global Optimization of Numerical Rule. As mentioned in Chapter 3, our
current approach involves finding numerical rules based on parent rules
mined from the KG using an existing rule mining technique. This is mainly
because calculating constraints while the rule mining technique explores
the search space (as it generalizes or refines the rule) results in having to
re-calculate the interval at each step, making the approach time-consuming
over large graphs. Therefore, REGNUM may lose some interesting numerical
rules, and the obtained numerical rules may not be optimal wrt. quality
measures. As future work, it’d be very interesting to develop a system that
optimizes both rule structure and interval constraints simultaneously and
compare this approach with REGNUM to evaluate their respective behaviors.
While REGNUM is expected to exhibit higher efficiency, it may occasionally
produce sub-optimal solutions.

5.4.4 Final Note.

Knowledge graphs are able to capture real-world knowledge in a machine-
readable format. They serve as a solid foundation for capturing domain-
specific knowledge and facilitating complex reasoning tasks and it’s important
to refine them to have more accurate and complete results. By incorporating
knowledge into data, a multitude of advantages can be gained. Nevertheless,
the governance of humans and adopting human-centered AI seems crucial in
ensuring explainability and minimizing the potential for risks and incorrect
information. In this context, it raises the question: Are we in an era of ”data
and knowledge” or an era of ”data, knowledge, and people”? Data provides
scalability, knowledge provides semantic understanding, and humans provide
trust. The possibility of large language models replacing knowledge graphs
remains an open question. Are knowledge graphs the beacon of hope for the
future, offering advantages that LLMs cannot replicate? or will KGs become
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a relic of the past? The answer to these questions and many more has yet to
unfold and shape the future of data, knowledge, and human interactions.



R É S U M É E N F R A N Ç A I S

Cette thèse vise à améliorer l’expressivité des approches existantes d’extraction
de règles dans les graphes de connaissances afin de découvrir des règles plus
efficaces pour l’enrichissement des graphe de connaissances et le liage de
données. Nous nous intéressons également à l’intégration d’informations des
graphes de connaissances dans des modèles linguistiques. Le plan de la thèse
et les contributions sont les suivants.

Fondamentaux. Le chapitre 1 présente les concepts essentiels liés aux graphes
de connaissances et à leur représentation. Il présente brièvement les graphes
de connaissances à travers les notions d’alignement d’ontologies et de liage de
données. Le chapitre traite également de la fouille de règles dans les graphes
de connaissances, de la définition des règles en logique du premier ordre et
de l’introduction de certaines mesures de qualité pour les évaluer. En outre,
il explore l’utilisation de représentations vectorielles pour les entités et les
relations, les plongements (embeddings) de graphes de connaissances, en
soulignant les caractéristiques et les procédures impliquées dans l’obtention
de telles représentations.

État de l’art. Dans le chapitre 2, nous passons en revue les différentes ap-
proches pour le raffinement des graphes de connaissances, notamment la
complétion de graphe de connaissances et le liage de données. Nous discu-
tons des approches symboliques basées sur des règles ainsi que des approches
subsymboliques basées sur des embeddings de graphes de connaissances.
Nous présentons les techniques d’extraction de règles les plus récentes, en
examinant leurs biais linguistiques, leurs stratégies de réduction de l’espace
de recherche et leurs caractéristiques propres. Ensuite, nous étudions les
techniques d’embedding de graphes de connaissances subsymboliques en tant
que méthode fréquemment utilisée pour compléter les graphes de connais-
sances. Nous classons ces techniques en nous basant sur leurs fonctions de
score et discutons des caractéristiques de chacune des méthodes. En outre,
nous présentons le liaige de données en tant que tâche de raffinement, en
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particulier les approches basées sur les clés de la littérature. De plus, nous
abordons brièvement les méthodes basées sur de embeddings de graphes de
connaissances pour le liaige des données.

Enrichissement de règles de Horn par des predicats numériques. Après une
revue approfondie de l’état de l’art sur l’extraction de règles dans le chapitre
2, un manque évident se dégage dans l’incorporation efficace de prédicats
numériques tels que l’âge ou la population dans les règles extraites par les
systèmes existants. Ce manque est dû à l’ampleur de l’espace de recherche
associé aux prédicats numériques, car ils prennent de nombreuses valeurs dis-
tinctes. À cette fin nous proposons une approche novatrice appelée REGNUM
- Règles numériques pour le raffinement des graphes de connaissances dans le
chapitre 3. REGNUM permet d’incorporer des prédicats numériques dans le
processus d’extraction de règles. Nous décrivons en détail le fonctionnement
de REGNUM, en mettant l’accent sur l’utilisation de mesures de qualité pour
guider le processus d’enrichissement des règles. REGNUM s’appuie sur les
règles générées par un système existant d’extraction de règles et les enrichit
en incorporant des prédicats numériques qui contraignent les valeurs à des
intervalles spécifiques. Le processus est guidé par des mesures de qualité qui
évaluent la confiance et la signification des règles. REGNUM est la première
approche à se concentrer spécifiquement sur les règles numériques dans les
graphes de connaissances, révélant des motifs liés à l’appartenance ou à la
non-appartenance à un intervalle.

Découverte d’expressions référentielles dans les graphes de connais-
sances. Le chapitre 4 présente RE-miner, une approche pour la découverte
d’expressions référentielles dans les graphes de connaissances. Dans un
graphe de connaissances, une expression référentielle est une formule logique
qui permet d’identifier de façon unique une entité. De telles expressions
peuvent être exploitées pour répondre à des requêtes, lier des données, an-
noter des ressources textuelles, ou encore anonymiser des données. Il peut
potentiellement exister de nombreuses expressions logiques pour identifier
de manière unique une entité. Nous proposons une approche permettant
de découvrir efficacement certaines expressions référentielles en nous con-
centrant sur celles qui ne peuvent être trouvées en instanciant des clés. Les
expérimentations montrent que cette approche passe à l’échelle de jeux de
données de plusieurs millions de triplets RDF et que ces expressions perme-
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ttent de lier efficacement les instances de classes de différents graphes de
connaissances.

Raffinement de graphes de connaissances au travers de grands modèles
de langage. Chapitre 5, présente une nouvelle approche qui consiste à
affiner (fine-tuning) les modèles de langages en utilisant les informations
du graphe de connaissances pour générer des clusters d’entités, de rela-
tions et d’expressions de référence souhaitées. Nous exploitons l’espace
d’embedding et mesurons la proximité entre les entités/relations intégrées
afin d’effectuer des tâches telles que la prédiction des relations et la complétion
du graphe de connaissances. Cette approche peut donner lieu à meilleures
performances pour des tâches basées sur les graphes de connaissances, telles
que l’établissement de liens implicites entre les entités.

Conclusion. Le chapitre 5.4 résume la thèse et développe les perspectives
futures.
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R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’93, page 207–216,
New York, NY, USA, 1993. Association for Computing Machinery. ISBN
0897915925. doi: 10.1145/170035.170072. URL https://doi.org/10.

1145/170035.170072.

N. Ahmadi, J. Lee, P. Papotti, and M. Saeed. Explainable fact checking with
probabilistic answer set programming. CoRR, abs/1906.09198, 2019.

M. Al-Bakri, M. Atencia, S. Lalande, and M. Rousset. Inferring same-as facts
from linked data: An iterative import-by-query approach. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, Texas, USA, pages
9–15. AAAI Press, 2015.

A. Algergawy, D. Faria, A. Ferrara, I. Fundulaki, I. Harrow, S. Hertling,
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L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. Fast Rule Mining in
Ontological Knowledge Bases with AMIE+. The VLDB Journal, 2015. URL
https://hal-imt.archives-ouvertes.fr/hal-01699866.

http://ceur-ws.org/Vol-2536/oaei19_paper3.pdf
https://hal-imt.archives-ouvertes.fr/hal-01699877
https://hal-imt.archives-ouvertes.fr/hal-01699877
https://hal-imt.archives-ouvertes.fr/hal-01699866


bibliography 123
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J. Lajus, L. Galárraga, and F. Suchanek. Fast and exact rule mining with amie
3. In A. Harth, S. Kirrane, A.-C. Ngonga Ngomo, H. Paulheim, A. Rula,
A. L. Gentile, P. Haase, and M. Cochez, editors, The Semantic Web, pages
36–52, Cham, 2020. Springer International Publishing.

Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, and S. Liu. Modeling relation paths
for representation learning of knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 705–714,
Lisbon, Portugal, Sept. 2015. Association for Computational Linguistics. doi:
10.18653/v1/D15-1082. URL https://www.aclweb.org/anthology/

D15-1082.

H. Liu, Y. Wu, and Y. Yang. Analogical inference for multi-relational embed-
dings. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 2168–2178. JMLR.org, 2017.

M. Loster, D. Mottin, P. Papotti, J. Ehmüller, B. Feldmann, and F. Naumann.
Few-shot knowledge validation using rules. In Proceedings of the Web Confer-
ence 2021, WWW ’21, page 3314–3324, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.
3450040. URL https://doi.org/10.1145/3442381.3450040.

https://www.aclweb.org/anthology/D15-1082
https://www.aclweb.org/anthology/D15-1082
https://doi.org/10.1145/3442381.3450040


bibliography 127

H. Ma, M. Alipourlangouri, Y. Wu, F. Chiang, and J. Pi. Ontology-based entity
matching in attributed graphs. Proc. VLDB Endow., 12(10):1195–1207, 2019.

C. Meilicke, M. W. Chekol, D. Ruffinelli, and H. Stuckenschmidt. Anytime
bottom-up rule learning for knowledge graph completion. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, pages 3137–3143, 7 2019.

C. Meilicke, M. W. Chekol, M. Fink, and H. Stuckenschmidt. Reinforced
anytime bottom up rule learning for knowledge graph completion. arXiv
preprint arXiv:2004.04412, 2020.

A. Melo, M. Theobald, and J. Völker. Correlation-based refinement of rules
with numerical attributes. In W. Eberle, editor, Proceedings of the twenty-
seventh International Conference of the Florida Artificial Intelligence Research
Society (FLAIRS) : May 21 - 23, 2014 Pensacola Beach, Florida, USA, pages
345–350. AAAI Press, 2014. URL https://madoc.bib.uni-mannheim.

de/35956/.

B. Minaei-Bidgoli, R. Barmaki, and M. Nasiri. Mining numerical associ-
ation rules via multi-objective genetic algorithms. Information Sciences,
233:15–24, 2013. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2013.
01.028. URL https://www.sciencedirect.com/science/article/

pii/S0020025513001072.

A. K. Nassiri, N. Pernelle, F. Saı̈s, and G. Quercini. Re-miner for data
linking results for OAEI 2020. In P. Shvaiko, J. Euzenat, E. Jiménez-
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