
HAL Id: tel-04186037
https://theses.hal.science/tel-04186037v2

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indexing and analysis of large sequencing collections
using k-mer matrices

Téo Lemane

To cite this version:
Téo Lemane. Indexing and analysis of large sequencing collections using k-mer matrices. Bioinfor-
matics [q-bio.QM]. Université de Rennes, 2022. English. �NNT : 2022REN1S127�. �tel-04186037v2�

https://theses.hal.science/tel-04186037v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Téo LEMANE

Indexing and analysis of large sequencing collections using
k-mer matrices

Thèse présentée et soutenue à Rennes, le 16 décembre 2022
Unité de recherche : Equipe GenScale, Univ Rennes, Inria, CNRS, IRISA

Rapporteurs avant soutenance :

Daniel GAUTHERET Professeur des universités, Université Paris-Sud
Eric PELLETIER Directeur de recherche CEA, Genoscope Evry

Composition du Jury :

Rapporteurs : Daniel GAUTHERET Professeur des universités, Université Paris-Sud
Eric PELLETIER Directeur de recherche CEA, Genoscope Evry

Examinateurs : Laurent JACOB Chargé de recherche CNRS, LBBE Lyon
Thérèse COMMES Professeure des universités, Université de Montpellier
Guillaume RIZK Principal Software Engineer, Illumina R&D Rennes

Dir. de thèse : Pierre PETERLONGO Directeur de recherche Inria, Inria Rennes
Co-dir. de thèse : Rayan CHIKHI Chargé de recherche, Institut Pasteur Paris

REMERCIEMENTS

Tout d’abord, je tiens à remercier Daniel Gautheret et Eric Pelletier d’avoir accepté d’être
rapporteurs de mes travaux, ainsi que les membres de mon jury de thèse, Thérèse Commes,
Laurent Jacob et Guillaume Rizk. Merci pour l’intérêt que vous portez à mon travail.

Je tiens à exprimer toute ma reconnaissance à Pierre Peterlongo et Rayan Chikhi, mes
encadrants de thèse. Merci pour votre confiance et vos précieux conseils. Je suis honoré d’avoir
pu faire mes premiers pas dans le monde de la recherche avec vous.

Je souhaite aussi remercier les membres de mon comité de suivi de thèse, Sophie Schbath,
Laurent Jacob et Antoine Limasset, qui ont suivi le déroulement de ma thèse et apporté un
regard extérieur essentiel.

Merci à l’Université de Rennes 1, l’école doctorale MathSTIC, IRISA et Inria de m’avoir
donné la possibilité de réaliser ce travail de thèse. Une pensée particulière pour les personnels
administratifs, merci pour votre patience face à ma rigueur administrative légendaire.

Merci à mes collègues de l’équipe Symbiose pour l’environnement de travail exceptionnel,
tant sur le plan humain que scientifique. J’espère avoir l’occasion de revenir déambuler dans les
couloirs de temps à autre.

Merci à mes collègues de l’institut Pasteur. Je suis très heureux d’avoir pu travailler et
échanger avec vous.

Je remercie l’ensemble de mes amis qui m’ont beaucoup soutenu et permis de décompresser
pendant ces années.

Enfin, un immense merci à l’ensemble de ma famille, et plus particulièrement mes parents,
sans qui rien de tout cela n’aurait été possible. Une pensée spéciale pour mon frère, Clément,
avec qui j’ai partagé un toit pendant ces trois longues années.

Indexing and analysis of large sequencing collections using k-mer matrices

The 21st century is bringing a tsunami of data in many fields, especially in bioinformatics. This paradigm

shift requires the development of new processing methods capable of scaling up on such data. This work consists

mainly in considering massive tera-scaled datasets from genomic sequencing. A common way to process these

data is to represent them as a set of words of a fixed size, called k-mers. The k-mers are widely used as building

blocks by many sequencing data analysis techniques. The challenge is to be able to represent the k-mers and

their abundances in a large number of datasets. One possibility is the k-mer matrix, where each row is a k-mer

associated with a vector of abundances and each column corresponds to a sample. Some k-mers are erroneous due

to sequencing errors and must be discarded. The usual technique consists in discarding low-abundant k-mers. On

complex datasets such as metagenomes, such a filter is not efficient and discards too many k-mers. The holistic

view of abundances across samples allowed by the matrix representation also enables a new procedure for error

detection on such datasets. In summary, we explore the concept of k-mer matrix and show its scalability in various

applications, from indexing to analysis, and propose different tools for this purpose. On the indexing side, our

tools have allowed indexing a large metagenomic dataset from the Tara Ocean project while keeping additional

k-mers, usually discarded by the classical k-mer filtering technique. The next and important step is to make the

index publicly available. On the analysis side, our matrix construction technique enables to speed up a differential

k-mer analysis of a state-of-the-art tool by an order of magnitude.

Indexation et analyse de grandes collections de séquençages via des matrices de k-mers

Le 21ème siècle subit un tsunami de données dans de nombreux domaines, notamment en bio-informatique.

Ce changement de paradigme nécessite le développement de nouvelles méthodes de traitement capables de passer

à l’échelle sur de telles données. Ce travail consiste principalement à considérer des jeux de données massifs

provenant du séquençage génomique. Une façon courante de traiter ces données est de les représenter comme un

ensemble de mots de taille fixe, appelés k-mers. Les k-mers sont très largement utilisés comme éléments de bases

par de nombreuses méthodes d’analyses de données de séquençages. L’enjeu est de pouvoir représenter les k-mers

et leurs abondances dans un grand nombre de jeux de données. Une possibilité est la matrice de k-mers, où chaque

ligne est un k-mer associé à un vecteur d’abondances. Ces k-mers sont erronées en raison des erreurs de séquençage

et doivent être filtrés. La technique habituelle consiste à écarter les k-mers peu abondants. Sur des ensembles

de données complexes comme les métagénomes, un tel filtre n’est pas efficace et élimine un trop grand nombre

de k-mers. La vision des abondances à travers les échantillons permise par la représentation matricielle permet

également une nouvelle procédure de détection des erreurs dans les jeux de données complexes. En résumé, nous

explorons le concept de matrice de k-mer et montrons ses capacités en termes de passage à l’échelle au travers

de diverses applications, de l’indexation à l’analyse, et proposons différents outils à cette fin. Sur le plan de

l’indexation, nos outils ont permis d’indexer un grand ensemble métagénomique du projet Tara Ocean tout en

conservant des k-mers rares, habituellement écartés par les techniques de filtrage classiques. En matière d’analyse,

notre technique de construction de matrices permet d’accélérer d’un ordre de grandeur l’analyse différentielle de

k-mers.

RÉSUMÉ EN FRANÇAIS

Introduction

Le 21ème siècle subit un tsunami de données dans de nombreux domaines, notamment en bio-
informatique. Ce changement de paradigme nécessite le développement de nouvelles méthodes de
traitement capables de passer à l’échelle sur de telles données. Ce travail consiste principalement
à considérer des jeux de données massifs provenant du séquençage génomique. Une façon courante
de traiter ces données est de les représenter comme un ensemble de mots de taille fixe, appelés
k-mers. Les k-mers sont très largement utilisés comme éléments de bases par de nombreuses
méthodes d’analyses de données de séquençages. L’enjeu est de pouvoir représenter les k-mers
et leurs abondances dans un grand nombre de jeux de données. La principale difficulté réside
dans la taille des échantillons qui peuvent contenir des centaines de milliards de k-mers distincts.

Dans ce travail, nous explorons une représentation particulière des séquences, la matrice de
k-mers, et ses capacités à répondre à des problèmes variés dans des contextes d’indexation ou
d’analyse.

En résumé, ce travail à conduit à différentes contributions :

1. Une méthode efficace de construction de matrice de k-mers. Une matrice de
k-mers est construite à partir des vecteurs d’abondances de chacun des k-mers d’un jeu
de données. La première étape consiste donc à compter les occurrences des k-mers dans
l’ensemble des jeux de données étudiés. Nous avons étendu les techniques de comptage
classiques, simple jeu, au comptage multi-jeux permettant ainsi la construction efficace
et parallèle de matrice de k-mers à partir de nombreux jeux de séquençages.

2. Une méthode de filtration des k-mers erronés. Nous montrons que les techniques
classiques de détection des k-mers erronés ne sont pas adaptées à tous types de jeux de
données. La représentation matricielle permet un nouveau type de correction basé sur la
redondance entre les échantillons.

3. Une méthode efficace pour la construction parallèle de matrices de filtre de
Bloom. Un filtre de Bloom [1] est une structure de données probabiliste permettant de
déterminer si un élément fait partie d’un ensemble. Ce type de structure est très utilisé
dans le cadre de l’indexation de données, ici l’indexation de k-mers. La construction de
filtres de Bloom à partir de données de séquençage est un goulot d’étranglement majeur
des processus d’indexation. Nous proposons une méthode de construction de matrices de
filtre de Bloom, basée sur la méthode de construction de matrice d’abondances.

1

4. Un ensemble d’outils génériques pour la construction et l’analyse des ma-
trices de k-mers. Une matrice de k-mers est une représentation générique pouvant
être utilisée dans des contextes d’analyses variés. Nous pensons qu’un outil générique
permettant la construction et le traitement de ce type d’objet serait bénéfique pour la
communauté bio-informatique. En conséquence, nous proposons un outil, kmtricks, pour
la construction, le streaming et l’indexation des matrices de k-mers. Cet outil est accom-
pagné d’une librairie et d’un système de plugins permettant d’étendre ses fonctionnalités
et de construire de nouveaux outils.

5. L’application des matrices de k-mers dans le cadre de l’analyse différentielle de
k-mers. L’analyse différentielle de k-mers consiste à trouver les k-mers différentiellement
représentés entre deux groupes de jeux de données, par exemple des cas et des contrôles.
Ces méthodes appliquent des tests statistiques sur chacun des vecteurs d’abondances des
k-mers. L’obtention de ces vecteurs d’abondances est actuellement le facteur limitant.
Nous avons combiné notre méthode de construction avec des outils statistiques de l’état
de l’art pour produire un nouvel outil, kmdiff, pour améliorer le passage à l’échelle de
ce type de méthodes. Nous montrons que kmdiff est plus performant d’un point de vue
computationnel tout en produisant des résultats équivalents.

6. L’application des matrices de k-mers dans le cadre de l’indexation de grands
ensembles de données. Nous avons utilisé notre méthode de construction de filtre
de Bloom pour proposer un pipeline d’indexation complet, de l’indexation à la requête.
Ce pipeline a permis l’indexation d’un grand ensemble de séquençage métagénomique
du projet Tara Ocean. Ce même jeu de données a aussi été utilisé pour évaluer notre
méthode de filtration des k-mers erronés.

1 Les matrices de k-mers

Une matrice de k-mers M construite à partir d’un ensemble de jeux de données S est un
type de données abstrait représentant les abondances de chacun des k-mers appartenant à S.
En d’autres termes, chaque élément M(i, j) représente l’abondance d’un k-mer i dans un jeu de
données j. En fonction du contexte, M peut être une matrice binaire où chaque élément M(i, j)
est un bit représentant la présence ou l’absence d’un k-mer dans un jeu de données.

Plusieurs outils utilisent déjà ce concept de matrice de k-mers dans leurs analyses. Toutefois,
il n’existe pas de méthodes et outils spécialisés dans sa construction et son traitement. Les
outils existants utilisent des méthodes plus ou moins naïves basées sur les compteurs de k-
mers traditionnels. En conséquence, nous proposons une méthode de construction basée sur
les algorithmes de comptage de k-mers sur disque qui reposent sur le paradigme “diviser pour
régner”. L’idée est de diviser l’espace des k-mers afin de construire parallèlement de nombreuses

2

sous-matrices. Notre méthode de construction et de streaming a permis de réaliser des analyses
différentielles de k-mers à large échelle (voir .3). Une modification de l’algorithme permet de
produire une représentation indexable d’une matrice de présence/absence, i.e une matrice de
filtre de Bloom. Ceci nous a permis de proposer un pipeline complet d’indexation que nous
avons appliqué à un grand ensemble de données métagénomiques (voir .4).

L’un des principaux problèmes liés à l’utilisation des k-mers est celui des erreurs de séquençage
qui entraînent un grand nombre de k-mers erronés. Il existe des méthodes simples pour résoudre
ce problème et permettre d’éliminer ces k-mers. Cependant, les techniques classiques ne sont
pas toujours adaptées aux échantillons de séquençage complexes tels que les métagénomes. Nous
décrivons comment la vue holistique des abondances de k-mer dans plusieurs échantillons per-
met une nouvelle méthode de filtrage des k-mers que nous appelons k-mer rescue. Les méthodes
classiques consistent à rejeter les k-mers avec une abondance inférieure à un seuil donné. En
effet, nous pouvons supposer qu’un k-mer présent une seule fois dans un génome aura une abon-
dance environ équivalente à la couverture de séquençage. Ainsi, les k-mers avec une abondance
faible sont probablement des erreurs. Toutefois, il existe des jeux de données pour lesquels la
représentation des séquences n’est pas uniforme dans l’échantillon de départ. C’est par exem-
ple le cas des métagénomes qui peuvent contenir un très grand nombre d’organismes, certains
étant sous-représentés. En d’autres termes, des k-mers peu abondants peuvent alors correspon-
dre à des séquences sous-représentées. Lorsque l’on considère un ensemble d’échantillons, nous
pouvons supposer qu’il existe une certaine redondance entre ces échantillons. Par exemple, le
projet Tara Ocean collecte des échantillons marins dans l’océan à des fins de séquençage mé-
tagénomique. L’analyse de ces échantillons révèle, comme attendu, des similarités génétiques
entre ces échantillons. L’idée est donc d’exploiter la redondance entre les jeux de données pour
sauver des éléments rares. Ceci demande d’analyser les vecteurs d’abondances de chacun des
k-mers, une information naturellement donnée par les matrices de k-mers. Lorsqu’un k-mer est
peu abondant dans un jeu de données, la méthode consiste alors à examiner les abondances dans
les autres échantillons pour décider de le conserver ou non, en fonction de paramètres définis
par l’utilisateur.

2 kmtricks: un outil de construction et d’analyse de matrice de
k-mers

Les matrices de k-mers sont des objets génériques pouvant avoir des applications dans de
nombreuses analyses bio-informatiques. L’objectif était donc de proposer un outil, kmtricks,
permettant de construire différents types de matrices de k-mers de manière efficace et simple
d’un point de vue utilisateur.

kmtricks est composé de différents éléments : 1. Un pipeline pour une utilisation de bout en

3

bout. 2. Un ensemble de modules pour une utilisation étape par étape, les étapes intermédiaires
pouvant être intéressantes indépendemment de la construction des matrices. 3. Une librairie
C++ permettant le développement de nouveaux outils basés sur les matrices de k-mers. 4. Un
système de plugin permettant d’étendre ces fonctionnalités.

3 L’analyse différentielle de k-mers à grande échelle

L’analyse différentielle de k-mers permet de détecter les k-mers différentiellement representés
entre deux conditions, chacune représentée par plusieurs séquençages. Généralement, le principal
goulot d’étranglement correspond au comptage des k-mers dans chacun des jeux de données suivi
de la fusion des tables d’abondances pour obtenir les vecteurs d’abondances. En d’autres termes,
ces méthodes peuvent être accélérées par une construction efficace d’une matrice de k-mers. Nous
avons combiné notre méthode de streaming de matrice avec un modèle statistique de l’état de
l’art proposé par HAWK [2, 3] et proposé un nouvel outil, kmdiff.

Nous avons comparé les performances de HAWK et kmdiff sur différents jeux de données.
D’abord sur un jeu de données bactérien pour s’assurer de l’équivalence des résultats. L’analyse
de différentes cohortes de séquençage humains a ensuite permis d’évaluer les performances à plus
grande échelle. Les résultats montrent que kmdiff est plus efficace que HAWK, que ce soit en termes
de temps, d’usage mémoire, ou d’usage disque, tout en proposant des résultats équivalents. Par
exemple, kmdiff permet d’effectuer une analyse différentielle de k-mers sur un ensemble de 80
séquençages humains représentant 2.3 TB de données compressées en 9 heures. Cette même
analyse a demandé plus de 6 jours de calculs dans le cas de HAWK.

4 L’indexation de k-mers à grande échelle

Les méthodes d’indexation de k-mers reposent généralement sur la construction de structure
de données de bases, comme les filtres de Bloom, pour chacun des jeux de données. Ces structures
sont ensuite agrégées pour réduire la taille de l’index final tout en accélérant les temps de
requêtes. La construction de ces structures de base est toujours le facteur limitant, quelle que
soit la méthode. Nous avons utilisé notre méthode de construction de filtres de Bloom pour
proposer un pipeline d’indexation complet. Nous avons évalué ce pipeline sur un jeu de données
métagénomique du projet Tara Ocean composé de 241 échantillons représentant plus de 6.5
TB de données compressées. Le pipeline s’est montré environ quatre fois plus rapide que des
méthodes existantes tout en considérant un nombre de k-mers beaucoup important. En effet,
les méthodes de filtration de k-mers classiques rejetaient approximativement neuf fois trop de
k-mers pour le jeu de données Tara Ocean, un jeu de données métagénomique complexe. Ainsi,
notre méthode considère un plus grand nombre de k-mers et capture donc une plus grande part

4

de la diversité des données.

Conclusions

Dans ce travail, nous avons exploré la capacité des matrices k-mer à répondre aux problèmes
actuels, principalement liés à la croissance des données. Nous avons montré que de telles représen-
tations peuvent être impliquées à différents niveaux du traitement des données de séquençage
sans référence tout en permettant de nouvelles opérations telles que le k-mer rescue.

Nous proposons des méthodes de construction et de streaming pour différents types de matri-
ces à des fins d’analyse ou d’indexation. Ces capacités de construction et de streaming efficaces
nous ont permis de présenter deux applications majeures: 1. Une analyse différentielle de
k-mers efficace. L’analyse différentielle de k-mer ne nécessite pas la représentation complète de
la matrice. Par conséquent, le streaming partitionné et parallèle de la matrice a considérablement
accéléré une méthode existante. 2. Un pipeline d’indexation de bout en bout appliqué
à Tara Ocean. Notre méthode a permis de construire efficacement l’index de Tara Ocean en
considérant plus de k-mers que les autres outils grâce au k-mer rescue. De plus, notre implémen-
tation est la première à bénéficier de findere [4], un algorithme permettant de réduire les faux
positifs lors des requêtes. Il s’agit maintenant de rendre accessible l’index Tara Ocean, un travail
en cours en collaboration avec l’équipe de la plateforme Ocean Gene Atlas (OGA). OGA est un
service web permettant de requeter les données Tara Ocean assemblées. Notre index permettrait
d’étendre ces requêtes à l’ensemble du jeu de données.

Plus généralement, les matrices de k-mers sont des objets génériques permettant différentes
analyses. Nous espérons que les outils développés dans le cadre de ces travaux seront bénéfique
à la communauté bio-informatique.

5

TABLE OF CONTENTS

List of acronyms i

List of figures iv

List of tables v

Introduction 1
1. Biological data: a sequence point of view . 1

A. Sequencing . 1
1. First generation sequencing . 1
2. Next generation sequencing . 2
3. Third generation sequencing . 2
4. From the k-mers point of view . 3

B. Analysis methods . 4
1. Reference-based . 4
2. Reference-free . 4

2. Challenges . 5
A. The continuous growth of data . 5
B. Making the raw data talk . 8

3. Outline . 9

I. State of the art 11
1. Sequence indexing . 12

A. The need for succinctness . 12
B. Query . 13
C. Assembled sequences indexing . 14
D. Indexing sequencing collections . 15

1. Core data structures . 15
a. Exact representations . 15
b. Approximate Membership Query Filters 15

i. Bloom . 16
ii. Cuckoo . 17
iii. Quotient . 19

TABLE OF CONTENTS

iv. Back to simplicity . 21
2. Indexing methods . 23

a. Color-aggregative . 23
b. k-mer-aggregative . 24

i. Bloom filter matrix family 24
ii. Sequence Bloom Tree family 26

c. A story of trade-offs . 33
3. Querying method . 34

a. Naive k-mer queries . 34
b. Findere . 34

2. Sequence analysis: differential k-mer analysis . 35
3. k-mer counting . 36

A. In-memory counting . 37
B. Disk-based counting . 37

4. Conlusion . 38

II. The k-mer matrix representation 41
1. A screening of raw sequencing collections . 42
2. Construction . 42

A. Partitioning . 43
B. Counting . 43
C. Merging . 44

3. Perspectives . 46
A. Sequencing errors filtering . 46
B. Indexing . 49
C. Analysis . 49

III. Large-scale differential k-mer analysis 51
1. Matrix-based differential k-mer analysis . 52

A. The kmdiff pipeline . 52
B. About the usage . 55

2. Experiments . 55
A. Benchmark environment . 55
B. Ampicillin resistance . 56
C. Scaling capabilities on human cohorts . 58

IV. Large-scale indexing 61
1. From k-mer matrix to Bloom filters matrix . 62

TABLE OF CONTENTS

A. Fast Bloom filter construction . 62
B. Partitioned Bloom filter matrix construction 63

1. Partitioning . 64
2. Counting . 65
3. Merging . 65

a. Without rescue . 65
b. With rescue . 66

4. Indexing . 67
2. Indexing a human RNA-seq collection . 68

A. Benchmark environment . 68
B. Performance comparisons . 69
C. Empirical false positive rates analysis . 70

3. Scaling up to a large sea water metagenome collection 71
A. The Tara Ocean Project . 71
B. Benchmark environment . 73
C. Indexing the bacterial fraction of Tara Ocean data 73

1. Benchmarks . 73
2. Collection-aware k-mer filtering . 75
3. Queries . 77

V. kmtricks: a k-mer matrix framework 81
1. Rationale . 82
2. Features . 82

A. Pipeline . 82
B. Modules . 84

1. Computation modules . 84
2. Utility modules . 85
3. Indexing modules . 86
4. SOCKS interface . 86

C. API . 87
1. Sequence . 87
2. I/Os . 87
3. Matrix streaming . 87
4. Task system . 87

D. Plugins . 88
3. Practical usage example . 91

A. Using the API . 91
B. Using the plugin system . 97

TABLE OF CONTENTS

4. Implementation details . 100
A. I/O . 100
B. Bit-matrix transposition . 101
C. Concatenation of partitioned Bloom filter . 101

VI. Other contributions 103
1. Identification of isolated or mixed strains from long reads: a challenge met on Strep-

tococcus thermophilus using a MinION sequencer [5] 103
2. The K-mer File Format : a standardized and compact disk representation of sets of

k-mers [6] . 106
3. decOM: Similarity-based microbial source tracking of ancient oral samples using

k-mer-based methods [7] . 108

Conclusion and perspectives 111
Towards k-mer-based variants detection . 112
Towards a partitioned HowDe Sequence Bloom Tree (HowDeSBT) 112
A public Tara Ocean index . 113

Bibliography 115

List of publications 143

LIST OF ACRONYMS

AMQ Approximate Membership Query

AMQF Approximate Membership Query Filter

BIGSI Bitsliced Genomic Signature Index

BF Bloom filter

BBF Blocked Bloom filter

BWT Burrows-Wheeler Transform

CF Cuckoo filter

CQF Counting quotient filter

COBS Compact Bit-Sliced Signature Index

DBG De Bruijn graph

FDR False discovery rate

FGS First Generation Sequencing

FWER Family-wise error rate

GWAS Genome-Wide Association Study

HowDeSBT HowDe Sequence Bloom Tree

KFF K-mer File Format

MPHF Minimal Perfect Hash Function

NGS Next Generation Sequencing

OGA Ocean Gene Atlas

ONT Oxford Nanopore Technology

PacBio Pacific Biosciences

PCA Principal Components Analysis

pBF partitioned Bloom filter

QF Quotient filter

RSQF Rank-and-Select based Quotient Filter

SBT Sequence Bloom Tree

SBT-ALSO AllSome Sequence Bloom Tree

i

List of acronyms

SRA Sequence Read Archive

SSBT Split Sequence Bloom Tree

SIMD Single Instruction Multiple Data

SPSS Spectrum-preversing string set

SNP Single-Nucleotide polymorphism

TGCC Très Grand Centre de Calcul du CEA

TGS Third Generation Sequencing

ii

LIST OF FIGURES

1 Sequence Read Archive statistics . 6

I.1 Overview of the membership query model . 14
I.2 Overview of the Bloom filter data structure . 16
I.3 Cuckoo hashing . 18
I.4 Overview of the Cuckoo filter data structure . 19
I.5 Overview of the Quotient filter data structure . 20
I.6 Space footprints of AMQFs according to false positive rates 22
I.7 Overview of Mantis . 24
I.8 Overview Bitsliced Genomic Signature Index . 25
I.9 Overview of Compact Bit-Sliced Signature Index 26
I.10 Overview of Sequence Bloom Tree . 29
I.11 Overview of AllSome Sequence Bloom Tree . 30
I.12 Overview of Split Sequence Bloom Tree . 31
I.13 Overview of HowDe Sequence Bloom Tree . 33
I.14 Impact of findere on Bloom filters false positive rates 35

II.1 Example of abundance tables merging . 45
II.2 k-mer histogram of a human sequencing sample 46
II.3 k-mer histogram of a Tara Ocean sequencing sample 47
II.4 k-mer rescue procedure . 48

III.1 Overview of the kmdiff pipeline . 52
III.2 Cumulative distribution function of p-values reported by kmdiff and HAWK 57
III.3 kmdiff scaling capabilities . 59

IV.1 Overview of the kmtricks pipeline . 64
IV.2 kmtricks merge overview, with and without k-mer rescue 67
IV.3 Empirical false positive rates analysis of partitioned Bloom filters 71
IV.4 Tara Oceans sampling route . 72
IV.5 Ocean Gene Atlas . 73
IV.6 Histogram of k-mer filtering ratios, with and without k-mer rescue 77
IV.7 Tara Ocean queries without findere . 78
IV.8 Tara Ocean queries with findere . 78

iii

LIST OF FIGURES

V.1 kmtricks modules . 83
V.2 Zero-copy . 102

VI.1 ORI overview . 105
VI.2 KFF overview . 107
VI.3 decOM overview . 109

iv

LIST OF TABLES

I.1 State correspondences between SSBT and HowDeSBT 32

III.1 Benchmarks of kmdiff, HAWK, and kmerGWAS on the ampicillin resistance dataset 57
III.2 Results of kmdiff, HAWK, and kmerGWAS on the ampicillin resistance dataset . . . 58
III.3 kmdiff benchmarks on human datasets . 59

IV.2 Human RNA-Seq indexing benchmarks . 70
IV.3 Tara Ocean indexing benchmarks . 74
IV.4 Acinetobacter baylyi raw sequencing statistics . 76

V.1 Structure of the kmtricks directory . 83

v

INTRODUCTION

1 Biological data: a sequence point of view

The evolution of research in biology has led to the production of an immense amount of
biological data in the last decades. At the same time, bioinformatics has emerged to analyze this
mass of data. Nowadays, digital methods form an integral part of the biological research and
enable large-scale studies.

An important part of biological data concerns biological sequences, i.e. nucleotide or protein
sequences. In this work, we focus only on DNA sequence data, obtained from sequencing.

A Sequencing

Over time, the techniques for reading genome sequences have evolved and there are now many
different types of sequencing methods. The different techniques produce data with particular
characteristics that must be considered in the downstream analysis methods. The following
sections give a brief overview of main types of methods and their specificities.

1 First generation sequencing

The first sequencing technology was developed by Frederick Sanger and published in 1977 [8].
It allowed to produce the first genetic sequence of the human mitochondrial DNA [9]. Later, it is
also this technique that led to the first complete sequence of the human genome in 2001 [10, 11].

In a few words, the process consists in the synthesis of a DNA sequence from a template and a
primer. The reaction medium contains also a low concentration of dideoxynucleotides (ddNTPs:
ddATP, ddCTP, ddGTP, ddTTP) which are in charge of stopping the elongation. These blocks
are randomly used by the DNA polymerase in place of the usual deoxyribonucleotide triphos-
phates. Thus, the reaction produces a lot of sequences of various sizes that start at the primer
and stop at a given ddNTP. The ddNTP of a fragment being known, the sequence can then be
reconstructed by ordering all fragments by length using electrophoresis.

Although its throughput is very limited, the Sanger method is still used today for its high
accuracy [12] to complete regions that are difficult to sequence with modern technologies [13].
The Sanger method is presented here for completeness but is not related to this work which
concerns high-throughput sequencing.

1

Introduction

2 Next generation sequencing

The Next Generation Sequencing (NGS) corresponds to the methods developed in the 2000s
and has resulted in a major change in the use of sequencing due to unprecedented throughputs
and costs. From a methodological point of view, the main novelty is the possibility to perform
reactions in parallel on a solid surface [14]. Billions of reactions occur and are analyzed in parallel
allowing to sequence a lot of small DNA fragments at the same time. The preparation of the
sample consists of the fragmentation of the DNA molecules followed by amplification. After
these preparation stages, the sequencing method depends on the platform.

Nowadays many technologies with different capacities are able to produce short reads such
as Illumina sequencing [15] or Ion Torrent sequencing [16]. It is generally admitted that these
methods have a high-throughput while keeping low error rates [17].

The main drawback is the limited size of the fragments which rarely exceed 250bp. The
small size causes difficulties in assembling repeated regions or in detecting long structural vari-
ants which require long-range information. This information was introduced with paired-end
sequencing which allows sequencing of both ends of a DNA fragment. These types of reads have
enabled more efficient mapping resulting in better prediction of genetic variations [18]. Recently,
a new technology, 10x Genomics [19], has made it possible to preserve long-range information.
The DNA fragments from a single longer molecule (dozen of kilobases) are marked with a DNA
barcode. During downstream analyses, it is therefore possible to track reads which belong to the
same molecule. This information allows to guide certain analyses like assembly [20] or variant
detection [21].

3 Third generation sequencing

The Third Generation Sequencing (TGS) were developed at the end of the 2000s and try
to address some NGS issues [22]. The main novelty is the direct sequencing of a single DNA
molecule while NGS relies on the amplification of many short fragments. Direct sequencing allows
to process molecules of several kilobases and produce thus long reads up to hundreds of kilobases.
However, it presents much higher error rates than NGS. The TGS technologies are led by two
principal companies, Pacific Biosciences (PacBio) and Oxford Nanopore Technology (ONT).

The ONT platform is based on nano-scaled pores. The variations of the electrical signal when
DNA molecules pass through such pores are measured to identify the nucleotides that compose
the sequence. Although this method allows long molecule sequencing, it is constantly evolving
and still has a high error rate, usually greater than 10% [23]. In addition, the ONT techniques
seems to present various error patterns and biais [24]. For example, homopolymers (sequences
of identical nucleotides) are difficult to sequence using such a technique due to a non-constant
flow in the pore. The number of identical nucleotides passing through the pore in a given time
is sometimes difficult to determine and leads to sequencing errors.

2

Introduction

The PacBio platforms consist in synthesizing and sequencing single molecules in real-time
in a nanowell [25]. A DNA template is used to synthesize a new molecule using fluorescent
nucleotides. These nucleotides produce light signals which are interpreted in real-time to produce
the sequence. Two protocols are available. The Continuous Long Reads (CLR) protocol produces
reads up to 100 kb with relatively high error rates of 8-15% [26]. The Circular Consensus
Sequence (CCS) protocol allows multiple readings of the sequence to output a consensus. This
technology is currently used to produce High-Fidelity (HiFi) reads with an accuracy higher than
99% [27]. These reads are however smaller with sizes ranging from 10 to 30 kb [27].

As described before, TGS techniques address certain problems of short reads. However, they
produce noisier reads at a higher cost. Recent technologies such as HiFi are beginning to address
this issue but the costs are still high and few datasets are available. TGS methods are usually
seen as new possibilities with their advantages and disadvantages rather than as a replacement
for short reads. Moreover, short and long reads are frequently used in conjunction in various
operations as assembly [28] or error correction [29].

4 From the k-mers point of view

The characteristics of the different sequencing techniques affect the downstream analysis
methods. Indeed, the length of fragments and the error rate prevent the use of a certain type of
methods. As a result, the majority of tools focus on one sequencing technology.

In this work, we focus on k-mer-based methods. Given a biological sequence S of length L.
A k-mer of S denotes a substring of S of length k, usually 20 ≤ k ≤ 40. k-mers are generic
objects that can be derived from arbitrary sequences. A sequence or a set of sequences, e.g. a
set of sequencing reads, is then represented by its k-mer set. Such representation was primarily
used for genome assembly to represent reads as a de Bruijn graph [30], before searching a path
representing the complete genome in this graph.

The k-mer-based methods are intensively used for the analysis of short reads from the second
sequencing generation. On the contrary, they are less universal in the context of the analysis
of long reads from the third generation sequencing. Indeed, a high error rate leads to a large
number of erroneous k-mers. For example, assuming that errors are uniformly distributed, all k-
mers with a size greater than 10 would be wrong with an error rate of 10%. Moreover, the use of
k-mers causes the loss of the long-range information provided by the third generation. However,
k-mer-based methods will probably appear in the analysis of long reads with the emergence of
accurate long reads as HiFi reads.

3

Introduction

B Analysis methods

1 Reference-based

Reference-based methods usually share a common first step: aligning the reads from a se-
quencing sample on a reference genome. Reference genomes are representative sequences of the
genome of a species. They are produced from multiple sources of DNA belonging to various
individuals and therefore constitute a blueprint of the genome of a species rather than a natural
genome. This first particularity leads to a well-known and studied problem, the reference bias.
The reference bias refers to the bias induced by the linear reference genome, which does not
account for population or individual genetic variations. Methods that use a reference are there-
fore subject to this bias, regardless of the quality of the reference. In other words, the results
of an analysis depend on the reference, for example, in the case of variant detection which uses
the alignments of reads on a reference to identify genetic variations [31, 32, 33]. The choice of
reference alleles also implies many biases. Indeed, some populations are poorly represented in
the reference, making the analysis difficult [34].

Recently, new methods have proposed to use multiple references to limit these biases. In
this case, multiple references are often represented as a sequence graph and the reads are then
aligned on such graphs [35, 36].

Whether we consider one or several references, the alignment of the reads is always the
first step of the analysis, after the possible pre-processing steps, such as error correction. Local
sequence alignment is a costly problem often addressed by heuristics to keep computation time
acceptable. Many alignment tools exist and implement different heuristics that produce different
results [37, 38, 39, 40]. Consequently, the choice of the alignment method significantly impacts
the results.

Finally, some experiments simply cannot use a reference. As previously discussed, the refer-
ence strongly impacts the quality of the downstream analysis and must therefore be as accurate
as possible. Unfortunately, non-model species rarely have reference genomes of sufficient quality
or no reference genome at all. Multi-organism datasets such as metagenomes are also poorly
suited to the reference methods because they contain many organisms of different species, some-
times hundreds of thousands.

2 Reference-free

Reference-free methods focus on the processing of the reads without a reference genome. In
contrast to reference-based methods, the reference-free paradigm is suitable for any study model
since it generally requires only reads without any prior knowledge as reference genomes. Espe-
cially, non-model species or complex datasets as metagenomes benefit from these approaches. The
reference-free analyses are mainly based on k-mer decomposition and have applications in many

4

Introduction

fields such as assembly [41], variants detection [42], error correction [43], metagenomics [44],
RNA-Seq quantification [45], etc.

Reference-free methods are also particularly interesting for the analysis of multi-sample
datasets. Indeed, they enable the direct comparison of samples while reference-based consit in
performing single analyses against the reference followed by the comparison of the results. Such
techniques have already demonstrated their ability to produce new results. For example, the
joint reference-free analysis of sample collections in the context of variant detection has allowed
the detection of sequences missed by reference-based analysis because such sequences were out
of the scope of the reference [2, 46]. Usually, reference-free methods require fewer computational
resources but sometimes the requirements are still high, as for genome assembly.

Note that a reference is sometimes used at the end of an analysis to locate a genetic variant
for example, but is not directly used by the primary analysis.

2 Challenges

A The continuous growth of data

The reduction in costs and the ever-increasing throughput of sequencing technologies are
leading to the continuous growth of databases. This tsunami of data concerns many disciplines
and is not exclusive to bioinformatics. In sequence bioinformatics, the Sequence Read Archive
(SRA) database [47] is a good indicator of the situation since it tries to capture the major part
of the sequencing data produced. Figure 1 [page 6] shows the growth of this database and gives
an idea of what to expect in the next few years.

5

Introduction

Figure 1 – Available bases in SRA, reprinted from https://www.ncbi.nlm.nih.gov/sra/doc
s/sragrowth/. The number of bases presently (2022) stored in SRA is 67 petabases, including
32 open access petabases.

This amount of data raises different problems at several levels, storage, accessibility, and
analysis, which are all directly related to the work presented in this thesis.

Storage. Because of the mass of data, the representation and storage of the data are critical.
All sequences submitted to SRA must contain the quality score per base, regardless of the format.
Many downstream analyses does not require quality scores, representing a non-negligible part of
the data. SRA addresses this problem with another format that does not contain these scores,
SRA Lite, which can be requested to facilitate data transfer.

Note that the data stored on SRA are stored in a raw format by discarding the original
format, e.g FASTQ, and dispatching the data in several data tables that contain distilled data.
As a result, the SRA and SRA Lite formats are only distribution formats generated on the
fly. This makes downloads from SRA tedious with very low bandwidths, usually far from the
saturation of the I/O operations. In addition, the SRA format is supported only by a few tools
and therefore requires conversion to underlying formats, adding extra overheads.

Efficient read compression methods, with different trade-offs, exist but are not currently
used at database scale [48, 49, 50, 51]. It is important to note that some of this data is in-
tended for further analysis. In other words, the representation/compression of these files must
be standardized, stable, easily available on every machine, and especially fit the requirements of
the database. Some projects directly provide FASTA/Q files in gzip format, which is a generic
compression method widely used in many fields, including bioinformatics. The download of these

6

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/
https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

Introduction

files is significantly faster and many tools natively support them.
The file representation is a critical aspect from the point of view of both storage and down-

stream analyses. Due to a large amount of data, many experiments are nowadays limited by
IO operations. The current paradigm offers mainly raw data but some projects make available
other types of pre-processed data such as alignment files, i.e. the read alignments on the ref-
erence genome. Some pre-processing steps are common to many analyses and repeated many
times by many end-users for the same dataset. The question of the availability of this kind of
data, alignments or k-mer sets for example, leads to many discussions within the community.
Indeed, the availability of this data would probably allow saving many hours of computation
while requiring consequent additional storage and infrastructures.

Accessibility. From a database point of view, accessibility can be understood as removing
barriers that prevent optimal use of the data. In the context of bioinformatics, and more specifi-
cally sequencing data, the most important barrier is the sequence search. Nowadays, the samples
are associated with various types of metadata, allowing the search of samples according to var-
ious parameters such as sequencing platforms, sequencing library, etc. However, the metadata
are often very technical or simply missing [52], not bringing much value to the primary data.
Other informations like taxonomic informations or experimental conditions would increase the
chances that a sample will be reused by someone else outside the original project scope.

In the meantime, metadata queries do not answer a fundamental question: “In which se-
quencing samples occurs a sequence of interest?”. In other words, sequencing samples cannot
be selected according to their sequence content. The query of a sequence requires an upstream
selection of a sample. Reads indexing techniques have been developed in the last decades and
are progressing rapidly, but their capacities are currently quite limited regarding the size of
databases. The indexing of collections of sample is nevertheless interesting at smaller scale, as
discussed in section .2.B [page 8]. The indexing of sequencing collections constituted an impor-
tant part of my work and is treated in chapters IV [page 61] and V [page 81].

In summary, the dream would be an alignment-free tool that associates sequences with a
collection of sequencing samples. Of course, such a tool is currently unrealistic due the peta-
scale databases. However, there are numbers of intermediate steps between no indexing and a
global index. Indexing and querying subsets of data according to a well-designed nomenclature
would be a big step forward. Indeed, searching for a subset of sequence samples corresponding
to a specific species or a specific sequencing project is obviously attractive.

Analysis. The growth of the data also requires the development of new analysis methods.
Indeed the single-sample techniques cannot continuously be transposed to multi-samples, mainly
because of the scaling problem. In addition, joint analyses of vast amounts of samples could bring
new knowledge, as already allowed by the GWAS studies which identify genes associated with
particular traits from the analysis of a large number of samples. Some projects have already

7

Introduction

demonstrated the importance of such approaches, both in terms of scaling and results qualities,
as presented in the section .2.B [page 8].

The arrival of cloud computing will lead to significant changes in how data is distributed
and processed, and bioinformatics is not an exception. Indeed, SRA data is now available on
several Amazon S3 providers. This paradigm shift increases the accessibility of the data and has
recently allowed a large-scale study [53] on a large part of available sequencing data in SRA.
Sequence alignment of RNA polymerase sequences was performed against 5.7 million samples
representing 10.2 petabases of raw data. The study, the first at this scale, identified 105 novel
RNA viruses, expanding the number of known species by an order of magnitude. Such cloud-
based experiments will probably become more common in the future simply because downloading
data from a central repository is becoming more and more complicated due to the size of the
data.

B Making the raw data talk

At the database level, read indexing can be seen as another approach to find interesting
samples, alongside the metadata. For example, we can envisage to query a relevant sequence to
collect specific samples for further analyses. In addition, read indexing can contribute directly
to data analysis, at least on a medium scale as domain-specific projects like 1000 Genome
Project [54] or the Human Microbiome Project [55].

Sequencing samples indexing actually index k-mers, i.e. they associate a k-mer with a list
of samples that contain it. Queries on such indexes are usually used as an approximation of a
sequence alignment. The proportions of k-mers shared between a query and the samples in the
index give this approximation. As a result, indexing has already been used to answer, often more
efficiently, questions that were previously addressed by alignment-based methods, as illustrated
below.

RNA-Seq analysis[56]. The k-mer indexing was used to analyze expressed isoforms on a
collection of 2652 human RNA-Seq samples using a new k-mer index layout called Sequence
Bloom Tree (SBT). The computation was compared to two mapping algorithm SRA-BLAST [57]
and STAR [58]. The query time of single transcript was 20 min for SBT, and estimated to 2.2 and
921 days for SRA-BLAST and STAR, respectively. In addition, the pipeline outputs comparable
results to the state-of-the-art isoform quantification methods.

Comparative analysis of hundreds of genomes [59]. BlastFrost is an index and a
query system based on Bifrost [60], a compacted representation of De Bruijn graph (DBG).
Such an index was used for indexing hundreds of bacterial genomes to perform queries of antimi-
crobial resistance genes. The results on precision and sensitivity were compared to Blast [61]
and show a high correlation. Regarding query time, Blast remains faster for single query but
grows rapidly with the number of queries. Regarding BlastFrost, the number of queries has a

8

Introduction

small impact on the time since the query time is mostly dependent on the size of the index. In ad-
dition, the results show the superiority of BlastFrost over time because it is updatable. Indeed,
the Blast index must be recomputed at each addition of new sequences while the BlastFrost

index supports updates. Although Blast is faster for a single round of indexing and querying,
BlastFrost becomes more interesting for maintaining a durable index and supporting multiple
rounds of queries. The BlastFrost index is also an order of magnitude smaller than the Blast
index.

Alignment-free phylogeny [62]. Inferring a phylogeny is an expensive task that is some-
times challenging when reference genomes are unavailable, or the number of input genomes is
too large to perform all pairwise alignments. SANS is an alignment-free and reference-free method
allowing to infer a phylogeny from various inputs, i.e. genomes or reads. It is based on a Bifrost

index and infers edges of the phylogenetic tree using common subsequences extracted from the
DBG and therefore not relies on pairwise comparisons.

These examples demonstrate that read indexing can help solve problems previouslt addressed
with expensive alignment-based methods. In addition, they show the importance of project-
scale indexing for analysis purposes. Database-scale indexing is still an ideal goal but is not
yet achievable with current methods and tools. Indeed, even if the methods are more and more
efficient, indexing databases like SRA requires a drop in computation times of several orders of
magnitude.

Note that out of the scope of indexing, raw data can also be used for analysis without any
assembly or alignment to reference genomes. Reference-free techniques are especially relevant
for analyzing large datasets for which reference-based methods may not scale up. For example,
the comparisons of sequencing samples based on k-mers has been used in comparative metage-
nomics [63, 64] or in GWAS-like studies [2, 3, 46]. The last point is related to this work and will
be discussed later.

3 Outline

In this work, we explore the k-mer matrix representation with respect to the issues discussed
in the previous sections. A k-mer matrix is a simple representation that associates k-mers to
abundances across multiple input samples. We are interested in the construction and the use of
such objects in various contexts, from indexing to analysis of sequencing samples.

In summary, this work leads to the following contributions:

1. An efficient method for parallel construction and streaming of a k-mer matrix.
The construction of a k-mer matrix requires the abundances of eachk-mer across multiple
samples. We extend the disk-based k-mer counting techniques to joint multi-sample k-
mer counting. An in-depth presentation of the structure and the construction procedures

9

Introduction

are presented in chapter II [page 41].

2. A new method for k-mer filtering. Sequencing errors lead to erroneous k-mer that
must be discarded. We show that the usual filtering method, consisting in discarding k-
mers with an abundance less than a threshold, is not usable for all types of datasets. We
propose a new method enabled by the matrix representation. The procedure is described
in chapter II [page 41], and its application and evaluation on a real dataset are presented
in chapter IV [page 61].

3. An efficient method for parallel construction of Bloom filters matrices for
indexing purposes. A Bloom filter is a data structure allowing to represent succintly
collections of items. It is widely used in the context of indexing, especially for k-mer
indexing. We extend the k-mer matrix construction algorithm to achieve parallel con-
struction of Bloom filters matrices in low-memory from a collection of samples. Such a
matrix is a building block that can be used for large-scale indexing. The extended method
is discussed in chapter IV [page 61].

4. A k-mer matrix framework. A k-mer matrix is a generic representation that could be
useful in various contexts, some of which are presented in this manuscript. We believe that
a generic tool that works with such representation would benefit for the bioinformatic
community. Consequently, we propose a tool, kmtricks, for the construction, streaming,
and indexing of k-mer matrices. It is accompanied by an API and a plugin system to
extend its features and build new tools. The chapter V [page 81] is dedicated to the
presentation of the components of the tool and the implementation details.

5. An application in large-scale differential k-mer analysis. The differential k-mer
analysis consists in finding the differentially represented k-mers between two groups of
samples such as cases and controls in a disease study. We combine our method of k-
mer matrix construction with state-of-the-art statistical models to produce a new tool,
kmdiff, allowing large-scale differential k-mers analysis. We show that this strategy leads
to better performances while providing equivalent results as state-of-the-art tools. The
pipeline and results on various datasets are presented in chapter III [page 51].

6. An application in large-scale indexing. We use our Bloom filters matrix construction
to accelerate a state-of-the-art indexing method and to provide an end-to-end indexing
pipeline, i.e. from indexing to query. We present our method scaling capabilities and its
application on a real and complex collection of samples in chapter IV [page 61].

The next chapter presents an overview of state-of-the-art k-mer-based indexing and analysis
methods and argues on the direction of our work.

10

Chapter I

STATE OF THE ART

Preamble

This chapter presents the current paradigms of k-mer-based sequencing indexing and anal-
ysis. Obviously, such techniques rely on k-mer counting, also introduced here and of significant
importance in this work.

I start by presenting generic indexing techniques through the prism of k-mers to reflect
their advantages and disadvantages in our specific case, namely k-mer-based sequencing samples
indexing. This overview of k-mer indexing also argues the choices made in this work.

On the analysis side, I subsequently present the concept of differential k-mer analysis as
well as the current methods capable of achieving it. Our goal was to upscale such techniques by
improving the handling of k-mers.

Finally, I present succinctly both k-mer counting paradigms, in-memory counting, and disk-
based counting. More details are provided along the manuscript since some of the work derives
from these methods.

Contents
1. Sequence indexing . 12

A. The need for succinctness . 12
B. Query . 13
C. Assembled sequences indexing . 14
D. Indexing sequencing collections . 15

1. Core data structures . 15
2. Indexing methods . 23
3. Querying method . 34

2. Sequence analysis: differential k-mer analysis . 35
3. k-mer counting . 36

A. In-memory counting . 37
B. Disk-based counting . 37

4. Conlusion . 38

11

Part, Chapter I – State of the art

1 Sequence indexing

A The need for succinctness

In this section, I discuss the size of the data and the necessity of appropriate data structures
to index and analyze them, taking the human genome as an example.

Biological sequences can correspond to different biological entities like nucleic or amino
acids with sometimes virtual characters representing, for example, uncertain characters or even
combinations of characters. In this document, we consider only nucleic sequences without con-
sideration of “N” or IUPAC characters [65]. In other words, a sequence is over the alphabet
Σ = {A, C, G, T}.

DNA strands being inversely complementary, a first possible solution to reduce the space is
to represent only one strand. Two paradigms coexist: the first one is commonly used for long
sequences such as assemblies and represents the sequence from 5’ end to 3’ end. The second one
is used for short sequences and represents only the smallest string, in the lexicographic sense,
between a sequence and its reverse complement. The smallest sequence is called the canonical
form. Both representations avoid to multiply by two the required space. Using this technique, a
human genome in plain text format requires 3.2 gigabytes (GB).

The small size of the alphabet allows using a more specific encoding than ASCII, which
requires 8 bits per character. The number of bits required to encode an alphabet of size |Σ|
is ⌈log2(|Σ|)⌉. Thus a DNA character can be represented using only 2 bits. The most common
encoding is {A = 0, C = 1, G = 2, T = 3}. However, another encoding scheme {A = 0, C =
1, G = 3, T = 2} is sometimes preferred because it corresponds to the 2nd and the 3th bits in
the ASCII representation of nucleotides. The encoding operations are then only two fast bitwise
operations without any memory access. It is the encoding used in this work. Note that it changes
the canonical form because G is greater than T in this case. Using the 2-bit encoding, the storage
of a human genome requires 0.8GB.

A commonly used representation in biological sequence analysis and indexing is the k-mer
set. Given a sequence S, its k-mer set K(S) is the set of all overlapping sub-words of size k

from S. Considering k = 32, the number of bytes required to represent a k-mer using the 2-bit
encoding is 8 (64 bits). Assuming unique k-mers, the cardinality of a k-mer set from a genome of
size N is approximately N−k+1, which gives 3.2e9 for a human genome. The space required by
the whole set is then 95.3GB in plain text and 23.8GB using the 2-bit encoding. In the context
of k-mer counting, k-mer abundances are also considered. If k-mer abundances stored using 4
bytes per abundance, the space reaches 35.8GB. In practice, k-mer sets are often computed on
sequencing samples that contain sequencing errors resulting in an even larger number of k-mers.
For example, the plain text representation of the k-mer set of human short-read sequencing (from
https://www.ncbi.nlm.nih.gov/sra/ERX009609) with 5.7 billion of k-mers uses 192GB.

12

https://www.ncbi.nlm.nih.gov/sra/ERX009609

1. Sequence indexing

However, k-mers come from a set of sequences; therefore, overlaps are expected. Some meth-
ods [66, 67] take advantage of overlaps to build compacted sequences that correspond to maximal
unique paths in k-mers graph, where nodes are k-mers and edges correspond to k − 1 overlaps
between k-mers. This representation is called a Spectrum-preversing string set (SPSS). As a side
note, recently Schmidt et al. shows that an optimal SPSS can be computed in linear time. These
representations are nevertheless costly to compute (See Section VI.2 [page 106]) because they
need a pre-existing navigational k-mer index [69].

All techniques presented here can be considered as plain text representation (despite the
encoding) without any compression or tricky indexing techniques. For a single dataset, plain text
representations seem usable, but the data become intractable on a larger scale with hundreds or
thousands of samples. As a result, efficient and succinct data structures are needed to survive
the never-ending growth of data.

B Query

Before describing the indexing methods allowing to perform sequence queries in a large set,
it is important to understand what we call a query.

Different methods exist to determine the membership of a sequence to another sequence or
a set of sequences. The most accurates are the alignment techniques which perform base-level
alignments, but they suffer from some limitations. Their computational costs allow them to be
used on a genome or a limited set of genomes but make them difficult to apply to extensive
collections of sequences, especially on collections of reads. Beyond the computational costs,
mapping is also hardly applicable to unassembled sequences. In this case, the database is a
collection of short reads, making difficult the searching of sequences larger than reads, such as
relevant sequences like genes.

In this section, I present the k-mer query paradigm allowing to perform membership queries
between a sequence and a collection of samples.

Given a collection of samples S = {S0, . . . , Sn}, the purpose is to determine the set Si ∈ S

that contains a query sequence Q. A common method is to compute the intersection between
the k-mers from Q, denoted K(Q), and each K(Si). Note that this technique remains an approx-
imation. Indeed, if Q is present in a sample Si, then K(Q) ⊂ K(Si), but finding all k-mers of
an arbitrary query in a sample does not imply that all k-mers originally came from the same se-
quence. However, this is usually considered a suitable approximation when k is sufficiently large,
usually k ≥ 20. It is therefore reasonable to consider that Q ∈ Si if |K(Q) ∩K(Si)| = |K(Q)|,
i.e. all k-mers from Q exist in Si.

Sequencing errors and sequence variations impact the k-mers set since a single nucleotide
variation can affect up to k k-mers, drastically reducing the number of common k-mers between
a query and a sequence. Using a less strict approach, it is possible to overcome this problem by

13

Part, Chapter I – State of the art

considering “partial matches”. Thus Q ∈ Si if |K(Q)∩K(Si)|
|K(Q)| ≥ θ where θ is a user-defined thresh-

old. Partial matches also allow faster queries because the operation can be canceled immediately
when the threshold is reached or is no longer reachable.

The most common way to implement this query model is to use a membership data structure
to perform k-mer membership queries and compute k-mer intersections between the query and
the sample. Indexing of multiple samples is performed in the same way. An index, usually
composed of several membership data structures, is used to associate a given k-mer to the list
of samples containing it (illustrated in Figure I.1 [page 14]).

Figure I.1 – Overview of the membership query model. The black-box is an arbitrary index
allowing k-mer queries against a collection of 4 samples. The query Q is split into k-mers,
using k = 5. Each k-mer is queried and the index returns a list of samples for each one. The
membership of Q in each sample is then determined accordingly to θ, a user-defined threshold
denoting the minimal proportion of shared k-mers between a query and a sample to consider a
match.

C Assembled sequences indexing

Genomes and reads data differ on several points. In assembled sequences, all bases are ex-
pected to be valid bases, unlike reads which contain various types of errors. These errors involve
pre-processing operations like k-mer counting (see Section I.3 [page 36]) to be filtered out. More-
over, splitting the genome into k-mers leads to the loss of long-range information. As a result,
genome indexing techniques often use string-based techniques such as FM-index [70, 71] which
allows keeping the long-range informations, unlike k-mer-based techniques. Sequence mappers
widely use FM-index to locate alignment seeds before performing the alignment [72].

MinHash-based techniques are also intensively used in the context of indexing or comparing
genomes [73, 74]. MinHash [75] is a locality sensitive hashing scheme [76] allowing to approximate
the Jaccard similarity coefficient [77] in a time and space-efficient way. Unfortunately, these
methods are not suitable for fragmented data like reads, except for non-noisy long reads.

14

1. Sequence indexing

D Indexing sequencing collections

1 Core data structures

In this section, I present the two main types of data structures allowing to index a set
of k-mers, exact and approximate. I argue that although exact representations are commonly
used in many applications like assembly, for example, they are not very suitable for large and
multi-samples indexing.

a Exact representations

Beyond classical methods like hash tables, overlapping and complementarity properties of k-
mers allow to build domain-specific representation, thus saving space and time. Two paradigms
coexist, hash and string based, and propose different space and time trade-offs.

Methods differ significantly in terms of their memory usage as well as their construction time
and query complexity. Some allow the reconstitution of the original k-mer set, while others allow
only membership queries without any possibility of restoring the original set. In both cases, the
abundances of k-mers can be stored.

Many k-mer dictionaries exist [78, 79, 80, 81] and are used in various applications. Although
these types of representations are space-efficient and allow fast queries, the construction is often
expensive. They are therefore rather used in the context of a single sample, for example, in
assembly tools [82, 83, 84, 85] or for indexing highly similar genomes [59] such as genomes
from the same species. For the indexing of many sets of reads, approximate methods are often
preferred and are presented in the next section.

Note that a recent and unpublished method, Metagraph [86], shows promising results on
large-scale and multi-sample indexing in the context of uniform datasets sharing a large part
of their k-mers such as a collection of samples from the same species. As for many other tech-
niques, the efficiency is less significant on high-diversity datasets as collections of metagenomic
sequencings with rather long construction and larger indexes.

b Approximate Membership Query Filters

Approximate Membership Query Filters (AMQFs) are probabilistic data structures designed
to address the membership problem in a space-efficient way. This problem can be defined as
follows: Given two sets U and V, determine for each element u ∈ V if u ∈ U . In other words,
V is a set of queries. An AMQF allows to answer this question approximately, i.e. it addresses
the membership of an element u ∈ V to a set U with a non-zero false positive rate of ϵ. In other
words, the possible answers are “definitively not in set” and “possibly in set”.

These structures have a lot of applications in various fields and are now ubiquitous in bioin-
formatics in response to the endless growth of data [56, 87, 88, 89]. Indeed, the space required

15

Part, Chapter I – State of the art

by AMQF is relatively small. The information theoretical bound requires log2(1
ϵ) bits per item

with ϵ the false positive rate. In this section, I present three AMQFs with a focus on Bloom
filters which are central in this work.

i Bloom

Bloom filter (BF) [1] is probabilistic data structure that allows two operations: insert and
lookup. It is a bit array B[0..n), initialized to 0, and k hash functions hi : U → {0, ..., n−1} ∀i ∈
[1..k]. Insert can be defined as follows B[hi(x)]← 1,∀i ∈ [1..k] and lookup as ∧k

i=1 B[hi(x)]. As
both operations depend only on k, the time complexity is O(k). An example of a BF construction
is shown in figure I.2 [page 16].

Figure I.2 – Example of a BF using 20 bits and k = 2 hash functions. h1(y) and h2(z) collides.

Like all AMQFs, BF is exposed to false positives. Assuming bit independence, the probability
that the value of a bit is 0 after the insertion of m elements is (1− 1

n)km. The false positive rate
is then

ϵ = (1− (1− 1
n

)km)k ≈ (1− ekm/n)k (I.1)

An optimal BF uses 1.44log2(1
ϵ) bits per item [1]. Compared to the information theoretical

bound (see Section I.1.D.1.b [page 15]), the overhead is about 44%. In this context, the optimal
number of hash functions is k = log2(1

ϵ) where ϵ is the false positive rate. There is thus an
inverse relation between ϵ and k: when ϵ decreases k increases. In other words, positive queries
must probe more bits when the false positive rate is low. A high number of hash functions then
leads to a higher number of cache misses for both insert and lookup. Consequently, the use of
an optimal number of hash functions (for a given ϵ) increases the query time.

However, the time complexities of the insert and query operations are constant regardless
of the load factor, i.e. whatever the number of elements already in the filter. As previously stated,
both operations depend only on k, the number of hash functions. In contrast, other AMQFs use
addressing schemes to resolve collisions during insertions and the efficiency is thus related to the
load factor (see Section I.1.D.1.b.ii [page 17]).

BFs are therefore exposed to the problem of a poor locality of reference [90], i.e. inserting
and querying require looking at non-contiguous memory areas. As a result, inserting or querying
an element leads to approximately k cache misses. The Blocked Bloom filter (BBF) variant [91]

16

1. Sequence indexing

partially addresses this problem by ensuring that the k hash values of an element reside in a 512-
bits block of memory and fit in a single CPU cache-line of 64 bytes. This scheme offers at the same
time really fast insert and lookup through Single Instruction Multiple Data (SIMD) allowing
to perform each operation in a single CPU operation with the recent instruction sets [92]. The
locality problem remains partially solved. The insertion of n elements always leads to a large
number of cache misses, approximatively n in total. A similar number of cache misses can be
reached in a lower space (for a given ϵ) using a classical BF with a single hash function. However,
as described before, a single hash function is synonymous with a high false positive rate. For
example, given a BF of size 1000 containing 100 elements, using 7 hash functions instead of one
reduces the false positive rate by an order of magnitude.

In the context of sequencing samples indexing, we handle a collection of BFs, one per sample.
In this case, the data locality becomes more interesting: Given several BFs of the same size using
the same hash functions, the insertion pattern of a given element is the same, whatever the filter.
AMQFs that use addressing scheme does not have this property since an insertion depends on the
current state of the structure. This leads to some advantages for BFs in terms of space and time
which are described in the sections I.1.D.1.b.iv [page 21], I.1.D.2.b.ii [page 26] and I.1.D.2.b.i
[page 24].

ii Cuckoo

Cuckoo hashing [93] is an open addressing technique for resolving collisions in hash tables. A
cuckoo hash table uses two tables T1 and T2 each with n buckets. Two independent hash functions
h1 and h2 are associated to each table and map a universe U to bucket locations {0, ..., n− 1}.
A key k can be stored in only two locations T1[h1(k)] and T2[h2(k)]. The lookup operation
is then lookup(k) = T1[h1(k)] == x ∨ T2[h2(k)] == x. The delete operation is performed in
the same way by checking the two possible positions. The insert operation derives from the
behavior of the cuckoo chick bird, which pushes the other eggs out of the nest when it hatches.
Similarly, a new key may push an older key to a new location when collisions occur. To insert a
key k, the first bucket T1[h1(k)] is examined. If the bucket is free, the key is inserted; otherwise
the preoccupied key kold is removed before inserting k. An insertion attempt is then performed
for kold in T2 by following the same procedure. The process continues until an empty position
is found. Since there is not always a solution, in the case of collision cycles, for example, a
maximum number of iterations is defined. An example is given in figure I.3 [page 18].

17

Part, Chapter I – State of the art

Figure I.3 – An example of a Cuckoo hash table using two tables T1 and T2 associated with
two hash functions h1 and h2, respectively. Arrows represent alternative positions of keys. Keys
are inserted following the set order. h1(U) and h1(Z) being equals, Z is inserted at its first
location h1(Z) after kicked out U which is inserted at its alternative location h2(U). V and W
are involved in a cycle which prevents the insertion of X that shares the same hash values.

Both operations lookup and delete are O(1) in worst-case. The time complexity of the
insert operation is O(n) but an amortized O(1) time is expected with an high probability [93].
In comparison to linear probing, the fastest open addressing scheme [93], the Cuckoo hashing
lookup is slower in practice because it often causes two cache misses. However, it is still interesting
when the query time is critical thanks to its constant time lookup, which guarantess fast queries
independently of the load factor. Recently, the number of cache misses was reduced to 1 on
average with multi-way bucketed Cuckoo hashing [94].

A Cuckoo filter (CF) [95] is an AMQF based on a multi-way bucketed Cuckoo hashing (see
Figure I.4 [page 19]) allowing fast lookup and high table occupancy. To switch from a hash
table to an AMQF, CF uses a scheme called partial-key Cuckoo hasing, which consists in storing
only constant-sized fingerprints in buckets instead of keys. This prevents the use of the classical
Cuckoo hashing insertion algorithm because the relocation is based on rehashing and therefore
requires access to the original key. As a result, the possible locations of a key k are computed
as follows:

h1(k) = hash(k)
h2(k) = h1(k)⊕ hash(f(k))

(I.2)

This scheme shows two important properties: 1. The fingerprint hashing ensures that the
new location is randomly chosen. Without hashing and assuming small fingerprints, the xor
operation would only affect the low-order bits and, therefore, a new location close to the original
one. 2. The xor operation allows to compute the alternative location from the original location.
In other word, given an original bucket b, the alternative bucket is b′ = b⊕ hash(f(k)).

Besides this scheme, the insert operation follows the same procedure as the cuckoo hashing

18

1. Sequence indexing

by kicking out fingerprints when the buckets are full, and thus the amortized time complexity is
still O(1). This insertion algorithm is not appropriate to store a set that contains more than 2m

(with m the bucket size) copies of an element because the two possible buckets will be overloaded.
However, the storage of identical fingerprints allows CF to support the delete operation and
prevent false deletion on fingerprint collisions.

The lookup operation is a bit more expensive because it depends on the size of the buckets.
However, for reasonable buckets and fingerprint sizes, all fingerprints of a bucket fit in a single
CPU cache-line allowing to preserve efficient queries.

Figure I.4 – From Cuckoo hashing to Cuckoo filter. The CF uses a 4-way bucketed table and
a fingerprint size of l. f(·) denotes the key fingerprints. Keys that collided in the Cuckoo hash
table are inserted here in the same bucket thanks to the multi-way bucketing.

An CF uses log2(1
ϵ

)+log2(2b)
α bits per element, where b is the size of bucket and α is the load

factor which can reach up 95.5% according to empirical experiments [95]. Consequently, the
space required by CF is lower than the BF space when ϵ is small.

iii Quotient

The Quotient filter (QF) [96, 97] is an AMQF that represents a set of elements S by storing
p-bits fingerprints in an open hash table T with 2q buckets. The p-bits fingerprints are obtained
using the quotienting technique [98]. A fingerprint f = h(x) where x ∈ S and h : U → {0, . . . , 2q−
1}, is partitioned into fq, the quotient, and fr, the remainder which correspond to the r least
significant bits and the q = p−r most significant bits, respectively. The remainder fr is inserted
in the bucket T [fq]. Note that the original fingerprint f is given by f = fq2r + f r.

The collision between two quotients, fq and f ′
q, is called a soft colision. Such collisions are

resolved using linear probing to store all fingerprints with the same quotient consecutively in
a run and fr is always stored before f ′

r when fq < f ′
q. In addition, each bucket is associated

with 3 bits of metadata, is-occupied, is-continuation and is-shifted that provide the state of the
buckets.

19

Part, Chapter I – State of the art

The possible states are:
— 0|0|0→ An empty slot.
— 0|0|1→ A start of a shifted run
— 0|1|1→ A continuation of a shifted run
— 1|0|0→ A start of a canonical run
— 1|0|1→ A start of a shifted run (canonical slot can exist but is shifted right)
— 1|1|1→ A continuation of a shifted run (canonical slot can exist but is shifted right)
The is-occupied bit of a bucket x is set to one if a quotient fq = x exists. The is-shifted

bit indicates whether the remainder fr stored in a bucket x is at its canonical location (fq) or
it is shifted. If the remainder fr stored at x belongs to same run as the remainder stored at
x− 1, the is-continuation is set to one. In summary, is-occupied tells which buckets correspond
to the beginning of a run (a consecutive sequence of remainders with the same quotient), is-
continuation allows to identify the start and the end of a run, and is-shifted tells if a remainder
is stored at its canonical location. A cluster denotes a set of one or more consecutive runs and
is preceded by an empty slot. Note that a empty slot denotes a slot for which the is-occupied is
0. However, such a slot can contain a shifted remainder. An example with 10 slots containing 8
elements is given in figure I.5 [page 20].

Figure I.5 – Overview of the Quotient filter data structure, adapted from [97]. Each element is
inserted following the lexicographic order. The quotients are given by the Fq array.

The lookup algorithm consists in computing the fingerprint, i.e. the quotient and the remain-
der, for a given element. According to the quotient, a backward scan is performed until is-shifted
is 0 to find the beginning of the cluster. The correct run in the cluster is then found using a
forward scan and looking at is-continuation. The remainder is finally searched in the run. The
insertion and delete operations work in the same way but update the metadata bits and may
shift some remainders in the process.

The lookup time depends on the time to scan backward, i.e. find the beginning of a cluster,
and to scan forward, i.e. find an eventual remainder. As a result, the lookup time increases with
the size of the clusters, i.e. when the occupancy of the QF increases. This also applies to insertion
and deletion operations which use the same algorithm to find the location of the remainder. In
practice, the authors report that the performance drops off when the load factor exceeds 75%.

20

1. Sequence indexing

Being an AMQF, QF is sensitive to false positives due to collisions. The false positive rate
depends on the size of the fingerprints and the number of inserted elements and is given by
1− (1− 1

2p)n, with p the fingerprint size and n the number of elements in the QF.
The original QF was improved with a new layout, the Rank-and-Select based Quotient

Filter (RSQF) [88], which transform QF metadata operations into bit array rank-and-select
operations [99]. Such layout allows keeping good performances up to a load factor of 95%, for
both insertions and lookups. In addition, it reduces the space by using 2.125 bits of metadata
per slot instead of 3. The RSQF was used to build a QF that allows counting. Basically, the
Counting quotient filter (CQF) [88] stores “false remainders” that encode actually abundances.
The abundance is stored in the bucket that immediately follows a remainder seen more than once.
Such representations are used in the context of k-mer indexing in Squeakr [89] and Mantis [100]
(see Section I.1.D.2.a [page 23]).

iv Back to simplicity

As described previously, both CFs and QFs present lower bounds than BFs when the false
positive rate is low and propose additional operations such as the deletion of keys. Nevertheless,
BFs remains a valuable solution in the context of k-mer indexing for various reasons:

1. Simplicity. In the previous descriptions, it is obvious that the BF is significantly simpler
than the CF and QF while maintaining very good performances. A BF consists simply of
a bit array associated with a set of hash functions. The available operations, insert and
lookup, are simple bitwise operations. In other words, they are not error-prone and very
easy to handle from an algorithmic point of view. In addition, being a simple bit-array,
BFs natively support the usual bit-array compression techniques such as RRR [101] or
roaring compression [102].

2. Constant time insertions and lookups regardless of the load factor. BFs do not
use any probing scheme to resolve collisions unlike CFs and QFs. As a result, the inser-
tions and lookups are constant and allow to work with high load factors. For example,
the first implementation of QF shows bad performances above 75% occupancy. The re-
cent implementation of QF, RSQFs, allows efficient queries up to 95% occupancy at the
expense of a little extra space (see Figure I.6 [page 22]). One could argue that working at
high load factors leads to high false positive rates. However, false positive rates are not
necessarily a problem in our case as mentioned in the next point.

3. False positive rates do not really matter. In the context of k-mer indexing, queries
are long sequences composed of many k-mers. The false positive rate from the point
of view of a sequence query is, therefore, more interesting than the false positive rate
of single k-mer. As shown in [56], a false positive rate of 0.5 still allows keeping good
results. This effect is discussed in detail in the section I.1.D.2.b.ii [page 26]. In addition,

21

Part, Chapter I – State of the art

a technique exists to drastically reduce the false positive rate at query time when a query
corresponds actually to a set of sub-queries, e.g. the query of a sequence corresponds
to the query of its constitutive k-mers. Such technique is presented extensively in the
section I.1.D.3.b [page 34]. Considering these factors, BFs seems perfectly suitable since
they use less space than other AMQFs for any false positive rates greater than 1/64 (see
Figure I.6 [page 22]). Superior performances in terms of space can therefore be achieved
when the applications do not require a low false positive rate, as in our case.

Figure I.6 – Space comparisons of different AMQFs according to the expected false positive
rates, reprinted from [88]. BFs uses less space than RSQFs, QFs and CFs for any false positive
rates greater than 1/64. The load factors are 100% for BF, 95% for RSQF and CF, and 75% for
QF.

4. Dealing with a filter is not dealing with a collection of filters. When considering
a collection of filters, BFs have a significant advantage. The insertion pattern does not
depend on the input set nor on the order of the insertions of the elements. In the case of
filters based on probing, the same set of keys can produce a different filter depending on
the order of insertions because of collisions. Thus, the same element is not always inserted
in the same position. In the case of BFs, for a given size and hash functions, the insertion
of a key is always the same regardless of the other keys. This property is exploited by
BF-based indexing tool to speed up the lookups (see Section I.1.D.2.b.i [page 24]), and
also for saving space in the case of SBT for example (see Section I.1.D.2.b.ii [page 26]).

As a side note, the field of AMQFs continues to progress with the emergence of new filters
such as the XorFilter [103]. To our knowledge, the XorFilter is not yet used in bioinformatics. It
is a filter that focuses on space at the expense of a slightly longer construction time but still keeps
fast queries. In terms of space, it is theoretically smaller than BFs and CFs, whatever the false

22

1. Sequence indexing

positive rates. However, it is not a perfect drop-in replacement as the set of keys to be indexed
must be known in advance, in the same spirit as a Minimal Perfect Hash Function (MPHF).

2 Indexing methods

There exist two main and intuitive paradigms to index a collection of sets. Given a collection
of samples D = {S0, ..., Sn}, the first possibility is to represent the content of each Si by an arbi-
trary data structure, e.g. an AMQF. A query consists then in a search in each index. The second
one is an inverted index [104] where each element ei ∈ {S0 ∪ ... ∪ Sn} is indexed and associated
with a list of samples that contain it. In the context of k-mer indexing, this was formalized by
Marchet et al. in a review on k-mers indexing. In this section, I present the two paradigms, k-
mer-aggregative (Section I.1.D.2.b [page 24]) and color-aggregative (Section I.1.D.2.a [page 23]),
with a focus on a particular representation, namely the Sequence Bloom Tree (Section I.1.D.2.b.ii
[page 26]).

a Color-aggregative

As described in the last section, the color-aggregative way consists in indexing the union
of each sample and associating each element with a list of colors representing the samples that
contain it. Although there are several color-aggregative methods, I present here only one of
them that has shown applications on reads indexing and has been compared to this work (see
Section IV.2 [page 68]).

Mantis [100] is an k-mer indexing method based on the idea of colored DBG. A colored DBG
is a k-mer graph where k-mers are associated with an identifier, namely a color, corresponding
to a set of experiments. In the same way, Mantis associates k-mers to colors using a CQF in
combination with a color table which maps color IDs to bit-vectors representing collections of
samples. The construction of the index consists of building one CQF per input samples using
Squeakr [89], a k-mer counter based on CQF. All CQFs are then merged into a single CQF
which stores color IDs instead of the k-mer abundances. Squeakr has the advantage to present
an exact mode and therefore allow to build an exact representation of the Mantis index. However,
the exact CQF of Squeakr is significantly more expensive in terms of space and is therefore not
suitable for all types of datasets.

23

Part, Chapter I – State of the art

Figure I.7 – Overview of Mantis [100]. The k-mers are stored in a CQF, where remainders
correspond to color classes. Each color class corresponds to a membership pattern and indicates
the samples that contain a k-mer.

b k-mer-aggregative

i Bloom filter matrix family

As described in section I.1.D.1.b.iv [page 21], BFs have the particularity of not requiring any
addressing scheme. In other words, for a given array size, an element will always be inserted
at the same position, whatever the sample. A Bloom filters collection can then be seen as an
inverted index through a bit-sliced layout [106].

Given a collection of BFs B of the same size m, these are stored as a |B| ×m matrix in a
column-major way. A row represents the membership of one index (i.e. a k-mer) in all samples.

In this section, I present three methods that use different forms of this representation to
index collections of biological sequences. Such a type of layout is used as a building block in this
work, and it is described in section IV.1.B [page 63].

Bitsliced Genomic Signature Index (BIGSI) [107] BIGSI is the first method to use
filter arrays to index collections of samples. The matrix is built by concatenating the filters
representing the samples.

The queries consist in retrieving the set of row vectors corresponding to the k-mer hash values
of the queried sequence. In the first version of the tool, a bitwise AND between these vectors
allowed to obtain a bit-vector representing the presence or absence of the query in each data
set. The current tool also proposes to add these vectors to allow partial matches (as presented
in the Figure I.8 [page 25]).

The bit-matrix layout offers several advantages in terms of construction and query. First, the
construction does not require complex operations and does not require any temporary space.
Also, this layout facilitates the addition of new data. Indeed, the addition consists simply of the
concatenation of one or more new columns to the bit matrix without the need to recalculate the
index in its globality.

24

1. Sequence indexing

From a query point of view, the bit matrix allows time and cache-efficient queries since it
simply consists in retrieving a vector with given indexes. However, to keep this efficiency, the
bit-vectors are not compressed. Consequently, such types of indexes allow very fast queries with
relatively high index sizes.

BIGSI is the first tool to implement a very large-scale genome indexing with the indexing
of all bacterial and viral genomes present in ENA in 2016. The final index occupied a space of
1.5 TB as opposed to 170 TB for the input sequences. The authors also showed that this type
of index could greatly accelerate genotyping. They show 10,000x faster results and 99.997%
agreement with a samtools-based genotyping pipeline.

Figure I.8 – An example of BIGSI [107] on 8 samples using one-hash BF. The query Q is directly
represented by the hash values. R(Q) denotes the response, an array representing the number
of positive matches in each sample obtained by adding all vectors corresponding to the hash
values.

Compact Bit-Sliced Signature Index (COBS) [108] is the successor of BIGSI and is
based on the same principle but more adapted to samples with a variable number of k-mers. It
addresses a common problem when indexing samples of very different sizes. Usually, the size of
the core data strucuture, here a BF, is adapted to the size of the largest sample. Thus small
samples are represented by over-scaled filters resulting in a loss of space. COBS proposes to
build several matrices corresponding to different filter sizes (as described in figure I.9 [page 26]).
For that, a staircase function corresponding to the size of the filters is determined from a group
size and the list of samples, sorted by size.

This scheme has an impact on query efficiency since it is now necessary to query multiple
arrays. However, its efficient implementation (SIMD, memory-mapped I/O) allows for more
efficient construction and queries than BIGSI. The final index is also smaller when the sample
size is variable.

25

Part, Chapter I – State of the art

COBS has some limitations. Namely, a kmer size limited to 31 and a preprocessing of samples
with McCortex, which is a DBG constructor. It allows here the decomposition in k-mers and the
filtration. Although very efficient for genomes, McCortex is very slow for read sets compared to
classical k-mer counters.

Figure I.9 – An example of COBS [108] on 8 samples using one-hash BF. BFs are grouped by
sizes which are determined according to sample sizes. The query Q is represented by 3 sets of
hash values, one per BF group. R(Q) denotes the response for each group. The lookup procedure
is the same as in BIGSI and is simply repeated for each BF group.

MetaProFi [109] is the most recent unpublished method that uses a filter matrix. Unlike
the previous ones, the bit vectors are compressed via Zstandard compression algorithm. In order
to keep queries efficient, the vectors are compressed by chunk, allowing to decompress only the
chunk involved in a query. This compression is done with Zarr [110], a python library using the
Zstandard algorithm [111] and allowing the creation and storage of chunked and compressed
N-dimensional arrays.

It has the advantage of allowing indexing and retrieval of nucleic and amino acid sequences.
However, it does not apply any filtration step (no k-mer counting), making it difficult to use on
read sets.

ii Sequence Bloom Tree family
SBT are binary tree [112]-based data structures designed to reduce the cost of searching in

a collection of BFs and, more recently, to reduce the space by exploiting redundancy between
sets. In this section, I introduce the abstract type before focusing on the four variants and their
respective improvements and compromises. Special attention will be given to the most recent
one, which has been used intensively in this work.

Given a sequencing dataset D composed of a collection of samples Si represented by their
Bloom filters Bi, a naive query would consist in searching in each filter. However, it is reason-
able to expect some redundancy between the samples; this means that some k-mers are shared

26

1. Sequence indexing

between the samples. SBTs exploit this redundancy to group filters that are similar to limit the
number of operations during a query. As development progressed, this aspect also allowed to
move towards an efficient compression of the data structure.

Let D a dataset composed of a collection of samples Si. The database representation
of Si is denoted as B(Si) and represents all entries from Si. It denotes an abstract
type allowing membership queries, whose internal representation depends on the
SBT implementation. The set of k-mers of a sequence S is denoted K(S).

Let T a rooted binary tree. Given a sub-tree rooted at an internal node u,
the set of its leaves is denoted l(u). Let cl(u) and cr(u) denote the left and the right
children of a node u. The parent of a non-root node v is p(v).

The intersection between two bit-vectors x and y of the same length is writ-
ten as x ∧ y, and the union is x ∨ y.

Terminology

A SBT is a rooted binary tree where B(u) denotes the database representation of a leaf u. For
an internal node v, B(v) is ∨

i∈l(v) B(i) and therefore is a representation of all entries contained
in l(v) which is equivalent to B(Cl(v) ∨ Cr(v)). The matches of a query sequence Q are the
leaves i for which |{k∈K(Q) : k∈B(i)|}

|K(Q)| ≥ θ, where θ is a user-defined threshold in [0, 1]. This tree
representation allows reducing the cost of negative queries because a negative query at a node u

means that the element does not exist in l(u). SBTs are dynamic structures, allowing insertion
and deletion of new experiments, and thus existing SBT can be updated when more samples are
needed. In practice, the insertion and deletion operations are not always implemented.

SBT [56] by Solomon and Kingsford is the first implementation (an overview of the structure
is presented in the Figure I.10 [page 29]) and gives several contributions:

1. A greedy construction algorithm. The construction algorithm is designed to group
together similar Bloom filters. As the internal nodes are the union of their children,
grouping dissimilar filters leads to the saturation of top-level filters. At the same time,
this allows to reduce the query time by favoring an earlier pruning of the tree. Given a
collection of Bloom filters D and a possibly empty tree T , the insertion of a BF B in T
is performed in the following way:
— The current node u has a single child. B is inserted as the second child of u.
— The current node u has two children. B is compared to the two children of u,

cl(u) and cr(u). The most similar node, according to the Hamming distance between

27

Part, Chapter I – State of the art

the BFs, becomes the current node, and the process is repeated.
— The current has no children. The current node represents a sample. A new union

node v is created as a child of p(u). The new node v is then the parent of u and B.
Once the tree is built, all the nodes are compressed using the RRR compression [101].

2. A reduction of query time. The tree representation allows to reduce the query time.
At a given node, the query process can be aborted if the threshold theta is already
reached. However, it is not possible to predict if the threshold can no longer be reached
at a given node. Negative queries require therefore examining all nodes of the tree.

3. An analysis of false positive effects on sequence searching. The false positive rates
of Approximate Membership Querys (AMQs) correspond to the probability of observing
a false match in a single query. Yet the use of indexes is more important for sequence
queries than for single k-mer queries. The link between false positives on k-mers and false
positives on queries is explored in theorem 2 of [56]. This theorem shows that for a given
threshold, it is unlikely to observe a fraction of shared k-mer greater than θ when the
false positive rate on k-mers is also fixed at θ. Thus, working with high false positive rates
leads to few errors when considering the query of a collection of k-mers representing a
sequence.

4. An application on a RNA-seq dataset. This implementation was benchmarked on
a collection of 2,652 human RNA-Seq samples corresponding to the entire publicly set
of blood, brain, and breast samples stored at the SRA at the time of the experiment.
This dataset is now the reference benchmark for other k-mer indexing tools. On a single
core, the construction of the index requires about 2.5 minutes per file with a final size of
200GB (2.3% of the input size). The query of a single transcript is achieved in 20 minutes
on average. In comparison, the estimated running time for SRA-BLAST and STAR was
2.2 and 921 days, respectively. However, it is important to note that both tools return
sequence alignments while an SBT query provides only a probability of presence/absence
result.

28

1. Sequence indexing

Figure I.10 – Overview of the Sequence Bloom Tree, first implementation from [56]. The query
Q is searched in the tree accordingly to a threshold of θ = 0.65. The query state is given at each
node.

AllSome Sequence Bloom Tree (SBT-ALSO) [113] by Sun et al. proposes a new repre-
sentation and construction algorithm. An overview of the structure is presented in the figure I.11
[page 30]. The main novelties are listed below.

1. The BAll and BSome representation. In this implementation, two bit-vectors are
used to represent each node. For given node u, BAll(u) = B∩(u) \ B∩(p(u)) where
B∩(u) = ⋂

i∈l(u) B∪(i) with B∪ the union of all positive bits in the sub-tree from u.
BAll(u) represents therefore the bits that are set in all the leaves of the sub-tree starting
at u. BSome = B∪(u) \ B∪(u) and therefore represents the bits that are positive in some
l(u) but not in all. This representation allows to speed up the query for several reasons.
First, BAll(u) allows to know if a bit is positive in l(u). Thus a positive k-mer in BAll at
a given node u does not need to be queried in the sub-tree starting at u. In the previous
implementation, a positive match at a node could correspond to a bit present in only
one of the leaves and therefore do not allow aborting the query of a k-mer. In contrast,
BSome allows to know if some leaves contain a given bit and therefore enables an early
pruning of the tree during the queries. Note that both BAll(u) and BSome(u) exclude the
positive bits in B∩(l(u)). Thus, the bits resolved above in the tree are here set to 0 for
the sub-tree starting at u and are not useful anymore. The deletion of these inactive bits
is explored by the next implementations.

2. The greedy construction is sub-optimal. The greedy construction algorithm intro-
duced by [56] is sensitive to the order of the inputs. As a result, the tree may have a
poor localization if these inputs are not in the right order, i.e. the closest sets in terms
of k-mers are not added sequentially. A sub-optimal order can significantly increase the
query time. Indeed, a smaller number of nodes are explored if all the query matches occur
in the same sub-tree.

29

Part, Chapter I – State of the art

3. A new construction algorithm based on clustering. To improve the localization
of the samples in the tree, Sun et al. propose a new construction algorithm based on
agglomerative hierarchical clustering. Each sample is represented by a SBT. The final
SBT is computed by merging two temporary SBT. At each iteration, the two SBT which
present the smallest Hamming distance between their root nodes are merged.

Figure I.11 – Overview of the AllSome Sequence Bloom Tree [113]. The query Q is searched in
the tree accordingly to a threshold of θ = 0.65. The query state is given at each node. The bits
represented by “-” are inactive.

Split Sequence Bloom Tree (SSBT) [87] by Solomon and Kingsford was proposed in-
dependently of SBT-ALSO and presents an equivalent representation with new handling of the
inactive bits. The figure I.12 [page 31] is an overview of the data structure.

1. The Bsim and Brem representation. The Bsim and Brem representation was proposed
simultaneously to SBT-ALSO and presents the same layout with two bit-vectors per node.
BAll and BSome are respectively equivalent to Bsim and Brem. However, the construction
process differs since it follows the greedy algorithm introduced by the first implementa-
tion.

2. The deletion of inactive bits. As discussed before, such representation implies inac-
tive bits in internal nodes. An inactive bit at a node u is a bit for which its value can be
determined by one of its parents. SSBT proposes to remove these bits in order to reduce
the size of nodes. The authors specify that the suppression of these bits is more effec-
tive when the samples are uniform in terms of k-mers. Thus, one could argue that the
SBT-ALSO construction algorithm would be useful because it allows to group similar
samples whatever the order of the inputs. The most recent implementation, presented
below, uses this observation while proposing a new representation allowing additional

30

1. Sequence indexing

pruning of the tree during the query.

Figure I.12 – Overview of the Split Sequence Bloom Tree [87]. The query Q is searched in the
tree accordingly to a threshold of θ = 0.65. The query state is given at each node. The bits
represented by a black square are inactive and removed.

HowDeSBT [114] by Harris and Medvedev is the most recent implementation and proposes
a new representation, also based on two bit-vectors per node, allowing additional pruning of tree
as well as better compression ratios. The structure is presented in figure I.13 [page 33]. The
main contributions of HowDeSBT are presented below.

1. The Bdet and Bhow representation. The proposed representation also relies on two
bit-vectors and allows to save bits in terms of space and lookups. For a given node u, the
bit-vectors are defined as follows:

Bdet(u) = B∩(u) ∪ B∪(u) (I.3)

Bhow(u) = B∩(u) (I.4)

Bdet(u) represents the determined bits, i.e. the bits that have the same value in l(u).
Bhow(u) informs about the value of determined bits is informative only for bits set to
1 in Bdet(u). In the same spirit as SBT-ALSO and SSBT, such representation allows
efficient queries by resolving some positions before reaching the leaves. When a position is
determined in Bdet(u), the corresponding k-mer is considered as resolved in l(u), whether
it is present or absent. A lookup in Bhow then allows obtaining its value. When a position
is not determined, the lookup of Bhow(u) is not required. Although the representation
from SSBT and HowDeSBT seems highly similar (the different states of bits are described

31

Part, Chapter I – State of the art

in the table I.1 [page 32]), the HowDeSBT query requires fewer lookups to be resolved.
The numbers of lookups required by both representations are given in the Theorem 2
from [114] and are (3n+1)/2 and (n(4−s)−s)/2 for HowDeSBT and SSBT, respectively,
with n is the number of nodes in the tree and s the ratio of active bits in the leaves. The
difference is explained by query algorithms. In the case of HowDeSBT, only one lookup
to Bdet is required for every internal node. For a given position, a positive lookup in Bdet

prunes the tree and the current node becomes a leaf. At the leaves, each Bhow vectors
must be queried. For SSBT, the pruning of the tree (transform an internal node to a
leaf for a given position) occurs only when the lookup to Bsim is positive (table I.1 [page
32]-C). In other cases, two lookups are required for every node.
In summary, the improvement in lookups depends on s (the percentage of active bits in
the leaves of the sub-tree) and is between 0 and 25% for s = 1 and s = 0, respectively.

SSBT HowDeSBT
Bsim Brem Bdet Bhow

A 0 1 0 -
B 0 0 1 0
C 1 - 1 1
D - - - -

Table I.1 – State correspondences between Bsim and Brem from SSBT and Bdet and Bhow from
HowDeSBT.

2. An analysis of the Shannon’s information compression bounds. The Shannon’s
information [115] bounds for both SSBT and HowDeSBT are given by the Theorem 1
from [114]. The improvement of the space bounds in HowDeSBT is between 9% and 14%
for s ≤ 0.75. The HowDeSBT representation is theoretically more compressible.

3. The smallest and the fastest implementation of the SBTs structure. HowDeSBT
was compared to SBT-ALSO and SSBT on the benchmark RNA-Seq collection introduced
by [56]. Regarding the construction, HowDeSBT is 2.8x and 6.3x faster than SBT-ALSO
and SSBT, respectively. The temporary space used by all tools is equivalent since it mainly
corresponds to the BFs, one per input sample. The size of the HowDeSBT final index
is 10.1x and 1.6x smaller than SBT-ALSO and SSBT indexes, respectively. HowDeSBT
is also most efficient at query time, whether for single or batch queries. Note that the
computation times and disk usages concern only the construction of the tree from the
collection of BFs.

32

1. Sequence indexing

Figure I.13 – Overview of the HowDe Sequence Bloom Tree [114]. The query Q is searched in
the tree accordingly to a threshold of θ = 0.65. The query state is given at each node. The bits
represented by a black square are inactive and removed.

c A story of trade-offs

The different k-mers indexing tools have been compared several times in each individual
publication, but also in several reviews [105, 116]. In summary, these tools offer different imple-
mentations and features that lead to different trade-offs. However, one step in the construction
of the indexes is often not mentioned. As discussed, many structures build core structures for
each sample before creating the final compact index. Being k-mer indexing tools, they require
by definition sets of k-mers.

Depending on the type of the inputs, these k-mers can be obtained in different ways. 1)
The case of assembled sequences. The assembled sequences are assumed to be error-free and
can be directly broken into k-mers, at least for the presence/absence tools which do not use the
abundance of k-mers. 2) The case of sequencing reads. Reads are erroneous sequences, at different
degrees depending on the sequencing platforms. Consequently, the k-mers obtained from these
sequences also contain errors. The usual way to filter these errors consists in discarding rare
k-mers, usually those seen only once, and therefore relies on k-mer counting.

The construction of the core data structure, including the counting of k-mers, is sometimes
discussed and often not evaluated in k-mer indexing papers. Unfortunately, this step is the
most expensive compared to the total resources used to build the index. For example, in the
experiments presented in section IV.3.C [page 73], it represents 85% of the construction time.

No tool proposes a specific method combining counting and construction. The counting and
the construction are always separated and often achieved by different tools without particular
strategies. In other words, the construction of the core data structures uses arbitrary sets of
k-mers as inputs, so no assumptions can be made to speed up their constructions.

33

Part, Chapter I – State of the art

We argue that the “pre-processing” step should be considered and that the problems of
counting and core data structure construction should not always be addressed as two distinct
problems. Many k-mer indexing tools are based on BFs, which are highly suitable for k-mer
indexing problems despite their apparent theoretical weaknesses as previously discussed in sec-
tions I.1.D.1.b.iv [page 21] and I.1.D.2.b.ii [page 26]. In this work, we show how a specific k-mer
counting technique can help to build BFs efficiently, which can be used as inputs by indexing
tools. In particular for HowDeSBT that is the most modern and efficient SBT representation.
The methods and results related to this work are presented in the chapters II [page 41], IV [page
61], and V [page 81].

3 Querying method

a Naive k-mer queries

As stated in section I.1.B [page 13], the naive way to query a sequence against a k-mer index
consists of querying all k-mers composing the sequence. Thus, the probability of a false perfect
match is ϵn, where ϵ is the false positive rate and n the number of k-mers. A recent method,
presented in the next section, defines a new query model, allowing to reduce this probability
while reducing the query time.

Note that some information can be derived from naive queries and bring additional insight
to help the interpretation of results. The position of k-mers in the query allows to infer the
coverae of the query, i.e. the number of bases covered by one or more k-mers. The benefits of
this information are discussed in section V.2.B.3 [page 86].

b Findere

findere [4] is a query-time technique allowing to reduce the false positive rate of an arbitrary
AMQF while reducing the number of lookups to resolve a query. It only concerns the query
part and can be applied to an existing index. Its scope concerns the indexing of objects that
are decomposable into sub-objects, i.e. a sequence of characters. It is based on the following
straightforward statement: if a sequence S ∈ E, then its sub-words wi ∈ E.

Let S a sequence of characters and W = {w1, ..., wn} the set of its sub-words of fixed lengths.
Given an arbitrary AMQF with a false positive rate of ϵ, the probability of observing a false
perfect match (all sub-words are wrongly found) is ϵn. Using findere, each wi is divided in m

sub-words, called s-mer, the probability of observing a false positive for a given word is then
ϵm. Thus for S, the probability becomes (ϵm)n. In addition to drastically reducing the false
positive rate (Figure I.14 [page 35]), findere also allows reducing the number of bit lookups.
Consecutive words share some s-mers, which can therefore be queried only once. If a s-mer is
absent, all consecutive words containing it are simply not queried.

34

2. Sequence analysis: differential k-mer analysis

Figure I.14 – Impact of findere query algorithm on the BF false positive rate, reprinted from [4].
The experiment was performed on a metagenomic sample from HMP [55]. The false positive rates
induced by findere are empirically determined at query time.

Although this technique applies to any AMQF, its synergy with BFs seems particularly
interesting. As described in section I.1.D.1.b.i [page 16] and I.1.D.1.b.iv [page 21], a high load
factor results in poor performances for many AMQFs. Regarding BFs, insertion and query
operations do not rely on the load factor. Consequently, Findere is one more argument in favor
of using BFs with relatively high false positive rates, which are space-efficient and easier to build.

2 Sequence analysis: differential k-mer analysis

In the context of population studies, the most common are Genome-Wide Association Study
(GWAS), allowing to identify sequences and genes responsible for a particular trait, such as
a disease. Large groups of individuals are studied for small variations, the Single-Nucleotide
polymorphisms (SNPs), corresponding to single-base variations. Thanks to a large number of
individuals, it is possible to identify statistically more frequent variants in a group with a par-
ticular trait than in another control group. In spite of their great usefulness and contributions,
GWAS have some drawbacks. First of all, it usually only deals with SNPs, without considering
the largest variations, the structural ones. This is mainly due to the technique used, based on
the hybridization of DNA sequences from individuals on chips containing a pre-established DNA
sequence of known variations. In addition, implementing these analyses is much more complex
and costly than a bioinformatics analysis. Especially since we already have many ready to use
sequencing cohorts, thanks to projects like 1000 Genome [54], for example.

Recently, studies with similar objectives using sequencing data have emerged. The idea is
to find sequences, and more precisely k-mers, that are differentially represented between several

35

Part, Chapter I – State of the art

sequencing cohorts, typically two. These k-mers can then be used to reconstruct a set of variants.
In the context of this work, we are only interested in the detection of these k-mers, in a one-to-one
context.

Several tools allow doing differential k-mer analysis [117, 2, 46, 3]. In a few words, it consists
of comparing k-mer abundances across samples. For each k-mer, we need its abundance vec-
tor, representing its abundances in each sample. In the context of a one-to-one experiment, the
abundance vectors are used to test if k-mers are statistically differentially represented between
two conditions. In the context of continuous phenotype values, it consists of testing if the distri-
bution of phenotype values explains the k-mer abundance vectors. In both cases, the bottleneck
of the tools was counting the k-mers and aggregating the abundances to obtain counting infor-
mation across samples, i.e. the abundance vectors. The idea was to speed up existing methods
by allowing an efficient recovery of all k-mer abundance vectors, i.e. via an efficient construction
and streaming of a k-mer matrix. We thus focused on HAWK [2, 3], a tool allowing one-to-one
experiment, particularly adapted to the case of disease study, where the groups are controls and
cases.

We showed that the implementation of state-of-the-art statistical methods in a more efficient
computational framework leads to significantly superior performance of differential k-mer anal-
ysis. The work related to differential k-mer analysis is presented in chapters II [page 41] (about
the construction of k-mer matrices) and III [page 51] (about the usage of k-mer matrix in the
context of differential k-mer analysis).

3 k-mer counting

The methods presented in this chapter all rely on k-mer decomposition, i.e. the decomposition
of one or more sequences into its k-mer set. The methods used to perform such an operation
depend on the type of inputs. Indeed, assembled sequences are assumed to be exact, while
sequencing reads may contain some errors. A k-mer set built from a collection of reads can
therefore contain many erroneous and undesirable k-mers. Fortunately, it is possible to discard
these errors by counting the number of occurrences of each k-mer. Given a sequencing coverage,
the abundance of a unique k-mer (present only once in the input genome) should be around this
sequencing coverage. The erroneous k-mers can then be identified and discarded.

Being a fundamental operation of any k-mer-based method, the k-mer counting is a well-
studied problem. Several methods coexist and can be classified into two main paradigms: in-
memory counting and disk-based counting. Although both paradigms lead to the same results,
each method has its strengths, weaknesses, and specificities. The characteristics of each technique
are important and should guide the choice of the counter according to the downstream analyses.

In the following sections, I present the two main paradigms used for k-mer counting and

36

3. k-mer counting

several examples of tools that implement them.

A In-memory counting

In-memory methods are usually based on a hash table that associates k-mers with their
abundances. Although the general idea is similar to all methods, the implementations are diverse,
with various hashing, filtering, and multi-threading techniques.

The main drawback of these methods is their high memory usage. To address this problem,
some methods like Jellyfish [118] or BFCounter [119], use a BF to identify and reject single-
tons. A k-mer is then inserted in the hash table only if it is already present in the BF. However,
this method increases the computation time because false positives require a second pass. In-
deed, when two unique kmers are inserted and collide in the BF, the second one is inserted with
an abundance of 2 in the table.

An exact k-mer counting is not always required. Some methods propose to do approximate
counting to reduce the computational cost further. For example, Squeakr [89] offers an approx-
imate mode based on a CQF. In this case, footprint sizes determine the counting accuracy and
the performance in terms of time and memory.

Another issue is the synchronization of the hash tables. This problem has been partly solved
by lock-free approaches [120] or by using multiple hash tables, as in the unpublished HackGap

(https://gitlab.com/rahmannlab/hackgap/) or Jellyfish.
In addition, such techniques require estimating the expected number of distinct k-mers to

set the table sizes. A too low user-specified value leads to longer running time and a higher
memory usage due to multiple resizing and merging of hash tables.

For all these reasons, in-memory methods are often relatively expensive in terms of time and
memory. However, they have a significant advantage. The final representation of the counted
k-mers is a hash table. Consequently, it is possible to use the output as a key-value database in
other tools thanks to the associated command line tools or library. When this type of operation
is unnecessary, the disk-based tools presented in the next section are probably more suitable.

B Disk-based counting

The improvement of disk performances has allowed the development of disk-based count-
ing methods with a minimal memory footprint. Anecdotally, such methods have, for example,
allowed performing an assembly of a genome on a Raspberry Pi in 2013 [121].

Disk-based methods rely on the divide-and-conquer paradigm. The idea is to form groups
of k-mers and process these groups successively or in parallel according to a given amount of
memory. Thus, the minimum memory required by this type of technique corresponds to the
memory needed to count one of these groups of k-mers.

37

https://gitlab.com/rahmannlab/hackgap/

Part, Chapter I – State of the art

To form these groups, it is necessary to identify a common characteristic between k-mers to
guarantee that identical k-mers are always put in the same group. For that purpose, the concept
of minimizer has been borrowed from the assembly [122]. A minimizer M of a sequence S is
the sub-word of size m that minimizes a given function. Usually, a hash function or simply the
lexicographic order. By definition, identical k-mers always have the same minimizer, whatever
their origin.

The general functioning of k-mer counting on disk is as follows. The sequences, mainly reads,
are split into k-mers, and these are written on disk in a file corresponding to their minimizer,
often called bin or partition. Then the partitions are counted successively or in parallel according
to the available memory. The counting method is variable and relies on hash tables or sorting.
In the second case, k-mers from a given partition are sorted. The abundance of a k-mer is then
given by its number of consecutive occurrences. Today, sorting methods are favored.

The idea of dispatching k-mers for counting appeared with Meryl, the k-mer counter of
the Celera assembler [123]. Improvements were then proposed and resulted in various tools
like DSK [124] or KMC [125, 126, 127]. Recently, a new unpublished counter, FastK (https:

//github.com/thegenemyers/FASTK) optimized for long reads was released.
As for the in-memory counting, the outputs also have some specificities. Indeed, as the

counting is based on sorting, the output is partially sorted. This order allows to make log-time
queries and facilitates set operations between multiple k-mer databases.

Thanks to the progress of hardware, these methods are much faster nowadays than in-memory
methods. KMC is the most used, both for its performance and its robustness.

4 Conlusion

About indexing, BFs are an interesting option when put in perspective with the specific
problem of sequencing samples indexing, despite the theoretical and functional advantages of
more modern AMQF. However, they suffer from the problem of data locality, complicating their
construction. Indeed, the first step, consisting of the creation of one AMQF per input sample, is
the main bottleneck of indexing methods. Note that this is not specific to BFs; the construction
of AMQF from sequencing samples is always the bottleneck.

About the differential k-mer analysis, the bottleneck is also related to k-mers. It is about
obtaining abundance tables for each sample, before aggregating them to get k-mer abundances
across samples.

In both cases, the problem is related to k-mer counting, i.e. the counting is always considered
as a pre-processing step. Thus, the intrinsic properties of k-mer sets are not exploited, although
interesting in downstream processing, as we will see in the following chapters. In summary, the
objective is to bring k-mer counting and further processing together by exploiting the k-mer

38

https://github.com/thegenemyers/FASTK
https://github.com/thegenemyers/FASTK

4. Conlusion

counting properties.
We argue that the k-mer matrix concept can help in addressing these problems. As a re-

minder, a k-mer matrix associates k-mers with their abundances across several samples. The
next chapter is dedicated to this object and presents our construction method, as well as the
new analysis opportunities it offers, notably in terms of k-mer filtering.

The other chapters are dedicated to its use in various contexts, sometimes requiring modifi-
cations of the initial representation and construction methods.

39

Chapter II

THE k-MER MATRIX REPRESENTATION

Preamble

In this chapter, I introduce the concept of k-mer matrix, i.e. a matrix that associates k-mers
with their abundances across multiple samples, and describe how such representation can be
helpful in various contexts from analysis to indexing. Although the concept is already known
and used, no methods and tools were dedicated to its efficient construction and processing. Here
we described how k-mer counting algorithms could be extended for fast and parallel construction
of such matrices.

One of the major concerns with k-mer-based technique is the sequencing errors, resulting
in many erroneous k-mers. Simple methods exist to address this issue and allow discarding
erroneous k-mers. However, classical techniques are not always suitable for complex sequencing
samples such as metagenomes. We describe how the holistic view of k-mer abundances across
multiple samples enables a new k-mer filtering method that we call k-mer rescue.

This chapter describes a method for constructing k-mer matrices and some opportunities
provided by the matrix representation. In-depth presentations of their use in analysis and in-
dexing are discussed in chapter III [page 51] and IV [page 61], respectively. Regarding indexing,
the methods presented here are modified and extended (see Chapter IV [page 61]) to allow in-
dexing of k-mers and benchmarked on a large-scale metagenomic dataset. The reliability of the
k-mer rescue is also evaluated on this dataset (see Chapter IV [page 61]).

Contents
1. A screening of raw sequencing collections . 42
2. Construction . 42

A. Partitioning . 43
B. Counting . 43
C. Merging . 44

3. Perspectives . 46
A. Sequencing errors filtering . 46
B. Indexing . 49
C. Analysis . 49

41

Part, Chapter II – The k-mer matrix representation

1 A screening of raw sequencing collections

When one wants to represent and/or compare the sequence content across multiple sequenc-
ing experiments, one solution is to represent the abundance or presence of each sub-sequence
of a fixed size in all samples. One possible type of structure is the k-mers matrix. Given a col-
lection S of N samples and size of k-mers of k, a k-mer matrix M is an abstract data type
representing the abundance of each k-mers belonging to S. In other words, each element M(i, j)
is the abundance of the k-mer i in the sample j. Depending on the context, M can be a binary
matrix where M(i, j) is a bit denoting the presence or the absence of a k-mer. This type of
representation is the building block of the work presented in chapter III [page 51] and IV [page
61].

Although this concept is already used in various analyses and tools, no methods and tools
are specifically dedicated to its construction and processing. Each tool uses more or less naive
methods based on traditional k-mer counters.

In our case, we are interested in a non-indexed form of such matrices, i.e. a matrix allowing
sequential access. The problems studied in this work do not require a query-able representation
but simply successive views of each row. As a result, we are looking for a construction method
allowing to generate the matrix on-the-fly, i.e. streaming of the matrix. We also proposed a
modification of the algorithm to produce an indexable representation of k-mer presence/absence
which is presented in chapter IV [page 61].

In this chapter, I present a method for constructing a k-mer matrix relying on disk-based k-
mer counting techniques, as well as possible applications of such a representation. The methods
presented here are implemented in kmtricks, a generic tool designed to work with k-mer ma-
trices. The chapter V [page 81] is dedicated to its description and includes the implementation
details that are not described in this section.

2 Construction

A k-mer matrix represents the abundance of k-mers across several samples and therefore relies
on k-mer counting. The state-of-the-art k-mer counting algorithms have interesting properties
for constructing the k-mer matrices and should not be seen as a trivial pre-processing step.
Usually, the tools requiring matrix-like structure produce it by computing abundance tables
individually for each sample before aggregating them in various ways, for example, using a hash
table. In other words, they do not benefit from the intrinsic properties of the k-mer sets produced
by k-mer counters. The following sections describe how a disk-based k-mer counting algorithm
is extended to an efficient, parallel, and partitioned construction or streaming of k-mer matrices.

42

2. Construction

A Partitioning

As described in section I.3.B [page 37], disk-based k-mer counting relies on the divide-and-
conquer paradigm. It consists in partitioning the samples to count each partition in parallel
using a limited amount of memory. The idea is to use an intrinsic characteristic of the k-mers
such that identical k-mers are always in the same partition, whatever their origin. For that, we
use the concept of minimizer [122]. A minimizer Km of a k-mer K is the smallest sub-sequence
of size m from K that minimizes a given function. In our case, the minimizer is the smallest
sequence in a lexicographical sense. Note that the minimizer is determined by examining both
strands of a k-mer, i.e. we use the canonical minimizer.

In order to obtain optimal performances, the minimizer partitioning must be as uniform as
possible. This means that when k-mers are dispatched in the partitions, the number of k-mers
in each one must be equivalent. The partitioning enables a coarse-grained parallelization, i.e.
one thread is in charge of one partition. An unbalanced partitioning leads then to non-optimal
exploitation of the computing resources and higher memory usage.

The number of partitions is a user-defined parameter or is computed accordingly to the
system and input data characteristics such as available memory, available threads, input size,
etc. For example, a large number of partitions can be used when the available memory is limited
to ensure that at least one partition can be counted at a time. Note that too few or too many
partitions only affect performances, not the results. In the following, we denote the number of
partitions by p.

The size of the minimizers is chosen accordingly to the k-mer size. However, the number
of possible minimizers overgrows as a function of m (4m). Thus the storage of the distribution
function becomes expensive when m grows. Consequently, minimizer-based techniques usually
limit the minimizer size. In our case m ≤ 15.

To obtain a near-optimal partitioning, the frequency of each possible minimizer of size m is
estimated by sub-sampling all input samples. The frequencies are then extrapolated with respect
to the size of the inputs. Finally, the minimizers are distributed into partitions accordingly to
their frequencies. In the end, we obtain a distribution function that maps a given minimizer,
and therefore a given k-mer, to a partition.

As a side note, partitioning also enables the sub-sampling of input samples. In other words,
it allows processing only subsets of k-mers (corresponding to a subset of minimizers) from each
sample. This feature was helpful for a project I contributed to (see Section VI.3 [page 108]).

B Counting

Once the minimizer repartition is determined, the idea is to dispatch sequences in disk parti-
tions (binary files) according to their minimizers. The first disk-based k-mer counting algorithms
split the reads into k-mers before writing them into partitions [124, 125]. However, the storage

43

Part, Chapter II – The k-mer matrix representation

cost of k-mers composing a sequence is significantly larger than the storage cost of the sequence
itself because k-mers are overlapping. Consequently, splitting reads into k-mers in partitions
leads to significant and expensive disk usage. The problem was addressed by KMC2 [126] which
introduced the concept of super-k-mers. A super-k-mer is a sequence composed of a set of over-
lapping k-mers that share the same minimizer, i.e. all k-mers composing the super-k-mer belong
to the same partition. Thus k-mers are represented as super-k-mers into partitions, saving disk
space and I/O usage. In our case, the super-k-mers are composed of k-mers that share the same
canonical minimizer and are stored in disk partitions in a bit-packed and compressed way (see
Section V.4.A [page 100]). After dispatching, each sample is represented as p super-k-mer disk
partitions.

The partitions are then counted in parallel in the following way. The super-k-mers are read
sequentially and split into k-mers. The canonical forms of k-mers are put into an array in
memory. The array is sorted using a generic IntroSort [128] algorithm following the lexicographic
order. The abundances of k-mers are obtained by looking at the number of consecutive k-mer
occurrences in the array. As super-k-mers, k-mers and abundances are finally written to disk in
a compressed form (see Section V.4.A [page 100]). Note that each disk partition is sorted for
free: an essential property regarding the final goal, i.e. the construction of a k-mer matrix. After
counting, we obtain p sorted abundance tables for each sample.

Note that reading the reads and writing the super-k-mers are I/O-bound operations. In other
words, the CPU resources are idle during these steps. In our multi-sample context, the resource
can be used more carefully, i.e. a partition from a sample x can be counted when dispatching
super-k-mers for a sample y. The idea is to avoid idle resources and always have super-k-mer
partitions ready to be counted. The computing resources are thus shared between super-k-mer
dispatching and partition counting, something that is impossible when counting sequentially with
traditional k-mer counters. We call this procedure the joint k-mer counting. The distribution of
resources impacts the performances and is controllable by a user-defined parameter for focusing
on saving resources, i.e. using less memory and disk, or focusing on speed.

C Merging

At this point, we have partitioned, counted, and sorted partitions for all samples. The con-
struction of the matrix can now start. The idea is to merge abundance tables from equivalent
k-mer partitions, i.e. the partitions from each sample that correspond to the same subset of
minimizers. Such merging can be achieved in linear time as inputs are sorted. We use a n-way
merge algorithm to produce a single sorted set from n sorted sets. Given n sorted k-mer abun-
dance tables, the merge is performed as follows. The first k-mer of each sample is inserted in a
key-value min-heap where keys correspond to k-mers and values correspond to their abundances
(see Figure II.1 [page 45]). As the input partitions are sorted, the min-heap property ensures

44

2. Construction

that the smallest k-mer is the first element of the heap. An abundance vector is constructed
at each pass for all consecutive and identical k-mers. The next k-mers are then reinserted into
the heap, and the process is repeated (see Figure II.1 [page 45]). If the abundance of k-mers
is not required, a bit-vector is computed instead to represent the presence/absence of k-mers
in samples. Finally, k-mers and vectors are written to disk. Note that each set of equivalent
partitions, corresponding to one sub-matrix, is independent. In other words, they can be merged
in parallel while using low memory because of the streaming process: the abundance tables are
read and merged progressively.

Figure II.1 – Example of merging abundance tables from 4 samples using a min-heap. The
smallest k-mers from each table are inserted in the heap. At each pass, the abundance vectors
are constructed from the identical k-mers in the heap. Note that the arrays do not represent the
real layout of a min-heap and are purely illustrative. The min-heap properties just guarantee
that querying the heap returns the current smallest element.

After merging, we obtain partitioned sub-matrices representing k-mers and their abundances
in all samples. Partitioned storage is preferred since each sub-matrix is independent. However, the
complete matrix can be generated by simply concatenating all sub-matrices. The so-concatenated
matrix is a succession of sorted blocks of k-mers and abundances vectors. Thus, an additional
merge can be performed to obtain a truly sorted matrix from the sorted sub-matrices, analo-
gously to the merge of abundance tables. Note that the applications do not require the whole
matrix but rather a “single view” on each row. In this case, the downstream computations can
be applied on-the-fly and in parallel during the streaming of the matrix to save space and time.
The tool presented in chapter III [page 51] exploits this streaming capability extensively. As a
side note, our matrices allow log-time queries thanks to the sorted layout, although the primary
goal is the construction/streaming, not creating a random access data structure.

45

Part, Chapter II – The k-mer matrix representation

3 Perspectives

A k-mer matrix is a generic representation with potential usages in various contexts. This
section presents a new error k-mer filtering method enabled by the matrix representation and a
non-exhaustive list of possible applications. The chapters III [page 51] and IV [page 61] focus on
practical applications: differential k-mer analysis and sequencing samples indexing, respectively.

A Sequencing errors filtering

Sequencing errors lead to erroneous k-mers, which are relatively simple to identify by com-
paring their abundances to the sequencing coverage. Theoretically, a k-mer present in a single
copy in the biological sample should have an abundance around the coverage, assuming uni-
form sequencing. A k-mer histogram representing the abundances distribution of k-mers from a
human sequencing sample is presented in the figure II.2 [page 46], which highlights the segmen-
tation between erroneous and true k-mers. The low-abundant k-mers are considered errors, and
the filtering consists of simply discarding those with an abundance less than a given threshold.

Figure II.2 – k-mer histogram of a human sequencing sample, reprinted from [129]. The abun-
dances are distributed around the sequencing coverage. Rare k-mers (the first peak) correspond
to sequencing errors. The separation between true k-mers and errors is obvious in such an ideal
case.

In many cases, such filtration is adequate. However, threshold-based filtering is too stringent
in some contexts, such as metagenomic sequencing. As a reminder, metagenomic sequencing
corresponds to the sequencing of genetic material collected in environmental samples. A unique
sample can contain a large amount of species, each represented by different and unknown num-

46

3. Perspectives

bers of individuals. From a sequence point of view, some sequences are weakly represented in
the sample. Consequently, k-mer spectrums of metagenomic samples differ significantly from
those obtained from a single-organism sequencing. Figure II.3 [page 47] is a k-mer histogram
computed on a Tara Ocean metagenomic sample, highlighting the discontinuity of the abun-
dances distribution. In such cases, threshold-based filtering is inefficient because the difference
in abundance between erroneous and true k-mers cannot be stated.

In the following, we denote a k-mer that pass the filtering process, whatever it is, by the
term solid k-mer. The others are the non-solid k-mers. Note that solid and non-solid k-mers do
not mean true and erroneous k-mers. The k-mers are solid or non-solid accordingly to a given
filtering technique and its parameters.

Figure II.3 – k-mer histogram of a Tara Ocean sequencing sample. No informative peaks are
distinguishable in contrast to figure II.2 [page 46]. True and false k-mers are mixed.

When considering a collection of samples, we can expect some redundancy between them,
especially in the context of sequencing projects which sequence related samples. For example,
the Tara Ocean project collects marine samples at different geographic locations around the
ocean, at various depths, and uses variable filter sizes to separate organisms. The analysis of
these samples revealed, as expected, similarities between samples and allowed the identification of
genomic provinces [63, 130]. Regarding the k-mer filtering, the idea is to exploit such redundancy
to highlight the rare elements, i.e. the rare k-mers corresponding to the weakly represented
sequences. In contrast to the one-sample-at-time counting, our matrix representation naturally
gives the required information: the abundances of a k-mer in each sample of the collection.

Following this idea, we designed a straightforward procedure, the k-mer rescue, based on the
following statement: if a k-mer is rare in a sample A but abundant in at least n other samples,
perhaps it corresponds to a rare but true sequence in A, and we can consider it as a true k-mer.

The procedure is guided by 4 user-defined parameters:
— hard-min corresponds to the solidity threshold applied during the counting step. All k-

47

Part, Chapter II – The k-mer matrix representation

Counted k-mers Post filtration result
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

soft-min 3 2 2 3 2
k1 2 0 2 5 2 1 0 1 1 1
k2 4 1 6 2 0 1 0 1 0 0

Figure II.4 – k-mer rescue procedure example, adapted from [131]. The example relates to
5 samples (S1 to S5) and uses the following parameters: hard-min=1 and share-min=3. The
soft-min parameter depends on the sample and is given in the table. Underlined values are
higher or equal to soft-min (solid k-mers) and the strikeout values are lower than hard-min.
Other values, between hard-min and soft-min are rescueable. The green value is rescued. k1
has an abundance lower than 3 in S1 but it solid in at least 3 (share-min) samples (S3, S4,
S5). Red values are not rescued. k2 is rescuable in S2 an S4 but solid only in 2 samples. It is
therefore discarded in S2 and S4 (but kept in S1 and S3).

mers with an abundance less than hard-min are discarded during counting stages and
are not involved in the rescue. In other words, it corresponds to the threshold used in
threshold-based filtering. Our experiments indicate hard-min=1 is preferable to perform
the rescue on the whole k-mer spectrum (see Section IV.3.C.2 [page 75]).

— soft-min corresponds to the solidity threshold applied during the merging. In other
words, all k-mers with an abundance between hard-min and soft-min are considered
rescue-able.

— share-min corresponds to the minimum number of samples containing a solid version of
a k-mer. If a k-mer is non-solid in one sample, it must be solid in at least share-min

sample to be rescued.
— recurrence-min is not directly relied on k-mer rescue. It allows discarding the rows

for which the number of samples that contain a solid version of the k-mer is less than
recurrence-min.

The k-mer rescue, illustrated in figure II.4 [page 48], occurs within the merging step, along
with constructing the abundance vectors. It is applied on each k-mer of the matrix in the
following way. During the construction of an abundance vector, the number of solid versions of
the k-mer (with an abundance ≥ soft-min) is recorded, and the non-solid versions of the k-mer
(with an abundance < soft-min) are marked for a subsequent check at the end. If the number of
solid k-mers is greater than share-min, the marked k-mers are considered solid. After the rescue,
a row is kept when the new number of solid k-mers is greater than recurrence-min. This really
straightforward technique has shown convincing results on a real metagenomic dataset from the
Tara Ocean project. The results are presented in section IV.3.C.2 [page 75].

48

3. Perspectives

B Indexing

As described in section I.1.D [page 15], reads indexing usually relies on the pre-processing of
each sample separately before a pooling stage to produce the final index, e.g construct a SBT
from a collection of BFs. The matrix representation allows to consider all samples jointly and
can therefore be seen as an input for k-mer indexing tools. This is particularly interesting for
tools that follow the color-aggregative paradigm (see Section I.1.D.2.a [page 23]), which index a
list of samples for each k-mer.

However, the matrix representation can be central to the indexing process and not just a
pre-processing step to obtain the k-mer abundances. For that, the construction algorithm is
extended to directly and efficiently produce an index, namely a partitioned BF matrix. Our
method is significantly faster than existing constructions of such objects and leads to a fast
end-to-end construction of a k-mer index while benefiting from the k-mer rescue. Chapter IV
[page 61] presents the algorithm and the results obtained on real datasets.

C Analysis

Two main paradigms coexist in the context of comparing sequencing data: alignment-based
and alignment-free. Frequently, the analysis of multiple sequencing samples is performed through
the prism of the reference genome. In other words, each sample is processed with respect to the
reference, and the individual results from each sample are linked to obtaining a global view.
Beyond the reference biases and the cost of mapping, such analyses are not always applicable.
High-quality references are available only for a very small subset of known species. As a result,
experiments on non-model species require reference-free techniques. In addition, the development
of sequencing leads to the growth of datasets with new collections containing more and more
individuals or replicates, opening the door to extensive joint analyses. It is essential to have
representations allowing the analysis of large cohorts composed of model or non-model species,
such as k-mer matrices.

In a metagenomic context, the k-mer-based comparison of sequencing samples has already
produced interesting results on large datasets [63, 64, 132]. The usual techniques used to compare
a collection of metagenomic reads rely on read alignments. They consist of pairwise comparisons
between reads or assigning reads to taxons by mapping on a reference database. These methods
are extremely computationally expensive and not applicable to large datasets. The Simka [63]
tool demonstrated that the k-mer-based analysis of metagenomes is strongly correlated with
alignment-based strategy while requiring much less computational resources. The methods and
tools developed in this work could be used to implement Simka-like strategies. An example is
presented in section V.3 [page 91].

In the last decades, studies at the population level proliferated with the idea of character-
izing the genetic profile of populations [133, 134]. The most popular studies are probably the

49

Part, Chapter II – The k-mer matrix representation

GWASs. A GWAS is a comparison of a set of known genetic variations with a large number
of individuals in order to detect associations between variations and phenotypes. These studies
rely on DNA microarrays to detect allelic differences between populations, controls and cases
for example. Microarrays are chips containing many DNA spots, representing known variations,
where the molecules from the studied samples can be fixed. Usually, known variations are SNPs,
which are the most studied variations. GWASs rarely consider structural variations, which are
actually involved in many diseases [135, 136]. In summary, GWASs rely heavily on known vari-
ations, reducing the scopes of the studies and making them unsuitable for non-model species.
Furthermore, any significant variations absent from the microarrays will be missed. Recently,
k-mer-based methods allowing GWAS-like studies have emerged [2, 46, 117]. Unlike microarray-
based studies, these tools require only sequencing data, although some can consider a collection
of SNPs for comparison purposes at the end of the analysis. In other words, k-mer-based tech-
niques can be applied on any collection of sequencing samples which are now widely available
with more and more large-scale sequencing projects. Such techniques also open the door to non-
model population studies, for which the known genetic variations are limited or simply unknown.
The starting and common point of these methods is the detection of differentially represented
k-mers between two or more phenotypes, where a phenotype correspond to a pool of sequenc-
ing samples. We argue that an efficient k-mer matrix construction and representation could be
helpful by significantly accelerating the computations. To illustrate that, we applied our matrix
techniques in the context of differential k-mer analysis and combined them with state-of-the-art
statistical models. In this context, we develop a new tool, kmdiff, allowing fast differential k-
mer analysis between two cohorts: controls and cases, for example. The chapter III [page 51] is
dedicated to this point.

50

Chapter III

LARGE-SCALE DIFFERENTIAL k-MER

ANALYSIS

Preamble

This chapter is dedicated to applying k-mer matrices in the context of differential k-mer
analysis, i.e. finding differentially represented k-mers between two cohorts of sequencing samples.
We show that efficient and partitioned streaming of a k-mer matrix can significantly speed
up a state-of-the-art method, HAWK (see Section I.2 [page 35]). We describe the method and
present various benchmarks at different scales that confirm better performance while maintaining
equivalent results. A benchmark also includes kmerGWAS (see Section I.2 [page 35]) to compare
computational performances with a tool that implements a completely different statistical model.

Contents
1. Matrix-based differential k-mer analysis . 52

A. The kmdiff pipeline . 52
B. About the usage . 55

2. Experiments . 55
A. Benchmark environment . 55
B. Ampicillin resistance . 56
C. Scaling capabilities on human cohorts . 58

51

Part, Chapter III – Large-scale differential k-mer analysis

1 Matrix-based differential k-mer analysis

A The kmdiff pipeline

In this section, I present the kmdiff pipeline and place it in perspective with HAWK to highlight
the improvements. Indeed, The kmdiff implementation follows the same main steps and uses
the same statistical foundations as HAWK. However, the implementation is entirely different and
summarized in figure III.1 [page 52].

Figure III.1 – kmdiff pipeline overview on two cohorts composed of two samples (S1 and S2
for controls and S3 and S4 for cases). A. First stage corresponds to partitioned k-mer counting
with kmtricks. B. Matrix streaming process during which k-mers are tested for significance
and sampled to contribute to the PCA. C. Significant p-values are corrected to account for the
population stratification and are then screened by common controlling procedures. Blue and red
arrows represent examples of p-values over-represented in controls and in cases, respectively

The first step is common to all k-mer-based tools and consists in counting the k-mers in
each sample. In HAWK, this operation is performed by Jellyfish, which is an in-memory k-
mer counter. A slightly modified version allows to output k-mer abundance tables in a plain
text format where the 2-bits representations of k-mers representation are written as ASCII
integers. This choice is questionable for several reasons: 1. Jellyfish is designed to produce a
k-mer table allowing random access and not a simple list of counted k-mers, implying an extra
overhead not encountered in some other k-mer counters. 2. The plain text format significantly
increases the size of the counted k-mers leading to more I/O operations. 3. The last step of the
counting consists of sorting the k-mers, a mandatory step to subsequently aggregate abundances
of identical k-mers across samples. The data representation negatively impacts sorting since
sorting binary integers is obviously more efficient than sorting ASCII integers. HAWK relies on
the sort(1) Unix command to perform the sorting.

In kmdiff, the counting step is managed by the kmdiff count command that is basically a

52

1. Matrix-based differential k-mer analysis

wrapper around the kmtricks pipeline (see Section V.2.A [page 82]), ensuring the right param-
eters are used. kmtricks allows a partitioned counting as described in the section II.2 [page 42].
This gives many advantages for further computations: 1. The abundance tables are partitioned,
and their processing can therefore be easily parallelized. Indeed, the multi-sample partitioned
counting ensures that identical k-mers across the samples belong to the same partition. 2. As a
part of the counting algorithm, the sorting is free compared to HAWK. 3. The k-mers are stored
in a binary and compressed format, reducing the expensive I/O operations. This results on a
more efficient counting step as highlighted in section III.2 [page 55].

The second step, which we call the diff step, consists of aggregating abundances of identical
k-mers from each sample to apply a statistical test on each abundance vector. The test proposed
by HAWK is a likelihood ratio test assuming k-mer abundances are Poisson-distributed with rates
θ1 and θ2 for controls and cases, respectively. The null hypothesis is then H0 : θ1 = θ2 = θ

and the alternate hypothesis is H1 : θ1 ̸= θ2. Rejecting H0 means that the representation of a
k-mer in both cohorts is significantly different. Let K a k-mer and A1 and A2 be the sums of
its abundances in controls and cases. N1 and N2 denotes the total number of k-mers in controls
and cases. The likelihoods are given by (details are available in Appendix 1 from [2]):

L(θ1, θ2) = e−θ1N1(θ1N1)A1

A1!
e−θ2N2(θ2N2)A2

A2! (III.1)

L(θ) = e−θN1(θN1)A1

A1!
e−θN2(θN <2)A2

A2! (III.2)

The p-value corresponding to each k-mer is computed using the approximate χ2 distribution
of the likelihood ratio.

In HAWK, the diff step relies on a basic hash table. The number of k-mers is usually large, the
k-mers are therefore loaded by small batches into the hash tables. As the k-mers are sorted and
represented by integers, each batch corresponds to a range, ensuring that no k-mer is missed.
The abundance vectors are then computed from individual abundances before computing the
likelihood ratio. The main issue with this implementation is that processing each batch implies
multiple expensive traversals of the whole hash table to populate it, process it, and dump it. In
addition, an expensive thread synchronization mechanism is required while filling the table.

kmdiff uses the kmtricks library (see Section V.2.C [page 87]) to compute a k-mer matrix
on-the-fly. The processing can be performed in parallel and low-memory thanks to the streaming
capabilities of kmtricks and the independence of partitions. The likelihood ratio and the p-value
are computed during the streaming for each k-mer. Significant k-mers with a p-value < α, where
α is the significance level, are directly written on disk in binary and compressed format. In HAWK,
p-values are written in plain text, reducing both efficiency and arithmetic precision due to the
multiple floating-point to ASCII conversion.

53

Part, Chapter III – Large-scale differential k-mer analysis

The next step corresponds to the correction of population stratification. In the study of
phenotypes, a perfect composition of cohorts would be individuals that differ only in the phe-
notype of interest, which is naturally impossible. In association studies, there are systematic
allelic differences within populations that are not related to the observed phenotypes but simply
to the genetic history of individuals. A common variation in a population presenting a particu-
lar phenotype could be wrongly identified in such cases. Therefore, consideration of population
stratification is essential in association studies to make appropriate corrections. As in HAWK, the
detection of the population stratification is delegated to Eigenstrat [137, 138]. Eigenstrat uses
a Principal Components Analysis (PCA) on a binary matrix representing the presence/absence
patterns of randomly sub-sampled k-mers across samples. In kmdiff, the sampling is performed
during the streaming of the matrix and the proportion of k-mers used for the PCA is defined
by a user parameter. The results of the PCA is subsequently used to re-estimate the p-values
of significant k-mers in the following way. As previously, the computation relies on a likelihood
ratio test. Under H0, the k-mer is not associated wtih the phenotype, i.e. abundance differences
between cohorts are explained by the population stratification. The likelihoods are computed by
fitting a logistic regression model against the population stratification and k-mer abundances for
the null and alternate hypotheses, respectively. The corrected p-value is then computed thanks
to a likelihood ratio test.

The corrected p-values must finally pass a final control to account for multiple testing since
the number of tested k-mers is large, several billion. Consequently, the likelihood of rejecting
a true hypothesis increases. Two main types of controls are usually used. Those which control
the Family-wise error rate (FWER) rate and those which control the false discovery rate False
discovery rate (FDR). The FWER is the probability of rejecting at least one true hypothesis.
The objective of the controlling procedure is to ensure that the probability remains lower than
a given threshold. The FDR corresponds to the expected proportion of false hypotheses that
are rejected. As for FWER, the goal is to keep the FDR below a given threshold. The FDR
procedures are less stringent than FWER-procedures at the cost of a greater number of type
I errors, i.e. a greater number of false discoveries. kmdiff provides both types of controlling
procedures. For controlling the FWER, two procedures are implemented: 1. The Bonferroni
correction [139] which defines a new significance threshold as α′ = α/N , where N is the number
of hypotheses and α is the significance threshold. 2. The Sidak correction [140] is less stringent
than the previous one. The new threshold is given by α′ = 1 − (1 − α) 1

N . Regarding the FDR,
only the Benjamini–Hochberg [141] procedure is implemented. It assigns a rank to each p-value
sorted in ascending order. For a given p-value p and its rank r, the significance threshold is α r

N .
Note that its cost is slightly higher than others because it requires sorted p-values. Initially, HAWK

only supported the Bonferroni correction. The Benjamini-Hochberg was added more recently in
the last update [2].

54

2. Experiments

Finally, the significant k-mers are written in two FASTA files corresponding to over-represented
k-mers in controls and cases. The p-values are given in the FASTA headers.

B About the usage

Despite pretty results, using HAWK is particularly tedious. Indeed, in-house scripts are usually
needed because it does not provide an end-to-end pipeline. Moreover, parameters are hard-coded,
and each change requires a recompilation. Finally, several minor bugs make the experience un-
pleasant. For example, a crash can occur after hours of computation without any error messages
due to a too long filename.

Consequently, our goal with kmdiff was to propose a more efficient implementation while
remaining user-friendly. The whole kmdiff pipeline can be executed using only two commands
without any in-house scripts.

In addition, kmdiff supports C++ plugins enabling fast and easy prototyping of new stream-
friendly models while keeping the pipeline efficiency. This plugin system works the same way as
kmtricks one (see Section V.2.D [page 88]).

2 Experiments

We performed experiments at various scales to evaluate the scalability and the qualitative
results of HAWK and kmdiff. The goal was to propose a more scalable tool producing equivalent
results. We included another tool, kmerGWAS, to compare the computational performances of the
approach with a different statistical model.

A Benchmark environment

The experiments presented in this section were performed on the GenOuest platform on
a node with 2x24 cores Xeon Gold 5220R 2.20 GHz and 128 GB of memory. The filesystem
allowed 900 MB/s and 290 MB/s sequential read and write (average on 10 tests). Both tools
support multi-threading and were executed using 20 threads. We used kmdiff v1.0.0, HAWK

v1.7.0, and kmerGWAS v0.2 compiled directly on the node using GCC 11. HAWK uses Jellyfish

to count k-mers in each sample. We used Jellyfish v2.3.0 with the patch provided by HAWK

to obtain compatible outputs. kmerGWAS relies on GEMMA [142] v0.96.0, which is a toolkit for
the application of linear mixed models. The running times and memory footprints are tracked
with ’/usr/bin/time -f %E,%M’ except for kmdiff which tracks them internally. The peak disk
usage is tracked using an in-house process that monitors disk usage every second.

All the tools were parameterized with a significance threshold of 0.05 and the Bonferroni
correction was applied on each p-value for HAWK and kmdiff. In kmerGWAS, the correction is

55

Part, Chapter III – Large-scale differential k-mer analysis

performed by GEMMA. Regarding the k-mer counting, we considered only the k-mers with an
abundance greater or equal to 2.

The resources to download the data and reproduce all experiments are available at https:

//github.com/tlemane/kmdiff-experiments.

B Ampicillin resistance

The ampicillin resistance dataset is composed of 241 paired-end RNA-Seq sequencing of
Escherichia coli strains produced by Earle et al. representing 56 GB of gzipped FASTQ files.
Among these strains, 189 are resistant to ampicillin, and 52 are sensitive. We consider that
resistant and sensitive strains constitute the control and the case group, respectively. Several
tools performing differential k-mer analysis used this collection as a benchmark dataset [2, 46].
As a side note, this study presents other groups of species and strains associated with different
phenotypes that can be very useful for evaluating such tools.

On this dataset, kmdiff outperforms other tools in terms of computing resources except
for the disk usage, which is slightly ahead of kmerGWAS. The detailed results are presented in
table III.1 [page 57].

Regarding the HAWK comparison, kmdiff is 6x faster and uses 8x and 4.5x less memory
and disk. The difference in memory usage is the consequence of kmtricks, a disk-based k-mer
counter. Moreover, its streaming capability reduces the memory footprint compared to HAWK,
which uses hash tables to merge k-mer across samples. The disk usage remains lower than
HAWK thanks to the compressed representation of counted k-mers (see Section V.4.A [page 100]).
The k-mers found by both tools are the same before the population stratification correction
with 13,196,814 over-represented k-mers in cases and 16,804,587 in controls. The imprecise
floating-point arithmetics and the non-deterministic sub-sampling of k-mers performed by the
population stratification correction result in a slightly different number of k-mers at the end of
the pipeline. Indeed, 4542 and 4591 pass the significance threshold in the control group for HAWK

and kmdiff respectively. Both tools do not report any significant over-represented k-mers in the
case group. This is expected because the individuals with the ampicillin resistance genes are in
the control group. In this experiment, kmdiff was able to find 98% of k-mers reported by HAWK.
The differences concern the k-mers with p-values very close to the significant threshold. They
are sometimes slightly above or below, depending on the tool, due to imprecise floating-point
arithmetics and non-deterministic sub-sampling during population stratification correction. To
support the equivalence of the tools, the p-value cumulative distribution of significant p-values
are presented in figure III.2 [page 57].

Regarding the kmerGWAS comparison, kmdiff is 2.2x faster while using less memory. The
disk usage is slightly higher, although anecdotal on such a dataset.

56

https://github.com/tlemane/kmdiff-experiments
https://github.com/tlemane/kmdiff-experiments

2. Experiments

Figure III.2 – Cumulative distribution function of the p-values of the significant k-mers reported
by both kmdiff and HAWK on the ampicillin resistance, reprinted from [144].

Ampicillin 189v52 Time (min) Memory (GB) Disk (GB)
HAWK 103 + 171 6.1 | 8.1 28.7 | 67.1

kmdiff 11 + 36 2.7 | 2.7 14.8 | 5.7
kmerGWAS 89 + 15 3.5 | 1.9 10.3 | 3.4

Table III.1 – Benchmarks of HAWK, kmerGWAS and kmdiff on ampicillin resistance dataset. For
time, memory, and disk usage, we present two data points. The first one corresponds to the
k-mer counting step. For HAWK, this step includes the sorting of k-mers, which is not required for
kmdiff. The second one corresponds to the k-mer associations, including k-mers aggregation,
statistical tests, and population stratification correction.

As stated in [143], the ampicillin resistance of the 189 strains is supplied by the Tn3 trans-
poson, a mobile element from prokaryotes [145]. Consequently, we expect to find sequences from
Tn3 transposon, which encodes 3 proteins: β-lactamase, Tn3 transposase, and Tn3 resolvase.
The significant k-mers from each tool were assembled using ABYSS [146]. We queried the NCBI
nr database [147] with the assembled contigs using BLASTX [148]. As expected, the majority of
contigs correspond to the Tn3 transposon, whatever the tool. HAWK and kmdiff provide similar
results. The assembly from kmerGWAS k-mers is more fragmented with shorter contigs. Details
are given in table III.2 [page 58].

57

Part, Chapter III – Large-scale differential k-mer analysis

N L/T/R/U Max Sum Mean
kmdiff 19 1/10/1/7 2270 5098 269
HAWK 17 1/10/1/5 2276 4891 293

kmerGWAS 26 1/17/1/6 1377 4315 166

Table III.2 – Summary of results from kmdiff, HAWK, and kmerGWAS on the ampicillin resistance
dataset. N denotes the number of contigs after ABYSS assembly. L/T/R/U are the numbers
of contigs associated with each category after BLASTX queries: β-lactamase, Tn3 Transposase,
Tn3 resolvase, and Unknown, respectively. The unknown contigs always correspond to small
fragments (≈ 50pb). Max is the size of the longest contig. Sum is the sum of the contig
lengths. Mean is the mean of the contig lengths.

Our benchmarks confirm that a paradigm shift in the implementation of the statistical
methods proposed by HAWK resulted in better performances while maintaining the results. The
scalability of kmdiff on larger datasets is evaluated in the next section.

C Scaling capabilities on human cohorts

To illustrate the scaling capabilities of kmdiff, we compared it to HAWK on human whole-
genome sequencing datasets of different sizes. kmerGWAS was not included in this experiment
because the early stages of the analysis require an amount of memory greater than the capacity
of our computing node (128 GB). The cohorts are part of the 1000 Genome project [54] and
correspond to two populations TSI (Toscani in Italia) and YRI (Yoruba in Ibadan, Nigeria).
This dataset was previously used as a benchmark in HAWK publications [2, 3].

We built three benchmark datasets composed of 20, 40, and 80 individuals. The same number
of individuals is used in both control and case groups. The larger experiments with 80 individuals
was composed of 2.3 TB of gzipped FASTQ files. The parameters used are the same as for the
ampicillin resistance, i.e. a minimum abundance of two, a significant threshold of 0.05, and a
Bonferroni correction.

Whatever the monitored parameter, i.e. time, memory, or disk, kmdiff scales better than
HAWK as shown in figure III.3 [page 59]. It is an order of magnitude faster, enabling the differential
k-mer analysis on 80 human whole genome sequencing in a few hours. In contrast, HAWK requires
more than six days. The detailed results are presented in the table III.3 [page 59].

58

2. Experiments

Figure III.3 – Scaling ability of HAWK and kmdiff on human cohorts. Both tools supports multi-
threading and were executed using 20 threads. Compared to HAWK, kmdiff reduces computation
times by 13-16x, memory usage by 8x, and disk usage by 2.6x

Human 10v10 Time (min) Memory (GB) Disk (GB)
HAWK 2040 + 186 84 | 21.2 1024 | 20.2

kmdiff 129 + 37 9.3 | 2.4 380 | 4.7

Human 20v20 Time (min) Memory (GB) Disk (GB)
HAWK 3916 + 277 84 | 28.5 2016 | 32.7

kmdiff 241 + 83 8.7 | 3.26 726 | 9.34

Human 40v40 Time (min) Memory (GB) Disk (GB)
HAWK 8319 + 592 87 | 48.6 3914 | 93.5

kmdiff 418 + 122 11.9 | 6.2 1455 | 49.4

Table III.3 – Benchmarks of HAWK and kmdiff on different scale datasets. For time, memory and
disk usage, we present two data points. The first one corresponds to the k-mer counting step.
For HAWK, this step includes the sorting of k-mers, which is not required for kmdiff. The second
one corresponds to the k-mer associations, including k-mers aggregation, statistical tests and
population stratification correction.

59

Chapter IV

LARGE-SCALE INDEXING

Preamble

In this chapter, we describe how k-mer matrix construction methods presented previously
(see Chapter II [page 41]) can be extended to build matrix of BFs. We show that our method
enables fast BFs construction, leading to efficient indexing. We compare our technique with
state-of-the-art indexing tools, based or not on BFs, and evaluate the scalability on RNA-Seq
sequencing indexing datasets of various sizes. In addition, we present end-to-end indexing of a
real and large metagenomics dataset and show the contribution of k-mers rescue (see Chapter II
[page 41]) on this type of data.

Our BF construction method relies on partitioning, which is not perfectly uniform. Conse-
quently, the false positive rates slightly differ according to partitions. We show that the false
positive rate of each partition remains close to the expected false positive rate of a classical BF,
except for some outliers. Additionally, comparisons between our index and an exact index, i.e.
without false positives, reveal highly correlated query results.

Contents
1. From k-mer matrix to Bloom filters matrix . 62

A. Fast Bloom filter construction . 62
B. Partitioned Bloom filter matrix construction 63

2. Indexing a human RNA-seq collection . 68
A. Benchmark environment . 68
B. Performance comparisons . 69
C. Empirical false positive rates analysis . 70

3. Scaling up to a large sea water metagenome collection 71
A. The Tara Ocean Project . 71
B. Benchmark environment . 73
C. Indexing the bacterial fraction of Tara Ocean data 73

61

Part, Chapter IV – Large-scale indexing

1 From k-mer matrix to Bloom filters matrix

A Fast Bloom filter construction

As discussed in section I.1.D.1.b.i [page 16], the classical construction of BFs from sequencing
collections suffers from several issues. As samples usually contain a large number of k-mers
(several billion), the required space to represent a BF is relatively high, i.e. several gigabytes
per filter. Since each k-mer can be inserted at any position in the filter, the entire filter must be
loaded into memory during the construction. Parallel construction of several filters is complicated
and sometimes impossible because it requires a relatively large amount of memory. Parallel
construction is nevertheless possible by inserting several k-mers simultaneously, at the cost of
synchronization mechanisms required to avoid race conditions, resulting in extra overheads.
These problems are related to the poor data locality of the BFs, i.e. we cannot predict the
insertion location of a k-mer.

Finally, regarding k-mer BF, k-mer counting is always considered as a pre-processing stage al-
lowing the subsequent construction of the BF. Both operations are always performed by different
tools, and BFs are built from arbitrary k-mer sets, on which we cannot make any assumptions or
predictions. In addition, this usually implies non-specific and non-optimal data representations,
increasing the cost of I/O operations.

In summary, the classical construction of a k-mer BF consists in two steps: 1) An efficient
k-mer counting performed by a generic k-mer counter, e.g. Jellyfish or KMC, 2) The insertion
of k-mers in the BF. BFs are built sequentially for each sample following these two steps.

A simple observation simplifies this process: constructing a BF does not require any k-mer
but only the insertion locations, i.e. the hash values. In other words, only hash values can be
counted in the context of BFs construction. Considering the sorting-based counting algorithm
(see Chapter II [page 41]), this small change has consequences on the BFs construction:

1. The counted hash values are sorted. Thus, the “random” insertions of k-mers become
sequential insertions of sorted hash values, i.e. insertion from 0 to N, where N is the size
of the BF, reducing the number of cache misses. To illustrate this, consider an example.
The construction of an optimal BF to represent N = 3e9 elements with a false positive
rate ϵ = 0.01 requires a bit-array of M = 28e9 bits and k = 7 hash functions. The number
of bits to insert is therefore N ∗k = 21e9. Considering 512-bits memory blocks (data cache
line size), the bit-array can be split into B ≈ 54e6 blocks. Thus, about 388 bits should
be inserted in each block. Assuming hash values are independent, the probability of two
consecutive insertions in the same block is 1

B

2, leading to an important number of cache
misses because each block is visited many times. In our case, the insertion of sorted hash
values guarantees that each block is visited and loaded in the cache only once.

2. The counted hash values are partitioned. Each partition is independent allowing

62

1. From k-mer matrix to Bloom filters matrix

parallel processing of sub-BFs in low-memory. In addition, the independence exempts
from synchronization mechanisms. We move from a fine-grained parallelization, i.e. in-
sert k-mers concurrently, to a coarse-grained parallelization, i.e. process BF partitions
concurrently.

The following section presents our construction method, which allows building a collection
of BFs as a BF matrix. It consists of a modification of the construction of the abundance
matrix presented in the section II.2 [page 42]. Indeed, a BF matrix is a binarized and transposed
abundance matrix, where the elements are hash values instead of k-mers.

B Partitioned Bloom filter matrix construction

The construction of the BF matrix relies on the same major steps as the abundance matrix.
The complete pipeline is illustrated in the figure IV.1 [page 64] which represents both the
construction of an abundance matrix and the construction of a BF matrix from a collection
of sequencing samples. The specificities and differences are presented in the next sections. The
presented methods are implemented in the kmtricks software; its implementation is described
in the chapter V [page 81].

63

Part, Chapter IV – Large-scale indexing

Figure IV.1 – kmtricks pipeline overview taking as input two samples, S1 and S2. Reprinted
from [131].
(1) Counting: Partitions (here, P1 and P2) over minimizers (here of length 3) are determined
by sub-sampling S1 and S2 and super-k-mers (k = 5) are then written on disk according to
this partitioning. Bold red sequences are minimizers (AAA and CCC). Each partition is then
counted and each k-mer is represented by its hash value. When performing the k-mer rescue,
counted hashes are written on disk. Otherwise, each partition is directly represented as a bit-
vector (the ⋆ symbol indicates that step (2) is skipped).
(2) Merging: Counted hashes from equivalent partitions are aggregated, and counts are bi-
narized to produce a vector of BFs (i.e. a matrix of presence/absence bit-vectors, where row
indices represent hashes). This matrix is filtered using the k-mer rescue procedure described in
section II.3.A [page 46]. In order to build BFs, i.e. having samples as matrix rows, each partition-
specific sub-matrix is transposed.
(3) Bloom filter outputs: a Bloom filter is built for each sample through concatenation of
transposed sub-matrices (in those, each row corresponds to a sample). BFs can also be obtained
from the first counting step if aggregation is not required. In this case, this corresponds to a
concatenation of bit-vectors from (1).

1 Partitioning

In order to benefit from the partitioning and perform parallel construction, we use a variant
of the BF that we call partitioned Bloom filters (pBFs). Such filter is a BF partitioned into P

partitions with exclusive and consecutive hash spaces hp : Up → {p× s, . . . , p× s + s− 1} with
p ∈ [0, P) and s =

⌈
B
P

⌉
(rounded up to a multiple of 8) where B is the user-defined BF size in

bits. The partitioned hash space enables a coarse-grained parallelization at construction stages
since only one pBF partition must be populated when counting a k-mer partition. The same

64

1. From k-mer matrix to Bloom filters matrix

applies to the query since different partitions can be queried simultaneously without thread syn-
chronization. In addition, memory usage is also reduced because only partitions under processing
have to be loaded in memory instead of the whole filters.

2 Counting

The early parts of the counting are the same as in section II.2 [page 42] for the construction of
the k-mer matrix. The samples are split into super-k-mers, which are written on disk according
to their minimizers. The rest of the counting differs and consists in directly counting hash values
instead of k-mers. In other words, the super-k-mers are cut into k-mers, which are this time
directly hashed using xxHash [149], a robust and ultra-fast hash function. The hash values are
then counted in the same way as the k-mers, i.e. using a sorting-based counting algorithm (see
Section II.2 [page 42]).

The output of the counting stage depends on whether the k-mer rescue (see Section II.3.A
[page 46]) is applied or not. Indeed, the rescue assumes that the counting information is available
for all the samples and therefore requires hash value abundance tables for each sample. Using
the k-mer rescue, the hash values and their abundances are compressed and written to disk (see
Section V.4.A [page 100]) to be merged in the next step. If the k-mer rescue is not required,
hash values are directly represented by a bit vector that already corresponds to a partition of a
pBF (see Figure IV.2 [page 67]-(2). b⃝).

Note that the sorting count algorithm involves counted and sorted hash values at the end of
the counting stage. Thus, cache misses will be drastically reduced when these hash values are
used to populate bit-vectors. Indeed, for a given partition p, the bits are set in a linear way from
p× s to p× s + s− 1, where s is the size of the partition in bits (see Section IV.1.A [page 62]).

At the end of this stage, we have P partitions of counted hash values or bit-vectors on disk
for each sample.

3 Merging

As described before, the construction of pBFs depends on the k-mer rescue. Both ways, with
rescue (see Figure IV.2 [page 67]-(1)) and without rescue (see Figure IV.2 [page 67]-(2)), rely on
a file reorganization that takes advantage of an efficient copy method explained in section V.4.C
[page 101]. At the end of this step, sample-specific pBFs compatible with SDSL [150], a widely-
used succinct data structure library, or HowDeSBT are obtained.

a Without rescue

When the rescue is not required, the counting outputs are bit vectors representing hash
values, one per partition for each sample. Thanks to the consecutive hash spaces, the creation

65

Part, Chapter IV – Large-scale indexing

of a pBF consists of concatenating its P partitions in the correct order (see Figure IV.2 [page
67]-(1)).

b With rescue

When the rescue is performed, the counting outputs correspond to counted and sorted hash
values. The partitions sharing the same minimizers across samples are aggregated using the same
algorithm as the merging of counted k-mers (see Section II.2 [page 42] and Figure II.1 [page
45]). The abundance vectors are binarized in compliance with the rescue parameters. The main
difference with merging counted k-mers of the abundance matrix construction is that all possible
values are considered here. In other words, empty bit-vectors are added for missing hash values
that correspond to the k-mers not seen in the partition. In this way, the hash values correspond
to the index of the rows and are not stored, only the bit vectors are (see Figure IV.1 [page
64]-(2)). For each partition, we obtain a sub-matrix with ⌈B

P ⌉ presence/absence bit vectors.
At this point, a row represents the presence or the absence of a hash value in all samples. The

structure is color-aggregative (see Section I.1.D.2.a [page 23]), and the BFs correspond to the
columns of the matrix. The final index follows the k-mer-aggregative (see Section I.1.D.2.b [page
24]) paradigm and requires sample-specific BFs. For such bit-matrix, switching from the color-
aggregative to the k-mer-aggregative representation corresponds to a bit-matrix transposition.
The transposition allows to transform a matrix with hash values in rows into a matrix where
each row corresponds to a sample and is a part of a one-hash pBFs (see Figure IV.1 [page 64]-
(2)). Details about the bit-matrix transposition are given in section V.4.B [page 101]. After the
transposition, we obtain P transposed sub-matrices. The sample-specific pBFs are then built by
the horizontal concatenation of corresponding rows in the correct order from the first to the last
partition (see Figure IV.2 [page 67]-(2). e⃝).

66

1. From k-mer matrix to Bloom filters matrix

Figure IV.2 – Bloom filters construction pipeline with two samples D1 and D2, using two par-
titions: black (1) and gray (2). Reprinted from [131]. Sk and Hc denote super-k-mers and hash
counted, respectively. (1) Bloom filters pipeline without k-mer rescue: a⃝ Divide sample
into partitioned super-k-mers. b⃝ Split super-k-mers into k-mers before hashing them and count-
ing hashes in partitions. For each partition, output presence/absence bit-vectors, i.e. partitioned
Bloom filters. c⃝ Concatenate equivalent partitions between samples to obtain one Bloom filter
per sample. (2) Bloom filters pipeline with rare k-mer rescue: a⃝ same as (1). b⃝ same
as (1), but output hashes and their counts. c⃝ Merge and binarize (according to the rescue
procedure, see II.3.A [page 46]) equivalent partitions to build one sub-matrix per partition with
pBFs in columns. d⃝ Transpose sub-matrices to obtain pBFs in rows. e⃝ same as (1)- c⃝.
Reprinted from [131].

4 Indexing

Our collection of pBFs is already an index. However, the space and query time can be
improved by aggregating them into a final structure. The indexing of pBFs is ensured by a
modified version of HowDeSBT, the most space-efficient BF-based index (see Section I.1.D.2.b.ii
[page 26]). We adjusted the HowDeSBT query algorithm to support our pBFs. Indeed, kmtricks

outputs pBFs which correspond to BFs that are partitioned according to a minimizer repartition.
At query time, minimizers must be computed for each k-mer to select the correct hash function,
i.e. the correct partition.

In addition, we added the findere (see Section I.1.D.3.b [page 34]) query algorithm, reducing
false positives and allowing smaller BFs, reducing at the same time the size of the final index.

67

Part, Chapter IV – Large-scale indexing

2 Indexing a human RNA-seq collection

To evaluate the performance of our k-mer BF construction, we used a reference dataset
used in indexing benchmarks, a collection of human RNA-seq sequencing. The original set is
composed of 2585 samples. For storage space reasons, we used a subset of this collection for
creating two small and medium-scale experiments with 100 and 674 samples, respectively. The
RNA-Seq experiments have shown the scalability of kmtricks compared to other tools, which
use various indexing techniques, based or not on BFs. The impact of partitioning on the false
positive rates was also evaluated empirically on these samples. The detailed results are presented
in the next sections.

In addition, a large-scale experiment was performed on another dataset and presented in the
section IV.3 [page 71].

A Benchmark environment

The benchmarks presented in this section were performed on the GenOuest platform on a
node with 2x10 cores Xeon E5-2660 v3 2,20 GHz and 200 GB of memory. The filesystem allowed
900 MB/s and 290 MB/s sequential read and write (average on 10 tests). All tools were compiled
using GCC 10. The versions are given in the table IV.1 [page 69]. They support multi-threading
and were executed using 20 threads. The running times and memory footprints are tracked with
’/usr/bin/time -f %E,%M’ except for kmtricks, which tracks them internally. The peak disk
usage is tracked using an in-house process that monitors disk usage every second.

We benchmarked kmtricks against the classical construction of HowDeSBT using two k-
mer counter, Jellyfish [118] and KMC3 [127]. Here, the BFs construction consists in k-mer
counting followed by the construction of BFs with the bundled tool howdesbt makebf. We
also compared other approaches that use different indexing techniques, McCortex + COBS and
Squeakr + Mantis. Like most read indexing tools, all the tools tested here are approximate
methods, i.e. sensitive to false positives. Even if Squeakr + Mantis offers an exact index, it is
more expensive and targets smaller datasets.

The resources to download the data and reproduce all experiments are available at https:

//github.com/pierrepeterlongo/kmtricks_benchmarks.

68

https://github.com/pierrepeterlongo/kmtricks_benchmarks
https://github.com/pierrepeterlongo/kmtricks_benchmarks

2. Indexing a human RNA-seq collection

Tool Version or git sha1
kmtricks 1.1.1
HowDe-SBT 2.00.02
Jellyfish 2.3.0

KMC 3.1.1
McCortex 1.0.1

COBS 1915fc0
Squeakr 0.6
Mantis 0.2.0

Table IV.1 – Versions or git hash of the tools used in the benchmarks.

B Performance comparisons

Table IV.2 [page 70] presents the construction times, memory, and disk usage of different
tools on the human RNA-Seq samples. Data points are given for both constructions of the core
data structures (BFs in our case) and the construction of the final index. The construction of
the final index is not directly related to this work and is presented for the sake of completeness
since it is required to perform queries. As a reminder, the creation of the final index from our
pBFs relies on HowDeSBT.

Our method outperforms the classical construction of BFs in HowDeSBT in terms of time
and memory, whatever the k-mer counter, while using more space due to the joint counting. The
gap is more significant as the number of samples increases.

The other methods which use different indexing techniques are less efficient in this exper-
iment. The relatively high construction time of McCortex + COBS is explained by the use of
McCortex, which is originally an assembler used here to count and filter k-mers. Squeakr +

Mantis are more efficient than McCortex + COBS but the construction of the core data struc-
tures remains 2x slower than kmtricks. McCortex + COBS and Squeakr + Mantis use also a
larger amount of memory, approximately an order of magnitude.

In addition, the k-mer rescue, which requires an additional merge step, has a low impact on
computation times. On the collection of 674 samples, the rescue results in a time overhead of
3%.

The scaling capability on terabyte-sized datasets is evaluated in the section IV.3 [page 71] and
reveals a more significant performance gap between other methods and kmtricks on large-scale
collections.

69

Part, Chapter IV – Large-scale indexing

kmer counter (& bf creation) Index Time (min) Memory (GB) Disk (GB)
A : 100 RNA-seq (44 GB fasta.gz)

Jellyfish (& makebf) HowDe-SBT 147 + 21 13.2 | 2.6 55.1
KMC 3 (& makebf) HowDe-SBT 33 + 21 2.9 | 2.6 28.4
McCortex k = 31 COBS 256 + 67 27 | 1.5 327

Squeakr Mantis 64 + 24 3.6 | 27.8 25.8
kmtricks HowDe-SBT 24 + 21 3.6 | 2.6 45

kmtricks R HowDe-SBT 26 + 21 3.4 | 2.6 46
kmtricks R k = 31 HowDe-SBT 20 + 21 3.6 | 2.6 50

B : 674 RNA-seq (961 GB fasta.gz)
Jellyfish (& makebf) ∅ 3543 13.2 206

KMC3 (& makebf) ∅ 1958 18.7 165
kmtricks ∅ 1033 24 247

kmtricks R HowDe-SBT 1060 + 120 23 | 2.4 320
kmtricks R: kmtricks using rescue mode

Table IV.2 – Benchmarks on two human RNA-seq datasets composed of 100 and 674 samples,
reprinted from [131]. Computations were done using 20 threads with k = 20. However as COBS
supports only McCortex-file for k = 31, we also propose results for kmtricks + HowDe-SBT using
k = 31. For Time and Memory, when two values are provided in a cell, the first corresponds to
the pre-processing time (k-mer counting and possibly BF creation) and the second to the index
construction. Memory and Disk correspond to the peak usage. Disk usage corresponds to the
total required space to build the index, including temporary files, BFs and the final index. For
McCortex-COBS, the disk usage corresponds mainly to the ctx files from McCortex.
Reprinted from [131]

C Empirical false positive rates analysis

The false positive rate of an usual BF is constant and depends only on the size, the number
of hash functions, and the number of inserted elements. In the context of pBFs, the space is
partitioned and the false positive rate also depends on the partitioning. One of the partitioning
objectives is to distribute k-mers into partitions uniformly. In practice, perfect partitioning does
not exist because the distribution depends on the k-mer contents of the samples. Consequently,
the number of k-mers in each partition is not identical, resulting in variations of the false positive
rates depending on the partition. It is important to verify the partitioning impact on the false
positive rates distribution.

We studied the false positive rate per partition on the 100 RNA-Seq dataset. The false
positive rate of each partition is compared to the expected false positive rate of a classical BF.
Figure IV.3 [page 71] shows the false positive rate per partition for 15 samples. Despite outliers,
most partitions have a false positive rate close to the expected rate (see Figure IV.3 [page 71]).
Moreover, these outliers correspond to perfectly usable false positive rates from a query point

70

3. Scaling up to a large sea water metagenome collection

of view, as discussed in sections I.1.D.2.b.ii [page 26] and I.1.D.3 [page 34].
During the construction of the BFs, a matrix representing the false positive rate per partition

is computed using the statistics collected in the merging step. It could be used later to correct
the queries. For example, the false positive rates are used in HowDeSBT to correct the number
of shared k-mers between a query and a sample. However, comparing the query results between
an exact index and our approximate index (without query correction) shows good correlations
(see IV.3.C.3 [page 77]). The comparisons were performed on a large-scale datasets, and the
results are available in section IV.3.C.3 [page 77].

Figure IV.3 – Partition-dependant pBF false positive rate. Given 15 human RNA-seq samples,
the distribution of false positive rates across partitions is shown as well as the theoretical false
positive rate obtained without partitioning.

3 Scaling up to a large sea water metagenome collection

A The Tara Ocean Project

The Tara Ocean Foundation is an organization dedicated to ocean studies with research
and education activities. The consortium organizes and implements large-scale metagenomic
sequencing campaigns since 2003. Several sequencing expeditions have been conducted: Tara
Arctic, Tara Mediterranean, Tara Microplastics, Tara Oceans and Tara Pacific. The data col-
lected by these campaigns are difficult to analyze. They are complex metagenomic sequencings
where each sample may contain millions of organisms and a wide variety of species. The char-
acteristics of the sampling still give some information helping the downstream analyses. The
sampling is performed at different depths using various filter sizes to separate the organisms,
i.e. bacterial fraction, viral fraction, etc.

Here we focus on the Tara Ocean expedition [151] that took place from 2009 to 2012. The

71

Part, Chapter IV – Large-scale indexing

objective was to explore the plankton ecosystems at a world-scale. The route and sampling
stations are presented in figure IV.4 [page 72]. The collected data allowed a better understanding
of the organization of oceanic ecosystems at a large scale. Currently, part of the Tara Ocean
expedition data is public, and one can easily query some sequences using the Ocean Gene Atlas
(OGA) platform [152, 153]. OGA allows to query the catalog of genes and assembled sequences
from the metagenomic and metatranscriptomic data using raw sequences or Hidden Markov
Models (HMM) profiles [154]. The query results correspond to different maps and plots which
allow exploring various features such as the abundances of the input sequences in each sampling
station or the impact of marine environmental features on these abundances. An example of
possible results is presented in the figure IV.5 [page 73].

Unfortunately, the considerable amount of data and the mapping techniques used by OGA
(BLAST [61], DIAMOND [155] and HMMER [156]) do not allow direct querying of the raw
sequencing, and thus deprive of a large part of the data. The indexing of the raw reads would
enable the query and the analysis of the whole dataset.

We decided to index the bacterial fraction of the Tara Ocean data. This represents 241
sampling stations composed of 712 read files, representing more than 6 TB of compressed data.
The great diversity of organisms makes it a very complex dataset from the k-mer point of view
with 266 billion of distinct k-mers (k = 20).

Because the data correspond to complex metagenomes, the Tara Ocean dataset is also a
good candidate to benchmark the k-mer rescue procedure presented in section II.3.A [page 46].
The results are presented in section IV.3.C.2 [page 75].

Figure IV.4 – Sampling route and stations of the Tara Oceans Expedition, reprinted from [157]

72

3. Scaling up to a large sea water metagenome collection

Figure IV.5 – Screenshot of an OGA query, obtained using the OM-RGC builtin example.
https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.

B Benchmark environment

The computations were done on the Très Grand Centre de Calcul du CEA (TGCC) on a
node with 2x64-cores AMD Milan@2.45GHz with 512 GB of memory. The average sequential
read/write were 970MB/s and 216MB/s, respectively. Jobs are limited to 72h. The higher times
are therefore extrapolated. We compared the kmtricks BFs construction to the construction of
HowDeSBT which is the tool used to build the final index from the kmtricks BFs. Originally,
HowDeSBT uses Jellyfish to count k-mers in each sample. Here we added a comparison with
another k-mer counter, KMC3, which is usually more time and memory efficient than Jellyfish.
The BFs were built with the howdesbt makebf command. Other tools used in the previous
experiments were not included. McCortex+ COBS showed significantly longer construction time
at smaller scale and Squeakr + Mantis ended in a segmentation fault on the large Tara Ocean
samples. We therefore compared kmtricks to Jellyfish + makebf and kmc3 + makebf.

All benchmarks were run using k = 20, each BF size of 25,000,000,000 bits and 128 threads.

C Indexing the bacterial fraction of Tara Ocean data

1 Benchmarks

Using a similar amount of memory, kmtricks was able to construct the BFs in less than
24h for the 241 sampling stations. This corresponds to an improvement of the running time of
3.5x to 5.5x in comparison to kmc3 + makebf and Jellyfish + makebf, respectively. Although

73

https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/

Part, Chapter IV – Large-scale indexing

equivalent for all tools, memory usage remains quite high. The main reason is the use of 128
threads, especially for kmtricks and kmc3 + makebf, leading to highly concurrent processing of
partitions. In modern computational environments, such memory usage is still not really limiting
and can be reduced by adjusting the parameters without changes in the final results. The original
construction, Jellyfish + makebf, uses in any case a significant amount of memory to store
the Jellyfish hash table.

Note that kmtricks achieves superior results by performing joint k-mer counting to enable
the k-mer rescue, considering more k-mers. As described in section II.2 [page 42], k-mer rescue
requires storing all k-mers or hash values on disk. As a result, kmtricks shows a higher disk
usage (2x) than the other tools. In addition, the joint k-mer counting allows processing multiple
samples simultaneously, requiring more temporary space. Using howdesbt makebf and whatever
the k-mer counter, the BFs are created sequentially, and temporary files are deleted progressively.
The peak disk usage, including the final BFs, is however 4x smaller than the compressed input
data in the context of k-mer rescue. We argue that is probably not a bottleneck for users. The
detailed results are available in table IV.3 [page 74].

Time (min) Memory (GB) Disk (TB)
kmtricks 1433 83.4 1.5

Jellyfish a + makebf ≈ 8071b 80.6b ≈ 0.8b

KMC3 a + makebf ≈ 5310b 100b ≈ 0.8b

aStopped after 72h computation. bExtrapolated estimation.

Table IV.3 – Comparison of construction times between kmtricks and other methods on the
Tara Ocean dataset using 128 threads. The makebf step corresponds to howdesbt makebf for
Bloom filter creation from counted k-mers. The Memory and Disk columns indicate peak usage.
KMC3 and Jellyfish counted each sample independently and removed k-mers with abundance
one; whereas by default, kmtricks performed joint k-mer counting and low-abundance rescuing
(see Section II.3.A [page 46]) which kept some rare k-mers. Results for Jellyfish and KMC3 are
extrapolated as our cluster jobs are limited to 72 hours. For the disk usage, since Jellyfish
and KMC3 do single-sample counting, the peak disk usage corresponds to the BFs size plus the
space required to count one station.
Reprinted from [131].

Using the so-created pBFs, HowDeSBT was used to build a query-able index. The compu-
tation was done in 1250 min with 165 GB of memory. The final index size was 533 GB which
is less than 10% of the input size. On this index, the query of 10,000 metagenomic reads took
12 min and 11 GB of memory. Note that at this scale, the query time is bounded by the time
required to load the index from disk to memory. As a result, querying one or 10,000 reads takes
approximately the same amount of time.

74

3. Scaling up to a large sea water metagenome collection

2 Collection-aware k-mer filtering

As stated in section II.3.A [page 46], k-mer filtering usually consists in discarding a k-mer
in a sample if its abundance is below a given threshold typically set to 2 or 3. Such a technique
is effective when the sequencing coverage is high and uniform for all input sequences. In the
context of metagenomic or RNA-Seq sequencings, the sequencing coverage is uneven due to
weakly represented species and variable gene expressions, respectively. The sequencing errors are
difficult to distinguish from rare but true k-mers. The k-mer rescue was developed to address
this problem (see Section II.3.A [page 46]).

We compared the classic k-mer filtering technique, i.e. removing the k-mers seen once
(hard-min = 2) with our rescue strategy. The rescue is applied using hard-min = 1 in or-
der to perform it by considering all k-mers. The share-min parameter was set to 1, i.e. a low
abundant k-mer in sample is kept if it is solid (≥soft-min) in at least one other sample. The
soft-min parameter depends on the sample and is automatically computed such that the num-
ber of k-mers occurring soft-min times is less than 10% of the total number of k-mers. In other
words, 10% of the least abundant k-mers are examined for a potential rescue.

The validation of the results relies on 3 metrics:
— errth is the theoretical expected number of erroneous k-mers.
— errone is the number of k-mers ocurring only once.
— errunrescued is the number of k-mers considered as erroneous after the rescue procedure.
The Tara Ocean samples were sequenced at the Genoscope, a French sequencing center.

Benchmarks are performed on these sequencers using a benchmark species, Acinetobacter baylyi,
with a well-characterized genome. Thanks to these experiments, we know the actual error rate
of the machines used for the sequencing of Tara Ocean data. Being machine-specific, these
measurements have higher accuracy than the values provided by the manufacturers. The k-mer
error rate corresponds to the fraction of erroneous k-mers. It is computed using raw sequencings
of Acinetobacter baylyi from each sequencer by counting the k-mers (k = 20) absent from the
reference genome.

Three sequencing platforms produce the samples: HiSeq 2000 (222 stations out of 241),
HiSeq2500 (8 stations) and GAIIx (4 stations). A station is composed of several samples and
may sometimes be sequenced by different technologies. A total of 7 stations were removed from
the analysis because 2 or 3 different technologies sequenced them. The k-mer error rates are
3.38%, 1.27%, and 9.27%, for GAIIx, HiSeq2000, and HiSeq2500, respectively. The estimate
respective base error rates being 0.06%, 0.48% and 0.171%. The statistics used to compute these
values are given in table IV.4 [page 76].

75

Part, Chapter IV – Large-scale indexing

Technology Pair Reads k-mers Erroneous k-mers base error rates

GAIIx
1 12037529 1378377359 25923501 0.0948
2 12037529 1383555832 67308135 0.2490

1&2 (2x) 12037529 2761933191 93231636 0.1715

HiSeq 2000
1 12037529 979185638 11029864 0.0566
2 12037529 976152716 13879961 0.0716

1&2 (2x) 12037529 1955338354 24909825 0.0641

HiSeq 2500
1 2202754 484673542 17295477 0.1815
2 2202754 484727354 55029084 0.6007

1&2 (2x) 2202754 969400896 89620038 0.4838

Table IV.4 – Acinetobacter baylyi raw sequencing statistics used to compute base and k-mer
error rates.

Thanks to the k-mer error rates, we computed errth for each sample. Other metrics, errone

and errunrescued are reported by kmtricks logs. We then compared the number of really discarded
k-mer under the expected number of erroneous k-mers for both methods. These ratios are
given by errunrescued/errth for the rescue strategy and errone/errth for the classical filtering,
i.e. discarding k-mers occurring once. The closer the ratio is to one, the better. As highlighted
by the figure IV.6 [page 77], the number of discarded k-mers is close to the expected value with
ratios close to one when using the rescue strategy. The average ratios are 1.01 and 9.12 for
the rescue strategy and the classical filtering, respectively. This indicates that classical filtering,
which discard k-mers seen once, is already too strict for this dataset by rejecting too many
k-mers. From a matrix point of view, we expect 98 billion of wrong cells. In other words, a
presence/absence binary matrix representing the presence/absence of all k-mers across samples
contains 98 billions wrong bits (wrong 1s). The classical filtering discards 8-9x too many k-mers
by removing 756 billion of cells, while the rescue strategy filters out 86 billion of cells.

On such datasets, k-mer rescuing seems to yield good results by allowing to overcome the
classical filtering, which rejects an order of magnitude too many k-mers. Note that although
these results look promising, it is essential to remember that there is no way to verify that the
rescued k-mers are real ones. Indeed, the sequence content of this type of dataset remains largely
unknown, and we lack access to the truth to make any assessments. The validation of these rare
but shared k-mers from a biological point of view is one of the open questions brought by this
work.

76

3. Scaling up to a large sea water metagenome collection

Figure IV.6 – Histogram of filtering ratios, reprinted from [131]. For each of the 241 Tara samples,
the filtering ratio reports the number of filtered k-mers divided by the expected number of
erroneous k-mers (the closer to 1, the better). The green (resp. red) histogram shows the filtering
ratios of samples using the kmtricks rescue procedure (resp. using classical removal of k-mers
occurring only once).

3 Queries

Like all AMQF-based indexes, our index is sensitive to false positives. The practical impact
of false positives on the queries has been discussed in sections I.1.D.2.b.ii [page 26] and I.1.D.3.b
[page 34]. As a reminder, approximate k-mer queries remain a good approximation of the truth
when the queries are long enough. In addition, using query algorithms like findere theoretically
allows working with high false positive rates while keeping good results.

We compared the query results of an exact index without false positives and an index pro-
duced by kmtricks. We performed 10,000 queries of size 100 on both indexes. For each query,
we compared the reported shared k-mer rates for a sample showing a false positive rate of 20%,
a really high rate. The objective was to verify the possibility of working with such a high rate,
reducing index size, construction and query times. We compare the results for only one sample
because the exact indexing cost of Tara samples, containing billions of k-mers, is really high.

Figure IV.7 [page 78] shows that 20% of false positives is too high. The percentage of shared
k-mers is always strongly overestimated. However, using findere under the same conditions,
the correlation between the exact index and the kmtricks index is remarkably high, as shown
in figure IV.8 [page 78].

77

Part, Chapter IV – Large-scale indexing

Figure IV.7 – Comparison of the proportion of shared k-mers between 10,000 queries and two
indexes: an exact index and an approximate kmtricks index without findere algorithm. The
red line represents the perfect correlation. The false positive rate of the approximate index is
0.2. The proportion of shared k-mers is always overestimated by the approximate index.

Figure IV.8 – Comparison of the proportion of shared k-mers between 10,000 queries and two
indexes: an exact index and an approximate kmtricks index with findere algorithm. The red
line represents the perfect correlation. The false positive rate of the approximate index is 0.2.
Compared to IV.7 [page 78], exact and approximate indexes give close results.

In summary, we propose an end-to-end indexing pipeline capable of managing a dataset
like Tara Ocean. The construction is achievable in a reasonable time, less than two days, while

78

3. Scaling up to a large sea water metagenome collection

considering about 9x more k-mers than traditional indexing tools. On the usage side, performing
thousands of queries is possible in a few minutes.

The combination with findere algorithm reveals a great synergy, which can be exploited in
two ways depending on the downstream analyses: 1. A better efficiency. Reducing the BF sizes
results in more efficient construction and query while maintaining a usable precision, as shown
by the previous experiment. 2. A better accuracy. Increasing the BF sizes while using fnidere

could lead to a near-exact index at the cost of higher construction and query times.
The perspectives of future use of our indexing pipeline, implemented in kmtricks (see Chap-

ter V [page 81]), are discussed at the end of the manuscript.

79

Chapter V

KMTRICKS: A k-MER MATRIX

FRAMEWORK

Preamble

Since k-mer matrices are versatile representations with applications in various analyses,
we are convinced that a generic tool dedicated to their construction and analysis could be
helpful for the bioinformatics community. Consequently, we propose a tool, kmtricks, along
with some utilities to work with such matrices. This last chapter presents kmtricks features
and implementation details, along with some use cases.

Contents
1. Rationale . 82
2. Features . 82

A. Pipeline . 82
B. Modules . 84
C. API . 87
D. Plugins . 88

3. Practical usage example . 91
A. Using the API . 91
B. Using the plugin system . 97

4. Implementation details . 100
A. I/O . 100
B. Bit-matrix transposition . 101
C. Concatenation of partitioned Bloom filter 101

81

Part, Chapter V – kmtricks: a k-mer matrix framework

1 Rationale

As stated in this manuscript, k-mer matrices go beyond the k-mer counting and can have
applications in numerous bioinformatic analyses. Although other tools have already used the
concept of k-mer matrices, there was no generic tool formalizing it. Each software had its ap-
proach, sometimes inefficient, to perform k-mer matrix construction. The primary purpose of
kmtricks is to propose a tool allowing to build various types of k-mer matrices in an efficient,
generic, and easy way. In addition, we accompanied it with different tools to facilitate its use and
the exploitation of the results. In summary, kmtricks is a tool allowing joint k-mer counting on
a set of FASTA/Q files, compressed or not, and exploiting the results via various utilities. In this
section, I present its different components as well as concrete use cases. The implementation is
available at https://github.com/tlemane/kmtricks.

2 Features

kmtricks is composed of 5 main components: 1. A pipeline for easy end-to-end usage. 2. A
set of modules for step-by-step usage. 3. A C++ library for the construction of new matrix-based
tools. 4. A C++ plugin system for easily extending its features. 5. A formalized interface for
sequence indexing. All of these components have different purposes and allow modular usages
of kmtricks. For example, kmdiff (see Section III.1 [page 52]) needs a view on each row of
the matrix. The whole representation of the matrix, expensive in terms of time and space, is
usually not required, only the matrix streaming is. As a result, kmdiff uses the pipeline to obtain
partitioned counted k-mers before using the library for parallel streaming of the sub-matrices.
Another tool, decOM (see Section VI.3 [page 108]), relies on kmtricks to provide a pre-built
matrix and to allow end-users to make matrix comparisons thanks to the modules.

A Pipeline

The pipeline is central part of kmtricks. It allows the joint execution of the different modules
(see Section V.2.B [page 84]) in order to produce different types of structures such as abundance
matrices, presence/absence matrices, or BFs. However, the intermediate structures used to build
the final objects are interesting, independently of our use case. Consequently, the pipeline can
be stopped at any stage for further usage of these intermediate structures in other tools or
analyses. For example, the computation may stop at the counting stage to obtain abundance
tables for each sample. In this case, kmtricks acts as a multi-sample k-mer counter. The results
provided by the pipeline are exploitable using the utility modules or the library presented in
sections V.2.B.2 [page 85] and V.2.C [page 87], respectively.

The chaining of the different modules within the pipeline is presented in the figure V.1 [page

82

https://github.com/tlemane/kmtricks

2. Features

83]. We can notably see the paths allowing to build an index using or not the k-mer rescue
procedure.

Figure V.1 – Overview of kmtricks modules. The blue and red arrows correspond to the BF
construction pipeline with or without k-mer rescue, respectively.

At the end of the execution, all configurations and results are stored in a single directory
corresponding to a run, e.g. usually a matrix. It contains all information relative to a run,
potentially useful for downstream analyses. The directory structure is described in table V.1
[page 83].

build_infos.txt Informations about kmtricks compilation
options.txt Input parameters
run_infos.txt Execution time and peak memory
hash.info Storage of the partitioned hash function
kmtricks.fof Copy of kmtricks input fof
config_gatb Storage of the configuration
repartition_gatb Storage of the minimizer repartition
minimizers Storage of the list of minimizers
superkmers Storage of super-k-mers
counts Storage of counted hashes/k-mers
matrices Storage of the hash/k-mer/Bloom matrices
partition_infos Storage of partition statistics
merge_infos Storage of merge statistics
filters Storage of Bloom filters
fpr Storage of false positive rates statistics
histograms Storage of k-mer histogram
howde_index Storage of the HowDeSBT index

Table V.1 – Structure of the kmtricks directory.

83

Part, Chapter V – kmtricks: a k-mer matrix framework

B Modules

1 Computation modules

As stated before, the kmtricks pipeline is composed of successive stages, producing various
objects potentially interesting in other tools. As a result, we propose different command line
modules that allow a step-by-step construction of matrices and that can also be used as build-
ing blocks by other tools or pipelines. Each module produces results that are then exploitable
through the utilities (Section V.2.B.2 [page 85]) or the library (Section V.2.C [page 87]). Note
that all modules presented in this section are linearly dependent.

The purpose of modules is to perform specific tasks not directly allowed by the pipeline,
such as processing a single partition from a given sample. For example, they can be used to
construct a matrix using only one specific partition for sub-sampling purposes. Such features
was exploited initially by decOM (see Section VI.3 [page 108]) and finally integrated into the
pipeline for convenience.

In addition, step-by-step computation enables the usage of distributed systems, i.e. simul-
taneously performing various stages on several computation nodes. SLURM [158] support was
implemented and will be part of future releases after further testing.

kmtricks repart

The execution of kmtricks requires a particular runtime environment, i.e. a directory with
a specific arborescence containing all the configurations and output files of kmtricks. This first
module, kmtricks repart, is in charge of the configuration and must be used before any other
kmtricks module. In addition, it computes the repartition scheme of the minimizers accordingly
to the k-mer content of each sample. Outside the kmtricks framework, it can be used to compute
a balanced minimizer distribution for further usage by another tool.

kmtricks superk

In the context of sequence processing, several tools use super-k-mers as an intermediate rep-
resentation but do not allow to get them for later usage. The kmtricks superk allows splitting a
sample into super-k-mers and storing them on disk in partitions accordingly to the pre-computed
repartition scheme.

kmtricks count / kmtricks merge

kmtricks count and kmtricks merge allow to count k-mers and then merge abundance
tables to obtain matrices. Since their specific features were included directly in the pipeline over
time, they have no direct relevance for end-users. However, they are useful in the context of
distributed computing and were used to implement SLURM support.

84

2. Features

kmtricks format

kmtricks format is the last module of the pipeline. It is used only in hash mode to construct
BFs. Independently of the pipeline, it allows to extract sample-specific BFs from the matrices
and dumping them in different formats like the widely-used SDSL [150] format.

2 Utility modules

The utility modules are intended to be used on the data produced by pipeline/modules. They
are mainly dedicated to output manipulations.

kmtricks dump

All kmtricks files are usually compressed binary files. kmtricks dump dumps them in a
human-readable format for further reading by external scripts, for example. The files, such as
the abundance tables and the matrices, are dumped in a sorted way since the counting algorithm
implies sorted results.

kmtricks aggregate

Internally, the objects produced by kmtricks are stored following the partitioning scheme.
In other words, the results are dispatched in many files. kmtricks aggregate aggregates these
files to produce a unique and complete file in binary or plain text format. In addition, it can
provide sorted outputs thanks to the counting algorithm, which implies that each partition is
sorted. Some tools, like HAWK (see Section I.2 [page 35]), need a sorted k-mer abundance table
in plain text format as inputs. Classically, abundance tables are dumped in plain text before
being sorted. Using kmtricks aggregate, the tables remain stored in an efficient format. They
are sorted and transferred on the fly to another tool, saving time and space. An example of a
command line is presented below.

Build the matrix
kmtricks pipeline --run-dir km_dir --file km.fof --hard-min 2 --until count
Aggregate and stream abundance table of the ID sample to 'my_tool'
kmtricks aggregate --run-dir km_dir --count ID:kmer --format text --sorted --cpr-in | my_tool

kmtricks filter

kmtricks filter filters an existing input matrix according to the k-mer content of another
new sample. Different outputs are possible: 1. An abundance table that contains the k-mers
present in the new sample but absent in the input matrix. 2. A new matrix corresponding to
the intersection between the new sample and the input matrix. In count mode, the new matrix
contains an additional column corresponding to the abundances of k-mers from the new sample.

85

Part, Chapter V – kmtricks: a k-mer matrix framework

3. A column bit-vector representing the presence/absence of k-mers from the new sample in the
input matrix.

3 Indexing modules

kmtricks index
The kmtricks index module is basically a wrapper around howdesbt build. From a kmtricks

run containing a set of BFs, it is able to construct various HowDeSBT [114] indexes. It corre-
sponds to the last step of the k-mer indexing pipeline and must be executed before any query.

kmtricks query
The kmtricks query module is wrapper around howdesbt query but it offers additional

features. As described in section I.1.B [page 13], k-mer queries are heuristics. A match is defined
by the number of shared k-mers between the query and an indexed sample. The meanings of
matches with the same ratio of shared k-mers are not necessarily equivalent. Indeed, a match
consisting of a large number of consecutive and overlapping k-mer hits does not have the same
meaning as a match with an equivalent number of positive k-mer hits scattered along the query.
In addition to the usual threshold, i.e. the proportion of shared k-mers (Sk), we implemented
another threshold corresponding to the proportion of covered bases (Sb). The combination of
both thresholds enables a more robust interpretation of the results, i.e. a low Sk and a high
Sb indicates that k-mer hits are scattered along the query. To facilitate the interpretation, an
optional “graphical” output is available and represents the shared bases on the query sequence
by using ’+’ or ’-’ characters, as described below. The output indicates that the query 1 is found
in the sample D1 with 21% of shared k-mers and 58% of bases covered by at least one positive
k-mer.

* [1]

[D1] ---------------------------+++++++++++++++++++++++++++++++++++++ 0.21 0.58

In future releases, we plan to implement another threshold corresponding to the proportion
of bases covered by at least N k-mers.

Finally, the query module implements the findere algorithm presented in the sections I.1.D.3.b
[page 34] and IV.3.C.3 [page 77]. As a reminder, this algorithm drastically reduces false positives
at query time without modifying the underlying index.

4 SOCKS interface

Nowadays, numerous tools offer k-mer indexing and propose different features and trade-
offs, making the choice complicated from a user point of view. Recently, a resource has been

86

2. Features

proposed to overcome this problem, the SOCKS interface (https://gi.cebitec.uni-bielefe

ld.de/research/panbench), which defines a set of features and standards for tools dealing with
colored k-mer sets. In addition, a website with the documentation of various tools, automatic
benchmarking, and online testing is planned but not yet available.

The SOCKS interface is supported by kmtricks via the kmtricks-socks command. Indexing
a collection of samples is possible using a single and simple command with limited parameters.
In the same spirit, the query procedure is streamlined and produces a standardized output. The
documentation is available at: https://github.com/tlemane/kmtricks/wiki/kmtricks-so

cks-interface and https://gitlab.ub.uni-bielefeld.de/gi/socks.

C API

1 Sequence

kmtricks provides a templated k-mer class for an efficient 2-bits representation of k-mers.
Efficient class specializations are available for small k-mers of sizes smaller than 32 or 64, encoded
using 64-bits or 128-bits native unsigned integers, respectively. Larger k-mers are represented
using an array of 64-bits unsigned integers. The right implementation is chosen at runtime thanks
to recursive templates. Behind the scene, the code is compiled for each class of sizes and the
right implementation is selected at runtime according to the input k-mer size. This mechanism
is used in an example in section V.3 [page 91]. A standalone implementation is also available at
https://github.com/tlemane/kmercpp.

2 I/Os

For efficiency reasons, kmtricks uses only in-house binary formats that can lead to inter-
operability problems. In complement of command line tools, a set of classes and functions are
available for reading or writing each type of kmtricks file. The documentation is available at
https://github.com/tlemane/kmtricks/wiki/IOs-api. Note that kmtricks supports also a
standard format for storing k-mer sets: K-mer File Format (KFF) (see Section VI.2 [page 106]).

3 Matrix streaming

The matrix streaming API enables streaming and processing of the matrix on-the-fly from
a collection of counted partitions. For example, it is used by kmdiff to merge and stream the
different partitions in parallel and apply statistical tests (see Section III.1 [page 52]).

4 Task system

In kmtricks the elements of each partition are independent and can be processed in parallel.
To facilitate parallelization, we provide a simple task system. It consists in a pool that will

87

https://gi.cebitec.uni-bielefeld.de/research/panbench
https://gi.cebitec.uni-bielefeld.de/research/panbench
https://github.com/tlemane/kmtricks/wiki/kmtricks-socks-interface
https://github.com/tlemane/kmtricks/wiki/kmtricks-socks-interface
https://gitlab.ub.uni-bielefeld.de/gi/socks
https://github.com/tlemane/kmercpp
https://github.com/tlemane/kmtricks/wiki/IOs-api

Part, Chapter V – kmtricks: a k-mer matrix framework

execute the tasks in parallel according to a given number of threads and priorities. Moreover,
it uses a callback system allowing the finished tasks to launch new ones. This task pool is
used in kmtricks to execute the pipeline and manage the dependencies between the different
components. An example is presented in section V.3 [page 91].

D Plugins

The matrices produced by kmtricks are sometimes very large. Their simple transformation
into plain text followed by a reading from other tools, such as python scripts, leads to poor
performance. The library allows to solve this problem but it requires a good understanding of
C++. Moreover, it is necessary to consider I/O or multi-threading, even if many components
are provided for that.

To facilitate the addition of new features, we have implemented a simple plugin system. The
idea is to implement a class respecting a specific interface that will be able to apply an operation
on each row of the matrix. In other words, this operation is applied directly when creating the
matrix, reducing the running times.

The class is compiled as a shared library and linked at execution time using runtime dynamic
linking, a technique that is widely used by famous libraries such as OpenMP. The required
symbols are loaded at runtime and recompilation of kmtricks is therefore not required. The
plugin interface is described in Implementation D.1 [page 89].

The user has to overload some functions to implement his custom features:
— set_kmer_size allows to set the k-mer size and have to be overloaded in the case of

templated plugins.
— configure allows to configure your plugin. It takes a string passed from the command

line with –-plugin-config. Usually, this string should correspond to a path to a config
file.

— process_kmer and process_hash are the functions applied on each line of the matrix.
The return value indicates if the line is kept or not. The count_vector parameter corre-
sponds to the abundance vector of the current line. This way, features like k-mer rescue
can be implemented through the plugin system.

In addition to the class, some functions must be implemented to make the plugin loadable
and are described below:

— plugin_name returns a string corresponding the name of the plugin.
— use_template returns 1 if the plugin is a templated plugin, 0 otherwise.
— create0 constructs the plugin and returns it.
— destroy calls the destructor of the plugin.

Note that these functions must be marked as extern "C" to avoid the name mangling.

88

2. Features

Implementation D.1: kmtricks plugin interface

1 class IMergePlugin

2 {

3 using count_type = typename km::selectC<DMAX_C>::type;

4 public:

5 IMergePlugin() = default;

6 virtual ~IMergePlugin() {}

7

8 virtual void set_out_dir(const std::string& s) final {

9 m_output_directory = s; }

10

11 virtual void set_partition(size_t p) final {

12 m_partition = p; }

13

14 virtual void set_kmer_size(const std::size_t kmer_size) {

15 m_kmer_size = kmer_size; }

16

17 virtual void configure(const std::string& s) {}

18

19 virtual bool process_kmer(const std::uint64_t* kmer_data,

20 std::vector<count_type>& count_vector) {

21 return true; }

22

23 virtual bool process_hash(std::uint64_t h,

24 std::vector<count_type>& count_vector) {

25 return true; }

26

27 protected:

28 std::string m_output_directory;

29 size_t m_kmer_size;

30 size_t m_partition;

31 };

89

Part, Chapter V – kmtricks: a k-mer matrix framework

To illustrate the usage of plugins, we consider an elementary example: One wants to build
a k-mer abundance matrix and keep only the rows for which k-mers have an abundance greater
than a given threshold in the first sample. For that, we need to overload the process_kmer

function to make it return false when the condition is not satisfied. The corresponding source
code is presented below.

Implementation D.2: Basic plugin

1 #include <kmtricks/plugin.hpp>
2

3 using count_type = typename km::selectC<DMAX_C>::type;

4 class Plugin : public km::IMergePlugin

5 {

6 public:

7 Plugin() = default;

8

9 bool process_kmer(const uint64_t* kmer_data,

10 std::vector<count_type>& count_vector) override {

11 return counts[0] > m_threshold; }

12

13 void configure(const std::string& s) override {

14 m_threshold = std::stoll(s); }

15

16 private:

17 unsigned int m_threshold {0};

18 };

19

20 extern "C" std::string plugin_name() { return "Plugin"; }

21 extern "C" int use_template() { return 0; }

22 extern "C" km::IMergePlugin* create0() { return new Plugin(); }

23 extern "C" void destroy(km::IMergePlugin* p) { delete p; }

Once written, the plugin must be compiled as a shared library. The kmtricks repository
contains the necessary resources for automatically compuling plugins. The source code must be
placed in the plugin folder and can then be compiled via:

install.sh -p -q

Assuming that the plugin source code is contained in a plugin.cpp file, the previous command
will produce a shared libplugin.so. It can then be used in the following way:

90

3. Practical usage example

kmtricks pipeline --plugin libplugin.so --plugin-config 42 \
--run-dir km_dir --file fof.txt --hard-min 2 \
--kmer-size 31 0

Once this command is executed, the final matrix in text format can be obtained using:

kmtricks aggregate --run-dir km_dir --matrix kmer > matrix.txt

In this example, only the abundances are required, i.e. the k-mer sequences are not consid-
ered. To benefit from the k-mer utilities, a templated plugin is needed. The documentation is
available at https://github.com/tlemane/kmtricks/wiki/plugins.

3 Practical usage example

In comparative genomics, the comparison of k-mer content between pairs of samples is com-
monly used to reflect the similarities within an extensive collection. For example, such a technique
was used by Simka [63, 64] on the Tara Ocean data and has allowed to identify genomic provinces
around the oceans [159]. This work is based on the computation of ecological distances between
k-mer sets such as the Jaccard Index [77], which could be easily computed from k-mer matrix. In
this section, I present two ways to implement this type of analyses with kmtricks to illustrate
the features of the library and the plugin system. Note that the code snippets presented in this
section are designed to be succinct and easy to understand kmtricks functionalities. They are
illustrative and not designed to be the most efficient.

A Using the API

In this section, I present the implementation of a standalone tool called jaccard, performing
pairwise Jaccard index [77] computation on a set of sequencing samples. The Jaccard index is a
statistic representing the similarity of two sets. It is given by J(A, B) = |A∩B|

|A∪B| .
Using the kmtricks pipeline, we obtain partitioned abundance tables for each sample. The

Jaccard index is then computed by merging partitions in parallel using the library to accumulate
the counting information allowing the subsequent computation of the Jaccard index. Note that
the whole matrix is not represented but only streamed on-the-fly from the abundance tables.
The implementation is a combination of the pipeline and the library.

Such tool can be implemented as follows:

1. Implement a JaccardObserver (see Implementation A.1 [page 93]). The Jaccar-
dObserver class is passed to the kmtricks merging algorithm for collecting the counting
information needed for the subsequent computation of the Jaccard index. The process

function is called on each row of the matrix. The compute_distance is called at the end

91

https://github.com/tlemane/kmtricks/wiki/plugins

Part, Chapter V – kmtricks: a k-mer matrix framework

of the matrix streaming and computes the Jaccard matrix representing the Jaccard index
for each pair of samples.

2. Implement a JaccardTask (see Implementation A.2 [page 94]). Internally, abun-
dance tables are partitioned. The JaccardTask class allows streaming of a sub-matrix
from the equivalent partitions of each sample. The JaccardObserver collect the counting
information. Since partitions are independent, multiple sub-matrices can be streamed
in parallel. Note that the sub-matrices are not stored. Each row is computed on-the-fly
from the abundance tables, used by the JaccardObserver, and finally forgotten. All paral-
lel tasks share the same instance of the JaccardObserver. Consequently, a lock is used to
avoid race condition in the process function. Such implementation was chosen to present
a concise and simple example. Indeed, it leads to high thread contention and is therefore
not optimal. To be efficient, each task should have its own JaccardObserver instance that
will be aggregated at the end.

3. Implement a JaccardEntryPoint (see Implementation A.3 [page 95]). The Jac-
cardEntryPoint acts as a templated main function used to select the correct k-mer im-
plementation at runtime (see Section V.2.C.1 [page 87]). The tasks are created, one per
partition, and executed in parallel using the Task pool (see Section V.2.C.4 [page 87]).
When all tasks are done, the Jaccard matrix is computed.

4. Implement the main function (see Implementation A.4 [page 96]). The main
function collects the user-defined parameters and runs the computations. Note that the
k-mer size is a user-defined parameter, i.e. a runtime parameter, while the k-mer imple-
mentation is selected according to a template parameter, i.e. a compile-time parameter.
The JaccardEntryPoint is therefore executed using the const_loop_executor to select
the correct implementation at runtime. Behind the scene, this utility has the effect of
compiling various representations of k-mers and choose the right afterwards one, accord-
ing to the requested k-mer size. Thanks to this feature, kmtricks supports any k-mer
size without recompilation and performance penalties. An upper bound (usually 256) is
still defined at compilation time.

92

3. Practical usage example

Implementation A.1: JaccardObserver

1 template<size_t MAX_K, size_t MAX_C>
2 class JaccardObserver : public km::IMergeObserver<MAX_K, MAX_C> {
3 using ctype = typename km::selectC<MAX_C>::type;
4 public:
5 JaccardObserver(size_t nb_samples) : nb_samples(nb_samples) {
6 m_matrix.resize(nb_samples, std::vector<double>(nb_samples, 0.0));
7 m_shared_kmers.resize(nb_samples, std::vector<uint64_t>(nb_samples, 0));
8 m_solid_per_sample.resize(nb_samples, 0); }
9

10 void process(km::Kmer<MAX_K>& kmer, std::vector<ctype>& counts) override {
11 std::unique_lock<std::mutex> lock(m_mutex);
12 for (size_t i=0; i<nb_samples; i++) {
13 m_solid_per_sample[i] += counts[i];
14 for (size_t j=i+1; j<nb_samples; j++) {
15 m_shared_kmers[i][j] += counts[i];
16 m_shared_kmers[j][i] += counts[j]; } } }
17

18 void compute_distance() {
19 for (size_t i=0; i<nb_samples; i++) {
20 for (size_t j=0; j<nb_samples; j++) {
21 uint64_t num = m_shared_kmers[i][j] + m_shared_kmers[j][i];
22 uint64_t den = m_solid_per_sample[i] + m_solid_per_sample[j];
23 if (den == 0) {
24 m_matrix[i][j] = 1.0; }
25 else {
26 m_matrix[i][j] = 1.0 - (num / static_cast<double>(den)); } } } }
27

28 void write(const std::string& path) {
29 std::ofstream out(path, std::ios::out);
30 for (size_t i=0; i<nb_samples; i++) {
31 for (size_t j=0; j<nb_samples; j++) {
32 out << m_matrix[i][j] << " "; }
33 out << "\n"; } }
34

35 private:
36 size_t nb_samples;
37 std::mutex m_mutex;
38 std::vector<std::vector<uint64_t>> m_shared_kmers;
39 std::vector<uint64_t> m_solid_per_sample;
40 std::vector<std::vector<double>> m_matrix;
41 };

93

Part, Chapter V – kmtricks: a k-mer matrix framework

Implementation A.2: JaccardTask

1 template<size_t MAX_K, size_t MAX_C>

2 using obs_t = std::shared_ptr<JaccardObserver<MAX_K, MAX_C>>;

3

4 template<size_t MAX_K, size_t MAX_C>

5 class JaccardTask : public km::ITask {

6 public:

7 JaccardTask(std::vector<std::string>& paths,

8 std::vector<uint32_t>& abundance_min,

9 size_t kmer_size,

10 obs_t<MAX_K, MAX_C> obs)

11 : ITask(0), m_paths(paths), m_ab_min(abundance_min),

12 m_kmer_size(kmer_size), m_obs(obs) {}

13

14 void exec() override {

15 km::KmerMerger<MAX_K, MAX_C> merger(

16 m_paths, m_ab_min, m_kmer_size, 1, 0);

17 merger.merge(m_obs); }

18

19 private:

20 std::vector<std::string>& m_paths;

21 std::vector<uint32_t>& m_ab_min;

22 size_t m_kmer_size;

23 obs_t<MAX_K, MAX_C> m_obs;

24 };

94

3. Practical usage example

Implementation A.3: JaccardEntryPoint

1 template<size_t MAX_K>

2 struct JaccardEntryPoint {

3 void operator()(const std::vector<std::string>& idx,

4 const std::string& dir,

5 size_t kmer_size,

6 size_t nb_parts,

7 size_t threads,

8 const std::string& output) {

9

10 km::TaskPool pool(threads);

11 std::vector<uint32_t> thresholds(idx.size(), 2);

12 obs_t<MAX_K, 255> obs =

13 std::make_shared<JaccardObserver<MAX_K, 255>>(idx.size());

14

15 for (size_t p=0; p<nb_parts; p++) {

16 std::vector<std::string> paths;

17 for (auto& id: idx) {

18 std::stringstream ss;

19 ss << dir << "/counts/partition_" << p << "/" << id << ".kmer";

20 paths.push_back(ss.str());

21 }

22 pool.add_task(

23 std::make_shared<JaccardTask<MAX_K, 255>>(

24 paths, thresholds, kmer_size, obs));

25 }

26 pool.join_all(); obs->compute_distance(); obs->write(output);

27 }

28 };

95

Part, Chapter V – kmtricks: a k-mer matrix framework

Implementation A.4: Jaccard Main

1 int main(int argc, char* argv[])

2 {

3 if (argc < 7) {

4 std::cerr << "Usage: jaccard <kmer_size> <nb_parts> <km_dir>"

5 << " <idx_file> <nb_threads> <output>" << std::endl;

6 exit(EXIT_FAILURE); }

7

8 size_t kmer_size = std::stoll(argv[1]);

9 size_t nb_parts = std::stoll(argv[2]);

10 std::string kmdir = argv[3];

11 std::string idx_path = argv[4];

12 size_t threads = std::stoll(argv[5]);

13 std::string output = argv[6];

14

15 km::Timer jaccard_time;

16 std::vector<std::string> sample_idx;

17 std::ifstream in(idx_path, std::ios::in);

18 for (std::string line; std::getline(in, line);)

19 sample_idx.push_back(line);

20

21 km::const_loop_executor<0, KMER_N>::exec<JaccardEntryPoint>(

22 kmer_size, sample_idx, kmdir, kmer_size, nb_parts, threads, output);

23

24 std::cerr << "Done in "

25 << jaccard_time.elapsed<std::chrono::seconds>().count()

26 << " seconds." << std::endl;

27 return 0;

28 }

Once compiled, the jaccard program can be used on a kmtricks run containing abundance
tables in the following way:

Generate the abundance tables
kmtricks pipeline --run-dir jaccard_dir --file fof.txt --hard-min 2 \

--kmer-size 31 --nb-partitions 10 --until count
Compute pairwise Jaccard indexes
jaccard 31 10 jaccard_dir idx.txt 20 jaccard_matrix.txt

96

3. Practical usage example

B Using the plugin system

Unlike the previous example, we do not create an independent program. The idea is to
implement the Jaccard index feature through a plugin that will be loaded at runtime and directly
executed by the kmtricks pipeline. This requires less efforts because it allows to get rid of some
steps, such as multi-threading management.

Using the plugin system, the Jaccard indexes can be computed in the following way:

1. Implement a JaccardMatrix. The JaccardMatrix class is a storage class accumulating
information from the different plugin instances. Each plugin instance shares the same
JaccardMatrix instance, in the same spirit as the JaccardObserver (see Section V.3.A
[page 91]). The abundances collected by the different plugin instances, one per partition,
are aggregated by the JaccardMatrix. Before its destruction, it computes the final Jaccard
matrix representing all pairwise Jaccard indexes and writes it to disk.

2. Implement a JaccardPlugin. The JaccardPlugin overloads the process_kmer function
of the plugin interface to update the JaccardMatrix from each row of the matrix. Note
that the function returns false to discard all rows, i.e. the rows are built on-the-fly, and
the whole matrix is never stored. As the JaccardObserver (see Section V.3.A [page 91]),
the function uses a lock to avoid race conditions. This choice was made for the same
reasons as in the previous example, i.e. simplicity and conciseness.

97

Part, Chapter V – kmtricks: a k-mer matrix framework

Implementation B.1: Jaccard Matrix

1 class JaccardMatrix {

2 public:

3 void compute_distance() {

4 for (size_t i=0; i<nb_samples; i++) {

5 for (size_t j=0; j<nb_samples; j++) {

6 uint64_t num = m_shared_kmers[i][j] + m_shared_kmers[j][i];

7 uint64_t den = m_solid_per_sample[i] + m_solid_per_sample[j];

8 if (den == 0) m_matrix[i][j] = 1.0;

9 else m_matrix[i][j] = 1.0 - (num / static_cast<double>(den)); } } }

10

11 void write() {

12 std::ofstream out(output, std::ios::out);

13 for (size_t i=0; i<nb_samples; i++) {

14 for (size_t j=0; j<nb_samples; j++) {

15 out << m_matrix[i][j] << " "; }

16 out << "\n"; } }

17

18 void init(std::size_t nb_samples) {

19 if (!ready) {

20 m_matrix.resize(nb_samples, std::vector<double>(nb_samples, 0.0));

21 m_shared_kmers.resize(

22 nb_samples, std::vector<uint64_t>(nb_samples, 0));

23 m_solid_per_sample.resize(nb_samples, 0);

24 ready = true; } }

25

26 void set_output_path(const std::string& p) { output = p; }

27 ~JaccardMatrix() { compute_distance(); write(); }

28

29 public:

30 std::vector<std::vector<uint64_t>> m_shared_kmers;

31 std::vector<uint64_t> m_solid_per_sample;

32 std::vector<std::vector<double>> m_matrix;

33 std::string output; bool ready {false};

34 };

98

3. Practical usage example

Implementation B.2: Jaccard Plugin

1 #include <kmtricks/io/fof.hpp>
2 #include <kmtricks/plugin.hpp>
3 class JaccardPlugin : public km::IMergePlugin

4 {

5 public:

6 JaccardPlugin() = default;

7

8 bool process_kmer(const uint64_t* kmer_data,

9 std::vector<count_type>& count_vector) override {

10 std::unique_lock<std::mutex> lock(m_mutex);

11 for (size_t i=0; i<nb_samples; i++) {

12 m.m_solid_per_sample[i] += counts[i];

13 for (size_t j=i+1; j<nb_samples; j++) {

14 m.m_shared_kmers[i][j] += counts[i];

15 m.m_shared_kmers[j][i] += counts[j]; } }

16 return false; }

17

18 void configure(const std::string& s) override {

19 nb_samples = km::Fof(this->m_output_directory+"/kmtricks/fof").size();

20 m.init(nb_samples);

21 m.set_output_path(this->m_output_directory + "/" + s); }

22

23 private:

24 static JaccardMatrix m;

25 unsigned int nb_samples {0}; std::mutex m_mutex;

26 };

27

28 extern "C" std::string plugin_name() { return "JaccardPlugin"; }

29 extern "C" int use_template() { return 0; }

30 extern "C" km::IMergePlugin* create0() { return new Plugin(); }

31 extern "C" void destroy(km::IMergePlugin* p) { delete p; }

Once compiled, the plugin can be used in the following way:

kmtricksp pipeline --plugin libjaccard.so --plugin-config jaccard_matrix.txt \
--run-dir jaccard_dir --file fof.txt --hard-min 2 \
--kmer-size 31 --threads 20

99

Part, Chapter V – kmtricks: a k-mer matrix framework

The Jaccard matrix is finally available at ’jaccard_matrix.txt’.
Finally, the plugin system allows extending kmtricks features relatively simply while keeping

the pipeline efficiency. The first use case of plugins was matrix filtering, even if kmtricks already
supports basic filters. However, plugins could be used for more complex things, as shown by
this example. The kmdiff tool (see Chapter II [page 41]) was implemented independently for
convenience, but it could be only a plugin. Note that it supports a similar system allowing easy
and fast testing of new statistical models.

4 Implementation details

A I/O

The objective of kmtricks is to allow multi-sample analysis by generating k-mer matrices
from a relatively large number of samples. This operation being impossible to perform in mem-
ory on current machines, kmtricks relies heavily on disk. In the last few years, the speeds have
been significantly improved with the Solid State Drives (SSD) and the Redundant Array of
Inexpensive Disks (RAID) technologies. It is common to observe throughputs close to the giga-
byte per second, both in reading and writing. Such speed allow building disk-based tools while
keeping competitive performances. However, these speeds remain significantly lower than mem-
ory ones. In other words, I/O operations must be implemented carefully to guarantee optimal
performance.

As described previously, the sequences can be encoded using a 2-bit encoding scheme which
improves both space and processing time. The encoded k-mers are packed into one or more 64-bit
unsigned integers according to their sizes and always stored with an alignment of 8 bytes allow-
ing optimal read and write. As k-mers and super-k-mers can be encoded on several integers, the
classical integer compression techniques were hardly applicable. Although theoretically possible,
there are few implementations for large integers (≥ 64 bits). We decided to use a generic compres-
sion algorithm designed for speed to compress super-k-mers and the pairs k-mers/abundances.
The k-mers from a given partition share a subset of minimizers and are lexicographically sorted.
We can then expect a certain redundancy between close k-mers. This type of layout is perfectly
adapted to the dictionary compression. We used the lz4 algorithm [160], a lossless compression
algorithm from the LZ77 family [161] which supports streaming compression. Contrary to its
competitors, it uses only a dictionary-matching stage without any further entropy stage [162].

The BFs construction pipeline allows a more efficient compression, in terms of space and
time. In this case, the stored entities are hash values represented by 64-bit integers. As for k-
mers, hash values are always sorted in kmtricks allowing the use of delta encoding. The deltas
are then compressed using a PFOR [163] compression algorithm. The compression routines come
from TurboPFor-Integer-Compression [164], a SIMD-accelerated library for integers compression.

100

4. Implementation details

Unlike hash values, the abundances are not sorted, and are therefore encoded via the ZigZag
coding [165]. The result is compressed using the PFOR algorithm. Similar techniques could be
used for small k-mers (k ≤ 32) as they are encoded on 64 bits.

Sample-specific BFs are obtained by rearranging bit-vector matrices, as described in the
section IV.1.B.3.b [page 66]. To ensure the efficiency of this operation, these vectors are not
compressed (see Section V.4.C [page 101])

Compression of temporary and output files is optional and controlled by a parameter at
runtime. The numerous uses of kmtricks have shown that running times are often lower when
compression is enabled. This indicates that at least some parts of the pipeline are I/O-bound.
Further benchmarks would be needed to clearly identify the affected parts before possible im-
provements.

B Bit-matrix transposition

Nowadays, bit-array manipulations can be greatly accelerated through vectorization using
SIMDs. These techniques are used in kmtricks to perform efficient transposition of BF sub-
matrices to obtain the sample-specific BFs required to build the final index. More specifically, the
intrinsics _mm_slli_epi64 and _mm_movemask_epi8 [92] are used for bit-shifting and masking,
respectively. These intrinsics work on 128-bit registers, allowing the transposition by block of
16 x 8 bits. Intrinsics working with larger registers (256 and 512 bits) are available on modern
architectures and could allow an even more efficient implementation. However, benchmarks show
that the matrix transposition is not a bottleneck in kmtricks and does not require additional
developments for the moment.

C Concatenation of partitioned Bloom filter

The generation of sample-specific BFs consists of rearranging BF matrices via a copy of bit-
vectors into individual files. Initially, each partition contains a part of the filter of each sample,
stored in a row-major layout.

The classic file copy procedure involves both CPU-copy and Direct Memory Access (DMA) [166]
copy, as well as a non-negligible number of context switching. When the CPU is involved in I/O
operations, it is not available for perform other operations. DMA allows transferring data be-
tween devices without involving the CPU. As described in the figure V.2 [page 102], a classic
copy consists in four copies and four context switches. The first system call causes a first context
switch, and the data are copied from the device to the read buffer in the kernel space with a
DMA copy. The data are then copied to the user buffer with a CPU copy and the system call
returns, causing a second context switch. The writing of data into the socket buffer is performed
by another system call (again, a context switch and a CPU copy). Finally, the socket buffer
content is copied into the disk with a DMA copy and the system call returns causing the last

101

Part, Chapter V – kmtricks: a k-mer matrix framework

Figure V.2 – The difference between a classic copy (A) and a copy using the zero-copy (B)
hardware feature.

context switch. Using zero-copy, the operation is completely delegated to the kernel. As a result,
there are only two context switches, and the CPU copies are eliminated. Note that a CPU copy
can still happen if the device does not support gather operations.

The Linux kernel provides several system calls allowing zero-copy as sendfile(2), splice(2)
or copy_file_range(2). Unfortunately, there is no system call allowing direct zero-copy between
files on macOS. As a result, some steps are significantly slower in the macOS version. However,
it is probably possible to implement zero-copy using Memory Mapped I/O on such systems. In
large experiments like Tara Ocean, the use of zero-copy reduced the running time of this step
from a few hours to a few minutes.

102

Chapter VI

OTHER CONTRIBUTIONS

Preamble

During my thesis, I had the opportunity to collaborate on other projects, obviously related
to the k-mer world. In ORI (Section VI.1), I participated to the development of the indexing
aspect of the method. The other projects use kmtricks and have resulted in new works and
developments. In KFF (Section VI.2), kmtricks was used to provide a proof of concept related
to compact representation of k-mer sets. I contributed to implement one of the proposed rep-
resentations in kmtricks. In decOM (Section VI.3), I implemented new features in kmtricks,
related to sub-sampling and matrix comparisons. This chapter presents an overview of these
collaborations.

1 Identification of isolated or mixed strains from long reads: a
challenge met on Streptococcus thermophilus using a MinION
sequencer [5]

In recent years, high throughput sequencing has enabled a significant breakthrough in the
analysis of microbial communities without prior culturing. Numerous methods and tools have
appeared for the characterization of bacterial samples from sequencing data with applications
in many fields such as ecology, agri-food or even rapid diagnosis of clinically relevant bacteria.

There exists currently a stable and efficient set of tools allowing bacterial identification from
short reads, but these fail when considering strain level identification because of the lack of
long-range information. Regarding long reads, the number of tools is limited [167, 168, 169]
and techniques used constantly evolve. Although these data contain long-range information,
the identification at the strain level remains challenging because of the numerous sequencing
errors present in long reads. If the identification at the genus or species levels is sufficient for
some applications, it is sometimes a critical point in other fields such as health care with the
differentiation of pathogenic vs non-pathogenic strains for example.

Consequently, this project aimed to develop a method for strain identification from long
reads, and more specifically from MinION [170] reads. This sequencer produces relatively long

103

Part, Chapter VI – Other contributions

but noisy reads (see Section .1.A.3). In the context of strain identification, sequencing errors
are problematic because they complicate the identification of similar strains. To address this
issue, we use spaced seeds which are less sensitive to errors than k-mers [171]. Spaced seeds are
sequences that allow wildcard positions that can be matches or mismatches.

The proposed method, called ORI [5], is a combination of indexing and Answer Set Program-
ming (ASP) [172]. It is composed of three main steps as described in the Figure VI.1:

1. Index construction. A collection of genomes is used to build an index based on a
modified version of HowDeSBT. The new version supports spaced seeds indexing and
genome merging. Very similar strains present a high sequence identity making them
hardly differentiable. These strains can be merged according to a user-defined threshold
to avoid noisy identification. The spaced seeds support and the new merging features of
HowDeSBT are my main contributions to this work.

2. Query. ORI is able to identify a strain mixture from a collection of MinION reads (usually,
4000 to 8000 reads are sufficient, depending on the dataset). First, the reads that are too
noisy or too short are discarded. An affiliation matrix reads X strains is then constructed
by querying all the reads against the index.

3. Identification. The objective of this step is to find a subset of strains that best explains
the queried reads. A strain explains a read if the fraction of shared spaced seeds is
greater than a given threshold. The reads explained by too many strains belong to the
core genome are not considered. Finding the minimal subset of strains corresponds to a
set cover optimization problem and is solved using ASP.

ORI was tested against other identification tools as Kraken2 [169] or StrainSeeker [173].
StrainSeeker and ORI are the two methods that reach the strain level. However, StrainSeeker

hardly scales up and can produce very different results depending on the number of input reads.
In terms of time, Kraken2 is still the best but fails to identify strains. This is explained by its
minimizer-based method, which does not capture the slight variation between strains. ORI seems
the most efficient for strain and mixed strains identifications.

104

1. Identification of isolated or mixed strains from long reads: a challenge met on Streptococcus
thermophilus using a MinION sequencer [5]

Figure VI.1 – Overview of ORI, reprinted from [5]. 1. Genomes are split into spaced seeds which
are indexed using a Bloom filter. A distance matrix is computed for each pair of strains and
similar strains are possibly merged according to a user-defined threshold. Bloom filters are then
organized into a HowDeSBT index. 2. Long reads are filtered according to quality and length.
Each read is then split into spaced seeds and queries are perfomed to build an affiliation matrix
which represent the percentage of shared spaced seeds between reads and indexed strains. 3. An
ASP script is used to determine the smallest subset of strains that best explains all the reads.

105

Part, Chapter VI – Other contributions

2 The K-mer File Format : a standardized and compact disk
representation of sets of k-mers [6]

As described in this document, many analyses and tools are based on k-mers. Curiously, there
was no standard format for storing k-mer sets, with or without abundances. As a result, each tool
uses its own format, from simple plain text to complex binary format, causing interoperability
and efficiency problems.

Standard formats are proving to be really useful and efficient in bioinformatics. The most
famous example is probably the SAM and BAM formats [174], which are used to represent
sequence alignment. In addition to the specification, these formats offer many libraries and
tools [175] for analysis and file handling. This rich collection of features, as well as the efficiency
of the format justify their ubiquity in sequence bioinformatics.

In the same spirit, we propose a binary file format for storing k-mer sets, the K-mer File
Format (KFF), along with a library (C++ and Rust) and a set of tools allowing the processing
of files. KFF stores k-mers in binary format and takes advantage of overlaps and redundancy
between sequences to represent k-mer sets compactly without compression, i.e. bases are simply
packed thanks to overlaps. It allows storage of variable-sized sequences consisting of overlapping
k-mers with an additional space-optimization when the k-mers constituting the sequence share
the same minimizer (super-k-mers for example). A description of the format is available in
figure VI.2.

As kmtricks contains basic components related to minimizers and super-k-mers, we used it
to produce the super-k-mer representation. This required a modification of the counting step
(see Section II.2), which I have adapted as follows: the counted k-mers are no longer stored
on disk but in an abundance table. Then, the super-k-mers are read again and associated with
abundance vectors thanks to the abundance table. When a k-mer is absent from the table, it
has already been seen in another super-k-mer. The current super-k-mer is then split into new
super-k-mers containing only new k-mers. This representation is sub-optimal because it does not
consider maximal overlaps and processes super-k-mers in the order seen in the reads. It remains a
reasonable compromise between a naive representation and a near-optimal representation which
is expensive to build as spectrum-preserving string set [67, 66].

To illustrate the KFF efficiency, we have benchmarked different formats on various sequenc-
ing samples: plain-text encoding, KMC format, KFF naive (one k-mer per block, no usage of
overlaps), KFF sk (stored as super-k-mer from kmtricks) and KFF spss (stored as a string-
preserving string set from ESS-Compress [67]). The results (see Table 1 in [6]) on various sequenc-
ing samples show good performances in terms of space, both for raw (KFF spss) and minimizer
(KFF sk) sections. However, the most advanced representations are more time-consuming. The
running time to obtain the k-mer set from a G. gallus sequencing sample in KFF format was 9

106

2. The K-mer File Format : a standardized and compact disk representation of sets of k-mers [6]

min for the naive version, 113 minutes for sk, and 900 minutes for spss.
All resources related to the project are available on github at https://github.com/Kmer-

File-Format/.

Sequences

free data field

kmers.kff

Values definition

Variable-length field

DNA sequence, 2 bits per nucl.

kmers.txt

64 bits

File header
version encoding

metadata

header

Minimizer sequences

minimizer#kmers data array

minimizer position

#kmers

overlapping kmers

R 3

header

M 3AAAC TGAT

00 01 11 10
A C G T

1 0

flags

1 0

header

V 3

k m

data
size 1

10 8

Fixed-length fieldIndex
header

I 2
relative
position

section

V

R

-102

0

64 bits

max

orde
red 0

5

Figure VI.2 – Overview of the KFF specifications, reprinted from [6]. The header section stores
the magic number to identify the format, the nucleotide encoding, and some flags related to
k-mer canonicity. A variable-sized block is also allowed for eventual metadata. The value section
V is a scoped (until a new V section is reached) key-value section. It defines variables required
by the subsequent data section. The index section I stores relative addresses allowing to jump
between sections. Finally, two data sections are allowed: raw (R) and minimizer (M) sections.
The raw section allows to store variable-sized overlapping k-mers associated or not with an
abundance vector. The minimizer section allows to store sequence of overlapping k-mers that
share the same minimizer (e.g. super-k-mers). The sequence of the minimizer is then stored once
per section and the storage consists in storing sequence without minimizer associated with the
minimizer position.

107

https://github.com/Kmer-File-Format/
https://github.com/Kmer-File-Format/

Part, Chapter VI – Other contributions

3 decOM: Similarity-based microbial source tracking of ancient
oral samples using k-mer-based methods [7]

The relatively long life span of DNA molecules allows to perform genetic analysis on very
old samples. However, these molecules still suffer degradations due to time and environmental
conditions [176]. In addition, the studied sample frequently contains modern or ancient contam-
inations unrelated to the study. These contaminations are the consequence of the immediate
environment of the sample but also sometimes of the collecting itself, despite the numerous pre-
cautions. In other words, contaminations are extremely frequent and probably inevitable [177].

The characterization and quantification of the contaminations are essential to guarantee the
quality of the downstream analyses. In the context of metagenomics, this procedure is called
Microbial Source Tracking (MST) and consists of the quantification of different sources in the
samples, i.e. the different microbial environments. Different techniques [178, 179] exist and rely
on reference databases to track the sources and usually require a fine parameter tuning to obtain
optimal results [180].

As a result, this project aims to provide a new MST reference-free method, called OM, and
not surprisingly relies on k-mers. The idea is to represent possible contaminants by a set of real
metagenomic samples (called the sources) and to use it to compute the contributions of such
contaminants in an external group of samples (called the sinks). In our case, a collection of
samples corresponding to Sediment/Soil, skin, ancient oral microbiome (aOral) and modern oral
microbiome (mOral) was used to quantity the possible contaminations of an aOral sample. The
reference datasets is composed of 360 metagenomes from different databases [181, 182, 183].

OM requires a binary presence/absence matrix M representing sources, where each M(i, j)
corresponds to the presence/absence of a k-mer i in a sample j. According to the metadata, each
column has a label corresponding to the environments, i.e. aOral, mOral, Skin, Sediment/Soil.
The matrix is compared to one or more sinks represented by column vectors. Using the binary
matrix, OM counts the number of k-mers from a sink that fit in each environmental condition.
For that, each sink vector which is compared to each source vector. At the end, the number of
k-mers in each label is used to estimate the proportions of each source in the studied sink. An
overview of the pipeline is presented in figure VI.3.

OM relies on kmtricks and benefits from several features. The minimizer partitioning allows
speeding the computations by sub-sampling k-mers. Indeed, the estimated proportions of sources
in sinks are close, whatever the number of partitions considered. In the aOral experiment, only
one partition is considered, allowing to build a matrix with only 14 million of k-mers instead
of 9 billion. In addition, the same contaminant matrix can be used for characterizing different
sinks and can consequently be constructed only once. If the sinks are counted using the same
partitioning scheme as the sources, the comparison is easy because identical k-mers from sources

108

3. decOM: Similarity-based microbial source tracking of ancient oral samples using k-mer-based
methods [7]

and sinks belong to the same partition. Thanks to the sub-sampling of partitions, the comparison
is also really fast because only one or a few partitions of the sinks have to be counted. The need for
comparisons between a matrix (sources) and a new k-mer table (sink) resulted in the kmtricks

filter command presented in the section V.2.B.1. I originally developed both features, sub-
sampling and kmtricks filter, for this project.

On the aOral experiments, OM have shown better results than the state-of-the-art tools,
mSourceTracker [178] and FEAST [179]. The different evaluations and validations show signif-
icantly higher accuracy, precision, and recall for OM. The computational performances are also
in favor of OM. The paper is currently in the review process. The tool is available on github at
https://github.com/CamilaDuitama/decOM.

Figure VI.3 – Overview of the decOM method, reprinted from [7]. 1. Sources from different en-
vironments (aOral, mOral, Skin, Sediment/Soil) are used to produce a binary presence/absence
matrix. 2. The sink to characterize is transformed into a k-mer column vector. 3. The k-mers
from the sink are associated with environmental labels according to the binary matrix. 4. The
proportions of sources in the sink are estimated according to k-mer labelling of the previous
step.

109

https://github.com/CamilaDuitama/decOM

CONCLUSIONS AND PERSPECTIVES

In this work, we have explored the ability of k-mer matrices to address scaling problems
in various contexts. We showed that such representations can be involved at different levels of
reference-free sequencing data processing while allowing new operations such as k-mer rescue.

We propose new construction and streaming methods for different types of matrices for analysis
or indexing purposes, allowing the processing of datasets up to tens of terabytes in size. Such
efficient construction and streaming capabilities allowed us to exhibit two major applications:

1. A fast differential k-mer analysis. Differential k-mer analysis, consisting of finding
differentially represented k-mers between phenotypes, was limited by the k-mer enumeration.
Such an experiment does not require the complete representation of the matrix, but merely a
view on each row. Consequently, partitioned and parallel streaming of the matrix has significantly
accelerated a state-of-the-art method, i.e. has enabled the processing of 80 human sequencing
samples in a few hours compared to several days. In addition, our tools use fewer computing
resources than previous methods, facilitating their usage. Note that k-mer processing is still the
bottleneck of differential k-mer analysis.

2. An end-to-end indexing pipeline. Our method allowed to build efficiently the Tara
Ocean index while considering more k-mers than other tools thanks to the k-mer rescue. In ad-
dition, our implementation is the first to benefit from findere, allowing more accurate queries.
Consequently, it was possible to reduce the index size, resulting in time and space savings while
keeping equivalent precision. However, for large database indexing, I think a paradigm shift is
mandatory. The improvement of data structures and indexing methods have a noticeable impact
on medium-sized datasets, at project-scale such as Tara Ocean for example. Regarding database
contents, e.g. SRA, these improvements remain relatively limited. I think one possible direction
would be multi-scale indexing, i.e. indexes with different and more and more precise layers to
guide the queries. Recently, a new pre-filtering tool, Raptor [184], has emerged. Instead of asso-
ciating a query with specific samples, it is associated with bins containing many samples. Based
on minimizers, such queries are less computationally expensive than k-mer queries and could
allow to select sample-level sub-indexes. I am strongly convinced that such approaches should
be further explored. Currently, the main drawback is that Raptor requires prior knowledge on
the data to constitute the bins.

Finally, we propose efficient and extensible implementations of our works. Our tools were
already used by other projects, with or without our direct participation, sometimes leading to

111

new developments. We hope that they will be beneficial to the bioinformatic community.

Although k-mer matrices are generic objects allowing a variety of analyses, our work opens
direct perspectives and future works, which are discussed below.

Towards k-mer-based variants detection

The differential k-mer analysis is only a preliminary step towards k-mer-based GWAS-like
studies. Indeed, k-mers detected by such techniques should be characterized to bring a better
biological value. The challenge consists in moving from a significant k-mer sets, potentially
incomplete, to a well-characterized set of genetic variations. Several directions are possible from
alignment to k-mer graphs, each with its own advantages and drawbacks. Anyway, such problem
requires a fine understanding of genetic variants through the k-mer prism and constitutes an
important future work.

Towards faster k-mer queries

Beyond the construction, query time is a crucial consideration of indexing methods and
bounds the possible downstream analyses. The particular layout of the filters produced by our
method could improve the current query times.

The BFs produced by kmtricks are partitioned filters, i.e. each consecutive section of the
filter corresponds to a specific set of minimizers. This particular layout could lead to a new variant
of the HowDeSBT index. As stated previously, HowDeSBT resolves queries by walking down
in the SBT until they are resolved or simply unresolvable. In the current implementation, the
whole bit-vectors representing a node are loaded from disk to memory at each step. As a result,
the query time is bounded by I/O operations when indexes are large. For example, our tests
indicates that performing 1 or 10,000 queries on the large Tara Ocean index takes approximately
the same amount of time. In other words, reducing the I/O costs could drastically reduces the
query time.

At each node, the partitioned layout could enable the loading of a few filter ranges, corre-
sponding to the subset of minimizers involved in the query. In this case, the implementation
could benefit from memory-mapped files. In addition, each partition could be an independent
SBT with its own topology, allowing an efficient parallelization and probably a better compres-
sion. The current implementation of HowDeSBT does not allow to reach these targets easily. A
consequent engineering work would be necessary but would result in a significant improvement
at every level from construction to querying.

112

A public Tara Ocean index

We showed that our methods can build indexes for relatively large sequencing projects like
Tara Ocean. The next step is to make the index accessible and searchable by everyone. We
are currently working with the OGA team in this direction. As a reminder, OGA (https:

//tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/) is a web service allowing to query
a part of the data produced by the Tara Foundation, i.e. the assembled data. An index allowing
direct queries against the sequencing samples would allow to query and exploit a larger part of
the data. OGA and our index are based on different paradigms, alignment versus k-mer queries,
respectively. Consequently, the deployment of the k-mer index requires the development of new
interfaces and representations. The project is currently in a testing phase and limited to the Tara
Ocean index. In the future, the other sequencing cohorts of the Tara foundation could also be
indexed. In addition, the Tara dataset might be interesting to explore multi-scale indexing since it
is composed of several sequencing campaigns with their own specificities. Likewise, groups could
be constituted within sequencing cohorts, by sampling depth for example. In summary, it would
consist in constituting different levels of indexing to drive the queries. Currently, no indexing
methods allows such type of layered resolution, requiring further methodological developments.

113

https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/
https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/

BIBLIOGRAPHY

[1] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM, 13(7):422–426, July 1970. ISSN 0001-0782. doi: 10.1145/362686.362692.
URL https://doi.org/10.1145/362686.362692. [pages 1 and 16.]

[2] Atif Rahman, Ingileif Hallgrímsdóttir, Michael Eisen, and Lior Pachter. Association map-
ping from sequencing reads using k-mers. eLife, 7:e32920, June 2018. ISSN 2050-084X.
doi: 10.7554/eLife.32920. URL https://doi.org/10.7554/eLife.32920. Publisher:
eLife Sciences Publications, Ltd. [pages 4, 5, 9, 36, 50, 53, 54, 56, and 58.]

[3] Zakaria Mehrab, Jaiaid Mobin, Ibrahim Asadullah Tahmid, and Atif Rahman. Efficient
association mapping from k-mers—An application in finding sex-specific sequences. PLOS
ONE, 16(1):e0245058, January 2021. ISSN 1932-6203. doi: 10.1371/journal.pone.0245058.
URL https://journals.plos.org/plosone/article?id=10.1371/journal.pone.024

5058. Publisher: Public Library of Science. [pages 4, 9, 36, and 58.]

[4] Lucas Robidou and Pierre Peterlongo. findere: Fast and Precise Approximate Membership
Query. In Thierry Lecroq and Hélène Touzet, editors, String Processing and Information
Retrieval, Lecture Notes in Computer Science, pages 151–163, Cham, 2021. Springer In-
ternational Publishing. ISBN 978-3-030-86692-1. doi: 10.1007/978-3-030-86692-1_13.
[pages 5, 34, and 35.]

[5] Grégoire Siekaniec, Emeline Roux, Téo Lemane, Eric Guédon, and Jacques Nicolas. Iden-
tification of isolated or mixed strains from long reads: a challenge met on Streptococcus
thermophilus using a MinION sequencer. Microbial Genomics, 7(11):000654, November
2021. ISSN 2057-5858. doi: 10.1099/mgen.0.000654. URL https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC8743539/. [pages , 103, 104, and 105.]

[6] Yoann Dufresne, Teo Lemane, Pierre Marijon, Pierre Peterlongo, Amatur Rahman, Marek
Kokot, Paul Medvedev, Sebastian Deorowicz, and Rayan Chikhi. The K-mer File Format:
a standardized and compact disk representation of sets of k-mers. Bioinformatics, page
btac528, July 2022. ISSN 1367-4803. doi: 10.1093/bioinformatics/btac528. URL https:

//doi.org/10.1093/bioinformatics/btac528. [pages , 106, and 107.]

[7] Camila Gonzàles, Duitama, Riccardo Vicedomini, Téo Lemane, Nicolas Rascovan, Hugues
Richard, and Rayan Chikhi. Microbial source tracking for contamination assessment of an-

115

https://doi.org/10.1145/362686.362692
https://doi.org/10.7554/eLife.32920
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245058
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245058
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743539/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743539/
https://doi.org/10.1093/bioinformatics/btac528
https://doi.org/10.1093/bioinformatics/btac528

cient oral samples using k-mer-based methods. Submitted to Microbiome Journal. [pages ,
108, and 109.]

[8] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating in-
hibitors. Proceedings of the National Academy of Sciences of the United States of America,
74(12):5463–5467, December 1977. ISSN 0027-8424. doi: 10.1073/pnas.74.12.5463. [page 1.]

[9] S. Anderson, A. T. Bankier, B. G. Barrell, M. H. L. de Bruijn, A. R. Coulson, J. Drouin,
I. C. Eperon, D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier, A. J. H. Smith, R. Staden,
and I. G. Young. Sequence and organization of the human mitochondrial genome. Nature,
290(5806):457–465, April 1981. ISSN 1476-4687. doi: 10.1038/290457a0. URL https:

//www.nature.com/articles/290457a0. Number: 5806 Publisher: Nature Publishing
Group. [page 1.]

[10] J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J. Mural,
Granger G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans, Robert A.
Holt, Jeannine D. Gocayne, Peter Amanatides, Richard M. Ballew, Daniel H. Huson, Jen-
nifer Russo Wortman, Qing Zhang, Chinnappa D. Kodira, Xiangqun H. Zheng, Lin Chen,
Marian Skupski, Gangadharan Subramanian, Paul D. Thomas, Jinghui Zhang, George L.
Gabor Miklos, Catherine Nelson, Samuel Broder, Andrew G. Clark, Joe Nadeau, Victor A.
McKusick, Norton Zinder, Arnold J. Levine, Richard J. Roberts, Mel Simon, Carolyn
Slayman, Michael Hunkapiller, Randall Bolanos, Arthur Delcher, Ian Dew, Daniel Fa-
sulo, Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar Hannenhalli, Saul Kravitz,
Samuel Levy, Clark Mobarry, Knut Reinert, Karin Remington, Jane Abu-Threideh, Ellen
Beasley, Kendra Biddick, Vivien Bonazzi, Rhonda Brandon, Michele Cargill, Ishwar
Chandramouliswaran, Rosane Charlab, Kabir Chaturvedi, Zuoming Deng, Valentina Di
Francesco, Patrick Dunn, Karen Eilbeck, Carlos Evangelista, Andrei E. Gabrielian, Weiniu
Gan, Wangmao Ge, Fangcheng Gong, Zhiping Gu, Ping Guan, Thomas J. Heiman, Mau-
reen E. Higgins, Rui-Ru Ji, Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, Yiding Lei,
Zhenya Li, Jiayin Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V. Merkulov, Natalia
Milshina, Helen M. Moore, Ashwinikumar K Naik, Vaibhav A. Narayan, Beena Neelam,
Deborah Nusskern, Douglas B. Rusch, Steven Salzberg, Wei Shao, Bixiong Shue, Jingtao
Sun, Zhen Yuan Wang, Aihui Wang, Xin Wang, Jian Wang, Ming-Hui Wei, Ron Wides,
Chunlin Xiao, Chunhua Yan, Alison Yao, Jane Ye, Ming Zhan, Weiqing Zhang, Hongyu
Zhang, Qi Zhao, Liansheng Zheng, Fei Zhong, Wenyan Zhong, Shiaoping C. Zhu, Shay-
ing Zhao, Dennis Gilbert, Suzanna Baumhueter, Gene Spier, Christine Carter, Anibal
Cravchik, Trevor Woodage, Feroze Ali, Huijin An, Aderonke Awe, Danita Baldwin, Holly
Baden, Mary Barnstead, Ian Barrow, Karen Beeson, Dana Busam, Amy Carver, Angela
Center, Ming Lai Cheng, Liz Curry, Steve Danaher, Lionel Davenport, Raymond Desilets,

116

https://www.nature.com/articles/290457a0
https://www.nature.com/articles/290457a0

Susanne Dietz, Kristina Dodson, Lisa Doup, Steven Ferriera, Neha Garg, Andres Gluecks-
mann, Brit Hart, Jason Haynes, Charles Haynes, Cheryl Heiner, Suzanne Hladun, Damon
Hostin, Jarrett Houck, Timothy Howland, Chinyere Ibegwam, Jeffery Johnson, Francis
Kalush, Lesley Kline, Shashi Koduru, Amy Love, Felecia Mann, David May, Steven Mc-
Cawley, Tina McIntosh, Ivy McMullen, Mee Moy, Linda Moy, Brian Murphy, Keith Nelson,
Cynthia Pfannkoch, Eric Pratts, Vinita Puri, Hina Qureshi, Matthew Reardon, Robert
Rodriguez, Yu-Hui Rogers, Deanna Romblad, Bob Ruhfel, Richard Scott, Cynthia Sitter,
Michelle Smallwood, Erin Stewart, Renee Strong, Ellen Suh, Reginald Thomas, Ni Ni Tint,
Sukyee Tse, Claire Vech, Gary Wang, Jeremy Wetter, Sherita Williams, Monica Williams,
Sandra Windsor, Emily Winn-Deen, Keriellen Wolfe, Jayshree Zaveri, Karena Zaveri,
Josep F. Abril, Roderic Guigó, Michael J. Campbell, Kimmen V. Sjolander, Brian Karlak,
Anish Kejariwal, Huaiyu Mi, Betty Lazareva, Thomas Hatton, Apurva Narechania, Karen
Diemer, Anushya Muruganujan, Nan Guo, Shinji Sato, Vineet Bafna, Sorin Istrail, Ross
Lippert, Russell Schwartz, Brian Walenz, Shibu Yooseph, David Allen, Anand Basu, James
Baxendale, Louis Blick, Marcelo Caminha, John Carnes-Stine, Parris Caulk, Yen-Hui Chi-
ang, My Coyne, Carl Dahlke, Anne Deslattes Mays, Maria Dombroski, Michael Donnelly,
Dale Ely, Shiva Esparham, Carl Fosler, Harold Gire, Stephen Glanowski, Kenneth Glasser,
Anna Glodek, Mark Gorokhov, Ken Graham, Barry Gropman, Michael Harris, Jeremy
Heil, Scott Henderson, Jeffrey Hoover, Donald Jennings, Catherine Jordan, James Jordan,
John Kasha, Leonid Kagan, Cheryl Kraft, Alexander Levitsky, Mark Lewis, Xiangjun
Liu, John Lopez, Daniel Ma, William Majoros, Joe McDaniel, Sean Murphy, Matthew
Newman, Trung Nguyen, Ngoc Nguyen, Marc Nodell, Sue Pan, Jim Peck, Marshall Peter-
son, William Rowe, Robert Sanders, John Scott, Michael Simpson, Thomas Smith, Arlan
Sprague, Timothy Stockwell, Russell Turner, Eli Venter, Mei Wang, Meiyuan Wen, David
Wu, Mitchell Wu, Ashley Xia, Ali Zandieh, and Xiaohong Zhu. The Sequence of the Hu-
man Genome. Science, 291(5507):1304–1351, February 2001. doi: 10.1126/science.1058040.
URL https://www.science.org/doi/abs/10.1126/science.1058040. Publisher:
American Association for the Advancement of Science. [page 1.]

[11] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. De-
von, K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford,
J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim,
J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos,
A. Sheridan, C. Sougnez, Y. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman,
J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter,
A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French,
D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. Mc-
Murray, L. Matthews, S. Mercer, S. Milne, J. C. Mullikin, A. Mungall, R. Plumb, M. Ross,

117

https://www.science.org/doi/abs/10.1126/science.1058040

R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wilson, L. W. Hillier, J. D. McPherson,
M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. Chinwalla, K. H. Pepin, W. R. Gish, S. L.
Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. Miner, A. Delehaunty, J. B. Kramer, L. L.
Cook, R. S. Fulton, D. L. Johnson, P. J. Minx, S. W. Clifton, T. Hawkins, E. Branscomb,
P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J. F. Cheng, A. Olsen,
S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, R. A. Gibbs, D. M. Muzny, S. E. Scherer,
J. B. Bouck, E. J. Sodergren, K. C. Worley, C. M. Rives, J. H. Gorrell, M. L. Metzker,
S. L. Naylor, R. S. Kucherlapati, D. L. Nelson, G. M. Weinstock, Y. Sakaki, A. Fujiyama,
M. Hattori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor,
J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier,
C. Robert, P. Wincker, D. R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock,
H. M. Lee, J. Dubois, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump,
H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Qin, R. W.
Davis, N. A. Federspiel, A. P. Abola, M. J. Proctor, R. M. Myers, J. Schmutz, M. Dickson,
J. Grimwood, D. R. Cox, M. V. Olson, R. Kaul, C. Raymond, N. Shimizu, K. Kawasaki,
S. Minoshima, G. A. Evans, M. Athanasiou, R. Schultz, B. A. Roe, F. Chen, H. Pan,
J. Ramser, H. Lehrach, R. Reinhardt, W. R. McCombie, M. de la Bastide, N. Dedhia,
H. Blöcker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J. A. Bailey, A. Bate-
man, S. Batzoglou, E. Birney, P. Bork, D. G. Brown, C. B. Burge, L. Cerutti, H. C.
Chen, D. Church, M. Clamp, R. R. Copley, T. Doerks, S. R. Eddy, E. E. Eichler, T. S.
Furey, J. Galagan, J. G. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob,
K. Hokamp, W. Jang, L. S. Johnson, T. A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W. J.
Kent, P. Kitts, E. V. Koonin, I. Korf, D. Kulp, D. Lancet, T. M. Lowe, A. McLysaght,
T. Mikkelsen, J. V. Moran, N. Mulder, V. J. Pollara, C. P. Ponting, G. Schuler, J. Schultz,
G. Slater, A. F. Smit, E. Stupka, J. Szustakowki, D. Thierry-Mieg, J. Thierry-Mieg,
L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y. I. Wolf, K. H. Wolfe, S. P. Yang,
R. F. Yeh, F. Collins, M. S. Guyer, J. Peterson, A. Felsenfeld, K. A. Wetterstrand, A. Pa-
trinos, M. J. Morgan, P. de Jong, J. J. Catanese, K. Osoegawa, H. Shizuya, S. Choi, Y. J.
Chen, J. Szustakowki, and International Human Genome Sequencing Consortium. Initial
sequencing and analysis of the human genome. Nature, 409(6822):860–921, Feb 2001. ISSN
0028-0836. doi: 10.1038/35057062. [page 1.]

[12] Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nature Biotechnology,
26(10):1135–1145, October 2008. ISSN 1546-1696. doi: 10.1038/nbt1486. URL https:

//www.nature.com/articles/nbt1486. Number: 10 Publisher: Nature Publishing Group.
[page 1.]

[13] Darius Wen-Shuo Koh, Kwok-Fong Chan, Weiling Wu, and Samuel Ken-En Gan. Yet

118

https://www.nature.com/articles/nbt1486
https://www.nature.com/articles/nbt1486

Another Quick Assembly, Analysis and Trimming Tool (YAQAAT): A Server for the
Automated Assembly and Analysis of Sanger Sequencing Data. Journal of Biomolecular
Techniques : JBT, pages jbt.2021–3202–003, July 2021. ISSN 1524-0215. doi: 10.7171/jb
t.2021-3202-003. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861051/.
[page 1.]

[14] Yuriy O. Alekseyev, Roghayeh Fazeli, Shi Yang, Raveen Basran, Thomas Maher, Nancy S.
Miller, and Daniel Remick. A Next-Generation Sequencing Primer—How Does It Work
and What Can It Do? Academic Pathology, 5:2374289518766521, May 2018. ISSN 2374-
2895. doi: 10.1177/2374289518766521. URL https://www.ncbi.nlm.nih.gov/pmc/art

icles/PMC5944141/. [page 2.]

[15] Rupesh Kanchi Ravi, Kendra Walton, and Mahdieh Khosroheidari. MiSeq: A Next Gener-
ation Sequencing Platform for Genomic Analysis. In Johanna K. DiStefano, editor, Disease
Gene Identification: Methods and Protocols, Methods in Molecular Biology, pages 223–232.
Springer, New York, NY, 2018. ISBN 978-1-4939-7471-9. doi: 10.1007/978-1-4939-7471-
9_12. URL https://doi.org/10.1007/978-1-4939-7471-9_12. [page 2.]

[16] Barry Merriman, Ion Torrent R&D Team, and Jonathan M. Rothberg. Progress
in Ion Torrent semiconductor chip based sequencing. ELECTROPHORESIS, 33(23):
3397–3417, 2012. ISSN 1522-2683. doi: 10.1002/elps.201200424. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/elps.201200424. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/elps.201200424. [page 2.]

[17] Michael A. Quail, Miriam Smith, Paul Coupland, Thomas D. Otto, Simon R. Harris,
Thomas R. Connor, Anna Bertoni, Harold P. Swerdlow, and Yong Gu. A tale of three
next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and
Illumina MiSeq sequencers. BMC Genomics, 13(1):341, July 2012. ISSN 1471-2164. doi:
10.1186/1471-2164-13-341. URL https://doi.org/10.1186/1471-2164-13-341.
[page 2.]

[18] Takeru Nakazato, Tazro Ohta, and Hidemasa Bono. Experimental Design-Based Func-
tional Mining and Characterization of High-Throughput Sequencing Data in the Se-
quence Read Archive. PLOS ONE, 8(10):e77910, October 2013. ISSN 1932-6203. doi:
10.1371/journal.pone.0077910. URL https://journals.plos.org/plosone/article?i

d=10.1371/journal.pone.0077910. Publisher: Public Library of Science. [page 2.]

[19] Neil I. Weisenfeld, Vijay Kumar, Preyas Shah, Deanna M. Church, and David B. Jaffe.
Direct determination of diploid genome sequences. Genome Research, 27(5):757–767, May
2017. ISSN 1088-9051, 1549-5469. doi: 10.1101/gr.214874.116. URL https://genome.csh

119

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861051/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944141/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944141/
https://doi.org/10.1007/978-1-4939-7471-9_12
https://onlinelibrary.wiley.com/doi/abs/10.1002/elps.201200424
https://onlinelibrary.wiley.com/doi/abs/10.1002/elps.201200424
https://doi.org/10.1186/1471-2164-13-341
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077910
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077910
https://genome.cshlp.org/content/27/5/757
https://genome.cshlp.org/content/27/5/757
https://genome.cshlp.org/content/27/5/757

lp.org/content/27/5/757. Company: Cold Spring Harbor Laboratory Press Distributor:
Cold Spring Harbor Laboratory Press Institution: Cold Spring Harbor Laboratory Press
Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring Harbor Lab. [page 2.]

[20] Zhanshan (Sam) Ma, Lianwei Li, Chengxi Ye, Minsheng Peng, and Ya-Ping Zhang. Hybrid
assembly of ultra-long Nanopore reads augmented with 10x-Genomics contigs: Demon-
strated with a human genome. Genomics, 111(6):1896–1901, December 2019. ISSN 0888-
7543. doi: 10.1016/j.ygeno.2018.12.013. URL https://www.sciencedirect.com/scienc

e/article/pii/S0888754318305603. [page 2.]

[21] Pierre Morisse, Fabrice Legeai, and Claire Lemaitre. LEVIATHAN: efficient discovery of
large structural variants by leveraging long-range information from Linked-Reads data,
March 2021. URL https://www.biorxiv.org/content/10.1101/2021.03.25.437002v

1. Pages: 2021.03.25.437002 Section: New Results. [page 2.]

[22] Martin O. Pollard, Deepti Gurdasani, Alexander J. Mentzer, Tarryn Porter, and Manjin-
der S. Sandhu. Long reads: their purpose and place. Human Molecular Genetics, 27(R2):
R234–R241, August 2018. ISSN 1460-2083. doi: 10.1093/hmg/ddy177. [page 2.]

[23] Rachael E. Workman, Alison D. Tang, Paul S. Tang, Miten Jain, John R. Tyson, Roham
Razaghi, Philip C. Zuzarte, Timothy Gilpatrick, Alexander Payne, Joshua Quick, Norah
Sadowski, Nadine Holmes, Jaqueline Goes de Jesus, Karen L. Jones, Cameron M. Soulette,
Terrance P. Snutch, Nicholas Loman, Benedict Paten, Matthew Loose, Jared T. Simpson,
Hugh E. Olsen, Angela N. Brooks, Mark Akeson, and Winston Timp. Nanopore native
RNA sequencing of a human poly(A) transcriptome. Nature Methods, 16(12):1297–1305,
December 2019. ISSN 1548-7091, 1548-7105. doi: 10.1038/s41592-019-0617-2. URL
https://www.nature.com/articles/s41592-019-0617-2. [page 2.]

[24] Clara Delahaye and Jacques Nicolas. Sequencing DNA with nanopores: Troubles and
biases. PLOS ONE, 16(10):e0257521, October 2021. ISSN 1932-6203. doi: 10.1371/jour
nal.pone.0257521. URL https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0257521. Publisher: Public Library of Science. [page 2.]

[25] Levene Mj, Korlach J, Turner Sw, Foquet M, Craighead Hg, and Webb Ww. Zero-mode
waveguides for single-molecule analysis at high concentrations. Science (New York, N.Y.),
299(5607), January 2003. ISSN 1095-9203. doi: 10.1126/science.1079700. URL https:

//pubmed.ncbi.nlm.nih.gov/12560545/. Publisher: Science. [page 3.]

[26] Anthony Rhoads and Kin Fai Au. PacBio Sequencing and Its Applications. Genomics,
Proteomics & Bioinformatics, 13(5):278–289, October 2015. ISSN 1672-0229. doi: 10.1016/

120

https://genome.cshlp.org/content/27/5/757
https://genome.cshlp.org/content/27/5/757
https://genome.cshlp.org/content/27/5/757
https://genome.cshlp.org/content/27/5/757
https://www.sciencedirect.com/science/article/pii/S0888754318305603
https://www.sciencedirect.com/science/article/pii/S0888754318305603
https://www.biorxiv.org/content/10.1101/2021.03.25.437002v1
https://www.biorxiv.org/content/10.1101/2021.03.25.437002v1
https://www.nature.com/articles/s41592-019-0617-2
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257521
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257521
https://pubmed.ncbi.nlm.nih.gov/12560545/
https://pubmed.ncbi.nlm.nih.gov/12560545/

j.gpb.2015.08.002. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678779/.
[page 3.]

[27] Ting Hon, Kristin Mars, Greg Young, Yu-Chih Tsai, Joseph W. Karalius, Jane M. Lan-
dolin, Nicholas Maurer, David Kudrna, Michael A. Hardigan, Cynthia C. Steiner, Steven J.
Knapp, Doreen Ware, Beth Shapiro, Paul Peluso, and David R. Rank. Highly accu-
rate long-read HiFi sequencing data for five complex genomes. Scientific Data, 7(1):
399, November 2020. ISSN 2052-4463. doi: 10.1038/s41597-020-00743-4. URL
https://www.nature.com/articles/s41597-020-00743-4. Number: 1 Publisher:
Nature Publishing Group. [page 3.]

[28] Dmitry Antipov, Anton Korobeynikov, Jeffrey S. McLean, and Pavel A. Pevzner. hy-
bridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics, 32
(7):1009–1015, April 2016. ISSN 1367-4803. doi: 10.1093/bioinformatics/btv688. URL
https://doi.org/10.1093/bioinformatics/btv688. [page 3.]

[29] Leena Salmela and Eric Rivals. LoRDEC: accurate and efficient long read error correction.
Bioinformatics, 30(24):3506–3514, December 2014. ISSN 1367-4803. doi: 10.1093/bioinf
ormatics/btu538. URL https://doi.org/10.1093/bioinformatics/btu538. [page 3.]

[30] Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–
9753, August 2001. doi: 10.1073/pnas.171285098. URL https://www.pnas.org/doi/1

0.1073/pnas.171285098. Publisher: Proceedings of the National Academy of Sciences.
[page 3.]

[31] Jacob F. Degner, John C. Marioni, Athma A. Pai, Joseph K. Pickrell, Everlyne Nkadori,
Yoav Gilad, and Jonathan K. Pritchard. Effect of read-mapping biases on detect-
ing allele-specific expression from RNA-sequencing data. Bioinformatics, 25(24):3207–
3212, December 2009. ISSN 1367-4803. doi: 10.1093/bioinformatics/btp579. URL
https://doi.org/10.1093/bioinformatics/btp579. [page 4.]

[32] Débora Y C Brandt, Vitor R C Aguiar, Bárbara D Bitarello, Kelly Nunes, Jérôme Goudet,
and Diogo Meyer. Mapping Bias Overestimates Reference Allele Frequencies at the HLA
Genes in the 1000 Genomes Project Phase I Data. G3 Genes|Genomes|Genetics, 5(5):
931–941, May 2015. ISSN 2160-1836. doi: 10.1534/g3.114.015784. URL https://doi.or

g/10.1534/g3.114.015784. [page 4.]

[33] Mazdak Salavati, Stephen J. Bush, Sergio Palma-Vera, Mary E. B. McCulloch, David A.
Hume, and Emily L. Clark. Elimination of Reference Mapping Bias Reveals Robust Im-
mune Related Allele-Specific Expression in Crossbred Sheep. Frontiers in Genetics, 10,

121

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678779/
https://www.nature.com/articles/s41597-020-00743-4
https://doi.org/10.1093/bioinformatics/btv688
https://doi.org/10.1093/bioinformatics/btu538
https://www.pnas.org/doi/10.1073/pnas.171285098
https://www.pnas.org/doi/10.1073/pnas.171285098
https://doi.org/10.1093/bioinformatics/btp579
https://doi.org/10.1534/g3.114.015784
https://doi.org/10.1534/g3.114.015784

2019. ISSN 1664-8021. URL https://www.frontiersin.org/articles/10.3389/fgene

.2019.00863. [page 4.]

[34] Deepti Gurdasani, Tommy Carstensen, Fasil Tekola-Ayele, Luca Pagani, Ioanna Tach-
mazidou, Konstantinos Hatzikotoulas, Savita Karthikeyan, Louise Iles, Martin O. Pol-
lard, Ananyo Choudhury, Graham R. S. Ritchie, Yali Xue, Jennifer Asimit, Rebecca N.
Nsubuga, Elizabeth H. Young, Cristina Pomilla, Katja Kivinen, Kirk Rockett, Anatoli
Kamali, Ayo P. Doumatey, Gershim Asiki, Janet Seeley, Fatoumatta Sisay-Joof, Mu-
minatou Jallow, Stephen Tollman, Ephrem Mekonnen, Rosemary Ekong, Tamiru Oljira,
Neil Bradman, Kalifa Bojang, Michele Ramsay, Adebowale Adeyemo, Endashaw Bekele,
Ayesha Motala, Shane A. Norris, Fraser Pirie, Pontiano Kaleebu, Dominic Kwiatkowski,
Chris Tyler-Smith, Charles Rotimi, Eleftheria Zeggini, and Manjinder S. Sandhu. The
African Genome Variation Project shapes medical genetics in Africa. Nature, 517(7534):
327–332, January 2015. ISSN 1476-4687. doi: 10.1038/nature13997. URL https:

//www.nature.com/articles/nature13997. Number: 7534 Publisher: Nature Publish-
ing Group. [page 4.]

[35] Erik Garrison, Jouni Sirén, Adam M. Novak, Glenn Hickey, Jordan M. Eizenga, Eric T.
Dawson, William Jones, Shilpa Garg, Charles Markello, Michael F. Lin, Benedict Paten,
and Richard Durbin. Variation graph toolkit improves read mapping by representing
genetic variation in the reference. Nature Biotechnology, 36(9):875–879, October 2018.
ISSN 1546-1696. doi: 10.1038/nbt.4227. URL https://www.nature.com/articles/nbt.

4227. Number: 9 Publisher: Nature Publishing Group. [page 4.]

[36] Nae-Chyun Chen, Brad Solomon, Taher Mun, Sheila Iyer, and Ben Langmead. Reference
flow: reducing reference bias using multiple population genomes. Genome Biology, 22(1):
8, January 2021. ISSN 1474-760X. doi: 10.1186/s13059-020-02229-3. URL https:

//doi.org/10.1186/s13059-020-02229-3. [page 4.]

[37] Ben Langmead and Steven L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4):357–359, April 2012. ISSN 1548-7105. doi: 10.1038/nmeth.1923. URL http

s://www.nature.com/articles/nmeth.1923. Number: 4 Publisher: Nature Publishing
Group. [page 4.]

[38] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM,
May 2013. URL http://arxiv.org/abs/1303.3997. arXiv:1303.3997 [q-bio]. [page 4.]

[39] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics (Oxford, England), 25(14):1754–1760, July 2009. ISSN
1367-4811. doi: 10.1093/bioinformatics/btp324. [page 4.]

122

https://www.frontiersin.org/articles/10.3389/fgene.2019.00863
https://www.frontiersin.org/articles/10.3389/fgene.2019.00863
https://www.nature.com/articles/nature13997
https://www.nature.com/articles/nature13997
https://www.nature.com/articles/nbt.4227
https://www.nature.com/articles/nbt.4227
https://doi.org/10.1186/s13059-020-02229-3
https://doi.org/10.1186/s13059-020-02229-3
https://www.nature.com/articles/nmeth.1923
https://www.nature.com/articles/nmeth.1923
http://arxiv.org/abs/1303.3997

[40] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):
3094–3100, September 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty191. URL
https://doi.org/10.1093/bioinformatics/bty191. [page 4.]

[41] Jang-il Sohn and Jin-Wu Nam. The present and future of de novo whole-genome assembly.
Briefings in Bioinformatics, 19(1):23–40, January 2018. ISSN 1477-4054. doi: 10.1093/bi
b/bbw096. URL https://doi.org/10.1093/bib/bbw096. [page 5.]

[42] Raluca Uricaru, Guillaume Rizk, Vincent Lacroix, Elsa Quillery, Olivier Plantard, Rayan
Chikhi, Claire Lemaitre, and Pierre Peterlongo. Reference-free detection of isolated SNPs.
Nucleic Acids Research, 43(2):e11, January 2015. ISSN 0305-1048. doi: 10.1093/nar/gku1
187. URL https://doi.org/10.1093/nar/gku1187. [page 5.]

[43] Mark J. Chaisson, Dumitru Brinza, and Pavel A. Pevzner. De novo fragment assembly
with short mate-paired reads: Does the read length matter? Genome Research, 19(2):
336–346, February 2009. ISSN 1088-9051. doi: 10.1101/gr.079053.108. URL https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC2652199/. [page 5.]

[44] Jie Ren, Nathan A. Ahlgren, Yang Young Lu, Jed A. Fuhrman, and Fengzhu Sun.
VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metage-
nomic data. Microbiome, 5(1):69, July 2017. ISSN 2049-2618. doi: 10.1186/s40168-017-0
283-5. URL https://doi.org/10.1186/s40168-017-0283-5. [page 5.]

[45] Rob Patro, Stephen M. Mount, and Carl Kingsford. Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms. Nature Biotechnology, 32
(5):462–464, May 2014. ISSN 1546-1696. doi: 10.1038/nbt.2862. URL https://www.natu

re.com/articles/nbt.2862. Number: 5 Publisher: Nature Publishing Group. [page 5.]

[46] Yoav Voichek and Detlef Weigel. Identifying genetic variants underlying phenotypic vari-
ation in plants without complete genomes. Nature Genetics, 52(5):534–540, May 2020.
ISSN 1546-1718. doi: 10.1038/s41588-020-0612-7. URL https://www.nature.com/art

icles/s41588-020-0612-7. Number: 5 Publisher: Nature Publishing Group. [pages 5,
9, 36, 50, and 56.]

[47] Rasko Leinonen, Hideaki Sugawara, and Martin Shumway. The Sequence Read Archive.
Nucleic Acids Research, 39(Database issue):D19–D21, January 2011. ISSN 0305-1048. doi:
10.1093/nar/gkq1019. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC30136

47/. [page 5.]

[48] Gaëtan Benoit, Claire Lemaitre, Dominique Lavenier, Erwan Drezen, Thibault Dayris,
Raluca Uricaru, and Guillaume Rizk. Reference-free compression of high throughput

123

https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bib/bbw096
https://doi.org/10.1093/nar/gku1187
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652199/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652199/
https://doi.org/10.1186/s40168-017-0283-5
https://www.nature.com/articles/nbt.2862
https://www.nature.com/articles/nbt.2862
https://www.nature.com/articles/s41588-020-0612-7
https://www.nature.com/articles/s41588-020-0612-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013647/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013647/

sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics, 16(1):
288, September 2015. ISSN 1471-2105. doi: 10.1186/s12859-015-0709-7. URL
https://doi.org/10.1186/s12859-015-0709-7. [page 6.]

[49] Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, and Sebastian Deorowicz. FaStore: a space-
saving solution for raw sequencing data. Bioinformatics, 34(16):2748–2756, August 2018.
ISSN 1367-4803. doi: 10.1093/bioinformatics/bty205. URL https://doi.org/10.1093/

bioinformatics/bty205. [page 6.]

[50] Marek Kokot, Adam Gudyś, Heng Li, and Sebastian Deorowicz. CoLoRd: compressing
long reads. Nature Methods, 19(4):441–444, April 2022. ISSN 1548-7105. doi: 10.1038/
s41592-022-01432-3. URL https://www.nature.com/articles/s41592-022-01432-3.
Number: 4 Publisher: Nature Publishing Group. [page 6.]

[51] Ibrahim Numanagić, James K. Bonfield, Faraz Hach, Jan Voges, Jörn Ostermann, Clau-
dio Alberti, Marco Mattavelli, and S. Cenk Sahinalp. Comparison of high-throughput
sequencing data compression tools. Nature Methods, 13(12):1005–1008, December 2016.
ISSN 1548-7105. doi: 10.1038/nmeth.4037. URL https://www.nature.com/articles/

nmeth.4037. Number: 12 Publisher: Nature Publishing Group. [page 6.]

[52] Adam Klie, Brian Y Tsui, Shamim Mollah, Dylan Skola, Michelle Dow, Chun-Nan Hsu,
and Hannah Carter. Increasing metadata coverage of SRA BioSample entries using deep
learning–based named entity recognition. Database, 2021:baab021, September 2021. ISSN
1758-0463. doi: 10.1093/database/baab021. URL https://doi.org/10.1093/database

/baab021. [page 7.]

[53] Robert C. Edgar, Jeff Taylor, Victor Lin, Tomer Altman, Pierre Barbera, Dmitry
Meleshko, Dan Lohr, Gherman Novakovsky, Benjamin Buchfink, Basem Al-Shayeb, Jil-
lian F. Banfield, Marcos de la Peña, Anton Korobeynikov, Rayan Chikhi, and Artem
Babaian. Petabase-scale sequence alignment catalyses viral discovery. Nature, 602(7895):
142–147, February 2022. ISSN 1476-4687. doi: 10.1038/s41586-021-04332-2. URL
https://www.nature.com/articles/s41586-021-04332-2. Number: 7895 Publisher:
Nature Publishing Group. [page 8.]

[54] The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature 2015 526:7571, 526(7571):68–74, September 2015. ISSN 1476-4687. doi: 10.103
8/nature15393. URL https://www.nature.com/articles/nature15393. Publisher:
Nature Publishing Group. [pages 8, 35, and 58.]

[55] Lita M. Proctor, Heather H. Creasy, Jennifer M. Fettweis, Jason Lloyd-Price, Anup
Mahurkar, Wenyu Zhou, Gregory A. Buck, Michael P. Snyder, Jerome F. Strauss,

124

https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1093/bioinformatics/bty205
https://doi.org/10.1093/bioinformatics/bty205
https://www.nature.com/articles/s41592-022-01432-3
https://www.nature.com/articles/nmeth.4037
https://www.nature.com/articles/nmeth.4037
https://doi.org/10.1093/database/baab021
https://doi.org/10.1093/database/baab021
https://www.nature.com/articles/s41586-021-04332-2
https://www.nature.com/articles/nature15393

George M. Weinstock, Owen White, Curtis Huttenhower, and The Integrative HMP
(iHMP) Research Network Consortium. The Integrative Human Microbiome Project.
Nature, 569(7758):641–648, May 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1238-8.
URL https://www.nature.com/articles/s41586-019-1238-8. Number: 7758 Pub-
lisher: Nature Publishing Group. [pages 8 and 35.]

[56] Brad Solomon and Carl Kingsford. Fast search of thousands of short-read sequencing
experiments. Nature Biotechnology, 34(3):300–302, March 2016. ISSN 1546-1696. doi:
10.1038/nbt.3442. URL https://www.nature.com/articles/nbt.3442. Number: 3
Publisher: Nature Publishing Group. [pages 8, 15, 21, 27, 28, 29, and 32.]

[57] Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos,
Kevin Bealer, and Thomas L. Madden. BLAST+: architecture and applications. BMC
Bioinformatics, 10(1):421, December 2009. ISSN 1471-2105. doi: 10.1186/1471-2105-10-4
21. URL https://doi.org/10.1186/1471-2105-10-421. [page 8.]

[58] Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali
Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. STAR: ultrafast universal
RNA-seq aligner. Bioinformatics (Oxford, England), 29(1):15–21, January 2013. ISSN
1367-4811. doi: 10.1093/bioinformatics/bts635. [page 8.]

[59] Nina Luhmann, Guillaume Holley, and Mark Achtman. BlastFrost: fast querying of
100,000s of bacterial genomes in Bifrost graphs. Genome Biology, 22(1):30, January 2021.
ISSN 1474-760X. doi: 10.1186/s13059-020-02237-3. URL https://doi.org/10.1186/s1

3059-020-02237-3. [pages 8 and 15.]

[60] Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genome Biology, 21(1):249, September 2020.
ISSN 1474-760X. doi: 10.1186/s13059-020-02135-8. URL https://doi.org/10.1186/s1

3059-020-02135-8. [page 8.]

[61] Jian Ye, Scott McGinnis, and Thomas L. Madden. BLAST: improvements for better
sequence analysis. Nucleic Acids Research, 34(suppl_2):W6–W9, July 2006. ISSN 0305-
1048. doi: 10.1093/nar/gkl164. URL https://doi.org/10.1093/nar/gkl164. [pages 8
and 72.]

[62] Roland Wittler. Alignment- and reference-free phylogenomics with colored de Bruijn
graphs. Algorithms for Molecular Biology, 15(1):4, April 2020. ISSN 1748-7188. doi:
10.1186/s13015-020-00164-3. URL https://doi.org/10.1186/s13015-020-00164-3.
[page 9.]

125

https://www.nature.com/articles/s41586-019-1238-8
https://www.nature.com/articles/nbt.3442
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1186/s13059-020-02237-3
https://doi.org/10.1186/s13059-020-02237-3
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1093/nar/gkl164
https://doi.org/10.1186/s13015-020-00164-3

[63] Gaëtan Benoit, Pierre Peterlongo, Mahendra Mariadassou, Erwan Drezen, Sophie Schbath,
Dominique Lavenier, and Claire Lemaitre. Multiple comparative metagenomics using mul-
tiset k-mer counting. PeerJ Computer Science, 2:e94, November 2016. ISSN 2376-5992.
doi: 10.7717/peerj-cs.94. URL https://peerj.com/articles/cs-94. Publisher: PeerJ
Inc. [pages 9, 47, 49, and 91.]

[64] Gaëtan Benoit, Mahendra Mariadassou, Stéphane Robin, Sophie Schbath, Pierre Peter-
longo, and Claire Lemaitre. SimkaMin: fast and resource frugal de novo comparative
metagenomics. Bioinformatics, 36(4):1275–1276, February 2020. ISSN 1367-4803. doi:
10.1093/bioinformatics/btz685. URL https://doi.org/10.1093/bioinformatics/btz

685. [pages 9, 49, and 91.]

[65] International Union of Pure and Applied Chemistry. IUPAC Compendium of Chemical
Terminology – The Gold Book, 2009. URL http://goldbook.iupac.org/. [page 12.]

[66] Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and scalable
representation of de Bruijn graphs. Genome Biology, 22(1):96, April 2021. ISSN 1474-
760X. doi: 10.1186/s13059-021-02297-z. URL https://doi.org/10.1186/s13059-021

-02297-z. [pages 13 and 106.]

[67] Amatur Rahman and Paul Medvedev. Representation of $$k$$-mer Sets Using Spectrum-
Preserving String Sets. In Russell Schwartz, editor, Research in Computational Molecular
Biology, Lecture Notes in Computer Science, pages 152–168, Cham, 2020. Springer In-
ternational Publishing. ISBN 978-3-030-45257-5. doi: 10.1007/978-3-030-45257-5_10.
[pages 13 and 106.]

[68] Sebastian Schmidt, Shahbaz Khan, Jarno Alanko, and Alexandru I. Tomescu. Matchtigs:
minimum plain text representation of kmer sets, February 2022. URL https://www.bi

orxiv.org/content/10.1101/2021.12.15.472871v2. Pages: 2021.12.15.472871 Section:
New Results. [page 13.]

[69] Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T. Simpson, and Paul Medvedev.
On the Representation of de Bruijn Graphs. In Roded Sharan, editor, Research in Compu-
tational Molecular Biology, Lecture Notes in Computer Science, pages 35–55, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-05269-4. doi: 10.1007/978-3-319-0526
9-4_4. [page 13.]

[70] Michael Burrows and David Wheeler. A Block-Sorting Lossless Data Compression Algo-
rithm. 1994. URL https://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid

=4979FEEE5BD966B330E81C59DE112C95?doi=10.1.1.37.6774. [page 14.]

126

https://peerj.com/articles/cs-94
https://doi.org/10.1093/bioinformatics/btz685
https://doi.org/10.1093/bioinformatics/btz685
http://goldbook.iupac.org/
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1186/s13059-021-02297-z
https://www.biorxiv.org/content/10.1101/2021.12.15.472871v2
https://www.biorxiv.org/content/10.1101/2021.12.15.472871v2
https://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=4979FEEE5BD966B330E81C59DE112C95?doi=10.1.1.37.6774
https://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=4979FEEE5BD966B330E81C59DE112C95?doi=10.1.1.37.6774

[71] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Pro-
ceedings 41st Annual Symposium on Foundations of Computer Science, pages 390–398,
November 2000. doi: 10.1109/SFCS.2000.892127. ISSN: 0272-5428. [page 14.]

[72] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM,
May 2013. URL http://arxiv.org/abs/1303.3997. arXiv:1303.3997 [q-bio]. [page 14.]

[73] Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H.
Bergman, Sergey Koren, and Adam M. Phillippy. Mash: fast genome and metagenome dis-
tance estimation using MinHash. Genome Biology, 17(1):132, June 2016. ISSN 1474-760X.
doi: 10.1186/s13059-016-0997-x. URL https://doi.org/10.1186/s13059-016-0997-x.
[page 14.]

[74] Daniel N. Baker and Ben Langmead. Dashing: fast and accurate genomic distances with
HyperLogLog. Genome Biology, 20(1):265, December 2019. ISSN 1474-760X. doi: 10.118
6/s13059-019-1875-0. URL https://doi.org/10.1186/s13059-019-1875-0. [page 14.]

[75] A.Z. Broder. On the resemblance and containment of documents. In Proceedings. Com-
pression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pages 21–29, June
1997. doi: 10.1109/SEQUEN.1997.666900. [page 14.]

[76] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets.
Cambridge University Press, USA, 2nd edition, 2014. ISBN 978-1-107-07723-2. [page 14.]

[77] Paul Jaccard. The Distribution of the Flora in the Alpine Zone.1. New Phytologist,
11(2):37–50, 1912. ISSN 1469-8137. doi: 10.1111/j.1469-8137.1912.tb05611.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611

.x. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x.
[pages 14 and 91.]

[78] Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and Rob Patro. A space and time-
efficient index for the compacted colored de Bruijn graph. Bioinformatics, 34(13):i169–
i177, July 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty292. URL https:

//doi.org/10.1093/bioinformatics/bty292. [page 15.]

[79] Camille Marchet, Mael Kerbiriou, and Antoine Limasset. BLight: efficient exact associative
structure for k-mers. Bioinformatics, 37(18):2858–2865, September 2021. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btab217. URL https://doi.org/10.1093/bioinformati

cs/btab217. [page 15.]

[80] Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genome Biology, 21(1):249, September 2020.

127

http://arxiv.org/abs/1303.3997
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-019-1875-0
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1093/bioinformatics/btab217

ISSN 1474-760X. doi: 10.1186/s13059-020-02135-8. URL https://doi.org/10.1186/s1

3059-020-02135-8. [page 15.]

[81] Jarno N. Alanko, Simon J. Puglisi, and Jaakko Vuohtoniemi. Succinct k-mer Set Represen-
tations Using Subset Rank Queries on the Spectral Burrows-Wheeler Transform (SBWT),
May 2022. URL https://www.biorxiv.org/content/10.1101/2022.05.19.492613v1.
Pages: 2022.05.19.492613 Section: New Results. [page 15.]

[82] Rayan Chikhi and Guillaume Rizk. Space-Efficient and Exact de Bruijn Graph Represen-
tation Based on a Bloom Filter. In Ben Raphael and Jijun Tang, editors, Algorithms in
Bioinformatics, Lecture Notes in Computer Science, pages 236–248, Berlin, Heidelberg,
2012. Springer. ISBN 978-3-642-33122-0. doi: 10.1007/978-3-642-33122-0_19. [page 15.]

[83] Andrey Prjibelski, Dmitry Antipov, Dmitry Meleshko, Alla Lapidus, and Anton Ko-
robeynikov. Using SPAdes De Novo Assembler. Current Protocols in Bioinfor-
matics, 70(1):e102, 2020. ISSN 1934-340X. doi: 10 .1002/cpbi .102. URL ht

tps://onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.102. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpbi.102. [page 15.]

[84] Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel and low-memory compaction of
de Bruijn graphs from large-scale genome collections. Bioinformatics, 37(Supplement_1):
i177–i186, July 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab309. URL
https://doi.org/10.1093/bioinformatics/btab309. [page 15.]

[85] Jamshed Khan, Marek Kokot, Sebastian Deorowicz, and Rob Patro. Scalable, ultra-fast,
and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2, June
2022. URL https://www.biorxiv.org/content/10.1101/2021.12.14.472718v2.
Pages: 2021.12.14.472718 Section: New Results. [page 15.]

[86] Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Marc Zimmermann, Christopher Bar-
ber, Gunnar Rätsch, and André Kahles. MetaGraph: Indexing and Analysing Nu-
cleotide Archives at Petabase-scale. preprint, Bioinformatics, October 2020. URL
http://biorxiv.org/lookup/doi/10.1101/2020.10.01.322164. [page 15.]

[87] Brad Solomon and Carl Kingsford. Improved Search of Large Transcriptomic Sequencing
Databases Using Split Sequence Bloom Trees. Journal of Computational Biology, 25(7):
755–765, July 2018. ISSN 1066-5277. doi: 10.1089/cmb.2017.0265. URL https://www.nc

bi.nlm.nih.gov/pmc/articles/PMC6067102/. [pages 15, 30, and 31.]

[88] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. A General-Purpose
Counting Filter: Making Every Bit Count. In Proceedings of the 2017 ACM International

128

https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1186/s13059-020-02135-8
https://www.biorxiv.org/content/10.1101/2022.05.19.492613v1
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.102
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.102
https://doi.org/10.1093/bioinformatics/btab309
https://www.biorxiv.org/content/10.1101/2021.12.14.472718v2
http://biorxiv.org/lookup/doi/10.1101/2020.10.01.322164
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067102/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067102/

Conference on Management of Data, SIGMOD ’17, pages 775–787, New York, NY, USA,
May 2017. Association for Computing Machinery. ISBN 978-1-4503-4197-4. doi: 10.1145/
3035918.3035963. URL https://doi.org/10.1145/3035918.3035963. [pages 15, 21,
and 22.]

[89] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. Squeakr: an exact
and approximate k-mer counting system. Bioinformatics, 34(4):568–575, February 2018.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btx636. URL https://doi.org/10.1093/

bioinformatics/btx636. [pages 15, 21, 23, and 37.]

[90] William Stallings. Computer Organization and Architecture: Designing for Performance.
Prentice Hall Press, USA, 8th edition, 2009. ISBN 978-0-13-607373-4. [page 16.]

[91] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Building a
better Bloom filter. Random Structures and Algorithms, 33(2):187–218, September 2008.
ISSN 10429832, 10982418. doi: 10.1002/rsa.20208. URL https://onlinelibrary.wile

y.com/doi/10.1002/rsa.20208. [page 16.]

[92] Intel® Intrinsics Guide, . URL https://www.intel.com/content/www/us/en/docs/int

rinsics-guide/index.html. [pages 17 and 101.]

[93] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. In Friedhelm Meyer auf der
Heide, editor, Algorithms — ESA 2001, Lecture Notes in Computer Science, pages 121–
133, Berlin, Heidelberg, 2001. Springer. ISBN 978-3-540-44676-7. doi: 10.1007/3-540-44
676-1_10. [pages 17 and 18.]

[94] Jens Zentgraf, Henning Timm, and Sven Rahmann. Cost-optimal assignment of elements
in genome-scale multi-way bucketed Cuckoo hash tables. In 2020 Proceedings of the Sympo-
sium on Algorithm Engineering and Experiments (ALENEX), Proceedings, pages 186–198.
Society for Industrial and Applied Mathematics, December 2019. doi: 10.1137/1.978161
1976007.15. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611976007.15.
[page 18.]

[95] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo
Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies, CoNEXT ’14, pages
75–88, New York, NY, USA, December 2014. Association for Computing Machinery. ISBN
978-1-4503-3279-8. doi: 10.1145/2674005.2674994. URL https://doi.org/10.1145/26

74005.2674994. [pages 18 and 19.]

129

https://doi.org/10.1145/3035918.3035963
https://doi.org/10.1093/bioinformatics/btx636
https://doi.org/10.1093/bioinformatics/btx636
https://onlinelibrary.wiley.com/doi/10.1002/rsa.20208
https://onlinelibrary.wiley.com/doi/10.1002/rsa.20208
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://epubs.siam.org/doi/abs/10.1137/1.9781611976007.15
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994

[96] J.G. Clerry. Compact Hash Tables Using Bidirectional Linear Probing. IEEE Transactions
on Computers, C-33(9):828–834, September 1984. ISSN 1557-9956. doi: 10.1109/TC.198
4.1676499. Conference Name: IEEE Transactions on Computers. [page 19.]

[97] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kusz-
maul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane, and Erez
Zadok. Don’t thrash: how to cache your hash on flash. Proceedings of the VLDB Endow-
ment, 5(11):1627–1637, July 2012. ISSN 2150-8097. doi: 10.14778/2350229.2350275. URL
https://dl.acm.org/doi/10.14778/2350229.2350275. [pages 19 and 20.]

[98] Donald Knuth. The Art Of Computer Programming, vol. 3: Sorting And Searching.
Addison-Wesley, 1973. [page 19.]

[99] Gonzalo Navarro and Eliana Providel. Fast, Small, Simple Rank/Select on Bitmaps. In
Ralf Klasing, editor, Experimental Algorithms, Lecture Notes in Computer Science, pages
295–306, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-30850-5. doi: 10.1007/978-
3-642-30850-5_26. [page 21.]

[100] Prashant Pandey, Fatemeh Almodaresi, Michael A. Bender, Michael Ferdman, Rob John-
son, and Rob Patro. Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index.
Cell Systems, 7(2):201–207.e4, August 2018. ISSN 2405-4712. doi: 10.1016/j.cels.2018.05
.021. URL https://www.cell.com/cell-systems/abstract/S2405-4712(18)30239-4.
Publisher: Elsevier. [pages 21, 23, and 24.]

[101] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms, 3(4):43–es, November 2007. ISSN 1549-6325. doi: 10.1145/1290672.1290680.
URL https://doi.org/10.1145/1290672.1290680. [pages 21 and 28.]

[102] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, François Saint-
Jacques, and Gregory Ssi-Yan-Kai. Roaring Bitmaps: Implementation of an Optimized
Software Library. Software: Practice and Experience, 48(4):867–895, April 2018. ISSN
00380644. doi: 10.1002/spe.2560. URL http://arxiv.org/abs/1709.07821.
arXiv:1709.07821 [cs]. [page 21.]

[103] Thomas Mueller Graf and Daniel Lemire. Xor Filters: Faster and Smaller Than Bloom
and Cuckoo Filters. ACM Journal of Experimental Algorithmics, 25:1–16, December 2020.
ISSN 1084-6654, 1084-6654. doi: 10.1145/3376122. URL http://arxiv.org/abs/1912.0

8258. arXiv:1912.08258 [cs]. [page 22.]

[104] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted files versus signature
files for text indexing. ACM Transactions on Database Systems, 23(4):453–490, December

130

https://dl.acm.org/doi/10.14778/2350229.2350275
https://www.cell.com/cell-systems/abstract/S2405-4712(18)30239-4
https://doi.org/10.1145/1290672.1290680
http://arxiv.org/abs/1709.07821
http://arxiv.org/abs/1912.08258
http://arxiv.org/abs/1912.08258

1998. ISSN 0362-5915. doi: 10.1145/296854.277632. URL https://doi.org/10.1145/29

6854.277632. [page 23.]

[105] Camille Marchet, Christina Boucher, Simon J. Puglisi, Paul Medvedev, Mikaël Salson, and
Rayan Chikhi. Data structures based on k-mers for querying large collections of sequencing
data sets. Genome Research, 31(1):1–12, January 2021. ISSN 1088-9051, 1549-5469. doi:
10.1101/gr.260604.119. URL https://genome.cshlp.org/content/31/1/1. Company:
Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press
Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory
Press Publisher: Cold Spring Harbor Lab. [pages 23 and 33.]

[106] Harry K. T. Wong, Hsiu-Fen Liu, Frank Olken, Doron Rotem, and Linda Wong. Bit
transposed files. In Proceedings of the 11th international conference on Very Large Data
Bases - Volume 11, VLDB ’85, pages 448–457, Stockholm, Sweden, August 1985. VLDB
Endowment. [page 24.]

[107] Phelim Bradley, Henk C. den Bakker, Eduardo P. C. Rocha, Gil McVean, and Zamin Iqbal.
Ultrafast search of all deposited bacterial and viral genomic data. Nature Biotechnology,
37(2):152–159, February 2019. ISSN 1546-1696. doi: 10.1038/s41587-018-0010-1. URL
https://www.nature.com/articles/s41587-018-0010-1. Number: 2 Publisher: Nature
Publishing Group. [pages 24 and 25.]

[108] Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. COBS: A Compact
Bit-Sliced Signature Index. In Nieves R. Brisaboa and Simon J. Puglisi, editors, String
Processing and Information Retrieval, Lecture Notes in Computer Science, pages 285–303,
Cham, 2019. Springer International Publishing. ISBN 978-3-030-32686-9. doi: 10.1007/97
8-3-030-32686-9_21. [pages 25 and 26.]

[109] Sanjay K. Srikakulam, Sebastian Keller, Fawaz Dabbaghie, Robert Bals, and Olga V.
Kalinina. MetaProFi: A protein-based Bloom filter for storing and querying sequence
data for accurate identification of functionally relevant genetic variants, August 2021.
URL https://www.biorxiv.org/content/10.1101/2021.08.12.456081v1. Pages:
2021.08.12.456081 Section: New Results. [page 26.]

[110] Zarr — zarr 2.12.0 documentation, . URL https://zarr.readthedocs.io/en/stable/.
[page 26.]

[111] Zstandard - Real-time data compression algorithm, . URL https://facebook.github.

io/zstd/. [page 26.]

131

https://doi.org/10.1145/296854.277632
https://doi.org/10.1145/296854.277632
https://genome.cshlp.org/content/31/1/1
https://www.nature.com/articles/s41587-018-0010-1
https://www.biorxiv.org/content/10.1101/2021.08.12.456081v1
https://zarr.readthedocs.io/en/stable/
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/

[112] Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.
Addison-Wesley, Reading, Mass., third edition, 1997. ISBN 0-201-89683-4 978-0-201-89683-
1. [page 26.]

[113] Chen Sun, Robert S. Harris, Rayan Chikhi, and Paul Medvedev. AllSome Sequence Bloom
Trees. Journal of Computational Biology, 25(5):467–479, May 2018. doi: 10.1089/cmb.20
17.0258. URL https://www.liebertpub.com/doi/10.1089/cmb.2017.0258. Publisher:
Mary Ann Liebert, Inc., publishers. [pages 29 and 30.]

[114] Robert S Harris and Paul Medvedev. Improved representation of sequence bloom trees.
Bioinformatics, 36(3):721–727, February 2020. ISSN 1367-4803. doi: 10.1093/bioinforma
tics/btz662. URL https://doi.org/10.1093/bioinformatics/btz662. [pages 31, 32,
33, and 86.]

[115] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, July 1948. ISSN 0005-8580. doi: 10.1002/j.1538-7305.1948.tb013
38.x. Conference Name: The Bell System Technical Journal. [page 32.]

[116] Rayan Chikhi, Jan Holub, and Paul Medvedev. Data Structures to Represent a Set of
k-long DNA Sequences. ACM Computing Surveys, 54(1):17:1–17:22, March 2021. ISSN
0360-0300. doi: 10.1145/3445967. URL https://doi.org/10.1145/3445967. [page 33.]

[117] Jérôme Audoux, Nicolas Philippe, Rayan Chikhi, Mikaël Salson, Mélina Gallopin, Marc
Gabriel, Jérémy Le Coz, Emilie Drouineau, Thérèse Commes, and Daniel Gautheret.
DE-kupl: exhaustive capture of biological variation in RNA-seq data through k-mer
decomposition. Genome Biology, 18(1):243, December 2017. ISSN 1474-760X. doi:
10.1186/s13059-017-1372-2. URL https://doi.org/10.1186/s13059-017-1372-2.
[pages 36 and 50.]

[118] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, March 2011. ISSN
1367-4803. doi: 10.1093/bioinformatics/btr011. URL https://doi.org/10.1093/bioi

nformatics/btr011. [pages 37 and 68.]

[119] Páll Melsted and Jonathan K. Pritchard. Efficient counting of k-mers in DNA sequences
using a bloom filter. BMC Bioinformatics, 12(1):333, August 2011. ISSN 1471-2105. doi:
10.1186/1471-2105-12-333. URL https://doi.org/10.1186/1471-2105-12-333.
[page 37.]

[120] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. In Proceedings of the 20th annual international symposium on

132

https://www.liebertpub.com/doi/10.1089/cmb.2017.0258
https://doi.org/10.1093/bioinformatics/btz662
https://doi.org/10.1145/3445967
https://doi.org/10.1186/s13059-017-1372-2
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1186/1471-2105-12-333

computer architecture, ISCA ’93, pages 289–300, New York, NY, USA, May 1993. Associ-
ation for Computing Machinery. ISBN 978-0-8186-3810-7. doi: 10.1145/165123.165164.
URL https://doi.org/10.1145/165123.165164. [page 37.]

[121] Guillaume Collet, Guillaume Rizk, Rayan Chikhi, and Dominique Lavenier. MINIA on a
Raspberry Pi, Assembling a 100 Mbp Genome on a Credit Card Sized Computer. page 2.
[page 37.]

[122] Michael Roberts, Brian R. Hunt, James A. Yorke, Randall A. Bolanos, and Arthur L.
Delcher. A Preprocessor for Shotgun Assembly of Large Genomes. Journal of Com-
putational Biology, 11(4):734–752, August 2004. doi: 10.1089/cmb.2004.11.734. URL
https://www.liebertpub.com/doi/abs/10.1089/cmb.2004.11.734. Publisher: Mary
Ann Liebert, Inc., publishers. [pages 38 and 43.]

[123] Jason R. Miller, Arthur L. Delcher, Sergey Koren, Eli Venter, Brian P. Walenz, Anushka
Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and Granger Sutton. Aggres-
sive assembly of pyrosequencing reads with mates. Bioinformatics, 24(24):2818–2824,
December 2008. ISSN 1367-4803. doi: 10.1093/bioinf ormatics/btn548. URL
https://doi.org/10.1093/bioinformatics/btn548. [page 38.]

[124] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. DSK: k-mer counting with very
low memory usage. Bioinformatics (Oxford, England), 29(5):652–653, March 2013. ISSN
1367-4811. doi: 10.1093/bioinformatics/btt020. [pages 38 and 43.]

[125] Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, and Szymon Grabowski. Disk-based
k-mer counting on a PC. BMC Bioinformatics, 14(1):160, May 2013. ISSN 1471-2105.
doi: 10.1186/1471-2105-14-160. URL https://doi.org/10.1186/1471-2105-14-160.
[pages 38 and 43.]

[126] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz.
KMC 2: fast and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, May
2015. ISSN 1367-4803. doi: 10.1093/bioinformatics/btv022. URL https://doi.org/10

.1093/bioinformatics/btv022. [pages 38 and 44.]

[127] Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. KMC 3: counting and manipulat-
ing k-mer statistics. Bioinformatics, 33(17):2759–2761, September 2017. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btx304. URL https://doi.org/10.1093/bioinformatics

/btx304. [pages 38 and 68.]

[128] David R. Musser. Introspective Sorting and Selection Algorithms. Soft-
ware: Practice and Experience, 27(8):983–993, 1997. ISSN 1097-024X. doi:

133

https://doi.org/10.1145/165123.165164
https://www.liebertpub.com/doi/abs/10.1089/cmb.2004.11.734
https://doi.org/10.1093/bioinformatics/btn548
https://doi.org/10.1186/1471-2105-14-160
https://doi.org/10.1093/bioinformatics/btv022
https://doi.org/10.1093/bioinformatics/btv022
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btx304

1 0 . 1 0 0 2 / (S I CI) 1 0 9 7 - 0 2 4 X (1 9 9 7 08) 2 7 : 8<9 8 3 :: A I D - S P E 1 17 > 3 . 0 . CO;2 - #.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-
024X%28199708%2927%3A8%3C983%3A%3AAID-SPE117%3E3.0.CO%3B2-%23.
[page 44.]

[129] David Laehnemann, Arndt Borkhardt, and Alice Carolyn McHardy. Denoising DNA deep
sequencing data—high-throughput sequencing errors and their correction. Briefings in
Bioinformatics, 17(1):154–179, January 2016. ISSN 1467-5463. doi: 10.1093/bib/bbv029.
URL https://doi.org/10.1093/bib/bbv029. [page 46.]

[130] Alexey Vorobev, Marion Dupouy, Quentin Carradec, Tom O. Delmont, Anita Annamalé,
Patrick Wincker, and Eric Pelletier. Transcriptome reconstruction and functional anal-
ysis of eukaryotic marine plankton communities via high-throughput metagenomics and
metatranscriptomics. Genome Research, 30(4):647–659, April 2020. ISSN 1088-9051, 1549-
5469. doi: 10.1101/gr.253070.119. URL https://genome.cshlp.org/content/30/4/647.
Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Labo-
ratory Press Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor
Laboratory Press Publisher: Cold Spring Harbor Lab. [page 47.]

[131] Téo Lemane, Paul Medvedev, Rayan Chikhi, and Pierre Peterlongo. kmtricks: Efficient and
flexible construction of Bloom filters for large sequencing data collections. Bioinformatics
Advances, page vbac029, April 2022. ISSN 2635-0041. doi: 10.1093/bioadv/vbac029. URL
https://doi.org/10.1093/bioadv/vbac029. [pages 48, 64, 67, 70, 74, and 77.]

[132] Daniel J Richter, Romain Watteaux, Thomas Vannier, Jade Leconte, Paul Frémont,
Gabriel Reygondeau, Nicolas Maillet, Nicolas Henry, Gaëtan Benoit, Antonio Fernandez-
Guerra, Samir Suweis, Romain Narci, Cédric Berney, Damien Eveillard, Frédérick F.
Gavory, Lionel Guidi, Karine Labadie, Eric Mahieu, Julie Poulain, Sarah Romac, Simon
Roux, Céline Dimier, Stefanie Kandels, Marc Picheral, Sarah Searson, Stéphane Pesant,
Jean-Marc Aury, Jennifer Brum, Claire Lemaitre, Eric Pelletier, Peer Bork, Shinichi Suna-
gawa, Lee Karp-Boss, Chris Bowler, Matthew Sullivan, Eric Karsenti, Mahendra Mari-
adassou, Ian Probert, Pierre Peterlongo, Patrick Wincker, Colomban de Vargas, Maur-
izio Ribera d’Alcalà, Daniele Iudicone, and Olivier Jaillon. Genomic evidence for global
ocean plankton biogeography shaped by large-scale current systems. eLife, 2022. doi:
10.1101/867739. URL https://hal.inria.fr/hal-02399723. Publisher: eLife Sciences
Publication. [page 49.]

[133] Arthur Korte and Ashley Farlow. The advantages and limitations of trait analysis with
GWAS: a review. Plant Methods, 9(1):29, July 2013. ISSN 1746-4811. doi: 10.1186/1746
-4811-9-29. URL https://doi.org/10.1186/1746-4811-9-29. [page 49.]

134

https://doi.org/10.1093/bib/bbv029
https://genome.cshlp.org/content/30/4/647
https://doi.org/10.1093/bioadv/vbac029
https://hal.inria.fr/hal-02399723
https://doi.org/10.1186/1746-4811-9-29

[134] Annalisa Buniello, Jacqueline A L MacArthur, Maria Cerezo, Laura W Harris, James Hay-
hurst, Cinzia Malangone, Aoife McMahon, Joannella Morales, Edward Mountjoy, Elliot
Sollis, Daniel Suveges, Olga Vrousgou, Patricia L Whetzel, Ridwan Amode, Jose A Guillen,
Harpreet S Riat, Stephen J Trevanion, Peggy Hall, Heather Junkins, Paul Flicek, Tony
Burdett, Lucia A Hindorff, Fiona Cunningham, and Helen Parkinson. The NHGRI-EBI
GWAS Catalog of published genome-wide association studies, targeted arrays and sum-
mary statistics 2019. Nucleic Acids Research, 47(D1):D1005–D1012, January 2019. ISSN
0305-1048. doi: 10.1093/nar/gky1120. URL https://doi.org/10.1093/nar/gky1120.
[page 49.]

[135] Pawe\l Stankiewicz and James R. Lupski. Structural Variation in the Human Genome and
its Role in Disease. Annual Review of Medicine, 61(1):437–455, 2010. doi: 10.1146/annure
v-med-100708-204735. URL https://doi.org/10.1146/annurev-med-100708-204735.
_eprint: https://doi.org/10.1146/annurev-med-100708-204735. [page 50.]

[136] Ryan L. Collins, Harrison Brand, Konrad J. Karczewski, Xuefang Zhao, Jessica Alföldi,
Laurent C. Francioli, Amit V. Khera, Chelsea Lowther, Laura D. Gauthier, Harold Wang,
Nicholas A. Watts, Matthew Solomonson, Anne O’Donnell-Luria, Alexander Baumann,
Ruchi Munshi, Mark Walker, Christopher W. Whelan, Yongqing Huang, Ted Brookings,
Ted Sharpe, Matthew R. Stone, Elise Valkanas, Jack Fu, Grace Tiao, Kristen M. Laricchia,
Valentin Ruano-Rubio, Christine Stevens, Namrata Gupta, Caroline Cusick, Lauren Mar-
golin, Kent D. Taylor, Henry J. Lin, Stephen S. Rich, Wendy S. Post, Yii-Der Ida Chen,
Jerome I. Rotter, Chad Nusbaum, Anthony Philippakis, Eric Lander, Stacey Gabriel, Ben-
jamin M. Neale, Sekar Kathiresan, Mark J. Daly, Eric Banks, Daniel G. MacArthur, and
Michael E. Talkowski. A structural variation reference for medical and population genetics.
Nature, 581(7809):444–451, May 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2287-8.
URL https://www.nature.com/articles/s41586-020-2287-8. Number: 7809 Pub-
lisher: Nature Publishing Group. [page 50.]

[137] Nick Patterson, Alkes L. Price, and David Reich. Population Structure and Eigenanalysis.
PLOS Genetics, 2(12):e190, December 2006. ISSN 1553-7404. doi: 10.1371/journal.pgen
.0020190. URL https://journals.plos.org/plosgenetics/article?id=10.1371/jo

urnal.pgen.0020190. Publisher: Public Library of Science. [page 54.]

[138] Alkes L. Price, Nick J. Patterson, Robert M. Plenge, Michael E. Weinblatt, Nancy A.
Shadick, and David Reich. Principal components analysis corrects for stratification in
genome-wide association studies. Nature Genetics, 38(8):904–909, August 2006. ISSN
1546-1718. doi: 10.1038/ng1847. URL https://www.nature.com/articles/ng1847.
Number: 8 Publisher: Nature Publishing Group. [page 54.]

135

https://doi.org/10.1093/nar/gky1120
https://doi.org/10.1146/annurev-med-100708-204735
https://www.nature.com/articles/s41586-020-2287-8
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020190
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020190
https://www.nature.com/articles/ng1847

[139] Bonferroni C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R
Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8:3–62, 1936. URL
https://cir.nii.ac.jp/crid/1570009749360424576. [page 54.]

[140] Zbyněk Šidák. Rectangular Confidence Regions for the Means of Multivariate Nor-
mal Distributions. Journal of the American Statistical Association, 62(318):626–633,
June 1967. ISSN 0162-1459. doi: 10.1080/01621459.1967.10482935. URL https:

//doi.org/10.1080/01621459.1967.10482935. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/01621459.1967.10482935. [page 54.]

[141] Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series
B (Methodological), 57(1):289–300, 1995. ISSN 0035-9246. URL https://www.jstor.or

g/stable/2346101. Publisher: [Royal Statistical Society, Wiley]. [page 54.]

[142] Xiang Zhou and Matthew Stephens. Genome-wide efficient mixed-model analysis for
association studies. Nature Genetics, 44(7):821–824, July 2012. ISSN 1546-1718. doi:
10.1038/ng.2310. URL https://www.nature.com/articles/ng.2310. Number: 7
Publisher: Nature Publishing Group. [page 55.]

[143] Sarah G. Earle, Chieh-Hsi Wu, Jane Charlesworth, Nicole Stoesser, N. Claire Gordon,
Timothy M. Walker, Chris C. A. Spencer, Zamin Iqbal, David A. Clifton, Katie L. Hopkins,
Neil Woodford, E. Grace Smith, Nazir Ismail, Martin J. Llewelyn, Tim E. Peto, Derrick W.
Crook, Gil McVean, A. Sarah Walker, and Daniel J. Wilson. Identifying lineage effects
when controlling for population structure improves power in bacterial association studies.
Nature Microbiology, 1(5):1–8, April 2016. ISSN 2058-5276. doi: 10.1038/nmicrobiol.2
016.41. URL https://www.nature.com/articles/nmicrobiol201641. Number: 5
Publisher: Nature Publishing Group. [pages 56 and 57.]

[144] Téo Lemane, Rayan Chikhi, and Pierre Peterlongo. kmdiff, large-scale and user-friendly
differential k-mer analyses. Bioinformatics, Oct 2022. ISSN 1367-4803. doi: 10.1093/bioi
nformatics/btac689. [page 57.]

[145] Sajad Babakhani and Mana Oloomi. Transposons: the agents of antibiotic resistance in
bacteria. Journal of Basic Microbiology, 58(11):905–917, 2018. ISSN 1521-4028. doi: 10.100
2/jobm.201800204. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jobm

.201800204. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jobm.201800204.
[page 57.]

[146] Shaun D. Jackman, Benjamin P. Vandervalk, Hamid Mohamadi, Justin Chu, Sarah Yeo,
S. Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren Coombe, Rene L. Warren,

136

https://cir.nii.ac.jp/crid/1570009749360424576
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1080/01621459.1967.10482935
https://www.jstor.org/stable/2346101
https://www.jstor.org/stable/2346101
https://www.nature.com/articles/ng.2310
https://www.nature.com/articles/nmicrobiol201641
https://onlinelibrary.wiley.com/doi/abs/10.1002/jobm.201800204
https://onlinelibrary.wiley.com/doi/abs/10.1002/jobm.201800204

and Inanc Birol. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom
filter. Genome Research, 27(5):768–777, May 2017. ISSN 1088-9051, 1549-5469. doi: 10.1
101/gr.214346.116. URL https://genome.cshlp.org/content/27/5/768. Company:
Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press
Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory
Press Publisher: Cold Spring Harbor Lab. [page 57.]

[147] Eric W. Sayers, Evan E. Bolton, J. Rodney Brister, Kathi Canese, Jessica Chan, Donald C.
Comeau, Ryan Connor, Kathryn Funk, Chris Kelly, Sunghwan Kim, Tom Madej, Aron
Marchler-Bauer, Christopher Lanczycki, Stacy Lathrop, Zhiyong Lu, Francoise Thibaud-
Nissen, Terence Murphy, Lon Phan, Yuri Skripchenko, Tony Tse, Jiyao Wang, Rebecca
Williams, Barton W. Trawick, Kim D. Pruitt, and Stephen T. Sherry. Database resources
of the national center for biotechnology information. Nucleic Acids Research, 50(D1):
D20–D26, January 2022. ISSN 1362-4962. doi: 10.1093/nar/gkab1112. [page 57.]

[148] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Research, 25(17):3389–3402, September 1997. ISSN 0305-1048.
doi: 10.1093/nar/25.17.3389. [page 57.]

[149] Yann Collet. xxHash - Extremely fast hash algorithm, August 2022. URL https://gith

ub.com/Cyan4973/xxHash. original-date: 2014-04-30T23:32:49Z. [page 65.]

[150] Simon Gog. SDSL - Succinct Data Structure Library, 2013. URL https://github.com

/simongog/sdsl-lite. original-date: 2013-02-28T22:34:07Z. [pages 65 and 85.]

[151] Eric Karsenti, Silvia G. Acinas, Peer Bork, Chris Bowler, Colomban De Vargas,
Jeroen Raes, Matthew Sullivan, Detlev Arendt, Francesca Benzoni, Jean-Michel Claverie,
Mick Follows, Gaby Gorsky, Pascal Hingamp, Daniele Iudicone, Olivier Jaillon, Ste-
fanie Kandels-Lewis, Uros Krzic, Fabrice Not, Hiroyuki Ogata, Stéphane Pesant, Em-
manuel Georges Reynaud, Christian Sardet, Michael E. Sieracki, Sabrina Speich, Didier
Velayoudon, Jean Weissenbach, Patrick Wincker, and the Tara Oceans Consortium. A
Holistic Approach to Marine Eco-Systems Biology. PLOS Biology, 9(10):e1001177, Oc-
tober 2011. ISSN 1545-7885. doi: 10.1371/journal.pbio.1001177. URL https:

//journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001177.
Publisher: Public Library of Science. [page 71.]

[152] Emilie Villar, Thomas Vannier, Caroline Vernette, Magali Lescot, Miguelangel Cuenca,
Aurélien Alexandre, Paul Bachelerie, Thomas Rosnet, Eric Pelletier, Shinichi Sunagawa,
and Pascal Hingamp. The Ocean Gene Atlas: exploring the biogeography of plankton

137

https://genome.cshlp.org/content/27/5/768
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001177
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001177

genes online. Nucleic Acids Research, 46(W1):W289–W295, July 2018. ISSN 0305-1048.
doi: 10.1093/nar/gky376. URL https://doi.org/10.1093/nar/gky376. [page 72.]

[153] Caroline Vernette, Julien Lecubin, Pablo Sánchez, Tara Oceans Coordinators, Shinichi
Sunagawa, Tom O Delmont, Silvia G Acinas, Eric Pelletier, Pascal Hingamp, and Magali
Lescot. The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny
of plankton genes. Nucleic Acids Research, 50(W1):W516–W526, July 2022. ISSN 0305-
1048. doi: 10.1093/nar/gkac420. URL https://doi.org/10.1093/nar/gkac420.
[page 72.]

[154] S R Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–763, January 1998.
ISSN 1367-4803. doi: 10.1093/bioinformatics/14.9.755. URL https://doi.org/10.109

3/bioinformatics/14.9.755. [page 72.]

[155] Benjamin Buchfink, Chao Xie, and Daniel H. Huson. Fast and sensitive protein alignment
using DIAMOND. Nature Methods, 12(1):59–60, January 2015. ISSN 1548-7105. doi:
10.1038/nmeth.3176. URL https://www.nature.com/articles/nmeth.3176. Number:
1 Publisher: Nature Publishing Group. [page 72.]

[156] Travis J. Wheeler and Sean R. Eddy. nhmmer: DNA homology search with profile HMMs.
Bioinformatics, 29(19):2487–2489, October 2013. ISSN 1367-4803. doi: 10.1093/bioinfor
matics/btt403. URL https://doi.org/10.1093/bioinformatics/btt403. [page 72.]

[157] Stéphane Pesant, Fabrice Not, Marc Picheral, Stefanie Kandels-Lewis, Noan Le Bescot,
Gabriel Gorsky, Daniele Iudicone, Eric Karsenti, Sabrina Speich, Romain Troublé, Céline
Dimier, and Sarah Searson. Open science resources for the discovery and analysis of Tara
Oceans data. Scientific Data, 2(1):150023, May 2015. ISSN 2052-4463. doi: 10.1038/sdata.
2015.23. URL https://www.nature.com/articles/sdata201523. Number: 1 Publisher:
Nature Publishing Group. [page 72.]

[158] Andy B. Yoo, Morris A. Jette, and Mark Grondona. SLURM: Simple Linux Utility for
Resource Management. In Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, edi-
tors, Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Sci-
ence, pages 44–60, Berlin, Heidelberg, 2003. Springer. ISBN 978-3-540-39727-4. doi:
10.1007/10968987_3. [page 84.]

[159] Daniel J Richter, Romain Watteaux, Thomas Vannier, Jade Leconte, Paul Frémont,
Gabriel Reygondeau, Nicolas Maillet, Nicolas Henry, Gaëtan Benoit, Ophélie Da Silva,
Tom O Delmont, Antonio Fernàndez-Guerra, Samir Suweis, Romain Narci, Cédric Berney,
Damien Eveillard, Frederick Gavory, Lionel Guidi, Karine Labadie, Eric Mahieu, Julie
Poulain, Sarah Romac, Simon Roux, Céline Dimier, Stefanie Kandels, Marc Picheral,

138

https://doi.org/10.1093/nar/gky376
https://doi.org/10.1093/nar/gkac420
https://doi.org/10.1093/bioinformatics/14.9.755
https://doi.org/10.1093/bioinformatics/14.9.755
https://www.nature.com/articles/nmeth.3176
https://doi.org/10.1093/bioinformatics/btt403
https://www.nature.com/articles/sdata201523

Sarah Searson, Tara Oceans Coordinators, Stéphane Pesant, Jean-Marc Aury, Jennifer R
Brum, Claire Lemaitre, Eric Pelletier, Peer Bork, Shinichi Sunagawa, Fabien Lombard,
Lee Karp-Boss, Chris Bowler, Matthew B Sullivan, Eric Karsenti, Mahendra Mariadas-
sou, Ian Probert, Pierre Peterlongo, Patrick Wincker, Colomban de Vargas, Maurizio Rib-
era d’Alcalà, Daniele Iudicone, and Olivier Jaillon. Genomic evidence for global ocean
plankton biogeography shaped by large-scale current systems. eLife, 11:e78129, August
2022. ISSN 2050-084X. doi: 10.7554/eLife.78129. URL https://doi.org/10.7554/eLif

e.78129. Publisher: eLife Sciences Publications, Ltd. [page 91.]

[160] Yann Collet. LZ4 - Extremely fast compression, August 2022. URL https://github.c

om/lz4/lz4. original-date: 2014-03-25T15:52:21Z. [page 100.]

[161] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, May 1977. ISSN 1557-9654. doi:
10.1109/TIT.1977.1055714. Conference Name: IEEE Transactions on Information Theory.
[page 100.]

[162] Alistair Moffat. Huffman Coding. ACM Computing Surveys, 52(4):85:1–85:35, August
2019. ISSN 0360-0300. doi: 10.1145/3342555. URL https://doi.org/10.1145/3342555.
[page 100.]

[163] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-Scalar RAM-CPU Cache Com-
pression. In 22nd International Conference on Data Engineering (ICDE’06), pages 59–59,
2006. doi: 10.1109/ICDE.2006.150. [page 100.]

[164] powturbo. powturbo/TurboPFor-Integer-Compression, July 2022. URL https://gi

thub.com/powturbo/TurboPFor-Integer-Compression. original-date: 2014-10-
28T21:17:07Z. [page 100.]

[165] Protocol Buffers, . URL https://developers.google.com/protocol-buffers.
[page 101.]

[166] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell Multiprocessor Communica-
tion Network: Built for Speed. IEEE Micro, 26(03):10–23, May 2006. ISSN 0272-1732.
doi: 10.1109/MM.2006.49. URL https://www.computer.org/csdl/magazine/mi/2006

/03/m3010/13rRUzphDAE. Publisher: IEEE Computer Society. [page 101.]

[167] Alexander T. Dilthey, Chirag Jain, Sergey Koren, and Adam M. Phillippy. Strain-level
metagenomic assignment and compositional estimation for long reads with MetaMaps.
Nature Communications, 10(1):3066, July 2019. ISSN 2041-1723. doi: 10.1038/s41467-0
19-10934-2. URL https://www.nature.com/articles/s41467-019-10934-2. Number:
1 Publisher: Nature Publishing Group. [page 103.]

139

https://doi.org/10.7554/eLife.78129
https://doi.org/10.7554/eLife.78129
https://github.com/lz4/lz4
https://github.com/lz4/lz4
https://doi.org/10.1145/3342555
https://github.com/powturbo/TurboPFor-Integer-Compression
https://github.com/powturbo/TurboPFor-Integer-Compression
https://developers.google.com/protocol-buffers
https://www.computer.org/csdl/magazine/mi/2006/03/m3010/13rRUzphDAE
https://www.computer.org/csdl/magazine/mi/2006/03/m3010/13rRUzphDAE
https://www.nature.com/articles/s41467-019-10934-2

[168] Daehwan Kim, Li Song, Florian P. Breitwieser, and Steven L. Salzberg. Centrifuge: rapid
and sensitive classification of metagenomic sequences. Genome Research, October 2016.
ISSN 1088-9051, 1549-5469. doi: 10.1101/gr.210641.116. URL https://genome.csh

lp.org/content/early/2016/11/16/gr.210641.116. Company: Cold Spring Harbor
Laboratory Press Distributor: Cold Spring Harbor Laboratory Press Institution: Cold
Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher:
Cold Spring Harbor Lab. [page 103.]

[169] Derrick E. Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis with
Kraken 2. Genome Biology, 20(1):257, November 2019. ISSN 1474-760X. doi: 10.1186/
s13059-019-1891-0. URL https://doi.org/10.1186/s13059-019-1891-0. [pages 103
and 104.]

[170] Miten Jain, Hugh E. Olsen, Benedict Paten, and Mark Akeson. The Oxford Nanopore
MinION: delivery of nanopore sequencing to the genomics community. Genome Biology,
17(1):239, November 2016. ISSN 1474-760X. doi: 10.1186/s13059-016-1103-0. URL
https://doi.org/10.1186/s13059-016-1103-0. [page 103.]

[171] Karel Břinda, Maciej Sykulski, and Gregory Kucherov. Spaced seeds improve k-mer-based
metagenomic classification. Bioinformatics, 31(22):3584–3592, November 2015. ISSN 1367-
4803. doi: 10.1093/bioinformatics/btv419. URL https://doi.org/10.1093/bioinfor

matics/btv419. [page 104.]

[172] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2012. [page 104.]

[173] Märt Roosaare, Mihkel Vaher, Lauris Kaplinski, Märt Möls, Reidar Andreson, Maarja
Lepamets, Triinu Kõressaar, Paul Naaber, Siiri Kõljalg, and Maido Remm. StrainSeeker:
fast identification of bacterial strains from raw sequencing reads using user-provided guide
trees. PeerJ, 5:e3353, 2017. ISSN 2167-8359. doi: 10.7717/peerj.3353. [page 104.]

[174] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
R. Durbin, and 1000 Genome Project Data Processing Subgroup. The Sequence Align-
ment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079, August 2009. ISSN
1367-4803, 1460-2059. doi: 10.1093/bioinformatics/btp352. URL https://academic

.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp352.
[page 106.]

[175] James K Bonfield, John Marshall, Petr Danecek, Heng Li, Valeriu Ohan, Andrew
Whitwham, Thomas Keane, and Robert M Davies. HTSlib: C library for reading/writ-

140

https://genome.cshlp.org/content/early/2016/11/16/gr.210641.116
https://genome.cshlp.org/content/early/2016/11/16/gr.210641.116
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1093/bioinformatics/btv419
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp352
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp352

ing high-throughput sequencing data. GigaScience, 10(2):giab007, February 2021. ISSN
2047-217X. doi: 10.1093/gigascience/giab007. URL https://doi.org/10.1093/gigasc

ience/giab007. [page 106.]

[176] James A. Fellows Yates, Aida Andrades Valtueña, Åshild J. Vågene, Becky Cribdon,
Irina M. Velsko, Maxime Borry, Miriam J. Bravo-Lopez, Antonio Fernandez-Guerra,
Eleanor J. Green, Shreya L. Ramachandran, Peter D. Heintzman, Maria A. Spyrou,
Alexander Hübner, Abigail S. Gancz, Jessica Hider, Aurora F. Allshouse, Valentina
Zaro, and Christina Warinner. Community-curated and standardised metadata of pub-
lished ancient metagenomic samples with AncientMetagenomeDir. Scientific Data, 8
(1):31, January 2021. ISSN 2052-4463. doi: 10.1038/s41597-021-00816-y. URL
https://www.nature.com/articles/s41597-021-00816-y. Number: 1 Publisher:
Nature Publishing Group. [page 108.]

[177] Stéphane Peyrégne and Kay Prüfer. Present-Day DNA Contamination in Ancient DNA
Datasets. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology,
42(9):e2000081, September 2020. ISSN 1521-1878. doi: 10.1002/bies.202000081. [page 108.]

[178] Jordan J. McGhee, Nick Rawson, Barbara A. Bailey, Antonio Fernandez-Guerra, Laura
Sisk-Hackworth, and Scott T. Kelley. Meta-SourceTracker: application of Bayesian source
tracking to shotgun metagenomics. PeerJ, 8:e8783, March 2020. ISSN 2167-8359. doi: 10
.7717/peerj.8783. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100590/.
[pages 108 and 109.]

[179] Liat Shenhav, Mike Thompson, Tyler A. Joseph, Leah Briscoe, Ori Furman, David
Bogumil, Itzhak Mizrahi, Itsik Pe’er, and Eran Halperin. FEAST: fast expectation-
maximization for microbial source tracking. Nature Methods, 16(7):627–632, July 2019.
ISSN 1548-7105. doi: 10.1038/s41592-019-0431-x. URL https://www.nature.com/art

icles/s41592-019-0431-x. Number: 7 Publisher: Nature Publishing Group. [pages 108
and 109.]

[180] Shahbaz Raza, Jungman Kim, Michael J. Sadowsky, and Tatsuya Unno. Microbial source
tracking using metagenomics and other new technologies. Journal of Microbiology, 59
(3):259–269, March 2021. ISSN 1976-3794. doi: 10.1007/s12275-021-0668-9. URL
https://doi.org/10.1007/s12275-021-0668-9. [page 108.]

[181] Edoardo Pasolli, Lucas Schiffer, Paolo Manghi, Audrey Renson, Valerie Obenchain,
Duy Tin Truong, Francesco Beghini, Faizan Malik, Marcel Ramos, Jennifer B. Dowd,
Curtis Huttenhower, Martin Morgan, Nicola Segata, and Levi Waldron. Accessible, cu-
rated metagenomic data through ExperimentHub. Nature Methods, 14(11):1023–1024,

141

https://doi.org/10.1093/gigascience/giab007
https://doi.org/10.1093/gigascience/giab007
https://www.nature.com/articles/s41597-021-00816-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100590/
https://www.nature.com/articles/s41592-019-0431-x
https://www.nature.com/articles/s41592-019-0431-x
https://doi.org/10.1007/s12275-021-0668-9

November 2017. ISSN 1548-7105. doi: 10.1038/nmeth.4468. URL https://www.nature.c

om/articles/nmeth.4468. Number: 11 Publisher: Nature Publishing Group. [page 108.]

[182] Jonas Coelho Kasmanas, Alexander Bartholomäus, Felipe Borim Corrêa, Tamara Tal, Nico
Jehmlich, Gunda Herberth, Martin von Bergen, Peter F. Stadler, André Carlos Ponce de
Leon Ferreira de Carvalho, and Ulisses Nunes da Rocha. HumanMetagenomeDB: a public
repository of curated and standardized metadata for human metagenomes. Nucleic Acids
Research, 49(D1):D743–D750, January 2021. ISSN 1362-4962. doi: 10.1093/nar/gkaa1031.
[page 108.]

[183] Alex L. Mitchell, Alexandre Almeida, Martin Beracochea, Miguel Boland, Josephine Bur-
gin, Guy Cochrane, Michael R. Crusoe, Varsha Kale, Simon C. Potter, Lorna J. Richard-
son, Ekaterina Sakharova, Maxim Scheremetjew, Anton Korobeynikov, Alex Shlemov,
Olga Kunyavskaya, Alla Lapidus, and Robert D. Finn. MGnify: the microbiome anal-
ysis resource in 2020. Nucleic Acids Research, 48(D1):D570–D578, January 2020. ISSN
1362-4962. doi: 10.1093/nar/gkz1035. [page 108.]

[184] Enrico Seiler, Svenja Mehringer, Mitra Darvish, Etienne Turc, and Knut Reinert. Rap-
tor: A fast and space-efficient pre-filter for querying very large collections of nucleotide
sequences. iScience, 24(7):102782, July 2021. ISSN 2589-0042. doi: 10.1016/j.isci.2021.10
2782. URL https://www.sciencedirect.com/science/article/pii/S2589004221007

501. [page 111.]

142

https://www.nature.com/articles/nmeth.4468
https://www.nature.com/articles/nmeth.4468
https://www.sciencedirect.com/science/article/pii/S2589004221007501
https://www.sciencedirect.com/science/article/pii/S2589004221007501

LIST OF PUBLICATIONS

[1] Téo Lemane, Rayan Chikhi, and Pierre Peterlongo. kmdiff, large-scale and user-friendly
differential k-mer analyses. Bioinformatics, Oct 2022. ISSN 1367-4803. doi: 10.1093/bioinf
ormatics/btac689.

[2] Camila Duitama Gonzàles, Riccardo Vicedomini, Téo Lemane, Nicolas Rascovan, Hugues
Richard, and Rayan Chikhi. Microbial source tracking for contamination assessment of
ancient oral samples using k-mer-based methods. Microbiome, Submitted.

[3] Yoann Dufresne, Téo Lemane, Pierre Marijon, Pierre Peterlongo, Amatur Rahman, Marek
Kokot, Paul Medvedev, Sebastian Deorowicz, and Rayan Chikhi. The k-mer file format: a
standardized and compact disk representation of sets of k-mers. Bioinformatics, Jul 2022.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btac528.

[4] Téo Lemane, Paul Medvedev, Rayan Chikhi, and Pierre Peterlongo. kmtricks: Efficient and
flexible construction of Bloom filters for large sequencing data collections. Bioinformatics
Advances, 2022. ISSN 2635-0041. doi: 10.1093/bioadv/vbac029.

[5] Grégoire Siekaniec, Emeline Roux, Téo Lemane, Eric Guédon, and Jacques Nicolas. Identi-
fication of isolated or mixed strains from long reads: a challenge met on Streptococcus ther-
mophilus using a MinION sequencer. Microbial Genomics, 7(11):654, 2021. ISSN 20575858.
doi: 10.1099/MGEN.0.000654.

143

Titre : Indexation et analyse de grandes collections de séquençages via des matrices de k-mers

Mot clés : Séquençage, k-mer, matrice de k-mers, indexation

Résumé : Le 21ème siècle subit un tsunami
de données dans de nombreux domaines, no-
tamment en bio-informatique. Ce changement de
paradigme nécessite le développement de nou-
velles méthodes de traitement capables de pas-
ser à l’échelle sur de telles données. Ce travail
consiste principalement à considérer des jeux de
données massifs provenant du séquençage gé-
nomique. Une façon courante de traiter ces don-
nées est de les représenter comme un ensemble
de mots de taille fixe, appelés k-mers. Les k-mers
sont très largement utilisés comme éléments de
bases par de nombreuses méthodes d’analyses de
données de séquençages. L’enjeu est de pouvoir
représenter les k-mers et leurs abondances dans
un grand nombre de jeux de données. Une possi-
bilité est la matrice de k-mers, où chaque ligne est
un k-mer associé à un vecteur d’abondances. Ces
k-mers sont erronées en raison des erreurs de sé-
quençage et doivent être filtrés. La technique habi-

tuelle consiste à écarter les k-mers peu abondants.
Sur des ensembles de données complexes comme
les métagénomes, un tel filtre n’est pas efficace et
élimine un trop grand nombre de k-mers. La vision
des abondances à travers les échantillons permise
par la représentation matricielle permet également
une nouvelle procédure de détection des erreurs
dans les jeux de données complexes. En résumé,
nous explorons le concept de matrice de k-mer
et montrons ses capacités en termes de passage
à l’échelle au travers de diverses applications, de
l’indexation à l’analyse, et proposons différents ou-
tils à cette fin. Sur le plan de l’indexation, nos ou-
tils ont permis d’indexer un grand ensemble méta-
génomique du projet Tara Ocean tout en conser-
vant des k-mers rares, habituellement écartés par
les techniques de filtrage classiques. En matière
d’analyse, notre technique de construction de ma-
trices permet d’accélérer d’un ordre de grandeur
l’analyse différentielle de k-mers.

Title: Indexing and analysis of large sequencing collections using k-mer matrices

Keywords: sequencing, k-mer, k-mer matrix, indexing

Abstract: The 21st century is bringing a tsunami
of data in many fields, especially in bioinformat-
ics. This paradigm shift requires the development
of new processing methods capable of scaling up
on such data. This work consists mainly in consid-
ering massive tera-scaled datasets from genomic
sequencing. A common way to process these data
is to represent them as a set of words of a fixed
size, called k-mers. The k-mers are widely used
as building blocks by many sequencing data anal-
ysis techniques. The challenge is to be able to
represent the k-mers and their abundances in a
large number of datasets. One possibility is the
k-mer matrix, where each row is a k-mer associ-
ated with a vector of abundances and each column
corresponds to a sample. Some k-mers are erro-
neous due to sequencing errors and must be dis-
carded. The usual technique consists in discarding

low-abundant k-mers. On complex datasets such
as metagenomes, such a filter is not efficient and
discards too many k-mers. The holistic view of
abundances across samples allowed by the ma-
trix representation also enables a new procedure
for error detection on such datasets. In summary,
we explore the concept of k-mer matrix and show
its scalability in various applications, from index-
ing to analysis, and propose different tools for this
purpose. On the indexing side, our tools have al-
lowed indexing a large metagenomic dataset from
the Tara Ocean project while keeping additional k-
mers, usually discarded by the classical k-mer fil-
tering technique. The next and important step is to
make the index publicly available. On the analysis
side, our matrix construction technique enables to
speed up a differential k-mer analysis of a state-of-
the-art tool by an order of magnitude.

	Les matrices de k-mers
	kmtricks: un outil de construction et d'analyse de matrice de k-mers
	L'analyse différentielle de k-mers à grande échelle
	L'indexation de k-mers à grande échelle

	List of acronyms

	List of figures
	List of tables
	Introduction
	Biological data: a sequence point of view
	Sequencing
	First generation sequencing
	Next generation sequencing
	Third generation sequencing
	From the k-mers point of view

	Analysis methods
	Reference-based
	Reference-free

	Challenges
	The continuous growth of data
	Making the raw data talk

	Outline

	State of the art
	Sequence indexing
	The need for succinctness
	Query
	Assembled sequences indexing
	Indexing sequencing collections
	Core data structures
	Exact representations
	Approximate Membership Query Filters
	Bloom
	Cuckoo
	Quotient
	Back to simplicity

	Indexing methods
	Color-aggregative
	k-mer-aggregative
	Bloom filter matrix family
	Sequence Bloom Tree family

	A story of trade-offs

	Querying method
	Naive k-mer queries
	Findere

	Sequence analysis: differential k-mer analysis
	k-mer counting
	In-memory counting
	Disk-based counting

	Conlusion

	The k-mer matrix representation
	A screening of raw sequencing collections
	Construction
	Partitioning
	Counting
	Merging

	Perspectives
	Sequencing errors filtering
	Indexing
	Analysis

	Large-scale differential k-mer analysis
	Matrix-based differential k-mer analysis
	The kmdiff pipeline
	About the usage

	Experiments
	Benchmark environment
	Ampicillin resistance
	Scaling capabilities on human cohorts

	Large-scale indexing
	From k-mer matrix to Bloom filters matrix
	Fast Bloom filter construction
	Partitioned Bloom filter matrix construction
	Partitioning
	Counting
	Merging
	Without rescue
	With rescue

	Indexing

	Indexing a human RNA-seq collection
	Benchmark environment
	Performance comparisons
	Empirical false positive rates analysis

	Scaling up to a large sea water metagenome collection
	The Tara Ocean Project
	Benchmark environment
	Indexing the bacterial fraction of Tara Ocean data
	Benchmarks
	Collection-aware k-mer filtering
	Queries

	kmtricks: a k-mer matrix framework
	Rationale
	Features
	Pipeline
	Modules
	Computation modules
	Utility modules
	Indexing modules
	SOCKS interface

	API
	Sequence
	I/Os
	Matrix streaming
	Task system

	Plugins

	Practical usage example
	Using the API
	Using the plugin system

	Implementation details
	I/O
	Bit-matrix transposition
	Concatenation of partitioned Bloom filters

	Other contributions
	Identification of isolated or mixed strains from long reads: a challenge met on Streptococcus thermophilus using a MinION sequencer
	The K-mer File Format : a standardized and compact disk representation of sets of k-mers
	decOM: Similarity-based microbial source tracking of ancient oral samples using k-mer-based methods

	Conclusion and perspectives
	Towards k-mer-based variants detection
	Towards a partitioned HowDeSBT
	A public Tara Ocean index

	Bibliography
	List of publications

