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Résumé : Ce travail est consacré à l’étude
de la diffraction d’atomes rapides en inci-
dence rasante (∼ 1 ◦) à la surface des cris-
taux, une technique découverte à Orsay et
baptisée GIFAD. Nous identifions deux com-
posantes dans les images de diffraction des
atomes d’énergie proches du keV. L’une est
associée à la diffraction élastique et l’autre
à la diffraction inélastique où de l’énergie
a été échangée avec la surface. Nous avons
établi une transformation de coordonnées
telle que l’une montre les angles de Bragg
de la diffraction et l’autre se projette sur
un profil de diffusion polaire sans aucun
signe de diffraction. Ce profil s’avère indé-
pendant de l’axe cristallographique sondé.
Les composants inélastiques sont bien repro-
duits par un profil log-normal, permettant
une évaluation simple du rapport de diffrac-
tion élastique et inélastique connu sous le
nom de facteur Debye-Waller. Les forces qui
agissent sur le projectile sonde, généralement
un atome d’hélium, sont de deux natures, at-
tractives et répulsives. A ce jour, seules les
forces repulsives, en l’occurrence la répulsion
de Pauli(proportionnelle à la densité électro-

nique en surface) étaient prises en compte.
Nous montrons l’importance des forces at-
tractive, de type van der Waals, aussi bien
pour la diffraction que pour la diffusion in-
élastique. Nous proposons le concept de rai-
deur effective du potentiel que nous évaluons
par un modèle analytique reposant sur un
potentiel de Morse. Le modèle prédit que la
largeur log-normal w est régie par la raideur
effective, calculée à partir du travail de sur-
face et de la profondeur du puits de physi-
sorption D. Nous utilisons également ce mo-
dèle de Morse pour évaluer la dépendance
à la température du facteur Debye-Waller
entre 130K et 1017 K. Il fournit une me-
sure de l’amplitude thermique des atomes de
surface perpendiculaires à la surface. La plu-
part des études ont été réalisées à l’aide de
sondes à l’hélium et au néon. Nous étendons
ces études en utilisant les gaz nobles Ar, Kr
et Xe. La diffraction inélastique des atomes
rapides peut ainsi être utilisée comme une
nouvelle méthode pour mesurer la profon-
deur des puits de physisorption (forces de
van der Waals).
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Abstract : This work is devoted to the
study of grazing incidence (∼ 1 ◦) fast atom
(keV energies) diffraction (GIFAD) at crys-
tal surfaces. We identify two components
in the diffraction images. One is associated
with elastic diffraction, and the other is in-
elastic diffraction where energy has been ex-
changed with the surface. We separate the
scattering profile such that diffraction is ob-
served only in one direction while the other
does not exhibit any diffraction feature. This
polar scattering profile is found to be inde-
pendent of the probed crystallographic axis.
The inelastic components are well-fitted by a
log-normal profile, allowing straightforward
evaluation of elastic and inelastic diffraction
ratio known as the Debye-Waller factor. It’s
well accepted that the probe atoms are sen-
sitive to the surface electron density, i.e.,
considering short-range Pauli repulsion and
long-range van der Waals forces. We propose
a new model taking into account the attrac-
tive forces. It is based on the description of

the mean planar potential as a Morse poten-
tial. The model predicts that the width w is
governed by the effective stiffness, depending
on the surface work function and physisorp-
tion well depth D. We also use this Morse
description model to evaluate the tempera-
ture dependence of the Debye-Waller fac-
tor between 130K and 1017 K. It provides
a measure of the thermal amplitude of the
surface atoms perpendicular to the surface.
Most studies were performed using helium
and neon probes. We extend these studies
using Ar, Kr, and Xe noble gases. Com-
pared with the previous thesis on the sub-
ject, we demonstrate the significant role of
the attractive forces. We conclude this work
by identifying five different techniques to
measure physisorption well-depth with fast
atoms diffraction. Some are adapted to light
atoms and shallow depth, but others work
with heavy atoms and should also allow in-
vestigation of the attractive well-depth.
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Chapter 1

Introduction

There’s plenty of room at the bottom.

Richard Feynman

1.1 A Brief History of Matter-wave diffraction

Many physical phenomena appear only in classical form because underlying quantization
can not be resolved experimentally, and the coherence degree is too small. However, the
quantum effect reveals itself as soon as the measurement is accurate enough, in such a way
and when the conditions that the coherence is not destroyed. In 1924, de Broglie formulated
the de Broglie hypothesis in his PhD thesis[1], claiming that all matter has a wave-like nature,
a concept of wave-particle duality. This is a central part of the theory of quantum mechanics.
He was awarded the Nobel Prize in Physics in 1929 for his discovery of the wave nature of
electrons. Furthermore, his formula was experimentally confirmed by Davisson-Germer[2]
and G.P.Thomson[3], and awarded Nobel Prize in Physics in 1937 for their experimental
discovery of electrons by crystals. In 1930, the first observation of slow (thermal energy)
Helium atoms diffraction experiment was completed by Estermann and Stern on LiF(100)
surface[4], and Stern was awarded the Nobel Prize in Physics in 1943 for his contribution
to the development of the molecular beam method. In 1945, the first neutron diffraction
experiments were performed by Ernest O. Wollen using the Graphite nuclear Reactor at Oak
Ridge. In 1946, Clifford Shull joined, and together they established the basic principles
of the technique, and applied it successfully to many different materials for structure and
magnetic research. While Shull studied "where the atoms are located", and eventually how
the magnetic moments are arranged in the solid. Brockhouse observed" how the atoms are
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moving" in the solid for the first time. The two pioneers of neutron diffraction and inelastic
neutron scattering, Schull and Brockhouse, shared the 1994 Nobel Prize in Physics.

From theory to experiments, these outstanding achievements were first predicted by de
Broglie hypothesis, then confirmed experimentally by matter-wave (electrons, neutron,
atoms, and molecules) diffraction. Taking advantage of the wave-particle duality of those
probe particles, scattering (particle-like), and diffraction (wave-like) experimental methods
developed as modern powerful tools, currently used for determining the atomic structure
of materials and can also be used for energy and momentum-resolved measurements of
dispersion of lattice dynamics. Energy-wavelength relationship of various scattering probe
particles shows in Fig. 1.1.
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Figure 1.1 The comparison of the wavelength-energy dispersion relation for the different
probes- photons, electrons, neutrons, and atoms.

An interesting development of atom diffraction at surfaces was reported in the scattering
angular distributions for grazing incidence fast atoms diffraction (GIFAD[5] or FAD[6]) in
recent years. Such quantum scattering effects use keV fast-atom as probes observed from
insulators and demonstrated for conductors (e.g. metals[7, 8]) and semiconductors[9, 10].
which is based on probe atoms and surface atoms interaction.
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The interactions of atoms with surfaces play a fundamental role in a wide range of scientific
and technological problems for the characterization of materials, thin-film growth inside MBE
[10, 11], and catalysis, to analyze and understand their physical and chemical properties at
the atomic scale. These can be real space microscopic techniques such as scanning tunneling
microscope (STM) and atomic force microscopy (AFM)[12, 13], but also reciprocal space
techniques by scattering and diffraction of particles, such as x-ray, neutrons, electrons, and
atoms. Since atoms with energies below one eV cannot penetrate below the surface (only
sensitive to the topmost layer), no charging effect on the surface (Nondestructive), thermal
energies atom scattering (TEAS, also known as HAS[14, 15]) is a valuable tool to investigate
surfaces. Grazing Incidence Fast Atom Diffraction (GIFAD) appears as the natural extension
of TEAS, just as Reflection High Energy Electron Diffraction (RHEED) does compare with
Low Energy Electron Diffraction (LEED), the comparison of key parameters see table.1.1.

Table 1.1 Comparison of LEED, TEAS, and their grazing incidence is equivalent to RHEED
and GIFAD. Here E is the total kinetic energy, θin is the polar incidence angle, and E⊥, λ⊥
are the perpendicular energy and wavelength. The table is adapted from Ref.[16]

Probes E(eV) θin (°) E⊥(meV) λ⊥ (Å)

GIFAD He 100-5000 < 1 1-1000 0.1-5

TEAS He 10−3 −10−1 10-170 1-100 0.5-5

RHEED e− 104 −105 < 5.0 103 −105 0.5-10

LEED e− 50-100 90 5×104 −105 ∼ 1

However, the diffraction of keV atoms was a surprise due to their typical de Broglie wave-
length λdB = h

p (for E=1 keV 4He, λdB= 0.45 pm), below the picometer scale, three orders of
magnitude smaller than crystal lattice parameter (few Å). The kinematic relationships of 4He
monochromatic beam linking the de Broglie wavelength λi and the corresponding wavevector
ki to its kinetic energy Ei are given by (the detailed calculation shown in Appendix. B),

λi[Å] =
2π

ki[Å]
=

4.5418√
Ei[meV ]

(1.1)

It was rapidly understood that the fast motion in the low index orientation, considered here
as the x axis, is strongly decoupled from the slow-motion normal to the crystallographic
axis in the (y,z) plane. The relevant energy E⊥ = E sin2

θin ≈ Eθ 2
in is reduced by 3 to 4
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orders of magnitude. Therefore, the associated wavelength is λ⊥ = h√
2mE⊥

in Eq. 1.1, which

is a fraction of Å, and comparable with the crystal lattice length. Those features in the
regime of surface channeling lead to quantum effects for scattering the fast-atoms beams
on a well-ordered crystal surface[5–7] or thin-film[17]—a new powerful tool for surface
science[18, 16].

1.2 Why Surface?

In recent decades, especially after discovering 2D materials, surface science has become
an increasingly crucial interdisciplinary field between physics, chemistry, crystallography,
biology, and materials science. There are several driving forces for the development of
the field, among them molecular beam epitaxy (MBE) technology, surface catalysis, and
low-dimensional materials. For instance, in the semiconductor industry, the world’s leading
semiconductor manufacturing company, TSMC, plans to put a 3 nm semiconductor node
into commercial production in 2022. In such a small-scale manufacturing device, so-called
nanotechnology is one of the most challenging topics at the forefront of science today.
Nanoscience or nanotechnology can be viewed as the evolutionary outgrowth of surface
science[19]. Since the concepts were first discussed by Richard Feynman in 1959, in his
talk "There’s Plenty of Room at the Bottom". Being able to analyze, manufacture, assemble,
arrange, and modify matter (such as 2D materials, i.e. surface or interface) directly by atoms
or molecules at an atomic scale has been a dream of scientists for more than half a century.
Nanotechnology depends on surfaces, near-surface, and interface phenomena. In such low
dimensions (typically 1D or 2D), it has been discovered that many novel phenomena do not
appear in simple bulk materials, such as topological insulators[20], quantum Hall effect[21],
and superconductors. The challenge is to understand more details about the surface, and
how the atoms and electrons move on the surface. The surface atoms are only visible in
surface-sensitive experimental techniques or by studying properties or processes which are
determined by surface atoms only. For instance, to study phenomena like adsorption, crystal
growth, etching, or catalysis. A microscopic understanding of the growth processes requires
investigating the surface process at an atomic level.

The environment of the surface is crucially important. It requires ultra-high vacuum (UHV)
conditions to keep the surface clean for long periods, and even at the best vacuum, this does
not last forever. From the point of view of the highest quality, under atmospheric pressure
and room temperature, the quality of the real surface is far removed from the ideal systems
desirable in physical investigations. A freshly prepared material surface usually is very
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reactive toward atoms and molecules in the environment. For instance, strong chemisorption
and weak physisorption give rise to ad-atoms or ad-layer on the topmost atomic layers of
the surface. It’s often needed in the early step of the demonstration of a specific physical-
electronic or chemical behavior. There is a marked desire to create a perfect surface with as
few defects as possible.

1.3 Surface Analytical Techniques

Figure 1.2 Schematic diagram of the scattering process and interaction mechanism of different
probes. Note that atoms are mainly scattered at the surface. Figure inspired by a lecture
note[22].

There are not too many techniques to rapidly diagnose the surface quality. In the spectrum
of surface science analytical tools, methods based on diffraction phenomena for photons,
electrons, neutrons, and atoms play an essential role[22], the comparison of the scattering
process in Fig. 1.2 and key parameters in Tab. 1.2. since these provide immediate information
on the symmetry of periodic structures of surface, adsorbed atoms or molecules, or ultra-thin
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Table 1.2 Basic parameters are for the diffraction of x-ray, electrons, neutrons, and atoms.

E(eV) θin (°) E⊥(meV) λ⊥ (Å) Penetration depth(Å)

GIFAD 100-5000 < 1 1-1000 0.1-5 0

TEAS 10−3 −10−1 10-170 1-100 0.5-5 0

LEED 50-100 90 5×104 −105 ∼ 1 5-10

RHEED 104 −105 < 5.0 103 −105 0.5-10 102 −103

X-ray 104 ∼ 90 5×104 −105 ∼ 1 > 104

Neutron 10−2 ∼ 90 10 ∼ 1 > 105

films. The X-ray diffraction (XRD) technique is one of the most standard methods for
determining bulk crystal structure at atomic resolution. Since X-ray weakly interacts with
materials, the probe can penetrate deep into the sample, so they are usually not very sensitive
to the surface. To investigate the surface, synchrotron radiation facilities are necessary to
acquire high-brilliant beam and reliable data. Furthermore, a well-established reciprocal
technique for surface and interface investigation is the grazing incidence small-angle X-ray
diffraction (GIXD[23] or GISAXS[24]) technique, which limits X-ray penetration into the
bulk.

However, among all the surface techniques, those using atoms as probes are the most sensitive
to the top-most layer. The technique understudy in this manuscript is probably one of the
most sensitive to the presence of surface defects.

It relies on a long history of research on atoms and ions-surface interactions[25, 26], energy
scales ranging from the thermal (meV) to high energy (MeV), various phenomena are
observed, and many techniques and applications based on atoms or ions are developed.
For example, clean the surface by ion sputtering, modify the surface by focused ion beam
(FIB)[27], and analyze the composition of solid surfaces and thin films by secondary ion mass
spectrometry (SIMS)[28]. Helium ion microscope[29], and ion back-scattering methods
such as low and medium-energy ion scattering (LEIS[26, 30, 31] and MEIS, respectively)
are also powerful tools for surface structure analysis. The specificity of GIFAD is the use
of grazing incidence geometry which provides extremely low effective interaction energies
with the surface(Sec. 4.4.1). GIFAD connects atoms scattering with standard optics and



1.4 Probing the Surface by Fast-atoms Diffraction 7

with quantum optics[32]. Using incidences angle close to 1◦ with sub eV values of E⊥ (see
Tab. 1.1). GIFAD uses neutral projectiles because the self acceleration towards the surface
due to image charge acceleration is usually in the order of 1 eV [33, 34]. The following
topics will be discussed in this manuscript: (1) Polar inelastic scattering profile; (2) Lateral
elastic diffraction profile; (3) Atomic triangulation; (4) The presence of diffraction and
its interpretation; (5) The temperature effect in fast atom diffraction; (6) The methods of
measuring the physisorption by fast atom diffraction;

All of these provide quantitative information on the surface quality and topology at the
atomic level. Furthermore, it can combine with atoms or ion-TOF SAR or SIMS to provide a
chemical analysis.

For all these applications, a better understanding of the fundamental aspects of the atoms-
surface scattering is needed. This is in part the purpose of this manuscript which explores the
limits of the present understanding in this domain.

This work presents experimental investigations to understand the surface structures and
dynamical processes occurring at surfaces. Processes occurring at surfaces can be broken
down into two components: elastic and inelastic, which can be extracted from the analysis
of these polar inelastic scattering angular distribution and intensity ratio of these profiles.
Lateral elastic diffraction angular distribution and intensities of different diffraction orders.
Temperature effect on those angular distribution profiles.

1.4 Probing the Surface by Fast-atoms Diffraction

The spatial arrangement of the atoms or nuclei (ion cores) in a condensed matter system
is often called its "atomic structure." In general, it is experimentally measured by elastic
scattering or diffraction experiments, so-called reciprocal space probe techniques, in which
photons, electrons, neutrons, or atoms as probes are scattered, and the nuclei or ion cores
in the system act as scattering centers. Although the state-of-art modern real space probe
techniques such as scanning tunneling microscopy (STM) and atomic force microscopy
(AFM) have allowed direct imaging of the spatial positions of individual atoms. These
scattering techniques play a very important role in physics, chemistry, and biology when
investigating the matter on the atomic scale. Especially in high-temperature regions where
low-temperature probe techniques have limitations, the fast-atoms scattering technique can
work at sample temperatures up to 1000 K, and it’s only sensitive to the top-most layer,
which avoids the contribution from substrate layers. Similar to other diffraction techniques,



8 Introduction

x y
z

Figure 1.3 Schematic view of a GIFAD experiment. The image in the background is the
diffraction pattern of 500 eV helium atoms impinging at θi = 1.2◦ on a LiF surface along
the ⟨110⟩ direction. The white line where bright spots are observed is the Laue circle
corresponding to elastic diffraction along the y direction only, as if the matter-wave of the
projectile would diffract on the row of atoms along the probed axis as x as illustrated by the
blue surface.

GIFAD can be observed in two different regimes, elastic and inelastic. The elastic regime
where no energy is exchanged with the probed system corresponds to a situation where no
information is available on the exact trajectory of the projectile. Corresponds to a perfectly
periodic surface giving access to the topology of the probed system. In addition, the structure
of matter can be simulated and predicted theoretically by advanced computers to solve the
Schrödinger equation and find the structure with the lowest total ground-state energy of the
electrons and nuclei[35].

1.5 Probing the Lattice Dynamics by Inelastic Fast-atoms
Scattering

Inelastic diffraction or scattering measurements include energy transfer between surface and
probe atoms, revealing information about the surface dynamics. Thus, probe atoms scatter
inelastically by excitation or de-excitation of the surface thermal vibrational. Since grazing
incidence is the multi-collision domain, we get the temperature effect of the averaging
thermal vibrational amplitudes of surface phonon modes at low temperature (LN2 cooling)
T=130K, and high temperature up to 1000K.
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1.6 Specificity of Grazing Incidence Fast-atoms Diffraction

Atomic beams have many advantages over conventional surface probes, such as electrons as
a surface probe. The key features of GIFAD are the following:

• (1) The probes of GIFAD ( He, Ne, Ar, Kr, Xe) are inert and neutral atoms with no
charging effect and are non-destructive to the surface;

• (2) GIFAD is one of the most sensitive surface analysis techniques. Since the effective
energy E⊥ is adjustable from 1 meV to 10 eV, the classical turning point usually lies at
about 1-3 Å above the surface plane;

• (3) The wave-particle duality of probe atoms, which has de Broglie wavelengths λdB in
the pm range, but an effective energy E⊥ and effective wavelength λ⊥ = λdB · sinθ in
Å range make diffraction (wave nature) and scattering (particle nature) phenomenons
both observable;

• (4) High temperature tolerable for sample surface, up to 1000 K (LiF);

• (5) Detector with high quantum efficiency 50%, all scattered particles recorded on a
D∼80 mm MCP, which makes online monitoring thin-film growth possible;

• (6) High spatial accuracy close to pm on the topology of the electronic density;

1.7 Organization of this Thesis

In Chapter 1, We presented the first introduction to the background and basic concepts of
matter-wave diffraction and a brief comparison of different diffraction/scattering techniques.
Chapter 2 then introduce the UHV setup for grazing incidence fast atom diffraction (GIFAD)
experiments. Chapter 3 describes the experimental methods and data analysis methods in
GIFAD. Chapter 4 and Chapter 5 are devoted to the theoretical background for the fast-atoms
diffraction technique. The features of probe atoms and surfaces are described separately.
Chapter 6 presents the experimental results for inelastic scattering angular distribution along
the z-axis (polar profiles), mainly Helium atom scattering at LiF single crystal. And in
chapter 7, temperature dependence results of fast atoms diffraction at LiF crystal surface
are presented. Chapter 8 summarizes some results from heavier elements as probes (Ar Kr
Xe), and Chapter 9 summarizes how to measure physisorption well-depth with fast atom
scattering. Finally, chapter 10 will present this thesis conclusion and an outlook of possible
future work related to my studies.





Chapter 2

Experimental Setup

2.1 Introduction

This chapter introduces a UHV setup for grazing incidence fast atom diffraction (GIFAD)
experiments[36]. The overall geometry is simply a source of fast atoms facing an imaging
detector, just as for reflection high energy electron diffraction (RHEED) experiments. Sev-
eral instrumental developments are described making GIFAD operation more efficient and
straightforward.

Ion source Beam line UHV chamber Detector system

MCP

Phos. Screen

CameraSample

Manipulator

10-10 mbar

e-

He+ He

He

Laser

hν

Ø1 Ø2

e-

X-cell

θ

φ

Figure 2.1 The schematic of the GIFAD setup contains four main sections, i.e., ion source,
beamline, UHV chamber, and detector system.
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Discovered independently in Orsay[5] and Berlin[6], grazing incidence fast atom diffraction
has developed as a powerful analytic tool in surface science (see e.g. ref.[18, 37] for a review).
The general GIFAD setup in Fig. 2.1 consists of four sections:

• (I) An ion source to generate ion beam;

• (II) Beamline combined with a neutralization or charge exchange cell (X-cell) and
collimated by two slits or diaphragms to limit beam divergence;

• (III) A 5D (X, Y, Z, θ , φ ) adjustable manipulator holding the sample in the UHV
chamber;

• (IV) Imaging detector system, with a combination of MCP, phosphor screen, and
CMOS/CCD camera.

2.2 The Ion Source

As detailed below, GIFAD requires an atom beam injected through small diaphragms with
a reduced divergence to guarantee the resolution. In other words, the brightness is most
important and, in fine, requires a limited energy dispersion. The latter is limited by the
extraction field’s ionization mechanism, geometry, and intensity. The maximum current is
usually expressed in µA corresponding to ∼ 5×1012 ions per second, while only a few 103 -
104 atoms per second will be needed, but having the best possible properties.

2.2.1 Filament Ion Source

Hot filament ion sources have the reputation of providing bright ion beams in the keV energy
range, as required for spatially resolved secondary ion mass spectroscopy (SIMS) or depth
profiling [38] applications.

We use the EX05 model ion source from VG Ortec with a differential pumping port allowing
a beamline vacuum of better than 5×10−7 mbar. This compact ion source provides a high
flux, small spot beam of noble gas ions at energies up to 5 keV. This electron impact ion
source is equipped with two tungsten filaments suitable for use with high purity noble gases.
Gas is supplied from high pressure (< 1 atm.) supply source to the ionization region through
the gas inlet leak valve. Only one filament is in use at a time. Selecting the second filament
is accomplished by a single switch button.
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The ion source power supply controls the emission current up to 10 mA, by controlling the
current through the filament up to 2 A. Helium, or another noble gas, is injected into the
ionization region where the electrons impact and ionize a part of the gas atoms. An electrode
at the exit from the ionization region and co-axial with it is held at a negative potential
with respect to the grid. This electrode is the extractor and accelerates the ions out of the
ionization region and into the remaining part of the ion lens section. The EX05 is a two-lens
condenser and focus design by changing the potential on the lens to control the beam current.

2.2.2 ECR Ions Source

Electron cyclotron ion sources (ECR) use a magnetic structure and microwave to heat a
plasma. Polygon Physics TES-35 is a compact, lightweight, high-performance ECR ion
source designed for surface science and processing based on ions, atoms, electrons, or plasma
in a UHV environment. The advantage of the ECR ion source is that it has no fragile filament.
It can ionize not only noble gases like He, Ne, Ar, Kr, Xe, but also reactive gases like
O2,N2,H2, etc. The core element of TES is a microwave discharge system that operates at
ultra-low power and is as small as a thumb. The extraction system connected to the cavity
determines the nature of the particles that leave the source. For a given aperture size, the
particle flow rate can be varied over a wide range by tuning the gas flow rate and the applied
microwave power. In the case of ions or electrons, the beam current can also be tuned by the
strength of the extraction field.

2.2.3 The Wien Filter

A Wien filter is a device consisting of orthogonal electric and magnetic fields such that
particles with the correct speed will be unaffected and pass it. In contrast, other charged
particles will be deflected. The charged particles from the ion source pass its electric field and
will feel a force proportional to the charge and field strength such that F⃗ = qE⃗. Similarly, the
particles moving in a magnetic field will feel a force, F⃗ = q⃗v× B⃗, proportional to the velocity
and charge of the particle. To select charged particles with only velocity v⃗ through the Wien
filter, setting the electric field (E⃗) and magnetic field (B⃗) force to equal magnitude in opposite
directions it can be shown that v = E

B .We measured the magnetic field using a gauss meter
between the North and south poles and got the magnetic field strength B=0.675kG(kilo-
Gauss) or 0.0675 T. We used a commercial Wien filter from non-sequitur-technologies where
the permanent magnet is placed outside a vacuum and can be removed for baking purposes.
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A mass filter is mandatory when operating the ECR ion source with molecular gas such as
H2 to produce H+ or H+

2 ions but we did not use it when working with high purity noble gas
with the hot filament ion sources. It is important to misalign the ion source so that neutral
atoms produced at the extraction level and having different energy do not contribute.

2.3 The Beamline

2.3.1 The Charge Exchange Cell

Insulation support tubes

Translation bellows

Deflectors

Deflectors

X-cell

Gas injection

Ion beam

Figure 2.2 Photograph of the charge exchange cell. The cell is in the center, it is preceded
by sets of deflectors to optimize the beam direction. It is also followed by another set of
deflectors to remove the ionic part of the beam or to pulse it if desired.

The charge exchange cell in Fig. 2.2 is a l = 2 cm long tube with entrance and exit holes
designed, so that the internal pressure can be adjusted in the 10−3 mbar range without a
dramatic increase in the background pressure. The internal pressure is usually calculated
so that single collisions dominate, i.e., the collision probability P=σnL ≈ 0.1, where σ is
the charge exchange cross-section for the ion of the beam to capture an electron from the
target gas of the cell. For resonant neutralisation of 1 keV He+ ions on helium, a total cross
section σ ≈ 10−15 cm2 was measured [39]. so that the calculated pressure should be such
that n ≈ 0.5×1014 particles per cm3, i.e. a pressure inside the cell around 0.5×103 mbar.
The beam’s actual fraction of neutral helium can be lower due to angular scattering during
the collision. At 1 keV, it typically amounts to 0.1 ◦ [39]. To limit the amount of gas to be
pumped, the entrance and exit of the cell are collimated by two sets of diaphragms placed on
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a linear translation. The entrance diaphragm ⊘0 is still large enough to allow most of the ion
beam into the cell, but the second one can be much smaller as it is used as ⊘1, the first of the
two divergence limiting diaphragms.

2.3.2 The Beam collimation

The Cell Diaphragm System

a) Pizza slice

Beam

b) Dimension

c) Aperture size
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

D(mm) 452 320 226 160 113 80 56 40 28 20 14 10

H(mm) 400 400 400 30 100 300

V(mm) 300 100 30 400 400 400

5

#size

Figure 2.3 a) The pizza slice contains 18 different slits installed between the beamline and
UHV chamber. b) Dimension of pizza slice and positions of those 18 slits with size list in c).

Compared with charged particles and photon beams, atomic beams usually can not be focused
or deflected by lenses or deflectors. The atom beam diverges radially outward from an ion
source point, and its solid angle is determined only by either the effective area of the detector
or the collimator geometry. The beamline collimates the atomic beam before it is used in the
UHV chamber. This is achieved by adjusting 3 collimators step by step, more details in Fig.
2.1, with two collimators located inside the charge exchange cell. Before interacting with the
surface in the UHV chamber, the atomic beam passes through the first diaphragm ⊘0, enters
into the neutralization cell, then leaves from diaphragms ⊘1. Finally, inject into the UHV
chamber by diaphragm ⊘2 in pizza slice (Fig. 2.3). It will be introduced later.

2.3.3 The Pizza Slice.

The atom beam is injected into the UHV chamber via diaphragm (⊘2). We have 18 different
sizes and shapes of slits on ⊘2. In GIFAD experiments, we will be able to adjust beam size
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a)

b)

c) 

d)

front

back

PCB

LED

Pizza slice

LED+PCB

Control 
Pizza slice

Slits #

#1

#18

Figure 2.4 a) A LEDkey after wiring. b) PCB with an AS5140 contact-less magnetic sensor to
read the portions of the slits. c) LED+PCB assembled in GIFAD setup to control diaphragm
(⊘2), Here we read a number 10.00 | 2348, which means we using hole #10(⊘2=113µm),
the other digits provide higher accuracy to have better control. d) Pizza slice installed as the
diaphragm ⊘2.

and intensity via the different sizes of slits. It depends on the experimental requirement, such
as resolution or time consumption.

In Fig. 2.4, we show a homemade slits number readout system. We use an AS5140 contact-
less magnetic sensor to read the absolute angular position of the DN10 miniature rotary
feed-trough. The position is read by an Arduino-nano and displayed on a LED display, in
units of the regular hole. The pattern shape shown in Fig. 2.3 b), is engraved by electro-
erosion on a thin nickel plate having the shape of a pizza slice. Without this display, it would
be almost impossible to position a given hole precisely in the center of the beam where the
rotation degree between two slits is only ∼ 2.7◦.

We use the co-linear laser (detailed in Sec. 2.6.6) as a light source to calibrate those apertures’
diameter D and detector resolution through the different diameters of circle-apertures in Fig.
2.5 and rectangle slits in Fig. 2.7. Airy disk’s width and diameter circle-apertures have a
simple relationship, the comparison of experimental results and model shown in Fig. 2.6.
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Figure 2.5 Laser diffraction through different sizes of circle-apertures, bigger apertures give
smaller Airy disk.
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Figure 2.6 Laser diffraction through different sizes of circle-apertures. Eq. 2.1 gives the
relation of aperture diameter D and Airy disk width w.



18 Experimental Setup

300 µm 100 µm 30 µm

#18 #17

#2#1

#16

#3

Figure 2.7 a) Laser diffraction through rectangle shape slits (Length=400 µm, Width =300,
100, and 30 µm), If we focus on the first-order diffraction pattern, bigger apertures (Length
× Width) give smaller diffraction patterns.

2.4 The UHV Chamber

2.4.1 The Manipulator

GIFAD is a diffraction technique and therefore requires accurate control of two angles, the
angle of incidence θ with the surface plane k⃗in × S⃗, n̂ and the orientation of the surface φ , or
the angle between the crystallographic axis labeled with miller index with the projection of
k⃗in on the surface plane.

A holding flange characterizes a simple manipulator with a three-axis translation stage
holding a primary rotation axis perpendicular to this flange and terminated by a sample
holder. More sophisticated models support a co-axial translation or rotation mechanism to
perform additional movements, such as an additional rotation.
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Figure 2.8 Sample plate with heating and cooling systems.

2.4.2 Sample Heating and Cooling System

The manipulator of the sample holder is connected to a heating and cooling system. The
head is cabled to control the temperature of an Omicron Flag style sample plate over the
range 130K(-143◦) to 1473K (1200◦) using a combination of the LN2 cooling and Ta foil
heater. The head is equipped with an LN2 cooling system and a Ta foil heater module, as
shown in Fig. 2.8.

Sample radiative and e-Beam Heating

The Heater is designed to heat Omicron flag style sample plates, is fitted with a Type N
thermocouple located inside the Tantalum foil heater. The foil heater radiates heat onto the
back face of the flag-style sample plate providing enough energy to enable continuous heating
to 700 ◦C. For the heating temperature much above 600-700 ◦C should be done using e-beam
heating to avoid needlessly overheating the cathode. For this setup, the electron emission
was observed at ∼ 5.8 A for the heater freshly coated with Yttria. The thermocouple must
be retracted (unlocked) from the sample plate for transfer. Otherwise, the spring will push
and hold the target to avoid movement. The sample holder heating temperature-power curve
shown in Fig. 2.9.

Sample Cooling

Connect a supply of LN2 directly to the input tank of the liquid Nitrogen (LN2) feed-through
using a 6.5mm OD Teflon tube insert into the ’O’ ring fitting and tighten.
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Figure 2.9 Sample heating temperature-power curve.
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Figure 2.10 Sample cooling temperature-time curve.

Keep the connecting tubes as short as possible to reduce cooling time. After a few minutes,
LN2 should appear at the exhaust port. The temperatures at the exit will be observed to
fall quite rapidly, following curves as shown in Fig. 2.10, comparing results from the UHV
design company and our experimental results. Exponential decay of temperature with time
was observed, the starting point at T (t = 0 min) = 20◦C, then the empirical fit by such simple
formula: T (t)[◦C] = 150 · e(−t/30)−130.
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2.5 The Detector System

Figure 2.11 The schematic of the detector system, MCP+PhosphorScreen+CCD/CMOS

Imaging detector systems shown in Fig. 2.11, in our case, should be able to detect atoms
efficiently in the keV energy range, for instance, photomultiplier tubes, channeltron, or
microchannel plates. In all these cases, the impact of the atom in the material will be able to
extract an electron from this material. The underlying process is simply the Pauli repulsion.
When the atom tries to penetrate the material, it has to push surface electron density. One
electron from materials has a chance to be ejected with an energy usually on the order of one
eV.

The rest of the detector will convert this initial electron into an electron cascade by the
successive acceleration of ejected electron around 100-400 eV and collision on dedicated
material known to respond by emitting a few secondary electrons.

The successive energies are perfectly defined in the case of a PM tube and only statistically
defined in Channeltron, where no straight line is possible due to the curvature or inside a
MCP channel because of its very long aspect ratio (L/d: 50-60). As a result, around ten e-2e
collisions or multiplication cascades can occur, producing between 103 to 104 electrons. In
the case of MCP, these electrons are produced at the exit of a narrow tube of 20µm diameter,
allowing localization of the atom impact. In our case, imaging detectors rely on MCP to
convert the atom impact into an electron shower. They differ in the technique used to localize
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the associated impact in space and time. When using two MCP, the number of electrons can
reach 107 −108, enough to generate a pulse of a few tens of mV across a 50 Ω resistance.
Since the second MCP produces the electrons, the voltage pulse is also present at the MCP
output. It can be directed to a voltage comparator called discriminator, emitting a quasi
synchronous logic signal from which the atom arrival time can be determined with a sub ns
accuracy. A specific anode will collect the electrons and try to retrieve the impact location
(see e.g.[40]).

2.5.1 The Phosphor Screen

The imaging detector uses a single MCP and a phosphor screen [41]. The setup of the
phosphor screen (scintillator) is a standard 2-3 mm thickness cylindrical disk coated with
an ITO layer and a 4 micron P34 Phosphor layer. Its diameter matches our MCP, which has
high efficiency of less than 20 eV of electron energy to emit photons. The screen is stable
under UHV conditions and can resist temperatures up to 200 ◦C without a problem.

2.5.2 The Lens and Camera

The optical system is expected to image the 60 mm phosphor screen with high resolution and
as few distortions as possible. The CMOS camera is a Hamamatsu C11440-10C model with
a 1440*1920 pixel allowing a 45 micron per pixel if the lens is adjusted to the full screen.
The lens should collect as much light as possible without introducing aberrations. This is
somewhat contradictory since the aberrations are weak only in the paraxial region. Therefore,
placing the camera and lens as far away as possible is recommended, while the closer the
camera, the more intensity will be collected. As a compromise, we used a high aperture
F0.95 "Xenon" lens from Schneider [42] with a focal lens of 17 mm. It is placed 25 cm away
from the Phosphor screen so that the maximum angle of the light collected is less than 9◦.

The performance of the system has been evaluated in detail. The aberration of the lens has
been tested by scanning a light spot generated by a laser illuminating a 10 micron hole and
placed 250 mm from the camera entrance. We could then determine the correspondence
between beam position and measured position. The measured aberration correspond to a
barrel type aberration r′ = r+αr3 with a coefficient α ∼ 2×10−9 [36]. The aberration is
negligible in the center but affect particles detected at the edge by a few pixel.
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Figure 2.12 Comparison of direct beams recorded at the center position of the detector. (a) by
analog integration mode (AIM), and (c) by photon counting mode (PCM) of CMOS camera.
(b) and (d) are projection profiles of (a) and (c) along z (polar profiles), respectively.

Analog Integration Mode and Photon Counting Mode

The camera has several methods to record the data, we call these methods acquisition modes.
There are four image acquisition modes: Live, Acquire, Analog Integration, and Photon
counting. The last two are most often used in recording experimental data. In analog
integration mode, many images accumulate in the frame memory. In the photon counting
mode, single-particle events are added up in the frame memory. A very high signal-to-noise
ratio can be achieved if the signal integration time is sufficiently long. A comparison of
direct beams recorded by those two modes is shown in Fig. 2.12. The measured width is
improved from σ=2.16 to 1.64. Considering that the improvement comes from the width
of a single impact which is replaced by a centroid determination we add the associated
variances, 1.42 +1.642 = 2.162, where σ = 1.4 could be interpreted as the resolution gained
by pointing the center of a single spot. In Fig. 2.13, we shown the direct beam recorded from
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Figure 2.13 CMOS camera performance at different exposure times from 5ms to 10s. The
pedestal intensity does not depend on exposure time. Beyond 1s exposure time (red dotted
line) the pixels of the beam spot are saturated, and the measured Beam intensity is erroneous.

4ms to 10s in Analog Integration Mode, to avoid the saturation issue, it’s better to keep the
exposure time less than 1s per image.

2.5.3 The Direct Beam Attenuator

The exact position and profile of the direct beam is most important for accurate diffraction
measurements. In particular, the proper positioning of the Laue circle encompasses the
direct beam and all elastic diffraction spots [43]. To avoid damaging the MCP detector when
recording the direct beam profile, two fine mesh grids with 10% and 1% transmission are
mounted on a z translator that can be inserted into the beam with minimum perturbation of
its angular profile.

2.6 Additional Equipment

2.6.1 The Deflectors and Chopping System

There are two pairs of deflectors for steering of the ion beam in X and Y directions. There
are two methods to deflect the charged ion beam, While magnetic lenses are usually used at
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Position Sensitive Detector 
in retracted position

Guiding rods

Sliding
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a) Inside view b) Outside view

Electronic
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Figure 2.14 The retractable resistive anode detector has an active diameter of 40 mm and a
sub-ns timing accuracy. It is sliding along the two metal rods taped into the 100 CF flange
and is tied to a 100 mm linear actuator to be taken in or out of the beam.

high energies (E > 50 keV) The chopping system consists of an entrance slit that determines
the size of the beam spot.

2.6.2 The Retractable Resistive Anode Detector

The retractable resistive anode detector is a two-dimensional position-sensitive (2D-PSD),
mainly[40] containing two pieces of the micro-channel plate (MCP) and a readout. It can be
inserted into the beam and provide a 2D position (yz plane) of the atom or ion beam. The
detector is an evolution of the similar ones used in the first GIFAD experiments[5] and in
many different applications ranging for atomic collisions [44–47], collisions on surfaces[48],
charge deposition on insulators and micro capillaries[49, 50]. The detector support is made
of peek and slides between two stainless steel rods. It is covered by a stainless steel plate
holding a high transparency grid almost invisible in Fig. 2.14.

2.6.3 The Recoil Ion Detectors

The recoil ion detectors are multi-purpose particle detectors. They can be configured to detect
preferentially positive or negative particles by biasing the entrance at a voltage between -5 kV
and 3 kV. The anode voltage does not exceed the 5 kV limit of electrical feed-through. They
are fixed on DN40CF tubes directed to the target and intended to detect particles emitted
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around 30-45 ◦ from the surface, either forward or backward. The time and position-sensitive
detectors were designed to be compact with a large active area [51]. Typical applications are
listed below.

2.6.4 Direct Recoil Spectroscopy

Direct Recoil Spectroscopy (DRS) is the generic name for several techniques where atoms or
ions with a definite energy are sent onto a surface and the ejected or recoiling ions or atoms
are analysed in energy. If a quasi binary collision took place, then the energy and momentum
sharing follows those of the gas phase and the mass of the collision partner, initially at rest,
can be identified. The most general technique is probably Time of Flight analysis (TOF SARS
[52]) because, most often the particles are ejected as neutrals. This is usually achieved as a
function of the target azimuthal and polar angle at a relatively large incidence angle because
only quasi-binary collisions can be identified. Under grazing incidence, only ad-atoms or
terrace edges can undergo a violent binary collision and the analysis of the recoils emitted in
the forward or backward direction should help identification of poisoning impurities such as
hydrogen contaminants that are difficult to pump. More interesting scientifically, identifying
the chemical composition of island edges during growth is a challenging issue.

2.6.5 The Sputtering Ion Gun

Inside the UHV chamber, a commercial ion gun IG2 is a product for beam etching and
sputter cleaning of samples for surface analysis. It is assembled with the UHV chamber and
operates with inert gases such as Argon to remove the containment from the surface. Ions are
generated by electron impact within the ion source’s filament ionization chamber, then the
ion beam is focused at the target with energies of up to 2 kV. A focusing lens permits high
ion current density for a given pressure in the UHV chamber.

Inside the UHV chamber, a commercial ion gun IG2 was installed and directed to the sample
holder for sputtering clean samples. We operate it with an inert gas such as Ne+ or Ar+ at an
energy between 500 eV and 2 keV. It is equipped with a focusing lens, and we have added a
pair of deflectors to scan the target with the ion beam. By recording the secondary electron
yield with one of the recoil ion detectors described in Sec. 2.6.3 as a function of the voltage
of the deflecting plates, a coarse image of the target can be formed. For LiF samples, sputter
cleaning is associated with creating topological defects that we could not remove. Even after
thermal treatment and grazing sputtering, the diffraction pattern does not exhibit sharp elastic
spots with a dimension that compares with our primary beam. This is not the case for metals
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where the diffraction on the Ag(110) surface could be observed only after repeated cycles of
sputtering and annealing [7].

2.6.6 The Co-linear Laser

UV lamp

holder

Tilt qx, qyGas

Ion 
Source

Shift dx, dy

Laser

Figure 2.15 The laser is held on a miniature X ,θX ,Y,θY platform hooked directly to the ion
source. It passes through support, allowing the insertion of a UV lamp.

A compact spot red laser in Fig. 2.15 with 648nm wavelength is installed behind the ion
source, co-axial with the beamline. The advantage of using the laser here is that it is much
easier to trigger a laser beam by a switch button to replace the atom beam and find the good
alignment of the beamline. This can also greatly save the service life of the ion source
filament. In addition, we can use the laser to calibrate the detector’s resolution by light
diffraction. The diffraction geometry shown in Fig. 2.16 a), and a typical diffraction pattern
of λ=648 nm visible red light through a D=160 µm circular aperture in Fig. 2.16 b). The
diffraction pattern has a bright central region known as the Airy disk. A simple analysis of
the Airy disk already gives the dimensions of the holes:

sinθ1 ≈
1.22λ

D

For small angle approximation yields: θ1 ≈
1.22λ

D

and, D ≈ 2.44λL
w

with w measured from the 1st dark ring.

(2.1)
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a) b)

Figure 2.16 a) Circular-aperture diffraction geometry, where L(942mm) ≫ D(0.16mm). b)
Diffraction pattern of the λ=648 nm laser through a D=160 µm circular aperture in the
beam-line.

Alignment with the Laser

The Alignment procedure of all the diaphragms and differential pumping holes is easier with
the miniature X ,Y,θX ,θY platform attached directly to the EX05 ion source (section 2.2). As
detailed in Sec. 2.5, when a single MCP is used together with a phosphor screen without
an aluminum cover layer, enough light passes through the (unbiased) MCP to be imaged by
the camera, allowing quantitative intensity optimization both in a vacuum or at atmospheric
pressure. This is particularly convenient to calibrate the variable holes and slits along the
beamline by the recorded Airy pattern. This also allows a very simple pre-positioning of the
target surface into the beam.

2.6.7 The Webcam and perpendicular laser

The UHV chamber offers a DN100CF flange directly facing the target surface, shown in Fig.
2.17 a). When unused, it is closed by a window flange where we have installed a webcam
and a miniature red laser. The red laser is shifted by ≈ 2 cm from the center and directed to
intercept the surface around its center. If the target surface is indeed parallel to the flange,
the reflected beam also lies 2cm from the center but opposite to the primary spot. During an
azimuthal rotation, the reflected spot describes a circle with a center located at 2θlaser and a
radius 2τ where τ is the misalignment of the surface normal with respect to the rotation axis
and θlaser is the arbitrary angle of the laser with the mean surface normal. Due to the 24 cm
long path between the surface and the window, the position of the spot reflected from the
surface is easily tracked by the camera. It can be used to follow the target azimuthal angle
online and to correct for the possible tilt angle τ .
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a) Top view b) Side view
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Figure 2.17 The Webcam and perpendicular laser installed around the UHV chamber. a) top
view and b) side view of laser deflection geometry, where L≈24 cm. After a 360◦ rotation of
the sample, the reflected spot follows a circle with Wx and Wy ≃Wx which can be measured
by tracking the laser spot on a screen.

The Tilt Angle Correction

One of the difficulties associated with GIFAD is the shallow angle of incidence needs to be
known with precision. This is not a problem during a standard diffraction experiment but
it isn’t easy to guarantee a sample positioning perfectly perpendicular to the manipulator
rotation axis so that the angle of incidence could remain fixed during an azimuthal scan.
Sereno et al. [53] have derived an active regulation to estimate the tilt angle τ based on
experimental measurements in the (x,y) perpendicular plane.

W = 4Lτ (2.2)

Where W is the width of tracked laser spot along x or y, L is the distance between the
sample to the screen. Such calibration can also be performed using the specular reflection
of the co-linear laser. But these correspond to separate measurements and can not be easily
visualized during the diffraction experiment.

The other option is to use the window in front of the surface, perpendicular to the target. A
miniature red laser is installed to shoot at the target and the spot of the reflected beam is
imaged on the backside of a semi-transparent paper taped on the window and recorded by a
basic Webcam. In this quasi-normal geometry, the spot follows a quasi-circular trajectory
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whose radius is given by the tilt angle. In principle, the reflected spot position could be
tracked and its position transferred to a perfect correction algorithm. In the present case, only
the effective angle of incidence is corrected by adjusting the angle of incidence by the proper
amount. Our manipulator does not have flexibility in the perpendicular plane so the specular
reflection plane undergoes a weak oscillation by ±τ in Eq. 2.2 during a full azimuthal scan.

2.7 Sample Preparation

Under normal conditions, atmospheric pressure (1 bar), and room temperature (300K), the
real surface is far from the ideal systems desirable in physical investigations. A freshly
prepared surface of a sample usually is very reactive toward atoms and molecules in the
environment. The adsorption from weak physisorption to strong chemisorption gives rise to
an adlayer on the topmost atomic layers of the solid. As an object of physical investigations, a
well-defined surface has to be prepared on a particular solid, in a special preparation process,
under well defined external conditions. There are essentially three ways to manufacture clean
surfaces under UHV conditions[54]:

• (1) Cleavage of bulk crystal materials in a cleanroom or UHV. Of course, only surfaces
that are cleavage planes of the crystal can be made in this way;

• (2) Treatment of imperfect and contaminated surfaces of arbitrary orientation by ion
sputtering and thermal annealing in several cycles;

• (3) Epitaxial growth of crystal layers (or overlayers) by means of molecular beam
epitaxy (MBE) or evaporation;

A typical GIFAD experiment begins with introducing or preparing a new sample surface
and subsequent annealing. For a metallic sample, sputtering is needed to clean the surface
contamination. Here, we used LiF single crystal, previously irradiated by γ-rays [55] giving
a pronounced yellow to orange color, and cleaved just before transfer into sample holder in
UHV chamber. Subsequent heating at 400 ◦C for a few hours is usually enough to recombine
the color centers and record nice diffraction images with well-resolved elastic spots.

The ISMO moved to a new building in 2017 and all the experiments since then have been
performed with the GIFAD setup connected to the UHV tunnel (Fig. 2.18) of the SIM2D
group. The tunnel is still in development, allows the transfer of samples from one experiment
to another. For instance, the Al2O3/Ni3Al surface was prepared by A. Ouvrard before being
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inserted in our chamber, and then transferred to our setup via UHV tunnel for triangulation
and diffraction studies (see Chap. 3.3.1).

GIFAD

Figure 2.18 The UHV tunnel of the SIM2D group at ISMO, the sample can be transferred
from different experimental setups through the UHV tunnel (1× 10−9 mbar).

2.8 Atomic Beam Preparation
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Figure 2.19 Ne gas mass spectrum, Main isotopes of neon 90.48% 20Ne, 9.25% 22Ne.

After a sample is installed in the sample holder of the manipulator, a stable and high-intensity
atomic beam needs to be ready. A typically primary(direct) beam recorded in the detector



32 Experimental Setup

is shown in Fig. 2.12. When working with noble gases, the presence of a Wien filter is not
mandatory but the gas purity should be checked mainly to avoid producing mixed beams and
weird diffraction images and avoid damaging the filament. We have a quadrupolar residual
gas analyzer that can be installed close to the charge exchange cell. When no gas is fed on
the cell, the RGA essentially measures the gas injected in the source, which is enough to
check the purity as illustrated in Fig. 2.19.



Chapter 3

Experimental Methods and Data Analysis

Nothing in life is to be feared, it’s only
to be understood.

Marie Curie

3.1 Introduction

3.2 Scattering Geometry and Diffraction Conditions

In Fig. 3.1, we show the scattering geometry for "Grazing incidence fast-atoms diffraction"
(GIFAD) at a well-ordered (low index) surface LiF(100). The impact of the probe atoms
on the surface proceeds under glancing angles of incidence θi ∼ 1◦, so that the scattering
process can be characterized in small-angle collisions.

A common feature of all the grazing incidence diffraction techniques[56], the coordinate
system is chosen to have the atom beam oriented parallel to the projection of this incident
beam on the sample surface. With the y axis in the sample surface plane, the z-axis is oriented
along the surface normal. With the wavelength λ , the wave vector transfer q is given by

qx,y,z = k f −ki =
2π

λ

cos
(
θ f
)

cos
(
φ f
)
− cos(θi)

cos
(
θ f
)

sin
(
φ f
)

sin(θi)+ sin
(
θ f
)
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Figure 3.1 Schematic of scattering geometry under misalignment. Helium atoms beam
scattering on a LiF(100) surface with a polar incidence angle θi and azimuthal (misalignment)
incidence angle φi with respect to the [100] direction of the surface. A diffraction order j is
located with the lateral deflection angle φ f , the final polar exit angle θ f , and the deflection
angle ϕ f , the scattering plane in red, corresponds to j=1. During a φ -Scan, the position of
the specular spot on the detector remains fixed. Taken from[16].

The vertical component of kinetic energy governs the motion perpendicular to the surface.

E⊥ = E · sin2
θin

Where E is the kinetic energy of the primary beam, E⊥ is the perpendicular energy of the
atom beam normal to the surface.

The elastic diffraction spots fall on the Laue circle on energy conservation if the normal
energy does not change (E⊥=constant),

E⊥ = Eiy +Eiz = E f y +E f z

where E = ℏ2k2

2m , which means the energy conservation in yz-palne motion, so called Laue
circle shown in Fig. 3.2,

Constant = k2
⊥ = k2

f y + k2
f z
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Direct beam

kfz

kfy

Gy

Laue circle

Figure 3.2 Schematic illustration of elastic (on Laue circle) diffraction geometry in the y-z
plane. In an ideal case (purely elastic), those diffraction spots should have the same shape (or
distribution) as the direct beam (e.g. Gauss distribution). In right panel, a typical diffraction
pattern (from 300 eV 4He on LiF[110] at 1.28◦), elastic components(on Laue circle) and
inelastic components (out of Laue circle) are present simultaneously.

The diffraction peaks are equally separated by the well known Bragg angle:

θB = arctan
(
Gy/ℏk//

)
(3.1)

where ℏk// = ℏk cosθin is the projectile momentum parallel to the crystal axis. Gy = 2π/ay

is the reciprocal lattice vector associated with the distance ay between atomic rows perpen-
dicular to the probed crystal axis, taken here as the x direction.

3.2.1 Primary beam, Laue circle, and incidence plane

The primary or direct beam (See Fig. 3.3 and Fig. 3.4) is very important to record for
subsequent experimental analysis. The shape and intensity of the beam are the original
information before scattering or diffraction, and the evolution of the beam is based on such a
direct beam. For instance, for a purely elastic scattering, specular scattering, the shape of the
scattered beam should be identical to the direct beam.
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Figure 3.3 (a) A direct beam recorded at the center position of the detector by photon counting
mode (PCM) of CMOS camera. (b) and (c) are lateral and polar profiles fitted by Gaussian
distribution, i.e., the projection profiles of (a) in y and z directions, respectively.

Angular distributions of scattered projectiles were recorded at a distance L=858 mm behind
the target through an imaging detector system (see Sec. 2.5). Elastically scattered atom beam
impacts the detector on the Laue circle of radius θin (Show as Fig. 3.1), owing to energy
conservation of the normal motion for scattering from ordered surfaces.

3.3 Experimental Methods

A procedure called triangulation [57, 58, 16] where the angle of incidence θ (≡ kiz) should
be kept constant. In practice, the relative width ⟨k2

f y⟩1/2/kiz compensates for a eventual tilt
τ between the surface normal and the rotation axis [58, 53]. After proper alignment on the
desired axis, the surface is prepared by various methods until a good diffraction pattern is
observed. The size of the diffraction spots provides a lower limit on the surface coherence
length.
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(a)

(b)

(c)

(d)

Figure 3.4 (a) A direct beam recorded at the center position of the detector by analog
integration mode (AIM) of CMOS camera. (a) is the raw file, (c) is after polar transform. (b)
and (d) are projection profiles of (a) and (c) along z (polar profiles), respectively, and two
Gaussian distributions fit both. The pedestal is hardly affected by the Polar transform.

3.3.1 φ -can and Atomic Triangulation

The azimuthal angle scan (φ -Scan), a typical diffraction pattern in Fig. 3.5, is usually the
first experiment performed after inserting a new sample in the UHV chamber. This allows
precise measurement of the main crystallographic directions difficult to track precisely in
a transfer system. The diffraction pattern is often not observed immediately because of
molecular surface adsorption or other reasons such as limited coherence. φ -Scan corresponds
to a variation of the azimuthal angle φi (see Fig. 3.1 for the definition of scattering angles.)
Several low index directions can be identified during an azimuthal scan, providing the basis
for atomic triangulation measurements[57, 58], a GIFAD results in Fig. 3.6.

The measurements consist of a rapid azimuthal scan, φ -scan, where the target surface is
rotated in-plane (around the z axis ) to identify its crystal axis. It does not require that
diffraction is observed because a simple analysis of the width of scattered lateral profiles;
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Figure 3.5 A typical result from φ -Scan, (a)-(i), 9 diffraction patterns of 460 eV He corre-
sponding to an incidence azimuthal angle φi from 0.05◦ to 3◦ relative to the ⟨110⟩ direction.

(⟨k2
f y⟩1/2 in Fig. 6.2a,6.2c,6.2d,7.2,7.3a), as a function of the target azimuthal angle φ is

enough to identify the principal crystal axis.

When the energy is perpendicular to the surface, E⊥ is close to or larger than 10 eV. The
projectile penetrates the electronic density of the target at a distance close to one Å . Secondary
electrons are emitted, for instance, by the promotion of quasi-molecular orbitals. By tracking
the secondary electron yield during an azimuthal scan, some surface structure parameters
such as the direction of the low index axis can be determined by ion beam triangulation [59].
At large enough projectile energy, E⊥ reaches the few eV ranges even at a moderate angle of
incidence θ . The electron emission can be recorded in coincidence with the scattered atoms
or ions [60]. In our setup, only the retractable detector has a time resolution suitable for
such coincidence detection allowing trajectory-dependent electron emission to be identified
[61, 62]. The electron emission can be resolved in projectile energy loss with a pulsed beam
[63]. For instance, this type of detector arrangement was used to identify the population of
excitons and explain why large band-gap ionic insulators emit more electrons than metals
under ion impact [64, 65].

3.3.2 Polar Angle Scan(θ -can)

The polar angle scan (θ -Scan) is one of the most often used working modes to acquire the
experimental data in this thesis. A θ -Scan is a step-wise variation of the angle of incidence
θi at fixed azimuthal angle φi and beam energy Ei (See Fig. 3.1 for the definition of the
scattering geometry). For simplicity, we consider here that φi is zero so that the projection of
the beam direction on the surface coincides with a low index direction of the crystal as in
Fig. 4.2. A compact and visual way to display the evolution of the diffracted intensities in
this θ -Scan is to plot the intensities on the Laue circle in a 2D color map (diffraction chart).
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Figure 3.6 A triangulation curve identifying the topmost channeling directions corresponds
to tracking the mean width σϕ of the scattering profile during a φ -scan or in-plane rotation.
With ϕ = arctan ky

kz
is related to the deflection angle in the 2D perpendicular plane.

Since the diameter of the Laue circle is proportional to the angle of incidence, the length of
the half-circle above the surfaces links to the incidence angle θin.

3.3.3 Atom Beam Energy Scan (E-Scan)

An energy scan (E-Scan) is a step-wise variation of the primary atom beam energy E, fixing
the incidence angle θi and azimuthal φi. During an E-Scan, the radius of the Laue circle
is constant. However, the Bragg angle φB = arctan(Gy/kcosθi) gets lower as the energy
increases so that more diffraction orders can be observed until they cannot be resolved
experimentally. In Fig. 3.9 show a typical E-scan of Ne atoms on a LiF(001) surface along
⟨110⟩ direction with θi=0.42◦ and φi=0◦. Dotted white lines indicate the positions of Bragg
peaks.
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Figure 3.7 A typical result from θ -scan with 5 keV helium projectiles on LiF⟨110⟩), super-
position of 7 diffraction patterns at different polar incidence angles θi. Above 1 eV, there is
no clear evidence of elastic diffraction as a well-defined Laue circle, but several quantum
features remain present and progressively fade away at larger values of E⊥. From ref[16].

3.3.4 Sample Temperature Scan (T-Scan)

The sample temperature scan (T-Scan) controls the temperature variation of the samples, by
heating through a power supply connected to the sample holder or cooling down by liquid
nitrogen (LN2).

In principle, a T -scan would consist of a simple variation of the target temperature leaving
all other parameters unchanged. Unfortunately, this is not compatible with the extreme
sensitivity of grazing incidence. In GIFAD, the target surface is easily positioned within 10
to 20 µm from the beam. If it is not enough inserted, the primary beam is still present on
the image, whereas if it is too much inserted, even the scattered beam disappears. However,
thermal expansion of the target crystal and the manipulator induce much larger displacements
and minor angular tilts producing major effects in GIFAD. Instead, we waited for a stable
temperature before realigning the target and performing a θ -scan. We interpolate between
measured angular values from these variations to restore a temperature variation.
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Figure 3.8 A θ -scan diffraction chart is constructed by selecting (for instance, from Fig.3.7),
only the intensities on the Laue circle and also by adopting a very small step size giving the
appearance of a continuous evolution with θi. On the left, the chart corresponds to He along
LiF⟨110⟩ (from ref.[66]) while on the right, it corresponds to Ne on LiF⟨110⟩ (from ref.[67])

3.4 Data Treatment and Analysis

Several important corrections have to be applied to obtain absolute GIFAD intensities with the
imaging detector system. The present procedure involves four different steps: (a) subtraction
of the CMOS dark current and the offset of the analog to digital converter; (b) correction of
the spatial distortion induced by the Hamamatsu-CMOS detector; (c) correction of the small
spatial inhomogeneities in the quantum efficiency; (d) conversion of the raw data intensities
to absolute value. The procedure is similar to other X-ray diffraction techniques recording
scattered photons by the CCD camera system[68].

∆Is =
fcorr(IData,raw − IBg,raw)

Iqe

After we recorded the diffraction pattern by the imaging detector system (see chapter. 2.5),
we will not consider the nature of the position-sensitive detector used to record the diffraction
pattern as a 2D image. We assume that the detector is far from the surface and perpendicular
both to the surface plane and the plane of incidence, so that the number of counts in each
pixel (x,y) corresponds to an intensity map in momentum space (k space) I(kx,ky). In the
present case (see Fig. 2.1), one CMOS (1920*1440) pixel corresponds to a scattering angle of
0.00284◦ (∼ 5×10−5 rad). Similar to standard crystallography, two types of information can
be extracted. The surface lattice unit is reflected in the peak spacing satisfied with the Bragg
condition. Furthermore, the relative peak intensities depend on the scattering amplitudes
determined by the shape of the electron density at the surface.
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Figure 3.9 A typical result of diffraction charts from Ne atoms E-Scan along LiF⟨110⟩, the
incidence angle is fixed at θ = 0.42◦, and the total kinetic energy E varied in the range of 0.3
to 3 keV. The blue dashed line is for an optical refraction model (see sec.9.5). Note that in an
E-scan, the Bragg angle varies as pointed out by the dotted lines. Taken from ref.[67]

3.4.1 Background Subtraction

The background pattern of the detector without a beam is recorded at the beginning for the
same exposure time as the diffraction pattern. In this way, the CMOS dark current and the
fixed offset of the AD-conversion are subtracted in a single step. Dark images are taken before
triggering the kinetic process during fast time-resolved experiments. In practice, multiple
dark images are acquired and averaged after the camera has reached thermal equilibrium to
reduce noise and avoid thermal noise.

3.4.2 Polar-like Transformations

We usually apply polar transformation[69] to convert the intensity on the Laue circle onto a
line. A standard polar transform in Fig. 3.10 (a), centered on the Laue circle and associating
(kx,ky)→ (α,

∣∣∣k⃗out

∣∣∣) with α = arcsinkx/ky and
∣∣∣k⃗out

∣∣∣=√k2
x + k2

y . Such transform will not
preserve the Bragg comb structure kx = nG. The polar-like transform is to keep the kx

coordinate unchanging and to consider the transformation as (kx,ky)→ (kx,
∣∣∣k⃗out

∣∣∣), define the
direct beam as original point (0,0), and the radius of this circle defines the effective momentum
ke f f = ky/2+k2

x/ky. The associated polar transform now is (kx,ky)→ (kx,2ke f f ), as sketched
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in Fig. 3.10 (b). For a direct beam, it should be invariant after such a polar-transform as
shown in Fig. 3.4.

Figure 3.10 Schematic view of two options for polar-like transformations. In Fig. (a), the
center of the Laue circle is the reference. In Fig. (b), the reference is the direct beam. The
figure corresponds to the β2(2×4) GaAs surface.[10] and are taken from Ref. [69].

3.5 Specific Distributions

We mainly use Gaussian distribution for elastic components and log-normal distribution for
inelastic components to do the best-fit of polar scattering angular distribution profiles.

3.5.1 The Normal (Gaussian) Distribution

Normal (or Gaussian or Gauss) distributions are important in statistics and are often used in
science to represent a real-valued random variable. The general form of normal (Gaussian)
distribution is defined as

fN(x;σ ,x0) =
1

σ
√

2π
e−

(x−x0)
2

2σ2

Where the parameter σ is the standard deviation, the variance of the distribution is σ2. The
parameter x0 is the mean or expectation of the distribution (and also its mode and median). If
the considered function is the density of Normal distribution of the form, then the full width
at half maximum (FWHM) is: FWHM = 2

√
2ln2σ ≈ 2.355σ .
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3.5.2 The Log-normal Distribution

The log-normal distribution is defined as

fLN(x;w,x0) =
1

xw
√

2π
e−

(ln x
x0

)2

2w2

where x0 and w are the median and width, respectively, of the random variable x = ey The
log-normal distribution LN(x0,w2) and the normal distribution N(x0,σ

2), also known as
Gaussian distribution, are closely linked, σ2 = ew2

(ew2 −1)x2
0 where x0 is the mean value in

the Gaussian distribution and is the median value in the log-normal. Reversely, knowing, x0

and σ from a Gaussian distribution, the equivalent relative width w =

√
ln 1+

√
1+4σ2/x2

0
2 . The

mean value of a log-normal distribution is ⟨x⟩ or x̄ = x0 ew2/2, x̄ = x0 exp
(

ln 1+
√

1+4σ2/x2
0

2

)
.

The QBCM has some predictive power but fails to explain the increase of the inelastic
scattering profile at low values of E⊥. More precisely, during an E-scan, where the angle
of incidence θi stays constant, the QBCM predicts that the number of collision sites should
remain constant and that each inelastic event has a fixed contribution in scattering angle.
At low values of E⊥, in the quasi-elastic regime, only one inelastic collision is expected to
contribute (pi << 1), and therefore the inelastic scattering profile should stay constant. This
is not what we observe. We try below to develop a model that considers the attractive forces
and evaluates the consequences. The application of normal distribution and log-normal
distribution in GIFAD see Appendix C.

3.6 Elastic Diffraction and Inelastic Scattering Patterns

Taking advantage of the wave-particle duality of matter, such as atoms or molecules. particle-
surface scattering(more considered particle nature), or diffraction(wave nature) experiments
were observed more than a hundred years ago. The mechanism is generally regarded from the
standpoints of two extreme regimes: the quantum regime and the classical regime[70, 71].

The scattering of particles, such as atoms and molecules, is one of the most fundamental
particle-surface interactions. It consists of elastic and inelastic scattering such as single-
collision and multi-collision. The dominant scattering channel is governed by the collision
parameters of particles with the surface, such as the mass of probe and surface atoms, surface
temperature, incident angle, energy transfer of incident primary beam, the property, and
quality of the surface, etc.
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Figure 3.11 a) Quasi polar transform of the raw diffraction image in panel d). Panel b)
corresponds to a full projection onto the vertical axis producing the polar scattering profile.
Experimental data are fitted using the sum of a narrow Gaussian and a broad log-normal
profile. Panel c) corresponds to the intensity in a narrow horizontal band centered on the
specular reflection. From ref.[72].

3.6.1 Polar Profiles

Here, first, we will focus on the polar scattering angular distribution profiles (See Fig. 3.11
b).).i.e., we focus on the atom-surface interaction along the z-direction, see the scattering
geometry in the x-z plane Fig. 3.12. After the polar-like transform, such a complex 2D
(y-z plane) problem reduced to the 1D problem. Through appropriate data processing and
transformation, the elastic and inelastic components can be well separated along the Laue
circle (see Fig. 3.11). Such distribution along z regardless of crystal orientation, as shown in
Fig. 6.4.

3.6.2 Lateral(Transverse) Profiles

The lateral profile (See Fig. 3.11 c).). In Ref.[73], the lateral profile of He/LiF is described
as made of two components, a broad and a narrow one. This empirical approach suggested
a modified Debye-Waller factor (DWF) where divided by Ne f f where Ne f f is the effective
number of scattering centers involved in the classical trajectory. This effective number of
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Figure 3.12 Schematic illustration of elastic (specular peak) and inelastic scattering geometry
in the x-z plane. The direct beam can be easily recorded by removing the sample.

scattering centers was linked to the DWF in more detail in Ref.[74] using the Classical energy
loss associated with such a grazing trajectory.

In Ref. [75], the transverse scattering profile recorded with He/LiF along a Random direction
was analyzed in terms of a Lorentzian profile. However, this profile is a trade-off combining
elastic and inelastic contributions.

In ref[71], a first attempt was made to derive an inelastic lateral scattering profile based
on classical trajectory simulation and a Lamb-Dicke model. The line shape could not be
confirmed unambiguously. Experimentally, the Lorentzian profile gives a decent description,
but the detailed comparison with the experiment shows that it has too long tails, so that -1)
the contrast is reduced, impairing the de-convolution of weak peaks -2) the rainbow peaks
where several diffraction orders contribute extend too far outside (Airy peak).

We propose a new empirical description of an exponential attenuation of the intensity. The
resulting line profile is obtained by convolution by the primary beam profile.

The lateral scattering profile is P(φ )∝ e−|φ |/φ0 . Its mean values is centered at the elastic
diffraction location and the second moment of this distribution is m2 = 2

∫
∞

0 (e|φ |/φ0)2dφ = φ0

where φ0 is the typical range of the momentum transfer. After convolution by the primary
beam profile, the distribution has a broader tail than a Gaussian profile but significantly less
than a Lorentzian profile.
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Figure 3.13 (a) A typical diffraction pattern after the polar transform, the Laue circle is now
a horizontal line. (b) The polar profile (scattering angular distribution) shows well-separated
components, the narrow one fitted by Gaussian distribution and the much broader one fitted
by a quasi log-normal distribution, from ref.[72]

3.6.3 Separation into Elastic and Inelastic Scattering

For most of the systems investigated, the polar profile (see Fig. 3.13 b).) is well-fitted by
the sum of log-normal distribution and a Gaussian distribution having the same Gaussian
width σe as the primary beam, see Fig. 3.3. To make the best separation between elastic
and inelastic scattering components, the following analysis method is applied to the several
polar angular intensity distributions of scattered atoms from the surface obtained at different
experimental conditions, by varying incident angles (θscan), primary beam energy ( Escan),
and surface temperature (Tscan). As shown in Fig. 3.13 b). Equation used for the fitting
analysis is described as

Itotal(E,θ ,T ) = Ielastic + Iinelastic = AN +ALN +B

where AN is the elastic scattering component is best fitted by Normal (or Gaussian) distribu-
tion, which has the same width and shape as the direct beam. ALN is an inelastic scattering
component is fitted by Log-Normal distribution. B is the background noise. Now, the
elastic and inelastic linked by Normal distribution and log-normal distribution have such a
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relationship:

Elastic : G[θi;σ ](θ) =
AN

σ
√

2π
exp

(
−(θ −2θi)

2

2σ2

)

Inelastic : LN[θm;w](θ) =
ALN

wθ
√

2π
exp

−
(

ln θ

θm

)2

2w2


with a variance σ

2
ine = ew2

(ew2
−1)θ 2

m

and reversely w =

ln
1+
√

1+4σ2
ine/θ 2

m

2

1/2

3.6.4 Elastic and Inelastic Scattering Width and Intensity

After we separated the elastic and inelastic components of the polar profiles, the best-fit by
the sum of log-normal distribution and a Gaussian distribution having the same Gaussian
width σe as the primary beam, see Fig. 3.3. However, the elastic contribution is not clearly
resolved when the elastic ratio is less than a few percent. We usually impose the elastic width
used in the fit to be the same as the primary beam’s. It should be stated that sometimes, the
direct beam which is systematically recorded before or after target insertion, is better fitted by
a non-Gaussian profile, in these cases, the same profile is used in the fitting de-convolution. In
some cases, with our best angular resolution, there could be indications of a slight broadening
at the base of the elastic peak compared with the direct beam’s shape. However, the effect
could also be due to the deformation of the inelastic profile that a log-normal profile would
poorly describe. This aspect will not be discussed further.



Chapter 4

Elastic Diffraction and Theoretical
Description

If, in some cataclysm, all of the scientific knowledge were to be destroyed, and
only one sentence passed on to the next generations of creatures, what statement
would contain the most information in the fewest words? I believe it is the
atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all
things are made of atoms—little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but repelling upon
being squeezed into one another. In that one sentence, you will see, there is an
enormous amount of information about the world, if just a little imagination and
thinking are applied[76].
-Richard Feynman

4.1 Overview

In this chapter, we try to model the interaction of the fast atom with a surface. First, the basic
concepts for understanding probe atoms, then the description of crystal surface (e.g. LiF).
Same as any other diffraction technique, the fast atom elastic diffraction information reveals
the periodic structure of the crystals. So far, fast atom elastic diffraction on surfaces has been
treated as the quantum dynamics of the projectile atoms evolving in the potential energy
landscape (PEL) or PES, assuming that all surface atoms rest at equilibrium positions.
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4.2 Description of Probes: Neutral Atoms

Elastic Diffraction of fast ions on surfaces has never been observed. The reason is probably
that ions interact too strongly with the surface. The electric field of the ions polarises the
surface, inducing displacements of the surface electrons and ions with specific time scales.
This is usually modeled by image force attraction with a typical eV magnitude [77, 34].
Atoms interact much less. At a large distance from the surface, the forces are dominated
by van de Waals forces, more precisely by long-range dispersion forces. The short-range
repulsive forces responsible for the reflection of the probe atom are the Pauli repulsion which
is expected to scale with the surface electronic density. The ideal probe of this electronic
density would be an atom as compact as possible and hardly polarizable. In this respect,
the best candidate is helium, the most compact atom and the hardest to ionize and deform.
Compared with atomic force microscope (AFM), which also probes surface electronic density,
the helium atom is an ideal tip. We also used Ne, which has a comparable ionization potential,
and other noble gas atoms in the chapter 8.

4.3 Description of Surface

Every real solid is bounded by surfaces. The surface atoms are only visible in surface-sensitive
experimental microscopic techniques or by studying properties or processes determined by
surface atoms only. Most aspects of surface descriptions and surface crystallography are
natural extensions of the concepts used in the concept of bulk materials. Since the main
concepts of bulk crystallography can be found in every textbook about solid-state physics.
(e.g. [81, 82]). Here, we pay more attention to the crystal surface. A geometrical construction
in describing crystal surfaces is that of a lattice plane, which is usually denoted by Miller
indices (hkl) where h, k, l are the integer reciprocal axis intervals given by the intersections
of the lattice planes with the three crystallographic axes. They have a simple meaning in the
case of rectangular crystal systems, such as the cubic system. For example, the symbol (100)
denotes lattice planes perpendicular to the cubic x-axis, and (110) means the lattice planes
perpendicular to the face diagonal in the first quadrant of the XY-plane of the cubic unit cell.

In the case of lattice planes, it is convenient to relate them to a linear combination.

ñ =
1

2π
[hb1 + kb2 + lb3]

Where bj (j=1,2,3) are the primitive vectors of the reciprocal lattice with the integer number
h, k, l. The vectors bj are directly related to the primitive lattice vector ai (i=1,2,3) by the
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Table 4.1 Crystal properties∗ of LiF(001), KCl(001).

Property (at 300K) LiF(001) KCl(001)

Bulk lattice constant (Å) 4.03 6.29

⟨110⟩ surface lattice constant (Å)a 2.84 4.45

⟨100⟩ surface lattice constant (Å) 2.02 3.15

Melting temperature (K) 1115 1049

Bulk Debye temperature (K)b 734 235

Surface Debye temperature (K) 350-610, 550c 159

Density (103 kg m−3 ) 2.635 1.984

Ionization Energy (eV) 11.3d 8.4

Surface stiffness (Å−1) 3.45 2.97

∗Most of parameters from Ref. [78]. aFor a simple cubic lattice. bRef. [79] cRef. [72]. dRef. [80]

relation
ai ·bj = 2πδi j.

A lattice plane can be characterized by the Miller indices (hkl), hence, a normal parallel to
the reciprocal lattice vector.

Ghkl = hb1 + kb2 + lb3

The property of the vector Ghkl of the reciprocal lattice can be proven to characterize the
lattice planes by all possible Bravais lattice points.

Rl =
3

∑
i=1

nliai

4.3.1 Structure of LiF Crystal

This manuscript mainly uses lithium fluoride(LiF) as a standard sample. It has been used for a
long history in Helium atom scattering (HAS) investigation. In recent years, LiF are employed
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Figure 4.1 (a) Cubic Bravais lattices sc, fcc, bcc; (b) low-index planes (100), (110), (111) in a
sc cell; (c) low-index planes resulting from cubic lattices. Bravais lattice points are indicated
as dots (a,b) or spheres (c) and taken from Ref. [54]

in various applications such as lithium (Li)-ion batteries[83], organic electroluminescence
devices[84], and solar cell[85]. Among the alkali halide thin films, LiF has the smallest
lattice constant (a=4.03Å) and largest bandgap (Eg=13.6 eV) [86, 87].

A complete characterization of a solid surface requires knowledge of not only atoms of "what
elements" are present but also "where" they are. Furthermore, how are they moving on the
surface? Just as in bulk, it is not that the atomic coordinates are of much direct interest.
Instead, besides the chemical nature of the atoms, their geometrical arrangement governs the
electronic, magnetic, optical, and other properties of surfaces.
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Figure 4.2 Schematic representation of the LiF(001) surface is shown,for the incident beam
along the ⟨100⟩ and ⟨110⟩ direction. The Fluorine (blue) and Lithium (grey) atoms form
a separated row. Physical parameters from Material Projects[88] and drawn by VESTA
software[89].

4.3.2 Surface Work Function

Work function is a fundamental property of any surface. It is defined as the minimum amount
of energy required to remove the most loosely bound electron from the surface to the vacuum.
For the LiF crystal used in our experiment, the reported work function or binding energy is
between 11.3 eV[80] and 13 eV[64].

4.4 Theory of Elastic diffraction at Surfaces

The elastic diffraction information reveals the periodic structure of the crystals. So far,
fast atom elastic diffraction on surfaces has been treated as the quantum dynamics of the
projectile atoms evolving in the potential energy landscape (PEL), often called potential
energy surface (PES). V3D(x,y,z) is created by assuming that all surface atoms at equilibrium
positions. In other words, quantum dynamics is a powerful tool linking the unknown PEL
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[110]2.84Å

Figure 4.3 Schematic view of the ⟨110⟩ direction of LiF(001) surface. The Fluorine (blue)
and Lithium (grey) atoms form separated rows. Physical parameters as shown in the figure
with ay=2.84 Å.

to the measured diffracted intensities. Assuming that the quantum scattering can be treated
exactly, both theoretical calculations and experiments are trying to measure the PEL as
precisely as possible, and to provide physical parameters such as atomic positions, surface
work function, and attractive physisorption well depth.

4.4.1 Axial surface channeling approximation

The axial surface channeling approximation (ASCA) states that, at grazing incidence, the
individual surface atoms are invisible. In Fig. 4.3 above, we see well-aligned rows of atoms,
but we also clearly see the individual atoms, so why is the ASCA so strongly established in
GIFAD? There are two arguments: one is energetic, and the other states that the coupling is
very weak and almost geometric. From a perturbation point of view, the transition probability
between two discrete states |Ψ0⟩, |Ψ1⟩ separated by an energy ∆E and coupled by a term
⟨Ψ0|W |Ψ1⟩ is P = (W/∆E)2 where both the coupling W and the energy difference ∆E are
important.

Let us consider one state associated with specular reflection where no reciprocal lattice
vector is exchanged with the surface and the other where a surface reciprocal lattice
vector G⃗(mGx,nGy,0) is exchanged between the crystal and projectile with momentum
k⃗i(kix,kiy,kiz).

The final momentum is now k⃗ f (k f x,k f y,k f z) = (kix +mGx,kiy + nGy,k′iz) and its energy is
∝ (kix+mGx)

2+(kiy+nGy)
2+k′2iz . At this point, there is no apparent difference between the

x and y directions, except that in GIFAD, k =
√

2mE/ℏ∼ kx is 100 to 1000 Å
−1

for He, much
larger than G = 2π/a ∼ Å

−1
. Grazing incidence also means that kix ≫ kiz since θ = atan kiz

kix
.

kiy is also supposed to be much smaller than kix, we can even simplify considering a projectile
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well-aligned with the crystal axis so that kiy = 0. The energy is then k2
ix +m2G2

x +2mkixGx +

n2G2
y + k′2iz . We see that the price to pay for m ̸= 0 is much more than for n ̸= 0 because

of the cross term 2mkixGx which is much larger than G2
x or G2

y because typical value of kix

are at least two orders of magnitude larger than the unit reciprocal lattice vector Gx ∼ Gy.
So the energy needed for diffraction along x is much more than for diffraction along y.
What about the coupling terms? The one deflecting the projectile to the left or the right (y
direction) is the integral of the lateral forces along y. It should be similar in magnitude to
the term responsible for specular reflection (along z), since lateral deflection can be of the
same order of magnitude as the angle of incidence, producing scattering up to 45◦ on the
Laue circle (see Fig. 3.12) While the one coupling to the x has a specific peculiarity that it
tends to be almost zero. The deceleration when approaching each atom is almost equal to the
acceleration when receding. Since the velocity along x is almost constant, the action of the
force is very close to zero. This is visible in Fig. 4.5 where the red line standing for γx is
plotted. As a result, exchanging a reciprocal lattice vector parallel to x costs more than 100
to 1000 times more energy and has a much smaller coupling than in the y direction. How
much smaller is the coupling? It is exactly equal to zero in the trajectory section where z is
constant, i.e., close to the turning point zt where the force is maximum. Due to the small
slope (ż) on the way in, the re-acceleration on each atom could be slightly larger than the
deceleration, but this should be almost exactly opposite on the way out where the slope
has changed sign. All these arguments were presented in one of the first GIFAD papers
[5] using wave packets. They were analyzed in detail in a dedicated theoretical paper [90]
using close coupling and confirmed by many other authors, for instance, in Diaz et al. [91]
using Multi-configuration time-dependent Hartree (MCTDH). The reduced coupling was also
identified in TEAS,[92] but surprisingly, emphasis was given to "Pronounced out-of-plane
diffraction" whereas out-of-plane has always been present and that the specificity is more a
reduction of the in-plane scattering.

Another estimate was given by Debiossac and Roncin [32] when adapting to GIFAD. The
work of Carsten Henkel[93] derived in the context of cold atom diffraction in an optical
lattice. In this work, the efficiency of the coupling under oblique incidence is estimated
from the Kapitza-Dirac incidence factor[94] predicting, in 1933, the stimulated Compton
scattering i.e., the diffraction of electrons by optical standing waves:

βKD = exp(−1
2
(kw cotanθ)2) (4.1)

It describes the exponential attenuation quantitatively due to the spatial averaging of the
potential modulation. The damping is much faster than exponential due to the vertical



56 Elastic Diffraction and Theoretical Description

asymptotic branch of the tan function for grazing angle. The term kw in Eq. 4.1 describes
the attenuation of the light intensity and can be related to the range Rc = 1/Γ of the surface
interaction potential [32]. Note that the formula derived by Henkel from first-order pertur-
bation theory did not reproduce the time-reversal symmetry correctly[95]. Debiossac and
Roncin empirically restored this symmetry[32], but precisely calculated by second-order
perturbation theory by Miret-Artés and Pollak [96–99].

The interesting aspect is that the longer the range of the potential (Rc = 1/Γ, the better is the
ASCA. This is why it is not visible in Fig. 4.3 where the hard sphere model corresponds to
Rc = 0, if a finite dumping of the electronic density could be used, then it would be impossible
to distinguish the individual atoms below a given angle. Then, if no exchange of momentum

Figure 4.4 For Ne atoms scattered along the ⟨110⟩ direction. The intensity of the jth diffracted
beams are shown as a function of E⊥, the energy of the motion in the (y, z) plane. For the
degenerate ±j diffraction orders, the summed intensity is shown. Diffracted intensities were
measured during an E-scan (blue triangles and Fig.3.9) or θ -scan (red circles and Fig.3.8
right panel). The black line is for theoretical results. The very narrow peaks calculated at low
energies reveal the bound state resonances. The PEL fit parameters are listed in Sec.4.5.3.
Taken from Ref. [67].

along x is possible, this means that a uniform translation can replace the movement along
x at velocity v∥ and that we can replace the actual 3D potential energy surface V3D(x,y,z)
by it 2D average along x, V2D(y,z) =

∫ ax
0 V3D(x,y,z)dx, as illustrated in Fig. 4.6 and Fig.

4.10 with ax the unit cell along the probed crystal direction. For elastic diffraction, GIFAD
is equivalent to a 2D problem with projectile impinging the potential averaged along the
crystallographic direction with a wave vector k⃗⊥(kiy,kiz). Therefore, the central prediction of
ASCA is that, for a given crystallographic axis, the elastic diffracted intensity should only
depend on E⊥ = E sin2

θi, so that varying the primary beam energy or the angle of incidence
should produce identical results when plotted as a function of E⊥. This is illustrated in Fig.
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Figure 4.5 Classical trajectory z(x) of a 1 keV He projectile calculated on top of a row of
fluorine atoms. Note that the z scale (left) is ∼ 100 times the x scale. The smooth trajectory
is made of successive localized interactions with the surface atoms as illustrated by the
components γx, γz of the acceleration along the trajectory (right scale), from ref.[71, 105].

4.4 where the blue triangle and red circles recorded during an E-scan and θ -scan respectively
fall on top of each other.

As long as the ASCA holds (for limitations, see Ref. [90] for theory and Ref. [100] for the
experiment), all theoretical methods developed for elastic diffraction at thermal energies
should apply to GIFAD. These will be briefly discussed in the following sections.

In fact, the ASCA already had a long history in grazing incidence classical scattering on
surfaces[101, 102, 34, 26, 59, 18, 103] where it was only an approximation since thermal
movement ruins the exactitude, whereas it can be neglected in elastic diffraction, making
ASCA a more ’exact’ approximation. It was implicitly present in the prediction of GIFAD by
Andreev [104] in 2002, but the paper did not attract proper attention, probably because there
was no attempt to estimate the probability that diffraction is not blurred by decoherence.

In the left panel of Fig. 4.6, H. Winteret al. [18] showed a He atom in front of a LiF(001) sur-
face the equipotential energy surface V3D(x,y,z)=3 eV. The right panel shows the correspond-
ing averaged potential V2D(y,z)= 3 eV for channeling along the [110] direction(indicated by
the arrow in the left panel).
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Figure 4.6 Left panel: Equipotential surface V (x,y,z) = 3 eV of interaction potential of
He atom at LiF(001) surface from superposition of individually calculated interatomic pair
potentials. Arrow indicates direction for averaging of V along y = [110] direction. Right
panel: Effective potential for grazing scattering, equipotential surface V (x, z) = 3 eV for
averaging of V (x, y, z) along y = [110] direction. Adapted from Ref. [18].

4.4.2 Theoretical methods in elastic diffraction

We start by indicating the methods developed in the context of GIFAD before extending
to atomic diffraction, in general. According to the ASCA, elastic diffraction consists in
calculating the quantum dynamics of an effective particle with energy E⊥, and wave vector
k⃗⊥(kiy,kiz) in the potential energy surface averaged along the probed crystal axis. From
the theoretical point of view, the ASCA is a considerable simplification since the effective
wavelength λ⊥ is much larger than the actual wavelength, reducing the numerical effort by
orders of magnitude because of the typical quantization cell is on the order of λ 2

⊥ instead
of λ 3. We assume here that the 3D PEL describing the projectile’s energy at any point
(x,y,z) above the surface is known so that its 2D average is a simple integration. For a
crystal as simple as LiF, a 2D PEL is plotted in Fig. 4.10 for a neon projectile at LiF along
⟨110⟩ direction. The first method applied to GIFAD was a wave packet approach[106]
developed by A.G. Borisov [5]. A similar technique was used by Aigner et al.[107]. The
same wave packet technique also described the bound state resonance where the projectile is
temporarily trapped into bound states above the surface. These were discovered by Frisch
and Stern[108] soon after the first observation of atomic diffraction [4] and are considered as
the most accurate determination of the attractive-well of the potential energy surface[109].
The general method of Multi-configuration time-dependent Hartree (MCTDH) was adapted
to GIFAD by Diaz et al. [91] offering interesting perspectives for molecular projectiles. The
close-coupling formalism, well suited to the discrete nature of diffraction was adapted to
GIFAD by Zugarramurdi and Borisov[90]. Using a decomposition of the PEL onto a basis
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set that have analytic Fourier transform, the method is fast enough to allow closed loop
optimization of the PEL onto the experimental data [16].

Within the ASCA, all methods developed for TEAS should also apply to GIFAD. This is
the case of atomic wave-packets[110] and close-coupling approaches[111, 112] but also the
description in terms of Bohmian trajectories[113–115]. This also applies to all the classical,
semi-classical, and optical models developed to simplify the quantum calculations. The
semi-classical approach consists mainly in attaching a local WKB phase (see e.g., Ref. [116]
for a recent review) to classical trajectories, and then letting all trajectories with identical final
momentum interfere. Such model have been developed by H. Winter and A. Schüller[18, 117]
and Gravielle et al.[118–121] with specific additions to avoid the classical singularities at
the extrema of the deflection function [122]. To explore the full 3D PEL, the semi-classical
method can have a significant advantage because the short wavelength along x has a very
strong classical character. However, using the ASCA, the benefit of semi-classical approaches
is not very clear for elastic diffraction because the quantum methods are now quite efficient.

4.4.3 The Hard Corrugated Wall Model

These singularities are naturally absent in wavelike approaches such as optical models
explaining the popularity[123, 124, 14] of the Hard Corrugated Wall model (HCW). The
HCW model considers that all of the momentum transfer takes place at the turning point
of the trajectory, close to the iso-energy curve z̃(y). Such that V2D(y, z̃(y) = E⊥, where the
force is maximum and the projectile at rest during a time τ ∼ 1/Γv⊥ (or lenght x = v∥τ

see Fig.5.4). The PEL V2D(y,z) is replaced by an infinite wall at location z̃(y) and free
propagation otherwise. No effect of a massive particle is considered and optical formulas can
be used to predict the diffraction intensities Im by a Fourier-like transform of the corrugation
function z̃(y).

Im =
k f z

kiz

∣∣∣∣ 1
ay

∫ ay

0
e−imGyy−i(k f z+kiz)z̃(y) dy

∣∣∣∣2 . (4.2)

The simplest corrugation function of periodicity ay is

z̃(y) =
zc

2
cos(y ·Gy) =

zc

2
cos(y ·2π/ay) (4.3)

for which the HCW Eq. 4.2 predicts diffracted intensities given by Jm the Bessel function of
rank m:

Im = J2
m(2πzc/λ⊥) = J2

m(k⊥zc) (4.4)
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The model is therefore extremely easy to implement and is already semi-quantitative at
a surprisingly good level in view of the simplifications. The model does not account for
multiple reflections corresponding to large corrugation amplitude nor for misaligned geometry
corresponding to kiy ̸= 0 in the 2D plane. The model can be further simplified by considering
only the flat section of the corrugation function z̃(y) in Eq. 4.3 which contribute most to
quasi specular reflection. Such points are indicated in red in Fig. 4.8, there are only two
per projected lattice unit z̃min and z̃max and these give rise to the very specific evolution
visible in Fig. 3.8 where the angle where the odd diffraction orders are intense correspond
to weak even diffraction orders because the minimum z̃min sits at a location y in between
that of z̃min and the next one. Along the vertical direction kiz, the succession of maxima and
minima is well reproduced by the simple equation δkizzc = nπ with zc the quasi constant
corrugation amplitude. Below 100 meV, the shape of the corrugation function z̃(y) does not
depend strongly on E⊥ as visible in Fig.4.7). The second-order perturbation theory developed
by Miret-Artés and Pollak [96–99] corrects this lack by considering the finite range of the
interaction. This is easily understood in Fig. 4.8b), where a trajectory flying over the next
row is depicted. Within the HCW, it is not deflected at all, neither on the way-in, nor on the
way-out. Whereas taking into account the extension of the interaction potential over a finite
range, the forces acting on this trajectory can be taken into account.

For GIFAD, elastic diffraction of helium was observed for E⊥ < 1 eV. The classical turning
points are typically 2-3 Å above the plane of ion core centers of the surface from Fig. 4.7.

4.5 The Atom-Surface Potential Energy Landscape (PEL)

The scattering and diffraction of atoms on the surface are determined by the interaction
potential between the probe atom and the surface forming the potential energy landscape
V3D(x,y,z) (PEL) above the surface. Classically, the energy landscape relevant for the
scattering of the projectile requires the knowledge of all exact positions of the thermally
displaced surface-atoms (δxi,δyi,δ zi) at the moment of the scattering. We have seen that
elastic diffraction only requires the Potential Energy Landscape associated with equilibrium
positions so that the PEL is perfectly periodic. The calculation usually contains two steps,
calculate the surface structure and electronic density, then place the projectile atom at all
possible locations within x,y inside a lattice unit and z ranging from a few Å to ∼ ten Å.
As a simplification, the surface structure is frozen during the second step because, with
fast projectiles, the surface atoms do not have time to move (see e.g. Ref. [10] or Ref.
[127]). Both steps can be performed by density functional theory (DFT, e.g. in Fig. 4.9)
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Figure 4.7 (a) Projectile trajectories z(y) and equipotential lines of the 2D interaction potential
V2D(y,z) relevant for the scattering of He-LiF(001) in the (y,z) plane (taken from Ref. [18]).
(b) The contour of Ne-LiF(001) along ⟨110⟩ 2D potential energy landscape (PEL) below 100
meV. The lines marked the potential energy level with a step size 10meV[125].

but the second one is very demanding since it has a very limited periodicity. Therefore, the
calculation is performed with a reduced grid so that interpolation is needed.

4.5.1 Decomposition into Binary Interaction Potentials

One convenient way to interpolate is to fit the measured on the grid used to calculate binary
interaction potentials attached to the surface atoms. It does not guarantee that the binary
potential has a genuine physical meaning, but it guarantees that their sum reproduces the
calculated PEL. If needed, a planar component can be added to mimic delocalized electrons.
In some cases, such as ionic insulators where the valence electrons are localized on the atoms,
the interatomic interaction potential between the projectile atom and each atom of the surface
can be calculated directly by modeling the surrounding atoms as an array of point charges
[34, 128].

Whatever the approach, it is convenient to expand the 3D PEL as V3D(⃗r) = Σi jΣnV n
bin(|⃗rn +

i⃗ai+ j⃗a j − r⃗|) where a⃗i, a⃗ j are the surface lattice vectors and r⃗n the coordinates of the n atoms
inside the lattice unit. V n

bin(|⃗r|) is the binary interaction potential that depends only on the
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𝑘𝑖𝑦 ≠ 0

𝑘𝑖𝑦 = 0
𝑘𝑖𝑦 > 𝑘𝑖𝑧 𝑘𝑓𝑦 > 𝑘𝑓𝑧or

Figure 4.8 Left panel: The HCW is an optical model that can be understood from the Huygens
principle and wavefront propagation. As a weakness, the light rays propagate freely, which is
a good approximation at normal incidence of the equivalent ASCA particle, i.e. for kiy = 0 but
a poor approximation when the rays are close to the surface plane kiy ≥ kiz (Right panel). In
this case, the HCW fails rapidly because long-range components of the interaction potential
modify the trajectory. A situation illustrated by the red dashed trajectories and well described
by a second-order perturbation theory [97, 98].

modulus of the inter-nuclear distance to the atom n in the lattice cell . In practice, at a given
location, the sum Σi j runs only on the closest lattice sites around the projectile.

For elastic diffraction, the ASCA indicates that the 2D PEL is needed V2D(y,z)=
∫ ax

0 V3D(x,y,z)dx.
Using the binary decomposition, it writes.

V3D(⃗r) = Σi, j,nV n
bin(|⃗r− r⃗n + i⃗ai + ja⃗ j|)

V2D(⃗ρ) = Σ j,nV n
row(|⃗ρ − ρ⃗n + ja⃗ j|)

V n
row(ρ) =

∫ +∞

−∞

V n
bin(r)dx

V1D(z) = ΣnV n
plan(z− zn)

(4.5)

Of course, it can be interesting to use binary potentials for which the integration is ana-
lytic. This is the case of Yukawa type screened coulomb potentials VSC(r) = B

r e−Γr which
have shown to be well-suited to describe inter-atomic potential (see e.g Ziegler-Biersack-
Littmark(ZBL)[129]).

∫ +∞

−∞

e−Γr

r
dx = 2K0(Γρ) with ρ =

√
y2 + z2 (4.6)

where K0 is the modified Bessel function of the second kind that, for x>0.7, can be approx-
imated by [130] :K0(x) ≈ (e−x

√
x ) · (1.25331414+ 2

x · (−0.07832358+ 2
x · (0.02189568+ 2

x ·
(−0.01062446+ 2

x · (0.00587872+ 2
x · (−0.0025154+ 2

x ·0.00053208))))))
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Coordinate inside the lattice unit y(Å)Diffraction order

Figure 4.9 For the β2(2×4) reconstruction of the GaAs(001) surface, the left panel reports
the experimental diffraction chart (θ -scan) and the wave packet results from an ab-initio
DFT calculation of the GaAs surface on the one hand and of the PEL with a helium atom
on the other hand [10]. The right panel shows that the complex chain-ring features can be
understood from a simple optical model where only six point source interfere[126]. The six
red crosses correspond to the red point source in Fig.4.8.

So that, the contribution of each atom in the 3D cell to the 2D averaged cell can be evaluated
directly without any numerical integration. Before presenting different forms of binary
potentials used in atomic diffraction, we introduce the mean planar potential, which will
be useful to discuss the depth of the attractive well responsible for physisorption. And also
to discuss important properties of the atom trajectory. The mean planar potential can be
defined as V00(z) in the Fourier expansion of the PEL in x,y, it can also be defined simply as
Vplan(z) =

∫ ∫
V3D(x,y,z)dxdy over a lattice unit. However, V3D(x,y,z) is calculated using,

in principle a sum over all the binary potential of the surface atoms. Again, expanding the
binary potential over a basis set with specific properties can be very efficient to directly
connect the binary potential to the mean planar potential using only the atomic elevation zn

inside the lattice unit. This corresponds to the final equation in the list of Eq. 4.5. When
available we will give the analytic form of V n

plan(z) associated with V n
bin(|⃗r|).

4.5.2 A Purely Repulsive Single Exponential Model

This most simple form has been used in many descriptions of atomic collisions at the surface,
where the projectile energy perpendicular to the surface exceeds ten’s of eV, allowing
penetration below the first layer. In this case, attractive forces can usually be neglected. A
single repulsive form is enough to understand the concept of shadow cone focusing and many
other processes involved in secondary ion mass spectroscopy. Very often, these calculations
use purely repulsive ZBL form with excellent results. It is also enough to understand the main
features of the projectile trajectory above the surface plane, such as the length of the trajectory
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Figure 4.10 Equi-potential lines for the interaction of a Ne atom at LiF⟨110⟩ surface. The
attractive(negative) potential energies are given in terms of the depth of the potential well D.

and the distance of the minimum approach. This simple model will be useful for discussing
inelastic diffraction in simple terms, but the proper values of Γ need to be discussed. In ZBL,
the values have been optimized to reproduce all possible pairs of projectile and target atoms
in bulk. As semi-empirical forms with well-justified analytic forms and parameters adjusted
to experiment, they cannot be entirely wrong. They are probably the best that one can get
with a reduced effort. It was shown to perform well under grazing incidence to describe the
evolution of the rainbow, but for values of E⊥ between a few eV and up to 100 eV [131]
where the projectile starts to penetrate the first atomic layer.

However, inside the bulk, inter-atomic distances larger than 2Å have no meaning, in this
respect, using these potentials above these distances is an extrapolation. An extrapolation
of proven values but an extrapolation cannot describe the physics that it did not contain
initially. The weakness of the ZBL approach is the absence of attractive components and
the fact that it does not contain any "chemistry of the surface". A valence electron in LiF
is different from a valence electron in CaF2, and this governs the repulsive behavior for
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distances larger than Å above the surface. We assume that, above the surface, the repulsive
forces should be dominated by the Pauli principle, which was shown to scale with the electron
density. In the case of helium, binding is 1s2 outer electrons the most tightly in the periodic
table. It is believed that the target surface electrons will have to move. So that the energy
associated with a helium atom at a location rhe, should be proportional [132] to the electron
density ρsur f of the surface at this same location r = rhe. Vrep(r) = αρsur f (r) and should be
valid when only conduction or valence electrons are concerned. The proportionality factor
α was estimated to be α = 364 eV a3

0[133]. Above the surface, we expect that the wave
function electrons should decay exponentially with a constant given by

√
2W . This derives

from the Schrodinger equation HΨ = EΨ in a region where the potential energy term V
is close to zero, where W is the surface work function, the energy required to extract an
electron, i.e. its binding energy E. Since the electronic density is given by the squared
modulus of the wave function Ψ(z), the decay rate should follow Γ ≈ 2

√
2W with W the

surface work-function.The Fig.4.11 illustrates the displacement of the surface electrons by
the presence of He and Ne atoms.

Figure 4.11 Contours of the displacement of the electron density induced by: (upper row)
a He atom is impinging to the Al-jellium surface at three different distances: 3.25a0 (left
panel), 4.0a0 (central panel) and 4.75a0 (right panel); (lower row) the same for Ne. Contour
values shown are +0.001, +0.0005, +0.0003, +0.0001 electron/a0 (the solid line refers to
positive excess charge, the dashed line to negative excess charge). Ref. from[134, 135].
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Under grazing incidence and when the energy E⊥ is less than a few eV, the purely repulsive
ZBL potentials were considered too repulsive, and the addition of attractive terms was
needed[34, 136].

Vtot (⃗r) =Vrepulsive(⃗r)+Vattractive(⃗r)

4.5.3 A Bi-exponential Model
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Figure 4.12 1D Ne-LiF mean planar potential as a Morse potential, the parameters are D=10.3
meV, Γ = 3.46 Å

−1
,z0 = 3.129 Å.

The minimum effort to reproduce an attractive and a repulsive part is to combine two
exponential terms, one positive and one negative. If attraction dominates at large distance,
then the range of the negative term should be larger than that of the positive one representing
repulsion. We have seen that, for helium projectiles, the leading repulsive term should be
on the order of αρe−Γ.z (See sec.4.5.2). Can we estimate the attractive term of the binary
potential? From a molecular point of view, the long-range attraction between two atoms is
dominated by the van der Waals interaction between instant dipoles and induced dipoles, also
known as London dispersion forces[137]. It is expected to scale as C6/r6. On an ionic crystal
an important component of the attractive forces is due to the polarisation of the projectile
by the electric of the surface resulting from the Madelung field. Away from the surface, it
is expected to decay exponentially with a decay range close to the lattice unit, justifying an
exponential form. This form has been used to reproduce all the diffraction orders for the
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Ne-LiF[110] system over a wide range of E⊥ as seen in Fig. 4.4.

V (r) =
2

∑
i=1

ai,s

|R− r|
e−Γi,s|R−r| (4.7)

The parameters of the binary potential in Eq. 4.7 are : ai = (39.84495, -1.6984), Γi = (2.1082,
1.246) for the Ne-Li+ potential, ai = (79.5900, -1.6632), Γi = (1.6364, 1.0165) for the Ne-F−

potential. The turning point is easily calculated at the equilibrium distance and the binary
well depth. The 2D PEL displayed in Fig. 4.10 can be calculated immediately from these
parameters using the 2D form V n

row(ρ) in Eq.4.6. The mean planar potential is also easily
calculated with a simple spreadsheet or plotting software using Eq.4.5.

4.5.4 The Lennard-Jones potential

The Lennard-Jones (L-J), or Kihara Potential [138, 139] is probably the best-known form of
diatomic molecular potential. The most commonly used form is the Lennard-Jones(6−12
form)

VLJ(r) =
A

r12 −
B
r6 = DLJ

[(r0

r

)12
−2
(r0

r

)6
]

(4.8)

Where DLJ is the well depth, and r0 is the equilibrium inter-nuclear separation, where
VM(r0) =−DLJ . The L-J potential in Eq. 4.8 is widely used because of its simplicity and
inverse sixth-power, asymptotically-correct attractive van der Waals term. This form of
binary interaction potential was used to represent the diffraction of fast helium atoms on a
graphene surface grown on a 6H-SiC(0001) crystal.

The Moiré pattern was directly visible along the armchair direction [140]. In this case, the
HCW model was applied along the armchair direction to describe a uniform graphene surface
[141]. The HCW formula (eq.4.2) is the same, but z̃(y) now describes the shape of the
Graphene overlayer with its moiré pattern. For this system, the Fig. 4.13 shows the evolution
of the well-depth between the binary radial form, the 2D axial form, and the mean planar
form.

VLJ,bin(r) = 4ε(
r12

c
r12 −

r6
c

r6 ) ,ε = 1.4 meV is the well depth

VLJ,row(ρ) = nπε(
63r12

c
64ρ11 −

r6
c

ρ5 ),n is the linear density

VLJ,plan(z) = 2asπε(
2r12

c
5r10 −

r6
c

r4 ),as is the surfacic density

(4.9)
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Figure 4.13 The interaction potential between a helium atom and a graphene surface; the
binary interaction potential Vbin(r), the same potential integrated along the armchair direction
taken as x to produce Vrow(r) (note that it is the contribution of only one atom whereas the
two atoms of the cell are aligned the [110] armchair direction and integrated over x and y to
produce Vplan(r).

These three different interaction potentials in Eq. 4.9 display quite different well depths.
The increase of the well-depth from binary to row and planar form can be understood by
comparing the distance between neighbor atoms along the row and in the plane. When
these are located within 6-7Å, the attractive parts add up, whereas the compact repulsive
overlap only for the closest atoms. This also outlines that several layers could contribute
to the attractive part, but this is not the case for a single layer of Graphene. In principle, if
the long range attractive forces could be added from all possible contributors, including the
bulk atoms, the proper integration among the half 3D volume should yield a r6

c
r3 asymptotic

behavior [142].

4.5.5 Buckingham Potential

The Buckingham potential is a formula proposed by Richard Buckingham in 1938[143],
which describes the Pauli exclusion principle (Pauli repulsion) and van der Waals potential
energy VB(z) for the interaction of two-atom or molecules in a correct asymptotic form.
It keeps the six-power term of the attractive part of the L-J potential and the exponential
repulsion term.

VB(z) = A · exp(−Bz)− C
z6 (4.10)
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Where A, B, and C are parameters, several approaches may determine those values in Eq.
4.10. This potential also has been used in Fast Atom Diffraction by Schuller et al.[127] and
Helium Atom Scattering (HAS) by Zhu et al.[144].

4.5.6 Tang-Toennies Potential

Figure 4.14 The He-LiF (001) surface potential based on the Tang-Toennies model. (a)
Two-body potentials between He- and He-F− as a function of the distance between the nuclei
R. (b) The geometry and some iso-potential lines for the interaction of He atom with the
surface from a summation of the atom-ion potentials in (a). (c) The solid curve shows the
V00(z) Fourier component of the potential between He-LiF surface on the same distance
scale as in (b). The two dashed curves show the local potentials above the Li+ and F−. From
[142].

Tang and Toennies [145] developed an inter-atomic potential model, give He-LiF (001)
surface potential in Fig. 4.14, which provides an accurate description of the intermediate
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overlap region and covers the full range of inter-atomic distances. In this potential model,
which provides good description of two-body van der Waals potentials between atoms. A
simple exponential gives the repulsion and long-range attractive dispersion terms are those
of the usual London power-law expansion, corrected, however, by damping function f2n(β r)
which account for the overlap effects at intermediate distance. The inter-atomic potential
given by

Vtot (⃗r) =Vrepulsive(⃗r)+Vattractive(⃗r)

= Be−β r − ∑
n≥3

f2n(β r)
C2n

r2n
(4.11)

Where the C2n are the theoretical coefficients in the expansion of the attractive dispersion
potential in Eq. 4.11, they can be accurately calculated from the optical properties of the
separate atoms[142]. The damping functions f2n(β r) are defined as

f2n(x) = 1− e−x
2n

∑
k=0

xk

k!

Based on this form, Sheng, Toennies, and Tang recently proposed a conformal potential
for all noble gas dimers valid at all internuclear distances [146]. The adaptation to ionic
crystal seems possible since the ionic electronic structure is that of a close shell noble gas,
but electrostatic effects should be included.

4.6 The 1D means planar potential V(z)

We have introduced the 1D mean planar potential and some analytic expressions derived
from specific binary potentials. We try to indicate here some interesting physical properties
of these 1D potentials. We start with a specific form of 1D mean planar potential that will be
used for inelastic diffraction, the Morse potential.

4.6.1 The Morse planar potential

indicate the binary forms giving rise to Morse, there are two possibilities, one is from Yukawa
or pure exponential.
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The Morse potential is widely used in chemical physics and by the STM and AFM community,
[13] and many of its properties can be easily calculated (Tab. 4.2.).

V = D e−Γ(z−z0)−2D e−Γ(z−z0)/2

V̇ =−D Γ( e−Γ(z−z0)− eΓ(z−z0)/2 )
(4.12)

4.6.2 Equilibrium Position, well-depth

The equilibrium distance is defined here as the coordinate z0 where energy is minimum. For
each analytic form of the 1D mean planar potential, the equilibrium distance z0 can be found
by solving V̇ (z) = 0.

Stable equilibrium: z0 is at a potential minimum position, and therefore it will feel a force
restoring it to z0 as it moves away from z0. An example of the Ne atom approach to the LiF
surface is illustrated in the Fig. 4.15:

In surface physics and surface chemistry discriminate between two types of adsorptions-
physisorption and chemisorption[147]. The physisorption or physical adsorption is the state
of inert-gas atoms or molecules weakly bound to a surface that involves no chemical reaction.
This weak interaction is mainly due to Van der Waals forces [148, 149, 72], with well depths
D of order 1 to 300 meV [150]. The strength of the physisorption supports such classification:
physisorbed atoms or molecules desorb under heating at typical temperatures, that are rarely
above the bulk-boiling point of the adsorbate(e.g. 77 K for physisorbed N2)[147]. This low
value means that binding for times long enough to form ordered structures occurs only at
low temperatures, T < D/kB i.e. a few K to hundred K, depending on the system. Higher
desorption temperatures indicate chemisorption.

4.6.3 Turning Points and Allowed Regions of Motion

For a projectile of effective energy E⊥, it is interesting to know how close it will approach
the surface. More precisely, we want to determine the minimum distance zt reached along
the 1D mean planar potential.

Using Morse planar model Eq. 4.12, the turning point is given by

zt = z0 −
2
Γ

ln

(
1+

√
1+

E⊥
D

)
(4.13)
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Since the kinetic energy goes to zero when V (zt) = E⊥, all the kinetic energy convert into
potential energy, the particle must come to a stop as it approaches the classical turning point
zt in Eq. 4.13. At this turning point, the repulsive force is usually maximum, and the particle
will be at rest for a short moment so that the action of the force is maximum. This is the
place where most of the momentum transfer will take place. This partly explains why the
HCW is successful, and this will be important when discussing energy transfer for inelastic
diffraction.

In practice, the classical turning points are about 2-3 Å above the surface, which is also the
typical nearest-neighbor distance of adjacent atoms of materials[13].

4.6.4 The Atom-surface Interaction Forces
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Figure 4.15 Ne atom at LiF surface, potential curve V (z), and force curve F(z), the Morse
potential fitted by parameters D=10.3 meV, Γ = 3.45 Å,z0 = 3.129 Å. (1 meV/Å = 1.6 pN)

In one dimensional case, we know the force on the particle at any point. It is determined by
F⃗z =−∂V

∂ z =−V̇ (z)
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4.6.5 Beeby Correction in GIFAD

As discussed in Sec. 4.4.1, GIFAD is sensitive to the 2D PEL, and if only Pauli repulsion
would be involved, this 2D PEL would be proportional to the electronic surface density.
Since this electronic density decreases away from the surface, the corrugation function, as
evaluated by the HCW model, should decrease with the effective energy E⊥. On many

Figure 4.16 For He diffraction on Graphene, when fitting the diffracted intensities by the
HCW Bessels formula of Eq. 4.2, the corrugation amplitude increases at low values of
E⊥[141]

occasions, the opposite is observed, as shown in Fig. 4.16 for the graphene/SiC system[141].
This un-physical behavior is suppressed by using the Beeby correction, which simply states
that, due to the well depth D, the energy at impact is not E⊥ but E⊥+D. This correction
is important only for E⊥ that are comparable with D. The other underlying assumption is
that the shape and magnitude of the corrugation function do not change significantly at low
values of E⊥, i.e., far from the surface. This can be understood from Fig. 4.10 where one can
see that all the equipotential lines are rather parallel to each other for positive values of the
energy. This is again due to the weak attraction forces that compresses all the equipotential
line around the distance zcross immediately below the equilibrium distance z0, as visible in
Fig. 4.12 and Fig. 4.13 and even more when using a log scale as in Fig. 4.15. Without this
attraction, the equipotential line would expand progressively to the vacuum and becomes
less and less corrugated as the electron density does. In summary, the well depth contracts
the equipotential lines and gives them a constant shape on a range significantly larger than D
before they start progressively shrinking around the atom nuclei above one 1 eV, as visible in
Fig. 4.7a). This behavior was already well investigated in TEAS, where the Beeby correction
is broadly used, see e.g. [14].
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4.6.6 Summary of 1D potentials

This chapter introduces a wide range of "empirical" or "semi-empirical" analytical expres-
sions of inter-atomic potentials, based on mathematical approximations of the forces acting
between atomic systems. They all contain two parts: a repulsive one and an attractive one
dominating respectively at short or large distances to the surface.

Some of their analytic properties are listed below in Tab. 4.2.

Table 4.2 Main quantities are needed for the Morse and Lennard-Jones type potentials. i.e.
Γatt = Γrep/2.

Symbol Morse Model Bi-exponential Model Lennard-Jones Model

V (z) D · e−Γ(z−z0)−2D · e−Γ

2 (z−z0) A · e−Γz −B · e−Γ

2 z D
[( z0

z

)12 −2
( z0

z

)6
]

−V̇ (z) D Γ( e−Γ(z−z0)− e−
Γ

2 (z−z0) ) ΓA · e−Γz −αB · e−αΓz 12D
z

[( z0
z

)12 −
( z0

z

)6
]

D D B2

4A , Ae−Γz0 or B
2 e−

Γ

2 z0 D

z0 z0
2
Γ
· ln
(2A

B

)
z0

zc z0 − 2ln2
Γ

2
Γ

ln
(A

B

)
2−1/6z0

zt z0 − 2
Γ

ln(1+
√

E⊥
D +1) 2

Γ
· ln

(
2A/B

1+
√

4AE⊥
B2 +1

)
z0

(
1+
√

E⊥
D +1

)6

Γ Γ Γ 12 lnz−lnz0
z−z0

Γe f f
Γ

1−eΓ(z−z0)/2
Γ

1− B
2A eΓz/2

12

z
[

1−
(

z
z0

)6
]

These binary potentials have mainly interesting integration properties, so that the effective
2D potential can be evaluated directly from the atomic position of each atom in the lattice
cell. Each of these atoms with a binary potential Vbin(r) at position (x,y,z) will contribute to
an axial potential V2D(ρ) centered at position (y,z) and to the mean planar potential V1D(z),
so that the sums needed for 3D calculation are more simple in the 2D averaged plane and
even more simple to evaluate the trajectory in the mean planar potential.

Vrow(ρ) =
∫ +∞

−∞

Vbin(r)dx

Vplan(z) =
∫ +∞

−∞

∫ +∞

−∞

Vbin(r)dxdy



4.7 Summary of elastic diffraction 75

V3D(⃗r) = Σi, j,nV n
bin(|⃗r− r⃗n + i⃗ai + ja⃗ j|)

V2D(⃗ρ) = Σ j,nV n
row(|⃗r− r⃗n + ja⃗ j|)

V1D(z) = ΣnV n
plan(z− zn)

Where i, j run over lattice vectors a⃗i, a⃗ j while n runs over the atoms of the unit lattice cell.

4.7 Summary of elastic diffraction

At least for simple systems, the problem of elastic diffraction is well-understood. The
ASCA is well-established and allows exact treatment of the quantum dynamics of the helium
projectile inside the PEL above the surface. Simple optical models can be used to derive semi-
quantitative values of the surface topology. These results were progressively established in the
past decade, mainly in Orsay and Berlin for the experimental aspects where both groups were
involved in surface investigations at grazing incidences. Numerous thesis have progressively
established the proper methods to derive the associated fundamental parameters. At Berlin,
several PhD students were involved; Christian Auth, Stephan Wethekam[151], Andreas
Schüller[152], and Jens Lienemann, Eric Meyer[153], Jan Seifert[154] and Marco Busch.
At Orsay these are Jérôme Villette[155], Anouchah Momeni[156], Patrick Rousseau[157]
Pierre Soulisse[158] and Maxime Debiossac[66]. The following chapters continue these
studies focusing on the inelastic effects and attractive forces.





Chapter 5

Inelastic Diffraction, Models and
Challenges

The grand aim of all science is to cover the greatest number of empirical facts
by logical deduction from the smallest number of hypotheses or axioms.
-Albert Einstein

5.1 Overview

The elastic diffraction was derived on the assumption that atoms are standing still at equi-
librium positions in the crystal. However, these definite equilibrium positions are only
average positions around which the atoms oscillate. Even at zero temperature, an atom
may be displaced from its average position, this corresponds to the so-called zero-point
motion associated with the spatial extent of the ground state wavefunction limited by the
Heisenberg uncertainty principle. As discussed above, GIFAD has strong similarities with
thermal energy scattering (TEAS or HAS). Because the axial channeling approximation
indicates that, in the elastic regime, GIFAD is equivalent to a particle with energy E⊥ or
momentum k⃗⊥(kiy,kiz) evolving in the mean 2D planar potential. We now focus on the
difference with TEAS, the inelastic diffraction regime which produces intensity on either
side of the Laue circle. Since the Laue circle is defined by energy conservation, inelastic
diffraction should be associated with where energy is exchanged with the surface. It can
also be viewed from a spatial point of view. In principle, any part of the interaction which
is not perfectly periodic should be visible in the inelastic diffraction. These can be defects
such as missing atom of ad-atom, step edges, and islands, all these contributions illustrated
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in Fig. 5.1 are often hidden in the concept of coherence-length of the surface indicating
the mean distance without defects. Ultimately, GIFAD could help identify the nature of the
most important structure, but this will be possible only in the inelastic scattering profiles
or in the reflectivity curves as well as in the triangulation curves or large-angle scattering.
All the aspects except elastic diffraction. It should be mentioned that inelastic diffraction

Figure 5.1 Illustration of structural imperfections of crystal surfaces. Atoms and their electron
shells are indicated by little cubes. The figure adapted from Ref. [54].

is diffraction. The Fig. 5.2 shows elongated diffraction spots which are not sitting on the
Laue circle, some are above, and some are below. In this figure, a weak signal of elastic
diffraction can be filtered out by a differentiating Mexican-hat profile. When analyzed using
the quasi-polar transformation defined in Fig.3.10b) and considering an effective wavelength
λe f f = (λin +λout)/2, then the inelastic diffracted intensities are rather close to the elastic
one. This interesting property was evidenced only when elastic diffraction is observed and
for a distance to the Laue circle, which is less than a polar standard deviation σθ . Important
work has already be performed in this direction by calculating some specific signatures from
classical mechanics [102, 159, 59, 160]. In this manuscript, we investigate only LiF. In this
wide band-gap insulator, electronic excitation can be ruled out for noble gas atoms projectiles
with energy below a few keV having an energy E⊥ less than one eV. Therefore, we will focus
on the influence of thermal motion and its associated non-periodic positioning of the surface
atoms. It is intimately linked to the phonon system, and this later is also specific at the
surface. We will see that the specific kinematic conditions of GIFAD give rise to a different
type of energy exchange than with TEAS. From the collisional point of view, we switch from
"head-on" collisions with slow atoms to grazing collisions with fast atoms. There are several
associated challenges. Can we measure online the exact surface temperature? Can we better
understand some aspects of the quantum nature of the surface? Can we see specific surface
phonons or their influence?
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Figure 5.2 For 460-eV He4 at 1.57◦ i.e. E⊥ = 345 meV, the diffraction circles containing the
beam position in the raw image (a) are transformed into horizontal lines in (c). The effect of
the doubly differential filter applied in the z direction and isolating the elastic ky profile and
intensity is illustrated in (b) and (d), the kz vertical extension is then given by the bandwidth
of the filter. From Ref.[71].

5.2 Lattice Dynamics

The subject of lattice dynamics is the study of the thermal vibrations of the atoms in a
crystal. The atoms or ions are not fixed to their equilibrium positions, but always vibrate
with an energy that is governed by the temperature of the solid. In fact, inelastic diffraction,
X-rays, neutrons, and thermal atoms have greatly contributed to measuring these vibration
amplitudes via the Debye-Waller factor that will be discussed later (see Sec. 5.3). They found
that the vibration amplitude can be in the order of 10% of an interatomic distance. In the
study of lattice dynamics, atomic motions are frequently found to be adequately described as
harmonic traveling waves. Each wave can be fully characterized in terms of its wavelength λ ,
pulsation ω , amplitude, and direction of propagation. The wavelengths have values ranging
in scale from infinity down to the distances of interatomic separations. The standard approach
uses reciprocal space and the wave-vector k defined as the vector parallel to the direction
of propagation of the wave, and normalized such that |k|= 2π/λ . We will find that ω is a
function of both k and the forces between atoms, and the amplitude of any wave is a function
of ω and temperature. The evolution of the energy of the mode with the wave vector is
called the dispersion relation, and inelastic diffraction of atoms[161], electrons (HREELS),
[162–164] and neutrons[165] have also contributed to these measurements respectively at the
surface, close to the surface, or in the bulk as these three techniques have different penetration
depth. On the theoretical side, within the harmonic approximation of the thermal vibration
model, the solutions of the equation of the motion are then non-interacting normal modes,
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and their quanta are called phonons. The phonon dispersion curve can be calculated for
each Cartesian direction as a phonon spectrum. These are usually related to the thermal
vibration of the atoms determined from inelastic diffraction studies (see the Debye-Waller
factor, next chapter). The study of quantized surface vibrations, surface phonons, enables us
to get knowledge about the forces at a solid surface, or between the surface and absorbed
molecules. In the case of thin films such as graphene layers, the vertical vibration modes
indicate the nature of the bounding [166]. This helps to understand and exploit a wide variety
of transport and optical properties and functions involving phonons, either directly or via
electron-phonon interaction [167].

We know that the mean energy of an oscillator is twice its mean potential energy, ⟨E⟩ =
Mω2⟨u2⟩ where ⟨u2⟩ is the mean square vibrational amplitude of the oscillator. We get [148]

〈
u2〉= h̄

2Mω
coth

h̄ω

2kBT
(5.1)

In a isotropic crystal, the mean square displacement (eq. 5.1) of the atoms in direction
α = x,y or z is given by

〈
u2

α

〉
=

h̄
2M

∫
∞

0

1
ω

coth
h̄ω

2kBT
nα(ω)dω (5.2)

where nα(ω) is the spectral density for vibrations in α direction (eq. 5.2). The simplest exam-
ple of oscillator-phonon coupling in the Debye model, in which the one-phonon continuum
density of states is given by

n(ω) =

{
3ω2

ω2
D
, 0 ≤ ω ≤ ωD

0, othercase
(5.3)

where ωD (in eq. 5.3) is Debye frequency corresponding to the high frequency limit of the
local oscillator with a value usually ≤ 50 meV, for LiF surface Debye temperature TD ≈ 550
K[127, 72, 168], so that h̄ωD = kBTD ≈ 47.3 meV.

For a bulk crystal in 3D space, the total mean square vibration amplitude is ⟨u2⟩= ⟨u2
x⟩+

⟨u2
y⟩+ ⟨u2

z ⟩. Due to the reduced number of close neighbors for surface atoms at the surface.
The vibration frequency is reduced, but the energy in each mode should be constant at a
given temperature. So that the vibrational amplitude of surface atoms normal to the surface
is greater than in the bulk[148, 170]

〈
u2
⊥
〉

T >
〈

u2
∥

〉
T

. Shichibe et al.[171] reported that the
surface normal vibration u⊥ makes a large contribution to the classical scattering processes
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Figure 5.3 At different surface temperatures, the lattice constants measured by Y. Ekinci
et al. [169] form two different crystal samples. The total error bars are also shown. The
difference between the two crystals is about 0.002Å, which is attributed to the adjustment
error of the azimuthal angle. The inset is the fitting curve plotted by using their recommended
parameters.

of rare-gas atoms, such as Ar, Kr, and Xe. It is sometimes convenient to define a specific
Debye temperature at the surface kBTD =h̄ωD, and this latter is systematically lower than
in bulk. From a naive description of a cubic crystal, the absence of one of the two neighbor
atoms along z gives a force divided by two and a vibration amplitude multiplied by

√
2. The

variation of the mean square amplitude of surface atoms can be calculated as a function of its
temperature T.

⟨σ2
z ⟩=

3h̄2

2MkBTD
coth

TD

2T
(5.4)

Where TD is surface Debye temperature. At high temperatures, T > TD, the above formula
(eq. 5.2) can be simplified to a linear form using coth(TD/2T )∼ 2T/TD. ⟨σ2

z ⟩= 3h̄2T
MkBT 2

D
For

bulk LiF at 300 K, we used the value calculated in ref.[127]
〈
u2

F⊥
〉

or⟨σ2
z ⟩= 0.0097Å

2
, at

surface Debye temperature TD⊥ = 547 K, which is agree with the value of Hoinkes[168],
TD⊥ = (568± 56) K, obtained by the thermal hydrogen atomic beam scattering method.
A.Schueller et al. [127] calculated

〈
u2

Li
〉
= 0.0118Å

2
and

〈
u2

F
〉
= 0.0081Å

2
for LiF bulk

and perpendicular vibrational amplitudes for LiF surface:
〈
u2

Li⊥
〉
= 0.0135Å

2
and

〈
u2

F⊥
〉
=

0.0097Å
2
. which are increased by about 20% compared to bulk vibrational amplitude. Frisco
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et al. in Ref.[172] use linear form for Li and (F) atoms : ⟨u(rB)
2⟩T ≈ [1+B(rB)(T/Tre f −

1)]⟨u(rB)
2⟩Tre f , with B(rB) = 0.795(0.890)

5.3 The Debye-Waller Factor in TEAS

The Debye-Waller factor (DWF) is a very important quantity needed for modeling all
diffraction processes in materials in which lattice atoms displacements are involved. DWF
is often interpreted as the probability of the coherent processes in the diffraction context.
The main observable effect of the temperature is the attenuation of the elastic diffracted
intensities I(T ) = I0e2W (T ). It was introduced for X-rays historically, then used for electrons,
neutrons, and atoms as well, where the Debye-Waller factor is described[14, 173, 74].

DWF = e−2W (T ) (5.5)

where −2W (T ) in Eq. 5.5 is the Debye-Waller exponent and

W (T ) =
1
2

〈
(u ·∆k)2

〉
T

(5.6)

Where ∆k is the momentum transfer in the collision events, u is the displacement of a
lattice atom from its equilibrium position, and the outer brackets refer to the thermal average.
Equation (5.6) can be simplified by assuming that the average of the product is the product
of the averages and that the parallel momentum transfer to the surface is zero. So we can
rewrite Eq. (5.6) as:

W (T ) =
1
2
〈
u2

z
〉

T · (∆kz)
2 (5.7)

Defining kBTD =h̄ωD, equation 5.7 becomes:

W (T ) =
3(h̄∆kz)

2T
2MkBT 2

D
(5.8)

In a single collision model where all the momentum is transferred to a single surface atom

(∆kz)
2 = (2ksinθi)

2 =
8mE
h̄2 sin2

θi =
8mE⊥

h̄2 (5.9)

From a spatial point of view, the DWF can be derived as the reduction of the coherence due
to the displacement uz from equilibrium positions. This induces a path difference 2uz and
a phase shift 2∆kuz. The resulting coherence of this gaussian phase distribution having a
variance (2∆kuz)

2 is simply the DWF. From a momentum point of view, the DWF indicates
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the probability for a harmonic of pulsation ωD to exchange a momentum ∆kz (in eq. 5.9)and
remain in the ground state. DWF= ⟨ψ0|ei∆k|ψ0⟩2

Note that the value is independent on the shape of the binary interaction potential V n
bin(r).

However, it was rapidly understood[174] that the attractive well near the surface increases
the projectile energy before the impact so that the effective energy is E ′

⊥ = E⊥+D, where D
is the well depth.

W (T ) =
12m(E⊥+D)T

MkBT 2
D

(5.10)

Where m is the mass of the incoming atoms, M is the mass of the surface atom, E⊥ is the
incident beam energy E⊥ normal to the surface, kB is the Boltzmann constant, TD is the
surface Debye temperature. As a result, even at zero initial kinetic energy, the projectile is
accelerated at an energy D and this prevent the DWF to reach unity, there is a saturation
effect [14]:

DWF = exp{−2W (T )}= exp{−24m(E⊥+D)T
MkBT 2

D
}

= exp{−24mDT
MkBT 2

D
} · exp{−24mE⊥T

MkBT 2
D

}
(5.11)

In TEAS, this can be seen as the low energy limit of the DWF during an energy scan (Escan)
or incident angle scan (θscan), note Eq. 5.11 as:

DWF = A(T ) ·B(E⊥,T ) (5.12)

where the Saturation factor in Eq. 5.12, A(T ) = exp{−24mDT
MkBT 2

D
} or B(E⊥) = exp{−24mE⊥T

MkBT 2
D

}.
In Tscan mode, A(T ) is a constant at a certain temperature, or B(E⊥) is a constant at fixed E⊥,
i.e. fixed primary energy and incident angle θ . Obviously, the Saturation factor is within range
A,B∈ (0,1). It means DWF never reach to 1, even with E⊥orT → 0, although at low tempera-
ture, small value of T, where zero point motion becomes effective the curve saturates to a con-
stant value[175]. For instance, for He-LiF system at room temperature, AHe−LiF = 0.61, with
m(He) = 4 u, D = 8.5meV, T = 300K, M(F) = 19 u, kB = 0.08617meV/K, TD = 550K.
For Ne-LiF system, ANe−LiF = 0.05, with m(Ne) = 20, D = 10.3meV .

In such a single collision model, it predicts that DWF obeying an exponential decay as a
function of E⊥, E⊥ = E sin2

θ ≈ Eθ 2, but it’s not the case in GIFAD experimental results,
see Fig. 6.5. The first naive attempt to estimate the DWF specific to GIFAD was to
consider[176, 74] that the length of the trajectory can be converted into a mean number of
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binary collisions and that the position fluctuations of this ensemble N is σz/
√

N so that eq.5.7
becomes

W (T ) =
1

2N
σ

2
z · (∆kz)

2 (5.13)

5.4 Classical Motion in an Exponential Potential

Since the ASCA has to be abandoned, we return to the 3D trajectory. Since the polar inelastic
profile was found independent from the crystallographic axis probed, we return to the model
trajectory z(t) in the 1D mean planar potential (see chapter 4.6.1). We start with the simplest
model, the purely repulsive exponential model V (z) =V0e−Γz for which the trajectory and
its derivative are analytic (see e.g. Ref. [71]). Eiz is the energy at z = ∞, the velocity
viz =

√
2Eiz/m, the minimum distance z0 corresponds to ż(t) = and to the origin of time,

t = 0 taken at the turning point z0.

z(t) = z0 + vizt +
2
Γ

ln
(

1+ e−Γvizt

2

)
ż(t) = viz −

2viz

eΓvizt +1

z̈(t) =−
2v2

izΓeΓvizt

(eΓvizt +1)2

dE(t)∼ µEaΓ2θ 4

4cosh4(Γθx/2)

(5.14)

In this model, the movement along x is a perfect translation at velocity vparallel , and one
considers the force given by z̈(t) to evaluate the momentum-transfer curve to the surface
atoms with the underlying atomic density 1/ax. In Fig. 5.4 such a trajectory is compared
with a complete trajectory simulation on a 3D surface with binary potentials attached to
the successive atoms within an atomic row. The figure also displays discrete momentum
deposition curves having a quasi Gaussian profile. For each of the binary collisions identified
along this trajectory, the momentum transfer δ k⃗ is well-defined as the integral of the associ-
ated acceleration peak and the associated recoil energy Er = δk2/2mt of each surface atom
of mass mt along the trajectory. In this analytic form, the sum of all these classical recoil
energies, which is the energy lost by the projectile, can be calculated, giving the classical
energy loss ∆ECl =

2
3 µEΓaθ 3

i [74].
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Figure 5.4 Classical trajectory z(x = v∥t) of a 1 keV He projectile calculated on top of a
row of fluorine atoms. Note that the z scale (left) is ∼ 100 times the x scale. The smooth
trajectory is made of successive localized interactions with the surface atoms as illustrated by
the components γx, γz of the acceleration along the trajectory (right scale). From[71, 105].

5.5 Quantum Binary Collision Model (QBCM)

The quantum nature of the surface is introduced by considering that the surface atoms
are bound in the Debye harmonic oscillator. Then for each surface atom, the local DWF
can be estimated in TEAS as DWF=e−δk2·σ2

z . At the end of the trajectory, the probability
that all the binary collisions were elastic i.e. that none of the collisions was inelastic, is
the product of all these probabilities. Pe = Πpe, and since the product of exponential is
the exponential of the sum, the resulting probability takes the simple form Pe = e−∆ECl/h̄ω

where ∆ECl = ΣEr is the sum of recoil energies already calculated in eq.5.17. Both the
spatial approach replacing σz by σz/

√
N and the momentum approaches are quite naive and

oversimplified but they give exactly the same resulting DWF if we define N not from the
FWHM of the momentum deposition curve (ż(t) in Eq. 5.14 but as the effective number
of equivalent binary collisions such that NeqEr = ∆ECl , i.e. Neq =

6
Γaθin

. The real problem
of TEAS, where a slow moving wave-packet is hitting a quantum harmonic oscillator. It
is far from trivial, as Schram and Heller illustrated in a recent paper "Hitting a ball on a
spring: a simple model for understanding decoherence with wavefunctions" [177]. It is
even more complex on a surface where the harmonic oscillator is no more an Eigenstate and
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should be replaced by phonons modes. In TEAS, this situation has been addressed with a
close coupling calculation [178] so that the excitation number in each mode can be traced.
A statistical approach to the phonon bath has also proven qualitative results, including the
adsorbates’ effect[179]. Much less work was adapted to GIFAD[180, 181]. On the one hand,
the sudden approach of the binary collision is even better justified than in TEAS because
each collision lasts only a/v∥ so that the surface atom has no chance to move during the
collision. On the other hand, it isn’t easy to evaluate the effect of the coherent transfer of
momentum along the trajectory. The momentum transfer curve of Fig. 5.4 has a definite
length and should have coupled more efficiently to specific phonon modes. Far from a
detailed description of these effects, the interest of the above momentum approach is that if
offers an opportunity to estimate the inelastic scattering profile because the projectile also
receives the same momentum from the target atom, only directed in the opposite direction.
If the collision is elastic (with a probability pe). Then, the vibrational wave function of the
surface atom is left unchanged. So that the elastic scattering probability pe can be identified
with the Lamb-Dicke probability of recoilless emission (or absorption), discovered as a
line narrowing at high pressure in emission spectroscopy. Nowadays, it’s widely used to
laser-cool an ensemble of atoms without transferring any recoil energy.

5.6 The Modified Debye-Waller factor

Under grazing angle of incidence, the reflection of the projectile occurs in multiple collisions.
The Debye-Waller argument 2W for each of these small collisions is smaller than that of Eq.
5.8, because |∆k| ≈ 2k⊥ = 2k sinθin, for N times collisions, each small collision θ ≈ 2θin/N.
Thus, the Debye-Waller factor is transformed according to

e−2W → e−2W/N (5.15)

The DWF from Eq. 5.15 adapted to grazing incidence is now.

DWF = exp{−3∆ECl

h̄ωD
coth

TD

2T
} (5.16)

Where the classical energy loss ∆ECl is the sum of the recoil energies surface atoms is the
classical energy loss. [74, 71] Where µ is the projectile to target mass ratio, µ =

mp
mt

, and can
be used to define N = 6/(Γaθi). The mean number of equivalent binary collisions producing
the same energy loss.

∆ECl =
2
3

µEΓaθ
3
i ≡ µE(2θi)

2/N (5.17)
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Where the last term is N times the binary recoil energy, resulting from each individual
deflection by 2θin/N.

Statistics of inelastic events

What about the scattering profile? The local Debye-Waller factor e−Er/h̄ωD = |⟨Ψ0|eiδk|Ψ0⟩|2

is interpreted as the probability that the surface atom is not vibrationally excited, i.e. that
its wave function Ψ0⟩ is left unchanged. What is the consequence in terms of scattering
distribution? We consider that if the collision is elastic, i.e., if the surface atom wave function
is unchanged, then we do not know anything about the position of this atom except the center
of its wave function. At variance, if the collision is inelastic, then all possible excitation
schemes should be considered. We assume that this leads to broadening that we evaluate from
classical mechanics, by considering the position probability distribution. P(z) = |Ψ0(z)⟩2

which is known to be Gaussian for a harmonic oscillator P(z) = e−z2/2σ2
z . As a result, the

inelastic scattering profile is a lognormal distribution and contributes to the overall inelastic
scattering profile.

As a handy simplification, one can assume that the specular deflection is due to N equivalent
binary collisions, i.e., replacing the quasi-gaussian probability distribution (Eq.5 in Ref.[71])
with a square probability distribution. Mathematically, the convolution of N log-normal
distributions is not a log-normal distribution. However, for comparatively small values of
the width w ≈ σθ/θe = σθ/2θi ≤ 0.1, the property is numerically well verified [71] and, for
N identical deflections, the resulting relative width parameter is reduced by

√
N indicating

simply that the final variance is the sum of individual variances. We note that Eq. 5.17 can be
written as ∆ECl = 4µEθ 2

in/N where 4µEθ 2
in is the energy loss that would arise if only one

atom would deflect the projectile by 2θi. The number N = 6
Γaθin

is hence well-defined and
interpreted as the mean number of collisions, each deflecting the projectile by dθ1 = 2θin/N
with an associated recoil energy, Er = µEdθ 2

1 so that ∆ECl = NEr. The statistics is then
easily expanded in terms of the number n of inelastic collisions.

P(n) =
(

N
n

)
pN−n

e (1− pe)
n/(1− pN

e ) (5.18)

where the last term in Eq. 5.18 is here to normalise among the inelastic events only. The
final variance σ2

θ f
can be evaluated from the variance σ2

θ1
= (dθ1Γσz)

2 ≈ (θ 2
inΓ2aσz/3)2 of
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an individual inelastic collision.

(a) σ
2
θ f

= ΣnP(n) nσ
2
θ1

(b) for pe ≈ 0, σ
2
θ f

≈ σ
2
Cl = Nσ

2
θ1
=

2a
3

θ
3
inΓ

3
σ

2
z

(c) for pe ≈ 1, σ
2
θ f

≈ σ
2
Qu = σ

2
θ1
=

a2

9
θ

4
inΓ

4
σ

2
z

(5.19)

The limiting cases are given by the classical limit σCl where all collisions are inelastic and
the quasi-quantum limit σQu where inelastic events (trajectories) are dominated by a single
inelastic collision.

σθ Cl = (
2aΓ3θ 3

in
3

)1/2 ·σz or wCl = (
aΓ3θin

6
)1/2 ·σz (a)

σθ Qu =
aΓ2θ 2

in
3

·σz or wQu =
aΓ2θin

6
·σz (b)

(5.20)

Both predictions indicate that the measured relative width w ≈ σθ f /2θi should decrease at
small angle of incidence during a θscan or stay constant during an Escan. In this latter case,
the angle of incidence is fixed, and increasing E⊥ only brings the trajectory closer to the
surface but does not change its shape nor the number of collisions or their relative strength
δkz/kx so that the relative width w should stay fixed.

This simple description of the scattering width as a perturbative broadening of the elastic
scattering from an ideal surface with atoms fixed at equilibrium positions was developed
as the quantum binary collision model (QBCM) [71]. We suggest in the next chapter, that
the purely repulsive approach is too restrictive, much more than it is in TEAS where the
most important correction, known as the Beeby correction is assumed to be qualitatively
important only for values of E⊥ ∼ D. In next chapter, a modified classical model take
surface effective stiffness and Beeby correction both into account, the classical inelastic

width wCl = (
aΓ3

e f f θe f f

6 )1/2 ·σz.

5.6.1 conclusion

As the main difference with TEAS, we have seen that the stiffness of the repulsive potential
plays a direct role in the scattering process. It governs the length of the trajectory above
the surface, the number of binary collisions, and the violence (strength) of these binary
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collisions. The minimum distance of approach to the surface, zmin is the same as in TEAS
(when considering E⊥), and the force V̇ (zmin) is also the same as in TEAS. However, the
velocity and collisions are parallel to the surface in the grazing geometry. The repulsive force
action is ∝ the time that the projectile is exposed to this force, and this scales as 1/v∥. In
its crude form, the QBCM model predicts that the elastic or inelastic behavior is a property
of each binary collision. This assumption does not affect the elastic scattering probability
because this implies that all collisions are elastic. The question is more on the inelastic
scattering. The QBCM suggests that only a few collisions could be inelastic, so the overall
broadening could be much less than the classical limit. This is examined in the next chapter,
together with the influence of the attractive forces.





Chapter 6

Experimental Results: Polar Inelastic
Profiles in Fast Atom diffraction at
Surfaces

This chapter corresponds to a publication by Peng Pan, Maxime Debiossac, and Philippe
Roncin in Physical Review B under the same title[72].

6.1 GIFAD Polar Inelastic Profiles

Elastic diffraction was shown the be sensitive to the surface topology. This chapter discusses
a complementary aspect. The probability for a projectile atom to be deflected away from
the Laue circle, and how to interpret this deviation. More precisely, we define the inelastic
polar scattering profile or angular distribution P(θ) as the probability for the projectile to be
deflected by an angle θ different from the specular angle, where θ is the deviation from the
primary beam direction: θ =

√
θy +θz. This distribution does not display any diffraction

feature, but our results below suggest that it is sensitive to the thermal amplitude of surface
atoms multiplied by the stiffness of the mean surface potential at a distance zt where the
projectile velocity towards the surface changes sign. The increase of the stiffness at low
values of E⊥ will be related to the attractive well-depth.

The chapter is structured as follows: Sec. 6.1.1 presents experimental data recorded with
helium and neon projectiles on a LiF crystal surface at room temperature (except for Fig.
6.4 recorded at -93 ◦ C). The image transformation used to produce the polar scattering
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Direct beam
Direct beam

E^ = 92.7 meV

500 eV Ne on LiF <110>

E^ = 192 meV

300 eV He on LiF <110>

qin = 1.45 qin = 0.39

Figure 6.1 The raw images of the diffraction pattern of 300 eV Helium at θi = 1.45◦ (Left) and
of 500 eV neon atoms at θi = 0.39◦ (right). The white line where bright spots are observed
represents the Laue circle of energy conservation corresponding to elastic diffraction. The
Bragg angle from eq. 3.1is much smaller for neon. Inelastic diffraction extends below and
above this circle and, at comparable values of E⊥, it is systematically more important for
neon which has a larger mass.

profiles are presented, and within the explored conditions, these polar profiles are found to be
independent of the probed crystallographic axis. A fit through these profiles is used to isolate
the elastic and inelastic components as well as widths and positions and their evolution with
the projectile energy and angle of incidence.

Section 6.1.2 briefly recalls properties of elastic and inelastic diffraction in GIFAD and
simple models developed to retrieve physical properties of the system such as the shape of
the electronic density profile, the depth of the attractive well, the surface stiffness, and the
thermal movement of surface atoms. The model is adapted to take into account the role of the
attractive part of the mean planar interaction potential, drastically improving the agreement
with the experiment. Sec. 6.1.3 addresses the gaps in the model, trying to draw perspectives
for future work.

6.1.1 The Polar Profiles

The raw diffraction images, such as the one in Fig. 6.1 and Fig. 6.3 show bright spots having
a similar dimension to the primary atom beam and located on a circle. The z direction is
normal to the surface plane in these figures. The x,y directions on the surface plane are
defined as parallel and perpendicular to the low index direction probed, respectively, see
Fig. 1.3. Away from the Laue circle, clear signs of inelastic diffraction remain visible in the
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Figure 6.2 a) quasi polar transform of the raw diffraction image in panel d). The panel b)
corresponds to a full projection onto the vertical axis producing the polar scattering profile, it
is fitted by a sum of a narrow Gaussian and a broad log-normal profile. The panel c) is the
intensity in a narrow horizontal band centered on the specular reflection[72].

form of vertical stripes extending on both sides as in Fig. 6.2a), or preferentially upward
or downward as in Fig. 6.3a) and Fig. 6.3d). The intensity integrated along the y direction
produces the polar scattering profiles in Fig. 6.2b) and Fig. 6.3b), where the diffraction
features have disappeared. These polar scattering profiles visible in Fig. 6.2b) and Fig. 6.3b)
are well-fitted by the sum of a narrow Gaussian profile, a priori identical to those visible
in Fig. 6.2c) and Fig. 6.3c) on top of the broader log-normal distribution. This log-normal
profile (6.1) was empirically adopted as a data-reduction procedure [155] because it was
found to reproduce the asymmetry of the scattering profile in the classical scattering regime
[34, 65] when diffraction was not considered. It was also observed in quantum Monte Carlo
[107] or semi-classical [172] and classical [34] scattering approaches or inelastic diffraction.
For small values of w ≤ 0.1 as measured here, σ2

ine ≈ w2θ 2
m, so that w is simply the relative

width w ≈ σine/θm where θm is the median value very close to the specular scattering angle
θs = 2θin.
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Figure 6.3 a) For 300 eV He impinging on Lif at 1.45◦ quasi polar transform of the raw
diffraction image in panel d). The panel b) corresponds to a full projection onto the vertical
axis producing the polar scattering profile. It is fitted by a sum of a narrow Gaussian and a
broad log-normal profile. The panel c) corresponds to the intensity in a narrow horizontal
band centered on the specular reflection. Same as Fig. 6.1 with identical scales but with
an angle of incidence θi= 1.45◦ corresponding to an energy E⊥ = 192 meV. Panel d) now
displays the polar scattering profile associated with the m=±1 and m=±2 diffraction orders
showing an inelastic component pointing mainly towards low ( ) or large ( ) scattering angles,
respectively. From ref.[72].

LN[θm;w](θ) =
A

wθ
√

2π
exp

−
(

ln θ

θm

)2

2w2


with a variance σ

2
ine = ew2

(ew2
−1)θ 2

m

and reversely w =

ln
1+
√

1+4σ2
ine/θ 2

m

2

1/2

(6.1)

Figure 6.4 shows three almost identical polar scattering profiles recorded at the same inci-
dence angle but along three different crystal orientations. This suggests that, for E⊥ <1 eV
where the distance to the surface is probably more than 2 Å, the magnitude of the momen-



6.1 GIFAD Polar Inelastic Profiles 95

1 . 5 2 . 0 2 . 5 3 . 0 3 . 5

Int
en

sity
 (a

rb.
 un

its)

P o l a r  s c a t t e r i n g  a n g l e  ( θi n + θo u t )  i n  d e g .

 [ 1 1 0 ]
 [ 1 0 0 ]
 R n d

[ 1 1 0 ]

[ 1 0 0 ]

R n d

a )

b )

c )

5 0 0 e V  h e l i u m  o n  L i F ( 0 0 1 )  a t  1 8 0 K
θi n  =  1 . 4 °
E ⊥ = 3 0 0  m e V

Figure 6.4 (a-c) Raw diffraction images of 500 eV helium incident at 1.4◦ on LiF at 180 K
oriented along the [110], [100] and random direction respectively [72]. The resulting polar
scattering profiles are almost identical, showing a narrow elastic peak at θout = θin on top of
a quasi-log-normal inelastic profile having a relative width w = σθ/θ ≈ 0.042±0.002.

tum exchanged along z is not very sensitive to the exact crystallographic direction as also
suggested in Ref. [75] when investigating the azimuthal line profile of inelastic diffraction
peaks.

Four independent pieces of information can be extracted from the analysis of these polar
scattering distributions as a sum of gaussian and log-normal profiles:

• (1) The intensity ratio of these profiles.

• (2) The elastic scattering width σe of the Gaussian profile.

• (3) The inelastic scattering width w of the log-normal inelastic profile (or its std
deviation σine).

• (4) The shift δθ = θm −θs between the inelastic and elastic polar profiles.

These four items are first presented separately, and will be discussed together after a few
theoretical considerations.
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The elastic diffraction ratio

The ratio of elastic scattering is considered to be a direct measure of the Debye-Waller factor
describing the overall coherence when the projectile wave is scattered by a single impact, e.g.
X-ray, neutron, and atoms at thermal energies (TEAS, see e.g.[14] for a review) on thermally
displaced surface atoms at a temperature T: I(T )/I0 = e−2W (T ) with 2W (T ) = ⟨(⃗u · ∆⃗k)2⟩T

where u⃗ describe the displacement vector of surface atoms (see Sec. 5.6).
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Figure 6.5 The DWF, measured as the relative intensity of elastic diffraction of He projectiles
on LiF during an Escan ( ) or a θscan ( ) are reported as a function of E0θ , E0θ 2 and E0θ 3.
The log scale underlines the exponential decay whatever the abscissa. From ref.[182].

Reversely, this reduced decoherence allows large values of E⊥, up to one eV for He, where
attraction forces play a negligible role and where, due to small wavelength, the topological
accuracy can be in the pm range [127, 16].

The measured DWF decays exponentially both with increased collision energy and with
increased angle of incidence. However, when plotted as a function of Eθ 3, the data recorded
during an Escan or a θscan tend to fall on top of each other as illustrated in Fig. 6.5. this is
fully consistent with the formula 5.16with the classical energy loss ∆ECl . Figure 6.6 displays
the DWF measured with helium and Ne projectiles in various initial conditions as a function
of Eθ 3. In spite of a significant scattering of the experimental points, partly due to different
samples, a dominant exponential decay is observed. The corresponding prefactor and a decay
rate are indicated in Fig. 6.6 and will be discussed later.
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Figure 6.6 The DWF, measured as the relative intensity of elastic diffraction, is reported
for He and Ne projectiles on LiF along various orientations as a function of Eθ 3. The ( , )
symbols were recorded on the same surface and the associated dashed lines are only to guide
the eye, outlining the effect of the projectile mass on the decay constant. The (△) symbols
correspond to a different target suggesting a possible influence of the surface coherence
length (defect density). The simulations are described in the discussion. From Ref.[182].

The elastic scattering width.

The polar profile is well-fitted by the sum of a Gaussian distribution width σe, identical to
that of the primary beam, and a log-normal profile width wLN . However, when the elastic
ratio is less than a few percent, the elastic contribution is not resolved. We usually impose
the elastic width used in the fit to be the same as that of the primary beam. It should be
stated that sometimes, the direct beam, which is systematically recorded before or after target
insertion, is better fitted by a non-Gaussian profile. In these cases, the same profile is used in
the fitting de-convolution. In some cases, with our best angular resolution, there could be
indications of a slight broadening at the base of the elastic peak as compared with the shape
of the direct beam, but the effect could also be due to the deformation of the inelastic profile
that would be poorly described by a log-normal profile. This aspect is not important here and
will not be discussed further.
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Figure 6.7 The log-normal width w ≈ σθ/θscat of the inelastic scattering polar profile is
reported as a function of the perpendicular energy E⊥, for helium ( ) and neon ( ) atoms
impinging on LiF under various conditions indicated in insets. From ref.[72].

The inelastic scattering width w of the log-normal inelastic profile.

Figure 6.7 reports the evolution of the relative width of the polar profile measured with
neon and helium projectile under various conditions of energy and angle on a LiF surface at
room temperature. The data indicate that the polar relative width is not too sensitive to the
crystallographic axis. When plotted as a function of the perpendicular energy E⊥, the data
reasonably align with each other irrespective of major differences in the Debye-Waller factor
and of the absolute magnitude of the measured standard deviation σθ . The observed width
seems to level at a fixed value for perpendicular energies larger than 100 meV and to increase
significantly below. The data recorded with helium and neon appear rather similar, with a
slightly different plateau value at large values of E⊥. This rapid increase of the relative width
starting at energies E⊥ much larger than the well-depth D is at the heart of the present chapter
suggesting a new experimental approach to estimate the well-depth D from purely inelastic
scattering profiles. This behavior was first identified in a recent paper devoted mainly to the
elastic diffraction of neon atoms on a LiF surface [67] where a calculated [128] potential
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energy landscape could be optimized to data. Starting from these results, a model analysis is
developed in Sec. 6.1.2 on a more general basis of Morse potentials. For helium, we use for
the mean planar potential a well-depth D = 8.5 meV from TEAS spin-echo measurement,
[183] while for neon, we took the value of D = 10.3 meV derived in Ref.[67] slightly below
the recommended value in Ref.[184].

The angular shift δθ between the elastic and inelastic polar profiles.
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Figure 6.8 The relative shift between the peak position of the elastic peak and the median
value of the inelastic profile, as modeled in Fig. 6.2 is reported for helium and neon projectiles.
From ref.[72].

The fitting procedure illustrated in Fig. 6.2 and Fig. 6.3 was first developed with a constraint
forcing a common value for the center of the elastic and inelastic scattering profiles. The
reduced number of free parameters was expected to ensure better stability. However, we
rapidly identified situations where the fit is much better with an inelastic scattering profile
located at slightly larger angles: θine = θs+δθ , with θs the specular angle and δθ ≥ 0. Figure
6.8 indicates that this shift increases rapidly below 100 meV. The shift is arbitrarily plotted
relative to the elastic scattering angle, the absolute deviation is comparatively small. For
instance, the shift does not exactly reach zero at large values of E⊥ obtained around 1-2
◦ incidence, the value of 1-2% corresponds to only 0.004 ◦, which could be affected by
our angular resolution [16]. More relevant probably, as can be seen in Fig. 6.3, the fit
is not perfect, leaving a clear residue in the rising and trailing edges indicating possible
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contributions from defects, and/or from the fact that the log-normal profile used here in the
deconvolution is only an approximation as will be discussed in Secs. 6.1.1 and 6.1.3. Figures
6.7 and 6.8 display the evolution of the inelastic scattering width σθ and shift δθ relative to
the specular angle θe = 2θi, both have a comparable behavior.

Summarizing the experimental findings:

• The inelastic polar profile hardly depends on the crystallographic direction investigated
(Fig. 6.4).

• The Debye-Waller factor depends primarily on the reduced variable Eθ 3 (see Fig. 6.5).

• The relative inelastic width σθ/θs, as measured by w in Eq. 6.1 in a log-normal fit,
depends mainly on the perpendicular energy E⊥. It appears stable above 100 meV but
increases rapidly below (see Fig. 6.7).

• The median position of the inelastic scattering polar scattering profile tends to become
significantly over-specular at low values of E⊥ (see Fig. 6.8).

We now rapidly present a model developed to describe the inelastic scattering profiles in fast
atom scattering at grazing incidence.

6.1.2 Inelastic diffraction, the surface stiffness Γ

Aside from the probability (DWF), let us focus on a fundamental difference of the inelastic
collision in TEAS and GIFAD. During a head-on collision at hyper-thermal energy, all
the projectile momentum is reversed independently from the surface atom protruding or
recessing from the mean surface plane. At variance, under grazing incidence, the distance
of closest approach, and therefore the magnitude of the momentum transfer will be directly
(exponentially) affected by this departure from equilibrium. At grazing incidence, the
binary collision approximation where the overall momentum transfer is decomposed in
terms of successive binary collisions with the closest surface atoms is still relevant due
to the exponential character of the repulsive forces [71]. The momentum transfer can be
evaluated from a straight line approximation [119] with a projectile flying at a distance
zt above the surface and, for a purely repulsive binary potential such as V (z) ∝ e−Γz, the
scattering angle also depends exponentially on the closest distance between the projectile and
the surface atom. As a result of a surface atom protruding or receding by ±dz is scattered
at angles θ± ∝ e−Γ(zt±dz). Considering dz = σz(T ) as the standard deviation of Gaussian
atomic displacement defined above, the scattering distribution due to this single collision is a
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log-normal distribution where the specular angle corresponding to the equilibrium position is
the median value while the relative width is w = Γσz(T ) [74, 71].

Both He and Ne have much larger binding energy than LiF so that most of the energy
variation when approaching the surface should be related to the deformation of the Fluorine
atoms. He and Ne are therefore expected to have a similar decay rate of the mean planar
potential, and only the absolute magnitude of the repulsive term should be larger for neon
which has more outer electrons.

Since the valence band is located on F− ions, the Li+ play a limited role in the momentum
transfer associated to diffraction, as confirmed by trajectory simulations [105].

Note that the simple relation w = Γσz holds only for a single scattering event. The overall
elastic scattering probability is the product of all the individual elastic probabilities but
the overall inelastic scattering profile, depends on how many individual inelastic events
contribute to the polar inelastic profile.

The attractive forces, the effective stiffness Γeff
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Figure 6.9 The mean interaction potential for Ne-LiF from Ref.[67] is reported in the insert
together with the fitted Morse potential. The logarithmic derivative Γeff =−V ′(z)/(V (z)+D)
is expressed as a function of the energy E⊥ (see text). From ref.[72].
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The main properties of the QBCM described above derive from the exponential form of the
repulsive part of the interaction and could remain valid after adding a weak attractive part.
These are the polarisation forces due to the Madelung electric field of the LiF surface which
should also exhibit exponential decay with a typical range on the order of the lattice unit
and the van der Waals forces which should have a polynomial form (see e.g. ref[146] for a
recent discussion in noble gas dimers). The resulting physisorption well can host bound state
resonances whose exact locations are sensitive to both sides of the trapping well. These can
be observed in GIFAD [185] but the TEAS has demonstrated exceptional resolution [183]
(or [186] for a recent review), providing a challenging description of the attractive part.

Here, the width of the polar profile originates from the part of the trajectory close to the
surface and is expected to be sensitive mainly to the shape of the repulsive wall. We decided
to use an exponential form also for the attractive part because of its simple form and analytic
properties. It can also be justified by the fact that part of the attractive forces are due to the
polarisation of the projectile in the Madelung field of the ionic crystal surface. This latter
is known to decrease exponentially with a range close to the lattice constant. We choose a
Morse potential of the form.

VM(z) = De−Γ(z−z0)−2De−(Γ/2)(z−z0) (6.2)

Where the attractive part has a decay range twice larger than the repulsive one. Compared with
the pure repulsive potential where only Γ was found important, two additional parameters are
needed: the well-depth D and the equilibrium distance z0. Using Eq. 6.2, the turning point zt

when an atom of energy E⊥ =VM(zt) bounces back from the surface is given by

zt = z0 −
2
Γ

ln

(
1+

√
1+

E⊥
D

)
(6.3)

The parameters Γ=3.46 Å−1, D=10.3 meV, and z0=3.13 Å have been fitted to the ab initio
potential energy landscape calculated in Ref.[128] and optimized to elastic diffraction data
with a fast quantum scattering code for the Ne-LiF system for E⊥ ranging between 20 and
200 meV [67]. Both the empirically adjusted mean planar potential and the Morse potential
used hereafter are displayed in the inset of Fig. 6.9. They look very similar as we have
imposed equal depth and equilibrium distance as well as the value of Γ, note that this value
is very close to the one derived from the asymptotic behavior attached to the workfunction
W ≃ 13 eV [64], Γ ∼ 2

√
2W = 3,7 Å

−1
.
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Rather than a direct evaluation of the momentum transfer along the projectile trajectory,
we compare in Fig. 6.10 neon data recorded during an Escan with prediction using the
QBCM and the Morse potential. We first recall that for an Escan and a purely repulsive
potential, the classical limit of Eq. 5.19 predicts a constant value of the log-normal width
w, as illustrated by the horizontal dotted line in Fig. 6.10 corresponding to neon atoms at
θin=0.42 ◦ [67]. To better illustrate the role of the attractive forces we have tried to evaluate
its contributions to three separated parts of the atom trajectory, i) the way in of the trajectory,
ii) the comparatively closer collisions with surface atoms, and iii) the way out.

0 5 0 1 0 0 1 5 0
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5
   N e  o n  L i F  [ 1 1 0 ]
   C l a s s i c a l  l i m i t  E q .  ( 5 . 2 0 a )

    Γ  ( n o  a t t r a c t i o n )
i )   Γ   +  B e e b y
i i )  Γe f f +  B e e b y
i i i ) Γe f f + B e e b y  + r e f r a c t .

log
-no

rm
al 

wid
th 

w~
σ θ

/θ

E ⊥  ( m e V )

   N e  o n  L i F  [ 1 1 0 ]
 E s c a n  a t  0 . 4 2 °
 θ s c a n  a t  5 0 0  e V

Q B C M  E q . ( 5 . 2 0 b )

Figure 6.10 The log-normal relative width w≈σθ/θscat of the inelastic scattering polar profile
is reported for conditions indicated on the left inset. To outline the different contributions,
incomplete models are presented and discussed in the text, the QBCM model in Eq. 5.20

. From ref.[72].

• (i) The modification of the perpendicular energy before the impact on the surface
(∞ > z ≥ z0).

This correction corresponds to the well-known Beeby correction factor [174] widely used in
TEAS [187]. It considers that the attractive part of the mean planar potential has the effect
of changing the effective perpendicular kinetic energy before the projectile evolution on the
repulsive wall. The Beeby correction considers that elastic diffraction probability can be
evaluated as that of a particle with an effective energy E ′

⊥ = E⊥+D.



104 Experimental Results: Polar Inelastic Profiles in Fast Atom diffraction at Surfaces

For grazing incidences, the situation is similar to the image charge acceleration increasing
the impact energy of ions before impact on a surface, [188, 25] and it is usually modeled

as an effective angle of incidence θeff =
√

θ 2
i +D/E providing the same impact energy

E⊥+D. The polar straggling σθ = w×θeff acquired at impact should be preserved so that
the relative width is now w′ ≈ w× θeff/θi. The corresponding dashed line in Fig. 6.10
indicates a moderate increase of w at low values of E⊥ but only for values of E⊥ close to
D. The value of σz = 0.098 Å considered here for data recorded at 300 K, is taken from
ab initio extensive calculations [127, 172] of the LiF crystal and corresponds to a Debye
temperature TD=550 K at the surface, very close to the recommended value derived from
TEAS measurements [168].

• (ii) The modification of the stiffness of the surface at the moment of impact (z < z0).

We now take into account that the actual stiffness at the moment of impact is not Γ that of
the sole repulsive term of the potential but the logarithmic derivative −V ′/V of the actual
potential combining repulsive and attractive part at the turning point in eq. 6.3. More
precisely, taking into account the above Beeby correction that the effective energy is E⊥+D,
the effective stiffness is defined as Γeff =−V ′/(E⊥+D) which remains well-defined even for
low values of E⊥. Using the Morse potential VM(z) from Eq. 6.2 as a mean planar potential,
the effective stiffness of the repulsive wall is given by (A detailed derivation in Appendix A)

Γeff(z) = Γ

[
1+
(

1+
E⊥
D

)−1/2
]

(6.4)

The figure 6.9 reports the evolution of the effective stiffness with the energy E⊥ and shows
an increase that is maximum at low values but remains significant above 100 meV. The
dashed-dot line in Fig. 6.10 now shows a sharp increase of w also starting at perpendicular
energies around 100 meV.

• (iii) The refraction of the atoms inelastically scattered when leaving the surface (z0 ≤
z < ∞)

This last contribution is the reverse transformation of i). When climbing the attractive branch
of the mean planar potential, the particles scattered from the surface at an angle θemi will give

back the energy D along the z direction so that the observation angle is θobs =
√

θ 2
emi −D/E.

The median value θemi of the log-normal scattering profile is restored at the specular angle.
However, the associated Jacobian J = dθobs/dθemi induces a nonlinear stretching of the
log-normal distribution at low scattering angles. The effect on the scattering profile was
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estimated by fitting the resulting scattering profile by a log-normal distribution to produce a
relative width w and correspond to the full line in Fig. 6.10.

The sharp increase is qualitatively well reproduced a dominant contribution coming from
the account of Γeff in Eq. 6.4. The agreement with the observation seems better for the
classical limit, as if a single inelastic collision (among N) is enough to induce a fully classical
behavior. This quantitative agreement should not be overestimated because, as discussed
below, a proper account of phonons can probably affect the absolute magnitude. However,
we consider that the influence of the well-depth D on the effective stiffness Γeff is a very
robust effect that has to be taken into account to estimate the polar width. It is the main
finding of the present paper. Note that in TEAS, using diffracted intensities recorded between
17 and 270 meV on a Ni(110) surface, a mean potential energy curve could be extracted,
indicating a similar twofold increase of the surface stiffness at low energy [189].

The consequence of the well depth D on the Debye-Waller factor is less quantitative. Taking
into account the attractive terms, the DWF in Eq. 5.16 can be written using the classical
energy loss of Eq. 5.17 but evaluated with the effective stiffness Γeff and effective angle of
incidence θeff defined above. The result reported in Fig. 6.6 as full lines in light blue or
orange indicates that neither the offset nor the slope is well reproduced and the improvement
compared with the purely repulsive form is only marginal. This is quite different from TEAS
where the Beeby correction is widely used to adapt the Debye-Waller factor to measurements
[174, 190]. In particular, it is responsible for a significant offset at very low impact energy. In
GIFAD, changing θ to θeff increases the impact energy but the angle remains grazing so that
the momentum is still shared among several surface atoms with a limited consequence on the
Debye-Waller factor. The situation is even worse concerning the angular shift in Fig. 6.8,
the asymmetric stretching of the polar profile on the way out produces a shift that is much
less than the one observed and tended to decrease the mean inelastic polar profile. These
discrepancies are discussed in the next section.

6.1.3 Discussion

The similarities between Fig. 6.7 and Fig. 6.8 suggest that a common origin could explain
both behaviors but our simulations do not confirm this. A possible explanation could be
related to the reduction of the surface reflectivity at the most grazing incidences. One
important aspect of grazing angle collision is the sensitivity to the presence of obstacles such
as ad-atoms or step edges etc... These are becoming increasingly important as the angle
of incidence is decreased, and their influence can be measured by the reflectivity, the ratio
of reflected particles intensity related to that of the primary beam before target insertion.
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Below 1 ◦ of incidence, this reflectivity becomes challenging to measure because, even with
a beam diameter φ below 100 µm, the length of the zone illuminated ∼ φ/θin becomes
larger than the typically crystal dimension around 10 mm. However, this restriction alone
does not explain that the surface quality usually limits the lowest possible incidence. We
observed optimum reflectivity with large wafers and freshly grown layers of semi-conductor
directly measured inside the molecular beam epitaxy chamber [10]. It was then possible to
measure the influence of incomplete layers on the inelastic scattering angle during growth
[126]. In the present case, even with freshly cleaved LiF surfaces (see sec.,2.7) the observed
reflectivity usually drops drastically below a few percent for incidence angles below 0.3◦.
This dependency may be of limited importance for elastic diffraction, which is spot-like and
cannot be deformed, but the inelastic scattering profile is probably affected since particles
scattered under-specular have fewer chances to reach the detector without encountering an
obstacle. The tendency of over-specular reflection observed in Fig. 6.8 could reflect the
reduced probability for particles scattered under-specular to reach the detector. The effect
would probably reduce the measured inelastic intensity and its width at the lowest incidences.
Therefore, it would also affect the Debye-Waller factor but probably only by a few percent,
as suggested by the effect on the mean position of the inelastic polar profile.

The disagreement between the measured and predicted Debye-Waller factor probably indi-
cates a lack in the model. A major weakness of the QBCM is that surface vibrations are
treated only through the local Debye oscillator, thus neglecting the phonons mode, which
are the genuine eigenstates of vibrations at surfaces. Only a few authors have developed
approaches where phonons are explicit, most are adapted to TEAS [191, 192, 177, 193] but
also to grazing incidences [180, 181].

In GIFAD, the successive momentum transfer to the surface atoms occurs in a timescale
τ = 1/(Γv⊥) with v⊥ =

√
2E⊥/mp much shorter than the vibration time. So that momentum

transfer along the N successive collisions of the trajectory should be coherent, exciting
preferentially transverse phonons having a wavelength close to N · a ∼ 6/(Γθ). Since
the interaction with Fluorine ions dominates, the vector of exchanged momentum should
decompose with almost equal weight to acoustic and optical surface phonons, the former
having associated low energy while the second should have flat dispersion curves with
an energy close to the high-frequency limit of the Debye oscillator considered here. The
model described above does not take phonons into account. The easiest way to improve the
agreement with data is to reduce the Debye temperature to 310 K (which also provided a
better qualitative agreement in Ref.[71]). The associated prediction of the DWF is depicted
by dotted lines in Fig. 6.6 and is much closer to the experimental data with slopes that now
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compare to the measured ones. This low value of the Debye temperature is probably not
a good description of the amplitude of the thermal displacement but should be considered
as an indication that low energy phonons can contribute to GIFAD [180] and suggested in
Fig.6.11. This part has not been developed so far and deserves deeper investigations.
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Figure 6.11 Assuming that only the Fluorine atoms interact with the projectile, the momentum
transfer curve could be decomposed into an equal weight into optical and acoustic phonons.
The former should have a flat dispersion curve with E ∼h̄ωD while the second should belong
to a low energy linear dispersion curve E ∝ k. The typical length L of the trajectory should
indicate the wavelength of the modes.

6.1.4 Conclusion

We have presented measurements of the polar scattering profile of fast helium and neon atoms
with energies ranging from 0.2 keV to 5 keV diffracted at the surface of a LiF single crystal
under grazing incidence. These profiles were found to be independent on the crystallographic
axis probed by the primary atomic beam. The fit of the inelastic profile by a log-normal
function provides an estimate of the DWF which is found to depend on Eθ 3

in, a quantity
proportional to the classical energy loss in Eq. 5.17 as suggested in [176, 74, 71]. The
relative width w derived from the log-normal fit is found to depend primarily on the energy
E⊥ ∼ Eθ 2

in i.e., for a given system projectile-surface, on the distance of closest approach.
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This is consistent with eq.7.3 and E-scan. Our result do not show evidence of the quantum
regime where only one collision could be inelastic, it seems that either all collision are
inelastic either none of them. It does not affect the elastic or inelastic probability but it does
affect the predicted angular profiles. In this respect, the QBCM becomes identical to the
model proposed by Manson et al.[74] The value of w is found stable for larger than 100
meV but increases rapidly below. Both He and Ne projectiles display comparable values and
similar behavior. Using a Morse potential fitted to a potential energy landscape previously
adjusted to elastic diffraction data and a binary collision model together with a well-accepted
value of the Debye temperature, the sharp increase of w is well reproduced and the analysis
suggests a dominant role of the effective stiffness −V ′/(E⊥+D) at the distance of closest
approach.

To our knowledge, this rather simple effect was not documented so far, but a quick look
at the inset of Fig. 6.9 indicates that the mean planar potential is seriously affected by the
attractive forces. The repulsive wall is brought significantly closer to the surface. It has to
grow at a faster rate to merge with the high energy values (low z) where the attraction is
usually neglected. Our work suggests that under grazing incidence specific phonon mode
may participate to the inelastic scattering which takes place on a relatively long distance
L ∼ 6/(Γθ) (typically around ∼ 100 Å for θ=1 ◦) and where all surface atoms receive a
momentum coherently oriented towards the bulk.

To first order, elastic diffraction is qualitatively well described by a hard corrugated wall
model where the surface is modeled as an infinitely hard surface. We show here that its
counterpart, the inelastic polar profile, is mainly sensitive to the stiffness Γeff of the hard
wall and that this later is very sensitive to the attractive forces. The method can probably be
applied to estimate the physisorption well-depth for heavier elements where the diffraction
features are more difficult to obtain, and attractive forces can be more significant.



Chapter 7

Experimental Results: Temperature
Dependence in Fast-atom Diffraction at
Surfaces

The present chapter corresponds to a publication by Peng Pan, Maxime Debiossac, and
Philippe Roncin, Accepted to Physical Chemistry Chemical Physics[182].

7.1 Introduction

Compared with thermal energies atom diffraction (TEAS), one of the distinct features of
GIFAD is its ability to operate at elevated temperatures (e.g. Fig. 7.1 taken from [10]). The
surface temperature is a decisive parameter in controlling the growth conditions in Molecular
Beam Epitaxy (MBE). A delicate balance between the supply of material to the surface, its
mobility, and the surface structure are to be found. Surprisingly, to our knowledge, there is no
extensive experimental study published. In principle, a temperature scan (T-scan) is one of the
easiest measurements. There is no change of the beam or target positioning parameter, and
one simply increases the current of the heating coil. This is much more complex in practice
because the thermal effect and mechanical deformations strongly affect both the exact target
position and direction. This chapter describes the experimental approach to circumvent this
difficulty. It presents experimental investigations on temperature dependence under a wide
variety of experimental conditions of energy, angle of incidence, and temperatures.
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Taken from [3]
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from Ref.[3]

Figure 7.1 Recall the schematic GIFAD setup illustrating the interest in Molecular Beam
Epitaxy (MBE). The diffraction image of a β2(2×4) reconstructed GaAs(001) surface at
850 K was recorded inside a MBE vessel at Institut des Nanosciences de Paris (INSP)[11].

7.2 Experimental procedure

First, Fig.7.2 insists on the importance of the temperature effects. It shows three diffraction
images recorded almost under identical conditions but at three different temperatures. The
temperature increase triggers a transition from a spotty pattern where elastic diffraction
dominates to a stripy pattern and then to a comparatively broad diffraction pattern where
adjacent peaks start to overlap.

In GIFAD, the target surface is easily positioned within 10 to 20 µm from the beam. If it
is not enough inserted, the primary beam is still present on the image, whereas if it is too
much inserted, even the scattered beam disappears. However, thermal expansion of the target
crystal and of the manipulator induce much larger displacements as well as minor angular
tilts producing major effects in GIFAD (see e.g. the θ 3 dependence of the DWF displayed
in Fig.6.5). For this reason, we were not able to record the three images displayed in Fig.
7.2 one after each other. Instead, we waited for a stable temperature before realigning the
target and performing a θ -scan. From these variations, we interpolate between measured
angular values to restore a temperature variation. Our target surface temperature is measured
with a type-N thermocouple mechanically pressed on the backside of the Omicron-type
sample plate. We have check consistency between different measuring devices by putting the
thermocouples in liquid nitrogen and in an oven. The estimated accuracy is around a few K.
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Figure 7.2 Three diffraction images recorded with 500 eV helium impinging with θin=0.75 ◦.
on LiF [100] direction at temperatures of 177 K a), 687 K b), and 1017 K c). The images are
normalized to the maximum intensity Imax corresponding here to the elastic specular spot.
The rainbow color palettes are identical with a threshold value of 3% of Imax. From ref.[182].

On Fig. 7.3 a) the intensity distribution recorded on the Laue line is displayed in log scale
for the three images of Fig.7.2. Within experimental uncertainty due to slightly different
beam conditions, the narrow elastic peaks do not change shape but the inelastic contribution
increases both in intensity and in width as outlined by the full-color lines suggesting an
exponential decay of the inelastic component with the lateral deflection from the elastic
position. More precisely, in this example, the extrapolated inelastic intensity increases
quasilinearly with the temperature while the exponential delay constant decreases. The broad
inelastic profile is also clearly identified with a relative height and a width growing with
temperature so that the relative elastic intensity decay rapidly. At this stage, it is useful
to compare with the first investigation of the temperature dependence performed when
elastic diffraction was not yet demonstrated and where all peak shapes seemed to depend on
temperature [9, 100, 10], probably because of a limited surface coherence. In this context,
the Debye-Waller factor was tentatively attributed to the ratio of the narrow peak relative
to the total intensity observed on the Laue circle [176, 194, 195], similar to the one that
could be derived from Fig. 7.3 a) rather than from Fig. 7.3 b). This point of view, which is
meaningful to analyze the elastic diffraction intensities, obviously underestimates the overall
inelastic intensity and strongly depends on the primary beam profile.

Theoretically, a wave packet approach perturbed by random kicks to the wave function[107]
to mimic thermal displacement was able to reproduce qualitatively a full inelastic diffraction
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Figure 7.3 For the three images in Fig6.2. Panel a): lateral profiles on the Laue circle, the
lines are here to outline the exponential decay of the peak tail. Panel b): polar scattering
profiles as defined in previous chapters, for instance in Fig.6.3 or Fig.7.4. From ref.[182].

image but without any elastic signature. In addition, the statistic of these kicks and their am-
plitude was somewhat arbitrary, and no elastic diffraction was predicted hence the conclusion
and title are partly incorrect. A similar problem is present in the semi-classical approaches
of Gravielle and Frisco [181, 172], they could predict a broadening of the (inelastic) polar
profile with temperature but using an elastic model while the elastic profile is absent. This
outlines the difficulties of addressing together elastic and inelastic effects in GIFAD. As
detailed in the previous chapter (eq.5.13), the DWF proposed[176, 74, 71] for GIFAD writes:

DWF = exp
(
−3∆ECl

ℏωD
coth

TD

2T

)
, ∆ECl =

2 mp

3 m
ΓaEθ

3
i ≡ NEr (7.1)

For the He-LiF system, the product Γa is close to 14 [67, 72] so that N ≈ 2/θ can be
large explaining why elastic diffraction could be observed with E⊥ close to one eV [18, 16]
whereas TEAS is usually limited below 100 meV. Alternately, with this reduced decoherence,
GIFAD can explore the higher temperatures needed for MBE.

In the previous chapter, this naive, purely repulsive description was improved by taking
into account an attractive part of the potential, for instance, van der Waals contributions
[174, 121, 196], responsible for the physisorption well of depth D. In elastic diffraction,
the effect of such attraction is the presence of bound-state resonances [109, 185] and the
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increase of the rainbow angle at low energy [67]. These are naturally accounted for using
a quantum approach [185, 67] or modeled in a semi-classical [149] or optical method
such as the hard corrugated wall by the Beeby correction, indicating that the effective
impact energy E⊥ increases to E⊥+D [174, 197, 141] or considering a modified angle of

incidence θeff =
√

θ 2
in +D/E. The Beeby correction also significantly decreases the DWF in

TEAS [198]. In GIFAD, we also found that the mere presence of a tiny well significantly
modifies the stiffness of the potential by bringing the turning point much closer to the
surface plane [72]. This can be expressed quantitatively using a Morse potential(Sec. 4.6.1)
VM(z) = D(e−Γ(z−z0)−2e−Γ/2(z−z0)) and looking for the turning point zt where VM(zt) = E⊥
the effective stiffness is :

Γeff(E⊥) = Γ

[
1+
(

1+
E⊥
D

)−1/2
]

(7.2)
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Figure 7.4 same figure as Fig.6.4 recalling that the polar profiles recorded along with the
a)[110], b)[100], and c)random direction are identical. From ref.[72].

This increased stiffness was already identified in TEAS, [189] but it has much less conse-
quence since at normal incidence the projectile hits a single surface atom, only the time scale
τ ≈ Γ/v⊥ depends on Γ not the magnitude of the exchanged momentum 2q and therefore
not the coherence ratio. It is the reverse in grazing scattering, for identical values of E⊥
the time scale τ for bouncing from the surface are identical in TEAS or GIFAD, but the
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time needed for a single quasi binary collision is now τ ′ ≈ v///a = τ/N independent on Γeff,
while its magnitude ≈ 2q/N depends directly on the effective stiffness Γeff. In summary,
for GIFAD, the stiffness Γeff governs the momentum transferred in each collision, a stiffer
interaction potential needs fewer collisions for specular reflection and each of them becomes
more violent leading to an overall reduction of the DWF.

At the atomic level, the temperature is modeled by the spatial extend of a surface atom of mass
m, which, in a Debye harmonic model is a Gaussian profile with σ2

z (T ) =
3ℏ

2mω
coth TD

2T ∼
3ℏ

2mω

2T
TD

, where TD is the Debye temperature such that ℏω = kBTD with kB the Boltzmann
constant.
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Figure 7.5 The relative intensities of ( )m = 0, ( )m =±1 and (△)m =±2 recorded in three
θ -scan performed at temperatures of 177 K, 687 K, 1017 K, fall on top of each other, Im
predict by Eq. 4.4. From ref.[182].

7.3 Results

We concentrate here on the impact of the thermal movement of surface atoms on the inelastic
diffraction and its relative intensity but the temperature also affects the elastic diffraction
via the thermal expansion of the crystal. Measuring the thermal expansion coefficient is
simply tracking the evolution of the Bragg angle with temperature. In practice, the Bragg
angle of 500 eV helium on LiF [100] is only 0.1826 ◦ at room temperature, and even with a
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0.005 ◦ resolution, the native accuracy is only a few percent. A fit if Fig. 6.2c) can provide
an accuracy ten to a hundred times better depending on the statistics. Keeping this relative
accuracy during successive images requires complex procedures to ensure that the position
illuminated by the beam stays fixed, and that all angles are measured with the same accuracy.
We observe a variation of the reciprocal lattice vector with temperature compatible with
previous measurements but less precise than the one measured in TEAS [199]. Along the
[100] direction (Fig. 7.2 and 7.3), we have checked that the relative diffracted intensities,
needed to extract the structure factor, do not depend significantly on the temperature. Fig.
7.5 reports the intensities recorded during three θ -scan at three different temperatures.

7.3.1 DWF: Sample quality issues

 Γ   = C s t .
 Γe f f = E q . ( 7 . 2 )
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Figure 7.6 Energy dependence of the DWF from 3 samples at room temperature Tr = 300K,
measured as the relative intensity of elastic diffraction, is reported for He atoms on LiF
along random orientations as a function of Eθ 3, the tendency indicates 2W ∝ Eθ 3 at a fixed
temperature. The dotted lines fit the data and provide the decay rate, which is proportional to
temperature, 2W ∝ T. From ref.[182].

All our samples have been prepared by cleaving at air LiF crystals previously irradiated by
γ rays [55]. However, the Debye-Waller factor (see Sec. 5.6 seems to vary from sample
to sample and may also depend on the actual spot investigated. We also observed a slow
degradation of the diffraction images with time, even at a few 1010 mbar pressure. We try
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to perform a complete set of experiments within a day or two but, for instance, cooling to
a low temperature usually takes a whole day. When taking a sample left in a vacuum for a
few weeks, the measured DWF is systematically lower, even after a short thermal treatment.
This is illustrated in Fig. 7.6 where three sets of data recorded on the different samples are
reported. In spite of a scattering of data points in each set, the measured DWF are different.

7.3.2 DWF: Energy dependence
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Figure 7.7 Results from sample A. (a) Energy dependence of the DWF at temperature Ti. (b)
Temperature dependence of the DWF, the data interpolated from (a) at Eθ 3 from 1 to 6 meV.
(c) Energy dependence of the inelastic scattering width w of the log-normal inelastic profile.
(d) Temperature dependence of the inelastic scattering width w, which is the statistical mean
of the data in (c) having a normal energy above 200 meV. The error bar is the standard
deviation. From ref.[182].

As predicted from the spatial approach [176] considering a reduced thermal amplitude
u2 = u2

z/N or from momentum transfer along the trajectory [74, 71], the effective DWF
adapted for GIFAD was predicted to scale with Eθ 3

in where E is the primary beam energy
and θin the angle of incidence. This was verified at room temperature [72] by reporting DWF
measured on a large set of energy and incidence angles.
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Figure 7.8 Same as Fig.7.8 but with sample B. (a) Energy dependence of the DWF at
temperature Ti. (b) Temperature dependence of the DWF, the data interpolated from (a) at
Eθ 3 from 0.5 to 6 meV. (c) Energy dependence of the inelastic scattering width w of the
log-normal inelastic profile. (d)Temperature dependence of the inelastic scattering width w,
which is the statistical mean of the data in (c) having a normal energy above 200 meV. The
error bar is the standard deviation. From ref.[182].

The figure. 7.8 display the DWF measured with helium projectiles for seven temperatures
ranging from 177K to 700K on LiF along a random direction. The dotted lines fit the data
and provide the exponential decay rate, which indicates that the Debye-Waller exponent
2W (T ) is proportional to surface temperature.

7.3.3 DWF: Temperature dependence

In grazing angle fast atom diffraction experiment, it’s very sensitive to the incident angle,
2W ∝ Eθ 3T , For fixed beam energy E and incident angle θ , i.e. Eθ 3=constant, the DWF
should exponentially decay as a function of temperature T . The measured DWF or elastic
ratio exponentially decays with increased collision energy, and also exponentially decays
with increased incident angle. However, when plotted as a function of Eθ 3, the data recorded
during an Escan or a θscan tend to fall on top of each other as reported in Ref.[72]. The figure
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Figure 7.9 Panels a) c), report the DWF as a function of the reduced parameter Eθ 3 for the
two different LiF samples of Fig.7.8 and Fig.7.7. The dotted lines are B-spline interpolation
used to derive the temperature dependence at fixed values of Eθ 3 in b) d) and reproduced by
a global formula. At very low angles of incidence, corresponding to Eθ 3 ⩽ 1 meV, where a
scattering background is present an error bar estimated at 5% is plotted. From ref.[182].

7.6, 7.8, and 7.7 displays the DWF measured with helium as probes in a wide variety of
initial conditions as a function of Eθ 3.

7.3.4 The inelastic scattering width w

The polar inelastic scattering profile is fitted log-normal form, [200] and the relative width
w are reported in Fig. 7.10a) and 7.10b) as a function of the perpendicular energy E⊥, a
quantity that governs the distance of closest approach to the surface. The fact that this
width was found [72] to depend mainly on E⊥ = Eθ 2 indicates that it is sensitive to the
magnitude of the most violent inelastic collisions along the trajectory rather than to the
integral effect of such collision, which would be closer to Eθ 3. Assuming that the inelastic
collision is well-modeled by classical mechanics, the thermal motion σz(T ) of the surface
atom induces, for each collision a log-normal scattering profile having a width dw = Γσz

[74, 71] or, equivalently a contribution to the angular straggling dσθ = Γσzdθ where dθ

is the elastic deflection angle in this collision already estimated as dθ = (θin + θout)/N.
Adding the N individual variances dσ2

θ
or using the mean log-normal width w = dw/

√
N
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Figure 7.10 a) and b) inelastic scattering width w as a function of E⊥ = Eθ 2. The increase at
low E⊥ is mainly due to Γeff(E⊥). The w measured at E⊥=500 meV are reported in panel c)
with the mean thermal amplitude σ2

z (T ). The lines in a) and c) correspond to Eq. 7.3 with
different angles in the evaluation of N. (see text) The green curve marked as Quantum takes
the zero-point energy into account. From ref.[182].

the classical scattering width is predicted:

wCl = Γ ·σz/
√

N,with N = 6/(Γaθin) (7.3)

The comparison with the experiment is tricky, the Eq. 7.3 reproduced the evolution during
an E-scan but not during a θ -scan while the experiment gives similar results during E-scan
and θ -scan [72]. In this respect, the following discussion is only qualitative. More precisely,
during an E-scan where θi is fixed N would stay constant so that, neglecting for here the
Beeby correction, wCl ∝ Γσz would remain constant. However, as already observed at room
temperature [72] and in Fig. 7.10a) and 7.10b) a sharp increase of w is observed at low E⊥.
The agreement was established by taking into account the attractive forces i.e. by replacing
Γ with Γeff from Eq. 7.2. The increase at low energy could then be attributed to the enhanced
stiffness at low energy [72]. The full dashed and dotted lines indicate how the absolute values
of wCl depend on the angle of incidence of the hypothetical equivalent E-scan. The 7.10c)
reports the value of w measured at E⊥ = 500 meV where is becomes stable. The lines using
the same Eq. 7.3 now indicate that the evolution of the plateau values in Fig. 7.10a) and
7.10b) is compatible with the expected variation of σz even if the low-temperature zero-point
motion (green curve) is not visible. The physical parameter D=8.5 meV [109] and TD=550 K
[127] correspond to well-accepted values in the literature, and Γ=3.5 Å−1 was produced in
a quantum calculation [185]. It is close to the asymptotic value Γ = 2

√
2W = 3.55±0.15

Å−1 where W = 12.2±0.5 eV is the work-function of LiF. Once again, the semi-quantitative
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agreement should be balanced by the fact that the model does not predict the observed similar
behavior of w(E⊥) during an E-scan and a θ -scan. So far, the classical model Eq. 7.3

consider both surface effective stiffness Γe f f and Beeby correction, θeff =
√

θ 2
in +D/E, the

classical inelastic width wCl = (
aΓ3

e f f θe f f

6 )1/2 ·σz.

7.4 Discussion

With the LiF samples used here, Fig. 7.9b and d) indicate that GIFAD is not able to provide
an internal value of the temperature with an accuracy better than 20-50 ◦C. Combining
consistently the width w and the DWF could improve the accuracy but the sensitivity to
sample quality appears as a severe limitation. In contrast, if the main focus is to optimize the
growth parameters to improve the surface quality in terms of coherence length, i.e. mean
distance LC between defects, GIFAD offers a unique handle with a very broad range of
operation. First, a simple φ -scan [58] can identify the crystallographic axis even without
diffraction, offering the first estimate of LC via the peak to background ratio of the φ -scan
[16]. When diffraction becomes visible, the presence of elastic diffraction, and its associated
elastic peak width, readily gives insights on LC. Then, optimizing the DWF could give
real-time access to very large defect-free surfaces with the advantage that the diagnostic is
performed simultaneously on an illuminated surface S ≈⊘2/θ on the order of 1 mm2 for
a diaphragm size of ⊘=100 µm. This diagnostic is complementary to the elastic diffracted
intensity, which indicates the detailed topology of the terminal layer in real-time. We have
shown here that the width w of the scattering profile can be understood qualitatively in terms
of a classical model using an effective stiffness Γeff(E⊥) and a thermal amplitude σz(T ).
This suggests that classical scattering simulation in grazing incidence, in general, [160] and
in the context of GIFAD [181, 172] should produce a fair estimate of the inelastic profile.
However, In fine, a quantum inelastic treatment as developed in TEAS [178] and recent
attempts to encompass both elastic and inelastic aspects under grazing incidence [180] should
help connect to the real world of surface phonons and their possible specific coupling to the
multiple collision regime.

7.5 Conclusions

Using a definition based on the analysis of the polar scattering profile to isolate the elastic and
inelastic components, the DWF can be evaluated for each diffraction image. At comparable
energy and incidence angle, the DWF is found independent of the crystal axis probed. Due
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to the extreme sensitivity to mechanical deformations associated with temperature variations,
the T -scans were performed indirectly via interpolation of θ -scan and E-scan at different
temperatures. At each temperature, the DWF specific to the multiple collision regime
of GIFAD is shown to depend primarily on Eθ 3, differing from Eθ 2 in TEAS, where a
single collision regime prevails. Within the present accuracy, a simple exponential decay
with temperature is observed but, different LiF samples produce slightly different decay
parameters and maximum coherence, suggesting an important contribution of the defect
density and terrace size distribution. The effect of the attractive forces on the surface has been
investigated in TEAS. It produces increased impact energy, known as the Beeby correction,
and increased stiffness of the surface mean-planar potential-energy-surface due to a closer
approach towards the surface [189]. They also have the same consequences regarding the
elastic diffracted intensities in GIFAD or TEAS but very different consequences in the
inelastic behavior of GIFAD and TEAS. In TEAS, the Beeby correction is known to limit the
maximum possible DWF, [174] while in GIFAD, the Eq. 7.1 and Fig. 7.6 c) indicate only
a weak influence on the maximum DWF. As to the effective stiffness Γeff[189], it does not
directly affect the DWF in TEAS, whereas, it enters the DWF factor in GIFAD because each
binary collision becomes more violent as evidenced by the sharp increase of the inelastic
scattering width w at low values of Eθ 2 in Fig. 7.10 a), b). The effect of Γeff on the DWF,
though larger than the Beeby correction, is also limited because it is, in part, balanced by
the reduced number of collisions needed for specular reflection. Our results also suggest an
important contribution of surface defect to decoherence in grazing conditions, but this aspect
is yet unexplored.





Chapter 8

Experimental Results: Noble Gases
Atoms (Ar Kr Xe) as Probes in GIFAD

8.1 Overview

The experimental results of He and Ne atoms in GIFAD have been discussed in the Chap. 6
and 7. The present chapter presents preliminary results obtained with heavier noble gases:
Ar, Kr, and Xe, the properties of noble gas in Tab. 8.1.

All noble gases have a close shell electronic structure with a comparatively large ionization
potential Ip. As a crude approximation, we could consider that Ip is larger than the work
function of the LiF surface so that the range Γ = 2

√
2Ip of the repulsive term is constant.

In practice, we expect that the effective range is slightly longer as heavier atoms are more
willing to deform. The other parameter of the repulsive forces is its magnitude. Within
this simple description of the Pauli repulsion, the magnitude is expected to scale with the
number of valence electrons. We a helium projectile, the surface has to provide room for
two electrons, while with neon, six electrons of the 2p6 outer shell are trying to find space.
The scaling parameter[132] V (x,y,z) = αρ(x,y,z) should grow accordingly. Ar is 3p6 Kr
4p6 and Xe is 5p6. It should be possible to explain the scattering images in terms of Morse
potential and to relate the associated parameters to the atomic properties of the projectile. So
far, none of the diffraction results have been fully analyzed. We only present general images
recorded at comparatively large E⊥ to illus similarities and differences between these noble
gases. Then preliminary results on the evolution of the rainbow angle and the polar profile
are presented for Ar.
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Property He Ne Ar Kr Xe

Atomic number 2 10 18 36 54

Atomic Mass (amu) 4.0026 20.180 39.948 83.798 131.29

Atomic radiusa (pm) 31 38 71 88 108

First ionization energyb (eV) 24.587 21.564 15.759 13.999 12.130

Polarizability 1.38 2.66 11.1 16.8 27.30

Table 8.1 Properties of noble gas atoms, a Ref.[201] and b Ref.[202]

q=0,44° q=1°q=0,74°
q=1,4° E^~1,2 eV

E^~0,61 eVE^~0,33 eVE^~0,12 eV

y21_h037 y21_h040 y21_h043 y21_h045

q=1,22° q=2,7°q=1,94° q=3,94° E^~18,9 eVE^~9,1 
eV

E^~4,6 eVE^~1,8 eV

y21_q148 y21_q152 y21_q155 y21_q159

Table 8.2 Raw images of 4 keV Kr and Xe atoms scattered off LiF ⟨100⟩.

8.2 A brief comparison of noble gases

We do not present the diffraction result obtained at the lowest values of E⊥. We focus first on
the high energy values where the semi-classical behavior merges into a classical behavior
with remaining quantum features. Using our flexible below allowing large angle scattering,
we have been able to push the investigation towards significantly larger values of E⊥.

Fig.8.2 shows the raw scattering profiles of Kr and Xe atoms impinging LiF along the ⟨100⟩
direction at 4 keV. At a glance, the scattering profiles do not exhibit clear modifications. They
show two maxima corresponding to the rainbow angle and scale with the angle of incidence.
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He 4000 eV

Ne 4000 eV

Ar 1784 eV

Kr 4000 eV

Xe 4000 eV

Figure 8.1 Raw images of He, Ne, Ar, Kr and Xe atoms scattered off LiF⟨100⟩.

8.3 Ar results

With Ar projectiles, we have started to analyze two properties already observed with Ne and
He. These are the evolution of the polar scattering width w, and the evolution of the outer
rainbow angle also called the principal rainbow angle. These two properties are described in
Fig.8.2 obtained with 1784 eV Ar (h̄k∥ ≃ 5850Å

−1
) on LiF⟨100⟩, similar to Fig.6.2 which was

recorded with He. The raw scattering image (as in Fig.8.1) is polar transformed as a function
of k f⊥ in Fig.6.2a). This 2D intensity Map is projected onto the vertical axis to produce a
Polar scattering profile in Fig.6.2b). This latter is fitted by a log-normal profile providing the
relative width parameter w ≃ σθ/θ . In contrast, only a narrow horizontal slice at the specular
angle is used to plot Fig.8.2c). The supernumerary rainbow structure visible is fitted in
Fig.8.2c) by a HCW model which with eq.4.2 and only two Fourier components z1,z2 << z1

to describe the corrugation function z̃c(y) = z1 cos(Gyy)+ z2 cos(2Gyy). All diffraction order
with an intensity Im given by eq.4.2 were given a constant line profile, and the sum of these
intensities is the red line. The HCW model assumes perfect coherence of both projectile
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Figure 8.2 a) quasi polar transform of the raw diffraction image in panel d). The panel b)
corresponds to a full projection onto the vertical axis producing the polar scattering profile.
Since elastic components are negligible, it is fitted by a log-normal profile. The panel c)
corresponds to the intensity in a narrow horizontal band centered on the specular reflection.

and surface so that the reasonable quality of the Fit indicates that this line broadening is
enough to model the decoherence. It also suggests that a very detailed description of the
corrugation function is possible because a two component Fourier transform is too naive to fit
exactly the shape and positions of the supernumerary rainbows. With this strategy, it should
be possible to build a PEL as in Fig.4.7 directly from the experiment and compare different
noble gases. The Fig.8.3 reports the evolution of the log-normal width w as a function of the
normal energy E⊥ corresponding to a θ -scan with 1784 eV Ar. It displays the characteristic
shape of Fig.6.10 obtained with Ne and He. The redline is a curves representing the effective
stiffness (Eq. 6.4) Γe f f corresponding to a Morse potential with D = 50.2meV and Γ=3.46
Å
−1

, the same as for Ne.

Fig.8.4 displays a 2D map of the lateral scattering profile versus the angle of incidence θ

expressed in values of k⊥. Rather than the lateral scattering profile, as in Fig.8.2c), the
horizontal scale is the 2D scattering angle ϕ = atan

(
k f y/k f z

)
as sketched above the 2D map.

Together with the complex pattern of supernumerary rainbows in the center of the image, we
also observe the characteristic shape of the outer rainbow as in Fig.3.9 obtained during an
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Figure 8.3 Ar scattering at LiF⟨110⟩ surface at 300K, the inelastic scattering with w as a
function of E⊥. The red line is for eq.5.10 with D=50.2 meV, Γ=3.46 Å−1 and TD=550 K,
the inelastic scattering width increase at low E⊥ mainly comes from the surface stiffness
Γe f f (eq.6.4).

E-scan with Ne atoms. To be more quantitative, the evolution of the rainbow angle ϕ with
the energy E⊥ is reported in Fig.8.5. The redline is also derived from the same attraction
parameter D = 50.2 meV. In this curve, the stiffness is not present, and only the asymptotic
value of the rainbow angle (indicated by vertical bars in Fig.8.4 is needed in the optical
refraction formula. It corresponds to the Snell-Descarte law of refraction:

n1 sinϕrb = n2 sinϕobs with n1,n2 proportional to the local velocity√
E⊥ sinϕrb =

√
E⊥+Dsinϕobs

(8.1)

where ϕrb is the emission angle close to the surface, where the energy is given by E⊥+D
giving a refraction index (velocity ratio) n1 =

√
E⊥/(E⊥+D), and ϕobs is the observation

angle far away from the surface (in vacuum) where the energy is E⊥ giving a refraction
index n2 =

√
E⊥/E⊥=1. In the experiment, ϕrb is the asymptotic value of the rainbow angle

measure for E⊥ >> D as outlined by the vertical line in Fig. 8.4.

8.4 Conclusion

We have presented scattering patterns of He, Ne, Ar, Kr and Xe under comparable conditions.
Only some Ar data have been analyzed suggesting that an estimate of the attractive well-depth
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Figure 8.4 The diffraction chart is derived from a θ -scan of Ar at LiF⟨110⟩ at 1784 eV.
Each horizontal line reports the intensity on the Laue circle but in units of the angle ϕ =
atan(k f y/k f z), i.e. of the scattering angle in the (y,z) 2D perpendicular plane. Vertical axis is
in momentum k⊥ = kiz ∝ θin. The vertical dashed line indicates the asymptotic value of the
rainbow angle. The white circle is from an optical refraction model using the Snell-Descarte
law in Eq. 8.1.
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Figure 8.5 The full rainbow angle of Ar at LiF⟨110⟩ as a funtion of E⊥. The horizontal axis
corresponds to the angle ϕ = atan(k f y/k f z) while the vertical one is in momentum k⊥ = kiz.
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could be derived from the analysis of the Polar inelastic profile and of the rainbow angle as
was suggested in Chapter 6. Work is in progress to analyze all the gases.





Chapter 9

Measuring physisorption well-depth with
fast atom scattering

This chapter corresponds to a presentation[203] at the APS March meeting by Peng Pan and
Philippe Roncin under the same title on March 16th 2022 in Chicago, USA.

9.1 Overview

This chapter summarizes the different approaches used to measure the physisorption well-
depth using fast atoms. We start with the most accurate one, namely bound state resonances.
We then explore less and less demanding techniques where the observation of elastic diffrac-
tion is not required. Even the need for inelastic diffraction is relaxed with a possible
application to heavier atoms interacting with surfaces with applied perspectives.

9.2 Bound states resonances BSR

In 1930, Estermann and Stern[4] published the first observation of the diffraction of an
atom, i.e., the first demonstration that a complex particle made of a nucleus surrounded by
electrons can behave as a wave. Only three years later, Frisch and Stern[108] published the
first observation of bound state resonance where the projectile atom temporarily oscillates
in the attractive well above the surface. The technique has been turned extremely precise
using the spin-echo technique with slow 3He atoms[109] at thermal energies. The situation
turned out to be much more complex with keV atoms, probably because the distance spent
during each oscillation now corresponds to a comparatively large distance L = v∥τ where τ
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is the oscillation period. If any defect is present during this distance, the wave packet cannot
interfere properly with the specular one, and the resonance is damped. In his thesis, Maxime
Debiossac succeeded in measuring these resonances shown in Fig. 9.1. The agreement with
wave packet calculation by Asier Zugarramurdi and Andrei Borisov could reproduce both
the positions and the line width, assuming a coherence length of 0.2 µm [185].
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Figure 9.1 Left is a schematic view of the mean planar potential of the He LiF system. It
hosts three vibrational bound states along z while the movement along the surface is subject
to Bloch conditions. Taken from [185]

Measuring the position of bound states offers a unique opportunity to explore the shape of the
attractive well. Because these bound states can be estimated from the mean planar potential
Vplan(z), for instance, using the Wentzel-Kramers-Brillouin (WKB) semi-classical approach.
Intuitively, the shallow slope far away from the surface where the outer re-turning point is
located, will strongly influence the position of these states because this is where the atoms
stay longer. A critical limitation of this approach is that only a few bound states should be
present and only a few diffraction orders. Otherwise, it is not possible to identify all possible
combinations accurately. In practice, helium was used with several target surfaces, and only
very few examples were published with neon.

9.3 Beeby correction

When fitting the diffracted intensities by a hard corrugated wall model (HCW) sec.4.4.3, the
derived corrugation may increase at low values of E⊥. For simple systems, this is quite often
unphysical as the equipotential lines are expected to extend further away and get smoother
(flatter). This is sometimes corrected simply by adding the well-depth D to the energy, a
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correction known as the Beeby correction. See e.g. Fig. 4.16. Generally, the apparent
corrugation is modified only in an energy region comparable to the well-depth D.

E^ +D
E^ 

Figure 9.2 In the Hard Corrugated Wall model (see sec.4.4.3, the mean planar potential is
replaced by an infinite Wall. The Beeby correction is equivalent to let it be preceded by a
uniform well of depth D so that the energy at impact is now E⊥+D.

9.4 Comparing elastic intensities with the exact quantum
scattering

Recently, Debiossac et al.[67] published another determination using neon projectile on
LiF, where the intensity of elastic diffraction orders could be measured and quantitatively
compared with an empirically adjusted PEL shown in fig 9.3.

Figure 9.3 For Neon atoms scatter along the ⟨110⟩ direction. By adjusting the PEL model to
the measured diffraction intensities, a well-depth of 10.3 meV of the mean planar potential
could be derived. Taken from Ref. [67] and from Fig. 4.10 in chapter 4.
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From the GIFAD, experimental point of view, the technique is much easier because a simple
E-scan or θ -scan is enough to measure the evolution of all elastic diffraction orders in a day
or two. This is true only if the elastic diffraction ratio (DWF) is large enough. However,
Fig. 6.5 shows that neon is already much weaker than helium, and heavier noble gas did not
exhibit significant elastically diffracted intensity.

9.5 Refraction effect

In the paper described above, the authors observed a rapid increase of the rainbow angle at
low values of the perpendicular energy E⊥ (see Fig. 3.9). The effect was modeled with a
model saying that the effective energy inside the well is E⊥+D while it is only E⊥ far from
the surface. For low values of E⊥, we have seen in the section 4.5 that a tiny well-depth is
enough to "attract" the crossing point zc closer to the surface, and give an almost constant
shape of the HCW at values of E⊥ close to the threshold (this is well-illustrated in Fig.
4.10). So that the rainbow angle at the moment of impact is also expected to be constant.
Then, using a simple optical model and the Snell-Descartes law, the variation of the detected
rainbow angle could be reproduced. The optical model is the same as depicted in Fig. 9.2
where the depth D indicates the refraction index.

zc

c)

d)

a) b) n1 sin 1=n2 sin  2

n1

n2

 (deg.)



Figure 9.4 a) is the diffraction chart of an θ -scan recorded with 1784 eV Ar on LiF ⟨110⟩
(see Fig. 8.4).b) represent the diffraction chart of an E-scan recorded with Neon on LiF (see
Fig. 3.9). c) recalls typical geometry of the Snell-Descarte law. d) applies this scheme to
explain the evolution of the measured rainbow angle with E⊥, Taken from [67].

The technique does not require the detection of elastic diffraction, it works better for large
masses because several diffraction orders are populated so that the notion of rainbow angle is
well defined. This is not the case for helium at low E⊥ as in Fig. 3.12. In this respect, the
method is well adapted to more complex systems. In the previous chapter, it was applied to
Argon, Krypton, and Xenon projectiles and the data are under quantitative evaluation. The
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Figure 9.5 same as Fig. 8.3 the evolution of the log-normal inelastic scattering width w of
Ar is compared with the prediction of the Classical limit wCl using the effective stiffness
(eq.6.4).

rainbow angle is a quantum feature that persists in the classical regime. Indeed the interfering
trajectories responsible for the rainbow can be selected as infinitely close to each other (on
each side of the inflection point). So that quantum interference does not require a significant
coherence length, neither from the beam, nor from the surface.

9.6 Inelastic scattering width, the effective stiffness

In the chapter,6 we have shown that the width of the inelastic profile is also quite sensitive to
the well-depth D. Fig. 9.5 compares the measure evolution of the polar scattering profile
with our analytic formula developed with a Morse potential. It does not require any quantum
feature in the scattering profile since the analysis is based on the inelastic polar profile, which
was not found to display any diffraction feature.

9.7 Conclusion

The five techniques reported here to estimate the well-depth are quite different. The first and
third require detailed knowledge of the PEL. With bound state resonance, the shape of the
PEL far from the surface (on the attractive branch) will be needed to estimate the position
of the observed resonance. It is accurate but demanding in terms of resolution and does not
appear well adapted to GIFAD with atoms heavier than helium. A quantum scattering code
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can predict the diffracted intensities in the third technique. In case of agreement, the part of
the PEL close to the turning point, and the well-depth can be derived with confidence, but the
technique is poorly sensitive to the exact shape of the attractive branch. The second one uses
the Beeby correction based on a HCW description. The advantage is that this description can
be empirical. Only the shape variation at low values of E⊥ is used to derive a well-depth.

The fourth technique requires only one quantum feature, the rainbow scattering angle should
be applicable to almost all systems. However, It requires a significant corrugation of the
surface because refraction effects are negligible if the rainbow angle is close to the normal
direction in the perpendicular plane. Could it then be interesting to use misaligned conditions?
The last one does not require any quantum feature but is not firmly established. One advantage
is that it is insensitive to corrugation and works in a random direction. It seems that the last
techniques should be able to analyze well-depth on the order of a few 100 meV opening
perspectives in physical chemistry since these attractive wells are driving the adsorption of
gases on surfaces. An important property for catalytic application where the initial binding
of reactant is a crucial step.



Chapter 10

Outlook and Conclusion

Stay hungry. Stay foolish.

by Steve Jobs at Stanford

10.1 Outlook

From the material side, One important application of GIFAD is monitoring the growth in the
MBE environment, especially working under high temperatures or high magnetic or electric
field. For instance, the thermoelectric materials like Bi2Te3 and Bi2Se3 could be interesting
systems to investigate under external field.

From the probe side, we have seen that grazing incidences could provide an estimate of the
well-depth above the surface. These encouraging results may be extended to systems with ap-
plications in catalysis. Not to mention the difficult problem of fast molecule diffraction[204].

10.2 Conclusion

This thesis describes experimental investigations using the technique of grazing incidence
fast atom diffraction at surfaces (GIFAD). We identify two components in the diffraction
images. One is associated with elastic diffraction, and the other is inelastic diffraction, where
energy has been exchanged with the surface. Elastic diffraction provides information about
the surface structure in the form of the potential energy landscape (PEL), closely associated
with the surface symmetry, atomic positions and electron density at the surface. Since its
discovery at LCAM (Orsay-France) and at HMI (Berlin-Germany), most experimental and
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theoretical efforts have assumed elastic diffraction. For elastic diffraction, the axial surface
channeling approximation has been extensively investigated and is well-established, both
theoretically and experimentally. It shows that when the atomic beam is aligned with a
low index crystallographic axis, GIFAD is equivalent to a particle with effective energy
E⊥ evolving in the mean axial PEL. With E⊥ = E0 sin2

θin, typically three to four orders of
magnitude smaller than E0 for θ ≈ 1◦. The main focus of the thesis is inelastic diffraction
related to the thermal movement of the surface atoms. Using fast helium and neon atoms with
energies ranging from 0.2 keV to 5 keV scattered at the surface of a LiF(001) crystal along
⟨110⟩, ⟨100⟩, and random directions, we use specific polar transform to define the scattering
profile referred to the beam position and showing no diffraction feature other that the elastic
scattering peak. This profile is found to be independent of the probed crystallographic
axis. The inelastic component is well-fitted by a log-normal profile where the relative width
parameter w scales as σθ/θ .

Within a purely repulsive model, this width w is expected to be an invariant during an E-scan,
where the incidence angle θ is fixed. However, we observed a rapid increase of this relative
width w on E⊥ energies below 100 meV. We propose a new model taking into account the
attractive forces. It is based on the description of the mean planar potential as a Morse
potential, and predicts that the width w is governed by the effective stiffness depending on
the physisorption well depth D. The model significantly improves the description of the
scattering profile with only one physical parameter D. We have used this model to investigate
the Debye-Waller factor (DWF) defined as the ratio of elastic diffraction and its temperature
dependence between 130K and 1017 K. Contrarily to the diffraction of atoms at thermal
energies, we found that the well-Depth D has only a very limited influence of the saturation
of the DWF at low values of E⊥. Using helium and neon projectiles with different mass mp,
we could establish experimentally a generic DWF = exp(−αmpE0θ 3

inT ) dependence.

The main investigations were performed with helium and neon projectiles having an energy
between 300 eV and 5 keV. We extend these studies using Ar, Kr, and Xe noble gases. Com-
pared with the previous thesis on GIFAD, we demonstrate the significant role of the attractive
forces. In conclusion, we compare five different methods to measure the physisorption well-
depth with GIFAD. Three methods are related to elastic diffraction. (1) The identification
of bound state resonances. (2) The "Beeby correction" to the hard corrugated wall (HCW)
model. (3) Comparing measured diffraction intensities with exact quantum scattering codes.
(4) One method can be applied to both the elastic and inelastic diffraction, an optical model
explaining the refraction by analogy to the Snell-Descartes laws of refraction (here, the
index represent the projectile velocity close to the surface). (5) And a new one, specific
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to inelastic diffraction compares the observed log-normal inelastic width with our surface
effective stiffness model.

10.3 Conclusion in French:

Cette thèse décrit une étude expérimentale utilisant la technique de diffraction d’atomes
rapides sous incidence rasante sur les surfaces (GIFAD). Nous identifions deux composantes
dans les clichés de diffraction. L’une est associé à la diffraction élastique, et l’autre à la
diffraction inélastique, où de l’énergie a été échangée avec la surface. La diffraction élastique
fournit des informations sur le paysage énergétique (PEL) au-dessus de la surface et est
intimement lié à la symétrie de la surface, la position des atomes et la densité électronique en
surface. Dans cette thèse nous montrons l’importance des forces attractives sur le paysage
énergétique.

Pour la diffraction élastique, l’approximation de la canalisation axiale en surface à été
largement validée. Elle indique que, le long d’un axe cristallographique principal, GIFAD est
équivalent à une particule d’énergie effective E⊥ = E0 sin2

θ évoluant dans le PEL moyenné
le long de cet axe. Pour un angle d’incidence θ ≈ 1◦, E⊥ est typiquement trois à quatre
ordres de grandeur plus petite que l’énergie totale E0.

L’objectif principal de cette thèse est la diffraction inélastique liée au mouvement thermique
des atomes de surface. Nous proposons une transformation polaire séparant d’une part le
profil de diffraction élastique et inélastique associé à l’angle de diffusion et le profil de
diffusion qui lui ne montre aucun signe de diffraction autre que la présence d’un éventuel
pic élastique à l’angle de diffusion 2θin correspondant à θout = θin. En utilisant des atomes
d’hélium et de néon rapides avec des énergies allant de 0,2 keV à 5 keV diffusés à la surface
d’un cristal LiF(001) le long de ⟨110⟩, ⟨100⟩, et dans des directions aléatoires, nous avons
montés que ce profil de diffusion est indépendant de l’axe cristallographique sondé. le
profil inélastique est bien ajusté par un profil log-normal où le paramètre de largeur relative
w ∼ σθ/θ , Dans un modèle purement répulsif, cette largeur w devrait être invariante lors
d’un E-scan, où l’angle d’incidence θ est fixe. Cependant, nous observons une augmentation
rapide de cette largeur relative w lorsque l’énergie E⊥ est inférieure à 100 meV. Nous
proposons un nouveau modèle prenant en compte les forces attractives à deux niveaux. La
première est l’augmentation de l’énergie au moment de l’impact E⊥ → E⊥+D ou D est
la profondeur du puit attractif, un effet connu sous le nom de "correction de Beeby". La
deuxième et plus importante pour GIFAD, est l’augmentation de la force entre le projectile et
la surface au voisinage du point tournant. En partant d’une description du potentiel planaire
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moyen de type "potentiel de Morse", nous parvenons à reproduire les observations et à établir
l’importance relative des différentes contributions.

Le profil de diffusion inélastique log-normal permet aussi une évaluation directe du rapport
de diffraction élastique et inélastique connu sous le nom de facteur Debye-Waller (DWF)
qui s’avère être très différent de celui mesuré avec des atomes d’énergie thermiques. En
utilisant des projectile d’hélium et de néon entre 300 eV et 5 keV et des températures de
surface entre 130K et 1017 K nous avons montré que : -i) L’effet de la profondeur du puit
de physisorption sur la saturation du DWF à basse énergie est fortement réduit et -ii) la
forme générique est de type de type DWF = exp(−αmpE0θ 3

inT ). Nous étendons ces études
en utilisant les gaz nobles Ar, Kr et Xe confirmant le rôle important des forces attractives.
En conclusion, nous comparons cinq méthodes différentes pour mesurer la profondeur du
puits de physisorption avec GIFAD. Trois méthodes sont liées à la diffraction élastique. (1)
L’identification des résonances d’état lié. (2) La « correction Beeby » au modèle de tôle
ondulée (HCW). (3) La comparaison des intensités de diffraction mesurées avec les valeurs
calculées par dynamique quantique. (4) Dans l’esprit de la correction de Beeby, l’application
de le loie de Snell-Descarte à l’angle de rainbow observé. (5) Et la mesure de la largeur
polaire inélastique comparée à notre modèle de rigidité effective de la surface.
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Appendix A

Surface effective stiffness derivation

Surface effective stiffness: The Effective Γ ( Γe f f )

In the QBCM, the coupling strength between the projectile trajectory and the surface atoms
is given by Γ, the logarithmic derivative of the interaction potential Γ =−V ′(z)/V (z). We
know that Force along z-direction is Fz =−∂V

∂ z =−dV
dz =−V ′(z). The physical meaning of

Γ is Force over by potential energy at the classical turning point Γ = Fz/V (z). It corresponds
to the relative value of the derivative referred to the projectile initial energy E⊥ evaluated at
the turning point zturn; where the coupling is most effective V (zturn) = E⊥.

Can we try to generalize this concept by introducing an effective stiffness? We cannot define
it as the logarithmic derivative because it gives a singular value at zcross where V (zcross) = 0.
This can be solved by taking into account the Beeby correction which considers that the
effective energy when hitting the wall is E⊥ +D where D = Vmin. We therefore define
Γe f f =−V ′(z)/(V (z)+D). In a general potential form,

VG(z) = A · e−ΓG(z−z0)−B · e−αΓG(z−z0) (A.1)

If we set A = DG in Eq. A.1, with the known conditions:zmin = zcross − lnα

Γ(1−α) , VG(z0) =

−DG, VG(zcross) = 0, We get that α = 0.5, then

VG(z) = DG · e−ΓG(z−z0)−2DG · e−
ΓG
2 (z−z0) (A.2)

If we impose equal depth DG = DM = DLJ in Eq. A.2, and equilibrium distance, this implies
that
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VG(z) =

D · e−2ΓM(z−z0)−2D · e−ΓM(z−z0)

D
[( z0

z

)12 −2
( z0

z

)6
] =

VM(z), i f ΓG = 2ΓM

VLJ(z), i f ΓG = 12 lnz−lnz0
z−z0

We need to know Γe f f from the value of V (z). Let us try to look for (1− eΓ(z−z0)/2)

V (z) = D · e−Γ(z−z0)−2D · e−Γ

2 (z−z0) = D
[
(e−

Γ

2 (z−z0)−1)2 −1
]

Then, we get

e−
Γ

2 (z−z0)−1 =


√

V (z)
D +1, i f z ≤ z0

−
√

V (z)
D +1, i f z > z0

Γe f f =
Γ

1− eΓ(z−z0)/2
=

Γe−Γ(z−z0)/2

e−Γ(z−z0)/2 −1
=


Γ[1+(V (z)

D +1)−1/2], i f z < z0

Γ, i f z = z0

Γ[1− (V (z)
D +1)−1/2], i f z > z0

(A.3)

We can also calculate it from the classical turning point zt : Γe f f (E⊥) = Γe f f (z = zt)

zt − z0 =− 2
Γ

ln(1+
√

E⊥
D +1), so that V(zt) could simplify

eΓ(zt−z0)/2 = e−(ln(1+
√

E⊥
D +1)) = (1+

√
E⊥
D +1)−1. So, in Morse potential model

Γe f f =
Γ

1− 1

(1+
√

1+E⊥
D )

= Γ

[
1+
(

1+
E⊥
D

)−1/2
]

(A.4)

If we consider a particle approach to the surface, with kinetic energy E⊥, with low kinetic
energy E⊥ → 0,

Γe f f = lim
E⊥→0

Γ

[
1+
(

1+
E⊥
D

)−1/2
]
= 2Γ (A.5)

with high kinetic energy E⊥ → ∞,

Γe f f = lim
E⊥→∞

Γ

[
1+
(

1+
E⊥
D

)−1/2
]
= Γ (A.6)

This means the Γe f f varies by a factor of two from high energy (low zt , more close to the
surface) to low energy (high zt , far from the surface).



Appendix B

Wavelength calculation of atom beam

Using the de Broglie relations for wave vector and momentum for matter waves:

p = ℏk (B.1)

Due to the speed of the atom (keV) being much less than the speed of light c. The classical
expression of the total energy E of a free particle of mass at rest m and momentum p is:

E =
p2

2M
and k =

√
2ME
ℏ

(B.2)

Dimensional analysis:
[
Å
−1
]
=

√
[kg]·[kg·m2·s−2]

[kg·m2·s−1]
·10−10 · m

Å

Then, the wave vector in the unit of Å−1 is, the fundamental Constants seen in Tab.B.1.

k
[
Å
−1
]
=

√
2M ·1.66054×10−27 [kg] ·E ·1.6022×10−22 [kg ·m2 · s−2]

1.05457×10−34 [kg ·m2 · s−2]
·10−10

=

√
M[u] ·E[meV ]

2.09004075

(B.3)

Where, k[Å−1], M[u], and E [meV]. The kinematic relationships of an incident atoms beam
linking the de Broglie wavelength λi (expressed in Å) wavelength is

λi[Å] =
2π

ki[Å
−1
]
=

9.0836√
M[u] ·Ei[meV ]

(B.4)
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For the most often used 4He monochromatic beam[142],

λi[Å] =
4.5418√
Ei[meV ]

(B.5)

Velocity in Classical Mechanics:

Vi =

√
2Ei

m
=

√
2E[eV ] ·1.602176634×10−19

m[u] ·1.660539×10−27 = 1.38913884×104

√
E[eV ]

m[u]
(m/s) (B.6)

Table B.1 Fundamental Physical Constants- Frequently used constants.

Quantity Symbol Value Unit

Speed of light in vacuum c 299 792 458 m s−1

Planck constant h 6.626 070 15 × 10−34 J Hz−1

Reduced Planck constant ℏ 1.054 571 817 × 10−34 J s

6.582 119 569 × 10−16 eV s

Boltzmann constant k 1.380 649 × 10−23 J K−1

8.617 333 262 × 10−5 eV K−1

elementary charge e 1.602 176 634 × 10−19 C

Bohr radius a0 5.291 772 109 03 × 10−11 m

Hartree energy Eh 27.211386 eV

electron mass me 9.109 383 7015 × 10−31 kg

proton mass mp 1.672 621 923 69 × 10−27 kg

neutron mass mn 1.674 927 498 04× 10−27 kg

atomic mass constanta mu 1.660 539 066 60 × 10−27 kg

proton-electron mass ratio mp/me 1836.152 673

amu-electron mass ratiob mu/me 1822.8897707

Standard gravity g 9.80665 N kg−1

∗ From NIST: http://physics.nist.gov/constants. amu= 1
12m(12C).

b In element table we usually use amu unit, we add this quantity here.

http://physics.nist.gov/constants


Appendix C

Application of the Distribution and
Programming

Log-normal to Gaussian

If we know the log normal width w and the median scattering angle θm (from experimental
measurement), the equivalent Gaussian variance is

σ
2
θ = ew2

(ew2
−1)θ 2

m (C.1)

i.e. σθ

θm
=
√

ew2
(ew2 −1) =

√
e2w2 − ew2 . (Note: the value σ2

θ
is the variance of log-normal

inelastic profile. σθ is the standard deviation.) We know the Taylor expansion of ex:

ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · · (C.2)

We know that the Log normal width w ∼ 0.1, w2 ≪ 1. So that ew2 ≈ 1+w2, e2w2 ≈ 1+2w2.√
e2w2 − ew2 ≈

√
(1+2w2)− (1+w2) = w. In other words, we get the relation:

σθ

θm
≈ w (C.3)

So that w is simply the relative width, where θm is the median value, it’s very close to the
specular scattering angle θs = 2θin.
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Figure C.1 Comparison of σθ

θs
and w as a function of E⊥, where wLN direct from experimental

data fitted by LN, and σθ

θs
calculated from Eq. C.1.

Gaussian to Log-normal

If the coordinate x is well-defined (not within a constant), then if we know the standard
deviation σx and the central value x, the equivalent log-normal width w is the positive

solution of the second-order equation with X = ew2
. X =

1+
√

1+4σ2/x2

2 the final result is

w =

√
ln 1+

√
1+4σ2/x2

2 .

Checking the Transformation

Step 1- Using Origin, we generate with the origin, a gaussian distribution of atomic positions z
having σz as a standard deviation (Normalized form). We calculate the scattering distribution
assuming that θ = e−Γ.(b+z) where b is a distance to the surface (an impact parameter)
taken much larger than σz. It corresponds to a projectile initially parallel to the surface and
then deflected by the unique atom. The resulting distribution is well fitted by a log-normal
distribution of standard form ln(x/x0)/2w where x0 corresponds to 2θin is and with w = Γσz.
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P(θi) =
A
θi

e(
− ln2 θi

θe
2w2 ) P(Eri) =

A
2Eri

e(
− ln2 Eri

Er
8w2 )

⟨θi⟩ θeew2/2 ⟨Eri⟩ Ere2w2

mode θee−w2
mode Ere−4w2

σ2
θ i θ 2

e (e
w2 −1)ew2

σ2
E E2

r (e
4w2 −1)e4w2

Table C.1 Properties of the log-normal polar scattering angular and energy loss distributions
associated with an inelastic event.
Er = µEθ 2

e , A = 1
w
√

2π
, w = Γσz

C.0.1 Application of Morse Potential

Numerical Examples

Case 1. Ar-LiF surface

2 3 4 5 6 7 80
- 5 0

0
5 0

1 0 0
1 5 0
2 0 0

V(m
eV

)

N e t  i n t e r a c t i o n  p o t e n t i a l
 R e p u l s i v e  p o t e n t i a l
 A t t r a c t i v e  p o t e n t i a l

Z ( Å )

A r @ L i F

Figure C.2 Morse model with D=50meV, Γ = 3.46 Å
−1
(1.83 a−1

0 ),z0 = 3.2 Å
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We want to predict angular profiles for a given projectile with mass M, energy E, and
incidence angle θi. To start we will use the equivalent scattering model where the classical
energy loss ∆EClass =

2
3 µEΓaθ 3

i is equally shared among Ne f f = 6/Γaθi. Each inelastic
event is associated with a recoil energy ∆Er = ∆EClass/Ne f f =1

9 µEΓ2a2θ 4
i .

At a temperature T , we know σz (Eq. 11 in Ref. [71]). step one. calculated the modified
incidence angle θ ′

i such that E ′
⊥ = E⊥+D. E sin2

θ ′
i = E sin2

θi +D, in practice we define

θ ′
i = arcsin

√
sin2

θi +D/E. Second step evaluated Γe f f for this value of E ′
⊥. third step,

calculate Ne f f , ∆Er, Pe and pe and pi = 1 − pe. each inelastic event occurring with a
probability pi will produce an angular straggling by w = Γe f f ·σz. The associated individual
deflection is δθ = 2θ ′

i /Neq and the variance is (standard deviation squared) is σ2
θ
= ew2

(ew2 −
1)δθ 2 which is σ2

θ
= ew2

(ew2 −1)(2θ ′
i /Neq)

2.

The next step is to evaluate the statistics of the single, double, triple, etc. inelastic collision.
Since these are equivalent collisions, we only need to count them. The statistical weight
of exactly p inelastic collisions is f (p) = Cp

N pp
i pN−p

e . Note that N = Neq and f (p) is
a probability and should always be lower or equal than 1, also, a safe way to evaluate
the binomial coefficients is the following iterative form Cp

N = Π
i=p
i=1

N+1−i
i . The variance

associated with p inelastic events is σ2
p = p ·σ2

θ
= p · ew2

(ew2 −1)δθ 2. the simplest strategy
is to calculate the equivalent variance. σ2

tot = Σ
p=N
p=1 f (p)σ2

p . We can now transform back this

variance into a log-normal width we f f =

√
ln 1+

√
1+4σ2

tot/(2θ ′)2

2

We now know the angular scattering profile after the collisions on the surface. We have
to consider that the final angle is affected by the attractive well. we know the probability
of leaving the wall with an angle θ f P(θ )=LN[2θ ′

i ,we f f ](θ). However, this angle will
be affected in the opposite way as in the way in, namely E sin2

θobs = E sin2
θ f −D. or

E sin2
θ ′

f = E sin2
θi −D.

θ ′
f = arcsin

√
sin2

θi −D/E or θobs = arcsin
√

sin2
θ f −D/E. We have to calculate the

distribution, evaluate its mean value and variance, and compare it with the experiment.

C.0.2 Programming in CodeBlocks

Experimental Facts

We observe a narrow peak that we assume the elastic peak and a broader peak well fitted by
a log-normal profile that corresponds to the inelastic collisions.
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Classically, if we neglect the movement of surface atoms, then we can easily calculate the
projectile trajectory z(t) or z(x) for the case of exponential potential. V (z)=V0e−Γz Eq.5 [71] .
Note that such a mean exponential potential is obtained ’exactly’ as the mean planar potential
resulting from individual screened coulomb binary potentials: Ae−Γz =

∫ ∫
(A/r)e−Γrdxdy,

with r =
√

x2 + y2 + z2.

Let us concentrate on a single classical binary collision. We have a single surface atom at a
location x = 0. The projectile is coming from infinity far away. It is traveling parallel to the
surface at an elevation z with a velocity V//. If we know the binary interaction potential, we
can calculate everything, x(t) and z(t) or z(x) including the final scattering angle θ , Which is
the ratio of vz and vx, at a large distance. If V (z) is exponential, V (z) =V0e−Γz then the final
angle is also exponential is proportional to e−Γz or, in other words it is equal to θ0e−Γz.

Now, if we repeat the calculation 106 time and pick up a random position of the target within
it probability distribution. We chose any value dz, and associated a probability given by the
Gaussian distribution. We will built a polar scattering distribution. Since we have a formula,
we do not need to calculate 106. For a value dz of the surface atom (its shift from equilibrium),
the angle will be θ0 = e−Γ(z−dz). We can demonstrate that this give a log-normal distribution
with w = Γe f f · z, this gives a variance Vindividual = ew2

(ew2 −1)(δθ)2.

If we have N such collisions, a possible model is that the resulting angle is the sum of
individual mean scattering angles and that the resulting variance is the sum of individual
variance. This defines the classical Variance VClassical = N ·Vindividual and therefore the
classical log-normal width wClassical = windividual/

√
N.

If we want to know the effect of temperature, we should calculate where each surface atom
is displaced according to the Gaussian probability distribution. This is not what we do.
We consider each collision individually. Each collision will be elastic with a probability
pe ∝ e−

Er
ℏω .

In more detail, surface atoms are harmonic oscillators with a frequency ωD, this means that
they have a vibration amplitude σz [71].

⟨σ2
z ⟩=

3ℏ2

2MkBTD
coth

TD

2T
(C.4)





Appendix D

Jacobian Transformation

Recall that if we have a distribution in one set of variables {x1,x2, ...xn} and want to change
variables to another set {y1,y2, ...yn} the distribution in the new variables are given by

f (y1,y2, ...yn) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yn

...
...

. . .
...

∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

f (x1,x2, ...xn) (D.1)

Where the symbol ∥J∥ denotes the absolute value of the determinant of the Jacobian J. Here, we
want to transform the emitted angle θemi into the observed angle θobs, which is one-dimensional (1D)
problem with the relation

θemi =

√
θ 2

obs +
D
E

⇒ θobs =

√
θ 2

emi −
D
E

(D.2)

Emitted angle is always larger than the observed angle due to refraction that reduces the angle. In
other words, The observed angle is lower than the emitted angle.
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Note that with the definition 0 < θemi < π . In order to obtain the joint probability density function in
θemi we need to calculate the Jacobian.

∥J1∥=
dθobs

dθemi
=

θemi√
θ 2

emi −
D
E

(D.3)

The emission distribution f (θemi) is given by

f (θemi) = f (θobs)∥J1∥ (D.4)

So that f (θobs) is

f (θobs) =
f (θemi)

∥J1∥
(D.5)

We know that due to the attractive well existing, see the Fig. 4.15 take Beeby correction into account,
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Figure D.1 E = 500eV,D = 10.3 meV

the emitted angles below 0.26◦ of scattered beams are not observable, see Fig. D.1.

In reality, we can not observe the emission angular distribution, but the observation angular distribution
are measurable, so let’s do it reversely, first of all, we assuming that we know the observation angular
distribution, we know the observed angle and emitted angle has a relation as above Eq. D.2, we can
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get the Jacobian:

∥J2∥=
dθemi

dθobs
=

θobs√
θ 2

obs +
D
E

(D.6)

and then take the Jacobian transform into account, So that the emission angular distribution f (θemi) is

f (θemi) =
f (θobs)

∥J2∥
(D.7)
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Figure D.2 E = 500 eV, D = 10.3 meV

In summary, for a typical beam primary energy, E=500 eV, and D = 10.3 meV, the Well depth of Neon
on the LiF surface, whether in emission frame or observation frame, the effect of Jacobian transform
at an angle below 1◦ is more significant than it above 1◦. When the angle is larger than 1◦, they are
both in linear behavior with θemi ≈ θobs.





Appendix E

Temperature Measurements with type N
and type K thermocouples

During the first series of experiments, we could not reach temperatures below -100 ◦C. One of the
possible reasons could have been an improper reading of negative temperatures. Therefore, we have
decided to check our ability to read the negative temperature accurately with liquid nitrogen (LN2),
which has a boiling point of about -195.8 ◦C (77K) at atmospheric pressure.

We are measuring temperature with type K thermocouples (Nickel-Chromium / Nickel-Alumel). We
have quite several K-type thermocouples. All have thin wires and a single weld spot. We selected
those purchased from Omega company specializes in temperature measurements. We also selected a
readout via a dedicated FLUKE sensor have two inputs.

Measuring temperature with type N thermocouples (Nicrosil / Nisil): it shares the same accuracy
and temperature limits as type K, See Tab.E.1, but it has better repeatability between 300 ◦C to 500
◦C. Our manipulator and sample holder were delivered with a type K thermocouple, and we chose
to keep it. We purchased a new type N thermocouple made of thin 0.3 mm wires from RS-pro (RS:
621-2192). To read the temperatures, we have purchased two low-cost universal temperature units,
GM1312 able to read type N, K, J, T, or E thermocouples. the two units have been labeled GM1312-A
and GM1312-B, See Fig. E.2.

Table E.1 Data sheet of different types of TC, Seebeck Coefficient (SC)

Sensor type SC in µV/°C Temp Range in °C Material

N 36.256 -200 to +1300 Nisil Nicrosil

K 41.276 -200 to +1350 Alumel Chromel
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We first started by positive temperature values using a simple heating tape. We put the thermocouple
into LN2 and received an error message from the unit GM1312-A. After a few tests, we understood
that this unit displays a temperature 5 ◦C below GM1312-B using the same thermocouple. Since the
display is factory limited to -200 ◦C, the error is not too serious.

Temperature reading via a MAX31855N sensor and an Arduino

Figure E.1 A photo of MAX31855PMB1 board designed for K-type sensor. We have soldered
a MAX31855N chip dedicated to type N readout.

We have a heating unit Heat-2, from the company PREVAC. Unfortunately, the unit requires a
type K thermocouple, whereas our manipulator has a type N thermocouple. To use the power
supply with the correct temperatures, we have tried to read the type-N TC with an Arduino and
a MAX31855N temperature sensor. The idea was to use the Arduino to read the type-N TC and
generate a voltage that would mimic the same temperature but as if a type-K would have generated
it. We have purchased a printed circuit board equipped with a MAX31855K, and we have replaced
the chip with a MAX31855N dedicated to type N. See Fig.E.1. The readout by the Arduino is
performed with an SPI protocol using three wires: SELECT, DATA (MISO), and Clock. The Arduino
put the SELECT signal LOW (0 volts) and emits a series of XX UP-LOW cycles of the CLOCK
signal while reading the DATA signal from the MAX31855K at each rising edge of the CLOCK.
The result is an integer number describing the temperature. We used a program available on the web
(https://github.com/RobTillaart/MAX31855-RT). Unfortunately, the readout was much closer to that
of reading a type N with a type K converter, indicating probably the use of specific resistors on the
PCB. We did not proceed further in this direction. We used the HEAT-2 power supply directly with
type-N but with a bit of graph indicating the temperature correspondence.



171

Test temperature results of LN2

Figure E.2 The temperature was measured by a type-N plug with GM1312B N mode
(GM1312B-N), a type-N plug with GM1312B K mode (GM1312B-K), in addition, A type-K
plug with Fluke as the reference temperature.

We measured liquid nitrogen (LN2) temperature by type-K and type-N thermocouples, we have
two kinds of type N cables (RS and homemade), where the one from RS company has point-like
contact, and homemade K has multiple-wire, see Fig.E.2. LN2 has a boiling point of about -195.8 ◦C
(77K). We have four displays, fluke(type-k or J readable), GM1312-A (type N, K, J, T or E readable),
GM1312-B (type N, K, J, T or E readable), and Arduino UNO with MAX31855N. In addition,
GM1312 and fluke have measurement range from -200 ◦C to +1300 ◦C. The LN2 temperature
measurement results show in TableE.3.

In summary, the temperature results of LN2, -195.8 ◦C (77K), measured by fluke (type-K) and
GM1312 (type-N) are comparable with a difference ±3◦C. And the LN2 temperature results have a 5
◦C difference by using the same TC cable with different displays, GM1312-A and GM1312-B, i.e.
A=B-5 [◦C]. In addition, the quality of TC cables is important. For instance, a wrong value of LN2
temperature, -245 ◦C from a bad type-K cable given by fluke. Our two homemade type-N (HM-N)
TCs made by type-N extension cable have comparable results ±1◦C difference inside LN2, but they
give about 5◦C higher values compared with the one from RS company (RS-N). We think it’s due to
the extension cable metal core is bigger than RS and can absorb more thermal energies from the room
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Table E.2 Experimental results of type K from different readout devices

LN2 temperature measured by type K and type N (◦C)

Fluke (K) GM1312-A GM1312-B Arduino

(with type-K) (with RS N) (with homemade N) (with N)

-193.9 -197 -190.5 -105.3 (RS)

-245 (bad K) -196.5 -191.1 -103 (homemade)

Table E.3 Experimental results in LN2

TC/Display Fluke (K) GM1312-B GM1312-B

(K mode) (N mode) (K mode)

type-K -193.3 out of range -190.3

type-N out of range -196.3 -103.9

temperature environment. In temperature range from 25 ◦C to 150 ◦C, HM-N and RS-N give ∼±1◦C
difference.

E.0.1 General Description

We made a temperature measurement device by using a MAX31855N chip for N-type thermocouple
and programming by Arduino.

The MAX31855PMB1 peripheral module provides the necessary hardware to interface the MAX31855N
thermocouple-to-digital converter. The IC performs cold-junction compensation and digitizes the
signal from a thermocouple. For every type of TC, there exist a MAX31855 variant, this module is
set up to operate with a N-type thermocouple.

The working of thermocouples (TC) is based upon the Seebeck effect. Different TCs have a Seebeck
Coefficient (SC) expressed in µV/◦C. See https://pdf1.alldatasheet.com/datasheet-pdf/view/415790/
MAXIM/MAX31855NASA.html. This converter resolves temperatures to 0.25◦C, allows readings
from −200◦C to +1300◦C, and for N-type thermocouples exhibits thermocouple accuracy of ±2◦C
for temperatures ranging from −200◦C to +700◦C, and accuracy of ±4◦C for temperatures ranging
from +700◦C to +1300◦C.

https://pdf1.alldatasheet.com/datasheet-pdf/view/415790/MAXIM/MAX31855NASA.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/415790/MAXIM/MAX31855NASA.html
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Figure E.3 Temperature is measured by a type-N plug with GM1312B N mode (GM1312B-
N), a type-N plug with GM1312B K mode (GM1312B-K), in addition, A type-K plug with
Fluke as the reference temperature plot as the x-axis.

The core formula to calculate the temperature is (Table E.1)

Vout = (36.256µV/◦C)× (TR −Tinternal) (E.1)

Hardware SPI vs. Software SPI

The hardware and software SPI pin connections are shown in Tab.E.4

Programming Codes in Arduino

The programming codes original from Rob Tillaart, Peng PAN modified the PINs according to our
device connections as follows:

/ / AUTHOR: Rob T i l l a a r t
/ / VERSION : 0 . 1 . 4
/ / PURPOSE: t h e r m o c o u p l e l i b demo a p p l i c a t i o n
/ / DATE: 2021−09−15
/ / URL: h t t p s : / / g i t h u b . com / R o b T i l l a a r t / MAX31855_RT



174 Temperature Measurements with type N and type K thermocouples

Table E.4 Pin connections between the device and Arduino UNO

HW SPI Arduino UNO Notes

MISO 12 Data input

MOSI 11 not used

CLOCKPIN 13 CLK

SELECT 8 can be others too.

Table E.5 Experimental results from measuring different points of a cup of cold water

Temperature results from type K and type N (◦C)

TK(1) TK(2) TN(1) TN(2)

1.2 1.0 6 6.25

9.1 7.9 12.5 12.5

13.6 13.4 15 15.25

# i n c l u d e "MAX31855 . h "

c o n s t i n t doPin = 1 2 ;
c o n s t i n t c s P i n = 8 ;
c o n s t i n t c l P i n = 1 3 ;

MAX31855 t c ( c l P i n , c sP in , doPin ) ;

void s e t u p ( )
{

S e r i a l . b e g i n ( 9 6 0 0 ) ;
S e r i a l . p r i n t ( " S t a r t max31855_demo0 : " ) ;
S e r i a l . p r i n t l n ( MAX31855_VERSION ) ;
S e r i a l . p r i n t l n ( ) ;

t c . b e g i n ( ) ;
}

void l oop ( )
{
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i n t s t a t u s = t c . r e a d ( ) ;
S e r i a l . p r i n t ( " s t a t : \ t \ t " ) ;
S e r i a l . p r i n t l n ( s t a t u s ) ;

f l o a t i n t e r n a l = t c . g e t I n t e r n a l ( ) ;
S e r i a l . p r i n t ( " i n t e r n a l : \ t " ) ;
S e r i a l . p r i n t l n ( i n t e r n a l , 3 ) ;

f l o a t temp = t c . g e t T e m p e r a t u r e ( ) ;
S e r i a l . p r i n t ( " t e m p e r a t u r e : \ t " ) ;
S e r i a l . p r i n t l n ( temp , 3 ) ;
d e l a y ( 1 0 0 0 ) ;

}
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Auto-control Camera by Labview

In our experiment, for instance, in an azimuthal scan (φ -scan), so-called atomic triangulation, we
rotate the sample step by step (0.1◦/step), a complete turn (360◦) which will need to save images
3600 times in few hours. It’s impossible to finish such a task manually. So we tried to develop an
auto control system for such a task. We need to use external and start trigger mode in camera setting,
and prepare a proper external trigger signal from the Labview side.It requires a hardware connection
between the camera and LabVIEW (control sample manipulator) and software settings (HiPic and
Labview).

a) Pin connections b) After connecting with Labview

Figure F.1 We need to use connector pins No. 1, 2 (Ext. Trigger In and GND), and 4,5 (GND
and Trigger ready out).

The timing logic recorded by an oscilloscope in Fig.F.2 with 1s and 10s pause. The motor action
time tmotor ≈ 0.7 s, the computer action time tmotor ≈ 40ms. For both setting, One period time is
ttot = tpause + tmotor + tcom.
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PCM+sequence mode: 

Camera: ttot= ExposureTime*#ofExposure =100 ms*10=1 s 

Labview :  #ofSeq=10    ExposureTime :110 ms   Motor speed:0.36°/s (~7s/° in real)  

 

10.8s 10.8s 10.8s 10.8s 10.8s 

320ms 

1.76s 1.76s 1.76s 1.76s 

80ms 200ms 320ms 440ms 

1.6s 1.6s 1.6s 1.6s 1.6s 1.6s 1.6s 6.4s 

Labview : pause=10s 

Labview : pause=1s 

10.8s 10.8s 

1.56s

s 

1.44s

s 

1.44s

s 

1.32s

s 

Figure F.2 Here, we use PCM and external trigger by Labview signal. Due to some nonlinear
behavior of the camera, we switch to external start trigger mode, so we need one trigger at
the beginning.
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CAD design for retractable detector

Figure G.1 MCP holder designed for detector
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