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RESUME EN FRANCAIS

0.1 Soit V une variété définie sur un corps k£ que 'on va supposer par simplicité de
caractéristique zéro. On définit le schéma des arcs Lo (V') sur V' comme étant 'unique
k-schéma qui, pour toute k-algebre R, réalise I'isomorphisme suivant:

Homgen, (Spec(R[t]), V) = Homgen, (Spec(R), L (V)) .

Un point de £, (V') est appelé un arc sur V, il est un germe formel de courbe sur V.
De maniere analogue, étant donné un entier naturel m € N on définit le schéma des m-
jets comme étant 'unique k-schéma qui, pour toute k-algebre R, réalise I'isomorphisme
suivant:

Homgen, (Spec(R[[t]]/(tm+1)), V) = Homgen, (Spec(R), Z,(V)).

Via les isomorphismes précédents, les morphismes canoniques R[t] — R[t]/{t™"!) et
R[t]/(t™Y) — R[t]/{t") (pour m > n > 0) induisent respectivement des morphismes,
dits de troncation, 05 : Lo (V) — L, (V) et 07y + Z,(V) — Z,(V) qui vérifient la
propriété de transitivité 0;7, 007, = 7%, On a donc un systeme projectif (£, (V), 077)
de k-schémas dont la limite est le schéma des arcs 2 (V).

On appelle point base ou centre d'un arc v € Z(V) le point y(0) := 655, (v) de
V. Soit k(7) le corps résiduel de l'arc 7, celui-ci correspond alors a un morphisme
Spec(k(y)[t]) — V. L’image du point générique de Spec(x(7y)[t]) via ce morphisme est
appelée le point générique de I'arc ~.

0.2 Dans ce mémoire nous étudions des propriétés schématiques du schéma des arcs.
Dans ce sens, nous présentons des progres dans deux directions. Dune part, nous nous
intéressons a la nilpotence dans le schéma des arcs et ainsi, dans le chapitre 3, nous
déterminons 'idéal de fonctions nilpotentes de £, (%) qui habitent dans % (%), ou €
est une courbe plane affine définie par un polynéme réduit homogene ou homogene a
poids. De l'autre part, nous étudions les voisinages formels du schéma des arcs d’une
variété V' autour de certains points et dans le chapitre 5 nous présentons, dans le cadre
des variétés toriques normales, un résultat qui compare le voisinage formel de certains
points de .Z.,. (V') associés a des valuations divisorielles sur V' et celui des points rationnels
suffisamment génériques dans I’adhérence des premiers. Dans la suite de ce résumé nous
allons préciser les résultats obtenus dans ces deux directions.
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4 RESUME EN FRANCAIS

Les chapitres 2 et 4 ont, quant a eux, une vocation a introduire le schéma des arcs et
certaines de ses propriétés qui seront utiles dans la suite dans le cas du premier et, pour
le deuxieme, a motiver nos résultats du chapitre 5 en présentant de maniere détaillée le
résultat principal sur la structure locale des points rationnels du schéma des arcs : le
théoreme de structure de Drinfeld-Grinberg-Kazhdan.

1. SUR L’ESPACE TANGENT D’UNE COURBE DEFINIE PAR
UN POLYNOME HOMOGENE A POIDS

Le lien entre la géométrie de la variété V et la structure schématique de son schéma
des arcs a été peu étudié, les résultats principaux ont été obtenus par M. Mustata et J.
Sebag, voir I'Introduction (chapitre 1) pour la mise en contexte de notre étude que nous
décrivons a continuation.

1.1 Soit V une k-variété affine et Q%//k son module de différentielles de Kéahler associé.
On définit I"espace tangent Ty, de V' par Spec(Sym(Q‘l//k)). La définition du schéma des
1-jets et la propriété universelle de ’algebre symétrique impliquent que 7Y, est isomor-
phe comme k-schéma a £ (V') (voir le lemme 3.2.2). En particulier, les morphismes de
troncation induisent via cet isomorphisme des morphismes de k-schémas 6y : Ty, — V
et 675 : Zo(V) = Ty Nous avons la décomposition suivante :

(T )rea = (051) " (Vaeg) U (06.07) " (Vsing)-

Supposons que V' est irréductible. Nous démontrons que

G(V) =073 (Lo (V) = (051) " (Vieg), (1.1)

qui est une composante irréductible de Ty, que nous appelons sa composante générale.
Nous notons par N;(V) l'idéal de O(Ty ;) définissant ¢ (V) comme un sous-schéma
fermé de Ty .

On considére maintenant une courbe plane ¥ définie par un polynéme f € By :=
k[xo,yo]. On note By (respectivement By,) 'anneau de polynémes By := k[zo, Yo, 1, 1]
(resp. B := klz;,y;;1 € N]). La dérivation A : By, — By munit 'anneau B,, d'une
structure d’anneau différentiel. On note par [f] 'idéal différentiel [f] := (A®(f);s € N)
et par {f} le radical de [f]. Alors on peut montrer (voir les lemmes 2.3.5 et 2.3.8) que
Zo(€) = By/[f] et ZL1(€) = Spec(B1/(f,A(f))), ce qui nous permet de profiter des

outils d’algebre différentielle lorsque 'on étudie les schémas des arcs et des jets.

Par conséquence, Ni(%) s’identifie avec un idéal de Bi/(f, A(f)) ; on va aussi
noter par Ni(%) le seul idéal de 'anneau B; contenant (f, A(f)) dont 'extension dans
By/{f, A(f)) est N1(€). C’est cette derniére notation que nous allons privilégier doré-

N

navant. A laide de (1.1) on démontre que Ni(%) coincide avec 'idéal {f} N By de By,
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autrement dit, I'idéal des fonctions nilpotentes de 2, (%) qui habitent dans .Z1(%"). De
plus, si le polynéme f est irréductible et réduit, alors N1(€) = ((f, A(f)) : 9(f)>°) pour
toute dérivée partielle non nulle 9(f) de f.

1.2 Notre étude aboutit & 'obtention d’une base de Groebner de l'idéal Ni(%) de
B; dans les cas ou f est un polynéme réduit homogene ou homogene a poids, ce qui
détermine completement 'idéal. Nous présentons ici d’abord le cas homogene.

Soit n € N* un entier positif. On consideére une famille d’éléments (7V;)1<i<n de k*
deux & deux différents. Pour chaque entier ¢ € {1,...,n}, on pose f; = yo — ixo € By
et f=agys [T, f; avec €,&" € {0,1}. On définit, pour chaque entier i € {0,...,n}, les
polynémes suivants dans 'anneau B :

b e (ﬁl“f”) y (Hf) |

On considere € = Spec(By/(f)) la courbe plane associée. Le résultat suivant est notre
énoncé principal pour des polynémes homogenes; il correspond au théoreme 3.5.5.

Théoréme 1.3. Soit € la courbe plane réduite déterminée par le polynéome homogene
f défini précédemment. La famille de polynomes de By

B = {yll'o — yoxl,xily,i;&(f), 1€ {0, . ,n}, hl,hg < {O, 1}}

est une base de Groebner de l'idéal N1(€) pour 'ordre monomial Y1 >1ex Yo >lex L1 >lex
o dans By.

1.4 Nous allons traiter maintenant le cas homogéne a poids. Un polynéme f €
By est dit homogéne da poids de poids (wy,ws,w) si dans 'anneau By[t] la formule
f(t*¥rzg, t"2y0) = t“ f (0, yo) est vérifiée. Lorsque le corps k est algébriquement clos, si
f est homogene a poids alors il existe un entier n > 1, une paire d’entiers premiers entre
eux (r,s) avec r > s > 2 et des constantes non nulles Ay, ..., A\, € k* deux a deux dif-
férentes de telle facon que 1’on peut décomposer f sous la forme f = xgygl 2(ap—=Nyg)
avec g,¢’ € {0, 1}, a k-automorphisme de By pres.

Pour chaque entier ¢ € {1,...,n}, on pose D_, = 5&,71 ‘= Sy1Ty — rYoxy et
Dy, j, = NisTiyy Tyl — riixg 2l ou j; € {0, ..., s}. On pose

D.

]1""7jn = DAl»jl e D)"’“jn’

ou j; € {—1,...,s} pour chaque i € {1,...,n}. Voici notre résultat principal pour des
polyndémes homogenes a poids, qui correspond au théoreme 3.6.6.

Théoréme 1.5. Soit € la courbe plane réduite déterminée par le polynéme homogéne a
poids f = :L“‘(E)yg/ o (xh — Nyg) défini précédemment. La famille de polynomes de By

B = {Dfluley}sl;bljl,m,jnmji € {_17 ce '78}7i S {17 s 7n}7h’17h2 € {07 1}}
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est une base de Groebner de l'idéal N1(€) pour Uordre monomial i1 >lex Yo >lex L1 >lex
ro dans Bj.

Précisons que, méme si ces deux théorémes ne semblent donner une description com-
plete de N7(%) (dans les cas homogene et homogene & poids) que pour des corps al-
gébriquement clos, il est possible d’obtenir un systeme de générateurs de cet idéal pour
un corps arbitraire de caractéristique zéro a partir de celui obtenu dans sa cloture al-
gébrique. Des implications de ces résultats en termes des opérateurs différentiels sont
décrites dans la section 3.7.

2. UN THEOREME DE COMPARAISON ENTRE DES
VOISINAGES FORMELS

2.1 Les voisinages formels du schéma des arcs ont été principalement étudiés pour deux
classes de points. Dans le cas des points rationnels, le théoreme suivant de Drinfeld,
Grinberg et Kazhdan détermine la structure de leurs voisinages formels.

Théoréme 2.2 (Drinfeld-Grinberg-Kazhdan). Soit V' une k-variété et v € V(k) un
point rationnel de V tel que dim, (V) > 1. Soit v € Lo(V)(k) un arc centré dans v qui
n‘appartient pas & Loo(Vsing) (k). Alors il existe un k-schéma S de type fini, un point
rationnel s € S(k) et un isomorphisme de k-schémas formels :

—

‘goo(v>~y =~ S Xk SpE(k[(T})ien])-

Le k-schéma formel S, dans I'isomorphisme précédent est appelé un modele formel
fini de la paire (£ (V'),y). Notons qu’il est isomorphe au spectre formel d'une k-algebre
locale essentiellement de type fini. De plus, la preuve du théoreme fournit une méthode
de calcul effectif d'un modele formel.

L’autre classe d’arcs dont le voisinage formel dans le schéma des arcs a été étudié
sont les points génériques des parties constructibles irréductibles du schéma des arcs,
nommés points constructibles. Comme on expliquera dans la section 5.1, de Fernex et
Docampo ont montré que ces points sont caractérisés par le fait que leur voisinage formel
est noethérien.

Notre résultat principal du chapitre 5 établit une comparaison entre le voisinage
formel de certains points constructibles d’une variété torique associés a des valuations
divisorielles toriques et le voisinage formel des points rationnels suffisamment génériques
dans 'adhérence de ces points constructibles. Nous précisons a continuation cette com-
paraison.

2.3 Soit V une k-variété. Un arc v € Zy(V) est dit gras si le morphisme associé
Spec(k(y)[t]) — V est dominant. Dans ce cas, I'arc v définit une valuation discréte
ord,, sur le corps rationnel k(1) de la variété V.



RESUME EN FRANCAIS 7

Considérons maintenant une valuation divisorielle v sur V. L’adhérence dans £, (V)
de 'ensemble des arcs gras v € £, (V) dont la valuation associée ord, coincide avec v
est appelée I’ensemble de Nash associé a v et noté par .4,. C’est une partie irréductible
de £ (V) dont le point générique est un point constructible.

Le résultat de comparaison obtenu est le suivant, il correspond au théoreme 5.5.19.

Théoreme 2.4. Soient k un corps de caractéristique zéro et V une k-variété affine
torique normale. On considére une valuation divisorielle torique v sur V d’ensemble de
Nash associé A,. On note n, le point générique de N, et Kk, son corps résiduel.

Il existe un sous-ensemble ouvert non vide U, de A, disjoint avec Lo (Vsing) tel que,
pour tout arc rationnel a € U, (k) il existe un isomorphisme de k,-schémas formels entre

_

LoV, & tin[(Tien] et Lo(V)aBrtin:

L’énoncé du théoreme 5.5.19 est plus précis et fournit une description de £ (V'),, en

-

termes d'un modele formel fini de (Z(V'), ). On en déduit que £ (V'),, est le spectre
formel d'une k,-algebre locale qui est non seulement noethérienne, mais essentiellement
de type fini. De plus, on a une méthode pour la calculer de maniere effective, ce qui
n’est pas toujours simple pour le voisinage formel d’un point constructible de .2, (V).

Remarquons que notre théoreme de comparaison implique que le voisinage formel
de tout point rationnel de l'ouvert U, (k) est constant a isomorphisme pres. Ceci avait
été déja observé et démontré par Bourqui et Sebag (voir [13]) par d’autres techniques ;
notre résultat relie cette invariance directement avec le point générique de I’ensemble de
Nash.






CHAPTER

INTRODUCTION

1.0.1 Let V be a variety defined over a field k&, which we may assume for simplicity to
be of characteristic zero. An arc on V' can be thought of as a formal germ of curve on
V, the arc scheme L (V) of V is a k-scheme that parametrizes those formal germs of
curve on V. Let us be slightly more precise and define .2, (V') as the unique k-scheme
realizing, for every k-algebra R, the following isomorphism:

Homgen, (Spec(R[t]), V) = Homgen, (Spec(R), L (V)) .

Intimately related with the arc scheme are the jet schemes, which can be defined in
an analogous way: for any nonnegative integer m € N, the m-jet scheme £, (V) of V
is the unique k-scheme realizing, for every k-algebra R, the isomorphism:

Homsen, (Spec(R[t]/ (™)), V) = Homgen, (Spec(R), Zn(V)).

As a first geometric interpretation, jets may be understood as higher order analogues
of tangent vectors, in fact the 1-jet scheme Z(V') is canonically isomorphic to the
tangent space Ty, of V' (see lemma 3.2.2) and Z,(V)) may be identified with V' itself.
Jets may be seen as truncations of arcs, this comes from the existence of morphisms
Oy @ Loo(V) = Zn(V) for every m € N and 0y, @ £, (V) — Z,(V) for n < m
satisfying the transitivity property 07, o 077, = 075,. Precisely, the arc scheme can be
obtained as the limit of the projective system (.Z,,(V), 0"y,) in the category of k-schemes,

Zw(V) = lim Z,(V).
meN
Given an arc 7 € Z(V), its base point or center v(0) := 655,(7) is a point of V.
The generic point of ~v is also a point of V' defined as the image of the generic point of
Spec(k(y)[t]) via the morphism Spec(x()[t]) — V corresponding to the arc -, where
k() denotes its residue field. All these notions will be formalized in sections 2.1 and
2.2.
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1.0.2 Once we have presented the main objects of our study, let us tell something
about their history. In 1968, John F. Nash wrote a paper relating some algebraic,
geometric and topological properties of the arc scheme Z,, (V') with the geometry of the
singularities of the k-variety V. He realized that there is a close connection between the
“families of arcs” (nowadays called Nash components) centered at the singular locus of V
and certain data associated with resolutions of singularities (whose existence had been
recently proven by H. Hironaka in 1964): the essential exceptional divisors. As we will
see below, he formulated this connection in terms of an injective map and the question
of whether this map is surjective (at least in dimension two) became known as the Nash
problem. Although Nash’s paper remained unpublished until 1995 (see [64]), it is at the
origin of the study of arcs and arc scheme per se. We will give later in the introduction
more details about this; let us just advance that a complete answer (in every dimension)
of the Nash problem was finally given between 2003 and 2013.

The study of arc scheme has been boosted from the middle of the 1990’s by the
development of the theory of motivic integration. The starting point of this theory was
a lecture in Orsay by M. Kontsevich in 1995, where he proved that two K-equivalent
varieties have the same Hodge numbers. From V. Batyrev’s proof of the fact that two
birationally equivalent complex Calabi-Yau varieties have the same Betti numbers (see
[2]), crucially based on p-adic integration, Kontsevich observed that one can upgrade p-
adic integration to a geometric integration theory, the motivic integration. It is defined
as a measure theory on the arc scheme and takes values in a ring of virtual motives
constructed from the Grothendieck ring of varieties (a ring obtained from the cut and
paste property in the category of k-varieties). Motivic integration was then formalized
and extended to singular varieties defined over a field of characteristic zero by J. Denef
and F. Loeser in [29] and since then it has been developed in several directions and found
many applications in diverse fields, including birational geometry and singularity theory
(e.g., through the definition of new singularity invariants). This development required
a deeper understanding of arc scheme which was also accomplished in those years.

However, in both the preceding approaches related with the study of the Nash prob-
lem and the motivic integration, only topological considerations and the reduced struc-
ture of arc scheme are involved. Just few things are known about the scheme structure
of arc scheme; to the best of our knowledge we can find in the literature results on the
local formal structure due to V. Drinfeld ([30]), M. Grinberg and D. Kazhdan ([34]),
A. Reguera ([66],[67]), D. Bourqui and J. Sebag (e.g., [10], [13]), H. Mourtada and A.
Reguera ([62]) and T. de Fernex and R. Docampo ([26]); and results about nilpotency
on arc scheme due to M. Mustata ([63]), J. Sebag ([71], [72], [73]) and K. Kpognon and
J. Sebag ([55]). In this monograph we present advances in both directions, in chapter
3 concerning nilpotency and in chapter 5 about the local structure. In the rest of the
introduction, we are going to contextualize and describe them.

1.0.3 As we will explain in section 2.3, differential algebra, introduced by J. Ritt and
E. Kolchin (see [69] and [54]) provides a description of the arc scheme of an affine k-
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variety in such a way that, if an affine k-variety V is defined as a closed subscheme of an
affine space by an ideal I, the corresponding arc scheme 2, (V') is the affine closed k-
subscheme of an appropriate (infinite-dimensional) affine space defined by the differential
ideal [I] generated by I. This description of the arc scheme in terms of differential
algebra is not only computationally advantageous, but also allows to transpose results
of differential algebra into geometric properties of arc scheme. As an example, from [54,
Ch. 1V/§17/Proposition 10] we deduce the following result about the irreducibility of
arc scheme.

Theorem 1.0.4 (Kolchin irreducibility theorem). Let V' be a k-variety. Then V is
irreducible if and only if £ (V') is irreducible.

Unfortunately, the analogous statement for reduceness is not true, the best result
that we can have is the fact that if £, (V) is reduced, then V is reduced (see lemma
2.2.17).

Many examples of reduced varieties with non-reduced arc scheme are present in the
literature, see e.g., [71]. In particular our main results in chapter 3, theorems 3.5.5 and
3.6.6, imply that this is the case of singular reduced plane curves defined by homogeneous
or weighted-homogeneous polynomials.

It is then interesting to study the relation between the nilpotency in the arc scheme
Zo(V) and the geometry of the base variety V. In this sense, we have the following
result due to M. Mustata, which can be deduced from the main theorem in [63].

Theorem 1.0.5 (Mustata). If V is locally a complete intersection (l.c.i) k-variety with
rational singularities, then for every m € N the m-jet scheme £, (V') is reduced. In
particular Ly (V') is reduced.

In the case of plane curves, J. Sebag found in [71] and [72] the following characteri-
zation of the reduceness of the arc scheme.

Theorem 1.0.6 (Sebag). Let V be a l.c.i. curve defined over k. Then V is smooth over
k if and only if Z.(V') is reduced.

Moreover, for V' an integral k-variety, in [72] Sebag related the torsion elements of the
module of Kéhler differentials Q%//k of V' with nilpotent functions in %, (V'), deducing
the following result.

Theorem 1.0.7 (Sebag). Let V' be an integral k-variety. If the k-scheme Lo (V) is
reduced, then the Oy -module Q%//k is torsion free.

1.0.8 The preceding results either give geometric conditions on V' which assure that
Z(V) is reduced or, conversely, provide properties on V' which hold when £, (V') is
reduced. However, this is not usually the case in general and in fact, even for plane
curves, theorem 1.0.6 shows that the presence of singularities implies the existence of
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non-trivial nilpotent elements of the arc scheme. Hence, rather than wondering how the
fact of £ (V') being reduced is related with the geometry of V', we may ask the follow-
ing question: what implications does the existence of non-trivial nilpotent functions of

Z(V) have in terms of V?

Such implications have been found by J. Sebag ([73]) and M. Gros, L. Narviez
Macarro and J. Sebag ([35]) in the field of differential operators for nilpotent functions
of £ (V) which live in .Zj(V'). Let us consider the polynomial rings By := k[zo, yo|
and By := k[xq, Yo, x1,y1] and the k-derivation A : By — By such that A(zg) = x; and
A(yo) = y1. We consider on B; the degree deg, such that deg,(z1) = deg,(y1) = 1
and deg; (zg) = deg;(yo) = 0. If ¥ is the affine plane curve defined by a polynomial
f € By then its 1-arc scheme .21 (%) is isomorphic to Spec(B1/(f, A(f))), as we will see
in lemma 2.3.8. The set of nilpotent functions of 2, (%) which live in £ (%) defines
an ideal NV1(%) of By containing (f, A(f)).

The following result corresponds to [35, Corollary 4.10]. It is a generalization of [73,
Corollary 1.9] where the curve was asked to be integral.

Theorem 1.0.9 (Gros-Narvdez Macarro-Sebag). Let [ € By be a reduced polynomial
and € the associated affine plane curve. Then, for every homogeneous element P €
Ni1(€) of degree deg,(f) = d there exists a differential operator of the plane D such that
D(f%) € (f) and its principal symbol can be identified with P. Conversely, for every
differential operator of the plane D of order d such that D(f?%) € (f), its principal symbol
can be identified with an element of N1(%).

The precise statement of this result can be found in theorem 3.7.6, where the differ-
ential operators related to an element of N;(%) are moreover identified in terms of the
V-filtration of the ring of differential operators of the plane along %

Furthermore, Gros, Narvaez Macarro and Sebag also obtained in [35, Theorem 5.3]
the following relation between N7(%’) and Bernstein-Sato operators, which will be de-
tailed in theorem 3.7.12.

Theorem 1.0.10 (Gros-Narviez Macarro-Sebag). Let f € By be a reduced polynomial
and € the associated affine plane curve. Let P(s) = Y; P;is' be a Bernstein-Sato operator
for f (i.e., there exists a polynomial b € Q[s] such that P(f*™') = b(s)f*) of order
d > 2. Then, each s-coefficient of its principal symbol can be identified with an element

Ole((g)

From these two results we deduce that a complete description of the ideal N;(%)
would provide a complete description of the principal symbols of differential operators
of the plane of degree d such that D(f?) € (f) (respectively Bernstein-Sato operators
for f of order d > 2). Let us also mention that the existence of non-trivial nilpotent
functions of the arc scheme of a variety has recently been used in the context of vertex
algebras (see [1]).

The first approach to the computational determination of nilpotent functions of the
arc scheme was made by K. Kpognon and J. Sebag in [55]. In particular, they develop
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an algorithm which, given the polynomial f € By, provides a Groebner basis of the ideal
Ni1(%). Unfortunately, its complexity makes it useless in a large number of examples.

1.0.11 Chapter 2 is dedicated to the theoretical study of the ideal N1 (%) for € an
affine plane curve associated with a reduced homogeneous or weighted-homogeneous
polynomial. It is the result of a joint work with J. Sebag. In the main theorems of that
chapter, we produce Groebner bases of NVj(%) in those cases. Let us begin with the
homogeneous case.

Let n € N*. For every integer i € {1,...,n}, let v; € k* be mutually distinct
elements. For every integer i € {1,...,n}, we set f; = yo — 720 € By and f =
wgys I, f; with e,¢/ € {0,1}. Let us consider, for every integer i € {0,...,n}, the
following polynomials of the ring Bj:

0 = (EA(M) X (Hﬁlfg> .

We set € = Spec(By/(f)). The following is our main result for homogeneous polynomi-
als, corresponding to theorem 3.5.5.

Theorem 1.0.12. Let € be the reduced affine plane curve defined by the homogeneous
polynomial f above. The family

% = {yll'o — yoxl,x,ilyfl;éi(f), 7 € {0, e ,n}, hl,hg € {O, 1}}

is a Groebner basis of N1(€) for the monomial order 11 >1ex Yo >lex T1 >lex Lo in B.

Let us now consider the weighted homogeneous case. A polynomial f € B is said to
be weighted homogeneous of weight (wq, we, w) if we have the formula f(t*'xzq, t“2y,) =
t" f(zo,v0) in the polynomial ring By[t]. If the field k is algebraically closed, if f is
weighted homogeneous then there exist an integer n > 1, a pair of coprime integers (r, )
with r > s > 2 and Ay, ..., \, € k" mutually distinct such that, up to k-automorphism

n

of By, we have f = x5ys [T%,(zh — \ys) with €,¢" € {0,1}.

For every integer i € {1,...,n}, we set D_y := Dy, _1 := sy129 — ryox1 and Dy, j, :=
Nty Tyl — iy Vel where j; € {0, ..., s}. We denote
Dj17"'7jn = D)‘lvjl o D>‘Tb7jn7

where j; € {—1,...,s} for every ¢ € {1,...,n}. We can state our main result in the
weighted-homogeneous case, corresponding to theorem 3.6.6.

Theorem 1.0.13. Let € be the reduced affine plane curve defined by the weighted ho-
mogeneous polynomial f above. Then the family

B ={D 1,25y Djy insdi € {—1,...,s},i € {1,...,n}, hi, hy € {0,1}}

is a Groebner basis of N1(€) for the monomial order 1 >1ex Yo >lex T1 >lex Lo in Bi.
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Although these theorems appear to give a complete answer for homogeneous and
weighted homogeneous reduced polynomials only for algebraically closed fields, it is
possible to deduce a system of generators of N1(%) for an arbitrary field of characteristic
zero from that obtained for its algebraic closure by base change. The implications of
those results in terms of differential operators are described in section 3.7.

1.0.14 In order to describe and contextualize our study about the formal neighbour-
hoods of the arc scheme, let us go back to the Nash problem. Let V' be an integral
separated k-variety with singular locus Vging. A subset C of £, (V) is said to be fat if
there is no proper closed subvariety Z of V such that C' C £ (7). Every irreducible
fat subset C' of £ (V') defines a valuation orde of the rational field k(V') of V.

We define the Nash space of V as A (V) = (655) " (Vsing), i-€., the set of arcs on
V' centered at the singular locus; it is a constructible closed subset of £, (V). A fat
irreducible component of A" (V) is called a Nash component. In particular, it defines a
valuation on V. All the assertions in the following theorem were proven by Nash in [64].

Theorem 1.0.15 (Nash). Let V' be an integral separated k-variety. The following as-
sertions hold true:

(1) There are only finitely many irreducible components of the Nash space A (V'); each
of them s fat and hence it is a Nash component.

(2) The valuation associated with a Nash component is an essential divisorial valuation
of index 1 on V.

(3) The valuations associated with two different Nash components are different.

Recall that a divisor over V is essential if the associated divisorial valuation v is
essential, i.e., for every resolution of singularities 7 : Y — V', the center of v on Y is
the generic point of an irreducible component of 77! (Vsiyg). Let us remark that if & is
a field of characteristic p > 0, the Nash space .4 (V') may have irreducible components
contained in Z(Vaing). In [50, Example 2.13] S. Ishii and J. Kollar show that this is
the case for V' = Spec(k[z,y, z]/(xP — yPz)).

The preceding theorem shows that the map associating with every Nash component
C' of the Nash space A4 (V') the essential divisorial valuation orde on V' is well defined
and injective; it is called the Nash map.

Nash components essential divisorial valuations
of #/ (V) of index 1 on V'

In [64], Nash observed that, on several two-dimensional examples, the Nash map was
also surjective and asked whether it is the case in general. He announced that an
affirmative answer seemed to be possible for surfaces, but also that the analogous in
higher dimension was uncertain. This question is known as the Nash problem.
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Problem 1.0.16 (Nash problem). Is the Nash map above bijective?

This question was answered in a series of articles published between 2003 and 2013,
which show that Nash’s intuition was indeed correct. The following theorem, corre-
sponding to the main theorem in [33], solved the case of surfaces in 2012.

Theorem 1.0.17 (Ferndndez de Bobadilla-Pe Pereira). Let k be an algebraically closed
field of characteristic zero and V' be an integral k-surface. Then the Nash map is bijective.

In higher dimensions, the answer to the Nash problem is negative: S. Ishii and J.
Kollar gave in 2003 counterexamples in dimension > 4 (see [50, Proposition 4.5]) and
T. de Fernex found in 2013 counterexamples in dimension 3 (see [24]), which completed
the picture. Particularly interesting is a counterexample studied by J.M. Johnson and
J. Kollar in [51, Proposition 9], which was already proposed by Nash in [64].

1.0.18 However, it remains a challenging problem to understand the image of the
Nash map. There exist answers under different additional assumptions, see [48, Section
4] for a recollection of some results in this sense (other answers after the publication of
this article have been given in [58, Theorem 3.3] and [25, Theorem 1.1]). In particular,
for toric varieties the Nash map is bijective, as shown in [50, Theorem 3.16] for normal
toric varieties and in [47, Corollary 5.12] for non-normal toric varieties.

Theorem 1.0.19 (Ishii-Kollar, Ishii). Let k be an algebraically closed field of charac-
teristic zero and let V' be an affine toric k-variety. Then the Nash map is bijective.

Above we have said that every fat irreducible set of Z,,(V') defines a valuation on
V' which, in the particular case of Nash components, is an essential divisorial valuation
of index 1. Conversely, given a divisorial valuation v on V| we can construct a closed
irreducible fat subset .4;, of £, (V') which defines the valuation v. We call .4;, the Nash
set associated with v. Then, the Nash problem consists in determining the maximal Nash
sets 4, such that v is a divisorial valuation on V. This problem may be generalized
to the problem of understanding the inclusions of Nash sets .4, C .4, in terms of the
valuations v and v/, see [49, Problem 3.7]. In the case of normal toric varieties and
toric valuations, the relation is clear, and .4, C .4, if and only if, for every f € O(V),
we have v/(f) < v(f). This property, and also theorem 1.0.19, illustrate the fact that
(normal) toric varieties are well-behaved for questions related with this kind of problems.
We profit from this in chapter 5 to obtain our result about the formal neighbourhood
at points of the Nash set associated with a divisorial toric valuation.

In the general setting, the problem of understanding such inclusions of Nash sets
N, C M, has been related by M. Lejeune-Jalabert in [57] to a problem of wedges
lifting to a resolution of singularities (a wedge is an arc on the arc scheme Z,.(V))
which has been proven to be equivalent to the Nash problem by A. Reguera in [66].
This equivalence, which is at the core of the last results concerning the Nash problem
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(in particular that of theorem 1.0.17), lies in the fact that the formal neigbourhood of
Z(V) at the generic point of a Nash set is noetherian.

1.0.20 The above exposition shows how the formal local structure of the arc scheme,
which is our field of study, played an important role in the solution of the topological
problem at the origin of the study of the arc scheme. Let us now focus on the formal
neighbourhoods. As we will explain in subsection 5.1, the property of the formal neigh-
bourhood to be noetherian holds for constructible points (i.e., the generic point of an
irreducible constructible subset of the arc scheme; let us point out that the interest of
constructible subsets of the arc scheme was already remarked in motivic integration)
which are non-degenerate, that is, whose generic point does not belong to Vgine. This is
not true for arbitrary arcs. However, we have the following theorem, due to V. Drinfeld,
M. Grinberg and D. Kazhdan ([30], [34]) which is crucial in the understanding of the
local structure at rational points. For this reason, chapter 4 is entirely devoted to this
theorem and related facts.

Theorem 1.0.21 (Drinfeld-Grinberg-Kazhdan). Let v € V (k) be a rational point of V
such that dim, (V) > 1. Let v € Z(V)(k) be a non-degenerate rational point of the
associated arc scheme centered at v. Then there exist an affine k-scheme S of finite type,
a rational point s € S(k) and an isomorphism of formal k-schemes:

—

goo(v)y =~ S Xk SpE(k[(T})ien])-

The formal k-scheme S, in the above isomorphism is called a finite formal model of
the pair (£ (V),v). An important fact is that the proof of the theorem is constructive
in the sense that it provides an explicit description of a finite formal model, unlike formal
neighbourhoods at constructible points which, despite of their finiteness property, are in
general hard to compute explicitly.

1.0.22 Let us now explain the motivation of our study in chapter 5, which is a joint
work with D. Bourqui and J. Sebag. We place ourselves in the toric setting, hence V'
will be a normal affine toric k-variety. In [13], Bourqui and Sebag proved the following
result (see theorem 5.2.17 for a more precise statement).

Theorem 1.0.23 (Bourqui-Sebag). Let v be a divisorial toric valuation of V' and let
N, be the corresponding Nash set. Then there exists a non-empty open subset U, of A,
consisting of non-degenerate arcs such that, for every o € U,(k), the local ring Oy (v,).q

(and hence also O@),a) is constant up to isomorphism.

Roughly speaking, this theorem says that, for sufficiently generic non-degenerate
arcs in the Nash set .4;, their formal neighbourhood is constant up to isomorphism.
Moreover, they provide a finite formal model in this case. Their proof profit from the
extension of the action of the torus on V' to an action on %, (V). Our innovative idea
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consists in relating this constant formal neighbourhood with the formal neighbourhood
at the generic point of the Nash set. We obtain the following result (see theorem 5.5.19).

Theorem 1.0.24. Let k be a field of characteristic zero. Let V' be an affine normal
toric k-variety. Let v be a toric divisorial valuation on'V and A4, be the associated Nash
set. Let n, be the generic point of A, and k, be the residue field of n,.

There exists a non-empty open subset U, of N, consisting of non-degenerate arcs
such that for every arc a € U, (k) there exists an isomorphism of k,-formal schemes

— —

between Lo (V )y, @ ki [(Th)ien] and Loo(V)a®rky -

Let us stress that theorem 5.5.19 actually gives a more precise result. In particular,

it provides an explicit description of %, (V),, in terms of the formal spectrum of an
essentially of finite type local k,-algebra (a priori we only knew that such a formal
neighbourhood was noetherian).

It is natural to ask whether there exist other classes of varieties for which the formal
neighbourhood of a rational non-degenerate arc is generically constant on Nash sets,
and, if so, whether the involved isomorphism class is encoded in some sense in the formal
neighbourhood of the generic point of the Nash set in such a way that a comparison
theorem similar to theorem 1.0.24 still holds. Such a result would allow to transpose
some of the properties and known facts about formal neighbourhoods of rational arcs
obtained from the Drinfeld-Grinberg-Kazhdan theorem to that of generic points of the
Nash sets; in particular the possibility of easily computing an explicit presentation.

1.0.25 Let us briefly explain the contents of each chapter. Chapter 2 is an introduc-
tory recollection of known facts about arc scheme including its definition and existence,
explicit presentations in terms of a presentation of the base variety, relation with differ-
ential algebra, some topological properties and facts about its constructible subsets and
the relation with valuations. In particular, most of the notions in this introduction will
be formally presented there. Chapter 3 contains our study about the nilpotent functions
of Z(%) living in .Z1(€) for € a reduced affine plane curve defined by a homogeneous
or weighted homogeneous polynomial. The fourth chapter is consecrated to present the
Drinfeld-Grinberg-Kazhdan theorem and some related facts. Finally, we begin chapter
5 by explaining how the non-degenerate constructible points are characterized by the
noetherianity of their formal neighbourhoods and then we develop our comparison result
presented in theorem 1.0.24.
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1.1 CONVENTIONS AND NOTATION

Along the text, k will denote a field (of characteristic zero in chapters 3 and 5 unless
otherwise stated). We denote by N the set of natural numbers and we assume that
0 € N, analogously Z, Q,R and C denote the sets of integer, rational, real and complex
numbers (with the corresponding usual structures). We denote by Alg,, (resp. Schy) the
category of k-algebras (resp. k-schemes) with morphisms of k-algebras (resp. morphism
of k-schemes). For any category C and any objects A, B € C, we denote by Hom¢ (A, B)
the set of morphisms from A to B in the category.

By a ring we mean a commutative unitary ring, except in section 3.7. Let R be a
ring, we denote by R* the set of multiplicative invertible elements, by analogy N* :=
N\ {0}. Let i be an ideal of R and f € R, we denote by R; the localization of R
with respect to the multiplicative subset {f"; r € N}. We denote by i : f*° the ideal
{g € R: frg €ifor some r € N}. Let R be another ring and ¥ : R — R’ a morphism
of rings. For the sake of easy reading and abusing notation, the extension ideal of i in
R’ via the morphism ¢ is denoted by ¥(i), or even by i if the involved morphism ¥ is
clear from the context (for example if R is a subring of R’).

Given a k-algebra R, we denote by R[t] the formal power series ring in the variable ¢
with coefficients in R, it is still a k-algebra. Let R[X,;w € Q] be a polynomial ring and
(fi)ien a family of elements, we denote by (f;;7 € A) the ideal generated by them. Let S
be a R-algebra and {s, },ecq a collection of elements in S. Let f € R, then we denote by
flx,=s, € S the image of f by the unique morphism of R-algebras R[X,] — S mapping
X, to s, for each w € Q.

We denote by A} the affine n-dimensional space defined over the field k. By k-variety
we mean a k-scheme of finite type. Given a k-variety V, we denote by Vies or Reg(V)
the regular locus of V' (which coincides with the locus of smooth points of the structural
morphism when the field k is perfect) and by Vg or Sing(V) the non-regular locus
with its reduced structure of closed subscheme of V. Given a k-scheme X, we denote
by Xi;eq the reduced closed subscheme of X. The structure sheaf of X is denoted by Ox
and when X is affine we simply denote O(X) := Ox(X). If X is an affine k-scheme and
f € O(X) we denote by {f # 0} the distinguished open subset of X where f does not
vanish and by {f = 0} the closed subset X \ {f # 0}. If i is an ideal of O(X) then we
also denote by {i = 0} the vanishing locus of i in X.
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ARC SCHEME

The aim of this chapter is to present the central objects of our study, namely the arc
scheme associated with a scheme defined over a field, as well as their most important
properties and some more specific ones which are relevant for our purposes in the next
chapters. In this way, this chapter is intended to be an introductory recollection of
results on arc scheme which are already in the literature.

We will begin by defining, in sections 2.1 and 2.2, the functors of jets and arcs.
These functors are representable (we will only give some ideas in this sense as well as
precise references) and their representatives are respectively the jet and arc schemes.
We complete these sections with a review of useful properties of these objects.

In section 2.3 we explain the relation between arc scheme and differential algebra
and how it can be taken advantage of in order to deduce interesting properties of the
arc scheme; in particular the contents in this section will be useful in the study of the
nilpotency in arc scheme developed in chapter 3. In section 2.4 we will present some
topological properties of arc scheme which are not only interesting by themselves, but
also play an important role in the sequel. We also recall the definition of constructible
subsets of a scheme and explain their characterization in arc scheme. Section 2.5 is
a discussion about valuations and the arc scheme, whose relationship has been at the
origin of the arc scheme through the Nash problem, as explained in the Introduction.
Moreover, this link appears in chapter 5 in the case of normal toric varieties.

2.1 JET SCHEMES

We are going to follow [19, Ch. 3, §2 and §3| as the main reference for this section and
the following one. There, the more general setting of relative schemes is considered and
the constructions and most of the results are explicitly described and proven, otherwise

19
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precise references are given. Here we will only consider the case of schemes defined over
a field and we will omit technical proofs and arguments which go beyond the scope of
this presentation, indicating where they can be found.

2.1.1 Let k be a field and X be a k-scheme. Let m € N. For every k-scheme Y, a Y-

valued m-jet on X (or Y-valued jet of level m on X) is a morphism Y @, k[t]/{¢™ ) — X.
We denote by .7, (X)(Y) the set of Y-valued m-jets on X, i.e.,

Zn(X)(Y) := Homgen, (Y @4 k[t]/ (1), X) .

The functor %,,(X) is the Weil restriction of X ®; k[t]/{t™*!) with respect to the
canonical morphism of k-schemes Spec(k) — Spec(k[t]/(t™*1)). When Y = Spec(R) is
affine, we also speak of a R-valued jet of level m, in this case

Zn(X)(R) := Z,(X)(Spec(R)) = Homgen, (Spec(R[t]/(tm+1>), X) .

Let g : Y’ — Y be a morphism of k-schemes, it induces a morphism

Ln(X)(g): Ln(X)Y) — Zn(X)(Y)
Y —> 7O (g X Idk[t]/(tmﬂ))

This datum defines a contravariant functor from the category of k-schemes to that
of Sets (which is also called a presheaf on the category of k-schemes), i.e.,

Zn(X) : Schy? — Sets.

It is called the functor of m-jets on X.
This construction is also functorial in X: let f : X’ — X be a morphism of k-schemes,
then for every k-scheme Y it induces a morphism
Zn(NY): Zn(X)Y) — Zu(X)(Y)
gl —  fon,

which defines a morphism of functors .Z,,(f) : Z,.(X') — Zn(X).

2.1.2 The following proposition, corresponding with [19, Ch. 3, Proposition 2.1.3 a)]
states that the functor of jets is representable.

Proposition 2.1.3. Let k be a field, X be a k-scheme and m € N. Then the functor
Zn(X) of m-jets on X is representable.

We also denote by .%,,(X) the unique representative of the functor .%,,(X) of m-jets
on X. It is a k-scheme, unique (up to isomorphism of k-schemes) and we call it the m-
jet scheme (or scheme of jets of level m) of X (or associated with X'). In particular, if
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f: X" — X is a morphism of k-schemes, the morphism of functors Z,,(f) : Z,.(X’) —
Z(X) induces a morphism of k-schemes between the corresponding representatives,
which we also denote by .Z,,(f).

The representability of the functor of m-jets on X is deduced from the fact that it
is a particular case of Weil restriction, hence general results about the representability
of Weil restrictions hold. The functor .%,,,(X) is the Weil restriction of X ®, k[t]/{t™)
with respect to the canonical morphism of k-schemes Spec(k) — Spec(k[t]/{(t™*1)), the
fact that it is representable is deduced from [19, Ch.3, Theorem 1.4.1]. More details
about Weil restrictions can be found in [19, Ch.3, §1] and more generally in [6, Section
7.6].

Let us list some properties of the jet schemes which are proven in [19, Ch. 3, Propo-
sition 2.1.3, Subsection 2.1.5 and Lemma 2.1.6]. They are all deduced from general
properties of the Weil restrictions, all of which can be found in [19, Ch.3, §1].

Proposition 2.1.4. Let k be a field, X be a k-scheme and m € N. The following
properties hold true:

(1) LetY be a k-scheme and f :Y — X be a closed (resp. open) immersion, then the
associated morphism of schemes Lp(f) : Ln(Y) — ZL(X) is also a closed (resp.
open) immersion.

(2) For every open covering (Us)ier of X, the family (£, (U;))ier is an open covering
of L (X).

(3) Assume that the k-scheme X is affine (resp. locally of finite type, resp. locally
of finite presentation, resp. quasi-compact, resp. separated). Then the k-scheme
Zn(X) has the same property.

(4) Let'Y be a k-scheme and py : X X Y — X and py : X X, Y = Y be respectively
the first and second projections. Then the morphism of k-schemes

(Zn(p1), ZLin(p2)) + Lin(X % Y) — ZLon(X) xp Ln(Y)

s an isomorphism.

2.1.5 Let m,n € N be two integers such that m > n. The canonical quotient
morphism k[t]/(t™1) — k[t]/{t""") induces a morphism p™ : Spec(k[t]/{t"T!)) —
Spec(k[t]/(t™1)) between the corresponding affine k-schemes. Let X be a k-scheme,
then for every k-scheme Y the preceding morphism induces a map

o — o (Idy x py')

which is called the truncation morphism from level m to n on Y-valued jets on X.
These truncation morphisms 0 (Y') are (contravariantly) functorial in Y; the associated
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morphism of functors 0]y : £, (X) — £,(X), which can be identified with a morphism
of k-schemes via the representability, is also called the truncation morphism from level
m to n.

Let X be a k-scheme and ¢,m,n € N be integers such that £ > m > n. The
canonical quotient morphism k[t]/(t*1) — k[t]/(t"*!) being equal to the composition
K[t]/(t5Y) — k[t]/ ™) — E[t]/(t"*1), we deduce that the truncation morphisms sat-
isfy the transitivity property

0 x =00y 00, .

Let f: X’ — X be a morphism of k-schemes and m,n € N be two integers such that
m > n. Then the following diagram is commutative

20y 2. 4 (x)
erf,X/\ o
Zn(X") ) Zn(X)

which shows that the truncation morphisms 6"y are functorial in X. Then the jet
schemes (£, (X))men together with the truncation morphisms 6"y form a projective
system in Schy which is functorial in X.

Let Y be another k-scheme and v € Z,(X)(Y) be a Y-valued m-jet. The point
05 (v) € X(Y) is called its base point, we also denote it by ~(0).

A proof of the following result can be found in [19, Ch. 3, Corollary 2.2.4].

Proposition 2.1.6. Let k be a field, X a k-variety and m,n € N with m > n. The
truncation morphism 0,y is an affine morphism of k-schemes.

2.1.7 Let m € N be an integer. The canonical morphism of k-algebras k — k[t]/ (™)
induces a morphism of k-schemes r,, : Spec(k[t]/{t"™!)) — Spec(k). Let X and Y be
two k-schemes, the preceding morphism induces a map

Smx(Y): X(Y) — Z.(X)(Y)
v+ ~vo(ldy x 1)

which is covariantly functorial in X and contravariantly in Y, hence it defines a morphism
of k-schemes s, x : X — Z,(X). Since k — k[t]/{t™") is a section of the canonical
quotient morphism k[t]/{t™ ') — k, we deduce that s,, x is a section of the truncation
morphism 6g'y. Moreover, for every m,n € N such that m > n we have 07’y 0 s, x =
Sn.x- A proof of the following result can be found in [19, Ch. 3, Corollary 2.2.5], it is a
consequence of [36, Corollaire 5.4.6].

Corollary 2.1.8. Let k be a field, X a k-scheme and m € N . The morphism S, x s
a closed immersion.
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2.1.9 In particular, proposition 2.1.6 implies that, if X is an affine k-scheme and
m € N, then .Z,(X) is also an affine k-scheme. An explicit presentation of .Z,(X)
can be given from a presentation of X as a closed subscheme of an affine space, see
subsection 2.2.9 for this construction and examples. We give here three examples.

Example 2.1.10. Let &k be a field and m € N. Then %, (Spec(k)) is representable by
Spec(k) and the truncation morphisms are the identity.

Example 2.1.11. Let k£ be a field and X be a k-scheme. The isomorphism of k-
algebras k — Ek[t]/(t) = k induces an isomorphism of functors between %,(X) and
Homgen, (o, X). Hence the functor .%(X) is representable by X, and the section s x :
X — £ (X) is an isomorphism.

Example 2.1.12. The functor of 1-jets of an affine k-variety V identifies with the
tangent space of V, defined as Ty, = Spec(Sym(Sy,,)), where Qy ), is the module of
Kéhler differentials of V. See lemma 3.2.2 for a proof. The same arguments extend to
arbitrary k-schemes.

2.2 ARC SCHEME

We will present here the construction and main properties of the arc scheme associated
with a scheme defined over a field. We will mainly follow [19, Ch.3, §3].

2.2.1 Let k be a field and X be a k-scheme. As already pointed out in subsection
2.1.5, the jet schemes (Z,(X))men, together with the truncation morphisms 0y for
m,n € N, m > n, form a projective system in Schy which is functorial in X. Since the
truncation morphisms are affine by proposition 2.1.6, the projective limit of this system
exists in the category of k-schemes (see [40, Proposition 8.2.3]). Indeed, if X is affine
this limit is isomorphic to Spec(lim O(Z,(X))). We set

meN

Loo(X) = Jim Z,(X)

meN

and we call this k-scheme the arc scheme of X.

2.2.2 Let m,n € N be two integers with m > n. Let X be a k-scheme, then the family
of canonical morphisms (677 x)men given by the limit Jim %, (X) provides the
following commutative diagram of k-schemes. meN
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O x
Zo(X) — L (X)
Hm
Zn(X)

The morphism 677 v is called the truncation morphism of level m.

2.2.3 The following result of B. Bhatt, corresponding to [5, Theorem 4.1 and Remark
4.6], plays a fundamental role in the description of the functor of points of the arc
scheme.

Theorem 2.2.4 (Bhatt). Let R be a ring and I be an ideal such that R is I-adically

complete. For every scheme X, the canonical map X(R) — Jim X(R/I™) is bijective.
meN

For the proof of this theorem, techniques of derived algebraic geometry are used.
Besides the original article, a sketch of the proof can be found in [19, Ch. 3, Subsection
3.3.8].

Let R be a k-algebra. By the very definition of the arc scheme £, (X), the set
Homsen, (Spec(R), Zo (X)) is in bijection with Homgen, (Spec(R), Jim £, (X)) and, since
meN
the Hom functor preserves limits, it is also in bijection with Jim Homsen,(Spec(R), £, (X))

meN
By the very definition of the m-jet functor for m € N, the latter set is in bijection with

the set
@ Homgeh, (Spec(R[t]/(tm+1)), X).

meN

Then, theorem 2.2.4 applied to R[t] implies that the set above is in bijection with
Homgen, (Spec(R[t]), X). This proves that the R-points of £ (X) are in bijective cor-
respondence with the R[t]-points of X, i.e.,

Z(X)(R) = Homgen, (Spec(R[t]), X) .

An R-arc on X is a morphism of k-schemes Spec(R[t]) — X, i.e., a R[t]-point of X
or equivalently a R-point of Z,,(X). Let us recall that the set of R-arcs on X for R
a k-algebra determines the arc scheme %, (X), since it is characterized by its functor
of points in the category Schy, which is determined by its restriction to the category of
affine k-schemes.

2.2.5 Let k be a field and X be a k-scheme. Let ¢ : R — R’ be a morphism of
k-algebras, it induces a morphism of k-algebras g : R[t] — R'[t] and hence a morphism
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of k-schemes Spec(g) : Spec(R'[t]) — Spec(R][t]). Hence we have a morphism

Zo(X)(9) 1 Zo(X)(R) — Zo(X)(R)
v > 7o Spec(g)

The construction of the arc scheme is also functorial in the base k-scheme X: let
f + X’ — X be a morphism of k-schemes, then for every k-algebra R it induces a
morphism
Zo([)(R) 1 Zu(X')(R) — Zu(X)(R)
gl —  fon,
which defines a morphism of k-schemes 2 (f) : Zoo(X') = Lo (X). Let m € N be an
integer. Then the following diagram is commutative

Zso(f)

Zoo(X)

o0 0
Qm,X’ Qm,X

ZLn(f)

Zn(X)

2.2.6 Let us give a concrete description of the truncation morphisms in terms of R-
arcs. Let m € N be an integer and R be a k-algebra. The canonical quotient morphism
R[t] — R[t]/{t"™*!) induces a morphism p>° : Spec(R[t]/{t"')) — Spec(R[t]) between
the corresponding affine k-schemes. Let X be a k-scheme, then for every k-algebra R
the map induced by the truncation morphism 677  is given by

Opex(R): Zu(X)(R) — Zu(X)(R)
gl — yopn,

Let R be a k-algebra and v € Z,(X)(R) be a R-arc on X. The point 05% (R)(7) €
X(R) is called its base point and we also denote it by v(0).

2.2.7 Let us now list some properties of the arc scheme. Some of them may be deduced
by direct arguments and others are consequences of the very definition of the arc scheme
and the analogous properties for jet schemes (see proposition 2.1.4). These results
correspond to [19, Ch.3 Proposition 3.2.5, Proposition 3.2.3, Corollary 3.2.4, Corollary
3.3.7 and Lemma 3.2.2]

Proposition 2.2.8. Let k be a field and X be a k-scheme. The following properties
hold true:

(1) LetY be a k-scheme and f :Y — X be a closed (resp. open) immersion, then
the associated morphism of schemes Lo (f) : Loo(Y) = Loo(X) is also a closed
(resp. open) immersion.
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(2) For every open covering (U;)ier of X, the family (L (U;))icr is an open covering
of Lwo(X).

(3) Assume that the k-scheme X is quasi-compact (resp. quasi-separated, resp. sepa-
rated). Then the k-scheme £y (X) has the same property.

(4) Let Y be a k-scheme and p1 : X X3 Y — X and py : X X, Y — Y be respectively
the first and second projections. Then the morphism of k-schemes

(Zoo(D1), ZLoo(p2)) : Loo(X X1 Y) — Lo (X) X Lo (Y)
is an isomorphism.

(5) Let m € N. The truncation morphism 057« + Zo(X) — Z£,(X) is an affine
morphism of k-schemes.

2.2.9 We know by subsection 2.2.1 that the arc scheme of an affine k-scheme is an
affine k-scheme itself, and the same property holds for the m-jet scheme for m € N
(see proposition 2.1.6). Moreover, we know that if f : Y — X is a closed immersion
of k-schemes, then Z(f) : Zx(Y) = Zo(X) and Z,.(f) : Z.(Y) = Z,(X) are
also closed immersions (propositions 2.1.4 and 2.2.8). We will now show an explicit
presentation of the arc scheme (resp. m-jet scheme) of a closed subscheme of an affine
space in terms of a presentation.

Let k be a field, E be a set and (T.).cr be a family of indeterminates. Let m €
NU {oo} and A = {i € N : ¢ < m} (in particular if m = oo then A = N). Let
AF = Spec(k[T, ; e € E]) be the affine k-space. We observe that, for every k-algebra R,
we have the direct sum decomposition of R-modules

Rt/ (™) = D Re!

€A

(where we assume the left-hand term to be R[t] for m = o). The set .%,,(AF)(R) is in
bijection with the set Homayg, (k[T ; e € E], R[t]/{¢t™*")) and the above decomposition
provides a bijection between this set and RE**. Explicitly, a R-valued m-jet v on AF is
the datum of a family (7.)cep of polynomials of R[t] (or power series in R[t] if m = o)

of degree < m; hence they can be written as 7. = 3 7.;t' and the above bijection
i€A

associates with (7.)eer the family (vei)ecpiea € RF*A. This gives an isomorphism of

functors between the functor of points of .%,,(AE) and the functor of points of the affine

space AN = Spec(k[T,;; e € E,i € A]).

Moreover, if n € N is an integer with n < m then the truncation morphism 0, 5 :
g

ZLn(AF) = Z,(AF) corresponds with the projection AZ*A — A,(JLH)E

with an element (Ve ;)ecmicn € AEXA(R) the element (7Ve,;)eer 0<i<n Of A,(C"H)E (thus we
have “forgotten” the components . ; for n <i < m).

which associates
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Let now X be a closed subscheme of the affine space AP defined by an ideal I of
K[T.; e € E], as already said .%,,,(X) is a closed subscheme of .%,,(AF), and we can
describe the corresponding ideal of k[T,;; e € E,i € A]. For every polynomial f €
k[T, ; e € E], there exists a unique family (fs)sea of polynomials in k[T, ;; e € E,i € A
such that the following equality holds in k[T.;; e € E,i € A][t]:

f ((Z Te,it’) ) =Y ((Te,i)oee< )ts (mod ¢"+1) (2.1)

ieA seA Sis

Let I,,, be the ideal of k[T, ;; e € E,i € A] generated by the polynomials f, for f € I
and s € A. We will check that .%,,(X) is the closed subscheme of .%,,(AF) defined by
L.

Let R be a k-algebra and v € .%,(AF)(R) given by a family (7.)ecr of polynomials
of R[t] (or power series in R[t] if m = co) of degree < m; as seen above it corresponds
with a family (7e:)eemicn € RE*A. For every polynomial f € k[T, ; e € E] we have the
following equality in R[t]:

fn=>_1 <(%’i)oe<%§8) t* (mod t™*1). (2.2)

seA

We deduce that the R[t]/{t™)-point v of AP belongs to X (R[t]/(t™!)) if and only
if £, <(’ye,i) ccE ) = 0 for every s € A and every f € I. Hence the functor of points of
0<i<

Zn(X) is represented by the closed subscheme of the affine space AZ** defined by the
ideal generated by (fs)sea for f in (a generating family of) the ideal I. We have proven
the following proposition.

Proposition 2.2.10. Let k be a field, E be a set and (T,)ecr be a family of indetermi-
nates. Let m € NU{oc} and A = {i € N:i < m}. Let I be an ideal of the polynomial
ring k[T.; e € E] and let X be the affine k-scheme Spec(k[T.; e € E|/I). Then the
k-scheme £,,(X) is isomorphic to the affine k-scheme

£, (X) = Spec <k[Teﬂ-; e€E,i 6A]>,

(fs : fel,sel)

where (fs)sea are defined as in equation (2.1). Moreover, in the definition of the ideal
it suffices to take f running over a generating family of I.

Example 2.2.11. Let k be a field, n € N and X be the affine k-scheme (variety, in
fact) Spec(k[Ty, Ty, Ts]/{TiT5 — Ta™)). The equations of the embedding of £, (X) in
the affine space A3 are given by the vanishing of the coefficients of the power series

Q- Tat)Qo Tait') — Q- To )™+

€N 1€N ieN
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in the ring k(T3 ;, T, T5;; € N][t]. This is equivalent to the following infinite system:

T 0150 — T:Z,T(J)rl = 0
TLOTQJ + T1’1T270 — (n + 1)T£0T371 =0
> ThiTe s — > Ty T30y = 0
1=0 r1+Frpp1=s

We check that proposition 2.2.10 holds and

K[Ty;,T5;,T5;; 1 € NJ

<§)T1,iT2,s—z' - > Ty T30, 1 SE N>

14+ rpg1=s

Z(X) = Spec

2.2.12 Let k be a field and X be a k-scheme. A point v of £, (X) is called an arc of
X. Let K be a field extension of the residue field x(7) of v, as for any scheme the point
v gives rise to a K-point of L (X), i.e., a K-arc ¢, : Spec(K[t]) — X on X which
we usually identify with ~ itself. If X is an affine k-scheme, then it corresponds with a
morphism of k-algebras v* : O(X) — K[t] which we often denote also by 7 in an abuse
of notation.

The image of the closed point of Spec(K[t]) under ¢, equals 0% (7), it does not
depend on the choice of the field extension K. We call it the base point or the center of
the arc v and denote it by v(0).

The image of the generic point of Spec(K [t]) under ¢, neither depends on the choice
of K and is called the generic point of the arc 7; we denote if by ~v(n).

Let us recall some facts from general topology. Let X be a topological space and let
x,y be points of X. We say that x is a specialization of y and that y is a generization
of z if = belongs to the closure of {y} in X. We observe that a closed subset is stable
under specialization and an open subset is stable under generization. Let f : X — X’
be a continuous map of topological spaces and x,y € X. If x is a specialization of y,
then f(x) is a specialization of f(y). The proof of the following result can be found in
[19, Ch.3, Lemma 3.4.3].

Lemma 2.2.13. Let k be a field and X be a k-scheme. Let v € £(X) be an arc of
X. The following assertions hold true:

(1) One has v(0) € {y(n)}, i.e., the base point of an arc is a specialization of its
generic point.

(2) Let Z be a closed subscheme of X. The point v belongs to L (Z) if and only if
~v(n) belongs to Z.
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(3) Let U be an open subscheme of X. The point v belongs to L (U) if and only if
7(0) belongs to U.

Let us stress that assertion (3) is equivalent to the fact that £, (U) identifies with
the open subscheme (65% )" (U) of £ (X).

2.2.14 Let k be a field and R be a k-algebra. The canonical quotient morphism
R[t] — R admits a section R — R[t] mapping a — a +0-t+---. Let X be a k-
scheme. The preceding section induces a morphism of k-schemes soo x : X — L (X)
mapping a R-point z € X(R) to a constant R-arc s x (). This morphism is the limit
of the family of morphisms (S, x)men (see subsection 2.1.7); for every m € N we have
07% x © Soo,x = Sm,x and in particular 05% o se x = Idx (via the identification of Z;(X)
and X, see example 2.1.11). The arcs belonging to s« x(X) are called the constant arcs
of X. A proof of the following result can be found in [19, Ch.3, Proposition 3.5.2], it is
a consequence of [36, Corollaire 5.4.6].

Proposition 2.2.15. Let k be a field and X be a k-scheme. The morphism So x 1S a
closed immersion.

2.2.16 Let us now discuss about the reduced structure of the arc scheme.

Lemma 2.2.17. Let k be a field and X be a k-scheme. If the k-scheme L (X) is
reduced, then the k-scheme X is reduced.

Proof. The k-scheme £, (X) being reduced, the morphism 05°% : Z.(X) — X factors
through X,.q. The factorization

Soo 05°
X =25 Z2(X) 25 X
of Idx implies that Idx also factorizes through X,.q and we deduce that X = X,oq. [

The converse is not true in general (see e.g., theorems 3.5.5 and 3.6.6), hence it is
interesting to study the relation between the nilpotency in arc scheme and the geometry
of the base scheme. Some facts are known in this sense. The first advance in this direction
was made by M. Mustata, who proved in [63] that if X is an integral locally complete
intersection variety with rational singularities defined over a field of characteristic zero,
then .2 (X) is reduced. J. Sebag proved in [71, Theorem 1] and [72] that if X is an
integral l.c.i curve defined over a field of characteristic zero, then 2, (X) is reduced if
and only if X is smooth. More generally, he proved in [72, Theorem 1.6] that if X is an
integral variety defined over a field of characteristic zero such that £, (X) is reduced,
then the Ox-module Q% of Kahler differentials is torsion-free (in particular for a l.c.i
integral variety, £, (X ) reduced implies that X is normal). In chapter 3 we will describe
some nilpotent elements of £, (X) for X a reduced singular plane curve over a field of
characteristic zero defined by a homogeneous or weighted-homogeneous polynomial.
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2.2.18 When the base scheme is a smooth variety, the arc scheme has the following
property. It corresponds to [19, Ch. 3, Proposition 3.7.5].

Proposition 2.2.19. Let k be a field and V' be a smooth k-variety of pure dimension
d. For every m € NU {oo} and every n € N with m > n, the truncation morphism
Oy + Lm(V) = L0(V) is a locally trivial fibration with fiber A" (ihe fiber is (AY)?
when m = 00).

In particular, when k is a perfect field and U is an affine k-subvariety of V' contained
in Vgeg, we can apply the preceding result and deduce that, O(U) being an integral
domain, O(.%,,(U)) also is for every m € NU {oo}.

2.3 DIFFERENTIAL ALGEBRA AND THE ARC SCHEME

Differential algebra was introduced by Joseph Ritt and Ellis Kolchin in order to study
the differential equations in an algebraic way. The main references on this subject are
[54] and [69]. In this section we show how differential algebra provides a description of
the arc scheme of an affine scheme which is, in particular, computationally useful. The
aim is to give some properties which we will use in the study of nilpotency in chapter 3,
hence we only treat the case of algebras over a field.

2.3.1 Let k be a field. Let R be a k-algebra and M a R-module. A k-derivation from
R to M is a morphism of k-modules D : R — M which satisfies the Leibniz rule, i.e.,
for a,b € R we have D(ab) = aD(b) + bD(a). We denote by Dery(R, M) the set of
k-derivations from R to M, which is naturally a R-module with multiplication defined
by aD : b+ a(D(b)) € M for a € R and D € Dery(R, M). A k-derivation from R to
itself is also called a k-derivation on R, the R-module formed by all of them is denoted
by Dery(R). The pair (R, D) consisting of a k-algebra R endowed with a k-derivation
D on R is a differential k-algebra.

Let (R, D) be a differential k-algebra. An ideal I C R is a differential ideal if and
only if D(I) C I. Let I be a differential ideal of (R, D). The differential structure of
(R, D) induces canonically a differential structure on the quotient k-algebra R/I such
that, for @ € R, the derivative of a + I is D(a) + I. Given S C R we denote by [S] the
differential ideal generated by S. It is the smallest differential ideal of (R, D) containing
S; an explicit presentation is given by (Di(s);s € S,i € N), i.e., it is generated as an
ideal of R by the elements in S and their derivatives of higher order. The radical of [S] is
denoted by {S} and it is also a differential ideal of (R, D) if k is a field of characteristic
0 (or more generally if R is a Ritt algebra, see e.g.,[52, Section 4]). As usually, if S only
contains the element a € R, we will simply write [a] and {a} instead of [S] and {S}. An
ideal I of R (differential or not) is called radical or reduced if I = /1.
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2.3.2 Let n € N. For every m € N U {oo}, we denote by A,, the polynomial ring
k[T;;;i € {1,...,n},j € {0,...,m}] with the convention {0,...,00} = N. We endow
the k-algebra A., with the k-derivation A defined by A(T; ;) = T; j+1, for every integer
i € {1,...,n} and every integer j € N. The resulting differential k-algebra (A, A) is
denoted by k{T},...,T,} and is called the differential polynomial ring. The injective
morphism of k-algebras k[Ty,...,T,] — k{T\,...,T,}, defined by T; — T;, identifies
the polynomial ring &[T}, ..., T,] with Ay and gives rise to a structure of k[T1, ..., T,]-
algebra on k{T1,...,T,}. In particular, by a slight abuse of notation, we will not make
any difference between the rings k[71,...,T,] and A,.

In the k-algebra A, we say that the element 7; ; has weight j; this weight defines

a grading over A, in such a way that the term 1_[Z 175, has degree Y71 a;j;, where

a; € Nfori € {1,...,n}. The homogeneous elements for this grading are called isobaric.
We observe that the k-derivation A is an isobaric (i.e., homogeneous for this grading)
morphism of degree 1.

Let us mention the following useful and classical statement (which is a direct conse-
quence of [54, I/§9/Lemma 6] in the particular case of a single equation):

Lemma 2.3.3. Let k be a field of characteristic zero. Let I be a reduced ideal of Ag.
Let P € Ag. Then, the polynomial P belongs to the ideal {I} of A if and only if it
belongs to the ideal I.

Proof. Let P € {I}, then there exists m € N such that P € [I]. Hence we can write
=Y a,A(f,) forseN, f. €1, a, € Ay, and e, € N for 1 <r < s. The elements

r=1
A (f,) are isobaric of weight e, and we can also suppose a, isobaric for 1 < r <'s. The

element P™ being isobaric of weight 0, we deduce that Y a,A (f,) also is. Hence, up
r=1

to renumbering, this element equals Z a, f for s <'s, which belongs to I. The ideal [

being reduced, we deduce that P € I The converse is clear. O]

2.3.4 We can give another description of the arc scheme of an affine scheme, slightly
different from that of subsection 2.2.9, using differential algebra.

Lemma 2.3.5. Let k be a field. Let n,r € N\ {0}, in the k-algebra k[Th,...,T,] we
consider the ideal I := (fi,..., f,). Let X = Spec (k[Ty,...,T,]/I). Then

Zo(X) = Spec (K{Ty, ..., T, }/[1])

For the proof of this lemma we need some technical results. First, let us recall the
generalized Leibniz rule, which in particular holds for the differential k-algebra (A, A).
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Lemma 2.3.6. Let (R, D) be a differential k-algebra. Let f and g be two elements in
R and let i € N be an integer. Then

E! 2 2 /c(!(z)'—k)!(g)‘

k=0
Proof. Observe that the preceding equality is equivalent to
i A ik
D) =3 () PHD o)
k=0

Let us prove it by induction on ¢ € N. The equality above trivially holding for i =
0, assume that it also holds for some ¢ € N. The following equalities, based on an
application of the Leibniz rule, a redefinition of the counters and well-known properties
of binomial coefficients, show that the equality also holds for ¢ 4+ 1, which concludes the
proof.

D" (fg) =D'(fD(g)) + D(D(f)g)

= (1) ot s S () pp )
(;)Uf DR +§< ' ) (F)D" R (g)
(@ ( )) (DI g) + D (g) + D (f)g

) npr)

=~

k

I
M@

k

Il
=)

Il
Ms

ST
= =

i
o

Let us now define the following map:

exp(At): Ay — [[ ]]

€N

Lemma 2.3.7. The map exp(At) defined above is a morphism of k-algebras.

Proof. The k-linearity is a direct consequence of the k-linearity of the derivation A. Let
now f and g be two polynomials in A.,, by definition

exp(an)(fg) = Y- 2O

1€EN
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By the generalized Leibniz rule (lemma 2.3.6) the last term equals

53 A8 ),

i€N k=0 (i —k)!

which equals exp(At)(f) exp(At)(g). O
We can now prove lemma 2.3.5.

Proof of lemma 2.3.5. By proposition 2.2.10 we know that

Z(X) = Spec ( As ) .

(fys 1 1<q¢<r,seN)

Let us fix ¢ € {1,...,r}, the map exp(At) being a morphism of k-algebras we deduce
that exp(At)(f,) = fy(exp(At)(Ty),--- ,exp(At)(T},)). Via the identification of A with
the subring Aj of A, it equals

Tiz' Tn,ii
fa (Z ZﬁtZ@ﬁ)

ieN 7° ieN

By definition of the family (f, s)1<q<r of elements of A, (see subsection 2.2.9, in partic-
N

se
ular equation (2.1)), the preceding element of A [t] equals

> s (( : )) a

seN 0<i<s

On the other hand, by definition

A*(fy)

s!

tS

exp(At)(fy) = >

seN

and identifying the coefficients of ¢ in both series we deduce that

ASs(!fQ) = Jos ((7;6!7i>1<e<n) . (3.1)

0<i<s

Hence we have found a change of variables inducing an automorphism of A., which
allows to recover A*(f,) from f, (and conversely) for 1 < ¢ < r and s € N, i.e., via
this change of variables the ideal (f,s : 1 < ¢ < r,s € N) corresponds with the ideal
[I] = (A%(f,); 1 < ¢ <rseN)of A, and it induces an isomorphism between the
presentation of .2, (X)) in proposition 2.2.10 and the k-algebra in the statement of this
lemma, which concludes the proof. O
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Differential algebra also provides a presentation of the jet schemes. The arguments
in the proof of lemma 2.3.5 may be immediately adapted to prove the following lemma:

Lemma 2.3.8. Let k be a field. Let n,r € N\ {0}, in the k-algebra k[Ty,...,T,] we
consider the ideal I. Let X = Spec (k[Ty,...,T,|/I). Then

Zn(X) = Spec (A / (A°(f); feI,0<s<m)).

Both the presentations of %, (X) obtained in proposition 2.2.10 and lemma 2.3.5
are useful depending on the case. The first one is combinatorially nice and is thus useful
when we aim to apply combinatorial techniques as in chapter 5. On the other hand,
the second description provides a differential ring and the powerful techniques from
differential algebra are applicable. This is the approach followed in chapter 3.

2.3.9 As a direct consequence of lemma 2.3.5, with the same notation we deduce the
following presentation of the reduced arc scheme of X:

Loo(X)rea = Spec (K{Ty, ..., T,}/{I}).

Hence results in differential algebra concerning radical differential ideals have di-
rect implications in the reduced structure of the arc scheme. Let [ be a reduced
ideal of the ring Ay. We have the following classical theorem of Kolchin (see [54, Ch.
IV /§17/Proposition 10]):

Theorem 2.3.10 (Kolchin irreducibility theorem). Let k be a field of characteristic
zero. Let I be a prime ideal of the ring Ag. Then the reduced differential ideal {I} is
also prime.

As a consequence of this theorem, if I is a reduced ideal of the ring Ag and I = N7_, [;
is a prime decomposition of I (i.e., the ideal I; is prime for every integer j € {1,...,r}
and homogeneous if the ideal I is homogeneous), then for every integer j € {1,...,7}
the reduced differential ideal {/,} is prime and

{1y ={0Lpn---n{L}. (3.2)

In subsection 2.4.5 we will discuss the implications of this result in the description
of the irreducible components of the arc scheme.

2.3.11 Density statements in arc scheme (e.g., [65, Corollary 3.7]) provide presenta-
tions of the ideal {I} (when the ideal I is assumed to be prime) which are very useful
from a computational point of view. The following general formulation can be deduced
from [54, Ch. IV/S17/Proposition 10] and the more general statement in [7, Proposi-
tion 3.3] (which is valid in arbitrary characteristic); we provide a direct proof for the
convenience of the reader.
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Lemma 2.3.12. Let k be a field of characteristic zero. Let I be a prime ideal of the
ring Ag. For every H € Ay such that Sing(Spec(Ag/I)) C {H =0} and H & I, we have

{1} = (1] : H>) (3-3)

Proof. Let P € ([I] : H®). There exists an integer N such that HYP € {I}. From
theorem 2.3.10 we deduce that {I} is a prime ideal and by lemma 2.3.3 H" ¢ {I}, then
we conclude that P € {I}.

Let us now prove the other inclusion. First, note that the kernel of the canonical mor-
phism A, — (Aoo)rn/[I](As)m equals ([I] : H®) (since f/1 € [I](Ax)n is equivalent
to HY f € [I] for some N € N). Hence it induces an injective morphism

Ao /([I] : H>*)— (Aso/[1]) 1 - (3.4)

According to the notation in section 1.1, let {H # 0} = Spec(A4y) \ {H = 0}. From
(3.4) we deduce that L ({H # 0}) C {([{] : H*) = 0}, which implies, thanks to the
irreducibility of £, (Spec(Ay/I)) (by corollary 2.4.6 and the fact that I is a prime ideal),
that {([I] : H*) = 0} = Z(Spec(Ap/I))rea- Hence, the radical of the ideal ([I] : H*)
coincides with the ideal {/}.

Since Sing(Spec(Ap/I)) € {H = 0}, we deduce that {H # 0} is an open sub-
scheme of Reg(Spec(Ay/I)) and by proposition 2.2.8 (1) £, ({H # 0}) also is an open
subscheme of 2, (Reg(Spec(Ap/I))). By proposition 2.2.19 we conclude that the local-
ization (Ao /[I])m by H of the ring A /[I] is a domain. Then (3.4) implies that the
ideal ([I] : H®°) is prime, hence reduced, which concludes the proof. O

Formula (3.3), in the special case of systems of algebraic equations, can be linked to cor-
responding formulas of Lazard and to the Rosenfeld lemma (see [54, Ch. IV /§9/Lemma
2]) in the context of differential algebra. The proof of the Kolchin irreducibility theorem
(see [54, Ch. IV/§17/Proposition 10]) in particular explains how to use these results in
the differential setting in order to obtain statements analogous to lemma 2.3.12 in the
algebraic framework. As a direct illustration, let us stress that, for every irreducible
polynomial f € Ay, [54, Ch. IV/§9/Lemma 2] directly implies that

{7} = (U1 = 905)).

for every nonzero partial derivative 9(f) of f. This formula also is a particular form of
lemma 2.3.12, and the way we will apply it in chapter 3.

2.3.13 Let k' be an algebraic closure of the field k. Let I be a prime ideal of Aj.
We observe that the ideal {I} ® k" of the ring A, ® k' coincides with the radical of
the differential ideal generated by the ideal I in the differential ring AL := A, @4 k'
Besides, for every polynomial P € A} := A; ®; k', one can check directly from the
very definition that, if (e;);cs is a basis of the k-vector space k', then the polynomial
P =Y c; Pe; (with P, € A, for every ¢ € I) belongs to ({I} ®; k') N A} if and only if,
for every i € I, we have P; € {I}.
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2.4 TOPOLOGICAL PROPERTIES OF THE ARC SCHEME

In this section we will include some results related with the topology of the arc scheme.
In particular we deduce from Kolchin theorem 2.3.10 a result about the irreducible
components of the arc scheme. In a second part, we introduce the constructible subsets
of the arc scheme and give some properties which will be useful in the sequel.

2.4.1 Let us first present three topological results which can be found or deduced from
[50]. The proof of the following lemma is contained in the proof of [50, Lemma 2.12].

Lemma 2.4.2 (Ishii-Kollar). Let k be a field and V' be a k-variety. Then every arc
v € Zo(V) is a specialization of an arc ¢ € Zo(V') whose base point is the generic

point of 5, i.c., ¢(0) = ().
The following corollary is a consequence of this lemma, see [19, Ch.3, Corollary 4.2.3].

Corollary 2.4.3. Let k be a field and V' be a k-variety. Let U be an open subscheme
of Vand let Z = V \ U be its complement. Then the k-scheme Zx(U) is dense in
Zoo(V)\ Z(2).

Finally let us state the following result, corresponding to [50, Lemma 2.12]. Let us
stress that, in particular, it says that the arc scheme of a reduced variety V defined
over a field of characteristic zero has no irreducible component contained in the closed
subscheme Z (Vaing)-

Lemma 2.4.4. Let k be a field of characteristic zero and V' be a reduced k-variety. Then
every point v € L (V') whose base point belongs to Vging is a specialization of an arc
© € ZLoo(V) whose base point belongs to Vging and whose generic point does not belong
to Vsing (i-e., the arc ¢ does not belong to Lo (Vsing) )

2.4.5 Let us now present the geometric counterpart of subsection 2.3.9 and in par-
ticular of the Kolchin irreducibility theorem (theorem 2.3.10). Let k be a field of
characteristic zero and let I be an ideal of the polynomial ring k[Ty,...,T,]. Let
V = Spec(k[Th,...,T,]/I) be the associated k-variety. Recall that, as consequence of
lemma 2.3.5, we can obtain the following presentation of the reduced closed subscheme
of Z(V):

Loo(V)iea = Spec (K{Ty,...,T,}/{I}).

Then, Kolchin irreducibility theorem 2.3.10 implies the following result in terms of
the arc scheme (see [19, Ch. 3/§4/Theorem 4.3.4] for an alternative proof).

Corollary 2.4.6. Let k be a field of characteristic zero and let V' be a k-variety. Let
(Vi)ier be the irreducible components of V. Then (L (Vi))icr are the irreducible com-
ponents of L (V). In particular, V is irreducible if and only if L (V') is irreducible.
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Remark 2.4.7. The assumption of the field to be of characteristic zero in Kolchin irre-
ducibility theorem, as well as in its version in terms of the arc scheme stated in corollary
2.4.6, is crucial. For example, let k be a field of characteristic p > 0 and let us consider
the polynomial f =T} + T5T3 € k[T, Ts, T3]. Tt is an irreducible polynomial and hence
the k-variety X = Spec(k[T},Ts, T3]/ (f)) is irreducible. Its reduced singular locus is
the closed subset Xgine = V(11,13), we note Xy, its smooth locus. Then Z(Xsing)

and Z(Xsm) are the two irreducible components of %, (X), hence it is not irreducible
although X is. A detailed proof can be found in [19, Ch. 3/§4/Remark 4.3.5].

Let us stress that, in order to study topological questions, one can always assume the
base variety to be reduced, as the following lemma (corresponding to [19, Ch.3, Lemma
3.4.4]) assures. This justifies that corollary 2.4.6 is indeed a direct consequence of the
Kolchin irreducibility theorem 2.3.10 although the ideal in its statement is assumed to
be reduced.

Lemma 2.4.8. Let k be a field and X be a k-scheme. The closed immersion Xi.q —

X induces an isomorphism (Loo(Xred))red — (Loo(X))rea- In particular, there is a
homeomorphism Lo (Xred) = Loo(X).

2.4.9 Let us recall some definitions and results about constructible subsets of a scheme.
Let X be a topological space. A subset Z of X is said to be retrocompact in X if, for
every quasi-compact open set U of X, ZNU is quasi-compact. If X is a scheme, a subset
Z of X is retrocompact in X if and only if, for every affine open subscheme U of X,
Z N U is quasi-compact.

The set X is retrocompact in X, and every closed subset of X also is. A finite union
of retrocompact subsets of X is retrocompact in X (since a finite union of quasi-compact
subsets is quasi-compact). A finite intersection of open retrocompact subsets of X is
a retrocompact open subset in X. If X is a noetherian topological space, then every
subset of X is retrocompact in X.

Let X be a topological space. A subset C' of X is said to be constructible in X if it
belongs to the smallest set of subsets of X containing all retrocompact open subsets of
X and is stable under finite intersection and complements (and hence it is also stable
under finite unions). By [37, Ch. 0, Proposition 9.1.3], C' is a constructible subset of
X if and only if there exist finite families (Uy,...,U,) and (V4,...,V,,) of retrocompact

open subsets of X such that C' = G (U; U(X\ V).
i=1

In the case of a noetherian scheme, the definition of a constructible subset is simpler.
Let X be a noetherian scheme. A subset C' of X is constructible in X if and only if it
is a finite union of locally closed subsets of X. Let us stress that this is the case of the
m-jet scheme .%,,(V) of a k-variety V, for m € N. Thanks to the fact that £, (V') is the
projective limit of the m-jet schemes mfm(V) with the truncation morphisms, we can
also describe the constructible subsets of Z,,(V') in a simpler way. Parts (a) and (b) of
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the following lemma can be found under this form in [19, Ch.3, Lemma 4.5.2], which is
a particular case of [40, Théoreme 8.3.11]. Part (c) corresponds to [70, Lemme 4.3.9].

Lemma 2.4.10. Let k be a field and V' a k-variety. The following assertions hold true:

(a) For every integer m € N and every constructible subset D of £,,(V), the subset
(Op0v) H(D) of Zu(V) is constructible; it is closed (resp. open) if D is closed
(resp. open).

(b) For every constructible subset C' of L (V'), there exist an integer m € N and a
constructible subset Cr, of £, (V') such that C = (057 y) " (Cy). Moreover, if C' is
closed (resp. open), then Cp, can be taken to be closed (resp. open).

(¢) For every constructible subset C of L,(V'), for every m € N, the subset 075, (C)
of £, (V') is constructible.

This lemma implies in particular that constructible subsets in arc scheme coincide
with the so-called cylinders in motivic integration.

Remark 2.4.11. In [41] what we have defined to be a constructible subset of a topological
space X is called a globally constructible subset of X. There, a subset C' of a scheme
X is defined to be constructible if every point of X is contained in an open subset U of
X such that C' N U is globally constructible in U (if X is a scheme we ask U to be an
affine open subscheme). Then every globally constructible subset of X is a constructible
subset. In fact, for noetherian schemes the converse also holds, and this property can
be extended to projective limits of noetherian schemes; see [19, Appendix, Proposition
1.3]. Hence we deduce that both notions coincide for the arc scheme of a k-variety.

2.5 VALUATIONS AND THE ARC SCHEME

2.5.1 Let k be a field, k C K a field extension and I' a totally ordered abelian group.
We endow I' U {oo} with a structure of totally ordered abelian group by fixing d < oo
for every d € T' and oo +d = 0o + 0o = 0o. Let us recall that a valuation on K with
values in I" is a map v : K — I' U {oo} such that

(1) v(ab) = v(a) + v(b) for every a,b € K.

(2) v(a+b) > min(v(a),v(b)) for every a,b € K.

(3) v(a) = oo if and only if a = 0.

When I is isomorphic to Z the valuation v is said to be a discrete valuation.

An integral domain R contained in K is a wvaluation ring of K if, for every a € K,
either @ € Ror a~! € R. Given a valuation v on K, we denote by R, C K the associated
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valuation ring, i.e., the set of elements x € K such that v(x) > 0. It is a local ring of
maximal ideal {x € K : v(z) > 0}. Conversely, given a valuation ring R of K we
can construct a valuation v of K such that R, = R. See [77, Proposition 2.3] for this
construction. Let us remark that two valuations of K can have the same ring, in this
case we say that they are equivalent (and in fact they are equal up to composition with
an isomorphism of ordered groups, see [77, Proposition 2.4]). Let us observe that, the
unique automorphism of ordered groups in Z being the identity, one can associate with a
discrete valuation ring a unique valuation with values in Z, which is called its normalized
valuation.

2.5.2 Let X be an integral separated k-scheme and let v be a valuation on the field
k(X). We say that v is centered on X if there exists a point € X such that the local
ring (Ox ., m;) is contained in R, (as a subring, note that both can be seen as subrings
of k(X)). If v is centered on X then the set of points x € X such that v(a) > 0 for
every a € m, is a nonempty irreducible closed subset of X whose generic point is called
the center of v in X and denoted by cx(v).

Let X,Y be two integral separated k-schemes and ¢ : Y — X be a birational
morphism of k-schemes; it induces an isomorphism k(X) = k(Y). Let v be a valuation
on the field k£(Y'), hence it can be seen also as a valuation on k(X) via the induced
isomorphism. If v is centered on Y, then it is centered on X and cx(v) = p(cy(v)).
Moreover, if ¢ is assumed to be proper, the valuative criterion of properness implies
that, if v is centered on X, then v is centered on Y as well. See e.g., [77, Section 7] for
more details.

2.5.3 Let k be a field and V' be an integral separated k-variety with field of functions
k(V'). Let E be a prime divisor in V', that is, an integral closed subscheme of V' of
codimension 1. Assume that V' is normal (it suffices to assume that the generic point of
E is normal). Then the local ring Oy g (defined as the localization of Oy at the generic
point of E') is a one-dimensional normal noetherian local ring, and by [60, Theorem 11.2]
it is a discrete valuation ring. Let us consider the order function ordg : k(V')* — Z
which associates with a nonzero element f € k(V') its order of vanishing ordg(f) at the
generic point of . Then ordg is the extension of the normalized valuation of Oy g to
its field of fractions k(V'). This valuation is centered on V' and its center ¢y (ordg) is
the generic point of F.

Now, let V' be an integral separated k-variety and ¢ : V/ — V be a proper birational
morphism, it induces an isomorphism of fields (V') = k(V”). Then we say that the prime
divisor F in V' is a divisor over V. The valuation ordg on k(V') induces a valuation on
k(V') which is also denoted by ordg. By subsection 2.5.2, this valuation is centered on
V and its center is the generic point of ¢(E).

A valuation v on k(V) with values in Z which is of the form gordg for a triple
(V' p, E') as above and an integer ¢ > 1 is called a divisorial valuation on V' and we say
that it is centered on V’. The integer ¢ is called the index of v and denoted by ¢,.
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2.5.4 Up to the end of the section we will assume that & is a field of characteristic zero
since the original references which we will cite work in this setting, although most of the
results we will present are still true for perfect fields. Let V' be an integral separated
k-variety. Let v € £, (V) be an arc on V with residue field (), let us see it as a
morphism v : Spec(k(y)[t]) — V. According to [47], v is said to be thin if its image is
contained in a strict closed subscheme of V. If v is not thin, then it is called a fat arc.
The following equivalent properties are characterizations of fat arcs (see [47, Proposition

2.5]):

(i) The arc v € £ (V) is not thin.
(ii) The morphism ~y : Spec(r(y)[t]) — V corresponding to 7 is dominant.

(iii) The morphism ~ : Spec(k(y)[t]) — V maps the generic point 1 of Spec(x(7)[t])
to the generic point of V.

(iv) The corresponding morphism of k-algebras v* : O(V') — k(7)[t] is injective.

(v) The induced morphism of local k-algebras v* : Oy ) — (7)[t] is injective.

Analogously, in [31] a subset C' of £, (V') was defined to be thin if there is a proper
closed subvariety Z of V' such that C' C Z(Z). An irreducible closed subset of Z (V)

which is not thin is called a fat subset.

Let v € Z(V) be a fat arc. The induced morphism of local rings 7* : Oy, ) —
k(7)[t] being injective (characterization (v)), v* can be extended to an injective mor-
phism of fields v* : k(V)) — &(7)((t)), where k(V') is the field of functions of V. We can
compose it with the t-adic valuation ord; : k(v)((t)) — Z U {oo} to obtain a discrete
valuation on k(V):

ord, : k(V) — ZU{oo}
foo—= ordi(y* ().

Observe that the morphism v : Spec(k(y)[t]) — V maps the closed point of Spec(x(y)[t])
to the center of the valuation ord,, which coincides with the center of the arc, v(0). If
C'is an irreducible and fat closed subset of £, (V') then its generic point v € £ (V) is
a fat arc, an we also denote by orde the valuation ord, on k(V). Note that, for every
f € Oy, we have orde(f) = inf{ord,(f) : v € C is a fat arc} and indeed, for every
f € k(V), we have orde(f) = inf {ord,(f) : v € C is a fat arc}.

Example 2.5.5. Let V' be a smooth separated k-variety and E be a prime divisor in V.
Then (655,)~"(E) is an irreducible constructible subset of Z,(V), let v be its generic
point. Then ord, coincides with the divisorial valuation ordg on k(V).

Let v be a discrete valuation on k(V'). In [49, Definition 2.8], S. Ishii defined the
closed subset Wy (v) as the closure of the set of fat arcs v € £, (V') such that ord, = v.
If v is not centered on V' then Wy (v) = 0. Moreover, 655, (Wy(v)) C {cv(v)}. The
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following proposition corresponds to [47, Proposition 2.11] and shows that for a divisorial
valuation v the set Wy (v) in non-empty:

Proposition 2.5.6 (Ishii). Let k be a field of characteristic zero and V' be an integral
separated k-variety. For every divisorial valuation v on V there exists a fat arc v €

Zw(V) of V such that v = ord,.

The next result, corresponding to [49, Proposition 2.9], complements proposition
2.95.6.

Proposition 2.5.7 (Ishii). Let k be a field of characteristic zero and V' and V' be integral
separated k-varieties. Let o : V' — V be a proper birational morphism and let v be a
divisorial valuation on V centered on V'. Then Wy (v) = L (@) Wy (v)).

Let us remark that in the preceding proposition the assumption on ¢ to be proper
may be omitted, a proof in this case can be found in [19, Ch.7, Lemma 2.2.6]. Let
us remark that, for v a divisorial valuation on V', the set Wy (v) is called in [49] a
maximal divisorial set. It has the property to be maximal for the inclusion among all
the irreducible closed fat subsets C' of £, (V') such that orde = v. By its relation with
the Nash problem (see the Introduction) we also call it a Nash set, this terminology will
be used in chapter 5.

2.5.8 Now we are going to present the notion of contact loci in arc scheme, first studied
in [31]. They correspond with the loci of arcs on a variety defined by order of contact
with a fixed subscheme. Precisely, let k be a field and V' be an integral separated k-
variety. Let a be an ideal sheaf of Oy and ¢ € N, we define the contact loci of a as the
subsets

Cont”(V,a) = {y € Zx(V) : ord,(a) > ¢}

and

Cont!(V,a) ={y € Z(V) : ord,(a) = ¢}.

Both are constructible subsets of %, (V) (see [31]), the subset Cont=¢(V, a) is closed and
Cont?(V, a) is locally closed in .Z5 (V') (and an open constructible subset of Cont=(V, a),
since Cont?(V,a) = Cont=%(V,a) \ Cont=*""(V,a)). If Y is the closed subscheme of V'
defined by a, we define Cont=?(V,Y) and Cont?(V,Y) respectively as Cont=?(V, a) and
Cont?(V,a). We have the following relation with divisorial valuations.

Proposition 2.5.9 (Ishii). Let k be a field of characteristic zero and V, V' be integral
separated k-varieties such that V' is smooth. Let ¢ : V' — V be a proper birational
morphism and E be a prime divisor in V'. Let q be an integer such that ¢ > 1 and
v = gordg be the divisorial valuation on V' centered on V'. Then

Wy (v) = Zoo(p)(Cont=1(V', E)).

In particular, Wy (v) is irreducible.
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Sketch of the proof. This proposition corresponds to [49, Proposition 3.4] and the proof

consists in showing that Wy (v) = Cont=%(V"’, E) and then applying proposition 2.5.7.
]

The following proposition is a generalization to the singular case of [31, Corollary
2.6]. It corresponds to [27, Proposition 2.12].

Proposition 2.5.10 (de Fernex-Ein-Ishii). Let k be a field of characteristic zero and V
be an integral separated affine k-variety. Let a be a non-zero ideal of Oy . Let ¢ € N.
Then every fat irreducible component of Cont=4(V,a) is a mazimal divisorial set, that
is, of the form Wy (v) for v a divisorial valuation on V.

In fact, for a divisorial valuation v on an affine k-variety V', an ideal a of Oy and an
integer ¢ > 1, the inclusion Wy (v) C Cont=(V, a) is equivalent to v(a) > g.



CHAPTER

ON THE TANGENT SPACE OF A WEIGHTED HOMOGENEOUS
PLANE CURVE SINGULARITY

Let k be a field of characteristic 0. Let € = Spec(k[z, y]/(f)) be a weighted homogeneous
plane curve singularity with tangent space m¢: T/, — €. The Zariski closure ¢ (%) of
the set of the 1-jets on ¢ which define formal solutions (in K[[t]]* for field extensions
K of k) of the equation f = 0 is an irreducible component of T%/, which we call its
general component, by analogy with the theory of differential equations. We denote by
Ni(€) the ideal defining 4(€) as a reduced closed subscheme of Ty ;. In this chapter,
we study from a computational point of view the ideal N (€).

The elements of the ideal N1(%) define the nilpotent functions on the arc scheme
Zoo(€) associated with ¢ which live on .Z(%¢"). The relation of arc and jets schemes
with differential algebra presented in section 2.3 provides important tools to study these
nilpotency phenomena and hence the general component of the tangent space. This is
the content of section 3.2.

In section 3.3 we present some technical results of combinatorial nature which will be
useful in the following sections. In section 3.4 we obtain, using differential algebra, some
properties about Ni(%) in the particular case of a curve ¢ defined by a homogeneous
polynomial. In section 3.5 we obtain Groebner bases of N;(%) for a curve € defined
by a homogeneous polynomial and in section 3.6 we do the same thing for weighted
homogeneous polynomials using the results for the homogeneous case.

Finally, elements in N1(%) are related with differential operators, as shown in [73].
In section 3.7 we obtain applications of the results in this chapter in terms of differential
operators.

Most of the contents in the present chapter have been obtained in collaboration with
J. Sebag and are included in the article [61].

43
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3.1 CONVENTIONS ON POLYNOMIALS

Let us recall from subsection 2.3.2 that, for n € N and m € N U {oo}, we denote
by A,, the polynomial ring k[t; ;;i € {1,...,n},j € {0,...,m}]| with the convention
{0,...,00} = N. We denote by By (resp. Bj) the polynomial ring k[x¢,yo] (resp.
k[xo, Yo, 1, y1]), which may be identified with Ay (resp. A;) for n = 2.

3.1.1 On the polynomial ring A; (or Bj), we will use various graded structures asso-
ciated with various degree functions.

1. The total degree deg := deg,,, of the polynomial ring A;; for this function, the
monomial M = t7}... tfﬁotlﬁ ...ty of Ay is of degree degy, (M) = Y1 (a; + b;).

2. The partial degree deg, of the polynomial ring A;, where every polynomial is seen as
a polynomial in the variables ¢; o with coefficients in the ring k[t; ;7 € {1,...,n}];
for this function, the monomial M is of degree deg,(M) = Y7, a;.

3. The partial degree deg, of the polynomial ring A, where every polynomial is seen as
a polynomial in the variables ¢;; with coefficients in the ring k[t;o;i € {1,...,n}];
for this function, the monomial M is of degree deg, (M) = >, b;. For this grading,
a homogeneous polynomial P is said to be I-homogeneous of 1-degree deg,(P).

We say that a polynomial P € A; is bi-homogeneous if the polynomial P is simultaneously
a homogeneous polynomial for the graded structure induced by (2) and that induced
by (3). Equivalently, the polynomial P is bi-homogeneous if and only if there exist two
integers e, d such that one has degy(T') = e and deg, (1) = d for every nonzero term T of
P. The pair (d, e) is the bi-degree of P. Let us stress that, in particular, the polynomial
P then is homogeneous for the graded structure induced by (1) (but, obviously, the
converse does not hold, consider for example P =t + t11).

3.1.2 Let k be a field of characteristic zero. Let f € By be a polynomial. We say that
f is weighted homogeneous of weight (wy,ws, w) if we have the formula

f(twlfoa thy[)) = twf(Q:Oa yO)

in the polynomial ring By[t]. We recall the following usual characterizations of weighted
homogeneous polynomials.

Proposition 3.1.3. Let k be a field of characteristic zero. Let f € By \ k be a reduced
polynomial. The following assertions are equivalent:

1. The polynomial f is weighted homogeneous of weight (wy,wa, w);
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2. Every monomial xéyé of f satisfies 1wy + jwy = w;

We assume that the field k is algebraically closed. The former assertions are equivalent
to the following one:

3. There exist a k-automorphism o of the ring By, an integer n > 1, a pair of coprime
integers (r,s), with v > s, and Ay, ..., \, € k* such that o(f) = x5ys 11, (o) —
Aiyg) with e,¢" € {0,1}.

Proof. Equivalence (1) < (2) is clear. Equivalence (2) < (3) is proved in [18, Lemmas
1,2,3]. 0

3.2 THE GENERAL COMPONENT OF THE TANGENT SPACE

As already mentioned in the introduction, the object of study of the present chapter is
the general component of the tangent space of an affine plane curve. In this section,
we will see that the tangent space of a k-variety is isomorphic to its 1-jet scheme and
we will show how to take advantage of the relation between differential algebra and jet
schemes in order to study the general component.

3.2.1 Let k be a field of characteristic zero. Let V' be an affine k-variety and Q%,/k, the
module of Kdhler differentials of V', which is the unique O(V)-module representing the
functor from the category of O(V')-modules to that of sets which sends an O(V')-module
M to Dery(O(V), M) (i.e., Homntodey, (4, M) = Der(O(V), M)). We define the
tangent space Ty, of V' as Spec(Sym(Qy,,)). Although we will work in the affine case,
let us stress that this construction may be extended in the global case, the cotangent
sheaf being the generalization of the module of Kéhler differentials and the tangent sheaf
being its dual.

Lemma 3.2.2. Let k be a field and V' a k-scheme. Then the tangent space Ty, of V
is isomorphic as a k-scheme to Z1(V).

Proof. We can assume that V' is affine. Let C' be a k-algebra such that V' = Spec(C).
We will show that there is a bijection between the functor £ (V') defined in subsection
2.1.1 and the functor of points of Spec(Sym(Qy)), we can restrict to the category
of affine k-schemes. Let R be a k-algebra, then it suffices to find a bijection between
Homgen, (Spec(R), Spec(Sym(Q%//k)» and Homgep, (Spec(R|[t]/ (t?)), V) functorial in R.

On the one hand, a morphism in Homgep, (Spec(R), Spec(Sym(Q%//k))) corresponds

with a morphism in Homgjg, (Sym(Q‘l//k), R). By the universal property of symmetric
algebra, it corresponds with the datum of a morphism of k-algebras f : C — R and
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an element in Hommed, (Q%//k,R) which defines, by definition of Q%//k, a derivation
D:C—R.

On the other hand, a morphism in Homgen, (Spec(R[t]/ (t?)),V) corresponds with
a morphism v in Homayg, (C, R[t]/ (t*)) which is determined, for ¢ € C, by v(¢c) =
co + cit. For ¢, € C we have y(c + ) = v(c) + () = ¢y + ¢ + (c1 + ¢))t and
v(ed) = cocy + (cocy + cher)t. If we fix 9,71 : C — R defined by 7o(c) = ¢y and
m(c) = ¢; for every ¢ € C, we deduce that -, is a morphism of k-algebras and v; is a
k-derivation.

Hence the datum of (f, D) defines a morphism of k-algebras

C —  R[t]/(t?)
¢ — f(b)+ D(b)t

which furnishes a bijection, functorial in R, between Homgep, (Spec(R), Spec(Sym(Q%//k)))
and Homgen, (Spec(R[t]/ (t?)),V). O

From now on we identify Ty, and (V') via the isomorphism in lemma 3.2.2. Then
the truncation morphisms induce canonical morphisms 65, : Ty — V and 675, :
Lo (V) = Tyk. We have the following decomposition:

(TV/k)red = (Qé,v)il(VReg) U (Qé,v)_l(VSing)' (2'1)

By lemma 2.4.4 one knows that the open subscheme £, (V') \ Z5 (Vsing) is dense in
Z (V). If V is assumed to be irreducible, we observe that the closed subset 07, (Zo (V)
of £ (V) is irreducible (since £ (V') is by corollary 2.4.6) and contains the open subset
(06.1) " (Vieg) = -Z1(Vieg) by proposition 2.2.19. On the other hand, (65) = (Vieg) also

is an irreducible component of 7y,/;. Hence

G(V) = 073 (Zec(V)) = (051) 7 (Vies) (2:2)

is defined to be the general component of Ty . If K D k is a field extension, the K-
points of ¢ (V') hence correspond to elements of Ty (K), i.e., K-valued 1-jets, which
are Zariski closed to 1-jets with regular base-point.

3.2.3 If V is assumed to be affine with O(V)) = Ag/I, we denote by N7(V) the unique
ideal of O(Ty k) such that O(4(V')) = O(Tyx)/N1(V). By lemmas 2.3.8 and 3.2.1, the
ideal MV (V) has a unique preimage in the ring A; which contains the ideal (I, A(I)). In
a slight abuse of notation, we also denote this preimage by N;(V'). Let us also assume
V' to be integral. By formula (2.2) we have

N(V) = (] 0 AN/ A(T)).
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We check that /[I] N Ay = /[I]NA; = {I}NA; (since f € /[I]NA; if and only if there
exists n € N such that f* € [I] N A; if and only if f € (/[I] N Ay). Hence by lemma
2.3.12, for every H € A such that Vgins C {H =0} and H ¢ I we have

M(V) = {1} 0 A /(L A(D) = (U] H*) N Ay /(T A(). (2.3)

From this formula and lemma 2.3.5 we observe that the elements of the ideal N7 (V)
define the nilpotent functions on the arc scheme £, (V') which live in .2 (V).

Besides, we observe that (I, A(I)) C ({I,A(I)) : H*®) C N1(V). Moreover, the ker-
nel of the canonical morphism A; — (A1) g /{I, A(I))(A1) g equals the ideal ((I, A(I)) :
H>) of A; (since f/1 € (I, A(I))(Ay)p is equivalent to H" f € (I, A(I)) for somen € N).

Hence it induces an injective morphism

Ay /({1 A = H)— (A1, A(D)))u - (2.4)

Since Vasing C {H = 0} we deduce that {H # 0} C Vgeg and hence by proposition
2.14 (1) ZAA({H # 0}) = Spec((A1/{I,A(I))) ) is also an open (reduced) subscheme of
A (Vieg) = (05,) " (Vieg), thus its closure equals the general component ¢ (V') by (2.2).

On the other hand, by proposition 2.2.19 we have that the localization (Ay /(I, A(I)))u
by H of the ring A, /(I, A(I)) is a domain. Then (2.4) implies that A;/({(I, A(I)) : H*)
is also a domain and hence ((I,A(/)) : H*>) is a prime ideal of A; and the irreducible
closed reduced subscheme Spec(A;/({(I, A(1)) : H*®)) of £ (V) contains £ ({H # 0}),
which shows that Spec(A;/((I,A(l)) : H*®)) = 4(V) (all the involved subschemes are
reduced) and

NV = (I, A = H). (2.5)

3.2.4 The previous remarks, together with the consequence of theorem 2.3.10 given in
equation (3.2) in subsection 2.3.9, provide the following observation:

Observation 3.2.5. Let k be a field of characteristic zero. Let r € N*. Let I be a

V; = Spec(Ao/1;) for every integer j € {1,...,r}. Let P € A;. The following assertions
are equivalent:

1. The polynomial P belongs to the ideal N1(V');
2. The polynomial P belongs to the ideal Ni_,({I;} N A1);

3. For every integer j € {1,...,r}, the polynomial P belongs to the ideal N1(V;) =
([45]  Hy®) = ({I;, A(Iy)) : H3®) for every H; satisfying the assumption of lemma
2.3.12.

In particular, if there exists an irreducible polynomial f € Ay (resp. By) such that
I ={f), then we have N1(V') = ((f, A(f)) : O(f)>) for every nonzero partial derivative
O(f) of f. This will be the case for the curves in the following sections.
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Remark 3.2.6. By analogous arguments, observation 3.2.5 can be extended for m-jet
schemes of any level m > 1.

3.2.7 Let V be an affine k-variety with O(V) = Ay/I. Since, for every generator g of
I, the polynomial A(g) is homogeneous, with deg,(A(g)) = 1, for the graded structure
(3) in subsection 3.1.1 (i.e., it is isobaric of weight 1), we conclude from formula (2.3)
that the ideal M7 (V) (in the ring A;) is homogeneous. Besides, if the ideal I is assumed
to be homogeneous (in the ring A), the same argument implies that the ideal N; (V)
(in the ring A;) is bi-homogeneous.

3.2.8 From the expression of the ideal NVi(V) in (2.5) K. Kpognon and J. Sebag
developed an algorithm producing a Groebner basis of it which we describe here (see
also [55, Remark 4.7] and [14, Section 7]).

Let V' = Spec(Ap/I) be an integral variety and let H € Ag such that Vg, C {H = 0}
and H ¢ I. We consider the ideal (I, A(I),1 — HT) of the ring A;[T]. From equation
(2.5) we deduce that

N(V) = (I,A(I),1 — HT) N A,.

Then a classical result in Elimination Theory (see [22, Ch.3, §1, Theorem 2]) assures
that, if G is a Groebner basis of the ideal (I,A(I),1 — HT) in A;[T] with respect to
an elimination order for the variable T' (for example a lexicographic order where T is
the greatest variable), then G N A; is a Groebner basis of NV;(V). Recall that G may be
constructed using the Buchberger’s algorithm ([22, Ch.2, §7]).

The computations in the examples in this chapter have been made using this algo-
rithm implemented in SageMath [76]. Let us stress that this algorithm has a complexity
comparable to that of Buchberger’s algorithm, so an important number of examples
cannot be processed.

3.3 TECHNICAL RESULTS ON POLYNOMIALS

In this section, we establish technical results (see propositions 3.3.4 and 3.3.6) which will
provide characterizations for the divisibility of elements in B; by the polynomial sy;xq—
ryoxy for r, s € N\ {0}, but which are sufficiently general to be considered independently.
This polynomial will play an important role in our description of the general component
attached to an affine plane curve defined by the datum of a homogeneous or weighted-
homogeneous polynomial, and the results in this section will be useful in the following
ones. In this section we fix the lexicographic order on B; associated with y; > yo >
xr1 > Xop.
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3.3.1 On the set N*, we introduce the following equivalence relation: for every pair of
tuples (a,b) € N* x N*| we say that a is equivalent to b if there exists an integer s € Z
such that

bl = ap — S
bQ = az+s
b3 = a3+ S
b4 = a4 — S.

In this case, we write a ~ b.

Lemma 3.3.2. Let a,b € N*. The following assertions are equivalent:

1. We have a ~ b;

2. The j-tuples a,b verify the following conditions:

aq —|—CL3 = b1 —I—bg
as +ay4 = b2+b4
a; +ay = b1 +172
as+ay = b3+b4.

Proof. We only have to prove (2) = (1). Let us set s := a; — b;. We observe from
equations in system (2) that

s = bQ — Q9
= by—as
= Qa4 — b4.
Thus, we deduce that by =ay — s, by = a4 — s, by = as + s and by = az + s. O

3.3.3 Let I be a set of representatives of ~ in N*. For every polynomial P € By, there
exist bi-homogeneous polynomials Py, ..., P, € By with P =", P, and which satisfy
the following property: for every integer i € {1,...,m}, one can find a unique «o; € T
such that

P= Y Aaytygrarag. (3.1)

a€N? a~a; €T

If we assume that the polynomial P is bi-homogeneous of bi-degree (d, ), we observe,
thanks to lemma 3.3.2; that, for every integer i € {1,...,m}, there exists an integer
l; < d + e such that:

_ ay, a2, . .d—ay e—az
b= Z Aar,as,d—ar,e—a)¥1 Yo 1 Lo - (3.2)
(a1,a2)€EN?
a1+az=¥;

(Let us stress that, because of the assumption on P, we have a3 = d —a; and ay = e —ay
in formula (3.1).)
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Proposition 3.3.4. Let P € By be a polynomial. We set P=3",cna\ay1 yp> 21720, Let
r,s € N\ {0}. The following assertions are equivalent:

1. The polynomial sy ,xq — ryox1 divides the polynomial P.

2. We have the formula Z M1 5% =0 for every tuple a € N*.
beN4 ba

If we assume that the polynomial P is bi-homogeneous of bi-degree (d, €), then the former
assertions are equivalent to the following one:

(8) For every integer £, we have the formula

al ,d—a
Z )‘(a1,a2,d—a1,e—£+a1)7‘ 18 1 = 0

(a1,a2)6N2
ai1+as=~

Proof. Assertion (3) is equivalent to assertion (2) by equation (3.2). For (1) = (2), we
set G = sy — ryory. Let Q € By be a polynomial. Each term M = p,,,yi" yo "2 27" 24"
of @ (with p,, € k) provides two monomials in the expression of QG, whose de-

grees belong to the same equivalence class by ~, namely sp,y™ Ty ez and
—r 2 3 ™ One checks that their sum satisfies the required property

since
Spyyr™ T ™S — ppy pMMI L =y g (rg — 1)

_ (3.3)

Let us now prove (2) = (1). We may assume that

—_ ai a2 ,..a3 ,..a4
P = Z A1 Yo 21X

a€N4 a~ael

by subsection 3.3.3. By assumption, we have

Z AT 5% = 0.

a€N4 a~ael

We have to prove that G divides the polynomial P. Let us set
IN(P) = Ay featay

with @ ~ «. Various cases occur:

o If @ = 0 then A\, = 0 whenever a; > 0 (otherwise it would contradict the fact that
the tuple @ corresponds to LM(P)). But, by the definition of the relation ~, there is no
tuple a ~ a with a; = a; different from a itself. Thus P = LMm(P) and, by assumption,
we have \; = 0; hence, P = 0.

o We assume that a, = 0. By the definition of relation ~, every tuple a equivalent
to @ must verify a; > aq, since a; = a; + ay4. If a1 > a@;, we deduce that A\, = 0 because
of the choice of a. Thus, we have P = LM(P), and we conclude as formerly.
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o We assume that a;,as > 0. Then the polynomial
1) Aa a1, a as aa—1

still verifies Y cnt goaer Aa”® 5% = 0 (by observation (3.3) applied here), and we also
have LT(PWY) < rT(P). Using the previous cases, we observe that this construction
can be iterated. In this way, we construct P® such that LT(P®) < rr(PW) and G
divides P — P After a finite number ¢ of steps (at most min{a,, as}), we will obtain
P® =0, which proves the property and concludes the proof. O
3.3.5 Let r,s € N*. We introduce the morphism of By-algebras

é\\/fll Bl — BO (34)

defined by z1 — sxg and y; — ryp.

Proposition 3.3.6. Let P € By be a 1-homogeneous polynomial of 1-degree d. Let
r,s € N\ {0}. The following assertions are equivalent:

1. The polynomial P s divisible by sy,xo — ryor.

2. We have evy(P) = 0.

Proof. We only have to prove (2) = (1). We set P = > Ayi'yo*xiPzg'. By
a(faliid
assumption, we have 1
0 = evi(P)
= a§]4 N1 g8gd1 a2 pasta (3.5)
ar+ag=d

Let (¢,m) € N2. If a3 + ay = m and a; + as = {, we conclude that as +ay = ¢ — a; +
m+ay —d = {+m —d. Thus, the sum P ) of the terms 7" = A\,yi"yg*z1°25* of P with
az + a4, = m and a; + as = ¢ is a bi-homogeneous polynomial of bi-degree (d, ¢ +m — d).
Formula (3.5) implies that, for every pair of integers (¢, m) € N2, we have

ay d—ai

Z )‘(al,ag,d—ahg—i—m—d—ag)r S =0.
(a1,a2)€N?

ai+tas=~
d+as=m+aq

We deduce from proposition 3.3.4 that each polynomial Py, is divisible by syi20—ryox:,
which concludes the proof. O
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3.4 DIFFERENTIAL PROPERTIES OF HOMOGENEOUS
POLYNOMIALS

Let k be a field of characteristic zero. In this section, we establish various technical
results which will be used in the next sections. We exhibit in particular an additional
differential structure on the ring A; (see theorem 3.4.5).

Let us recall the following simple but useful relation, usually known as the Euler
identity (or theorem) for homogeneous functions.

Lemma 3.4.1 (Euler identity). Let k be a field of characteristic zero and P € Ay be a
homogeneous polynomial of degree d. Then

Z@ti,o (P)tl’o - dP
=1

3.4.2 Let us introduce the following k-derivations of the k-algebra A;. We denote
by D € Dery(A;) (resp. E € Derg(A1)) the derivation defined by Y7, ¢;10,,, (resp.
>ie1 tio0y,, ). The derivations D, E have the following first properties.

Proposition 3.4.3. Let k be a field of characteristic zero.
1. For every polynomial P € Ay, we have D(P) = A(P) and E(P) = 0.
2. For every pair (i,7) € {1,...,n}? of integers, we have
D(ti1t;o — tjatio) = E(tiat;o — tjatio) = 0.
3. For every homogeneous ideal I of the ring Ay, we have E((I,A(I))) C (I,A(I)).

4. Let evi: Ay — Ag be the (surjective) morphism of Ag-algebras which sends the

variable t; 1 to t; o for every integeri € {1,...,n}. For every reduced homogeneous
ideal I of the ring Ao, for every polynomial P € Ni(Spec(Ay/I)), we have evy(P) €
I.

Proof. Assertions (1) and (2) are obvious and follow from a direct computation. Let
us prove assertion (3). Let g € Ay be a nonzero homogeneous generator of I of degree
degy(g). Then, thanks to the Euler identity (lemma 3.4.1), we have

E(A(9)) = % 0uy(9)E(tir)
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Let us prove assertion (4). Up to replacing the ideal I by each of its prime components,
we may assume that the ideal I is prime by observation 3.2.5. Then, by subsection 3.2.3,
there exist an integer N and a polynomial H ¢ I such that HY P € (I, A(I)). Then, the
polynomial H¥ev,(P) belongs to the ideal (I,ev;(A(I))). We observe that, for every
homogeneous polynomial g € Aj, we have that evy(A(g)) equals degy(g)g; hence, we
deduce that (I,evi(A(I))) = I. Thus HYev,(P) belongs to the prime ideal I which
implies evy(P) € I. O

3.4.4 The following theorem can be interpreted as a formal “almost” integration of
homogeneous polynomials in the ring A;. Precisely, we show in theorem 3.4.5 that the
action of the derivation D (resp. FE) on the image of E (resp. D) is near from “the”
reverse action.

Theorem 3.4.5. Let k be a field of characteristic zero. For every bi-homogeneous
polynomial P € Ay of bi-degree (d,e), with d,e > 1, there ezists a positive integer o such
that

D(E(P)) —aP e <ti,1tj’0 - tj71ti70; Z,j € {1, ce ,n})

The same formula holds for the polynomial E(D(P)).

Proof. We only prove the formula for the polynomial D(E(P)). The proof is based on
a direct computation. We have

o

N
Il
—_

DEP) = ($0100) o (£ 100, ) )

(4.1)
a0, (P)) + T

N
Il
—_

Il
NE

The first parenthesis in formula (4.
polynomial dP. Besides, we have

) equals, by the Euler identity (lemma 3.4.1), the

T = Zjl ti,l (El tj,Oati,oatj,l (P)>
= j=
= Y T,
i=1
where we set, for every integer i € {1,...,n},

T, = i Z tj,Oati,oatj,l (P)

j=1
Let us fix an integer i € {1,...,n}. We write
7} - ti,O Z tj,latjylatiyo(P)> + (t’i,l Z tj,oatiyoatjyl(P)>
Jj=1 Jj=1j#i

] (4.2)
— |tio 2 tj,latj,lati,o(P)>
R

=L
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For every integer j € {1,...,n}, with j # i, we set
Tij = (tiatjo — tiotj1) Ok Oy, (P) € (tantpo — taatapia, B € {1,...,n})

and observe, thanks to the Euler identity (lemma 3.4.1), that formula (4.2) can be
rewritten under the following form:
Ty = dtig0y,,(P)+ > Ty (4.3)
j=i
Thus, formula (4.1) can be rewritten as
D(E(P)) = dP+T

— AP+ > T
) (4.4)

— dP+d <i ti,oatiﬁo(P)> + < > T]> .
i=1 j=Toj
By the Euler identity applied to the last term in formula (4.4) we conclude that
D(E(P)) = dP+T

1M

— dP+deP+ (Y % T,
i=1 j=1,j#i
= dle+ )P+ X X T
i=1j=1,j#i
which concludes the proof. O

3.4.6 From now on and up to the end of the section, we restrict ourselves to the case
of affine plane curves. The polynomial y;2¢ — yox; plays an important role in our study
as the following lemma underlines it:

Lemma 3.4.7. Let k be a field of characteristic zero. Let € be an affine plane curve
defined by the datum of a homogeneous polynomial g € By. Then the polynomial y1xq —
yoxr1 belongs to the ideal Ni(F).

Proof. By observation 3.2.5, up to replacing g by each of its irreducible factors, we may
assume that the polynomial g is irreducible; then, we have to prove that the polynomial
Y170 — Yox1 belongs to the ideal ([g] : d(g)*°) (for some nonzero partial derivative). Let
us assume that d,(g) # 0 (a symmetrical argument works if d,(g) # 0). We observe
that A(g) = 0.(9)z1 + 9,(g)y1. We write

—200:(9)T1 — Y09y (g)z1  (mod A(g))
—degy(g)r1g (mod A(g)),

which concludes the proof. O]

9y(9) (120 — Yox1)

Example 3.4.8. Lemma 3.4.7 does not hold in higher dimension. Let us consider the
hypersurface . of A? defined by the datum of the polynomial f = z2+y2+22 € k[z,y, 2].

Then x1yg — ToY1, T120 — To21, Y120 — Z1Y0 & Nl(y)'
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3.4.9 We consider the morphism of By-algebras ev,: B; — By defined by x; —
and y; — yo.

Lemma 3.4.10. Let k be a field of characteristic zero. Let g € By be a reduced homo-
geneous polynomial with € = Spec(By/{g)). Let P € By be a homogeneous polynomial
(in x1,11) of degree deg,(P) = d. The following assertions are equivalent:

1. The polynomial P belongs to N1(%);

2. The polynomial g divides evy(P) in the ring By.

Proof. By (4) in proposition 3.4.3, we only have to prove (2) = (1). By observation
3.2.5, we may assume that the polynomial g is irreducible up to replacing it by each of
its irreducible factors. Two cases occur.

o Let us assume that there exists v € k* such that ¢ = wz. (By symmetrical
arguments, we could prove the case g = uy.) In this case, we have N1 (%) = (g9, A(g)) =
(xo, 1). Hence, the polynomial P belongs to Ni(%) if and only if it belongs to the kernel
of the morphism of k-algebras ev: B; — k sending the variables xg, x1 to zero. Let us
assume that the polynomial g divides ev;(P). Since P is 1-homogeneous, there exists
q € k[yo] such that ev(P) = P(0,y0,0,y1) = q(yo)ys. Since ev(ev(P)) = evy(ev(P)), we
conclude that ¢ = 0. In other words, we have P € N1(%).

o Let us assume that ¢ is not divisible by xq or ¥, cases for which we have proved
the property. We have the formula

$§P(zo,yo,x1,y1) = P(ifo,yo,foﬂﬁhxo?h)
P(x0, Y0, or1,21Y0) (mod yi129 — xlyo) (4-5>
5'3'(11]3(550; Yo, To,Yo) (mod yi1zo — 2130).

By assumption, the polynomial g divides 2¢P(z0, yo, 0, %0). By formula (4.5) and lemma
3.4.7, we conclude that zdP(xg,yo,71,%1) belongs to N1(%). By lemma 2.3.3, we con-
clude that P(zg,yo,x1,y1) belongs to N7(€) (which is prime). O

Example 3.4.11. The analogue of lemma 3.4.10 does not hold in higher dimensions.
Let us consider the hypersurface of A} defined by the datum of the polynomial f =
2+ y2+ 28 € k|, y, z]. Then the polynomial z1yy — zqy; satisfies condition (2) but does
not belong to N (%).

Proposition 3.4.12. Let k be a field of characteristic zero. For every affine plane curve

€ defined by the datum of a homogeneous polynomial g € By, the ideal N1(€) is stable
under the actions of D and E.

In general, this assertion does not hold true. See example 3.4.13.
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Proof. By observation 3.2.5, we may assume that the polynomial ¢ is irreducible. Let
P € Ni(%). By observation 3.2.5, there exist an integer M € N, a nonzero partial
derivative 0(g) of g and polynomials «, 8 € By such that

A(g)MP = ag+ BA(g). (4.6)

By proposition 3.4.3, we know that the derivation F stabilizes the ideal (g, A(g)). Then,
by applying E to equation (4.6), we conclude that d(g)™ E(P) belongs to the ideal
(g9,A(g)) which concludes the proof by observation 3.2.5. Let us prove the assertion
for the derivation D. By a direct computation, we obtain D(A(g)) = D(0.(g))x1 +
D(0y(g))y1- Then we observe, thanks to the Euler identity (lemma 3.4.1), that

D(A(g)) (0, Yo, To, o) = (9:(9:(9))z0 + 0y(9:(9))y0) 0 + (02(9y(9)) 0 + 0, (9y(9))Y0)yo
= (deg(g) — 1)(9:(g9)z0 + 0y(9)v0)
= deg(g)(deg(g) — 1)g,

and we conclude by lemma 3.4.10. O]

Example 3.4.13. Let us consider the hypersurface . of A} defined by the datum of the
polynomial f = 23 + y?x + y* € k[z,y, z]. One can check that D(A(f)) & N1(#). The
polynomial P = 3yozo21+3ya 21 — YoT120 — 2Y17020 — 3yoy1 20 belongs to Ny (L)\ (f, A(f))
but D(P) g]\/‘l(y)

3.5 GENERAL COMPONENT OF AN AFFINE PLANE CURVE
DEFINED BY A HOMOGENEOUS POLYNOMIAL

Let k be a field of characteristic zero. The aim of this section is to describe presenta-
tions for the ideal Ni(%) when % is an affine plane curve defined by the datum of a
homogeneous polynomial in By.

3.5.1 We introduce the following notation. Let m € N. Let g € By be a homogeneous
polynomial with deg,(g) = m and € = Spec(By/(g)). For every integer i € N, for every
polynomial g € By, we denote by D;(g) the element D@ (g)/i, if i > 1, and Dy(g) = g,
which belongs to the ideal N7(%). In particular, for every integer i > m + 1, we have
Di(g) = 0.

Proposition 3.5.2. Let k be a field of characteristic zero. Let m > 1 be an integer. Let
€ be an affine plane curve defined by the datum of a reduced homogeneous polynomial
g € By with degy(g) = m. The ideal N1(€) is generated by the family D_; = y1x0— Yot
and the D;(g) for every integer i € {0,...,m}.

Proof. By proposition 3.4.12, for every integer i € {0,...,m} we have D;(g) € Ni(%).
Thanks to this observation and lemma 3.4.7, we deduce that (y;z0 — yox1) + (D;(g);i €
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{0,...,m}) C N1(%). Conversely, we have now to prove that N1(€) C (y120 — yo1) +
(Di(g);1 € 40,...,m}). We show the result by an induction on the degree d (in 1, y;)
of the polynomials in Ni(%) considered as polynomials in the ring Bylzi,y1]. By ob-
servation 3.2.5, we may assume that g is irreducible. If P € N{(%) is a polynomial
with degree d = 0, then the polynomial g divides P by lemma 2.3.3. Let d > 1 and
P € Ni(%) with deg,(P) = d. By subsection 3.2.7, we may assume that P is bi-
homogeneous. We observe that the degree of the polynomial F(P) equals d — 1 and
belongs to the ideal N(%) by proposition 3.4.12. By the induction hypothesis, we de-
duce that E(P) € (yhzo — yox1) + (Di(g);1 € {0,...,m}). We conclude the proof by
applying the operator D to E(P) thanks to theorem 3.4.5. O

Example 3.5.3. Let k£ be a field of characteristic zero. Let f = xoyo € By. We
observe that {zo} N {yo} = [xo] - [yo]; one inclusion is clear. For the inverse one, let
P e {zo} N{yo}, then there exists m € N such that P™ & [zo] N [yo]. In this case, this is
equivalent to P € [zo] N [yo]: let us suppose by contradiction that P ¢ [x¢], then there
is a term in 7T in the polynomial P which does not contain any variable z; for ¢ € N.
Then T™ is a term in P™ which does not contain any variable x; for « € N and hence
P™ & [xy], contradiction. The argument proving that P € [y] is analogous.

Thus we can write P in the form P = Zszwi where b; € k[z;,y;;1,7 € N] for i € N.

i€

From P € [yo] we deduce that b; € [yo] for ¢ € N, hence P € [z0] - [yo]. Then we have
the formula

Ni(E) = {zo} N {yo} N By = ([zo] - [yo]) N B1 = {f, 2oy1, 2190, T1Y1)-

By proposition 3.5.2, we deduce another presentation of the ideal Ni(%) given by

(f, y1o — Yo1, Tl + YoT1, T1Y1)-

3.5.4 Let k be a field of characteristic zero and ¢ € N*. For every integer i € {1,...,t},
let 7; € k* be mutually distinct elements. For every integer ¢ € {1,...,t}, we set
fi = Yo — vizo € By and f = afy [1._, fi with e,¢' € {0,1}. Let us denote by J the
ideal of the ring B; defined by

J = <f1, A(f1)> : <f2,A(f2)> e <ft7 A(ft>>

The following bi-homogeneous polynomials of the ring B; belong to this ideal

0; = <ﬁ A(fg)) X ( ﬁ fg) (5.1)
=1 (=i+1
for every integer ¢ € {0,...,t}. We set € = Spec(By/(f)).
Theorem 3.5.5. Keep the assumptions and notation of subsection 3.5.4. The family
B = {y120 — yoxl,mzly,i;éi(f), i€{0,...,t}, hi,hy € {0,1}}

is a Groebner basis of N1(€) for the monomial order 11 >1ex Yo >lex T1 >lex Lo in Bi.
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Let us stress that, if the field k is assumed to be algebraically closed, theorem 3.5.5
provides a complete answer for homogeneous polynomials. Subsection 2.3.13 explains
how theorem 3.5.5 also gives an explicit Groebner basis in case the field k is not assumed
to be algebraically closed.

Proof. Let us prove theorem 3.5.5. By lemma 3.4.7 and the very definition of the ideal
J, we conclude that the family is contained in the ideal N7(%’). By [3, Proposition 5.38],
in order to prove that the family 9B is a Groebner basis of the ideal N;(%), it suffices
to show that every element in N;(%) has some term in (LT(B)). Let us denote the
polynomial 0_; := yy29 — yor1. We observe that

(LT(B)) <y [ v Y et >
h1,ho€{0,1}

Let P € N1(%) that we may assume to be bi-homogeneous. We apply lemma 3.4.10 and
deduce that f divides evy(P) in the ring By. Two cases occur:

(i) Assume that evy(P) # 0. Then, the polynomial P has some term of the form
Y yer it ast such that LT(f) = a§yg vl divides y§' 228t hence, we have a; +
ay > t+¢ and as + ay > €. The second inequality shows that either xf or z§

divide the term z{*zg*.

On the other hand, for ¢ € {0,...,t}, the pairs (¢ +¢&',t — {), ({,t — { + €’) range
over all possible pairs of nonnegative integers whose sum equals ¢t + €', and thus

some monomial in {yi;yfyé_z}ge{07,,,7t} divides the term yi'y;?. We deduce that
hQE{O,l}
Yyt xgt is divisible by some monomial in {xily,i; yiye ‘Y ¢ef0,..1y and we have
h1,h2€{0,1}
proved the property.

(ii) Assume that evi(P) = 0. Then, by proposition 3.3.6, the polynomial y;x¢ — yoz1
divides P; hence the monomial y;x¢ divides LT(P) and the property holds.

]

Remark 3.5.6. Along the whole chapter we have chosen the monomial order in B; to be
the lexicographic one with y; >iex Yo >1ex 1 >lex To- Since we are in a homogeneous
setting, the corresponding graded lexicographic order also works because it coincides
with the lexicographic order. However, not every monomial order works, even if it is a
lexicographic order. See example 3.5.9.

3.5.7 Let us mention the following consequence of theorem 3.5.5, which improves
proposition 3.5.2.
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Corollary 3.5.8. Let k be a field of characteristic zero. Let f € By be a reduced
homogeneous polynomial which is not divisible by neither xoy nor yo. We set € =
Spec(By/{f)). The family formed by the polynomial y1xo — yor1 and the D;(f) for every
integer i € {0,...,degy(f)} is a Groebner basis of the ideal N7(€) for the monomial
order Y1 Zlex Yo Zlex L1 >lex L0 m Bl-

Proof. Let k' be an algebraic closure of k. Let us consider the differential ideal {f} in
k{x,y} and let P be a polynomial in {f} N B;. By subsection 2.3.13, the ideal {f} ®j ¥’
equals the radical of the differential ideal generated by f in the differential ring £&'{z,y}.
By theorem 3.5.5, the leading term LT(P) of the polynomial P is divisible (in &'{x,y})
by the leading term of some of the §;, for i € {—1,...,degy(f)}. We observe that these
proposition 3.5.2. But the polynomials in this family belong to k{z,y}, which concludes
the proof. O

Example 3.5.9. Let us fix the field & = Q. Let us consider the polynomial f =
zd + x3yo + Y3, which is irreducible in By and homogeneous of degree 4. From a direct
computation using the algorithm described in subsection 3.2.8 we obtain a Groebner
basis of {f} N By for the monomial order ¥; >ex Yo >lex L1 >lex Lo:

B — | V1% — Yo, Fo ey + xgrayo + g, ySy% + zoxiyo + wia?, ‘
Yoy + aiyo + xoxd, yi + alyr + 2

The family given in proposition 3.5.2 is the following:

¢ ={D_y :=y1xo — yor1, Do := f, D1 == dypyr + x5y + 3x52190 + 4251,
Dy = 12y3y7 + 652191 + 63027y + 122027,
D3 := 24yoys + 18z0x3ys + 623y0 + 24w023 ) Dy = 24y} + 24x3y, + 2427}

We observe that the leading terms of the elements in B and € are the same. Hence € is
also a Groebner basis of {f} N B;. As an illustration of remark 3.5.6, if we consider on
By the monomial lexicographic order with yg >iex 1 >1ex Y1 >1ex To then neither € nor
B are Groebner bases of {f} N By.

3.6 GENERAL COMPONENT OF A PLANE CURVE DEFINED
BY A WEIGHTED HOMOGENEOUS POLYNOMIAL

In this section we compute a system of generators of the ideal By N {f} when the
polynomial f is weighted homogeneous. Let (r,s) € N? be a pair of coprime integers
with r > s > 2. The techniques we will use are partly similar to those of the homogeneous
case (see section 3.5).
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3.6.1 We begin by giving an analogue to lemma 3.4.7 in the weighted homogeneous
case.

Lemma 3.6.2. Let k be a field of characteristic zero. Let A € k*. Let (r, s) € N? be a pair
of coprime integers with r > s > 2. Let f =z, — \y§ € By. We set € = Spec(By/(f)).
Then the polynomial sy1xg — ryoxy belongs to the ideal Ni(€).

Proof. The polynomial f being irreducible, we have to prove that sy;xo—7ryex; belongs to
the ideal ([f] : O(f)>) (for some nonzero partial derivative). Let us reason with 0, (f) # 0
(a symmetrical argument works for 0,(f) # 0). Recall that A(f) = 210,(f) + v10,(f).
We write

Oy(f)(syrwo — ryor) = —swo0u(f)21 — ryody(f)z1  (mod A(f))
= —rszf (mod A(f)),
which concludes the proof. O]

3.6.3 Now we give an analogue to lemma 3.4.10. We consider the morphism of By-
algebras evy : By — By defined by z1 — sx and y; — 7yp.

Lemma 3.6.4. Let k be a field of characteristic zero. Let X € k*. Let (r,s) € N?
be a pair of coprime integers with r > s > 2. Let f = zj — A\yy € By. We set
¢ = Spec(By/(f)). Let P € By be a 1-homogeneous polynomial of degree deg,(P) =: d.
The following assertions are equivalent:

1. The polynomial P belongs to N1(€).

2. The polynomial evy(P) belongs to the ideal (f) in the ring By.

Proof. Let P € Ni(%¢). By observation 3.2.5, there exist an integer N € N and a
polynomial H ¢ (f) in By such that H¥P € (f,A(f)). Then, taking the image via
évy, the polynomial HVev,(P) belongs to the prime ideal {f,evi(A(f))) = (f), because
evi(A(f)) = rsf. We conclude that ev,(P) belongs to (f). Conversely, let P € By such
that evy(P) = P(xo, Yo, STo, Y0) € (f) C Bo. We have the formula

deé‘fp(ﬂco,yo,xl,yl) = P(x0,yo, 5T0T1, SToY1)
P(x0, Yo, sT071,771Y0)  (mod sy170 — ryoz1) (6.1)
24P (z0, Y0, 5T0,7Y0)  (mod sy;zo — ryoxy).

By assumption, 2¢P (o, yo, 570, 7o) belongs to (f), then by (6.1) and lemma 3.6.2 the
polynomial s?zdP(xg,yo,71,y1) belongs to Ni(%), which is a prime ideal. By lemma
2.3.3 the polynomial P(zg,yo, z1,y1) belongs to N1(%). O
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3.6.5 Let us state the main result of this section. Let A,...,\; € k be nonzero
elements. Let (r,s) € N? be a pair of coprime integers with r > s > 2. For every
integer i € {1,...,t}, we set D_y = Dy, _1 := sy1zo — ryox1 and Dy, j, := \istiys iyl —
rlial il where Ji €40,...,s}. Foreveryie {1,...,t},if j; € {—1,...,s}, we denote

Djl - D>\1 Ji oo D)\t:jt' (62>

Theorem 3.6.6. Let k be a field of characteristic zero. Let Ay, ..., A\ € k be nonzero and
mutually distinct elements. Let (r,s) € N? be a pair of coprime integers with r > s > 2.
Let f € By be the polynomial f = x5ys [Iie,(xh — Niys) with e,¢" € {0,1}. We set
¢ = Spec(By/(f)). Then the family

B = {D,l,leyz;ﬁjh_,.7jt,ji € {—1, ey 8},i € {1, ce ,t}, hl, hg € {0, 1}}
is a Groebner basis of N1(€) for the monomial order 11 >1ex Yo >lex T1 >lex To in Bi.

Let us stress that, if the field £ is assumed to be algebraically closed, theorem 3.6.6
provides a complete answer for weighted homogeneous polynomials by proposition 3.1.3.
Subsection 2.3.13 explains how theorem 3.6.6 also gives an explicit Groebner basis in
case the field k is not assumed to be algebraically closed.

Remark 3.6.7. As in the homogeneous case (see remark 3.5.6), it is not true in general
that the family given in theorem 3.6.6 is a Groebner basis of N;(%) when the monomial

order on Bj is not the lexicographic one with y; >jex Yo >1ex T1 >1ex To. See example
3.6.8.

Example 3.6.8. Let us fix the field ¥ = R and let &' := C. We keep the notation
in subsection 2.3.13. Let us consider the polynomial f = x{ + oy, which is weighted
homogeneous of weight (2, 3,14). In k'[zo, yo], we have f = xo(xd — iy2)(zd + iy2). By
remark 3.6.19, which follows from the proof of theorem 3.6.6, the following family is a
Groebner basis of ({f} ® k') N B} for the monomial order y; >jex Yo >1ex 1 >lex To:

B = {2y1x0 - 3yo$1} U {(-75@50,0, xeﬁm, $e52,0> 3?z52,1, x€52,2>£€{0,1}}-

For example, the polynomial ngl o equals —2ydy zo — 3x0x1 +1i(2yoy1 s — 3ydxdTy),
which has the two components —2y3y;7¢ — 3z5z1 and 2yey 28 — 3ydzdz,. In this way,
from the preceding family we obtain the following one by computing the components
(on the basis {1,i}) of its elements:

¢ = {2110 — 3yory, f, 1105 + 1195, 208170 + 3371, 2900170 — Sygxgxl,
2usyrry + 3577, 2o iy — 3ygagrt, dytyse + 9rda], dyiry — dypa i,
4yfy§x1 + 9933:5:1)’, 4y%x3x1 9y0:1:03:1, 81310z + 27930:1:1,
12y1x0x1 18y0y1x0x1, 8y1y0x1 + 27atox1, 12y%x(2)x% 18y0y1m0x§’,

16yiwo + 8ladx], 16y z, + S1x22°}.
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Now, from a direct computation using the algorithm described in subsection 3.2.8 we
obtain a Groebner basis of {f} N By for the monomial order y; >1ex Yo >1ex T1 >lex To:

B = {2100 — 3yox1, f, 1120 + T1y0, 2yoy1 w1 + 3xgry, Ayt yas + 9rgad,

Syfyoscl + 271:8:6‘11, 16yfa:1 + 813:%:5“;’}

We observe that (B) = (€). However, if we consider the monomial order zg >ox 1 >1ex
Yo >1ex Y1 neither € nor B are Groebner bases of {f} N By.

3.6.9 The proof of theorem 3.6.6 is presented in subsection 3.6.18 and is based on
results in subsection 3.6.12 and the present one. A key ingredient in our proof is to pass
from the weighted homogeneous setting to the homogeneous one. For this, let us call
Co = klug,v] and C = k[ug, vo, u1,v1]. We set a pair of coprime integers (r,s) € N?
with » > s > 2. We consider the morphism of k-modules p : By — C} given by
To > ud, Yo > UG, Ty > sud tug, y1 — vy vy, The following lemmas provide some
properties of the morphism p allowing to relate both settings.

Lemma 3.6.10. Let P € By. Then p(evi(P)) = evy(p(P)).
Proof. On the one hand,

p(evi(P(zo, Yo, 71,41))) = p(P(Z0, Yo, 50, 7Y0))

On the other hand,

evl(p(P(xmyOle?yl))) = eVl(P(US,'US,SUS_lul,?"’Ug_lUl))

_ s . s r
= P(ug, vy, Sug, rvg)

[]

Lemma 3.6.11. The morphism p is injective. Moreover, if M = vi*vi*uiPuy* € Cy,

then the following assertions are equivalent:

1. The monomial M belongs to the image Im(p) of the morphism p.
2. The following conditions hold true:

rla; + as;
aq —|—a2
> aq;

r 6.3
slag + ag; (6.3)
as + a4

If these conditions hold, we have p~' (M) = Yy T a0
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Proof. 1t suffices to see that a monomial M = v{*v?uiug* € C; has at most a unique

preimage (which is that given in the statement). Let M = Noyltyb2al el € By, then
p(VI) = Ayrtr ghagliyfPrHb2)=br by s(bstba) =bs

In order to have M = p(M), we need to find the nonnegative integer solutions of
the system of equations obtained by equalling the exponents of each variable in M

and p(M). One deduce that the solution exists if the four conditions in the statement

are satisfied and in this case it is unique. After adjusting the coefficient we obtain

~ 1 a aptag . as agtag
M = YiYo " 7%y ° U

as

a1 gas

3.6.12 Let X\ € k*, we consider the weighted homogeneous polynomial f =z — \y§ €
By. We set g := p(f) = uy® — Mg® € Cp; it is a homogeneous polynomial. We set
€ = Spec(By/(f)) and 2 = Spec(Cy/(g)). The following lemma relates N7(%) and
N1(2) via the morphism p.

Lemma 3.6.13. We have the equality p(N1(€)) = N1(2) N Im(p).

Proof. Let P € Ni(%), then by lemma 3.6.4 we know that evy(P) € (f); hence we
have p(evy(P)) € p((f)) C (g). By lemma 3.6.10, it means that ev,(p(P)) € (g). Since
the polynomial g is reduced and homogeneous, by lemma 3.4.10, we deduce that this
condition is equivalent to p(P) € N1(2). Conversely, let Q € N1(Z2) NIm(p). Since the
morphism p is injective, there exists a unique P € Bj such that p(P) = Q). By lemmas

3.6.10 and 3.4.10, p(ev1(P)) = evi(p(P)) = evi(Q) € (g) = (p(f))-

o We assume that p, ((f)) = (p(f)) NIm(p|,, ) (where we see (f) and (p(f)) respec-
tively as ideals in By and Cj). Then, by the injectivity of the morphism p, we deduce
that evy(P) € (f) and conclude the proof by lemma 3.6.4.

o Let us prove pj, ((f)) = (p(f)) NIm(p|,, ). We only have to prove that pj, ((f)) D
(p(f)) NIm(py,, ). Let R € By such that p(R) € (p(f)) (seen as an ideal in Cp). Then
there exists a polynomial S € Cy such that p(R) = Sp(f). Let us show that S € Im(p).
Each monomial v§2ul* of p(R) is, by our assumption, in the form vg2ug* = v 2udite,
where vj?ub! (respectively v§2us') is a term of S (respectively p(f)). But p(R) and p(f)
being in the image of p, by lemma 3.6.11, r divides as and cy; from as = by + ¢ we

then deduce that r also divides by. Analogously we have that s|bs, then vj2ub belongs
to Im(p); hence the polynomial S also does. O
Let Ai,..., A € k be nonzero elements. For every integer i € {1,...,t} we set

fi = o, — N\iy§ and 6; = Spec(By/(fi)). We prove that lemma 3.6.13 can be extended to
this setting.

Proposition 3.6.14. Let k be a field of characteristic zero. Let A\i,...,\s € k be
nonzero and mutually distinct elements. Let (r,s) € N? be a pair of coprime integers
with r > s > 2. Let f € By be the polynomial f = TIi_,(xf — Nys) and g := p(f) € Cy



64 CHAPTER 3. ON THE TANGENT SPACE OF A PLANE CURVE

its image by the morphism p. We set € = Spec(By/{f)) and @ = Spec(Cy/{g)). Then
pN1(%)) = Ni(2) N Tm(p).

Proof. As the f; are the irreducible factors of f, from the Kolchin irreducibility theorem
(see theorem 2.3.10), we deduce the formula:

t

t
i=1 i=1
For every integer i € {1,...,t}, we set g; := p(fi;) = up® — \vy® € Cy and 9; =
Spec(Co/(g;)). From (6.4), the injectivity of the morphism p and lemma 3.6.13, we
deduce the following equalities:

t

pNU(E)) =[] p (M) = O (M(21)) N Im(p). (6.5)

=1

On the other hand, by subsection 2.3.13 we may assume that the field & is algebraically
closed. For every integer i € {1,...,t}, let g” ) (7 € Ji) be the irreducible factors of the

t .
polynomial g;; hence the decomposition g = [[ ] ggj ) is the decomposition of g into
=1 jEJi
irreducible factors. By applying the Kolchin irreducibility theorem 2.3.10, we obtain

Ni(Z) ={g:}nCi= ) {gi(j)} NCh,

J€Ji
and . ,
M(Z) = {gknCr=) o} nCr = N M), (6.6)
i=1jeJ; i=1
We conclude the proof directly from formulas (6.5) and (6.6). O

Remark 3.6.15. Let us observe that proposition 3.6.14 and lemma 3.4.10 yield the
following characterization. Let P € B;. Then, we have P € N;(%) if and only
if p(P) € p(N1(%)) (because of the injectivity of the morphism p), if and only if
p(P) € Ni(Z) Nlm(p), if and only if evi(p(P)) € {(g) = {91+~ o).

3.6.16 We first prove the following less general version of theorem 3.6.6 which solves
the case of a product of cusps.

Proposition 3.6.17. Let k be a field of characteristic zero. Let \i,...,\; € k be
nonzero and mutually distinct elements. Let (r,s) € N2 be a pair of coprime integers with
r>s>2. Let f € By be the polynomial f = TI'_, (xh—N\ys). We set € = Spec(By/(f)).
Then the family

B={D_1,D;. :jie{-1,...,shie{l,... t}}

is a Groebner basis of N1(€) for the monomial order 11 >1ex Yo >lex T1 >lex Lo in By.
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Proof. By applying lemma 3.6.4 to every element in 8 for each of the f;, i € {1,...,t},
and equality (6.4), we deduce that B C Ni(%). By [3, Proposition 5.38], in order to
show that the family 9B is a Groebner basis of Ni(%) it suffices to prove that every
element in N;(%) has some term in (LT(B)). Let us compute the leading terms of the
elements of ‘B for the considered monomial order.

o We have LT(sy12¢ — ryoT1) = Y170

o For 53-17,”7jt, let us denote ¢ := #{j; : ji # —1}. Then, for j; € {-1,...,s},
i€ {l,...,t}, we have
Dijyoe = D’\hjl”'AD’\tvif N A —
T 71;[ 1(%8%/8’”3/{1 — iy ) (sy1zo — ryor1)*T
DiF—

g e, G i) s (i ) g
)\il e )\’igst e+.711+ +]zéy1 1 R4 y() 1 13 336 ¢ 4+

4

=~ t—ltgsy o tii, €s—(Jag++dip) g
Hence, we deduce that LT(Dj, ;) = Yo xy .

We conclude that

t—L+(jiy +t+diy)  Ls—(Jig+-tia _
() = (o, o FO O )

0<Jiy s Jiy <8

Let P € Ni(%). We aim to prove that some of its terms belongs to (LT(8)). By remark
3.6.15 we know that evy(p(P)) € (g) = (g1 - - - g+). Two cases occur:

o If evi(p(P)) = 0, then, by lemma 3.6.10, we have p(ev,(P)) = 0. By the injectivity
of the morphism p, we deduce that ev,(P) = 0. But, by proposition 3.3.6, this means
that P € (sy1xo — ryoz1); hence we conclude that the monomial y;zq divides LT(P).

o If evi(p(P)) # 0, then P has some term y{'yi?x{*xj* such that LT(g9) = vf*

(we are considering the monomial order vy >jx Vg >lex U1 >lex Ug in C) divides

ai,a2,.a3,.04\\ __ ay, r(ai+az)—a1 a3, s(azt+as)—azy _  r(ai+az) s(az+as) .
evi(p(y1tyoaPzgt)) = evy(vity, uPuy ) = v Uy . Thus, it

implies that trs < r(a; + ag); hence, we have ts < a; + as. For 0 < j1,...,7 < s,
the pairs (j; + -+ + ji, ts — (ji + -+ - + j¢)) range over all possible pairs of nonnegative
integers whose sum equals ¢s. Thus some monomial in {y{l+"'+jtyés_(jl+"'+jt)}OSJ’LHWSS
(which is a subset of LT(B), take ¢ = t) divides the term y;'yy?, and hence also the term

ai, a2 .a3 .04

Y1 Yo L1 Zg - O

3.6.18 Let us prove theorem 3.6.6.

For every integer i € {1,...,t}, we set f; = x — \iy§ € Bo, feusp = II._1 fi € B,
gi = p(fi) = uy® — \vy® € Cp and geysp = p(feusp) € Co. The corresponding affine plane
k-curves are respectively denoted by %; = Spec(By/(fi)) and G.usp = Spec(Bo/{feusp))-
We write €, (resp. %6,) for the affine plane k-curve associated with the datum of z§
(resp. %5 ). By applying the Kolchin theorem as in the proof of proposition 3.6.14, we
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deduce that Nq(€) = N1(%€,) N N1(6,) N Ni(G.usp)- Then, by the injectivity of p and
remark 3.6.15 applied to @..sp, we deduce that, if we take a polynomial P in N1(%),
then evy(p(P)) belongs to (us®) N (V5) N (Geusp). We can write evy(p(P)) in the form
evi(p(P)) = Qgeusp for a polynomial @ € Cp, and u§® and v(f’ divide Qgeusp- Let us
recall that geusp = [Tiey g = [Tiq up® — ANvg® = (1) A1 Aol + -+ + uf®. A direct
calculation then shows that uifvy® divides Q. So, the polynomial evy(p(P)) can be
written as Q'UuiEV geusp- We conclude that the polynomial ev;(p(P)) belongs to the
ideal (UFVEE Geusp) = (p(f)). Tt is clear that B C N (%). By [3, Proposition 5.38], in
order to show that % is a Groebner basis of N7(%) it is sufficient to prove that every
element in N7(%) has some term in (LT(2B)). From the computations in the first part
of the proof of proposition 3.6.17 we deduce that

1oty ooty s— (i ttdi,)
(Lr(B)) = <?/1I07 {xilyf@yl ' ‘Yo ‘g 0<e<t .

0<Jiysdiy<s
0<h1,h2<1

Let P be a polynomial in N1(%"). We have already observed that evy(p(P)) belongs to
<u8%65/ Geusp)- Then, we finish the proof in an analogous way as we did in the proof of
proposition 3.6.17. Two cases occur:

oIf evy(p(P)) = 0, then, by lemma 3.6.10, we have p(ev,(P)) = 0. By the injectivity
of the morphism p, we deduce that ev,(P) = 0. But, by proposition 3.3.6, this means
that P € (sy1xo — ryoz1); hence we conclude that the monomial y;xy divides LT(P).

o If evy(p(P)) # 0 then P has some term y{'y2x{*x§* such that LT(uSTVE Geusp) =

! . . . .
vy * T ugE (we are considering the monomial order vy >y Vo >lex U1 >1ex Up in C)
. a1 as a3 _.a4 . ay, r(aita2)—a1 a3 s(aztas)—azy _  r(ar+a2) s(az+as)
divides evy(p(yi'yotx®zgt)) = evy(vitog uPBuy ) = v, g :

Hence trs + re’ < r(a; + ag) and then ts + & < a; + ag, and es < s(az + a4) and

then ¢ < asg + a4. We deduce that yi'yg2zi®zg* is divisible by some of the terms in

{xilyi;y{ﬁmﬂﬁy(t)s*(jﬁ"'ﬂt)}ogjl,_,_,jtgs, which is a subset of LT(B) taking ¢ = t.
0<h1,h2<1

Remark 3.6.19. From the last part of the proof of theorem 3.6.6 we observe that not
every element in B is essential, in the sense that the final argument also holds for a
subset of B and hence it is also a Groebner basis of N1(%). Precisely, one may take
only the elements of the form x5 yi Dj, . for hi,hy € {0,1}, j; € {0,...,s} and
i € {1,...,t}; that is, it is not necessary to consider the element sy;xy — ryox; in the
products. Moreover, between those elements, for every e € {0,...,ts} it suffices to
consider the elements of the form a:‘f”y,i;Djh,,,Jt for hy, he € {0,1} and a unique choice

of ji,...,J: € {0,...,s} such that j; +--- + j; = e.

For example, the following family is a Groebner basis of N7(%) (we keep the notation
and assumptions of theorem 3.6.6):

B = {SyIQJO - Tyoxlwrzlyfi;ﬁjhm,jt : hl) h2 S {07 1})]2 S {07 BRI S}ai S {]-7 s 7t}}

where j; is zero unless j,, = s for every integer m < i.
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3.7 AN APPLICATION IN THE FIELD OF DIFFERENTIAL
OPERATORS

For a curve ¥ defined by a reduced polynomial f € By, there exists a relation between
N1(€) and a class of differential operators of the plane related with f. Hence the main
results in sections 3.5 and 3.6 have a translation in this setting, which we will explain
in the present section. First, let us introduce the basics about differential operators (see
[21] for a precise reference).

3.7.1 Let k be a field of characteristic zero and R be a k-algebra. We define inductively
in d the set of differential operators of R over k of order at most d, 9}%\ &> as the following
set of k-linear maps R — R. For d = 0 we identify an element a € R with the k-linear
map a : R — R corresponding with the multiplication by a, r +— ar for every r € R.
Then 7y, == {a: R — R;a € R}. Ford > 1 we define 2§, as the set of k-linear
maps D : R — R such that the bracket [D,a] := Doa—ao D belongs to .@éﬁ: for every
a € R. We call

D = U -@%k (7.1)

deN

the ring of differential operators of R over k (with the multiplication given by the
composition, it is well-defined because if D, € él‘k and Dy € @fﬁk then Dy o Dy €
.@g;’ % see [21, Ch.3, Proposition 1.2]). We observe that this ring is not-necessarily
commutative.

The ring Zp; is filtered by the order (see (7.1)). Let us consider the corresponding
graded ring (with the assumption .@g‘}c =0)

QR\R @ 9R|k:/ R|I<: (7.2)

deN

For every d € N, the canonical projection oy : @%Ik — @élk/ @Id%ﬁgl is called the
symbol map of order d. 1If a differential operator D € Zgj; has order d € N, i.e., if
D € @%k \ 2 ‘k , then its d-symbol o4(D) is called its principal symbol and will be
simply denoted by o (D).

3.7.2 Let us now consider the particular case of R = By = k[zo, yo]. An element D of
Dok is called a differential operator of the plane. By [21, Ch.3, Theorem 2.3] we know
that Zp, ), is isomorphic to the second Weyl algebra, i.e., the k-subalgebra of the algebra
of k-linear maps By — By (with the addition and the composition of maps) generated
by the operators xg,yy (corresponding with the multiplication maps) and 0,,, 0y, (see
[21, Ch.1, §1]). In fact, this theorem assures that if D € .@gow, it can be ertten as a
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formal combination with coefficients in By of the form D = 3 a;;0. 0 . If D € Py,
i+j<d
has order d € N, in a slight abuse of notation we will write o(D) = ¥ a;;0, 0} .
i+j=d

By [21, Ch.7, Theorem 3.1] the graded ring gr(Zp,;) is a commutative polynomial
ring which can be identified with B; with the partial degree deg; (see subsection 3.1.1).
The variable x; corresponds with the symbol o4(0,,) and the variable y; with the symbol
01(0y,). This identification is the coordinate-dependent version of the intrinsic isomor-
phism between Sym(Dery(By)) and gr(Zp,x)-

3.7.3 Let f € By be a reduced polynomial and 4 = Spec(By/(f)) the associated

affine plane curve. We consider the V-filtration V. of Do\ along € which is defined,
for every integer r € Z, by

Vil = {D € D |V €Z Df)") C ()},

with the convention (f)® = By for s < 0. From the inductive definition of the differential
operators we deduce that @golk C Vf for every d € N. For the general definition and
more details on the V-filtration see [17], [53] or [59]. The following result is a part of
[35, Corollary 4.4], see also [73].

Lemma 3.7.4 (Gros-Narvaez Macarro-Sebag). Let k be a field of characteristic zero.
Let f € By be a reduced polynomial and € = Spec(By/(f)) the associated affine plane
curve. Let D € Dp,i, be a differential operator of order d € N. The following assertions
are equivalent:

1. The operator D wverifies D(f?) € (f).

2. The operator D belongs to Vi ;.

3.7.5 Let us now state the main result relating differential operators and elements of
N1(%) for € an affine plane curve defined by a reduced polynomial f € By. We denote
by f : By — Bj the morphism of Bj-algebras defined by

P(z0,y0, 21, Y1) — P* == P(20, Y0, —y1, 1)

Let us recall that, by subsection 3.7.2, the graded ring gr(Zg, 1) can be identified with the
polynomial ring By, hence in particular via this identification we can apply the morphism
£ to the principal symbol o(D) of a differential operator of the plane D € Zp,.. The
following theorem is part of [35, Corollary 4.10], combined with lemma 3.7.4, see also
[73].

Theorem 3.7.6 (Gros-Narvaez Macarro-Sebag). Let k be a field of characteristic zero.
Let f € By be a reduced polynomial and € = Spec(By/(f)) the associated affine plane
curve. Let P € By be a homogeneous polynomial with deg,(P) = d > 0. Then, the
following statements are equivalent:
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(1) The polynomial P belongs to N1(€).

(2) fo;" every differential operator D € 9§, . such that o4(D)* = P, we have D(f%) €
f)-

(8) There exist a differential operator D € ‘@go\k and an integer e > d such that
oq(D)f = P and D(f¢) € (fe=d+1).

(4) For every differential operator D € .@g0|k of order d such that o4(D)* = P, we
have D € V.7 ,.

(5) There exists a differential operator D € 9%, of order d such that oqy(D)f = P
and D € V.F .

3.7.7 The morphism # : B; — B; being a Bj-automorphism, we can denote by b :
By — B its inverse, which is also a By-automorphism given by

P(x0,y0,x1,y1) — P = P(zo,yo,y1, —21).

Our study of N7(%) for € an affine plane curve defined by a reduced polynomial f €
By in sections 3.5 (for f homogeneous) and 3.6 (for f weighted homogeneous) can be
combined with theorem 3.7.6 in order to deduce the following results:

Corollary 3.7.8. Let k be a field of characteristic zero. Let v1,...,v € k be nonzero
and mutually distinct elements. Let f € By be the polynomial f = :cgyg/ IT'_, (yo — Vio)
with e, e’ € {0,1}. We set € = Spec(By/(f)). Let D € .@go‘k be a differential operator of
the plane of order d such that D(f?) € (f) (or equivalently, such that D € V.f ). Then,
via the identification in subsection 3.7.2 between gr(Pp, k) and By, its principal symbol
o4(D) is a combination in By of the following family of polynomials (in the notation of
subsection 3.5.4):

{@1m0 + yoyr, (5, 05,0:(F))", i € {0, 1}, by, hy € {0,1}} .

Proof. Tt is direct from theorem 3.7.6, theorem 3.5.5 and the fact that a Groebner basis
of an ideal is in particular a system of generators. O]

Corollary 3.7.9. Let k be a field of characteristic zero. Let \y, ..., N\ € k be nonzero
and mutually distinct elements. Let (r,s) € N? be a pair of coprime integers with
r>s>2. Let f € By be the polynomial f = xgys [T._,(xh — Niyg) with ,¢’ € {0,1}.
We set € = Spec(Bo/(f)). Let D € D5 ;. be a differential operator of the plane of
order d such that D(f%) € (f) (or equivalently, such that D € V.f ). Then, via the
identification in subsection 3.7.2 between gr(Ppy ) and By, its principal symbol o4(D) is

a combination in By of the following family of polynomials (in the notation of subsection
3.6.5):

{Dlila <x21yl&;’25]1 ~~~~~ jt)b7ji € {_17 .. -78}7i € {17 cee 7t}7h17h2 € {07 1}} .
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Proof. 1t is direct from theorem 3.7.6, theorem 3.6.6 and the fact that a Groebner basis
of an ideal is in particular a system of generators. O]

3.7.10 M. Gros, L. Narvdez Macarro and J. Sebag also established a relation between
elements in N7(%) for € an affine plane curve defined by a reduced polynomial f € By
and Bernstein-Sato operators for f, which gives another application of our study in
sections 3.5 and 3.6. Let us first present the Bernstein-Sato construction, for more
information see [4] or the survey [78].

Let s be a new variable, we consider the polynomial ring Zp,x[s]. The order of a
differential operator P(s) = ; P;s' € P, ks] is defined as ord(P(s)) := max{ord(F;)}.
Then the ring Zp,|s] is filtered by the order and, using the identification in subsec-
tion 3.7.2 between gr(Zp, ;) and By, the corresponding graded ring gr(Zp,x[s]) can be
identified with the (commutative) polynomial ring Bj[s] with the unique extension of
the partial degree deg; such that deg,(s) = 0. If ord(P(s)) = d, then its d-symbol
ca(P(s)) == Z;] oq(P))s', with J = {i € N : ord(P;) = d}, is a 1-homogeneous polyno-

1€
mial of degree d in Bj[s], which will be called the principal symbol of P(s) and denoted
by a(P(s)).
Now let f € By be a non-constant polynomial. We denote by By[f ™!, s]f* the free

module generated by the symbol f* over the ring By[f ™!, s]. It is a By-module and via
the rule

O; o (Jif) =0 (fgk) £+ fii@(f)f‘s

for g € By[s] and 1 € {0, 40} it becomes a left Zp|,[s]-module. We recall that elements
in By can be identified with multiplication morphisms and seen as differential operators,
see subsection 3.7.1. We denote by

anng, 1 (f*) = {P(s) € Tpyuls] | P(s) e f* =0}
the parametric annihilator. Let us recall Bernstein’s theorem (see [4]):

Theorem 3.7.11 (Bernstein). Let k be a field of characteristic zero. Let f € By. There
exist a differential operator P(s) € Ppyk[s| and a non-zero polynomial b(s) € k[s] such
that

P(s) e 1 = b(s) f. (7.3)

The set of polynomials b(s) € k[s] for which an equation of the form 7.3 holds
is an ideal of k[s|, which is non-zero by Bernstein’s theorem. The polynomial ring
k[s] being a principal ideal domain, we call its monic generator the Bernstein-Sato
polynomial of f. We will call a Bernstein-Sato operator for f any differential operator
P(s) € Pp,ils) satisfying equation 7.3 for a certain b(s) € k[s]. In particular, we have

P(s)f —b(s) € anng, 5 (f*).
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The following result, corresponding to [35, Theorem 5.3|, establishes the relation

announced at the beginning of this subsection between Bernstein-Sato operators and
the ideal N1(%).

Theorem 3.7.12 (Gros-Narvaez Macarro-Sebag). Let k be a field of characteristic zero.
Let f € By be a reduced polynomial and € = Spec(By/{f)) the associated affine plane
curve. Let P(s) =Y, P;s' € Dy ils] be a differential operator of order d > 0. Then, for
every integer i such that ord(P;) = d, we have o4(P;)* € N1(€) provided that one of the
following hypotheses holds:

(1) The operator P(s) belongs to anng, (s (f*).

(2) The operator P(s) is a Bernstein-Sato operator for f of order d > 2.

3.7.13 Our study of N (%) for € an affine plane curve defined by a reduced polynomial
f € By in sections 3.5 (for f homogeneous) and 3.6 (for f weighted homogeneous) can
be combined with theorem 3.7.12 in order to deduce the following results:

Corollary 3.7.14. Let k be a field of characteristic zero. Let vy, ...,V € k be nonzero
and mutually distinct elements. Let f € By be the polynomial f = xf)yg/ IT'_, (yo — Viwo)
with €, € {0,1}. We set € = Spec(By/{f)). Let P(s) = ¥, Ps' € .@go‘k[s] be
a Bernstein-Sato differential operator for f of order d > 2, or a differential operator
mn ann@Bo‘k[s](fs) of order d. Then, via the identification in subsection 3.7.2 between
g1(Dp,|) and By, for every integer i such that ord(P;) = d, its principal symbol o4(F;) is
a combination in By of the following family of polynomials (in the notation of subsection
3.5.4):
{z1m0 + your, (05, v5,0:(F))", i € {0, 1}, b, by € {0,1}} .

Proof. 1t is direct from theorem 3.7.12, theorem 3.5.5 and the fact that a Groebner basis
of an ideal is in particular a system of generators. O

Corollary 3.7.15. Let k be a field of characteristic zero. Let \y,..., N\ € k be nonzero
and mutually distinct elements. Let (r,s) € N? be a pair of coprime integers with
r>s>2. Let f € By be the polynomial f = xgys [T, (xh — N\iyg) with ,¢’ € {0,1}.
We set € = Spec(By/(f)). Let P(s) =%, Pis' € @g0|k[s] be a Bernstein-Sato differential
operator for f of order d > 2, or a differential operator in &Dn930|k[s](fs) of order d.
Then, via the identification in subsection 3.7.2 between gr(Zp,k) and By, for every
integer i such that ord(P;) = d, its principal symbol o4(P;) is a combination in By of the
following family of polynomials (in the notation of subsection 3.6.5):

Proof. 1t is direct from theorem 3.7.12, theorem 3.6.6 and the fact that a Groebner basis
of an ideal is in particular a system of generators. O]
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Example 3.7.16. Let us interpret corollaries 3.7.9 and 3.7.15 in the particular case of a
cusp. Let (r,s) € N? be a pair of coprime integers with r > s > 2. Let f = 25—y € By =
k[xo, yo] and € = Spec(By/(f)). Let us consider the following differential operators:

J;
5800z + 1400y, (7.4)
(=1)'s'yg 0y, + 1wy 0, Vie{l,... s}

Corollary 3.7.9 assures that for every differential operator D=3, ;< a; ; (20, %0)%, 03,
on the plane, with order d, such that D(f9) € (f) (or equivalently, such that D € V.7 ,),
its principal symbol o(D) = >, j_4 i (2o, 40)0L, 07, is a combination (in the Weyl al-

Zo Yo
gebra Zp;.) of the differential operators in 7.4.

On the other hand, corollary 3.7.15 assures that if P(s) = Y, P;s’ is a Bernstein-Sato
operator for f of order d > 2 or a differential operator in anng,, .[s](f?) of order d, then
cach P; of maximal order d in the expression of P(s) is a combination (in the Weyl
algebra Zp, ;) of the differential operators in 7.4.

In [35, Subsection 6.1] an explicit example of a Bernstein-Sato operator for f = z5—y3
is computed; it is also shown that it satisfies corollary 3.7.15.



CHAPTER

THE DRINFELD-GRINBERG-KAZHDAN THEOREM

The local study of schemes is a classical field in Algebraic Geometry. In the particular
case of the arc scheme of an algebraic variety, questions about the formal neighbourhoods
at points have been investigated, first by V. Drinfeld, M. Grinberg and D. Kazhdan for
rational points and then by A. Reguera, T. de Fernex and R. Docampo for another class
of schematic points called constructible points.

The present chapter is intended to review the main result in the first aforementioned
direction and some related facts. Precisely, we will present a result (theorem 4.1.2) about
the structure of the formal neighbourhood of the arc scheme of a variety at a rational
arc. A first version under the assumption that the base field is of characteristic zero was
proved by M. Grinberg and D. Kazhdan in [34]!, this result was extended by Drinfeld
for arbitrary fields (see [30, Theorem 0.1], although the preprint dates from 2002).

The aim of this chapter is to present this result, stated in theorem 4.1.2. We also
give a proof in the case of affine plane curves which illustrates the arguments needed
in the general setting with the advantage of requiring a simpler notation. In section
4.2 we present the finite formal models, whose existence we deduce from the Drinfeld-
Grinberg-Kazhdan theorem, and some facts about them such as their (non-)uniqueness,
geometric properties that they encode, invariance and effective computation.

Chapter 5, and precisely our main theorem 5.5.19, explains the interest of the present
chapter, since it allows to transpose to the formal neighbourhoods of the arc scheme
at some constructible points (the generic points of the Nash sets for divisorial toric
valuations) some properties deduced from Drinfeld-Grinberg-Kazhdan theorem for the
formal neighbourhoods at rational points of the arc scheme.

The main references in this chapter are the original articles [34] and [30] proving the
Drinfeld-Grinberg-Kazhdan theorem and also [10], the survey [15] and [19, Ch.3, §5].

!This work of Grinberg and Kazhdan was indeed motivated by a conjecture of Drinfeld in private
communication, see [34, Introduction].

73
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4.1 THE DRINFELD-GRINBERG-KAZHDAN THEOREM

The aim of this section is to present theorem 4.1.2 and discuss many facts about it,
including some elements of the proof in the case of affine plane curves which essentially
requires the same technical arguments as the general setting.

4.1.1 Let us recall that, for k a field, V a k-variety and v € Z,(V) an arc on V, we

—

denote by .Z(V), the formal neighbourhood of the k-scheme £, (V) at the point 7,
i.e., Spf(@goo(v)’,y).

Theorem 4.1.2 (Drinfeld-Grinberg-Kazhdan). Let k be a field and V' be a k-variety
with a rational point v € V (k) such that dim, (V) > 1. Let v € Z(V)(k) be a rational
point of the associated arc scheme, not contained in Lo (Vaing) and whose center v(0)
is v. Then there exist an affine k-scheme S of finite type, a rational point s € S(k) and
an isomorphism of formal k-schemes:

—

Zoo(V), = 5%, SpE(R[(T,)ien]). (1.1)

This theorem gives a decomposition of m )'y as a product (in the category of
formal k-schemes) of a noetherian affine formal k-scheme, which we will call a finite
formal model of the pair (L (V),7), and an infinite-dimensional formal disk. We will
see in subsection 4.2.1 that, although a finite formal model for (£ (V),~) satisfying
the assumptions in the theorem is not unique, all of them are related in some sense. An
important fact is that Drinfeld’s proof of theorem 4.1.2 is effective in the sense that it
provides a procedure to explicitly compute a presentation of a finite formal model from
a presentation of V and (sufficiently many coefficients of) the arc ~.

Let v € Z(V) an arc of V. We say that v is a non-degenerate arc if its generic
point (1) does not belong to the singular locus Vgiye of V, i.e., if v is not contained in
Vging. We denote by Z2 (V) := L (V) \ Lo (Vaing) the set of non-degenerate arcs of V.
In subsection 4.2.5 we will explain why the assumption in theorem 4.1.2 of the arc v to
be non-degenerate cannot be omitted.

A crucial point of the proof of theorem 4.1.2 consists in describing the formal com-

—

pletion £, (V) , in terms of arc deformations, via its functor of points. Other important
ingredients that we will recall are the Weierstrass preparation theorem for power series
over a complete local ring (see subsection 4.1.9) and the reduction to the case where V'
is a complete intersection (see subsection 4.1.12).

4.1.3 Let k be a field and A be a topological k-algebra. We say that I is an ideal
of definition of A if I is open and for every neighbourhood N of 0 there exists an
integer n > 0 such that I™ C N, i.e., the sequence (I"),en converges to 0. We say that



4.1. THE DRINFELD-GRINBERG-KAZHDAN THEOREM 75

A is admissible if it is separated and complete and it possesses an ideal of definition.
Let Admy be the category of admissible k-algebras with the continuous morphisms of
k-algebras (see [36, 0/§7]).

We denote by Lacp,, the full subcategory of Admj whose objects are completions
of local k-algebras with residue field isomorphic to k. Let Ay, A be local k-algebras
in Lacp, with respective maximal ideals m;,my and ¢ : Ay — As be a continuous
morphism of k-algebras. Let a € my, then the sequence (a™),en converges to 0 (i.e.,
a is topologically nilpotent) and thus ¢(a) cannot be a unit because ¢ is continuous,
hence ¢(a) € my. We deduce that ¢ is a local morphism. An object of Lacp, is
a k-algebra of the form A = @A/m”, where A is a local k-algebra with maximal

ideal m such that k = A/m. Then A is a local k-algebra with maximal ideal given by
m = Ker(A — A/m). It is separated and complete for the topology defined by the
family of ideals (Ker(A — A/m"™)),en.

Nevertheless, if 4 is not noetherian, A might not be complete for the m-adic topology.
An example of object in Lacp, is, for every set A, the k-algebra A= E[(T})icn] appearing
in the isomorphism of theorem 4.1.2 for A = N. It is the completion of the polynomial
k-algebra k[(T;)ica] with respect to its maximal ideal m = (T;;7 € A). When the set A is
infinite, m does not equal m = A and the m-adic topology is not complete, see [43]. We
denote by D2 := Spf(k[(T;)ica]) the corresponding formal scheme, which is a formal
disk. For every object A € Lacp,, we set A[(T})iea] :== A®rk[(T})ica], which is again
an object of Lacp,.

We denote by Test,, the full subcategory of Lacp, whose objects are local k-algebras
with residue field isomorphic to k and nilpotent maximal ideal, we call them test-rings.
Let us note that such a k-algebra (A, m) is canonically isomorphic to its m-adic comple-
tion, A = @A/m” and hence it is an object of Lacp,, (i.e., test-rings are those objects
in Lacp,, with nilpotent maximal ideal). We denote by ¢ : Test; — Lacp,, the inclusion
functor. A proof of the following lemma can be found in [19, Ch. 3, Lemma 5.1.6].

Lemma 4.1.4. Let k be a field, (R,m) a local k-algebra with residue field k and A an 0b-
ject in Testy. The completion morphism R — R induces a bijection from Hompacp, (R, A)
to the set of local morphisms of k-algebras R — A.

4.1.5 Let us denote by Eic\pk (resp. 'I/‘e?tk) the category of covariant functors from
Lacp,, (resp. Testy) to the category Sets of sets. Given an object A € Lacp,, we denote
by h4 the functor HomLacpk(A, -) which is an object of E\C\pk. It is a consequence of
the Yoneda lemma that, for A, A" € Lacp,, the natural maps (functorial in A, A")

Homypacp, (A, A") = Homﬂlc\pk(hA, ha) (1.2)
are bijective. We denote by h'y := hy o the restriction of the functor hy to the

subcategory Test. This gives rise to a functor

B : Lacp, — ’fe?tk
A — h/y = Hompacp, (4, )
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from the category Lacp,, to the category of functors from Test; to Sets.

Lemma 4.1.6. Let k be a field. With the notation of this subsection, the functor h' is
fully faithful.

Idea of the proof. By equation 1.2 it is enough to see that, for every A, A" € Lacp,, the
natural map

Homlga’k(h,q7 ha) — Homlﬁak(hfl ot harot)

is bijective. Then the proof lies on the observation that, for every object B € Lacp,, if we
choose a local k-algebra (R, m) with residue field k& and an isomorphism B = Jim R/m",
then for every n € N the k-algebra R/m” is a test-ring. A detailed proof can be found
in [19, Ch.3, Lemma 5.1.8]. ]

Lemma 4.1.6 allows to deduce the following observation, which will be a key point
in the sequel.

Observation 4.1.7. Let A, A’ be two objects in Lacp,. From lemma 4.1.6 we deduce
that a morphism of functors h'y — Iy is induced by a unique morphism A — A’
of admissible local k-algebras, and the first one is an isomorphism if and only if the
second one is an isomorphism. Summing up, an object A € Lacp,, is determined by its
associated functor h.

4.1.8 Let k be a field, V a k-variety and v € Z,(V)(k) a rational point of the
associated arc scheme. Let us denote by m, the maximal ideal of the local ring O¢_ (v,

—

of Z(V) at 7. By definition, the formal neighbourhood Z,(V), at v is the formal
spectrum of the m,-adic completion of O« _(v),. Then its corresponding k-algebra

Og/x(\vm is an object of Lacp, and hence it is determined (by observation 4.1.7) by the

sets HomLacpk((’)@ﬁ, A) for every test-ring A over k.

—

Let (A, m4) € Testy. An element v4 € Z(V),(A) is called an A-deformation of .
Its reduction modulo my4 coincides with . Then the elements in Homyaep, ((’)@77, A)

are A-deformations of v and observation 4.1.7 implies that Z,.(V) , is determined by
the A-deformations of v, for A € Testy. Let us stress that, by lemma 4.1.4, an A-
deformation y4 corresponds with a commutative diagram

where we have also denoted by 74 the corresponding morphism of k-algebras, and the
unnamed morphisms are the reductions modulo the respective maximal ideals. Let us
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denote by pa : A[t] — k[t] the unique local morphism of k-algebras which extends the
projection A — A/my = k. The diagram above also corresponds to a commutative
diagram

Ovi4(0) 4, Alt]

7\ lpA (1.3)

k[t]
or equivalently (with some abuse in the notation of the morphisms) with the diagram

Spec(A[t]) —4 v/

ml

Spec(k[t])

4.1.9 An important ingredient of the proof of theorem 4.1.2 is the uniqueness in the
Weierstrass division. Let (A, m) be a local ring which is complete for the m-adic topology.

Let f € A[t], we can write f = > f,t"™. Let d € N; we say that f is d-regular if f,, € m
meN

for every m < d and f; is a unit in A. We say that f is d- Weierstrass (or d-distinguished)
if it is a monic polynomial of A[t] of degree d which is d-regular. Let us denote by #5(A)
the set of d-Weierstrass polynomials of A[t]. A proof of the following theorem can be
found in [56, Theorem 9.1].

Theorem 4.1.10 (Weierstrass division theorem). Let (A,m) be a local ring which is
complete for the m-adic topology. Let f,g € A[t] be formal power series with coefficients
in A and let d € N. If f is d-reqular, then there exists a unique pair (q,r) with q € A[t]
and r € Alt] such that g = qf + r and deg(r) < d.

Let us observe that theorem 4.1.10 implies that every f € A[t] which does not reduce
to 0 modulo m is not a zero divisor in A[t] (since f is d-regular for some d € N and
0 = f -0 is the unique factorization).

The following theorem provides a unique decomposition of a d-regular formal power
series as a product of a d-Weirstrass polynomial and an invertible series (see [56, Theorem
9.2] for a proof).

Theorem 4.1.11 (Weierstrass preparation theorem). Let (A, m) be a local ring which is
complete for the m-adic topology. Let f € A[t] be a formal power series with coefficients
in A and let d € N. If f is d-regular, then there exists a unique pair (p,u) with p € Alt]
a d-Weierstrass polynomial (i.e., p =t + pg_1t* 1+ -+ po with po, ... ,pa_1 € M) and
u € A[t] a unit.
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4.1.12 Following [10, Subsection 4.2] or [19, Ch. 3, Subsection 5.3] we know that we
can use the Jacobian Criterion of smoothness to reduce the proof of theorem 4.1.2 to the
case where V' is a complete intersection in an affine space. Let us recall the key points
of this reduction.

Let k be a field, V' a k-variety and v € £, (V')(k) a rational point of the associated arc
scheme. Let U be an open subset of V' containing (0). Then the canonical inclusion of
U in V identifies .Z(U) with an open subscheme of .Z. (V') containing v and it induces

an isomorphism between £ (U), and Z(V),. If we suppose U to be affine, this shows
that we can reduce the proof of theorem 4.1.2 to the case where V' is affine.

Let us recall the definition of the Jacobian matrix and the Jacobian criterion of
smoothness. Let r € Nand f1,..., f. € k[T},...,T,]. The Jacobian matriz J(fi,..., f)
is the matrix of size r xn with (4, j)-entry the partial derivative d0f;/0T; fori € {1,...,r}

and j € {1,...,n}. For r <n, a minor of order r of this matrix is the determinant of a
square submatrix of J(f1,..., f) of size r x r. This corresponds with

det ((0£:/0T},), <z, )
for a choice of a family (jy,...,j,) of elements of {1,...,n}.

The general version of the Jacobian criterion in [6, Proposition 2.2/7] allows to obtain
the following statement, from which we can deduce the subsequent particular version of
the Jacobian criterion, see [19, Ch. 3, Subsection 5.3| for details.

Lemma 4.1.13. Let k be a field and let V' a the closed subscheme of A} defined by an
ideal I of k[T1,...,T,]. Let x be a point of V and r € N. Then V is smooth over k of
relative codimension v at the point x if and only if there exist fi,..., f. € I, a minor
g of order r of the Jacobian matriz J(f1,..., f.) and an element h € ((f1,...,fr) : I)
such that g(x)h(z) # 0.

Proposition 4.1.14 (Jacobian criterion). Let k be a field and let V' a the closed sub-
scheme of A} defined by an ideal I of k[T},...,T,]. The nonsmooth locus Vsing of V|k
is the closed subscheme of V' whose ideal is generated by all the products of the form gh,
where, for an integer r € {0,...,n} and elements f1,..., f. € I, g is a minor of order

r of the Jacobian matriz J(fi1,..., fr) and h € ({f1,..., fr) : I).

The following proposition justifies the reduction to the complete intersection case for
the study of the formal neighbourhoods of non-degenerate rational arcs.

Proposition 4.1.15. Let k be a field and let V' a the closed subscheme of A} defined by
an ideal I of k[T\,...,T,]. Let v € ZLx(V)(k) be a rational point of the associated arc
scheme, not contained in Lo (Vsing). Then there exist an integer r € {0,...,n} and poly-
nomials f1,..., fr € I defining a closed subscheme W = Spec(k[T1,...,T.)/ (fi,---, fr))
of A} such that the following properties hold:

(a) There ezists a minor of order r of the Jacobian matriz J(f1,..., f.) which does
not vanish at .
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(b) There exists a unique irreducible component of V' containing the arc vy, and its
dimension is equal to n — r.

(¢) The canonical closed immersion j : V — W induces an isomorphism

s+ Zoo(V), — ZOO(W)j(W).
Sketch of the proof. The existence of W and part (a) follow from the fact that - is not
contained in Vg, and the Jacobian criterion (corollary 4.1.14). For part (b), we use
once again the information given by the preceding application of the Jacobian criterion
to deduce, by lemma 4.1.13, that X is smooth of dimension n —r at the generic point of
7 (the smoothness comes from v ¢ 2 (Vaing), the lemma assures that the codimension
is 7 which coincides with the number of generators of the ideal defining ). Then there
exists a unique irreducible component of V' containing v, with dimension n — r. For
part (c), by observation 4.1.7 one has only to prove that, for every A € Testy, the

—

map Zoo(V), (4) = Zoo(W),(,)(A) induced by j is bijective. The Weierstrass division
theorem 4.1.10 will be useful in this task. See [19, Ch. 3, Proposition 5.3.5] for the
complete proof. O

Let us remark that the terminology “complete intersection” is an abuse in this case.
Although the arc j(7) is contained in an irreducible component of W of dimension n —r,
it may happen that W has another irreducible component of dimension bigger than n—r
passing through the center of j(7). Indeed, in the next subsection we will explain that
one may restrict to the irreducible component containing the arc.

4.1.16 In order to study the formal neighbourhood of a non-degenerate rational point
in the arc scheme of a variety V we may assume that V' is integral. Although this
reduction is not necessary for the original proof of theorem 4.1.2, it remains interesting
and we will justify it. We adapt here the arguments in [15, Subsection 3.5].

Lemma 4.1.17. Let k be a field and V' be a k-variety. Let v € Z(V)(k) be a non-
degenerate rational arc. Then there exists an irreducible component W of Viea which
contains the generic point of v such that, if we denote by 7y the arc induced by v in W,

then L (V') is isomorphic to L (W)s.
Proof. The arc v being non-degenerate, its generic point (n) is a regular point of V
and hence its local ring is a regular local ring, in particular it is a domain. The arc
corresponds to a morphism of local k-algebras v : Oy ) — k[t] and Oy, is isomorphic
to (OV,'V(O))ker('y)a thus it is also a domain. We deduce that there exists a unique minimal
prime ideal p of Oy, (o) contained in ker(y), it corresponds with a (unique) minimal prime
ideal of O(V') contained in ker(y), which defines the unique irreducible component of
Viea Which contains v(n). By observation 4.1.7, we only have to show that for every test-
ring (A, my) € Testy, every A-deformation 4 of v factorizes through this irreducible
component.
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Let v4 : Oy — A[t] be an A-deformation of v, we have to prove that p is
contained in ker(v,). By definition of an A-deformation we have ker(y) = v (ma[t])
(see diagram 1.3). Let x € p, since p vanishes in (Ov,(0))ker(y) We deduce that there
exists an element y ¢ ker(vy) such that xy = 0. Hence v4(z)ya(y) = 0 in A[t]. But
va(y) ¢ mu[t] and hence it is not a zero divisor in A[t] (see subsection 4.1.9). We
deduce that v4(z) = 0, thus = € ker(y4).

Then, if W is the irreducible component of V,.q defined by p and 7 is the arc induced
by v in W, then the A-deformations of v in V' are in bijection (functorial in A) with the
A-deformations of 4 in W, which implies the isomorphism between the corresponding
formal neighbourhoods. O]

Let us see 7 as a local morphism ~ : m) — k[t]. A formal branch or formal

irreducible component at (0) which contains  is a minimal prime ideal p of m) such
that p C ker(vy). In particular, if p is a formal branch at v(0), then ~ factorizes through
the quotient morphism m) — (9/1/7%) /p. Indeed, an adaptation of the arguments in
the previous proof show that every A-deformation of ~ factorizes through the unique
formal irreducible component at +(0) which contains . This is the content of [10,
Lemma 2.4] (see also [12, Proposition 3.2]), which is stated in a slightly more general
setting, for rational arcs which could be degenerate but assumed to be contained in
a unique formal irreducible component (which automatically holds for non-degenerate
arcs).

Lemma 4.1.18. Let k be a field and V' be an integral k-variety. Let v € Lo (V) (k) be
a non-degenerate rational arc. There exists a unique minimal prime ideal p of the ring

m) such that the induced morphism =y : %) — k[t] of Lacp,, factorizes through

Ovy0) = Ovqo)/p. Then, for every test-ring (A, m,) € Testy, for every A-deformation
Va4 € Zo(V),(A) of v, the induced morphism vy : m) — A[t] of Lacp,, also factorizes

through m) — m)/p. Besides, p is the only minimal prime ideal of m) with
this property.

Proof. The first assertion is a consequence of the fact that - is non-degenerate, see [12,

—

Proposition 3.6]. Let (A, m4) € Testy, and y4 € L (V). (A); then ker(y) = yat(malt]).
Let p,q1,...,q, be the minimal prime ideals of the ring m) and we assume that

p C ker(7), let us prove that p C ker(v,4). Let x € p. Since the ring m) is reduced,
we have p N (NF_,q;) = 0. The first assertion implies the existence of elements y; € g,
such that y; ¢ ker(y) = vy '(ma[t]), for i € {1,...,n}. Then xy,---y, = 0 and
hence va(x)ya(y1)---va(yn) = 0. Since y4(y;) does not reduce to 0 modulo my, it
is not a zero divisor in A[t] (see subsection 4.1.9) and we deduce that v4(z) = 0,
i.e., x € ker(y4). For the last assertion, if q; C ker(y4) for some i € {1,...,n}, then in
particular q; C v, (m[t]) = ker(y) which is in contradiction with the first assertion. [
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4.1.19 Following the ideas in subsection 4.1.5 and in particular observation 4.1.7,
the strategy of the proof consists in showing that there exists an affine scheme S of
finite type and s € S(k) such that, for every test-ring A € Test;, we have a bijection
Hompacp, (Oz. (v, A) = Hompacp, (Os,s; A) x Hompacp, (K[(77)ien], A) functorial in A.
By subsection 4.1.12, we can assume that V' is a complete intersection affine k-variety.
By simplicity in the notation, we will present here the proof for V' an affine plane curve;
the arguments in the general setting are analogous.

e Let f be a polynomial in k[z,y] and V be the corresponding affine k-variety
V' = Spec(k[x,y]/(f)). We consider the non-degenerate arc v € Z,.(V)(k) given (via
identification with a morphism ~ : Oy — k[t]) by v(t) = (z(t),y(t)) € k[t]*.

The arc v not belonging to 2 (Vsing ), by the Jacobian criterion we deduce that some
partial derivative of f does not vanish at . We may assume that 0, f(x(t),y(t)) # 0
and we fix d = ord, (9, f(z(t),y(t))) € N. We can perform the euclidean division (the
Weierstrass division in theorem 4.1.10 for the complete local ring k[t]) of (t) by t2¢ and

y(t) by t?, obtaining
w(t) = =(t )th +2(1)
N 1.4
[t -
where z(t),w(t) € k[t], Z(t),y(t) € k[t] and deg(z(t)) < 2d — 1, deg(y(t)) < d — 1.

o Let (A,my) € Testy be a test-ring. Let x4(t),ya(t) € ma[t] in such a way that
(z(t) + za(t),y(t) + ya(t)) € Zx(V),(A) is an A-deformation of v (since we clearly
have (x(t) + za(t),y(t) + ya(t)) = (z(t),y(t)) modulo my). Let us note that such
an A-deformation of 7 is determined by the pair (x4(t),ya(t)). By the Weierstrass

preparation theorem 4.1.11 we deduce the existence of a unique d-Weierstrass polynomial
qa(t) € #4(A) and a unique invertible series u4(t) € A[t]* such that

Oy f (x(t) + wa(t),y(t) + ya(t)) = qa(t)ua(t). (1.5)

The assumptions of the Weierstrass preparation theorem are satisfied because 0, f (z(t)+
za(t),y(t)+ya(t)) ¢ myu[t] since its reduction modulo my4[t] equals 0, f (x(t), y(t)) which
is nonzero in k[t].

Hence, we apply the Weierstrass division theorem 4.1.10 (let us observe that qa(t)
and q(t)? are respectively d-regular and 2d-regular) to deduce that we have

{ a(t) + xa(t) = (2(t) + za(t))qa(t)? + 2(t) + Za(t)
y(t) +yalt) = (w(t) + wa(t))qa(t) + (1) + 7a(t)
where z4 (), wa(t) € ma[t], Ta(t),ya(t) € ma[t] with deg(z4(t)) < 2d—1 et deg(ga(t)) <

d—1. Let us stress that z(t), za(t), Z(t), Za(t), w(t),wa(t), g(t) and ga(t) (and also ga(t)
and u4(t)) are uniquely determined.

e Let us define the set B(A) of elements (za(t),Za(t),5a(t),qa(t)) € myuft] x
mA[t]SQd_l X mA[t]Sd_l X %(A) such that

{ qa(t) divides 9, f(F(t) + Za(t)

g(t) + 7a(t))
qa(t)? divides f(Z(t) + Za(t), (1.6)

< -
S
o~
SN—
+
<
N
—
~
S——
SN—



82 CHAPTER 4. THE DRINFELD-GRINBERG-KAZHDAN THEOREM

We define a map

pa: Zo(V)(A) — BA)
(xA<t)7yA(t)) — (ZA(t)ajA(t)7gA<t)7QA(t))

where z4(t), Za(t), ya(t) and ga(t) are constructed from the A-deformation (x4(t),ya(t))
of 7 as above. By construction (z4(t),Za(t),7a(t),qa(t)) is an element of mu[t] x
My [t]<oa—1 X malt]<a—1 X #4(A), we have to prove that it also satisfies conditions (1.6).
For this, let us first consider the Taylor expansion of d,f(Z(t) + Za(t),y(t) + §a(t)) at
(x(t)+xa(t), y(t)+ya(t)) (in order to make the formula shorter we omit here the explicit
reference to the variable ¢ in each element):

Opf (T +Fa, T+ Ta) =0y f(x+ 24— (24 24)0% Y+ ya — (W + wa)qa)
=0yf(x +xa,y+ya) +qal...)

By the definition of ¢4(¢) in formula (1.5) we deduce that g4(t) divides 9, f(Z(t) +
Za(t),y(t) + ga(t)). For the second condition in formula (1.6) we consider the Taylor

expansion of f(#(t) + #4(£), §(t) + §a(t)) at (2(t) + za(t), y(t) + ya(®)):

fE+Ta4,0+0a)=f@+aa—(2+24)00y+ya— (w+wa)ga)
= fz+ 24,y +ya) — qalw+wa)0y f(x + 24,y +ya) + ¢4(...)

The term f(z+4xa,y+ya) is zero because (z(t)+xa(t),y(t)+ya(t)) € .,QZ(\V),Y(A) is an
A-deformation of 7 and by the very definition of g4(t) in formula (1.5) we deduce that
qa(t) divides 9, f(z(t) + xa(t), y(t) + ya(t)), hence qa(t)* divides f(Z(t) + za(t), §(t) +
7a(t)). This shows that ¢4 is a well-defined map.

e The next step is to prove that the map @4 is a bijection. Let us consider an element
(za(t),2a(t),5a(t),qa(t)) € B(A). Let us recall the division in formula (1.4). We set
zA(t),ya(t) € Aft] such that

{ z(t)+m(t> (2(t) + 2a(t))aa(t)? + 3(t) + Za(t) (1.7)

() + Ga(t) = w(t)ga(t) + 4(t) + ga(t)
We aim to prove that there exists a unique wy(t) € m4[t] such that
f(@(t) +2a(t), y(t) + Ga(t) + qa(t)wa(t)) = 0, (1.8)
in which case (x(t) + z4(t),y(t) + ya(t) + ga(t)wa(t)) would be an A-deformation of
(the fact that (z(t) +za(t), y(t) + yA(t) ga(t)wa(t)) = (z(t),y(t)) modulo my is clear
by construction), i.e., an element of .Z,, ( ), (A).
Let us write the Taylor expansion of f(z(t)+za(t),y(t)+ya(t)) at (Z(t)+za(t),y(t)+

ga(t)):

f@+za,y+70a) = f(@+Ta+ (2+24)3 T+ Ja +wqa)
=f(Z+ 34,7+ Fa) + qawd, f(Z+ Ta, 7+ Ga) + ¢4(. )
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From the conditions in formula (1.6) we deduce that q4(t)? divides f(x(t) +za(t), y(t) +
ya(t)). Moreover, f(z(t) + za(t),y(t) + Ja(t)) can be written in the form qa(t)*9a(¢)
with ¥4(t) € ma[t], since f(x(t) + xa(t),y(t) + ya(t)) = 0 modulo m4[t] and ga(t) is
not a zero divisor in A[[t] (because q4(t) ¢ m4[t], see subsection 4.1.9).

~

On the other hand, we have the Taylor expansion of 0, f(x(t) + xa(t), y(t) + ya(t))

ot (200) + 2400, 500) + 34 (0):
0y f(x + 24,y +§a) = Oy f(T+Ta+ (2 +24)¢4,§ + Ja + waa)
=0y f(Z+ 24,7+ Ja) +qal...)

and from the conditions in formula (1.6) we deduce that qa(t) divides 0, f(x(t) +
xa(t),y(t) + ya(t)). Hence by the Weierstrass preparation theorem 4.1.11 there ex-
ists a unique va(t) € A[t]* such that 0, f(x(t) + za(t),y(t) + ya(t)) = qa(t)va(t) (by
uniqueness of the factorization and the fact that 0, f(x(t), y(t)) is d-regular and q4(?) is
d-Weierstrass).

Once again, let us write the Taylor expansion of f(z(t) + xa(t),y(t) + ya(t) +
qa(tywa(t)) at (z(t) + za(t), y(t) + Ja(t)):

f(@+2a,y+0a+ qawa) = f(x+ 24,y +Ta) + qawady f(x + 24,y + Ja) + GGwi(-..)

Hence, the equation (1.8) is equivalent to the right hand side in the preceding formula
being zero. Let us stress that it can be rewritten in the form

¢4 (9a(t) + wa()va(t) + wa(t)’Q(wa(t))) =0,

where Q(wa(t)) € A[t]. Since the element g4 is not a zero divisor in A[t], this is
equivalent to the existence of a unique wa(t) € m4[t] such that

O4(t) +wa(t) +wa(t)*P(wa(t)) =0, (1.9)
where 04(t) = Va(t)va(t)™' € ma[t] and P(wa(t)) = Q(wa(t))va(t)~t € A[t].

We will use the Hensel lemma to solve the preceding equation. The ring (A, m4) being
local and complete, the ring (A[t], ma + (t)) also does, and it is in particular a henselian
ring. Thus the reduction of the equation 64 () + X +X?P(X) = 0 modulo m4 + (¢) gives
an equation X + X?P(X) = 0 which admits the solution X = 0. By the Hensel lemma
there exists a unique element w4 (t) € A[t] such that 04 (t)+wa(t)+wa(t)?P(wa(t)) = 0.

We have to check that in fact w4 (t) € m4[[t]. Reducing the equation 64(t) +wa(t) +
wa(t)?P(w4(t)) = 0 modulo my4[t] we obtain

WA(t)(1 +wa(t)P(wa(t))) = 0. (1.10)
By construction wy(t) € ma + (t), hence ord;(w4(t)) > 1 and we deduce that 1 +

Wa(t)P(wa(t)) is invertible modulo m4[t]. Then from equation (1.10) we deduce that
Wa(t) = 0 modulo my[t], that is, wa(t) € m4[t].

e We have proven that ¢4 is a bijection for A € Test. In addition, it follows from the
proof of the Weierstrass preparation theorem that the family of bijections (¢4)AcTest,
is functorial in A, which concludes the proof.
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Remark 4.1.20. Let us define the set %(A) of elements (Z4(t), ya(t), qa(t)) € ma[t]<ag—1 %
my[t|<g—1 X #4(A) such that

{ qa(t) divides 0, f(2(t) + (1), 5(t) + Ga(t)) (1.11)
A(t)? divides f(Z(t) + @ ()7@(75) ga(t)) .

It is clear that B(A) = B(A) x mu[t]. In addition, we observe that my[t]<sq_1 X
malt]<q_1 x #4(A) is in bijection with m%™4t? = m%.  This set is in bijection with
Homy,acp, (K[(T7)1<i<ad], A). Hence we deduce that there exists an ideal I € k[(75)1<i<ad]
realizing the conditions (1.11) such that B(A) is in bijection (functorial in A) with the
set Hompacp, (K[(T})1<i<4a] /I, A). Analogously mu[t] is in bijection with mfj, which
is itself in bijection with Homyacp, (K[(75)ien], A). We deduce that B(A) is in bi-

jection with the set Homyacp, (K[(7; Di<i<ad) [ IQpk[(T})ien], A). Composing this bijec-
tion with ¢4 we deduce that this set is in bijection with the set Z,(V) (A) of A-
deformations of v, and this bijection is functorial in A. By observation 4.1.7 we de-
duce an isomorphism in Lacp,, between O« ), and k[(T; )1<l<4d]]/l®kk[[( T)ien]. In

terms of formal k-schemes, this corresponds to an isomorphism between 2 ( ), and
Spf(k[(T3)1<i<aa /T) X SPE(E[(T3)ien]).  Then Spf(k[(T})i<i<aa]/I) is a finite formal
model of (Z(V),7). Let us stress that k[(T})1<;<4a]/I is the completion of the lo-
calization of k[(T})1<i<aa)/I at the extension of the ideal (7};1 < i < 4d) and hence the
finite formal model can be written in the form given in the statement of theorem 4.1.2.

4.2 FINITE FORMAL MODELS AND RELATED FACTS

In this section, we will define the finite formal models of the arc scheme at a non-
degenerate rational point, whose existence is guaranteed by the Drinfeld-Grinberg-
Kazhdan theorem 4.1.2. Then we will discuss some facts about them such as the
(non)uniqueness, existence when the assumptions of the theorem do not hold, geometric
properties that they encode, invariance and effective computation.

4.2.1 Let us now interest in the noetherian affine formal k-scheme in the decomposition
given by theorem 4.1.2. Let k£ be a field and V' be a k-variety with a rational point
v € V(k) such that dim,(V) > 1. Let v € Z(V)(k) be a rational point of the
associated arc scheme, not contained in .2, (Vsing) and whose center v(0) is v. Every
affine formal k-scheme . which is the formal spectrum of an essentially of finite type
local k-algebra such that there exists an isomorphism of formal k-schemes

.,ia(\V)7 = . % SPE(E[(T5)ien])

is called a finite dimensional formal model (or simply a finite formal model) of the pair
(Zw(V),7). This terminology was introduced in [16]. Hence theorem 4.1.2 may be
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reformulated saying that, under the hypotheses above, the pair (£, (V),v) admits a
finite formal model.

Let us observe that, for a given pair (£, (V),~), a finite formal model is not unique,
even up to isomorphism: if S, satisfies the statement of theorem 4.1.2, then S,x Dy
also does. However, we will be able to define a minimal formal model of (Z(V),7)
which is unique up to isomorphism.

Let Lncp, be the full subcategory of Lacp, whose objects are the complete local
noetherian k-algebras with residue field isomorphic to k. In particular, the section ring
of a finite formal model .7 of a pair (£, (V),7) is an element of Lncp,. A k-algebra
A € Lncp,, is said to be cancellable (in Lncp,) if there exists a k-algebra B € Lncp,
such that A is isomorphic to B[T]. Let us note that for every k-algebra A € Lncp,
there exist an integer n € N and a non-cancellable k-algebra A, € Lncp, such that
A is isomorphic to Awyin[711 ..., T,]. We have the following cancellation theorem, due to
O. Gabber.

Theorem 4.2.2 (O. Gabber). Let k be a field. Let A, B € Lncp,, and let I,J be sets
(possibly infinite). Assume that A[(T;)icr] and B[(U;)jes] are isomorphic in Lacpy,.
Then, up to exchanging A and B, there exists a finite subset I' C I such that A[(T})icr]
and B are isomorphic in Lncp,. In particular, if both A and B are non-cancellable,
then they are isomorphic.

A proof of this theorem can be found in [10, Section 7]. Theorem 4.2.2 generalizes
[44, Theorem 4], where the sets I and J are assumed to be finite. In [16] there is also a
slightly weaker version of theorem 4.2.2.

From theorem 4.2.2 we immediately deduce that, for every k-algebra A € Lncp,,
the non-cancellable k-algebra A, € Lncp, is unique (up to isomorphism in Lncpy).
Let us state this fact in the particular case of finite formal models.

Corollary 4.2.3. Let k be a field and V' be a k-variety with a rational point v € V (k)
such that dim, (V) > 1. Let v € Z(V)(k) be a rational point of the associated arc
scheme, not contained in Lo (Vsing) and whose center v(0) is v. Let . and . be
two finite formal models of the pair (Zs(V'),7). Then, the k-algebras (O()),, and
(O(S")) i are isomorphic in Lncpy,. In particular, there exist two integers m, m' € N
and an isomorphism (in Lncpy) O(L)Qik[T ..., Tn] = O(FL)&pk[Ty ..., T

Let us recall that theorem 4.1.2 assures the existence of a finite formal model of the
pair (L (V),7) (under the corresponding assumptions). Hence corollary 4.2.3 implies
that there exists a unique (up to isomorphism in Lncp,,) finite formal model .# () such
that O(.#y (7)) is non-cancellable. We call .#;/(y) (or more precisely its isomorphism
class in Lncpy,) the minimal formal model of the pair (£ (V),7). Let us remark that
the minimal formal model of (£ (V'), ) is the finite formal model of minimal dimension
among all the finite formal models of (£ (V),7).



86 CHAPTER 4. THE DRINFELD-GRINBERG-KAZHDAN THEOREM

Remark 4.2.4. By [15, Example 3.4 and Remark 3.5] we know that, for every k-scheme
of finite type S and s € S(k) a rational point, there exist a k-variety V and a non-
degenerate arc v € Z(V)(k) such that Ss is a finite formal model of (Z(V),7).
Hence, if we consider, as in [15, Remark 5.4] the non-cancellable complete noetherian
local k-algebra

k[Ty,..., T,/ (T, T\ Ty, ..., T\T},)

we deduce that, if we put no particular restriction on V' or the non-degenerate arc
v € Zw(V)(k), the dimension of a minimal formal model may be arbitrarily large.

4.2.5 The assumption in theorem 4.1.2 of the arc to be non-degenerate cannot be
omitted, as shown by D. Bourqui and J. Sebag in [11]. Precisely, they found the following
counterexample:

Theorem 4.2.6. Let k be a field of characteristic zero which does not contain a root
of the equation T?> +1 = 0. Let f € kl[xz,y] be the polynomial x* + y* and let € be the
affine plane curve defined by f. Let o € € (k) be the origin of A2, we also denote by o
the induced constant arc in ZLo(€)(k). Then the arc o does not satisfy the statement of
theorem 4.1.2, i.e., the pair (£ (%), 0) does not admit a finite formal model.

Let us observe that the decomposition given by theorem 4.1.2 implies that the nil-
radical of the complete local ring O(Z(V),) is nilpotent. The proof of theorem 4.2.6

consists in proving the existence of nilpotent elements of O(OZO—(C\K ),) of arbitrarily large
nilpotence order. Let us stress that this example provides varieties of arbitrary dimension
not satisfying the statement of theorem 4.1.2. Precisely, if V is a k-variety of arbitrary
dimension and vy € L5 (V) (k), the pair (ZLx(V X €), (yv,0)) does not admit a finite
formal model.

More recently, C. Chiu and H. Hauser have completed this first answer in [20]. Pre-
cisely, [20, Theorem 1.2] implies the following theorem:

Theorem 4.2.7. Let k be a field of characteristic zero and V' be a k-variety. Let
v € Vaing(k), we also denote by v the induced constant arc in L (V)(k). Then, the
pair (L (V),v) does not satisfy the statement of theorem 4.1.2, i.e., it does not admit
a finite formal model.

4.2.8 Let k be a field, V a k-variety and v € V (k) a rational point. It is an interesting
question to study whether the minimal formal model of a pair (£ (V),~), where v €
Zw(V) (k) is a non-degenerate arc with v(0) = v, encodes some geometric information
of (V,v). In this direction we find the following result, corresponding to [12, Theorem
1.6]. Recall from lemma 4.1.18 that, if the arc -y is non-degenerate, then there is a unique
formal branch at v(0) which contains 7.
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Theorem 4.2.9 (Bourqui-Sebag). Let k be a field, V a k-variety and v € V(k) a
rational point such that Oy, is reduced and dim,(V) > 1. Let v € ZL(V)(k) be a
non-degenerate arc such that v(0) = v. Then, the following conditions are equivalent:

(1) The formal branch at v containing ~ is smooth.

—

(2) The formal neighbourhood £ (V). of v in L (V) is isomorphic to a formal disk
D} = Spi(k[(T:)cn]).

(8) The minimal formal model /() of (Lw(V),7) is isomorphic to Spf(k).

In particular, theorem 4.2.9 says that, under those assumptions, the minimal formal
model is trivial if and only if v is a smooth point of V. This fact suggests that the
finite formal model of ((Z(V'),7v) may be a measure of the singularity (V,~(0)). We
will precise this in subsection 4.2.10.

4.2.10 Let k be a field, V a k-variety and v € V (k) a rational point. Theorem 4.2.9
assures that, if v is a smooth point of V', then the formal neighbourhood of an arc
centered at v is trivial and hence it does not depend on the choice of the arc. However,
if v is a singular point of V| changing the involved arc while keeping the center fixed
may modify the isomorphism class of the corresponding formal neighbourhood. The
following example can be found in [15, Example 7.2].

Example 4.2.11. Let k£ be a field of characteristic different from 2 and 3. Let & be
the affine curve Spec(k[x,y]/{z* —y?)). Let us consider the rational arcs centered at the
origin y(t) = (t*,#*) and n(t) = (¢*,1°). One can show that O(Z (%)) and O(Z(?),)

are not isomorphic (in Lacp,,).

Let us state and prove the following proposition, which corresponds to [15, Proposi-
tion 7.3].

Proposition 4.2.12. Let k be a field and V, V' two k-varieties. Let v € Ly (V)(k),
v € LoV (k) with respective centers v = v(0) and v' = ~'(0). Let us suppose that
there exist isomorphisms (in Lacpy,) f : Oy, — Oviy and p = k[t] — k[t] such that

~Y

po~y =~ o f. Then, there exists an isomorphism of formal k-schemes ,%OO(V)W =

Zo(V').,.

Proof. We may assume v = 7' o f. By observation 4.1.7 it is enough to prove that,

for every A € Testy, there is a bijection between Diﬂ/oo(\V)w(A) and Lo (V') (A). The
composition with f~! induces a bijection

HOInLacp,C (6—\7,11; A[[ﬂ]) Of—_> I_I()InLacp,yc (mu A[[ﬂ])
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— —

By subsection 4.1.8, we can identify 2 (V) (A) (resp. Zo(V').,(A)) with a subset
of HomLacpk(@v,A[[t]]) (resp. Hompacp, (O/VI\U/,A[[t]])) Hence we have the following

—_—

diagram, where the map £ (V). (A) = Z(V’),,(A), obtained by restriction, is also a
bijection:

of 1 P

_ f
HomLacpk (OV,M A[[t]]) —_— HOmLacpk (OV’,U’7 A[[t]])

Z(V),(4) Zso(V'),,(A)
We deduce that Zo(\v )., and .iz(\V’ )., are isomorphic as formal k-schemes. O

In example 4.2.11, the arc v is said to be a primitive parametrization and for such arcs
the formal neighbourhood is invariant. Precisely, let k& be a field and % be an integral
k-curve, geometrically unibranch? at a rational point ¢ € € (k). The arc v € £ (€) (k)
is said to be a primitive k-parametrization at c if 4(0) = ¢ and for every morphism of
local k-algebras 7' : Oy . — k[t] there exists a morphism of complete local k-algebras
p : k[t] — k[t] such that v/ = p o, where v is also seen as a morphism of local k-
algebras v : Og . — k[t]. If k is assumed to be a perfect field, the assumption that ¢
is geometrically unibranch at ¢ guarantees the existence of primitive k-parametrizations
at ¢. Then the following corollary is deduced from proposition 4.2.12.

Corollary 4.2.13. Let k be a field, € be a k-curve and ¢ € € (k) be a rational point.
Let us assume that there exists a primitive k-parametrization v € Lo(€)(k) of € at

c. Then, the isomorphism class of the formal k-scheme fm(‘g% does not depend on

the choice of the involved primitive k-parametrization. In particular, ‘Zoo(%”)w and its
minimal formal model L4 (7y) are formal invariants of the curve singularity (€, c).

—

Proof. The fact that the isomorphism class of £(%'), does not depend on the chosen
primitive k-parametrization and is a formal invariant of (%, ¢) is a direct consequence of
proposition 4.2.12. Moreover, a primitive k-parametrization is always a non-degenerate
arc and thanks to theorem 4.1.2 we deduce the existence of a finite formal model, which
implies by corollary 4.2.3 that (L (/‘Jﬁ\, ~) admits a unique minimal formal model .7 (7).

Then the formal neighbourhood £(%),, being a formal invariant of (¢, c), we deduce
that the minimal formal model also is. ]

In subsection 5.2.13 we will see that for V' a normal toric variety, the formal neigh-
bourhood of Z, (V') at a non-degenerate arc centered at the singular locus of V' is also

?Recall that a a scheme X is geometrically unibranch at a point x € X if the local ring Ox , is
geometrically unibranch. A local ring R is geometrically unibranch if R has a unique minimal prime p
and the integral closure of R/p in its fraction field is a local ring whose residue field is purely inseparable
over the residue field of R. See [39, 6.15.1] and [38, Ch. 0, 23.2.1] or [74, Tag 0BPZ].



4.2. FINITE FORMAL MODELS AND RELATED FACTS 89

invariant for every such arc belonging to a certain open subset of a Nash set corre-
sponding to a toric divisor. The study of this invariance will be the object of chapter
5.

4.2.14 An important feature of Drinfeld’s proof of theorem 4.1.2 is that it is effective
in the sense that, given a presentation of a k-variety V' and a suitable truncation of the
arc vy (satisfying the hypotheses of the theorem), it provides a procedure to compute
explicitly a presentation of a finite formal model of (Zs(V),~) of the form Sj, for S an
affine k-scheme of finite type and s € S(k) (see remark 4.1.20). In case V is an affine
plane curve, D. Bourqui and J. Sebag have produced a SageMath ([76]) code of this
algorithm, which can be found in [9] (unpublished).

However, this algorithm deduced from Drinfeld’s proof has a high computational
complexity, see [9] for a discussion about the running time for some examples. Bourqui
and Sebag have developed another proof of theorem 4.1.2 valid for integral varieties
defined by binomial equations, which in particular provides another algorithm for com-
puting a finite formal model (for a given arc satisfying the assumptions of the theorem)
which is computationally much more efficient. Let us describe it.

Let n € N and L be a subset of (N™\ {(0,...,0)})?. Let V be the integral closed
subvariety of A? defined by the ideal (Z* — Z°; (a,b) € L) of k[Z,, ..., Z,], where

n

fap=2°-2" =[]z - [[ 2"
=1

=1

By [23, Proposition 1.1.11], the ideal defining V' being prime and generated by bino-
mials, V' is an affine toric variety (not necessarily normal). Let us consider a rational non-
degenerate arc v € £, (V) (k) corresponding to the datum of a family (v;)1<;<, of ele-

ments of k[[t]\ {0} such that ﬁ it = ﬁ A%, Fori € {1,...,n} weset ¢; := ord,(v;) €N,
i=1 i=1

n n
C = (Ci)lgign € N* and d := %aiCi = Z:OblCZ
= i=

Construction 4.2.15. Let n € N, L be a subset of (N"\ {(0,...,0)})? and ¢ =
(¢i)i<i<n € N™. For every (a,b) € L we consider in k[Zy,...,Z,] the element fqop :
Z“ — Z°. Let us consider the following equality in k[t, Zis;1<i<n,0<s; <gl:

n c;i—1 @i n c;i—1 bi
fa,b - = H $Ci + Z Zi,sitSi _ H $Ci + Z Zi,sitSi = Z fa,b,sts,
Zi=tei+ Yy Zi ;1% i=1 5;=0 i=1 5;=0 sEN

s5;=0

where fops =0 for s > d. We define W(c, L) to be the affine closed k-subscheme of the
affine space Spec(k[Z;s;;1 < i < n,0 < s; < ¢]) defined by the ideal (fops;(a,b) €
L,0 < s < d) and W(e, L) the formal completion of W(e, L) along the origin of
Spec(k[Zis;;1 <i<n,0<s; <cl).
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We will show that W(e, L) is a finite formal model of the pair (£ (V),v) (where
¢; := ordy(7;)) by slightly generalizing the arguments in the proof of [13, Theorem 5.2].
Let us stress that the finite formal model computed in this way is in general not minimal,
but it seems to provide a finite formal model of lower dimension than the one obtained
by effectively applying Drinfeld’s proof, and thus closer to the minimal formal model. In
[15, Subsection 3.7] the computation of a finite formal model is made for several examples
using both methods and the specific one for binomial equations is much simpler in all
cases.

Remark 4.2.16. Let (A,m,4) be an object of Test;. Then Hompacp, (W(c, L), A) is in
natural bijection with the set of families {z;,,; ¢ € {1,...,n}, 0 < s; < ¢;} of elements
of m4 such that for every pair (a,b) € L one has

=1 s;=0 =1 ;=0

n c;i—1 @i n c;i—1 bi
11 (t + > zt) -11 (t + > zt) =0.

Proposition 4.2.17. In the preceding situation, the formal scheme W(e, L) is a finite
formal model of the pair (L (V),7).

Proof. By observation 4.1.7 the k-algebra O;oo(\V),w is determined by the functorial be-
haviour of the sets Homyacp, (0.2, (v),y, A) for every test-ring A over k. Let (4, m4) be an

object of Test; and let us consider 74 € £ (V),(A) an A-deformation of v, i.e., a family
(7v4,i)1<i<n of elements of A[t] such that v4; =; (mod m4[t]) and ﬁ Y = ﬁ .
i=1 i=1

Observe that, for i € {1,...,n}, the series 4, is ¢;-regular. Thanks to the Weier-
strass preparation theorem 4.1.11 we can write v4,; = paua,; with pa; a ¢;-Weierstrass

n n
polynomial and w4 ; a unit in A[t]. Then we have the equality [T p% ,u%, = II p% u% .
=1 7 =1

n
From the uniqueness of the Weierstrass factorization applied to ] p%,u%, (note that it

=1

is d-regular since [] vy, is) we deduce the following equalities:

=1

[17%: = 174 (2.1)
i=1 i=1

n n b
11w =TT ik (2.2)
=1 =1

By remark 4.2.16 and the definition of a Weierstrass polynomial, equation (2.1)
uniquely determines an element in Hompacp, W(c, L), A). On the other hand, equation
(2.2) defines an A-deformation of the arc 4 of Z(V)(k) corresponding to the family
(i /t%)1<i<n of elements of k[t]. The order of each of these series being 0, we deduce that
the base point of 7 belongs to Spec(k[Zi™, ..., ZF']) which corresponds with the open
torus of the affine space A7. The intersection of this torus and V is exactly the open torus
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of V', which is contained in the smooth locus of V. Hence theorem 4.2.9 assures that the

formal neighbourhood .,52(\‘/ ); is isomorphic to a formal disk D) := Spf(k[(T})ien])-
The above construction being functorial on A, we deduce that the deformation func-
tor A — Og._(v),(A) is isomorphic to the functor A — W(e, L)(A) Xy Spf(k[(T;)ien])(A)

and hence W(e, L)X}, Spf(k[(T;)ien]) is a decomposition of %, (V), as in the statement
of the Drinfeld-Grinberg-Kazhdan theorem, which shows that W(e, L) is a finite formal
model of the pair (Z(V),7). O

We stress that the formal scheme W(e, L) only depends on the order of ~;, for
1 <i < n, and not on the particular chosen arc 7 (see corollary 5.2.16, although it is
stated in the normal toric case the same arguments hold in the general toric setting).
In [13], Bourqui and Sebag show that the formal schemes in construction 4.2.15 provide
a finite formal model of the pair (Zx(V),v) for V a normal toric variety and 7 a
sufficiently generic rational arc in a Nash set (or maximal divisorial set). This is a
crucial ingredient in the proof of our main theorem in chapter 5. Effective computation
of the formal scheme in construction 4.2.15 on examples may be found in section 5.6.






CHAPTER

FORMAL NEIGHBOURHOODS IN THE NASH SETS
ASSOCIATED WITH TORIC VALUATIONS

We begin the chapter by completing the picture of the known results about formal neigh-
bourhoods of the arc scheme that we started in chapter 4 for rational arcs. In section 5.1
we will introduce the constructible points of the arc scheme, which where defined by T.
de Fernex and R. Docampo as the generic points of the irreducible constructible subsets
of the arc space. Then, we present some results about them obtained in [26] leading to
the characterization in corollary 5.1.9 of non-degenerate constructible points of the arc
scheme in terms of the noetherianity of the section ring of its formal neighbourhood.
In particular, the generic point of a Nash set associated with a divisorial valuation is a
constructible point, and hence this finiteness result holds for its formal neighbourhood.

Let us consider the case of a normal affine toric variety V' and let .4~ be the Nash
set associated with a divisorial toric valuation. As we explain in subsection 5.2.13, D.
Bourqui and J. Sebag showed in [13] that the formal neighbourhood of a sufficiently
generic rational arc of the Nash set .4 is constant. Note that in this case we can apply
the Drinfeld-Grinberg-Kazhdan theorem to deduce that this formal neighbourhood can
be decomposed as a formal product of a finite formal model and a formal disk.

The main theorem in this chapter (theorem 5.5.19) establishes a strong connection
between the formal neighbourhood at such a sufficiently generic rational arc in .4 and
the formal neighbourhood at the generic point of .4". This connexion is made by relating
a finite formal model of the first (obtained in [13]) with the latter through a direct com-
parison between the corresponding complete local rings. This result not only confirms
the invariance already observed by Bourqui and Sebag, but also allows to transpose
some properties deduced from the Drinfeld-Grinberg-Kazhdan theorem to the formal
neighbourhood at the generic point of the Nash set, which is not a rational point in
general. In particular, we deduce that it can be explicitly described in terms of the
formal spectrum of the completion of an essentially of finite type local algebra over the
residue field of the generic point.

Most of the contents in this chapter from section 5.2 are included in the preprint [8].

93
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5.1 CONSTRUCTIBLE POINTS

In this section we will define a class of schematic points of arc scheme, recently named
constructible points by T. de Fernex and R. Docampo in [26], which are characterized
by the noetherianity of their formal neighbourhood. The main reference in this section
is [26].

5.1.1 Let V be a scheme. A point v € V is said to be constructible if it is the generic
point of an irreducible constructible subset of V. This definition was introduced by T.
de Fernex and R. Docampo in [26]. Let us stress that the fact that a point v € V is
constructible according with this definition does not mean necessarily that the subset
{v} of V is a constructible subset of V.

We have the following lemma, corresponding to [26, Lemma 10.1].

Lemma 5.1.2. Let k be a field, V be a k-variety and o € Z(V) a non-degenerate
arc, o« ¢ ZLoo(Vaing). Let Y C V be the (unique) irreducible component of V' such that
a € Lw(Y). Then a is a constructible point of Za (V') if and only if it is a constructible
point of L (Y).

95.1.3 Let k be a perfect field and V be a k-variety. Given a point o € Z(V), we
denote by rk(«) its residue field. For every m € N let us denote the truncation of level
m by am = 075y () € Z,(V) and its residue field by x(a,,). For convenience we will
also denote a by a.

For m € NU {oco} let p,, € O(Z,.(V)) be the prime ideal defining «,. Let us stress
that p,,/p?, is a r(a;,)-vector space. We define the embedding dimension of £, (V) at
Q88

emb.dim(O,, (v).an) = diMy(a,.) (Pim/Poy)-

We observe that, for m’ > m, we have inclusions p,, C p,». Then there are natural
maps P /Pr, = P /Py, and Poo /P2, = Hm (P /P7,)-

Let us recall [26, Corollary 9.5], which assures that for the study of the embedding
dimension we can restrict to the irreducible components.

Corollary 5.1.4 (de Fernex-Docampo). Let k be a field, V' be a k-variety and o €
Z(V) a non-degenerate arc, & ¢ Lo(Vsing). Let Y C V be the (unique) irreducible
component of V' such that « € £, (Y'). Then

emb.dim((’)‘gﬂm(y)’a) = emb.dim((’)gx(v),a).

The following lemma provides a useful property about local rings of finite embedding
dimension. It corresponds with [26, Lemma 10.12]. Let us precise that the embedding
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dimension of a k-scheme at a point can be defined analogously to the case of arc and jet
schemes.

Lemma 5.1.5. Let k be a field, V' be a k-scheme and v € V. Then the section
ring Oy, of the formal neighbourhood of V at the point v is noetherian if and only
if emb.dim(Oy,,) < 0.

Let us keep the preceding notation. For m € N we define dim(a,,) := tr.deg (k(am))-
Let V be a reduced and irreducible k-variety and o € £, (V). The jet codimension of
ain £, (V) is defined to be

jet.codim(ar, Z(V)) := lim ((m + 1) dim(V) — dim(an,)) -

This limit exists (see [28, Lemma 4.13]) and is nonnegative ([26, Lemma 8.6]). The next
theorem, corresponding to [26, Theorem 10.7], asserts that for a reduced and irreducible
variety defined over a perfect field, the embedding dimension of its arc scheme at a point
coincides with the jet codimension of this point. The proof is based on the study of the
differentials of the arc scheme in the first part of [26].

Theorem 5.1.6 (de Fernex-Docampo). Let k be a perfect field and V be an integral
k-variety. Then, for every point o € Zo (V) we have

emb.dim(O ¢ (v),e) = jet.codim(a, Z(V)).

5.1.7 The following theorem characterizes the non-degenerate constructible points of
the arc scheme in terms of the embedding dimension. It corresponds to [26, Theorem
10.8].

Theorem 5.1.8 (de Fernex-Docampo). Let k be a perfect field and V' be a k-variety.
For every a € L (V') the following assertions are equivalent:

(1) The embedding dimension of L. (V) at o is finite, i.e., emb.dim(Og,_(v.a) < 0.

(1)) The arc o is a constructible point of Lx(V') and it is non-degenerate, i.e., o ¢

goo(vsmg) .

Sketch of the proof. If a is a degenerate arc, the result follows from [26, Proposition 8.7].
Otherwise, V' is reduced and irreducible at the generic point a(n) and by lemma 5.1.2
and corollary 5.1.4 we can replace V by its irreducible component containing «(n) and
hence assume that it is a variety. In this case the constructible points are stable points
(see subsection 5.1.12) and we conclude by applying proposition 5.1.13 (stable points
are characterized by their finite jet codimension) and theorem 5.1.6 (the jet codimension
equals the embedding dimension). O
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From theorem 5.1.8 and lemma 5.1.5 one deduces the following result, characterizing
the non-degenerate constructible points of the arc scheme in terms of the noetherianity
of their formal neighbourhoods. It corresponds to [26, Corollary 10.13].

Corollary 5.1.9 (de Fernex-Docampo). Let k be a perfect field and V' be a reduced
k-variety. For every o € Lo (V') the following assertions are equivalent:

(i) The section ring O@@ of the formal neighbourhood of % (V') at v is noethe-
rian.

(7)) The arc « is a constructible point of £ (V') and it is non-degenerate, i.e., o &

goo(‘/Sing) .

This result may be compared with theorem 4.1.2 and seen as a result about the
structure of the formal neighbourhood of the arc scheme. Precisely, for a k-variety V'
it says that, if we consider a non-degenerate constructible point of .2, (V') instead of
a non-degenerate rational point, in the decomposition of the formal neighbourhood at
this point we have no longer the factor corresponding to the infinite-dimensional formal
disk appearing in theorem 4.1.2, and we only find the part of finite type. However, this
factor is a formal scheme of finite type defined over the residue field k() which is a field
extension of £ which may have infinite transcendence degree over k. Our original work
in the rest of the chapter consists in comparing both decompositions in the case of a
normal toric variety.

5.1.10 1In [26, Section 11], de Fernex and Docampo study the generic points of the
maximal divisorial sets (see subsection 2.5.4 and proposition 2.5.9 for the fact that such
a set is an irreducible subset of the arc scheme), which they call mazimal divisorial arcs.

In particular, they obtain the following result using theorem 5.1.8. It corresponds to
[26, Corollary 11.5].

Proposition 5.1.11 (de Fernex-Docampo). Let k be a perfect field and V' be a reduced
k-variety. For every divisorial valuation v on V', the generic point v of Wy (v) is a
constructible point of £ (V') not belonging to Lo (Vsing)-

Let us stress that the fact that v does not belong to £ (Vsing) can be deduced from
the fact that the subset Wy (v) is fat.

5.1.12 Let k be a perfect field and V' a k-scheme. It is a consequence of lemma 2.4.10
that the constructible subsets of 2, (V) are the so-called weakly stable semi-algebraic
subsets of £ (V) in [29]. Let X and Y be k-schemes of finite type and F' be a k-variety
(in fact it suffices to ask F' to be a reduced k-scheme). Let C' (resp. D) be a constructible
subset of X (resp. Y). We say that a morphism ¢ : X — Y induces a piecewise trivial
fibration C' — D over D with fiber F if there exists a finite partition of D = D, U---UD,
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such that, for i € {1,...,r}, D; is locally closed in Y and C'N¢~1(D;) is locally closed
in X and isomorphic (with the reduced scheme structure) to D; x F' in such a way that
@ corresponds under this isomorphism to the projection D; x F' — D;.

Let V' be an integral k-variety. According to [29], a subset W C £, (V) is said to
be a stable semi-algebraic subset (of £ (V)) if it is a constructible subset of 2 (V)
(i.e., a weakly stable semi-algebraic subset) and for every m € N big enough, the induced
truncation morphism «925{/1 10 +17V($00(V)) — Gg’f,v(.,?oo(V)) induces a piecewise trivial
fibration over 677, (W) with fiber Aiim(v). In [67], for a field of characteristic zero A.
Reguera defined a stable point of £, (V') to be the generic point of an irreducible stable
semi-algebraic subset of .2, (V). By definition, it is in particular a constructible point.
As explained in [29, Subsection 2.7] a constructible subset of %, (V') which is disjoint
from £, (Vsing) is a stable semi-algebraic subset by [29, Lemma 4.1], here the fact that
V' is a reduced k-variety is crucial. Hence a point of 2, (V) is stable if and only if
it is constructible and non-degenerate. Note that in [29] they work over a field k of
characteristic zero, but everything we have presented here holds for k a perfect field. In
particular the proof of [29, Lemma 4.1] has been rewritten in this setting in [70] (see
also [32, Proposition 4.1]). As de Fernex and Docampo explain in [26, Remark 10.4],
constructible points extend the notion of stable points to nonreduced schemes. We have
the following characterization of stable points which is a consequence of [29, Lemma 4.1]
(see e.g., [26, Proposition 10.5]).

Proposition 5.1.13. Let k be a perfect field and V' be an integral k-variety. For every
a € L (V) the following assertions are equivalent:

(i) The jet codimension of o in Lo (V) at is finite, jet.codim(a, Lo (V)) < 00.

(i) The arc o is a stable point of Ls(X).

Let V' be an integral k-variety and a € 2, (V) be a stable point. In particular,

corollary 5.1.9 implies that the section ring O@,a of the formal neighbourhood of
Z. (V) at avis noetherian. This fact was already obtained by A. Reguera in characteristic

o 1s noetherian and

—

(67, Theorem 3.13] which proves that there is an isomorphism O _v)a = Oz (V),a
(this last result was stated in characteristic zero but it seems that the proof can be
modified to hold for perfect fields).

zero. It follows from [66, Corollary 4.6] which proves that O g:(—‘;

red,

5.2 NORMAL TORIC VARIETIES AND THEIR ARC SCHEME

In this section we will briefly introduce the normal toric varieties and some results con-
cerning their arc scheme which we will make use of in section 5.5. For more information
about toric varieties we refer to [23] (here we will only treat some of the contents in Sec-
tions 1.1 and 1.2); concerning the arc scheme of a normal toric variety we will present
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several results in [46] or [13]. Since we are studying local properties, we may restrict
ourselves to the case of affine normal toric varieties.

5.2.1 Let us recall the definition of an affine toric variety. From now on and up to
the end of the chapter, k is a field of characteristic zero. Let us consider G,,; =
Spec (k [T, T71]), it is an algebraic group such that, for every k-algebra R, its R-points
are identified with R*, the group of units of R. We say that an algebraic group 7T
defined over k is a split algebraic k-torus if there exists an integer d € N such that T is
isomorphic (as an algebraic group) to G%k. We call the integer d the dimension of 7.

We define an affine toric variety to be an integral affine k-variety V' containing a
torus T as an open subset such that the algebraic group action of the torus extends to
an algebraic action 7 x V' — V. In particular, a d-dimensional torus 7T is an affine toric
variety and the affine space A{ also is, both with open torus 7. In the sequel, we are
will interest in normal affine toric varieties, which have a nice combinatorial description.

5.2.2 Let k be a field of characteristic zero. Let d be a positive integer and T a split
algebraic k-torus of dimension d. Let N := Hom(G,, x, T) be the group of cocharacters
of T, which is a free Z-module of rank d, i.e., a lattice isomorphic to Z? (see [42] or [45,
§16]). Let M := Homgy(N,Z) be the dual Z-module of N, i.e., the group of characters of
T, which is also isomorphic to Z%. We denote by Ng = N ®z R (resp. Mg = M @z R)
the R-vector space of dimension d associated with N (resp. M). We have a R-bilinear
canonical map (, ) : Mg X Ng — R which coincides, via the identification of Ng and
My with R¢, with the usual dot product.

The points of the lattices N and M, considered as points of the associated vector
spaces, are called their integral points. We will simply call a cone of Ny a strongly
convex rational polyhedral cone of the vector space Ng (i.e., a convex cone generated
by finitely many elements of N, which moreover does not contain any line). Let o be a
cone of Ng, we consider its dual

c'={me Mg : (m,n)>0forallneco}.

If o is a cone of dimension d (i.e., the vector subspace spanned by o is Ng) then oV is
also a cone of Mg, otherwise it is not strongly convex (hence it may contain lines) but it
is still convex and generated by finitely many elements (see [23, Propositions 1.2.4 and
1.2.12]). Moreover, (¢")¥ = o. The points

S, =c"'NM

form a semigroup, which we call the semigroup associated with o. We have the following
lemma, see e.g.,[23, Proposition 1.2.17] for a proof.

Lemma 5.2.3 (Gordan Lemma). Let N be a lattice, M be its dual Z-module and Ng
and Mg the associated R-vector spaces. Let o be a cone of Ng. Then its associated
semigroup S, := o” N M is finitely generated.
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Remark 5.2.4. Regardless of the dimension of o, by [23, Proposition 1.2.12] its strong
convexity assures that o¥ has dimension d, i.e., the vector space spanned by oV is M.
Hence the number of generators of the semigroup S, is bigger or equal than d.

5.2.5 Let o be a cone of Ng. Associated with the semigroup S, we can consider the
k-algebra
k[So] =k [x™; m e S,],

where we may consider y as a symbol. It is a finitely generated k-algebra by the Gordan
Lemma 5.2.3. The spectrum of the k-algebra k[S,| then defines a normal affine toric
variety V, with torus 7 (see e.g., [23, Theorem 1.2.18]). Note that every affine normal
toric variety with torus 7T is of the form V,, for o a cone of Ng, where N is the cocharacter
lattice of T (see e.g., [23, Theorem 1.3.5]). For every m € S,, the symbol x™ now makes
sense as the regular function on V, defined by m. Recall that for every k-algebra R,
the set Homayg, (k[S,], R) is in natural bijection with the set of semigroup morphisms
S, = R, where the semigroup structure on R is induced by the multiplication.

Let {m,...,my} be the minimal set of generators of the semigroup S,. By remark
5.2.4 we may and shall assume in the sequel that the set {mg,..., my} is a Z-basis of
M. Tf we call zp,...,z, respectively x™ ... x™", we deduce that O(V,) := k[S,] =
k’[Zl, c. ,Zh].

Let us stress that, for every k-algebra R, the set Homag, (O(V,), R) is in bijection
with the set of semigroup morphisms S, — R, where we consider in R the multiplicative
structure.

Remark 5.2.6. The closed subscheme defined by the ideal ([T;<;<;, ;) has for support the
closed set V;, \ T, and the same holds for the ideal (IT;<;<42:). In fact, O(T) = k[M] =
k[, ..., 251 (because {my,...,my} is a Z-basis of M) which is also isomorphic as
a k-algebra to k[2!, ...,z (see e.g., [23, Example 1.1.13]). In particular, for every
k-algebra R, the set Homayge, (O(7T), R) is in bijection with the set of group morphisms
M — R*. Moreover, T is contained in the smooth locus of V, and hence the singular
locus of V, is contained in the closed set V, \ 7.

5.2.7 An explicit description of V, as a closed subscheme of the affine space Al will

be useful in the sequel. We consider the k-algebra k[Z] := k[Zi,...,Zy], then Al =
Spec(k[Z]).

Let us keep the notation in subsection 5.2.5. Let {e;; i € {1,...,h}} be the canonical
basis of Z". Let £ = ({y,...,¢;) € Z", we set

£+ = Z Eiei and £ = — Z &ei,

£;>0 £;<0

which are both elements of N*. Note that £ = £" —£~. Given £ = (¢4,..., ;) € N* we
/ h / —
set Z¥ .= ] Z/". Hence for £ € Z" we fix F, := Z¢ — Z* .
i=1
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Mapping e; to m(e;) := m; induces an exact sequence of groups
0= L—=7Z"5 M—0, (2.1)

where L is a subgroup of Z". For £ € L and n € N, we set
h h
£, n) = <Z lm; n> = —<Z€imi, n>
pas =0

By [23, Proposition 1.1.9], the ideal of k[Z] defining V,, is
iy :=(Fp; L€ L). (2.2)

The set {m,...,my} being a Z-basis of N, for ¢ € {d +1,...,h} we can write
the element m,, as a linear combination with integer coefficients (possibly negative) of
my,...,my. Thus we have in L an element £, = ({,1,...,¢,;) such that ¢,, = 1 and
U,y =0forevery ¢ € {d+1,...,h}\ {¢}. The element £, € L induces an element

d d
g0 by
ng - Zq H Z,L‘q’ - H ZZ < (23)
i=1 i=1
£y.:>0 £4.:<0
in the ideal i,. We observe that in the binomial F, none of the variables Zg,1,..., Zj

appears, excepting Z,.

9.2.8 Let us now consider the arc scheme £, (V,) of the toric variety V,. We denote
by Z the set of variables {Z;; : i € {1,...,h},s € N}. By lemma 2.3.5 we deduce
that

Lo (Vo) = Spec (k[ Z ) /[is])
where [i,] is the differential ideal generated by i,. For every £ € L, the elements
Fy s € k[Z ) may be characterized by the following equality in k[Z .][t]:

Filz—y zow = D Fast”. (2.4)

sEN seN

Hence we will make an abuse justified by proposition 2.2.10 and denote also by [i,]
the ideal of k[Z ] generated by the elements {F,; : £ € L,s € N}. In another abuse
of notation, sometimes we will also denote by k[z;s; i € {1,...,h}, s € N] the k-algebra

O(Z (V7).
Let 22 (V) be the open set of £, (V,) defined by

go(:;(va) = "E/ﬂOO(VU) \XOO(VU \ T)

Let us remark that, by lemma 2.2.13, an arc @ € Z(V,) belongs to .£Z2 (V,) if and
only if its generic point «(n) belongs to 7. By remark 5.2.6, we deduce that « is
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non-degenerate. Remark 5.2.6 also assures that a € Z2(V,) if and only if for every
m € Sy, a*(x™) # 0 and that this is also equivalent to having, for every 1 < i < d,
a*(z;) € k(a)[t] \ {0}. Therefore one has

ZL2(Vo) =V ULz # 0}

i=1 seN

5.2.9 Let n be a point of c N N. For f € O(V,), we set

ord,(f) = (f, n) = xi"rlleff (m, n)

where Y™ € f means that the coefficient of ™ in the decomposition of f is not zero. It
extends to a valuation on k(V,) which we denote also by ord,, and which is a divisorial
valuation on V,, as explained in [46, Definition 5.2]. We call such a valuation a divisorial
toric valuation on V,. One sees that n +— ord,, is a bijection between ¢ N N and the
set of divisorial toric valuations on V,. From now on we shall identify the later set with
ocNN.

Let a € Z2(V,). By subsection 5.2.5, the morphism of k-algebras o* : O(V,) —
k(a)[t] corresponds with a morphism of semigroups which, abusing notation, we also
denote by a* : S, — k(a)[[t]. As seen in subsection 5.2.8, for every m € S,, a*(m) :=
a*(x™) # 0. Then the composition

ord(a) :=ordjoa” : S, = N

is a well-defined morphism of semigroups. It extends uniquely to a group morphism
n,: M — Z which is nonnegative on S,. The lattice N being the dual of M and
(6V)Y = o, we deduce that m, can be identified with the unique element of o N N
satisfying that, for every m € S,, ord(a)(m) = (m, n,).

Remark 5.2.10. Observe that, the arc o € 25 (V,,) not being fat in general (except when
its generic point is the generic point of 7'), we cannot define its associated valuation ord,,
of k(V,) (see subsection 2.5.4). When this valuation is defined, it does not coincide in
general with the divisorial toric valuation ord,,, although ord,(x™) = ord,, (x") for
every m € S,.

For every n € 0 N N, we set
L (Vo )n i={ae Z.(V,); n, =n}
and 2. (Vy)on i ={a e ZL(V,); n, €En+o}.

Let us observe that, if n’ € n+o, there exists n” € o such that n’ = n+n”. Let m € S,,,
then (m, n/) = (m, n+n") = (m, n) + (m, n”) which implies (m, n') > (m, n)
since (m, n”) > 0. In particular, @ € Z2(V,)>, if and only if ord(a)(m) > (m, n)
for every m € S,,.

The following lemma will be useful for describing the generic points of the Nash sets
(or maximal divisorial sets) associated with divisorial toric valuations.
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Lemma 5.2.11. Let us keep the notation in this section. Let n € 0 N N.
(i) One has
h (m;,n)y—1
Le(Vo)en=25(Vo) () (1 {zis =0}
=1 s=0

(i1) One has
(m;,n)—1
L2 (Vy)n = 22, (ﬂ ﬂ {zw—O})mﬂ{zmn%O}

(iii) The closure of Lg(Vy)n coincides with the Nash set Ny, = o, = Wy, (ordy,)
(see subsection 2.5.4) associated with the divisorial toric valuation m.

(iv) One has
d
go( ) /ﬂgo U)ﬂm{zi,<m“n>#0}.

In particular L2 (Vy)n is a non-empty open subset of Ny,.

Proof. Let us prove assertion (i). By definition, a € Z2 (V,)>y if and only if for every
m € S, one has ord(a)(m) > (m,n) € N which, by lemma 5.2.12 applied to the
semigroup morphism ord(«), is equivalent to say that for every 1 < ¢ < h one has
ord(a)(m;) = ord(a)(z;) > (m;, n) and thus assertion (i) holds true.

Let o € Z2(V,)sn. Note that n, = n if and only if ord(a)(m) = (m, n) for every
m € S,. Applying lemma 5.2.12 to the semigroup morphism ord(«) we deduce that
this is equivalent to ord(a)(m;) = (m;, n) for 1 <i < d, which proves assertion (ii).

For a proof of (iii), see [49, Example 2.10]. Let us note that the inclusion of .4,
in the closure of 22 (V,)n is deduced from the fact that, if 7, is the generic point of
Nn = Wy, (ord,,) (which is irreducible by proposition 2.5.9), then ord,, (x™) = (m, n)
for every m € S,, which implies that n, belongs to £2(V, ), by definition.

Assertion (iv) is a straightforward topological consequence of (ii) and (iii). Note also
that the element of £, (V,)(k) corresponding to the semigroup morphism S, — k[t],
m +— t™ ™ gives rise to an arc lying in Z2 (V, ), which is therefore nonempty. [

Lemma 5.2.12. Let us keep the preceding notation in this section, in particular let
N be a lattice isomorphic to Z* and M be its dual lattice, let o be a cone of Ng and
Sy = 0” N M be its associated semigroup. Let {my,...,my} be the minimal set of
generators of Sy in such a way that {my, ..., my} is a Z-basis of M. Let f : S, — N be
a semigroup morphism and let n € o N N. Then the following assertions are equivalent:

(a) f(m)> (m, n) for every m € S,,.
(b) f(m;) > (m;, n) for every 1 <i < h.
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Moreover, the following assertions are equivalent:

(a’) f(m)=(m,n) for every m € S,,.
(b’) f(m;) = (m;, n) for every 1 <i < h.

(¢’) f(m;) = (m;, n) for every 1 <i <d.

Proof. For the first part, it is clear that (a) implies (b). For the converse, let m € S,,

h
then it can be written as m = Y {;m;, where ¢; € N for 1 < i < h. Then f(m) =
i=1

h h
f <Z Eiml) and f being a morphism of semigroups, this equals > f(¢;m;). By (b), it
i=1 i=1

h
is greater or equal to Y- £; (m;, n) = (m, n), the last equality holding by bilinearity.

i=1
For the second part, (a’) implies (b’) and (b’) implies (¢’) are clearly true. For (c¢’)
implies (a’), let m € S,, then it can be written as m = zd: ¢;m;, where ¢; € 7 for

1 <i<d. Hence =
m + Z —lm; = Z lmy, (2.5)

4;<0 £;>0
and we observe that both terms are elements of S, .
On the one hand, the image by f of the left-hand term of (2.5) equals f(m) +
> —{;f(m;) which is equal to f(m)+ > —¢; (m;, n) by (¢’).
£;<0 £;<0

On the other hand, the image by f of the right-hand term of (2.5) equals Y- ¢; f(m;),
0,30
which is equal to Y- ¢; (m,;, n) by (¢).
650

Thus we have the equality f(m)+ Y>> —¢; (m;, n) = > {; (m;, n), which is equiv-
£;<0 £;>0

d
alent to f(m) = Y ¢; (m;, n) and by bilinearity we have f(m) = (m, n). Moreover,
=1

f(m):<m,n>GZNsinceneaﬂNandeUVﬂM. O

5.2.13 Let us explain here some of the known results up to now on our subject of study
in the next sections. At the origin of those results there is the following proposition of
S. Ishii, see [46, Proposition 2.6].

Proposition 5.2.14 (Ishii). Let k be a field, V' be a k-variety and G be an algebraic group
of finite type defined over k such that V' admits an action of G. Then, for m € NU{oo},
the k-scheme £,,(V') admits a canonical action of £,,(G) induced from the action of G
onV.
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Let us keep the notation of this section. Then, applying proposition 5.2.14 in the
case of toric varieties S. Ishii obtains the following result, corresponding to [46, Theorem
4.1 (ii)].

Proposition 5.2.15 (Ishii). Let us keep the notation in this section. Let ay,ay €
L2 (Vy)(k). Then the semigroup morphisms valuations ord(ay) and ord(ay) are equal if
and only if there exists v € Lo (T)(k) such that oy =7 - as.

From proposition 5.2.15 and the fact that, for every v € Z,.(T)(k), the morphism
« +— 7 -« is an automorphism of 2, (V,), D. Bourqui and J. Sebag have deduced the
following result, the first one about the invariance of the formal neighbourhoods of the
arc scheme. It corresponds to [13, Corollary 3.3].

Corollary 5.2.16 (Bourqui-Sebag). Let us keep the notation in this section. Let aq, ay €
22 (Vo) (k) such that ord(on) = ord(aa). Then the local rings Qg _(v,).01 and Oz (v,).00

are isomorphic (as local k-algebras), and hence their respective completions Qg (v,).a

and O;g:(;)m are also isomorphic (as complete local k-algebras).

That is, the formal neighbourhood of %, (V) at a point a € .Z2 (V,,)(k) only depends
on the associated semigroup morphism, and not on the choice of the arc. This fact,
together with lemma 5.2.11 part (iv), implies the following result, corresponding to [13,
Theorem 4.2].

Theorem 5.2.17 (Bourqui-Sebag). Let us keep the notation in this section. Let n €
o NN and let Ay be the corresponding Nash set. Then L2 (V,), is an open subset of
NN L3 (Vy) such that, for every o € L5 (Vy)n(k), the local ring O 4 (v,)« (and hence

also Og_(v,),a) is constant.

That is, the formal neighbourhood of .Z,,(V,) is constant for rational points in an
open subset of the Nash set associated with a toric divisorial valuation. Moreover, in the
same article ([13, Theorem 5.2]) they show that construction 4.2.15 provides an explicit
finite formal model of £, (V, ), for a € Z2 (V,)n(k), which is a stronger result that we
will need in section 5.5 (see theorem 5.5.15).

On the other hand, by proposition 5.1.11 we know that, given n € o N N, the generic
point 7, of the associated Nash set .4;, is a non-degenerate constructible point and by
corollary 5.1.9 we know that O« (v, is noetherian. In the rest of the chapter we will

relate this local k-algebra with Qg (v, for a € Z5 (V;)n(k). In particular, our result
also implies the invariance obtained in theorem 5.2.17.
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5.3 TECHNICAL MACHINERY FOR COMPUTING THE FOR-
MAL NEIGHBOURHOOD AT THE GENERIC POINT OF THE
NASH SET

In this section we develop the technical results which we will use in section 5.5 to obtain
a convenient presentation of the formal neighbourhood of the generic point of the Nash
set associated with a divisorial toric valuation. The main result of this section is theorem
5.3.7, whose hypotheses are formulated in a somewhat abstract form. In section 5.5 we
will check that these hypotheses hold in the toric setting.

It should be noted that the problem of computing sensible presentations of the formal
neighbourhood of generic points of the Nash sets was considered more generally by A.
Reguera in [67, 68] and A. Reguera and H. Mourtada in [62]. The approach used here,
based on a direct application of a version of the Hensel lemma for an infinite set of
variables, is somewhat different.

5.3.1 We first state a version of the Hensel lemma for an arbitrary set of variables,
whose proof is basically the same as in the case of a finite set of variables.

Proposition 5.3.2. Let (A, M 4) be a complete local ring with residue field k. Let I be a
set and'Y = {Y;}ier be a collection of indeterminates. Let J be a set and {Fj; j € J} be
a collection of elements in A[Y]. Fory € Al, we denote by J,, the A-linear application
Al — A7 induced by the jacobian matriz [Oy,F}||y—y, and by F|y—, € A’ the J-tuple
(Fily=y)jes-

We assume that there exists y© € Al such that:

1. One has Fly_,0 =0 (mod My).

2. The k-linear application k¥ — k7 deduced from J 0 by reduction modulo M4 is
invertible.

Then there exists a unique element Y = (V;) € Al such that:

1. One has Fly—y = 0.

2. For every i € I, one has Y; = yl-(o) (mod My).

Proof. We begin with two remarks.

First, note that though in this context the jacobian matrix may have an infinite
number of rows and columns, each row has only a finite number of nonzero entries,
thus J, is well defined for any y in A’. Also, by assumption, there exists an A-linear
application

K MOR .AJ — .AI
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such that Ky(o) Jy(o) = Id 4r (mod SﬁA) and Jy(o) Ky<o) = Id 4s (mod QﬁA).

Second, note that the Taylor formula assures that, for y € A’, there exists a family
{H,, ;,: 11,72 € I} of elements of A[Y]’, depending on y and the F}’s, such that for
every j € J, H;, 4, ; = 0 for all but finitely many (i1, %) and for every z € A’ one has

Fly—ys> = Fly—y + Jy(2) + > ziziHi ply=y+s (3.1)
11,9261
Note that here and elsewhere the notation we use is a condensed form for writing a

possibly infinite number of relations, each of them being easily verified.

We show by induction that for every e > 0, there exists a family y(¢) = (yz-(e); iel)of
elements of A, unique modulo 9%, such that y© = y@ (mod 9M4) and F ly =y =0
(mod 9M4™). The case e = 0 is given by our assumptions.

Now take e € N and assume that our induction statement holds for e. Consider the
equation
Fly_y© . =0 (mod M5?) (3.2)

with unknown z = (z;) € A! such that z = 0 (mod 9%"), this being assured by
the uniqueness of y(® in the induction assumption. Since y© = y© (mod M A), the
jacobian matrices [Oy, Fj|y—,© and [0y, F}]|y—,@ are equal modulo M 4. Since z = 0
(mod 9M4™), one thus has

Jy<e>(z) = Jy(o>(z) (mod E)ﬁf4+2).
Thus by (3.1) and using again z = 0 (mod M), equation (3.2) is equivalent to
Jy0(2) = =Fly_yo (mod MG?). (3.3)

By assumption, Fly_,« = 0 (mod M5™"). Thus by the first remark above, applying
the linear map K, o) to (3.3) we obtain

z = —Ky(O)(F|Y:y(e)) (mod mf4+2). (3.4)
Using z = 0 (mod mefl) one more time, by the first remark above and applying
the linear map J ) to (3.4) we deduce that equation (3.3) is indeed equivalent to (3.4).

Since Fly_y© = 0 (mod MG), equation (3.4) provides a solution z such that z = 0
(mod 9M4).
e+2

In order to show the uniqueness of the solution modulo 9%, note that if w € A’
is such that w = 0 (mod 9M4™"), one has by (3.1)

Fly_yo 1w = Fly_yo + Jyo (w)  (mod MG?),
thus
K0 (Fly_y©1w) = K o (Fly_y©) + Kyo (Jyo (w))  (mod MG?)
and finally
K0 (Fly_y© 1w) = Kyo (Fly_y©) +w (mod MG?).
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9.3.3 We consider the following general setting and notation for the rest of this section.
Let A be a k-algebra which is a domain. Let (2 be a finite set, I be a set, X = { X, },cq
and Y = {Y}; i € I} be collections of indeterminates. Set

A[X] = A{ X wea] and A[X, Y] := A[{Xu}oea, {Yi i € T}].

We denote by (X) the prime ideal (X,;w € Q) of A[X]. In accordance with the
conventions given in section 1.1, for any A[X]-algebra B, we often still denote by (X)
the extension of the ideal (X) to B.

5.3.4 The following lemma will be useful in the proof of theorem 5.3.7.

Lemma 5.3.5. Assume that we are in the setting described in subsection 5.3.3. Let b
be an ideal of A[X,Y] such that:

(i) One has (X)+bh=(X.,Y).

Assume moreover that there exists an A[X]-algebra morphism &: A[X,Y| — Frac(A)[X]
such that:

(ii) For every i € I one has E(Y;) =Y; (mod b) in the ring Frac(A)[X][Y].
(iii) For every i € I one has E(Y;) € (X).

Then, the (X)-adic completion of the localization (A[X,Y]/b)x) is isomorphic to
Frac(A)[X]/£(h).

Remark 5.3.6. Assume that the hypotheses of the lemma hold. Let g be any ideal of
A[X, Y] containing h such that (X)+bh = (X)+g. Then g also satisfies the hypotheses
of the lemma, with the same morphism €. Whenever the ideals £(h) and £(g) coincide,
the lemma shows that the (X)-adic completions of (A[X,Y]/h)x) and (A[X,Y]/g)x)
are isomorphic. However, the condition (X) 4+ h = (X)) + g is not sufficient to assure
that £(h) = £(g): take A[X Y| = k[z,y], X = {z}, Y = {y}, the ideals h := (y — x)
and g := (x,y) and the morphism of k[x]-algebras € : k[z,y] — k[z] with &(y) = =.
Then £(h) = 0 and £(g) = (x).

Proof. Note that (iii) shows that £(h) is contained in (X), thus Frac(A)[X]/&(h) is a
complete noetherian local ring with maximal ideal (X'). Moreover (i) and the fact that
A is a domain show that (X)) is indeed a prime ideal of A[X,Y]/b.

Let e > 1. Let m, be the composition of & with the quotient morphism
Frac(A)[X] — Frac(A)[X]/g(h) — Frac(A)[X]/(E(h) + (X)°).

Thanks to (iii), any element of A[X, Y| whose constant term is not zero is sent by € to
an invertible element of Frac(A)[X]. Thus 7, induces a morphism

ALX, Yixy) = Frac(A)[X]/(E(h) + (X))
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which in turn induces a morphism
For ALX, Y /(5 + (X)) = Frac(A)[X]/(5(h) + (X)°).
Note that since h + (X)) = (X,Y), one has h + (X )¢ = h + (X, Y)°. Thus in order to

obtain the claimed isomorphism, it suffices to show that 7. is an isomorphism for any e >
1. Since the natural inclusion A[X,Y|xy) C Frac(A)[X,Y]xy) is an isomorphism,
surjectivity is clear.

Let us show injectivity. This amounts to show that if P € Frac(A4)[X,Y] lies in
Ker(m.), then P € h + (X)°. By assumption (ii), for any P € A[X,Y], one has
E(P) = P (mod b) in the ring Frac(A)[X][Y]. In particular in the ring Frac(A)[X,Y]
one has

EP)+ (X)) =P+bh+(X)* and E£(h)+ (X)°Ch+(X)".
Now if P € Frac(A)[X,Y] lies in Ker(r,), then one has £(P) + (X)¢ C &(h) + (X)*.
Therefore, by the above properties, one has P+h+(X )¢ C h+(X)¢. Thus P € h+(X)e.
That concludes the proof. O

Now we can state and prove the main result of the section.
Theorem 5.3.7. Assume that we are in the setting described in subsection 5.3.3; we
assume moreover that the set I is of the shape I' X N where I" is a finite set.
Let b be an ideal of A|X,Y] such that:

(A) The ideal b contains a collection of elements {H,, ,v € I';s € N} of the form

H,, =Y, U, s+ E, such that for every v € I' and every s € N:

(A1) U, is a unit in A.
(A2) There exists a family (E,s,) € A[X]N1 such that E, ,, € (X) forr > s,

E, s, =0 for all but a finite number of r, and one has

E’y,s = E’y,s,fl + Z E’y,s,r : Y'y,r-

reN

(B) Let (y,5) € AVN be the unique family of elements of A such that for every v € T
and s € N, one has H, |y, ,—, ., = 0 (mod (X)), then the ideal (X) + b is
contained in the ideal (X) + (Y, s — yys5 (7,8) € ' x N).

Then there ezists an A[X]-algebra morphism £: A[X,Y| — Frac(A)[X] such that:

(1) For every (v,s) € I' x N one has E(H, ) = 0.
(it) For every (vy,s) € I'xN, one has€(Y, ) =Y, s (mod bh) in the ring Frac(A)[ X][Y].

(iii) For every ideal g containing b and such that (X) +bh = (X) + g, the (X)-
adic completion of the localization (A[X,Y]/g)x) is (X)-adically isomorphic to
Frac(A)[X]/2(g)-



5.3. TECHNICAL MACHINERY 109

Assume moreover that:

(C) For every v € T, one has E,o_1 € A[X]\ (X).

Then one has in addition:

(tv) For every v € I', &(Y, ) is a unit in Frac(A)[X].
Proof. First note that for each v € I, the reduction of the H, ’s modulo (X)) gives a
triangular and invertible A-linear system in the Y, ;’s. Thus the existence and uniqueness
of (y,s) in assumption (B) is a straightforward consequence of assumption (A). In fact,

up to dividing H, ; by U, s and modifying the £, ,,’s, one may assume that for every
7v,8,7 one has E, ;. € (X) and that for every v, s one has

s—1
Hys=Y,s = yys+ Z oy (Yyr = Yyr) + Eys1 + Z B or(Yyr = Yyr), (3.5)
r=0 reN

where the «.,,’s are elements of A.

Let us now apply proposition 5.3.2 with A = Frac(A)[X] and {Fj;j € J} =
{H,s; (7,s) € I' x N}, this shows the existence of a family {)V, s; v € I', s € N} of ele-
ments of Frac(A)[X] such that for every (v,s) € I' x N one has Y, s = y,,s (mod (X))
and H, |y, .~y , = 0. Thus mapping Y, , to ), , defines an A[X]-algebra morphism
£: A[X,Y| — Frac(A)[X] such that (i) holds.

For every v € T', (3.5) and a straightforward induction on s shows that for every s
one has Y, s —y, s € (X)+bh. By assumption (B), one then has (X)+bh = (X)+ (Y, s —
Yys; (7,8) € I' x N). Thus Frac(A)[X][Y]/bh is a noetherian local ring with maximal
ideal (X).

On the other hand, (3.5) shows that for every (v,s) € I' x N, since H,; € h and

€(H,s) = 0, one has in the ring Frac(A)[X][Y] the following relation, obtained by
applying € to (3.5) and subtracting (3.5):
s—1
y’y,s - Y:y73 = - Z a’y,r(y’y,r - Y'y,r) - Z E’y,s,r(y%r - Y:ym) (mOd h)
r=0 r>0

Thus by a straightforward induction one gets that Y, s — Y, , € (X)© + b for every 7, s
and e > 1 (note that we have assumed that E,;, € (X)), and finally by the Krull
intersection theorem Y, s — Y, s € b for every 7, s. Thus (ii) holds.

Recalling that Y, ; — y,s € (X) by construction of Y, , (iii) then follows from an
application of lemma 5.3.5 (replacing Y, ; with Y, ; — v, ;) and remark 5.3.6.

Assumption (C) is equivalent to the property y,0 € A\ {0}. Then y,, is a unit in
Frac(A)[X], and since YV, = y,0 (mod (X)), we deduce that ), o = &(Y,,) also is a
unit, and (iv) holds. O
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Remark 5.3.8. In the statement of the theorem, if one assumes that (A) holds and that
moreover f is generated by the H., ;’s and some elements of (X'), then (B) automatically
holds. Indeed, the above proof shows that, without changing the ideal generated by the
H., ’s, one may assume that for every v,s one has H,, =Y, ; — y,, (mod (X)).

5.3.9 In the preceding notation, the proof of theorem 5.3.7 is based on the existence
of a family {Y, s; v € I', s € N} of elements of Frac(A)[X] such that for every (v, s) €
I' x N one has ), = y,, (mod (X)) and H, |y, —y , = 0. The existence of this
family is assured by proposition 5.3.2 and hence in order to explicitly compute the
ring Frac(A)[X]/&(h) in part (iii) of theorem 5.3.7 on particular examples we have
to effectively apply proposition 5.3.2. Let us show the recursive construction of the
truncations modulo (X)® for e € N of such a family {), ,; v € I, s € N}, checking that
the desired conditions hold.

Construction 5.3.10. Assume that we are in the setting described in theorem 5.5.7, in
particular its assumptions hold. Then, for every (v, s) € I'xN, we can construct a family
{y{)}e1 of elememts of A[X] C A[X, Y] (and hence also belonging to Frac(A)[X]) such
that:

i) For every e € N\ {0} we have Y., , = y'¢) (mod (X)¢+8) in the ring A[X,Y].
s v,8

(ii) For every ei,es € N such that ey > e; > 1 we have y{*t) = y{©2) (mod (X)) in
the ring A[X].

(11i) For every e € N\ {0} we have H%S’yw:ygf; =0 (mod (X)®) in the ring A[X,Y].

We will prove parts (i) and (ii) by a double induction on the nonnegative integers
s and e. For this, we will state and prove two lemmas that perform each step of the
respective inductions. First we will need to fix some notation. Let e € N\ {0}, the
quotient morphism A[X Y] — A[X,Y]/(X)¢ admits a canonical section. We denote
by <. their composition

o A[X,Y] = A[X,Y]/(X) — A[X,Y].

Let us stress that the image of A[X] by ¢, is contained in A[X]. For every (v,s) € I'xN
we set y,(yog =Y, ;. Let us recall from assumption (A) in theorem 5.3.7 that H, , is of the
form Hy, s =Y, U, s+ E, s, with U, s aunitin Aand B, s = E, s 1 + > ,en By sr - Yor
as in assumption (A2), ie., B, ,, € A[X] for r e NU{-1}, E,,, € (X) for r > s and
E, s, =0 for all but a finite number of r. For v € I' and e,s € N with e > 1, we define
recursively on e and s the morphisms of A[X]-algebras

e AX,Y] — A[X,Y]

{ yle)  forr <s
—

(e~1)

Y. :
Ysr forr > s

’Y?/’"
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and the elements of A[X]
Y = —elea(Bys)) Uy (3.6)

Lemma 5.3.11. Keep the previous notation. We fiz (v,s) € I' x N and e € N\ {0}.
We suppose that:

(a) For every r € N with r < s, there exists an element y°) in A[X] such that
Y, =4 (mod (X)¢ +b) in the ring A[X,Y].

’y7r

(b) If e > 2 then for every r € N there exists an element y in A X such that
Yy, = Y (mod (X)*! 4 ) in the ring A[X,Y] (note that for e = 1 the

equalzty still holds but y°) does not belong to A[X]).
Then:

(i) The element y'¢) = —Se(€5(E,6))US L belongs to A[X].

778

(i) We have H, s = ¢.(Y, U, s +€5(E, ) (mod (X)°+h) in the ring A[X,Y].
(iii) We have Y, = y!?) (mod (X)®+ b) in the ring A[X,Y].

This lemma performs each induction step in the proof of part (i) in construction
5.3.10. Precisely, it assures that the elements y!¢) := —c.(e5(E, ;))U,+ in A[X] are well-
defined and may be used in the subsequent steps of the induction. Let us stress that
the assumptions of this lemma imply that, for e > 1, the image of the morphism ¢ is

contained in the subring A[X| of A[X Y.

Proof of lemma 5.3.11. Let us prove part (i). For e > 1, the elements y!¢) (resp. y'5 ")
belonging to A[ X for every r < s (resp. for every r € N) by assumption, we deduce that
the image of the morphism &¢ is contained in A[X]. Hence €¢(E, ;) € A[X] and also
Se(e5(E,5)) € A[X]. We consider now the case e = 1. For r < s we have by assumption
yit) e A[X], hence ¢1(e}(Ey o0 Yyr)) = q1(Bys)) € A[X]. For r > s, by assumption
(A1) in theorem 5.3.7 we have E. ;, € (X), hence G(er(Ey s, Y r)) = (Ey s, Y ) = 0.
And obviously ¢ (e (E,s-1)) = «1(E,s-1) € A[X]. Then we also have ¢ (¢1(E, ;) €

A[X]. Finally, for every e > 1, the element U, ¢ being a unit in A, we deduce that
yl) := —c.(e¢(E,,s))U L belongs to A[X].

Let us now prove part (ii). We consider H, , =Y, ;U, s+ E, ;. Then, by assumption
(A) in theorem 5.3.7 and the very definition of ¢., we deduce that ¢ (Y, U, s+e5(E, ) =
Y, Uy s +s(e5(E,5)), since no term in Y, ,U,  belongs to (X). We only have to prove
that £, s = ¢.(c%(E,5)) (mod (X)¢+h) in the ring A[X,Y]. Let us see that we have
in fact £, s = €$(E, ) (mod (X)¢+h) (recall that ¢ (¢$(E, ) = €5(E,s) (mod (X)°)
by the very definition of ¢.). By linearity of the morphism £¢, this is equivalent to see
that By s 14> en Evsr Yor = Ey g1+ Y ren Eysr-€5(Y,,) (mod (X)°+h). We have
three cases:
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e Obviously £, 1 = E,,_1 (mod (X)°+b).

e Forr < s we have B, -c4(Y,,) = E,,-y{) and from assumption (a) we deduce

that By o Yy, = By o3 (mod (X) 4+ ).

e For r > s we have E, , - €5(Y,,) = E,;, ygfgl). If e = 1 then by the very
definition E, g, yl0) = E7 -Y, . Let us suppose e > 1. By assumption (b) we

’YT
have Y., =y (mod (X)*~' 4 ). The element E, ,, belonging to (X), we
conclude that Eyep - Yor=Ey -yl (mod (X)° +b).

Let us prove part (iii). The element H, ; belonging to the ideal b, from part (ii) we
deduce that ¢ (Y, U, s+€S(E, ) =0 (mod (X)°+bh) and hence Y, ;U, s+<.(¢5(E, 5)) =
0 (mod (X)¢ + b) (since no term in Y, U, s belongs to (X)). The element U, , is
still invertible modulo (X)¢ + b, thus the preceding equality is equivalent to Y, , =
—Ge(€5(E,,6))US 4 (mod (X)¢ +b) and the property holds by definition of yﬁﬂ O

The following lemma performs each induction step in the proof of part (i) in con-
struction 5.3.10.

Lemma 5.3.12. Keep the previous notation. We fir v € I' and the integers s € N and
e1,e2,7 € N\ {0} with ey < e1. Let us suppose that the family of elements {y')}e>1 in
reN

A[X] defined above satisfies the following assumptions:

(a) For every r € N with r < s, we have ¢, (yge,{)) = yle2),

(b) For every r € N, if e > 2 we have ce,—1(y2 ) = ylez=b.

Then ce (y52)) = 2.

Proof. By definition of y(eg), we have gez(yffi)) = Gep (—Sey (€51 (E,6))US L), which equals
—Cen (€5 (Ey)) UL (smce Gey O Gy = Se, for ea < e1). On the other hand, by defi-
nition ygfg) = =G, (2 (E,,5))U; ;. Then we only have to prove that ¢, (¢! (E, ) =
Ser (€2 (E, 5)). By linearity, the definition of the morphisms €' and €2 and the form of

E. s according to assumption (A2) in theorem 5.3.7, this is equivalent to see that

’y7
geg ~v,8,—1 +Z§62 v,8,T 5 (Y'y ))_gez v,8,—1 +Z§€2 V8,T E (Y’Yﬂ“))‘

reN reN

We have three cases:

o Obviously ¢, (Eys-1) = Sey(Eqys-1).

e Forr < swehave E, ;,-e2(Y,,) = E, - ygf;) and E, 5, -e2(Y,,) =E,, yg 2),

Then <, (E%SJ‘ ) €§1(YW")) = Sez (E%S,r * Sep (y»(ﬁ;)))a which equals ¢, (E%s r y(@))
Seo(Ey 5 - €2(Y, ) by assumption (a).



5.3. TECHNICAL MACHINERY 113

e For r > s we have E, ;, - € (Y,,) = E 5, - ygf}n_l) and E, 5, -c2(Y,,) = By, -
yg‘fﬁ_l). Moreover, the element E. ;. belongs to (X). If eo = 1 then ¢ (E,, -
e (Y,,)) = 0 and also ¢ (£, ,, - €2(Y,,)) = 0. Let us suppose ez > 1, then
Sea (B €8 (Vo)) = Sea (B - Sep1 (95537Y)), which equals ¢, (B - y$27Y) =
Seo (Ey 5. - €2(Y, ) by assumption (b).

Then the equality above holds, which concludes the proof. O

Now we can prove that the family {y!*)}c>1 defined recursively as in (3.6) is well
defined and satisfies conditions (i), (ii) and (iii) in construction 5.3.10. Parts (i) and (ii)
will be proven by double induction on e and s and in each step we will apply respectively
lemmas 5.3.11 and 5.3.12, hence we will check that their assumptions hold.

Proof of construction 5.3.10.
e Let us prove part (i). Set v € I'. We will reason by double induction on e > 1 and
s € N. Recall that, by assumption, y¥) := Y, s for s € N.

Y,S
Let us fix e = 1 and s = 0. By definition, the morphism & is the identity on
A[X,Y|. Assumptions (a) and (b) in lemma 5.3.11 are trivially satisfied and hence by

part (i) y% = —c1(eg(Ey0))U, belongs to A[X]. By part (iii) we have Y, = y%
(mod (X) + b) in the ring A[X,Y]. Let us stress that in fact y% = —q(E,0,-1)Usp,

hence if E, 51 € A[X]\ (X) as in assumption (C) in theorem 5.3.7 we deduce that yﬁ%
belongs to A\ {0} and then is a unit in Frac(A)[X].

Let us fix s > 0, assume that, for every 0 < r < s, the element yf,l,), in A[X] satisfies
Y, = yﬁ,lg (mod (X)) + b) in the ring A[X,Y]. Then assumption (a) in lemma 5.3.11

holds and also (trivially) assumption (b). Hence by part (i) in that lemma yglg =

—a1(eX(E,,5))U,+ belongs to A[X] and by part (iii) we have Y, , = y{)) (mod (X) + b)

v,S
in the ring A[X,Y]. Let us stress that, for every s € N, y{1) coincides with the element

Y5 in the statement of theorem 5.3.7.

Let us fix e > 1, assume that for every ¢/,r € N with 1 < ¢’ < e there exists an
element y¢) in A[X] such that Y, = yg‘f;) (mod (X)¢ + ) in the ring A[X,Y] (we

v,T
will refer to this assumption as the outer induction assumption).

Let us fix s = 0, then assumption (a) in lemma 5.3.11 trivially holds and assumption

(b) holds by the outer induction assumption. Hence by part (i) in that lemma yge) =

—¢(g§(E5,0))Us belongs to A[X] and by part (iii) we have Y, o = y,(f()) (mod (X)¢+b)
in the ring A[X,Y].

Let us fix s > 0, assume that, for every 0 < r < s, the element yge,), in A[X] satisfies
Y, =y'¢ (mod (X)¢+b) in the ring A[X,Y] (we will refer to this assumption as the

v,
inner induction assumption). Then assumption (a) in lemma 5.3.11 holds by the inner
induction assumption and assumption (b) also holds by the outer one. Hence by part
(i) in that lemma y!¢) := —¢(¢5(E,,))U;} belongs to A[X] and by part (iii) we have

Y, = 9% (mod (X)¢+b) in the ring A[X,Y].
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e Let us prove part (ii). Set v € I'. Let e1,e2 € N with 1 < ey < eg; in order to prove
that y(e D = y(ez) (mod (X)¢?) in the ring A[X], by the very definition of the morphism
G, it suffices to prove that ., (y(el)) = geg) The property clearly holds for e; = ey, for
the case e; > ey we will reason by double induction on e; > 2 and s € N.

Let us fix e; = 2, then e; = 1. We also fix s = 0, then assumptions (a) and (b) in

(2)) _

lemma 5.3.12 trivially hold, hence <i(y, ) = ¥5.0-

Fix now s > 0 and assume that for every » € N with » < s we have gl(y%) = ygl,),

Then assumption (a) in lemma 5.3.12 holds and (trivially) also assumption (b). Thus
( (2)) = o)
S1 yfy, y’y,s
Let us fix e; > 2, assume that for every €}, e, € N with 1 < e}, < €| < e; and every
r € N we have ¢ (yg %)) = ys,e%) (we will refer to this assumption as the outer induction
assumption). Let e2 € N such that 1 < ey < ey.

Let us fix s = 0, then assumption (a) in lemma 5.3.12 trivially holds and assumption

(b) holds by the outer induction assumption. Hence ¢, (y%)) = ygeé).

Let us fix s > 0, assume that for every r € N with r < s we have ¢, (y!%)) = yl=)
(we will refer to this assumption as the inner induction assumption). Then assumption
(a) in lemma 5.3.12 holds by the inner induction assumption and assumption (b) holds
by the outer one (and trivially if e; = 1). We deduce that ,,(y{?)) = y(€2)

]
e Let us prove part (iii). We set v € I'. For the sake of simplicity, we define for every
e € N\ {0} the morphism of A[X]-algebras e®: A[X,Y] — A[X] given by e¢(Y, ;) = y( °)
for every r € N, it is well-defined by part (i). Let us fix e € N\ {0} and s € N. Then
the property H, l,, _ =0 (mod (X)¢) in the ring A[X,Y] can be rewritten as
e(H,s) = 0 (mod (X)¢) in the ring A[X], which is equivalent to Se(e°(H,,5)) = 0 by
definition of the morphism ¢,.
By the very definition of yw),, we have y(e Uy s+ se(e5(Eys)) = 0 in A[X]. On the
other hand, ¢ (e%(H,)) = ¥%0U s + (e (E ,5)), since ge(y(e)) y!¢) and U,, € A.
Then it suffices to prove that ¢.(e¢(E,s)) = se(€5(E,s)). By linearity, the definition of

the morphisms € and €¢ and the form of £, ; according to assumption (A2) in theorem
5.3.7, this is equivalent to see that

’ys 1 +de Y,S,T 5 Y ))Z vs 1 +Z§e Y,8,T 5 Y'y,r))~

reN reN

We have three cases:

e Obviously %(E%s,—l) = §e(E7,s,—1)‘

o Forr < swehave B, ,-(Y,,) = E,,-y\9 and also E, ., -e°(Y,,) = Eyor -y,
hence ¢(Ey s - €°(Yr)) = Ge(Eysp - €5(Yar))-

e For r > s we have E, ,, - e5(Y,,) = E, 5, ygr_l and E, g, - e(Yy,) = Eysr- y,(fz

N
Moreover, the element E. ,, belongs to (X). If e =1 then ¢ (E, 5, - £'(Y,,)) =0
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and also ¢1(E, s, - €2(Y,,)) = 0. Let us suppose e > 1, then ¢.(E, 5, - £¢(Y,,)) =
Se(Ey sy §ef1(y$,)ﬂ)), which equals ¢, (E, 5, - ygfr_l)) by part (ii) and hence ¢ (E, s -
gz(YYvT))

Then the equality above holds, which concludes the proof. O

5.4 TECHNICAL MACHINERY FOR THE COMPARISON
THEOREM

In this section we will obtain the crucial technical result (theorem 5.4.6) allowing to
establish our comparison theorem in section 5.5. As for theorem 5.3.7, the hypotheses
are formulated in a somewhat abstract form, and in section 5.5 we will verify that these
hypotheses hold in the toric setting.

5.4.1 Let k be a field of characteristic zero. If K is a field extension of k, we denote
by LcCply the category of complete local k-algebras with residue field k-isomorphic to
K. We begin with an elementary yet useful lemma.

Lemma 5.4.2. Let K be a field, A be an object of LcCply and a and b two ideals of
A such that for every object B of LcCply one has the inclusion

{¢ € Homyecpl, (A, B) : b C Ker(¢)} C {¢ € Homyecpl, (A, B) : a C Ker(p)}.

Then one has the inclusion a C b.

Proof. We apply the assumption with ¢ the quotient morphism A — A/b. n

Notation 5.4.3. Let A be a finite set and Y be the set of indeterminates {Ys;0 € A}.
Let R be a ring. Let Y(t) := {Vs(t) : 6 € A} be a family of elements in the power series
ring R[t]. Let P € R[Y]. Then we define the family {Ps,y(t) 15 € N} of elements of R

by the following equality in R[t]:

P|Y5=y5(t) = Z Ps,y(t)ts- (41)

seN

Remark 5.4.4. Let us keep the same notation as before. Let S be another ring, p: R — S
is a ring morphism. We also denote by ¢ the induced morphisms R[Y] — S[Y] and
R[t] — S[t] obtained by applying ¢ coefficientwise. Then for every s € N one has

O(Psyty) = ©(P)s o)
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5.4.5 Now we can state and prove the main result of the section.

Theorem 5.4.6. Let K be a field extension of k, A be a finite set and'Y be the set of
indeterminates {Ys; 0 € A}. Let (ds) € N2 be a family of nonnegative integers. Let X
be the set of variables {Xs;;0 € A, 0 < j < ds}. We denote by (X) the mazimal ideal
of the power series ring K[X].

Let Q be a (possibly infinite) set, and let {P,}ucq be a family of elements in the
polynomial ring K[Y] such that, for every w € Q:

+ —_
(I) One may write P,y = 5le_IA Y(;uw"s — 516_[A Y(suw’é; where u;:(;, u, s € N.

(II) One has P,|y,_s = 0 in K[t], in other words

D odsul s = dsug s =: cy.

deA 0EA

Let {x5;: 6 € A, j > ds} be a family of elements in K[X]. Foré € A, set

ds—1

yg(t) = Z X(;,jtj + Z «Td,jtj S K[[X]][[t]]
j=0 j>ds
and
Vs(t) = > X5t +1% € K[X][1]
=0
We assume:

(a) for every § € A, xs54, is a unit;

(b) for every w € Q and every s > c,, one has P, sy = 0.

We consider the following ideals of K[X] : a:= <{Pw,s,y(t) twe se N}> and b =

<{Pw75&(t) rwef se N}>
Then K[X]/a and K[X]/b are isomorphic objects of LcCply.

Proof. By assumption (a), for every § € A, the series Vs(t) is a ds-regular element of
K[X][t]. Thus by the Weiertrass preparation theorem (see theorem 4.1.11), there exists
a family {X;;:0 € A, 0 < j < ds} of elements of the maximal ideal (X) of K[X] and
a family {Us, : 0 € A, r € N} of elements of K[X] with Us( an unit, such that, setting

ds—1
Ws(t) :=t% + > Xs;t) and Us(t) =Y Us,t"
j=0 reN

one has

Vs(t) = Ws(t)Us(t). (4.2)
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Identifying the t-coefficients in the latter equation yields the following relations in K[ X]:
j—1
Xsj=X5,;Uso+ Y X5,Usjr, 0<j <ds.

r=0

Since Usy is a unit, we deduce that the element of Homy.ccpl, (K[X], K[X]) sending
Xs,; to X5, for 6 € A and 0 < j < ds is an isomorphism.

Setting
c:= <{Pw,s,{W5(t)} W e Q, S € N}>,
the above isomorphism shows that K[X][t]/b and K[X][t]/c are isomorphic objects
in LcCply. To conclude the proof, we show that a = ¢ using lemma 5.4.2.

Let (B, mp) be an object in LcCply, and let ¢ be an element of Homy,ccpr,. (K [X], B).
We still denote by ¢ the induced morphism K[X][t] — B[t] obtained by applying ¢
coefficientwise.

Let us assume that for every w € 2 one has P, |y,—,;@#) = 0. One has to show that
for every w €  one has P, |y,—w; ) = 0.

From our assumption and hypothesis (I) we deduce the following equality in B[t]:
ut u
I1 e(s(t))"s = [T o (Vs(#)) ",
deA deA
which can be rewritten, using equation 4.2, as
ut uwh u u
[T eWs(t) s TT o(Us(t)) " = [T o(Ws(t))" I] @(Us(t))*>s.  (4.3)
seA seA seA seA

Note that for every § € A, o(W;s(t)) is a Weierstrass polynomial of degree ds in B[]
and ¢(Us(t)) is a unit in B[t], since ¢(Usy) is.

By uniqueness of the Weierstrass factorization in B[t], one gets the equality

T[T e(Ws(t)"os = T @(Ws(t)) s (4.4)

0EA LISTAN
which means exactly that P, |y,—,mw;) = 0.
Conversely, assume that for every w € Q one has P, |y;—,w;@) = 0, in other words,

that (4.4) holds, and let us show that for every w € Q one has P,|y,—yy,¢) = 0. Let

W, (t) € B[] be the common value of both members of (4.4). Note that W, (t) is a
Weierstrass polynomial of degree c,,. On the other hand, one has

Polvs=es) = Wa(t) (H p(Us(1)"s = 11 @(Us(t)) “’5> :
seA seA
By assumption (b), P,|y;=4s@) is an element of the polynomial ring B[t] with de-
gree less than ¢,. By the uniqueness of the Weierstrass division by W,(¢) in B[t] one
concludes that P, |y,—y;)) = 0. O
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5.5 A COMPARISON THEOREM BETWEEN FORMAL
NEIGHBOURHOODS

In this section we will make use of the results in sections 5.3 and 5.4 in order to obtain
the main comparison theorem as an application of the results in those sections to the
toric setting. It should be noted that our results provide basically two approaches
for computing effectively the formal neighbourhood of the generic point of the Nash
set associated with a divisorial toric valuation. The first one is based on an effective
implementation of the Hensel lemma crucially used in section 5.3 (see subsection 5.3.9).
The second one takes advantage of the comparison theorem to use exactly the same
techniques as in the case of rational arcs described in [13]. The latter seems to be much
more efficient in practice. See section 5.6 below for explicit examples of computation.

5.5.1 We retain the notation introduced in section 5.2. In particular, V, is the affine
toric k-variety of dimension d associated with a cone o and presented as k[Z]/i,, where
Z ={Z :ie{l,...,h}} and i, is generated by the binomial elements {F, = Z* —
Z" ;£ € L}, L being a subgroup of Z" (see subsection 5.2.7). Moreover, denoting by
Z ., the set of variables {Z; s : i € {1,...,h},s € N}, the arc scheme .Z,(V,,) associated
with the affine toric variety V, may be identified with the affine scheme Spec (k[Z ~]/[is]);
the ideal [i,] is generated by the elements {F,;; £ € L,s € N} (see subsection 5.2.8).

The following proposition gives an explicit description of the generic point of the
Nash set associated with a divisorial toric valuation (see subsection 5.2.9).

Proposition 5.5.2. Let n € c NN be a divisorial toric valuation, A, be the associated
Nash set and n, be the generic point of Ny. Let a, be the ideal ({Z;5, : 1 < i <

d
h,0<s; < (m;,n)}) of k[Z). Let G = 1 Zimim) and gn be the image of Gy, in
i=1
O(Z(Vy)). Then:

(i) The prime ideal of O(Zx(V,)) corresponding with n, is the radical of the image
of an in O(ZLw(Vy)).

(i) The point n, belongs to the distinguished open subset {gn # 0} of Lo(Vy). The
prime ideal of the localization O( L (Vy)),, corresponding with n,, is the extension
of an to O(ZLs(Vi))g,.-

Proof. Assertion (i) follows from lemma 5.2.11: from part (iv) we know that .£2 (V; ),
is an open subset of .4;,, hence their generic points coincide. By part (ii) it is the
intersection of the open subset 22 (V,) NN {2im; ny # 0} of Zo(V) (recall that
22 (V,) is open) with the closed subset (ﬂ?zl mg’jg')’"*l{zi,s = 0}), which is the closed
subset of 2 (V) defined by the ideal ({z;s, : 1 <i < h, 0 <s; < (m;, n)}). Then
the generic point of Z2(V,), is the radical of this ideal and we finish by observing
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that ({5, : 1 <@ < h, 0 < s; < (m;, n)}) is the extension in O(Z(V,)) of the
ideal a,. Let us observe that the fact that the open subset ﬂ§:1{2@<mi7n> # 0} equals
{T1%-, 2i (. .y # O} allows to deduce that the generic point belongs to the distinguished
open subset {g, # 0} of L (V5).

Let us now prove assertion (ii). By (i), it is enough to show that the k-algebra
R :=k[Z  ]g, /]ic] +an is a domain. Let us show that its functor of points is isomorphic
to the functor of points of the k-algebra O( %, (7)), the latter being a domain since T
is a smooth irreducible variety (see proposition 2.2.19).

Let A be a k-algebra. By the very definition of R the set Homag, (R, A) is in
natural bijection with the set of k-algebra morphisms ¢’ : O(V,) — A[t] such that
ord;(¢'(x™)) > (m;, n) for 1 <i < h and ord,(¢'(x™)) = (m;, n) for 1 <i <d. By
subsection 5.2.5 this set is in bijection with the set of semigroup morphisms ¢ : S, —
A[t] (here A[t] has its multiplicative structure) such that ord,(¢(m;)) > (m;, n) for
1 <i < hand ordi(p(m;)) = (m;, n) for 1 <i <d. Hence we can apply lemma 5.2.12
to the semigroup morphism ord; o ¢ : S, — N and deduce that ord;(p(m)) = (m, n)
forme S,.

Then ¢ uniquely corresponds with a semigroup morphism ¢ : S, — (A[t])* which
extends uniquely to a group morphism v : M — (A[t])*. By remark 5.2.6, such a group
morphism corresponds uniquely with an element of Homayg, (O(-Z(7)), A), which con-
cludes the proof. O

9.9.3 Recall from subsection 5.2.7 the existence of a family {Feq cd+1<¢< h} of

elements of the ideal i,; let us denote by j := (Fy,; d +1 < ¢ < h) the ideal of k[Z]
generated by them. We have the following technical lemmas.

Lemma 5.5.4. Let i be an ideal of k[Z]. Let d < h and F € k[Z] such that F lies in
the quotient ideal i : ([T, Z;)>®. Let (c;) € N and a be the ideal (Z;s : 1<i<h,0<
s < ¢) of k|Zy)]. Let G =11, Zi.,. Then in the localization k[Z.)q, the ideal [(F)]
is contained in the ideal [i] + a.

Proof. For simplicity, let us denote by HS : k[Z] — k[Z |[t] the morphism of k-algebras
given by HS(F) := Fl;_s~ 4, 4+ = > Ft*. By proposition 2.2.10 and lemma 2.3.5 we
' seN

seEN

may assume that the ¢-coefficients of HS(F') generate the ideal [(F)].
Let H € i and e € N such that ([, Z;)°F = H. Applying HS and using the very
definition of a, one obtains the relation

T1(tZie, + t(...)))* HS(F) = HS(H) (mod a[t]).

i=1
Thus, setting K := 3%, ec;, for s < K one has H, € a[t] and one may write

[[[Zie; +t(.. )] HS(F) = Y Hyxt®  (mod aft]).

=1 s>0
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By the definition of G, the series [I%,[Z;., + t(...)]¢ is invertible in k[Z]¢[t]. That
concludes the proof. O

Lemma 5.5.5. Let us keep the notation of subsection 5.2.7, in particular o is a cone
of Ng, {m,...,my} is a system of generators of the semigroup S, such that its subset
{my,...,my} forms a Z-basis of M and i, := (Fy; € € L) is the ideal of k[Z] defining
V. Letj:=(F,, : d+1<q<h).

d
(i) Set Gq := 11 Z;. For every £ € L, Fy lies in the quotient ideal j : G°. In other
i=1

words, the ideal i, vanishes in k[Z]q,/).

(it) Let n € o NN and a,, be the ideal ({Z;s, : 1 < i < h,0<s; < (m;,n)}) of
d

k(Z). Let Gy := 11 Zim;my- Then the ideals [i,] + a,, and [j] + a, coincide in
i=1

the localization k[Z )a,, -

Proof. Set G, := I, Z;. Since {€, : d+1 < q < h} spans the lattice L, [75, Lemma
12.2] shows that i, vanishes in k[Z]g, /j. But (2.3) shows that the natural morphism
k[Z)¢, — k[Z]g, induces an isomorphism k[Z]q,/j = k[Z]g, /j. This shows (i).

By (i) and lemma 5.5.4, in the localization k[Z]g,,, the ideal [i,] is contained in
[j] + a,. Since the inclusion [j] C [i,] holds by definition, one deduces that (ii) also
holds. [

The ideal j of the ring k[Z] defines an affine k-scheme W := Spec (k[Z]/j) which
contains V; as a closed subscheme. Then .Z,,(W) may be identified with Spec (k[Z]/[j])
with [j] = (Fp,s; d+1 < q < h,s € N). The closed immersion V, — W induces a closed
immersion 2, (V) — L (W) between the corresponding arc schemes (see proposition
2.2.8). For n € o0 N N, let 7, be the image of n, by this closed immersion. We shall
reduce the computation of the formal neighbourhood of %, (V,) at n, to that of the
formal neighbourhood of Z,,(W) at 7,,. We will say that we are in the toric setting in
the former situation and (abusing terminology) in the complete intersection setting in
the latter.

Lemma 5.5.6. Let n € NN be a divisorial toric valuation, Ay, be the associated Nash
set and ny, be the generic point of Ny,. Letn), be the image of n, by the closed immersion
Low(Vy) = ZLoo(W). Let a, be the ideal ({Z;is, 1 < i < h,0 <35 < (m;,n)}) of
d
K[Z ). Let Gy = T Zim,m) and g, be the image of G in O(ZLx(W)).
i=1
Then the point ., belongs to the distinguished open set {g,, # 0} of L(W), and the
prime ideal of O(ZLw(W))g corresponding with n;, is the extension of a, to O(Lo(W))g: .

Proof. Let py, (resp. pl,) be the prime ideal of k[Z ] /[i,] (resp. k[Z]/[j]) corresponding
to my, (resp. n,,). Then p!, is the preimage of p,, via the quotient morphism k[Z..]/[i] —
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k[Z x]/lis]. We have the following commutative diagram, where all the morphisms are
the canonical quotient ones:

k[ZOO] - k[ZOO]/[iG]

|

k[Z o)/ [}
This diagram induces via localization the following commutative diagram:

k[Z e, —— (F[Zs]/[i])gn

|

(K[Zocl/ g,

We will also denote by a,, (resp. p,) the extension of this ideal in k[Z]q, (resp.
(k[Z ) /]io])gn)- By proposition 5.5.2, p,, is the extension of a,, in the ring (k[Z«]/[is])g.
and it is still a prime ideal. Note that ¢/, ¢ p., otherwise by the commutativity of the
first diagram we would have g, € p, which is not the case. The extension of p/ in
(k[Z)/[i])g, is the preimage of the prime ideal p,, via the morphism induced by the
quotient one in the localizations. We conclude by the commutativity of the second
diagram and the fact that [i,] + a, and [j] + a,, coincide in k[Z]q, by lemma 5.5.5
(ii). O
Notation 5.5.7. For ¢ € {1,...,h} and r € N? we denote by Z<, <., the set of variables

{Zis,;1<i<4¢q,0<s; <r;}. If g =h we write Z, <, instead of Z<}, <,,. We define
similarly Z<; >, Z>q.<r, and so on.

5.5.8 The following lemma shows that we can apply theorem 5.3.7 in the complete
intersection setting.

Lemma 5.5.9. Let n € o NN be a divisorial toric valuation.

n

d
Let Gy := 11 Zi (m; ,ny and A be the k-algebra k[Z <q > m,; nylc,,-
i=1

Let 2 be the finite set {(i,s;);i € {1,...,h},0 < s, < (m,n)}. For w € Q, set
Xoi=2y. Setl'={d+1,....h}. Forqel ands €N, set Y = Zyn, my)+s-

Let § be the extension of the ideal [j] in k[Zy]g,. For s € N and q € T, set
Hys = Fy n e,+s (recall from subsection 5.2.7 the definition of (£,, n)). Then with

this notation the hypotheses in theorem 5.3.7 hold true. Moreover, if g is the extension
of the ideal [i,] in k[Za,, then (X)+b=(X) +g.

Proof. Note that with the notation of the statement, one has in particular A[X,Y] =
k[Z »)a, and the ideal (X)) corresponds to an = (Ze <(m,,n))-
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Let us show that assumption (A) in theorem 5.3.7 holds. Pick up ¢ € {d+1,... h}.
Set

Af={ie{l,...,d};l,; >0}, Ay :={ie{l,....d};{,; <0}

i
@Is = {(rq, (rig; i € Aq+,1 <k <{l.:);rerik €N, e+ Z Zri,k =s}

ieAy k=1

—ly
and @;s = {(Ti,k; 1€ A;, 1 < k S _gq,i); Tik € N, Z Z Tik = 3}.

ieA; k=1

Then by (2.3) and (2.4), the polynomial Fy, . has the following form:

gq,i _Zq,i
Fopo= > Zo, [ I Zivi = 2 11 1 Zisir: (5.1)
(rq,rik)EOT ieAf k=1 (ri1)€O,.s €Ay k=1

Note that setting r, = (m,, n) + s and 7, = (m;, n) for 1 < k < {,; defines an
element of © , .. Set

lo.i
Uy =11 11 Ziim: .-
ieAf k=1
By the definition of Gy, U, is an invertible element of k[Z <g > (m,  n)|c,-
Set

Lq,i —Lq,i

q,i
Equ’fl = Z qurq II H Zirri,k - Z H H Zi7ri,k'
) + ic AT k=1 . - icA- k=1
(rq,n,k)e®q7<£q n) s 1€EAY (”v’“)egq,@q,an 1€EAg

rg<(mgq,m)
For r € N, set §,; = 1 if r = s and 0 otherwise, and

Ly

Eq,s,r = _(53,qu + Z H H Zi,n-,k-

(rig s 1€EAT 1<Kk<lq ) s kEN d€AF k=1

({myq ,n)-ﬁ-n(ri,k))eeiuq ,n)+s

Thus by (5.1), one has

FZvaq 7n>+s = Uqu7<mq ,TL>+S + EQ:“"\v*l + Z EQ737TZQ7<mq ,'fl>+7"'
reN

Since AT C {1,...,d}, it is clear that for r € N one has E,,, € k[Z<4.] and
Eq,s,fl € k[zgd,o U Z>d,<<mi ,n)]-

Thus (A1) is satisfied, and in order to show that (A2) also holds, it remains to prove
that for any r > s, each monomial of E,, contains a variable Z;,, with i € {1,...,d}
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and r; < (m;, n). Take (rig;i € AJ,1 <k < £y;)) a family of nonnegative integers

such that ((m,, n) +r, (k) € @;<€q,n>+s’ that is

Cgi
(mg,n)+r+ > > rip= (£, n)+s.

ieAS k=1

We have to show that either at least one of the r;;’s is < (m;, n) or r = s and
ik = (m;, n) for every i, k (the latter case corresponds to the monomial U, Zy (m,, , ny+s)-
Assume r;, > (m;, n) for every i, k. Then

Zq’l
(g, n)+s=(mg,n)y+r+ Y Zri,k2r+<mq+ Z€k7imi,n>:r—|—(£q,n>.

ieAS k=1 ieAS

If r > s this is a contradiction. If » = s, the first minoration must be an equality, which
imposes 7, = (m; , n) for every i, k.

Let us prove that (C) holds. We have to show that

eq,i _éq,i
E‘LO’*l = Z Zq,T‘q H H Zizri,k - Z H H ZivTi,k
) + ieAT k=1 ) - ieAT k=1
(T‘?’r“’“)eeq,@q,n) i€EA] (T“k)egq,@q,n) 1€A,

rq<<m(1 7n>

does not belong to the ideal (Zq <(m, ny). All the terms in the left hand sum lie in the
ideal, and arguing similarly as above, one sees that the only monomial in E,,_; not
belonging to the above ideal corresponds to r;, = (m;, n) in the right hand sum. Thus
one has E o1 = 1[I ZTE‘“'

i tme my (M0 (Ze <(m,; ny)) which allows to conclude.
iehy

Let us show that (B) holds. Since b is the extension of the ideal [j] in k[Z]g,, it
is generated by the union of the families {H,,; ¢ € I, s € N} and {Fp, ;g €T, s €
N, s < (¢,, n)}.

Arguing similarly as above, one sees using (5.1) that in case s < (€,, n) every
monomial of Fy_, must contain a variable Z;, with < (m;, n). Thus b is generated
by some elements of (X) and the H, ,’s. By remark 5.3.8, assumption (B) holds in this
case.

Finally, by part (ii) in lemma 5.5.5 the last assertion holds true. O

5.5.10 Combining the preceding results and also theorem 5.3.7, we obtain the follow-
ing corollary which provides a presentation of the formal neigbourhoods we are interested
in in both the toric and the complete intersection settings. In particular, it assures that
these two formal neighbourhooods are isomorphic.

Corollary 5.5.11. Let m be a divisorial toric valuation of o N N. There exists a
KZ <q>(mi nys Z e <(mi,ny]-algebra morphism &: k[Z ] = k(Z<q>m; n))[Z e <(mi,ny] sSuch
that :
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(1) The section ring of the formal neighbourhood of L (Vy) at nn (resp. of Lo(W)
at n,,) are both isomorphic to the complete noetherian local Ting

k(Z<d> (m;,n) )[[Z0< (m;,n) ]]/5<[ ).

(ii) For every i € {1,... ,h}, &(Z; (m,,ny) is invertible.
(iii) For every q € {d+1,... ,h} and s € N, we have E(Fy, o, ny+s) = 0.
Proof. Lemma 5.5.9 assures that, with the identifications in its statement we can apply

theorem 5.3.7. By lemma 5.5.6, this shows part (i) in the complete intersection setting,
i.e., the section ring of the formal neighbourhood of .Z,,(W) at 7., is isomorphic to

k(Z <a.zmi n))[Ze.<mi m] /2],

where the morphism € : k[Z | = k(Z<a>(m; n))[Z e <(m,,n)] is determined by theorem
5.3.7. Parts (ii) and (iii) are also given by theorem 5.3.7.

It remains to prove part (i) in the toric case. By proposition 5.5.2, the application
of theorem 5.3.7 to the extension g of the ideal [i,] in k[Z]g, (which can be done
by lemma 5.5.9) allows to deduce that the section ring of the formal neighbourhood of
Z(V,) at ny, is isomorphic to

k(Z <a>m; , ny)[Z o, <tm;,m]/E([is]),

with the same morphism ¢ as in the complete intersection case. Then we only have to
prove that &([i,]) and €([j]) coincide as ideals of k(Z <q>(m; ,n))[Ze<(m; n)]-

It is clear that £([j]) C &([i,]). For the converse 1nclu81oen, let F' € i,. By lemma 5.5.5
part (i), there exists an integer e € N such that f[ Zi> F €j. Recall the morphism
of k:—algebraseHS  k|Z] — k[Z][t] from the prz;;f of lemma 5.5.4. Then we have

S ((ﬁ1 Zi> ) HS(F) € [j][t]. Recall now that s a k[Z<g>(m, n), Ze.<(m,,n)]-algebra

morphism, hence we deduce that

S ((H Z@-) ) S(HS(F)) € (5. (5.

Moreover, the element Z; ,, n) being invertible in k(Z <4 >(m, n))[Ze<(m,,n)] for every
d e
i€ {l,...,d}, we deduce that HS ((H Zi> ) does not reduce to 0 modulo the maximal
i=1
ideal <Z.7<<mi’n>>.

Note that the ideal £([j]) is contained in the maximal ideal (Zq <(m, n)) (otherwise
the section ring of the formal neighbourhood of .2, (W) at 7/, would be the zero ring by
part (i) applied to the complete intersection setting, which is not true). In the canonical
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quotient 1ing k(Z <q>(m,; ny)[Ze,<(m:,ny]/E([}]), which is also a complete local ring, the
d e
image of HS ((H Zi> > still does not reduce to 0 modulo the maximal ideal and hence
i=1

it is not a zero divisor by the Weierstrass division theorem (see subsection 4.1.9). From
(5.2) we deduce that in k(Z<q>m,,n))[Ze<m: n][t]/E([}]) we have the equality

HS ((ﬁl Z)) E(HS(F)) = 0.

Thus E(HS(F)) belongs to &([j])[t] for every F' € i,, which shows that £([i,]) C £([j]). O

Remark 5.5.12. Let us point out that lemma 5.5.9 also assures that we can perform the
effective construction in subsection 5.3.9 of the truncations of £(Z; ;) modulo the powers
of the ideal (Zq¢<(m, ny) for d+1 < i < h and j > (m;, n), which determine the
morphism £ (see construct/ion\ 5.3.10). This provides a way for explicitly computing the

formal neighbourhood £ (V;),, as a limit. In section 5.6 we will show this on several
examples.

9.5.13 Let us recall the definition of some objects in [13, Subsection 5.1], adapted to
our notation. We denote by &: k[Z.] = k[Z4 <(m,,n)] the unique k-algebra morphism
mapping, for every i € {1,...,h}, Z; ;s to Z; s for s < (m;, n), Z; m, ny to 1 and Z; 5 to
0 for s > (m;, n).

For ' C L, let W(n,L') be the affine closed k-subscheme of the affine space
Spec(k[Ze <(m; ny)) defined by the ideal (€(Frs); € € L',s € N) and W(n, L') the for-
mal completion of W (n, L) along the origin of Spec(k[Zq <(m, n)]). Let us remark that,
setting ¢; := (m;, n) fori € {1,...,h}, ¢ := (¢;)1<i<n and identifying an element £ € L
with the pair (€., £_), then W(n, L) coincides with the formal k-scheme W(c, L’) in
construction 4.2.15.

Remark 5.5.14. Let (A, 9 4) be an object of LeCpl,. Then Homycopy, (W(n, L), A) is
in natural bijection with the set of families {z;5; 7 € {1,...,h}, 0 < s < (m;, n)} of
elements of 9t 4 such that for every element £ € L' one has

A=y

Let us recall [13, Theorem 5.2], adapted to our notation.

Theorem 5.5.15 (Bourqui-Sebag). Let k be a field of characteristic zero. Letn € NNo
be a divisorial toric valuation and o € Lo (Vy )5 (k). For an appropriate choice of L' C L
such that {€,; d+1 < q < h} C L', the formal k-scheme W(n,L') is a finite formal
model of the pair (ZLs(Vy,),a), that is, the formal neighbourhood of £n(Vy) at « is
isomorphic to W(n, L')Qyk[(T})ien].-

The following lemma shows that, for the computation of formal neighbourhoods of
k-rational arcs on 2, (V,), one may also reduce to the complete intersection setting.
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Lemma 5.5.16. Let n € 0 NN be a divisorial toric valuation and L' be a subset of
L such that {€,;d+1 < q < h} C L'. Then W(n,L') is isomorphic, as a formal

k-scheme, to W(n,{€,;d+1 < q < h}).

Thanks to this lemma, for any L' C L such that {£,; d+1 < ¢ < h} C L' and any
n € 0 N N, we may denote W(n, L) by W(n).

Proof. By remark 5.5.14, there is, for every object (A, 9 ,4) of LcCpl,, a natural in-
clusion Homyecpi, W(n,L'), A) C Hompecp, W(n,{€,; d +1 < ¢ < h}),A). To
conclude, it suffices to show that this is an equality. Let {z; ;i € {1,...,h}, 0 < s <
(m;, n)} be a family of elements of 9t 4 such that, setting

(m;,m)—1

zi(t) == Z 2 507+ t<m“n>,
s=0

one has, for every d +1 < q < h, Fy |z,—.,¢) = 0. Let £ € L'. By lemma 5.5.5 there
exists a positive integer e such that (17, Z;)°Fy € (Fy,; d+1 < ¢ < h). Thus

d e
(H Zz'@)) Fylz,=z0) = 0.
=1

Since z;(t) is a Weierstrass polynomial in A[t], it is not a zero divisor (see subsection
4.1.9). Thus one infers that Fg|Zi:Zi(t) = 0, which concludes the proof. O

The following proposition performs the aimed comparison in the complete intersec-
tion setting.

Proposition 5.5.17. Let n € 0 N N be a divisorial toric valuation, we consider the
field K = k(Z<q>(m, ny)- Then the residue field of n;, is isomorphic to K and the
formal neighbourhood of L. (W) at the point 1), is isomorphic, as a formal K-scheme,
to KepW(n, {€,:d+ 1< q<h}).

Proof. We still denote by & the composition of the morphism defined in subsection 5.5.13
with the natural inclusion morphism k[Ze <(m; ny] = K[Ze <im;,n)]-

By corollary 5.5.11 and the very definition of W(n, {£, : d+1 < ¢ < h}), it is enough
to show that the quotients of K[Zq <(m, ny] by the ideals (£([j])) = (€(Fp,s) : d+1 <
q < h,s € N) on the one hand and (£([j])) = (6(Fy,s) : d+1 < ¢ < h,s € N) on the
other hand, are isomorphic.

For this, we aim to apply theorem 5.4.6. Set A :={1,...,h}. Fori € A, set d; :=
(m;, n); for 0 < s < (m;, n) set X;, :=Z; 5 and for s > (m;, n) set x;, := (Z; ).
For i € A, set

(m;,n)—1
Vilt) =D E(Zi )t = Y. Xit'+ D w
s=0

seN 32<m’b ,TL>
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_ (m; ,m)—1
and Vi(t)= > X °+tmom,
s=0

and u,; = (f;)i.

Assumption (a) is a consequence of corollary 5.5.11. With our identifications, the
nonzero integer ¢, defined in the statement of theorem 5.4.6 is

h

o= 6 = (X i) = (8 ).

i=1 -
0q.:>0

Then still by corollary 5.5.11, for every s € N we have &(Fp, (¢, ny+s) = 0, that is
Fo,n,e)+sy) = 0 and asumption (b) holds. That concludes the proof. O

5.5.18 Now we can state the main theorem of the chapter. It illustrates the striking
fact that not only the isomorphism class of the formal neighbourhood of a generic k-
rational arc of the Nash set associated with a divisorial toric valuation is constant (as
observed in [13], see subsection 5.2.13) but moreover the involved isomorphism class is
encoded in some sense in the formal neighbourhood of the generic point of the Nash set.

Theorem 5.5.19. Let k be a field of characteristic zero. Let o be a cone in Ng and
V. be the associated affine normal toric k-variety. Let n € o NN be a divisorial toric
valuation. Let n, be the generic point of the Nash set Ay and k(ny,) its residue field.
Let W(n) be the noetherian formal k-scheme defined in subsection 5.5.13.

Then there exists a nonempty open set U, of the Nash set Ny, such that:

(i) The formal neighbourhood of L (Vy,) at n, is isomorphic, as a formal k(ny,)-
scheme, to k(n,)@W(n). In particular it is isomorphic to the formal spectrum
of the completion of an essentially of finite type local k(ny)-algebra.

(ii) For any arc o € Up(k), the formal neighbourhood of £x(V,) at a is isomorphic,
as a formal k-scheme, to W(n)@yk[(T;)ien]-

Proof. We take Uy, := % (V,)s. For part (i), proposition 5.5.17 assures that the formal
neighbourhood of £, (W) at the point 7], is isomorphic, as a formal x(n],)-scheme, to
k(n,)@xW(n). Corollary 5.5.11(i) implies that the residue fields x(n,) and x(n),) are
isomorphic and the formal neighbourhood of .Z,,(V,) at the point 7, is isomorphic, as
a formal x(n,)-scheme, to the formal neighbourhood of 2 (W) at 7], and hence to
K (1) QW ().

Part (ii) is a direct consequence of theorem 5.5.15, which assures that there exists
an appropriate choice of L' C L such that {€,;d+1 < ¢ < h} C L’ such that the
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formal neighbourhood of .2, (V,) at « is isomorphic to W(n, L')®ik[(T})ien]. Lemma
5.5.16 shows that W(n, L') is isomorphic, as a formal k-scheme, to W(n, {€,;d + 1 <
q < h}) =: W(n), which concludes the proof. O

5.6 EXAMPLES

Let us consider an explicit example of computation of the formal neighbourhood of the
generic point of the Nash set associated with a toric valuation.

5.6.1 Let N = M = Z? o be the cone of R? generated by (1,0) and (1,2) and
V, be the associated affine toric variety. The semigroup S, is minimally generated by
my; = (0,1), my = (1,0) and m3 = (2,—1). We observe that m; and my form a Z-
basis of M and the relation m, +m3 = 2m, (corresponding to £ = (1, —2,1)) generates
all the nontrivial relations between elements of S,. Thus, setting F' := Z,Z3 — Z3,
the ideal of V, in k[Z;, Zs, Z3] is the ideal generated by F'; we observe that V, is a
complete intersection. The ideal of 2 (V,) in the ring k[Z | = k[Z1 5, Zas, Z3,5; 5 € N]

S

is generated by {Fy;s € N} where Fy = Y (Z1 5+ 23, — Zos—rZay).
r=0

We now consider the divisorial toric valuation ord,, of V, corresponding to n =
(1,1) € oN N, then (m;, n) =1 for i = 1,2,3 and (€, n) = 2. The prime ideal of
O(V,) corresponding to the generic point 7, of the Nash set associated with ord,, is the
radical of the image of the ideal (Z; o, Z50, Z30) of k[Z ] (see proposition 5.5.2). The
residue field of n,, is isomorphic to K := k(Zy 5, Z2s;5 > 1).

According to lemma 5.5.9, in the notation of theorem 5.3.7 the set I is a singleton and
for s € N we fix Y := Z3 .41 and Hy := Fy5. For s > 2, the proof of lemma 5.5.9 shows
that we can write F; under the desired form Fy = Z5 s 1Us_o+Es_0 1+ ey Es—2,25,,
with the identifications U := US_Q = Zl,l, ES_Q’_l = T 2r=0 ZQ,S_TZQ’r + Zl,sZS,O and
Eq 9, =715l <r<s—1lorr=sand F,_5, := 0 otherwise. We also denote
Ee o=Fs o 1+ enBo2,23,.

Denote by {23s;s > 1} the unique family of elements of K such that for every s > 2,

one has
s—1

Z (Zl,s—r T Z3r ZQ,S—TZQ,T) = 0.

r=1

Note that the latter is a triangular invertible K-linear system in the z3’s.

Now let {Z34;s > 1} be the unique family of elements of K[Z) 0, Z20, Z3,] such that

1. for every s > 1, one has Z5 , = 235 (mod (Z1 9, Z2,0, Z30));

2. for every s > 2, one has

Zl,sZ?),O - ZQ,OZQ,S + Z (Zl,s—r : ZB,T - Z2,S—TZQ,T) = 0.
r=1
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Explicit truncations of the series Z3 s may be obtained by applying effectively the Hensel
lemma, as in subsection 5.3.9. In this first example, let us compute the first few trun-
cations of the elements Z3 ; for s > 1 in order to illustrate the recursive construction in
5.3.10.

We keep the notation in subsection 5.3.9. Although we have already given the ex-
pression of Fy o for s > 2, it will be useful to display the following elements:

Eo = Z1gZso+ Z12430 — 2250022 — 222,1
By = 710233+ Z12231 + 213430 — 2221429 — 2720223
By = Z1gZsa+ Z19039 + Z13231 + Z1,4430 — 22272 — 2091093 — 2220224

We define z:gll) = —¢1(e}(Fp))U L. In this case the morphism ¢} is the identity on
K[Z ] and we obtain
(1) 23,
231 = —U(Z10 232 + Z12730 — 2220222 — Z§,1)Z;11 =7 =.
1,1
Now z§12) = —q1(e}(E1))U . By definition, £1(Z31) = Z:(),ll) and ] is the identity over

any other variable of K[Z,]. Hence

(1) ARYAS 1
239 = — 61| L10433 + Y + 213230 — 222122 — 2290203 | 214

1,1
D73, N PYARVAY:
Z3i, Zig
In the same way zélg = —¢1(e3(E»))U !, and the morphism &3 is defined by €3(Z5 ;) =

zz(),ll) , €5(Z39) = z:gl?) and is the identity over any other variable of K[Z]. Hence

1972, 20917 ARYS)
12421 4 2221 2’2> + L3721 +Z1,4Z370_Z22,2

z?()l?f =—q| 210434+ Z12| ——>5
Zi AR AR

— 279173 — 222,022,4> Ziy

:Z12,2222,1 27219721 %90 21373, +222,2+2Z2,1Z2,3

3 2 2
Zl 1 Zl,l Zl,l Zl,l ZLl

)

Analogously we can compute zéls) for s > 3 and we observe that z3, = zéls) for
s > 1. Let us now construct the truncations modulo (70, Za0, Z30)?. We define

z§21) = —(3(Fy))U'. The morphism & is defined by £3(Z3,) = zél,z for r > 1
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and is the identity over any other variable of K[Z,]. In particular its image lies in
K[Zl,(), 2270, Z3’0]. Thus

Z1273 27917 _
Zézl) =T (ZLO (‘ 72 214 ;1 22+ Z12Z30 — 2220229 — Z22,1 Z1,11
1,1 1,1
By | DtiaZsy  2200nTan  TipZso | 2020705
Zl,l Z{’,l Z12,1 Zl,l Z1,1 ‘

Note that Z:?l) = Z§11) (mod (Z1,0, Z2,0, Z3,0))-
Finally z§22) = —g(e}(E1))U~. The morphism &2 is defined by £%(Z3;) = zé?l),
e2(Zs,) = z§12 for r > 2 and is the identity over any other variable of K[Z]. Hence

2(2) - (Zlo (Z%,2Z22,1 _ 2719221222 _ Zl,3Z§,1 4 222,2 I 222,122,3>
2 ’ 73y VAR Zi Z11 AR

Zv0 21275, 2710701700  ZhaZsg +222,OZ2,2 +Zzz,1>

+Z - -
e < Zi4 Z3, Z11 VAR Z1a

+ 213230 — 2221722 — 2Z2,022,3> Zfll

Z1,2Z22,1 2751759 221,0212,2222,1+4ZLOZ1,QZ2,1Z2,2 Zl,021,3222,1

7t Z11 7t Z3 Z3
. Z17022272 . 221,022,122,3 Z12,ZZ370 . 221,222,022,2 - Zl,3Z3,O _|_ 2Z2,OZQ,3
A A A Z3 Zha Z11

And we also note that z:(fz) = z§12) (mod (Z1,9, Z2,0, Z30)). In order to compute z§2§

we have to obtain first zéli Observe that, since we have computed z§2l) and z§22), we can
already obtain 28] := —q(e3(Eo))U ™" = —3(Z10259 + Z1978.0 — 2700225 — Z3.) Z11.

Hence one has
_Z§,1 +Zl,021,2222,1 2710221229 L1943 2490422

Za1 = - - d (Z10, Za0, Z3.0)?
o Z1a Zf’,l 212,1 711 + 711 (mod (Z1,0, Z2,0, Z30)°),

Zo — Z1,2Z22,1 + 222,1Z2,2 2Zl,(1212,2222,1 4ZI,OZLQZ2,IZ2,2 Zl,OZI,3ZQ271
32 — -

VAR AR 7 Z3} Z3}
_ Z107Z3, 2210221223 Z3 373 20197200222 21,3230 n 2750223
AR VAR AR A Z11 AR

(mod (Z1,0, Za0, Z3,0)?)

and

732723, 27197917200 Z13Z5,  Zig 2791703
23’3 = ’ — — . : = — . —~ + e . - (mod <Z1,0, 22,07 Z370>).
Z3 Zi A Z11 AR
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We observe that explicit computations quickly become cumbersome.

Then the formal neighbourhood of 1, in 2, (V,) is isomorphic to the formal spectrum
of
K[ Z10, Zo, Z30) [ (Zr10230 — Zg 4, Z11 230 + Z10Z31 — 2220 22,1)-
Note that it is not clear that the latter is the completion of an essentially of finite type
local K-algebra.

Using our comparison theorem, the computation of the formal neighbourhood of 7,
in %, (V,) may also be done in the following much more straightforward way. First we
use construction 4.2.15 to compute the formal scheme WW(n) defined in 5.5.13, which
coincides with W((1,1,1),{((1,0,1),(0,2,0))}) in the notation of construction 4.2.15.
We have the following equality in k[Z o, Z20, Z3,0, t]:

Flz,—t12,0 = (t + Z10)(t + Z30) — (t + Zop)? = (Z1,0 + Z3p — 2Z20)t + Z1,0Z30 — Z3.

We deduce that

W(n) = Spf ( k[Z10, Z20, Z50] >

(Z10Z30 — 222,07 Z1o 4 Z3o — 222)

and then the formal neighbourhood of 7,, in %, (V) is isomorphic to

Spf ( K(Z1 0, Z20, Z30] )
(Z10Z30 — 222,0; Zig+ Zso—2220) )

In addition, it is not difficult to see that WW(n) is isomorphic to Spf(k[Z1,0, Z2,0]/(Z7))-

5.6.2 Let us consider the following more general setting than in example 5.6.1 Let
N = M = Z? o be the cone of R? generated by (1,0) and (1,d) for d > 1 and V,
be the associated affine toric variety. The semigroup S, is minimally generated by
my = (0,1), my = (1,0) and my = (d,—1). We observe that m, and my form a Z-
basis of M and the relation m; +mg = dms (corresponding to £ = (1, —d, 1)) generates
all the nontrivial relations between elements of S,. Thus, setting F := Z,Z3 — Z3,
the ideal of V, in k[Z), Z2, Z3] is the ideal generated by F'; we observe that V, is a
complete intersection. The ideal of £ (V) in the ring k[Z ] = k[Z15, Zo s, Z35;5 € N|
is generated by {Fy; s € N} where

s
Fs = Z Zl,sfrZB,r - Z Z2,r1 T ZQ,rd-
r=0 ri4-+rg=s

We now consider the divisorial toric valuation ord,, of V, corresponding to n =
(a,b) € o N N; let us observe that 0 < b < da. then (m;,n) = b, (my, n) = a,
(mg, n) = da —b and (€, n) = da. The prime ideal of O(V,) corresponding to the
generic point 7),, of the Nash set associated with ord,, is the radical of the image of the
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ideal (Z1 g, Zo,59 Z3.55:0 < 51 < b,0 < 59 < a,0 < s3 < da—b) of k[Z ] (see proposition
5.5.2). The residue field of 7, is isomorphic to K = k(Z1s,, Z2s,; 51 > b, 52 > a).

Corollary 5.5.11 assures the existence of a family of elements {Z;5,;s3 > da — b}
of K[Z1s,, 225y, 23550 < 51 < b0 <359 <a,0 < s3 < da—>b] such that the formal
neighbourhood of 7, in £, (V,) is isomorphic to the formal spectrum of

K[[Zl,sl7Z2,32723,53;0 S S1 < b,() S S < CL,O S S3 < da — b]]

min(da—b—1,s) s ’
Z Zl,s—rZS,r + Z Zl,s—rZS,r - Z ZZ,m e ZZ,’/‘d; 0 S s < da
r=0 r=min(da—b—1,s) r1te+rg=s

Note that the truncations of the elements in the family {Z; ;,; s3 > da — b} modulo
(Z1,51s L5y, L3550 < 51 < b,0 <59 <a,0< s3<da—>b)°for e > 1 may be explicitly
computed using subsection 5.3.9, as we did in example 5.6.1 for d =2 and a = b = 1.

Using our comparison theorem 5.5.19 we deduce that the computation of the formal
neighbourhood of 7, in %, (V,,) may also be done in the following way. First we compute
the formal scheme W(n) defined in 5.5.13, which coincides with

W((b,a,da —b),{((1,0,1),(0,d,0))})

in the notation of construction 4.2.15. We have the following equality in the polynomial
ring k[Z1 s,y Zo.sys Z3,55, 10 < 51 < b,0 < 859 < a,0 < 53 <da—b|:

b—1 da—b—1 a—1 d
F (mimy—1 = P+ D Zig | |t Y Zy ot = [+ D Zo it

Z;=t™i™ Zozj’sjﬁj 51=0 $3=0 $2=0
sj=
da—1
. S
= Y Et°
5=0

where ), € k[Z1 51y Zo.syy Z3.55;0 < 51 < b,0 < 59 < a,0<s3<da— "] for every s < da.
We deduce that

W(’n) _ Spf (k[[Z1781)Z27827Z3783;0 S S1 < b,O S So < a,O S S3 < da — b]])

<I7’S;0 <s< da>

and then the formal neighbourhood of 7, in £, (V,) is isomorphic to

Sof K[Z s, Zasy, L3550 < 51 < b,0 <59 <a,0<s3<da—"b]
p = .
<F5;0 <s< da>

5.6.3 Let us present an example which illustrates the passage to the complete inter-
section setting. Let N = M = Z?, o be the cone of R? generated by (1,0) and (2,3)
and V, be the associated affine toric variety. The dual cone ¢V is generated by (0, 1)
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and (3, —2) and the semigroup S, is minimally generated by m, = (1,0), my = (0, 1),
mg = (2,—1) and my = (3,—2). We observe that m; and msy form a Z-basis of M.
We find the relations my + ms = 2m,, 2msy + my = 3my, m; + my = 2mg and
mo + my = my + mg between generators of S,; observe that the first two relations
correspond to the elements €3 = (—2,1,1,0) and £, = (—3,2,0,1) of L in the notation
of subsection 5.2.7. The preceding relations give respectively rise to the polynomials
Fyi= Zoly— 22, Fy = 222,y — 23, G 1= 2,24 — 72 and ZoZy — Z1 Zs of k|21, Zo, Zs, Z4).
Observe that, by construction of €5 (resp. £4), the variable Z4 (resp. Z3) does not appear
in F3 (resp. Fy). The ideal of V,, in k[Z, Zs, Z3, Z,] is (F3, Fy, G, H) = (F3,G, H), hence

Vg = Spec (kZ[Zl, ZQ, Zg, Z4]/<F3, G, H)) .

Since dim(V,) = dim(c), the surface V, is not a complete intersection. According
with subsection 5.5.3 we denote by W the affine variety defined by the ideal (F3, F}) of
k(Zy, Zy, Z3, Z4], it clearly contains V, as a closed subscheme.

The ideal of £ (V) (resp. Loo(W)) in the ring k[Z | = k[Z1 5, Z2.5, Z3,5, Zas; 5 € N|
is (F3,,Gs, Hg;s € N) (resp. (Fs,, Fis:s € N)), where, for s € N,

S

F3,s = Z(ZQ,sfrZ?;,r - Zl,szZLT')u

r=0

F4,s - Z (ZQ,leQ,'I’QZéL’I’B - Zl,mZI,Tng,rg)u

rit+re+rz=s

Gs = Z(Zl,sfrz&r - Z3,sfrZ3,r)7

r=0

Hs = 2(2275—7‘2477‘ - Zl,S—TZ&T)'

r=0

We now consider the divisorial toric valuation ord,, of V,, corresponding to n = (1,1) €
0NN, then (m;, n) =1fori=1,2,3,4, ({35, n) = 2 and (€4, n) = 3. The prime ideal
of O(V,) corresponding to the generic point 7, of the Nash set associated with ord,
is the radical of the image of the ideal (Z ¢, Z2,0, Z30, Zs0) of k[Z ] (see proposition
5.5.2). Let 7, be the image of n, via the closed immersion Z(V,) — L (W), by
lemma 5.5.6 the prime ideal of O(W) corresponding to 7, is also the radical of the
image of the ideal (Z) 0, Za, Z30, Z10) of k[Z]. The residue field of 7, (and 7)) is
isomorphic to K := k(Zy 5, Zas;5 > 1).

Corollary 5.5.11 assures the existence of a family of elements {232, s > 1} of
K[ Z1 0, Za0, Z30, Za,] such that the formal neighbourhoods of 7}, in 2 (W) and of 7,
in %, (V,) are isomorphic to the formal spectrum of

K[ Z1, Z20, Z3,0, Za,]
< Z3,OZQ70 _ 212’07 Z3’0Z271 =+ 23712270 — QZLOZLD >

Z40Z230 — 23, 2240200221 + 241230 — 3231 o211,
2740220222 + Z4,OZ§,1 + 2241290201 + Z4,2Z§,0 - 32127021,2 - 321,021271
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The construction in subsection 5.3.9 shows how to explicitly compute the truncations
modulo (Zy 0, Za0, Z30, Za0)¢ for e > 1 of the elements of the family {25,245 > 1}.
Let us compute some of them. In the notation of theorem 5.3.7 and subsection 5.3.9
we have I' = {3,4} and for s € N we have Y, ; 1= Z, ;1 for v € {3,4}, Hs, := F3 50,
Hys:=Fyzp3, Uss:=Uz = Zy, and Uss = Uy := 222,1- Then F3 o420 = Z3511Us s+ B3¢
and Fy g3 = Zys41Uss + By for s € N, it will be useful to display some of the £, ,:

Eso =230 222 + Z3pZag — 2210215 — 234,
Es 1 =Z307y3+ L3100 + Z33Zog — 2710213 — 271,121 2,

Eyo=2240250223 + 2240221202 + 22412420022 + 2242200221 + Z473Z2270 - 3Z127021’3
— 6210211212 — Zip

Eyq 2224,022,022,4+2Z4,OZ2,1ZQ73+QZ4,1Z2,OZ2,3+Z4,OZQ2,2+QZ4,1ZQ7122,2+2Z4,2Z2,OZ2,2
+ 2243090421 + Z4,4Z22,g — 32127021,4 — 6210211213 — 321,021272 — 3212,121,2,

Eyo =2740Z20205 + 2040091 L04 + 2041090004 + 2240029093 + 224129102 3
+ 2249050423 + Z4,1Z§,2 + 2740091099 + 2243290099 + 224420022, + Z4,5Z22,0
- 3212,021,5 — 6210211214 — 6210212213 — 32127121,3 - 3Z1,121272'

We observe that the form of Fj is analogous to that of the only equation in example
5.6.1, hence the same procedure gives

212,1 n 2710212 n Z2,0Z2,221271 _ 2750211212 B L3042

Zo1 Za1 73 Z3, Z21

Z2273 N VARVAR
73, Za

33,1 = (mOd<Z1,0, ZQ,O, Z3,0, Z4,0>2)

Z3,2 = - (mod <Z1,0, 22,07 Z3,0, Z4,0>)

Let us now compute some truncations of Z, ;. Observe that, since the elements Zj o
and Z473 appear in E4,0, in order to Compute Z4’1 = ZEL,Ql) (IﬂOd <leo, ZQ’O, 2370, Z4’0>2> we

need zA(jQ) and 21(171).

We define zill) = —1(e8(F40))Us ' The morphism &} is the identity on K[Z.] so

(1) -2 Z%l
241 = —Cl(E4,0)ZQ,1 =75
231
Now zg = —¢1(e}(F41))Us . By definition, £1(Z3,) = zé}l,e%(ZM) = zflll) and e] is

the identity over any other variable of K[Z,]. Hence

BZleLQ 222,2231

Y e (N (B 252 = -
2 i(e;(Ean)) 2,1 Z2271 223’1

%
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In the same way, zg = —61(e2(E42))U; ! and in this case 2(Z, 1) = zﬂ(g, e2(Zy2) =

z% for v € {3,4} and &7 is the identity over any other variable of K[Z,]. Hence
3212,1Z1,3 321,1Z1272 6ZQ72Z%’12172 2Z2,3Zi1 3Z22’2Zf’71

1) 2 -2
3= —<c(e1(Fi2))Zy5 = + -
! 1 222,1 Z22,1 Zg,l Zg,l Zél,l

%

We can compute in an analogous way i) for s > 3. Let us compute 2{] :=
—G2(e(Eu0))Us . In this case, 5(Zys) = 21} for v € {3,4} and s > 1 and &} is
the identity over any other variable of K[Z,]. Thus
Zil _622,0212,121,2+621,OZ1,1Z1,2 222,0Z2,2Zf71 224025,

(2) 2 -2
241 =— §2<€ (E4,0))Z = +
o 0 >3, 73, 73, 73, Z1

We observe that zfl) = zill) (mod (Z1,0, Z2,0, Z3,0, Z4p)). We compute the successive

truncations szs) for s,e > 1 in an analogous way. Hence we have

ZY, 622027 Zhs 67210711700 222022277, 2740799

Zi = — _
a Z22,1 Z23,1 * 22271 Zél,l ZQ,l
(mod <Z1,07 Z2,0, Z3,0, Z4,0>2)
372,719 275973
42 = 1212 - = 23 H (mod (Z1,0, Z2,0, Z3,0, Za0))
2,1 2,1
42 =

Z22,1 222,1 - Zg,l - ZS’J 224’1
(mod (Z1,0, Z2,0, Z3,0, Za))-

Let us stress that, according with subsection 5.3.9, the computation of zz(fs) and szg
for s,e > 1 should be done simultaneously so that the morphism ¢ for r € Nand e > 1
is well defined at each step. However, since the variables Z3,. (resp. Z4,) do not appear
in Fy (resp. F3;) for r,s € N because of the definition of Fy (resp. F3), the effective
construction of zéeg and szs) may be done separately by defining ¢ to be the identity
over the non-concerned variables in each case.

Using our comparison theorem 5.5.19, the computation of the formal neighbourhood
of n, in £, (V) may also be done in the following much more straightforward way. First
we compute the formal scheme WW(n) defined in subsection 5.5.13, which coincides with

w((1,1,1,1),{((0,1,1,0),(2,0,0,0)),((0,2,0,1),(3,0,0,0))})

in the notation of construction 4.2.15. We have the following equality in the polynomial
ring k[Z1,0, Z2,0, Z3,0, Za0, t]:

F3|z,—t42;0 =t + Zop)(t + Zs0) — (t + Z10)* = (Zog + Zsp — 2Z10)t + Za0Z30 — Zlg,o-

Fylz,mtv2;0 =t + Zo0)?(t + Zap) — (t + Z1)°
=220 + Zso — 3210)8* + (Z3 g + 2220240 — 323 0)t + Z3 0 Zap — Z3 .-
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We deduce that

kﬂZLo, 2270, Z3,07 Z470]]

Za0Z30 — 23, Zao + Zso — 2210
75 0Za0 — Z3 0, Z5 0 + 2220240 — 377 0, 2720 + Zao — 3710

W(n) = Spf

and hence the formal neighbourhood of 7, in £, (V,) (and also that of 1], in Z,,(W))
is isomorphic to

K[ Z1, Z20, Z30, Za,]

Z2.0430 — Zig, Zoo + Zso— 2719
730 Za0 — 230, Z3 o + 2220240 — 377, 229,0 + Zap — 321

Spf









BIBLIOGRAPHY

[1] Tomoyuki Arakawa and Andrew R. Linshaw, Singular support of a vertex algebra
and the arc space of its associated scheme, Representations and nilpotent orbits
of Lie algebraic systems, Progr. Math., vol. 330, Birkhduser/Springer, Cham,
2019, pp. 1-17. MR 3971726

[2] Victor V. Batyrev, Birational Calabi-Yau n-folds have equal Betti numbers, New
trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note
Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 1-11. MR 1714818

[3] Thomas Becker and Volker Weispfenning, Gribner bases, Graduate Texts in Math-
ematics, vol. 141, Springer-Verlag, New York, 1993, A computational approach
to commutative algebra.

[4] 1. N. Bernstein, Analytic continuation of generalized functions with respect to a
parameter, Funkcional. Anal. i Prilozen. 6 (1972), no. 4, 26-40. MR 0320735

[5] Bhargav Bhatt, Algebraization and Tannaka duality, Camb. J. Math. 4 (2016),
no. 4, 403-461. MR 3572635

[6] Siegfried Bosch, Werner Liitkebohmert, and Michel Raynaud, Néron models, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and
Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822

[7] David Bourqui and Mercedes Haiech, On the nilpotent functions at a non-degenerate
arc, Manuscripta Math. (2020), in press.

[8] David Bourqui, Mario Morédn Canén, and Julien Sebag, On the behaviour of formal
neighborhoods in the Nash sets associated with toric valuations: a comparison
theorem, preprint.

9] David Bourqui and Julien Sebag, A SAGE implementation of Drinfeld’s arguments,
and some variations, available at https://perso.univ-rennesl.fr/david.
bourqui/sageDGK.pdf.

[10] , The Drinfeld-Grinberg-Kazhdan theorem for formal schemes and singular-
ity theory, Confluentes Math. 9 (2017), no. 1, 29-64.

[11] | The Drinfeld-Grinberg-Kazhdan theorem is false for singular arcs, J. Inst.
Math. Jussieu 16 (2017), no. 4, 879-885. MR 3680347

[12] , Smooth arcs on algebraic varieties, J. Singul. 16 (2017), 130-140. MR

3670512

139


https://perso.univ-rennes1.fr/david.bourqui/sageDGK.pdf
https://perso.univ-rennes1.fr/david.bourqui/sageDGK.pdf

140 BIBLIOGRAPHY

[13] , Finite formal model of toric singularities, J. Math. Soc. Japan 71 (2019),
no. 3, 805-829. MR 3984243

[14] , Arc schemes of affine algebraic plane curves and torsion Kdhler differential
forms, Arc Schemes and Singularities, World Scientific (Europe), 2020, pp. 99—
111.

[15] | The local structure of arc schemes, Arc Schemes and Singularities, World

Scientific (Europe), 2020, pp. 69-97.

[16] A. Bouthier, B. C. Ngd, and Y. Sakellaridis, On the formal arc space of a reductive
monoid, Amer. J. Math. 138 (2016), no. 1, 81-108. MR 3462881

[17] Nero Budur, On the V-filtration of Z-modules, Geometric methods in algebra and
number theory, Progr. Math., vol. 235, Birkhduser Boston, Boston, MA, 2005,
pp- 59-70. MR 2159377

[18] Leonardo Meireles Camara, On the classification of quasi-homogeneous curves,
preprint, https://arxiv.org/pdf/1009.1664.pdf.

[19] Antoine Chambert-Loir, Johannes Nicaise, and Julien Sebag, Motivic integration,
Progress in Mathematics, vol. 325, Birkhduser/Springer, New York, 2018. MR
3838446

[20] Christopher Chiu and Herwig Hauser, On the formal neighborhood of degenerate
arcs, preprint.

[21] S. C. Coutinho, A primer of algebraic D-modules, London Mathematical Soci-
ety Student Texts, vol. 33, Cambridge University Press, Cambridge, 1995. MR
1356713

[22] David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, Un-
dergraduate Texts in Mathematics, Springer-Verlag, New York, 1992, An intro-
duction to computational algebraic geometry and commutative algebra.

[23] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate
Studies in Mathematics, vol. 124, American Mathematical Society, Providence,
RI, 2011. MR 2810322

[24] Tommaso de Fernex, Three-dimensional counter-examples to the Nash problem,
Compos. Math. 149 (2013), no. 9, 1519-1534. MR 3109732

[25] Tommaso de Fernex and Roi Docampo, Terminal valuations and the Nash problem,
Invent. Math. 203 (2016), no. 1, 303-331. MR 3437873

[26] | Differentials on the arc space, Duke Math. J. 169 (2020), no. 2, 353-396.
MR 4057146

[27] Tommaso de Fernex, Lawrence Ein, and Shihoko Ishii, Divisorial valuations via
arcs, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 425-448. MR 2426354

[28] Tommaso de Fernex and Mircea Mustata, The volume of a set of arcs on a variety,
Rev. Roumaine Math. Pures Appl. 60 (2015), no. 3, 375-401. MR 3436273



BIBLIOGRAPHY 141

[29] Jan Denef and Frangois Loeser, Germs of arcs on singular algebraic varieties and
motivic integration, Invent. Math. 135 (1999), no. 1, 201-232. MR 1664700

[30] Vladimir Drinfeld, The Grinberg—Kazhdan formal arc theorem and the Newton
groupoids, Arc Schemes and Singularities, World Scientific (Europe), 2020,
pp. 37-56.

[31] Lawrence Ein, Robert Lazarsfeld, and Mircea Mustatd, Contact loci in arc spaces,
Compos. Math. 140 (2004), no. 5, 1229-1244. MR 2081163

[32] Lawrence Ein and Mircea Mustata, Jet schemes and singularities, Algebraic
geometry—Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, Amer.
Math. Soc., Providence, RI, 2009, pp. 505-546. MR 2483946

[33] Javier Ferndndez de Bobadilla and Maria Pe Pereira, The Nash problem for surfaces,
Ann. of Math. (2) 176 (2012), no. 3, 2003-2029. MR 2979864

[34] M. Grinberg and D. Kazhdan, Versal deformations of formal arcs, Geom. Funct.
Anal. 10 (2000), no. 3, 543-555.

[35] Michel Gros, Luis Narvdez Macarro, and Julien Sebag, Arc scheme and Bern-
stein operators, Arc Schemes and Singularities, World Scientific (Europe), 2020,
pp- 279-295.

[36] A. Grothendieck, Eléments de géométrie algébrique. I. Le langage des schémas, Inst.
Hautes Etudes Sci. Publ. Math. (1960), no. 4, 228. MR 217083

37 Eléments de géométrie algébrique. III. Etude cohomologique des faisceaux
cohérents. I, Inst. Hautes Etudes Sci. Publ. Math. (1961), no. 11, 167. MR
217085

. Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas. I, Inst. Hautes Etudes Sci. Publ. Math. (1964), no. 20,
259. MR 173675

(512 J— Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas. 11, Inst. Hautes Etudes Sci. Publ. Math. (1965), no. 24,
231. MR 199181

[40) | Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas. 111, Inst. Hautes Etudes Sci. Publ. Math. (1966), no. 28,
255. MR 217086

[41] A. Grothendieck and J. A. Dieudonné, FEléments de géométrie algébrique. I,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 166, Springer-Verlag, Berlin, 1971. MR 3075000

[38]

[42] Alexander Grothendieck, Généralités sur les groupes algébriques affines. groupes
algébriques affines commutatifs, Séminaire Claude Chevalley 1 (1956-1958) (fr),
exposeé 4.

[43] Mercedes Haiech, Non-complete completions, Arc Schemes and Singularities, World
Scientific (Europe), 2020, pp. 57-68.



142 BIBLIOGRAPHY

[44] Eloise Hamann, On power-invariance, Pacific J. Math. 61 (1975), no. 1, 153-1509.
MR 407009

[45] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-
Heidelberg, 1975, Graduate Texts in Mathematics, No. 21. MR 0396773

[46] Shihoko Ishii, The arc space of a toric variety, J. Algebra 278 (2004), no. 2, 666—
683. MR 2071659

[47] , Arcs, valuations and the Nash map, J. Reine Angew. Math. 588 (2005),
71-92. MR 2196729

[48] , Jet schemes, arc spaces and the Nash problem, C. R. Math. Acad. Sci. Soc.
R. Can. 29 (2007), no. 1, 1-21. MR 2354631

[49] , Mazimal divisorial sets in arc spaces, Algebraic geometry in East Asia—

Hanoi 2005, Adv. Stud. Pure Math., vol. 50, Math. Soc. Japan, Tokyo, 2008,
pp. 237-249. MR 2409559

[50] Shihoko Ishii and Jénos Kollar, The Nash problem on arc families of singularities,
Duke Math. J. 120 (2003), no. 3, 601-620.

[51] Jennifer M. Johnson and Jénos Kollar, Arc spaces of cA-type singularities, J. Singul.
7 (2013), 238-252. MR 3094648

[52] Irving Kaplansky, An introduction to differential algebra, second ed., Hermann,
Paris, 1976, Actualités Scientifiques et Industrielles, No. 1251, Publications de
I'Institut de Mathématique de I'Université de Nancago, No. V. MR 0460303

[53] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equa-
tions, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol.
1016, Springer, Berlin, 1983, pp. 134-142. MR 726425

[54] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York-
London, 1973, Pure and Applied Mathematics, Vol. 54.

[55] Kodjo Kpognon and Julien Sebag, Nilpotency in arc scheme of plane curves, Comm.
Algebra 45 (2017), no. 5, 2195-2221.

[56] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-
Verlag, New York, 2002. MR 1878556

[57] M. Lejeune-Jalabert, Arcs analytiques et resolution minimale des singularites des
surfaces quasi homogenes, Séminaire sur les Singularités des Surfaces, Springer
Berlin Heidelberg, 1980, pp. 303-336.

[58] Monique Lejeune-Jalabert and Ana J. Reguera, Ezceptional divisors that are not
uniruled belong to the image of the Nash map, J. Inst. Math. Jussieu 11 (2012),
no. 2, 273-287. MR 2905305

[59] B. Malgrange, Polynomes de Bernstein-Sato et cohomologie évanescente, Analysis
and topology on singular spaces, II, III (Luminy, 1981), Astérisque, vol. 101,
Soc. Math. France, Paris, 1983, pp. 243-267. MR 737934



BIBLIOGRAPHY 143

[70]
[71]
[72]
[73]
[74]
[75]

[76]

Hideyuki Matsumura, Commutative ring theory, second ed., Cambridge Studies in
Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989,
Translated from the Japanese by M. Reid. MR 1011461

Mario Moran Cafién and Julien Sebag, On the tangent space of a weighted homoge-
neous plane curve singularity, J. Korean Math. Soc. 57 (2020), no. 1, 145-169.
MR 4052713

Hussein Mourtada and Ana J. Reguera, Mather discrepancy as an embedding dimen-
sion in the space of arcs, Publ. Res. Inst. Math. Sci. 54 (2018), no. 1, 105-139.
MR 3749346

Mircea Mustata, Jet schemes of locally complete intersection canonical singularities,
Invent. Math. 145 (2001), no. 3, 397-424, With an appendix by David Eisenbud
and Edward Frenkel.

John F. Nash, Jr., Arc structure of singularities, Duke Math. J. 81 (1995), no. 1,
31-38 (1996), A celebration of John F. Nash, Jr. MR 1381967

Johannes Nicaise and Julien Sebag, Greenberg approximation and the geometry of
arc spaces, Comm. Algebra 38 (2010), no. 11, 4077-4096.

Ana J. Reguera, A curve selection lemma in spaces of arcs and the image of the
Nash map, Compos. Math. 142 (2006), no. 1, 119-130. MR 2197405

, Towards the singular locus of the space of arcs, Amer. J. Math. 131 (2009),
no. 2, 313-350.

, Coordinates at stable points of the space of arcs, J. Algebra 494 (2018),
40-76. MR 3723170

Joseph Fels Ritt, Differential Algebra, American Mathematical Society Colloquium
Publications, Vol. XXXIII, American Mathematical Society, New York, N. Y.,
1950. MR 0035763

Julien Sebag, Intégration motivique sur les schémas formels, Bull. Soc. Math. France
132 (2004), no. 1, 1-54.

, Arcs schemes, derivations and Lipman’s theorem, J. Algebra 347 (2011),
173-183.

, A remark on Berger’s conjecture, Kolchin’s theorem, and arc schemes,
Arch. Math. (Basel) 108 (2017), no. 2, 145-150.

, On logarithmic differential operators and equations in the plane, Illinois J.
Math. 62 (2018), no. 1-4, 215-224. MR 3922414

The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu,
2020.

Bernd Sturmfels, Grébner bases and convex polytopes, University Lecture Series,
vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949

The Sage Developers, Sagemath, the Sage Mathematics Software System (Version
8.9), 2019, https://www.sagemath.org.


https://stacks.math.columbia.edu
https://www.sagemath.org

144 BIBLIOGRAPHY

[77] Michel Vaquié, Valuations, Resolution of singularities (Obergurgl, 1997), Progr.
Math., vol. 181, Birkh&user, Basel, 2000, pp. 539-590. MR 1748635

[78] Uli Walther, Survey on the D-module f*, Commutative algebra and noncommuta-
tive algebraic geometry. Vol. I, Math. Sci. Res. Inst. Publ., vol. 67, Cambridge
Univ. Press, New York, 2015, With an appendix by Anton Leykin, pp. 391-430.
MR 3525478



Admy, category of admissible
k-algebras, 75

admissible k-algebra, 75
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deg,, partial 1-degree on A;, 44
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differential ideal, 30
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differential operator, 67
— of the plane, 67
principal symbol of a —, 67
differential polynomial ring, 31
discrete valuation, 38
d-distinguished polynomial, see also
d-Weierstrass polynomial, 77
divisorial valuation, 39
toric —, 101
Drinfeld-Grinberg-Kazhdan structure
theorem, 74

embedding dimension, 94

fat arc, 40

fat subset of the arc scheme, 40

finite dimensional formal model, 74, 84

finite formal model, see finite
dimensional formal model

formal branch, 80

functor of m-jets, 20

general component of the tangent
space, 46

generic point of an arc, 28

generization of a point, 28

geometrically unibranch scheme at a
point, 88

group of characters of a torus, 98

group of cocharacters of a torus, 98

ideal of definition, 74

index of a divisorial valuation, 39

integral points of a lattice, 98

isobaric polynomial for a weighted
grading, 31
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Jacobian matrix, 78
Y -valued m-jet, 20

jet codimension, 95
m-jet scheme, 20

Kolchin irreducibility theorem, 34

Lacp,,, category of completions of local
k-algebras with residue field
isomorphic to k, 75

Lncp,, category of complete local
noetherian k-algebras with
residue field isomorphic to k, 85

maximal divisorial arc, 96
maximal divisorial set, 41
minimal formal model, 85
module of Kéhler differentials, 45

Nash map, 14

Nash problem, 14

Nash set, 15, see also maximal
divisorial set

Nash space, 14

non-degenerate arc, 74

normalized valuation, 39

parametric annihilator, 70
piecewise trivial fibration, 96
presheaf, 20
prime decomposition of an ideal, 34
prime divisor, 39

— over a variety, 39
primitive k-parametrization, 88
principal symbol, 70
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radical ideal, 30

reduced ideal, see also radical ideal

d-regular series, 77

retrocompact subset of a topological
space, 37

ring of differential operators, 67

semigroup associated with a cone, 98
specialization of a point, 28
split algebraic k-torus, 98
stable point, 97
stable semi-algebraic subset, 97
weakly —, 96
symbol map (differential operators), 67

tangent space, 45
Test,., category of test-rings over k, 75
test-ring, 75
thin arc, 40
thin subset of the arc scheme, 40
topologically nilpotent, 75
torus, see split algebraic k-torus
truncation morphism

— of the arc scheme, 24

— of the jet scheme, 22

V-filtration, 68
valuation, 38
valuation ring, 38

Weierstrass division theorem, 77
d-Weierstrass polynomial, 77
Weierstrass preparation theorem, 77
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Etude schématique du schéma des arcs

Mots clés : Schéma des arcs, singularités, courbes planes, espace tangent, voisinages

formels, variétés toriques, bases de Grébner.

Résumeé : Le schéma des arcs associé a
une variété algébrique définie sur un corps
parameétre les germes formels de courbes
que l'on peut tracer sur la variété
considérée. Nous étudions certaines
propriétés schématiques locales du schéma
des arcs d'une variété. Etant donnée une
courbe affine plane singuliére définie par un
polyndme réduit homogéne ou homogene a
poids, nous calculons, principalement par
des arguments d'algebre différentielle, des
présentations  de l'ideéal définissant
l'adhérence du lieu lisse de l'espace tangent
qui est toujours une composante irréductible
de cet espace.

En particulier, nous obtenons une base de
Grobner de cet idéal, ce qui nous permet
de décrire les fonctions de I'espace tangent
de la variété qui sont nilpotentes dans le
schéma des arcs. Par ailleurs, nous
etudions le voisinage formel dans le
schéma des arcs d'une variété torique
normale de certains arcs appartenant a
l'ensemble de Nash associé a une
valuation  divisorielle  torique.  Nous
établissons un théoreme de comparaison,
dans le schéma des arcs, entre le
voisinage formel du point générique de
l'ensemble de Nash et celui dun arc
rationnel suffisamment général dans ce
méme ensemble de Nash.

Study of the scheme structure of arc scheme

Keywords: Arc scheme, singularity theory, plane curves, tangent space, formal
neighbourhoods, toric varieties, Grobner bases.

Abstract: The arc scheme associated with
an algebraic variety defined over a field
parameterizes the formal germs of curves
lying on the considered variety. We study
some local schematic properties of the arc
scheme of a variety. Given an affine plane
curve singularity defined by a reduced
homogeneous or weighted homogeneous

polynomial, we compute, mainly using
arguments  from  differential  algebra,
presentations of the ideal defining the

Zariski closure of the smooth locus of the
tangent space, which is always an
irreducible component of this space.

In particular, we obtain a Groebner basis of
such ideal, which gives a complete
description of the functions of the tangent
space of the variety which are nilpotent in
the arc scheme. On the other hand, we
study the formal neighbourhood in the arc
scheme of a normal toric variety of certain
arcs belonging to the Nash set associated
with a divisorial toric valuation. We
establish a comparison theorem, in the arc
scheme, between the formal
neighbourhood of the generic point of the
Nash set and that of a sufficiently generic
rational arc in the same Nash set.
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