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RÉSUMÉ EN FRANÇAIS

Introduction

Le 21ème siècle subit un tsunami de données dans de nombreux domaines, notamment en bioinformatique. Ce changement de paradigme nécessite le développement de nouvelles méthodes de traitement capables de passer à l'échelle sur de telles données. Ce travail consiste principalement à considérer des jeux de données massifs provenant du séquençage génomique. Une façon courante de traiter ces données est de les représenter comme un ensemble de mots de taille fixe, appelés k-mers. Les k-mers sont très largement utilisés comme éléments de bases par de nombreuses méthodes d'analyses de données de séquençages. L'enjeu est de pouvoir représenter les k-mers et leurs abondances dans un grand nombre de jeux de données. La principale difficulté réside dans la taille des échantillons qui peuvent contenir des centaines de milliards de k-mers distincts.

Dans ce travail, nous explorons une représentation particulière des séquences, la matrice de k-mers, et ses capacités à répondre à des problèmes variés dans des contextes d'indexation ou d'analyse.

En résumé, ce travail à conduit à différentes contributions : 1. Une méthode efficace de construction de matrice de k-mers. Une matrice de k-mers est construite à partir des vecteurs d'abondances de chacun des k-mers d'un jeu de données. La première étape consiste donc à compter les occurrences des k-mers dans l'ensemble des jeux de données étudiés. Nous avons étendu les techniques de comptage classiques, simple jeu, au comptage multi-jeux permettant ainsi la construction efficace et parallèle de matrice de k-mers à partir de nombreux jeux de séquençages. 2. Une méthode de filtration des k-mers erronés. Nous montrons que les techniques classiques de détection des k-mers erronés ne sont pas adaptées à tous types de jeux de données. La représentation matricielle permet un nouveau type de correction basé sur la redondance entre les échantillons. 3. Une méthode efficace pour la construction parallèle de matrices de filtre de Bloom. Un filtre de Bloom [1] est une structure de données probabiliste permettant de déterminer si un élément fait partie d'un ensemble. Ce type de structure est très utilisé dans le cadre de l'indexation de données, ici l'indexation de k-mers. La construction de filtres de Bloom à partir de données de séquençage est un goulot d'étranglement majeur des processus d'indexation. Nous proposons une méthode de construction de matrices de filtre de Bloom, basée sur la méthode de construction de matrice d'abondances. 5. L'application des matrices de k-mers dans le cadre de l'analyse différentielle de k-mers. L'analyse différentielle de k-mers consiste à trouver les k-mers différentiellement représentés entre deux groupes de jeux de données, par exemple des cas et des contrôles.

Ces méthodes appliquent des tests statistiques sur chacun des vecteurs d'abondances des k-mers. L'obtention de ces vecteurs d'abondances est actuellement le facteur limitant. Nous avons combiné notre méthode de construction avec des outils statistiques de l'état de l'art pour produire un nouvel outil, kmdiff, pour améliorer le passage à l'échelle de ce type de méthodes. Nous montrons que kmdiff est plus performant d'un point de vue computationnel tout en produisant des résultats équivalents. [START_REF] Dufresne | The K-mer File Format: a standardized and compact disk representation of sets of k-mers[END_REF]. L'application des matrices de k-mers dans le cadre de l'indexation de grands ensembles de données. Nous avons utilisé notre méthode de construction de filtre de Bloom pour proposer un pipeline d'indexation complet, de l'indexation à la requête. sous-matrices. Notre méthode de construction et de streaming a permis de réaliser des analyses différentielles de k-mers à large échelle (voir .3). Une modification de l'algorithme permet de produire une représentation indexable d'une matrice de présence/absence, i.e une matrice de filtre de Bloom. Ceci nous a permis de proposer un pipeline complet d'indexation que nous avons appliqué à un grand ensemble de données métagénomiques (voir .4).

L'un des principaux problèmes liés à l'utilisation des k-mers est celui des erreurs de séquençage qui entraînent un grand nombre de k-mers erronés. Il existe des méthodes simples pour résoudre ce problème et permettre d'éliminer ces k-mers. Cependant, les techniques classiques ne sont pas toujours adaptées aux échantillons de séquençage complexes tels que les métagénomes. Nous décrivons comment la vue holistique des abondances de k-mer dans plusieurs échantillons permet une nouvelle méthode de filtrage des k-mers que nous appelons k-mer rescue. Les méthodes classiques consistent à rejeter les k-mers avec une abondance inférieure à un seuil donné. En effet, nous pouvons supposer qu'un k-mer présent une seule fois dans un génome aura une abondance environ équivalente à la couverture de séquençage. Ainsi, les k-mers avec une abondance faible sont probablement des erreurs. Toutefois, il existe des jeux de données pour lesquels la représentation des séquences n'est pas uniforme dans l'échantillon de départ. C'est par exemple le cas des métagénomes qui peuvent contenir un très grand nombre d'organismes, certains étant sous-représentés. En d'autres termes, des k-mers peu abondants peuvent alors correspondre à des séquences sous-représentées. Lorsque l'on considère un ensemble d'échantillons, nous pouvons supposer qu'il existe une certaine redondance entre ces échantillons. Par exemple, le projet Tara Ocean collecte des échantillons marins dans l'océan à des fins de séquençage métagénomique. L'analyse de ces échantillons révèle, comme attendu, des similarités génétiques entre ces échantillons. L'idée est donc d'exploiter la redondance entre les jeux de données pour sauver des éléments rares. Ceci demande d'analyser les vecteurs d'abondances de chacun des k-mers, une information naturellement donnée par les matrices de k-mers. Lorsqu'un k-mer est peu abondant dans un jeu de données, la méthode consiste alors à examiner les abondances dans les autres échantillons pour décider de le conserver ou non, en fonction de paramètres définis par l'utilisateur.

kmtricks: un outil de construction et d'analyse de matrice de k-mers

Les matrices de k-mers sont des objets génériques pouvant avoir des applications dans de nombreuses analyses bio-informatiques. L'objectif était donc de proposer un outil, kmtricks, permettant de construire différents types de matrices de k-mers de manière efficace et simple d'un point de vue utilisateur.

kmtricks est composé de différents éléments : 1. Un pipeline pour une utilisation de bout en
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A Sequencing

Over time, the techniques for reading genome sequences have evolved and there are now many different types of sequencing methods. The different techniques produce data with particular characteristics that must be considered in the downstream analysis methods. The following sections give a brief overview of main types of methods and their specificities.

First generation sequencing

The first sequencing technology was developed by Frederick Sanger and published in 1977 [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF].

It allowed to produce the first genetic sequence of the human mitochondrial DNA [START_REF] Anderson | Sequence and organization of the human mitochondrial genome[END_REF]. Later, it is also this technique that led to the first complete sequence of the human genome in 2001 [10,11].

In a few words, the process consists in the synthesis of a DNA sequence from a template and a primer. The reaction medium contains also a low concentration of dideoxynucleotides (ddNTPs: ddATP, ddCTP, ddGTP, ddTTP) which are in charge of stopping the elongation. These blocks are randomly used by the DNA polymerase in place of the usual deoxyribonucleotide triphosphates. Thus, the reaction produces a lot of sequences of various sizes that start at the primer and stop at a given ddNTP. The ddNTP of a fragment being known, the sequence can then be reconstructed by ordering all fragments by length using electrophoresis.

Although its throughput is very limited, the Sanger method is still used today for its high accuracy [12] to complete regions that are difficult to sequence with modern technologies [13].

The Sanger method is presented here for completeness but is not related to this work which concerns high-throughput sequencing.

Next generation sequencing

The Next Generation Sequencing (NGS) corresponds to the methods developed in the 2000s and has resulted in a major change in the use of sequencing due to unprecedented throughputs and costs. From a methodological point of view, the main novelty is the possibility to perform reactions in parallel on a solid surface [14]. Billions of reactions occur and are analyzed in parallel allowing to sequence a lot of small DNA fragments at the same time. The preparation of the sample consists of the fragmentation of the DNA molecules followed by amplification. After these preparation stages, the sequencing method depends on the platform.

Nowadays many technologies with different capacities are able to produce short reads such as Illumina sequencing [START_REF] Kanchi | MiSeq: A Next Generation Sequencing Platform for Genomic Analysis[END_REF] or Ion Torrent sequencing [START_REF] Merriman | Progress in Ion Torrent semiconductor chip based sequencing[END_REF]. It is generally admitted that these methods have a high-throughput while keeping low error rates [START_REF] Quail | A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers[END_REF].

The main drawback is the limited size of the fragments which rarely exceed 250bp. The small size causes difficulties in assembling repeated regions or in detecting long structural variants which require long-range information. This information was introduced with paired-end sequencing which allows sequencing of both ends of a DNA fragment. These types of reads have enabled more efficient mapping resulting in better prediction of genetic variations [START_REF] Nakazato | Experimental Design-Based Functional Mining and Characterization of High-Throughput Sequencing Data in the Sequence Read Archive[END_REF]. Recently, a new technology, 10x Genomics [START_REF] Weisenfeld | Direct determination of diploid genome sequences[END_REF], has made it possible to preserve long-range information.

The DNA fragments from a single longer molecule (dozen of kilobases) are marked with a DNA barcode. During downstream analyses, it is therefore possible to track reads which belong to the same molecule. This information allows to guide certain analyses like assembly [START_REF] Zhanshan | Hybrid assembly of ultra-long Nanopore reads augmented with 10x-Genomics contigs: Demonstrated with a human genome[END_REF] or variant detection [START_REF] Morisse | LEVIATHAN: efficient discovery of large structural variants by leveraging long-range information from Linked-Reads data[END_REF].

Third generation sequencing

The Third Generation Sequencing (TGS) were developed at the end of the 2000s and try to address some NGS issues [START_REF] Pollard | Long reads: their purpose and place[END_REF]. The main novelty is the direct sequencing of a single DNA molecule while NGS relies on the amplification of many short fragments. Direct sequencing allows to process molecules of several kilobases and produce thus long reads up to hundreds of kilobases. However, it presents much higher error rates than NGS. The TGS technologies are led by two principal companies, Pacific Biosciences (PacBio) and Oxford Nanopore Technology (ONT).

The ONT platform is based on nano-scaled pores. The variations of the electrical signal when DNA molecules pass through such pores are measured to identify the nucleotides that compose the sequence. Although this method allows long molecule sequencing, it is constantly evolving and still has a high error rate, usually greater than 10% [START_REF] Workman | Nanopore native RNA sequencing of a human poly(A) transcriptome[END_REF]. In addition, the ONT techniques seems to present various error patterns and biais [START_REF] Delahaye | Sequencing DNA with nanopores: Troubles and biases[END_REF]. For example, homopolymers (sequences of identical nucleotides) are difficult to sequence using such a technique due to a non-constant flow in the pore. The number of identical nucleotides passing through the pore in a given time is sometimes difficult to determine and leads to sequencing errors.

Introduction

The PacBio platforms consist in synthesizing and sequencing single molecules in real-time in a nanowell [START_REF] Mj | Zero-mode waveguides for single-molecule analysis at high concentrations[END_REF]. A DNA template is used to synthesize a new molecule using fluorescent nucleotides. These nucleotides produce light signals which are interpreted in real-time to produce the sequence. Two protocols are available. The Continuous Long Reads (CLR) protocol produces reads up to 100 kb with relatively high error rates of 8-15% [START_REF] Rhoads | PacBio Sequencing and Its Applications[END_REF]. The Circular Consensus Sequence (CCS) protocol allows multiple readings of the sequence to output a consensus. This technology is currently used to produce High-Fidelity (HiFi) reads with an accuracy higher than 99% [START_REF] Ting Hon | Highly accurate long-read HiFi sequencing data for five complex genomes[END_REF]. These reads are however smaller with sizes ranging from 10 to 30 kb [START_REF] Ting Hon | Highly accurate long-read HiFi sequencing data for five complex genomes[END_REF].

As described before, TGS techniques address certain problems of short reads. However, they produce noisier reads at a higher cost. Recent technologies such as HiFi are beginning to address this issue but the costs are still high and few datasets are available. TGS methods are usually seen as new possibilities with their advantages and disadvantages rather than as a replacement for short reads. Moreover, short and long reads are frequently used in conjunction in various operations as assembly [START_REF] Antipov | hy-bridSPAdes: an algorithm for hybrid assembly of short and long reads[END_REF] or error correction [START_REF] Salmela | LoRDEC: accurate and efficient long read error correction[END_REF].

From the k-mers point of view

The characteristics of the different sequencing techniques affect the downstream analysis methods. Indeed, the length of fragments and the error rate prevent the use of a certain type of methods. As a result, the majority of tools focus on one sequencing technology.

In this work, we focus on k-mer-based methods. Given a biological sequence S of length L.

A k-mer of S denotes a substring of S of length k, usually 20 ≤ k ≤ 40. k-mers are generic objects that can be derived from arbitrary sequences. A sequence or a set of sequences, e.g. a set of sequencing reads, is then represented by its k-mer set. Such representation was primarily used for genome assembly to represent reads as a de Bruijn graph [START_REF] Pevzner | An Eulerian path approach to DNA fragment assembly[END_REF], before searching a path representing the complete genome in this graph.

The k-mer-based methods are intensively used for the analysis of short reads from the second sequencing generation. On the contrary, they are less universal in the context of the analysis of long reads from the third generation sequencing. Indeed, a high error rate leads to a large number of erroneous k-mers. For example, assuming that errors are uniformly distributed, all kmers with a size greater than 10 would be wrong with an error rate of 10%. Moreover, the use of k-mers causes the loss of the long-range information provided by the third generation. However, k-mer-based methods will probably appear in the analysis of long reads with the emergence of accurate long reads as HiFi reads.

B Analysis methods 1 Reference-based

Reference-based methods usually share a common first step: aligning the reads from a sequencing sample on a reference genome. Reference genomes are representative sequences of the genome of a species. They are produced from multiple sources of DNA belonging to various individuals and therefore constitute a blueprint of the genome of a species rather than a natural genome. This first particularity leads to a well-known and studied problem, the reference bias.

The reference bias refers to the bias induced by the linear reference genome, which does not account for population or individual genetic variations. Methods that use a reference are therefore subject to this bias, regardless of the quality of the reference. In other words, the results of an analysis depend on the reference, for example, in the case of variant detection which uses the alignments of reads on a reference to identify genetic variations [START_REF] Degner | Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data[END_REF][START_REF] Débora | Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data[END_REF][START_REF] Salavati | Elimination of Reference Mapping Bias Reveals Robust Immune Related Allele-Specific Expression in Crossbred Sheep[END_REF]. The choice of reference alleles also implies many biases. Indeed, some populations are poorly represented in the reference, making the analysis difficult [START_REF] Gurdasani | The African Genome Variation Project shapes medical genetics in Africa[END_REF].

Recently, new methods have proposed to use multiple references to limit these biases. In this case, multiple references are often represented as a sequence graph and the reads are then aligned on such graphs [START_REF] Garrison | Variation graph toolkit improves read mapping by representing genetic variation in the reference[END_REF]36].

Whether we consider one or several references, the alignment of the reads is always the first step of the analysis, after the possible pre-processing steps, such as error correction. Local sequence alignment is a costly problem often addressed by heuristics to keep computation time acceptable. Many alignment tools exist and implement different heuristics that produce different results [37,38,[START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF][START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF]. Consequently, the choice of the alignment method significantly impacts the results.

Finally, some experiments simply cannot use a reference. As previously discussed, the reference strongly impacts the quality of the downstream analysis and must therefore be as accurate as possible. Unfortunately, non-model species rarely have reference genomes of sufficient quality or no reference genome at all. Multi-organism datasets such as metagenomes are also poorly suited to the reference methods because they contain many organisms of different species, sometimes hundreds of thousands. fields such as assembly [START_REF] Sohn | The present and future of de novo whole-genome assembly[END_REF], variants detection [42], error correction [43], metagenomics [START_REF] Ren | VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data[END_REF], RNA-Seq quantification [START_REF] Patro | Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms[END_REF], etc.

Reference-free methods are also particularly interesting for the analysis of multi-sample datasets. Indeed, they enable the direct comparison of samples while reference-based consit in performing single analyses against the reference followed by the comparison of the results. Such techniques have already demonstrated their ability to produce new results. For example, the joint reference-free analysis of sample collections in the context of variant detection has allowed the detection of sequences missed by reference-based analysis because such sequences were out of the scope of the reference [2,46]. Usually, reference-free methods require fewer computational resources but sometimes the requirements are still high, as for genome assembly.

Note that a reference is sometimes used at the end of an analysis to locate a genetic variant for example, but is not directly used by the primary analysis.

Challenges

A The continuous growth of data

The reduction in costs and the ever-increasing throughput of sequencing technologies are leading to the continuous growth of databases. This tsunami of data concerns many disciplines and is not exclusive to bioinformatics. In sequence bioinformatics, the Sequence Read Archive (SRA) database [START_REF] Leinonen | The Sequence Read Archive[END_REF] is a good indicator of the situation since it tries to capture the major part of the sequencing data produced. Figure 1 This amount of data raises different problems at several levels, storage, accessibility, and analysis, which are all directly related to the work presented in this thesis.

Storage.

Because of the mass of data, the representation and storage of the data are critical. All sequences submitted to SRA must contain the quality score per base, regardless of the format.

Many downstream analyses does not require quality scores, representing a non-negligible part of the data. SRA addresses this problem with another format that does not contain these scores, SRA Lite, which can be requested to facilitate data transfer.

Note that the data stored on SRA are stored in a raw format by discarding the original format, e.g FASTQ, and dispatching the data in several data tables that contain distilled data.

As a result, the SRA and SRA Lite formats are only distribution formats generated on the fly. This makes downloads from SRA tedious with very low bandwidths, usually far from the saturation of the I/O operations. In addition, the SRA format is supported only by a few tools and therefore requires conversion to underlying formats, adding extra overheads.

Efficient read compression methods, with different trade-offs, exist but are not currently used at database scale [START_REF] Benoit | Reference-free compression of high throughput 123 sequencing data with a probabilistic de Bruijn graph[END_REF]49,[START_REF] Kokot | CoLoRd: compressing long reads[END_REF][START_REF] Numanagić | Comparison of high-throughput sequencing data compression tools[END_REF]. It is important to note that some of this data is intended for further analysis. In other words, the representation/compression of these files must be standardized, stable, easily available on every machine, and especially fit the requirements of the database. Some projects directly provide FASTA/Q files in gzip format, which is a generic compression method widely used in many fields, including bioinformatics. The download of these files is significantly faster and many tools natively support them.

The file representation is a critical aspect from the point of view of both storage and downstream analyses. Due to a large amount of data, many experiments are nowadays limited by IO operations. The current paradigm offers mainly raw data but some projects make available other types of pre-processed data such as alignment files, i.e. the read alignments on the reference genome. Some pre-processing steps are common to many analyses and repeated many times by many end-users for the same dataset. The question of the availability of this kind of data, alignments or k-mer sets for example, leads to many discussions within the community.

Indeed, the availability of this data would probably allow saving many hours of computation while requiring consequent additional storage and infrastructures.

Accessibility. From a database point of view, accessibility can be understood as removing barriers that prevent optimal use of the data. In the context of bioinformatics, and more specifically sequencing data, the most important barrier is the sequence search. Nowadays, the samples are associated with various types of metadata, allowing the search of samples according to various parameters such as sequencing platforms, sequencing library, etc. However, the metadata are often very technical or simply missing [START_REF] Klie | Increasing metadata coverage of SRA BioSample entries using deep learning-based named entity recognition[END_REF], not bringing much value to the primary data.

Other informations like taxonomic informations or experimental conditions would increase the chances that a sample will be reused by someone else outside the original project scope.

In the meantime, metadata queries do not answer a fundamental question: "In which sequencing samples occurs a sequence of interest?". In other words, sequencing samples cannot be selected according to their sequence content. The query of a sequence requires an upstream selection of a sample. Reads indexing techniques have been developed in the last decades and are progressing rapidly, but their capacities are currently quite limited regarding the size of databases. The indexing of collections of sample is nevertheless interesting at smaller scale, as discussed in section . 2 In summary, the dream would be an alignment-free tool that associates sequences with a collection of sequencing samples. Of course, such a tool is currently unrealistic due the petascale databases. However, there are numbers of intermediate steps between no indexing and a global index. Indexing and querying subsets of data according to a well-designed nomenclature would be a big step forward. Indeed, searching for a subset of sequence samples corresponding to a specific species or a specific sequencing project is obviously attractive.

Analysis.

The growth of the data also requires the development of new analysis methods. Indeed the single-sample techniques cannot continuously be transposed to multi-samples, mainly because of the scaling problem. In addition, joint analyses of vast amounts of samples could bring new knowledge, as already allowed by the GWAS studies which identify genes associated with particular traits from the analysis of a large number of samples. Some projects have already Introduction demonstrated the importance of such approaches, both in terms of scaling and results qualities, as presented in the section . 2

.B [page 8].

The arrival of cloud computing will lead to significant changes in how data is distributed and processed, and bioinformatics is not an exception. Indeed, SRA data is now available on several Amazon S3 providers. This paradigm shift increases the accessibility of the data and has recently allowed a large-scale study [START_REF] Edgar | Petabase-scale sequence alignment catalyses viral discovery[END_REF] on a large part of available sequencing data in SRA.

Sequence alignment of RNA polymerase sequences was performed against 5.7 million samples representing 10.2 petabases of raw data. The study, the first at this scale, identified 10 5 novel RNA viruses, expanding the number of known species by an order of magnitude. Such cloudbased experiments will probably become more common in the future simply because downloading data from a central repository is becoming more and more complicated due to the size of the data.

B Making the raw data talk

At the database level, read indexing can be seen as another approach to find interesting samples, alongside the metadata. For example, we can envisage to query a relevant sequence to collect specific samples for further analyses. In addition, read indexing can contribute directly to data analysis, at least on a medium scale as domain-specific projects like 1000 Genome Project [START_REF]A global reference for human genetic variation[END_REF] or the Human Microbiome Project [START_REF] Proctor | The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project[END_REF].

Sequencing samples indexing actually index k-mers, i.e. they associate a k-mer with a list of samples that contain it. Queries on such indexes are usually used as an approximation of a sequence alignment. The proportions of k-mers shared between a query and the samples in the index give this approximation. As a result, indexing has already been used to answer, often more efficiently, questions that were previously addressed by alignment-based methods, as illustrated below. [START_REF] Solomon | Fast search of thousands of short-read sequencing experiments[END_REF]. The k-mer indexing was used to analyze expressed isoforms on a collection of 2652 human RNA-Seq samples using a new k-mer index layout called Sequence Bloom Tree (SBT). The computation was compared to two mapping algorithm SRA-BLAST [START_REF] Camacho | BLAST+: architecture and applications[END_REF] and STAR [START_REF] Dobin | STAR: ultrafast universal RNA-seq aligner[END_REF]. The query time of single transcript was 20 min for SBT, and estimated to 2.2 and 921 days for SRA-BLAST and STAR, respectively. In addition, the pipeline outputs comparable results to the state-of-the-art isoform quantification methods.

RNA-Seq analysis

Comparative analysis of hundreds of genomes [59].

BlastFrost is an index and a query system based on Bifrost [START_REF] Holley | Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs[END_REF], a compacted representation of De Bruijn graph (DBG).

Such an index was used for indexing hundreds of bacterial genomes to perform queries of antimicrobial resistance genes. The results on precision and sensitivity were compared to Blast [START_REF] Ye | BLAST: improvements for better sequence analysis[END_REF] and show a high correlation. Regarding query time, Blast remains faster for single query but grows rapidly with the number of queries. Regarding BlastFrost, the number of queries has a Introduction small impact on the time since the query time is mostly dependent on the size of the index. In addition, the results show the superiority of BlastFrost over time because it is updatable. Indeed, the Blast index must be recomputed at each addition of new sequences while the BlastFrost index supports updates. Although Blast is faster for a single round of indexing and querying, BlastFrost becomes more interesting for maintaining a durable index and supporting multiple rounds of queries. The BlastFrost index is also an order of magnitude smaller than the Blast index.

Alignment-free phylogeny [START_REF] Wittler | Alignment-and reference-free phylogenomics with colored de Bruijn graphs[END_REF]. Inferring a phylogeny is an expensive task that is sometimes challenging when reference genomes are unavailable, or the number of input genomes is too large to perform all pairwise alignments. SANS is an alignment-free and reference-free method allowing to infer a phylogeny from various inputs, i.e. genomes or reads. It is based on a Bifrost index and infers edges of the phylogenetic tree using common subsequences extracted from the DBG and therefore not relies on pairwise comparisons.

These examples demonstrate that read indexing can help solve problems previouslt addressed with expensive alignment-based methods. In addition, they show the importance of projectscale indexing for analysis purposes. Database-scale indexing is still an ideal goal but is not yet achievable with current methods and tools. Indeed, even if the methods are more and more efficient, indexing databases like SRA requires a drop in computation times of several orders of magnitude.

Note that out of the scope of indexing, raw data can also be used for analysis without any assembly or alignment to reference genomes. Reference-free techniques are especially relevant for analyzing large datasets for which reference-based methods may not scale up. For example, the comparisons of sequencing samples based on k-mers has been used in comparative metagenomics [START_REF] Benoit | Multiple comparative metagenomics using multiset k-mer counting[END_REF][START_REF] Benoit | SimkaMin: fast and resource frugal de novo comparative metagenomics[END_REF] or in GWAS-like studies [2,3,46]. The last point is related to this work and will be discussed later.

Outline

In this work, we explore the k-mer matrix representation with respect to the issues discussed in the previous sections. A k-mer matrix is a simple representation that associates k-mers to abundances across multiple input samples. We are interested in the construction and the use of such objects in various contexts, from indexing to analysis of sequencing samples.

In summary, this work leads to the following contributions:

1. An efficient method for parallel construction and streaming of a k-mer matrix.

The construction of a k-mer matrix requires the abundances of eachk-mer across multiple samples. We extend the disk-based k-mer counting techniques to joint multi-sample kmer counting. An in-depth presentation of the structure and the construction procedures 

2.

A new method for k-mer filtering. Sequencing errors lead to erroneous k-mer that must be discarded. We show that the usual filtering method, consisting in discarding kmers with an abundance less than a threshold, is not usable for all types of datasets. We propose a new method enabled by the matrix representation. The procedure is described in chapter II [page 41], and its application and evaluation on a real dataset are presented in chapter IV [page 61].

3. An efficient method for parallel construction of Bloom filters matrices for indexing purposes. A Bloom filter is a data structure allowing to represent succintly collections of items. It is widely used in the context of indexing, especially for k-mer indexing. We extend the k-mer matrix construction algorithm to achieve parallel construction of Bloom filters matrices in low-memory from a collection of samples. Such a matrix is a building block that can be used for large-scale indexing. The extended method is discussed in chapter IV [page 61]. 4. A k-mer matrix framework. A k-mer matrix is a generic representation that could be useful in various contexts, some of which are presented in this manuscript. We believe that a generic tool that works with such representation would benefit for the bioinformatic community. Consequently, we propose a tool, kmtricks, for the construction, streaming, and indexing of k-mer matrices. It is accompanied by an API and a plugin system to extend its features and build new tools. The chapter V [page 81] is dedicated to the presentation of the components of the tool and the implementation details. 5. An application in large-scale differential k-mer analysis. The differential k-mer analysis consists in finding the differentially represented k-mers between two groups of samples such as cases and controls in a disease study. We combine our method of kmer matrix construction with state-of-the-art statistical models to produce a new tool, kmdiff, allowing large-scale differential k-mers analysis. We show that this strategy leads to better performances while providing equivalent results as state-of-the-art tools. The pipeline and results on various datasets are presented in chapter III [page 51]. [START_REF] Dufresne | The K-mer File Format: a standardized and compact disk representation of sets of k-mers[END_REF]. An application in large-scale indexing. We use our Bloom filters matrix construction to accelerate a state-of-the-art indexing method and to provide an end-to-end indexing pipeline, i.e. from indexing to query. We present our method scaling capabilities and its application on a real and complex collection of samples in chapter IV [page 61].

The next chapter presents an overview of state-of-the-art k-mer-based indexing and analysis methods and argues on the direction of our work.

Chapter I

STATE OF THE ART

Preamble

This chapter presents the current paradigms of k-mer-based sequencing indexing and analysis. Obviously, such techniques rely on k-mer counting, also introduced here and of significant importance in this work.

I start by presenting generic indexing techniques through the prism of k-mers to reflect their advantages and disadvantages in our specific case, namely k-mer-based sequencing samples indexing. This overview of k-mer indexing also argues the choices made in this work.

On the analysis side, I subsequently present the concept of differential k-mer analysis as well as the current methods capable of achieving it. Our goal was to upscale such techniques by improving the handling of k-mers. In this section, I discuss the size of the data and the necessity of appropriate data structures to index and analyze them, taking the human genome as an example.

Biological sequences can correspond to different biological entities like nucleic or amino acids with sometimes virtual characters representing, for example, uncertain characters or even combinations of characters. In this document, we consider only nucleic sequences without consideration of "N" or IUPAC characters [65]. In other words, a sequence is over the alphabet

Σ = {A, C, G, T }.
DNA strands being inversely complementary, a first possible solution to reduce the space is to represent only one strand. Two paradigms coexist: the first one is commonly used for long sequences such as assemblies and represents the sequence from 5' end to 3' end. The second one is used for short sequences and represents only the smallest string, in the lexicographic sense, between a sequence and its reverse complement. The smallest sequence is called the canonical form. Both representations avoid to multiply by two the required space. Using this technique, a human genome in plain text format requires 3.2 

gigabytes (GB).

The small size of the alphabet allows using a more specific encoding than ASCII, which requires 8 bits per character. The number of bits required to encode an alphabet of size |Σ| is ⌈log 2 (|Σ|)⌉. Thus a DNA character can be represented using only 2 bits. The most common encoding is {A = 0, C = 1, G = 2, T = 3}. However, another encoding scheme {A = 0, C = 1, G = 3, T = 2} is sometimes preferred because it corresponds to the 2 nd and the 3 th bits in the ASCII representation of nucleotides. The encoding operations are then only two fast bitwise operations without any memory access. It is the encoding used in this work. Note that it changes the canonical form because G is greater than T in this case. Using the 2-bit encoding, the storage of a human genome requires 0.8GB.

A commonly used representation in biological sequence analysis and indexing is the k-mer set. Given a sequence S, its k-mer set K(S) is the set of all overlapping sub-words of size k from S. Considering k = 32, the number of bytes required to represent a k-mer using the 2-bit encoding is 8 (64 bits). Assuming unique k-mers, the cardinality of a k-mer set from a genome of size N is approximately N -k + 1, which gives 3.2e9 for a human genome. The space required by the whole set is then 95.3GB in plain text and 23.8GB using the 2-bit encoding. In the context of k-mer counting, k-mer abundances are also considered. If k-mer abundances stored using 4 bytes per abundance, the space reaches 35.8GB. In practice, k-mer sets are often computed on sequencing samples that contain sequencing errors resulting in an even larger number of k-mers.

For example, the plain text representation of the k-mer set of human short-read sequencing (from https://www.ncbi.nlm.nih.gov/sra/ERX009609) with 5.7 billion of k-mers uses 192GB.

Sequence indexing

However, k-mers come from a set of sequences; therefore, overlaps are expected. Some methods [START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF][START_REF] Rahman | Representation of $$k$$-mer Sets Using Spectrum-Preserving String Sets[END_REF] take advantage of overlaps to build compacted sequences that correspond to maximal unique paths in k-mers graph, where nodes are k-mers and edges correspond to k -1 overlaps between k-mers. This representation is called a Spectrum-preversing string set (SPSS). As a side note, recently Schmidt et al. shows that an optimal SPSS can be computed in linear time. These representations are nevertheless costly to compute (See Section VI.2 [page 106]) because they need a pre-existing navigational k-mer index [69].

All techniques presented here can be considered as plain text representation (despite the encoding) without any compression or tricky indexing techniques. For a single dataset, plain text representations seem usable, but the data become intractable on a larger scale with hundreds or thousands of samples. As a result, efficient and succinct data structures are needed to survive the never-ending growth of data.

B Query

Before describing the indexing methods allowing to perform sequence queries in a large set, it is important to understand what we call a query.

Different methods exist to determine the membership of a sequence to another sequence or a set of sequences. The most accurates are the alignment techniques which perform base-level alignments, but they suffer from some limitations. Their computational costs allow them to be used on a genome or a limited set of genomes but make them difficult to apply to extensive collections of sequences, especially on collections of reads. Beyond the computational costs, mapping is also hardly applicable to unassembled sequences. In this case, the database is a collection of short reads, making difficult the searching of sequences larger than reads, such as relevant sequences like genes.

In this section, I present the k-mer query paradigm allowing to perform membership queries between a sequence and a collection of samples. Given a collection of samples S = {S 0 , . . . , S n }, the purpose is to determine the set S i ∈ S that contains a query sequence Q. A common method is to compute the intersection between the k-mers from Q, denoted K(Q), and each K(S i ). Note that this technique remains an approximation. Indeed, if Q is present in a sample S i , then K(Q) ⊂ K(S i ), but finding all k-mers of an arbitrary query in a sample does not imply that all k-mers originally came from the same sequence. However, this is usually considered a suitable approximation when k is sufficiently large,

usually k ≥ 20. It is therefore reasonable to consider that Q ∈ S i if |K(Q) ∩ K(S i )| = |K(Q)|, i.e. all k-mers from Q exist in S i .
Sequencing errors and sequence variations impact the k-mers set since a single nucleotide variation can affect up to k k-mers, drastically reducing the number of common k-mers between a query and a sequence. Using a less strict approach, it is possible to overcome this problem by Part, Chapter I -State of the art considering "partial matches". Thus

Q ∈ S i if |K(Q)∩K(S i )| |K(Q)|
≥ θ where θ is a user-defined threshold. Partial matches also allow faster queries because the operation can be canceled immediately when the threshold is reached or is no longer reachable. 

C Assembled sequences indexing

Genomes and reads data differ on several points. In assembled sequences, all bases are expected to be valid bases, unlike reads which contain various types of errors. These errors involve pre-processing operations like k-mer counting (see Section I.3 [page 36]) to be filtered out. Moreover, splitting the genome into k-mers leads to the loss of long-range information. As a result, genome indexing techniques often use string-based techniques such as FM-index [START_REF] Burrows | A Block-Sorting Lossless Data Compression Algorithm[END_REF]71] which allows keeping the long-range informations, unlike k-mer-based techniques. Sequence mappers widely use FM-index to locate alignment seeds before performing the alignment [START_REF] Li | Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[END_REF].

MinHash-based techniques are also intensively used in the context of indexing or comparing genomes [73,[START_REF] Daniel | Dashing: fast and accurate genomic distances with HyperLogLog[END_REF]. MinHash [START_REF] Broder | On the resemblance and containment of documents[END_REF] is a locality sensitive hashing scheme [START_REF] Leskovec | Mining of Massive Datasets[END_REF] allowing to approximate the Jaccard similarity coefficient [77] in a time and space-efficient way. Unfortunately, these methods are not suitable for fragmented data like reads, except for non-noisy long reads.

D Indexing sequencing collections 1 Core data structures

In this section, I present the two main types of data structures allowing to index a set of k-mers, exact and approximate. I argue that although exact representations are commonly used in many applications like assembly, for example, they are not very suitable for large and multi-samples indexing.

a Exact representations

Beyond classical methods like hash tables, overlapping and complementarity properties of kmers allow to build domain-specific representation, thus saving space and time. Two paradigms coexist, hash and string based, and propose different space and time trade-offs.

Methods differ significantly in terms of their memory usage as well as their construction time and query complexity. Some allow the reconstitution of the original k-mer set, while others allow only membership queries without any possibility of restoring the original set. In both cases, the abundances of k-mers can be stored.

Many k-mer dictionaries exist [START_REF] Almodaresi | A space and timeefficient index for the compacted colored de Bruijn graph[END_REF][START_REF] Marchet | BLight: efficient exact associative structure for k-mers[END_REF][START_REF] Holley | Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs[END_REF][START_REF] Jarno | Succinct k-mer Set Representations Using Subset Rank Queries on the Spectral Burrows-Wheeler Transform (SBWT)[END_REF] and are used in various applications. Although these types of representations are space-efficient and allow fast queries, the construction is often expensive. They are therefore rather used in the context of a single sample, for example, in assembly tools [82,[START_REF] Prjibelski | Using SPAdes De Novo Assembler[END_REF][START_REF] Khan | Cuttlefish: fast, parallel and low-memory compaction of de Bruijn graphs from large-scale genome collections[END_REF][START_REF] Khan | Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2[END_REF] or for indexing highly similar genomes [START_REF] Luhmann | BlastFrost: fast querying of 100,000s of bacterial genomes in Bifrost graphs[END_REF] such as genomes from the same species. For the indexing of many sets of reads, approximate methods are often preferred and are presented in the next section.

Note that a recent and unpublished method, Metagraph [86], shows promising results on large-scale and multi-sample indexing in the context of uniform datasets sharing a large part of their k-mers such as a collection of samples from the same species. As for many other techniques, the efficiency is less significant on high-diversity datasets as collections of metagenomic sequencings with rather long construction and larger indexes.

b Approximate Membership Query Filters

Approximate Membership Query Filters (AMQFs) are probabilistic data structures designed to address the membership problem in a space-efficient way. This problem can be defined as follows: Given two sets U and V, determine for each element u ∈ V if u ∈ U. In other words, V is a set of queries. An AMQF allows to answer this question approximately, i.e. it addresses the membership of an element u ∈ V to a set U with a non-zero false positive rate of ϵ. In other words, the possible answers are "definitively not in set" and "possibly in set".

These structures have a lot of applications in various fields and are now ubiquitous in bioinformatics in response to the endless growth of data [START_REF] Solomon | Fast search of thousands of short-read sequencing experiments[END_REF]87,[START_REF] Pandey | A General-Purpose Counting Filter: Making Every Bit Count[END_REF][START_REF] Pandey | Squeakr: an exact and approximate k-mer counting system[END_REF]. Indeed, the space required Part, Chapter I -State of the art by AMQF is relatively small. The information theoretical bound requires log 2 ( 1 ϵ ) bits per item with ϵ the false positive rate. In this section, I present three AMQFs with a focus on Bloom filters which are central in this work.

i Bloom

Bloom filter (BF) [1] is probabilistic data structure that allows two operations: insert and Like all AMQFs, BF is exposed to false positives. Assuming bit independence, the probability that the value of a bit is 0 after the insertion of m elements is (1

-1 n ) km .
The false positive rate is then

ϵ = (1 -(1 - 1 n ) km ) k ≈ (1 -e km/n ) k (I.1)
An optimal BF uses 1.44log 2 ( 1 ϵ ) bits per item [1]. Compared to the information theoretical bound (see Section I. 1.D.1.b [page 15]), the overhead is about 44%. In this context, the optimal number of hash functions is k = log 2 ( 1 ϵ ) where ϵ is the false positive rate. There is thus an inverse relation between ϵ and k: when ϵ decreases k increases. In other words, positive queries must probe more bits when the false positive rate is low. A high number of hash functions then leads to a higher number of cache misses for both insert and lookup. Consequently, the use of an optimal number of hash functions (for a given ϵ) increases the query time.

However, the time complexities of the insert and query operations are constant regardless of the load factor, i.e. whatever the number of elements already in the filter. As previously stated, both operations depend only on k, the number of hash functions. In contrast, other AMQFs use addressing schemes to resolve collisions during insertions and the efficiency is thus related to the load factor (see Section I. 1.D.1.b.ii [page 17]).

BFs are therefore exposed to the problem of a poor locality of reference [START_REF] Stallings | Computer Organization and Architecture: Designing for Performance[END_REF], i.e. inserting and querying require looking at non-contiguous memory areas. As a result, inserting or querying an element leads to approximately k cache misses. The Blocked Bloom filter (BBF) variant [START_REF] Kirsch | Less hashing, same performance: Building a better Bloom filter[END_REF] 1. Sequence indexing partially addresses this problem by ensuring that the k hash values of an element reside in a 512bits block of memory and fit in a single CPU cache-line of 64 bytes. This scheme offers at the same time really fast insert and lookup through Single Instruction Multiple Data (SIMD) allowing to perform each operation in a single CPU operation with the recent instruction sets [START_REF]Intel® Intrinsics Guide[END_REF]. The locality problem remains partially solved. The insertion of n elements always leads to a large number of cache misses, approximatively n in total. A similar number of cache misses can be reached in a lower space (for a given ϵ) using a classical BF with a single hash function. However, as described before, a single hash function is synonymous with a high false positive rate. For example, given a BF of size 1000 containing 100 elements, using 7 hash functions instead of one reduces the false positive rate by an order of magnitude.

In the context of sequencing samples indexing, we handle a collection of BFs, one per sample.

In this case, the data locality becomes more interesting: Given several BFs of the same size using the same hash functions, the insertion pattern of a given element is the same, whatever the filter.

AMQFs that use addressing scheme does not have this property since an insertion depends on the current state of the structure. This leads to some advantages for BFs in terms of space and time which are described in the sections I. ii Cuckoo Cuckoo hashing [START_REF] Pagh | Cuckoo Hashing[END_REF] is an open addressing technique for resolving collisions in hash tables. A cuckoo hash table uses two tables T 1 and T 2 each with n buckets. Two independent hash functions h 1 and h 2 are associated to each table and map a universe U to bucket locations {0, ..., n -1}.

A key k can be stored in only two locations

T 1 [h 1 (k)] and T 2 [h 2 (k)]. The lookup operation is then lookup(k) = T 1 [h 1 (k)] == x ∨ T 2 [h 2 (k)] == x.
The delete operation is performed in the same way by checking the two possible positions. The insert operation derives from the behavior of the cuckoo chick bird, which pushes the other eggs out of the nest when it hatches.

Similarly, a new key may push an older key to a new location when collisions occur. To insert a key k, the first bucket T 1 [h 1 (k)] is examined. If the bucket is free, the key is inserted; otherwise the preoccupied key k old is removed before inserting k. An insertion attempt is then performed for k old in T 2 by following the same procedure. The process continues until an empty position is found. Since there is not always a solution, in the case of collision cycles, for example, a maximum number of iterations is defined. An example is given in figure I. 3 -An example of a Cuckoo hash table using two tables T 1 and T 2 associated with two hash functions h 1 and h 2 , respectively. Arrows represent alternative positions of keys. Keys are inserted following the set order. h 1 (U ) and h 1 (Z) being equals, Z is inserted at its first location h 1 (Z) after kicked out U which is inserted at its alternative location h 2 (U ). V and W are involved in a cycle which prevents the insertion of X that shares the same hash values.

Both operations lookup and delete are O(1) in worst-case. The time complexity of the insert operation is O(n) but an amortized O(1) time is expected with an high probability [START_REF] Pagh | Cuckoo Hashing[END_REF]. In comparison to linear probing, the fastest open addressing scheme [START_REF] Pagh | Cuckoo Hashing[END_REF], the Cuckoo hashing lookup is slower in practice because it often causes two cache misses. However, it is still interesting when the query time is critical thanks to its constant time lookup, which guarantess fast queries independently of the load factor. Recently, the number of cache misses was reduced to 1 on average with multi-way bucketed Cuckoo hashing [START_REF] Zentgraf | Cost-optimal assignment of elements in genome-scale multi-way bucketed Cuckoo hash tables[END_REF].

A Cuckoo filter (CF) [START_REF] Fan | Cuckoo Filter: Practically Better Than Bloom[END_REF] is an AMQF based on a multi-way bucketed Cuckoo hashing (see Figure I.4 [page 19]) allowing fast lookup and high table occupancy. To switch from a hash table to an AMQF, CF uses a scheme called partial-key Cuckoo hasing, which consists in storing only constant-sized fingerprints in buckets instead of keys. This prevents the use of the classical Cuckoo hashing insertion algorithm because the relocation is based on rehashing and therefore requires access to the original key. As a result, the possible locations of a key k are computed as follows:

h 1 (k) = hash(k) h 2 (k) = h 1 (k) ⊕ hash(f (k)) (I.2)
This scheme shows two important properties: 1. The fingerprint hashing ensures that the new location is randomly chosen. Without hashing and assuming small fingerprints, the xor operation would only affect the low-order bits and, therefore, a new location close to the original one. 2. The xor operation allows to compute the alternative location from the original location.

In other word, given an original bucket b, the alternative bucket is b

′ = b ⊕ hash(f (k)).
Besides this scheme, the insert operation follows the same procedure as the cuckoo hashing by kicking out fingerprints when the buckets are full, and thus the amortized time complexity is still O(1). This insertion algorithm is not appropriate to store a set that contains more than 2m

(with m the bucket size) copies of an element because the two possible buckets will be overloaded.

However, the storage of identical fingerprints allows CF to support the delete operation and prevent false deletion on fingerprint collisions.

The lookup operation is a bit more expensive because it depends on the size of the buckets.

However, for reasonable buckets and fingerprint sizes, all fingerprints of a bucket fit in a single CPU cache-line allowing to preserve efficient queries. An CF uses

log 2 ( 1 ϵ )+log 2 (2b) α
bits per element, where b is the size of bucket and α is the load factor which can reach up 95.5% according to empirical experiments [START_REF] Fan | Cuckoo Filter: Practically Better Than Bloom[END_REF]. Consequently, the space required by CF is lower than the BF space when ϵ is small.

iii Quotient

The Quotient filter (QF) [START_REF] Clerry | Compact Hash Tables Using Bidirectional Linear Probing[END_REF][START_REF] Michael | Don't thrash: how to cache your hash on flash[END_REF] is an AMQF that represents a set of elements S by storing p-bits fingerprints in an open hash table T with 2 q buckets. The p-bits fingerprints are obtained using the quotienting technique [START_REF] Knuth | The Art Of Computer Programming[END_REF]. A fingerprint f = h(x) where x ∈ S and h : U → {0, . . . , 2 q -1}, is partitioned into f q , the quotient, and f r , the remainder which correspond to the r least significant bits and the q = p -r most significant bits, respectively. The

remainder f r is inserted in the bucket T [f q ]. Note that the original fingerprint f is given by f = f q 2 r + f r .
The collision between two quotients, f q and f ′ q , is called a soft colision. Such collisions are resolved using linear probing to store all fingerprints with the same quotient consecutively in a run and f r is always stored before f ′ r when f q < f ′ q . In addition, each bucket is associated with 3 bits of metadata, is-occupied, is-continuation and is-shifted that provide the state of the The is-occupied bit of a bucket x is set to one if a quotient f q = x exists. The is-shifted bit indicates whether the remainder f r stored in a bucket x is at its canonical location (f q ) or it is shifted. If the remainder f r stored at x belongs to same run as the remainder stored at x -1, the is-continuation is set to one. In summary, is-occupied tells which buckets correspond to the beginning of a run (a consecutive sequence of remainders with the same quotient), iscontinuation allows to identify the start and the end of a run, and is-shifted tells if a remainder is stored at its canonical location. A cluster denotes a set of one or more consecutive runs and is preceded by an empty slot. Note that a empty slot denotes a slot for which the is-occupied is The lookup algorithm consists in computing the fingerprint, i.e. the quotient and the remainder, for a given element. According to the quotient, a backward scan is performed until is-shifted is 0 to find the beginning of the cluster. The correct run in the cluster is then found using a forward scan and looking at is-continuation. The remainder is finally searched in the run. The insertion and delete operations work in the same way but update the metadata bits and may shift some remainders in the process.

The lookup time depends on the time to scan backward, i.e. find the beginning of a cluster, and to scan forward, i.e. find an eventual remainder. As a result, the lookup time increases with the size of the clusters, i.e. when the occupancy of the QF increases. This also applies to insertion and deletion operations which use the same algorithm to find the location of the remainder. In practice, the authors report that the performance drops off when the load factor exceeds 75%.

Sequence indexing

Being an AMQF, QF is sensitive to false positives due to collisions. The false positive rate depends on the size of the fingerprints and the number of inserted elements and is given by

1 -(1 -1 2 p
) n , with p the fingerprint size and n the number of elements in the QF. The original QF was improved with a new layout, the Rank-and-Select based Quotient Filter (RSQF) [START_REF] Pandey | A General-Purpose Counting Filter: Making Every Bit Count[END_REF], which transform QF metadata operations into bit array rank-and-select operations [START_REF] Navarro | Fast, Small, Simple Rank/Select on Bitmaps[END_REF]. Such layout allows keeping good performances up to a load factor of 95%, for both insertions and lookups. In addition, it reduces the space by using 2.125 bits of metadata per slot instead of 3. The RSQF was used to build a QF that allows counting. Basically, the Counting quotient filter (CQF) [START_REF] Pandey | A General-Purpose Counting Filter: Making Every Bit Count[END_REF] stores "false remainders" that encode actually abundances.

The abundance is stored in the bucket that immediately follows a remainder seen more than once.

Such representations are used in the context of k-mer indexing in Squeakr [START_REF] Pandey | Squeakr: an exact and approximate k-mer counting system[END_REF] and Mantis [START_REF] Pandey | Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index[END_REF] (see Section I. 1

.D.2.a [page 23]). iv Back to simplicity

As described previously, both CFs and QFs present lower bounds than BFs when the false positive rate is low and propose additional operations such as the deletion of keys. Nevertheless, BFs remains a valuable solution in the context of k-mer indexing for various reasons:

1. Simplicity. In the previous descriptions, it is obvious that the BF is significantly simpler than the CF and QF while maintaining very good performances. A BF consists simply of a bit array associated with a set of hash functions. The available operations, insert and lookup, are simple bitwise operations. In other words, they are not error-prone and very easy to handle from an algorithmic point of view. In addition, being a simple bit-array, BFs natively support the usual bit-array compression techniques such as RRR [START_REF] Raman | Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets[END_REF] or roaring compression [START_REF] Lemire | Roaring Bitmaps: Implementation of an Optimized Software Library[END_REF]. [START_REF] Pandey | A General-Purpose Counting Filter: Making Every Bit Count[END_REF]. BFs uses less space than RSQFs, QFs and CFs for any false positive rates greater than 1/64. The load factors are 100% for BF, 95% for RSQF and CF, and 75% for QF. 4. Dealing with a filter is not dealing with a collection of filters. When considering a collection of filters, BFs have a significant advantage. The insertion pattern does not depend on the input set nor on the order of the insertions of the elements. In the case of filters based on probing, the same set of keys can produce a different filter depending on the order of insertions because of collisions. Thus, the same element is not always inserted in the same position. In the case of BFs, for a given size and hash functions, the insertion of a key is always the same regardless of the other keys. This property is exploited by BF-based indexing tool to speed up the lookups (see Section I.1.D.2.b.i [page 24]), and also for saving space in the case of SBT for example (see Section I. 1

.D.2.b.ii [page 26]).

As a side note, the field of AMQFs continues to progress with the emergence of new filters such as the XorFilter [START_REF] Mueller | Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters[END_REF]. To our knowledge, the XorFilter is not yet used in bioinformatics. It is a filter that focuses on space at the expense of a slightly longer construction time but still keeps fast queries. In terms of space, it is theoretically smaller than BFs and CFs, whatever the false 1. Sequence indexing positive rates. However, it is not a perfect drop-in replacement as the set of keys to be indexed must be known in advance, in the same spirit as a Minimal Perfect Hash Function (MPHF).

Indexing methods

There exist two main and intuitive paradigms to index a collection of sets. Given a collection of samples D = {S 0 , ..., S n }, the first possibility is to represent the content of each S i by an arbitrary data structure, e.g. an AMQF. A query consists then in a search in each index. The second one is an inverted index [START_REF] Zobel | Inverted files versus signature files for text indexing[END_REF] where each element e i ∈ {S 0 ∪ ... ∪ S n } is indexed and associated with a list of samples that contain it. In the context of k-mer indexing, this was formalized by Mantis [START_REF] Pandey | Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index[END_REF] is an k-mer indexing method based on the idea of colored DBG. A colored DBG is a k-mer graph where k-mers are associated with an identifier, namely a color, corresponding to a set of experiments. In the same way, Mantis associates k-mers to colors using a CQF in combination with a color table which maps color IDs to bit-vectors representing collections of samples. The construction of the index consists of building one CQF per input samples using Squeakr [START_REF] Pandey | Squeakr: an exact and approximate k-mer counting system[END_REF], a k-mer counter based on CQF. All CQFs are then merged into a single CQF which stores color IDs instead of the k-mer abundances. Squeakr has the advantage to present an exact mode and therefore allow to build an exact representation of the Mantis index. However, the exact CQF of Squeakr is significantly more expensive in terms of space and is therefore not suitable for all types of datasets. In this section, I present three methods that use different forms of this representation to index collections of biological sequences. Such a type of layout is used as a building block in this work, and it is described in section IV. 1

.B [page 63].

Bitsliced Genomic Signature Index (BIGSI) [START_REF] Bradley | Ultrafast search of all deposited bacterial and viral genomic data[END_REF] BIGSI is the first method to use filter arrays to index collections of samples. The matrix is built by concatenating the filters representing the samples.

The queries consist in retrieving the set of row vectors corresponding to the k-mer hash values of the queried sequence. In the first version of the tool, a bitwise AND between these vectors allowed to obtain a bit-vector representing the presence or absence of the query in each data The bit-matrix layout offers several advantages in terms of construction and query. First, the construction does not require complex operations and does not require any temporary space.

Also, this layout facilitates the addition of new data. Indeed, the addition consists simply of the concatenation of one or more new columns to the bit matrix without the need to recalculate the index in its globality.

Sequence indexing

From a query point of view, the bit matrix allows time and cache-efficient queries since it simply consists in retrieving a vector with given indexes. However, to keep this efficiency, the bit-vectors are not compressed. Consequently, such types of indexes allow very fast queries with relatively high index sizes. Compact Bit-Sliced Signature Index (COBS) [START_REF] Bingmann | COBS: A Compact Bit-Sliced Signature Index[END_REF] is the successor of BIGSI and is based on the same principle but more adapted to samples with a variable number of k-mers. It addresses a common problem when indexing samples of very different sizes. Usually, the size of the core data strucuture, here a BF, is adapted to the size of the largest sample. Thus small samples are represented by over-scaled filters resulting in a loss of space. COBS proposes to build several matrices corresponding to different filter sizes (as described in figure I.9 [page 26]).

For that, a staircase function corresponding to the size of the filters is determined from a group size and the list of samples, sorted by size.

This scheme has an impact on query efficiency since it is now necessary to query multiple arrays. However, its efficient implementation (SIMD, memory-mapped I/O) allows for more efficient construction and queries than BIGSI. The final index is also smaller when the sample size is variable. MetaProFi [START_REF] Sanjay | MetaProFi: A protein-based Bloom filter for storing and querying sequence data for accurate identification of functionally relevant genetic variants[END_REF] is the most recent unpublished method that uses a filter matrix. Unlike the previous ones, the bit vectors are compressed via Zstandard compression algorithm. In order to keep queries efficient, the vectors are compressed by chunk, allowing to decompress only the chunk involved in a query. This compression is done with Zarr [110], a python library using the Zstandard algorithm [START_REF]Zstandard -Real-time data compression algorithm[END_REF] and allowing the creation and storage of chunked and compressed N-dimensional arrays.

It has the advantage of allowing indexing and retrieval of nucleic and amino acid sequences. However, it does not apply any filtration step (no k-mer counting), making it difficult to use on read sets.

ii Sequence Bloom Tree family SBT are binary tree [START_REF] Knuth | The Art of Computer Programming[END_REF]-based data structures designed to reduce the cost of searching in a collection of BFs and, more recently, to reduce the space by exploiting redundancy between sets. In this section, I introduce the abstract type before focusing on the four variants and their respective improvements and compromises. Special attention will be given to the most recent one, which has been used intensively in this work.

Given a sequencing dataset D composed of a collection of samples S i represented by their

Bloom filters B i , a naive query would consist in searching in each filter. However, it is reasonable to expect some redundancy between the samples; this means that some k-mers are shared 1. Sequence indexing between the samples. SBTs exploit this redundancy to group filters that are similar to limit the number of operations during a query. As development progressed, this aspect also allowed to move towards an efficient compression of the data structure.

Let D a dataset composed of a collection of samples S i . The database representation of S i is denoted as B(S i ) and represents all entries from S i . It denotes an abstract type allowing membership queries, whose internal representation depends on the SBT implementation. The set of k-mers of a sequence S is denoted K(S).

Let T a rooted binary tree. Given a sub-tree rooted at an internal node u, the set of its leaves is denoted l(u). Let c l (u) and c r (u) denote the left and the right children of a node u. The parent of a non-root node v is p(v).

The intersection between two bit-vectors x and y of the same length is written as x ∧ y, and the union is x ∨ y.

Terminology

A SBT is a rooted binary tree where B(u) denotes the database representation of a leaf u. For Once the tree is built, all the nodes are compressed using the RRR compression [START_REF] Raman | Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets[END_REF].

an internal node v, B(v) is i∈l(v) B(i)

2.

A reduction of query time. The tree representation allows to reduce the query time.

At a given node, the query process can be aborted if the threshold theta is already reached. However, it is not possible to predict if the threshold can no longer be reached at a given node. Negative queries require therefore examining all nodes of the tree.

3. An analysis of false positive effects on sequence searching. The false positive rates of Approximate Membership Querys (AMQs) correspond to the probability of observing a false match in a single query. Yet the use of indexes is more important for sequence queries than for single k-mer queries. The link between false positives on k-mers and false positives on queries is explored in theorem 2 of [START_REF] Solomon | Fast search of thousands of short-read sequencing experiments[END_REF]. This theorem shows that for a given threshold, it is unlikely to observe a fraction of shared k-mer greater than θ when the false positive rate on k-mers is also fixed at θ. Thus, working with high false positive rates leads to few errors when considering the query of a collection of k-mers representing a sequence. 4. An application on a RNA-seq dataset. This implementation was benchmarked on a collection of 2,652 human RNA-Seq samples corresponding to the entire publicly set of blood, brain, and breast samples stored at the SRA at the time of the experiment. This dataset is now the reference benchmark for other k-mer indexing tools. On a single core, the construction of the index requires about 2.5 minutes per file with a final size of 200GB (2.3% of the input size). The query of a single transcript is achieved in 20 minutes on average. In comparison, the estimated running time for SRA-BLAST and STAR was 2.2 and 921 days, respectively. However, it is important to note that both tools return sequence alignments while an SBT query provides only a probability of presence/absence result. B All (u) represents therefore the bits that are set in all the leaves of the sub-tree starting at u. B Some = B ∪ (u) \ B ∪ (u) and therefore represents the bits that are positive in some l(u) but not in all. This representation allows to speed up the query for several reasons. First, B All (u) allows to know if a bit is positive in l(u). Thus a positive k-mer in B All at a given node u does not need to be queried in the sub-tree starting at u. In the previous implementation, a positive match at a node could correspond to a bit present in only one of the leaves and therefore do not allow aborting the query of a k-mer. In contrast, B Some allows to know if some leaves contain a given bit and therefore enables an early pruning of the tree during the queries. Note that both B All (u) and B Some (u) exclude the positive bits in B ∩ (l(u)). Thus, the bits resolved above in the tree are here set to 0 for the sub-tree starting at u and are not useful anymore. The deletion of these inactive bits is explored by the next implementations. 2. The greedy construction is sub-optimal. The greedy construction algorithm introduced by [START_REF] Solomon | Fast search of thousands of short-read sequencing experiments[END_REF] is sensitive to the order of the inputs. As a result, the tree may have a poor localization if these inputs are not in the right order, i.e. the closest sets in terms of k-mers are not added sequentially. A sub-optimal order can significantly increase the query time. Indeed, a smaller number of nodes are explored if all the query matches occur in the same sub-tree. B All and B Some are respectively equivalent to B sim and B rem . However, the construction process differs since it follows the greedy algorithm introduced by the first implementation.

Sequence indexing

The deletion of inactive bits.

As discussed before, such representation implies inactive bits in internal nodes. An inactive bit at a node u is a bit for which its value can be determined by one of its parents. SSBT proposes to remove these bits in order to reduce the size of nodes. The authors specify that the suppression of these bits is more effective when the samples are uniform in terms of k-mers. Thus, one could argue that the SBT-ALSO construction algorithm would be useful because it allows to group similar samples whatever the order of the inputs. The most recent implementation, presented below, uses this observation while proposing a new representation allowing additional 

B det (u) = B ∩ (u) ∪ B ∪ (u) (I.3) B how (u) = B ∩ (u) (I.4)
B det (u) represents the determined bits, i.e. the bits that have the same value in l(u).

B how (u) informs about the value of determined bits is informative only for bits set to 1 in B det (u). In the same spirit as SBT-ALSO and SSBT, such representation allows efficient queries by resolving some positions before reaching the leaves. When a position is determined in B det (u), the corresponding k-mer is considered as resolved in l(u), whether it is present or absent. A lookup in B how then allows obtaining its value. When a position is not determined, the lookup of B how (u) is not required. Although the representation from SSBT and HowDeSBT seems highly similar (the different states of bits are described In summary, the improvement in lookups depends on s (the percentage of active bits in the leaves of the sub-tree) and is between 0 and 25% for s = 1 and s = 0, respectively. 2. An analysis of the Shannon's information compression bounds. The Shannon's information [START_REF] Shannon | A mathematical theory of communication[END_REF] bounds for both SSBT and HowDeSBT are given by the Theorem 1 from [START_REF] Robert | Improved representation of sequence bloom trees[END_REF]. The improvement of the space bounds in HowDeSBT is between 9% and 14% for s ≤ 0.75. The HowDeSBT representation is theoretically more compressible. 

SSBT HowDeSBT

B sim B rem B det B how A 0 1 0 - B 0 0 1 0 C 1 - 1 1 D - - - - Table I.

c A story of trade-offs

The different k-mers indexing tools have been compared several times in each individual publication, but also in several reviews [START_REF] Marchet | Data structures based on k-mers for querying large collections of sequencing data sets[END_REF][START_REF] Chikhi | Data Structures to Represent a Set of k-long DNA Sequences[END_REF]. In summary, these tools offer different implementations and features that lead to different trade-offs. However, one step in the construction of the indexes is often not mentioned. As discussed, many structures build core structures for each sample before creating the final compact index. Being k-mer indexing tools, they require by definition sets of k-mers.

Depending on the type of the inputs, these k-mers can be obtained in different ways. 1)

The case of assembled sequences. The assembled sequences are assumed to be error-free and can be directly broken into k-mers, at least for the presence/absence tools which do not use the abundance of k-mers.

2) The case of sequencing reads. Reads are erroneous sequences, at different degrees depending on the sequencing platforms. Consequently, the k-mers obtained from these sequences also contain errors. The usual way to filter these errors consists in discarding rare k-mers, usually those seen only once, and therefore relies on k-mer counting.

The construction of the core data structure, including the counting of k-mers, is sometimes discussed and often not evaluated in k-mer indexing papers. Unfortunately, this step is the most expensive compared to the total resources used to build the index. For example, in the experiments presented in section IV. 3.C [page 73], it represents 85% of the construction time.

No tool proposes a specific method combining counting and construction. The counting and the construction are always separated and often achieved by different tools without particular strategies. In other words, the construction of the core data structures uses arbitrary sets of k-mers as inputs, so no assumptions can be made to speed up their constructions.

Part, Chapter I -State of the art

We argue that the "pre-processing" step should be considered and that the problems of counting and core data structure construction should not always be addressed as two distinct Let S a sequence of characters and W = {w 1 , ..., w n } the set of its sub-words of fixed lengths.

Given an arbitrary AMQF with a false positive rate of ϵ, the probability of observing a false perfect match (all sub-words are wrongly found) is ϵ n . Using findere, each w i is divided in m sub-words, called s-mer, the probability of observing a false positive for a given word is then ϵ m . Thus for S, the probability becomes (ϵ m ) n . In addition to drastically reducing the false positive rate (Figure I.14 [page 35]), findere also allows reducing the number of bit lookups.

Consecutive words share some s-mers, which can therefore be queried only once. If a s-mer is absent, all consecutive words containing it are simply not queried. 

Sequence analysis: differential k-mer analysis

In the context of population studies, the most common are Genome-Wide Association Study (GWAS), allowing to identify sequences and genes responsible for a particular trait, such as a disease. Large groups of individuals are studied for small variations, the Single-Nucleotide polymorphisms (SNPs), corresponding to single-base variations. Thanks to a large number of individuals, it is possible to identify statistically more frequent variants in a group with a particular trait than in another control group. In spite of their great usefulness and contributions, GWAS have some drawbacks. First of all, it usually only deals with SNPs, without considering the largest variations, the structural ones. This is mainly due to the technique used, based on the hybridization of DNA sequences from individuals on chips containing a pre-established DNA sequence of known variations. In addition, implementing these analyses is much more complex and costly than a bioinformatics analysis. Especially since we already have many ready to use sequencing cohorts, thanks to projects like 1000 Genome [START_REF]A global reference for human genetic variation[END_REF], for example.

Recently, studies with similar objectives using sequencing data have emerged. The idea is to find sequences, and more precisely k-mers, that are differentially represented between several Part, Chapter I -State of the art sequencing cohorts, typically two. These k-mers can then be used to reconstruct a set of variants.

In the context of this work, we are only interested in the detection of these k-mers, in a one-to-one context.

Several tools allow doing differential k-mer analysis [START_REF] Audoux | DE-kupl: exhaustive capture of biological variation in RNA-seq data through k-mer decomposition[END_REF]2,46,3]. In a few words, it consists of comparing k-mer abundances across samples. For each k-mer, we need its abundance vector, representing its abundances in each sample. In the context of a one-to-one experiment, the abundance vectors are used to test if k-mers are statistically differentially represented between two conditions. In the context of continuous phenotype values, it consists of testing if the distribution of phenotype values explains the k-mer abundance vectors. In both cases, the bottleneck of the tools was counting the k-mers and aggregating the abundances to obtain counting information across samples, i.e. the abundance vectors. The idea was to speed up existing methods by allowing an efficient recovery of all k-mer abundance vectors, i.e. via an efficient construction and streaming of a k-mer matrix. We thus focused on HAWK [2, 3], a tool allowing one-to-one experiment, particularly adapted to the case of disease study, where the groups are controls and cases.

We showed that the implementation of state-of-the-art statistical methods in a more efficient computational framework leads to significantly superior performance of differential k-mer anal- 

k-mer counting

The methods presented in this chapter all rely on k-mer decomposition, i.e. the decomposition of one or more sequences into its k-mer set. The methods used to perform such an operation depend on the type of inputs. Indeed, assembled sequences are assumed to be exact, while sequencing reads may contain some errors. A k-mer set built from a collection of reads can therefore contain many erroneous and undesirable k-mers. Fortunately, it is possible to discard these errors by counting the number of occurrences of each k-mer. Given a sequencing coverage, the abundance of a unique k-mer (present only once in the input genome) should be around this sequencing coverage. The erroneous k-mers can then be identified and discarded.

Being a fundamental operation of any k-mer-based method, the k-mer counting is a wellstudied problem. Several methods coexist and can be classified into two main paradigms: inmemory counting and disk-based counting. Although both paradigms lead to the same results, each method has its strengths, weaknesses, and specificities. The characteristics of each technique are important and should guide the choice of the counter according to the downstream analyses.

In the following sections, I present the two main paradigms used for k-mer counting and 

A In-memory counting

In-memory methods are usually based on a hash table that associates k-mers with their abundances. Although the general idea is similar to all methods, the implementations are diverse, with various hashing, filtering, and multi-threading techniques.

The main drawback of these methods is their high memory usage. To address this problem, some methods like Jellyfish [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF] or BFCounter [START_REF] Melsted | Efficient counting of k-mers in DNA sequences using a bloom filter[END_REF], use a BF to identify and reject singletons. A k-mer is then inserted in the hash table only if it is already present in the BF. However, this method increases the computation time because false positives require a second pass. Indeed, when two unique kmers are inserted and collide in the BF, the second one is inserted with an abundance of 2 in the table.

An exact k-mer counting is not always required. Some methods propose to do approximate counting to reduce the computational cost further. For example, Squeakr [START_REF] Pandey | Squeakr: an exact and approximate k-mer counting system[END_REF] offers an approximate mode based on a CQF. In this case, footprint sizes determine the counting accuracy and the performance in terms of time and memory.

Another issue is the synchronization of the hash tables. This problem has been partly solved by lock-free approaches [START_REF] Herlihy | Transactional memory: architectural support for lock-free data structures[END_REF] or by using multiple hash tables, as in the unpublished HackGap (https://gitlab.com/rahmannlab/hackgap/) or Jellyfish.

In addition, such techniques require estimating the expected number of distinct k-mers to set the table sizes. A too low user-specified value leads to longer running time and a higher memory usage due to multiple resizing and merging of hash tables.

For all these reasons, in-memory methods are often relatively expensive in terms of time and memory. However, they have a significant advantage. The final representation of the counted k-mers is a hash table. Consequently, it is possible to use the output as a key-value database in other tools thanks to the associated command line tools or library. When this type of operation is unnecessary, the disk-based tools presented in the next section are probably more suitable.

B Disk-based counting

The improvement of disk performances has allowed the development of disk-based counting methods with a minimal memory footprint. Anecdotally, such methods have, for example, allowed performing an assembly of a genome on a Raspberry Pi in 2013 [START_REF] Collet | MINIA on a Raspberry Pi, Assembling a 100 Mbp Genome on a Credit Card Sized Computer[END_REF].

Disk-based methods rely on the divide-and-conquer paradigm. The idea is to form groups of k-mers and process these groups successively or in parallel according to a given amount of memory. Thus, the minimum memory required by this type of technique corresponds to the memory needed to count one of these groups of k-mers.
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To form these groups, it is necessary to identify a common characteristic between k-mers to guarantee that identical k-mers are always put in the same group. For that purpose, the concept of minimizer has been borrowed from the assembly [START_REF] Roberts | A Preprocessor for Shotgun Assembly of Large Genomes[END_REF]. A minimizer M of a sequence S is the sub-word of size m that minimizes a given function. Usually, a hash function or simply the lexicographic order. By definition, identical k-mers always have the same minimizer, whatever their origin.

The general functioning of k-mer counting on disk is as follows. The sequences, mainly reads, are split into k-mers, and these are written on disk in a file corresponding to their minimizer, often called bin or partition. Then the partitions are counted successively or in parallel according to the available memory. The counting method is variable and relies on hash tables or sorting.

In the second case, k-mers from a given partition are sorted. The abundance of a k-mer is then given by its number of consecutive occurrences. Today, sorting methods are favored.

The idea of dispatching k-mers for counting appeared with Meryl, the k-mer counter of the Celera assembler [START_REF] Miller | Aggressive assembly of pyrosequencing reads with mates[END_REF]. Improvements were then proposed and resulted in various tools like DSK [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF] or KMC [START_REF] Deorowicz | Disk-based k-mer counting on a PC[END_REF][START_REF] Deorowicz | KMC 2: fast and resource-frugal k-mer counting[END_REF][START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]. Recently, a new unpublished counter, FastK (https: //github.com/thegenemyers/FASTK) optimized for long reads was released.

As for the in-memory counting, the outputs also have some specificities. Indeed, as the counting is based on sorting, the output is partially sorted. This order allows to make log-time queries and facilitates set operations between multiple k-mer databases.

Thanks to the progress of hardware, these methods are much faster nowadays than in-memory methods. KMC is the most used, both for its performance and its robustness.

Conlusion

About indexing, BFs are an interesting option when put in perspective with the specific problem of sequencing samples indexing, despite the theoretical and functional advantages of more modern AMQF. However, they suffer from the problem of data locality, complicating their construction. Indeed, the first step, consisting of the creation of one AMQF per input sample, is the main bottleneck of indexing methods. Note that this is not specific to BFs; the construction of AMQF from sequencing samples is always the bottleneck.

About the differential k-mer analysis, the bottleneck is also related to k-mers. It is about obtaining abundance tables for each sample, before aggregating them to get k-mer abundances across samples.

In both cases, the problem is related to k-mer counting, i.e. the counting is always considered as a pre-processing step. Thus, the intrinsic properties of k-mer sets are not exploited, although interesting in downstream processing, as we will see in the following chapters. In summary, the objective is to bring k-mer counting and further processing together by exploiting the k-mer We argue that the k-mer matrix concept can help in addressing these problems. As a reminder, a k-mer matrix associates k-mers with their abundances across several samples. The next chapter is dedicated to this object and presents our construction method, as well as the new analysis opportunities it offers, notably in terms of k-mer filtering.

The other chapters are dedicated to its use in various contexts, sometimes requiring modifications of the initial representation and construction methods.

Chapter II

THE k-MER MATRIX REPRESENTATION

Preamble

In this chapter, I introduce the concept of k-mer matrix, i.e. a matrix that associates k-mers with their abundances across multiple samples, and describe how such representation can be helpful in various contexts from analysis to indexing. Although the concept is already known and used, no methods and tools were dedicated to its efficient construction and processing. Here we described how k-mer counting algorithms could be extended for fast and parallel construction of such matrices. ] is dedicated to its description and includes the implementation details that are not described in this section.

One of the major concerns with k-mer-based

Construction

A k-mer matrix represents the abundance of k-mers across several samples and therefore relies on k-mer counting. The state-of-the-art k-mer counting algorithms have interesting properties for constructing the k-mer matrices and should not be seen as a trivial pre-processing step.

Usually, the tools requiring matrix-like structure produce it by computing abundance tables individually for each sample before aggregating them in various ways, for example, using a hash table. In other words, they do not benefit from the intrinsic properties of the k-mer sets produced by k-mer counters. The following sections describe how a disk-based k-mer counting algorithm is extended to an efficient, parallel, and partitioned construction or streaming of k-mer matrices.

A Partitioning

As described in section I. 3.B [page 37], disk-based k-mer counting relies on the divide-andconquer paradigm. It consists in partitioning the samples to count each partition in parallel using a limited amount of memory. The idea is to use an intrinsic characteristic of the k-mers such that identical k-mers are always in the same partition, whatever their origin. For that, we use the concept of minimizer [START_REF] Roberts | A Preprocessor for Shotgun Assembly of Large Genomes[END_REF]. A minimizer K m of a k-mer K is the smallest sub-sequence of size m from K that minimizes a given function. In our case, the minimizer is the smallest sequence in a lexicographical sense. Note that the minimizer is determined by examining both strands of a k-mer, i.e. we use the canonical minimizer.

In order to obtain optimal performances, the minimizer partitioning must be as uniform as possible. This means that when k-mers are dispatched in the partitions, the number of k-mers in each one must be equivalent. The partitioning enables a coarse-grained parallelization, i.e.

one thread is in charge of one partition. An unbalanced partitioning leads then to non-optimal exploitation of the computing resources and higher memory usage.

The number of partitions is a user-defined parameter or is computed accordingly to the system and input data characteristics such as available memory, available threads, input size, etc. For example, a large number of partitions can be used when the available memory is limited to ensure that at least one partition can be counted at a time. Note that too few or too many partitions only affect performances, not the results. In the following, we denote the number of partitions by p.

The size of the minimizers is chosen accordingly to the k-mer size. However, the number of possible minimizers overgrows as a function of m (4 m ). Thus the storage of the distribution function becomes expensive when m grows. Consequently, minimizer-based techniques usually limit the minimizer size. In our case m ≤ 15.

To obtain a near-optimal partitioning, the frequency of each possible minimizer of size m is estimated by sub-sampling all input samples. The frequencies are then extrapolated with respect to the size of the inputs. Finally, the minimizers are distributed into partitions accordingly to their frequencies. In the end, we obtain a distribution function that maps a given minimizer, and therefore a given k-mer, to a partition.

As a side note, partitioning also enables the sub-sampling of input samples. In other words, it allows processing only subsets of k-mers (corresponding to a subset of minimizers) from each sample. This feature was helpful for a project I contributed to (see Section VI.3 [page 108]).

B Counting

Once the minimizer repartition is determined, the idea is to dispatch sequences in disk partitions (binary files) according to their minimizers. The first disk-based k-mer counting algorithms split the reads into k-mers before writing them into partitions [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF][START_REF] Deorowicz | Disk-based k-mer counting on a PC[END_REF]. However, the storage dispatching and partition counting, something that is impossible when counting sequentially with traditional k-mer counters. We call this procedure the joint k-mer counting. The distribution of resources impacts the performances and is controllable by a user-defined parameter for focusing on saving resources, i.e. using less memory and disk, or focusing on speed.

C Merging

At this point, we have partitioned, counted, and sorted partitions for all samples. The construction of the matrix can now start. The idea is to merge abundance tables from equivalent k-mer partitions, i.e. the partitions from each sample that correspond to the same subset of minimizers. Such merging can be achieved in linear time as inputs are sorted. We use a n-way After merging, we obtain partitioned sub-matrices representing k-mers and their abundances in all samples. Partitioned storage is preferred since each sub-matrix is independent. However, the complete matrix can be generated by simply concatenating all sub-matrices. The so-concatenated matrix is a succession of sorted blocks of k-mers and abundances vectors. Thus, an additional merge can be performed to obtain a truly sorted matrix from the sorted sub-matrices, analogously to the merge of abundance tables. Note that the applications do not require the whole matrix but rather a "single view" on each row. In this case, the downstream computations can be applied on-the-fly and in parallel during the streaming of the matrix to save space and time.

The tool presented in chapter III [page 51] exploits this streaming capability extensively. As a side note, our matrices allow log-time queries thanks to the sorted layout, although the primary goal is the construction/streaming, not creating a random access data structure. In many cases, such filtration is adequate. soft-min corresponds to the solidity threshold applied during the merging. In other words, all k-mers with an abundance between hard-min and soft-min are considered rescue-able.

share-min corresponds to the minimum number of samples containing a solid version of a k-mer. If a k-mer is non-solid in one sample, it must be solid in at least share-min sample to be rescued.

recurrence-min is not directly relied on k-mer rescue. It allows discarding the rows for which the number of samples that contain a solid version of the k-mer is less than recurrence-min. The k-mer rescue, illustrated in figure II.4 [page 48], occurs within the merging step, along with constructing the abundance vectors. It is applied on each k-mer of the matrix in the following way. During the construction of an abundance vector, the number of solid versions of the k-mer (with an abundance ≥ soft-min) is recorded, and the non-solid versions of the k-mer (with an abundance < soft-min) are marked for a subsequent check at the end. If the number of solid k-mers is greater than share-min, the marked k-mers are considered solid. After the rescue, a row is kept when the new number of solid k-mers is greater than recurrence-min. This really straightforward technique has shown convincing results on a real metagenomic dataset from the Tara Ocean project. The results are presented in section IV. 3 

B Indexing

As described in section I. 1.D [page 15], reads indexing usually relies on the pre-processing of each sample separately before a pooling stage to produce the final index, e.g construct a SBT from a collection of BFs. The matrix representation allows to consider all samples jointly and can therefore be seen as an input for k-mer indexing tools. This is particularly interesting for tools that follow the color-aggregative paradigm (see Section I.1.D.2.a [page 23]), which index a list of samples for each k-mer.

However, the matrix representation can be central to the indexing process and not just a pre-processing step to obtain the k-mer abundances. For that, the construction algorithm is extended to directly and efficiently produce an index, namely a partitioned BF matrix. Our method is significantly faster than existing constructions of such objects and leads to a fast end-to-end construction of a k-mer index while benefiting from the k-mer rescue. Chapter IV [page 61] presents the algorithm and the results obtained on real datasets.

C Analysis

Two main paradigms coexist in the context of comparing sequencing data: alignment-based and alignment-free. Frequently, the analysis of multiple sequencing samples is performed through the prism of the reference genome. In other words, each sample is processed with respect to the reference, and the individual results from each sample are linked to obtaining a global view.

Beyond the reference biases and the cost of mapping, such analyses are not always applicable.

High-quality references are available only for a very small subset of known species. As a result, experiments on non-model species require reference-free techniques. In addition, the development of sequencing leads to the growth of datasets with new collections containing more and more individuals or replicates, opening the door to extensive joint analyses. It is essential to have representations allowing the analysis of large cohorts composed of model or non-model species, such as k-mer matrices.

In a metagenomic context, the k-mer-based comparison of sequencing samples has already produced interesting results on large datasets [START_REF] Benoit | Multiple comparative metagenomics using multiset k-mer counting[END_REF][START_REF] Benoit | SimkaMin: fast and resource frugal de novo comparative metagenomics[END_REF][START_REF] Daniel | Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems[END_REF]. The usual techniques used to compare a collection of metagenomic reads rely on read alignments. They consist of pairwise comparisons between reads or assigning reads to taxons by mapping on a reference database. These methods are extremely computationally expensive and not applicable to large datasets. The Simka [START_REF] Benoit | Multiple comparative metagenomics using multiset k-mer counting[END_REF] tool demonstrated that the k-mer-based analysis of metagenomes is strongly correlated with alignment-based strategy while requiring much less computational resources. The methods and tools developed in this work could be used to implement Simka-like strategies. An example is presented in section V. 3 

[page 91].

In the last decades, studies at the population level proliferated with the idea of characterizing the genetic profile of populations [START_REF] Korte | The advantages and limitations of trait analysis with GWAS: a review[END_REF][START_REF] Buniello | The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019[END_REF]. The most popular studies are probably the Part, Chapter II -The k-mer matrix representation GWASs. A GWAS is a comparison of a set of known genetic variations with a large number of individuals in order to detect associations between variations and phenotypes. These studies rely on DNA microarrays to detect allelic differences between populations, controls and cases for example. Microarrays are chips containing many DNA spots, representing known variations, where the molecules from the studied samples can be fixed. Usually, known variations are SNPs, which are the most studied variations. GWASs rarely consider structural variations, which are actually involved in many diseases [START_REF] Stankiewicz | Structural Variation in the Human Genome and its Role in Disease[END_REF][START_REF] Collins | A structural variation reference for medical and population genetics[END_REF]. In summary, GWASs rely heavily on known variations, reducing the scopes of the studies and making them unsuitable for non-model species.

Furthermore, any significant variations absent from the microarrays will be missed. Recently, k-mer-based methods allowing GWAS-like studies have emerged [2,46,[START_REF] Audoux | DE-kupl: exhaustive capture of biological variation in RNA-seq data through k-mer decomposition[END_REF]. Unlike microarraybased studies, these tools require only sequencing data, although some can consider a collection of SNPs for comparison purposes at the end of the analysis. In other words, k-mer-based techniques can be applied on any collection of sequencing samples which are now widely available with more and more large-scale sequencing projects. Such techniques also open the door to nonmodel population studies, for which the known genetic variations are limited or simply unknown.

The starting and common point of these methods is the detection of differentially represented k-mers between two or more phenotypes, where a phenotype correspond to a pool of sequencing samples. We argue that an efficient k-mer matrix construction and representation could be helpful by significantly accelerating the computations. To illustrate that, we applied our matrix techniques in the context of differential k-mer analysis and combined them with state-of-the-art statistical models. In this context, we develop a new tool, kmdiff, allowing fast differential kmer analysis between two cohorts: controls and cases, for example. The chapter III [page 51] is dedicated to this point. The first step is common to all k-mer-based tools and consists in counting the k-mers in each sample. In HAWK, this operation is performed by Jellyfish, which is an in-memory kmer counter. A slightly modified version allows to output k-mer abundance tables in a plain text format where the 2-bits representations of k-mers representation are written as ASCII integers. This choice is questionable for several reasons: 1. Jellyfish is designed to produce a k-mer table allowing random access and not a simple list of counted k-mers, implying an extra overhead not encountered in some other k-mer counters. In kmdiff, the counting step is managed by the kmdiff count command that is basically a This gives many advantages for further computations: 1. The abundance tables are partitioned, and their processing can therefore be easily parallelized. Indeed, the multi-sample partitioned counting ensures that identical k-mers across the samples belong to the same partition. 2. As a part of the counting algorithm, the sorting is free compared to HAWK. The second step, which we call the diff step, consists of aggregating abundances of identical k-mers from each sample to apply a statistical test on each abundance vector. The test proposed by HAWK is a likelihood ratio test assuming k-mer abundances are Poisson-distributed with rates θ 1 and θ 2 for controls and cases, respectively. The null hypothesis is then H 0 : θ 1 = θ 2 = θ and the alternate hypothesis is H 1 : θ 1 ̸ = θ 2 . Rejecting H 0 means that the representation of a k-mer in both cohorts is significantly different. Let K a k-mer and A 1 and A 2 be the sums of its abundances in controls and cases. N 1 and N 2 denotes the total number of k-mers in controls and cases. The likelihoods are given by (details are available in Appendix 1 from [2]):

L(θ 1 , θ 2 ) = e -θ 1 N 1 (θ 1 N 1 ) A 1 A 1 ! e -θ 2 N 2 (θ 2 N 2 ) A 2 A 2 ! (III.1) L(θ) = e -θN 1 (θN 1 ) A 1 A 1 ! e -θN 2 (θN < 2 ) A 2 A 2 ! (III.2)
The p-value corresponding to each k-mer is computed using the approximate χ 2 distribution of the likelihood ratio.

In HAWK, the diff step relies on a basic hash table . The number of k-mers is usually large, the k-mers are therefore loaded by small batches into the hash tables. As the k-mers are sorted and represented by integers, each batch corresponds to a range, ensuring that no k-mer is missed.

The abundance vectors are then computed from individual abundances before computing the likelihood ratio. The main issue with this implementation is that processing each batch implies multiple expensive traversals of the whole hash table to populate it, process it, and dump it. In addition, an expensive thread synchronization mechanism is required while filling the table.

kmdiff uses the kmtricks library (see Section V. 2.C [page 87]) to compute a k-mer matrix on-the-fly. The processing can be performed in parallel and low-memory thanks to the streaming capabilities of kmtricks and the independence of partitions. The likelihood ratio and the p-value are computed during the streaming for each k-mer. Significant k-mers with a p-value < α, where α is the significance level, are directly written on disk in binary and compressed format. In HAWK, p-values are written in plain text, reducing both efficiency and arithmetic precision due to the multiple floating-point to ASCII conversion.

Part, Chapter III -Large-scale differential k-mer analysis

The next step corresponds to the correction of population stratification. In the study of phenotypes, a perfect composition of cohorts would be individuals that differ only in the phenotype of interest, which is naturally impossible. In association studies, there are systematic allelic differences within populations that are not related to the observed phenotypes but simply to the genetic history of individuals. A common variation in a population presenting a particular phenotype could be wrongly identified in such cases. Therefore, consideration of population stratification is essential in association studies to make appropriate corrections. As in HAWK, the detection of the population stratification is delegated to Eigenstrat [START_REF] Patterson | Population Structure and Eigenanalysis[END_REF][START_REF] Alkes | Principal components analysis corrects for stratification in genome-wide association studies[END_REF]. Eigenstrat uses a Principal Components Analysis (PCA) on a binary matrix representing the presence/absence patterns of randomly sub-sampled k-mers across samples. In kmdiff, the sampling is performed during the streaming of the matrix and the proportion of k-mers used for the PCA is defined by a user parameter. The results of the PCA is subsequently used to re-estimate the p-values of significant k-mers in the following way. As previously, the computation relies on a likelihood ratio test. Under H 0 , the k-mer is not associated wtih the phenotype, i.e. abundance differences between cohorts are explained by the population stratification. The likelihoods are computed by fitting a logistic regression model against the population stratification and k-mer abundances for the null and alternate hypotheses, respectively. The corrected p-value is then computed thanks to a likelihood ratio test.

The corrected p-values must finally pass a final control to account for multiple testing since the number of tested k-mers is large, several billion. Consequently, the likelihood of rejecting a true hypothesis increases. Two main types of controls are usually used. Those which control the Family-wise error rate (FWER) rate and those which control the false discovery rate False discovery rate (FDR). The FWER is the probability of rejecting at least one true hypothesis.

The objective of the controlling procedure is to ensure that the probability remains lower than a given threshold. The FDR corresponds to the expected proportion of false hypotheses that are rejected. As for FWER, the goal is to keep the FDR below a given threshold. The FDR procedures are less stringent than FWER-procedures at the cost of a greater number of type I errors, i.e. a greater number of false discoveries. kmdiff provides both types of controlling procedures. For controlling the FWER, two procedures are implemented: 1. The Bonferroni correction [START_REF] Bonferroni | Teoria statistica delle classi e calcolo delle probabilita[END_REF] which defines a new significance threshold as α ′ = α/N , where N is the number of hypotheses and α is the significance threshold. 2. The Sidak correction [START_REF] Šidák | Rectangular Confidence Regions for the Means of Multivariate Normal Distributions[END_REF] is less stringent than the previous one. The new threshold is given by α

′ = 1 -(1 -α) 1 N .
Regarding the FDR, only the Benjamini-Hochberg [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] procedure is implemented. It assigns a rank to each p-value sorted in ascending order. For a given p-value p and its rank r, the significance threshold is α r N . Note that its cost is slightly higher than others because it requires sorted p-values. Initially, HAWK only supported the Bonferroni correction. The Benjamini-Hochberg was added more recently in the last update [2].

Finally, the significant k-mers are written in two FASTA files corresponding to over-represented k-mers in controls and cases. The p-values are given in the FASTA headers.

B About the usage

Despite pretty results, using HAWK is particularly tedious. Indeed, in-house scripts are usually needed because it does not provide an end-to-end pipeline. Moreover, parameters are hard-coded, and each change requires a recompilation. Finally, several minor bugs make the experience unpleasant. For example, a crash can occur after hours of computation without any error messages due to a too long filename.

Consequently, our goal with kmdiff was to propose a more efficient implementation while remaining user-friendly. The whole kmdiff pipeline can be executed using only two commands without any in-house scripts.

In addition, kmdiff supports C++ plugins enabling fast and easy prototyping of new streamfriendly models while keeping the pipeline efficiency. This plugin system works the same way as kmtricks one (see Section V. 2

.D [page 88]).

Experiments

We performed experiments at various scales to evaluate the scalability and the qualitative results of HAWK and kmdiff. The goal was to propose a more scalable tool producing equivalent results. We included another tool, kmerGWAS, to compare the computational performances of the approach with a different statistical model.

A Benchmark environment

The experiments presented in this section were performed on the GenOuest platform on a node with 2x24 cores Xeon Gold 5220R 2.20 GHz and 128 GB of memory. The filesystem allowed 900 MB/s and 290 MB/s sequential read and write (average on 10 tests). Both tools support multi-threading and were executed using 20 threads. We used kmdiff v1.0.0, HAWK v1. [START_REF] Gonzàles | Microbial source tracking for contamination assessment of an-cient oral samples using k-mer-based methods[END_REF].0, and kmerGWAS v0.2 compiled directly on the node using GCC 11. HAWK uses Jellyfish to count k-mers in each sample. We used Jellyfish v2. 3.0 with the patch provided by HAWK to obtain compatible outputs. kmerGWAS relies on GEMMA [START_REF] Zhou | Genome-wide efficient mixed-model analysis for association studies[END_REF] v0. [START_REF] Clerry | Compact Hash Tables Using Bidirectional Linear Probing[END_REF].0, which is a toolkit for the application of linear mixed models. The running times and memory footprints are tracked with '/usr/bin/time -f %E,%M' except for kmdiff which tracks them internally. The peak disk usage is tracked using an in-house process that monitors disk usage every second.

All the tools were parameterized with a significance threshold of 0.05 and the Bonferroni correction was applied on each p-value for HAWK and kmdiff. In kmerGWAS, the correction is Table III.1 -Benchmarks of HAWK, kmerGWAS and kmdiff on ampicillin resistance dataset. For time, memory, and disk usage, we present two data points. The first one corresponds to the k-mer counting step. For HAWK, this step includes the sorting of k-mers, which is not required for kmdiff. The second one corresponds to the k-mer associations, including k-mers aggregation, statistical tests, and population stratification correction.

As stated in [START_REF] Earle | Identifying lineage effects when controlling for population structure improves power in bacterial association studies[END_REF], the ampicillin resistance of the 189 strains is supplied by the Tn3 transposon, a mobile element from prokaryotes [START_REF] Babakhani | Transposons: the agents of antibiotic resistance in bacteria[END_REF]. Consequently, we expect to find sequences from Tn3 transposon, which encodes 3 proteins: β-lactamase, Tn3 transposase, and Tn3 resolvase.

The significant k-mers from each tool were assembled using ABYSS [START_REF] Jackman | 136 and Inanc Birol. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter[END_REF]. We queried the NCBI nr database [START_REF] Sayers | Database resources of the national center for biotechnology information[END_REF] with the assembled contigs using BLASTX [START_REF] Altschul | Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[END_REF]. As expected, the majority of contigs correspond to the Tn3 transposon, whatever the tool Our benchmarks confirm that a paradigm shift in the implementation of the statistical methods proposed by HAWK resulted in better performances while maintaining the results. The scalability of kmdiff on larger datasets is evaluated in the next section.

C Scaling capabilities on human cohorts

To illustrate the scaling capabilities of kmdiff, we compared it to HAWK on human wholegenome sequencing datasets of different sizes. kmerGWAS was not included in this experiment because the early stages of the analysis require an amount of memory greater than the capacity of our computing node (128 GB). The cohorts are part of the 1000 Genome project [START_REF]A global reference for human genetic variation[END_REF] and correspond to two populations TSI (Toscani in Italia) and YRI (Yoruba in Ibadan, Nigeria).

This dataset was previously used as a benchmark in HAWK publications [2,3].

We built three benchmark datasets composed of 2 , leading to an important number of cache misses because each block is visited many times. In our case, the insertion of sorted hash values guarantees that each block is visited and loaded in the cache only once.

2.

The counted hash values are partitioned. Each partition is independent allowing 

B Partitioned Bloom filter matrix construction

The construction of the BF matrix relies on the same major steps as the abundance matrix. (2) Merging: Counted hashes from equivalent partitions are aggregated, and counts are binarized to produce a vector of BFs (i.e. a matrix of presence/absence bit-vectors, where row indices represent hashes). This matrix is filtered using the k-mer rescue procedure described in section II. 3.A [page 46]. In order to build BFs, i.e. having samples as matrix rows, each partitionspecific sub-matrix is transposed.

(3) Bloom filter outputs: a Bloom filter is built for each sample through concatenation of transposed sub-matrices (in those, each row corresponds to a sample). BFs can also be obtained from the first counting step if aggregation is not required. In this case, this corresponds to a concatenation of bit-vectors from (1).

Partitioning

In order to benefit from the partitioning and perform parallel construction, we use a variant of the BF that we call partitioned Bloom filters (pBFs). Such filter is a BF partitioned into P partitions with exclusive and consecutive hash spaces h p : U p → {p × s, . . . , p × s + s -1} with p ∈ [0, P ) and s = B P (rounded up to a multiple of 8) where B is the user-defined BF size in bits. The partitioned hash space enables a coarse-grained parallelization at construction stages since only one pBF partition must be populated when counting a k-mer partition. The same 1. From k-mer matrix to Bloom filters matrix applies to the query since different partitions can be queried simultaneously without thread synchronization. In addition, memory usage is also reduced because only partitions under processing have to be loaded in memory instead of the whole filters.

Counting

The early parts of the counting are the same as in section II.2 [page 42] for the construction of the k-mer matrix. The samples are split into super-k-mers, which are written on disk according to their minimizers. The rest of the counting differs and consists in directly counting hash values instead of k-mers. In other words, the super-k-mers are cut into k-mers, which are this time directly hashed using xxHash [START_REF] Collet | xxHash -Extremely fast hash algorithm[END_REF], a robust and ultra-fast hash function. The hash values are then counted in the same way as the k-mers, i.e. using a sorting-based counting algorithm (see

Section II.2 [page 42]).
The output of the counting stage depends on whether the k-mer rescue (see Section II. 3.A [page 46]) is applied or not. Indeed, the rescue assumes that the counting information is available for all the samples and therefore requires hash value abundance tables for each sample. Using the k-mer rescue, the hash values and their abundances are compressed and written to disk (see Section V. 4 ⃝). Note that the sorting count algorithm involves counted and sorted hash values at the end of the counting stage. Thus, cache misses will be drastically reduced when these hash values are used to populate bit-vectors. Indeed, for a given partition p, the bits are set in a linear way from p × s to p × s + s -1, where s is the size of the partition in bits (see Section IV. 1

.A [page 62]).

At the end of this stage, we have P partitions of counted hash values or bit-vectors on disk for each sample.

Merging

As described before, the construction of pBFs depends on the k-mer rescue. Both ways, with rescue (see Figure 

Indexing

Our collection of pBFs is already an index. However, the space and query time can be improved by aggregating them into a final structure. The indexing of pBFs is ensured by a modified version of HowDeSBT, the most space-efficient BF-based index (see Section I. 1

.D.2.b.ii [page 26]

). We adjusted the HowDeSBT query algorithm to support our pBFs. Indeed, kmtricks outputs pBFs which correspond to BFs that are partitioned according to a minimizer repartition.

At query time, minimizers must be computed for each k-mer to select the correct hash function, i.e. the correct partition.

In addition, we added the findere (see Section I. 1.D.3.b [page 34]) query algorithm, reducing false positives and allowing smaller BFs, reducing at the same time the size of the final index.

Indexing a human RNA-seq collection

To evaluate the performance of our k-mer BF construction, we used a reference dataset used in indexing benchmarks, a collection of human RNA-seq sequencing. The original set is composed of 2585 samples. For storage space reasons, we used a subset of this collection for creating two small and medium-scale experiments with 100 and 674 samples, respectively. The RNA-Seq experiments have shown the scalability of kmtricks compared to other tools, which use various indexing techniques, based or not on BFs. The impact of partitioning on the false positive rates was also evaluated empirically on these samples. The detailed results are presented in the next sections.

In addition, a large-scale experiment was performed on another dataset and presented in the section IV. 

A Benchmark environment

The benchmarks presented in this section were performed on the GenOuest platform on a node with 2x10 cores Xeon E5-2660 v3 2,20 GHz and 200 GB of memory. The filesystem allowed 900 MB/s and 290 MB/s sequential read and write (average on 10 tests). All tools were compiled using GCC 10. The versions are given in the table IV.1 [page 69]. They support multi-threading and were executed using 20 threads. The running times and memory footprints are tracked with '/usr/bin/time -f %E,%M' except for kmtricks, which tracks them internally. The peak disk usage is tracked using an in-house process that monitors disk usage every second.

We benchmarked kmtricks against the classical construction of HowDeSBT using two kmer counter, Jellyfish [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF] and KMC3 [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]. Here, the BFs construction consists in k-mer counting followed by the construction of BFs with the bundled tool howdesbt makebf. We also compared other approaches that use different indexing techniques, McCortex + COBS and Squeakr + Mantis. Like most read indexing tools, all the tools tested here are approximate methods, i.e. sensitive to false positives. Even if Squeakr + Mantis offers an exact index, it is more expensive and targets smaller datasets.

The resources to download the data and reproduce all experiments are available at https: //github.com/pierrepeterlongo/kmtricks_benchmarks. 

C Empirical false positive rates analysis

The false positive rate of an usual BF is constant and depends only on the size, the number of hash functions, and the number of inserted elements. In the context of pBFs, the space is partitioned and the false positive rate also depends on the partitioning. One of the partitioning objectives is to distribute k-mers into partitions uniformly. In practice, perfect partitioning does not exist because the distribution depends on the k-mer contents of the samples. Consequently, the number of k-mers in each partition is not identical, resulting in variations of the false positive rates depending on the partition. It is important to verify the partitioning impact on the false positive rates distribution.

We studied the false positive rate per partition on the 100 RNA-Seq dataset. The false positive rate of each partition is compared to the expected false positive rate of a classical BF. Moreover, these outliers correspond to perfectly usable false positive rates from a query point Here we focus on the Tara Ocean expedition [START_REF] Karsenti | A Holistic Approach to Marine Eco-Systems Biology[END_REF] Unfortunately, the considerable amount of data and the mapping techniques used by OGA (BLAST [START_REF] Ye | BLAST: improvements for better sequence analysis[END_REF], DIAMOND [START_REF] Buchfink | Fast and sensitive protein alignment using DIAMOND[END_REF] and HMMER [START_REF] Wheeler | nhmmer: DNA homology search with profile HMMs[END_REF]) do not allow direct querying of the raw sequencing, and thus deprive of a large part of the data. The indexing of the raw reads would enable the query and the analysis of the whole dataset.

We decided to index the bacterial fraction of the Tara Ocean data. This represents 241 sampling stations composed of 712 read files, representing more than 6 TB of compressed data.

The great diversity of organisms makes it a very complex dataset from the k-mer point of view with 266 billion of distinct k-mers (k = 20).

Because the data correspond to complex metagenomes, the Tara Ocean dataset is also a good candidate to benchmark the k-mer rescue procedure presented in section II. 

B Benchmark environment

The computations were done on the Très Grand Centre de Calcul du CEA (TGCC) on a node with 2x64-cores AMD Milan@2.45GHz with 512 GB of memory. The average sequential read/write were 970MB/s and 216MB/s, respectively. Jobs are limited to 72h. The higher times are therefore extrapolated. We compared the kmtricks BFs construction to the construction of HowDeSBT which is the tool used to build the final index from the kmtricks BFs. Originally, HowDeSBT uses Jellyfish to count k-mers in each sample. Here we added a comparison with another k-mer counter, KMC3, which is usually more time and memory efficient than Jellyfish.

The BFs were built with the howdesbt makebf command. Other tools used in the previous experiments were not included. McCortex+ COBS showed significantly longer construction time at smaller scale and Squeakr + Mantis ended in a segmentation fault on the large Tara Ocean samples. We therefore compared kmtricks to Jellyfish + makebf and kmc3 + makebf.

All benchmarks were run using k = 20, each BF size of 25,000,000,000 bits and 128 threads.

C Indexing the bacterial fraction of Tara Ocean data 1 Benchmarks

Using a similar amount of memory, kmtricks was able to construct the BFs in less than 24h for the 241 sampling stations. This corresponds to an improvement of the running time of 3.5x to 5.5x in comparison to kmc3 + makebf and Jellyfish + makebf, respectively. Although

Part, Chapter IV -Large-scale indexing equivalent for all tools, memory usage remains quite high. The main reason is the use of 128 threads, especially for kmtricks and kmc3 + makebf, leading to highly concurrent processing of partitions. In modern computational environments, such memory usage is still not really limiting and can be reduced by adjusting the parameters without changes in the final results. The original construction, Jellyfish + makebf, uses in any case a significant amount of memory to store the Jellyfish hash table.

Note that kmtricks achieves superior results by performing joint k-mer counting to enable the k-mer rescue, considering more k-mers. As described in section II.2 [page 42], k-mer rescue requires storing all k-mers or hash values on disk. As a result, kmtricks shows a higher disk usage (2x) than the other tools. In addition, the joint k-mer counting allows processing multiple samples simultaneously, requiring more temporary space. Using howdesbt makebf and whatever the k-mer counter, the BFs are created sequentially, and temporary files are deleted progressively.

The peak disk usage, including the final BFs, is however 4x smaller than the compressed input data in the context of k-mer rescue. We argue that is probably not a bottleneck for users. The detailed results are available in table IV. 

Table IV.3 -Comparison of construction times between kmtricks and other methods on the

Tara Ocean dataset using 128 threads. The makebf step corresponds to howdesbt makebf for Bloom filter creation from counted k-mers. The Memory and Disk columns indicate peak usage. KMC3 and Jellyfish counted each sample independently and removed k-mers with abundance one; whereas by default, kmtricks performed joint k-mer counting and low-abundance rescuing (see Section II. 3.A [page 46]) which kept some rare k-mers. Results for Jellyfish and KMC3 are extrapolated as our cluster jobs are limited to 72 hours. For the disk usage, since Jellyfish and KMC3 do single-sample counting, the peak disk usage corresponds to the BFs size plus the space required to count one station. Reprinted from [START_REF] Lemane | kmtricks: Efficient and flexible construction of Bloom filters for large sequencing data collections[END_REF].

Using the so-created pBFs, HowDeSBT was used to build a query-able index. The computation was done in 1250 min with 165 GB of memory. The final index size was 533 GB which is less than 10% of the input size. On this index, the query of 10,000 metagenomic reads took 12 min and 11 GB of memory. Note that at this scale, the query time is bounded by the time required to load the index from disk to memory. As a result, querying one or 10,000 reads takes approximately the same amount of time. As stated in section II. 3.A [page 46], k-mer filtering usually consists in discarding a k-mer in a sample if its abundance is below a given threshold typically set to 2 or 3. Such a technique is effective when the sequencing coverage is high and uniform for all input sequences. In the context of metagenomic or RNA-Seq sequencings, the sequencing coverage is uneven due to weakly represented species and variable gene expressions, respectively. The sequencing errors are difficult to distinguish from rare but true k-mers. The k-mer rescue was developed to address this problem (see Section II. 3

.A [page 46]).

We compared the classic k-mer filtering technique, i.e. removing the k-mers seen once (hard-min = 2) with our rescue strategy. The rescue is applied using hard-min = 1 in order to perform it by considering all k-mers. The share-min parameter was set to 1, i.e. a low abundant k-mer in sample is kept if it is solid (≥soft-min) in at least one other sample. The soft-min parameter depends on the sample and is automatically computed such that the number of k-mers occurring soft-min times is less than 10% of the total number of k-mers. In other words, 10% of the least abundant k-mers are examined for a potential rescue.

The validation of the results relies on 3 metrics:

err th is the theoretical expected number of erroneous k-mers.

err one is the number of k-mers ocurring only once.

err unrescued is the number of k-mers considered as erroneous after the rescue procedure.

The Tara Ocean samples were sequenced at the Genoscope, a French sequencing center.

Benchmarks are performed on these sequencers using a benchmark species, Acinetobacter baylyi, with a well-characterized genome. Thanks to these experiments, we know the actual error rate of the machines used for the sequencing of Tara Ocean data. Being machine-specific, these measurements have higher accuracy than the values provided by the manufacturers. The k-mer error rate corresponds to the fraction of erroneous k-mers. It is computed using raw sequencings of Acinetobacter baylyi from each sequencer by counting the k-mers (k = 20) absent from the reference genome.

Three sequencing platforms produce the samples: HiSeq 2000 (222 stations out of 241), HiSeq2500 (8 stations) and GAIIx (4 stations). A station is composed of several samples and may sometimes be sequenced by different technologies. A total of 7 stations were removed from the analysis because 2 or 3 different technologies sequenced them. The k-mer error rates are 3.38%, 1.27%, and 9.27%, for GAIIx, HiSeq2000, and HiSeq2500, respectively. The estimate respective base error rates being 0.06%, 0.48% and 0.171%. The statistics used to compute these values are given in table IV.4 On such datasets, k-mer rescuing seems to yield good results by allowing to overcome the classical filtering, which rejects an order of magnitude too many k-mers. Note that although these results look promising, it is essential to remember that there is no way to verify that the rescued k-mers are real ones. Indeed, the sequence content of this type of dataset remains largely unknown, and we lack access to the truth to make any assessments. The validation of these rare but shared k-mers from a biological point of view is one of the open questions brought by this work. We compared the query results of an exact index without false positives and an index produced by kmtricks. We performed 10,000 queries of size 100 on both indexes. For each query, we compared the reported shared k-mer rates for a sample showing a false positive rate of 20%, a really high rate. The objective was to verify the possibility of working with such a high rate, reducing index size, construction and query times. We compare the results for only one sample because the exact indexing cost of Tara samples, containing billions of k-mers, is really high. In summary, we propose an end-to-end indexing pipeline capable of managing a dataset like Tara Ocean. The construction is achievable in a reasonable time, less than two days, while

Rationale

As stated in this manuscript, k-mer matrices go beyond the k-mer counting and can have applications in numerous bioinformatic analyses. Although other tools have already used the concept of k-mer matrices, there was no generic tool formalizing it. Each software had its approach, sometimes inefficient, to perform k-mer matrix construction. The primary purpose of kmtricks is to propose a tool allowing to build various types of k-mer matrices in an efficient, generic, and easy way. In addition, we accompanied it with different tools to facilitate its use and the exploitation of the results. In summary, kmtricks is a tool allowing joint k-mer counting on a set of FASTA/Q files, compressed or not, and exploiting the results via various utilities. In this section, I present its different components as well as concrete use cases. The implementation is available at https://github.com/tlemane/kmtricks.

Features

kmtricks is composed of 5 main components: 1. A pipeline for easy end-to-end usage. usually not required, only the matrix streaming is. As a result, kmdiff uses the pipeline to obtain partitioned counted k-mers before using the library for parallel streaming of the sub-matrices.

Another tool, decOM (see Section VI.3 [page 108]), relies on kmtricks to provide a pre-built matrix and to allow end-users to make matrix comparisons thanks to the modules.

A Pipeline

The pipeline is central part of kmtricks. It allows the joint execution of the different modules (see Section V. 2.B [page 84]) in order to produce different types of structures such as abundance matrices, presence/absence matrices, or BFs. However, the intermediate structures used to build the final objects are interesting, independently of our use case. Consequently, the pipeline can be stopped at any stage for further usage of these intermediate structures in other tools or analyses. For example, the computation may stop at the counting stage to obtain abundance tables for each sample. In this case, kmtricks acts as a multi-sample k-mer counter. The results provided by the pipeline are exploitable using the utility modules or the library presented in sections V. The purpose of modules is to perform specific tasks not directly allowed by the pipeline, such as processing a single partition from a given sample. For example, they can be used to construct a matrix using only one specific partition for sub-sampling purposes. Such features was exploited initially by decOM (see Section VI.3 [page 108]) and finally integrated into the pipeline for convenience.

In addition, step-by-step computation enables the usage of distributed systems, i.e. simultaneously performing various stages on several computation nodes. SLURM [START_REF] Yoo | SLURM: Simple Linux Utility for Resource Management[END_REF] support was implemented and will be part of future releases after further testing.

kmtricks repart

The execution of kmtricks requires a particular runtime environment, i.e. a directory with a specific arborescence containing all the configurations and output files of kmtricks. This first module, kmtricks repart, is in charge of the configuration and must be used before any other kmtricks module. In addition, it computes the repartition scheme of the minimizers accordingly to the k-mer content of each sample. Outside the kmtricks framework, it can be used to compute a balanced minimizer distribution for further usage by another tool.

kmtricks superk

In the context of sequence processing, several tools use super-k-mers as an intermediate representation but do not allow to get them for later usage. The kmtricks superk allows splitting a sample into super-k-mers and storing them on disk in partitions accordingly to the pre-computed repartition scheme.

kmtricks count / kmtricks merge kmtricks count and kmtricks merge allow to count k-mers and then merge abundance tables to obtain matrices. Since their specific features were included directly in the pipeline over time, they have no direct relevance for end-users. However, they are useful in the context of distributed computing and were used to implement SLURM support.

Features

kmtricks format

kmtricks format is the last module of the pipeline. It is used only in hash mode to construct BFs. Independently of the pipeline, it allows to extract sample-specific BFs from the matrices and dumping them in different formats like the widely-used SDSL [START_REF] Gog | SDSL -Succinct Data Structure Library[END_REF] format.

Utility modules

The utility modules are intended to be used on the data produced by pipeline/modules. They are mainly dedicated to output manipulations.

kmtricks dump

All kmtricks files are usually compressed binary files. kmtricks dump dumps them in a human-readable format for further reading by external scripts, for example. The files, such as the abundance tables and the matrices, are dumped in a sorted way since the counting algorithm implies sorted results.

kmtricks aggregate

Internally, the objects produced by kmtricks are stored following the partitioning scheme.

In other words, the results are dispatched in many files. kmtricks aggregate aggregates these files to produce a unique and complete file in binary or plain text format. In addition, it can provide sorted outputs thanks to the counting algorithm, which implies that each partition is sorted. Some tools, like HAWK (see Section I. 

3.

A column bit-vector representing the presence/absence of k-mers from the new sample in the input matrix.

Indexing modules kmtricks index

The kmtricks index module is basically a wrapper around howdesbt build. From a kmtricks run containing a set of BFs, it is able to construct various HowDeSBT [START_REF] Robert | Improved representation of sequence bloom trees[END_REF] indexes. It corresponds to the last step of the k-mer indexing pipeline and must be executed before any query.

kmtricks query

The kmtricks query module is wrapper around howdesbt query but it offers additional features. As described in section I. 1.B [page 13], k-mer queries are heuristics. A match is defined by the number of shared k-mers between the query and an indexed sample. The meanings of matches with the same ratio of shared k-mers are not necessarily equivalent. Indeed, a match consisting of a large number of consecutive and overlapping k-mer hits does not have the same meaning as a match with an equivalent number of positive k-mer hits scattered along the query.

In addition to the usual threshold, i.e. the proportion of shared k-mers (S k ), we implemented another threshold corresponding to the proportion of covered bases (S b ). The combination of both thresholds enables a more robust interpretation of the results, i.e. a low S k and a high S b indicates that k-mer hits are scattered along the query. To facilitate the interpretation, an optional "graphical" output is available and represents the shared bases on the query sequence by using '+' or '-' characters, as described below. The output indicates that the query 1 is found in the sample D1 with 21% of shared k-mers and 58% of bases covered by at least one positive k-mer.

* [1]

[D1] ---------------------------+++++++++++++++++++++++++++++++++++++ 0.21 0.58

In future releases, we plan to implement another threshold corresponding to the proportion of bases covered by at least N k-mers. 

SOCKS interface

Nowadays, numerous tools offer k-mer indexing and propose different features and tradeoffs, making the choice complicated from a user point of view. Recently, a resource has been execute the tasks in parallel according to a given number of threads and priorities. Moreover, it uses a callback system allowing the finished tasks to launch new ones. This task pool is used in kmtricks to execute the pipeline and manage the dependencies between the different components. An example is presented in section V. 

D Plugins

The matrices produced by kmtricks are sometimes very large. Their simple transformation into plain text followed by a reading from other tools, such as python scripts, leads to poor performance. The library allows to solve this problem but it requires a good understanding of C++. Moreover, it is necessary to consider I/O or multi-threading, even if many components are provided for that.

To facilitate the addition of new features, we have implemented a simple plugin system. The idea is to implement a class respecting a specific interface that will be able to apply an operation on each row of the matrix. In other words, this operation is applied directly when creating the matrix, reducing the running times.

The class is compiled as a shared library and linked at execution time using runtime dynamic linking, a technique that is widely used by famous libraries such as OpenMP. The required symbols are loaded at runtime and recompilation of kmtricks is therefore not required. The plugin interface is described in Implementation D.1 [page 89].

The user has to overload some functions to implement his custom features:

-set_kmer_size allows to set the k-mer size and have to be overloaded in the case of templated plugins.

configure allows to configure your plugin. It takes a string passed from the command line with --plugin-config. Usually, this string should correspond to a path to a config file.

-process_kmer and process_hash are the functions applied on each line of the matrix.

The return value indicates if the line is kept or not. The count_vector parameter corresponds to the abundance vector of the current line. This way, features like k-mer rescue can be implemented through the plugin system.

In addition to the class, some functions must be implemented to make the plugin loadable and are described below:

-plugin_name returns a string corresponding the name of the plugin.

-use_template returns 1 if the plugin is a templated plugin, 0 otherwise.

-create0 constructs the plugin and returns it.

destroy calls the destructor of the plugin.

Note that these functions must be marked as extern "C" to avoid the name mangling.

Part, Chapter Vkmtricks: a k-mer matrix framework

To illustrate the usage of plugins, we consider an elementary example: One wants to build a k-mer abundance matrix and keep only the rows for which k-mers have an abundance greater than a given threshold in the first sample. For that, we need to overload the process_kmer function to make it return false when the condition is not satisfied. The corresponding source code is presented below. Assuming that the plugin source code is contained in a plugin.cpp file, the previous command will produce a shared libplugin.so. It can then be used in the following way: kmtricks pipeline --plugin libplugin.so --plugin-config 42 \ --run-dir km_dir --file fof.txt --hard-min 2 \ --kmer-size 31 0

Once this command is executed, the final matrix in text format can be obtained using: kmtricks aggregate --run-dir km_dir --matrix kmer > matrix.txt

In this example, only the abundances are required, i.e. the k-mer sequences are not considered. To benefit from the k-mer utilities, a templated plugin is needed. The documentation is available at https://github.com/tlemane/kmtricks/wiki/plugins.

Practical usage example

In comparative genomics, the comparison of k-mer content between pairs of samples is commonly used to reflect the similarities within an extensive collection. For example, such a technique was used by Simka [START_REF] Benoit | Multiple comparative metagenomics using multiset k-mer counting[END_REF][START_REF] Benoit | SimkaMin: fast and resource frugal de novo comparative metagenomics[END_REF] on the Tara Ocean data and has allowed to identify genomic provinces around the oceans [159]. This work is based on the computation of ecological distances between k-mer sets such as the Jaccard Index [77], which could be easily computed from k-mer matrix. In this section, I present two ways to implement this type of analyses with kmtricks to illustrate the features of the library and the plugin system. Note that the code snippets presented in this section are designed to be succinct and easy to understand kmtricks functionalities. They are illustrative and not designed to be the most efficient.

A Using the API

In this section, I present the implementation of a standalone tool called jaccard, performing pairwise Jaccard index [77] computation on a set of sequencing samples. The Jaccard index is a statistic representing the similarity of two sets. It is given by J(A, B) = |A∩B| |A∪B| . Using the kmtricks pipeline, we obtain partitioned abundance tables for each sample. The Jaccard index is then computed by merging partitions in parallel using the library to accumulate the counting information allowing the subsequent computation of the Jaccard index. Note that the whole matrix is not represented but only streamed on-the-fly from the abundance tables.

The implementation is a combination of the pipeline and the library. Such tool can be implemented as follows: The JaccardObserver collect the counting information. Since partitions are independent, multiple sub-matrices can be streamed in parallel. Note that the sub-matrices are not stored. Each row is computed on-the-fly from the abundance tables, used by the JaccardObserver, and finally forgotten. All parallel tasks share the same instance of the JaccardObserver. Consequently, a lock is used to avoid race condition in the process function. Such implementation was chosen to present a concise and simple example. Indeed, it leads to high thread contention and is therefore not optimal. To be efficient, each task should have its own JaccardObserver instance that will be aggregated at the end. When all tasks are done, the Jaccard matrix is computed. The Jaccard matrix is finally available at 'jaccard_matrix.txt'.

Finally, the plugin system allows extending kmtricks features relatively simply while keeping the pipeline efficiency. The first use case of plugins was matrix filtering, even if kmtricks already supports basic filters. However, plugins could be used for more complex things, as shown by this example. The kmdiff tool (see Chapter II [page 41]) was implemented independently for convenience, but it could be only a plugin. Note that it supports a similar system allowing easy and fast testing of new statistical models.

Implementation details A I/O

The objective of kmtricks is to allow multi-sample analysis by generating k-mer matrices from a relatively large number of samples. This operation being impossible to perform in memory on current machines, kmtricks relies heavily on disk. In the last few years, the speeds have been significantly improved with the Solid State Drives (SSD) and the Redundant Array of Inexpensive Disks (RAID) technologies. It is common to observe throughputs close to the gigabyte per second, both in reading and writing. Such speed allow building disk-based tools while keeping competitive performances. However, these speeds remain significantly lower than memory ones. In other words, I/O operations must be implemented carefully to guarantee optimal performance.

As described previously, the sequences can be encoded using a 2-bit encoding scheme which improves both space and processing time. The encoded k-mers are packed into one or more 64-bit unsigned integers according to their sizes and always stored with an alignment of 8 bytes allowing optimal read and write. As k-mers and super-k-mers can be encoded on several integers, the classical integer compression techniques were hardly applicable. Although theoretically possible, there are few implementations for large integers (≥ 64 bits). We decided to use a generic compression algorithm designed for speed to compress super-k-mers and the pairs k-mers/abundances.

The k-mers from a given partition share a subset of minimizers and are lexicographically sorted.

We can then expect a certain redundancy between close k-mers. This type of layout is perfectly adapted to the dictionary compression. We used the lz4 algorithm [START_REF] Collet | LZ4 -Extremely fast compression[END_REF], a lossless compression algorithm from the LZ77 family [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF] which supports streaming compression. Contrary to its competitors, it uses only a dictionary-matching stage without any further entropy stage [START_REF] Moffat | Huffman Coding[END_REF].

The BFs construction pipeline allows a more efficient compression, in terms of space and time. In this case, the stored entities are hash values represented by 64-bit integers. As for kmers, hash values are always sorted in kmtricks allowing the use of delta encoding. The deltas are then compressed using a PFOR [START_REF] Zukowski | Super-Scalar RAM-CPU Cache Compression[END_REF] compression algorithm. The compression routines come from TurboPFor-Integer-Compression [START_REF]powturbo. powturbo/TurboPFor-Integer-Compression[END_REF], a SIMD-accelerated library for integers compression. The Linux kernel provides several system calls allowing zero-copy as sendfile(2), splice (2) or copy_file_range(2). Unfortunately, there is no system call allowing direct zero-copy between files on macOS. As a result, some steps are significantly slower in the macOS version. However, it is probably possible to implement zero-copy using Memory Mapped I/O on such systems. In large experiments like Tara Ocean, the use of zero-copy reduced the running time of this step from a few hours to a few minutes. 1 Identification of isolated or mixed strains from long reads: a challenge met on Streptococcus thermophilus using a MinION sequencer [5] In recent years, high throughput sequencing has enabled a significant breakthrough in the analysis of microbial communities without prior culturing. Numerous methods and tools have appeared for the characterization of bacterial samples from sequencing data with applications in many fields such as ecology, agri-food or even rapid diagnosis of clinically relevant bacteria.

Chapter VI

OTHER CONTRIBUTIONS

Preamble

There exists currently a stable and efficient set of tools allowing bacterial identification from short reads, but these fail when considering strain level identification because of the lack of long-range information. Regarding long reads, the number of tools is limited [START_REF] Dilthey | Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps[END_REF][START_REF] Kim | Centrifuge: rapid and sensitive classification of metagenomic sequences[END_REF][START_REF] Wood | Improved metagenomic analysis with Kraken 2[END_REF] and techniques used constantly evolve. Although these data contain long-range information, the identification at the strain level remains challenging because of the numerous sequencing errors present in long reads. If the identification at the genus or species levels is sufficient for some applications, it is sometimes a critical point in other fields such as health care with the differentiation of pathogenic vs non-pathogenic strains for example.

Consequently, this project aimed to develop a method for strain identification from long reads, and more specifically from MinION [START_REF] Jain | The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community[END_REF] reads. This sequencer produces relatively long Part, Chapter VI -Other contributions but noisy reads (see Section . 1.A.3). In the context of strain identification, sequencing errors are problematic because they complicate the identification of similar strains. To address this issue, we use spaced seeds which are less sensitive to errors than k-mers [START_REF] Břinda | Spaced seeds improve k-mer-based metagenomic classification[END_REF]. Spaced seeds are sequences that allow wildcard positions that can be matches or mismatches.

The proposed method, called ORI [5], is a combination of indexing and Answer Set Programming (ASP) [START_REF] Gebser | Answer Set Solving in Practice[END_REF]. It is composed of three main steps as described in the 2. Query. ORI is able to identify a strain mixture from a collection of MinION reads (usually, 4000 to 8000 reads are sufficient, depending on the dataset). First, the reads that are too noisy or too short are discarded. An affiliation matrix reads X strains is then constructed by querying all the reads against the index.

Identification.

The objective of this step is to find a subset of strains that best explains the queried reads. A strain explains a read if the fraction of shared spaced seeds is greater than a given threshold. The reads explained by too many strains belong to the core genome are not considered. Finding the minimal subset of strains corresponds to a set cover optimization problem and is solved using ASP.

ORI was tested against other identification tools as Kraken2 [START_REF] Wood | Improved metagenomic analysis with Kraken 2[END_REF] or StrainSeeker [START_REF] Roosaare | StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees[END_REF].

StrainSeeker and ORI are the two methods that reach the strain level. However, StrainSeeker hardly scales up and can produce very different results depending on the number of input reads.

In terms of time, Kraken2 is still the best but fails to identify strains. This is explained by its minimizer-based method, which does not capture the slight variation between strains. ORI seems the most efficient for strain and mixed strains identifications.

The K-mer File Format : a standardized and compact disk representation of sets of k-mers [6]

As described in this document, many analyses and tools are based on k-mers. Curiously, there was no standard format for storing k-mer sets, with or without abundances. As a result, each tool uses its own format, from simple plain text to complex binary format, causing interoperability and efficiency problems.

Standard formats are proving to be really useful and efficient in bioinformatics. The most famous example is probably the SAM and BAM formats [START_REF] Li | Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools[END_REF], which are used to represent sequence alignment. In addition to the specification, these formats offer many libraries and tools [START_REF] James K Bonfield | HTSlib: C library for reading/writ-ing high-throughput sequencing data[END_REF] for analysis and file handling. This rich collection of features, as well as the efficiency of the format justify their ubiquity in sequence bioinformatics.

In the same spirit, we propose a binary file format for storing k-mer sets, the K-mer File Format (KFF), along with a library (C++ and Rust) and a set of tools allowing the processing of files. KFF stores k-mers in binary format and takes advantage of overlaps and redundancy between sequences to represent k-mer sets compactly without compression, i.e. bases are simply packed thanks to overlaps. It allows storage of variable-sized sequences consisting of overlapping k-mers with an additional space-optimization when the k-mers constituting the sequence share the same minimizer (super-k-mers for example). A description of the format is available in figure VI. 2. As kmtricks contains basic components related to minimizers and super-k-mers, we used it to produce the super-k-mer representation. This required a modification of the counting step (see Section II.2), which I have adapted as follows: the counted k-mers are no longer stored on disk but in an abundance table. Then, the super-k-mers are read again and associated with abundance vectors thanks to the abundance table. When a k-mer is absent from the table, it has already been seen in another super-k-mer. The current super-k-mer is then split into new super-k-mers containing only new k-mers. This representation is sub-optimal because it does not consider maximal overlaps and processes super-k-mers in the order seen in the reads. It remains a reasonable compromise between a naive representation and a near-optimal representation which is expensive to build as spectrum-preserving string set [START_REF] Rahman | Representation of $$k$$-mer Sets Using Spectrum-Preserving String Sets[END_REF][START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF].

To illustrate the KFF efficiency, we have benchmarked different formats on various sequencing samples: plain-text encoding, KMC format, KFF naive (one k-mer per block, no usage of overlaps), KFF sk (stored as super-k-mer from kmtricks) and KFF spss (stored as a stringpreserving string set from ESS-Compress [START_REF] Rahman | Representation of $$k$$-mer Sets Using Spectrum-Preserving String Sets[END_REF]). The results (see Table 1 in [START_REF] Dufresne | The K-mer File Format: a standardized and compact disk representation of sets of k-mers[END_REF]) on various sequencing samples show good performances in terms of space, both for raw (KFF spss) and minimizer (KFF sk) sections. However, the most advanced representations are more time-consuming. The running time to obtain the k-mer set from a G. gallus sequencing sample in KFF format was 9 2. The K-mer File Format : a standardized and compact disk representation of sets of k-mers [START_REF] Dufresne | The K-mer File Format: a standardized and compact disk representation of sets of k-mers[END_REF] min for the naive version, 113 minutes for sk, and 900 minutes for spss.

All resources related to the project are available on github at https://github.com/Kmer-File-Format/.

Sequences free data field

kmers.kff

Values definition

Variable-length field DNA sequence, 2 bits per nucl. . The header section stores the magic number to identify the format, the nucleotide encoding, and some flags related to k-mer canonicity. A variable-sized block is also allowed for eventual metadata. The value section V is a scoped (until a new V section is reached) key-value section. It defines variables required by the subsequent data section. The index section I stores relative addresses allowing to jump between sections. Finally, two data sections are allowed: raw (R) and minimizer (M) sections.

The raw section allows to store variable-sized overlapping k-mers associated or not with an abundance vector. The minimizer section allows to store sequence of overlapping k-mers that share the same minimizer (e.g. super-k-mers). The sequence of the minimizer is then stored once per section and the storage consists in storing sequence without minimizer associated with the minimizer position.

decOM: Similarity-based microbial source tracking of ancient oral samples using k-mer-based methods [7]

The relatively long life span of DNA molecules allows to perform genetic analysis on very old samples. However, these molecules still suffer degradations due to time and environmental conditions [START_REF] Yates | Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir[END_REF]. In addition, the studied sample frequently contains modern or ancient contaminations unrelated to the study. These contaminations are the consequence of the immediate environment of the sample but also sometimes of the collecting itself, despite the numerous precautions. In other words, contaminations are extremely frequent and probably inevitable [START_REF] Peyrégne | Present-Day DNA Contamination in Ancient DNA Datasets[END_REF].

The characterization and quantification of the contaminations are essential to guarantee the quality of the downstream analyses. In the context of metagenomics, this procedure is called Microbial Source Tracking (MST) and consists of the quantification of different sources in the samples, i.e. the different microbial environments. Different techniques [START_REF] Mcghee | Meta-SourceTracker: application of Bayesian source tracking to shotgun metagenomics[END_REF][START_REF] Shenhav | FEAST: fast expectationmaximization for microbial source tracking[END_REF] exist and rely on reference databases to track the sources and usually require a fine parameter tuning to obtain optimal results [START_REF] Raza | Microbial source tracking using metagenomics and other new technologies[END_REF].

As a result, this project aims to provide a new MST reference-free method, called OM, and not surprisingly relies on k-mers. The idea is to represent possible contaminants by a set of real metagenomic samples (called the sources) and to use it to compute the contributions of such contaminants in an external group of samples (called the sinks). In our case, a collection of samples corresponding to Sediment/Soil, skin, ancient oral microbiome (aOral) and modern oral microbiome (mOral) was used to quantity the possible contaminations of an aOral sample. The reference datasets is composed of 360 metagenomes from different databases [START_REF] Pasolli | Accessible, curated metagenomic data through ExperimentHub[END_REF][START_REF] Coelho Kasmanas | HumanMetagenomeDB: a public repository of curated and standardized metadata for human metagenomes[END_REF][START_REF] Mitchell | MGnify: the microbiome analysis resource in 2020[END_REF].

OM requires a binary presence/absence matrix M representing sources, where each M (i, j) corresponds to the presence/absence of a k-mer i in a sample j. According to the metadata, each column has a label corresponding to the environments, i.e. aOral, mOral, Skin, Sediment/Soil. The matrix is compared to one or more sinks represented by column vectors. Using the binary matrix, OM counts the number of k-mers from a sink that fit in each environmental condition.

For that, each sink vector which is compared to each source vector. At the end, the number of k-mers in each label is used to estimate the proportions of each source in the studied sink. An overview of the pipeline is presented in figure VI. 3.

OM relies on kmtricks and benefits from several features. The minimizer partitioning allows speeding the computations by sub-sampling k-mers. Indeed, the estimated proportions of sources in sinks are close, whatever the number of partitions considered. In the aOral experiment, only one partition is considered, allowing to build a matrix with only 14 million of k-mers instead of 9 billion. In addition, the same contaminant matrix can be used for characterizing different sinks and can consequently be constructed only once. If the sinks are counted using the same partitioning scheme as the sources, the comparison is easy because identical k-mers from sources new developments. We hope that they will be beneficial to the bioinformatic community.

Although k-mer matrices are generic objects allowing a variety of analyses, our work opens direct perspectives and future works, which are discussed below.

Towards k-mer-based variants detection

The differential k-mer analysis is only a preliminary step towards k-mer-based GWAS-like studies. Indeed, k-mers detected by such techniques should be characterized to bring a better biological value. The challenge consists in moving from a significant k-mer sets, potentially incomplete, to a well-characterized set of genetic variations. Several directions are possible from alignment to k-mer graphs, each with its own advantages and drawbacks. Anyway, such problem requires a fine understanding of genetic variants through the k-mer prism and constitutes an important future work.

Towards faster k-mer queries

Beyond the construction, query time is a crucial consideration of indexing methods and bounds the possible downstream analyses. The particular layout of the filters produced by our method could improve the current query times.

The BFs produced by kmtricks are partitioned filters, i.e. each consecutive section of the filter corresponds to a specific set of minimizers. This particular layout could lead to a new variant of the HowDeSBT index. As stated previously, HowDeSBT resolves queries by walking down in the SBT until they are resolved or simply unresolvable. In the current implementation, the whole bit-vectors representing a node are loaded from disk to memory at each step. As a result, the query time is bounded by I/O operations when indexes are large. For example, our tests indicates that performing 1 or 10,000 queries on the large Tara Ocean index takes approximately the same amount of time. In other words, reducing the I/O costs could drastically reduces the query time.

At each node, the partitioned layout could enable the loading of a few filter ranges, corresponding to the subset of minimizers involved in the query. In this case, the implementation could benefit from memory-mapped files. In addition, each partition could be an independent SBT with its own topology, allowing an efficient parallelization and probably a better compression. The current implementation of HowDeSBT does not allow to reach these targets easily. A consequent engineering work would be necessary but would result in a significant improvement at every level from construction to querying.

A public Tara Ocean index

We showed that our methods can build indexes for relatively large sequencing projects like Tara Ocean. The next step is to make the index accessible and searchable by everyone. We are currently working with the OGA team in this direction. As a reminder, OGA (https: //tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/) is a web service allowing to query a part of the data produced by the Tara Foundation, i.e. the assembled data. An index allowing direct queries against the sequencing samples would allow to query and exploit a larger part of the data. OGA and our index are based on different paradigms, alignment versus k-mer queries, respectively. Consequently, the deployment of the k-mer index requires the development of new interfaces and representations. The project is currently in a testing phase and limited to the Tara Ocean index. In the future, the other sequencing cohorts of the Tara foundation could also be indexed. In addition, the Tara dataset might be interesting to explore multi-scale indexing since it is composed of several sequencing campaigns with their own specificities. Likewise, groups could be constituted within sequencing cohorts, by sampling depth for example. In summary, it would consist in constituting different levels of indexing to drive the queries. Currently, no indexing methods allows such type of layered resolution, requiring further methodological developments. Résumé : Le 21ème siècle subit un tsunami de données dans de nombreux domaines, notamment en bio-informatique. Ce changement de paradigme nécessite le développement de nouvelles méthodes de traitement capables de passer à l'échelle sur de telles données. Ce travail consiste principalement à considérer des jeux de données massifs provenant du séquençage génomique. Une façon courante de traiter ces données est de les représenter comme un ensemble de mots de taille fixe, appelés k-mers. Les k-mers sont très largement utilisés comme éléments de bases par de nombreuses méthodes d'analyses de données de séquençages. L'enjeu est de pouvoir représenter les k-mers et leurs abondances dans un grand nombre de jeux de données. Une possibilité est la matrice de k-mers, où chaque ligne est un k-mer associé à un vecteur d'abondances. Ces k-mers sont erronées en raison des erreurs de séquençage et doivent être filtrés. La technique habi-tuelle consiste à écarter les k-mers peu abondants. Sur des ensembles de données complexes comme les métagénomes, un tel filtre n'est pas efficace et élimine un trop grand nombre de k-mers. La vision des abondances à travers les échantillons permise par la représentation matricielle permet également une nouvelle procédure de détection des erreurs dans les jeux de données complexes. En résumé, nous explorons le concept de matrice de k-mer et montrons ses capacités en termes de passage à l'échelle au travers de diverses applications, de l'indexation à l'analyse, et proposons différents outils à cette fin. Sur le plan de l'indexation, nos outils ont permis d'indexer un grand ensemble métagénomique du projet Tara Ocean tout en conservant des k-mers rares, habituellement écartés par les techniques de filtrage classiques. En matière d'analyse, notre technique de construction de matrices permet d'accélérer d'un ordre de grandeur l'analyse différentielle de k-mers.

Title: Indexing and analysis of large sequencing collections using k-mer matrices Keywords: sequencing, k-mer, k-mer matrix, indexing Abstract: The 21st century is bringing a tsunami of data in many fields, especially in bioinformatics. This paradigm shift requires the development of new processing methods capable of scaling up on such data. This work consists mainly in considering massive tera-scaled datasets from genomic sequencing. A common way to process these data is to represent them as a set of words of a fixed size, called k-mers. The k-mers are widely used as building blocks by many sequencing data analysis techniques. The challenge is to be able to represent the k-mers and their abundances in a large number of datasets. One possibility is the k-mer matrix, where each row is a k-mer associated with a vector of abundances and each column corresponds to a sample. Some k-mers are erroneous due to sequencing errors and must be discarded. The usual technique consists in discarding low-abundant k-mers. On complex datasets such as metagenomes, such a filter is not efficient and discards too many k-mers. The holistic view of abundances across samples allowed by the matrix representation also enables a new procedure for error detection on such datasets. In summary, we explore the concept of k-mer matrix and show its scalability in various applications, from indexing to analysis, and propose different tools for this purpose. On the indexing side, our tools have allowed indexing a large metagenomic dataset from the Tara Ocean project while keeping additional kmers, usually discarded by the classical k-mer filtering technique. The next and important step is to make the index publicly available. On the analysis side, our matrix construction technique enables to speed up a differential k-mer analysis of a state-ofthe-art tool by an order of magnitude.

1 4 .

 4 Un ensemble d'outils génériques pour la construction et l'analyse des matrices de k-mers. Une matrice de k-mers est une représentation générique pouvant être utilisée dans des contextes d'analyses variés. Nous pensons qu'un outil générique permettant la construction et le traitement de ce type d'objet serait bénéfique pour la communauté bio-informatique. En conséquence, nous proposons un outil, kmtricks, pour la construction, le streaming et l'indexation des matrices de k-mers. Cet outil est accompagné d'une librairie et d'un système de plugins permettant d'étendre ses fonctionnalités et de construire de nouveaux outils.
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  [page 6] shows the growth of this database and gives an idea of what to expect in the next few years.

Figure 1 -

 1 Figure 1 -Available bases in SRA, reprinted from https://www.ncbi.nlm.nih.gov/sra/doc s/sragrowth/. The number of bases presently (2022) stored in SRA is 67 petabases, including 32 open access petabases.

  .B [page 8]. The indexing of sequencing collections constituted an important part of my work and is treated in chapters IV [page 61] and V [page 81].

Introduction

  are presented in chapter II [page 41].

Finally, I present

  succinctly both k-mer counting paradigms, in-memory counting, and diskbased counting. More details are provided along the manuscript since some of the work derives from these methods. Part, Chapter I -State of the art

  The most common way to implement this query model is to use a membership data structure to perform k-mer membership queries and compute k-mer intersections between the query and the sample. Indexing of multiple samples is performed in the same way. An index, usually composed of several membership data structures, is used to associate a given k-mer to the list of samples containing it (illustrated in Figure I.1 [page 14]).

Figure I. 1 -

 1 Figure I.1 -Overview of the membership query model. The black-box is an arbitrary index allowing k-mer queries against a collection of 4 samples. The query Q is split into k-mers, using k = 5. Each k-mer is queried and the index returns a list of samples for each one. The membership of Q in each sample is then determined accordingly to θ, a user-defined threshold denoting the minimal proportion of shared k-mers between a query and a sample to consider a match.

lookup .

 . It is a bit array B[0..n), initialized to 0, and k hash functions h i : U → {0, ..., n-1} ∀i ∈ [1..k]. Insert can be defined as follows B[h i (x)] ← 1, ∀i ∈ [1..k] and lookup as k i=1 B[h i (x)]. As both operations depend only on k, the time complexity is O(k). An example of a BF construction is shown in figure I.2 [page 16].

Figure I. 2 -

 2 Figure I.2 -Example of a BF using 20 bits and k = 2 hash functions. h 1 (y) and h 2 (z) collides.

  1.D.1.b.iv [page 21], I.1.D.2.b.ii [page 26] and I.1.D.2.b.i [page 24].

  Figure I.3 -An example of a Cuckoo hash table using two tables T 1 and T 2 associated with two hash functions h 1 and h 2 , respectively. Arrows represent alternative positions of keys. Keys are inserted following the set order. h 1 (U ) and h 1 (Z) being equals, Z is inserted at its first location h 1 (Z) after kicked out U which is inserted at its alternative location h 2 (U ). V and W are involved in a cycle which prevents the insertion of X that shares the same hash values.

Figure I. 4 -

 4 Figure I.4 -From Cuckoo hashing to Cuckoo filter. The CF uses a 4-way bucketed table and a fingerprint size of l. f (•) denotes the key fingerprints. Keys that collided in the Cuckoo hash table are inserted here in the same bucket thanks to the multi-way bucketing.

  I -State of the art The possible states are: -0|0|0 → An empty slot. -0|0|1 → A start of a shifted run -0|1|1 → A continuation of a shifted run -1|0|0 → A start of a canonical run -1|0|1 → A start of a shifted run (canonical slot can exist but is shifted right) -1|1|1 → A continuation of a shifted run (canonical slot can exist but is shifted right)

  0. However, such a slot can contain a shifted remainder. An example with 10 slots containing 8 elements is given in figure I.5 [page 20].

Figure I. 5 -

 5 Figure I.5 -Overview of the Quotient filter data structure, adapted from [97]. Each element is inserted following the lexicographic order. The quotients are given by the F q array.

2 .

 2 Constant time insertions and lookups regardless of the load factor. BFs do not use any probing scheme to resolve collisions unlike CFs and QFs. As a result, the insertions and lookups are constant and allow to work with high load factors. For example, the first implementation of QF shows bad performances above 75% occupancy. The recent implementation of QF, RSQFs, allows efficient queries up to 95% occupancy at the expense of a little extra space (see Figure I.6 [page 22]). One could argue that working at high load factors leads to high false positive rates. However, false positive rates are not necessarily a problem in our case as mentioned in the next point.

3 .

 3 Figure I.6 [page 22]). Superior performances in terms of space can therefore be achieved when the applications do not require a low false positive rate, as in our case.

Figure I. 6 -

 6 Figure I.6 -Space comparisons of different AMQFs according to the expected false positive rates, reprinted from [88]. BFs uses less space than RSQFs, QFs and CFs for any false positive rates greater than 1/64. The load factors are 100% for BF, 95% for RSQF and CF, and 75% for QF.

  Marchet et al. in a review on k-mers indexing. In this section, I present the two paradigms, kmer-aggregative (Section I.1.D.2.b [page 24]) and color-aggregative (Section I.1.D.2.a [page 23]), with a focus on a particular representation, namely the Sequence Bloom Tree (Section I.1.D.2.b.ii [page 26]). a Color-aggregative As described in the last section, the color-aggregative way consists in indexing the union of each sample and associating each element with a list of colors representing the samples that contain it. Although there are several color-aggregative methods, I present here only one of them that has shown applications on reads indexing and has been compared to this work (see Section IV.2 [page 68]).

  Figure I.7 -Overview of Mantis [100]. The k-mers are stored in a CQF, where remainders correspond to color classes. Each color class corresponds to a membership pattern and indicates the samples that contain a k-mer.

  set. The current tool also proposes to add these vectors to allow partial matches (as presented in the Figure I.8 [page 25]).

  BIGSI is the first tool to implement a very large-scale genome indexing with the indexing of all bacterial and viral genomes present in ENA in 2016. The final index occupied a space of 1.5 TB as opposed to 170 TB for the input sequences. The authors also showed that this type of index could greatly accelerate genotyping. They show 10,000x faster results and 99.997% agreement with a samtools-based genotyping pipeline.

Figure I. 8 -

 8 Figure I.8 -An example of BIGSI [107] on 8 samples using one-hash BF. The query Q is directly represented by the hash values. R(Q) denotes the response, an array representing the number of positive matches in each sample obtained by adding all vectors corresponding to the hash values.

  Part, Chapter I -State of the art COBS has some limitations. Namely, a kmer size limited to 31 and a preprocessing of samples with McCortex, which is a DBG constructor. It allows here the decomposition in k-mers and the filtration. Although very efficient for genomes, McCortex is very slow for read sets compared to classical k-mer counters.

Figure I. 9 -

 9 Figure I.9 -An example of COBS [108] on 8 samples using one-hash BF. BFs are grouped by sizes which are determined according to sample sizes. The query Q is represented by 3 sets of hash values, one per BF group. R(Q) denotes the response for each group. The lookup procedure is the same as in BIGSI and is simply repeated for each BF group.

--

  and therefore is a representation of all entries contained in l(v) which is equivalent to B(C l (v) ∨ C r (v)). The matches of a query sequence Q are the leaves i for which |{k∈K(Q) : k∈B(i)|} |K(Q)| ≥ θ, where θ is a user-defined threshold in [0, 1]. This tree representation allows reducing the cost of negative queries because a negative query at a node u means that the element does not exist in l(u). SBTs are dynamic structures, allowing insertion and deletion of new experiments, and thus existing SBT can be updated when more samples are needed. In practice, the insertion and deletion operations are not always implemented. SBT [56] by Solomon and Kingsford is the first implementation (an overview of the structure is presented in the Figure I.10 [page 29]) and gives several contributions: 1. A greedy construction algorithm. The construction algorithm is designed to group together similar Bloom filters. As the internal nodes are the union of their children, grouping dissimilar filters leads to the saturation of top-level filters. At the same time, this allows to reduce the query time by favoring an earlier pruning of the tree. Given a collection of Bloom filters D and a possibly empty tree T , the insertion of a BF B in T is performed in the following way: -The current node u has a single child. B is inserted as the second child of u. The current node u has two children. B is compared to the two children of u, c l (u) and c r (u). The most similar node, according to the Hamming distance between Part, Chapter I -State of the art the BFs, becomes the current node, and the process is repeated. The current has no children. The current node represents a sample. A new union node v is created as a child of p(u). The new node v is then the parent of u and B.

Figure I. 10 -

 10 Figure I.10 -Overview of the Sequence Bloom Tree, first implementation from [56]. The query Q is searched in the tree accordingly to a threshold of θ = 0.65. The query state is given at each node.

  Part, Chapter I -State of the art 3. A new construction algorithm based on clustering. To improve the localization of the samples in the tree, Sun et al. propose a new construction algorithm based on agglomerative hierarchical clustering. Each sample is represented by a SBT. The final SBT is computed by merging two temporary SBT. At each iteration, the two SBT which present the smallest Hamming distance between their root nodes are merged.

Figure I. 11 -

 11 Figure I.11 -Overview of the AllSome Sequence Bloom Tree [113]. The query Q is searched in the tree accordingly to a threshold of θ = 0.65. The query state is given at each node. The bits represented by "-" are inactive.

  1. Sequence indexingpruning of the tree during the query.

Figure I. 12 -

 12 Figure I.12 -Overview of the Split Sequence Bloom Tree [87]. The query Q is searched in the tree accordingly to a threshold of θ = 0.65. The query state is given at each node. The bits represented by a black square are inactive and removed.

HowDeSBT [ 114 ]

 114 by Harris and Medvedev is the most recent implementation and proposes a new representation, also based on two bit-vectors per node, allowing additional pruning of tree as well as better compression ratios. The structure is presented in figure I.13 [page 33]. The main contributions of HowDeSBT are presented below. 1. The B det and B how representation. The proposed representation also relies on two bit-vectors and allows to save bits in terms of space and lookups. For a given node u, the bit-vectors are defined as follows:

3 .

 3 The smallest and the fastest implementation of the SBTs structure. HowDeSBT was compared to SBT-ALSO and SSBT on the benchmark RNA-Seq collection introduced by[START_REF] Solomon | Fast search of thousands of short-read sequencing experiments[END_REF]. Regarding the construction, HowDeSBT is 2.8x and 6.3x faster than SBT-ALSO and SSBT, respectively. The temporary space used by all tools is equivalent since it mainly corresponds to the BFs, one per input sample. The size of the HowDeSBT final index is 10.1x and 1.6x smaller than SBT-ALSO and SSBT indexes, respectively. HowDeSBT is also most efficient at query time, whether for single or batch queries. Note that the computation times and disk usages concern only the construction of the tree from the collection of BFs.

Figure I. 13 -

 13 Figure I.13 -Overview of the HowDe Sequence Bloom Tree [114]. The query Q is searched in the tree accordingly to a threshold of θ = 0.65. The query state is given at each node. The bits represented by a black square are inactive and removed.

  problems. Many k-mer indexing tools are based on BFs, which are highly suitable for k-mer indexing problems despite their apparent theoretical weaknesses as previously discussed in sections I.1.D.1.b.iv [page 21] and I.1.D.2.b.ii [page 26]. In this work, we show how a specific k-mer counting technique can help to build BFs efficiently, which can be used as inputs by indexing tools. In particular for HowDeSBT that is the most modern and efficient SBT representation. The methods and results related to this work are presented in the chapters II [page 41], IV [page 61], and V [page 81]. 3 Querying method a Naive k-mer queries As stated in section I.1.B [page 13], the naive way to query a sequence against a k-mer index consists of querying all k-mers composing the sequence. Thus, the probability of a false perfect match is ϵ n , where ϵ is the false positive rate and n the number of k-mers. A recent method, presented in the next section, defines a new query model, allowing to reduce this probability while reducing the query time. Note that some information can be derived from naive queries and bring additional insight to help the interpretation of results. The position of k-mers in the query allows to infer the coverae of the query, i.e. the number of bases covered by one or more k-mers. The benefits of this information are discussed in section V.2.B.3 [page 86]. b Findere findere [4] is a query-time technique allowing to reduce the false positive rate of an arbitrary AMQF while reducing the number of lookups to resolve a query. It only concerns the query part and can be applied to an existing index. Its scope concerns the indexing of objects that are decomposable into sub-objects, i.e. a sequence of characters. It is based on the following straightforward statement: if a sequence S ∈ E, then its sub-words w i ∈ E.

2 .

 2 Figure I.14 -Impact of findere query algorithm on the BF false positive rate, reprinted from [4]. The experiment was performed on a metagenomic sample from HMP [55]. The false positive rates induced by findere are empirically determined at query time.

  ysis. The work related to differential k-mer analysis is presented in chapters II [page 41] (about the construction of k-mer matrices) and III [page 51] (about the usage of k-mer matrix in the context of differential k-mer analysis).

3 .

 3 k-mer counting several examples of tools that implement them.

Contents 1 A

 1 technique is the sequencing errors, resulting in many erroneous k-mers. Simple methods exist to address this issue and allow discarding erroneous k-mers. However, classical techniques are not always suitable for complex sequencing samples such as metagenomes. We describe how the holistic view of k-mer abundances across multiple samples enables a new k-mer filtering method that we call k-mer rescue.This chapter describes a method for constructing k-mer matrices and some opportunities provided by the matrix representation. In-depth presentations of their use in analysis and indexing are discussed in chapter III [page 51] and IV [page 61], respectively. Regarding indexing, the methods presented here are modified and extended (see Chapter IV [page 61]) to allow indexing of k-mers and benchmarked on a large-scale metagenomic dataset. The reliability of the k-mer rescue is also evaluated on this dataset (see Chapter IV [page 61]). screening of raw sequencing collections When one wants to represent and/or compare the sequence content across multiple sequencing experiments, one solution is to represent the abundance or presence of each sub-sequence of a fixed size in all samples. One possible type of structure is the k-mers matrix. Given a collection S of N samples and size of k-mers of k, a k-mer matrix M is an abstract data type representing the abundance of each k-mers belonging to S. In other words, each element M (i, j) is the abundance of the k-mer i in the sample j. Depending on the context, M can be a binary matrix where M (i, j) is a bit denoting the presence or the absence of a k-mer. This type of representation is the building block of the work presented in chapter III [page 51] and IV [page 61].Although this concept is already used in various analyses and tools, no methods and tools are specifically dedicated to its construction and processing. Each tool uses more or less naive methods based on traditional k-mer counters.In our case, we are interested in a non-indexed form of such matrices, i.e. a matrix allowing sequential access. The problems studied in this work do not require a query-able representation but simply successive views of each row. As a result, we are looking for a construction method allowing to generate the matrix on-the-fly, i.e. streaming of the matrix. We also proposed a modification of the algorithm to produce an indexable representation of k-mer presence/absence which is presented in chapter IV [page 61]. In this chapter, I present a method for constructing a k-mer matrix relying on disk-based kmer counting techniques, as well as possible applications of such a representation. The methods presented here are implemented in kmtricks, a generic tool designed to work with k-mer matrices. The chapter V [page 81

  Part, Chapter II -The k-mer matrix representation cost of k-mers composing a sequence is significantly larger than the storage cost of the sequence itself because k-mers are overlapping. Consequently, splitting reads into k-mers in partitions leads to significant and expensive disk usage. The problem was addressed by KMC2[START_REF] Deorowicz | KMC 2: fast and resource-frugal k-mer counting[END_REF] which introduced the concept of super-k-mers. A super-k-mer is a sequence composed of a set of overlapping k-mers that share the same minimizer, i.e. all k-mers composing the super-k-mer belong to the same partition. Thus k-mers are represented as super-k-mers into partitions, saving disk space and I/O usage. In our case, the super-k-mers are composed of k-mers that share the same canonical minimizer and are stored in disk partitions in a bit-packed and compressed way (see Section V.4.A [page 100]). After dispatching, each sample is represented as p super-k-mer disk partitions.The partitions are then counted in parallel in the following way. The super-k-mers are read sequentially and split into k-mers. The canonical forms of k-mers are put into an array in memory. The array is sorted using a generic IntroSort[START_REF] David | Introspective Sorting and Selection Algorithms[END_REF] algorithm following the lexicographic order. The abundances of k-mers are obtained by looking at the number of consecutive k-mer occurrences in the array. As super-k-mers, k-mers and abundances are finally written to disk in a compressed form (see Section V.4.A [page 100]). Note that each disk partition is sorted for free: an essential property regarding the final goal, i.e. the construction of a k-mer matrix. After counting, we obtain p sorted abundance tables for each sample.Note that reading the reads and writing the super-k-mers are I/O-bound operations. In other words, the CPU resources are idle during these steps. In our multi-sample context, the resource can be used more carefully, i.e. a partition from a sample x can be counted when dispatching super-k-mers for a sample y. The idea is to avoid idle resources and always have super-k-mer partitions ready to be counted. The computing resources are thus shared between super-k-mer

  merge algorithm to produce a single sorted set from n sorted sets. Given n sorted k-mer abundance tables, the merge is performed as follows. The first k-mer of each sample is inserted in a key-value min-heap where keys correspond to k-mers and values correspond to their abundances (see FigureII.1 [page 45]). As the input partitions are sorted, the min-heap property ensures that the smallest k-mer is the first element of the heap. An abundance vector is constructed at each pass for all consecutive and identical k-mers. The next k-mers are then reinserted into the heap, and the process is repeated (see FigureII.1 [page 45]). If the abundance of k-mers is not required, a bit-vector is computed instead to represent the presence/absence of k-mers in samples. Finally, k-mers and vectors are written to disk. Note that each set of equivalent partitions, corresponding to one sub-matrix, is independent. In other words, they can be merged in parallel while using low memory because of the streaming process: the abundance tables are read and merged progressively.

Figure II. 1 -

 1 Figure II.1 -Example of merging abundance tables from 4 samples using a min-heap. The smallest k-mers from each table are inserted in the heap. At each pass, the abundance vectors are constructed from the identical k-mers in the heap. Note that the arrays do not represent the real layout of a min-heap and are purely illustrative. The min-heap properties just guarantee that querying the heap returns the current smallest element.

A

  Part, Chapter II -The k-mer matrix representation 3 Perspectives A k-mer matrix is a generic representation with potential usages in various contexts. This section presents a new error k-mer filtering method enabled by the matrix representation and a non-exhaustive list of possible applications. The chapters III [page 51] and IV [page 61] focus on practical applications: differential k-mer analysis and sequencing samples indexing, respectively. Sequencing errors filtering Sequencing errors lead to erroneous k-mers, which are relatively simple to identify by comparing their abundances to the sequencing coverage. Theoretically, a k-mer present in a single copy in the biological sample should have an abundance around the coverage, assuming uniform sequencing. A k-mer histogram representing the abundances distribution of k-mers from a human sequencing sample is presented in the figure II.2 [page 46], which highlights the segmentation between erroneous and true k-mers. The low-abundant k-mers are considered errors, and the filtering consists of simply discarding those with an abundance less than a given threshold.

Figure II. 2 -

 2 Figure II.2k-mer histogram of a human sequencing sample, reprinted from [129]. The abundances are distributed around the sequencing coverage. Rare k-mers (the first peak) correspond to sequencing errors. The separation between true k-mers and errors is obvious in such an ideal case.

  Part, Chapter III -Large-scale differential k-mer analysis 1 Matrix-based differential k-mer analysis A The kmdiff pipeline In this section, I present the kmdiff pipeline and place it in perspective with HAWK to highlight the improvements. Indeed, The kmdiff implementation follows the same main steps and uses the same statistical foundations as HAWK. However, the implementation is entirely different and summarized in figure III.1 [page 52].

Figure III. 1 -

 1 Figure III.1kmdiff pipeline overview on two cohorts composed of two samples (S1 and S2 for controls and S3 and S4 for cases). A. First stage corresponds to partitioned k-mer counting with kmtricks. B. Matrix streaming process during which k-mers are tested for significance and sampled to contribute to the PCA. C. Significant p-values are corrected to account for the population stratification and are then screened by common controlling procedures. Blue and red arrows represent examples of p-values over-represented in controls and in cases, respectively

2 .

 2 The plain text format significantly increases the size of the counted k-mers leading to more I/O operations. 3. The last step of the counting consists of sorting the k-mers, a mandatory step to subsequently aggregate abundances of identical k-mers across samples. The data representation negatively impacts sorting since sorting binary integers is obviously more efficient than sorting ASCII integers. HAWK relies on the sort(1) Unix command to perform the sorting.

1 .

 1 Matrix-based differential k-mer analysis wrapper around the kmtricks pipeline (see Section V.2.A [page 82]), ensuring the right parameters are used. kmtricks allows a partitioned counting as described in the section II.2 [page 42].

3 .

 3 The k-mers are stored in a binary and compressed format, reducing the expensive I/O operations. This results on a more efficient counting step as highlighted in section III.2 [page 55].

Figure III. 2 -

 2 Figure III.2 -Cumulative distribution function of the p-values of the significant k-mers reported by both kmdiff and HAWK on the ampicillin resistance, reprinted from [144].

Part, Chapter IV -Large-scale indexing 1 1 .

 11 From k-mer matrix to Bloom filters matrix A Fast Bloom filter constructionAs discussed in section I.1.D.1.b.i [page 16], the classical construction of BFs from sequencing collections suffers from several issues. As samples usually contain a large number of k-mers (several billion), the required space to represent a BF is relatively high, i.e. several gigabytes per filter. Since each k-mer can be inserted at any position in the filter, the entire filter must be loaded into memory during the construction. Parallel construction of several filters is complicated and sometimes impossible because it requires a relatively large amount of memory. Parallel construction is nevertheless possible by inserting several k-mers simultaneously, at the cost of synchronization mechanisms required to avoid race conditions, resulting in extra overheads.These problems are related to the poor data locality of the BFs, i.e. we cannot predict the insertion location of a k-mer.Finally, regarding k-mer BF, k-mer counting is always considered as a pre-processing stage allowing the subsequent construction of the BF. Both operations are always performed by different tools, and BFs are built from arbitrary k-mer sets, on which we cannot make any assumptions or predictions. In addition, this usually implies non-specific and non-optimal data representations, increasing the cost of I/O operations.In summary, the classical construction of a k-mer BF consists in two steps: 1) An efficient k-mer counting performed by a generic k-mer counter, e.g. Jellyfish or KMC, 2) The insertion of k-mers in the BF. BFs are built sequentially for each sample following these two steps.A simple observation simplifies this process: constructing a BF does not require any k-mer but only the insertion locations, i.e. the hash values. In other words, only hash values can be counted in the context of BFs construction. Considering the sorting-based counting algorithm (see Chapter II [page 41]), this small change has consequences on the BFs construction: The counted hash values are sorted. Thus, the "random" insertions of k-mers become sequential insertions of sorted hash values, i.e. insertion from 0 to N, where N is the size of the BF, reducing the number of cache misses. To illustrate this, consider an example.The construction of an optimal BF to represent N = 3e9 elements with a false positive rate ϵ = 0.01 requires a bit-array of M = 28e9 bits and k = 7 hash functions. The number of bits to insert is therefore N * k = 21e9. Considering 512-bits memory blocks (data cache line size), the bit-array can be split into B ≈ 54e6 blocks. Thus, about 388 bits should be inserted in each block. Assuming hash values are independent, the probability of two consecutive insertions in the same block is1 

B

  

  The complete pipeline is illustrated in the figure IV.1 [page 64] which represents both the construction of an abundance matrix and the construction of a BF matrix from a collection of sequencing samples. The specificities and differences are presented in the next sections. The presented methods are implemented in the kmtricks software; its implementation is described in the chapter V [page 81].

Figure IV. 1 -

 1 Figure IV.1kmtricks pipeline overview taking as input two samples, S 1 and S 2 . Reprinted from [131].(1) Counting: Partitions (here, P 1 and P 2 ) over minimizers (here of length 3) are determined by sub-sampling S 1 and S 2 and super-k-mers (k = 5) are then written on disk according to this partitioning. Bold red sequences are minimizers (AAA and CCC). Each partition is then counted and each k-mer is represented by its hash value. When performing the k-mer rescue, counted hashes are written on disk. Otherwise, each partition is directly represented as a bitvector (the ⋆ symbol indicates that step (2) is skipped).(2) Merging: Counted hashes from equivalent partitions are aggregated, and counts are binarized to produce a vector of BFs (i.e. a matrix of presence/absence bit-vectors, where row indices represent hashes). This matrix is filtered using the k-mer rescue procedure described in section II.3.A [page 46]. In order to build BFs, i.e. having samples as matrix rows, each partitionspecific sub-matrix is transposed.(3) Bloom filter outputs: a Bloom filter is built for each sample through concatenation of transposed sub-matrices (in those, each row corresponds to a sample). BFs can also be obtained from the first counting step if aggregation is not required. In this case, this corresponds to a concatenation of bit-vectors from (1).

  .A [page 100]) to be merged in the next step. If the k-mer rescue is not required, hash values are directly represented by a bit vector that already corresponds to a partition of a pBF (see Figure IV.2 [page 67]-(2). b

. 2 [

 2 Figure IV.2 -Bloom filters construction pipeline with two samples D1 and D2, using two partitions: black (1) and gray (2). Reprinted from [131]. Sk and Hc denote super-k-mers and hash counted, respectively. (1) Bloom filters pipeline without k-mer rescue: a ⃝ Divide sample into partitioned super-k-mers. b ⃝ Split super-k-mers into k-mers before hashing them and counting hashes in partitions. For each partition, output presence/absence bit-vectors, i.e. partitioned Bloom filters. c ⃝ Concatenate equivalent partitions between samples to obtain one Bloom filter per sample. (2) Bloom filters pipeline with rare k-mer rescue: a ⃝ same as (1). b ⃝ same as (1), but output hashes and their counts. c ⃝ Merge and binarize (according to the rescue procedure, see II.3.A [page 46]) equivalent partitions to build one sub-matrix per partition with pBFs in columns. d ⃝ Transpose sub-matrices to obtain pBFs in rows. e ⃝ same as (1)-c ⃝. Reprinted from [131].

  3 [page 71].

  Computations were done using 20 threads with k = 20. However as COBS supports only McCortex-file for k = 31, we also propose results for kmtricks + HowDe-SBT using k = 31. For Time and Memory, when two values are provided in a cell, the first corresponds to the pre-processing time (k-mer counting and possibly BF creation) and the second to the index construction. Memory and Disk correspond to the peak usage. Disk usage corresponds to the total required space to build the index, including temporary files, BFs and the final index. For McCortex-COBS, the disk usage corresponds mainly to the ctx files from McCortex.Reprinted from[START_REF] Lemane | kmtricks: Efficient and flexible construction of Bloom filters for large sequencing data collections[END_REF] 

Figure IV. 3 [

 3 Figure IV.3 [page 71] shows the false positive rate per partition for 15 samples. Despite outliers, most partitions have a false positive rate close to the expected rate (see Figure IV.3 [page 71]).

3 .

 3 Scaling up to a large sea water metagenome collection of view, as discussed in sections I.1.D.2.b.ii [page 26] and I.1.D.3 [page 34]. During the construction of the BFs, a matrix representing the false positive rate per partition is computed using the statistics collected in the merging step. It could be used later to correct the queries. For example, the false positive rates are used in HowDeSBT to correct the number of shared k-mers between a query and a sample. However, comparing the query results between an exact index and our approximate index (without query correction) shows good correlations (see IV.3.C.3 [page 77]). The comparisons were performed on a large-scale datasets, and the results are available in section IV.3.C.3 [page 77].

Figure IV. 3 -3

 3 Figure IV.3 -Partition-dependant pBF false positive rate. Given 15 human RNA-seq samples, the distribution of false positive rates across partitions is shown as well as the theoretical false positive rate obtained without partitioning.

  that took place from 2009 to 2012. The objective was to explore the plankton ecosystems at a world-scale. The route and sampling stations are presented in figureIV.4 [page 72]. The collected data allowed a better understanding of the organization of oceanic ecosystems at a large scale. Currently, part of the Tara Ocean expedition data is public, and one can easily query some sequences using the Ocean Gene Atlas (OGA) platform[START_REF] Villar | The Ocean Gene Atlas: exploring the biogeography of plankton 137 genes online[END_REF][START_REF] Vernette | The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes[END_REF]. OGA allows to query the catalog of genes and assembled sequences from the metagenomic and metatranscriptomic data using raw sequences or Hidden Markov Models (HMM) profiles[START_REF] Eddy | Profile hidden Markov models[END_REF]. The query results correspond to different maps and plots which allow exploring various features such as the abundances of the input sequences in each sampling station or the impact of marine environmental features on these abundances. An example of possible results is presented in the figureIV.5 [page 73].

  3.A [page 46]. The results are presented in section IV.3.C.2 [page 75].

Figure IV. 4 -

 4 Figure IV.4 -Sampling route and stations of the Tara Oceans Expedition, reprinted from[START_REF] Pesant | Open science resources for the discovery and analysis of Tara Oceans data[END_REF] 

  3 [page 74]. Time (min) Memory (GB) Disk (TB) Stopped after 72h computation. b Extrapolated estimation.
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 3 Scaling up to a large sea water metagenome collection 2 Collection-aware k-mer filtering

Figure IV. 6 - 3 Queries

 63 FigureIV.6 -Histogram of filtering ratios, reprinted from[START_REF] Lemane | kmtricks: Efficient and flexible construction of Bloom filters for large sequencing data collections[END_REF]. For each of the 241 Tara samples, the filtering ratio reports the number of filtered k-mers divided by the expected number of erroneous k-mers (the closer to 1, the better). The green (resp. red) histogram shows the filtering ratios of samples using the kmtricks rescue procedure (resp. using classical removal of k-mers occurring only once).

Figure IV. 7 [

 7 FigureIV.7 [page 78] shows that 20% of false positives is too high. The percentage of shared k-mers is always strongly overestimated. However, using findere under the same conditions, the correlation between the exact index and the kmtricks index is remarkably high, as shown in figureIV.8 [page 78].

Figure IV. 7 -

 7 Figure IV.7 -Comparison of the proportion of shared k-mers between 10,000 queries and two indexes: an exact index and an approximate kmtricks index without findere algorithm. The red line represents the perfect correlation. The false positive rate of the approximate index is 0.2. The proportion of shared k-mers is always overestimated by the approximate index.

Figure IV. 8 -

 8 Figure IV.8 -Comparison of the proportion of shared k-mers between 10,000 queries and two indexes: an exact index and an approximate kmtricks index with findere algorithm. The red line represents the perfect correlation. The false positive rate of the approximate index is 0.2. Compared to IV.7 [page 78], exact and approximate indexes give close results.

  2. A set of modules for step-by-step usage. 3. A C++ library for the construction of new matrix-based tools. 4. A C++ plugin system for easily extending its features. 5. A formalized interface for sequence indexing. All of these components have different purposes and allow modular usages of kmtricks. For example, kmdiff (see Section III.1 [page 52]) needs a view on each row of the matrix. The whole representation of the matrix, expensive in terms of time and space, is

  2.B.2 [page 85] and V.2.C [page 87], respectively. The chaining of the different modules within the pipeline is presented in the figure V.1 [page 2. Features83]. We can notably see the paths allowing to build an index using or not the k-mer rescue procedure.

Figure V. 1 -

 1 Figure V.1 -Overview of kmtricks modules. The blue and red arrows correspond to the BF construction pipeline with or without k-mer rescue, respectively.

  2 [page 35]), need a sorted k-mer abundance table in plain text format as inputs. Classically, abundance tables are dumped in plain text before being sorted. Using kmtricks aggregate, the tables remain stored in an efficient format. They are sorted and transferred on the fly to another tool, saving time and space. An example of a command line is presented below. # Build the matrix kmtricks pipeline --run-dir km_dir --file km.fof --hard-min 2 --until count # Aggregate and stream abundance table of the ID sample to 'my_tool' kmtricks aggregate --run-dir km_dir --count ID:kmer --format text --sorted --cpr-in | my_tool kmtricks filter kmtricks filter filters an existing input matrix according to the k-mer content of another new sample. Different outputs are possible: 1. An abundance table that contains the k-mers present in the new sample but absent in the input matrix. 2. A new matrix corresponding to the intersection between the new sample and the input matrix. In count mode, the new matrix contains an additional column corresponding to the abundances of k-mers from the new sample.

Finally, the query

  module implements the findere algorithm presented in the sections I.1.D.3.b [page 34] and IV.3.C.3 [page 77]. As a reminder, this algorithm drastically reduces false positives at query time without modifying the underlying index.

Implementation D. 2 : Basic plugin 1 # 3 using 8 9 13 void

 213813 include <kmtricks/plugin.hpp> 2 count_type = typename km::selectC<DMAX_C>::type; 4 class Plugin : public km::IMergePlugin 5 bool process_kmer(const uint64_t* kmer_data, 10 std::vector<count_type>& count_vector) override { 11 return counts[0] > m_threshold; } 12 configure(const std::string& s) override { 14 m_threshold = std::stoll(s); } " std::string plugin_name() { return "Plugin"; } 21 extern "C" int use_template() { return 0; } 22 extern "C" km::IMergePlugin* create0() { return new Plugin(); } 23 extern "C" void destroy(km::IMergePlugin* p) { delete p; } Once written, the plugin must be compiled as a shared library. The kmtricks repository contains the necessary resources for automatically compuling plugins. The source code must be placed in the plugin folder and can then be compiled via: install.sh -p -q

1 . 2 .

 12 Implement a JaccardObserver (see Implementation A.1 [page 93]). The Jaccar-dObserver class is passed to the kmtricks merging algorithm for collecting the counting information needed for the subsequent computation of the Jaccard index. The process function is called on each row of the matrix. The compute_distance is called at the end Part, Chapter Vkmtricks: a k-mer matrix framework of the matrix streaming and computes the Jaccard matrix representing the Jaccard index for each pair of samples. Implement a JaccardTask (see Implementation A.2 [page 94]). Internally, abundance tables are partitioned. The JaccardTask class allows streaming of a sub-matrix from the equivalent partitions of each sample.

3 .

 3 Implement a JaccardEntryPoint (see Implementation A.3 [page 95]). The Jac-cardEntryPoint acts as a templated main function used to select the correct k-mer implementation at runtime (see Section V.2.C.1 [page 87]). The tasks are created, one per partition, and executed in parallel using the Task pool (see Section V.2.C.4 [page 87]).

4 .

 4 Implement the main function (see Implementation A.4 [page 96]).The main function collects the user-defined parameters and runs the computations. Note that the k-mer size is a user-defined parameter, i.e. a runtime parameter, while the k-mer implementation is selected according to a template parameter, i.e. a compile-time parameter.The JaccardEntryPoint is therefore executed using the const_loop_executor to select the correct implementation at runtime. Behind the scene, this utility has the effect of compiling various representations of k-mers and choose the right afterwards one, according to the requested k-mer size. Thanks to this feature, kmtricks supports any k-mer size without recompilation and performance penalties. An upper bound (usually 256) is still defined at compilation time. Part, Chapter Vkmtricks: a k-mer matrix framework Implementation A.2: JaccardTask template<size_t MAX_K, size_t MAX_C> using obs_t = std::shared_ptr<JaccardObserver<MAX_K, MAX_C>>; template<size_t MAX_K, size_t MAX_C> class JaccardTask : public km::ITask { public: JaccardTask(std::vector<std::string>& paths, std::vector<uint32_t>& abundance_min, size_t kmer_size, obs_t<MAX_K, MAX_C> obs) : ITask(0), m_paths(paths), m_ab_min(abundance_min), m_kmer_size(kmer_size), m_obs(obs) {} void exec() override { km::KmerMerger<MAX_K, MAX_C> merger( m_paths, m_ab_min, m_kmer_size, 1, 0); merger.merge(m_obs); } private: std::vector<std::string>& m_paths; std::vector<uint32_t>& m_ab_min; void operator()(const std::vector<std::string>& idx, const std::string& dir, size_t kmer_size, size_t nb_parts, size_t threads, const std::string& output) { km::TaskPool pool(threads); std::vector<uint32_t> thresholds(idx.size(), 2); obs_t<MAX_K, 255> obs = std::make_shared<JaccardObserver<MAX_K, 255>>(idx.size()); for (size_t p=0; p<nb_parts; p++) { std::vector<std::string> paths; for (auto& id: idx) { std::stringstream ss; ss << dir << "/counts/partition_" << p << "/" << id << ".kmer"; paths.push_back(ss.str()); } pool.add_task( std::make_shared<JaccardTask<MAX_K, 255>>( paths, thresholds, kmer_size, obs)); } pool.join_all(); obs->compute_distance(); obs->write(output); } }; Implementation B.2: Jaccard Plugin #include <kmtricks/io/fof.hpp> #include <kmtricks/plugin.hpp> class JaccardPlugin : public km::IMergePlugin { public: JaccardPlugin() = default; bool process_kmer(const uint64_t* kmer_data, std::vector<count_type>& count_vector) override { std::unique_lock<std::mutex> lock(m_mutex); for (size_t i=0; i<nb_samples; i++) { m.m_solid_per_sample[i] += counts[i]; for (size_t j=i+1; j<nb_samples; j++) { m.m_shared_kmers[i][j] += counts[i]; m.m_shared_kmers[j][i] += counts[j]; } } return false; } void configure(const std::string& s) override { nb_samples = km::Fof(this->m_output_directory+"/kmtricks/fof").size(); m.init(nb_samples); m.set_output_path(this->m_output_directory + "/" + s); } private: static JaccardMatrix m; unsigned int nb_samples {0}; std::mutex m_mutex; }; extern "C" std::string plugin_name() { return "JaccardPlugin"; } extern "C" int use_template() { return 0; } extern "C" km::IMergePlugin* create0() { return new Plugin(); } extern "C" void destroy(km::IMergePlugin* p) { delete p; } Once compiled, the plugin can be used in the following way: kmtricksp pipeline --plugin libjaccard.so --plugin-config jaccard_matrix.txt \ --run-dir jaccard_dir --file fof.txt --hard-min 2 \ --kmer-size 31 --threads 20 Part, Chapter Vkmtricks: a k-mer matrix framework

Figure V. 2 -

 2 Figure V.2 -The difference between a classic copy (A) and a copy using the zero-copy (B) hardware feature.

  During my thesis, I had the opportunity to collaborate on other projects, obviously related to the k-mer world. In ORI (Section VI.1), I participated to the development of the indexing aspect of the method. The other projects use kmtricks and have resulted in new works and developments. In KFF (Section VI.2), kmtricks was used to provide a proof of concept related to compact representation of k-mer sets. I contributed to implement one of the proposed representations in kmtricks. In decOM (Section VI.3), I implemented new features in kmtricks, related to sub-sampling and matrix comparisons. This chapter presents an overview of these collaborations.

Figure VI. 1 : 1 .

 11 Index construction. A collection of genomes is used to build an index based on a modified version of HowDeSBT. The new version supports spaced seeds indexing and genome merging. Very similar strains present a high sequence identity making them hardly differentiable. These strains can be merged according to a user-defined threshold to avoid noisy identification. The spaced seeds support and the new merging features of HowDeSBT are my main contributions to this work.

Figure VI. 2 -

 2 FigureVI.2 -Overview of the KFF specifications, reprinted from[START_REF] Dufresne | The K-mer File Format: a standardized and compact disk representation of sets of k-mers[END_REF]. The header section stores the magic number to identify the format, the nucleotide encoding, and some flags related to k-mer canonicity. A variable-sized block is also allowed for eventual metadata. The value section V is a scoped (until a new V section is reached) key-value section. It defines variables required by the subsequent data section. The index section I stores relative addresses allowing to jump between sections. Finally, two data sections are allowed: raw (R) and minimizer (M) sections. The raw section allows to store variable-sized overlapping k-mers associated or not with an abundance vector. The minimizer section allows to store sequence of overlapping k-mers that share the same minimizer (e.g. super-k-mers). The sequence of the minimizer is then stored once per section and the storage consists in storing sequence without minimizer associated with the minimizer position.
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  State of the artin the table I.1 [page 32]), the HowDeSBT query requires fewer lookups to be resolved. is the number of nodes in the tree and s the ratio of active bits in the leaves. The difference is explained by query algorithms. In the case of HowDeSBT, only one lookup to B det is required for every internal node. For a given position, a positive lookup in B det prunes the tree and the current node becomes a leaf. At the leaves, each B how vectors must be queried. For SSBT, the pruning of the tree (transform an internal node to a leaf for a given position) occurs only when the lookup to B sim is positive (table I.1 [page 32]-C). In other cases, two lookups are required for every node.

	The numbers of lookups required by both representations are given in the Theorem 2
	from [114] and are (3n+1)/2 and (n(4-s)-s)/2 for HowDeSBT and SSBT, respectively,
	with n

Part, Chapter I -

  The soft-min parameter depends on the sample and is given in the table. Underlined values are higher or equal to soft-min (solid k-mers) and the strikeout values are lower than hard-min. Other values, between hard-min and soft-min are rescueable. The green value is rescued. k1 has an abundance lower than 3 in S1 but it solid in at least 3 (share-min) samples (S3, S4, S5). Red values are not rescued. k2 is rescuable in S2 an S4 but solid only in 2 samples. It is therefore discarded in S2 and S4 (but kept in S1 and S3).

	Part, Chapter II -The k-mer matrix representation						
			Counted k-mers		Post filtration result
		S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
	soft-min 3	2	2	3	2					
	k1	2	0	2	5	2	1	0	1	1	1
	k2	4	1	6	2	0	1	0	1	0	0
	Figure II.4 -k-mer rescue procedure example, adapted from [131]. The example relates to
	5 samples (S1 to S5) and uses the following parameters: hard-min=1 and share-min=3.
					However, threshold-based filtering is too stringent
	in some contexts, such as metagenomic sequencing. As a reminder, metagenomic sequencing
	corresponds to the sequencing of genetic material collected in environmental samples. A unique
	sample can contain a large amount of species, each represented by different and unknown num-

mers with an abundance less than hard-min are discarded during counting stages and are not involved in the rescue. In other words, it corresponds to the threshold used in threshold-based filtering. Our experiments indicate hard-min=1 is preferable to perform the rescue on the whole k-mer spectrum (see Section IV.3.C.2 [page 75]).

  .C.2 [page 75].

Table III .

 III . HAWK and kmdiff provide similar results. The assembly from kmerGWAS k-mers is more fragmented with shorter contigs. Details are given in tableIII.2 [page 58]. 2 -Summary of results from kmdiff, HAWK, and kmerGWAS on the ampicillin resistance dataset. N denotes the number of contigs after ABYSS assembly. L/T/R/U are the numbers of contigs associated with each category after BLASTX queries: β-lactamase, Tn3 Transposase, Tn3 resolvase, and Unknown, respectively. The unknown contigs always correspond to small fragments (≈ 50pb). Max is the size of the longest contig. Sum is the sum of the contig lengths. Mean is the mean of the contig lengths.

	Part, Chapter III -Large-scale differential k-mer analysis	
		N L/T/R/U Max Sum Mean
	kmdiff	19 1/10/1/7 2270 5098	269
	HAWK	17 1/10/1/5 2276 4891	293
	kmerGWAS 26 1/17/1/6 1377 4315	166

83 8.7 | 3.26 726 | 9.34

  HAWK as shown in figureIII.3 [page 59]. It is an order of magnitude faster, enabling the differential k-mer analysis on 80 human whole genome sequencing in a few hours. In contrast, HAWK requires more than six days. The detailed results are presented in the table III.3 [page 59]. Table III.3 -Benchmarks of HAWK and kmdiff on different scale datasets. For time, memory and disk usage, we present two data points. The first one corresponds to the k-mer counting step.For HAWK, this step includes the sorting of k-mers, which is not required for kmdiff. The second one corresponds to the k-mer associations, including k-mers aggregation, statistical tests and population stratification correction.

	HAWK	2040 + 186	84 | 21.2	1024 | 20.2
	kmdiff	129 + 37	9.3 | 2.4	380 | 4.7
	Human 20v20 Time (min) Memory (GB)	Disk (GB)
	HAWK	3916 + 277	84 | 28.5	2016 | 32.7
	kmdiff 241 + Human 40v40 Time (min) Memory (GB)	Disk (GB)
	HAWK	8319 + 592	87 | 48.6	3914 | 93.5
	kmdiff	418 + 122	11.9 | 6.2	1455 | 49.4

20, 40, and 80 individuals. The same number of individuals is used in both control and case groups. The larger experiments with 80 individuals was composed of 2.3 TB of gzipped FASTQ files. The parameters used are the same as for the ampicillin resistance, i.e. a minimum abundance of two, a significant threshold of 0.05, and a Bonferroni correction. Whatever the monitored parameter, i.e. time, memory, or disk, kmdiff scales better than Figure III.3 -Scaling ability of HAWK and kmdiff on human cohorts. Both tools supports multithreading and were executed using 20 threads. Compared to HAWK, kmdiff reduces computation times by 13-16x, memory usage by 8x, and disk usage by 2.6x Human 10v10 Time (min) Memory (GB) Disk (GB)

1 .

 1 From k-mer matrix to Bloom filters matrix parallel processing of sub-BFs in low-memory. In addition, the independence exempts from synchronization mechanisms. We move from a fine-grained parallelization, i.e. insert k-mers concurrently, to a coarse-grained parallelization, i.e. process BF partitions concurrently.The following section presents our construction method, which allows building a collection of BFs as a BF matrix. It consists of a modification of the construction of the abundance matrix presented in the section II.2 [page 42]. Indeed, a BF matrix is a binarized and transposed abundance matrix, where the elements are hash values instead of k-mers.

100 RNA-seq (44 GB fasta.gz)

  

	Part, Chapter IV -Large-scale indexing			
	kmer counter (& bf creation)	Index	Time (min) Memory (GB) Disk (GB)
	A : Jellyfish (& makebf)	HowDe-SBT	147 + 21	13.2 | 2.6	55.1
	KMC 3 (& makebf)	HowDe-SBT	33 + 21	2.9 | 2.6	28.4
	McCortex k = 31	COBS	256 + 67	27 | 1.5	327
	Squeakr	Mantis	64 + 24	3.6 | 27.8	25.8
	kmtricks	HowDe-SBT	24 + 21	3.6 | 2.6	45
	kmtricks R	HowDe-SBT	26 + 21	3.4 | 2.6	46
	kmtricks R k = 31	HowDe-SBT	20 + 21	3.6 | 2.6	50
	B : 674 RNA-seq (961 GB fasta.gz)			
	Jellyfish (& makebf)	∅	3543	13.2	206
	KMC3 (& makebf)	∅	1958	18.7	165
	kmtricks	∅	1033	24	247
	kmtricks R	HowDe-SBT	1060 + 120	23 | 2.4	320
	kmtricks				

R : kmtricks using rescue mode Table

IV

.2 -Benchmarks on two human RNA-seq datasets composed of 100 and 674 samples, reprinted from

[START_REF] Lemane | kmtricks: Efficient and flexible construction of Bloom filters for large sequencing data collections[END_REF]

.

Table IV . 4 -

 IV4 [page 76]. Acinetobacter baylyi raw sequencing statistics used to compute base and k-mer error rates.Thanks to the k-mer error rates, we computed err th for each sample. Other metrics, err one and err unrescued are reported by kmtricks logs. We then compared the number of really discarded k-mer under the expected number of erroneous k-mers for both methods. These ratios are given by err unrescued /err th for the rescue strategy and err one /err th for the classical filtering, i.e. discarding k-mers occurring once. The closer the ratio is to one, the better. As highlighted by the figure IV.6 [page 77], the number of discarded k-mers is close to the expected value with ratios close to one when using the rescue strategy. The average ratios are 1.01 and 9.12 for the rescue strategy and the classical filtering, respectively. This indicates that classical filtering, which discard k-mers seen once, is already too strict for this dataset by rejecting too many k-mers. From a matrix point of view, we expect 98 billion of wrong cells. In other words, a presence/absence binary matrix representing the presence/absence of all k-mers across samples contains 98 billions wrong bits (wrong 1s). The classical filtering discards 8-9x too many k-mers by removing 756 billion of cells, while the rescue strategy filters out 86 billion of cells.

	Technology Pair	Reads	k-mers	Erroneous k-mers base error rates
		1	12037529	1378377359	25923501	0.0948
	GAIIx	2	12037529	1383555832	67308135	0.2490
		1&2 (2x) 12037529 2761933191	93231636	0.1715
		1	12037529	979185638	11029864	0.0566
	HiSeq 2000	2	12037529	976152716	13879961	0.0716
		1&2 (2x) 12037529 1955338354	24909825	0.0641
		1	2202754	484673542	17295477	0.1815
	HiSeq 2500	2	2202754	484727354	55029084	0.6007
		1&2 (2x) 2202754	969400896	89620038	0.4838

  The directory structure is described in table V.1 As stated before, the kmtricks pipeline is composed of successive stages, producing various objects potentially interesting in other tools. As a result, we propose different command line modules that allow a step-by-step construction of matrices and that can also be used as building blocks by other tools or pipelines. Each module produces results that are then exploitable through the utilities (Section V.2.B.2 [page 85]) or the library (Section V.2.C [page 87]). Note that all modules presented in this section are linearly dependent.

	Part, Chapter V -kmtricks: a k-mer matrix framework
	B Modules	
	1 Computation modules
	[page 83].	
	build_infos.txt	Informations about kmtricks compilation
	options.txt	Input parameters
	run_infos.txt	Execution time and peak memory
	hash.info	Storage of the partitioned hash function
	kmtricks.fof	Copy of kmtricks input fof
	config_gatb	Storage of the configuration
	repartition_gatb Storage of the minimizer repartition
	minimizers	Storage of the list of minimizers
	superkmers	Storage of super-k-mers
	counts	Storage of counted hashes/k-mers
	matrices	Storage of the hash/k-mer/Bloom matrices
	partition_infos	Storage of partition statistics
	merge_infos	Storage of merge statistics
	filters	Storage of Bloom filters
	fpr	Storage of false positive rates statistics
	histograms	Storage of k-mer histogram
	howde_index	Storage of the HowDeSBT index
		Table V.1 -Structure of the kmtricks directory.

  3 [page 91].

Ce pipeline a permis l'indexation d'un grand ensemble de séquençage métagénomique du projet Tara Ocean. Ce même jeu de données a aussi été utilisé pour évaluer notre méthode de filtration des k-mers erronés.1 Les matrices de k-mersUne matrice de k-mers M construite à partir d'un ensemble de jeux de données S est un type de données abstrait représentant les abondances de chacun des k-mers appartenant à S.En d'autres termes, chaque élément M (i, j) représente l'abondance d'un k-mer i dans un jeu de données j. En fonction du contexte, M peut être une matrice binaire où chaque élément M (i, j) est un bit représentant la présence ou l'absence d'un k-mer dans un jeu de données.Plusieurs outils utilisent déjà ce concept de matrice de k-mers dans leurs analyses. Toutefois, il n'existe pas de méthodes et outils spécialisés dans sa construction et son traitement. Les outils existants utilisent des méthodes plus ou moins naïves basées sur les compteurs de kmers traditionnels. En conséquence, nous proposons une méthode de construction basée sur les algorithmes de comptage de k-mers sur disque qui reposent sur le paradigme "diviser pour régner". L'idée est de diviser l'espace des k-mers afin de construire parallèlement de nombreuses

Sequence indexing

Scaling up to a large sea water metagenome collectionconsidering about 9x more k-mers than traditional indexing tools. On the usage side, performing thousands of queries is possible in a few minutes.The combination with findere algorithm reveals a great synergy, which can be exploited in two ways depending on the downstream analyses: 1. A better efficiency. Reducing the BF sizes results in more efficient construction and query while maintaining a usable precision, as shown by the previous experiment.2. A better accuracy. Increasing the BF sizes while using fnidere could lead to a near-exact index at the cost of higher construction and query times.The perspectives of future use of our indexing pipeline, implemented in kmtricks (see Chapter V [page 81]), are discussed at the end of the manuscript.

Part, Chapter VI -Other contributions

bers of individuals. From a sequence point of view, some sequences are weakly represented in the sample. Consequently, k-mer spectrums of metagenomic samples differ significantly from those obtained from a single-organism sequencing. Figure II.3 [page 47] is a k-mer histogram computed on a Tara Ocean metagenomic sample, highlighting the discontinuity of the abundances distribution. In such cases, threshold-based filtering is inefficient because the difference in abundance between erroneous and true k-mers cannot be stated.

In the following, we denote a k-mer that pass the filtering process, whatever it is, by the term solid k-mer. The others are the non-solid k-mers. Note that solid and non-solid k-mers do not mean true and erroneous k-mers. The k-mers are solid or non-solid accordingly to a given filtering technique and its parameters. When considering a collection of samples, we can expect some redundancy between them, especially in the context of sequencing projects which sequence related samples. For example, the Tara Ocean project collects marine samples at different geographic locations around the ocean, at various depths, and uses variable filter sizes to separate organisms. The analysis of these samples revealed, as expected, similarities between samples and allowed the identification of genomic provinces [START_REF] Benoit | Multiple comparative metagenomics using multiset k-mer counting[END_REF][START_REF] Vorobev | Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics[END_REF]. Regarding the k-mer filtering, the idea is to exploit such redundancy to highlight the rare elements, i.e. the rare k-mers corresponding to the weakly represented sequences. In contrast to the one-sample-at-time counting, our matrix representation naturally gives the required information: the abundances of a k-mer in each sample of the collection.

Following this idea, we designed a straightforward procedure, the k-mer rescue, based on the following statement: if a k-mer is rare in a sample A but abundant in at least n other samples, perhaps it corresponds to a rare but true sequence in A, and we can consider it as a true k-mer.

The procedure is guided by 4 user-defined parameters:

hard-min corresponds to the solidity threshold applied during the counting step. All k-Chapter III

LARGE-SCALE DIFFERENTIAL k-MER

ANALYSIS

Preamble

This chapter is dedicated to applying k-mer matrices in the context of differential k-mer analysis, i.e. finding differentially represented k-mers between two cohorts of sequencing samples.

We show that efficient and partitioned streaming of a k-mer matrix can significantly speed up a state-of-the-art method, HAWK (see Section I.2 [page 35]). We describe the method and present various benchmarks at different scales that confirm better performance while maintaining equivalent results. A benchmark also includes kmerGWAS (see Section I.2 [page 35]) to compare computational performances with a tool that implements a completely different statistical model. 
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Matrix-based differential k-mer

B Ampicillin resistance

The ampicillin resistance dataset is composed of 241 paired-end RNA-Seq sequencing of Escherichia coli strains produced by Earle et al. representing 56 GB of gzipped FASTQ files. Among these strains, 189 are resistant to ampicillin, and 52 are sensitive. We consider that resistant and sensitive strains constitute the control and the case group, respectively. Several tools performing differential k-mer analysis used this collection as a benchmark dataset [2,46]. As a side note, this study presents other groups of species and strains associated with different phenotypes that can be very useful for evaluating such tools.

On this dataset, kmdiff outperforms other tools in terms of computing resources except for the disk usage, which is slightly ahead of kmerGWAS. Regarding the HAWK comparison, kmdiff is 6x faster and uses 8x and 4.5x less memory and disk. The difference in memory usage is the consequence of kmtricks, a disk-based k-mer counter. Moreover, its streaming capability reduces the memory footprint compared to HAWK, which uses hash tables to merge k-mer across samples. The disk usage remains lower than HAWK thanks to the compressed representation of counted k-mers (see Section V. 4.A [page 100]). The k-mers found by both tools are the same before the population stratification correction with 13,196,814 over-represented k-mers in cases and 16,804,587 in controls. The imprecise floating-point arithmetics and the non-deterministic sub-sampling of k-mers performed by the population stratification correction result in a slightly different number of k-mers at the end of the pipeline. Indeed, 4542 and 4591 pass the significance threshold in the control group for HAWK and kmdiff respectively. Both tools do not report any significant over-represented k-mers in the case group. This is expected because the individuals with the ampicillin resistance genes are in the control group. In this experiment, kmdiff was able to find 98% of k-mers reported by HAWK. Regarding the kmerGWAS comparison, kmdiff is 2.2x faster while using less memory. The disk usage is slightly higher, although anecdotal on such a dataset.

Chapter IV

LARGE-SCALE INDEXING

Preamble

In this chapter, we describe how k-mer matrix construction methods presented previously (see Chapter II [page 41]) can be extended to build matrix of BFs. We show that our method enables fast BFs construction, leading to efficient indexing. We compare our technique with state-of-the-art indexing tools, based or not on BFs, and evaluate the scalability on RNA-Seq sequencing indexing datasets of various sizes. In addition, we present end-to-end indexing of a real and large metagenomics dataset and show the contribution of k-mers rescue (see Chapter II [page 41]) on this type of data.

Our BF construction method relies on partitioning, which is not perfectly uniform. Consequently, the false positive rates slightly differ according to partitions. We show that the false positive rate of each partition remains close to the expected false positive rate of a classical BF, except for some outliers. Additionally, comparisons between our index and an exact index, i.e. without false positives, reveal highly correlated query results. 

B Performance comparisons

Table IV.2 [page 70] presents the construction times, memory, and disk usage of different tools on the human RNA-Seq samples. Data points are given for both constructions of the core data structures (BFs in our case) and the construction of the final index. The construction of the final index is not directly related to this work and is presented for the sake of completeness since it is required to perform queries. As a reminder, the creation of the final index from our pBFs relies on HowDeSBT.

Our method outperforms the classical construction of BFs in HowDeSBT in terms of time and memory, whatever the k-mer counter, while using more space due to the joint counting. The gap is more significant as the number of samples increases. In addition, the k-mer rescue, which requires an additional merge step, has a low impact on computation times. On the collection of 674 samples, the rescue results in a time overhead of 3%.

The scaling capability on terabyte-sized datasets is evaluated in the section IV. we are convinced that a generic tool dedicated to their construction and analysis could be helpful for the bioinformatics community. Consequently, we propose a tool, kmtricks, along with some utilities to work with such matrices. This last chapter presents kmtricks features and implementation details, along with some use cases. The SOCKS interface is supported by kmtricks via the kmtricks-socks command. Indexing a collection of samples is possible using a single and simple command with limited parameters.

In the same spirit, the query procedure is streamlined and produces a standardized output. The documentation is available at: https://github.com/tlemane/kmtricks/wiki/kmtricks-so cks-interface and https://gitlab.ub.uni-bielefeld.de/gi/socks.

C API

1 Sequence kmtricks provides a templated k-mer class for an efficient 2-bits representation of k-mers. Efficient class specializations are available for small k-mers of sizes smaller than 32 or 64, encoded using 64-bits or 128-bits native unsigned integers, respectively. Larger k-mers are represented using an array of 64-bits unsigned integers. The right implementation is chosen at runtime thanks to recursive templates. Behind the scene, the code is compiled for each class of sizes and the right implementation is selected at runtime according to the input k-mer size. This mechanism is used in an example in section V.3 [page 91]. A standalone implementation is also available at https://github.com/tlemane/kmercpp.

I/Os

For efficiency reasons, kmtricks uses only in-house binary formats that can lead to interoperability problems. In complement of command line tools, a set of classes and functions are available for reading or writing each type of kmtricks file. The documentation is available at https://github.com/tlemane/kmtricks/wiki/IOs-api. Note that kmtricks supports also a standard format for storing k-mer sets: K-mer File Format (KFF) (see Section VI.2 [page 106]).

Matrix streaming

The matrix streaming API enables streaming and processing of the matrix on-the-fly from a collection of counted partitions. For example, it is used by kmdiff to merge and stream the different partitions in parallel and apply statistical tests (see Section III.1 [page 52]).

Task system

In kmtricks the elements of each partition are independent and can be processed in parallel.

To facilitate parallelization, we provide a simple task system. It consists in a pool that will 

B Using the plugin system

Unlike the previous example, we do not create an independent program. The idea is to implement the Jaccard index feature through a plugin that will be loaded at runtime and directly executed by the kmtricks pipeline. This requires less efforts because it allows to get rid of some steps, such as multi-threading management.

Using the plugin system, the Jaccard indexes can be computed in the following way:

1. Implement a JaccardMatrix. The JaccardMatrix class is a storage class accumulating information from the different plugin instances. Each plugin instance shares the same JaccardMatrix instance, in the same spirit as the JaccardObserver (see Section V. 3.A [page 91]). The abundances collected by the different plugin instances, one per partition, are aggregated by the JaccardMatrix. Before its destruction, it computes the final Jaccard matrix representing all pairwise Jaccard indexes and writes it to disk. 2. Implement a JaccardPlugin. The JaccardPlugin overloads the process_kmer function of the plugin interface to update the JaccardMatrix from each row of the matrix. Note that the function returns false to discard all rows, i.e. the rows are built on-the-fly, and the whole matrix is never stored. As the JaccardObserver (see Section V. 3.A [page 91]), the function uses a lock to avoid race conditions. This choice was made for the same reasons as in the previous example, i.e. simplicity and conciseness. Further benchmarks would be needed to clearly identify the affected parts before possible improvements.

B Bit-matrix transposition

Nowadays, bit-array manipulations can be greatly accelerated through vectorization using SIMDs. These techniques are used in kmtricks to perform efficient transposition of BF submatrices to obtain the sample-specific BFs required to build the final index. More specifically, the intrinsics _mm_slli_epi64 and _mm_movemask_epi8 [START_REF]Intel® Intrinsics Guide[END_REF] are used for bit-shifting and masking, respectively. These intrinsics work on 128-bit registers, allowing the transposition by block of 16 x 8 bits. Intrinsics working with larger registers (256 and 512 bits) are available on modern architectures and could allow an even more efficient implementation. However, benchmarks show that the matrix transposition is not a bottleneck in kmtricks and does not require additional developments for the moment.

C Concatenation of partitioned Bloom filter

The generation of sample-specific BFs consists of rearranging BF matrices via a copy of bitvectors into individual files. Initially, each partition contains a part of the filter of each sample, stored in a row-major layout.

The classic file copy procedure involves both CPU-copy and Direct Memory Access (DMA) [START_REF] Kistler | Cell Multiprocessor Communication Network: Built for Speed[END_REF] copy, as well as a non-negligible number of context switching. When the CPU is involved in I/O operations, it is not available for perform other operations. DMA allows transferring data between devices without involving the CPU. As described in the figure V.2 [page 102], a classic copy consists in four copies and four context switches. The first system call causes a first context switch, and the data are copied from the device to the read buffer in the kernel space with a DMA copy. The data are then copied to the user buffer with a CPU copy and the system call returns, causing a second context switch. The writing of data into the socket buffer is performed by another system call (again, a context switch and a CPU copy). Finally, the socket buffer content is copied into the disk with a DMA copy and the system call returns causing the last Each read is then split into spaced seeds and queries are perfomed to build an affiliation matrix which represent the percentage of shared spaced seeds between reads and indexed strains. 3. An ASP script is used to determine the smallest subset of strains that best explains all the reads.

3. decOM: Similarity-based microbial source tracking of ancient oral samples using k-mer-based methods [START_REF] Gonzàles | Microbial source tracking for contamination assessment of an-cient oral samples using k-mer-based methods[END_REF] and sinks belong to the same partition. Thanks to the sub-sampling of partitions, the comparison is also really fast because only one or a few partitions of the sinks have to be counted. The need for comparisons between a matrix (sources) and a new k-mer table (sink) resulted in the kmtricks filter command presented in the section V. 

CONCLUSIONS AND PERSPECTIVES

In this work, we have explored the ability of k-mer matrices to address scaling problems in various contexts. We showed that such representations can be involved at different levels of reference-free sequencing data processing while allowing new operations such as k-mer rescue.

We propose new construction and streaming methods for different types of matrices for analysis or indexing purposes, allowing the processing of datasets up to tens of terabytes in size. Such efficient construction and streaming capabilities allowed us to exhibit two major applications:

1. A fast differential k-mer analysis. Differential k-mer analysis, consisting of finding differentially represented k-mers between phenotypes, was limited by the k-mer enumeration.

Such an experiment does not require the complete representation of the matrix, but merely a view on each row. Consequently, partitioned and parallel streaming of the matrix has significantly accelerated a state-of-the-art method, i.e. has enabled the processing of 80 human sequencing samples in a few hours compared to several days. In addition, our tools use fewer computing resources than previous methods, facilitating their usage. Note that k-mer processing is still the bottleneck of differential k-mer analysis.

2. An end-to-end indexing pipeline. Our method allowed to build efficiently the Tara Ocean index while considering more k-mers than other tools thanks to the k-mer rescue. In addition, our implementation is the first to benefit from findere, allowing more accurate queries.

Consequently, it was possible to reduce the index size, resulting in time and space savings while keeping equivalent precision. However, for large database indexing, I think a paradigm shift is mandatory. The improvement of data structures and indexing methods have a noticeable impact on medium-sized datasets, at project-scale such as Tara Ocean for example. Regarding database contents, e.g. SRA, these improvements remain relatively limited. I think one possible direction would be multi-scale indexing, i.e. indexes with different and more and more precise layers to guide the queries. Recently, a new pre-filtering tool, Raptor [START_REF] Seiler | Raptor: A fast and space-efficient pre-filter for querying very large collections of nucleotide sequences[END_REF], has emerged. Instead of associating a query with specific samples, it is associated with bins containing many samples. Based on minimizers, such queries are less computationally expensive than k-mer queries and could allow to select sample-level sub-indexes. I am strongly convinced that such approaches should be further explored. Currently, the main drawback is that Raptor requires prior knowledge on the data to constitute the bins.

Finally, we propose efficient and extensible implementations of our works. Our tools were already used by other projects, with or without our direct participation, sometimes leading to