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Chapter 1

Introduction

We deal with three problems related to graph databases and context-free languages: expressing context-free
languages using alternative notations, context-free path querying, and minimizing graphs constrained to
context-free path queries.

Path queries define patterns to match paths in a labeled, directed data graph, such that the string
formed by the concatenation of the labels belongs to a given language. Graph query languages usually
support regular expressions for the definition of path queries. However, regular expressions are not enough
to specify some important properties, such as same generation queries [1], where one wants to find pairs
of vertices on the same level of a given hierarchy. To query non-regular paths, context-free languages can
be used. Context-free languages are usually specified by context-free grammars, but these are somehow
complex and are not as popular as regular expressions. Also, evaluating context-free patterns require
more computational power than regular ones.

Context-free path queries [26] define path patterns in terms of a context-free grammar. This kind
of query is interesting in domains such as genetics [40], data science [11], and source code analysis [62].
Context-free path queries can answer, for instance, same generation queries. The evaluation of a context-
free path query, however, is more complex than the evaluation of a regular path query.

An answer to a path query may come from several subgraphs in the database. Such redundancy is
sometimes undesired, either for storage, privacy, or cost issues. Minimum weight/cost satisfiability in
graph databases can reduce the amount of data in a way that the answers to some given queries are
preserved.

Three main publications resulted from the work in this thesis:

1. In Medeiros et al. [35], we introduce SM (Standard Matching-Choice) Expressions and use them as
the basis for the specification of non-regular languages for querying graph databases. SM Expressions
allow us to specify path queries in terms of a meaningful subset of context-free languages. We define
the syntax and semantics of SM Expressions and formalize the translation of SM Expressions into
a set of rules of context-free grammars. The translation from SM Expressions into context-free
grammars make it possible to evaluate queries using solutions found in the literature. Finally,
we illustrate the usage of SM Expressions with example queries. A previous attempt on defining
non-regular expressions can be found in Medeiros et al. [37].

2. In Medeiros et al. [41], we present an algorithm for context-free path query processing. We prove
the correctness of our approach and show its runtime and memory complexity. Also, we show its
viability by means of experiments with prototypes. The experiments include both synthetic and real
databases. Our algorithm shows performance gains when compared to other algorithms implemented
using single-thread programs. This paper is an evolution of previous proposals [38, 39, 40].

3. In Medeiros et al. [36], we present a problem of graph minimization. Minimizing the amount of data
in a graph is desirable in situations such as data privacy preservation, network optimization and
source code analysis. Since naïvely deleting data from a graph database can make it useless, we
concentrate on the problem of reducing the amount of data in a graph database respecting a set of

1



user-defined utility queries. We formalize that problem, study its complexity and develop solutions
for its regular and context-free versions.

This document is organized as follows. In Chapter 2, we provide the theoretical background. In
Chapter 3, we provide an overview of current proposals and techniques related to our work. In Chapter 4,
we define a notation for expressing a subset of context-free languages, which can be incorporated in graph
query languages. In Chapter 5, we present an algorithm for the evaluation of context-free path queries.
In Chapter 6, we formalize the graph minimization problem and present our solutions to its regular and
context-free versions. In Chapter 7, we summarize the discussion.

2



Chapter 2

Background

Let us present a background on formal languages, graph databases, context-free path queries and related.

2.1 Formal Languages
In this section, we introduce basic concepts from the field of Formal Languages. These concepts are the
base for recognizing string patterns.

A language is a set of strings built from a finite alphabet. A language can be defined by a grammar.

Definition 1 (Grammar). A grammar is a quadruple G = (N, Σ, P, S) where N is the set of non-terminal
symbols, Σ is the set of terminal symbols (alphabet), P is the set of production rules in the form α → β,
for α ∈ (N ∪ Σ)+ and β ∈ (N ∪ Σ)∗, and S ∈ N is the start symbol.

Given a string αδγ, where δ ∈ (N ∪ Σ)+, and a production rule δ → β, one can apply this rule to
produce the string αβγ, denoted αδγ ⇒ αβγ. If, for a given string s, one can successively apply production
rules and generate a string s′, denoted s ⇒∗ s′, we say that s′ is s-derivable.

Given a grammar and a string, string recognition consists of verifying if the string belongs to the
language generated by the grammar. There exists a wide range of algorithms for string recognition,
varying in computational complexity and power. Each recognizer is adequate to a class of languages.

Chomsky [17] hierarchically classified grammars and their corresponding languages according to the
form of their production rules. The more one descends on this hierarchy, more constraints are added to
the form of the grammars’ production rules, thus restricting the class of languages generated. Let α, β

and γ be arbitrary strings, X and Y non-terminal symbols and a a terminal symbol. Grammars in the
widest class in Chomsky’s hierarchy contain rules of the form α → β. The only constraint imposed for this
class is that the left-hand side is not empty. That means any string can be rewritten to any other. The
class of context-sensitive grammars contains those whose production rules are of the form αXβ → αγβ.
That means X can derive γ only if it is in the context α and β. The grammars in the context-free class do
not use contexts α and β, so the production rules are of the form X → γ. The last and most restrictive
class are regular grammars. Production rules in a regular grammar are of the form X → a or X → a Y .
The empty rule X → ε is allowed only if X is the start symbol.

In this work, context-free and regular grammars receive more attention. Regular grammars are
less expressive, but are simpler and can be evaluated faster. Regular expressions are a widespread
alternative notation for regular grammars. Context-free grammars, on their turn, are more expressive than
regular grammars, but they increase the computational power required for recognizing their associated
languages. Although some initiatives propose more pragmatic notations for expressing context-free
languages [37, 35, 59, 61, 57], the most popular notation is context-free grammars (CFG). We denote
grammars by their set of production rules only. Also, we say that a grammar is in Normal Form [34] if
its production rules are of the form A → BC, A → a, A → ε. This is a variation of Chomsky Normal
Form [34] that allows empty production rules for any non-terminal symbol. Normal forms are useful
because they allow us to make assumptions on the right-hand side of rules.

3
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Figure 2.1: Example Graph

2.2 Graphs
In this section, we formalize concepts related to graphs and path queries over them. To illustrate those
definitions, we refer to the data graph D from Figure 2.1 and grammar G given by {S → a S b, S → ε},
which defines the language anbn.

Definition 2 (Graph). A graph (also called data graph and graph database) is a set of triples in
V × L × V , where V is a set of vertices, representing subjects and objects, and L is a set of edge labels,
representing predicates. All graphs in this thesis are directed. We call subgraph any subset of a graph.
The graph from Figure 2.1 is D = {(1, a, 2), (1, a, 3), (2, b, 3), ...}.

Triples in a graph database can be arranged to form paths.

Definition 3 (Paths and Traces). Given graph D, a path is a sequence of triples (t1, t2, ..tn) in D,
where ti = (vi, li, vi+1), for 0 < i < n. The set of paths between two vertices v1 and vn is denoted
by paths(v1, vn):

paths(v1, vn) = {π | π = ((v1, l1, v2), ..., (vn−1, ln−1, vn)) ∧ (vi, li, vi+1) ∈ D}.

The concatenation of edge labels li of given path π form a string called the trace of π.
For the path π = ((1, a, 2), (2, b, 3), (3, b, 4)) ∈ paths(1, 4) in Figure 2.1, the trace of π is abb.

Definition 4 (Context-Free Path Query). Given a data graph D and a context-free grammar G, a
context-free path query (CFPQ) Q is a set of pairs (x, A) where x ∈ V and A ∈ N . The evaluation of a
context-free path query Q produces the set of all vertices y such that there exists a path from x to y whose
trace s is A-derivable, that is:

Eval(Q) = {y | (x, A) ∈ Q ∧ ∃s . A ⇒∗ s ∧ s ∈ traces(paths(x, y))}.

In our example, the query (1, S) has answers {1, 3, 4}.

The next definition establishes closure rules for the data graph D, by adding edges labeled by non-
terminal symbols of the grammar G. We refer to graphs that contain such non-terminal-labeled edges as
annotated graphs.

Definition 5 (Closure Rules for CFG-Reachability). Let G be a context-free grammar and D a data
graph. Given vertices u, v ∈ V and a symbol α ∈ Σ ∪ N , the ternary reachability relation

RG,D : V × (Σ ∪ N) × V

defines the data graph containing the triples (u, α, v) that connects vertices u and v by an α-derivable path
in D. This relation is recursively defined as follows:

1) Every triple in D is in the closure:

(u, l, v) ∈ RG,D
∀(u, l, v) ∈ D

In our example, {(1, a, 2), (1, a, 3), (2, b, 3)} ⊂ RG,D.
4



1

2

3 4

a

a, S

b

b, S

a S

S

S

S

Figure 2.2: Annotated graph D′ corresponding to the transitive closure of G and D

2) For each rule A → ε ∈ P , an A-labeled loop edge is added to every vertex in D:

(v, A, v) ∈ RG,D
∀v ∈ V, A → ε ∈ P

In our example, {(1, S, 1), (2, S, 2), (3, S, 3), (4, S, 4)} ⊂ RG,D, since S → ε is a production rule of the
grammar.

3) For each rule A → α1 · · · αn ∈ P , an A-labeled edge is added between nodes v0 and vn if there exist
triples (vi, αi, vi+1) ∈ RG,D, for 0 ≤ i ≤ n:

(v0, α1, v1) ∈ RG,D · · · (vn−1, αn, vn) ∈ RG,D

(v0, A, vn) ∈ RG,D
∀A → α1 · · · αn ∈ P

In our example, {(1, S, 3), (1, S, 4), (3, S, 4)} ⊂ RG,D.

The graph D′, which is D annotated with non-terminal edges from the closure of RG,D is shown in
Figure 2.2.

For each non-terminal symbol A ∈ N , there exists a triple (x, A, y) ∈ RG,D if and only if A ⇒∗ s

and s defines a path in D. This is given by the following proposition [41].

Theorem 1. Given a data graph D and a context-free grammar G,

(x, A, y) ∈ RG,D ⇐⇒ A ⇒∗
G s

and s defines a path from x to y in D.

Proof Sketch. This is a direct consequence of Definition 5. The “if” direction is by rule induction on RG,D,
where the base cases come from Definitions 5.1 and 5.2, and the inductive step comes from Definition 5.3.
The “only if” direction is by induction on the length of the string s, i.e., the length of the A-derivable
path from x to y.

Although regular path queries naturally fit Definition 4, we provide an alternative definition using
automaton states.

Definition 6 (Regular Path Query). Given a data graph D and a regular expression exp, a regular
path query Q is a set of pairs (x, q0), where x ∈ V and q0 is the start state of the automaton A that
recognizes exp. The evaluation of a regular path query Q produces the set of all vertices y such that there
exists a path from x to y whose trace belongs to the language of exp.

A standard technique for evaluating regular path queries is based on the construction of a product
automaton. Let D be a graph, exp a regular expression and Q a set of query pairs. An automaton A is a
set of states, containing one initial state and a number of final states, and transitions between them [6].
Automata can recognize regular languages. On its turn, a product automaton PA is formed by states,
which are pairs (v, q), where v is a vertex in D and q is a state in A, and transitions between them. The
construction of PA proceeds as follows:

1. every pair (s, q0), where s ∈ V and q0 is the start state of A, is a start state in PA.5
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Figure 2.3: Automaton that recognizes the language given by abb*
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Figure 2.4: Product-automaton that recognizes regular paths in D that belong to the language of abb*

2. for each (s, p, o) ∈ D and (qi, p, qj) ∈ A, if (s, qi) is a state in PA, then ((s, qi), p, (o, qj)) ∈ PA.

3. for each vertex v in D and final state qf in A, if (v, qf ) is in PA, then (v, qf ) is a final state in PA.

In PA, a path from a start state (u, q0) to a final state (v, qf ) corresponds to an exp-derivable path from u

to v in D. Therefore, to answer a given regular path query Q, it suffices to start at every pair in Q and
search for reachable final states.

Let ab* be regular a regular expression and let A be the automaton shown in Figure 2.3. The
automaton A recognizes the language generated by abb*. The product automaton between A and the
graph D from Figure 2.1 considering the query Q = {(1, q0)} is shown in Figure 2.4.

6



Chapter 3

State-of-Art

We gather in the next sections works related to non-regular expressions, context-free path queries and data
minimization. These sections are based on Medeiros et al. [35], Medeiros et al. [40] and Medeiros et al. [36].

3.1 Non-Regular Expressions
The design of syntactic expressions to define non-regular languages is a topic that has been studied for
decades. Differently from the case of regular expressions and languages, there is no consensus about a
notation that may be used to describe context-free languages or, at least, a subset of them. We briefly
analyze the proposals that inspired our work.

Cap Expressions [59] define context-free languages by building expressions that contain placeholder
symbols that may be replaced by the expression itself. If P (α) is an expression describing a language,
such that it does not contain the symbol α̂, the expression ⟨P (α̂)⟩α is a cap expression that describes a
language. The language described by ⟨P (α̂)⟩α is formed by all the words obtained (i) from words in P (α)
by any finite number of substitutions of α by words in P (α) and (ii) from words obtained in previous
substitutions, also performing any number of substitutions of α by words in P (α). For example, the
language anbn is given by the cap expression ⟨ε ∪ aα̂b⟩α. Any context-free language can be defined by
expressions using concatenation, union and Cap operations [59]. Even if Cap Expressions can be seen as a
step towards a simple notation to describe context-free languages, their use is not popularized.

Another notation for the definition of non-regular languages are Linear Expressions [50]. This class
of expressions use the L and R annotations on the terminal symbols of a regular expression, to indicate
the appearance of that symbol in the left or right-hand side repeated portion of a string belonging to a
context-free language. For instance, the linear expression (aLbRbR)∗ describes the language {aib2i | i ≥ 0}.
The language described by the linear expression (aLaR + bLbR)∗ is {wwr | w ∈ L((a + b)∗)} [50]. Linear
expressions are capable of expressing linear languages, a proper subset of context-free languages. To the
extent of our knowledge, these expressions have not been used in query or programming languages.

Nested Regular Expressions [45] are an extension of regular expressions that define query paths in
nSPARQL, an extension of the SPARQL graph database query language. Nested regular expressions
include a “[_]” operator to define branching. For instance, the expression a[b∗]c describes all paths a c in
the graph, such that there exists a path b∗ departing from the node of the graph that is reached after the
prefix path a. In this way, nSPARQL paths are defined by nested regular expressions and navigational
axes, similar to those in XPATH [52].

Extended Regular Expressions [22] are an extension of regular expressions that use variables to refer
to parts of the expression itself. These variables are also called backreferences. The notation describes a
proper subset of context-sensitive languages that are not comparable with context-free languages. Despite
their use in different implementations, Extended Regular Expressions are problematic, since, in some
situations, they are provably undecidable even when they have just one variable.

In a previous work [37], we propose Recursive Expressions, which were intended to describe languages
of matching parentheses. We extend regular expressions with a ternary operator to define pairs of matching
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Context-Free Grammars
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Cap Expressions [59]

SM Expressions (this work)

Recursive Expressions [37]

Linear Expressions [50]

Regular Expressions

Nested Regular
Expressions [45]

Extended Regular
Expressions [22]

Figure 3.1: Summary of non-regular expressions

parentheses around a core set of strings [35]. Recursive Expressions define a class of non-regular languages
that are a proper subset of context-free languages. Although these expressions are more expressive than
regular expressions, they lack the capability of describing some useful languages.

Figure 3.1 summarizes the works presented in this section. The arcs indicate a “subset of” relationship
between expressions.

3.2 Context-Free Path Queries
Current graph query languages support regular expressions for the definition of path patterns. However, in
the last few years, Context-Free Path Queries (CFPQs) have received attention by the scientific community.

Hellings [26] proposes an algorithm to evaluate CFPQs based on the CYK parsing technique [25].
The input is a grammar in Normal Form and a data graph. The algorithm processes the whole graph
by adding non-terminal-labeled edges to link vertices that are connected by a path derivable by a given
non-terminal symbol. The worst-case time complexity is O(|N ||E| + (|N ||V |)3), where N is the set of
non-terminal symbols, V is the set of nodes of the graph and E is the set of edges.

In a posterior work, Hellings [27] studies two path-based semantics and provides algorithms for
implementing them. For each pair of vertices connected by a path accepted by the given context-free
grammar, evaluating a CFPQ under the all-paths semantics implies providing all paths linking them,
whilst the single-path semantics implies providing only one of those paths. The algorithm implementing
the all-paths semantics works by annotating grammar productions with graph vertices. It processes the
entire graph for answering queries and has worst-case time complexity of O(|P′

λ|+ |P′
Σ|+ |E|+(|N||V |)3),

where P′
λ is the set of empty production rules, P′

Σ is the set of unitary (terminal) production rules, E

is the set of edges in the graph, N is the set of non-terminal symbols in the grammar and V is the set
of vertices. The authors provide an algorithm for producing paths given an annotated grammar whose
complexity is linear in terms of the length of the paths produced. Combining this algorithm with others
that derive shortest strings or strings limited to a certain length, the author implements the single path
semantics.

Pérez et al. [45] extend SPARQL to include nested regular expressions and navigational axes to be used
as property paths. Nested regular expressions are regular expressions that include conditional expressions.
Navigational axes are a flexible notation for navigating triple elements. The language proposed by the
authors, called nSPARQL, combines these two concepts to add flexibility to the formulation of queries.
This work does not deal with CFPQs. The worst-case runtime complexity of this algorithm for a single
source vertex is O(|D| ∗ |exp|), where |D| is the number of edges of the adjacency list representing the
graph and |exp| is the size of the expression. This algorithm is roughly quadratic in terms of the number
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of vertices in the graph for a single source vertex, but it might reach cubic complexity if all vertices are
used as sources.

Zhang et al. [61] propose the query language cfSPARQL. The language supports not only queries
defined by context-free grammars, but also nested expressions and navigational axes [45]. The evaluation
mechanism of cfSPARQL is an adaptation of the algorithm in [26] and presents the same complexity.

Grigorev and Ragozina [24] propose an LL-based approach to evaluate CFPQs. Their approach uses
the GLL [48] parsing technique to define an algorithm for querying data graphs with worst-case time
complexity of O(|V |3maxv∈V (deg+(v))), where V is the set of vertices and deg+(v) is the outdegree of
vertex v. Notice that for complete graphs this runtime complexity reaches O(|V |4).

Azimov and Grigorev [8] propose an algorithm that uses a matrix representation of the graph where
each cell contains the set of edges between two vertices, represented by line and column. The proposal is
based on Valiant’s parsing algorithm [56]. Their implementation uses an efficient, GPU-based computation
of the transitive closure of that matrix to answer queries. The algorithm calculates all possible non-terminal
labelled edges between nodes of the graph. The time complexity is O(|V |2|N |3(BMM(|V |)+BMU(|V |))),
where V is the set of vertices, N is the set of non-terminal symbols and BMM and BMU refer to the
number of elementary operations needed in the matrix multiplication. A subsequent paper [43] compares
the performance of different implementations for this algorithm. Their results show the efficacy of using
GPU for matrix multiplication. Derivations of this technique include reducing CFPQ evaluation to
solving systems of equations over real numbers [53] and implementations of single-path and all-paths
semantics [54, 7].

Santos et al. [47] design a query algorithm based on the LALR1 parsing [2]. The proposal extends
Tomita’s algorithm and the GSS data structure [55] to simultaneously discover context-free paths on a
data graph. The proposed algorithm does not need to pre-process the whole graph to answer the query.
The time complexity of this algorithm is given by O(|V |4+k · |I|1+k · |Σ| · |N |), where k is the maximum
size of the right-hand side of the production rules in the grammar and I is the number of lines of the
LALR(1) parsing table.

Medeiros et al. [39] propose a query processing algorithm based on the LL parsing technique2 [2].
For queries of the form (x, S), where x is a vertex of the graph and S is a non-terminal symbol, the
algorithm proceeds in a top-down manner, trying to discover S-generated paths from x. The worst-case
time complexity of their algorithm is O(|V |3 · |P |), where P is the set of production rules of the grammar.

Kuijpers et al. [29] compare the CFPQ evaluation methods in [8, 47, 27]. The authors perform
experiments with several data sets, including real and synthetic ones. These methods were implemented in
Java, using Neo4j’s graph store API to represent data and running a single execution thread. Because of
that, the matrix-based algorithm, which should make use of the GPU for high performance computation,
does not present a very competitive execution time in some cases.

Table 3.1 summarizes the path query algorithms mentioned in this section.

1Look-ahead, left-to-right, rightmost derivation: a simplified LR technique that is more efficient than traditional LR
parsers in some situations.

2Left-to-right, leftmost derivation: top-down parsing technique that uses tokens of look-ahead to predict what grammar
rules should be used to recognize a given string. 9



Work
Technique/
Algorithm

Time
Complexity

CPU/
GPU Language

Hellings [26] CYK O(|N ||E| + (|N ||V |)3) CPU Context-Free

Hellings [27]
CYK, Grammar

Annotation O(|P′
λ| + |P′

Σ| + |E| + (|N||V |)3) CPU Context-Free

Pérez et al. [45]
Product

Automaton O(|V |3 ∗ |exp|) CPU
Nested Regular Expressions

+ Navigational Axes

Zhang et al. [61] CYK O(|N ||E| + (|N ||V |)3) CPU
Context-Free

+ Navigational Axes
Grigorev and Ragozina [24] GLL O(|V |3maxv∈V (deg+(v))) CPU Context-Free

Azimov and Grigorev [8]
Matrix

Multiplication O(|V |2|N |3(BMM(|V |) + BMU(|V |))) GPU Context-Free
Santos et al. [47] LALR, GSS O(|V |4+k|I|1+k|Σ||N |) CPU Context-Free

Medeiros et al. [39] LL, CYK O(|V |3|P |) CPU Context-Free
This work Trace-Items-based O(|V |3|P |2k2) CPU Context-Free

Table 3.1: Summary of path query evaluation algorithms
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3.3 Minimum-Weight Satisfiability
The Minimum-Weight Satisfiability (MINW-SAT) problem consists of, given a formula composed of
boolean variables, finding a mapping from variables to boolean values that satisfies the formula with
the smallest number of variables set to true. This problem is NP-hard and (as we show in Chapter 6)
is closely related to the graph minimization problem we propose to solve. Variations of MINW-SAT,
e.g. the minimum weight exact satisfiability problem [46] or the weighted partial minimum satisfiability
problem [30], are beyond the scope of this research.

The main difference from MINW-SAT to the problem we propose to solve in this work is that we are
also concerned about paths in the graph respecting a given formal language. At a first glance, traditional
graph algorithms like those for building minimum spanning trees or finding shortest paths between vertices
might seem sufficient for solving that problem. However, this is not the case. The problem of computing
a minimum spanning tree does not consider directed graphs, nor a set of queries and a grammar as input,
and also its solution does not contain cycles. Algorithms for computing shortest paths between all vertices
in a graph (assuming they can take a formal language as input [9]) do not guarantee overall minimum
weight, since longer overlapping paths might provide more economical solutions. For instance, consider
the following instance of the all shortest paths problem. Let the input graph be an a-labeled complete
graph (where all pairs of vertices are connected by an a-labeled edge) with equal weight for all edges and
the language a∗. The shortest path between any pair of vertices in the graph is the direct edge between
them. The solution is therefore the complete graph itself, which is far from an optimum solution (a cycle
connecting all vertices).

Since boolean satisfiability problems are, in general, NP-hard, approximative algorithms have been
proposed to solve them, or special cases of theirs, in viable time [60]. A popular algorithm that provides
exact solutions to boolean satisfiability problems is DPLL [20], which follows a branch-and-bound strategy.
A branch-and-bound algorithm enumerates candidate solutions in the form of a rooted tree, where the
root contains all variables. Each branch of this tree is a subset of its parent. To avoid exhaustive
enumeration of all candidate solutions of a branch, the algorithm estimates upper and lower bounds using
efficient functions and discards branches that cannot produce a better solution than the one found so far.
Among other techniques to solve this class of problems, we can cite randomized approximation, linear
programming [18] and simulated annealing [28].

Liberatore [33] designs a DPLL-based exact algorithm for solving an equivalent problem to the
MINW-SAT problem. The author develops a prototype of his algorithm and compares it to a local-search
maximum satisfiability solver called MAXWALKSAT.

Li [31] studies the MINW-SAT and some related problems, providing a hierarchical classification
for them. The author designs and implements algorithms for solving those problems and validate their
performance with experiments.

Sebastiani et al. [49] proposes a MINW-SAT solver for goal graph problems. The authors implement
tools capable of deciding whether there exists a set of input goals that satisfies the output goals of the
goal graph and, if such solution exists, finding a minimum cost one. The authors evaluate the performance
of the developed tool using a goal graph from a case study involving public transportation services.

Fu and Malik [23] design a MINW-SAT solver, called MinCostChaff. The MinCostChaff solver is
a DPLL-based [20] SAT solver inspired by its popular implementation Chaff [44]. The performance of
MinCostChaff and some variations of it are validated with benchmarks.

Anciaux et al. [5] formulate the minimum exposure approach. Their goal is to minimize the information
provided by clients to companies when such information is strictly required. Health insurance or loan
companies, for example, require applicants to feed them personal information to classify their situation
according to a set of rules or conditions. In the minimum exposure approach, service providers supply
their collection rules so that users can locally compute the offers they can obtain, using all information
available. The user can then run a minimum exposure algorithm to identify the minimum information
needed to achieve those offers, and return it to the service provider. In this way, the company receives
only the information needed to satisfy the conditions for that offer. The authors argue that the minimum
exposure approach is good for both client and company, because the user exposes less information, and the
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company retains less information that could be disclosed in a future data breach. The minimum exposure
problem is NP-hard. The authors propose an heuristic to solve it in polynomial time. Experiments
assess the exposure reduction ratio and scalability of the technique. This approach can be combined with
anonymization techniques to guarantee privacy protection.

Another strategy for solving complex combinatorial problems is to design algorithms that might take
exponential time in some cases, but are as fast as possible in most cases. In these approaches, data
preprocessing is often applied to reduce the size of the input. Kernelization algorithms transform a given
problem instance into an equivalent, smaller one, in polynomial time. The smaller instance can then be
solved faster and its answer converted back to the original one [15]. Many algorithms might benefit of
graph kernelization to solve graph modification problems more efficiently [12, 14, 13, 19, 21].
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Chapter 4

Standard Matching-Choice
Expressions for Defining Path Queries

Most graph query languages use regular expressions to define path queries. However, regular expressions
cannot specify some important properties over graph databases, such as same generation queries [1]. This
kind of query characterizes a CFPQ. The definition of specification languages for CFPQs is important since
it impacts the practical usage of graph databases. The next sections are an adaptation of Medeiros et al. [35].
We introduce Standard Matching-Choice (SM) Expressions for the specification of non-regular path queries
and demonstrate important properties.

Our proposal is inspired by the family of Standard Matching-Choice Sets, a meaningful subset of
context-free languages presented by Yntema [58]. We define the syntax and semantics of SM Expressions,
and we formalize the translation of SM Expressions into a set of rules of a context-free grammar. The
translation from SM Expressions to context-free grammars fills the gap between a more natural specification
language for querying graph databases and the existing query engines for CFPQs.

4.1 Matching-Choice Languages
Yntema [58] defines an inclusion hierarchy of classes of context-free languages that can be defined using
operations over sets of strings. Given an alphabet Σ, the building blocks for defining those languages are
(i) a set of pairs of strings S ⊆ Σ∗ × Σ∗ and (ii) a set of strings C ⊆ Σ∗.

The set of pairs S can be seen as a generalization of open and close parentheses. The set of strings C

contains strings that will be surrounded by those in S. The languages built from these sets contain
strings αβγ such that (α, γ) ∈ S and β ∈ C. Given sets of pairs of strings S1 and S2, the author introduces
Matching-Choice Sets defined over S1 and S2 as follows:

S1 ⊕ S2 = {(x, y) | (x, y) ∈ S1 ∨ (x, y) ∈ S2} (4.1)

S1S2 = {(xz, wy) | (x, y) ∈ S1 ∧ (z, w) ∈ S2} (4.2)

S1∗ = {(ε, ε)} ∪ {(x1 · · · xn, yn · · · y1) | (xi, yi) ∈ S1, i ≤ n, n ∈ N+} (4.3)

Notice that these operations define pairs of matching strings. We can now present the next definition.

Definition 7 (Matching-Choice Languages [58]). Given a matching choice set S (i.e., a set of pairs built
using the operations above) and a set of strings C, the Matching-Choice Language S ◦ C is defined as:

S ◦ C = {xzy | (x, y) ∈ S ∧ z ∈ C}

Given a finite number of sets of strings Ai, Bi (1 ≤ i ≤ n), we can build a set S of pairs of strings
by (i) defining the sets of pairs Ai × Bi = Si, and (ii) recursively applying the union, sequence and
closure operations over the sets Si. The sets of strings Ai, Bi and C are called the underlying sets of the
expression S ◦ C. Notice that the elements in S can be seen as pairs of matching parentheses while the
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strings in C correspond to strings placed between them. The union (4.1), sequencing (4.2) and star (4.3)
operations ensure that the set S ◦ C is formed by strings containing well-formed parenthesized expressions.
The depth of the innermost ◦ operator defines the rank of an SM Expression.

Yntema [58] defines the class of Standard Matching-Choice Languages, a proper subset of context-free
languages that can be described using the above-mentioned operations. In the next section, we define a
set of expressions to denote Standard Matching-Choice Sets.

4.2 Standard Matching-Choice Expressions
In this section, we propose SM Expressions to define Standard Matching-Choice Languages [58]. We
provide the semantics of these expressions by means of SM Languages and show that the class of languages
defined by SM Expressions is exactly the class of Standard Matching-Choice Sets. We also provide a way
of converting an SM Expression into a context-free grammar.

Regular expressions are the basis for the definition of SM Expressions. Given an alphabet Σ =
{t1, . . . , tn}, the set of regular expressions over Σ is the set of strings defined by R → () | t1 | . . . | tn | (R) | RR | R|R | R*.

Definition 8 (Syntax of SM Expressions). The set of Standard Matching Choice Expressions over an
alphabet Σ is inductively defined as follows:

1. Any regular expression E over Σ is an SM Expression.

2. If E, E′, E0 are SM Expressions over Σ, then <E>E0<E′> is an SM Expression:

E, E0, E′ are SM Expressions
<E>E0<E′> is an SM Expression

This case defines the base case of SM Expressions.

3. If <P1>E0<P ′
1> and <P2>E0<P ′

2> are SM Expressions, then <P2.P1>E0<P ′
1.P ′

2> is an SM Expression.

<P1>E0<P ′
1> is an SM Expression <P2>E0<P ′

2> is an SM Expression
<P2.P1>E0<P ′

1.P ′
2> is an SM Expression

This case defines SM Expressions that contains sequences of nested parentheses.

4. If <P1>E0<P ′
1> and <P2>E0<P ′

2> are SM Expressions, then <P2 + P1>E0<P ′
1 + P ′

2> is an SM
Expression.

<P1>E0<P ′
1> is an SM Expression <P2>E0<P ′

2> is an SM Expression
<P2 + P1>E0<P ′

1 + P ′
2> is an SM Expression

The SM Expressions defined above contain choice of parentheses.

5. If <P>E0<P ′> is an SM Expression, then < : P : >E0< : P ′ : > is an SM Expression.

<P>E0<P ′> is an SM Expression
< : P : >E0< : P ′ : > is an SM Expression

The pair of : _ : operators denotes a Kleene star operator over matching parentheses.

Notice that the strings Pi in the cases above are, in general, not SM expressions, but they denote a
language of opening parentheses. Analogously, P ′

i represent sets of closing parentheses. These strings may
contain characters like “.”, “+” and “:”, that are used to build the languages that denote opening and
closing parentheses.

The next definition establishes the semantics of SM Expressions as a set of strings over an alphabet Σ.
The language defined for each expression is an SM Set [58].
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Definition 9 (Semantics of SM Expressions). The language L(M) denoted by an SM Expression M is
inductively defined by the following rules:

1. The Standard Matching Choice language defined by a regular expression is the (regular) language
denoted by that expression:

L(R) = LRE(R)

The function LRE(R) defines the language denoted by a regular expression. Notice that this language
is a Standard Matching-Choice set of rank 0 [58].

2. The language defined by an SM Expression <E>E0<E′> over Σ is defined in terms of the languages
defined by the SM Expressions E, E′, and E0, as follows:

L = L(E), L0 = L(E0), L′ = L(E′)
L(<E>E0<E′>) = (L × L′) ◦ L0

The languages L, L′ and L0 are the underlying sets of L(<E>E0<E′>). If n is the maximum rank
among the ranks of L, L′ and L0, then L(<E>E0<E′>) is a Standard Matching-Choice set of rank n+1.

3. The language denoted by an SM Expression <P2.P1>E0<P ′
1.P ′

2> containing sequences of nested
parentheses is defined as follows:

(S1 × S′
1) ◦ C = L(<P1>E0<P ′

1>), (S2 × S′
2) ◦ C = L(<P2>E0<P ′

2>)
L(<P2.P1>E0<P ′

1.P ′
2>) = (S2 S1 × S′

1 S′
2) ◦ C

where SiSj represents the string concatenation of languages Si and Sj.

4. The language denoted by an SM Expression containing choices of parentheses is defined as:

(S1 × S′
1) ◦ C = L(<P1>E0<P ′

1>), (S2 × S′
2) ◦ C = L(<P2>E0<P ′

2>)
L(<P2 + P1>E0<P ′

1 + P ′
2>) = ((S1 × S′

1) ⊕ (S2 × S′
2)) ◦ C

We can verify that

((S1 × S′
1) ⊕ (S2 × S′

2)) ◦ C = ((S1 × S′
1) ◦ C) ∪ ((S2 × S′

2) ◦ C).

5. The language denoted by an SM Expression containing the synchronized repetition of matching
parentheses is given by the rule:

(S × S′) ◦ C = L(<P>E0<P ′>)
L(< : P : >E0< : P ′ : >) = (S × S′) ∗ ◦ C

We can see that, for all SM Expressions M , the set L(M) is an SM language. The following property
states that every language denoted by an SM Expression is a Standard Matching-Choice set [58].

Theorem 2 (L(SMExp) ⊆ SMLang). Given an SM Expression M , there exists an SM language Y such
that L(M) = Y .

Proof. This result is immediate, by structural induction on SM Expressions M and the languages L(M)
defined for them.

The next property shows that there exists at least one SM Expression that defines each Standard
Matching-Choice set.

Theorem 3 (SMLang ⊆ L(SMExp)). Given a Standard Matching-Choice language L [58], there exists
an SM Expression M such that L(M) = L.
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Proof. The proof of this property proceeds in two cases:
Case 1: L is a regular language. In this case, there exists a regular expression R such that LRE(R) = L.

In this case, the SM Expression that defines L is also R (see Definition 9).
Case 2: L is a Standard Matching Choice set of rank n > 0. In this case we have that L = T ◦ C, where T

and C are built from Standard Matching Choice sets of rank of at most n.
The proof of this case is by induction on the rank of L:

Base Case (n = 1), we have that the underlying sets from which L = T ◦ C is built are regular languages.
In this case, we have that L = (L1 × L2) ◦ C, being L1, L2, C regular languages. Let be R, R′, R0,

respectively, regular expressions that define L1, L2, and C. By Definitions 9.1 and 9.2, we can see
that L = L(<R>R0<R′>).
Inductive Hypothesis (n ≤ k). Let us suppose that for any Standard Matching Choice set L of rank n ≤ k

there exists an SM Expression E such that L = L(E).
Inductive case (n = k + 1).

Since L is a Standard Matching-Choice set of rank n > 1, then L = T ◦ C, such that T and C are
built using Standard Matching Choice sets of ranks less than n. In this way, we can proceed by cases on
the construction of T :

Suppose the Standard Matching Choice sets L1 = T1 ◦ C and L2 = T2 ◦ C. By the induction
hypothesis, there exist SM Expressions S1 = <P1>S0<P ′

1> and S2 = <P2>S0<P ′
2> such that L(S1) = T1 ◦ C

and L(S2) = T2 ◦ C.
Case T = (T1 T2): We need to build an SM Expression for (T1 T2) ◦ C. By Definition 9.3, we can see that
the language associated to M = <P1.P2>S0<P ′

2.P ′
1> is indeed (T1 T2) ◦ C.

Case T = (T1⊕T2): By Definition 9.4, we can verify that the language associated to the SM Expression M =
<P2 + P1>S0<P ′

1 + P ′
2> is (T1 ⊕ T2) ◦ C.

Case T = T1∗: We need to build an SM Expression for T ∗ ◦C. By Definition 9.5, we can verify
that L(< : P1 : >R0< : P ′

1 : >) = T ∗ ◦C.

These results allow us to enunciate the following property:

Corollary 3.1. The class of SM Sets is denoted by SM Expressions.

Proof. Immediate from Theorems 2 and 3.

Let us now define context-free grammars to generate the language denoted by an SM Expression.
The function φSM takes an SM Expression and returns a set of production rules. For the sake of clarity,
we denote as {S → α, . . . } a set of production rules of a grammar such that the symbol S is the start
non-terminal symbol. We also use the function φRE , to obtain a grammar from a regular expression.

Definition 10 (Obtaining a Grammar from SM Expressions). We inductively define the function φSM ,
taking an SM expression M and producing a context-free grammar G, generating the language L(M).

The rules for the starting symbol of the grammars obtained below have the right-hand side consisting
of three non-terminal symbols (for prefix, inner, and suffix expressions). Greek on the right-hand side of
production rules represent arbitrary strings.

1. Given a Regular Expression R1 and a grammar G1 = {S1 → α, . . . }, such that L(G1) = LRE(R1),
then

φRE(R1) = {S1 → α, . . . }, S, X, Y are new
G = {S → XS1Y, X → ε, Y → ε} ∪ G1

φSM (R1) = G

2. The grammar defined for the combinations of SM Expressions can be obtained by the rule:

φSM (E) = {S1 → α, . . . }, φSM (E′) = {S2 → β, . . . },

φSM (E0) = {S0 → γ, . . . } S is new
G = {S → S1S0S2} ∪ φSM (E) ∪ φSM (E′) ∪ φSM (E0)

φSM (<E>E0<E′>) = G16



3. Translation for SM Expressions containing sequences of nested parentheses:

G1 = φSM (<P1>E0<P ′
1>) = {S1 → XS0Y, . . . }

G2 = φSM (<P2>E0<P ′
2>) = {S2 → WS0Z, . . . }

G′
1 = G1 − {w | w = S1 → δ ∈ G1}

G′
2 = G2 − {w | w = S2 → θ ∈ G2} S, S′

1, S′
2 are new

G3 = {S′
1 → WX | S1 → XS0Y ∈ G1, S2 → WS0Z ∈ G2}

∪{S′
2 → Y Z | S1 → XS0Y ∈ G1, S2 → WS0Z ∈ G2}
G = {S → S′

1S0S′
2} ∪ G′

1 ∪ G′
2 ∪ G3

φSM (<P2.P1>E0<P ′
1.P ′

2>) = G

4. The grammar for SM Expressions containing the choice operator is:

G1 = φSM (<P1>E0<P ′
1>) = {S1 → XS0Y, . . . }

G2 = φSM (<P2>E0<P ′
2>) = {S2 → WS0Z, . . . }

G′
1 = G1 − {w | w = S1 → δ ∈ G1}

G′
2 = G2 − {w | w = S2 → θ ∈ G2} S is new

G3 = {S → XS0Y | S1 → XS0Y ∈ G1} ∪ {S → WS0Z | S2 → WS0Z ∈ G2}
G = G′

1 ∪ G′
2 ∪ G3

φSM (<P2 + P1>E0<P ′
1 + P ′

2>) = G

5. The grammar for SM Expressions containing the closure operator

G1 = φSM (<P>E<P ′>) = {S1 → XS0Y, . . . }
G′

1 = G1 − {w | w = S1 → δ ∈ G1}, S, W, Z are new
G2 = G′

1 ∪ {S → WS0Z} ∪ {W → ε, Z → ε}
G = G2 ∪ {S → XS Y | S1 → XS0Y ∈ G1}

φSM (< : P : >E< : P ′ : >) = G

We now need to prove that the class of SM expressions and of matching choice languages is that of the
languages defined by our grammars.

Theorem 4 (Standard Matching-Choice Grammars and Languages). Given an SM Expression M , L(M) =
L(φSM (M)).

Proof. By Rule Induction on M .

4.3 Defining Query Patterns with SM Expressions
In this section, we show how SM Expressions can be used to build non-regular path queries. We
adapt rcfSPARQL [39] to support SM expressions without using a context-free grammar in the query.

Let us present the language by means of examples. The following example (adapted from [39])
illustrates the use of SM expressions in a query.
Same-Generation Queries. This kind of query [1] looks for nodes that are (i) equidistant to a common
ancestor, and (ii) have some given property.

In Figure 4.1, we depict a database D containing data about employees of a company. In the following,
we rewrite the query from Medeiros et al. [39] by using SM Expressions. This query selects employees
having the same job, but different salaries:

1 SELECT ?job, ?emp1, ?sal1, ?emp2, ?sal2
2 FROM D
3 WHERE {
4 ?emp1 <: boss :><: boss−1 :> ?emp2 .
5 ?emp1 job ?job .
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6 ?emp2 job ?job .
7 ?emp1 salary ?sal1 .
8 ?emp2 salary ?sal2 .
9 FILTER (?sal1 > ?sal2)

10 }

Query 1: CF-SPARQL query retrieving users on the same level of the hierarchy, with the same job, but
different salaries

Query 1 defines a relation formed by 5-tuples. The variables at line 1 define the attributes of this
relation. The path pattern at line 4 defines a path between employees (?emp1 and ?emp2). Notice that this
query uses an SM Expression to look for paths between employees at the same level of the hierarchy. These
paths are formed by nested boss and boss−1 edges. We use the −1 notation to express the inversion of
an edge.

e:A

e:B e:C

e:D e:E e:F e:G

e:H e:I

$10,000

$4,450 $4,150

$2,000 $2,000 $2,000

$2,300

$1,000 $1,000

Director

Manager

Operator

Trainee
job salary boss

Figure 4.1: Example of hierarchy database D [39].

Lines 5-8 of the query look, respectively, for the jobs and salaries of each pair of employees identified
at line 4. Notice that there is just one ?job variable, stating that the two employees have the same job in
the company. Line 9 filters the pairs of employees that have different salaries.

The SM Expression at line 4 of the query defines paths in the graph initiating with employee nodes.
Departing from these nodes, the answer is defined as those employee nodes connected to the initial one by
a sequence of boss edges followed by a sequence of equal number of boss−1, thus linking employees at
the same level in the hierarchy. We can verify that the SM Expression <: boss :><: boss−1 :> denotes the
SM set ({boss} × {boss−1}) ∗ ◦{ε}={bossn boss−1n | n ≥ 0}. We can check that the language generated
by the SM Expression is the same as the one generated by the grammar {S → boss S boss−1, S → ϵ}.
Equal number of a’s and b’s. The language {α ∈ {a, b}∗ | #a(α) = #b(α)} contains strings from an
alphabet Σ whose number of a’s is equal to the number of b’s.

The equivalent SM expression for this language is (<:a + b:><:a + b:>)*. Notice here the use of the
choice operator, which ensures that for every a, there will be a b in some subsequent position of the input
string or trace, and vice-versa. The Matching-Choice set describing this language is ({(a, b), (b, a)}∗◦{ϵ})∗.
Double-length right parentheses. A classic example of a non-regular context-free language is anbn. A
variation of that language is bn a b2n. This language is given by the Matching-Choice set {(b, bb)} ∗ ◦{a}.
The equivalent SM expression is <:b:>a<:bb:>.
Class/Type hierarchy. The RDFS vocabulary is used to define the schema of an RDF database.
The terms type and subClassOf from that vocabulary state, respectively, the type of a resource and a
sub-class relationship between two types. The language of balanced pairs of subClassOf and type edges
was used in a related work [61]. It retrieves concepts on the same level of a class/type hierarchy. This
language is given by the Matching-Choice set {(sc, sc−1), (t, t−1)} ∗ ◦{sc sc−1, t t−1}. In terms of SM
expressions, the same language can be expressed as <:sc+t:>(sc sc-1)|(t t-1)<:t-1+sc-1:>.

A similar language was also defined in that work. The language of balanced subClassOf edges,
followed by an extra subClassOf−1 retrieves concepts on adjacent levels of the class hierarchy. This
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language is the same as the Matching-Choice set ({(sc, sc−1)} ∗ ◦{ε}) sc−1. The equivalent SM expression
is <:sc:><:sc-1:>sc-1.
Queries Over Synthetic Social Networks. The language an+1bmcmdn+1, defined by Kuijpers et al. [29],
is used to query synthetic social networks. It corresponds to the Matching-Choice set a{(a, d) ∗ ◦({(b, c)} ∗
◦{ε})}d. The SM Expression a<:a:>(<:b:><:c:>)<:d:>d is equivalent to it.
Recursion Inside Matching Parentheses. A more complicated language, presented by Medeiros et al. [37],
is (an b cn)k d (em fm)k. It involves recursion inside the external matching parentheses. The Matching-
Choice set ({(a, c)}∗◦{b}×{(e, f)}∗◦{ε})∗◦{d} corresponds to that language. In terms of SM expressions,
we can define that language as <:(<:a:>b<:c:>):>d<:(<:e:><:f:>):>.

4.4 Conclusions
We presented a notation to specify languages of the family of Standard Matching-Choice Sets [58]. This
family of languages is a subset of context-free languages, built around the notion of parenthesizing strings.
SM Expressions are an alternative notation to context-free grammars to define context-free path queries.
We demonstrate how SM Expressions can be directly translated into rules of context-free grammars. This
allows them to be used in graph query languages with most context-free evaluation engines available in
the literature. To the extent of our knowledge, there is no previous attempt at the proposal of non-regular
expressions based on Yntema’s Matching-Choice sets.

Our work can be extended by considering different perspectives: (i) analyzing the asymptotic costs
associated to the translation of SM Expressions into context-free grammars; (ii) identifying the class of
context-free path queries that cannot be expressed with SM Expressions; (iii) comparing the expressiveness
of SM Expressions with other proposals of non-regular expressions; (iv) investigating the usage of SM
Expressions as part of other non-regular specification languages; and (v) assessing the usability of SM
Expressions via experiments with students and professionals from Computer Science and related areas.
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Chapter 5

Context-Free Path Query Evaluation

This chapter derives from Medeiros et al. [41]. We present our approach for the evaluation of Context-Free
Path Queries (CFPQs). Our algorithm takes as input a grammar, a data graph and a query, and recognizes
context-free paths in the data graph. The goal of the algorithm is to identify pairs of vertices connected
by paths whose traces are strings in the language of the grammar.

In some traditional parsing techniques, grammar items guide the parsing process. Those items mark
the parsing progress in a given state by adding a dot on the right-hand side of a production rule. The
dot separates what has been recognized so far from what is yet to be. In the setting of a path query
evaluation, there might be several paths satisfying a given pattern, and therefore several traces to be
recognized. Thus, to control the evaluation process, we extend grammar items by (1) replacing the dot by
a set of vertices and (2) allowing one set for each position on the right-hand side. The next definition
captures this idea.

Definition 11 (Trace Item). Given a context-free grammar G = (N, Σ, P, S) and a data graph D, a
trace item is a pair formed by a production rule and a function associating a set of graph nodes to each
position of the right-hand side of the rule. Formally, a trace item is defined as the pair (A → α, f),
where A → α ∈ P and f : {0, . . . , |α|} → P(V ). Trace items are unique concerning their start vertex and
production rule.

The trace item (A → α1, . . . , αn, f), where f = {0 7→ C0, . . . , n 7→ Cn} will be noted as [A →
C0 α1 C1 ... αn Cn]. The sets C1, . . . , Cn will be called position sets.

The first position set C0 in a trace item is a singleton. Given two position sets C1, C2 and a
grammar symbol α, a sequence C1 α C2 on the right-hand side of an item indicates that every vertex
in C2 is reachable from at least one vertex in C1 via an α-derivable path. For instance, the trace
item [ S → {1} a {2, 3} S {4} b { } ] indicates that the parsing process is in a stage where a-derivable
paths connecting vertex 1 to vertices 2 and 3 in the data graph have been identified. As for vertex 4
in the third position set, since there the second position set contains vertices 2 and 3, there might be
an S-derivable path from either or even both of them. The data graph must be consulted to solve such
ambiguity.

Our algorithm is defined by a transition system that transforms a set of trace items to parse paths in
the graph. Given a grammar G, a data graph D, and a query Q, we can define the initial set of trace
items as:

I0 = {[A → {w} α1 { } . . . αn { }] | A → α1 . . . αn ∈ P ∧ (w, A) ∈ Q},

For each pair (w, A) ∈ Q, this set contains one trace item for vertex w and each production rule A →
α1 . . . αn ∈ P . The trace items contain empty sets for all positions on the right-hand side of the rule,
except for the first one. The first position set is the singleton {w}.

The following rules define a step relation between sets of trace items. These rules are designed to
implement the closure of I0 for given G, D, Q. The notation I →G,D I ′ means that the set of items I

becomes I ′ in one step.
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Definition 12 (Trace Item Set Transformation). Given a grammar G and a data graph D, the relation
I →G,D I ′ defines transformation steps between sets of trace items.

1) This rule covers the case when we have an l-labeled edge between nodes x and y in D. For adjacent
position sets C1 and C2 in trace item i, if C1 contains x and precedes l, we add y to C2. The substitution
notation I[i′/i] is used to define a set of items that is equal to I, but replacing the item i by i′.

i = [ A → . . . C1 l C2 . . . ] ∈ I, l ∈ Σ, x ∈ C1,

C ′
2 = C2 ∪ {y | (x, l, y) ∈ D}, i′ = [ A → . . . C1 l C ′

2 . . . ]
I →G,D I[i′/i]

Ex.: Given (1, a, 2), (1, a, 3) ∈ D, the trace item i = [ S → {1} a { } S { } b { } ] becomes i′ = [ S →
{1} a {2, 3} S { } b { } ].

2) This rule creates new trace items to look for B-paths from a node x. For a position set C1 preceding
B, new trace items are created for each production rule of B to look for paths starting at x, if such trace
items do not exist yet.

i = [ A → . . . C1 B C2 . . . ] ∈ I, B → β1 . . . βk ∈ P, x ∈ C1,

I ′ = {[ B → {x}β1 . . . βk{ } ] | [B → {x} β1 . . . βk Ck ] /∈ I}
I →G,D I ∪ I ′

Ex.: Given i = [ S → {1} a {2, 3} S { } b { } ], new trace items I ′ = {[ S → {2} a { } S { } b { } ], [ S →
{2} ]} (analogous for trace items starting at vertex 3) are added to I.

3) This rule identifies a derivation by a non-terminal symbol A, provided that there exists a path between
vertices x and y whose trace is a string derivable from A. In this case, vertex y is added to set C2 in every
trace item [B → . . . C1 A C2 . . . ] ∈ I, where x ∈ C1 and y ̸∈ C2.

i = [ A → {x} · · · C ] ∈ I, I ′ = {i′ | i′ = [ B → . . . C1 A C2 . . . ] ∈ I}
I ′′ = {i′′ | i′′ = [ B → . . . C1 A C2 ∪ C . . . ] ∧ [ B → . . . C1 A C2 . . . ] ∈ I}

C − C2 ̸= { }
I →G,D (I − I ′) ∪ I ′′

Ex.: Given i = [ S → {1} a {2, 3} S {2} b {3} ], the trace item i′ = [ {3} a {1} S { } b { } ]
becomes i′′ = [ {3} a {1} S {3} b { } ].

Let us now present our algorithm using the rules above. This algorithm recognizes paths using trace
items. The parsing of traces is performed in an incremental way. For each pair (v, A) ∈ Q, our algorithm
identifies all A-derivable paths starting at v.

Let us define I∗ as the set of trace items obtained as the closure of the relation →G,D for the initial
set of trace items I0:

I0 →∗
G,D I∗.

This closure always exists since the sets that compose D and G are finite and rule 2 above only adds new
items to I when they do not exist already in the set. Given a set of trace items I∗, we can now define the
data graph:

D′ = D ∪ {(x, A, y) | [ A → {x} · · · C ] ∈ I∗ ∧ y ∈ C}.

which annotates the data graph D with non-terminal-labeled edges. For query Q, the answer is given by:

Eval(Q) = {y | (x, A, y) ∈ D′, (x, A) ∈ Q}.

The next proposition relates the set of trace items I∗ to paths in the data graph D′.

Theorem 5. Given G, D, Q, and I0, I∗ calculated as above, for each item i = [ X → . . . C1 B C2 . . . ] ∈ I∗

such that x ∈ C1 and there is a path from x to y in D whose trace is a string s ∈ Σ∗ and B ⇒∗ s,
then y ∈ C2. 21



Proof. By induction on the derivation B ⇒∗ s.

• Base: B ⇒ s: This means that there exists a rule B → s ∈ P .

1. If s = ε, then, by Definition 12, there is an item [B → {x}] ∈ I∗, so x = y since the set {x} is,
at the same time, the first and last position set of the item, so y is added to C2 (Rule 12.2).

2. If s = σ1 . . . σm ∈ Σ∗, for m > 0, then the successive application of Rule 12.1 to item [B →
{x}σ1{ } . . . σm{ }] traverses the s-generated path from x to y in D, until we have [B →
{x}σ1 . . . σm{y, . . . }] ∈ I∗. In this way, by rule 3, when x ∈ C1, we have y ∈ C2.

• Inductive hypothesis: The property holds for all derivations with k < n steps: for each item
i′ = [ X ′ → . . . C ′

1 B′ C ′
2 . . . ] ∈ I∗ such that x′ ∈ C ′

1 and there is a path from x′ to y′ in D whose
trace is a string s′ ∈ Σ∗ and B′ ⇒k s′, then y′ ∈ C ′

2.

• Inductive step: B ⇒n s, with n > 1. This means a production rule B → β1 . . . βj ∈ P was applied
as the first step of the derivation, so that we have B ⇒ β1 . . . βj ⇒n−1 s. For simplicity, we suppose
that this is a leftmost derivation of s, from B, which means that we can decompose B ⇒n s into

B ⇒ β1 . . . βj ⇒∗ s1β2 . . . βj ⇒∗ · · · ⇒∗ s1 . . . sj−1βj ⇒∗ s1 . . . sj

where for each 1 ≤ m ≤ j, derivations βm ⇒∗ sm have length less than n and s = s1 . . . sj . Notice
that the substrings s1 . . . sj define subpaths of the s-path from x to y via intermediate vertices in D.

As x ∈ C1 in trace item i, we must have an item i′ ∈ I∗ such that i′ = [B → {x}β1C1 . . . Cj−1βjC ′
j ] ∈

I∗ (recall that, during the construction of I ′, if such an item does not belong to the current set of
trace items, rule 2 in Definition 12 adds it to the set of trace items).

Given the item i′ = [B → {x}β1 . . . βjC ′
j ] ∈ I∗, and as β1 ⇒∗ s1 (with a derivation of length less

than n), the induction hypothesis ensures that the vertex at the end of the s1-path will be in position
set C2.

Using a similar reasoning for each symbol of the right-hand side of the rule B → β1 . . . βj , we can
see that y ∈ Cj .

By Rule 12.3, we can conclude that y ∈ C2 in i.

In this way, we can conclude that y ∈ C2 for any derivations B ⇒∗ s.

The next proposition shows that our algorithm is consistent, i.e., for every pair of vertices x, y ∈ D, if
they belong to successive position sets in any trace item in I∗, then y is G-reachable from x.

Theorem 6. Given i = [ A → . . . C1 α C2 . . . ] ∈ I∗, such that α ∈ N ∪ Σ, x ∈ C1 and y ∈ C2 then
(x, α, y) ∈ RG,D (see Definition 5).

Proof. By induction on the sequence of steps in the closure I0 ⇒∗ I∗ to obtain i.

• Base: If i was created in the construction of I0 and was not changed or substituted during the
calculation of I∗, then i must be of the form [A → {x}], for a given A → ε ∈ P . Otherwise, i

would have been substituted by another item during the calculation of I∗. By Definition 5.2, we
have (x, A, x) ∈ RG,D.

• Inductive Hypothesis: For any k < n, if i = [ A → . . . C1 α C2 . . . ], such that α ∈ N ∪ Σ, x ∈ C1

and y ∈ C2, was built in k steps, then (x, α, y) ∈ RG,D.

• Inductive Step: Let i = [ A → . . . C1 α C2 . . . ], such that α ∈ N ∪ Σ, x ∈ C1 and y ∈ C2, was
built in n steps (and will not be further changed by the calculation of I∗).

The trace item i was built by using one of the three rules of Definition 12.

1. Case i was built by Rule 12.1: In this case, i has the form [ A → . . . C1 α C ′
2 . . . ],

where C ′
2 ⊇ {y | (x, l, y) ∈ D}, so (x, l, y) ∈ RG,D by Definition 5.1.
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2. Case i was built by Rule 12.2: This case is similar to the base case.

3. Case i was built by Rule 12.3: In this case, i = [ B → . . . C1 A C2 ∪ C . . . ] ∈ I ′′ of Rule12.3,
which adds vertices y ∈ C to a previously computed item, provided that there exists an
(also previously computed) item [A → {x} . . . C]. By the induction hypothesis, we have
that (x, A, y) ∈ RG,D.

From the items above, we can conclude that the property holds.

Corollary 6.1. Given G, D, Q,

(x, s, y) ∈ D′ ⇐⇒ (x, s, y) ∈ RG,D

Proof. Immediate from Theorems 5, and 6.

5.1 The Trace-Item-Based Algorithm
Let us now present Algorithm 1 for the evaluation of CFPQs based on trace items. This algorithm uses
special marks • and ◦, respectively, for processed and unprocessed vertices in position sets, to keep track
of what vertices have already been processed. We omit these marks when such distinction is unnecessary.
The ∪⋊⋉ operator is used to perform unions between sets of processed and unprocessed vertices, and is
defined as:

C ∪⋊⋉ {x◦} =
{

C, if x• ∈ C

C ∪ {x◦}, otherwise

where C is a position set and x◦ is an unmarked vertex. If vertex x has already been processed, it is
conserved marked in position set C. Otherwise, it is added unmarked.

ALGORITHM 1 : The Trace-Item-based Algorithm [40]
Input : A grammar G, a query Q, and a graph D
Output : An annotated graph D′ ⊆ V × (Σ ∪ N) × V and a set of trace items I

1 function eval
2 I := {[A → {w◦} α1 { } ... αn { }] | A → α1...αn ∈ P ∧ (w, A) ∈ Q}
3 D′ := D
4 while ∃i, x s.t. i = [A → ... {x◦, ...} ...] ∈ I do
5 switch i
6 case i = [A → ... {x◦, ...} αk Ck ...] do
7 if αk ∈ Σ ∨ [αk → {x} . . . ] ∈ I then
8 Ck := Ck ∪⋊⋉ {y◦ | (x, αk, y) ∈ D′}
9 else

10 I := I ∪ {[αk → {x◦} β1 { } ... βn { }] | αk → β1 ... βn ∈ P}
11 case i = [A → {w} . . . {x◦, ...}] do
12 D′ := D′ ∪ {(w, A, x)}
13 foreach [B → . . . {w•, ...} A C . . . ] ∈ I do
14 C := C ∪⋊⋉ {x◦}
15 mark(x, i)
16 return D′, I

Algorithm 1 manipulates two data structures: a set of trace items I and a data graph D′ containing
the original data graph D incrementally annotated with new, non-terminal-labeled edges. To compute the
answers to queries in Q, the algorithm starts by creating trace items from its pairs of vertices and grammar
rules: for each pair (v, A) ∈ Q, it creates one trace item for each production rule of non-terminal A

with v in its first position set (line 2). That prepares the algorithm to enter the main loop that processes
unmarked vertices in items in I.

There are two cases when processing unmarked vertices:
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Figure 5.1: Example Graph (reproduction of Figure 2.1).

1. In the first case of the main loop (lines 6-10), given the trace item i = [A → C0 α1 C1 ...αn Cn], x◦

belongs to a position set Ck−1 that is not in the last position of the trace item. There are three
sub-cases:

(a) If αk ∈ Σ, all vertices y◦ such that there exists an edge (x, αk, y) ∈ D′ are added to Ck (line 8);

(b) If αk ∈ N and [ αk → {x} . . . ] ∈ I, all vertices y◦ such that there is an edge (x, αk, y) ∈ D′

are added to Ck (also at line 8);

(c) If αk ∈ N and there is no trace item [ αk → {x ...} ... ], Algorithm 1 initiates the search
for αk-derivations beginning at x. This is done by creating new trace items αk → {x◦} . . . and
adding them to I (line 10).

2. In the second case of the main loop (lines 11 to 14), vertex x belongs to the last position set of a
trace item. The trace item i = [A → {w} . . . {x◦, ...}] states that there is a path from vertex w to x

in D′. So, Algorithm 1 generates an A-labeled edge connecting those two vertices (line 12). After
this operation, all position sets C such that [ B → . . . {w, . . . } A C . . . ] ∈ I are updated with x◦

(line 14).

At the end of the main loop’s body, vertex x◦ is marked (line 15). The stop condition of that loop is the
absence of unmarked vertices in all position sets. The annotated graph D′ is returned at the end (line 10).
Let us now explain this process with an example.

Example 1. Let us consider a grammar G with production rules P = {S → a S b, S → ε} and the data
graph given in Figure 5.1.

Given the query Q = {(1, S), (3, S)}, our algorithm goes through paths starting at vertices 1 and 3
whose trace is generated by S. In this way, all the production rules of S will be investigated for paths
starting at each of these vertices.

We start the parsing process by creating trace items. For each query pair (v, A) ∈ Q, we create one
trace item for each production rule of A with v in its first position set. For the query Q we build the trace
items:

[ S → {1◦} a { } S { } b { } ] (5.1)

[ S → {1◦} ] (5.2)

[ S → {3◦} a { } S { } b { } ] (5.3)

[ S → {3◦} ] (5.4)

Our algorithm picks unprocessed vertices in an arbitrary order. Let us start with vertex 1 from trace
item (5.1). This vertex appears in a position set before the terminal symbol a. We must walk from vertex 1
to all its neighbors linked by an a-labeled edge in D. The neighbor vertices 2 and 3 must then be added to
the next position set in the trace item. Doing so, our item will become [ S → {1•} a {2◦, 3◦} S { } b { } ].
Notice that vertex 1◦ has changed to 1• to signal that it has been processed. New vertices are added as
unprocessed by using the mark ◦.

Now we may pick vertex 2 for the next step. This vertex is in a position set before the non-terminal
symbol S. That indicates that we have to look for S-derivable paths starting at vertex 2. We build the
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Figure 5.2: Result graph for the query of Example 1.

following new items:

[ S → {2◦} a { } S { } b { } ] (5.5)

[ S → {2◦} ] (5.6)

Now item (5.1) becomes [ S → {1•} a {2•, 3◦} S { } b { } ] and we have to pick another vertex to
process. Picking vertex 2 from item (5.5), we verify that there is no a-labeled edge going from vertex 2 to
any other vertex in the graph. That means that there is no a-derivable path from this vertex. Item (5.5)
then becomes [ S → {2•} a {} S {} b {} ].

Let us now pick vertex 2 from item (5.6). This item was built from an ε-rule. As vertex 2 belongs to
the first and last position set of this item, that means there is an S-derivable path from vertex 2 to itself
(the empty path). So, we augment the data graph with an S-labeled edge. The new edge is the loop right to
vertex 2 in Figure 5.2 (new edges are shown in bold).

Now, item (5.6) becomes [ S → {2•} ]. The addition of the new, S-labelled edge to the data graph
triggers a modification to the existing items: we add the unprocessed vertex 2 to any position set C

appearing in a trace item matching the pattern [ . . . {2, . . . } S C . . . ]. In our case, item (5.1) becomes
[ S → {1•} a {2•, 3◦} S {2◦} b { } ].

We may now pick the newly added vertex 2◦ in item (5.1). Now we have a vertex in a position set before
the terminal b. As we did before, we look for b-labeled edges going out from 2 in the data graph. There is only
one such edge, which arrives at vertex 3. Item (5.1) then becomes [ S → {1•} a {2•, 3◦} S {2•} b {3◦} ].

Now we pick the newly added vertex 3 in the last position set of item (5.1). As this vertex is in the last
position set of the item, we infer that there is an S-valid path from vertex 1 to vertex 3. As (1, S) ∈ Q,
we have found one answer for our query. Item 5.1 then becomes [ S → {1•} a {2•, 3◦} S {2•} b {3•} ].
Then, the data graph is augmented with a new S-labelled edge from 1 to 3, which is shown in Figure 5.2.

This process is repeated until there are no more unprocessed vertices. The complete step-to-step process
is presented in Table 5.1 and will result in the following set of items:

[ S → {1•} a {2•, 3•} S {2•, 3•, 4•} b {3•, 4•} ], [ S → {1•} ],
[ S → {2•} a { } S { } b { } ], [ S → {2•} ],
[ S → {3•} a {1•} S {1•, 3•, 4•} b {4•} ], [ S → {3•} ]

The solutions computed by our algorithm are shown as bold arrows, labeled by non-terminals, in
Figure 5.2. Those arrows connect the node in the first position set of each trace item to the nodes in their
last position set.

5.2 Complexity
In this section, we analyze the time and space complexity of Algorithm 1.

Theorem 7 (Worst-Case Space Complexity). The worst-case space complexity of Algorithm 1 is O(|V |2 ·
|P | · k).

Proof. The maximum size that D′ and I may reach is:

D′: The algorithm increments graph D′ with non-terminal-labeled edges, so it uses at most:

|D′| = |V | · |N ∪ Σ| · |V | (5.7)
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# Operation Updated items
1 line 2 [ S → {1◦} a { } S { } b { } ], [ S → {1◦} ],

[ S → {3◦} a { } S { } b { } ], [ S → {3◦} ]

2 line 8 [ S → {1•} a {2◦, 3◦} S { } b { } ]

3 line 10 [ S → {1•} a {2•, 3◦} S { } b { } ],
[ S → {2◦} a { } S { } b { } ], [ S → {2◦} ]

4 line 8 [ S → {2•} a { } S { } b { } ]

5 lines 12, 14 [ S → {2•} ],
[ S → {1•} a {2•, 3◦} S {2◦} b { } ]

6 line 8 [ S → {1•} a {2•, 3◦} S {2•} b {3◦} ]

7 lines 12, 14 [ S → {1•} a {2•, 3◦} S {2•} b {3•} ]

8 lines 12, 14 [ S → {1•} ]

9 lines 12, 14 [ S → {3•} ]
[ S → {1•} a {2•, 3◦} S {2•, 3◦} b {3•} ]

10 line 8 [ S → {1•} a {2•, 3◦} S {2•, 3•} b {3•, 4◦} ]

11 lines 12, 14 [ S → {1•} a {2•, 3◦} S {2•, 3•} b {3•, 4•} ]

12 line 8 [ S → {3•} a {1◦} S { } b { } ]

13 line 8 [ S → {3•} a {1•} S {1◦, 3◦, 4◦} b { } ]

14 line 8 [ S → {3•} a {1•} S {1◦, 3◦, 4•} b { } ]

15 line 8 [ S → {3•} a {1•} S {1◦, 3•, 4•} b {4◦} ]

16 lines 12, 14 [ S → {3•} a {1•} S {1◦, 3•, 4•} b {4•} ]

17 line 8 [ S → {3•} a {1•} S {1•, 3•, 4•} b {4•} ]

18 line 10 [ S → {1•} a {2•, 3•} S {2•, 3•, 4◦} b {3•, 4•} ]

19 line 8 [ S → {1•} a {2•, 3•} S {2•, 3•, 4•} b {3•, 4•} ]

Table 5.1: Step-by-step behavior of Algorithm 1 (underlined vertices mean they were either marked or
added on that step).
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what is O(|V |2 · |N ∪ Σ|).

I: Set I contains generalized items, which are annotated production rules with a single vertex at the
start of the right-hand side. So we have at most:

|I| = |V | · |P | (5.8)

For each trace item, the number of position set sets depends on the size of the right-hand side of a
production rule. Assuming that k denotes the greatest size of the right-hand side of the rules in G,
each trace item may have k position sets of size at most |V | (notice that the first position set on
each trace item is a singleton).

In this context, the worst-case space complexity for I is:

|V | · |P | · k · |V |.

what is O(|V |2 · |P | · k).

We can now estimate the worst-case space complexity as:

O(|V |2 · (|N ∪ Σ| + |P | · k)) (5.9)

Theorem 8 (Worst-Case Time Complexity). The worst-case time complexity of Algorithm 1 is O(|V |3 ·
|P |2 · k2).

Proof. The main loop iterates until there are no more unmarked vertices x◦. The maximum number of
unmarked vertices is |I| · k · |V |, where k is the maximum number of possible position sets for rules of
the grammar (the greatest size of a right-hand side of the rules in G). So, as |I| = |V | · |P |, we have at
most |V |2 · |P | · k possible vertices x◦.

For each iteration, the form of trace item i guides the operation to be performed. The tests at lines 6
and 11 have constant cost.

There are two cases to be considered inside the switch command:

• The evaluation of the condition at line 7 requires searching over the set of trace items I. The cost of
this operation is constant (supposing that we use a matrix representation).

Line 8 is the case where the algorithm advances one step on a path by looking for edges (x, α, y) ∈ D′.
As there are at most |V | possible destination vertices, the algorithm performs at most |V | operations
in this case.

At line 10, the algorithm adds new trace items to I in order to start a new derivation. This line
ensures that the algorithm only creates at most one trace item for each production rule in G for a
fixed vertex x. So, in this case, the algorithm performs at most |P | constant time operations.

In this way, the overall cost of the case spanning from line 6 to 10 is bounded by max(|V |, |P |).

• The second case of the switch command adds non-terminal-labeled edges to the graph. Such edges
are created at line 12 in constant time.

The appearance of a new edge triggers the update of position sets by the iteration at line 13. We
have at most |V | · |P | · k position sets. Assuming, again, a matrix representation, locating each set C

in a trace item, requires constant time. Thus, line 14 will be executed |V | · |P | · k times in the worst
case.

In this way, the overall cost of the case spanning from line 11 to 14 is bounded by |V | · |P | · k.

Therefore, the worst-case time complexity of Algorithm 1 is O(|V |3 · |P |2 · k2).
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5.3 Experiments
In this section, we analyze the viability of our technique in a series of experiments. Each of these
experiments is designed to allow us to verify the behavior of the Algorithm 1 in general and specific
situations. Our experiments are built to observe its time and memory consumption as data size scales.

We have five implementations that differ in the following aspects: (i) the implemented algorithm;
(ii) programming language; (iii) data representation; (iv) grammar form supported; and (v) support
for nested expressions and navigational axes. They are summarized in Table 5.2. The source-code as
well as the datasets used in the experiments described in this section are publicly available in our online
repository1.

ID Algorithm Programming Data Grammar Support for Nested
Language Representation Form Expressions and

Navigational Axes
I1 Algorithm 1 Go Bit-arrays Any Yes
I2 Algorithm 1 Go Hash Tables Any Yes
I3 Algorithm 1 Python Hash Tables Any No
I4 LL-based [39] Python Hash Tables NF No
I5 CYK-based [26] Python Hash Tables NF No

Table 5.2: Implementations used in the experiments.

We implemented two versions of Algorithm 1 in the Go programming language: I1 uses a lower-level
(bit-array) representation, while I2 uses a higher-level representation (native hash tables). Both versions
extend Algorithm 1 with support for navigational axes and nested expressions [45]. The remaining
implementations are all written in Python and use native hash tables to index triples. To allow us to
analyze the influence of the programming language and present fair comparisons with the algorithms
proposed by Medeiros et al. [39] and Hellings [26], we implemented Algorithm 1 in Python, named I3.
We include an implementation for the LL-based algorithm [39], named I4, and an implementation for a
standard CFPQ evaluation algorithm, named I5. The implementations I4 and I5 only accept grammars in
Normal Form.

In the next sections, we present experiments for evaluating the performance of all implementations.
Since I4 and I5 only accept grammars in Normal Form, they only present performance data in experiments
with such grammars. We observe how performance is affected by: (i) underlying data structures; (ii)
characteristics of the grammar, such as number of symbols, ambiguity or length of its production rules;
(iii) density, topology and size of the data graph. Unless otherwise stated, the queries used in our setting
are defined as Q = {(x, S) | x ∈ V }, where V is the set of vertices in the input graph, and S is the start
symbol of the grammar. Notice that this query makes the algorithms start at every vertex in the graph
and follow all S-derivable paths to find the reachable vertices.

All the experiments were performed on a Ubuntu 20.04, 8GB RAM, Intel Core i5-8250U CPU @1.60GHz
× 8, 64 bits. The results presented in the next sections correspond to the average time and memory
consumption of 10 runs to minimize the interference of the operation system. Missing values indicate that
the experiment was aborted due to a timeout of 10 minutes.

5.3.1 Ambiguity and Normal Form

This experiment evaluates how the topology of the graph database, as well as grammar form and ambiguity,
impact performance. We consider linear and complete graphs, as in Medeiros et al. [39]. In complete
graphs, all vertices connect to all the others, including itself, by a- and b-edges (that is, a graph with n

vertices has n2 a-labeled edges and n2 b-labeled edges). Linear graphs with n vertices define paths whose
traces are of form a

n
2 b

n
2 .

In the queries of this experiment, we look for paths formed by nested, balanced pairs of a and b

edges. We define four grammars that generate the same language. They are given as G1, G2, G3 and G4

1Online git repository containing the source-code and datasets used in the experiments: https://gitlab.com/
ciromoraismedeiros/rdf-ccfpq.
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in Table 5.3. Grammars G1 and G3 are ambiguous, where G3 is in Chomsky Normal Form. Grammars
G2 and G4 are unambiguous, where G4 is in Chomsky Normal Form.

Grammar Production Rules Description
G1 S → S S | a S b | ε Ambiguous grammar. Generates balanced pairs of a’s

and b’s [24, 8, 61, 39]

G2 S → a S b S | ε Unambiguous grammar, generates the same language
as G1 [24, 8, 61, 39]

G3
S → S S | a A | ε,
A → S b

Ambiguous grammar in Chomsky Normal Form, generates
the same language as G1.

G4

S → a A | ε,
A → S B,
B → b S

Unambiguous grammar in Chomsky Normal Form, gener-
ates the same language as G1.

Table 5.3: Summary of grammars used for the experiments with complete and linear graphs.

Complete Graphs. Figure 5.3 shows time (left column) and memory (right column) consumption of all
implementations for complete graphs.

In this experiment, I3 presented better results when compared to I4and I5. Results for I5 are not
depicted because it was not able to process the minimum of 50 vertices. On the other hand, I4 timed out
for 100 vertices.

Concerning the programming language, Go (I2) performed far better than Python (I3) for grammars
G3 and G4. Notice that the execution of I3 was interrupted for more than 100 vertices due to the timeout
of 10 minutes. For grammars G1 and G2, the difference of performance was not noticeable both for time
and memory.

Implementations I1 and I2 explore different representations of data. Notice that I1 outperforms I2,
indicating the saving of time and memory of the bit-array representation.

We conclude that for grammars not in Normal Form (G1, G2), the ambiguity reduced time and memory
consumption. We believe that this fact is a consequence of the smaller size of the right-hand side of
production rules. The smaller the number of symbols on the right-hand side, the smaller the number
of position sets to be maintained. The ambiguity of grammar has not shown a visible impact on the
performance with Normal Form grammars (G3, G4), given they have the same number of production
rules. Notice that grammars in Normal Form (G3, G4) present better results both in terms of time and
memory consumption.

Linear Graphs. Time (left column) and memory (right column) consumption for linear graphs are
shown in Figure 5.4.

All implementations presented linear time and memory consumption, as expected due to the structure
of linear graphs and the language being recognized. Algorithm 1 (I3) presented the best time performance.
Python (I3) clearly outperformed Go (I2) in all cases. The bit-array representation (I1) performed slightly
worse than the hash table representation (I2). This was expected due to the sparseness of linear graphs.

Different from what we observed for complete graphs, performance was negatively affected by both
grammar ambiguity and normal form. Linear graphs in CFPQs simulate strings in the context of compilers,
where larger and ambiguous grammars tend to negatively affect performance. The explanation comes
from the fact that the structure of linear graphs preclude the algorithms from taking advantage of using
such grammars to find alternative shorter paths.

5.3.2 Length of Derivations

In this experiment, we use two grammars to investigate the impact of the number of derivation steps on
the algorithms’ performance. Grammars G5 and G6 [27] in Table 5.4 describe, respectively, the languages
generated by the regular expressions a+ and a∗. Notice that, for non-empty strings, the number of steps
required to generate the string using grammar G5 is smaller than that of grammar G6. These grammars
are respectively referred to as ‘dense’ and ‘sparse’ by Hellings [27].
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Figure 5.3: Experiments with ab-complete graphs and grammars G1, G2, G3 and G4.

Grammar Production Rules Description
G5 A → A A | a Dense grammar recognizing the language given by a+ [27]

G6
B → B A | A B | ε,
A → a

Sparse grammar recognizing the language given by a∗ [27]

Table 5.4: Dense and Sparse grammars
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Figure 5.4: Experiments with ab-linear graphs using grammars G1, G2, G3, G4.
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Figure 5.5: Experiments with a-complete graphs and grammars G5 and G6.

Querying a-Complete Graphs. Figure 5.5 shows time (left column) and memory (right column)
consumption of all implementations when using grammars G5 and G6 on complete graphs containing
a-labeled edges only. We notice that Algorithm 1 (I3) showed good scalability. The time and memory
consumption of I4 and I5 prevents us from exploring graphs with more than 100 vertices for grammar
G5 and 50 vertices for grammar G6. Python (I3) performed slightly better than Go (I2). The bit-array
representation presented better memory consumption than the hash table representation. This was
expected, since the bit-array representation is tuned for working with denser graphs. The use of G5

provided better time and memory performance than that of G6, since the former takes less derivation
steps and has fewer production rules than the latter.

Querying a-Cycle and a-Path Graphs. The behavior of the implementations concerning a-cycle and
a-path graphs is presented in Figures 5.6 and 5.7. In this experiment, we use grammars G5 and G6 to query
cycle and linear graphs whose edges are labeled a. Implementation I3 performed better than I4 and I5,
which timed out for medium-size or even small graphs. For both cycle and linear graphs, Go (I2) provided
better performance using G5, whilst Python (I3) provided better performance using G6. Although both
linear and cycle graphs are sparse, they grow non-linearly in size as the algorithms compute more answers.
That made it possible for I1 to perform better than I2. Opposingly to the previous case, with a-complete
graphs, the use of G5 provided worse results than G6. This might indicate that G5 is more adequate for
denser graphs, while G6 is more adequate for sparser graphs.

5.3.3 Synthetic Social Networks

The next experiments were proposed in [29] and use random, synthetic graphs that simulate social
networks. Given the order n of the graph and a constant k ≤ n, the generator function G(n, k) starts
with a clique of k vertices and iteratively adds lots of k edges to the graph until the number n of vertices
is reached [3]. The edge labels are randomly chosen a, b, c or d. The probability of an edge being added to
a destination vertex increases with the in-degree of that vertex. In this way, more popular vertices tend to
gain more connections than less popular ones.

The grammars for this experiment are presented in Table 5.5. Both grammars G7 and G8 define the
same language, being G8 in Normal Form.
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Figure 5.6: Experiments with a-cycle graphs grammars G5 and G6.
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Figure 5.7: Experiments with a-path graphs grammars G5 and G6.
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Grammar Production Rules Description

G7
S → a S d | a X d,
X → b X c | ε

Grammar generating the language anbmcmdn [29]

G8

S → a W | a Y,
W → S d
Y → X d
X → b Z | X c | ε

Normal form grammar generating anbmcmdn

Table 5.5: Grammars for querying a simulated social network.

In Figures 5.8 and 5.9, we present time (left column) and memory (right column) consumption of
querying graphs of up to 10,000 nodes (n), and initial clique sizes k = 1, 5, 10, 15 and 20. Implementations
I4 and I5 are not shown because they did not achieve comparable performance.

Although more costly in terms of memory, I3 performed far better in time than I4 and I5. Python (I3)
presented an overall better performance than Go (I2), with a few exceptions. The bit-array representation
showed better performance for both time and memory for cases where k ≥ 5, in which graphs are denser.
When compared to G7, grammar G8 negatively affected memory consumption, especially for I3, but
provided better time results for k ≥ 15.

5.3.4 Ontologies

In order to explore a more realistic scenario, we investigate the behavior of Algorithm 1 by querying a set
of popular ontologies, publicly available on the Internet. The dataset and grammars are the same used in
previous works [24, 8, 61, 39]. The grammars explored in this experiment are summarized in Table 5.6.
Grammar G9 retrieves concepts on the same level of the RDFS (RDF Schema) subClassOf /type hierarchy.
Grammar G10 retrieves concepts in adjacent levels of the RDFS subClassOf hierarchy. The grammars
G11 and G12 are normal form versions of G9 and G10, respectively.

The experiment consists of performing a same generation query [1]: for each vertex, the query looks for
all vertices on the same level of the subclass/type hierarchy. The results for this experiment are presented
in Tables 5.7 and 5.8.

Grammar Production Rules Description
G9 S → sc S sc−1 | t S t−1 | sc sc−1 | t t−1 Retrieves concepts on the same level of a class hier-

archy [24, 8, 61, 39]

G10 S → B sc−1, B → sc B sc−1 | ε Retrieves concepts on adjacent levels of a class hier-
archy [24, 8, 61, 39].

G11 S → sc S2 | t S3 | sc sc−1 | t t−1,
S2 → S sc−1, S3 → S t−1

G9 in Normal Form.

G12 S → B sc−1, B → sc B2 | ε,
B2 → B sc−1

G10 in Normal Form.

Table 5.6: Summary of grammars used for the experiments with RDF Ontologies.34
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Figure 5.8: Experiment with synthetic social networks and grammar G7 [29].
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Figure 5.9: Experiment with synthetic social networks and grammar G8 [29].
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Grammar, # I1 I2 I3
Graph |V| Results Time Mem Time Mem Time Mem
G9, atom 142 15454 191 3,34 407 6,84 41 4,79
G9, biomedical 134 15156 162 1,49 368 6,89 36 3,58
G9, foaf 93 4118 26 2,00 60 1,35 7 1,26
G9, funding 272 17634 147 3,25 281 6,24 33 5,43
G9, generations 82 2164 14 1,40 36 2,30 4 0,88
G9, people_pets 163 9472 78 2,91 151 3,08 17 2,92
G9, pizza 359 56195 403 4,49 698 10,01 128 10,85
G9, skos 43 810 8 0,60 18 1,10 2 0,50
G9, travel 92 2499 24 2,30 61 3,30 7 1,26
G9, univ-bench 90 2540 20 2,30 46 3,23 7 1,27
G9, wine 468 66572 453 5,37 750 14,76 101 12,59

G10, atom 124 122 97 2,60 294 3,69 26 2,57
G10, biomedical 123 2871 57 2,42 123 2,23 15 1,77
G10, foaf 13 10 1 0,20 2 0,22 0 0,00
G10, funding 93 1158 38 2,65 86 1,45 8 1,01
G10, generations 0 0 0 0,00 0 0,00 0 0,00
G10, people_pets 44 37 6 0,60 10 0,90 1 0,50
G10, pizza 261 1262 88 3,38 124 3,80 15 2,39
G10, skos 2 1 0 0,00 0 0,00 0 0,00
G10, travel 32 63 4 0,50 9 0,70 1 0,25
G10, univ-bench 42 81 6 0,60 9 0,90 2 0,50
G10, wine 163 133 15 1,80 25 2,80 5 1,00

Table 5.7: Performance evaluation on RDF databases with grammars G9 and G10 (Time in ms, Memory
in Mb).
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Grammar, # I1 I2 I3 I4 I5
Graph |V| Results Time Mem Time Mem Time Mem Time Mem Time Mem
G11, atom 142 15454 112 1,40 326 4,30 27 5,11 34478 4,92 – –
G11, biomedical 134 15156 112 1,50 275 4,50 31 5,10 28994 4,80 – –
G11, foaf 93 4118 24 0,80 86 1,40 9 1,76 1207 0,89 235339 1,03
G11, funding 272 17634 125 2,32 264 4,50 33 7,13 20829 4,85 – –
G11, generations 82 2164 20 0,70 31 1,10 6 1,38 231 0,55 43426 0,89
G11, people_pets163 9472 62 1,40 154 2,60 19 4,17 4689 3,07 – –
G11, pizza 359 56195 463 3,43 863 10,20 113 16,80 240902 12,47 – –
G11, skos 43 810 9 0,40 13 0,60 3 0,75 66 0,42 5657 0,38
G11, travel 92 2499 32 0,90 50 1,34 9 2,01 644 0,85 228001 1,02
G11, univ-bench 90 2540 19 0,90 61 1,30 9 1,89 711 0,97 194313 1,03
G11, wine 468 66572 425 4,12 824 10,81 101 18,65 254174 14,77 – –

G12, atom 124 122 102 1,00 212 3,05 26 3,99 5830 3,18 – –
G12, biomedical 123 2871 56 1,33 123 2,31 16 2,53 3018 1,81 – –
G12, foaf 13 10 2 0,20 4 0,30 1 0,25 1 0,04 12 0,00
G12, funding 93 1158 30 0,98 54 1,42 9 1,64 636 0,94 155616 1,02
G12, generations 0 0 0 0,10 0 0,10 0 0,00 0 0,04 0 0,00
G12, people_pets 44 37 5 0,50 8 0,60 3 0,75 9 0,29 201 0,25
G12, pizza 261 1262 96 2,45 131 4,00 20 4,13 2357 1,72 556070 1,75
G12, skos 2 1 0 0,10 0 0,10 0 0,00 0 0,04 0 0,00
G12, travel 32 63 10 0,40 9 0,50 2 0,50 11 0,29 263 0,25
G12, univ-bench 42 81 5 0,42 15 0,60 2 0,50 15 0,29 467 0,25
G12, wine 163 133 21 1,40 32 1,90 8 1,75 65 0,79 1827 0,89

Table 5.8: Performance evaluation on RDF databases with grammars G11 and G12 (Time in ms, Memory in Mb).
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Our algorithm (I3) performed significantly faster with a little increase in the memory costs when
compared to I4 and I5. Notice that the execution of I5 was not able to produce results for some cases due
to the time limit of the experiments.

Comparing programming languages, we observe that the Go version (I2) is consistently much more
time consuming than the Python version (I3), regardless the form of the grammars. Concerning the
memory costs, the Go version (I2) is, in general, more expensive than the Python one (I3) for grammars
not in Normal Form. For grammars in Normal Form, the memory costs are reduced for the Go version
(I2).

Table 5.7 presents performance data of the hash- and bit-oriented implementations of Algorithm 1
for grammars G9 and G10, which are not in Normal Form. The data shows that, in all cases, I1 takes
approximately half the time required by I2. Also the overall memory cost was improved by I1, except
for some small graphs (this behavior can be explained by the baseline cost of I1). In Table 5.8, similar
results can be observed for grammars G11 and G12, which are in Normal Form. However, the memory
consumption of I1 is always smaller than that of I2.

The data presented in Tables 5.7 and 5.8 are not conclusive with regard to the impact of the form of
the grammars over time and memory costs. The grammars in Normal Form are more beneficial in several
cases, but the influence of the Normal Form is not sufficient to reduce costs in a general manner. In
special, notice that memory consumption increased for grammars in Normal Form for implementation I3.

5.3.5 Phylogenetic Trees

In this experiment we analyse the applicability of Algorithm 1 in another realistic scenario that benefits
from context-free path queries. This experiment explores similarities in phylogenetic trees [16]. These trees
are used in Biology-related domains such as Bioinformatics and Phylogenetics. A node in a phylogenetic
tree may represent a singular species or group of individuals. Each species can be described by a number
of features, that may be physical, biochemical, behavioral, or molecular.

We build synthetic phylogenetic trees to simulate evolutionary relationships. Given a set of nodes, the
common ancestor is given by the root of the sub-tree containing these nodes, its descendants. Branches
represent the evolution of one species into another, by means of changes in their features. In our setting,
each individual species is modeled as a sequence of 100 features, described as a combination of five possible
values (A, B, C, D, E).

The procedure we use to produce a synthetic phylogenetic tree T is guided by three parameters: the
desired height h of the tree, the maximum arity m of each internal node, and the number n of species
that appear in the phylogenetic tree. Our experiments evaluate the scalability of Algorithm 1 by varying
the number of nodes n, using a random number of mutations m for each species, ranging from 0 to 2, and
tree height defined as h = ⌊(n + ⌈log(n, m)⌉)/2⌋.

The tree generation algorithm is as follows: (i) initially we generate a tree of height h whose nodes
have arity one; (ii) after that, we add new children to randomly chosen internal nodes while the number
of vertices is not reached, respecting height and arity constraints.

In our RDF representation, a mutation in a phylogenetic tree is given by five triples. Figure 5.10
shows our RDF representation of the mutation of species si into sj . The mutation m1 changes the feature
at position 1 of the string representing si, from A to B. Notice that for each new mutation we have 5 new
nodes on the data graph representation of a phylogenetic tree.

The experiment consists of looking for species such that:

(i) they are equidistant to a common ancestor species, and

(ii) they are the result of mutating their feature at the first position from A to B.

The grammars used for the queries in the experiment are given in Table 5.9. In Grammar G13, the
non-terminal symbol S checks that the first and last steps of a path both present the desired mutation
(from A to B, at the initial position of the feature sequence of both species). The non-terminal symbol
S2 checks for the existence of an equidistant common ancestor. The grammar uses nested expressions
and navigational axes [45] to check the desired mutation. For instance, the nested expression [I] defines39
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Figure 5.10: RDF representation of the mutation of species si into species sj .

# ProductionRules Description
G13 S → res−1[I][F ][T ] mut−1 S2 mut [I][F ][T ] res,

S2 → res−1 mut−1 S2 mut res,
S2 → ε,
I → idx self::1,
F → from self::A,
T → to self::B

Retrieves descendants equidistant
from a common ancestor that suf-
fered an “A1B” mutation.

G14 S → res−1 X1, X1 → [I] X2, G13 in normal form.
X2 → [F ] X3, X3 → [T ] X4,
X4 → mut−1 X5, X5 → S2 X6,
X6 → mut X7, X7 → [I] X8,
X8 → [F ] X9, X9 → [T ] res,
S2 → res−1 Y1, Y1 → mut−1 Y2,
Y2 → S2 Y3, Y3 → mut res,
S2 → ε,
I → idx self::1,
F → from self::A,
T → to self::B

Table 5.9: Summary of grammars used for the experiments with synthetic phylogenetic trees.

a condition described by the non-terminal symbol I. In this case, the query requires that the mutation
occurs at the position with index 1 for the node being traversed, suppose m1. Then, the expression [I]
requires the algorithm to look for nodes that are reachable from m1 by paths whose traces are strings
derivable from I. New edges are created if such paths are found and the query evaluation is resumed from
m1. Grammar G14 is in normal form and generates the same language as G13.

This experiment considers only implementations I1 and I2, since the other implementations do not
support nested expressions and navigational axes. Time and memory consumption of I1 and I2 for trees
containing up to 8,000 species and grammars G13, G14 are given in Figure 5.11.

We can observe that I1 is faster than I2 for both grammars. On the other hand, the I1 is more memory
consuming. This indicates the advantage of performing fast operation over arrays of bits, but also the
memory overhead of this representation for sparse data graphs.

The time and memory costs related to G14 are similar to those obtained for G13, with a little increase.
This behavior can be explained by the number of production rules in G14. The bigger the number of
production rules, the bigger the number of trace items to be investigated.

Notice that this is not the only scenario in Biology where context-free path queries may be applicable.
Sevon and Eronen [51] use context-free queries to identify similarities between evolutionary patterns (by
means of identifying sub-graph similarities).

5.3.6 Single Source Queries

In this section, we present an experiment that explores the advantage of algorithms that traverse the data
graph considering only a subset of vertices. In practical situations, it is common for one to be interested in
querying not the whole graph database, but only a subgraph in it. Our algorithm presents this capability
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Figure 5.11: Experiments with phylogenetic trees

and so it may drastically reduce the costs of processing queries.
Suppose that we have a data graph containing a path π formed by the concatenation of paths

π1, π2, π3 and π4 (i.e., π = π1.π2.π3.π4) such that: (i) π1 = (v1, l1, v2), . . . , (vn−1, ln−1, vn), π2 =
(vn, ln, vn+1), . . . , (v2n−1, l2n−1, v2n), and they have the same trace an; and (ii) π3 = (v2n, l2n, v2n+1), . . . , (v3n−1,

l3n−1, v3n), π4 = (v3n, l3n, v3n+1), . . . , (v4n−1, l4n−1, v4n), and they have the same trace bn. In the case
that we are interested in paths whose traces are of form akbk, our algorithm is able to look for paths
starting at vertex vn and to find the path from this vertex to v3n, without the need of traversing the
whole data graph. The experiment we describe in this section uses ab-linear graphs and grammars G3 and
G4 as defined in Section 5.3.1 to explore this scenario.

Figure 5.12 shows time and memory consumption of all implementations. Notice that I1 outperforms
all the others implementations with regard to execution time, both for grammars G3 and G4. However,
I1 is the most memory consumptive implementation. This can be explained by the representation of
data as a bit-array, which is efficient for operations over vertices but suffers when applied over sparse
data graphs. Since we are dealing with a linear graph in this experiment, we have a very low degree of
connectivity among vertices. Although I4 presents the better behavior concerning memory consumption,
its time explodes for a small number of vertices. In the case of I5, this implementation timed out for the
smallest number of vertices considered in the experiment.

When considering both time and memory costs, implementation I2 (hash-oriented, Go version) seems
to present the best trade-off for the setting of the experiment.

5.4 Conclusions
We presented an algorithm for the evaluation of context-free path queries for RDF databases, analyzed
its correctness, as well as its worst-case runtime and space complexity. We validated our work by using
both synthetic and real-life data bases, showing that our prototype outperforms other ones found in the
literature.

Our experiments show that several factors affect its performance. Those factors are:

• The form of the grammar used in the formulation of queries: this affects the number and size of the
right-hand side of production of rules;
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Figure 5.12: Experiments with a single start vertex over linear graphs

• The density of edges of the graph being queried (where complete graphs are considered the densest
ones);

• The size of the graph;

• The data structure used.

It is worth noticing that those factors are not independent of each other. As a general rule, we can conclude
that smaller grammars (in the number of production rules and non-terminal symbols) are preferable when
querying bigger, denser graphs. For sparse graphs, such as lists or cycles, the performance figures show
less impact from the form of the grammar. Also, we noticed that the use of ambiguous grammars in the
query does not have a significant impact on performance nor memory consumption.

As future work, we intend to investigate a parallel version of Algorithm 1. This may improve its
performance and scalability, since the treatment of unmarked vertices in position sets may be done in
parallel. Better management of large graphs that do not fit in the memory is also a desired improvement.
Another desirable feature is to use the information on trace items to reconstruct paths.

We intend to work on the definition of benchmarking data sets for algorithms for the evaluation of
CFPQs. This will make it possible to have more accurate data to compare the different algorithms that
implement those queries. This benchmark should be based on real-life problems [42, 62, 16].
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Chapter 6

Formal-Language-Constrained Graph
Minimization

In this chapter, we present the Formal-Language-Constrained Graph Minimization (FLGM) problem.
This chapter is an extension of our previous work Medeiros et al. [36]. We propose solutions for the regular
and context-free versions of that problem.

The FLGM problem consists of deleting from an input data graph as many triples as possible, in such
a way that the answers to a user-defined utility query are preserved. The FLGM problem arises in graph
minimization scenarios, such as network minimization, source-code analysis and others.

Simplifying the project of networks (such as traffic or communication networks) minimizes implemen-
tation and maintenance costs. FLGM algorithms can be used, for instance, to assist in the project of a
traffic network connecting touristic attractions in a city. Edges labeled with the kind of transportation
means connect those attractions. A formal language would define the pattern of paths that users would
take to travel among attractions.

Many tasks in source-code analysis resume to graph reachability problems whose paths match some
context-free language. Pointer assignments, function calls, and property reads/writes are often modeled as
interleaving Dyck languages. Dyck languages are languages of the form anbn. Simplifying the underlying
graph that corresponds to those operations can improve the performance of algorithms for source-code
analysis [32].

Another instance of the FLGM problem is privacy protection. Organizations that keep user data might
have their databases attacked. Preserving the minimum sensitive information possible for the organization’s
purposes minimizes the damage in the case of a possible data breach. Also, such minimization reduces
data storage and maintenance costs.

6.1 Problem Definition
Minimizing a graph D consists of identifying a subset D− ⊆ D whose weight (or cost) is minimum, and
there remains at least one valid path for every answer of a given query. This query set is used to preserve
data utility.

Definition 13 (Formal-Language-Constrained Graph Minimization Problem). Given a grammar G,
a data graph D, a set of queries Q and a weight (or cost) function f , the FLGM (Formal-Language-
Constrained Graph Minimization) problem consists of identifying a subgraph D− ⊆ D such that for all
queries (a, X) ∈ Q, it holds that (a, X, y) ∈ RG,D− ⇐⇒ (a, X, y) ∈ RG,D, and f(D−) is minimum.

This optimization problem is NP-hard, and its decision version is NP-complete for polynomial-time
decidable languages. Inspired by Anciaux et al. [5], we demonstrate these statements by reducing an
instance of the APMWS (All-Positive Minimum Weighted Boolean Satisfiability) problem [4] to an instance
of the FLGM problem.

Theorem 9. The APMWS problem is reducible to the FLGM problem.43



Proof. An instance of the APMWS problem consists of, given a formula in the conjunctive normal
form F =

∧
j(

∨
k bj,k) and a weight function f(h) =

∑
h(bj,k)=true wj,k, finding an assignment of truth-

values to variables h : bj,k 7→ {true, false} such that h(F ) = true, and f(h) is minimum.
The FLGM problem can be represented by a boolean formula similar to that of the APMWS problem

as F ′ =
∧

j(
∨

k(
∧

m bj,k,m)), where:

1. a variable bj,k,m is true if its corresponding triple tj,k,m is in D−, and false otherwise (it can occur
that tj,k,m = tj′,k′,m′ for j ̸= j′, k ̸= k′, m ̸= m′.);

2. given A ∈ N and u, v ∈ V , the inner conjunction corresponds to a set of triples that form an A-
derivable path from u to v;

3. the disjunction corresponds to the all A-derivable paths from u to v;

4. the outer conjunction corresponds to the answers for the queries in Q;

Solving this problem means finding an assignment h′ : bj,k,m 7→ {true, false} such that h′(F ′) = true,
and f(h′) is minimum. Considering triple sets of size 1 in the inner conjunction of the FLGM problem,
an APMWS variable bj,k can be rewritten as bj,k,1. We can then solve an APMWS instance by solving its
equivalent FLGM instance.

Corollary 9.1. The FLGM optimization problem is NP-hard.

Proof. From Theorem 9 and from the fact that the APMWS optimization problem is NP-hard [4], it
follows that the FLGM problem is NP-hard as well.

Usually, optimization problems can be recast as decision problems by providing a constant k and
verifying if, for a given solution h, f(h) ≤ k [18]. The next corollary establishes the complexity of
the FLGM decision problem.

Corollary 9.2. If input grammar G belongs to a class of polynomial-time decidable grammars, the FLGM
decision problem is NP-complete.

Proof. Given a solution to an instance of the FLGM decision problem, which includes a constant k, we can
verify the solution in polynomial time by (1) summing the weight of all edges in D− and comparing it to k;
and (2) running a polynomial-time algorithm to evaluate the path queries Q. Therefore, FLGM ∈ NP. From
that, and from Corollary 9.1, we have that the FLGM decision problem is NP-complete for polynomial-time
decidable grammars.

Notice that such restriction on the class of the input grammar is necessary, since the sole task of
recognizing a string using a non-polynomial-time decidable grammar is, by definition, not in P.

In practice, it is frequently sufficient to trade algorithms that find optimum solutions for complex
problems in non-polynomial time by approaches that find near-optimal solutions in polynomial time.
Heuristics can be used to find such near-optimal (approximate) solutions [18]. The next corollary
establishes the approximability of the FLGM decision problem.

Corollary 9.3. The FLGM problem is not in APX and is in 0-DAPX.

Proof. From Theorem 1, and assuming P ̸= NP , it is a consequence of the fact that the APMWS problem
is not in APX [4] and has differential approximation of 0-DAPX [10].

In other words, Corollary 9.3 states that there cannot exist an algorithm with constant approximation
ratio for the FLGM problem (because it is not in APX) and any polynomial-time algorithm will return the
worst solution in at least one of their instances in its worst case (because of its differential approximation
of 0-DAPX).

In the next sections, we present heuristic-based algorithms for solving the graph minimization problem
for a subset of languages. Our techniques are composed of two stages: path query evaluation and minimum
graph construction. Since string recognition is itself a complex task, we restrict the grammars used to
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define paths to the classes of regular and context-free grammars. These classes allow us to cover not
only the wide range of applications that use regular languages, but also those that require context-free
ones [62, 16, 42]. Thus we present a solution to the Regular- and Context-Free-Language-Constrained
Graph Minimization problems.

6.2 Regular-Language-Constrained Graph Minimization
Algorithm 2 is our regular-language-constrained graph minimization algorithm. This algorithm starts by
building the product automaton PA. Then, it proceeds to the main loop, where it randomly picks paths
from start states (a, q0) to final states (b, qf ) performing a depth-first search. For each answer b, only one
path is added to D−. Example 2 illustrates how this algorithm works.

ALGORITHM 2 : The RGM Algorithm
Input : A regular expression exp, a set of queries Q, and a graph D
Output : A minimized graph D−

1 function minimize
2 A := automaton corresponding to exp
3 PA := product automaton D × A
4 D− := { }
5 foreach (a, q0) in PA do
6 foreach randomly chosen path π from (a, q0) to a final state (b, qf ) do
7 if no path from (a, q0) to any final state (b, qf ′) has been added then
8 foreach ((x, qi), p, (y, qj)) ∈ π do
9 D− := D− ∪ {(x, p, y)} // Add edges in π to D−

10 return D−

Example 2. Let D be the graph in Figure 6.1a, and let exp be the regular expression a+. Algorithm 2
constructs the automaton A for the regular expression exp (line 2, Figure 6.1b). The automaton A is used
in the construction of the product automaton PA = D × A (line 3, Figure 6.1c). Algorithm 2 starts at
every start state in PA and performs a depth-first search for final states (lines 6-9).

Since the order of picking paths is random, in the next steps, we illustrate one possible sequence.
Starting at state (2, q0), the algorithm walks through edge ((2, q0), a, (3, q1)). Because (3, q1) is a final state,
the algorithm adds edge (2, a, 3) to D−. Continuing through edge ((3, q1), a, (1, q1)), the algorithm reaches
another final state, (1, q1), so it adds the edge (3, a, 1) to D− (it is not necessary to add (2, a, 3) again).
The algorithm continues through edge ((1, q1), a, (2, q1)) and adds edge (1, a, 2) because (2, q1) is also final
state. Walking through ((2, q1), a, (3, q1)), it reaches the final state (3, q1), which was reached previously,
so the search backtracks and continues. This behavior is repeated for all start states backtracking only at
states visited in the current iteration. The minimized graph D− presented in Figure 6.1d is a possible
optimum solution for this example.

Next, we state the correctness and worst-case time and space complexities of Algorithm 2.

Theorem 10 (Correctness of Algorithm 2). Let w and w− be the weights of the input graph D and output
minimized graph D− respectively. Algorithm 2 produces a minimized graph D− such that the answers to
all queries in Q are preserved and w− ≤ w.

Proof. Given a product automaton PA = D × A, where D is the input graph and A is the automaton
corresponding to input expression exp, it is a known fact that if two states (a, q0), (b, qf ) ∈ PA, where
a, b are the start and destination vertices and q0, qf are the initial and a final state of A respectively, are
connected via a path in PA, then there exists a path from a to b in D that is in the language of exp [45].

Since for each query (a, q0) ∈ Q (line 5) Algorithm 2 finds a path to every final state (b, qf ) (line 6),
all answers are preserved. Also, it discards paths whose destination has already been reached (line 7),
so the number of edges added to D− and consequently its total weight w− tend to decrease, and
therefore w− ≤ w.

45



(a) Input graph D

1 2

3

a :1
a :1

a :1

a :
1a :1

a :
1

(b) Automaton A

q0 q1
a

a

(c) Product Automaton P A

1, q0

2, q0

3, q0

1, q1

2, q1

3, q1

a :1

a :1

a :1

a :1

a :1

a :1

a :1a :1

a :1

a :1

a :1

a :1

(d) Minimized graph D−

1 2

3

a :1

a :
1a :1

Figure 6.1: Example execution of the RGM algorithm
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Theorem 11 (Space Complexity of Algorithm 2). The worst-case space complexity of Algorithm 2 is
O(|D| ∗ |A|).

Proof. The only data structures that Algorithm 2 creates are the automaton A, the product automaton PA,
and the minimized graph D−, which is a subset of D. Therefore, the largest data structure is PA = D ×A,
so the worst-case space complexity is O(|D| ∗ |A|).

Theorem 12 (Time Complexity of Algorithm 2). The worst-case time complexity of Algorithm 2
is O(|Q| ∗ |D| ∗ |A|).

Proof. The basic operation of Algorithm 2 is line 6, where it iterates over all paths π from (a, q0) to (b, qf ),
for each (a, q0) ∈ Q. Although we refer to π as a path (sequence of edges), we can instead represent it as a
subgraph (set of edges). Therefore, the worst-case time complexity of Algorithm 2 is O(|Q| ∗ |D| ∗ |A|).

6.3 Context-Free-Language-Constrained Graph Minimization
The context-free-language-constrained graph minimization algorithm is presented in Algorithms 3 and 4.
It uses the output of Algorithm 1. For each edge (a, X, b) ∈ D′, where (a, X) ∈ Q, the minimization
algorithm randomly picks a subgraph that matches an X-derivable path from a to b from trace items
in I using the auxiliary function get_subgraph in Algorithm 4. Paths are chosen using depth-first search,
starting at vertex b in any trace item of the form X → {a} . . . {b, . . . }, and walking from right to left
towards the start vertex a. The color variable (Alg. 3, l. 3) is used to guarantee that the search stops. A
new color is chosen at each iteration (Alg. 3, l. 10). Since the algorithm picks only one subgraph (line 5)
for each edge (a, X, b), the number of edges in D− and consequently its total weight tend to decrease. The
iteration of position sets from right to left avoids following paths that do not reach a vertex in the last
position set. This process is applied recursively for non-terminal symbols between position sets. Subgraphs
that match valid paths found in this process are stored in the mapping answers. Doing so, the algorithm
avoids recomputing paths and getting stuck in infinite recursion. Subgraphs are effectively added to D−

in function add_subgraph.

ALGORITHM 3 : The CFGM Algorithm
Input : A grammar G, a set of queries Q, an annotated graph D′, and a set of trace items I
Output : A minimized graph D−

1 function minimize
2 D− := { }
3 color := 1
4 let answers : V × (Σ ∪ N) × V 7→ P(D′)
5 foreach a, X, b s.t. (a, X) ∈ Q ∧ (a, X, b) ∈ D′ ∧ no X-derivable path from a to b has been

added do
6 foreach randomly picked trace item it = (X → x1 . . . xm, f) such that a is in the first

position set C0 and b is in the last position set Cm do
7 if get_subgraph(b, it, m, color) ̸= null then
8 break
9 add_subgraph(a, X, b)

10 color := color + 1
11 return D−

Algorithm 4 contains two auxiliary subprograms that are used by Algorithm 3. The function get_subgraph
concentrates the mechanics of the recursive search over trace items. This function returns a subgraph
that links the vertex a in the first position set to the vertex b in the i-th position set (lines 5, 10, 29).
Although this function always finds a subgraph that answers a given query (if such answer exists), it might
return null sometimes. For instance, if the search reaches a given vertex in the last position set of a trace
item that is painted (line 6), i.e., that given vertex in that same position set has already been visited in
a previous call in that search, and no answer was found so far, it does not make sense to continue the
search from that point, so the algorithm returns null. This indicates that it was not possible to find a
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valid subgraph following that path, so another path in that or another trace item must be tried. The
function add_subgraph (lines 31-36) recursively adds the terminal edges stored in the mapping answers

in the function get_subgraph to the minimized graph D−.
Example 3 presents an example run of Algorithms 3 and 4.

ALGORITHM 4 : Auxiliary subprograms for Algorithm 3
1 function get_subgraph(b, it = X → {a}x1C1 . . . Cm−1xmCm, i, color)
2 if i = 0 then
3 if m = 0 then
4 answers(b, X, b) = { }
5 return { }
6 else if i = m ∧ b is painted then
7 res := null
8 if (a, X, b) ∈ dom(answers) then
9 res := answers(a, X, b)

10 return res

11 paint(b, it, i, color)
12 foreach w s.t. w ∈ Ci−1 ∧ (w, xi, b) ∈ D′ (pick firstly w’s such that (w, xi, b) ∈ D−) do
13 paint(a, it, i − 1)
14 edges := null
15 if xi ∈ Σ then
16 edges := {(w, xi, b)}
17 else if xi ∈ N then
18 foreach it2, b s.t. it2 = xi → {w} . . . Cm2 ∧ b ∈ Cm2 do
19 if get_subgraph(b, it2, m2, color) ̸= null then
20 edges = {(w, xi, b)}
21 break
22 if edges ̸= null then
23 edges2 := { }
24 if i > 1 then
25 edges2 := get_subgraph(b, it, i − 1, color)
26 if edges ̸= null then
27 if (w, xi, b) /∈ dom(answers) then
28 answers(w, xi, b) = edges ∪ edges2
29 return edges ∪ edges2
30 return null
31 procedure add_subgraph(a, X, b)
32 foreach (s, p, o) ∈ answers(a, X, b) do
33 if p ∈ Σ then
34 D− := D− ∪ {(s, p, o)}
35 else if p ∈ N then
36 add_subgraph(s, p, o)

Example 3. Let D be the graph in Figure 6.2a and G the grammar given by S → a S, S → ε. Algorithm 3
uses Algorithm 1 to construct the annotated graph D′ and the set of trace items I respectively presented in
Figures 6.2b and 6.2c. In its main loop, the algorithm uses the set of trace items I and the annotated
graph D′ to randomly pick subgraphs that form paths that answer queries in Q. It starts at vertices in the
last position set of a trace item and performs a depth-first search for the vertex in the first position set.

Since the order that the algorithm iterates over trace items is random, in the next steps, we follow
one possible sequence, illustrated in Figure 6.2d. Let us pick (a, X, b) = (1, S, 3) first (Alg. 3, l. 5). Start
at vertex 3 in the last position set of trace item S → {1} a {2} S {1, 2, 3} (Alg. 3, l. 6). The algorithm
starts the search for a path that answers (1, S, 3) (Alg. 3, l. 7) using function get_subgraph (Alg. 3,
l. 1-30). Since the symbol S between the last and the second position set is non-terminal (Alg. 4, l. 17),
the algorithm has to recursively pick a path for (2, S, 3).

The only item capable of providing a path for that non-terminal-labeled edge is S → {2} a {1, 2, 3} S {1, 2, 3} (Alg. 4,
l. 18). Up to this moment, no edge has been added to the mapping answers or to D−. The algorithm
picks edge (3, S, 3) (Alg. 4, l. 12), which is guaranteed by item S → {3} (Alg. 4, l. 18). The map-
ping (3, S, 3) 7→ { } is now added to answers (Alg. 4, l. 4), so, from now on, whenever an S-derivable path48



(a) Input graph D

1 2

3

a :1
a :1

a :1

a :
1a :1

a :
1

(b) Annotated graph D′

1 2

3

a :1, S

a :1,S

a :1, S

S a :1, S

S

a :
1,

Sa :1,S

a :
1,

S

(c) Trace item set I

S → {1} a {2} S {1, 2, 3}

S → {1}

S → {2} a {1, 2, 3} S {1, 2, 3}

S → {2}

S → {3} a {1, 2} S {1, 2, 3}

S → {3}

(d) Depth-first search (in red) over I and updates
on answers (in blue)

S → {1} a {2} S {1, 2, 3}

S → {1}

S → {2} a {1, 2, 3} S {1, 2, 3}

S → {2}

S → {3} a {1, 2} S {1, 2, 3}

S → {3}
︷ ︸︸ ︷
answers(3, S, 3) = { }

︷ ︸︸ ︷
answers(2, S, 3) = {(2, a, 3), (3, S, 3)}

︷ ︸︸ ︷
answers(1, S, 3) = {(1, a, 2), (2, S, 3)}
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Figure 6.2: Example execution of the CFGM algorithm
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from 3 to itself is needed, the value in answers will be used. The next edge picked is (2, a, 3), which is a
terminal-labeled edge in D (Alg. 4, l. 15) and it is added to answers(2, S, 3) along with (3, S, 3) (Alg. 4, l. 28).
With edge (2, S, 3) guaranteed, the algorithm returns to the first trace item and picks edge (1, a, 2) (Alg. 4,
l. 12), which is also a terminal-labeled edge in D (Alg. 4, l. 15).

Recursively adding all terminal edges to D− (Alg. 3, l. 9, Alg. 4, l. 31-36) using answers, the
edge (1, S, 3) is guaranteed to exist in D−. This behavior is repeated for non-terminal edges (a, X, b) ∈ D′

such that (a, X) ∈ Q. The minimized graph D− presented in Figure 6.2e is a possible optimum solution
for this example.

Next, we state the worst-case time and space complexities of Algorithm 3.

Theorem 13 (Space Complexity of Algorithm 3). The worst-case space complexity of Algorithm 3
is O(|V |2).

Proof. Algorithm 3 creates the minimized graph D− and the mapping answers. The minimized D− is a
subset of D, so it may use at most O(|D|) space. The definition of answers is a mapping from edges to
sets of edges. These sets of edges in the range ofanswers, however, are of limited size. They can only reach
a size equal to the length of the trace used to produce them. Considering that the length of grammar rules,
and therefore of trace items, is insignificant if compared to the size of the input graph, we can consider
this length to be 1. So answers may be as big as |V × (Σ ∪ N) × V | ∗ 1, which is O(|D|) too. Since we are
considering the grammar to be much smaller than the graph and the edge labels are restricted to the
grammar’s alphabet, we can consider only the size of the set of vertices in D. Therefore, the worst-case
space complexity of Algorithm 3 is O(|V 2|).

Theorem 14 (Time Complexity of Algorithm 3). The worst-case time complexity of Algorithm 3
is O(|V |3).

Proof. The basic operation of Algorithm 3 is line 7, where it will iterate over all X-derivable paths π

from a to b, for each (a, X) ∈ Q. That operation is the function get_subgraph in Algorithm 4, which
iterates trace items recursively saving subgraphs into the mapping answers to avoid redoing recursion
for a given (a, X, b). On its turn, the basic operation of get_subgraph is line 18, which is executed once
for each vertex w in the previous position set (line 12) (|V | times in the worst-case) times the number
of trace items starting at w and containing the vertex b in the its last position set (line 18) (|V | ∗ |P |
times in the worst-case), totalizing |V | ∗ |N | ∗ |D| ∗ |P | times in the worst-case. Considering the size of the
grammar insignificant comparing to the size of the graph, we have that the worst-case time complexity of
Algorithm 2 is O(|V | ∗ |N | ∗ |D| ∗ |P |) = O(|V | ∗ |V |2) = O(|V |3).

6.4 Experiments
In this section, we present experiments with prototypes of Algorithms 2 (RGM) and 3 (CFGM). The
source-code as well as the databases used in the experiments are publicly available in our online repository1.
In the charts presented, algorithms RGM and CFGM are painted red and blue respectively. Missing values
for CFGM in some executions are due to program halting on reaching Python’s maximum recursion depth.
We use a variety of graphs, languages and algorithm behaviors. The graphs vary in density, representing
the worst and a better case2. For the purpose of comparison, all these languages are regular, since only
CFGM is capable of recognizing context-free languages. We define the queries as the product between all
vertices and the start state of the automaton, for the RGM algorithm, or the start symbol of the grammar,
for the CFGM algorithm. We developed three distinct behaviors for both algorithms:

• Alphabetical-sort behavior – vertices, edges, states and trace items are iterated in alphabetical order
(for trace items, only the production rule is considered). For instance, the edges (v1, b, v3), (v1, a, v2), (v2, a, v1), (v10, a, v3)

1Online git repository containing the source-code and datasets used in the experiments: https://gitlab.com/
ciromoraismedeiros/rdf-ccfpq.

2The best case would be linear graphs. However, we did not perform experiments with such graphs because they do not
simulate realistic situations.
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would be iterated in the order (v1, a, v2), (v1, b, v3), (v10, a, v3), (v2, a, v1). Due to the fact that
we distribute the weight of the edges in complete graphs in ascending order regarding their label,
iterating over edges in this order simulates a greedy heuristic, where the algorithm chooses cheapest
edges first. Since the order is consistent, this behavior tends to reuse edges.

• Implementation-dependant behavior – vertices, edges, states and trace items are iterated according
to Python’s built-in iteration order. This order is defined by the Python interpreter according to
the current organization of data inside the data structures. There is no guarantee that it preserves
insertion order, but it tends to repeat the same order between iterations over an unchanged data
structure. Since the order tends to be consistent, this behavior tends to reuse edges.

• Random behavior – vertices, edges, states and trace items are iterated randomly. This behavior
simulates the most naïve approach, which chooses edges in a completely random manner. Since the
order is not consistent, this behavior tends not to reuse edges.

6.4.1 Complete Graphs

The first experiment we performed involves complete graphs and a number of regular languages. The
edges in these complete graphs are labeled either a, b, c, d, e and have weight 1, 2, 3, 4, 5 respectively. The
languages used are a∗, (a|b)∗, (a|b|c)∗, (a|b|c|d)∗ and (a|b|c|d|e)∗. The size of the graphs ranges from 2,500
edges, in experiments using graphs with 50 vertices and the language a∗, to 450,000 edges, in experiments
using graphs with 300 vertices and the language (a|b|c|d|e)∗. Since the cheapest edges are the ones
labeled a (cost 1), a∗ is a subset of all languages, and all vertices are reachable from every other, the exact
solution is always a cycle of edges labeled a connecting all vertices. The cost of this solution is equal to
the number of vertices in the graph.

Figure 6.3 presents the results of this experiment. We can see six series of data in each chart, with
an extra series of data indicating the approximation ratio for the optimum solution, which is always 1,
painted green in the charts in Figure 6.3a.

Concerning the approximation ratio to the optimum solution (Figure 6.3a), both algorithms present
a constant approximation ratio for alphabetical-sort and implementation-dependant behaviors, where
algorithm RGM shows overall better results, reaching the optimum weight in most executions. We can
see a clear discrepancy between the experiments with the random behavior and these mentioned above.

For the random behavior, both algorithms achieve a roughly linear approximation ratio, reaching
worse values by orders of magnitude. Those results indicate that, for the future development of heuristics,
the reuse of edges should take the same attention as their cost. Regarding time (Figure 6.3b), the
algorithms present competitive results. For both algorithms, the implementation-dependant behavior
shows better performance. This result was expected since this behavior does not spend time sorting or
shuffling lists of vertices, edges, states or trace items. Last, for memory consumption (Figure 6.3c), we
can see that RGM presents uniform results between behaviors, and consumes less than CFGM in all
executions. For CFGM, the random behavior presents worse performance than the alphabetical-sort and
implementation-dependant ones.

6.4.2 Fractal Triangles

The second experiment we performed involves fractal triangles (a.k.a. Sierpinski triangles) and the same
regular languages from the previous experiment regular languages. A fractal triangle is composed by a
number of recursive subdivisions. Figure 6.4 illustrates examples of fractal triangles. Fractal triangles
simulate a better case than complete graphs, where the graph is sparser but all vertices are still reachable
from each other. As in the previous experiment, the edges in these graphs are labeled either a, b, c, d, e and
have weight 1, 2, 3, 4, 5 respectively, and the languages used are a∗, (a|b)∗, (a|b|c)∗, (a|b|c|d)∗ and (a|b|c|d|e)∗.
The size of the graphs ranges from 6 edges, in experiments using triangles with 0 subdivisions and the
language a∗, to 7,290 edges, in experiments using triangles with 5 subdivisions and the language (a|b|c|d|e)∗.
We do not know the optimum solution for these graphs, so we present the percentage value of the weight
of the solution concerning its original weight. Figure 6.5 presents the results of this experiment.51
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We can see six series of data in each chart. Concerning the percentage value of the solution’s
weight (Figure 6.5a), the alphabetical-sort and implementation-dependant behaviors produce better
solutions than the random one. It is interesting to observe that the bigger the expression, the more the
graph can be minimized. This is due to the fact that the graphs used in the experiments contain only the
labels in the alphabet of that language, so more symbols mean that more edges can be deleted. Concerning
time (Figure 6.5b), both algorithms using any of the implementations tend to behave similarly. The
non-linear behavior, evidenced in experiments with triangles with 5 subdivisions, is due to the non-linear
growth of the triangle graphs according to the linear increase in their number of subdivisions. Concerning
memory consumption (Figure 6.5c), algorithm RGM presents a clear advantage over CFGM as the graphs
scale.

6.5 Conclusions
We introduced and formalized a complex graph optimization problem and provided solutions for special
cases. The Formal-Language-Constrained Graph Minimization problem consists of computing a minimal
subgraph that preserves utility path queries defined with grammars. The FLGM problem is NP-hard and
its decision version is NP-complete for regular and context-free grammars.

We presented two solutions to treat the regular and context-free graph minimization problems in
polynomial-time. The idea behind these solutions is to iteratively add paths to the minimized graph until
all utility queries are satisfied. We have developed prototypes to assert the feasibility of our techniques
via experiments. The prototypes can behave in three different ways that simulate the use of heuristics.
The experiments show that behaviors that tend to reuse edges strongly contribute for better solutions,
with no substantial difference if they prefer cheaper edges or not. The CFGM (Algorithm 3) algorithm
is more memory-consumptive than RGM (Algorithm 2). This is an expected behavior since, in string
recognition, context-free recognizers generally use more memory than regular recognizers because they
require a stack, which grows with the length of the recognition. The CFGM algorithm combines trace
items with recursive function calls to simulate the stack.

As future work we want to improve the CFGM algorithm and its implementation, as well as find more
real situations where the FLGM problem arises. We aim at developing a non-recursive version to avoid
reaching Python’s maximum recursion depth. Instead of relying on the function’s recursive mechanism,
we think of using stacks and trees to simulate such mechanism inside an iterative function. We are also
thinking of a combination of the trace-items-based (Algorithm 1) and the CFGM algorithm to minimize
the graph during the query stage. This combination should be able to return results faster and use less
memory.

Thinking in terms of what the algorithm can do, we want to extend it to take as input not only formal
languages and start vertices but also graph patterns with bound variables, similar to SPARQL queries.
The minimization of graphs will be done to minimally match the graph patterns defined in the conjunctive
query, which will include the language-based path patterns it already solves. This will require reasoning
on dealing with homomorphisms to keep the less data possible that preserves the query’s answers.

Better studying applications that can be modeled as the FLGM problem will give us clues on what
needs to be improved in our solutions and provide us feedback on the design of realistic benchmarks.
Higher theoretical complexity techniques might perform better for application-specific graph structures
than those with lower theoretical complexity for general-purpose. Another question is on the graph model
we are using. Undirected graphs, for example, might fit better in some situations.
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Chapter 7

Final Remarks

In this thesis, we deal with three problems related to graphs and context-free languages: expressing
context-free languages using alternative notations, context-free path querying, and minimizing graphs
constrained to context-free languages. In the next sections, we make a summary of publications and future
work derived from this research.

7.1 Publications Resulting from This Research
Four conference papers (including workshop and short papers) and one journal article resulted from this
research:

In Medeiros et al. [37], we propose an extension of regular expressions, called recursive expressions,
to support the definition of a subset of context-free languages. This work was later continued in
Medeiros et al. [35], where we introduce the syntax of SM Expressions and present the semantics of their
constructs in terms of Standard Matching-Choice Sets. Combined with a graph query language, SM
Expressions can define path queries restricted to SM languages, a subset of context-free languages. We
demonstrate how to obtain context-free grammars from SM Expressions and illustrate the usage of SM
Expressions with examples.

In Medeiros et al. [40], we develop an original context-free path query evaluation mechanism that uses
trace items. Trace items are grammar items annotated with graph vertices that allow us to recognize paths
efficiently. We state the mechanism’s time and space complexity, which are both asymptotically optimal
when compared to other techniques from the literature, and demonstrate its correctness. We conduct a
series of experiments to show its efficiency and applicability in practical cases. An extended version of
this work [41] was published as a journal paper later on. The journal paper includes an extension of the
prototype to support navigational axis and nested expressions [45] and a wide range of experiments.

In Medeiros et al. [36] we define the Formal-Language-Constrained Graph Minimization problem. This
graph optimization problem consists of computing a minimal subgraph that preserves user-defined utility
queries. We demonstrate its NP-hardness and NP-completeness for special cases. We extend this work by
designing non-exact polynomial-time algorithms for the Regular- and Context-Free-Language-Constrained
Graph Minimization problems. We demonstrate their time and space complexity and give an intuition on
their correctness. Also, we implement prototypes to evaluate the feasibility of the techniques proposed via
experiments. We are preparing an article to publish the new content.

7.2 Future Work
In this section, we present directions for future work for each of the problems treated in this thesis. These
directions involve deeper investigations on the properties and usability of SM Expressions, improvements
on the performance of the path query evaluation and graph minimization algorithms proposed, and the
development of realistic benchmarks.

SM expressions still need formalization on some properties and assessing their usability. Analyzing
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the complexity of the translating SM Expressions into context-free grammars, identifying the class of
context-free languages that cannot be expressed with SM Expressions and comparing them with other
proposals of non-regular expressions. It is equally important to run experiments with students and
professionals from Computer Science and related areas to assess the usability of such expressions.

The performance of our trace-items-based algorithm (Algorithm 1) can be improved for dealing with
larger graphs. Parallelism, better indexing techniques and better management of data to make use of disk
memory to reduce the consumption of the main memory are desired improvements. These may improve
performance and scalability of our prototype in many aspects: the treatment of unmarked vertices in
position sets may be done in parallel; keeping the more data possible in the disk will allow it dealing with
large graphs that do not fit in the main memory. Also, more investigation on how to use the information
on trace items to reconstruct paths will allow it to implement single-path and all-path semantics efficiently.

The work on graph minimization is plenty of possibilities to be continued. Improving the algorithms
and their corresponding prototypes will allow them to deal with larger graphs consuming less time and
memory. It is important that the algorithms treat conjunctive queries to make it possible to express more
complex utility queries. The minimization of graphs will be done to minimally match the graph patterns
defined in the conjunctive query, which will include the language-based path patterns it already solves.
This will allow new applications to make use of these graph minimization mechanisms.

Those directions open field for more research branches and for new query languages and applications
making use of the new technologies developed to emerge.
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Résumé Substantiel

1 Introduction Générale

Nous traitons trois problèmes liés aux bases de données en graphes et aux langages hors-contexte : exprimer
des langages hors-contexte à l’aide de notations alternatives, évaluer des requêtes de chemins hors-contexte
et minimiser les graphes contraints à des requêtes de chemins hors-contexte.

Les requêtes de chemin définissent des modèles pour faire correspondre les chemins dans un graphe
étiqueté et orienté, de sorte que la chaîne formée par la concaténation des étiquettes appartient à un
langage donné. Les langages de requête de graphe prennent généralement en charge les expressions
régulières pour la définition des requêtes de chemin. Cependant, les expressions régulières ne suffisent pas
à spécifier certaines propriétés importantes, comme les requêtes de même génération, où l’on veut trouver
des paires de sommets au même niveau d’une hiérarchie donnée.

Pour définir des requêtes de chemins non réguliers, on peut utiliser des langages hors-contexte. Les
langages hors-contexte sont généralement spécifiés par des grammaires hors-contexte, mais celles-ci sont
en quelque sorte complexes et ne sont pas aussi populaires que les expressions régulières.

Les requêtes de chemins hors-contexte définissent des modèles de chemin en termes de grammaires
hors-contexte. Ce type de requête est intéressant dans des domaines tels que la génétique, la science
des données et l’analyse de code source. Les requêtes de chemins hors-contexte peuvent répondre, par
exemple, à des requêtes de même génération.

Une réponse à une requête de chemins peut provenir de plusieurs sous-graphes de la base de données.
Une telle redondance est parfois indésirable, que ce soit pour des questions de stockage, de confidentialité
ou de coût. La satisfaisabilité de poids / coût minimum dans les bases de données de graphes peut réduire
la quantité de données de manière à préserver les réponses à certaines requêtes données.

Dans ce travail, nous: (1) proposons une notation alternative pour exprimer des langages hors-contexte;
(2) développons un algorithme d’évaluation de requêtes de chemins hors-contexte; e (3) développons des
algorithmes pour la minimisation de bases de données en graphe constraint à un langage hors-contexte et
régulier.

Nous réalisons des expériences avec des prototypes des algorithmes développés ici. Le code source
ainsi que les bases de données utilisés dans les expériences sont accessibles au public dans notre référentiel
en ligne1.

1Référentiel git en ligne contenant le code source et les ensembles de données utilisés dans les expériences : https:
//gitlab.com/ciromoraismedeiros/rdf-ccfpq.
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2 Formalisme
Avant de présenter les contributions de notre travail, nous présentons les définition des concepts les plus
importants dans ce contexte.

2.1 Langages Formels

Un language est un ensemble de chaînes de caractères construit à partir d’un alphabet finit. Un langage
peut être defini par une grammaire.

Definition 1 (Grammaire). Une grammaire est une quadruple G = (N, Σ, P, S) où N est l’ensemble de
symboles non-terminels, Σ est l’ensemble de symboles terminels (alphabet), P est l’ensemble de règles de
production dans la forme α → β, où α ∈ (N ∪ Σ)+ et β ∈ (N ∪ Σ)∗, et S ∈ N est le symbole initial.

Étant données une chaîne αδγ, où δ ∈ (N ∪ Σ)+, et une règle de production δ → β, on peut appliquer
cette règle pour produire la chaîne αβγ, noté par αδγ ⇒ αβγ. Si, pour une chaîne s donnée, on peut
appliquer des règles de production successivement et générer une chaîne s′, noté par s ⇒∗ s′, on dit que
s′ est dérivable depuis s.

Étant donné une grammaire et une chaîne, la reconnaissance de chaînes consiste à vérifier si la
chaîne appartient au langage généré par la grammaire. Il existe une large gamme d’algorithmes pour
la reconnaissance de chaînes, variant en complexité et en puissance de calcul. Chaque algorithme de
reconnaissance est adapté à une classe de langages.

Dans ce travail, les classes de grammaires hors-contexte et régulières reçoivent plus d’attention. Les
règles de production dans une grammaire hors-contexte sont de la forme X → γ, où X est un symbole
non-terminel et γ est une chaîne posiblement vide (noté par ε) de symboles terminels et non-terminels.
Les règles de production dans une grammaire régulière sont de la forme X → a ou X → a Y , où Y

est un symbole non-terminel et a, terminel. La règle vide n’est autorisée que si X est le symbole de
début. Les grammaires régulières sont moins expressives, mais sont plus simples et peuvent être évaluées
plus rapidement. Les expressions régulières sont une notation alternative répandue pour les grammaires
régulières. Les grammaires hors-contexte sont plus expressives que les grammaires régulières, mais elles
augmentent la puissance de calcul nécessaire à la reconnaissance des langages associés. Bien que certaines
initiatives proposent des notations plus pragmatiques pour exprimer des langages hors-contexte, la notation
la plus populaire est les grammaires hors-contexte (CFG).

2.2 Graphes

Dans cette section, nous formalisons les concepts liés aux graphes et aux requêtes de chemin. Pour
illustrer ces définitions, nous nous référons au graphe D de la Figure 1 et à la grammaire G donnée
par {S → a S b, S → ε}, qui définit le langage anbn.

Definition 2 (Graphe). Un graphe (aussi appelé graphe de données ou base de données en graphe)
est un ensemble de triplets dans V × L × V , où V est un ensemble de sommets et L est un ensemble

1

2

3 4

a

a

b

a

b

Figure 1: Graphe exemple
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d’étiquettes d’arêtes. Nous appelons sous-graphe tout sous-ensemble d’un graphe.
Le graphe de la Figure 1 est D = {(1, a, 2), (1, a, 3), (2, b, 3), ...}.

Les graphes peuvent avoir des arêtes étiquetées non terminales. Par exemple, l’arête (a, S, b) indique
qu’il existe un chemin dérivable depuis S entre a et b. Nous nous référons aux graphes qui contiennent de
telles arêtes étiquetées non terminales comme des graphes annotés.

Les triples peuvent être organisées en sequence pour former un chemin. Par exemple, le chemin π =
((1, a, 2), (2, b, 3), (3, b, 4)) sur la Figure 1 lie les sommets 1 et 4. La concaténation des étiquettes d’un
chemin forme une chaîne qui peut appartenir à un langage. Une grammaire peut être utilisée pour
interroger des chemins dans un graphe. Cela nous donne la définition suivante.

Definition 3 (Requête de chemins hors-contexte). Étant donné un graphe D et une grammaire hors-
contexte G, une requête de chemins hors-contexte (CFPQ) Q est un ensemble de paires (x, A) où x ∈ V

et A ∈ N . L’évaluation d’une requête de chemins hors-contexte Q produit l’ensemble de tous les sommets y

tels qu’il existe un chemin de x à y dérivable depuis A.
Dans notre exemple, la requête (1, S) a des réponses {1, 3, 4}.

Les prochaînes sections présentent les travaux développés dans cette thèse.

3 Expressions SM pour la Définition de Requêtes de Chemin

3.1 Introduction

La plupart des langages de requête en graphes utilisent des expressions régulières pour définir des requêtes
de chemin. Cependant, les expressions régulières ne peuvent pas spécifier certaines propriétés importantes
sur les bases de données de graphes, telles que les requêtes de même génération. Cela caractérise une
requête de chemins hors-contexte. La définition des langages de spécification pour les requêtes de chemins
hors-contexte est importante car elle impacte l’utilisation pratique des bases de données en graphes. Nous
présentons les Expressions de Choix Correspondants Standard (Expressions SM) pour la spécification des
requêtes de chemins non régulièrs.

Nos expressions sont inspirées par la famille des Ensembles de Choix Correspondants Standard, un
sous-ensemble significatif des langages hors-contexte, présenté par Yntema 2. Nous définissons la syntaxe
et la sémantique des expressions SM, et nous formalisons la traduction des expressions SM en un ensemble
de règles d’une grammaire hors-contexte. La traduction des expressions SM en grammaires hors-contexte
comble le vide entre un langage de spécification plus naturel pour interroger les bases de données en
graphes et les moteurs de requête existants pour les CFPQ.

Yntema définit une hiérarchie d’inclusion de classes de langages hors-contexte qui peuvent être définis
à l’aide d’opérations sur des ensembles de chaînes. Étant donné un alphabet Σ, les blocs de construction
pour définir ces langages sont (i) un ensemble de paires de chaînes S ⊆ Σ∗ × Σ∗ et (ii) un ensemble de
chaînes C ⊆ Σ∗.

L’ensemble des paires S peut être vu comme une généralisation des parenthèses ouvrantes et fermantes.
L’ensemble de chaînes C contient des chaînes qui seront entourées par celles de S. Les langages construits
à partir de ces ensembles contiennent des chaînes αβγ telles que (α, γ) ∈ S et β ∈ C. Étant donné des
ensembles de paires de chaînes S1 et S2, l’auteur introduit les Matching-Choice Sets définis sur S1 et S2

2Yntema, M. Inclusion relations among families of context-free languages. Information and Control10, 6 (1967), 572 – 597
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comme suit :

S1 ⊕ S2 = {(x, y) | (x, y) ∈ S1 ∨ (x, y) ∈ S2} (1)

S1S2 = {(xz, wy) | (x, y) ∈ S1 ∧ (z, w) ∈ S2} (2)

S1∗ = {(ε, ε)} ∪ {(x1 · · · xn, yn · · · y1) | (xi, yi) ∈ S1, i ≤ n, n ∈ N+} (3)

À l’aide de ces opérations, nous pouvons maintenant présenter les langages de choix correspondants
standard.

Definition 4 (Langages de Choix Correspondants Standard). Étant donné un ensemble de choix cor-
respondant S (c’est-à-dire, un ensemble de paires construites à l’aide des opérations ci-dessus) et un
ensemble de chaînes C, le Langage de Choix Correspondants Standard S ◦ C est défini comme suit :

S ◦ C = {xzy | (x, y) ∈ S ∧ z ∈ C}

Étant donné un nombre fini d’ensembles de chaînes Ai, Bi (1 ≤ i ≤ n), nous pouvons construire un
ensemble S de paires de chaînes par (i) définissant les ensembles de paires Ai × Bi = Si, et (ii) appliquant
récursivement les opérations d’union (1), de séquence (2) et de fermeture (3 sur les ensembles Si. Notez
que les éléments dans S peuvent être vus comme des paires de parenthèses correspondantes tandis que
les chaînes dans C correspondent à des chaînes placées entre eux. Les opérations union (1), séquence (2)
et étoile (3) garantissent que l’ensemble S ◦ C est formé par des chaînes contenant des expressions entre
parenthèses bien formées.

Yntema définit la classe des langages SM, un sous-ensemble approprié de langages hors-contexte
qui peuvent être décrits à l’aide des opérations mentionnées ci-dessus. Dans la section suivante, nous
définissons un ensemble d’expressions pour désigner les ensembles de choix correspondants standard.

3.2 Expressions de Choix Correspondants Standard

Dans cette section, nous proposons les expressions SM pour définir les Langages de Choix Correspondants
Standard. Les expressions régulières sont à la base de la définition des expressions SM. Étant donné un
alphabet Σ = {t1, . . . , tn}, l’ensemble des expressions régulières sur Σ est l’ensemble des chaînes défini par
R → () | t1 | . . . | tn | (R) | RR | R|R | R*.

Definition 5 (Syntaxe des expressions SM). L’ensemble des expressions SM sur un alphabet Σ est défini
de manière inductive comme suit :

1. Toute expression régulière E sur Σ est une expression SM.

2. Expression SM base :
E, E0, E′ sont des expressions SM
<E>E0<E′> est une expression SM

3. Parenthèses imbriquées :

<P1>E0<P ′
1> est une expression SM <P2>E0<P ′

2> est une expression SM
<P2.P1>E0<P ′

1.P ′
2> est une expression SM

4. Choix de parenthèses :

<P1>E0<P ′
1> est une expression SM <P2>E0<P ′

2> est une expression SM
<P2 + P1>E0<P ′

1 + P ′
2> est une expression SM
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Description Ensembles SM Expression SM
Nombre égal de a’s et de b’s. ({(a, b), (b, a)} ∗ ◦{ϵ})∗ (<:a+b:><:a+b:>)*

bnab2n {(b, bb)} ∗ ◦{a} <:b:>a<:bb:>

Langage {bossn boss−1n | n ≥ 0}, pour
une requête de même génération.

({boss} × {boss−1}) ∗ ◦{ε} <: boss :><: boss−1 :>

an+1bmcmdn+1 a{(a, d) ∗ ◦({(b, c)} ∗ ◦{ε})}d a<:a:>(<:b:><:c:>)<:d:>d

Table 1: Exemples d’Expressions SM

5. Récursion :
<P>E0<P ′> est une expression SM

< : P : >E0< : P ′ : > est une expression SM

Notez que les chaînes Pi dans les cas ci-dessus ne sont, en général, pas des expressions SM, mais elles
dénotent un langage d’ouverture de parenthèses. De manière analogue, P ′

i représentent des ensembles de
parenthèses fermantes. Ces chaînes peuvent contenir des caractères comme “.”, “+” et “:”, qui sont
utilisés pour construire les langages qui dénotent les parenthèses ouvrantes et fermantes.

Le Tableau 1 réunit des exemples d’expressions SM et leur ensemble SM correspondant.

3.3 Conclusion

Nous avons présenté une notation pour spécifier les langages de la famille des Ensembles de Choix
Correspondants Standard. Cette famille de langages est un sous-ensemble des langages hors-contexte,
construit autour de la notion du parenthésage des chaînes. Les expressions SM sont une notation alternative
aux grammaires hors-contexte pour définir des requêtes de chemins hors-contexte. Les expressions SM
peuvent être directement traduites en règles de grammaires hors-contexte, ce qui leur permet d’être
utilisés avec la plupart des moteurs d’évaluation de requêtes de chemins hors-contexte disponibles dans la
littérature.

Notre travail peut être prolongé en considérant différentes perspectives : (i) analyser les coûts
asymptotiques associés à la traduction d’expressions SM en grammaires hors-contexte ; (ii) identifier la
classe des requêtes de chemins hors-contexte qui ne peuvent pas être exprimées avec des expressions SM ;
(iii) comparer l’expressivité des expressions SM avec d’autres propositions d’expressions non régulières ;
(iv) enquêter sur l’utilisation des expressions SM dans le cadre d’autres langages de spécification non
réguliers ; et (v) évaluer l’utilisabilité des expressions SM via des expériences avec des étudiants et des
professionnels de l’informatique et des domaines connexes.

4 Évaluation des Requêtes de Chemins Hors-Contexte

4.1 Introduction

Dans cette section, nous présentons notre approche pour l’évaluation des requêtes de chemins hors-contexte
(CFPQs). Notre algorithme prends comme paramètre d’entrée une grammaire, un graphe et une requête,
et reconnaît les chemins hors-contexte dans le graphe. Le but de l’algorithme est d’identifier des paires de
sommets reliés par des chemins qui forment des chaînes dans le langage de la grammaire.

Notre algorithm utilise une structure de données specifique pour contrôler le processus d’évaluation de
chemins, presentée dans la définition suivante.
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Definition 6 (Item de Trace). Étant donné une grammaire hors-contexte G = (N, Σ, P, S) et un graphe D,
un item de trace est une paire formé par une règle de production et une fonction associant un ensemble de
nœuds de graphe à chaque position du côté droit de la règle. Formellement, un item de trace est défini
comme la paire (A → α, f), où A → α ∈ P et f : {0, . . . , |α|} → P(V ). Les items de trace sont uniques
en ce qui concerne leur sommet de départ et leur règle de production.

Nous noterons l’item de trace (A → α1, . . . , αn, f), où f = {0 7→ C0, . . . , n 7→ Cn} comme [A →
C0 α1 C1 ... αn Cn]. Les ensembles C1, . . . , Cn seront appelés ensembles de position.

Le premier ensemble de position C0 dans un item de trace est un singleton. Étant donné deux ensembles
de position C1, C2 et un symbole grammatical α, une séquence C1 α C2 sur le côté droit d’un item indique
que chaque sommet dans C2 est accessible depuis au moins un sommet dans C1 via un chemin dérivable
depuis α. Par exemple, l’item de trace [ S → {1} a {2, 3} S {4} b { } ] indique que le processus d’analyse
est à un stade où des chemins dérivables depuis a reliant le sommet 1 aux sommets 2 et 3 dans le graphe
ont été identifiés.

4.2 L’Algorithm Basée Sur les Items de Trace

Dans cette section, nous présentons l’Algorithm 1 pour l’évaluation des CFPQs basés sur les items de
trace. Cet algorithme utilise des marques spéciales • et ◦, respectivement, pour les sommets traités et
non traités dans les ensembles de positions, pour garder l’histoire des sommets qui ont déjà été traités.
Nous omettons ces marques lorsqu’une telle distinction n’est pas nécessaire. L’opérateur ∪⋊⋉ est utilisé pour
effectuer des unions entre des ensembles de sommets traités et non traités, et il est défini comme :

C ∪⋊⋉ {x◦} =
{

C, si x• ∈ C

C ∪ {x◦}, au cas contraire

où C est un ensemble de positions et x◦ est un sommet non marqué. Si le vertex x a déjà été traité, il est
conservé marqué dans l’ensemble de position C. Sinon, il y est ajouté non marqué.

ALGORITHM 1 : L’Algorithme Basé Sur les Items de Trace
Input : Une grammaire G, une requête Q, et un graphe D
Output : Un graphe annoté D′ ⊆ V × (Σ ∪ N) × V et un ensemble d’items de trace I

1 function eval
2 I := {[A → {w◦} α1 { } ... αn { }] | A → α1...αn ∈ P ∧ (w, A) ∈ Q}
3 D′ := D
4 while ∃i, x s.t. i = [A → ... {x◦, ...} ...] ∈ I do
5 switch i
6 case i = [A → ... {x◦, ...} αk Ck ...] do
7 if αk ∈ Σ ∨ [αk → {x} . . . ] ∈ I then
8 Ck := Ck ∪⋊⋉ {y◦ | (x, αk, y) ∈ D′}
9 else

10 I := I ∪ {[αk → {x◦} β1 { } ... βn { }] | αk → β1 ... βn ∈ P}
11 case i = [A → {w} . . . {x◦, ...}] do
12 D′ := D′ ∪ {(w, A, x)}
13 foreach [B → . . . {w•, ...} A C . . . ] ∈ I do
14 C := C ∪⋊⋉ {x◦}
15 marquer(x, i)
16 return D′, I

L’algorithme 1 manipule deux structures de données : un ensemble d’items de trace I et un graphe D′

contenant le graphe d’origine D annoté de manière incrémentielle avec de nouvelles arêtes non-terminelles.
Pour calculer les réponses aux requêtes dans Q, l’algorithme commence par créer des items de trace à
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partir de ses paires de sommets et de règles de grammaire : pour chaque paire (v, A) ∈ Q, il crée un
item de trace pour chaque règle de production du non-terminal A avec v dans le premier ensemble de
position (line 2). Cela prépare l’algorithme à entrer dans la boucle principale qui traite les sommets non
marqués dans les éléments de I.

Il existe deux cas lors du traitement de sommets non marqués :

1. Dans le premier cas de la boucle principale (lines 6-10), étant donné l’item de trace i = [A →
C0 α1 C1 ...αn Cn], x◦ appartient à un ensemble de positions Ck−1 qui n’est pas dans la dernière
position de l’item de trace. Il existe trois sous-cas :

(a) Si αk ∈ Σ, tous les sommets y◦ tels qu’il existe une arête (x, αk, y) ∈ D′ sont ajoutés à
Ck (ligne 8);

(b) Si αk ∈ N et [ αk → {x} . . . ] ∈ I, tous les sommets y◦ tels qu’il y ait une arête (x, αk, y) ∈ D′

sont ajoutés à Ck (ligne 8) ;

(c) Si αk ∈ N et il n’y a pas d’item de trace [ αk → {x ...} ... ], Algorithm 1 lance la recherche
de dérivations depuis αk commençant à x. Cela se fait en créant de nouveaux items de
trace αk → {x◦} . . . et en les ajoutant à I (ligne 10).

2. Dans le second cas de la boucle principale (lignes 11 à 14), le sommet x appartient au dernier
ensemble de position d’un item de trace. L’item de trace i = [A → {w} . . . {x◦, ...}] indique qu’il
existe un chemin du sommet w à x en D′. Ainsi, Algorithm 1 génère une arête étiquetée A

reliant ces deux sommets (ligne 12). Après cette opération, tous les ensembles de position C tels
que [ B → . . . {w, . . . } A C . . . ] ∈ I sont mis à jour avec x◦ (ligne 14).

À la fin du corps de la boucle principale, le sommet x◦ est marqué (ligne 15). La condition d’arrêt de cette
boucle est l’absence de sommets non marqués dans tous les ensembles de positions. Le graphe annoté D′

est retourné à la fin (ligne 16).
Étant données la grammaire G avec des règles de production P = {S → a S b, S → ε}, le graphe D dans

la Figure 1 et la requête Q = {(1, S), (3, S)}, notre algorithme calcule les solutions représentées par des
flèches en gras et étiquetées par des non-terminaux dans la Figure 2. L’ensemble d’items de trace final est :

[ S → {1•} a {2•, 3•} S {2•, 3•, 4•} b {3•, 4•} ], [ S → {1•} ],
[ S → {2•} a { } S { } b { } ], [ S → {2•} ],
[ S → {3•} a {1•} S {1•, 3•, 4•} b {4•} ], [ S → {3•} ]

Les complexités en space et en temps, respectivement, de l’Algorithm 1 dans le pire des cas est
de O(|V |2 · |P | · k) et O(|V |3 · |P |2 · k2).

4.3 Conclusion

Nous avons présenté un algorithme pour l’évaluation des requêtes de chemins hors-contexte pour les bases
de données en graphe. Nous avons analysé sa complexité de temps et en espace dans le pire des cas.



8

Nous avons conduit une série d’expériences pour valider la viabilité de notre technique. Nous avons
développé cinq implémentations qui diffèrent par l’algorithme implémenté, le langage de programmation,
la représentation des données, entre autres aspects. Nos expériences montrent que notre algorithme
surpasse d’autres algorithmes disponibles dans la littérature.

Comme travaux futurs, nous avons l’intention d’étudier une version parallèle de notre algorithm. Une
meilleure gestion des grands graphes qui ne rentrent pas dans la mémoire est également une amélioration
souhaitée. Une autre caractéristique souhaitable consiste à utiliser les informations sur les items de trace
pour reconstruire les chemins.

Nous avons aussi l’intention de travailler sur la définition d’un benchmarking pour les algorithmes
d’évaluation des CFPQs. Cela permettra d’avoir des données plus précises pour comparer les différents
algorithmes qui implémentent ces requêtes.

5 Minimisation de Graphes Contrainte par un Langage Formel

5.1 Introduction

Dans ce chapitre, nous présentons le problème de la Minimisation de Graphes Contrainte par un Langage
Formel (FLGM). Nous proposons des solutions pour les versions régulières et hors-contexte de ce problème.

Ce problème consiste à supprimer d’un graphe d’entrée autant de triplets que possible, de manière à
ce que les réponses à une requête d’utilité définie par l’utilisateur soient préservées. Le problème FLGM
apparaît dans les scénarios de minimisation de graphes, tels que la minimisation de réseaux, l’analyse de
code source et autres.

Minimiser un graphe D consiste à identifier un sous-ensemble D− ⊆ D dont le poids (ou le coût) est
minimum, et il reste au moins un chemin valide pour chaque réponse d’une requête donnée. Cet ensemble
de requêtes est utilisé pour préserver l’utilité des données.

Definition 7 (Problème de Minimisation de Graphe Contrainte par un Langage Formel). Étant donné
une grammaire G, un graphe D avec des poids sur les arêtes, un ensemble de requêtes Q et une fonction de
poids (ou de coût) f , le problème de la Minimisation de Graphe Contrainte par un Langage Formel (FLGM)
consiste en identifier un sous-graphe D− ⊆ D tel que pour toutes les requêtes (a, X) ∈ Q, aient leur
réponses préservées et f(D−) est le minimum.

Ce problème d’optimisation est NP-difficile, et sa version de décision est NP-complète pour les langages
décidables en temps polynomial.

Dans les sections suivantes, nous présentons des algorithmes heuristiques pour résoudre le problème
de minimisation de graphes pour un sous-ensemble de langages. Nos techniques sont composées de deux
étapes : l’évaluation d’une requête de chemin et la construction d’un graphe minimum. Puisque la
reconnaissance de chaînes est elle-même une tâche complexe, nous restreignons les grammaires utilisées
pour définir les chemins aux classes de grammaires régulières et hors-contexte. Ces classes nous permettent
de couvrir non seulement le large éventail d’applications qui utilisent des langages réguliers, mais aussi
celles qui nécessitent des langages hors-contexte. Ainsi, nous présentons une solution aux problèmes de
la Minimisation de Graphes Contrainte à un Langage Régulier et Hors-Contexte. Par des contraintes
d’espace, nous ne présentons pas leur pseudo-code.

5.2 Algorithms pour le Problème FLGM

Nos algorithmes de minimisation de graphes contrainte par un langage régulier et hors-contexte s’appellent,
respectivement, RGM et CFGM. Ces algorithmes se comportent de façon similaire.
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Figure 3: Exemple de Minimisation de Graphe Contrainte à Un Langage Formel

Les algorithmes RGM et CFGM créent des structures de données auxiliaires qui décrivent les chemins
dans le graphe. Ces structures de données leur permetent de trouver, pour chaque réponse aux requêtes,
des chemins qui appartiennent au langage formel spécifié. L’algorithme RGM construit un automate
produit, lors que l’algorithme CFGM construit un ensemble d’items de trace.

Construite leur structure de données respective, les algorithmes choisissent un chemin pour chaque
réponse aux requêtes et ajoutent les arêtes de ce chemin au graphe minimum. De cette façon, il est garanti
que toutes les réponses aux requêtes séront préservées, puisqu’il y a au moins un chemin valide pour
chaque réponse.

Il peut y avoir plusieurs solutions de coût minimial pour une instance du problème FLGM. Comme
ce problème est NP-complet, un algorithme ne peu pas garantir de trouver la meilleure solution. Nos
algorithmes utilisent une heuristique gloutonne. Ça veut dire que, à chaque instant, ils choisissent les
chemins moins chèrs pour trouver des solutions les plus proches possibles des meilleures.

Nous présentons un exemple d’instance du problème FLGM. Soit D le graphe de la Figure 3a, G

la grammaire donnée par S → a S, S → ε, Q = {(1, S), (2, S), (3, S)} l’ensemble des requêtes, et f une
fonction de somme simple des poids des arêtes. Tous les sommets sont accessibles à partir de tous les
autres via un chemin dérivable depuis S. Une possible solution pour cette instance est présenté dans
la Figure 3b. Notez que tous les sommets restent toujours accessibles à partir de tous les autres via un
chemin dérivable depuis S. Les réponses sont donc préservées, malgré l’effacement de plusieurs arêtes du
graphe.

Les complexités de temps et d’espace de l’algorithme RGM sont respectivement O(|Q| ∗ |D| ∗ |A|),
et O(|D| ∗ |A|), où Q est l’ensemble des requêtes, D est le graphe et A est l’automate construit à
partir de la grammaire donnée. Les complexités de temps et d’espace de l’algorithme CFGM sont
respectivement O(|V |3) et O(|V |2), où V est l’ensemble des sommets du graphe D.

5.3 Conclusion

Nous avons défini le problème FLGM et développé des algorithmes pour des cas spéciaux. Le problème
FLGM est NP-difficile, et sa la version de décision est NP-complète pour des langages hors-contexte.

Nous avons développé deux algorithmes pour résoudre ce problème quand les langages sont régulièrs
ou hors-contexte. Nous avons conduit des expéciences avec des prototypes des deux algorithmes. Les
résultats montrent que, dans nos expériences, l’algorithme RGM atteint un facteur d’approximation de 1
(solution optimale) pour les graphes complets, où il y a, pour chaque étiquette, une arête entre toutes les
paires de sommets. Le facteur d’approximation de l’algorithme CFGM varie entre 2 et 6. En termes de
performances de temps et de consomation de mémoire, l’algorithme RGM est aussi supérieur. Par contre,
nous savons que l’algorithme CFGM est capable de processer une classe de langages plus grande que celle
de l’algorithme RGM.

Comme travaux futurs, nous voulons améliorer l’algorithme CFGM et son implémentation, ainsi que
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trouver des situations plus réelles où le problème FLGM se pose. En pensant en termes de ce que les
algorithmes peuvent faire, nous voulons les étendre pour prendre en entrée non seulement des langages
formels et des sommets de départ, mais aussi des modèles de graphe avec des variables, similaire aux
requêtes SPARQL. Cela nécessitera un raisonnement sur le traitement des homomorphismes pour conserver
le moins de données possible qui préserve les réponses de la requête.

Une meilleure étude des applications qui peuvent être modélisées comme le problème FLGM nous
donnera des indices sur ce qui doit être amélioré dans nos solutions et nous fournira des commentaires
sur la conception de benchmarks réalistes. Les techniques de complexité théorique plus élevée pourraient
mieux fonctionner pour les structures de graphes spécifiques à l’application que celles avec une complexité
théorique inférieure à usage général. Une autre question concerne le modèle graphique que nous utilisons.
Les graphes non orientés, par exemple, peuvent mieux s’adapter dans certaines situations.

6 Conclusion Générale
Dans cette thèse, nous traitons trois problèmes liés aux graphes et aux langages hors-contexte : l’expression
de langages hors-contexte à l’aide de notations alternatives, l’évaluation de requêtes de chemins hors-
contexte et la minimisation de graphes contraints aux langages hors-contexte.

Les expressions SM ont encore besoin d’être formalisées sur certaines propriétés et d’évaluer leur
utilisabilité. Analyser la complexité de la traduction des expressions SM en grammaires hors-contexte,
identifier la classe des langages hors-contexte qui ne peuvent pas être exprimés avec des expressions SM et
les comparer avec d’autres propositions d’expressions non régulières. Il est également important de mener
des expériences avec des étudiants et des professionnels de l’informatique et des domaines connexes pour
évaluer l’utilisabilité de telles expressions.

Les performances de notre algorithme basé sur les items de trace (Algorithm 1) peuvent être améliorées
pour traiter des graphes plus grands. Le parallélisme, de meilleures techniques d’indexation et une
meilleure gestion des données pour utiliser la mémoire disque afin de réduire la consommation de la
mémoire principale sont des améliorations souhaitées. Ceux-ci peuvent améliorer les performances et
l’évolutivité de notre prototype à bien des égards : le traitement des sommets non marqués dans les
ensembles de positions peut être effectué en parallèle ; conserver le plus de données possible sur le disque
lui permettra de traiter de graphes plus grands qui ne tiennent pas dans la mémoire principale.

Le travail sur la minimisation des graphes est plein de possibilités à poursuivre. L’amélioration des
algorithmes et de leurs prototypes correspondants leur permettra de traiter des graphes plus grands
consommant moins de temps et de mémoire. Il est important que les algorithmes traitent des requêtes
conjonctives avec des variables pour qu’ils puissent être utilisés dans une gamme plus grande d’applications.

Ces orientations ouvrent le champ à davantage de branches de recherche et à de nouveaux langages
d’interrogation et applications utilisant ces nouvelles technologies développées pour émerger.
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Résumé :
Nous traitons trois problèmes liés aux requêtes de chemin en graphes. La plupart des langages de requête
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Pour résoudre chacun de ces problèmes, nous : (1) développons une notation alternative pour exprimer des
langages hors-contexte ; (2) développons et expérimentons un algorithme d’évaluation de requête de chemins
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