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Résumé en français

Cette thèse aborde le problème de la compression efficace de contenus vidéo immer-
sifs, représentés avec le format Multiview Video plus Depth (MVD). Dans le format
MVD, les informations géométriques de la scène sont fournies par les cartes de pro-
fondeur associées à chaque caméra. Par rapport à la vidéo 2D classique, la vidéo
immersive a besoin de beaucoup de données pour que le spectateur ait une percep-
tion adéquate de la profondeur de la scène. En raison de la demande croissante de
consommation de vidéos immersives, la compression et la transmission efficaces des
médias immersifs sont devenues une tâche importante pour les organismes de nor-
malisation. Le standard du Moving Picture Experts Group (MPEG) concentré sur
la transmission des données MVD est le standard ISO/IEC-23090 partie 12, appelé
MPEG Immersive Video (MIV). Le standard MIV utilise des codecs vidéo 2D pour
la compression des informations de texture et de profondeur de la source, qui sont
prétraitées avant la compression. La nouvelle vue souhaitée est rendue à partir des
informations disponibles côté décodeur en utilisant des techniques de rendu basées
sur la profondeur et l’image (DIBR). Par rapport au codage vidéo traditionnel, le
codage vidéo immersif est plus exigeant en termes de complexité. Outre le compro-
mis entre le débit et la qualité, il est également limité par le débit de pixels. Le taux
de pixels correspond au nombre de pixels luma par seconde qui peuvent être dé-
codés par un décodeur hardware, afin de commencer le rendu d’une vue cible don-
née. C’est pourquoi le MIV utilise le mécanisme du «pruning», qui réduit le débit de
pixels et les corrélations entre les vues, en créant les morceaux d’images qui seront
conservés. Ensuite, la mosaïque de morceaux d’images (patches) est emballée et
transmise. Le processus de «pruning» et d’empaquetage réduit considérablement le
débit et le nombre de pixels. Néanmoins, l’efficacité du «pruning» est fortement liée
à la qualité de la carte de profondeur, puisque ce processus utilise des re-projections
de vues avec DIBR pour découvrir les redondances. En outre, une autre approche
est apparue pour le codage des vidéos immersives, appelée estimation de la pro-
fondeur côté décodeur (DSDE), qui a amélioré le système vidéo immersif en évitant
la transmission des cartes de profondeur et en déplaçant le processus d’estimation
de la profondeur du côté décodeur. L’approche DSDE a seulement été étudiée dans
le cas de nombreuses vues entièrement transmises (sans «pruning»).

Notre travail va au-delà de l’approche DSDE et propose d’incorporer le paradigme
DSDE sur le contenu qui a été traité avec le «pruning» du MIV. La méthode ini-
tiale proposée consiste à exclure un sous-ensemble de cartes de profondeur de la
transmission. Ce faisant, l’étude examine l’effet distinct de la restauration de la
profondeur au niveau du patch du côté du décodeur. Par ailleurs, la deuxième ap-
proche proposée présente une amélioration supplémentaire. En examinant la qualité
des patchs de profondeur estimés du côté de l’encodeur, nous démontrons notre ca-
pacité à distinguer les patchs de profondeur qui doivent être transmis de ceux qui
peuvent être récupérés du côté du décodeur. Nous réduisons le débit de pixels et
améliorons la qualité visuelle, comme le montrent nos expériences. En outre, nous
explorons l’utilisation de techniques neuronales de synthèse basées sur l’image (IBR)
pour améliorer la qualité de la synthèse de nouvelles vues. Ces nouvelles techniques
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donnent de bons résultats sur les objets non lambertiens et les scènes complexes, en
éliminant également la nécessité de capturer et d’estimer la profondeur. Cependant,
l’efficacité des méthodes IBR neuronales dépend de la disponibilité de nombreuses
vues sources d’une scène, ce qui pose un défi important pour le déploiement dans
les standards existants tells que MIV. Dans ce contexte, nous abordons la question
du «pruning» des pixels de source pour les méthodes IBR neuronaux, en obtenant
un bon compromis entre le taux de pixels et la qualité de la synthèse.

En résumé, cette thèse a montré quelques avancées possibles dans le codage
vidéo immersif, en mettant l’accent sur le «pruning» du contenu de source. Nous
avons amélioré la conception globale du système de codage vidéo immersif en pro-
posant l’approche DSDE au niveau du patch, ce qui a permis d’obtenir un gain de
4.63% BD-rate pour le Y-PSNR en moyenne. En outre, nous avons démontré pour
la première fois que la synthèse neuronale fournit elle-même les informations néces-
saires au pruning du contenu, ce qui a permis d’améliorer la qualité de la synthèse
de vues de 3.6dB en moyenne. Notre travail encourage donc une adoption plus large
du standard MIV et un développement plus poussé des IBR neuronaux dans un tel
contexte.
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Chapter 1

Introduction

1.1 Context

Recently, the popularity of commodities such as virtual, augmented, and extended
reality has seen a significant rise, followed by an increased interest in the evolution
of the Internet toward metaverse [1]. The technologies that aim to offer a virtual
presence to the user are called immersive imaging technologies [2, 3, 4]. They aim at
facilitating free navigation of a user in a 3D scene which can be real and enhanced
with virtual people and objects, or fully virtual [5]. While being particularly use-
ful for many fields, such as education, healthcare, marketing, sales, etc. [6], these
emerging use cases induce new challenges in the area of data compression for en-
abling data transmission over current networks.

One of the traditionally most popular formats for enabling the immersive experi-
ence of a user in a limited volume, with six degrees of freedom (6DoF), is multi-view
video plus depth (MVD) [7, 8, 9]. In this context, a 3D scene can present natural
content (NC), captured with multiple cameras with an arbitrary arrangement, or
computer-generated content (CG), created with imaging software. Each captured or
created viewpoint has its own texture video and corresponding depth map. A texture
video represents a conventional color video, while in its depth map, each pixel (asso-
ciated with its color counterpart) represents the distance between the captured object
and the camera. Moreover, the term view represents a certain camera viewpoint. The
target viewport is rendered from available information at the decoder side utilizing
depth image-based rendering (DIBR) techniques [10, 11, 12]. The dense sampling of
the scene, obtained with a large number of cameras and high resolutions and needed
to ensure a satisfactory immersive user experience [13], comprises a vast amount of
data whose transmission over the networks poses a difficult challenge. An exam-
ple for an MVD case: 10 streams of high-definition texture video with dimension
1920 × 1080, and 50 frames per second (fps) would require, without compression, a
total bitrate of almost 21 Gbps [14]. Therefore, an efficient algorithm is essential to
eliminate the redundancies among the videos of the captured scene.

Immersive video coding techniques date back to MPEG-2 extension and its multi-
view profile (MVP) [15], followed by its AVC successor called multi-view video cod-
ing (MVC) profile [16]. Some of the methods for multi-view transmission rely on
simulcast coding, where all videos are coded independently with some of the legacy
video codecs such as AVC [17] or HEVC [18]. However, simulcast coding is not op-
timal for produced bitrate and it requires an enormous amount of decoding devices
on the client side (at least dozens), which is unfeasible considering typical consumer
devices. This is further discussed in Chapter 2.

These approaches, as well as the recent ones called MV-HEVC and 3D-HEVC [19],
aim at building on an already existing 2D video codec (in this case HEVC) and en-
able inter-view prediction among different views, which helps to reduce the existing
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redundancies among views. Still, they suffer from parallelization issues related to
the strong dependencies between the coded views and need an excessively large
number of decoding devices at the client end. Another important constraint for an
immersive video codec is the pixel rate, which reflects the number of luma pixels
per second that can be decoded by a hardware decoder, in order to commence the
rendering of a given target view. Previously mentioned standards fail to adhere
to pixel rate constraints (for a use case of high-end mobile devices, 32 Megapixels
at 30 fps) as they require transmission and decoding of dozens of views [20]. Fur-
thermore, these standards had limitations in terms of camera arrangements, thus
showing good performance only for linearly arranged cameras [14].

The Moving Picture Experts Group (MPEG) is currently addressing the chal-
lenges of immersive video coding in the scope of the MPEG-I project [21]. One of the
standards from this project is ISO/IEC-23090 Part 12 called MPEG Immersive Video
(MIV) [22], which is focused on the transmission of MVD data. The first edition
of the MIV standard was released in July 2021 [23]. This standard does the pre-
processing of source texture and depth videos, as detailed later on. Subsequently,
these videos are compressed using any 2D video codec. The received video streams
are decompressed at the client side, and the rendered virtual view is obtained us-
ing a suitable DIBR technique. MIV is detailed in Chapter 3, but we give a quick
overview of its main concepts in the following. MIV provides a framework that ad-
heres to the pixel rate constraints, and simplifies the inter-view redundancy removal,
as compared to previously discussed approaches. The reference software for MIV is
the Test Model for MPEG Immersive Video (TMIV) [24]. TMIV processes the source
data and generates the atlases, which are collections of patches, where patches are 2D
rectangles originating from different views.1 Thus, TMIV involves many challeng-
ing tasks: selecting the most important views among source views (view labeling),
removing the redundancies between the views that were not selected (pruning), con-
structing the atlases that will be sent (packing), and rendering the target viewport.
View labeling classifies the views as basic, which are transmitted completely, or ad-
ditional, which are pruned and transmitted partially. The pruning process decides
which pixels of the views to send, e.g., the parts that are missing in a particular addi-
tional view because they are occluded in basic and other additional views. However,
the rectangular patch region is multiplied with the pruning binary mask, which re-
fines the patch shape and saves only the necessary pixels. The process of pruning
and packing significantly reduces the bitrate and pixel rate. Nevertheless, the ef-
fectiveness of the pruning is closely tied to the quality of the depth map, since the
pruning process employs view re-projections with DIBR to discover the redundan-
cies. A simple example of texture and depth map atlases is given in Fig. 1.1. In
Fig. 1.1a we can see four packed basic views, together with small patches, at the bot-
tom of the texture atlas 1, while Fig. 1.1c shows the atlas which consists solely of the
patches. Analogously, we can observe their corresponding depth atlases.

In addition, a novel technique called decoder-side depth estimation (DSDE) has
emerged [25], which eliminates the need to transmit depth maps and shifts the depth
estimation process to the decoder side. This technique is adopted into MIV standard
as Geometry Absent (GA) profile [26]. DSDE is beneficial because it avoids harmful
coding of depth data with legacy 2D video codecs, which do not possess adequate
depth coding tools.

1In this thesis, from now on we use the term patches to denote the pruned, partial image regions. It
is not to be confused with the same term in the MIV standard, which denotes both partial regions and
full views, packed into atlases.
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(A) Texture atlas 1. (B) Depth map atlas 1. (C) Texture atlas 2. (D) Depth map atlas 2.

FIGURE 1.1: An example of texture and depth map atlases.

1.2 Motivation and contributions

Due to the complexity and limited adoption of previous video-based solutions (like
MV-HEVC and 3D-HEVC), the MIV standard has adopted a simpler and easily de-
ployable paradigm for immersive video coding, as described earlier. However, even
after a few MPEG meeting cycles with software improvements, the synthesis results
obtained with TMIV were not completely satisfactory. Many artifacts are visible,
especially when it comes to complex content, as shown in Fig. 1.2.

The work of this thesis started at the beginning of the MIV standardization, with
the goal to increase the view synthesis quality and compression efficiency. Therefore,
we focus on the following issues. Firstly, the coding of the depth maps with 2D
codecs is damaging and inefficient. Secondly, pruning, which reduces the pixel rate
and inter-view correlations, is highly dependent on the depth map quality. Our goal
is to improve the compression and pruning of multi-view content for immersive
video coding.

MIV is explored in MPEG in multiple possible configurations: transmitting a few
full views (textures and depth maps) and numerous smaller patches, transmitting
just some amount of full views (textures and depth maps), and transmitting double
the amount of full views (just textures) while retrieving the depth maps at the de-
coder side. However, the question is, which configuration is the most efficient, and
can we propose new configurations for additional benefits? Thus, taking inspiration
from the DSDE concept, we explore the case of the main MIV framework, which
includes pruning. DSDE is created and tested in a particular scenario, where several
full texture views are coded with MIV, and their depths are recovered at the receiver
side. However, this thesis goes beyond that and inspects multiple improvements of
such a system. Notably, we are interested in reducing the pixel rate even further
by introducing the depth estimation done on the content that has been pruned with
MIV and does not consist anymore of the rich 3D scene.

Furthermore, we consider the neural image-based rendering (IBR) techniques to
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FIGURE 1.2: Visual example of the synthesis result with TMIV for the
Carpark video sequence.

improve the synthesis quality, since they render non-Lambertian objects more suc-
cessfully than DIBR methods, and eliminate the burden of capturing or estimating
depth. However, neural IBR methods require many available source views of a given
scene to achieve good synthesis quality, creating a big obstacle to their deployment
using existing standards (such as MIV). Thus, in this context, we tackle the input
pixel pruning issue for neural IBRs.

To summarize, the work conducted during this thesis aims at further develop-
ment on top of the MIV standard, enabling its broader adoption. It gave us an op-
portunity to investigate many possible improvements of an immersive video coding
system, including the following:

• Atlas compression, where we explore the impact of different encoders and cod-
ing tools on the immersive video coding efficiency [27] (Chapter 4),

• Depth estimation techniques, where we observe the influence of different depth
estimators on the immersive coding efficiency [26] (Chapter 5) and synthesis
quality without compression [28] (Appendix A),

• Source content pruning, which is our main contribution. Here, pruning of the
input represents a new way of compressing the inter-view redundancies. We
explore avoiding the transmission of some depth patches in TMIV and retriev-
ing them at the decoder side [29, 30] (Chapter 6). Moreover, we also investigate
the impact of input texture pruning on the synthesis quality obtained with a
neural image-based renderer [31] (Chapter 7).

1.3 Structure of the thesis

The manuscript is structured as follows.

Chapter 2 introduces the general principles of video coding, immersive video repre-
sentations, and multi-view standards. The classical and learning-based depth
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estimation methods are presented. Depth image-based rendering and image-
based neural rendering techniques are explained.

Chapter 3 details the general principles of the MIV standard and its reference soft-
ware. Decoder-side depth estimation (DSDE) concept is described. Test Con-
ditions for MIV are listed (datasets, software, metrics), and the performance of
the main MIV anchor with respect to other MIV anchors is demonstrated.

Chapter 4 presents results [27] which highlight that MIV is compatible with any
state-of-the-art 2D codec. Furthermore, we show that an improvement of the
coding performance can be achieved by utilizing screen content coding tools,
especially for depth atlases.

Chapter 5 gives a study [26] on depth estimation tools for the MIV DSDE system.
The analysis of synthesis results obtained with different classical and learned
depth estimation techniques shows that various depth estimation methods
may be suitable for the MIV DSDE framework.

Chapter 6 presents two studies on reducing the transmission of patch depth data
in the context of MIV. We investigate the possibility to avoid the transmis-
sion of some patch depths that originate from the additional views. The first
study [29] presents pDSDE, a method that focuses on the isolated impact of the
patch-level depth recovery at the decoder side, while not changing the prun-
ing process. The second study [30] goes a step further and proposes a method
called hpDSDE, that ensures a reliable patch depth selection and recovery of
depths at the decoder side.

Chapter 7 introduces a method [31] for input pixel pruning, called LeHoPP, that
learns how to prune the pixels and can be utilized with neural image-based
synthesizers in a multi-view setup without retraining the model. In this setup,
we examine the importance of each input pixel concerning the rendered view,
and we avoid the use of irrelevant pixels.

Chapter 8 draws conclusions on the thesis and gives a discussion on the potential
future work and research perspectives.

Appendix A gives a brief overview of a study [28] which investigates the perfor-
mance of different conventional and learned depth estimators in terms of MIV
synthesis quality.

Appendix B gives a full list of publications issued during the work on this thesis.
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Chapter 2

Background and State of the Art

In this chapter, we provide an overview of various technologies used in immersive
video coding. We first discuss the different formats used for representing volu-
metric videos and then describe the block-based hybrid video coding structure for
compressing 2D videos. Next, we delve into the different immersive video coding
schemes available. We then proceed to explain the various techniques used for depth
estimation, which include both classical and learning-based approaches. Finally, we
provide an overview of virtual view synthesis techniques, with a focus on depth
image-based rendering and neural image-based rendering approaches.

2.1 Introduction

The realm of video services is undergoing a transformation, shifting away from con-
ventional two-dimensional videos toward virtual and augmented reality applica-
tions. These technologies enable viewers to perceive a scene as if they are inside
the video. However, they still pose a challenge to the industry: to provide a novel
viewpoint to the viewer, a high amount of data needs to be processed and transmit-
ted over the networks, which poses constraints that include power consumption,
transmission bandwidth, and hardware capabilities.

Over the course of immersive video development, many formats for the repre-
sentation of immersive images and videos emerged. The oldest and simplest rep-
resentation for 3D video is stereoscopic 3D video [3]. It is based on the stereopsis
principle and contains two videos capturing the same scene. Stereopsis is based
on a binocular disparity, which refers to the distance in image location of an object
seen by the left and right eyes, caused by the displacement between the eyes (paral-
lax) [32]. The brain uses binocular disparity to extract depth information. Typically,
the optical axes of the cameras are parallel and the cameras also share the image
plane. A disparity between the cameras is the pixel displacement in image location
of an object seen by the left and right camera, and it creates the impression of depth.
A simple extension of stereoscopic 3D video is multi-view video, where a system of
cameras obtains multiple views of the same scene simultaneously.

Another representation, which is very common for immersive video, is multi-
view plus depth (MVD), which is the format where each view (also called texture
view) is accompanied by a corresponding depth map. The depth map is a single-
channel image where each pixel contains the distance of the object to the camera.
Thus, depth maps deliver information about the physical scene geometry, i.e., rela-
tive positions of objects and cameras. An example of the MVD content is given in
Fig. 2.1a. The depth maps for computer-generated content are obtained directly from
the 3D scene model. The depth maps for natural content can be obtained either with
sensors or in the process of depth estimation, as detailed in Section 2.4. MVD format
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(A) MVD. (B) Point cloud.

FIGURE 2.1: An example of the MVD [33] and point cloud [34] data.

enables the use of depth-image-based rendering techniques, which interpolate the
virtual views and facilitate free navigation, as explained in Section 2.5.1.

Another format for 3D volumetric (immersive) data representations is point cloud.
A point cloud is a set of points with (x, y, z) coordinates that represent the point
cloud geometry, and can, in addition, contain the attributes (i.e., color, reflectance,
and normals) [35]. In addition, point clouds are classified as static or dynamic, de-
pending on the absence or presence of the temporal dimension, respectively. An
example of the point cloud is given in Fig. 2.1b.

Throughout this thesis, we focus on the MVD content, with the exception of
Chapter 7, where we consider multi-view video with only texture data.

In this chapter, we introduce the reader to the important aspects of immersive
video coding. The existence of many formats for immersive video representation
resulted in different solutions for data compression. To better understand the in-
fluence of 2D video codecs on the compression of volumetric videos, we will first
give an overview of the block-based hybrid video coding structure, and later we will
briefly describe the screen content coding tools and recently developed video codecs
outside of MPEG, tested in the scope of this thesis. We follow it with an overview
of immersive video coding schemes: simulcast, multi-view, and novel volumetric
video-based approaches. Afterward, Section 2.4 explains the depth estimation tech-
niques, first giving the perspective projection equations, and then detailing the clas-
sical and learning-based approaches. Finally, Section 2.5 gives an overview of virtual
view synthesis, notably the depth image-based rendering and neural image-based
rendering approaches.

2.2 Hybrid 2D video coding

The pipeline for 2D video transmission is shown in Fig. 2.2. The source video se-
quence can be pre-processed (e.g., trimming or color correction), and afterward, it is
encoded (usually with lossy compression) and transformed into a video bitstream.
The bitstream is a very compact representation of the source video, which is trans-
mitted over the channel. It is decoded at the receiver, and given to the post-processor,
for a potential color correction, re-sampling, etc. Finally, we obtain a reconstructed
video sequence that needs to be in a suitable color format for a target display [36].

Modern video codecs rely on the notions of spatial and temporal prediction. Spa-
tial prediction is, in essence, decorrelating the signal by exploiting the redundancies
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FIGURE 2.2: General block diagram of a video transmission system.

FIGURE 2.3: Diagram of a block-based hybrid codec [36].

inside of a particular frame, and representing them with geometric models. This
type of prediction is called intra prediction. Temporal prediction is removing the
statistical redundancies which appear when observing the video in the temporal do-
main. It models the displacement of the objects in a scene in different frames, by
deploying motion estimation (ME). Motion estimation compares the original block
with blocks in a reference frame (it could be some of the previous or even some of
the future frames). In that case, the block is represented with a motion vector, which
shows how the block from the reference should be moved to the original frame, to
create the prediction. This type of prediction is called inter prediction.

A video consisting of a certain number of frames can be divided into one or
multiple coded video segments that can be encoded separately. The order in which
pictures are reconstructed at the decoder, and that signals which pictures can be used
for reference, is determined by the coding order. The coding structure is made up
of a series of pictures in the sequence that are encoded in a specific order and have
defined dependencies between them, called group of pictures (GOP).
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The inter and intra prediction models create the prediction signal (y) of the orig-
inal one (x), which introduces an error, called a residual (r). The residual is calcu-
lated as follows:

r = x − y. (2.1)

Thus, the residual is being transmitted by the encoder.
All modern video codecs (including the ones used in the scope of this thesis) have

a hybrid video coding scheme in common, which is shown in Fig. 2.3. The name
hybrid comes from integrating temporal prediction between the frames (pictures) of
the video sequence with transform coding applied on the prediction error [36].

Transform coding is an essential module for coding the residual. The motiva-
tion for using the transform module lies in the nature of the residual signal, that
is the low frequency of its energy. Moreover, transform coding facilitates the lossy
coding of the residual signal via quantization of the transform coefficients, as ex-
pressed through the quantization parameter (QP). Together, they are represented as
the “TR+Q” block in Fig. 2.3, while the inverse transformation and quantization,
applied in the decoder for the signal reconstruction, are “iTR+iQ”.

In the process of video encoding, various coding options such as different pic-
ture partitioning, prediction, and transformation are employed. These options are
assessed in a rate-distortion (R-D) optimization process. Here, D represents a dis-
tortion of the signal obtained by coding the considered block in a particular mode
or parameter, R is the transmission rate (number of bits) for representing a block in
a given mode or rate needed for coding a given parameter. If P denotes the picture
(partitioned into coding blocks), and M denotes the possible prediction and coding
modes, one may formulate the constrained problem for the encoder to find the best
coding mode set Mopt, which is subject to a given rate constraint Rc:

min(D(P, M))
M

, with R(P, M) < Rc. (2.2)

We can transform this into an unconstrained problem, to determine which one re-
sults in the lowest R-D cost J using a Lagrangian parameter λ that is calculated based
on the given QP, as follows:

Mopt = arg min
M

(
J(P, M|λ)

)
, (2.3)

having the joint cost criterion equal to:

J(P, M|λ) = D(P, M) + λ · R(P, M). (2.4)

Finally, after coding decisions take place, the corresponding syntax elements for
all the modes, etc. are coded into the bitstream with an entropy coding technique
(such as context adaptive variable length coding, or context adaptive binary arith-
metic coding).

2.2.1 Screen content coding tools

It has been noticed that some of the available coding tools are having poor perfor-
mance when it comes to certain types of content. Notably, computer-generated text,
graphics, and animations, as well as their combination with camera-generated con-
tent, which are referred to as screen content, are particularly challenging [37]. This
is due to the different characteristics in their signal (repeated patterns, sharp edges,
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absence of noise, etc.). As a result, an extension profile of HEVC, and VVC were
developed to provide support for such content.

The VVC screen content coding tools employed in this thesis (see Chapter 4) are
intra block copy (IBC), block-based differential pulse-code modulation (BDPCM),
and palette mode. They are briefly summarized below.

IBC is a technique that applies block matching for intra prediction having the
same frame for the current frame and the reference. This means that it is searching
for the repetitions inside a particular frame. To that end, a limited region is desig-
nated around every block, and a search is conducted within that region to identify
the block with the greatest similarity to the present block.

Palette mode is a technique that considers coding the content with distinct colors
(highly saturated and unique colors). This method consists of palette table deriva-
tion, coding of the palette table denoting the samples, and coding of the palette index
for each coding unit.

BDPCM is a method that proceeds without transform coding, and is based on the
residual DPCM method from HEVC [38]. It is an intra prediction mode that aims to
predict the residual signal in the pixel domain using a sample-based approach. The
residual samples are coded differentially and signaled so that at the decoder side,
each row or column can be reconstructed by summing weighted DPCM residuals.

2.2.2 Codecs outside of MPEG

Ever since its appearance, the MPEG organization successfully developed many ef-
ficient coding standards, including the most recent ones, such as those already men-
tioned - HEVC and VVC. However, the hybrid video coding scheme, as well as the
methods for spatial and temporal prediction, are not only used in the MPEG family
of standards but also in modern video codecs which are used all over the world.

Since we do not know which codec will dominate the market, and MIV is de-
signed to benefit from itself being codec-agnostic, in Chapter 4 of this thesis, we also
test the atlas compression performance of codecs outside of MPEG. We test the AV1
standard [39] from Alliance for Open Media [40], as well as the AVS3 standard [41]
from Audio Video Coding Standard Workgroup of China’s [42]. AV1, a video cod-
ing standard that is open and free of royalties, is commonly regarded as the primary
rival to VVC and HEVC. Although its main application is video transmission over
the Internet, AV1 is believed to be a versatile codec capable of coding any type of
video signal [43]. AVS3 is the third generation of Audio Video Standard in China,
focused on improving the coding for higher resolution content and more efficient
parallel processing architectures [41].

2.3 Immersive video coding schemes

Depending on the chosen immersive (volumetric) video format, one may choose a
different coding paradigm. In this section, we will focus on the coding schemes
utilized to compress MVD data.

2.3.1 Simulcast coding

The first paradigm for MVD video coding is simulcast coding. In a simulcast setup,
every video is encoded independently with some of the legacy video codecs. In the
case of MVD content, each texture and depth video is encoded separately. Here,
the similarities among the views are not considered in the encoding process [14, 3].
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FIGURE 2.4: Different inter-picture predictions [44] ©2016 IEEE.

At the decoder side, novel views can be generated using the depth-image-based
rendering techniques (see Section 2.5.1). The benefit of a simulcast approach is its
simplicity since it is using off-the-shelf 2D video codecs. Moreover, simulcast does
not include more complex predictions among the texture videos or between texture
and depth videos, and can perform compression in a distributed fashion. However,
it is not an optimal solution in rate-distortion terms, since it is not considering the
similarities among multiple views of a scene.

2.3.2 Multi-view and 3D video coding

Another paradigm for immersive video coding is aiming to exploit additional re-
dundancies that appear when the same scene is being observed from multiple per-
spectives. Similarly to the simulcast pipeline, novel virtual views can be generated
using the DIBR techniques (see Section 2.5.1) at the decoder side. The HEVC exten-
sions designed to support multiview and 3D video are known as Multiview High
Efficiency Video Coding (MV-HEVC) and 3D High Efficiency Video Coding (3D-
HEVC), respectively.

MV-HEVC and 3D-HEVC extensions employ a multilayer approach for predic-
tive coding, achieving strong bitrate savings via the tools for inter-view prediction
and inter-component prediction, respectively [44]. Here, different layers are multi-
plexed into one final bitstream and they can depend on each other. A view is de-
noted by the layers that correspond to texture and depth videos belonging to the
same camera perspective. A component is denoted by the layers that carry the same
type of information, (texture or depth). An access unit (AU) contains all pictures that
are related to the same capturing or display time instance.

Inter-view prediction is the prediction done between an observed (texture) view
and its reference, which belongs to another (texture) view. It is deployed in MV-
HEVC. Inter-component prediction is exploiting the dependencies between the tex-
ture video and its corresponding depth. It is used in 3D-HEVC, together with the
inter-view prediction.

Fig. 2.4 depicts different possible inter-picture predictions between the views:
A denotes an access unit, V denotes the notion of views, and C components. MV-
HEVC includes only the inter prediction (temporal prediction), and inter-view pre-
diction in the same access unit. The base view contains only the temporal references
(A, prediction from the reference AU0 to AU1), while other views have temporal, but
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also reference pictures from other views (V, from the reference in view0 to view1).
3D-HEVC texture-only coding additionally enables the inter-view prediction across
different AUs (A+V, from the reference AU0 in view0 to AU1 in view1). 3D-HEVC
texture and depth coding enables the inter-component prediction between textures
and depths, in the same AU. The first example is C, prediction from the reference
texture in view0 to depth in view0. The second example is C+V, combined inter-
component and inter-view prediction, from reference depth in view0 to texture in
view1.

3D-HEVC also deploys depth coding tools, which deal with the distinct features
of depth maps (such as large homogeneous areas separated by sharp edges). These
methods include new intra-picture prediction and residual coding. Furthermore,
additional depth tools have been introduced, enabling the prediction of motion and
partitioning information from texture layers, or inter-view prediction of motion.

The benefit of MV-HEVC is that it can be implemented without changing the syn-
tax or decoding process of single-layer HEVC below the slice-level header. There-
fore, it allows the reuse without the big changes required to build the MV-HEVC
decoder. However, it requires having all the data centralized in one place (encoder
and decoder), which is difficult to deploy in practice, and it does not conform to the
pixel rate constraints for immersive video [20]. Moreover, inter-component predic-
tion enabled by 3D-HEVC brings additional complexity to the encoder, making its
deployment even more challenging. Furthermore, both MV-HEVC and 3D-HEVC
have limited efficiency depending on the content characteristics. Their inter-view
prediction is computed via block-based disparity, which means that the coding tools
are efficient only in the case of 1D linear and coplanar camera arrangement [44].

All of the previously mentioned drawbacks caused the low adoption of these
MVD standards in the industry, which lead to the development of a simpler ap-
proach for coding the MVD data, which will be covered in detail in Chapter 3, and
which is the main object of this thesis.

2.3.3 Visual volumetric video-based coding

Due to the disadvantages of basic simulcast and multi-view and 3D video coding
for MVD data, a new approach was created, which is supposed to ease the adop-
tion in the industry and enable the practical use case. With that goal, the constraints
on pixel rate and number of decoders at the receiver are set, which follow the ex-
perimental results stating that on a current high-end mobile device, it is possible
to simultaneously decode up to four ultra HD resolution streams at 30 frames per
second [20]. This approach results in just a few full views and only the parts of
other views (patches) that are missing for a high-quality rendering, by removing
redundancies via re-projections. This solution is called ISO/IEC 23090-12 MPEG
Immersive Video (MIV) standard [23]. The output of MIV is encoded using already
available 2D video codecs, and rendering is done with a non-normative DIBR tech-
nique. MIV will be exhaustively presented in Chapter 3.

Recently, several tools have also been proposed in MPEG for efficient point cloud
data compression. Notably, there are two distinct technologies, one being ISO/IEC
23090-5 Video-based Point Cloud Compression (V-PCC), and another being ISO/IEC
23090-9 Geometry-based Point Cloud Compression (G-PCC) [45].

V-PCC relies on the idea of projecting the point cloud onto 2D planes, which sim-
plifies the problem of point cloud compression by reducing it to image and video
coding. This approach is beneficial because it is easy to deploy. It leverages existing
state-of-the-art video codecs, and additional V-PCC bitstream is easy to decode since
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it solely describes the information needed for subsequent (non-normative) render-
ing. V-PCC is proven to perform better than G-PCC on dynamic point clouds.

On the other hand, G-PCC encodes a point cloud straight from the 3D domain. It
separately codes the geometry and attributes, where attribute coding leverages the
decoded geometry, to gain coding accuracy [35].

Both MIV and V-PCC aim to encode their data in a video-based fashion, there-
fore, they have been aligned in a common specification called Visual Volumetric
Video-based Coding (V3C). V3C gives extension mechanisms for V-PCC and MIV.
Thus, since their terms and definitions are aligned, in this thesis we will use the
words geometry and depth, as well as attribute and texture interchangeably.

The next section will detail the important tools for obtaining depth maps in the
process of depth estimation.

2.4 Depth estimation

The multi-view plus depth video format indicates having depth maps alongside tex-
ture videos. Acquiring depth maps can be done by depth cameras and depth sen-
sors (such as structured light and time-of-flight [46]). These are the so-called active
methods, and they are limited by their low resolution, limited measurement range,
and high cost [47]. To overcome these challenges, depth estimation is an alternative
(passive) approach to computing depth maps from the images captured by image
sensors. Depth estimation involves the techniques used to extract the geometry of a
3D scene from one or more cameras. Depth estimators can be classified as monoc-
ular, using a single view to obtain its depth value by extracting depth cues [48],
and (multi-view) stereo, dealing with two or more views, assuming that a particular
pixel can be found in another view [49].

Depth estimation methods in the literature often only address a subset of the re-
quirements needed for an immersive video system (real-time applications [50, 51],
inter-view consistency [49], depth super-resolution [52], wide-baseline setup [53]).
Other problems, such as temporal consistency for videos, domain shift between
natural and computer-generated content, high source image resolutions, compli-
ance for different camera setups and image/video projections, etc. are rarely ad-
dressed [26, 54].

The approaches studied in the MPEG standardization for the development of
novel immersive video technologies, such as DERS [55] and IVDE [56], are meant
to be versatile and adapt to a general purpose of an immersive video system. This
thesis evaluates the performance of these approaches in a given immersive video
framework. We also study the performance and benefits of two approaches outside
of MPEG, which are learning-based, called GwcNet [57] and GA-Net [58]. Although
these methods were not initially developed for view synthesis applications, they
were available and recognized in the literature as high-performing. We evaluate
them in the context of depth image-based rendering for immersive video, and also
observe their performance, as compared to the MPEG approaches.

The rest of the section will recall the concepts of 3D geometry, needed to de-
scribe the depth estimation problem, and detail the mentioned non-learning-based
(classical) and learning-based approaches employed in Chapter 5.
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2.4.1 Perspective projection

The goal of multi-view stereo techniques is the following: given several images of
the same scene (or object), compute the representation of its 3D shape. For multi-
view stereo algorithms to function, it is necessary for each input image to have a
corresponding camera model that explains the process of projecting a 3D point in
the real world into a 2D pixel position in a specific image. The most frequently
utilized camera model is the pinhole or perspective camera model [59], which we detail
here.

Firstly, we will derive the perspective projection from world to camera coordi-
nates, as illustrated in Fig. 2.5. Let us have a look at a point Pw with world coordi-
nates (Xw, Yw, Zw). To convert these to camera coordinates Pc = (Xc, Yc, Zc), we use
the equation in homogeneous coordinates:[

Pc
1

]
=

[
R T

01×3 1

] [
Pw
1

]
, (2.5)

where the vector T of size 3 × 1 describes the world origin W in the camera coordi-
nate system with the center in C, and the rotation matrix R of size 3 × 3 describes
the orientation of the world coordinate frame with respect to the camera frame. The
matrix [RT] is called pose matrix, or denoted as extrinsic parameters matrix.

FIGURE 2.5: Projection from world to camera coordinates [60].

Secondly, we will describe the projection of the point Pc from the camera frame
to pixel coordinates (u, v). To do this, we utilize the following conversion: λu

λv
λ

 =

 fu 0 u0
0 fv v0
0 0 1

 Xc
Yc
Zc

 = K

 Xc
Yc
Zc

 , (2.6)

where K represents the calibration matrix, or instrinsic parameters, fu is the focal
length in the u-direction, and fv is the focal length in the v-direction. It is usually
assumed that pixels are square shaped, i.e., fu = fv = f . In Fig. 2.5, f is the distance
between the camera system origin C and the so-called principal point O, which is
located at the intersection of the camera optical axis and the image plane. For the
linear mapping from 3D to 2D, we use homogeneous coordinates by introducing a
scale factor λ, which is usually equal to 1.
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Finally, combining the Eq. (2.5) and Eq. (2.6), we get the perspective projection
from the world coordinates to the image plane:

λ

 u
v
1

 = K
[

R T
] 

Xc
Yc
Zc
1

 , (2.7)

and we call the matrix K [R T] the projection matrix. Having defined the projection
process, we now proceed to define the concept of stereo disparity and explain how
depth can be computed.

2.4.2 Stereo disparity and depth computation

Let us consider a point P in 3D space. Its depth is defined as the distance between
the optical center of the camera lens and the plane which contains the point P and is
perpendicular to the camera optical axis [61]. If the world coordinates of the point P
are given by P =

[
X Y Z

]T, a projection equation in homogeneous coordinates

to the point p =
[

u v
]T in the image plane is as follows:

z
[

p
1

]
= K

[
R T

] [ P
1

]
, (2.8)

where z is the distance of the point P from the plane perpendicular to the camera op-
tical axis that contains the camera center. Depth in z-distance format is represented
in arbitrary units.

Now, let us consider a stereoscopic acquisition system, where the two cameras
are located side by side and have identical intrinsic parameters, we have:

KL = KR =

 f 0 u0
0 f v0
0 0 1

 . (2.9)

Let us assume that both cameras look in the direction of z-axis and that the left
camera defines the common 3D coordinate system (i.e., RL = RR = I), while the
right camera is shifted by b units along the x-axis: TL =

[
0 0 0

]T, and TR =[
b 0 0

]T. The value b is called the baseline, and it is equal to the distance be-
tween the optical centers of the two cameras. Two cameras capturing the point P in
the scene are projecting it onto the image plane of the first camera and the second
camera as the point pL =

[
uL vL

]T and the point pR =
[

uR vR
]T, respectively.

Substituting these values into the two perspective projection equations gives:

zL · pL =

 f · X + u0 · Z
f · Y + v0 · Z

Z

 , (2.10)

zR · pR =

 f · (X − b) + u0 · Z
f · Y + v0 · Z

Z

 . (2.11)

Combining the equations (2.10) and (2.11) we get:
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zL = zR = Z

uL = f · X
Z
+ u0

uR = f · X − b
Z

+ u0

vL = vR = f · Y
Z + v0

(2.12)

Thus, the cameras project the point P on the same row (vertical y-axis) vL = vR,
while horizontal shift (on x-axis), called disparity, is equal to:

d = uL − uR = f · b
Z

(2.13)

Therefore, the disparity d refers to the difference in image location of the same 3D
point when projected under perspective to two different cameras. As it can be seen
from Eq. (2.13), we can fully define the 3D position of a point by knowing the dis-
parity, camera baseline, and focal length.

FIGURE 2.6: Stereo disparity illustrated [60].

Fig. 2.6 illustrates stereo disparity computation, where both cameras, with cen-
ters C1 and C2, observe the point P. The disparity can be computed intuitively, using
similar triangles, and observing f and Zp, and their counterparts ul and Xp (or ur
and Xp − b), respectively.

With the goal to store the disparity and depth information independently from
the camera pairs, their baseline and focal length, and to exploit the whole dynamic
range of a depth map, one may employ a disparity normalization:

dnorm =
d − dmin

dmax − dmin
· (2n − 1), (2.14)

where dnorm is a normalized disparity value, and (2n − 1) is the maximal binary
value for representing the depth, i.e., 255 in the case of n = 8-bit depth maps. More-
over, dmin is the disparity of the furthest object considered in the scene, and dmax is
the disparity of the nearest object in the scene. Applying the equations:

dmin = f · b
Z f ar

dmax = f · b
Znear

(2.15)
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into Eq. (2.14) and simplifying it (where Znear and Z f ar represent z-distance to the
nearest and the furthest object in the scene, we obtain:

dnorm =

1
Z
− 1

Z f ar

1
Znear

− 1
Z f ar

· (2n − 1). (2.16)

These normalized values are afterward used in the scope of MPEG, for different
software (depth estimators, view synthesizers, TMIV, MV-HEVC, 3D-HEVC). For
each of the tested video sequences, Znear and Z f ar values are given in the camera
parameters, and the further computation is straightforward, given the Eq. (2.16).

2.4.3 Classical depth estimation approaches

This section gives an overview of the algorithms used by the two classical depth
estimation approaches tested in this thesis: Depth Estimation Reference Software
(DERS) [62, 63] and Immersive Video Depth Estimation (IVDE) [64], both used in
the MPEG standardization for the development of the novel immersive video tech-
nologies. Most depth estimation algorithms rely on matching corresponding image
regions or blocks in two or more cameras with slightly different positions to de-
termine the disparity between corresponding texture pixels. Both described meth-
ods are constituted of the matching cost computation and the graph cuts energy
minimization. Additionally, they perform temporal consistency enhancement pro-
cedures to ensure a better visual quality for virtual navigation and speed up the
estimation process.

In the case of DERS, the matching cost Cij(l) represents the cost of a depth label l
selection to a pixel (i, j) in the reference image R, which gives a corresponding pixel
(u, v) in the synthesized target image T. It is computed using a modified sum of ab-
solute difference (SAD) metric on the 3 × 3 blocks of pixels centered on given pixels
(i, j) and (u, v). The number of reference images in the older DERS version was up
to 4 (left, right, top, and bottom view), while the newer DERS version [55, 63] sup-
ports any number of input reference views. In order to ensure temporal coherence
for videos (avoid flickering artifacts) and to speed up the depth estimation process,
the temporal enhancement step can be activated, which prevents the need to recal-
culate matching errors for pixels that have been designated as “non-moving” pixels.
Finally, instead of computing the depth map with a “winner-takes-all” approach
- which would result in a local optimal depth estimation - the authors initialize a
Markov random field graph with labels and costs for each pixel and use the graph
cut and α-expansion methods to obtain a satisfactory global depth estimation and
minimize the energy function [65, 66]:

E = ∑
l

(
Edata(l) + Esmooth(l)

)
(2.17)

Edata is the data attachment term and is obtained by combining the camera base-
line D between T and R, the matching cost Cij(l), and the reliability weight Rw:

Edata(l) = D · Rw · Cij(l), (2.18)

where Rw is a reliability map, whose goal is to enable the depth estimation in flat
texture areas (spatial smoothness) by weighting the matching error based on the
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color slopes (spatial gradient) S between adjacent pixels of the reference image (Rth
is a reliability threshold):

Rw =


Rth
0.3 , if S < 0.3
Rth
S , if 0.3 < S < Rth

1, if S > Rth

Aside from the cost and the reliability map, the energy function is also influenced
by a smoothing map Sw, whose goal is to give more importance to the labels with
smaller depths (close objects) and avoid over-propagation to background area:

Esmooth(l) = λ · Sw · Eld, (2.19)

where Esmooth is a regularization term, λ is a smoothing coefficient, Eld is a depth
continuity error, i.e. label difference (giving more importance to close labels), and Sw
is:

Sw =


1, if S < ρ · Sth
ρ·Sth

S , if ρ · Sth < S < Sth

ρ, if S > Sth

where ρ is the second smoothing coefficient, and Sth is a smoothing threshold.
Finally, the depth estimation process ends when the identified best set of labels l

gets converted to a normalized depth map.
IVDE, another tested approach, estimates depth for segments s ∈ Sv instead of

for each pixel individually, as shown in Fig. 2.7. The segment borders are calculated
with SNIC method [67], and they are collocated with object boundaries, which helps
to ensure the quality of computed depth maps.

FIGURE 2.7: An example of IVDE intra-view discontinuity cost and
inter-view matching cost on a segment s [64] ©2020 IEEE.

Moreover, the cost function has two different constituents: intra-view disconti-
nuity cost Ds,t with a smoothing regularization term, computed for each individual
view, and inter-view matching cost Ms,s′ , which is defined between the view v ∈ V
and its neighboring view v′ ∈ Wv:
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E(d) = ∑
v∈V

∑
s∈Sv

(
∑

v′∈Wv

Ms,s′(ds) + ∑
t∈Ts

Ds,t(ds, dt)

)
, (2.20)

where d is a vector of depth values for all segments in all views, ds is the depth of
segment s which is currently being considered, t ∈ Ts are segments neighboring to s,
and dt id the depth of segment t which is currently being considered. For a particular
segment s, any depth value ds can be selected, which can point at any pixel in the
view v′, and not just to the s′ segment center (see Fig.2.7).

The intra-view discontinuity cost is calculated as:

Ds,t(ds, dt) = β · |ds − dt|, (2.21)

where β is a smoothing coefficient, calculated using the initial smoothing coeffi-
cient given by the user, and the L1 distance between the segments s and t.

The inter-view matching cost is computed in the pixel domain, in a window A
around the center of a given segment and the corresponding point in a neighboring
view, using L1 distance ∥ · ∥1. First, we have:

ms,s′(ds) =
1

size(A) ∑
a∈A

∥∥∥[YCbCr]µs+a − [YCbCr]T[µs]+a

∥∥∥
1

, (2.22)

where a is a point in window A, µs is the center of the segment s, [YCbCr]µs+a is
the vector of Y, Cb, Cr color components of the µs center of the segment s, T[·] is a
3D transform derived from intrinsic and extrinsic camera parameters, [YCbCr]T[µs]+a
is the vector of Y, Cb, Cr color components of the point in the view v′ which is ob-
tained with the 3D transformation from µs center of the segment s in the view v.
Furthermore, the inter-view matching cost Ms,s′ is calculated as follows:

Ms,s′(ds) =

{
min{0, ms,s′(ds)− K}, if ds = ds′

0, if ds ̸= ds′

where ds is a currently considered depth of segment s in view v, while ds′ is a
currently considered depth of segment s′ from view v′. Here, K > 0 and it represents
a threshold for ms,s′ ; if surpassed, it means that segments s and s′ are different objects
and the inter-view matching cost will not decrease the overall cost function E(d). K
is a value that models the noise in the images:

K ≈ Nσ ·
√

Nv ·
√

Nc · σ, (2.23)

and equal to K = 30, as derived from: the standard deviation of typical noise
Nσ = 5, of two views Nv = 2, three color components Nc = 3, and standard devia-
tion σ of noise distribution existing in a single source (the value up to 2.5).

As opposed to DERS, the depth estimation is executed simultaneously for all the
views, and the resulting depth maps are inter-view consistent. Consequently, this
makes the technique robust to possible specular reflections and also attenuates the
influence of other non-Lambertian reflections on the accuracy of depth maps. Fur-
thermore, this method makes no assumptions about the position of the views, and
the optical axes of the cameras do not need to be parallel, making this method more
general and convenient for immersive video applications. The method also utilizes
the temporal consistency enhancement procedure, which additionally speeds up the
processing time. The graph cut method and α expansion are used to compute the
minimum of the cost function, where each node corresponds to one segment.
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2.4.4 Learning-based depth estimation approaches

This section details the two neural depth estimation approaches tested in the scope
of this thesis, which go beyond MPEG standardization activities: Group-wise Cor-
relation Stereo Network (GwcNet) [57] and Guided Aggregation Net for End-to-end
Stereo Matching (GA-Net) [58]. Although not initially developed for view synthesis
purposes, both methods were recognized in the literature as highly performing (at
the time of our studies) and were evaluated in the context of depth image-based ren-
dering for immersive video during our experiments. The methods perform stereo
matching on a pair of rectified images and they are constituted of convolutional
neural network (CNN) layers. Both GwcNet and GA-Net are tested with their pre-
trained models, trained on the Scene Flow [68] (synthetic stereo video dataset with
different scenes) and KITTI [69] (real-world stereo videos of road scenes) datasets.

GwcNet is a network that aims to create the cost volume through group-wise
correlation and it relies on four parts: unary feature extraction, cost volume con-
struction, 3D aggregation, and disparity prediction, as shown in Fig. 2.8.

FIGURE 2.8: The high-level block scheme of GWCNet architec-
ture [57] ©2019 IEEE.

Firstly, ResNet-based network is utilized to extract high-level features from rec-
tified stereo images, separately for each view. The resulting feature maps from the
last three layers of the ResNet-based network are combined into a unary feature map
for each view. The next step involves creating the cost volume, which is formed by
merging the concatenation volume and group-wise correlation volume. The concate-
nation volume is generated by merging the unary features for both views (which are
first compressed with two convolutions), while the correlation volume is computed
by performing correlation among groups of left and right features. Subsequently,
the concatenation and correlation volumes are merged into a combined volume by
concatenation, which is then used to predict the cost volume. Afterward, a 3D ag-
gregation network, consisting of a module with convolutional layers followed by
three stacked 3D hourglass encoder-decoder networks, predicts a refined cost vol-
ume. Finally, the 3D aggregation network is connected to four output modules that
regress a disparity map.

In output modules (3D aggregation), two 3D convolutions compute a 1-channel
4D volume, which is subsequently upsampled and converted into a probability vol-
ume with softmax function σ(·) along the disparity dimension. Each pixel has the
vector of length Dmax which contains the probability p for all disparity levels. Next,
the disparity d̃ estimation is given by the soft argmin function:

d̃ =
Dmax−1

∑
k=0

k · pk, (2.24)
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where k and pk stand for a potential disparity level and its corresponding prob-
ability. Four output modules predict disparity maps d̃0, d̃1, d̃2, d̃3. For disparity re-
gression, the loss function is defined as follows:

L =
i=3

∑
i=0

λi · SmoothL1(d̃i − d∗), (2.25)

where λi denotes the coefficients of the disparity prediction d̃i and d∗ denotes
the ground truth disparity. The SmoothL1 is calculated as follows:

SmoothL1(x) =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

It is robust to the disparity discontinuities and has low sensitivity to noise or
outliers.

GA-Net, the second tested deep learning approach, intends to replace the com-
putationally costly 3D convolutions for cost volume regularization, by employing
semi-global guided aggregation (SGA) and local guided aggregation (LGA) layers.
Fig. 2.9 depicts its architecture which consists of: feature extraction (stacked hour-
glass CNN connected by concatenations), 4D cost volume aggregation, the guidance
sub-network which produces cost aggregation weights, and disparity estimation.

FIGURE 2.9: The high-level block scheme of GA-Net architecture [58]
©2019 IEEE.

A differentiable approximation of semi-global matching is used by SGA, and
it aggregates the matching cost over the entire image in various directions, which
allows for precise estimations in occluded areas or reflecting and textureless areas.
LGA refines the thin structures and makes up for the downsampling that is done
before the cost volume block.

For training the disparity regression, similarly, as for GwcNet, the loss function
is defined as follows:

L(d̂, d) =
1
N

N

∑
n=1

Smooth(|d̂ − d|), (2.26)

where disparity prediction d̂ is the sum of each disparity candidate weighted
by its probability (as given in Eq. (2.24)), |d̂ − d| is the absolute error of predicted
disparity, N is the number of valid pixels with ground truth values for training, and
Smooth function is defined as follows:

Smooth(x) =

{
0.5x2, if x < 1,
x − 0.5, if x ≥ 1.
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The presented learning-based methods have been evaluated on the Middlebury [70]
and KITTI [71] benchmarks, showing good performance in terms of given stereo-
matching metrics (root mean squared error, percentage of bad pixels, etc.). Such
metrics evaluate the performance of stereo algorithms on various aspects such as
accuracy and completeness. However, studies have demonstrated that such metrics
are not strongly correlated with conventional metrics used to measure video quality,
like PSNR and SSIM [72]. Therefore, our experiments in Chapter 5 investigate the
performance of learning-based approaches in a particular context of view synthesis.

Our study has demonstrated that traditional depth estimation approaches are
still more effective than learned-based methods. This is mainly because pre-trained
models are vulnerable to domain shift issues between natural and computer-generated
content. Additionally, learning-based methods often have poor computational effi-
ciency when dealing with high-resolution content, which is typical in immersive
video applications. On the other hand, learning-based approaches produce smoother
depth maps, which are easier to compress. This property could be useful in a stan-
dard MIV scenario, when depth maps are compressed and transmitted, or in a hybrid-
DSDE scenario.

The next section presents different view synthesis approaches, detailing the clas-
sical DIBR and learning-based IBR techniques.

2.5 Virtual view synthesis

While the multi-view video format presents opportunities for numerous future ap-
plications, efficiently acquiring, storing, transmitting, and processing this type of
data still continues to pose a challenge. In this context, novel view synthesis meth-
ods are particularly important as they recreate the parallax effect of a 3D scene by
enabling the creation of virtual viewpoints using a limited number of input images.

The different methods of rendering, along with their corresponding represen-
tations, are categorized into three groups: rendering without geometry, rendering
using implicit geometry, and rendering using explicit geometry [73].

In our context, we deal with various camera setups with relatively large camera
baselines and different camera projection formats (perspective/pinhole projection
as well as equirectangular projection). Hence, within the scope of this thesis, we
have employed view synthesis tools for a novel view generation that are versatile
and recognized by the MPEG community and academia.

In the following sections, we will focus on the tools we utilized: first, we will
provide an overview of depth image-based rendering principles and given solutions
(methods with explicit geometry), and afterward, we will discuss image-based ren-
dering with a closer look at the neural image-based solutions (methods with implicit
geometry).

2.5.1 Depth image-based rendering

Depth image-based rendering (DIBR) is a technique that doesn’t involve explicit re-
constructing of the 3D scene geometry. Rather, it uses the corresponding depth map
to warp the input color image. Advanced stereoscopic display processing technolo-
gies, such as autostereoscopic displays, benefit greatly from DIBR as it allows for the
creation of a more immersive and realistic viewing experience. Below we will give a
description of the DIBR process.



24 Chapter 2. Background and State of the Art

In Section 2.4.2, we have detailed the camera perspective projection, with the
matrix K [R T]. Here, we give again the equation for the projection of the point P in
the 3D space to the point p in the image plane of the camera:

z
[

p
1

]
= K

[
R T

] [ P
1

]
. (2.27)

which is equivalent to:
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 =

 f 0 cu
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 . (2.28)

The Eq. (2.28) can be transformed, and homogeneous coordinates can be added,
to obtain a more general equation with a projection matrix M [62]:
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 , (2.29)

which can be simplified to:

z


u
v
1

1/z

 = M


X
Y
Z
1

 . (2.30)

Following these equations, one can, given the depth value Z of the pixel and the
input image, back-project the point P from the image plane to the world, using the
inverse projection matrix M−1:

X
Y
Z
1

 = zM−1


u
v
1

1/z

 . (2.31)

Let us consider a pixel pin from the input camera, with its projection matrix Min,
and its depth zin, and the target pixel ptar from the output camera, with its projection
matrix Mtar and its depth ztar. By using the Eq. (2.30) and Eq. (2.31) we can obtain a
homography matrix H which projects the input pixel pin to the target pixel ptar:

ztar ptar = zin Mtar M−1
in pin, (2.32)

which can be simplified to:
ztar ptar = zinHpin, (2.33)

where the matrix H has a dimension of 4 × 4 and is common for all depth values
of different pixels. It can be calculated knowing input and target camera parameters.

The homography projection Eq. (2.33) should be applied to each pixel of the input
image to generate a novel viewport. Nevertheless, not all the pixels in the novel
viewport can be successfully generated with this technique. Some challenges still
remain [74]:
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• errors in depth maps, which can cause ghosting artifacts,

• differences in color among source views,

• occlusions, which happen when objects in source views occlude parts in the
background which are visible from the target image,

• zoom or step into the scene, which can create cracks and dilation,

• increasing the baseline between the source cameras,

• rendering of non-Lambertian objects that exhibit transparency or specularity.

We will give a brief overview of the algorithms used for the novel view rendering
with TMIV, and show how they are handling some of the challenges mentioned
above. The two classical depth-image-based rendering approaches are Reference
View Synthesis (RVS) [11, 75] and View Weighting Synthesizer (VWS) [24] software,
both recognized by the MPEG standardization group for the development of MIV
standard. Both methods are rendering target viewports from any number of input
videos, support a large baseline, and handle the content with both perspective and
equirectangular projections.

The first TMIV renderer alternative is derived from RVS [11]. It projects the
source image points onto the target image points, using the triangles method [76]. A
grid of triangles is formed by dividing each input image, with triangle vertices being
the pixels that are adjacent to each other. These vertices are then reprojected to the
new target image, triangles are deformed and rasterized. The projected pixels which
are elongated are considered to lie on a disocclusion or a tangential surface, and they
are discarded. The texture color and depth values in a triangle are computed via
barycentric interpolation.

The pixel blending is independent of the rendering order. It is done in such a way
as to prefer the closer views over views that are further away, to prefer foreground
over background objects, and to penalize very elongated triangles, as given in the
Eq. (2.34):

pblend = ∑i w (γi, di, si) · pi
w : (γ, d, s) → exp(−cγ · γ + cd · d − cs · s), (2.34)

where pblend is the target pixel, computed from different contributions (pixels pi).
Moreover, w is an exponential function that maps the input variables given as a ray
angle γ (between the input and target camera), reciprocal geometry d (the reciprocal
of the depth value in the target view), and stretching s (the value of the triangle area
in the target view with respect to the source view).

The VWS method is the TMIV renderer used in the scope of this thesis. It aims
to alleviate the artifacts caused by the inconsistencies in source depth maps and to
allow smoother transitions between viewports. To this end, VWS deploys visibility
and shading steps.

The visibility step generates a target viewport depth map, using splat-based ras-
terization [24] in pixel reprojection to the target viewport. The selection of the depth
pixels is done based on the carefully chosen weighting strategy, where weights de-
pend on the distance between the input and target viewport position (tri-dimensional
camera rigs) or the distance between the target viewport and the input view forward
camera axis (linear or planar rigs). Moreover, the weight is updated during render-
ing, using TMIV pruning information, which gives additional importance to pixels
that are reprojected on the pruned areas.
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The shading step computes the color of the target viewport via the weighted
blending of the input pixels. The input pixel weight is calculated depending on its
consistency with the visibility map and its input view weight.

2.5.2 Neural image-based rendering

Image-based rendering methods are the ones that render novel views directly from
available input images. To this end, they employ view interpolation, view morph-
ing, or transfer methods. These techniques deal with the implicit scene geometry,
and they obtain the 3D information of a scene by computing positional correspon-
dences, such as point features [73].

Lately, there has been huge progress in the field of neural image-based render-
ing [77, 78]. These methods aim to render novel views of complex scenes captured by
a sparse set of input views, and they can have different 3D scene representation for-
mats. Furthermore, the field of neural image-based rendering has been transformed
by the Neural Radiance Fields (NeRF) technique [79]. By utilizing multi-layer per-
ceptrons (MLP) and positional encoding, it can represent a scene with remarkable
accuracy. Here, the static scene is described as a continuous 5D function, which gen-
erates the radiance released in each direction (θ, ϕ) at every point (x, y, z) in space,
and a density at each point. This density works as a differential opacity that governs
the amount of radiance gathered by a ray that passes through (x, y, z). The model’s
ability to handle non-Lambertian effects while rendering new views is enabled by
its view-dependent nature. Nevertheless, NeRF-based (implicit) models encode a
scene into their own weights and require a lengthy optimization process to render
an unfamiliar scene, which makes them impractical.

One of the recently developed methods, IBRNet [73], tested in the scope of this
thesis, is a state-of-the-art, robust neural radiance field method that generalizes well
to novel scenes. Its ability to generalize is a desired characteristic for an immer-
sive video renderer in the transmission scenario. IBRNet builds both on traditional
image-based rendering and on the NeRF approach [79], generating a continuous and
differentiable scene radiance field. Its end-to-end design prioritizes the optimization
of synthesis quality, outperforming recent one-shot synthesis approaches, like [77],
while still having good quality synthesis results as compared to single-scene infer-
ence approaches.

IBRNet (Fig. 2.10) first identifies a set of neighboring source views to a target
and extracts their image features. Then, for each camera ray in the target view, it
computes colors and densities for a set of samples along the casted ray. Finally,
colors and densities along that ray are accumulated to render the color of the target
pixel. In the course of training, the mean squared error between the ground truth
pixel color and the rendered pixel color is minimized.

More specifically, let us observe a point x ∈ R3, with unit-length viewing direc-
tion d ∈ R3, which lays on a ray r ∈ R3. The point x is reprojected on N selected
source views, which yields the corresponding obtained colors {Ci}N

i=1 ∈ [0, 1]3 and
image features {fi}N

i=1 ∈ Rd. The extracted image colors, and features, with direc-
tions, are given to an MLP architecture, with the goal to aggregate local and global
information and obtain features that are multi-view aware.

Subsequently, instead of predicting the density σ straight from the density fea-
ture fσ, a ray transformer module is used. It takes M different samples on a ray
( fσ(xi), ..., fσ(xM)), ordered from near to far, and passes them to a positional encod-
ing and multi-head self-attention module that creates the final density value σ. The
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FIGURE 2.10: An overview on IBRNet pipeline [73] ©2021 IEEE.

described module enables the samples to attend to each other along a given ray,
consequently improving geometric reasoning and density predictions.

To produce a color at a particular 5D point, this method predicts blending weights
for the image colors {Ci}N

i=1 in the source views that are associated with that point.
For each source color Ci, the features are concatenated with the direction relative to
the source view direction, which is the difference ∆di = d − di, with d being the
view direction of the ray r. These concatenated features are passed to a neural net-
work that gives a blending weight wc

i associated with each color. Finally, the color
for the 5D point is blended with a soft-argmax operator:

c =
N

∑
i=1

Ci · exp wc
i

∑N
j=1 exp(wc

j )
. (2.35)

The Eq. (2.35) has been defined for a continuous 5D query location (x, d), yield-
ing a color c and a density σ. To render the color along the ray r, let us take M
samples on the ray, sorted along the ray with ascending depths. The colors ck are
then accumulated and modulated by their densities σk:

C̃(r) =
M

∑
k=1

Tk · (1 − exp (−σk)) · ck, (2.36)

where Tk = exp

(
−

k−1

∑
j

σj

)
. (2.37)

The loss function is constructed by combining the outputs of two models, coarse
and fine. They have an identical architecture, but operate on different sample inputs:
the coarse yields a prediction on sample locations that are at the equidistant disparity,
while the fine gets samples on the ray which are expected to be placed at the areas
relevant for rendering. The loss function is then defined as follows:

L = ∑
r∈R

[∥∥∥C̃coarse(r)− C(r)
∥∥∥2

2
+
∥∥∥C̃fine(r)− C(r)

∥∥∥2

2

]
, (2.38)

with R being the set of rays in a training batch.
The presented classical DIBR methods are fast and robust, but limited in their
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ability to handle non-Lambertian content, due to the invalidity of the linear hypoth-
esis of pixel displacement [75]. On the other hand, the benefits of neural IBR ap-
proaches, such as IBRNet, are their good rendering performance for very complex
content, robustness, and generalization capabilities. Their drawback is the render-
ing time needed for high-resolution content, which is the usual case for immersive
video applications.

2.6 Conclusion

This chapter has introduced immersive video representations and their coding so-
lutions, with a particular overview of the general principles of video coding for the
simulcast approach, and multi-view and 3D video coding solutions. Their draw-
backs have been discussed and novel volumetric coding solutions were presented.
The non-normative parts of the immersive video pipeline, depth estimation, and
view synthesis are discussed. The presented algorithms will be used in the follow-
ing Chapters, to evaluate the proposals presented in this thesis.

The next chapter will introduce the MPEG immersive video standard, its refer-
ence software, the notion of decoder-side depth estimation, and MPEG common test
conditions, and it will give the comparative performance of different MIV profiles.
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Chapter 3

MPEG Immersive Video

Since this thesis was mainly steered by the development of the MIV standard, and
its Geometry Absent profile, in this chapter we give a comprehensive review of the
most recent version of the Test Model for MPEG Immersive Video (TMIV), which
serves as the benchmark software for the MIV standard. The TMIV codec pre-
processes the source content, which involves converting input videos into atlases,
that are essentially a set of non-redundant multi-view data. This chapter provides a
detailed description of the TMIV encoding and decoding processes. In addition, we
outline the testing conditions, including the datasets, software, and quality metrics
utilized to evaluate the proposals. Finally, we analyze the performance of various
MIV anchors.

3.1 Introduction

The immersive video systems described in the previous chapter were deemed inef-
ficient and not versatile in compressing the MVD volumetric data. Hence, the need
for a new standard emerged, due to the increasing demand for high-quality immer-
sive experiences. This has led to a collective academic and industry effort to support
immersive media access and delivery, culminating in the ISO/IEC 23090-12 MPEG
Immersive Video (MIV) standard [23], which represents a critical milestone.

Firstly, a Call for Proposals for the coding of 3DoF+ videos, with the aim to en-
able user’s head movements within a limited space, was issued in January 2019 [80].
The underlying technique for MIV involves the use of a 2D video codec for the com-
pression of the transformed data, packed into atlases. Another standard for volu-
metric media, the ISO/IEC 23090-5 Video-based Point Cloud Compression (V-PCC),
also uses video codecs to compress its data, although it has a different approach for
the conversion of the 3D volumetric data into 2D content for compression. Thus,
during the 129th MPEG meeting, the fourth working draft of MIV was adjusted to
use ISO/IEC 23090-5 Video-based Point Cloud Compression (V-PCC) as a norma-
tive reference for various aspects such as definitions, terms, syntax, semantics, and
decoding processes. The alignment process was completed during the 130th MPEG
meeting by reorganizing Part 5 into a common specification called Visual Volumet-
ric Video-based Coding (V3C), with annex H being the Video-based Point Cloud
Compression (V-PCC) standard. Furthermore, V3C offers extension mechanisms for
V-PCC and MIV. This standard alignment resulted in a change of the input data’s
nomenclature, which is the reason why in this thesis, we will interchangeably use
the old terms labeled as texture and depth with newly adopted terms named attribute
and geometry, respectively. Finally, the first edition of the MIV standard was released
at the 135th MPEG meeting in July 2021 [23, 81]. The second edition of the standard
is currently in development.
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The MIV standard includes various profiles, to accommodate different input for-
mats, bandwidths, and client decoding resources [82]. The MIV Main profile is used
for MVD data, where the attribute is the texture, and the geometry is the depth in-
formation. It represents the occupancy of the atlas directly embedded in the depths,
where occupancy indicates if a pixel in the atlas is valid or not (pruned). The MIV
Extended profile allows the use of not only the MVD data but may separate the
occupancy from geometry and activate an additional, transparency attribute. This
enables a more advanced synthesis, which may be, e.g., based on the segmentation
of different objects using their materials or reflectance properties. Furthermore, the
MIV Extended - restricted subprofile enables the coding and delivery of a multi-
plane image (MPI) format [83], a format known for its rendering efficiency, by trans-
mitting attribute and transparency. Finally, the MIV Geometry Absent (GA) profile
is created to transmit solely the textures, and avoid the depth (geometry) transmis-
sion. Thus, this profile allows the cloud-based or decoder-side depth estimation, at
the client side.

This thesis is mainly relying on the notions of the decoder-side depth estimation
(DSDE) and its encoding scheme, enabled as the MIV GA profile. The DSDE system
offers several advantages compared to the other MIV profiles. Firstly, DSDE saves
a significant amount of bitrate since the coded depth maps can represent more than
half of the total bitstream in the MIV Main profile, particularly at low bitrates [26].
Additionally, it saves half of the originally used pixel rate, which can be instead
utilized for encoding textures with 2D codecs designed and optimized for texture
content. While 3D-HEVC could compress depths efficiently, this is not the case for
video-based solutions like MIV. Therefore, when we encode and transmit solely the
textures and recover the depths at the client (DSDE mode), we improve the quality
of light field reconstruction. Although the computational complexity of depth esti-
mation can be considered a drawback of the DSDE system, there have been multiple
works proposing more efficient methods for the depth estimation at the decoder
side [84, 85].

This chapter gives a detailed overview of the latest version of the Test Model
for MPEG Immersive Video (TMIV 15), which is the reference software for the MIV
standard. Since this thesis has been carried out from the very start of the MIV stan-
dardization process, the differences between the versions of TMIV used in the thesis
experiments are also given below. Moreover, this chapter presents the test conditions
(datasets, software, and quality metrics) followed in the evaluation of our proposals,
and the performance of different MIV anchors.

3.2 Test Model for MPEG Immersive Video

In brief, the TMIV encoder pre-processes the source material, transforming the input
videos into atlases. Atlases are a collection of data where most of the redundancies
are removed. Selected important information is presented as different patches in the
atlases, as shown in Fig. 3.1. TMIV encoder also generates the MIV bitstream, with
the information about the cameras and patches.

Particularly, the TMIV encoder is a non-normative implementation of MIV which
operates on the uncompressed source views and their camera parameters, selects
some of the parameters automatically (atlas frame size, number of atlases), prepro-
cesses the texture and depth map videos, and packs them into texture and depth at-
lases. Moreover, it produces the MIV metadata, containing the information required
to decode the atlas video streams. Subsequently, the 2D video encoder compresses
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FIGURE 3.1: Input data processing with TMIV encoder [24].

the atlases independently of TMIV, resulting in the production of atlas video sub-
bitstreams. A high-level block scheme of the encoding process is shown in Fig 3.2.
For the sake of simplicity, here we show just the texture and depth components
(without additional possible inputs such as transparency).

FIGURE 3.2: A high-level block scheme of the immersive video cod-
ing paradigm with MIV: encoding.

TMIV decoder reconstructs the pruned patches and recovers their information
(ID, original view position, etc.), which is needed for subsequent rendering. This
process is shown in Fig. 3.3.

More specifically, the TMIV decoder is a reference implementation of a normative
process that decodes the MIV metadata, while the 2D video decoder decodes the
atlas video sub-bitstreams. Afterward, the decoded atlases and MIV metadata are
used to render the target viewport, with a non-normative rendering technique, such
as RVS [11]. A high-level block scheme of the decoding process is shown in Fig 3.4.

Section 3.2.1 details the TMIV encoding process and Section 3.2.2 describes the
TMIV decoding and rendering processes.

3.2.1 TMIV encoder

The TMIV encoder can encode the source views in one or multiple subsets (groups),
where the number of groups is a user’s choice. The purpose of view grouping is
to identify bundles of views and individually analyze these bundles during the
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FIGURE 3.3: Decoding and reconstruction of TMIV pruned data [24].

FIGURE 3.4: A high-level block scheme of the immersive video cod-
ing paradigm with MIV: decoding.
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single-group encoding stage. Grouping is beneficial for preserving coherent non-
redundant regions of the scene because it enforces the sampling (during pruning)
to be done on the neighboring views. The TMIV encoder consists of a group-based
encoder, which is always invoked at the beginning of the encoding process (inde-
pendently of the number of groups), and a single-group encoder, which encodes
each group individually (see Fig. 3.5).

FIGURE 3.5: An overview of the TMIV encoding pipeline, with
group-based and single-group encoding.

Group-based encoding

During the first encoding phase, called group-based encoding, the quality of depth
maps is assessed for each source view. This assessment is done to verify if the level
of inter-view consistency among the depth maps is sufficient. The depth map of each
source view is reprojected to the others and the value of a depth pixel of the source
view is compared with the depth value of the corresponding 3 × 3 pixel neighbor-
hood in the target view. If the difference is higher than a defined threshold, the
source pixel is considered inconsistent, and when the total amount of inconsistent
pixels is higher than a given threshold, the depth map quality is labeled as low. If
the depth map quality is low, the renderer will not use it in the intermediate view
synthesis process. Instead, it will warp the texture pixels from the closest source
views to fill the holes.

Then, if the user requests more than one group, the source views are organized
into multiple separate sub-groups. The grouping process is done by determining the
key positions in the scene using the range and distance of cameras, by first finding
the dominant axis and the furthest view positions in the pool of views, and then
gathering the closest views to the key positions, for each group. The number of key
positions is equal to the number of groups.

Afterward, the synthesized inpainted background texture and depth view is pre-
pared, which is to be used instead of the inpainted data at the decoder side, and it
is additionally packed into the atlas. This process is designed to create the synthetic
data that is “hidden” from the non-pruned source views, which consequently re-
duces the complexity of the inpainting at the decoder. It is utilized to fill the pixels
that are lacking after intermediate view synthesis because at the decoder side, after
view reconstruction, only partial views are available due to pre-processing in the
TMIV encoder. The background view is synthesized from all source views, by ren-
dering the background over the foreground. The missing data are inpainted from
neighboring areas using the push-pull inpainter [86].
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Finally, some of the source views are labeled as basic views, and the rest of them
are labeled as additional views. Basic views are the views that are transmitted fully,
while additional views undergo detailed processing in the single-group encoding
step. However, there are two possible operating modes in TMIV, one which enables
the use of both basic and additional views, and another one, which enables having
only basic views as the output that is packed into atlases. Both of these modes are
used in the evaluation of the MIV’s performance, as will be detailed in Section 3.4.
The labeling method is based on the partitioning around medoids (k-medoids) al-
gorithm [87], where the basic views are k medoids among the source views, and
the repulsion/attraction cost function is formed based on the distance between view
positions.

Single-group encoding

The single-group encoding phase (see Fig. 3.5) is done on each group separately,
after all the steps in the group-based encoding phase are done. Therefore, it will
be done either on all the source views at once (if the number of groups is one) or
independently for each grouped subset of views.

In the beginning, the automatic calculation of the number of atlases and the at-
las frame size is done, according to the following constraints: the maximum size of
a luma picture, the maximum luma sample rate, and the total number of decoder
instantiations. These constraints are set by the MPEG group, with careful consider-
ation of potential applications [20].

The next step is atlas construction, which mainly consists of pruning, patch clus-
tering, and packing. Basic views are entirely packed into atlases, while additional
views are processed, and their redundancies are removed before the packing step
(see Fig. 3.1).

Pruning is an essential element of TMIV, because it reduces the inter-view corre-
lation of the source multi-view set. As a reminder, MIV does not exploit the inter-
view redundancies in the same way as MV-HEVC does, neither the inter-component
redundancies as 3D-HEVC does. Therefore, the pruning process is carefully de-
signed to remove redundancies among the views while maintaining realistic com-
plexity. It determines which pixels from the additional views are already present in
basic or other additional views, and thus, are redundant. A pruning oriented graph
is introduced (as given in Fig. 3.6), which describes the hierarchy of the source views
where the pruning is done. The basic views are the roots of this graph, while the ad-
ditional views are assigned to the child nodes, in the order of decreasing number of
preserved pixels. To evaluate if a pixel may be pruned, the pruner considers three
criteria:

1. The views farther up the hierarchy should be used to synthesize the current
pixel, as shown in Fig. 3.6. The pixel should be preserved in view of the parent
node and pruned in view of the child node.

2. The difference between synthesized and source depth values should not ex-
ceed a given threshold, which is obtained experimentally and is given in the
encoding configuration file.

3. The minimum difference between the luminance value of a synthesized pixel
and luma of all pixels within a corresponding 3 × 3 source block should be
smaller than a given threshold for luminance. This threshold as well is com-
puted experimentally, and it adapts to the noise level of each sequence.
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FIGURE 3.6: Pruning graph [24].

Subsequently, a second-pass pruning based on global color matching is employed
to restore some of the initially pruned pixels that were pruned due to depth imper-
fections or illumination changes among different source textures [88]. First, pixel-
by-pixel color differences are computed between the original view and the warped,
pruned view at the same viewpoint, as shown in Fig. 3.7. Then, a fitting function
is obtained with the least squares method, and it models the calculated color differ-
ences. Finally, the pixels that are outliers from the fitting function (outside a given
interval) are restored, while the others remain to be pruned.

FIGURE 3.7: Second-pass pruning [24].

For each view, a mask of active pixels (pixels that were not pruned) is created.
Temporal consistency is achieved with the mask aggregation process. Mask aggre-
gation is a method of aggregating masks of active pixels frame by frame, and this
is done for each intra period, while clustering is identifying sets of connected active
pixels. Mask aggregation, with black pixels as pruned, and clustering process, where
different clusters are in different colors, are shown in Fig. 3.8. Moreover, merging
and splitting of the clusters in the pruning mask is done to distill the patches. These
patches are then consecutively packed into the atlases, with possible rotations and
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(A) Aggregated mask. (B) Clustering.

FIGURE 3.8: An example of mask aggregation and clustering [24].

flipping, to improve the coding efficiency. Packing is done with an algorithm based
on MaxRect [89], which allows for overlapping slices. Larger patches are packed be-
fore the smaller ones, to ensure graceful degradation in the event that not all patches
can fit into the given atlas space [90]. After packing, the patch colors are modified
such that its new average value becomes a neutral color, i.e., the mean value in a
given bit range, since it has been shown that this improves the atlas compression
performance with a 2D video codec.

The optional process of color correction aligns the color characteristics of the
source views among each other. Moreover, depth and occupancy atlases can be
downscaled, where depth is scaled by a factor of 2 with a max-pooling 2 × 2 fil-
ter. This allows for pixel rate savings and a better depth map encoding quality on a
fixed bitrate (using lower QP values as compared to the non-scaled depths).

After atlas construction, the texture atlas and depth atlas video streams are en-
coded with an arbitrary 2D video encoder. All camera and atlas metadata parame-
ters are formatted as a V3C sample stream with MIV extensions [91]. Finally, these
bitstreams are multiplexed into a single MIV bitstream.

3.2.2 TMIV decoder and renderer

The pipeline of a TMIV decoder starts with a client’s request for the desired view-
port, by giving the viewport position and orientation. Then, the sub-bitstreams are
demultiplexed, the MIV bitstream is parsed by the MIV decoder, and the video bit-
streams are decoded by a 2D video decoder. Afterward, the frames are unpacked
from the atlases, and the blocks in the frame are organized into a patch map which
guides the recovery of basic and additional views, as depicted in Fig. 3.3. This
process is followed by a non-normative (optional) depth estimation, in the case of
decoder-side depth estimation, and finally, a non-normative rendering of the target
viewport.

The process of rendering has multiple steps. First, the culling of the patches takes
place to remove the patches that have no overlap with the target view, therefore re-
ducing the complexity of the view synthesis. Furthermore, the occupancy frame
is reconstructed, showing whether the pixel is occupied or non-occupied. Subse-
quently, since the patch colors are modified at the encoder, their mean value is re-
stored at the decoder. After these steps, the additional (pruned) views are recon-
structed, by mapping the texture and depth patches from the atlases back to their
corresponding views.
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In the case of the geometry absent profile, the depth maps are not transmitted;
therefore, the estimation of depth maps may be done on the reconstructed textures,
using a suitable depth estimation software, which is not integrated into TMIV. The
reference software used for depth estimation is Immersive Video Depth Estimation
(IVDE) [64] software, as decided by the MPEG experts. Previously, Depth Estimation
Reference Software (DERS) [62, 63] was used as the reference software, and it is
still a possible alternative for evaluation purposes. Both software are detailed in
Section 2.4.3.

The view synthesis is implemented in TMIV with two different approaches. The
MIV CTC defines the View Weighting Synthesizer (VWS) as the reference synthe-
sizer. The second alternative is derived from the Reference View Synthesizer (RVS) [11].
These software are described in Section 2.5.1.

3.2.3 A word on different TMIV versions

The work on this thesis started at the same time as the MIV standardization. In our
experiments, we used available test model versions, which have been improving
over time. The most important version difference affects the results in Chapter 6,
due to differences in the TMIV pruning process. Section 6.2 shows the results ob-
tained with TMIV4 [92], which uses the pruning that depends only on the depths
(the second criterion for pruning detailed in Section 3.2.1). However, in Section 6.3
we use TMIV7 [93]. Here, the pruning process has evolved into the more advanced
version, which depends on depths and textures, and includes second-pass pruning
(as detailed in Section 3.2.1). We emphasize this directly in Chapter 6, as well.

3.3 Test conditions

In this section, we present the MIV common test conditions (CTC) followed in the
scope of this thesis [94]. The CTC defines the pipeline and procedure for the fair
evaluation of proposals, and describes the MIV anchors, test sequences, and evalu-
ation methodology. Similar to the TMIV reference software, the CTC was evolving
over time during MIV standardization. In our experiments, we follow it closely, with
some exceptions detailed in each chapter.

3.3.1 Datasets

The test material consists of both natural and computer-generated content, created
with perspective and omnidirectional cameras. Therefore, the views have an om-
nidirectional format (equirectangular projection, ERP) or linear perspective format
(linear perspective projection, LPP). In the case of natural content, depth maps are es-
timated, with some additional post-processing steps, while in the case of computer-
generated content, they are produced using mathematical models of the generated
3D scene. In the CTC, the material is separated into mandatory and optional se-
quences, where optional sequences are more challenging but not compulsory for
evaluation. A summary of the test sequences’ characteristics is presented in Tab. 3.1.
Only Chapter 4 gives an evaluation on both omnidirectional and perspective con-
tent, while Chapters 5, 6, and 7 and Appendix A focus on the perspective content.
In all our experiments, we use 17 video frames for evaluation.
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TABLE 3.1: Test sequences.

Sequence Type Format Resolution NumViews
Mandatory content

Painter NC LPP 2048 × 1088 16
Frog NC LPP 1920 × 1080 13
Carpark NC LPP 1920 × 1088 9
ClassroomVideo CG ERP 4096 × 2048 15
Museum CG ERP 2048 × 2048 24
Fan CG LPP 1920 × 1080 15
Kitchen CG LPP 1920 × 1080 25
Chess CG ERP 2048 × 2048 10
Group CG LPP 1920 × 1080 21

Optional content
Fencing NC LPP 1920 × 1080 10
Hall NC LPP 1920 × 1088 9
Street NC LPP 1920 × 1088 9
Mirror NC LPP 1920 × 1080 15
ChessPieces CG ERP 2048 × 2048 10
Hijack CG ERP 4096 × 2048 10
Cadillac CG LPP 1920 × 1080 15
Shaman CG LPP 1920 × 1080 25

3.3.2 MIV anchors

The CTC defines three different anchors for coding with TMIV [94]. The first one is
called the MIV anchor. This anchor processes the source views as detailed in Section
3.2.1, with the goal to obtain the compact representation of the scene packed in the
atlases, where some of the views are fully sent, while others are pruned. Secondly,
the CTC introduces the MIV view anchor, which automatically decides which sub-
set of views (textures and depth maps) to fully pack and transmit, without further
processing of the source views. Finally, the MIV decoder-side depth-estimating (DSDE)
anchor, is introduced, which automatically decides which subset of texture views to
fully pack and transmit, whereas the depth maps are estimated using IVDE software
at the decoder side before commencing the rendering process.

3.3.3 Software settings

The test sequences are processed with TMIV (versions explained in Section 3.2.3)
and compressed with a legacy video codec. The CTC [94] specifies VVenC [95, 96]
as an encoder, a fast implementation of VVC [97]. The VVenC encoder includes five
predefined preset configurations: “slower”, “slow”, “medium”, “fast”, and “faster”.
Each of these configurations offers a different compromise of compression quality
with respect to complexity (encoding speed). The “slow” preset has been selected
by the MIV group as the best compromise, and the encoder is utilized with the ran-
dom access configuration [98]. After the video transmission, the MIV metadata and
the video bitstreams are decoded using TMIV decoder and VVdeC [99]. The target
viewport from is rendered using all available decoded atlases, on the same positions
as source cameras, to facilitate the objective quality evaluation.

The quantization parameters QPT and QPD for the compression of texture videos
are chosen to cover the medium and low bitrate range, from 5 Mbps to 50 Mbps, and
they are sequence-dependent. Then, the mapping to the quantization parameter
QPD [100] for the depth is done with the equation (3.1), applied to five rate points:

∀i ∈ {1, 2, 3, 4, 5} , QPD(i) = max (1, [−14.2 + 0.8 · QPT(i)]) . (3.1)
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It is important to mention that, in older versions of the CTC [101], which we
follow in Chapter 6, the video codec of choice is HM16.16 [102], an implementation
of HEVC. The set of (QPT, QPD) pairs is: {(22, 4), (27, 7), (32, 11), (37, 15), (42, 20)}.
In this case, the QP parameters are not sequence dependent.

The pixel rate constraints are the following [20, 94]:

• The combined luma sample rate in all decoders does not surpass 1 069 547 520
samples per second (according to HEVC Main 10 profile level 5.2).

• Maximum luma picture size of each coded video does not surpass 8 912 896
pixels (e.g. 4096 × 2048).

• The maximum number of decoder instantiations is four.

All anchors comply with the low pixel rate constraint, which is fixed at 1.070 gi-
gapixels per second. TMIV automatically computes the atlas frame sizes based on
given pixel rate constraints.

3.3.4 Quality evaluation

The objective evaluation is mostly done by computing the Bjøntegaard delta (BD)
rates [103, 104] in terms of different metrics. BD-rate shows the average bit rate sav-
ings for the same video quality (given with a chosen metric), computed between two
rate-distortion curves. We use Y-Peak Signal-to-Noise Ratio (Y-PSNR) of synthesized
views in comparison to the uncoded source views, which represents the value of the
PSNR computed on the luminance channel of the video. Another metric is Immer-
sive Video PSNR (IV-PSNR) [105, 106], which is a PSNR-based metric adapted for
immersive video applications that alleviates the influence of pixel shifts caused by
projection errors and the influence of global color differences among the different
input views. Another group of metrics is based on Structural Similarity Image As-
sessment (SSIM) [107], which focus on the extraction of structural information from
the images. Metric called Multiscale SSIM (MS-SSIM) [108] compares contrast and
structure across several scales of the tested images. Additionally, we use learning-
based methods such as Video Multimethod Assessment Fusion (VMAF) [109] and
Learned Perceptual Image Patch Similarity (LPIPS) [110].

3.4 Performance of MIV anchors

This section gives a comprehensive comparison of three anchors and their perfor-
mance: MIV, MIV view, and MIV DSDE.

3.4.1 Results and discussion

The MIV view and MIV DSDE anchors are compared to the MIV anchor in terms
of BD-rate and video encoding runtime (which is given as a percentage of the MIV
anchor runtime) in Tab. 3.2. Negative values of BD-rate mean that the tested anchor
(MIV DSDE or MIV view) performs better than the reference MIV anchor, while
positive values indicate that the tested anchor performs worse than the reference. In
the case of “---” and “+++” there was not enough overlap to compute BD-rate, where
“---” indicates gain, while “+++” indicates loss, compared to the MIV anchor.

We notice that the MIV view performs significantly better than the MIV anchor in
several cases. The Hall sequence is an interesting exception, as it is the only sequence
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TABLE 3.2: Comparison of the MIV view (View) and MIV DSDE
(DSDE) anchors with respect to the MIV anchor.

Mandatory content
High BD-Rate

PSNR [%]
Low BD-Rate

PSNR [%]
High BD-Rate
IV-PSNR [%]

Low BD-Rate
IV-PSNR [%]

Video
encoding [%]

Sequence View DSDE View DSDE View DSDE View DSDE View DSDE
Painter (NC) -33.9 -63.2 -31.9 -60.5 -18.6 -33.1 -24.4 -43.0 66.8 80.7
Frog (NC) -33.5 -67.5 -29.7 -57.5 -9.3 -48.4 -17.0 -48.9 69.2 81.9
Carpark (NC) 31.5 2.1 13.2 -21.1 42.0 18.6 18.1 -10.0 82.6 81.7
Class.Video (CG) 4.0 +++ -20.4 50.3 4.3 158.3 -17.5 4.7 83.1 123.1
Museum (CG) 36.6 320.4 -4.5 73.8 44.4 113.8 0.5 25.1 58.4 88.3
Fan (CG) -18.9 --- -15.6 --- -11.0 -69.6 -9.0 -77.5 71.1 131.4
Kitchen (CG) 75.8 -8.8 20.6 -6.5 206.9 105.9 55.0 51.7 63.6 92.2
Chess (CG) +++ +++ +++ +++ +++ +++ +++ +++ 62.5 62.5
Group (CG) -47.2 +++ -42.4 +++ -11.6 +++ -20.2 +++ 54.1 100.2

Optional content
Fencing (NC) 28.4 67.4 -10.8 -5.4 16.5 25.3 -11.1 -25.7 57.0 82.0
Hall (NC) 1070.3 1060.2 74.6 377.8 119.3 429.3 33.7 177.8 82.9 108.6
Street (NC) -40.1 -66.0 -17.1 -48.1 7.0 -33.2 11.9 -30.9 74.8 81.0
Mirror (NC) 48.9 -9.5 5.1 -31.2 100.6 16.7 13.2 -16.9 61.2 69.7
ChessPieces (CG) +++ +++ +++ +++ +++ +++ +++ +++ 55.1 66.8
Hijack (CG) +++ +++ 47.1 +++ +++ +++ 66.4 +++ 56.3 86.4
Cadillac (CG) -30.6 -58.6 -39.5 -67.8 3.3 -23.9 -30.3 -50.4 55.4 54.8

with significant global camera motion. In such a case, the MIV anchor performs bet-
ter, as temporal variations may be efficiently included in the atlases. Moreover, when
inter-view consistent depth maps are present, as for CG content, the MIV anchor is
able to code the light field more efficiently. However, for CG content with trans-
parencies in the scene, the depth maps can be misleading, as in the case of Cadillac
and Fan.

With the exception of Hall, the MIV DSDE outperforms the MIV anchor. This
is because, despite the best attempts for their estimation and refinement, the depth
maps provided on the encoder side are not sufficiently accurate. As seen in the
Kitchen sequence, the MIV DSDE anchor can even outperform MIV on CG content
with high-quality depth maps. Similar to the MIV view, the performance of MIV
DSDE is much better for perspective content than for ERP. Due to the higher res-
olutions of the omnidirectional sequences, there are fewer basic views available at
the decoder side, which limits depth estimation. Also, the baselines between the
views are wider as compared to the typical depth estimation scenario. Therefore,
IVDE performs much better for perspective content. This is why, in the following
chapters, we focus on DSDE methods for perspective content.

The MIV view and MIV DSDE outperform the MIV anchor in several sequences
for low bitrates, e.g., Carpark and Fencing. This reflects that the impact of strong
depth compression leads to a higher degradation of synthesis performance, than the
estimation of depth maps from compressed textures.

As there is no need for the intricate pruning and packing process, the TMIV
encoder is considerably simpler for the MIV view and MIV DSDE than it is for the
MIV anchor. Additionally, since full-frame atlases may be compressed more quickly
than patch atlases, video encoding is faster.

Fig. 3.9 shows the synthesis results on a selected frame of a rendered target view,
for matching bitrates and for all the anchors. In the first row, we show an example
of the synthesis for the Museum sequence, which has a better coding performance
for the MIV anchor. The synthesized views clearly confirm that the MIV view as
well as MIV DSDE could not recover all the textures. In the case of the MIV view,
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this is likely due to the pixel rate constraint. As Museum has a resolution of 2048 x
2048, the number of basic views that can be coded in the MIV view anchor is far too
small, in order to reconstruct all 24 views with sufficient quality. In the case of the
MIV DSDE anchor, the situation becomes more severe, as the number of transmitted
views is too low to do high-performant depth estimation with IVDE. Consequently,
a lot of occlusions remain visible in the final views. In the case of the MIV anchor,
rendered target view has small cracks or patch-level compression block artifacts.

In general, the displayed views are sharper with the MIV DSDE anchor because
the related depth maps are free of compression artifacts. On the other hand, if the
coded subset of views is insufficient to carry out high-quality depth estimation with
IVDE, occlusions may degrade the perceptual quality. The MIV view anchor is es-
pecially suitable for this kind of information because the pruning tools used in the
MIV anchor have not been developed for non-Lambertian surfaces.

3.5 Conclusion

In this chapter, we provided a comprehensive review of the most recent iteration
of the Test Model for MPEG Immersive Video (TMIV), which serves as the bench-
mark software for the MIV standard. As this thesis has been conducted since the
initial stages of MIV standardization, we also outlined the distinctions between the
common test conditions and TMIV versions used in our experiments. Additionally,
we presented the testing conditions and analyzed the performance of different MIV
anchors.

The following chapters will present the contributions achieved during the work
on this thesis and give their detailed analysis.
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(A) The MIV anchor.

(B) The MIV view anchor.

(C) The MIV DSDE anchor.

FIGURE 3.9: Comparison of synthesis results obtained by different
anchors, Museum sequence.
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Chapter 4

Performance of Video Codecs and
Screen Content Tools for MIV

This chapter1 focuses on the atlas compression as a potential improvement of an im-
mersive video coding system. Namely, we evaluate the impact of different 2D video
encoders and their configurations on the quality of the resulting target views in the
immersive video setting. In essence, MIV is a pre-processing technology developed
specifically for the compression of immersive video. It operates independently of
the 2D video codecs used for the final compression of its atlases and aims to provide
a more efficient and effective MVD coding process. The first part of this chapter pro-
vides a comprehensive understanding of the efficiency of MIV used with different
state-of-the-art 2D codecs, while the second part focuses on the influence of different
screen content coding tools in VVC on the performance of MIV.

4.1 Introduction

Plenty of video setups that require video compression have the ability to support
multiple codecs [111, 112], thus making them “codec-agnostic.” This means that
they do not have a specific preference or dependence on a particular codec, and can
work with a wide range of video compression technologies. This adaptability is a
desirable characteristic as it allows the system to be flexible and increases its chances
of industrial success. Furthermore, being codec-agnostic can also help future-proof
the system, as it enables the integration of new codecs and advancements in video
compression technology as they become available.

Moreover, different video coding standards have introduced the so-called screen
content coding tools [113, 37, 114], carefully crafted to handle some computer screen
characteristics (e.g. sharp edges, limited color palette, and recurring motifs), used for
screen recordings, cloud gaming, or remote keyboard. Since MIV atlases contain a
lot of repeated patterns, and additionally, the depth atlases contain a limited palette
and texture-less regions, there has been some research on the influence of HEVC-
SCC tools on MIV [115].

In this chapter, we focus on the MIV atlas coding efficiency. First, in Section 4.2,
we recall the followed test conditions. Then, in Section 4.3, we provide a study of the
performance of MIV, encompassing video codecs from all over the globe, which are
previously detailed in Chapter 2. Finally, our study also shows a detailed analysis
and performance of different VVC screen content coding tools and their influence
on MIV atlas coding, in Section 4.4.

1The content of this chapter is based on the work we published in [27].
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The results of these experiments are important for understanding the compati-
bility and competitiveness of MIV with various 2D codecs. They also provide valu-
able insights into how different encoding software and configurations can affect the
quality of the rendered target views. These findings can help guide future research
and development in the field of immersive video compression and can inform the
selection of appropriate codecs and configurations for specific use cases.

4.2 Test conditions

In this chapter, we follow the CTC of MIV for the evaluation of different proposals,
as detailed in Section 3.3. The test material for evaluation comprises both natural
and computer-generated content captured using perspective and omnidirectional
cameras. The material is categorized into mandatory and optional sequences within
the CTC, where the optional sequences are more demanding but not mandatory for
the evaluation process.

The test sequences are compressed using TMIV (version 10) and VVenC [95, 96],
an implementation of VVC [97]. The VVenC is used in the “slow” preset with the en-
coder in the random access configuration [98]. The quantization parameters QPT for
the compression of texture videos are chosen as given in Section 3.3. The MIV meta-
data and the video bitstreams are decoded using TMIV decoder and VVdeC [99].
The target viewport from is rendered on the same positions as source cameras, to
facilitate the objective quality evaluation. The objective evaluation is done by com-
puting the Bjøntegaard delta (BD) rates [103, 104] in terms of Y-PSNR of synthe-
sized views in comparison to the uncoded source views, as well as in terms of IV-
PSNR [105].

4.3 MIV codec agnosticism

During the development of MIV, it was necessary to use HEVC or VVC as mandated
by the CTC. However, there are now a multitude of coding standards available and
no single codec is likely to dominate the market. Fortunately, MIV is designed to be
compatible with any 2D codec and it can benefit from this competition. The purpose
of this section is to verify the compatibility of MIV with the most recent codecs from
major video coding organizations, including the VVC [97] from ISO/IEC MPEG and
ITU-T VCEG, AV1 [39] from Alliance for Open Media [40], and AVS3 [41] from Au-
dio Video Coding Standard Workgroup of China [42]. Our goal is to confirm that
MIV atlases do not have any specific features that would negatively impact the effi-
ciency of any 2D codec designed for traditional 2D content.

4.3.1 Software settings

In this study, we compare MIV with reference software alternatives, including VTM12
for VVC, HPM12 for AVS3, and AV1. The random access configuration as specified
by each respective standardization body is used. No specific configuration adjust-
ments were made to these codecs as our focus is not on comparing their competitive-
ness, but rather on showcasing the compatibility of MIV and overall performance.
The main anchor of MIV, with VVenC using the “slow preset,” is used as the refer-
ence point for comparison in all cases.
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4.3.2 Results and discussion

Fig. 4.1 shows the decoded texture atlas quality, which is ultimately used for view
synthesis. The coded texture and depth atlases are shown in Fig. 4.2. The associated
encoder runtimes are shown in Tab. 4.1. In all the cases, MIV decoding times are very
similar, and we do not show them here. For completeness, we provide the results of
these experiments in terms of BD-rate in Tab. 4.2. However, this table should serve
as a reference and not as a tool to compare these codecs with each other. Instead,
we analyze each codec independently by comparing the performance per sequence
with the average.

AV1 shows quite a good performance with Painter, Carpark, and Hall sequences.
It performs the worst for Group, Kitchen, and ChessPieces. Overall, stronger fluctu-
ations across the sequences are noticeable. HPM12 performs rather stable across all
sequences and shows most difficulties with the Fan and Group sequences. Similar
to AV1, it performs well for Painter and Hall. VTM12 performs better for Group,
ChessPieces, and Frog, instead of Painter and Hall. Similar to HMP12, its perfor-
mance is rather stable across the sequences. Based on these findings, it appears that
none of the codecs conflicts with the characteristics of MIV atlases. Thus, the capa-
bility of the MIV standard to be compatible with any codec is confirmed in practice.
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FIGURE 4.1: Details from the compressed texture atlases of the
Painter sequence, matching bitrate, all tested encoders. The first
row shows the uncompressed source texture. Second row: cropped
source, third row: VVenC, fourth row: VTM12, fifth row: AV1, last
row: HPM12. The second and fourth columns represent the differ-

ence between the encoded atlas and the source.
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FIGURE 4.2: Details from the compressed atlases of the Group se-
quence, matching bitrate, all tested encoders: a) texture patch atlas,
b) depth patch atlas. The first row shows the uncompressed source.
Second row: cropped source, third row: VVenC, fourth row: VTM12,
fifth row: AV1, last row: HPM12. The second and fourth columns
represent cropped images of the difference between the encoded at-

las and the source.
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TABLE 4.1: Video encoding runtimes for different codecs, compared
to the A17 anchor (using VVenC slow preset).

Mandatory content
Video encoding [%]

Sequence VTM12 AV1 HPM12
Painter 719.0 131.6 1859.7
Frog 713.4 163.0 2117.2
Carpark 666.7 149.5 1892.0
ClassroomVideo 647.6 171.5 2342.3
Museum 622.6 250.0 1694.3
Fan 659.5 209.2 2241.5
Kitchen 543.9 83.6 1285.3
Chess 666.9 181.6 1479.8
Group 538.7 131.3 1625.7
Average 642.0 163.5 1837.5

Optional content
Fencing 779.2 143.8 1580.2
Hall 715.9 82.5 1252.5
Street 637.8 130.7 1736.8
Mirror 607.8 142.9 1790.2
ChessPieces 714.0 153.8 1407.3
Hijack 665.8 133.3 1846.7
Cadillac 717.3 152.8 2069.9
Average 691.1 134.3 1669.1

TABLE 4.2: MIV objective performance with VTM12, AV1 and
HPM12, compared to the A17 anchor (using VVenC slow preset).

Mandatory content
High BD-Rate

PSNR [%]
Low BD-Rate

PSNR [%]
High BD-Rate
IV-PSNR [%]

Low BD-Rate
IV-PSNR [%]

Sequence VTM12 AV1 HPM12 VTM12 AV1 HPM12 VTM12 AV1 HPM12 VTM12 AV1 HPM12
Painter (NC) -2.0 -35.2 -14.3 -2.3 -45.3 -19.0 5.7 -34.0 -9.8 3.9 -44.0 -14.6
Frog (NC) -6.9 8.9 6.4 -6.6 -1.8 3.4 7.8 7.8 11.2 5.2 0.1 7.2
Carpark (NC) -3.6 -11.6 0.5 -3.7 -21.1 -4.9 6.0 -16.7 0.7 4.0 -24.1 -4.9
Class.Video (CG) -1.2 18.4 17.2 1.4 1.8 8.3 7.2 10.0 17.4 7.9 2.6 11.4
Museum (CG) -2.4 45.1 9.7 -2.8 33.0 5.9 2.5 14.3 5.7 2.5 13.6 5.0
Fan (CG) -4.3 41.5 60.7 -3.7 19.4 44.4 -1.1 17.7 50.8 0.9 -1.8 37.1
Kitchen (CG) -4.7 100.1 17.0 -5.5 71.6 16.9 1.7 31.1 10.1 4.1 24.2 6.7
Chess (CG) -5.6 70.9 21.3 -7.3 28.8 10.5 0.5 10.2 17.1 -0.4 3.6 6.2
Group (CG) -14.0 155.3 47.6 -11.6 86.4 34.2 -3.0 65.5 28.4 -1.4 42.4 19.5
Average -5.0 43.7 18.4 -4.7 19.2 11.1 3.0 11.8 14.6 3.0 1.8 8.2

Optional content
Fencing (NC) -5.7 -4.3 -3.8 -5.6 -18.6 -9.9 2.1 2.0 -0.5 1.2 -14.2 -8.4
Hall (NC) -5.6 -67.1 -37.3 -6.4 -68.3 -37.2 4.5 -64.5 -26.1 5.4 -66.2 -28.2
Street (NC) -1.9 5.4 4.2 -1.8 -11.2 -6.1 6.6 -6.8 2.4 5.9 -14.6 -5.3
Mirror (NC) -2.7 4.7 9.8 -3.5 -2.6 7.5 3.7 -1.8 11.1 3.1 -5.9 8.9
ChessPieces (CG) -6.6 61.9 14.0 -7.1 26.1 6.1 0.8 9.6 16.5 0.0 5.1 5.8
Hijack (CG) -4.6 25.0 13.5 -5.5 3.8 7.0 -1.7 -6.0 11.8 -1.5 -11.8 3.0
Cadillac (CG) -4.5 49.1 20.0 -5.6 32.9 16.9 2.3 11.0 7.8 0.7 3.9 4.8
Average -4.5 10.7 2.9 -5.1 -5.4 -2.2 2.6 -8.1 3.3 2.1 -14.8 -2.8

4.4 Atlas coding using SCC tools in VVC

HEVC has been the 2D codec for the evaluation of TMIV throughout most of the
development stages of MIV. After VVC was finalized, the MPEG experts decided to
use VVC instead of HEVC [116]. However, no significant effort to tune the encoder
or to take advantage of the versatility aspect of VVC has been done. Especially for
depth coding, VVC comes with interesting edge-preserving tools like geometrical
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partitioning. Screen content coding (SCC) tools have also shown the potential to
compress MVD content efficiently with HEVC [113]. In this section, we investigate
the performance of intra block copy (IBC), block-based differential pulse-code mod-
ulation (BDPCM), and palette mode (PLT) on different types of atlases:

• Basic-view (BV) atlases, containing basic views and a very small amount of
patches from additional views.

• Additional-view (AV) patch atlases, containing only small patches from addi-
tional views.

• Texture atlases, which consist of only texture component, both for basic view
and additional view atlases.

• Depth atlases, which consist of only depth component, both for basic view and
additional view atlases.

4.4.1 Screen content coding tools

This section gives an overview of tested screen content coding tools, explaining their
methodology and implementation in the VVC standard.

IBC searches for the intra-picture similarity on a block basis, where the prediction
of the current coding block is done by the reconstructed reference block from the
same picture. It has a great performance in screen content coding, in terms of BD-
rate, at a cost of increased complexity [37]. The search range is restricted to the
already coded coding tree unit (CTU) to the left of the current CTU, which is a strong
limitation for atlas coding, as otherwise, IBC may reach a similar performance as the
multiview extension of HEVC (MV-HEVC). However, here we do not perform any
normative changes to the VVC codec.

BDPCM is a prediction technique that is grounded on the residual DPCM [117,
38]. It serves as an alternative intra prediction mode, which is better suitable to
avoid errors in predictions of long pixel distances. In VVC, BDPCM is limited to the
same block sizes as the transform skip mode, and no boundary filtering is applied
between the neighboring blocks predicted with this method.

Palette mode has proven to be beneficial for CG content with simple graphics. It
encompasses the coding of the palette (different samples) and coding of the spatial
position index of its coding unit. This technique is considered a special coding mode
in VVC, together with the intra-prediction, inter-prediction, and IBC modes. Palette
mode is deemed to be less efficient and less complex than IBC [37].

4.4.2 Results and discussion

A summary of the performance of MIV with VTM-SCC tools is shown in Tab. 4.3. In
all the cases, we compare the alternatives with the TMIV+VTM anchor, to isolate the
impact of the screen content coding tools. Every tool provides additional benefit to
the overall coding gain. IBC performs very well on Fan, ClassroomVideo, and Chess-
Pieces. BDPCM provides a small, but consistent gain over all sequences. Taking into
account the video encoding runtime, shown in Tab. 4.4, the benefit of BDPCM comes
with only a minor complexity increase over IBC alone. Consequently, we will show
these tools jointly in the following sections to reduce the amount of data to present.
However, the additional coding gain of PLT for some sequences comes with added
complexity. For a few sequences, PLT reduces the performance. Fan is an interest-
ing exception, as the coding gain is significant. In order to further analyze if these
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tools are particularly beneficial for certain atlas types, we need to look at each type
of content independently.

TABLE 4.3: TMIV+VTM objective performance with IBC,
IBC+BDPCM, and IBC+BDPCM+PLT, as compared to the

TMIV+VTM anchor.

Mandatory content - Objective Performance
High BD-Rate

PSNR [%]
Low BD-Rate

PSNR [%]
High BD-Rate
IV-PSNR [%]

Low BD-Rate
IV-PSNR [%]

Sequence IBC
IBC
BDPCM

IBC
BDPCM
PLT

IBC
IBC
BDPCM

IBC
BDPCM
PLT

IBC
IBC
BDPCM

IBC
BDPCM
PLT

IBC
IBC
BDPCM

IBC
BDPCM
PLT

Painter (NC) -0.9 -2.1 -3.3 -1.0 -1.9 -3.1 -0.3 -2.1 1.0 -0.4 -1.5 1.3
Frog (NC) -0.6 -1.1 -2.3 -0.6 -1.1 -2.5 -0.7 -0.8 2.3 -0.9 -0.8 2.2
Carpark (NC) -1.3 -2.2 -3.2 -1.4 -2.0 -3.1 -1.9 -2.6 0.0 -1.8 -2.2 0.6
Class.Video (CG) -6.3 -8.8 -10.4 -6.8 -9.9 -11.9 -5.9 -7.6 -4.1 -6.8 -9.3 -7.4
Museum (CG) -1.9 -2.7 -3.5 -2.6 -3.2 -4.0 -1.7 -2.3 2.2 -1.9 -2.7 1.4
Fan (CG) -7.2 -9.3 -26.3 -7.0 -8.9 -21.7 -6.3 -7.8 -21.3 -6.3 -7.8 -16.6
Kitchen (CG) -2.1 -3.8 -3.4 -2.8 -3.9 -5.6 -2.3 -3.4 1.2 -2.9 -4.2 0.1
Chess (CG) -5.0 -5.2 -7.6 -4.6 -5.8 -8.5 -2.7 -4.0 4.0 -3.3 -4.9 1.1
Group (CG) -2.0 -3.9 -7.3 -2.9 -4.5 -8.3 -1.7 -2.7 1.3 -2.1 -3.4 1.0
Average -3.0 -4.3 -7.5 -3.3 -4.6 -7.6 -2.6 -3.7 -1.5 -3.0 -4.1 -1.8

Optional content - Objective Performance
Fencing (NC) -1.2 -0.9 -2.2 -1.1 -1.5 -2.2 -1.2 -1.0 1.8 -1.1 -1.4 2.0
Hall (NC) 0.1 -1.5 -0.7 -0.7 -1.6 -1.4 0.0 -1.3 1.4 -0.4 -1.3 2.4
Street (NC) -0.2 -0.5 -0.7 -0.6 -0.9 -1.3 -1.7 -1.2 2.4 -1.6 -1.4 3.0
Mirror (NC) -1.6 -2.2 -3.9 -1.6 -2.3 -4.0 -1.3 -1.7 -1.3 -1.4 -2.0 -1.8
ChessPieces (CG) -6.5 -7.4 -10.0 -5.6 -6.9 -10.5 -4.2 -5.7 1.4 -4.7 -6.4 -2.0
Hijack (CG) -2.6 -4.2 -6.2 -2.8 -4.5 -6.6 -2.5 -4.0 -3.8 -2.8 -4.4 -4.4
Cadillac (CG) -2.7 -3.7 -2.7 -2.8 -4.5 -2.8 -2.4 -3.6 -2.4 -2.6 -4.2 -2.6
Average -2.1 -2.9 -3.8 -2.2 -3.2 -4.1 -1.9 -2.6 -0.1 -2.1 -3.0 -0.5

TABLE 4.4: Video encoding runtimes for different SCC tools, com-
pared to the TMIV+VTM.

Mandatory content
Video encoding [%]

Sequence IBC
IBC
BDPCM

IBC
BDPCM
PLT

Painter 115.1 116.6 126.1
Frog 114.5 115.1 125.8
Carpark 115.4 116.4 129.9
ClassroomVideo 112.3 113.5 126.4
Museum 118.3 119.4 141.3
Fan 119.0 123.6 134.9
Kitchen 122.2 122.3 146.1
Chess 116.5 117.6 135.5
Group 123.0 124.1 145.8
Average 117.4 118.8 134.6

Optional content
Fencing 111.2 112.2 120.4
Hall 112.2 112.8 122.7
Street 115.3 116.0 131.0
Mirror 116.9 118.1 133.7
ChessPieces 112.2 112.8 129.4
Hijack 114.7 114.7 126.6
Cadillac 112.3 112.0 112.3
Average 113.5 114.1 125.1
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TABLE 4.5: IBC+BDPCM texture atlas results.

Mandatory content
High BD-Rate

PSNR [%]
Low BD-Rate

PSNR [%]
High BD-Rate
IV-PSNR [%]

Low BD-Rate
IV-PSNR [%]

Sequence
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
Painter (NC) 0.1 -0.5 0.2 -0.7 0.2 -0.4 0.6 -0.3
Frog (NC) -0.2 -0.1 -0.2 -0.2 0.1 0.2 0.1 0.2
Carpark (NC) -2.4 -0.3 -2.3 -0.5 -2.9 -0.9 -2.6 -0.7
Class.Video (CG) -1.0 -1.2 -0.6 -1.0 -0.4 -0.8 -0.2 -0.8
Museum (CG) -1.4 -1.0 -1.4 -1.1 -0.9 -0.6 -0.7 -0.5
Fan (CG) -6.8 -5.8 -5.6 -5.1 -4.0 -3.1 -3.2 -2.9
Kitchen (CG) -0.8 -1.8 -0.1 -1.1 -0.4 -1.4 -0.5 -1.4
Chess (CG) -1.9 -2.6 -1.5 -2.5 -0.5 -1.3 -0.5 -1.5
Group (CG) -2.4 -2.6 -2.5 -2.4 -0.9 -1.3 -1.2 -1.4
Average -1.9 -1.8 -1.6 -1.6 -1.1 -1.1 -0.9 -1.0

Optional content
Fencing (NC) 0.6 0.3 -0.1 -0.4 0.4 0.1 -0.1 -0.3
Hall (NC) -0.8 -1.3 -1.3 -1.3 -0.4 -1.0 -0.9 -1.1
Street (NC) -0.5 0.5 -0.9 -0.2 -1.2 -0.1 -1.4 -0.6
Mirror (NC) -0.8 -0.9 -0.7 -0.9 -0.3 -0.4 -0.3 -0.5
ChessPieces (CG) -3.1 -3.9 -1.5 -2.7 -0.8 -1.9 -0.9 -2.3
Hijack (CG) -1.1 -1.7 -0.9 -2.1 -0.7 -1.4 -0.8 -1.9
Cadillac (CG) -1.1 -0.8 -1.9 -1.7 -1.0 -0.8 -1.4 -1.2
Average -1.0 -1.1 -1.0 -1.3 -0.6 -0.8 -0.8 -1.1

Texture atlas coding

The SCC results for the texture atlases alone are shown in Tab. 4.5 for IBC and BD-
PCM as well as in Tab. 4.6 using additionally PLT. We do not observe a significant
difference between BV and AV atlases in that case, indicating that there is no par-
ticular advantage over different texture atlas types. For BV atlases, IBC is not able
to efficiently remove a significant amount of redundancies due to limitations of its
implementation in the standard. Due to the strong differences between the patches
in the AV atlases, the benefit there is also limited. Nevertheless, PLT proves particu-
larly useful for AV atlas coding. The benefit increases with the amount of repetitive
textures in the scene as it is the case for Fan, Chess and ChessPieces. However,
following the CTC of MIV, the chroma component is not taken into account in our
objective metrics. The Fan sequence shown in Fig. 4.3 indicates that the SCC tools
may negatively impact the color component. While some structures may be more
efficiently recovered using SCC tools, we do not see a general benefit of SCC tools
for the usage of texture atlases.

Depth atlas coding

The SCC results related to depth atlas coding are shown in Tab. 4.7 for IBC and
BDPCM and in Tab. 4.8 for PLT additionally. In the case of BV atlases, similar con-
straints for IBC are given as for texture atlases. However, it is much simpler to find
matching structures in the depth domain than in the texture domain. Furthermore,
the performance of SCC tools is better for depth AV atlases. While variations of
colors make the coding of textures more challenging, this is not the case for depth
maps. Consequently, AV, as well as BV atlases, can be efficiently coded using SCC
tools. In comparison to the performance for texture atlases, we see a huge benefit
of utilizing the SCC tools for the coding of depth atlases. The same holds for PLT
as significant coding gain is observed over IBC+BDPCM. An example is shown in
Fig. 4.3, which shows that structures of the depth are much better preserved using
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FIGURE 4.3: Details from the compressed atlases of the Fan sequence,
matching bitrate: a) texture patch atlas, b) depth patch atlas. First
row: source view, second row: cropped source, third row: encoded
with VTM, fourth row: encoded with VTM and SCC tools. The blue

block highlights an example of color change if SCC tools are used.

SCC tools. Consequently, we see a general benefit of SCC tools regarding depth atlas
coding. In case of concerns related to complexity, these tools should be prioritized
for the coding of depth atlases instead of texture atlases.



4.4. Atlas coding using SCC tools in VVC 53

TABLE 4.6: IBC+BDPCM+PLT texture atlas results.

Mandatory content
High BD-Rate

PSNR [%]
Low BD-Rate

PSNR [%]
High BD-Rate
IV-PSNR [%]

Low BD-Rate~
IV-PSNR [%]

Sequence
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
Painter (NC) 0.1 -1.2 0.2 -1.3 5.8 4.0 5.5 3.3
Frog (NC) -0.3 -0.5 -0.3 -0.6 5.7 5.1 6.0 5.3
Carpark (NC) -2.7 -0.5 -2.9 -0.8 1.8 3.9 2.7 4.2
Class.Video (CG) -0.3 -1.6 -0.0 -1.1 7.6 3.1 6.3 2.9
Museum (CG) -1.7 -1.7 -1.7 -1.5 5.3 4.3 5.5 4.3
Fan (CG) -27.9 -26.2 -20.9 -20.2 -18.2 -16.8 -10.7 -10.1
Kitchen (CG) 0.9 -1.4 -0.6 -2.5 6.5 2.9 6.9 2.7
Chess (CG) -3.7 -4.7 -3.0 -4.5 11.3 8.9 10.6 7.6
Group (CG) -6.2 -6.0 -6.9 -6.3 4.9 3.2 6.5 4.1
Average -4.6 -4.9 -4.0 -4.3 3.4 2.1 4.4 2.7

Optional content
Fencing (NC) -0.5 -0.6 -0.1 -0.7 5.0 4.5 5.8 5.0
Hall (NC) 0.3 -0.2 -0.9 -1.6 2.9 2.5 3.0 1.9
Street (NC) -0.5 1.9 -1.1 0.1 3.1 4.8 3.9 4.3
Mirror (NC) -1.3 -1.8 -1.0 -1.4 2.2 1.5 2.3 1.7
ChessPieces (CG) -4.0 -6.0 -3.4 -6.0 11.8 7.8 8.5 5.1
Hijack (CG) -1.4 -2.7 -1.1 -3.0 2.5 0.8 2.4 0.7
Cadillac (CG) -1.4 -0.6 -1.4 -0.4 -1.0 -0.2 -1.0 -0.1
Average -1.3 -1.4 -1.3 -1.8 3.8 3.1 3.6 2.6

TABLE 4.7: IBC+BDPCM depth atlas results.

Mandatory content
High BD-Rate

PSNR [%]
Low BD-Rate

PSNR [%]
High BD-Rate
IV-PSNR [%]

Low BD-Rate
IV-PSNR [%]

Sequence
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
Painter (NC) -2.8 -3.1 -2.2 -2.5 -2.8 -3.2 -1.8 -2.2
Frog (NC) -1.9 -2.5 -1.7 -2.3 -1.7 -2.4 -1.5 -2.2
Carpark (NC) -2.3 -2.9 -1.8 -2.4 -2.6 -3.2 -1.9 -2.6
Class.Video (CG) -15.7 -19.0 -12.4 -16.7 -15.8 -19.2 -13.2 -17.2
Museum (CG) -4.9 -7.6 -4.0 -6.7 -4.9 -7.7 -3.8 -6.6
Fan (CG) -10.9 -9.6 -10.2 -8.8 -10.1 -8.9 -9.4 -8.0
Kitchen (CG) -8.7 -12.1 -7.5 -11.4 -8.8 -12.0 -7.6 -11.5
Chess (CG) -8.9 -11.9 -7.7 -10.9 -8.6 -11.6 -7.6 -10.8
Group (CG) -7.5 -8.5 -6.2 -7.7 -7.2 -8.2 -6.2 -7.6
Average -7.1 -8.6 -6.0 -7.7 -6.9 -8.5 -5.9 -7.6

Optional content
Fencing (NC) -1.8 -2.5 -1.9 -2.5 -1.9 -2.6 -1.9 -2.5
Hall (NC) -1.4 -2.2 -1.4 -2.3 -1.3 -2.0 -1.1 -2.0
Street (NC) -1.3 -1.3 -1.4 -1.6 -1.8 -1.7 -1.7 -1.8
Mirror (NC) -3.3 -4.2 -2.9 -3.8 -3.0 -4.1 -2.8 -3.7
ChessPieces (CG) -8.3 -12.6 -6.2 -10.7 -7.9 -12.2 -6.4 -10.9
Hijack (CG) -5.6 -7.4 -4.5 -6.3 -5.5 -7.3 -4.5 -6.3
Cadillac (CG) -5.9 -6.5 -5.9 -6.3 -5.9 -6.5 -5.6 -6.1
Average -3.9 -5.2 -3.5 -4.8 -3.9 -5.2 -3.4 -4.8
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TABLE 4.8: IBC+BDPCM+PLT depth atlas results.

Mandatory content
High BD-Rate

PSNR [%]
Low BD-Rate

PSNR [%]
High BD-Rate
IV-PSNR [%]

Low BD-Rate~
IV-PSNR [%]

Sequence
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
BV

Atlas
AV

Atlas
Painter (NC) -2.9 -5.3 -2.1 -4.8 0.7 -2.5 2.0 -1.6
Frog (NC) -3.7 -5.7 -3.3 -5.6 -0.5 -3.4 -0.1 -3.1
Carpark (NC) -3.9 -5.5 -3.2 -4.7 -2.0 -3.9 -0.8 -2.6
Class.Video (CG) -17.3 -24.7 -14.1 -21.6 -15.6 -24.3 -13.2 -21.5
Museum (CG) -5.6 -9.8 -4.4 -8.8 -4.4 -8.9 -3.0 -7.7
Fan (CG) -23.2 -27.0 -19.6 -22.8 -20.2 -24.7 -16.0 -19.9
Kitchen (CG) -8.9 -15.7 -8.4 -15.6 -7.5 -14.3 -6.0 -14.0
Chess (CG) -11.2 -15.4 -10.1 -14.6 -7.7 -12.3 -7.1 -11.8
Group (CG) -9.1 -11.2 -8.3 -10.6 -6.9 -9.0 -5.9 -8.2
Average -9.5 -13.4 -8.2 -12.1 -7.1 -11.5 -5.6 -10.0

Optional content
Fencing (NC) -2.7 -4.2 -2.5 -4.0 -0.3 -1.9 0.4 -1.4
Hall (NC) -0.6 -2.0 -1.0 -2.6 1.3 -0.2 2.7 0.6
Street (NC) -1.4 -2.4 -1.7 -2.8 0.6 -0.8 1.6 -0.4
Mirror (NC) -5.5 -7.7 -4.7 -7.0 -4.3 -6.9 -3.7 -6.1
ChessPieces (CG) -10.8 -16.3 -9.0 -14.9 -6.7 -12.5 -5.8 -11.9
Hijack (CG) -7.3 -11.1 -5.9 -9.5 -6.6 -10.4 -5.2 -8.9
Cadillac (CG) -4.4 -4.3 -4.0 -4.1 -4.3 -4.2 -3.8 -4.0
Average -4.7 -6.9 -4.1 -6.4 -2.9 -5.3 -2.0 -4.6

4.5 Conclusion

MIV produces atlases with the necessary data to properly render any viewpoint on
the client side. Advantageously, the standard allows encoding these atlases with any
existing 2D video codec. The results of encoding MIV atlases with VVC, AV1, and
AVS3 are reported, and the MIV agnosticism to the 2D codec is confirmed through
experimental results. The study also investigated the impact of three coding tools
designed for screen content coding on the encoding of MIV atlases with VVC. These
tools, namely intra block copy, BDPCM, and palette mode, are evaluated for their in-
dividual impact on different components of MIV atlases, such as texture and depth,
and basic or additional views. This provides valuable insights into the optimization
of encoders for practical MIV implementations. Overall, the results of this study
demonstrate the strength and versatility of MIV, making it an attractive choice for
multiview video coding applications.
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Chapter 5

Performance of Depth Estimation
Techniques for MIV

This chapter1 focuses on the depth estimation process as a potential improvement of
an immersive video coding system. It outlines the study on depth estimation tools in
the scope of the MIV framework, which is the result of collaborative work at Orange
Labs. Preliminary results with different classical and learning-based depth estima-
tors for the use case of immersive video transmission were previously demonstrated
in my internship report [118]. That work, together with the work on the DSDE sys-
tem [25], paved the way for the following studies on the performance of various
depth estimation techniques in the MIV DSDE framework, as well as the compara-
tive study of conventional and learned depth estimation techniques focused solely
on the quality of MIV rendering, with an expanded selection of depth estimators.
The first study will be detailed in this chapter. A summary of the second study can
be found in Appendix A of this thesis because it is led by another PhD student.

5.1 Introduction

View synthesis and depth estimation are essential non-normative stages in the MIV
processing pipeline. Here we focus on the depth estimation step, while the view
synthesis is addressed in Chapter 7. The depth estimators are generally designed
to perform well for a specific use case, as detailed in Section 2.4. When it comes to
the volumetric video transmission system, the depth estimator requirements become
more challenging to fulfill due to the nature of its content. First of all, the depth es-
timator should be able to accommodate numerous input views (since the light field
is sampled by multiple cameras) and also provide inter-view consistency among
different depth maps [64]. Also, high resolutions and frame rates are required to
maintain a sense of immersion for the user [119]. The depth estimator needs also
to be flexible towards different projection formats (equirectangular, perspective, and
orthographic) and camera arrangements with different sparsities and setups (lin-
ear, two-dimensional matrix, spherical outward looking). Finally, the domain shift
issue can significantly degrade the quality of the produced depth map [54]. As a re-
sult, the depth estimator must model both the characteristics of computer-generated
and natural content, which is difficult because it necessitates a massive number of
ground-truth samples.

On the other hand, it has been shown that common metrics used to evaluate
the image and video quality, such as PSNR and SSIM, have a weak correlation with
multiple stereo matching (SM) metrics, such as bad 2.0, avgerr, rms, and a95 [72, 120].
These SM metrics are evaluating how close the depth estimation approaches are to

1The content of this chapter is mostly based on the work we published in [26].
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the ground truth and are commonly used to train and evaluate learning-based depth
estimators. Moreover, the same study has shown that some rendering approaches
can produce better results if using estimated depth maps instead of ground-truth
ones. According to the study [120], if a quality metric relies on an interpolation
algorithm with weaknesses, this may result in the wrong quality assessment (in rms
errors).

To enable a variety of applications, the MIV DSDE profile was developed to
be compatible with a wide range of depth estimators, as further detailed in Sec-
tion 5.2.1. The current MIV DSDE profile employs IVDE as a reference tool for es-
timating depth maps at the decoder side, whereas this chapter conducts a study of
carefully chosen depth estimators to cover both the most recent data-driven deep
learning approaches as well as IVDE and another conventional method. Since depth
map estimation is just a step in the processing pipeline of an immersive video sys-
tem, not the end goal, this study examines the impact of different depth estimators
on the compression and rendering performance of MIV in DSDE mode, which makes
it the first depth estimation study to take compressed textures into account. Sec-
tion 5.2.2 recalls the test conditions followed in our experiments, while Section 5.2.3
presents the results and discussion.

5.2 Depth estimation tools for the MIV DSDE system

This section gives an overview of the required characteristics of a depth estimator
used at the decoder side in the context of immersive video. Furthermore, it details
the test conditions followed in our experimental setting, and the results obtained
with different depth estimation techniques, with a discussion. The goal of our exper-
iments is to investigate the potential benefits of using data-driven depth estimation
techniques and to evaluate the impact of different depth estimators on the compres-
sion and rendering performance of MIV in DSDE mode.

5.2.1 Decoder-side depth estimator

The requirements listed here should be addressed by depth estimation methods used
at the decoder side in the context of immersive video. Firstly, in the DSDE mode, the
assumption of having an uncompressed, fully sampled light field is not met. In the
DSDE context, a depth estimator has decoded (therefore, compressed) views as in-
put and has to deal with possibly severe distortions (edge or color shift in the image,
blurring). This can impair its inter-view matching capabilities. Moreover, the num-
ber of available views used for depth estimation in DSDE mode may be quite scarce,
which may result in difficulties finding the matches for stereo or multi-view meth-
ods, thus creating a possible need for monocular depth estimation. Secondly, the
DSDE system needs to conform to very strict complexity constraints in order to en-
able high resolutions and high frame rates, which may require some compromises
in terms of performance. Finally, as will be shown in Chapter 6, a decoder-side
depth estimator may have to handle small patch areas that contain less informa-
tion, which may make the depth estimation process more difficult. The current MIV
DSDE system, as described in Chapter 2, is only used for fully transmitted (non-
pruned) frames.
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5.2.2 Test conditions

In this study, we follow the test conditions defined by the MPEG CTC document [121],
as presented in Section 3.3, to ensure impartial testing among various experimental
designs. The TMIV reference software [122] (version 9) processes input textures in
the DSDE mode to produce atlases and corresponding metadata. Then, the atlases
are encoded and decoded with VVenC and VVdeC [95], following five different rate
points (RP), as given by the CTC. Then, the depth estimation process is initiated be-
fore the view synthesis. The TMIV renderer renders the target views in the same
positions as the input views, to enable objective quality assessment. The multi-view
test video sequences used for our evaluation are of high resolution, perspective, and
rectified. The test dataset contains NC and CG content. The performance is assessed
through the quality of rendered views, with the following metrics: Y-PSNR, IV-
PSNR [105], which is designed to consider rendering artifacts. Additionally, to give
a broad comparison that accounts for the various types of distortions, the following
machine-learning-based quality metrics are used: LPIPS [110] and VMAF [109].

We test four depth estimators overall, starting with Immersive Video Depth Es-
timation (IVDE) [56] and Depth Estimation Reference Software (DERS) [55], which
are the current and previous MPEG reference software for depth estimation, respec-
tively. Next to these two classical approaches, we test two end-to-end stereo match-
ing learning-based methods, the Guided Aggregation Network (GA-Net) [58], and
the Group-wise Correlation Stereo Network (GwcNet) [57]. Chapter 2 provides an
overview of all tested depth estimators. IVDE and DERS do not place any limita-
tions on camera structures, making them appropriate for immersive video settings.
Both IVDE and DERS propose a similar strategy for estimating depth—the optimiza-
tion of an energy function based on the graph structure—but they differ greatly on
many technical levels. For example, IVDE uses superpixels as the estimate unit,
whereas DERS uses pixels. GA-Net and GwcNet are end-to-end stereo matching
networks based on cost volume matching with 3D convolution. These techniques
were selected as one of the highly recognized techniques in the literature. For our
evaluation of the performance of both techniques in the MIV environment, we have
used the model pre-trained on the KITTI dataset [69]. The disparity maps produced
by GA-Net and GwcNet are subsequently converted into depth maps [61].

5.2.3 Results and discussion

Table 5.1 and Table 5.2 present the rendering performance of all tested depth estima-
tors for five different RPs. The depth estimator employed at the decoder side is the
only difference in the framework, hence the total bitrates for the several tested ap-
proaches in this section are equivalent. As a result, it is able to compare the rendered
views’ quality directly, narrowing the focus to the variations in quality brought on
by various depth estimating techniques. The best average results in the objective
comparison between PSNR and IV-PSNR can be shown for DERS, but the results
vary for individual sequences since, for almost half of the sequences, either DERS or
IVDE has the best quality. DSDE has a better pixel-to-pixel correlation between the
synthesized view and the input view, which results in higher quality in PSNR-based
methods. The average results suggest that IVDE, which was tailored to manage such
compression-induced artifacts, provides the highest quality for low bitrates when
compared to VMAF and LPIPS, which were demonstrated to have an excellent cor-
relation with perceived subjective quality. Even though the objective results show
that synthesis results based on IVDE and DERS depth maps are better on average
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TABLE 5.1: The comparison of average quality of rendered views for
different depth estimators used in MIV DSDE, in Y-PSNR and IV-

PSNR metrics.

Sequence Rate
Y-PSNR [dB] (↑) IV-PSNR [dB] (↑)

IVDE DERS GA-Net GwcNet IVDE DERS GA-Net GwcNet

Fan

RP1 32.48 32.82 29.42 29.58 40.51 40.90 36.96 37.12
RP2 32.30 32.66 29.35 29.49 40.32 40.66 36.86 37.02
RP3 31.75 32.11 29.05 29.13 39.62 40.02 36.43 36.58
RP4 30.37 30.51 28.18 28.15 37.91 38.00 35.25 35.33
RP5 28.22 28.06 26.56 26.02 35.18 35.05 33.07 32.26

Kitchen

RP1 35.52 35.26 31.48 29.18 43.78 41.70 39.12 36.57
RP2 34.93 33.95 31.25 29.04 43.03 40.36 38.83 36.36
RP3 34.13 33.18 30.91 28.87 41.93 39.75 38.40 36.12
RP4 32.92 32.52 30.44 28.47 40.31 39.12 37.76 35.52
RP5 31.76 31.48 29.82 28.19 38.86 38.19 36.93 35.14

Painter

RP1 38.16 40.41 36.78 37.06 45.14 47.50 45.34 45.45
RP2 37.44 39.44 36.48 36.69 44.30 46.37 44.63 44.65
RP3 36.13 37.64 35.70 35.85 42.82 44.51 43.26 43.27
RP4 35.35 36.52 35.08 31.80 41.98 43.38 42.36 39.19
RP5 33.95 34.74 33.90 33.90 40.57 41.62 40.94 40.84

Frog

RP1 31.79 31.61 29.47 30.06 41.17 40.84 38.63 39.17
RP2 31.43 31.25 29.27 29.82 40.79 40.46 38.37 38.87
RP3 30.87 30.71 28.92 29.44 40.13 39.86 37.84 38.35
RP4 29.64 29.49 28.12 28.50 38.67 38.39 36.71 37.13
RP5 27.88 27.73 26.79 26.93 36.43 36.21 34.98 35.17

Carpark

RP1 35.13 35.03 33.55 33.73 43.17 44.08 43.19 43.66
RP2 34.98 34.94 33.47 33.66 42.96 43.88 43.06 43.46
RP3 34.56 34.56 32.99 33.22 42.34 43.24 42.32 42.80
RP4 34.06 34.05 25.72 32.49 41.65 42.54 34.38 41.74
RP5 33.53 33.37 25.68 31.90 41.07 41.61 34.27 40.96

Street

RP1 37.95 36.69 35.81 36.00 46.53 44.95 46.33 46.13
RP2 37.68 36.43 35.59 35.77 46.08 44.45 45.94 45.74
RP3 37.46 36.04 35.34 35.46 45.67 43.86 45.46 45.25
RP4 36.62 35.35 34.61 34.62 44.33 42.85 44.13 43.88
RP5 35.42 34.33 33.41 33.43 42.34 41.21 41.99 41.84

Hall

RP1 40.73 41.01 36.91 37.56 48.60 49.60 44.26 45.67
RP2 38.79 40.87 36.96 37.54 45.72 49.15 44.32 45.59
RP3 38.51 40.71 36.89 37.52 45.43 48.78 44.22 45.50
RP4 38.48 40.34 36.85 37.23 45.22 48.11 44.15 44.95
RP5 38.34 39.52 36.66 36.91 45.12 46.73 43.85 44.30

Mirror

RP1 35.34 36.51 34.05 33.26 41.57 42.91 40.20 39.45
RP2 34.05 35.42 33.13 32.54 40.21 41.82 39.17 38.59
RP3 32.76 33.89 31.96 31.55 38.85 40.33 37.79 37.50
RP4 30.83 31.48 30.13 29.84 37.01 38.02 35.93 35.84
RP5 28.49 28.74 27.79 27.55 34.36 34.82 33.38 33.23

Average

RP1 35.89 36.17 33.43 33.30 43.81 44.06 41.75 41.65
RP2 35.20 35.62 33.19 33.07 42.93 43.39 41.40 41.29
RP3 34.52 34.86 32.72 32.63 42.10 42.54 40.72 40.67
RP4 33.53 33.78 31.14 31.39 40.89 41.30 38.83 39.20
RP5 32.20 32.25 30.08 30.60 39.24 39.43 37.43 37.97
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TABLE 5.2: The comparison of average quality of rendered views for
different depth estimators used in MIV DSDE, in VMAF and LPIPS

metrics.

Sequence Rate
VMAF (↑) LPIPS (↓)

IVDE DERS GA-Net GwcNet IVDE DERS GA-Net GwcNet

Fan

RP1 84.71 85.89 72.42 74.09 0.085 0.084 0.094 0.094
RP2 84.14 85.75 71.98 73.56 0.089 0.090 0.099 0.098
RP3 82.12 83.10 70.08 71.46 0.102 0.105 0.112 0.111
RP4 75.61 76.12 64.34 65.17 0.132 0.138 0.144 0.142
RP5 62.15 61.70 52.92 52.91 0.166 0.176 0.179 0.178

Kitchen

RP1 88.81 89.76 80.53 76.28 0.162 0.163 0.167 0.169
RP2 87.79 88.03 79.50 75.65 0.190 0.192 0.193 0.194
RP3 85.62 86.11 77.99 74.71 0.204 0.206 0.207 0.208
RP4 82.23 82.41 75.61 72.41 0.219 0.221 0.221 0.222
RP5 76.70 76.51 70.44 68.89 0.229 0.229 0.231 0.232

Painter

RP1 92.74 94.67 84.86 85.43 0.267 0.267 0.275 0.274
RP2 91.15 93.08 84.15 84.94 0.295 0.295 0.302 0.301
RP3 87.27 88.90 81.80 82.62 0.343 0.342 0.348 0.348
RP4 84.07 85.12 79.48 80.15 0.378 0.377 0.382 0.382
RP5 77.63 78.38 74.55 74.93 0.405 0.403 0.407 0.407

Frog

RP1 92.58 91.48 86.45 88.39 0.067 0.068 0.070 0.069
RP2 91.30 90.09 85.41 87.28 0.072 0.072 0.075 0.074
RP3 88.94 87.60 83.54 85.34 0.079 0.080 0.083 0.082
RP4 83.19 81.72 78.91 80.29 0.096 0.099 0.099 0.099
RP5 73.97 72.45 71.00 71.45 0.119 0.120 0.122 0.123

Carpark

RP1 91.02 90.77 89.58 89.40 0.173 0.169 0.171 0.171
RP2 90.74 90.28 89.29 89.07 0.184 0.180 0.181 0.181
RP3 89.43 89.02 87.65 87.54 0.196 0.193 0.194 0.194
RP4 87.82 87.25 85.71 85.47 0.202 0.197 0.200 0.200
RP5 85.97 85.11 83.50 83.03 0.214 0.211 0.213 0.215

Street

RP1 91.80 91.13 89.20 88.99 0.120 0.120 0.120 0.121
RP2 91.40 90.57 88.69 88.44 0.126 0.126 0.127 0.127
RP3 90.98 90.13 87.98 87.65 0.134 0.133 0.134 0.135
RP4 89.40 88.42 86.07 85.35 0.150 0.148 0.151 0.152
RP5 86.28 85.34 82.57 81.44 0.172 0.171 0.173 0.174

Hall

RP1 92.26 91.25 90.66 86.66 0.049 0.048 0.048 0.048
RP2 91.68 91.22 90.50 86.55 0.056 0.053 0.054 0.055
RP3 90.92 91.04 90.34 86.47 0.065 0.064 0.064 0.064
RP4 90.57 90.22 90.03 86.16 0.077 0.076 0.076 0.076
RP5 89.92 89.78 89.04 85.66 0.089 0.089 0.089 0.089

Mirror

RP1 90.24 91.43 87.44 85.88 0.059 0.060 0.063 0.066
RP2 87.69 88.95 84.79 83.64 0.074 0.075 0.077 0.080
RP3 83.56 84.26 80.84 79.55 0.091 0.091 0.093 0.096
RP4 74.30 74.66 71.69 70.11 0.116 0.117 0.118 0.119
RP5 59.12 58.73 56.45 54.63 0.158 0.161 0.160 0.162

Average

RP1 90.52 90.80 85.14 84.39 0.123 0.122 0.126 0.126
RP2 89.49 89.75 84.29 83.64 0.136 0.135 0.139 0.139
RP3 87.35 87.52 82.53 81.92 0.152 0.152 0.154 0.155
RP4 83.40 83.24 78.92 78.14 0.171 0.172 0.174 0.174
RP5 76.47 76.00 72.56 71.62 0.194 0.195 0.197 0.198
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than those for GA-Net and GwcNet, the results for the LPIPS metric indicate that the
average quality is very similar for all tested depth estimation methods. What is most
important is that, even though these methods were not fine-tuned on the MPEG test
set, they present sufficient quality for both indoor and outdoor video sequences and
are especially competitive for outdoor sequences (e.g. Street and Carpark), as they
are more similar to the KITTI driving images.

It is noticeable that the quality of depth maps degrades with the increase in base-
line between a pair of views because GA-Net and GwcNet are not optimized for
such wide baseline stereo images. Again, this highlights a strong dependency on
the sequence properties that are similar to the ones of the training set, causing some
lack of robustness for these methods. However, this indicates a very high potential
for using deep-learning methods in the DSDE framework, as further improvements
are possible by re-training the models on appropriate content, i.e. considering multi-
view, high-resolution compressed textures as input, or optimization for view syn-
thesis instead of depth fidelity. For most of the sequences, in the case of synthesis
using GwcNet depth maps, the compression with increasing QP yields a synthesis
quality that is closer to the synthesis quality obtained using IVDE and DERS depth
maps. One may conclude that the quality of GwcNet depth maps does not depend
as heavily on the quality of transported views as it does in the case of classical meth-
ods. However, this behavior is also influenced by the limits of the proposed deep
learning approaches for this type of content because the synthesis quality they can
achieve for the high-quality transported views is somewhat saturated.
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(A) IVDE

(B) DERS

(C) GA-Net

(D) GwcNet

FIGURE 5.1: Subjective comparison for fragments of rendered views.
Left: Frog, right: Kitchen sequence.

When it comes to subjective quality, both types of methods have their advantages
and disadvantages. IVDE and DERS depth maps are noisier, but they have sharper
object edges, while the two deep-learning-based methods produce depth maps that
are somewhat cloudy and have smoother depth discontinuities. As a consequence,
the synthesis results based on IVDE and DERS depth maps preserve the object edges
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(A) IVDE

(B) DERS

(C) GA-Net

(D) GwcNet

FIGURE 5.2: Subjective comparison for fragments of rendered views
for the Carpark sequence. Left: RP1, right: RP5.

better, whereas the results obtained using GA-Net and GwcNet depth maps often
have ghosting artifacts around the objects (see a fragment of the Kitchen sequence in
Fig. 5.1). On the other hand, in some examples, the deep learning approaches better
preserve the consistency of the objects that are uncovered (disoccluded) from one
frame to another (see Carpark in Fig. 5.2). The visuals of the Frog sequence in Fig. 5.1
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TABLE 5.3: Runtime [s] of decoding and rendering with different
depth estimation methods.

Sequence
Method

IVDE (CPU) DERS (CPU) GA-Net (GPU) GwcNet (CPU)

Fan 494.27 978.75 78.99 337.58
Kitchen 442.56 992.29 124.00 397.42
Painter 669.04 1186.23 119.67 465.65
Frog 1266.24 1845.84 27.23 358.35
Carpark 385.32 489.35 62.65 264.33
Street 327.05 1033.02 100.98 311.67
Hall 224.21 597.89 29.18 136.99
Mirror 272.33 350.67 74.57 242.10

Average 510.13 934.26 77.16 314.26

show good quality in the case of all depth estimators. Moreover, in Fig. 5.2, we can
observe the results for different rate points (RP1 and RP5) and see the degradation
in the depth estimation quality caused by severe compression.

The complexity of the MIV DSDE mode when various depth estimate techniques
are used is another important factor when conducting experiments. Therefore, to
preserve the integrity of the presented results, the runtimes of decoding and render-
ing are provided in Table 5.3 in order to show the observed range of values when
using the presented software. They are not meant to serve as a direct comparison
of methods since the estimation for different depth estimators was performed using
various computing hardware (of similar but not identical performance). As one can
see, GA-Net was the only technique that utilized the GPU, hence it was the fastest.
In order to fully assess the quality, it was necessary to display all views (e.g., 25 views
for the Kitchen sequence) and estimate all corresponding depth maps, which is what
the provided runtimes demonstrate. Since only one desired viewpoint needs to be
rendered at a time, the decoding in the MIV DSDE mode is substantially faster in
real-world applications. Furthermore, the implementations of the employed depth
estimators and MIV decoder were used for academic and standardization purposes
rather than being optimized for low computing complexity.

Finally, Table 5.4 shows the comparison of the MIV anchor mode with IVDE-
estimated depth maps versus the MIV DSDE mode with GA-Net depth maps. The
comparison is done using the BD-rate metric, calculated for the four smallest RPs
and the four largest RPs. Here, the sign “− − −” means that there is not enough
overlap to compute the BD-rate, and it shows the losses of the MIV DSDE for the
Kitchen and Hall sequences. Despite the fact that the objective quality of the ren-
dered views was not the highest for this method, it can be observed that for most of
the presented video sequences, on low bitrates, the BD-rate for IV-PSNR indicates a
gain in comparison to the MIV anchor mode. This demonstrates once again how ef-
fective the MIV DSDE mode is for coding immersive video without heavily relying
on a depth estimation technique utilized at the decoder side.
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TABLE 5.4: BD-rate [%] of MIV DSDE (GA-Net) vs. MIV anchor
(IVDE).

Sequence
Y-PSNR IV-PSNR Atlas Video Dec

High-BR Low-BR High-BR Low-BR Enc Enc & Ren

Fan 7.3 -24.0 22.5 -15.0 1.0 80.6 685.7
Kitchen --- --- --- --- 0.6 56.1 837.9
Painter -62.0 -69.3 -67.3 -70.4 1.2 74.8 1110.8

Frog -2.2 -28.5 3.3 -25.0 1.2 85.6 553.7
Carpark 102.4 5.7 -7.6 -28.1 1.7 83.2 637.8

Hall --- --- --- 326.5 1.6 204.3 634.0
Street 261.8 64.3 -29.4 -35.7 2.0 85.7 633.1
Mirror 8.0 -32.4 63.9 -18.8 1.0 80.8 900.2

5.3 Conclusion

In this chapter, we presented a study that analyses the performance of different
depth estimation tools in the MIV DSDE framework, which is a rare depth estima-
tion comparative study for immersive video use cases and the first to consider the
impact of compressed textures on depth estimation and rendering quality. The per-
formance of depth estimators is evaluated under regular MPEG common test condi-
tions on perspective video sequences. We compared two traditional multi-view and
two learning-based stereo depth estimation methods, proving the versatility of the
MIV DSDE system in regard to the choice of a depth estimator. The objective quality
of rendered virtual views is presented on five rate points, computed with various
metrics.

Even though learning-based techniques have shown significant progress recently,
especially when dealing with complex scenes, some aspects should still be improved
in the future. Depth estimation tools for immersive video should be robust to the
different nature of the content, compatible with wide-baseline and high-resolution
content, arbitrary camera arrangements, and diverse projection formats.
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Chapter 6

Patch Decoder-side Depth
Estimation in MPEG Immersive
Video

In this chapter1, we investigate the source content pruning as a possible improve-
ment of an immersive video coding system. We explore a concept more challenging
than DSDE, which is called patch decoder-side depth estimation. Namely, we pro-
pose to go one step further and bypass the transmission of depth patches in the
MIV main setting, which considers not only full but also partial views. Although
the information transmitted via TMIV is, from a pruning perspective, considered
non-redundant, our two proposed schemes show that it is possible to enhance this
algorithm. Knowing that depth information is somewhat present in texture videos,
we demonstrate that some depths can be omitted and afterward recovered at the de-
coder side. The first study shows up to 18.4% peak BD-rate reductions on Y-PSNR,
decreasing the pixel rate by 8.3% for each test sequence. The second study proposes
a reliable recovery of depths at the decoder-side, by introducing patch depth selec-
tion at the encoder. This method provides BD-rate improvements on both high and
low bitrate ranges, with up to 22.57% Y-PSNR metric gain.

6.1 Introduction

Since bitrate and pixel rate constraints are crucial for an immersive video end-to-
end transmission system, there have been a lot of improvements and evolution of
TMIV in these aspects. The pruning process performs pixel-matching among all
possible pairs of views. It prunes a pixel in one view if it finds a similar pixel in
another (which has the same position in 3D space), while it preserves pixels that are
not visible in other views [123, 124]. The quality of depth maps has a significant
impact on pruning and rendering. Depth maps have a lot of spatial redundancy
and it is burdensome to compress them with conventional 2D video codecs. Thus,
spatial downsampling of depth maps is enabled in the TMIV processing chain, even
though its benefits are counter-intuitive.

Another approach emerged, called decoder-side depth estimation (DSDE) [25,
125], as explained in more detail in Chapter 3. DSDE improved the immersive video
system by entirely avoiding the transmission of depth maps and moving the depth
estimation process to the decoder-side. The DSDE approach was studied for the
case of fully transmitted views (without pruning), where the depth estimation pro-
cess took advantage of many views that are available at the decoder. However, if

1The content of this chapter is based on the work we published in [29] and [30].
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one wants to apply the DSDE ideas in the case of the TMIV framework, some diffi-
culties arise, because the number of available views at the decoder side in TMIV is
drastically reduced.

The goal of this chapter is to explore the idea of reducing the transmission of
depth data in the context of TMIV, and “MIV anchor” mode. More precisely, we
investigate the assumption that it is possible to avoid the transmission of some patch
depths that originate from the “additional” views while saving the bitrate and pixel
rate, and preserving the rendering quality.

The first proposed approach (pDSDE) is “blind” in the sense that it chooses to
avoid sending one from a few available patch depth atlases, without any quality-
based criteria, thus inspecting the isolated impact of the patch level depth recovery
at the decoder side. It yields significant gains over the anchor, especially on low
bitrates: we observe an average BD-Rate Y-PSNR gain of 1.8% for medium bitrate
(with gains up to 16.0%), and an average of 7.7% for low bitrate (with gains up to
18.4%). Moreover, we achieve 9.3% VMAF [109] BD-Rate reduction for medium
bitrate, and 13.4% for low bitrate, while having 6.7% perceptual MS-SSIM [108] gain
for medium bitrate, with 11.6% gain for low bitrate. In addition, in all the cases we
achieve an 8.3% pixel rate reduction.

The second study proposes an improvement (hpDSDE) compared to the “blind"
patch-DSDE approach. We show that it is possible to reliably discriminate between
the depth patches that have to be sent and those that can be estimated at the decoder,
based on the quality of estimated depth patches at the encoder side. We omit their
transmission and subsequently recover them at the decoder side using a state-of-the-
art depth estimator. The results show significant gains in comparison to the TMIV-
coded anchor: on low bitrate, an average BD-rate gain of 4.63% for Y-PSNR, 6.21%
for VMAF, 5.70% for MS-SSIM, and 4.98% for IV-PSNR, and on high bitrate: 2.03%
for Y-PSNR, 4.05% for VMAF, 3.15% for MS-SSIM, and 2.28% for IV-PSNR metric.

The chapter is organized as follows. Section 6.2 of this chapter considers the
isolated impact of the patch-level depth recovery at the decoder side (patch-DSDE).
Section 6.3 of the chapter proposes an improvement compared to the first, “blind"
patch-DSDE approach, based on depth patch selection. Section 6.4 draws conclu-
sions on this chapter.

6.2 Omitting the depth patch transmission in MIV

This section gives an overview of our patch-DSDE approach, called pDSDE, where
some depth patches are not transmitted, and subsequently, they are estimated at the
decoder side. In this section, we will first present the proposed method, and after
we will give experimental conditions, results, and their discussion.

6.2.1 Proposed method: pDSDE

In Fig. 6.1, we depict the proposed approach, pDSDE, in comparison to the anchor
pipeline: the scheme describes the anchor when the switch is in position 1 and our
method when it is in position 0. Note that we consider only the data available at the
decoder (receiver), which consists of atlases with “basic views”, atlases with patches
from “additional views" (here called patch-atlases), and metadata. Consequently, the
decoded atlases have compression artifacts. Initially, the process of view unpacking
is done, as in Fig. 6.2 where each texture patch from chosen patch-atlas is projected
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FIGURE 6.1: Process diagram for the anchor (switch = 1) and our
pDSDE method (switch = 0) in the TMIV framework.

FIGURE 6.2: Unpacking and patch depth estimation.

to the corresponding view. This way, we recover the pruned textures, which we sub-
sequently use in the depth estimation process together with the basic view textures.
Following the process of unpacking, the recovered pruned textures and basic view
textures are given to the Immersive Video Depth Estimation (IVDE) software [56].
IVDE is a reference software for exploration experiments adopted by MPEG-I, de-
scribed in Chapter 2. We chose this software because it is agnostic to the number and
positioning of the cameras and it ensures high-quality estimated depth maps, with
inter-view and temporal consistencies [64]. IVDE performs the depth estimation on
segments, which results in correspondence between the object edges in depth maps
and the object edges in input textures, consequently enhancing the synthesis qual-
ity. No special adaptation was applied to the IVDE software to warn the estimator
about the fact that the input textures contain a significant amount of non-valid pixels
(those for which no patch has been transmitted).

Let us denote the source textures as T and source depth maps as D. All texture
atlases are transmitted, while for depth atlases we have the following: in the anchor
pipeline all six depth atlases are sent, while in the case of our method all three basic
depth atlases and two depth patch-atlases are sent, whereas one depth patch-atlas
is not sent. Fig. 6.1 is simplified to show only one texture and depth patch-atlas,
although there are multiple ones in our setup. At the decoder side, the renderer
performs the unpacking: a projection from the atlases to the corresponding positions
in the views. Recovered textures are denoted as T∗ and recovered basic view depths



68 Chapter 6. Patch Decoder-side Depth Estimation in MPEG Immersive Video

are denoted as D∗
B. In the anchor case, all depth patch-atlases are sent, and recovered

patch depths denoted as D∗
P, are used in the rendering process. In our case, the

decoding process is done in two stages. First, it recovers the textures T∗ and the
depth maps D∗

B. Then, the textures T∗ are given to the IVDE and used to produce
patch depths D

′
P. After obtaining the D

′
P, the rendering of the target viewport is

continued.

6.2.2 Experimental results and discussion

Test conditions

Our experimental setting complies with the MPEG methodology and common test
conditions (CTC) defined in January 2020 [101], with TMIV version 4 [92], except for
the following: the atlases are constructed with the same size as the source videos,
and the depth atlases are not down-sampled. These changes are made to facilitate
the experimental process and the comparison with the anchor. Each sequence was
encoded in the setup of three groups, where each group has one atlas containing a
basic view and one patch atlas. Furthermore, in addition to the five given quantiza-
tion parameter pairs (QPT, QPD) for video compression with HEVC Main 10 profile,
another quantization parameter pair is added to show the performance at a low bit
rate. The set of (QPT, QPD) pairs is: {(22, 4), (27, 7), (32, 11), (37, 15), (42, 20), (47, 25)}.
The first four pairs are used for high bitrate, the second to fifth for medium bitrate,
and the last four for low bitrate. Our approach was tested on eight perspective se-
quences with HD and 2K resolutions, two of which are computer generated (CG),
and six of which are natural content (NC). We evaluated the bitrate and synthe-
sized view quality performance provided by the proposed method compared to the
anchor, using the Bjøntegaard delta rate metrics, in terms of Y-PSNR, VMAF, and
MS-SSIM, as given by the CTC.

Results

For each sequence and each QPT value, one patch-atlas with multiple patches was
unpacked and saved as a set of the recovered pruned textures. This method was
tested for each of the three depth patch-atlases individually, and the one with the
best performance was chosen. The corresponding depth atlas was not transmitted
and patch depths were replaced with the depths obtained with IVDE from decoded
textures per each QPT, at the decoder side. The obtained results are shown in Ta-
ble 6.1 and Table 6.2. Negative values indicate BD-rate gains, while positive values
indicate losses. The data show BD-rate losses for CG sequences on high and medium
bitrate range that diminish with the increase of QP parameters. Moreover, the trend
of bigger BD-rate gains as QPs increase is constant for all the sequences. In addition,
this method yields an 8.3% pixel rate reduction per sequence.

Fig. 6.3 demonstrates how some artifacts on the Fencing sequence can be avoided
with pDSDE by not sending some of the patch depths (marked with red rectangles).
Fig. 6.4 shows zoomed details of the Fencing test sequence, encoded at 10 Mbps. In
this case, the synthesis result of the pDSDE method subjectively seems better, since
it preserves the colors and it has less noticeable artifacts. Fig. 6.5 compares the RD
curves of the anchor and proposed method for the Fencing sequence. Our method
performs better on the whole bitrate range.

Depending on the type of depth map, a certain percentage of the bitrate, which
comprises a texture and depth component, is used. CG sequences, Kitchen and
Shaman, as well as NC sequence Frog, have a depth fraction from 30% on high
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(A) Source texture.

(B) Synthesized: anchor.

(C) Synthesized: proposed pDSDE.

FIGURE 6.3: One of the views in the Fencing sequence, compared
to the anchor synthesis result, and synthesis result of the proposed

method.
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(A) Source texture.

(B) Synthesized: anchor.

(C) Synthesized: proposed pDSDE.

FIGURE 6.4: Details of the Fencing sequence, compared to the an-
chor synthesis result, and synthesis result of the proposed method, at

10 Mbps.
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TABLE 6.1: BD-rate results per test sequence, in terms of Y-PSNR of
synthesized texture [%]. Negative values indicate gains.

Sequence
CTC - High

bitrate
CTC - Medium

bitrate
Low

bitrate
Shaman (CG) 26.34 8.99 0.73
Kitchen (CG) 66.95 30.33 10.72
Painter (NC) 2.75 -7.81 -12.86

Frog (NC) 3.57 -3.49 -8.01
Fencing (NC) -12.33 -16.02 -18.35
Carpark (NC) 0.26 -8.33 -12.63

Street (NC) -6.10 -8.67 -10.65
Hall (NC) -8.53 -9.48 -10.17

Average (all) 9.11 -1.81 -7.65
Average (NC) -3.40 -8.97 -12.11

TABLE 6.2: BD-rate results per test sequence, in terms of VMAF and
MS-SSIM metrics [%]. Negative values indicate gains.

Sequence
VMAF MS-SSIM

High Med Low High Med Low

Shaman (CG) 3.44 -6.69 -11.53 20.60 1.54 -6.33
Kitchen (CG) 46.96 12.77 -0.28 20.14 5.08 -3.38
Painter (NC) -13.04 -18.59 -21.31 -4.21 -13.96 -18.22

Frog (NC) -3.57 -8.57 -11.13 6.19 -5.49 -10.07
Fencing (NC) -12.91 -16.87 -19.60 -3.74 -13.29 -17.03
Carpark (NC) -5.53 -13.14 -16.52 -1.70 -12.27 -16.15

Street (NC) -7.00 -9.52 -11.32 -6.54 -9.31 -11.29
Hall (NC) -10.84 -13.35 -15.09 3.93 -5.73 -10.22

Average (all) -0.31 -9.25 -13.35 4.33 -6.68 -11.59
Average (NC) -8.82 -13.34 -15.83 -1.01 -10.01 -13.83

bitrates, up to 70% on low bitrates. Other NC sequences take from 50% on high
bitrates, up to 85% on low bitrates.

Discussion

In this work, we have shown that it is possible to avoid the transmission of some
depth patches, and estimate them at the receiver side, while preserving the quality
of synthesized views. The TMIV system is very complex with many interconnected
blocks. Despite that, we introduce a new paradigm by avoiding the transmission
of a significant amount of depth patches, and we demonstrate BD-rate gains for
natural content. We observe that the results are very consistent, for the majority of
the natural content. The bitrate reduction is significant, as given in an example in Fig.
6.5. For each sequence, the BD-rate results gradually improve towards low bitrate,
which indicates that our method would have a satisfactory streaming performance
when network bandwidth is limited. Furthermore, this method provides a pixel
rate reduction of 8.3% per sequence, which is very important for some use cases,
e.g., streaming on mobile devices.

The losses on the computer-generated content can be explained if we take into ac-
count the nature of considered depth maps. Since CG depth maps are ground-truth
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FIGURE 6.5: RD curves for the Fencing sequence.

depth maps, generated with mathematical models of the captured 3D scene, the hy-
pothesis on which pruning is based is perfectly met. Nevertheless, the depth maps
for natural content, obtained by a sensor or some depth estimation algorithm, are not
perfect, which leaves room for improvement in the pruning method. Some source
depth maps in our test set are obtained using IVDE, while others are computed with
similar tools, all of which are exposed to additional post-processing methods. In the
case of CG content from our test set, the fraction that belongs to depths in the bit-
stream is significantly lower compared to the depth fraction of the NC sequences.
Consequently, the amount of overall saved bitrate for CG content with our method
is reduced. Moreover, looking at the patch atlases of the tested CG content, we can
notice that the majority of the patches have homogeneous textures, which is very
unfavorable for depth estimation algorithms. In addition, our CG content has sig-
nificantly more source views (25) than the natural content (9 − 16). This results in
the sparser sampling of texture patches which are preserved in TMIV during prun-
ing. Reduced texture information then leads to deterioration of the quality of esti-
mated depth maps. NC sequences that had BD-rate Y-PSNR losses on high bitrate
are Painter, Frog, and Carpark. Despite that, they demonstrated good performance
in terms of preserving the perceptual quality, as measured by VMAF in Table 6.2.

Depth estimation is a delicate process that aims to find the correspondence in
two or more views, while pruning is built to eliminate the areas which have some
correspondence with the other views. Therefore, when we disable the depth patch
transmission, we should change the pruning strategy accordingly to ensure a reliable
depth estimation at the decoder side. However, in this study, we chose to observe
only the isolated impact of the patch depth recovery without modifying the pruning.
Aside from the pruning strategy, we are facing more challenges: depth estimation
from compressed textures and local depth estimation on very small patch areas. The
obtained results are important because they show that the proposed pDSDE method
improves the TMIV coding system despite the challenges mentioned above.

6.3 Depth patch selection for DSDE in MIV

This section gives an overview of our hybrid patch-DSDE approach, called hpDSDE,
where a reliable, quality-based depth patch selection is done on a per-patch basis at
the encoder side. The decision (send / do not send) is transmitted to the decoder
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as a flag in the bitstream. In this section, we will first outline the proposed method,
and then we will detail experimental conditions and results, and discuss them.

6.3.1 Proposed method: hpDSDE

FIGURE 6.6: Left: TMIV anchor encoding of additional views. Right:
Proposed method for depth patch selection in additional views.

Depth patch selection

A schematic representation of our hpDSDE method for depth patch selection is
shown in Fig. 6.6, as compared to anchor TMIV encoding. This scheme is simpli-
fied to illustrate the pruning and packing process in the case of an atlas with patches
originating from additional views. First, source views are encoded with the TMIV
software. Afterward, the uncompressed basic texture views TB and pruned “anchor”
textures PT and pruned “anchor” depths PD views are stored. Then, the depths P∗

D
are estimated from the uncompressed textures TB and PT. All depth (pruned) views
are estimated, except for basic view depths, which are to be transmitted without
modifications. The estimated depth patches, obtained from the estimated depths
P∗

D, are then compared with the “original” depth patches, obtained from depths PD,
by computing the PSNR: if an estimated depth patch is sufficiently similar to the
original one (i.e., the obtained PSNR is larger than a given threshold TH), we argue
that we can avoid sending that patch depth. Only the patch depths that cannot be
estimated with sufficient quality need to be sent (P‘

D in Fig. 6.6). A flag is stored
per patch to convey this information to the modified decoder. The threshold TH is
sequence-dependent since it depends on the quality of the estimated depth patch,
which varies across different patches and sequences.

This study is an improvement of the “blind” patch-DSDE (pDSDE) approach ex-
plained in Section 6.2: instead of omitting some amount of patch depths without
any depth or rendered view guarantee of quality, we ensure that the omitted patch
depths are adequate to be estimated at the decoder side. Nevertheless, this approach
comes with some inconveniences. First, the transmitted flag is an additional cost
to the bitstream, although it is negligible. Besides that, the depth patch selection
method is heuristic. Ideally, one should render all possible target viewports using
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the estimated depths and compare them with the viewports rendered using the orig-
inal depths. Since this approach is unfeasible because of its complexity, we propose
a suitable proxy (depth quality comparison) as a compromise.

Patch decoder-side depth estimation

The decoding process of the proposed method is similar to the one described in Sec-
tion 6.2. First, the atlases are decoded and all the transported views are recovered
(basic and additional). The TMIV decoder is modified to read the flag which signals
if a depth patch is transmitted or not. If a certain depth patch was not transmitted,
the process for patch decoder-side depth estimation is invoked at the decoder-side,
where the depth patch is estimated with IVDE software from all available decom-
pressed textures: basic views and the corresponding texture patch. The estimated
depth patches are written to the corresponding positions of the recovered views.
Thus, these estimated depths are used alongside the transported source depths dur-
ing the rendering process.

6.3.2 Experimental results and discussion

Test conditions

To evaluate our approach and to ensure a fair comparison, we follow the common
test conditions (CTC) as defined by MPEG-I [121]. We compare the proposal with
the anchor on nine perspective sequences, both natural and computer-generated. In
both cases, the depth maps have been generated by IVDE. In our study, we used
TMIV7 in the “MIV anchor” mode, which processes the source views (pruning,
packing) to generate the atlases. Atlas videos are compressed and decompressed
with HEVC (HM16.16), using five different rate points and corresponding quanti-
zation parameters QPs as defined by the CTC. For decoder-side patch depth esti-
mation in our approach, we used IVDE4 software [56]. To enable evaluation of the
results of novel view synthesis using objective metrics, TMIV renders output views
in corresponding positions of source views. We evaluated the rendered view quality
performance provided by our approach compared to the MIV anchor, with Bjønte-
gaard delta (BD) rate metrics [103, 104] computed over the four largest QPs (low
bitrate) and over the four smallest QPs (high bitrate). BD-rate is calculated in terms
of Y-PSNR, VMAF [109], MS-SSIM [108], and IV-PSNR [126]. The presented synthe-
sis results are averaged over all views, for each QP.

Results

The results obtained with hpDSDE as compared to the anchor are shown in Ta-
ble 6.3a, for the low bitrate range, and in Table 6.3b, for the high bitrate range.
Negative values indicate BD-rate gains, whereas positive values indicate losses of
the proposed method. The data show average gains on all computed metrics and
for both bitrate ranges, with low bitrate peak gains of 22.57% for Y-PSNR, 25.76%
for VMAF, 24.07% for MS-SSIM, and 22.94% for IV-PSNR. The peak gains on high
bitrate range yield 15.20% for Y-PSNR, 18.70% for VMAF, 13.16% for MS-SSIM, and
12.87% for IV-PSNR. Our method performs particularly well on Frog, Fencing, and
Street, while the weakest performance is noticeable on computer-generated con-
tent. The fraction of depth maps in the total bitrate is significant, and varies per
sequence: 15% to 50% on high and 40% to 80% on low bitrate. On average, our
hpDSDE method provides better results for low bitrates, which is coherent with the
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TABLE 6.3: BD-rate [%] synthesis results of the hpDSDE proposal vs.
anchor, in terms of Y-PSNR, VMAF, MS-SSIM, and IV-PSNR: (a) low

bitrate, (b) high bitrate setting. Negative values indicate gains.

(A) Low bitrate synthesis results.

Sequence
BD-rate
Y-PSNR

BD-rate
VMAF

BD-rate
MS-SSIM

BD-rate
IV-PSNR

Painter -0.20 -0.84 -0.66 -0.26
Frog -9.57 -13.65 -11.60 -9.69
Carpark -0.18 -0.47 -0.44 -0.16
Fan -0.14 -0.12 -0.35 -0.02
Kitchen -0.07 -0.21 -0.08 -0.06
Fencing -22.57 -25.76 -24.07 -22.94
Hall 0.00 0.00 0.01 -0.04
Street -8.92 -14.82 -14.09 -11.67
Mirror 0.00 -0.05 0.00 -0.02
Average -4.63 -6.21 -5.70 -4.98

(B) High bitrate synthesis results.

Sequence
BD-rate
Y-PSNR

BD-rate
VMAF

BD-rate
MS-SSIM

BD-rate
IV-PSNR

Painter 0.50 -0.73 -0.47 0.51
Frog -5.02 -11.62 -8.39 -3.58
Carpark -0.20 -0.42 -0.35 -0.28
Fan 0.36 -0.02 -0.12 0.20
Kitchen -0.02 0.04 0.00 -0.06
Fencing -15.20 -18.70 -13.16 -12.87
Hall -0.12 0.00 0.01 -0.08
Street 1.27 -4.95 -6.06 -4.48
Mirror 0.17 -0.08 0.20 0.12
Average -2.03 -4.05 -3.15 -2.28

results obtained in other MIV DSDE studies [29, 26]. Since legacy 2D video codecs
are not convenient for depth map compression, using high compression on them
causes harmful artifacts and subsequent deterioration of rendered views. Therefore,
hpDSDE approach proves to be beneficial in comparison to the anchor. Furthermore,
this method achieves a pixel rate reduction between 0.002% and 5.51% per sequence,
which depends on the sequence and the value of its selection threshold TH (varies
from 14 dB to 43 dB). The added flag for depth patch selection gives an average
overhead of 0.002% on the high and 0.04% on the low bitrate.

Figures 6.7 and 6.8 depict a visual comparison of the anchor and hpDSDE for
the Painter and Street sequences, respectively. As can be seen from these examples,
the quality of the rendered views in both cases is very similar. Moreover, selected
details of the Painter sequence show that colors and object edges are preserved bet-
ter in the case of the hpDSDE method. Since the VMAF metric seeks to reflect the
viewer’s perception of the streaming quality, it is no surprise that our method yields
significant gains in terms of this metric.
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(A) Source texture.

(B) Synthesized: anchor.

(C) Synthesized: proposed hpDSDE.

FIGURE 6.7: Subjective comparison for fragments of rendered views
for the Painting sequence.
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(A) Source texture.

(B) Synthesized: anchor.

(C) Synthesized: proposed hpDSDE.

FIGURE 6.8: Subjective comparison for fragments of rendered views
for the Street sequence.
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The results of our hpDSDE proposal as compared to “pure” patch-DSDE (ppDSDE),
instead of the anchor method, are shown in Table 6.4. This comparison aims to show
how hpDSDE performs when compared to the method which avoids the transmis-
sion of all patch depths. In case of an insufficient overlap of the RD curves, the
BD-rate may not be possible to compute, which is indicated with a sign “−−−”. In
this table, all signs “−−−” indicate gains for hpDSDE proposal. Although PSNR
and IV-PSNR show significant gains in favor of the proposal, VMAF and MS-SSIM
sometimes show losses, especially on low bitrates. The hpDSDE results for the se-
quence Street are almost not different from pure patch-DSDE, therefore, we have
zeroes in the table.

For a visual comparison, we can observe Fig. 6.9, which shows the synthesis
results of the Painter sequence, obtained with ppDSDE and hpDSDE, at 12 Mbps.
Moreover, we can see the RD curves for both the Painter and Kitchen sequence in
terms of Y-PSNR and VMAF, in Fig. 6.10 and 6.11, respectively. Even though the
rate-VMAF curves on low bitrate show better quality for ppDSDE than for hpDSDE
in general, after visual inspection of the Painter sequence (Fig. 6.9) it is clear that
ppDSDE produces more synthesis artifacts, while hpDSDE produces a frame which
is more blurry, since it is compressed with higher QP. The VMAF metric does not
account well for the rendering artifacts, since it is not trained for that. At the low
bitrate, this behavior is particularly significant. However, on high bitrates, hpDSDE
has higher quality than ppDSDE in terms of VMAF.
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TABLE 6.4: BD-rate [%] synthesis results of the hpDSDE proposal
vs. pure patch-DSDE, in terms of Y-PSNR, VMAF, MS-SSIM, and IV-
PSNR: (a) low bitrate, (b) high bitrate setting. Negative values indi-

cate gains.

(A) Low bitrate synthesis results.

Sequence
BD-rate
Y-PSNR

BD-rate
VMAF

BD-rate
MS-SSIM

BD-rate
IV-PSNR

Painter -28.51 57.81 15.92 -13.12
Frog -2.79 19.59 6.62 -0.99
Carpark -13.34 13.09 11.23 -2.14
Fan -51.31 5.75 -3.86 -33.64
Kitchen --- -75.43 --- ---
Fencing -36.30 -2.85 -42.24 -38.03
Hall -73.00 -0.60 --- -78.67
Street 0.00 0.00 0.00 0.00
Mirror -58.06 23.92 -49.46 -55.65

(B) High bitrate synthesis results.

Sequence
BD-rate
Y-PSNR

BD-rate
VMAF

BD-rate
MS-SSIM

BD-rate
IV-PSNR

Painter --- 21.21 -45.57 -68.73
Frog -17.95 10.50 -8.00 -18.75
Carpark -29.79 -3.75 -35.11 -23.15
Fan -67.08 -13.91 -28.40 -63.37
Kitchen --- --- --- ---
Fencing -59.16 -20.55 --- -68.70
Hall --- -28.02 --- ---
Street 0.00 0.00 0.00 0.00
Mirror -79.33 -23.04 --- ---
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(A) Synthesized: “pure” patch-DSDE.

(B) Synthesized: proposed hpDSDE.

FIGURE 6.9: Synthesis results of the Painter sequence at 12 Mbps.

Discussion

The main contribution of this chapter is in the reliable discrimination between the
depth patches needed for transmission and the ones which are redundant, and there-
fore, possible to recover at the decoder side. In this study, we have shown that, de-
spite the pruning process, there is some residual redundancy in the set of texture
and depth patches. This redundancy can be reduced by omitting the transmission of
depth patches that can be accurately estimated at the encoder. More importantly, by
imposing an appropriate selection criterion, it is possible to ensure the high quality
of estimated depth patches, which consequently results in high-quality rendering.

Threshold: The current version of the method relies on multiple coding passes
in order to find the best threshold TH for patch selection. This results in good rate-
distortion performance but also increased complexity. Still, we can reasonably re-
duce the complexity of these multiple passes. An extensive analysis of the threshold
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FIGURE 6.10: RD curves for the Painter and Kitchen sequence in
terms of Y-PSNR.

per sequence is needed because we do not have an a priori knowledge of estimated
depth quality. However, after the first analysis, it is possible to update the threshold
solely on an occasional basis, e.g., when characteristics of a sequence significantly
change. Thus, this approach is not far from what a practical system could achieve.

Selection criterion: The best criterion for a DIBR method would be to evaluate di-
rectly the quality of rendered views obtained using estimated depth maps, as com-
pared to the rendered views obtained using original depth maps. However, since
that would be too complex, we propose to use the quality of the estimated depths as
a proxy.
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FIGURE 6.11: RD curves for the Painter and Kitchen sequence in
terms of VMAF.

6.4 Conclusion

This chapter presented two approaches to tackle the depth patch redundancies and
adhere to bitrate and pixel rate constraints in the MPEG immersive video coding
setup. More specifically, the first proposal is a proof-of-concept of the idea, which
relies on omitting the transmission of some depth patches in TMIV. Consequently,
the patch depth estimation is done at the decoder side, using decoded basic views
and patches. In the second proposal, a depth patch selection scheme is developed,
where the decision for sending a depth patch is made based on the encoder-side
depth patch estimation quality, as compared to the source depth patch. Similarly to
the first method, the non-transmitted depth patches are recovered using compressed
textures at the decoder side. The performance of the proposed methods is evaluated
under regular MPEG common test conditions on perspective video sequences. We
show BD-rate savings on the whole bitrate range in terms of multiple used metrics,
as well as pixel rate savings as compared to the anchor.
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Chapter 7

Pixel Pruning in Neural
Image-based Rendering

In this chapter1, we again investigate the source content pruning as a possible im-
provement of an immersive video system. This time, we focus on novel neural IBR
methods, which show impressive performance on complex and non-Lambertian ob-
jects and do not require depth maps. Still, the large volume of views necessary to
render a virtual view hinders their applications in limited bandwidth environments
or prevents their employment in real-time applications. We address this problem
with LeHoPP, a method for input pixel pruning, which examines the importance
of each input pixel concerning the rendered view, and avoids the use of irrelevant
pixels. Even without retraining the image-based rendering network, our approach
shows a good trade-off between synthesis quality and pixel rate. When tested in the
general neural rendering framework, compared to other pruning baselines, LeHoPP
gains between 0.9 dB and 3.6 dB on average.

7.1 Introduction

DIBR methods are not able to handle non-Lambertian content perfectly well because,
for such content, the linear hypothesis of the displacement of a pixel in the function
of camera displacement is not valid [75]. Therefore, DIBR is rather limited to the
view synthesis of diffuse objects. On the other hand, novel neural IBR approaches
are able to handle non-Lambertian effects while rendering new views, thanks to their
view-dependent nature. Neural Radiance Fields (NeRF) technique [79] has revolu-
tionized the field of neural image-based rendering for complex scenes. However,
NeRF-based (implicit) models are impractical due to the lengthy optimization pro-
cess required to render an unfamiliar scene, since they are encoding a scene into
their own weights.

Another method, called IBRNet [73] and detailed in Section 2.5, is a state-of-the-
art, robust neural radiance field method. It generalizes well to novel scenes, owing
to its end-to-end design that prioritizes the optimization of synthesis quality. More-
over, it outperforms recent one-shot synthesis approaches, like [77], while still hav-
ing good quality synthesis results as compared to single-scene inference approaches.
The current technological progress allows us to have a neural (image-based) ren-
derer on the client side, which produces high-quality synthesis results but requires
many available source views of a given scene. This creates a big obstacle to its cur-
rent deployment using existing standards (such as MIV).

Input pixel pruning has already been pioneered in the context of scalable self-
supervised learning in computer vision, where random image patches are masked in

1The content of this chapter is based on the work we published in [31].



84 Chapter 7. Pixel Pruning in Neural Image-based Rendering

the input image and the missing pixels are subsequently reconstructed [127]. More-
over, a recent approach proposes an online selection of context points for efficient
meta-learning, on 2D videos and other data modalities [128]. Yet, these methods
assume that the context (input image) is the same as the target, as opposed to scene
rendering, where inputs are different from the target. Regarding multi-view video
pixel pruning, TMIV offers a depth-based solution.

In this chapter, we leverage the generalization capabilities of IBRNet for a use-
case scenario of immersive video processing and potential data transmission, by
taking into consideration the need for a pixel rate reduction. Thus, we propose a
method that distinguishes important pixels from the ones that can be pruned. For
each input view, our method creates a corresponding pruning mask and removes
the non-essential pixels. Pruning mask computation is guided by the loss function
computed on target views rendered with IBRNet, with respect to the input views.
Then, in the final stage, a target view is rendered using the pruned source views.

Pixel rate is a very important constraint for the feasibility of a multi-view video
transmission system, therefore, our work is a significant first stage in the full im-
mersive coding pipeline. We propose a study with random pruning baselines, and
we compare them. We observe the better performance of our approach against ran-
domly pruned pixels, and an overall good compromise between rendered view qual-
ity and pixel rate, even without retraining and extra fine-tuning per video sequence
for IBRNet.2

The rest of the chapter is organized as follows. Section 7.2 gives a detailed
overview of our proposal, Section 7.3 presents the test conditions and results with
their analysis, and Section 7.4 concludes the chapter.

7.2 Proposed method: LeHoPP

This section describes our proposal, called LeHoPP, which is a pruning approach
performed at the pixel level of input images, in the image-based rendering setup.
Fig. 7.1 provides a scheme of the method. In this section, we will first present how to
perform the computation for the pruning mask, and then we will provide an algo-
rithmic overview of LeHoPP. Our approach aims to exploit the existing redundan-
cies among given multi-view images which are used by IBRNet to synthesize a novel
view. We hypothesize that it is possible to prune, and therefore, not transmit some
input pixels based on their importance factor. During rendering, pruned pixels are
recovered in the process of inpainting.

7.2.1 Pruning mask computation

Let us consider the multi-view input images Xi ∈ {0, 1, ..., 255}Wi×Hi×3 with i =
{1, ..., N}, where N is the number of source views, and Wi and Hi are the width
and the height for the i-th view. Before feeding Xi to IBRNet, the images are pre-
processed, with standardization and scaling, which transforms Xi to X̂i ∈ RWi×Hi×3,
according to the standard implementation of IBRNet [73]. We will associate to every
Xi and X̂i a pruning mask Mi ∈ {0, 1}Wi×Hi . This mask indicates whether some
pixels should be either preserved (1) or discarded (0).

To obtain the values of each image mask, we first need to compute an importance
score Ii, associated with every pixel of the source view. The importance function
tells us how much are rendered images sensitive to changes in a certain pixel of

2we used the pre-trained model available at: https://github.com/googleinterns/IBRNet

https://github.com/googleinterns/IBRNet
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the input image. We know that given the loss function L we optimize our masks
on (mean squared error on the target view, coherently with the loss employed for
training IBRNet), we can estimate some variations in the value for the loss function
by Taylor series expansion as

∆L ≈ ∂L
∂X̂i(u, v)

∆X̂i(u, v). (7.1)

From this, we can define our importance score as

Ii(u, v) =
∣∣∣∣ ∂L
∂X̂i(u, v)

∣∣∣∣ · ∣∣∣X̂i(u, v)− X̂inp
i (u, v)

∣∣∣ , (7.2)

where u and v denote pixel coordinates in an image, and X̂inp
i denotes an inpainted

approximation of X̂i. To maximize the performance of the pruning mask Mi, the
source importance score Ii is cumulated over image (R, G, B) channels and averaged
over all the target views. Since different subsets of nearby source views are used to
render the target views, we average the gradient values that we get for a particular
source view but from different target loss computations.

Unlike similar approaches in the literature [129, 130], given that masked values
are discarded pixels, we can run an inpainting algorithm to partially recover lost in-
formation. Hence, our ∆X̂i(u, v) is not simply the value of the pixel (as traditionally
done in any pruning algorithm), but it is the distance between the real value and
the estimation of its inpainted value. For computational efficiency, we estimate it by
averaging the value of neighboring pixels:

X̂inp
i (u, v) =

1
8

[
−X̂i(u, v) +

u+1

∑
i=u−1

v+1

∑
j=v−1

X̂i(i, j)

]
. (7.3)

Here, inpainting is not used to fill out the occluded regions in the images after the
novel view rendering, rather it is used after the pixel pruning because IBRNet is
trained on full images. Instead of giving the black/gray pruned pixels to the IBRNet
renderer, we are inpainting the pruned regions and incorporating their impact in our
importance score.

We use the same mask for all the frames of the intra-period, to reduce the fre-
quency of mask updating and overhead for potential transmission. Therefore, the
importance score is cumulated over all the frames of one intra-period. Finally, given
that we target the remotion of the γ ∈ [0; 1] fraction of pixels from the input view,
we can use the quantile function QI (γ) to determine the threshold to apply to im-
portance values, to finally compute the pruning mask:

Mi(u, v) =

{
1 if Ii(u, v, c) ≥ QI (γ),
0 otherwise.

(7.4)

In the next subsection, an overview of LeHoPP will be provided.

7.2.2 Overview of LeHoPP pipeline

The scheme of LeHoPP is depicted in Fig. 7.1, and it consists of three steps.
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(A) Rendering loss computation in a forward pass.

(B) Computation of importance and mask in a backward pass.

(C) Rendering result, from pruned and inpainted images.

FIGURE 7.1: Overview on the LeHoPP method application.

First, the multi-view images Xi are given to IBRNet and a forward propaga-
tion step is performed, and the loss L is computed from the synthesized view Y
(Fig. 7.1a).

Then, through back-propagation, we can calculate ∂L
∂X̂i

, from these the importance
scores Ii according to (7.2) and the masks are computed according to (7.4) (Fig. 7.1b).

Finally, the masks are applied on the input images to prune the pixels, which
are then inpainted, and the resulting images X̃i are given to the IBRNet renderer, to
synthesize the target view Ỹ (Fig. 7.1c).

In the next section, we will present the empirical validation for LeHoPP.

7.3 Results and discussion

7.3.1 Test conditions

Our dataset consists of eight perspective sequences from MIV CTC [121], with nat-
ural and computer-generated multi-view content of high resolution, captured by a
sparse camera setup.

We compare LeHoPP with two baselines: base1 (32×32 block-based random pixel
pruning) and base2 (4×4 block-based random pixel pruning).

Since we did not find any existing method for addressing the problem of pixel
pruning as in our context, we decided to compare the proposed method with a sim-
ple, “blind” approach (random pruning). We remark that the TMIV pruner is not
a relevant comparison in our setup, since it is designed for a different goal. It is
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based on depth image-based rendering - while IBRNet deals with texture-only data
- and yields a small set of patches, which cannot be used in the IBRNet rendering
context. Moreover, the texture videos pruned with our method cannot be utilized in
the TMIV rendering, because we do not rely on depth maps.

In our experiments, the pruning percentage γ is the only varying parameter,
demonstrating the trade-off between quality and pixel rate. Furthermore, pruned
pixels are inpainted prior to being input to the rendering, using Telea [131] method
from the OpenCV library. The number of input source views for rendering is set to
9, for all the sequences. We evaluate the quality of synthesized views using PSNR,
SSIM [107], and LPIPS [110] metrics, as proposed for IBRNet.

7.3.2 Experimental results

Results with different pruning percentages γ of 5%, 10%, and 20% are shown in
Tab. 7.1. They represent the rendered view quality for the target video frames, av-
eraged among all views of a sequence. We can observe that, on average, LeHoPP
outperforms both base1 and base2 for all the computed metrics, for all three given
values of γ. We further notice that, even though γ’s value of 20% significantly re-
duces the number of source pixels in the rendering process, the performance is not
very far from the anchor, where rendering is done on the source input without any
pruning. Our method performs particularly well on sequences Carpark, Fan, Hall,
Street, and Mirror. However, we observe slightly lower effectiveness in the case of
sequences Painter, Frog, and Shaman. Some elements of suboptimality that justify
this behavior (for the sake of computational efficiency) can be found, for example, in
the inpainting approximation used for the importance computation, introduced in
(7.3), or in the one-shot nature of the pruning process itself (making multiple smaller
steps would make the approximation in (7.1) more precise) and, most importantly,
not fine-tuning IBRNet to be more robust to the pruned pixels.
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FIGURE 7.2: Histogram of the importance values, Street video se-
quence, view 1 at frame 0.
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FIGURE 7.3: Rendering results for different random seeds of the
method base2 for Street video sequence.

7.3.3 Analysis and discussion

The main contribution of this work, pixel importance computation, has proven to be
a reliable metric for pixel pruning. Let us observe closely the contribution of the key
elements of LeHoPP and how consistently it is better than the considered baselines,
on a sample scene: we provide here an in-depth analysis using the Street sequence.

Fig. 7.2 shows the distribution of the importance values Ii: the majority of pixels
(population) have a very small importance value, showing that it is, in principle,
possible to prune a large number of pixels.

Furthermore, let us compare LeHoPP with base2 for different γ values, averaged
and examined on five different seeds and initial random states. Fig. 7.3 shows that
the results obtained with the random method are consistently performing worse
than results obtained with LeHoPP, independently from the seed given to the ran-
dom pruning method. We show this analysis on base2 because it is performing sig-
nificantly better than base1, since its configuration makes it easier to inpaint pruned
blocks with higher fidelity.

Additionally, to measure the performance of LeHoPP compared to base2 in terms
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FIGURE 7.4: RD performance of the LeHoPP method as compared to
base2 on Street video sequence.

of data rate, we conduct a compression study. The setup of this study is HEVC simul-
cast, with QP∈{22, 27, 32, 37}. First, all views of the Street sequence are pruned with
γ=10%; then they are compressed, and finally the decoded pruned views are given
to the IBRNet renderer, without inpainting. LeHoPP yields 54.24% BD-rate [103]
against base2, and performs consistently better in both quality and bitrate, for a given
QP (Fig. 7.4).

Replacing the pruned pixels with their inpainted counterparts before rendering
helps the network to renderer the views with higher quality. Fig. 7.5 and 7.6 compare
the quality of synthesized views of the Street sequence, one without (Fig. 7.5b) and
another with inpainting prior to rendering (Fig. 7.6b).

Synthesis results of the Street sequence (without inpainting), after pruning with
base2 and LeHoPP, and compression at 10 Mbps, are shown in Fig. 7.7. We can
see that even with compressed content, IBRNet achieves great rendering perfor-
mance, which demonstrates its robustness. On the rendered view, it is noticeable
that LeHoPP pruning creates less annoying artifacts than base2, and performs more
“structured” pruning.

Pixel rate in the MIV standard [20] is limited to 32 Megapixels at 30 fps. Se-
quences with high resolution and a large number of source views are barely fulfilling
this requirement, if we consider solely the transmission of the source texture views
without their corresponding depth maps. Therefore, pruning percentages between
5% and 20%, tested in the scope of this work, are well-fitting to show the real pos-
sible use case scenario, where the amount of preserved pixels stays in the defined
pixel rate boundaries.

The inpainting approximation that we use for the computation of importance
score is a proxy for inpainting, and a good simplification in the case when pruned
areas are smaller. Therefore, results in Tab. 7.1 show higher gains of LeHoPP com-
pared to base1 and base2 on smaller γ values. Furthermore, during importance com-
putation, fewer views were used as a source input for rendering of Shaman, Painter,
Frog, Mirror, and Fan, due to memory limitations and big backpropagation com-
putational graph. This might also result in less precise importance values for these
sequences. Moreover, for importance values, the method requires a few minutes of
computation per frame, for a specific target view.

The TMIV pruning technique depends on both the depth maps and textures, and
it is created to optimize for DIBR. Moreover, the MIV standard cannot transmit all
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the source views of a captured scene. Thus, it is incompatible with a neural renderer
such as IBRNet, even though they are compatible in terms of data: the GA profile of
MIV can transmit multi-view texture-only videos. Hence, there is a need to prune
the textures for the IBRNet renderer for a potential transmission use case. The pro-
posed system is not a standalone immersive video coding setup, but a first, neces-
sary pre-processing stage of such a system. Our study demonstrates the method that
learns which pixels are not essential and reduces the pixel rate while maintaining a
high synthesis quality.

To summarize, IBRNet showed extraordinary robustness when dealing with non-
ground-truth pixels chosen with LeHoPP. The results obtained on sparse camera
setup, without retraining or fine-tuning, given some amount of inpainted pixels to-
gether with source pixels, are of very good quality, as shown with PSNR, SSIM, and
LPIPS objective metrics.

7.4 Conclusion

This chapter presented an approach that learns how to prune the pixels and can be
utilized with neural image-based synthesizers in a multi-view setup without retrain-
ing the model. LeHoPP leverages the existing redundancy among different views of
a scene and uses IBRNet to compute rendered view loss and its impact on each input
pixel. Thereby, it is computing the pruning mask for each view, given the desired
pruning percentage. We show that neural synthesis itself provides the information
needed to prune the content. Our method outperforms random block-based pruning
baselines and demonstrates good efficiency on the MPEG immersive video dataset
without scene fine-tuning. We believe that our work encourages further develop-
ment of neural renderers and broader adoption of immersive video standards, such
as MIV.
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(A) Pruned input without inpainting (γ = 20%)

(B) Output without input inpainting (21.35 dB)

FIGURE 7.5: Qualitative comparison of a target image for a given in-
put view: pruned pixels in (a) are in green for visualization.
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(A) Pruned input with inpainting (γ = 20%)

(B) Output with input inpainting (40.73 dB)

FIGURE 7.6: Qualitative comparison of a target image for a given in-
put view: pruned pixels in (a) are in green for visualization.
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(A) Pruned with base2.

(B) Pruned with LeHoPP.

FIGURE 7.7: Synthesis results of the Street sequence, after pruning
and compression at 10 Mbps, without inpainting.
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Chapter 8

Conclusion

Throughout this thesis, we have been working on improvements for a video-based
immersive coding system. In this chapter, we give a summary of the research carried
out in the scope of this thesis and describe the future perspectives for immersive
video coding research.

8.1 Summary and discussion

In Chapter 2 of this thesis, we introduce the reader to the historical background of
video-based coding solutions. We detail their benefits in terms of compression effi-
ciency and draw attention to their drawbacks in terms of complexity. In addition, we
continue by introducing a new immersive video coding paradigm, which operates
on the source material and pre-processes it, whilst it relies on the legacy 2D video
codecs to compress the resulting data. We finish by describing the two important
(non-normative) stages this system entails: depth estimation and view synthesis.
Furthermore, in Chapter 3 we describe the MIV standard, which is the main sub-
ject of this research, the algorithms employed in its reference software, and the test
conditions followed during our experiments.

Since the previous immersive video coding standards (such as MV-HEVC and
3D-HEVC) were complex and not widely deployed, the MIV standard turned to-
wards the aforementioned novel paradigm for immersive video coding, which is
simpler and easier for wide deployment. The objectives of this thesis have been
aligned with the standardization of MIV, and aimed at increasing the view synthesis
quality and compression efficiency.

In the following chapters, we gave a detailed overview of our studies and the
benefits they brought to the immersive video coding system. We studied the areas
that may provide improvement to the overall design of immersive video coding:
atlas compression, depth estimation techniques, and pruning of the source content.
The first potential advancements we considered are related to the codec-agnosticism
characteristic of the MIV standard and to the compression of the atlases. We give the
related analysis and the results in Chapter 4. The second area of our research for
possible advancements is related to the depth estimation techniques used on the
multi-view content, and their influence on the compression performance, as well as
the synthesized view quality. We give the experimental results and analysis in Chap-
ter 5, and the related depth estimation study is also provided in brief in Appendix A.

The two mentioned areas of research gave us the following insights. In Chapter 4,
we confirm that MIV is versatile in terms of using 2D video codecs for atlas compres-
sion. We observe that, when depth maps are compressed with legacy codecs that
do not implement specialized coding tools such as inter-component techniques, the
rate-distortion performance suffers a non-negligible degradation. Our tests show the
benefits which are brought by employing the VVC screen content coding tools, even
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without any modifications to them. In addition, in Chapter 5, we observe that the
conventional depth estimation tools used by MPEG are competitive to neural-based
approaches. Both mentioned families of depth estimators have their advantages and
disadvantages, and neither brings significantly greater improvements in visual qual-
ity. Thus, these two studies have shown a limited impact on the efficiency of MIV,
so we continued our research toward the third direction, which is input pruning.

Pruning in MIV is a process responsible for removing redundancies among the
source views. That is a new approach that exploits the inter-view redundancies by
“compressing” the input data with pruning, and decides on pruning based on view
re-projection. However, pruning depends on the chosen depth-image-based render-
ing (DIBR) methods, and also on depth maps. Moreover, DIBR methods also depend
on depth maps, which can be ground-truth or estimated. In the former case, their fi-
delity is bounded by their resolution or mathematical model, whilst the latter exhibit
estimation errors, especially on homogeneous image areas and on non-Lambertian
surfaces. Hence, pruning is not perfectly eliminating all the redundancies.

Therefore, in Chapter 6, we examine the possibility of improving the MIV sys-
tem, by leveraging the existing redundancies after pruning and the decoder-side
depth estimation (DSDE) paradigm. DSDE was previously introduced and tested
solely on full views and in the presence of a big number of available views for depth
estimation. We demonstrate that the notion of DSDE can be applied for a more chal-
lenging scenario - in the case of small image areas called patches, and the low num-
ber of available full views. We first introduce the pDSDE approach, which consists in
bypassing the transmission of a certain amount of patch depths and retrieving them
at the decoder side, prior to rendering. The pDSDE method has shown good results
on natural content and especially good performance on low bitrates. These results
are consistent with the results obtained with basic, full-view MIV DSDE configura-
tion. However, during MIV standardization, the pruning techniques implemented
in TMIV were further improved. This has driven our research towards the more reli-
able, hybrid selection for patch-DSDE, called hpDSDE. This approach examines the
quality of the estimated patch depth at the encoder side and avoids its transmission
only if its quality is sufficiently high, as compared to the source patch depth. The
hpDSDE method has shown especially good results on natural content, and some
improvements on computer-generated content. Both pDSDE and hpDSDE ensure
fewer visual artifacts induced by harmful compression of depth maps, and higher
rendering quality for the same bitrate, for the majority of test sequences.

Finally, in Chapter 7 we go a step further and examine the impact of input (tex-
ture) pruning on one of the novel image-based rendering methods based on NeRF,
called IBRNet. We have chosen IBRNet since it removes the burden of depth cap-
ture and estimation, and it provides an impressive visual quality when rendering
complex, non-Lambertian scenes. Moreover, it is a general rendering method that
performs well on unseen scenes, which alleviates the need for per-sequence retrain-
ing or fine-tuning. Our results show that it is possible to learn how to prune the
input images while ensuring good performance in terms of rendering quality. In
fact, we show that the neural synthesis itself provides the information needed to
prune the content, which is a truly novel approach for identifying redundant pixels.

8.2 Future perspectives

Here we present the perspectives for different areas of future research that have
been opened by work conducted in this thesis. Although our main contributions
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demonstrated notable advancements in their respective fields, we have identified
some limitations and potential opportunities for further exploration.

8.2.1 Patch decoder-side depth estimation

The work done in the scope of this thesis (Chapter 6) has shown some possible future
applications for the GA profile. Even after the first edition of the MIV standard and
its GA profile, the work on improvements for a DSDE system has continued [132].
At the time of writing of this manuscript, a novel version of the GA profile (DSDE)
for MIV Ed.2 is proposed [133], which aims to allow including partial or complete
geometry and occupancy information in the bitstream. This proposal for the DSDE
profile is inspired by many potential use cases, including our pDSDE work [29].
The authors [132] claim that our pDSDE scheme could be enhanced by the use of
external occupancy video. This would signal which pixels are pruned and which
are preserved, and ensure the spatio-temporal redundancy removal by masking the
pruned pixels, thus saving the bitrate [134]. Another potential use case of the im-
proved DSDE profile is to signal depth refinement (post-processing) [135] as a form
of decoder-side depth estimation. This could be especially beneficial for the synthe-
sis quality on low bitrates.

Not transmitting some patch depths brings new possibilities, since it saves the
pixel rate previously reserved for these patch depths. For example, the rendering
could benefit from the transmission of some additional information in the atlases in-
stead of patch depths. The additional information can be given in the form of added
texture which was initially pruned, or another kind of attribute, like transparency.

Indeed, moving towards decoder-side depth estimation brings additional com-
plexity to the decoder. However, the MIV standards support Geometry Assistance
SEI, which enables using a set of encoder-derived features from source depth maps,
to speed up and enhance the quality of estimated decoder-side depth maps [136].
Moreover, the new version of the assistance, Extended Geometry Assistance SEI is
adopted for MIV Ed.2 [137]. This version includes the possibility to send the features
only for a subset of views, and adds new schemes for feature extraction, apart from
a rectangular grid. This could be advantageous in our pDSDE and hpDSDE scenario
for a depth estimation speed-up and bitrate reduction.

Furthermore, patch depth estimation (having only a few available views) is sig-
nificantly more challenging than regular depth estimation from multiple views. Some
potential improvements could be considered in this case. First, we could consider
using an adapted depth estimator, which would skip the pruned pixels, and make
the estimation faster and more accurate. Then, we could use “input depth map assis-
tance”, i.e., sending a subset of input depth maps, and using them to refine the depth
maps of other views [138] or re-projecting them to recover other depth maps [139],
and speed-up the MIV rendering. In addition, monocular depth estimation could be
investigated in case there is not enough correspondence among the patches [50].

Moreover, our hpDSDE method needs multiple coding passes in order to find the
best threshold for depth patch selection. This is due to the chosen evaluation metric,
which is the PSNR between source patch depth and estimated patch depth. How-
ever, once selected, there is no need to change the “quality” threshold often, but only
occasionally, when the scene characteristic changes. This could also be predicted, for
example, using temporal information (TI) analysis [140]. Finally, an improved depth
patch selection approach could consider another proxy for rendering quality, e.g.,
warping.
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8.2.2 Pruning for neural image-based rendering

At the time of writing this manuscript, MPEG formed an ad-hoc group for the in-
vestigation of implicit neural video representations (INVR) [141]. This group aims
to evaluate the novel view rendering possibilities with NeRF-based approaches, es-
pecially focused on rendering more complex scenes with non-Lambertian and trans-
parent objects. We believe that our work on input pruning for IBRNet (Chapter 7)
perfectly complements these efforts.

However, our work is the first step in the complete immersive video coding
pipeline. Further work could assure delivery with MIV, in the following way. The
pruning percentage in LeHoPP could be automatically selected based on the given
pixel rate limits [20]. Our pruning method could be used instead of TMIV’s pruner,
and after the pruning step, the process could continue following the TMIV pipeline,
by clustering the non-pruned pixels and packing the clusters into patches [24, 89].
Finally, the generated atlases could be compressed and decompressed using a 2D
video codec, and the rendering could be done with IBRNet [73].

Neural IBR methods seem to be the future of rendering, but image pruning for
neural synthesizers is in its early stage. Pruning should identify the patches which
are of an appropriate size, so that they can be easily compressed with 2D codecs.
Therefore, we need to cluster the patches during the pruning process. For cluster-
ing, we could introduce an additional metric in pixel pruning computation, which
would penalize pruned pixels that are isolated. Potentially, other general IBR neural
synthesizers could be tested in this scenario [142], or even the fast implicit neural
IBR methods [143].

Furthermore, our pruning method, which is supposed to be at the encoder side,
introduces additional complexity to the network. This complexity can be reduced,
e.g., by moving the operations (such as inpainting) to the GPU, or by using semi-
precision rather than single-precision for faster computation (Automatic Mixed Pre-
cision in PyTorch) [144]. Additionally, the synthesis performance with pruned input
could be improved by the integration of the pruning module in the training.

Finally, temporal consistency is an issue related to neural renderers which are
image-based, and do not consider the temporal dimension. Our pruning masks are
aggregated during one intra-period to avoid the temporal inconsistencies due to
pruning. Moreover, there are multiple works addressing the temporal dimension,
e.g., based on joint spatial and temporal information modelling [145] or temporal
incoherence modeling and plugging it into image-based framework [146]. Moreover,
some works enable the streaming of radiance fields with incremental representation,
which speeds up the training and rendering time for novel view synthesis of a 3D
video [147, 148].
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Appendix A

Study on Depth Estimators for
Rendering of Immersive Video

To ensure that all the works conducted during my thesis are included, in this Ap-
pendix we present a brief overview of the study1 led by another PhD student in
Orange Labs. The study evaluates two conventional and five learning-based depth
estimation techniques for a use case of MIV rendering, for which I personally con-
tributed with advice on the TMIV, IVDE, DERS, and GwcNet software, and with
paper review and corrections.

A.1 Summary of the results

As we had the opportunity to see in previous chapters, depth estimation has an
essential role in an immersive video coding scheme that relies on DIBR techniques.
Most often, depth estimation methods are evaluated for the depth accuracy they
achieve. However, in an immersive video system, the main quality indicator is the
actual quality of the rendered views. Therefore, the goal of this study is to evaluate
the synthesized view quality depending on the depth estimator, where novel views
are generated by the TMIV (VWS) renderer, described in Chapter 2.

The study encompasses two conventional and five learning-based depth estima-
tion methods. The tested conventional depth estimators are DERS [55] and IVDE [56],
which are described in Chapter 2. Learning-based methods are two stereo methods
GwcNet [57] and GA-Net [58], also described in Chapter 2, and additional multi-
view stereo approaches: RMVSNet [49], AA-RMVSNet [149], and a neural renderer
IBRNet [73] that can be used to compute depth maps. Therefore, this study enlarges
the choice of learned depth estimators compared to Chapter 5 by adding the multi-
view stereo solutions. All models are tested on perspective and rectified content
from the MIV CTC, because almost all models are pre-trained mostly on such data.

On average, synthesis results show that depth maps obtained with the IVDE
method yield the highest quality of 38.77 dB, 0.123, and 0.884 in terms of IV-PSNR,
LPIPS, and SSIM metric, respectively. These results are very closely followed by GA-
Net: 38.36 dB IV-PSNR, 0.125 LPIPS, and 0.884 SSIM; and DERS: 38.34 dB IV-PSNR,
0.124 LPIPS, and 0.882 SSIM. Moreover, when observing the maximum results per
sequence, it is noticeable that learned approaches yield better results in more than
half of video sequences in terms of IV-PSNR and SSIM, while in terms of LPIPS, the
results are balanced.

Subjective analysis is consistent with the one conducted in Chapter 5. It is ob-
servable that conventional techniques generate depth maps that are noisier, while

1The content of this appendix is based on the work we published in [28].
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learned approaches generate depth maps with smoother and cloudy regions. Subse-
quently, the conventional methods more accurately recover the sharp object edges,
while learned approaches struggle with object boundaries and thin structures, due
to computational issues with high-resolution data.

A.2 Conclusion

This study has shown that learned-based depth estimators are still not surpassing
the capabilities of conventional approaches. This is mostly due to the domain shift
issue between natural and computer-generated content, which may arise when us-
ing models pre-trained on particular content. Moreover, learning-based methods
show computational inefficiency when dealing with high-resolution content, which
is the usual scenario for immersive video applications. Therefore, our study high-
lights the importance of further research for optimizing the learned approaches to
deal with wide baselines, high resolutions, and different types of content.
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List of Publications

B.1 Publications

1. M. Milovanović, F. Henry, M. Cagnazzo and J. Jung, “Patch Decoder-Side
Depth Estimation In Mpeg Immersive Video,” in ICASSP 2021 - 2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto,
ON, Canada, 2021, pp. 1945-1949.

2. D. Mieloch, P. Garus, M. Milovanović, J. Jung, J. Y. Jeong, S. L. Ravi and
B. Salahieh, “Overview and Efficiency of Decoder-Side Depth Estimation in
MPEG Immersive Video,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 32, no. 9, pp. 6360-6374, Sept. 2022.

3. S. L. Ravi, M. Milovanović, L. Morin and F. Henry, “A Study of Conventional
and Learning-Based Depth Estimators for Immersive Video Transmission,” in
2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP),
Shanghai, China, 2022, pp. 1-5.

4. M. Milovanović, F. Henry and M. Cagnazzo, “Depth Patch Selection for Decoder-
Side Depth Estimation in MPEG Immersive Video,” in 2022 Picture Coding Sym-
posium (PCS), San Jose, CA, USA, 2022, pp. 343-347.

5. P. Garus*, M. Milovanović*, J. Jung, M. Cagnazzo, “Chapter 12 - MPEG im-
mersive video,” in Immersive Video Technologies, G. Valenzise, M. Alain, E. Zer-
man, and C. Ozcinar, Eds., pp. 327-356, Academic Press, 2023.

*The authors P.G. and M.M. contributed equally to this chapter.

6. M. Milovanović, E. Tartaglione, M. Cagnazzo, F. Henry, “Learn how to prune
pixels for multi-view neural image-based synthesis,” to appear in 2023 IEEE
International Conference on Multimedia and Expo Workshops (ICMEW), Brisbane,
Australia, 2023, pp. 1-6.

B.2 Patents

1. F. Henry, M. Milovanović, “Procédé de segmentation d’une pluralité de don-
nées, procédé de codage, procédé de décodage, dispositifs, systèmes et pro-
gramme d’ordinateur correspondants,” French Patent ref. FR2206177, June
2022.
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B.3 Standardization contributions
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burg, SE, July 2019.
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3. M. Milovanović, J. Jung, P. Boissonade, “TMIV anchor results, analysis, and
comparison with MV-HEVC anchor,” Doc. ISO/IEC JTC1/SC29/WG11 MPEG2019/
m49593, Gothenburg, SE, July 2019.
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multiview video: Acquisition, processing, compression, and virtual view ren-
dering,” in Academic Press Library in Signal Processing, Volume 6, Rama Chel-
lappa and Sergios Theodoridis, Eds., pp. 3–74. Academic Press, 2018.

[15] “Stereoscopic television MPEG-2 multi-view profile,” Rep. ITU-R BT.2017,
1998.

[16] Anthony Vetro, Thomas Wiegand, and Gary J. Sullivan, “Overview of the
stereo and multiview video coding extensions of the h.264/mpeg-4 avc stan-
dard,” Proceedings of the IEEE, vol. 99, no. 4, pp. 626–642, 2011.

[17] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra,
“Overview of the h. 264/avc video coding standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[18] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand,
“Overview of the high efficiency video coding (hevc) standard,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668,
2012.

[19] Gerhard Tech, Ying Chen, Karsten Müller, Jens-Rainer Ohm, Anthony Vetro,
and Ye-Kui Wang, “Overview of the Multiview and 3D Extensions of High
Efficiency Video Coding,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 26, no. 1, pp. 35–49, 2016.

[20] Bart Kroon, Vinod Kumar Malamal Vadakital, and Joel Jung, “Recommended
pixel rate limits for the CTC for Immersive Video,” ISO/IEC JTC 1/SC 29/WG
11 MPEG/m49826, 2019.

[21] Mathias Wien, Jill M. Boyce, Thomas Stockhammer, and Wen-Hsiao Peng,
“Standardization Status of Immersive Video Coding,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 9, no. 1, pp. 5–17, Mar. 2019.

[22] Jill M. Boyce, Renaud Doré, Adrian Dziembowski, Julien Fleureau, Joel Jung,
Bart Kroon, Basel Salahieh, Vinod Kumar Malamal Vadakital, and Lu Yu,
“MPEG Immersive Video Coding Standard,” Proceedings of the IEEE, vol. 109,
no. 9, pp. 1521–1536, 2021.

[23] “Text of ISO/IEC FDIS 23090-12 MPEG Immersive Video,” ISO/IEC
JTC1/SC29/WG4 MPEG2021/ N00111, July 2021.

[24] Adrian Dziembowski and Basel Salahieh, “Test Model 15 for MPEG Immer-
sive Video,” ISO/IEC JTC 1/SC 29/WG 04 N0271, Oct. 2022.

[25] Patrick Garus, Joel Jung, Thomas Maugey, and Christine Guillemot, “Bypass-
ing Depth Maps Transmission For Immersive Video Coding,” in 2019 Picture
Coding Symposium (PCS), 2019, pp. 1–5.



BIBLIOGRAPHY 105

[26] Dawid Mieloch, Patrick Garus, Marta Milovanović, Joël Jung, Jun Young
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Titre : Pruning et compression de contenus multi-vues pour le codage vidéo immersif
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Résumé : Cette thèse aborde le problème de
la compression efficace de contenus vidéo immer-
sifs, représentés avec le format Multiview Video plus
Depth (MVD). Le standard du Moving Picture Experts
Group (MPEG) pour la transmission des données
MVD est appelé MPEG Immersive Video (MIV), qui
utilise des codecs vidéo 2D compresser les informa-
tions de texture et de profondeur de la source. Par
rapport au codage vidéo traditionnel, le codage vidéo
immersif est complexe et limité non seulement par le
compromis entre le débit binaire et la qualité, mais
aussi par le débit de pixels. C’est pourquoi la MIV uti-
lise le pruning pour réduire le débit de pixels et les
corrélations entre les vues et crée une mosaı̈que de
morceaux d’images (patches). L’estimation de la pro-
fondeur côté décodeur (DSDE) est apparue comme
une approche alternative pour améliorer le système
vidéo immersif en évitant la transmission de cartes de
profondeur et en déplaçant le processus d’estimation
de la profondeur du côté du décodeur. DSDE a été
étudiée dans le cas de nombreuses vues entièrement
transmises (sans pruning). Dans cette thèse, nous
démontrons les avancées possibles en matière de co-

dage vidéo immersif, en mettant l’accent sur le pru-
ning du contenu de source. Nous allons au-delà du
DSDE et examinons l’effet distinct de la restaura-
tion de la profondeur au niveau du patch du côté
du décodeur. Nous proposons deux approches pour
intégrer la DSDE sur le contenu traité avec le pru-
ning du MIV. La première approche exclut un sous-
ensemble de cartes de profondeur de la transmis-
sion, et la seconde approche utilise la qualité des
patchs de profondeur estimés du côté de l’encodeur
pour distinguer ceux qui doivent être transmis de
ceux qui peuvent être récupérés du côté du décodeur.
Nos expériences montrent un gain de 4.63 BD-rate
pour Y-PSNR en moyenne. En outre, nous étudions
également l’utilisation de techniques neuronales de
synthèse basées sur l’image (IBR) pour améliorer la
qualité de la synthèse de nouvelles vues et nous mon-
trons que la synthèse neuronale elle-même fournit
les informations nécessaires au pruning du contenu.
Nos résultats montrent un bon compromis entre le
taux de pixels et la qualité de la synthèse, permet-
tant d’améliorer la synthèse visuelle de 3.6 dB en
moyenne.
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Abstract : This thesis addresses the problem of ef-
ficient compression of immersive video content, re-
presented with Multiview Video plus Depth (MVD) for-
mat. The Moving Picture Experts Group (MPEG) stan-
dard for the transmission of MVD data is called MPEG
Immersive Video (MIV), which utilizes 2D video co-
decs to compress the source texture and depth in-
formation. Compared to traditional video coding, im-
mersive video coding is more complex and constrai-
ned not only by trade-off between bitrate and quality,
but also by the pixel rate. Because of that, MIV uses
pruning to reduce the pixel rate and inter-view correla-
tions and creates a mosaic of image pieces (patches).
Decoder-side depth estimation (DSDE) has emerged
as an alternative approach to improve the immersive
video system by avoiding the transmission of depth
maps and moving the depth estimation process to the
decoder side. DSDE has been studied for the case
of numerous fully transmitted views (without pruning).
In this thesis, we demonstrate possible advances in

immersive video coding, emphasized on pruning the
input content. We go beyond DSDE and examine
the distinct effect of patch-level depth restoration at
the decoder side. We propose two approaches to in-
corporate decoder-side depth estimation (DSDE) on
content pruned with MIV. The first approach excludes
a subset of depth maps from the transmission, and the
second approach uses the quality of depth patches
estimated at the encoder side to distinguish between
those that need to be transmitted and those that can
be recovered at the decoder side. Our experiments
show 4.63 BD-rate gain for Y-PSNR on average. Fur-
thermore, we also explore the use of neural image-
based rendering (IBR) techniques to enhance the
quality of novel view synthesis and show that neu-
ral synthesis itself provides the information needed to
prune the content. Our results show a good trade-off
between pixel rate and synthesis quality, achieving the
view synthesis improvements of 3.6 dB on average.
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