
HAL Id: tel-04186198
https://theses.hal.science/tel-04186198

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing and Efficiently Leveraging the Generalisation
Abilities of Multimodal Models

Romain Bielawski

To cite this version:
Romain Bielawski. Assessing and Efficiently Leveraging the Generalisation Abilities of Multimodal
Models. Library and information sciences. Université Paul Sabatier - Toulouse III, 2022. English.
�NNT : 2022TOU30275�. �tel-04186198�

https://theses.hal.science/tel-04186198
https://hal.archives-ouvertes.fr


THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

 

Présentée et soutenue par

Romain BIELAWSKI

Le 5 décembre 2022

Evaluation et Utilisation Efficace des Capacités de Généralisation
des Modèles Multimodaux

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications 

Unité de recherche :
CERCO - Centre de Recherche Cerveau et Cognition 

Thèse dirigée par
Rufin VANRULLEN et Tim VAN DE CRUYS

Jury
Mme Elisabeth ANDRé, Rapporteure

M. Emmanuel DELLANDRéA, Rapporteur
M. Rufin VANRULLEN, Directeur de thèse

M. Tim VAN DE CRUYS, Co-directeur de thèse
Mme Justine CASSELL, Présidente



2

Avant de commencer, permettez-moi de vous dire que je suis ravi d’avoir

terminé cette thèse. Il était temps. Et maintenant, je vais devoir remercier les gens

qui m’ont aidé à en arriver là.

Mes parents. Merci de m’avoir donné la vie, et merci de m’avoir donné de

bonnes raisons de ne pas la quitter quand j’ai commencé à travailler sur cette thèse.

Votre soutien moral et financier pendant mes longues années d’études a été très

apprécié.

Titouan. Merci de m’avoir laissé la plus grande chambre dans la coloc. Merci

de m’avoir supporté pendant le confinement. Merci d’avoir écouté mes inter-

minables élucubrations théoriques (je ne parle pas d’informatique).

Mon directeur de thèse, Rufin. Merci d’un jour être entré dans le bureau où

j’effectuais mon stage de fin d’études, me questionnant sur mon avenir, et de

m’avoir dit : « J’ai une thèse. Tu veux une thèse ? » J’ai failli refuser. Merci

pour nos immanquables discussions hebdomadaires, pour m’avoir laissé suivre

mes intuitions et mes envies, et – c’est ce qui fait de toi un directeur de thèse

exceptionnel – pour avoir toujours su comment me guider et me conseiller. Merci

pour le wakeboard, le beach-volley et les barbecues. Merci pour l’inspiration

capillaire.

Mon autre directeur de thèse, Tim. Merci pour ta gentillesse, tes conseils, et

merci d’avoir continué à m’aider après ton déménagement en Belgique.

Evidemment, Benjamin. Premier auteur de mon premier article scientifique

publié. Merci d’avoir travaillé avec moi pendant presque trois ans. Sans toi,

j’aurais sans doute beaucoup plus cherché et beaucoup moins trouvé. Et qui aurait

pu prendre si bien soin de notre chère Anita ? Merci d’avoir été là jusqu’à la fin

de cette épreuve.



3

Enfin, merci à tout le CerCo pour son accueil, pour le télétravail, et surtout

pour les mémorables écoles d’été et d’hiver. Merci à tous mes anciens collègues,

dont certains sont aujourd’hui des amis. Merci à mes autres amis, j’espère ne

jamais vous avoir comme collègues.

Voilà, mes chers compatriote, mes chers collègues, mes chers amis, mes chers

ennemis (s’il y en a), mes chères ex, mes chers inconnus qui sont arrivés ici par

hasard, merci de m’avoir accompagné dans cette aventure et d’avoir lu autant de

fois le mot « merci » sans vous lasser. Et si vous décidez de vous priver du plaisir

de lire ce manuscrit en entier, ce n’est pas grave. On ne peut pas tout avoir dans la

vie. En tout cas, moi j’ai un doctorat. C’est pas trop tôt.



4

Abstract

As larger multimodal datasets are becoming available on the web, the possibility for

better, more human-like multimodal models grows. My research goal is to evaluate

what multimodality brings to machine representation of data, especially when it

comes to generalizing in one or two modalities (image and/or text), as well as to

find ways of improving the quality of the latent space of multimodal algorithms.

Bigger datasets and larger computational power enable better algorithms to be

developed, but in this project, I aim at using as little data as possible, with as few

annotations as possible, to improve the multimodal representation of pretrained

algorithms.

There has been great progress in multimodal dataset availability, mostly due to

the possibility of extracting information from big unstructured data on the web.

The attention networks, originally designed for text only, have proven successful

in their capacity for merging data. Most recently, the contrastive learning objective

applied on hundreds of millions of annotated images has provided State-of-the-Art

(SOTA) results. However, the standard methods and evaluations in the multimodal

field have two shortcomings: The generalisation abilities of models trained multi-

modally are yet to be determined and there is no computationally cheap way, both

in terms of data and power, to improve or leverage the latent space abilities of

these cost-expensive algorithm on a tasks such as image captioning

In this thesis, after an introductory chapter on the unimodal and the multimodal

field (Chapter 3), the first shortcoming is addressed by our evaluation tasks, that

can be applied to other networks in order to compare the generalisation ability of

any image and/or text model, and that are presented in Chapter 4 and 5. Part of the
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second issue is dealt with using our Latent CycleGAN in Chapter 6, which is very

cost-effective, and which improves a more straightfoward captioning pipeline with

unmatched multimodal data.
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Chapter 1

Résumé en Français

1.1 Aperçu

À mesure que de plus grands ensembles de données multimodaux deviennent

disponibles sur le Web, la possibilité de développer de meilleurs modèles mul-

timodaux, plus humains, augmente. Mon objectif de recherche est d’évaluer ce

que la multimodalité apporte à la représentation des données par les machines,

notamment lorsqu’il s’agit de généraliser dans une ou deux modalités (image et/ou

texte), ainsi que de trouver des moyens d’améliorer la qualité de l’espace latent

des algorithmes multimodaux. De plus grands ensembles de données et une plus

grande puissance de calcul permettent certes de développer de meilleurs algo-

rithmes, mais dans ce projet, je vise à utiliser le moins de données possible, avec

le moins d’annotations possible, pour améliorer la représentation multimodale

d’algorithmes préentraînés.

De grands progrès ont été faits en ce qui concerne la disponibilité des ensembles

de données multimodaux, principalement en raison de la possibilité d’extraire des

17
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informations à partir de données volumineuses, non structurées, sur le Web. Les

réseaux attentionnels, conçus à l’origine uniquement pour le texte, ont fait leurs

preuves dans leur capacité à fusionner les données. Plus récemment, l’objectif

d’apprentissage contrastif appliqué sur des centaines de millions d’images annotées

a fourni des résultats State-of-the-Art (SOTA). Cependant, les méthodes et les

évaluations standards dans le domaine multimodal présentent deux lacunes :

• Les capacités de généralisation des modèles formés de manière multimodale

restent à déterminer

• Il n’existe aucun moyen de calcul bon marché, à la fois en termes de données

et de puissance, pour améliorer ou exploiter les capacités des espaces latents

de ces algorithmes sur des tâches telles que la description d’images.

Dans cette thèse, la première lacune est abordée par nos tâches d’évaluation,

qui peuvent être appliquées à d’autres réseaux afin de comparer la capacité de

généralisation de n’importe quel modèle d’image et/ou de texte. Une partie

du deuxième problème est traitée à l’aide de notre CycleGAN Latent (Latent

CycleGAN), qui est très rentable et qui améliore une méthode de description plus

simple avec des données multimodales non-appairées.

1.2 Apports de cette thèse

La plupart des modèles d’apprentissage profond multimodaux sont conçus sans

tenir compte de ce qui a été réellement « appris » par le modèle. En effet, lorsqu’un

modèle a été entraîné sur des centaines de millions d’échantillons, il est évalué
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sur certaines tâches standards, et s’il fonctionne bien, alors le modèle est dit

satisfaisant. C’est une façon légitime d’évaluer la qualité d’une représentation,

mais dans cette thèse, nous voulons sonder plus profondément le cerveau des

machines. C’est-à-dire que nous allons évaluer de manière plus fine les capac-

ités de généralisation des modèles multimodaux (versus unimodaux). De plus,

lorsqu’un modèle est utilisé pour une tâche en aval, la quantité de données et

d’annotations nécessaires au finetuning (affinement des paramètres du réseau) est

souvent considérée comme non pertinente, tant que la tâche peut être effectuée

avec le meilleur score possible. Nous voulons également dans cette thèse max-

imiser le rapport coût-efficacité en tirant parti des propriétés de l’espace latent

obtenues avec un préentraînement déjà coûteux en calcul, en développant des

méthodes qui nécessitent peu de données et peu d’annotations. Pour ces deux

objectifs, nous allons utiliser un algorithme bimodal qui est devenu, dès sa sortie,

un classique : CLIP.

1.3 Des modèles unimodaux aux modèles
multimodaux

L’expérience humaine est essentiellement multimodale. Pourtant, la plupart des

algorithmes actuels ne peuvent traiter qu’un seul type de données. Cela donne

les différents domaines de l’Artificial Intelligence (AI) : Computer Vision (CV),

Natural Language Processing (NLP)... Dans ces domaines, les algorithmes sont

entraînés sur des jeux de données unimodaux (MNIST [Deng, 2012], ImageNet

[Deng et al., 2009] , CIFAR [Krizhevsky et al., ] pour la CV ; Wikipedia, Com-



20 CHAPTER 1. RÉSUMÉ EN FRANÇAIS

mon Crawl, Book Corpus pour le NLP), généralement avec une seule tâche

d’apprentissage. Parfois, leur compréhension est spécialisée pour cette seule

tâche et ne peut pas être transférée à une autre – ou avec de très mauvais ré-

sultats. De nos jours, la plupart des algorithmes SOTA sont en fait préen-

traînés sur un grand ensemble de données (plusieurs millions d’échantillons)

et sur une tâche générale (reconnaissance ou segmentation d’objets pour la vi-

sion [Kolesnikov et al., 2019, He et al., 2015], inférer un mot manquant dans une

phrase ou évaluer si deux phrases se succèdent dans un texte pour le langage

[Devlin et al., 2018]) qui leur permettent de comprendre de nombreux aspects de

la modalité. Après ce préentraînement, les algorithmes sont ensuite affinés (fine-

tuned), pour spécialiser leur représentation, pour d’autres tâches plus spécifiques.

De grands ensembles de données unimodales sont disponibles depuis des années,

permettant aux scientifiques de développer des modèles avec des caractéristiques

robustes, qui peuvent généraliser à de nombreuses tâches dans leur modalité.

Si nous voulons aller plus loin dans la création d’algorithmes capables

d’apprendre des fonctionnalités qui s’adaptent à diverses conditions – tout comme

l’homme peut le faire – nous devons introduire de la multimodalité. Ce n’est

qu’une étape sur la voie de la création de machines intelligentes comme les robots.

[Bisk et al., 2020] expose les étapes passées et futures en vue de la création d’une

intelligence de type humain, en partant d’une perspective de traitement du langage

naturel. Elles sont au nombre de cinq, et sont appelées World Scopes. Chacune

constitue une extension des composantes du monde auxquels un algorithme peut

accéder afin de les traiter conjointement avec les autres. Ce sont les suivantes :

• WS1: Corpus (Notre passé)
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• WS2: Internet (La plupart du NLP récent)

• WS3: Perception Le NLP multimodal)

• WS4: Incarnation

• WS5: Social

Les deux premiers World Scope sont dans le domaine du NLP unimodal.

Les modèles SOTA NLP actuels ont un World Scope qui s’arrête à l’étape 2, ce

qui signifie qu’ils sont entraînés avec un grand ensemble de données textuelles

extraites du Web.

Le domaine de l’AI évolue désormais vers la multimodalité. La réalisation de

cette étape aboutira à des modèles capables d’ancrer leur représentation linguis-

tique dans d’autres domaines perceptifs, conduisant à une compréhension plus

riche, plus subtile et plus robuste du monde.

Au-delà de ce point, nous entrons dans la science-fiction. Le World Scope

incarnation correspond à la robotique, qui est maintenant principalement un do-

maine distinct, avec peu d’interactions (mais celles-ci augmentent) avec l’AI

[Mehlmann et al., 2014] multimodale. Un corps physique rendra l’AI plus hu-

maine ou animale, avec une proprioception et peut-être des sensations positives

et négatives comme la douleur et le plaisir. La portée sociale correspond au

moment où le modèle va apprendre à interagir directement avec d’autres êtres

sociaux, avec des notions de réactions émotionnelles, d’empathie, de hiérar-

chie sociale, et à développer des comportements sociaux tel le regard social

[Bee et al., 2010, Cassell et al., 1994, Cassell and Thórisson, 1999].
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La disponibilité de grands jeux de données multimodaux étant très ré-

cente, ce n’est que maintenant que nous pouvons créer des modèles mul-

timodaux comparables, en terme de nombre d’échantillons d’apprentissage

[Lai, ], à des modèles unimodaux (voir les chapitres 4 et 5). Avant cela,

l’ensemble d’apprentissage de l’algorithme multimodal était très restreint (COCO

[Lin et al., 2014], Conceptual Caption [Sharma et al., 2018a], LIRIS-ACCEDE

[Baveye et al., 2015]) et bien que les modèles puissent obtenir de bons résultats sur

certaines tâches, les fonctionnalités multimodales apprises par eux n’étaient sou-

vent pas utilisables pour d’autres tâches [Devillers et al., 2021]. Ce type de mod-

èles comprend : Virtex [Desai and Johnson, 2020], SimVLM [Wang et al., 2021],

Frozen [Tsimpoukelli et al., 2021], BUTD [Anderson et al., 2017] et Dall-E 2

[Ramesh et al., 2022] entre autres.

1.4 Problématique

Lors de l’évaluation des capacités de généralisation des modèles multimodaux, il

convient de déterminer sur quelle tâche et dans quel cadre celles-ci s’effectuent.

La comparaison que nous voulons effectuer, car nous la considérons comme la

comparaison de base, est entre les modèles unimodaux et multimodaux. Pour

ce faire, nous voulons des modèles multimodaux capables de représenter des

données unimodales avec un minimum de dégradation lors de l’extraction des

caractéristiques. Cela nous guide vers des modèles de représentation coordonnés,

où deux pipelines unimodales s’informent mutuellement lors de l’apprentissage,

mais où à l’inférence, chaque pipeline est en fait indépendante, ce qui n’est pas le
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cas dans les modèles de fusion, où il faut des échantillons issus des deux modalités

pour créer une représentation fonctionnelle. C’est pourquoi CLIP sera si central

dans notre thèse.

De plus, nous verrons avec MirrorGAN que la cohérence de cycle peut être

utilisée dans un cadre multimodal. Même si dans le cas de MirrorGAN, les

données sont appairées, nous verrons dans l’article CycleGAN (qui est conçu

pour la traduction unimodale entre deux distributions d’images) qu’en fait, les

données appariées ne sont pas nécessaires et que le principe de cohérence du

cycle fonctionne en lui-même. Ces deux modèles nous aideront à concevoir un

modèle de traduction multimodale dans l’espace latent de CLIP, qui nous permettra

d’effectuer de la description d’images avec un apprentissage non supervisé, en

tirant parti de la multimodalité déjà présente dans les représentations latentes de

CLIP.

1.5 Evaluation des capacités de généralisation sur
des tâches visuelles standards

L’apprentissage des modèles de vision à l’aide de la supervision linguistique a

gagné en popularité [Quattoni et al., 2007, Srivastava et al., 2012, Frome et al., 2013,

Joulin et al., 2016b, Pham et al., 2019, Desai and Johnson, 2020, Hu and Singh, 2021,

Radford et al., 2021, Sariyildiz et al., 2020a] pour deux raisons principales : pre-

mièrement l’entraînement visio-linguistique permet de créer des ensembles

de données d’entraînement massifs à partir de données en ligne facilement

disponibles, sans annotation manuelle ; deuxièmement, le langage fournit des
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informations sémantiques supplémentaires qui ne peuvent pas être déduites à partir

d’ensembles de données uniquement visuels, ce qui pourrait aider à l’ancrage

sémantique des caractéristiques visuelles.

Récemment [Radford et al., 2021] a introduit CLIP, un modèle de langage

et de vision qui montre des capacités d’apprentissage instantanées (zero-shot)

exceptionnelles sur de nombreuses tâches et des capacités d’apprentissage par

transfert (transfer learning) convaincantes. Un rapport récent [Goh et al., 2021]

a montré que CLIP produit des schémas de sélectivité neuronale comparables

aux cellules conceptuelles « multimodales » observées dans le cerveau humain

[Quiroga et al., 2005, Reddy and Thorpe, 2014]. À partir de ces résultats, il est

tentant de supposer que les propriétés de généralisation du CLIP découlent de

l’ancrage sémantique fourni par la formation conjointe vision-langage.

Dans cette thèse, nous montrons que CLIP et d’autres modèles de langage de vi-

sion ne fonctionnent pas mieux que les modèles de vision uniquement, entièrement

supervisés sur un certain nombre de paramètres de généralisation et d’ensembles de

données. L’analyse de la similarité des représentations [Kriegeskorte et al., 2008]

révèle que les représentations multimodales qui émergent à travers l’apprentissage

du langage visuel sont différentes à la fois des représentations linguistiques et

visuelles et donc peut-être inadaptées à l’apprentissage par transfert pour nou-

velles tâches visuelles. En conclusion, des travaux supplémentaires sur les fonde-

ments linguistiques sont encore nécessaires, s’il s’agit d’améliorer les capacités de

généralisation des modèles de vision.
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1.6 Evaluation des capacités de généralisation sur
des tâches centrées sur l’humain

La préformation du langage de la vision dans les réseaux de neurones gagne

en popularité en raison de l’intérêt croissant pour les tâches multimodales

telles que le Visual Question Answering (Réponse à des question visuelles) ou

la description d’images [Anderson et al., 2017, Lu et al., 2019, Li et al., 2019,

Singh et al., 2019], mais aussi de la disponibilité de ressources en ligne qui

permettent de construire des ensembles de données d’entraînement à grande

échelle sans annotations manuelles [Radford et al., 2021, Jia et al., 2021]. En

théorie, entraîner un modèle sur des données multimodales devrait permettre

d’améliorer sa représentation des données de chacune des modalités. Pour un

modèle image-texte, par exemple, les caractéristiques de l’image pourraient être

enrichies par l’abstraction des données linguistiques – la propriété d’ancrage

sémantique –, et inversement, les caractéristiques linguistiques pourraient gagner

en information grâce à l’ancrage visuel [Harnad, 1990].

Malheureusement, cela ne se produit pas toujours dans la pratique.

Récemment, [Devillers et al., 2021] a évalué les capacités de généralisa-

tion visuelle de CLIP [Radford et al., 2021], un réseau populaire entraîné

avec un objectif d’apprentissage contrastif sur plus de 400 millions de paires

de légendes d’images extraites du Web, et d’autres modèles multimodaux

[Sariyildiz et al., 2020b, Desai and Johnson, 2020]. Ils ont montré que pour les

tâches de classification d’objets standard (par exemple, classification de chiffres,

d’articles de mode ou d’images naturelles), les réseaux multimodaux comme



26 CHAPTER 1. RÉSUMÉ EN FRANÇAIS

CLIP étaient sous-performants par rapport à d’autres modèles unimodaux (vision

uniquement) comme BiT-M [Kolesnikov et al., 2019] dans l’apprentissage par

transfert, l’apprentissage avec peu d’exemples et l’apprentissage non supervisé. Ici,

nous revisitons cette question en utilisant des ensembles de données se concentrant

sur des concepts plus « centrés sur l’humain ».

L’apprentissage humain implique généralement une interaction avec des don-

nées multimodales. Ainsi, on pourrait s’attendre à ce que les représentations CLIP

des images et du texte soient d’une certaine façon plus proches des représentations

humaines que celles apprises par les modèles unimodaux. De plus, étant donné que

CLIP a été entraîné sur des paires image-description provenant de diverses sources

sur Internet (y compris les réseaux sociaux), nous pouvons supposer qu’une par-

tie importante de ses légendes d’entraînement a été écrite par des humains pour

d’autres humains. Ceci est différent des ensembles de données de vision standard,

dans lesquels les étiquettes ou les annotations sont parfois générées par l’homme

(par exemple via le Mechanical Turk d’Amazon), mais toujours produites à des fins

d’apprentissage automatique. Encore une fois, cette différence devrait rapprocher

les représentations de CLIP des représentations humaines par rapport aux modèles

unimodaux. Ainsi, il devrait exister au moins quelques tâches spécifiques pour

lesquelles l’entraînement multimodal de CLIP offre des avantages par rapport

aux modèles unimodaux. Par exemple, considérons la tâche consistant à attribuer

un genre à un film en fonction de son affiche et de son titre. Cela nécessite de

récupérer des informations fines sur, entre autres, l’aspect artistique, émotionnel

ou stylistique d’une image ou d’un texte (ou les deux). Cela ne peut être correcte-

ment réalisé que si la formation du modèle offrait une exposition appropriée à ces

concepts centrés sur l’humain. Ici, nous utilisons le terme centré sur l’humain
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chaque fois qu’un concept fait référence à des composantes culturelles, sociales,

esthétiques et/ou affectives du monde.

Nous ferons donc l’hypothèse que CLIP devrait être plus performant que les

modèles unimodaux dans les tâches de généralisation impliquant des concepts

centrés sur l’humain. Nous évaluerons cette hypothèse sur trois tâches impliquant

de tels concepts centrés sur l’humain : l’analyse des sentiments sur les tweets ;

la classification des genres de livres; la classification de genre des films. Toutes

les tâches peuvent être effectuées sur la base de données visuelles (images), de

données textuelles (tweet, titre de livre ou de film, résumé de l’intrigue du film), ou

les deux. Pour la classification des genres de films, nous introduirons un nouveau

jeu de données multimodal à grande échelle obtenu par un balayage sur The Movie

Database (TMDb). Comme détaillé ci-après, nous constaterons que CLIP surpasse

les modèles unimodaux dans la classification visuelle et textuelle, ainsi que les

combinaisons par paires de ces modèles unimodaux dans le cas de la classification

multimodale (image + texte). Par conséquent, CLIP établit un nouveau SOTA sur

ces tâches.

1.7 Amélioration de la description d’image grâce au
CycleGAN Latent

La multimodalité gagne en popularité grâce aux ressources en ligne récemment

disponibles qui permettent la création d’énormes ensembles de données visio-

linguistiques [Jia et al., 2021]. De nombreux modèles ont été créés pour effectuer

des tâches bimodales spécifiques telles que le Visual Question Answering ou
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la description d’images [Anderson et al., 2017, Lu et al., 2019, Li et al., 2019,

Singh et al., 2019], mais certains ont été conçus avec un objectif plus général

: produire un espace vectoriel latent multimodal où les images et le texte

peuvent être représentés et comparés. Parmi ces modèles, CLIP – un algo-

rithme formé avec un objectif contrastif multimodal sur un grand ensemble

de données (400 millions d’échantillons) de paires de légendes et d’images –

a montré d’impressionnantes capacités d’apprentissage instantané (zero-shot

learning) [Radford et al., 2021]. Ce modèle a récemment été testé sur des tâches

pour lesquelles il n’était pas initialement entraîné, comme l’apprentissage par

transfert (tranfer learning) et l’apprentissage avec peu d’exemples (few-shot

learning) sur des ensembles de données unimodaux et multimodaux, ou la de-

scription d’images, établissant de nouveaux résultats SOTA sur certaines tâches

[Bielawski et al., 2022, Mokady et al., 2021].

Dans le cas spécifique de la description d’images, de nombreuses études

utilisent des modèles préentraînés pour l’encodage des caractéristiques de l’image

ainsi que pour la génération de texte. Cependant, une étape d’ajustement de

bout en bout de l’image à la légende est généralement requise pour aligner les

représentations visuelles et linguistiques de manière supervisée sur un jeu de

données de légende et d’image appariées [Chen et al., 2021, Fang et al., 2021,

Zhou et al., 2019]. Il existe une exception évidente à cette règle : lorsque le

préapprentissage du modèle a déjà aligné les caractéristiques du texte et de l’image

– comme dans le cas de CLIP. Par conséquent, nous viserons ici à tirer parti de

cette propriété en implémentant une pipeline de description qui n’utilise pas de

données appairées.

Nous formerons d’abord un "décodeur de texte CLIP" pour reconstruire des
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légendes basées sur leurs représentation dans l’espace latent de CLIP (un objectif

linguistique unimodal) ; ce décodeur de texte sera ensuite figé. Par conséquent,

nous comparerons une pipeline de description directe – alimentant le décodeur de

texte avec des caractéristiques (features) extraites par CLIP afin de générer une lé-

gende – avec une pipeline où un traducteur inspiré de CycleGAN [Zhu et al., 2017]

– formé avec uniquement des fonctionnalités visuelles et textuelles non appariées –

est utilisé pour convertir des caractéristiques extraites d’images en caractéristiques

de texte avant de les transmettre au décodeur de texte. Même si l’espace latent

de CLIP est déjà préentraîné avec une approche de force brute pour aligner ses

représentations visuelles et linguistiques sur 400 millions de paires de légendes et

d’images, nous démontrerons que notre modèle de conversion de caractéristiques

formé à l’aide de la cohérence de cycle dans l’espace latent de CLIP améliore

considérablement les performances de description par rapport à la méthode directe.

1.8 Bilan

Dans cette thèse, je présente plusieurs façons d’évaluer et d’exploiter efficace-

ment les capacités des modèles multimodaux. Il semble que les types actuels

d’entraînement multimodaux apportent des informations supplémentaires à la

représentation de chaque modalité, mais cela est également préjudiciable à cer-

tains autres égards. Passons en revue quelques avantages et inconvénients de

l’entraînement multimodal mis en évidence dans cette thèse.

La première étude (au chapitre 4) montre que l’entraînement multimodal

n’apporte aucun avantage par rapport à un simple entraînement visuel en matière
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de détection d’objets [Devillers et al., 2021]. Cela n’aide pas non plus pour la

robustesse des modèles. C’est surprenant, car on pourrait attendre deux choses de

la multimodalité :

• Qu’elle améliore la généralisation dans les tâches de vision grâce aux infor-

mations sémantiques incorporées dans le domaine visuel

• Qu’elle améliore la robustesse grâce à la segmentation sémantique (qui évite

par exemple de confondre un chien et un camion sur une image car ils sont

sémantiquement très dissemblables)

Ce qui n’est pas le cas pour les jeux de données visuels standard et ni les

attaques ciblées ni non ciblées.

Un début d’explication vient de l’étude des espaces de représentation textuel,

visuel et bimodal ; les modèles bimodaux ne se situent pas entre les représentations

textuelles et visuelles. Ils constituent leur propre domaine, comme s’ils avaient été

formés sur une troisième modalité qui n’est ni la vision ni le langage.

Par conséquent, cette modalité doit être étudiée et évaluée. Les modèles

multimodaux sont sous-performants sur les tâches visuelles standard, mais offrent

en fait des performances améliorées sur ce que nous avons appelé des tâches «

centrées sur l’humain », du moins pour CLIP, dans des contextes textuels, visuels

et bimodaux. Cela signifie que – probablement en partie étant donné que les

ensembles de données multimodaux sont issus d’Internet, où se produisent des

interactions interhumaines réelles – les modèles multimodaux tels que CLIP sont

plus efficaces lorsque le monde humain est pris en compte et moins lorsque la

tâche est orientée objet.
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Comment tirer efficacement parti du préentraînement
multimodal ?

Une formation multimodale nécessite beaucoup de données annotées pour être

compétitive avec d’autres modèles unimodaux sur des tâches standards. Afin de

générer des représentations correctes, CLIP a dû être entraîné sur 400 millions

de paires image-légende. Cet énorme ensemble de données permet au modèle

d’apprendre des fonctionnalités qui peuvent généraliser – parfois mieux, parfois

moins bien que leur homologue unimodal – et que nous devrions pouvoir utiliser

sans avoir à les réentraîner sur un autre ensemble de données annotées. C’est ce

que nous avons essayé de réaliser avec notre CycleGAN Latent, en créant des

pipelines de description qui fonctionnent sans avoir été formés sur des données

correspondantes (en dehors de la préformation de CLIP) – une telle pipeline ne

fonctionnait pas avec deux modèles unimodaux distincts, ce qui signifie que la

multimodalité est essentielle dans ce contexte.

Cependant, nous restons loin du SOTA, ce qui signifie que l’espace latent de

CLIP ne peut pas être exploité à un coût de calcul très faible avec des perfor-

mances compétitives à l’heure actuelle. Inventer des méthodes d’entraînement

non supervisées qui génèrent des performances SOTA en tirant parti de modèles

préentraînés est un autre défi pour le champ de l’AI multimodale.

Limites

Les résultats de nos études se limitent à une sous-partie des modèles multimodaux

et unimodaux. Nous nous sommes principalement concentrés sur CLIP du côté
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multimodal, sur les ResNets et les transformers d’images entraînés pour la classifi-

cation des images du côté visuel, et sur BERT pour le côté textuel.

Cependant, ces modèles représentent le SOTA actuel dans leurs domaines re-

spectifs. Ils sont également standard en termes d’architecture, en termes d’objectif

de formation et en termes d’ensemble de données de formation. Il n’est pas

possible d’explorer de manière exhaustive toutes les architectures, méthodes et

prétraitements de données qui existent. Nous avons sélectionné nos algorithmes

par le fait qu’ils avaient l’utilisation la plus large et les meilleures performances

dans les métriques standard, ce qui signifie qu’ils représentent l’état actuel du

domaine. Notre objectif était d’explorer les possibilités des modèles SOTA, et la

conclusion que nous tirons sur les modèles multimodaux par rapport aux modèles

unimodaux ne vaut que pour les modèles actuels. À long terme, nous sommes

d’accord avec [Bisk et al., 2020], qui dit essentiellement que les futurs modèles

aura besoin d’être multimodaux – une sorte de multimodal qui n’existe pas encore

– afin d’être compétitifs.

En ce qui concerne notre méthode non supervisée de description d’images à

l’aide de CLIP, une critique évidente pourrait être que nous sommes loin d’atteindre

les performances SOTA. Et en effet, nous ne pouvons pas nous attendre à rivaliser

avec les méthodes d’entraînement supervisée, en particulier avec un petit ensemble

de données comme COCO.

Notre objectif ici était de démontrer qu’un entraînement non supervisée pouvait

conduire à de meilleurs résultats qu’une simple pipeline branchée sur un espace

latent multimodal – une conclusion secondaire étant que l’espace latent de CLIP

n’est en fait pas entièrement multimodal. Cela pourrait également signifier qu’avec

la prochaine génération d’algorithmes multimodaux, la pipeline simple pourrait
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gagner en efficacité. Cela pourrait également signifier que notre méthode non

supervisée pourrait se rapprocher du SOTA en l’appliquant simplement à un espace

multimodal futur.

Néanmoins, nous avons présenté une preuve de concept pour un CycleGAN

Latent multimodal. On peut maintenant essayer d’entraîner un tel algorithme

sur des données encore plus distinctes, éventuellement de distribution différente

– notre ensemble de données d’entraînement étant la version non-appairée des

légendes et des images de COCO.

Travaux futurs

Comme indiqué ci-dessus, la première chose à faire avec le CycleGAN Latent

est de l’entraîner sur un autre jeu de données multimodal non-appairé, tel que

Conceptual Caption par exemple. Nous n’avons pas eu le temps de le faire, mais

cela donnerait probablement des résultats légèrement meilleurs que les nôtres.

Surtout étant donné qu’une limitation de l’algorithme pourrait être les capacités

de généralisation du décodeur de texte, qui est uniquement formé sur les légendes

de l’ensemble de données – et il y a plus de données textuelles dans Conceptual

Caption (413 915 légendes dans COCO contre 3,3 millions dans Conceptual

Caption ).

Bien sûr, avoir plus de données des deux modalités conduira sûrement à de

meilleurs résultats pour le CycleGAN lui-même.

Mais ce n’est qu’une première étape dans l’utilisation du CycleGAN Latent

dans un contexte différent. Tout d’abord, on peut l’utiliser sur un jeu de données

multimodal (non-appairé) où le texte n’est pas (seulement) composé des légendes
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des images, comme WIT [Srinivasan et al., 2021], où les images sont extraites des

pages Wikipédia, accompagnées de leur description, du titre de la page et de son

paragraphe d’introduction. Deuxièmement, on pourrait essayer d’aller encore plus

loin et de rassembler autant d’images que possible, autant d’échantillons de texte

que possible et essayer le CycleGAN Latent sur un tel ensemble de données, où

les distributions des images et du texte n’ont aucun rapport. Avec suffisamment de

données, le CycleGAN Latent pourrait donner des résultats intéressants.

En ce qui concerne l’évaluation des capacités de généralisation des modèles

multimodaux, il y a deux perspectives que j’aurais explorées si j’avais eu le temps

– et peut-être l’aurai-je.

La première est la robustesse des modèles multimodaux. Elle a été explorée

dans le premier article présenté ici pour le domaine visuel, et il montre que,

contrairement à ce que l’on pouvait attendre, l’ancrage sémantique n’apporte pas

de robustesse supplémentaire. Cependant, il serait intéressant de regarder les

attaques ciblées – où le but de l’attaque est de tromper le réseau en le forçant à

déduire une classe spécifique, qui n’est évidemment pas celle de l’image qui est

présentée. Si l’ancrage sémantique était en quelque sorte efficace, il devrait être

plus difficile de confondre un chien et un avion plutôt qu’un chien et un chat, en

raison de la distance sémantique entre les concepts. Cette hypothèse peut être

testée avec les résultats des attaques présentés dans [Devillers et al., 2021] avec

un peu d’analyse. Le taux de réussite des attaques ciblées devrait diminuer avec la

distance sémantique entre la vraie classe et la mauvaise.

La deuxième perspective serait une comparaison similaire à celle du premier

article, mais du côté textuel, avec des tâches textuelles standard. En effet, notre

conclusion concerne principalement le domaine visuel, car la modalité textuelle
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n’a été introduite qu’avec les tâches centrées sur l’humain du deuxième article.

Il n’est pas possible d’affirmer que le côté langage de CLIP ne dépasserait pas

le modèle de texte unimodal sur les tâches standard. C’est même probable, car

les tâches textuelles standard ne peuvent pas vraiment être considérées comme

orientées objet, contrairement aux tâches visuelles standard.

Conclusion

La multimodalité dans l’Artificial Intelligence n’en est qu’à ses débuts. Le domaine

doit maintenant inventer de nouvelles méthodes d’apprentissage qui prennent en

compte ce que les modèles unimodaux peuvent faire et comment ces performances

sont obtenues, pour créer des modèles qui surpassent les modèles unimodaux dans

tous les domaines. Une fois ces modèles conçus, une autre tâche consiste à ajuster

l’espace latent qu’ils génèrent afin qu’ils puissent être utilisés efficacement pour

diverses tâches, afin de maintenir les coûts de calcul et de données en aval à un

faible niveau.





Chapter 2

Introduction

2.1 Overview

As larger multimodal datasets are becoming available on the web, the possibility for

better, more human-like multimodal models grows. My research goal is to evaluate

what multimodality brings to machine representation of data, especially when it

comes to generalizing in one or two modalities (image and/or text), as well as to

find ways of improving the quality of the latent space of multimodal algorithms.

Bigger datasets and larger computational power enable better algorithms to be

developed, but in this project, I aim at using as little data as possible, with as few

annotations as possible, to improve the multimodal representation of pretrained

algorithms.

There has been great progress in multimodal dataset availability, mostly due to

the possibility of extracting information from big unstructured data on the web.

The attention networks, originally designed for text only, have proven successful

in their capacity for merging data. Most recently, the contrastive learning objective

37
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applied on hundreds of millions of annotated images has provided State-of-the-Art

(SOTA) results. However, the standard methods and evaluations in the multimodal

field have two shortcomings:

• The generalisation abilities of models trained multimodally are yet to be

determined

• There is no computationally cheap way, both in terms of data and power,

to improve or leverage the latent space abilities of these cost-expensive

algorithm on a tasks such as image captioning

In this thesis, the first shortcoming is addressed by our evaluation tasks, that

can be applied to other networks in order to compare the generalisation ability

of any image and/or text model. Part of the second issue is dealt with using

our Latent CycleGAN, which is very cost-effective, and which improves a more

straightfoward captioning pipeline with unmatched multimodal data.

2.2 Contribution of this thesis

Most models in multimodal deep learning are designed without considering what

was actually "learned" by the model. Indeed, when a model has been trained on

hundreds of millions of samples, it is evaluated on some standard tasks, and if it

performs well, then the model is said to be satisfying. It is one legitimate way of

assessing the quality of a representation, but in this thesis, we want to dive more

deeply into the mind of machines. That is to say that we are going to evaluate

in a more fine-grained manner the generalisation abilities of multimodal (versus
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unimodal models). Furthermore, when a model is used for a downstream task, the

quantity of data and annotation required for fine-tuning is often considered to be

irrelevant, as long as the task can be performed with the best score possible. We

also want in this thesis to maximize the cost-effectiveness when leveraging the

properties of the latent space obtained with an already computationally expensive

training, by developing methods that require little data and little annotation. For

both these two objectives, we are going to use a bimodal algorithm that became an

instant classic: CLIP.





Chapter 3

Multimodality

3.1 From Unimodal to Multimodal Models

Human experience is essentially multimodal. Yet, most current algorithm can only

process one type of data. This gives the different fields of Artificial Intelligence

(AI): Computer Vision (CV), Natural Language Processing (NLP)... In these fields,

algorithms are trained on unimodal datasets (MNIST [Deng, 2012], ImageNet

[Deng et al., 2009], CIFAR [Krizhevsky et al., ] for CV ; Wikipedia, Common

Crawl, Book Corpus for NLP), usually with a training for a single task. Sometimes

their understanding is specialized for this one task, and cannot be transferred to

another – or with very poor results. Most SOTA algorithm nowadays are actually

pretrained on a big dataset (several million samples) and on a general task (object

recognition or segmentation for vision [Kolesnikov et al., 2019, He et al., 2015],

inferring the missing word in a sentence, or assessing whether two sentences

follow each other in a text for language [Devlin et al., 2018]) that allow them to

understand many aspects of the modality. After this pretraining, algorithms are

41
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then fine-tuned, to specialize their representation, for other more specific task.

Big unimodal datasets have been available for years now, allowing scientists to

develop models with robust features, that can generalise well to many tasks within

their modality.

If we want to go one step further in creating algorithms that can learn features

that adapt to various conditions (in terms of inputs and in terms of tasks) – just

as human can do – we need to introduce multimodality. This is only a step in the

way of creating intelligent machines such as robots. [Bisk et al., 2020] lays out

the past and future steps towards creating a human-like intelligence, starting from

a Natural Language Processing perspective. There are five of them, which are

called World Scopes. Each one is an extension of the components of the world an

algorithm can access and process along with the other. They are the following:

• WS1: Corpus (Our Past)

• WS2: Internet (Most of current NLP)

• WS3: Perception (Multimodal NLP)

• WS4: Embodiment

• WS5: Social

The first two World Scope are in the field of unimodal NLP. The current NLP

SOTA models have a World Scope that stops at step 2, which means that they are

trained with large textual dataset extracted from the Web.
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The field is now evolving into multimodality. Completing this step will result

in models able to ground their language representation in other perceptual domains,

leading to a richer, more subtle and robust understanding of the world.

Beyond this point, we enter science-fiction. The embodiment scope relates to

robotics, which is now mostly a separate field, with little, but growing, interactions

with multimodal AI [Mehlmann et al., 2014]. A physical body will make AI more

human-like or animal-like, with proprioception and maybe positive and negative

sensation like pain and pleasure. The social scope is when the model will learn

to directly interact with other social beings, with notions of emotional reactions,

empathy, social hierarchy, and to develop social behaviors such as the social

gaze, and to accompany its speech with appropriate gestures [Bee et al., 2010,

Cassell et al., 1994, Cassell and Thórisson, 1999].

The availability of large multimodal dataset being very recent, it is only

now that we can create multimodal models comparable, in term of number

of training samples [Lai, , Miech et al., 2019], to unimodal ones (see Chapters

4 and 5). Before that, the training set of multimodal algorithm was very re-

strained (COCO [Lin et al., 2014], Conceptual Caption [Sharma et al., 2018a],

LIRIS-ACCEDE [Baveye et al., 2015]) and although models can achieve good

results on some tasks, the multimodal features learned by them were often

not usable for other tasks [Devillers et al., 2021]. This type of models in-

cludes: Virtex [Desai and Johnson, 2020], SimVLM [Wang et al., 2021], Frozen

[Tsimpoukelli et al., 2021], BUTD [Anderson et al., 2017] and Dall-E 2 [Ramesh et al., 2022]

among others, which are described in the section.
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3.2 Unimodal Pipelines

In order to present some interesting multimodal models, we first need to introduce

some of their inner pipelines, which were originally designed for unimodal tasks.

Word Embedding

A word embedding is a vector that represent a word. The principle was popularized

by Word2Vec [Mikolov et al., 2013b], an algorithm trained to infer missing words

in a sentence. After the training, each word known by the network is associated

with a vector, and relations in the vectorial space can be translated into relations

between the properties of the corresponding words. The standard example is:

take the vector for "king", add the vector for "woman" and subtract the vector

associated with "man" and you will get a vector resembling the one corresponding

to "queen".

Nowadays, pretrained word embeddings are used in more complex networks,

such as transformers, in order to be enriched by the context (i.e. the sentence or a

larger piece of text) in which the words appear.

An example of a 2D projection of a word embedding space can be seen in

Figure 3.1.

Long Short-Term Memory (LSTM)

LSTM are now used in a variety of tasks, but were originally mostly used to

process text [Hochreiter and Schmidhuber, 1997]. This is a classic subcase of

Recurrent Neural Network (RNN) (see Figure 3.2). The specificity of the LSTM
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Figure 3.1: t-SNE 2D projection of the word2vec vectors representing a selection
of the most frequent words in its training corpus. Source: [Gastaldi, 2021], under
the Terms and Conditions of Springer Nature journal for academic use.

is that it has two states, linked to each other by some gates detailed in Figure 3.3.

These states are called hidden state and cell state. The cell state is used to keep

longer term information and the hidden state shorter term ones. LSTM can be

used as encoder or decoder. In a decoder setting, the LSTM is simply used in an

autoregressive fashion. As an encoder, the last state of the LSTM can be used a

feature vector for a whole sentence.
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Figure 3.2: A RNN has several timestep, where the network receives a new input
and the hidden state from the previous timestep. At each timestep, the network
can output something (but this is not mandatory). Source: wikipedia.com, under
the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License.

Attentional LSTM

Attention was first introduced to improve LSTMs in an encoder/decoder setting

[Bahdanau et al., 2014]. Normally, a LSTM encodes the sentence in vector, and

then the decoder, which is also a LSTM, uses this fixed-size vector to generate the

output. In this configuration, the decoder, at each timestep, has access to one cell

state, the one from its precedent timestep (or, for the first timestep, the encoded

sentence vector). Attention was made so that the decoder instead looks all the

states of the encoder, by using a weighted sum of them in replacement for its cell

state. The weights are provided by another neural network trained along with the

LSTMs. Figure 3.4 shows the attentional LSTM.



3.2. UNIMODAL PIPELINES 47

Figure 3.3: The LSTM has two states: the hidden state and the cell state. Different
operations are computed to generate the new states (the red bubble is a sigmoid ac-
tivation, the blue one a hyperbolic tangent, and some concatenation, multiplication
and addition of vectors are computed). Source: https://towardsdatascience.com/, I
do not own this content, credits to Michael Phi.

Transformer

The transformer paper [Vaswani et al., 2017] was a breakthrough in the NLP field,

and has now been transferred to the CV (see the next subsection) and multimodal

field. It discarded the recurrency of the LSTM and only kept the idea of Attention

("Attention is all you need"). The original transformer is used for Machine

Translation as an end-to-end encoder-decoder.

The general principle is to enrich the encoding of an element of a sequence by
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Figure 3.4: The bidirectional encoder produces hidden states for each timestep. At
each timestep of the decoder, a weighted sum of these encoder hidden states is com-
puted to produce an input for the next timestep. Source: [Bahdanau et al., 2014],
I do not own this content, all credits go to its rightful owner.

the other elements of this sequence. This creates an contextualized representation

of the element. The transformer networks do that by computing, for each element,

three vectors: the query, the key and the value. These vector are then used to

calculate (see Figure 3.5) how much each of the elements is going to enrich the

representation of the others. This is the encoding part, which can be used as an

independent network, the most famous being BERT [Devlin et al., 2018].
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The calculation of the enriched embedding is position agnostic. To take in

account the position of each word in the sentence, a position embedding is added

to each word embedding before the keys, queries and values are calculated.

For the decoding part, a similar principle is applied, but the keys and the

values are based on the outputs of the encoder. Only the queries come from the

autoregressively generated words.

The decoder can also be used as such, given some modifications that remove the

dependency on the encoder outputs [Radford et al., 2018a, Radford et al., 2018b,

Brown et al., 2020].

BERT

BERT is a transformer encoder with three special tokens: the [MASK] token,

the [CLS] token and the [SEP] token. It has been trained on two tasks, one is

to encode two sentences separated by the [SEP] token and to use a classifier

on top of the enriched [CLS] token to decide whether the two sentences follow

each other in a larger text or not (which means the [CLS] token can be seen as a

summary embedding of the sentences). The other task is to demask some tokens

of a sentences that have been replaced by the [MASK] token – i.e. to guess which

token is supposed to be in the sentences at the masked positions.

Visual Transformer

The visual transformer takes the transformer architecture and transfers it into the

visual domain. As the transformer works with sequences, an image first needs

to be turned into a series of patches to be processed by the vision transformer.
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Each image token (patch) is then contextualized using the transformer pipeline.

Just as in BERT, a [CLS] token is added to the sequence and sums up all the

patches (which makes it represent the whole image). This token is then used for

the classification task. See Figure 3.6.

Convolutional Neural Network (CNN)

Convolution Neural Networks [Lecun et al., 1998] are network based on the con-

volution operation (a sliding matrix of operation that calculates a new matrix based

on the input one).

One of the most commonly used CNN is the VGG16 [Simonyan and Zisserman, 2014],

one example of which is shown in Figure 3.7.

CNN are most often used when processing an image, as the convolution

operation takes naturally in account the spatial features of the input, mimicking the

convolution happening in the early visual cortex [Lindsay, 2021]. They produce

feature maps, that are usually fed to a classifier, after some sort of pooling, and

typically for object detection or recognition.

Region Proposal Network (RPN)

RPN are used for extracting bounding boxes for objects (or Regions of Interest)

in an image. The classic RPN is R-CNN [Girshick et al., 2013] which was soon

replaced by the more efficient Faster-RCNN [Ren et al., 2015], that is detailed in

Figures 3.8 and 3.9.
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Faster-RCNN is based on a CNN, on top of which a classifier and a regressor

are placed. They are using the feature maps from the CNN to infer, for each pixel,

the probability that it is the center of a given object (this is the job of the classifier),

whose bounding box is determined by the regressor.

RPN can be used for the unimodal task of object segmentation, but also

as an intermediary step towards a multimodal task that involve a fine-grained

understanding of the spatial structure of images, such as Image Captioning or

VQA [Anderson et al., 2017].

GAN

The Generative Adversarial Network (GAN) (introduced by [Goodfellow et al., 2014])

are algorithms composed of two parts. The goal of such a network is to generate

a specific kind of data (images, text, vectors etc.). To train, the generator needs

what is called a disciminator. This discriminator is fed with samples generated by

the generator and real samples (the one the generator is trying to generate with

high fidelity). The goal of the discriminator is to judge whether a sample is a real

one or a fake (generated) one; reversely, the goal of the generator is to fool the

discriminator so that it believes the generated samples are real. A GAN is usually

trained unsupervised. Figure 3.10 details a standard GAN.

3.3 Multimodal Fusion

The unimodal pipelines presented above are going to be used in the multimodal

models that we are introducing in the following sections. The current one presents
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how to merge data from several modality and how to represent them in a common

(or two comparable) space(s). The next one will describe how to translate between

modalities without having to share a representational space.

For a model to be able to represent multimodal data, it needs some sort of

fusion between (at least) two modalities. This can be done with several methods

described in Figure 3.11.

The method of early fusion consists in merging the data from different input

before feeding it to the model (or right after a simple encoding pipeline, e.g.

convolution on images or word embedding for text). Thus, the model processes

multimodal data from the start, and is therefore multimodal all the way down

to its deeper representations. In this case, a joint representation is often created

[Baltrusaitis et al., 2017].

The method of model-level consists in fusing the vectorial representations

of separate streams, each processing only one type of data. By doing so, the

multimodality comes deeper in the architecture, when data has already been turned

into features.

The name late fusion is sometimes used in the sense of model-level fusion

(usually, when the two unimodal streams have been trained separately), but here

we make a distinction: late fusion happens after each of the pipeline has already

made a prediction.

When the two streams are trained together, and coordinated through a similarity

measure (like in CLIP [Radford et al., 2021]) or by a structure constraint, the

model is called a coordinated representation model [Baltrusaitis et al., 2017]. It is

not exactly fusion, therefore this will be presented in a separate section (3.4).

Other fusion methods, usually mixing the ones presented above, exist as well.
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The section below will present some multimodal models. It will highlight some of

their advantages and inconvenients and provide an overview of the State-of-the-art

multimodal models in which we will pick the best suited ones for assessing and

leveraging their generalisation abilities.

Early Fusion

Early fusion has the advantage to merge data from the beginning, which creates

fully multimodal representations. This kind of algorithm, however, works in

suboptimal condition when representing unimodal data. Nevertheless, early fusion

models are the most common multimodal models, especially since the attentional

models, have become very powerful; they can, with nothing more than a separation

token between modalities, learn to distribute their attention differently between

vision and text, and between different tokens within a modality.

VisualBERT

This model can be considered as the standard transformer-based multimodal

encoder. It is simply a BERT [Devlin et al., 2018] model, but instead of encoding

text only, it encodes text tokens and image tokens separated by a [SEP] token.

VisualBERT [Li et al., 2019] is detailed in Figure 3.12. The network is fed with

both text and image embeddings (images are turned to sequences just as in ViT

[Dosovitskiy et al., 2020]). The special token [SEP] is used to separate between

text and images. The algorithm is trained on a dataset of images and captions with

two objectives, one where part of the caption is masked and the missing tokens

have to be guessed (demasking the [MASK] tokens), the other with two sentences



54 CHAPTER 3. MULTIMODALITY

and an image as input, where the network has to decided if one of the sentences

does not describe the image, using the [CLS] token, which is therefore trained to

sum up sentences in one enriched embedding.

SimVLM

If VisualBERT is the standard multimodal transformer encoder, SimVLM

[Wang et al., 2021] is the standard multimodal full transformer. It is composed of

a bimodal encoder and a unimodal decoder (see Figure 3.13). The bimodal encoder

takes image features (generated by a ResNet applied on image patches – similarly

to ViT) and word embeddings to encode them jointly through a multimodal

transformer, similarly to VisualBERT. The vectors resulting from the encoding are

then used to calculate keys and values for the autoregressive transformer decoder,

while the query are computed based on the already generated words (like in Figure

3.5). This enables the decoder, given the beginning of a caption (or just image

features), to generate the missing words one after another. SimVLM can be used

for Visual Question Answering (VQA) and for image captioning. Some results are

displayed in Figure 3.14.

OSCAR

OSCAR [Li et al., 2020] stands for Object-Semantics Aligned Pre-training. It is

an algorithm trained with a special kind of early-fusion, as a modality is added to

the vision and the language one. OSCAR takes as input an image, some object

tags that represent the objects that are present in the image, and a caption (see

Figure 3.15). The input image is passed through a RPN, and the features from the
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salient regions are extracted, while the rest of the image is discarded (see BUTD in

3.5 for more details on how that can be done). The caption is inputted as a normal

textual input. The object tags however constitute an early form of multimodality.

Indeed, they correspond to visual data, but take the form of word embeddings,

therefore have the form of textual data. The multimodality in OSCAR comes from

merging visual and textual data, a fusion that is enhanced through these object

tags, which help the alignment of both domains.

OSCAR is trained to demask some tokens of the input descriptions (just as in

BERT), which somehow makes it the advanced version of VisualBERT, trained on

a more heavily annotated database, with an additional visio-linguistic modality. It

can be fine-tuned and used for image captioning. It is a standard SOTA baseline,

and some of its performances can be seen in Figure 3.23 and 3.14.

Model-Level Fusion

Model-level fusion algorithms have several unimodal streams of data that merge

deep into their architectures. Thus, as some of their pipelines are unimodal, the

interpretability of what has been learned thanks to each domain is higher. They

also allow for a higher level fusion, in spaces that can be geometrically more

similar between domains (two 2048-dimensional feature spaces for instance), and

without having to artificially preprocess one modality, contrary to what we have

seen above, for example when images are separated into sequences of token in

order to be processed by a tranformer.
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Frozen

Frozen [Tsimpoukelli et al., 2021] is a model-level fusion level that uses a frozen

unimodal text encoder, to train an image encoder in a multimodal setting. First,

the image and part of the caption are encoded through two separate encoders, then

on top of the concatenated (therefore multimodal) representation of the image-text

pair, a frozen transformer-like architecture (pretrained with unimodal text data) is

used to predict the end of the caption. Figure 3.16 illustrates it. The particularity

of this model is that the multimodal transformer is also frozen. It is simply a

unimodal transformer, which will use the features from the image encoder as if it

was text features. The multimodality comes from the vision side, that will learn

to produce text-like embeddings for the frozen transformer. Thus Frozen learns

to embed images in a textual representational space, so that the features can be

understood by a unimodally trained transformer, which means it could also be

seen as a coordinated representation model (see 3.4).

Book Cover and Title Fusion Model

In [Lucieri et al., 2020], the authors introduce several ways of fusing image

and text data to classify the genre of a book given its title and cover. Figure

3.17 shows 3 fusions in one graph, what they call early, late and dual fusion.

The late-fusion (which is actually what we call here model-level fusion) is the

best performing one. In this setting, images are passed through a unimodal

Inception-ResNet [Szegedy et al., 2016], text is passed through a unimodal Fast-

Text [Bojanowski et al., 2016, Joulin et al., 2016a]. The unimodal vectors result-

ing from these pipelines are then concatenated and fed to a (multimodal) classifier,
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which is then trained on the genre classification task. Chapter 5 compares several

model-level fusion model (including the fusion of vectors generated by multimodal

algorithm) with this previous SOTA on this dataset.

3.4 Coordinated Representation

Coordinated representation models have the advantage of being able to represent

each modality independently. This enables us, when assessing their generalization

capability, to use them in a unimodal or a multimodal setting (for a multimodal

model-level fusion, we just have to concatenate the two vectors produced by each

of the pipelines). The representation learned by each multimodal pipeline has

implicitly incorporated information specific to the other one, but doesn’t need a

piece of data from the other domain to work in an optimal setting, while for the

other models above, masking one modality is detrimental to the representation of

data. This is why we are mostly going to focus on CLIP (see just below) to work

in both unimodal and multimodal conditions.

CLIP

CLIP [Radford et al., 2021] stands for Contrastive Language-Image Pre-training.

It is a network trained with image-caption batches, where each caption corresponds

to an image in the batch (see Figure 3.18). The goal of the network is to create

representations for image and text in two coordinated vectorial spaces (which can

be considered as one multimodal latent space), with the constraint that the vector

for an image and its caption should be as similar as possible, while the vector for
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an image and the other captions in the batch should be as far as possible. This type

of training is called contrastive training. CLIP has been trained on a dataset of 400

millions image-caption pairs with batches of size 32,768. Unfortunately, its dataset

is not public, which forces us to use tricks to make sure that the generalisation

abilities that we are going to evaluate in the next chapters are really performed

on unseen data (see Chapter 4). CLIP exists in different version (5 ResNet

[He et al., 2015] versions and 3 Vision-transformer [Dosovitskiy et al., 2020]),

because it can use different image encoder architectures.

CLIP can be used in many different tasks. The most impressive is zero-shot

image classification, which can be done with a simple method described in Figure

3.19. Basically, by using a standard sentence structure and by changing only a word

in this sentence (for instance, with the sentence: "This is a photo of a [object]",

[object] being replaced by each class of the task at hand), we can create a batch

of descriptions, that we can then compare with an image in CLIP’s latent space.

The caption with the highest similarity (which correspond to a specific category of

objects) will determine the class attributed to the image by this zero-shot pipeline.

Its classification abilities can be compared to a standard unimodal network’s

like a pretrained ResNet with a trained linear probe on top, which are shown in

Figure 3.20. CLIP is often outperforming the ResNet, notably on the standard

ImageNet dataset – which gives the hint that multimodal training can sometimes

improve unimodal perfomances, a hypothesis that we will explore in this thesis.
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3.5 Multimodal translation

If the model doesn’t represent both image and text in a latent space, but only, for

instance, generates text conditioned on images (or the reverse), then fusion is not

mandatory. Usually, a unimodal representational space is used and its features

are fed to a decoder of the other modality. These model will be referred to as

multimodal translation models. They are often trained and used end-to-end, which

yields very good results but requires fully annotated datasets. We provide some

classic examples and some current SOTA, but note that in our model (see 6),

we will use unsupervised training on unmatched multimodal data, and we will

leverage the property of a pretrained latent representation in order to keep our

computational cost very low.

Image captioning models

BUTD

BUTD [Anderson et al., 2017] stands for Bottom-Up Top-Down. It is a classic

captioning model that uses both bottom-up and top-down attention to generate the

right caption given an image. First, the model uses a Faster-RCNN 3.8 with the

convolutional network Resnet-101 [He et al., 2015] to determine the salient region

of the image. Instead of splitting the image in a fixed-size grid, the model uses the

bounding boxes of detected objects as region of interest and uses the features from

these regions (see Figure 3.21). This means that the irrelevant parts of the image

are discarded with this "hard" attention mechanism.

Then the network can perform its top-down attention mechanism. Two LSTM
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are stacked on top of the image features extractor. One uses already generated

input and the image features to produce weights that are gonna be used to compute

the input for the second LSTM, that generates text conditioned on previously

generated words (see Figure 3.21). BUTD can be trained on images and their

descriptions, or on a VQA dataset. In this case, an additional top-down mechanism

is used to compute the weights calculated by the first LSTM, which takes in

consideration the question being asked about the picture.

Some results for image captioning have been displayed in Figure 3.14.

ClipClap

ClipClap [Mokady et al., 2021] is a captioning model that uses CLIP [Radford et al., 2021]

as an image encoder, and that uses its high level representation to condition pre-

fixes for the generative language model GPT2 [Radford et al., 2018b]. GPT2 is

autoregressive, which means its generation is conditioned on what it has already

generated. The prefixes simulate the beginnning of a generation so that GPT2

outputs the right caption. GPT2 can be fine-tuned or not, depending on the way

the prefixes are learnt. ClipClap is thus trained end-to-end with a frozen CLIP

to generate a caption for each image of the dataset. It has be trained on COCO

[Lin et al., 2014] or Conceptual Captions [Sharma et al., 2018b]. See Figure 3.22

for the architecture, Figure 3.23 and 3.24 for some captioning results.

ClipClap will be an inspiration for our captioning model, but instead of training

the model with matched data, we will use CLIP as text encoder, and train prefixes

for GPT2 based on caption embeddings, which is a way of creating a text encoder-

decoder pipeline. The multimodality will be learnt differently without matched
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data, using cycle-consistency (see Section 3.6) between modalities.

Text-to-image translation

DALL-E 2

DALL-E 2 [Ramesh et al., 2022] is an image generator based on CLIP’s latent

space. It is composed of two parts, one of them being CLIP’s frozen text encoder.

After embedding a sentence with CLIP, DALL-E 2 uses unCLIP (shown in Figure

3.25), a pipeline that allows it to turn the text encoding into a corresponding image

encoding in the same latent space, and then to generate an image based on this

"fake" image vector using a diffusion model [Sohl-Dickstein et al., 2015].

The fact that text vector need to be translated into image vector indicates

that in CLIP’s latent space, text and image features are different, i.e. that their

multimodality is only partial. This info hints what we will see in Chapter 6: a text

decoder trained on CLIP’s text features cannot generate proper descriptions when

fed with image features. We will thus create a translation algorithm. Contrary

to DALL-E 2 however, which is trained on 400M image-caption pairs, we won’t

need supervision nor a huge dataset to train our translation model.

Some example of generation using DALL-E 2 can be seen in Figure 3.26.

MirrorGAN

MirrorGAN [Qiao et al., 2019] is a multimodal GAN that uses the cycle-

consistency principle (see section 3.6). First, the description of the image is

passed through a textual module (a RNN) that creates a sentence embedding
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and embeddings for each word in the sentence. Then these embeddings are

fed to stacked image feature generators. Each generator uses attention (with a

transformer-like pipeline) conditioned on the embeddings and the generated image

features from the preceding generator in order to generate the next visual feature.

At each stage of the feature generation, an image generator (that is part of a

GAN) creates a corresponding image. Then, when the last image is generated (the

purpose of MirrorGAN is this very image, that is supposed to correspond to the

input description), a recaptioning pipeline is used to better align text and image.

A CNN turns the image into features, that are then used by a RNN to regenerate

the input caption, which is then compared with the true caption with the goal of

being as similar as possible. The MirrorGAN algorithm is trained end-to-end with

several objectives:

• For the image generator to fool the image discriminator

• For the discriminator to recognize fake and real images

• For the caption RNN to generate the right caption (with a Cross-Entropy-

based loss on the word tokens)

Figure 3.27 details the different modules of MirrorGAN and Figure 3.28 shows

images generated by MirrorGAN and the original caption versus other model and

the ground truth.
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3.6 Cycle-consistency

Cycle-consistency will be used in our multimodal translation model. It allows a

model to learn without annotated data, which will be very useful when leveraging

a fully supervised pretraining.

The cycle-consistency principle states that when translating a piece of data

from one domain to another, and back, the resulting piece of data should be the

same as the original one. For instance, let’s say you are translating a sentence from

English to French, and then back to English, then the resulting sentence should

be unchanged. The cycle-consistency principle can be applied as an objective in

order to learn translation without matching data. It has been notoriously applied in

the CycleGAN paper [Zhu et al., 2017].

CycleGAN

CycleGAN is an image-to-image GAN that, with unmatched data from two dis-

tribution, learns to translate between them. For instance, it can translate pictures

of a landscapes in a given season to pictures of that same landscape in another

given season (in this case it has "seen" images of landscapes in the first season

and images of different landscapes in the second season. See Figure 3.29) or can

change pictures of horses into pictures of zebras, and zebras’ into horses’.

CycleGAN [Zhu et al., 2017] is composed of two GANs, one that is trained to

translate from modality X to Y (which means its generation is conditioned on an

image input) and the other from modality Y to X.

CycleGAN has several objectives:
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• The Generators objective to fool their corresponding Discriminator

• The Discriminators objective to not be fooled by the Generators

• The cycle-consistency objective: when translating from modality X to Y

and then from Y back to X, the resulting piece of data should be as close as

possible to the input

• An optional objective: when a Generator is fed with input from its target

modality (i.e. the Generator from X to Y is fed with data from Y), the result

of its generation should be identical to the input.

Figure 3.30 shows the cycle consistent operations and Figure 3.31 displays

some example of translation using CycleGAN.

We will use a version of CycleGAN applied to a multimodal latent space (the

Latent CycleGAN) to design our unsupervised captioning pipeline in Chapter 6.

3.7 Summary

When assessing the generalisation abilities of multimodal models, one should

consider on which task and in which setting. The comparison we want to perform,

as we consider it the basic one, is between unimodal and multimodal models. To

do so, we want multimodal models that are able to represent unimodal data with

minimal damages to the feature extraction. This guides us towards coordinated

representation models, where two unimodal pipeline inform each other during

training, but where at inference, each pipeline is actually independent (We can
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use these pipelines in a multimodal, model-level fusion setting, where the features

extracted by two unimodal encoders of different modalities are concatenated in

order to create a multimodal vector). This is why CLIP will be so central in our

thesis.

Furthermore, we have seen with MirrorGAN that cycle-consistency can be used

in a multimodal setting. Even though in MirrorGAN’s case the data are matched,

we have seen in the CycleGAN paper (which is designed for unimodal translation

between two image distributions) that actually, matched data are unnecessary and

that the cycle-consistency principle works in itself. This two models will help us

to design a multimodal translation model in CLIP’s latent space, that will enable

us to perform image captioning with unsupervised training, by leveraging the

multimodality that is already present in CLIP’s latent representations.
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Figure 3.5: Example of self-attention computed for the word "Thinking" in the
sentence "Thinking Machines". The query (q1) for the word "Thinking" multiplied
by the key (k1 and k2) of each word gives different scores that are transformed into
weights that will be used for a weighted sum of the values (v1 and v2). This sum
is the new embedding for the word "Thinking" (z1). Source: jalammar.github.io,
under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License.
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Figure 3.6: The image is divided into several patches (that are going to be flattened
into 1-dimensional vectors) to form a sequence-like input. Then, a standard
transformer encoder takes over. The classification is made using only the [CLS]
token introduced in [Devlin et al., 2018]. Source: [Dosovitskiy et al., 2020], I do
not own this content, all credits go to its rightful owner.
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Figure 3.7: VGG16 is made of stacked convolutional operations, with layers of
pooling in between. At the end of the last pooling, fully connected layer are
stacked before the prediction (e.g. image classification) can be made. Source:
[Eminaga et al., 2018], under the Attribution-NonCommercial-NoDerivs License
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Figure 3.8: Faster-RCNN is composed of a VGG, on top of which the classifier
and the regressor are place to propose region in which a type of object could be
present with a certain probability (score). Source: [Ren et al., 2015], I do not own
this content, all credits go to its rightful owner.
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Figure 3.9: Left: The classifier and the regressor. There is for each sliding
window k possible boxes. The classifier output two probabilities for each box:
the probability that the box contains an object and that it doesn’t (which gives 2k
scores). The regressor outputs the coordinates of the center of the box, its width
and its height (which gives 4k outputs per window). Right: Examples of detection
using Faster-RCNN. Source: [Ren et al., 2015], I do not own this content, all
credits go to its rightful owner.
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Figure 3.10: An example of a GAN where the generator is trained to output images
that look like the real ones given to the Discriminator. The GAN needs a latent
sample to not always generate the same piece of data. As the GAN is conditioned
on this vector, some GANs (called Conditional GANs) can choose the sample
to guide the generation, for instance to generate a specific category of image
instead of a random one. Source: [Park et al., 2021], under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License
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Figure 3.11: Different example of fusion with audio and visual modalities. Fusion
can happen directly when modalities are inputed to the model (a), or it can happen
after separate unimodal models have processed it, with features at a higher level
(b). The prediction of the model can also be made with regards to the predictions
of the unimodal ones (c). Of course, these method can be combined, and fusion
can happen at any depth within the model, and sometimes different pipelines can
fuse multiple times during the process (this is often called slow fusion). Source:
[Chen and Jin, 2017], I do not own this content, all credits go to its rightful owner.
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Figure 3.12: Left: An example from VisualBERT’s training dataset. Right: The
general architecture and training of VisualBert. The objectives here are demasking
hidden tokens given the other textual tokens and the image patches (objective 2),
and classifying the sentences with the [CLS] token to guess whether one sentence
does not describe the input image (objective 1). Source: [Li et al., 2019], under
the CC BY-SA License
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Figure 3.13: SimVLM is trained to generate the caption of an image or to complete
an incomplete one, given the image and part of the caption. During the training,
text-only data are also shown to the model and it has to finish the sentence. Source:
[Wang et al., 2021], under the CC BY-SA License
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Figure 3.14: Performances for image captioning for SimVLM in several
settings, on two different splits of the COCO caption dataset (Karpathy
[Karpathy and Fei-Fei, 2014] test split and NoCaps [Agrawal et al., 2018] vali-
dation split). SimVLM outperforms other SOTA models, as well as BUTD (pre-
sented in section 3.5). For COCO captions, the results in four metrics are displayed
(B@4: BLEU@4, M: METEOR, C: CIDEr, S: SPICE). For NoCaps, {In, Near,
Out} refer to in-domain, near-domain and out-of-domain respectively. Source:
[Wang et al., 2021], under the CC BY-SA License
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Figure 3.15: Illustration of Oscar. The image-text pair is turned into a triplet of [
word tokens , object tags , region features ], where the object tags (e.g., “dog” or
“couch”), that allows a better visio-semantic alignement. The input triplet can be
understood from two perspectives: a modality view (and thus object tags come
from the visual domain) and a dictionary view (object tags are represented as
word tokens). The tags constitute a modality in-between image and text. Source:
[Li et al., 2020], under the CC BY-SA License
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Figure 3.16: In Frozen, the text embedder and the transformer model are not
trained. Therefore, the multimodality is incorporated within the vision encoder,
that learns to produce features that can then be properly used by the frozen self
attention model. This one uses continuous embeddings (originally produced by a
language model) as input, which the vision encoder will "imitate" given a visual
input. Source: [Tsimpoukelli et al., 2021], I do not own this content, all credits go
to its rightful owner.
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Figure 3.17: Here, 3 fusion models are represented. The best performing one is
the "late-fusion" one (actually model-level fusion according to our definitions).
Unimodally produced representation are concatenated and fed to a classifier
that learns to use both modalities to predict the genre of the book. Source:
[Lucieri et al., 2020], I do not own this content, all credits go to its rightful owner.
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Figure 3.18: CLIP represents images and text in vectorial spaces with the same
dimensionality. Its goal is to have the highest possible cosine similarity between an
image and its caption, and the lowest between an image and all the other captions
(each latent space is therefore coordinated with the other one during training,
which allows us to consider that both are actually a single multimodal latent space).
In other words, CLIP has to maximize the value in the diagonal of the matrix in
the figure and to minimize the other ones. Source: [Radford et al., 2021], I do not
own this content, all credits go to its rightful owner.
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Figure 3.19: CLIP can be used for zero-shot image classification. It simply requires
to find the most similar caption in CLIP’s latent space, where the caption is of a
standard form in which only the class name varies. Source: [Radford et al., 2021],
I do not own this content, all credits go to its rightful owner.
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Figure 3.20: CLIP in a zero-shot setting can be compared with a fully supervised
ResNet-based classifier. It is often the best performing model of the two. Source:
[Radford et al., 2021], I do not own this content, all credits go to its rightful owner.
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Figure 3.21: Left: Contrary to a standard convolutional neural network, BUTD
uses a Faster-RCNN to extract the bounding boxes of salient objects. The features
from these regions are used instead of the one that could be obtained with a
fixed-size grid. Right: After the bottom-up attention mechanism has provided
image features, two stacked LSTM are fed with them. The first one uses already
generated text (if there is) and the image features to produce weights. They are
then used to compute a weighted sum of the image feature, that the second LSTM
will take as input along with its previous hidden state to generate the next word of
the caption. Source: [Anderson et al., 2017], I do not own this content, all credits
go to its rightful owner.
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Figure 3.22: In ClipClap, a mapping network from the image feature space of CLIP
is trained to learn the right prefixes for GPT2 so that it generates the correct caption.
GPT2 can be fine-tuned or not in that process. Source: [Mokady et al., 2021],
under CC-BY

Figure 3.23: Ours refers to the ClipClap model. ClipClap is often competitive
with other SOTA models, and sometimes the best of all. It also has very efficient
training, as it leverages the properties of the already pretrained latent space of
CLIP. Source: [Mokady et al., 2021], under CC-BY



84 CHAPTER 3. MULTIMODALITY

Figure 3.24: Some captions generated by ClipClap, with and without fine-tuning
GPT2. Source: [Mokady et al., 2021], under CC-BY
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Figure 3.25: The text is first encoded through CLIP’s textual pipeline (which, as
shown at the top, has been trained to make the encoding of an image and its caption
as close as possible in its latent space), then a latent translator turns the sentence
embedding into a "fake" image feature, that is then used by a diffusion model
[Sohl-Dickstein et al., 2015] to create an image. Source: [Ramesh et al., 2022],
under CC-BY-SA.

Figure 3.26: Images generated by DALL-E 2 and below them, the caption that
guided the generation. Source: [Ramesh et al., 2022], under CC-BY-SA.
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Figure 3.27: The three modules of MirrorGAN. The first one (STEM) encodes text-
only, the second (GLAM) uses bimodal attention between semantic embeddings
and generated image features, the third one (STREAM) is a CNN that generates
features based on the generated image, that is followed by a RNN that generates a
caption. Source: [Qiao et al., 2019], under CC-BY-SA.
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Figure 3.28: MirrorGAN is compared with AttnGAN [Xu et al., 2017], a version
where only word-level attention is used for the image generation (and not the
sentence level one) called MirrorGAN Baseline and the ground truth corresponding
to the caption on top. Source: [Qiao et al., 2019], under CC-BY-SA.
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Figure 3.29: Paired vs unpaired data. CycleGAN has been trained with unpaired
set of data from different distribution. In this example, it will learn to turn pictures
into Cézanne-style painting and Cézanne paintings into pictures (see Figure 3.31
for an example of translation). Source: [Zhu et al., 2017], under CC-BY-SA.
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Figure 3.30: (a) G and F, the two generators, are trained to fool respectively DX

and DY , their corresponding discriminators. (b) and (c) show the two ways of
computing the cycle-consistency loss, starting from each of the two distributions.
Source: [Zhu et al., 2017], under CC-BY-SA.

Figure 3.31: Several examples of what different CycleGANs, trained on different
pairs of distribution, can produce. Source: [Zhu et al., 2017], under CC-BY-SA.





Chapter 4

Generalisation abilities of multimodal
models on standard visual tasks

4.1 Preamble

In this chapter, we will mostly focus on the paper by [Devillers et al., 2021], to

which I contributed, and that precedes the work described in chapter 5. I am not

first author on the paper, however I participated in its elaboration and redaction. I

mostly participated in the writing of the representational analysis and the linguistic

parts and in the analysis of the results of these sections. Along with the other

authors, I elaborated the global interpretation of all the results, and wrote parts

of the introduction and of the conclusion. This paper is displayed here because

the work of my first published paper strongly relates to this one and complete its

result, in order to produce a more general statement on the generalization abilities

of CLIP.

This paper aims mostly at evaluating the generalization abilities of the visual

91
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side of multimodal models and to compare them with visual-only models. It

focuses on standard visual tasks (object recognition), and on similarity between

visually constrained word representations.
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4.2 Comparing multimodal and unimodal models
on standard visual tasks

Does language help generalization in vision models?
Benjamin Devillers, Bhavin Choksi, Romain Bielawski & Rufin

VanRullen

Abstract

Vision models trained on multimodal datasets can benefit from the wide avail-

ability of large image-caption datasets. A recent model (CLIP) was found to

generalize well in zero-shot and transfer learning settings. This could imply that

linguistic or “semantic grounding” confers additional generalization abilities to the

visual feature space. Here, we systematically evaluate various multimodal architec-

tures and vision-only models in terms of unsupervised clustering, few-shot learning,

transfer learning and adversarial robustness. In each setting, multimodal training

produced no additional generalization capability compared to standard supervised

visual training. We conclude that work is still required for semantic grounding to

help improve vision models.

Introduction

Learning vision models using language supervision has gained popularity

[Quattoni et al., 2007, Srivastava et al., 2012, Frome et al., 2013, Joulin et al., 2016b,

Pham et al., 2019, Desai and Johnson, 2020, Hu and Singh, 2021, Radford et al., 2021,

Sariyildiz et al., 2020a] for two main reasons: firstly, vision-language training
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allows to build massive training datasets from readily available online data,

without manual annotation; secondly, language provides additional semantic

information that cannot be inferred from vision-only datasets, and this could help

with semantic grounding of visual features.

Recently [Radford et al., 2021] introduced CLIP, a language and vision model

that shows outstanding zero-shot learning capabilities on many tasks, and com-

pelling transfer-learning abilities. A recent report [Goh et al., 2021] showed that

CLIP produces neural selectivity patterns comparable to “multimodal” concept

cells observed in the human brain [Quiroga et al., 2005, Reddy and Thorpe, 2014].

From these results, it is tempting to assume that CLIP’s generalization properties

stem from semantic grounding provided by the joint vision-language training.

Here, we show that CLIP and other vision-language models do not perform bet-

ter than vision-only, fully supervised models on a number of generalization settings

and datasets. Representation similarity [Kriegeskorte et al., 2008] analysis reveals

that the multimodal representations that emerge through vision-language training

are different from both linguistic and visual representations–and thus possibly

unsuitable for transfer-learning to new visual tasks. In conclusion, additional work

on linguistic grounding is still needed, if it is to improve generalization capabilities

of vision models.

We provide our code for reproducibility1.

1https://github.com/bdvllrs/generalization-vision

https://github.com/bdvllrs/generalization-vision
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Figure 4.1: Size of the training dataset used by the models (number of images,
in log scale). ICMLM and VirTex are trained on COCO, TSM on HowTo100M,
CLIP on a (not publicly available) scrape of the internet, RN50 is trained on
ImageNet-1k, the AR models and SIN models are trained on augmented versions
of ImageNet-1k and BiT-M is trained on ImageNet-21k.

Models

We use a number of publicly available vision, text or multimodal pretrained

models, and compare their representations and generalization abilities. To facilitate

interpretation and comparisons between the models, Figure 4.1 reports the training

dataset size for each of the visual models (including the vision-language models).

They are all based on the same backbone (a ResNet50 architecture).
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In CLIP, the authors train the joint embedding space of a visual network (here-

after called simply CLIP) and a language network (hereafter called CLIP-T) using

contrastive learning on 400M image-caption pairs. Note that in the present paper,

the visual backbone of CLIP is a ResNet50, even though the visual-transformer-

based CLIP model could reach higher performance; this choice allows for a fair

comparison with the other visual models that are all based on the ResNet50 ar-

chitecture. In addition, we also consider TSM [Sariyildiz et al., 2020b], another

multimodal network trained with a contrastive loss on video, audio and text inputs

from the HowTo100M dataset [Miech et al., 2019] (containing more than 136M

video clips with captions. For training, the authors effectively used 120M video

clips of 3.2s sampled at 10 fps). The effects of CLIP’s and TSM’s contrastive

training paradigm can be compared with VirTex and ICMLM—two other recent

multimodal networks. In VirTex, the visual feature representations are optimized

for an image captioning task [Desai and Johnson, 2020], and for a text-unmasking

task in ICMLM [Sariyildiz et al., 2020a]. Such text-based objectives aim to pro-

vide a form of linguistic grounding using significantly fewer images than CLIP

(VirTex and ICMLM models are trained on the COCO dataset [Lin et al., 2014]

with approximately 120K captioned images).

To understand the potential effects of linguistic training, we compare the

multimodal networks to vision-only networks. We include a baseline architecture

(ResNet50) trained on ImageNet-1K [He et al., 2015] (1.3M labelled images).

Second, we consider a similar architecture (ResNet50 backbone) called BiT-

M [Kolesnikov et al., 2019], trained on ImageNet-21K, a much larger dataset

(14M labelled images).

While generalization and robustness properties can often be derived from ac-
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cess to large labelled image datasets (as in BiT-M), obtaining such labels is costly.

An alternative is to train models with additional datapoints based on assumptions

about the real-life data distribution–as done, e.g., with adversarial training. In

this study, we use the Adversarially Robust (AR) ResNet50 models provided

by [Engstrom et al., 2019b], trained on the 1.3M ImageNet training set plus 110

adversarial attacks of each image (i.e. more than 140M images overall). The differ-

ent model variants (AR-L2, AR-LI4, AR-LI8) correspond to distinct adversarial at-

tacks (refer to [Engstrom et al., 2019b] for more details). This adversarial training

was found to produce more perceptually aligned features and to improve generaliza-

tion (e.g. transfer learning) in some settings [Salman et al., 2020]. Another such

technique was used for StylizedImageNet (SIN) models [Geirhos et al., 2019],

where a variant of the ImageNet dataset (1.3M images) was designed via style-

transfer to specifically reduce the network’s reliance on texture information. The

authors provide weights for models that are (i) only pretrained for SIN images

(SIN), (ii) trained on SIN and ImageNet (SIN+IN) combined, or where (iii) a

SIN+IN model is finetuned on ImageNet (SIN+IN-FIN).

For the vanilla ResNet50, SIN, AR and BiT-M models, we use activations

after the final average pooling operation as feature representations. Although all

these models share a ResNet50 backbone, there are minor differences in their

implementations. We assume that such small architectural differences would not

dramatically affect the feature spaces learned by these models.

Finally, we also use two text-only language models, GPT-2 [Radford et al., 2018b]

and BERT [Devlin et al., 2018], in our feature-space comparisons. As these mod-

els are not designed to process visual inputs, they cannot be tested on visual

generalization; but we can use their representations of class labels (or sentence



98
CHAPTER 4. GENERALISATION ABILITIES OF MULTIMODAL MODELS

ON STANDARD VISUAL TASKS

Figure 4.2: 1-shot, 5-shot and 10-shot accuracy over our evaluation datasets.
Multimodal networks (ICMLM, VirTex, CLIP, TSM, in blue) have typically worse
performance than the other models for all datasets.

Figure 4.3: Unsupervised clustering accuracy over our evaluation datasets. Clus-
tering is obtained using Scikit-learn Spectral Clustering algorithm. Multimodal
networks (ICMLM, VirTex, CLIP, TSM, in blue) are worse than vision-only mod-
els (in various colors) on average.

captions) as a basis for comparison with visual or multimodal network representa-

tions. In a similar way, the language stream of the CLIP model (CLIP-T) can be

treated as a third language model for our comparisons.
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Figure 4.4: Transfer learning accuracy over our evaluation datasets. For each
dataset and model, we train a linear layer to classify the models’ visual features.
Multimodal networks (ICMLM, VirTex, CLIP, TSM, in blue) have worse perfor-
mance accuracy than vision-only models (in various colors).

Generalization tasks

In [Radford et al., 2021], CLIP was systematically tested in a zero-shot setting.

However, this requires a language stream to describe the different possible targets,

which is not available in standard vision models. To compare the generalization

capabilities of multimodal and vision-only models, we thus focus on few-shot,

transfer and unsupervised learning. In each case, we evaluate performance on

MNIST [Lecun et al., 1998], CIFAR10, CIFAR100 [Krizhevsky et al., ], Fashion-

MNIST [Xiao et al., 2017], CUB-200-2011 (CUB) [Wah et al., 2011] and SVHN

[Netzer et al., 2011]2. These datasets test generalization capabilities for natural

images of various classes.

Few-shot learning

As a first generalization experiment, we compare few-shot learning accuracy. For

this experiment, we directly pass N randomly selected samples for each class
2For more details on these datasets, see appendix ??.
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Figure 4.5: Average performance of the models across datasets, with standard error
of the mean, for the various generalization tasks (few-shot learning, unsupervised
clustering, transfer learning). Multimodal networks (ICMLM, VirTex, CLIP, TSM
in blue) have worse generalization accuracy across all tasks.

(N -shot learning) through the pretrained models to obtain a feature representation

for each sample. Then, we define a class prototype by averaging the feature

representations of all the samples in each class. We measure the performance of

vision-only and text-vision models for N = 1, 5 and 10. Each time, the reported

performance is averaged over 10 trials with different class prototypes (i.e., different

random selection of samples). Figure 4.2 shows the performance of each model on

each dataset. For CIFAR10, CIFAR100 and CUB (all the natural images datasets),

BiT-M has the best accuracy. On the other hand, ICMLM, VirTex, CLIP and TSM

do not perform better than the vision-only models.

Figure 4.5 shows the average performance of each model across datasets, in

the leftmost 3 panels.
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Unsupervised clustering

Our second generalization test is an unsupervised clustering task over the same

datasets. For this, we apply an out-of-the-box spectral clustering algorithm

[Pedregosa et al., 2011] using the cosine of two feature vectors as a metric. We

provide the number of required clusters (number of classes) to the clustering

algorithm: this ensures that all classes are represented by a cluster. The clusters

are computed only on the test-sets.

To compute the accuracy on the prediction, we need to assign labels to each

cluster. To do so, we use a greedy algorithm: we first choose the cluster containing

the most elements in common with a given class and assign it the corresponding

label. We then continue with the second cluster that has the most elements in

common with another class, and so on until all clusters have been labelled.

Figure 4.3 shows the unsupervised clustering performance on individual

datasets. It shows a similar ranking to the few-shot learning task where BiT

has the best performance overall and the visio-linguistic models lag behind the

vision-only models. Figure 4.5 panel 4 (from left) shows the performance of the

unsupervised clustering algorithm averaged over all datasets.

Transfer learning

To further evaluate the models’ generalization properties, we use a transfer learning

setting as described in [Salman et al., 2020]. We use the same datasets as in the

other tasks, each time training a linear probe using the Adam optimizer. We train

each linear probe for 20 epochs with a learning rate of 1e-3 and a weight decay of

5e-4.
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Fig 4.4 shows the performance of the models on this task, separately for

each dataset, and Fig 4.5 (rightmost panel) reports the average across datasets.

Multimodal networks fail again to improve generalization.
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Figure 4.6: Robustness of some of the models to untargeted (top) and targeted
(bottom) random projected gradient descent (RPGD) attacks for varying epsilons,
with L2 (left) or L∞ norm (right). AR models are robust by design. Multimodal
networks (CLIP, VirTex) are less robust than vision-only models (RN50, SIN+IN,
BiT-M).
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Robustness to adversarial attacks

Another important test for generalization is the robustness to input perturbations

(a form of out-of-distribution generalization). Here, we compare the adversarial

robustness of different models against untargeted and targeted random projected

gradient descent (RPGD) attacks [Madry et al., 2017]. We use L2 and L∞ norms

to distinguish any norm-specific effects. Figure 4.6 shows the success rate of

the 100-step RPGD attacks on 1000 images taken from the ImageNet validation

set. We use the foolbox API [Rauber et al., 2017] to perform all the attacks with

configurations provided by [Engstrom et al., 2019a].

Summary

Overall, models trained with multimodal information (CLIP, VirTex, ICMLM,

TSM) do not achieve better performance than the visual-only ResNet-based models.

This systematic observation across multiple image datasets and generalization tasks

(including few-shot, transfer and unsupervised learning, as well as adversarial

robustness) goes against the assumption that linguistic grounding should help

generalization in vision models.

Among the multimodal networks, CLIP does indeed appear to be more

generalization-efficient than VirTex, ICMLM and TSM. As mentioned in

[Radford et al., 2018b], directly predicting highly variable text captions (as

done in VirTex or ICMLM) is a difficult task that does not scale well. CLIP (and

TSM) avoid generating text, relying instead on a contrastive loss between visual

and linguistic embeddings. However, even with the potential benefits provided by

this contrastive loss, CLIP (and TSM) do not outperform the vision models.
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Finally, BiT-M, a simple vision-only model trained on a very large labelled

dataset, turns out to be the overall best performing model for few-shot learning, un-

supervised clustering and transfer learning, and on par with the standard ResNet50

for adversarial robustness.

Although these results are fairly consistent across datasets, there are still some

differences.

For the CUB dataset, BiT-M largely outperformed the other models. This

result is to be expected as the bird species in CUB are also part of ImageNet-21K

labels. Then, among visio-linguistic models, CLIP is the only one competitive

with the remaining visual models on this dataset.

MNIST and SVHN require classification of digits. According to [Radford et al., 2018b],

CLIP should be able to generalize to this task, as its training set included numerous

images with text and digits. Indeed we observe that CLIP can perform as well

as some of the vision models for these datasets. However, SIN and AR models

perform generally better than other models.

For datasets with more natural images (CIFAR, FashionMNIST, CUB), vision

models are generally better than their visio-linguistic counterparts.

Model comparison

To better understand the similarities and differences between the feature spaces

learned by the various models, we now compare them using RSA [Kriegeskorte et al., 2008].

Method RSA is a comparison method originally used to compare fMRI data.

It allows us to compare different models (with different latent space dimensions,
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norms, ...) which share the same structure.

This works by comparing the models’ (). RDMs are obtained by computing

the 2 by 2 distances for each class of the latent representations (see figure 4.7).

More specifically, for each visual model, we define for each class the set Fc

containing the feature vectors of all the images of class c, its average f̄c and its

standard deviation σc. The RDM matrix is then defined as [RDMi,j] where

RDMi,j =

∥∥∥∥∥∥∥∥∥∥
f̄i − f̄j√
σ2

i

|Fi| + σ2
j

|Fj |

∥∥∥∥∥∥∥∥∥∥
2

(4.1)

for each pair of class (i, j).
We use the norm of the unequal variance t-test [Welch, 1947] as our distance

metric between the latent representations, because it allows to normalize the

distances between class centroids with respect to their variances. Indeed, each

class is represented by a cluster of latent vectors of different sizes.

In the case of language models (all transformer-based), we use as latent repre-

sentations, the encoding of the sentence “a photo of x.” where we replace “x” by

the corresponding label. We then use the contextualization of the label as the text

feature vector. Compared to the vision models, there is only one representation

per class (only one sentence per class) hence a lack of variance associated with

the feature vector of each class. As a result, the distance used in the RDM matrix

becomes an L2 norm.

The RDM matrix obtained with this method contains the respective distances

between pre-defined concepts (in our case the 1000 classes of ImageNet). RDMs

can therefore be considered as a standardized representation of latent spaces. This



106
CHAPTER 4. GENERALISATION ABILITIES OF MULTIMODAL MODELS

ON STANDARD VISUAL TASKS

Cat
Dog
Car

C
at

D
og

C
ar

0

0

0

0.4 0.9

0.4 0.7

0.70.9

Representational Dissimilarity Matrix
RDM

M
O

D
E
L

cat

dog

car

Compare 
latent representations
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RDMs are built from the model’s embedding space. The RDMs can then be used
for a Representational Similarity Analysis by comparing them using a Pearson
Correlation.

means that we can compare our models’ representations by computing the Pearson

correlation between their respective RDMs. The corresponding comparison matrix,

for all pairs of models, is illustrated in Fig 4.8.

Results Figure 4.9 shows the results of a hierarchical clustering (a) or t-SNE [?]

embedding (b) of the RDMs using Pearson correlation as a distance. Looking

at the dendrogram, all the vision-only models are very close to one another

with a maximum distance <0.2. Then, multimodal models stand a bit further

(CLIP, TSM, VirTex, ICMLM); and finally, CLIP-T and the language models
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Figure 4.8: Correlations of the RDMs of our evaluation models. The RDMs are
computed as explained in Fig 4.7 using the ImageNet dataset.

(BERT, GPT2) are the furthest away. This indicates that the language supervision

(contrastive embedding, text-generation or text-unmasking objectives) has changed

the structure of the ResNet latent space for CLIP, TSM, VirTex and ICMLM models

(respectively). Yet these multimodal models are not truly linguistic either, as they

are very distant also from the standard language models.

This conclusion is also supported by the t-SNE plot, showing a cluster of

BiT-M, RN50 and SIN vision models, a second cluster with the AR models, and

further along the same direction, the multimodal networks (CLIP, VirTex, ICMLM,

TSM). Note that, although this arrangement might suggest that multimodal net-
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Figure 4.9: (a) Dendrogram of a hierarchical clustering of the RDMs. (b) t-SNE
of the RDMs.

works possess adversarial robustness properties in common with AR models, this

suggestion was not supported by our tests using actual adversarial attacks (Fig 4.6).

Finally, the language models (BERT, GPT2 and CLIP-T) are separated from the

rest, along a distinct direction. Overall, the analysis suggests that multimodal rep-

resentations are neither visual nor linguistic, but surprisingly, not really in-between

either3. This is surprising as we should expect that representations trained with

access to both vision and language would derive information from both modalities,

and consequently end up somewhere in-between purely visual and purely textual

representations.

3Of course, we describe multimodal networks as neither visual nor linguistic, but this is to be understood
in relative terms–they are relatively far from both visual models and linguistic models. In absolute terms,
there is always a reasonable amount of similarity between multimodal networks and certain visual or
linguistic models.
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Performance on linguistic tasks

This suggestion might be further supported by evaluating the usefulness of the

learned visual representations on linguistic tasks. According to the above findings,

visual representations obtained via multimodal training may fare no better than

vision-only representations. To test this, for each vision model, we collect the

ImageNet features for each image class, and train a standard word embedding

(Skip-Gram method) while constraining the class label words to these visual feature

vectors. The resulting linguistic space will thus capture some of the structure of

the vision model’s latent space.

Method

Architecture We train Skip-Gram models [Mikolov et al., 2013a] on Wikipedia

using the Gensim library [Řehůřek and Sojka, 2010]. Before training, some of

the embedding vectors (corresponding to the ImageNet class labels) are set to the

latent representations of a vision model, and frozen during training. This training

procedure forces the word embedding space to adopt a similar structure to the

vision model’s latent space (at least for the frozen words, i.e. the class labels).

Visual words We denote ‘visual word embeddings’ (resp. visual words) as

the word embeddings (equivalent to the visual feature vectors) obtained from the

vision models (resp. the associated word token) on ImageNet classes. Some of the

classes are composed of multiple words (e.g. “great white shark”). We leverage the

WordNet [Miller, 1998] structure of ImageNet classes to only keep the hypernym

of the class that contains only one word (e.g. “great white shark” becomes “shark”).
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All of the ImageNet categories that have the same one-word hypernym are grouped

together into one unique hyperclass. For instance, the “shark” hyperclass contains

the classes “great white shark” and “tiger shark”. Finally, to obtain the visual

word embeddings, we average the visual representation of all the images of each

hyperclass from the ImageNet validation set. This gives a total of 824 visual

words.

Besides, we choose a vocabulary of 20,000 words (taken from the most frequent

tokens in Wikipedia). Only 368 visual words are among the 20,000 most frequent

words, so we extend our vocabulary to also contain the 456 other visual words,

resulting in a total vocabulary of 20,456 words.

Embedding dimension Since the vision models do not all share the same

feature dimensions, in order to compare all Skip-Gram models, we reduce the

dimensionality of the feature spaces of all vision models to 300 dimensions using a

PCA. The PCA is computed using the visual features of all images in the ImageNet

validation set. Consequently, the Skip-Gram word embeddings are trained with

300 dimensions.

Training We train the Skip-Gram models for 5 epochs, using the standard

negative sampling strategy. We use window sizes of 5 words and a learning rate

of 1e-3. We use the “vectors_lockf” feature of the Gensim library to freeze

certain word embeddings during training.

For the dataset, we use a recent dump of Wikipedia and we split it into two

sets containing 80% and 20% of the articles for the training and validation sets.
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Figure 4.10: Semantic Word Analogy (such as “son”, “daughter”, “boy”, “girl”),
Morphology Word Analogy (such as “write”, “writes”, “work”, “works”) and word
pair similarity results for the visually constrained Skip-Grams. The Baseline is a
vanilla Skip-Gram model (300 dimensions) where all 20,456 word embeddings
are free to be learned.

Evaluation

We evaluate our Skip-Gram embeddings on two tasks: word analogies and word

pair similarities.

Word Analogy This standard task [Mikolov et al., 2013b] for evaluating the

quality of word embeddings consists of quadruplets {A, B, C, D} (e.g. “man”,

“king”, “woman”,“queen”) supporting the relation “A is to B as C is to D”. The

task consists in finding the 4th one given the first three, by solving the equation

in the latent space: D = B − A + C. The more accurate the model, the better its

representation. We evaluate the word embeddings on the full dataset provided by

[Mikolov et al., 2013b] that we split in two different sets: morphology analogies

(such as “write”, “writes”, “work”, “works”), and semantic analogies (such as
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“son”, “daughter”, “boy”, “girl”). If vision-language training helps “ground” the

visually-derived word embeddings, we expect this grounding to be more helpful

in the resolution of semantic, rather than morphology analogies.

Word Pair similarity Another task for evaluating the quality of word embed-

dings is to ask humans to rate the semantic similarity of pairs of words (e.g. on

a scale of 0 to 10, how close is “queen” to “king”? How close is “queen” to

“woman”? etc.) [Finkelstein et al., 2001] and then compute the same similarity

evaluations in the latent spaces of the models. The higher the (Pearson) correla-

tion between the pairwise similarities of a model and human pairwise similarity

judgments, the better the representation of the model.

Results

The baseline Skip-Gram produces the best word embeddings overall (black bars in

Fig 4.10). This is to be expected since the embeddings are learned freely, without

any additional constraint during training. Interestingly, this baseline advantage is

weakest in the case of the semantic analogy task (Fig 4.10, leftmost panel), where

some of the vision and visio-linguistic models are on par with the baseline. This

shows that the frozen vectors do not necessarily impede the performance when

the analogies are defined semantically (and might thus be presumed to contain

some visual component). However, even for these semantic analogies, vision

or vision-language word embeddings never significantly surpassed the baseline

performance.

In the word pair similarity task, networks show variable performance levels,
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but without a clear distinction between vision-only and vision-language mod-

els. Among the visio-linguistic networks, CLIP and TSM, which are trained

contrastively on a large amount of data (see Figure 4.1) have embeddings that

correlate well with human word similarity judgements. However, when compared

with the vision-only models, we do not observe a clear-cut performance improve-

ment. Indeed, the best vision-only model (BiT-M) is on par with CLIP and TSM.

Interestingly, by comparing the results from the Fig 4.10 rightmost panel to the

data plotted in Fig 4.1, we observe that among our twelve models, the top six

for the word pair similarity task (TSM, CLIP, BiT, and the three AR models)

correspond to those models that were trained on the largest datasets.

For the analogy tasks (semantic and morphology), there is no particular trend.

However in both cases, the best performing model (excluding the baseline) is a

visual one: SIN+IN in the semantic case, and AR-L2 in the morphology case.

In summary, we find that multimodal training of visual features does not

improve their usefulness for language tasks either, and we suggest that the amount

of training data may be a more important factor for generalization.

Legitimacy of the visual word embeddings

In the previous results, for training the visually-guided word embedding models,

we averaged the visual feature vectors over many examples for each class. This

averaging can potentially alter the quality of the embeddings, e.g. by discarding

important information about the feature distributions. Thus, we check the validity

of these averaged feature vectors4, by verifying that they remain useful in a vision
4We here test the 300d vectors after the PCA dimensionality reduction.
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context. We use these visual feature vectors as class prototypes and evaluate the

corresponding nearest-neighbor classification accuracy on the ImageNet validation

set5 with a method similar to section 4.2. For all models considered, classification

accuracy was well above chance (p<0.01): this means that the class-specific vectors

indeed remain useful as visual representations of their category.

Furthermore, we computed the correlation between this visual classification ac-

curacy of the word embedding, and the corresponding word analogy or word-pair

similarity accuracy for each model. The resulting Pearson correlation coeffi-

cient was r=-0.0821 with the semantic Word Analogy performance, r=0.301 with

the morphology Word Analogy performance, and r=0.797 with the Word Pair

Similarity.

The significant high correlation of visual classification with word-pair similar-

ity performance might be caused by the visual component of the word similarity

judgments performed by human subjects. Indeed, many “similar words” also entail

similar visual features (tiger, jaguar, cat, feline), and so the word-pair similarity

task may not be a pure language task.

Discussion and Conclusion

It is a highly appealing notion that semantic grounding could improve vision

models, by introducing meaningful linguistic structure into their latent space,

and thereby increasing their robustness and generalization properties. Unfortu-

nately, our experiments reveal that current vision-language training methods do

not achieve this objective: the resulting multimodal networks are not better than
5With the images regrouped into our 824 classes.
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vision-only models, neither for few-shot learning, transfer learning or unsupervised

clustering, nor for adversarial robustness. In addition, compared to vision-only

models, the multimodal networks’ visual representations do not appear to pro-

vide additional semantic information that could serve as a useful constraint for a

word-embedding linguistic space.

The present inability of linguistic grounding methods to deliver their full

promise does not imply that this cannot happen in the future. In fact, we believe

that exploring the current models’ performance and representations, as we do

here, can help us understand their limitations and adjust our methods accordingly.

Specifically, we found that multimodal representations are neither visual nor

linguistic, but are not really in-between either (Fig 4.9). In CLIP and TSM, for

instance, the contrastive learning objective encourages the visual and language

streams to agree on a joint embedding of images and corresponding captions.

However, such agreement, by itself, does not constrain either latent space to

remain faithful to its initial domain. As a result, CLIP’s (and TSM’s) visual

representations may discard information that could prove critical for transfer-

learning to other visual tasks. If this is true, we predict that adding domain-specific

terms to the multimodal loss function (e.g. self-supervision) could be a way

to improve visual generalization, while retaining the advantages of multimodal

training—possibly including semantic grounding.
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4.3 Afterword

This first collaborative work showed how non trivial the generalisation abilities

of multimodal models were. Counter intuitively, multimodality didn’t help for

unimodal tasks. Actually, while it would have been expected that incorporating

semantic knowledge in the visual domain would have made it more robust to

adversarial attacks, or more prone to differentiate between objects, the contrary

happened.

However, this study only investigates one aspect of the visual domain, object

recognition – and one aspect of the textual domain: similarity between insulated,

visually constrained word vectors. This, by far, does not cover all there is to

perform in these modalities. This is why the next study will focus on another

domain, more symbolic and cultural. It will thus complement and broaden the

conclusion of the current one.



Chapter 5

Generalisation in human-centric datasets

5.1 Preamble

After training a multimodal model on a large dataset and on one or several general

tasks, it has learned representational features that can be used for other, more spe-

cific downstream tasks. For image and text classification, a pretrained algorithm

doesn’t need to be retrained (which means its data representation remains unal-

tered) if a classifier is plugged on top of a latent space and trained. Given a latent

space, one can thus evaluate the quality of the feature generated by an algorithm

by training similar classifiers on top of several latent spaces, by comparing the

accuracy of the prediction given by each of them.

This kind of benchmark can be done for image (as in the previous chapter)

and/or for text representations. Here, we want to compare CLIP’s image represen-

tation with other standard unimodal image encoder, and CLIP’s text representation

against unimodal text encoders, as well as how well these representation can be

concatenated to represent multimodal data, for specific, non-standard tasks.

117
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This work follows the work of [Devillers et al., 2021], presented above, which

found that on standard image classification dataset, CLIP’s image representation

gave poorer results than other unimodal image encoder in transfer learning, few-

shot learning and unsupervised learning. This was even truer for other multimodal

model’s latent space.

My idea was that these standard image classification dataset (CIFAR, CUB,

SVHN, MNIST, FashionMNIST) actually evaluate only a specific part of the

whole visual domain: object recognition. This is why I crafted the Plotster dataset,

as well as found other already benchmarked more "human-centric" datasets. On

these dataset, the unimodal algorithms’ features gave poorer results than the one of

CLIP’s, showing that multimodallity can improve generalization in each modality.

In this chapter, contrary to the one above, we are not only gonna compare

results on the visual domain, but also on the textual domain, both separately and

jointly.
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5.2 Comparing multimodal and unimodal models
on human-centric tasks

When does CLIP generalize better than unimodal
models? When judging human-centric concepts
Romain Bielawski, Benjamin Devillers & Rufin VanRullen

Abstract

CLIP, a vision-language network trained with a multimodal contrastive learning

objective on a large dataset of images and captions, has demonstrated impressive

zero-shot ability in various tasks. However, recent work showed that in compar-

ison to unimodal (visual) networks, CLIP’s multimodal training does not benefit

generalization (e.g. few-shot or transfer learning) for standard visual classification

tasks such as object, street numbers or animal recognition. Here, we hypothesize

that CLIP’s improved unimodal generalization abilities may be most prominent in

domains that involve human-centric concepts (cultural, social, aesthetic, affective...);

this is because CLIP’s training dataset is mainly composed of image annotations

made by humans for other humans. To evaluate this, we use 3 tasks that require

judging human-centric concepts: sentiment analysis on tweets, genre classification

on books or movies. We introduce and publicly release a new multimodal dataset

for movie genre classification. We compare CLIP’s visual stream against two visu-

ally trained networks and CLIP’s textual stream against two linguistically trained

networks, as well as multimodal combinations of these networks. We show that

CLIP generally outperforms other networks, whether using one or two modalities.

We conclude that CLIP’s multimodal training is beneficial for both unimodal and

multimodal tasks that require classification of human-centric concepts.
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Introduction

Vision-language pretraining in neural networks is gaining popularity due to

the growing interest in multimodal tasks such a Visual Question Answer-

ing or Image Captioning [Anderson et al., 2017, Lu et al., 2019, Li et al., 2019,

Singh et al., 2019], but also to the availability of online resources that allow to

build large-scale training datasets without manual annotations [Radford et al., 2021,

Jia et al., 2021]. In theory, training a model on multimodal data should help im-

prove its representation of data from each of the modalities. For an image-text

model, for instance, the image features could be enriched by the abstraction of the

linguistic data –the semantic grounding property–, and inversely, the linguistic

features could gain informativeness through visual grounding [Harnad, 1990].

Unfortunately, this does not always happen in practice.

Recently, [Devillers et al., 2021] evaluated the visual generalization abilities

of CLIP [Radford et al., 2021], a popular network trained with a contrastive learn-

ing objective on more than 400M image-caption pairs scraped from the web,

and other multimodal models [Sariyildiz et al., 2020b, Desai and Johnson, 2020].

They showed that for standard object classification tasks (e.g. digit, fashion item or

natural image classification), multimodal networks like CLIP underperformed com-

pared to other unimodal (vision-only) models like BiT-M [Kolesnikov et al., 2019]

in transfer learning, few-shot learning and unsupervised learning settings. Here,

we revisit this question using datasets focusing on more “human-centric” concepts.

Human learning generally involves interacting with multimodal data. Thus, one

could expect that CLIP’s representations of images and text should be somewhat

closer to human representations than those learned by unimodal models. Moreover,
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given that CLIP was trained on image-caption pairs from a variety of sources

from the Internet (including social networks), we can assume that an important

part of its training captions was written by humans for other humans. This

is different from standard vision datasets, in which labels or annotations are

sometimes human-generated (e.g. through Amazon’s Mechanical Turk), but

always produced for machine-learning purposes. Again, this difference should

bring CLIP’s representations closer to human ones when compared to unimodal

models. Thus, there should exist at least some specific tasks for which CLIP’s

multimodal training provides advantages over unimodal models. As an example,

consider the task of assigning a genre to a movie based on its poster and title. This

requires retrieving fine-grained information about, among other things, the artistic,

emotional or stylistic aspect of an image or a piece of text (or both). This can only

be properly achieved if the model’s training offered appropriate exposure to such

human-centric concepts. Here, we use the term human-centric whenever a concept

refers to cultural, social, aesthetic and/or affective components of the world.

We thus make the hypothesis that CLIP should perform better than unimodal

models in generalization tasks where human-centric concepts are involved. We

evaluate this hypothesis on three tasks involving such human-centric concepts:

sentiment analysis on tweets; genre classification of books; genre classification

of movies. All tasks can be performed based on visual data (images), text data

(tweet, book or movie title, movie plot summary), or both. For the movie genre

classification, we introduce a new, large-scale multimodal dataset obtained by a

crawling on The Movie Database (TMDb). As detailed below, we find that CLIP

outperforms unimodal models in both vision and text-based classification, as well

as pairwise combinations of these unimodal models in the case of multimodal
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(image+text) classification. Consequently, CLIP establishes a new SOTA on these

tasks.

We provide our code for reproducibility1.

Models

We compare CLIP (trained contrastively on both images and text) against several

unimodal models. For fairer comparisons, all the vision models are ResNet50

[He et al., 2015] based architectures and all the text models are transformer en-

coders.

CLIP was trained using a contrastive loss on a large (400M) set of image-text

pairs. The training of CLIP consists in creating a joint (multimodal) embedding

space. For one batch of image-text pairs, the objective of the network is that the

embedding of an image (through a ResNet50 backbone, here simply referred to as

CLIP) and the embedding of its text description (through a transformer backbone,

here referred to as CLIP-T) are as close as possible, while the embedding of an

image and the embeddings of text descriptions of other images in the batch are as

far as possible. After training, the text encoder and the image encoder can be used

as single-modality encoders.

For unimodally trained vision networks, we use two pretrained ResNet50-based

models: the standard ResNet50 that was trained for classification on ImageNet-

1K (here referred to as RN50), and BiT-M that was trained on ImageNet-22K

[Deng et al., 2009].

1https://github.com/Bila12/CLIP-judging-human-centric-concepts
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For unimodal text embeddings, we test two standard text encoders against

CLIP’s: Bert-large and Bert-base [Devlin et al., 2018]. We use the Bert sentence

transformer version [Reimers and Gurevych, 2019], based on Bert’s [CLS] token

and fine-tuned on SNLI [Bowman et al., 2015] and MultiNLI [Williams et al., 2018].

Among the transformer encoders provided in the HuggingFace [Hug, ] repository

at the time our experiments were conducted, these were the two best-performing

across several text classification tasks, and are now still close to SOTA. These ver-

sions of Bert-large and Bert-base are fine-tuned on downstream text classification

tasks, but we refer to them in this paper simply as Bert-large and Bert-base.

Although all 3 text encoders are transformer encoders [Vaswani et al., 2017],

they do not have the same number of parameters. Bert-large has 300M, Bert-base

has 110M, and CLIP-T has 80M parameters. This gives a structural disadvantage

to CLIP-T, which only strengthens our conclusions, as we found CLIP-T to be the

overall best-performing text model.

We consider both unimodal tasks (classification of images or text), as well

as multimodal tasks (classification of image-text pairs). When performing a

unimodal task, the encoding of the image (resp. the text) is used directly by the

corresponding classifier. When performing a multimodal task (image-text based

classification), the encoding of an image by a visual model and the encoding of

the corresponding text by a textual model are simply concatenated to create the

multimodal vector that is used for the classification.

For BiT-M and RN50, we use the last layer output before the classification

head used for their training, which counts 2048 dimensions. For CLIP, we use the

latent vector in the multimodal space generated by the visual pipeline, counting

1024 dimensions; for CLIP-T, the one generated by the textual pipeline (1024
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dimensions); and for the two Bert models, we use the vectors directly provided

by the Sentence Transformer pipelines (1024-dimensional for Bert-large and 768-

dimensional for Bert-small).

Figure 5.1: An original cover from the Book Cover dataset (left) and the associated
masked cover (right). The title, the name of the author and parts of the text have
been blacked out by the EAST algorithm, while the white text was incompletely
detected, but subsequently blurred by the second algorithm. This sample belongs
to the “Children’s books” genre. Its title is: “Frances Audio Collection CD (I Can
Read Level 2)”. This image is copyright from Amazon.com, Inc. and used here
for academic purpose only.

Datasets

We evaluate the models on three datasets composed of labelled image and text data,

that can be inputted as pairs for multimodal classification tasks, or used as single
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inputs for unimodal classification tasks. The language part of all these datasets is

in English.

MVSA

MVSA or “Multi-View Sentiment Analysis” [Niu et al., 2016] is a dataset of pairs

of images and associated text from Twitter, labelled with three possible sentiments

(Positive, Neutral or Negative). Each image and each piece of text has three

labels given by three different users, adding up to 6 labels for each image-text

pair. We assign a score for each label (Positive: 2, Neutral: 1, Negative: 0) and we

compute the rounded average score for each pair. By doing so, we get only one

label per image-text pair that we can then use for single-label classification across

modalities.

Book covers

The Book Covers dataset was introduced by [Iwana et al., 2017]. It consists of

57k images of book covers scraped from the Amazon website, with their title as

text information. Each pair of cover+title is labelled with one genre among 30

possibilities. A cleaner version of the dataset, removing one genre and grouping

two similar ones, with only 28 classes and 55.1k images, was later introduced by

[Lucieri et al., 2020]. This is the dataset we use for our experiments.
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Plotster and TMDb

We introduce and publicly release the Plotster2 dataset, obtained by crawling

TMDb (www.themoviedb.org) using their provided API. It consists of 207,902

triplets of {poster, title, plot} (split in 189,185 train samples and 18,717 test sam-

ples), with each having several potential labels among 19 genres. A representative

sample from this dataset is shown in Figure 5.2. Typically, each movie has between

1 and 6 genres, with an average of 1.7. Each poster is an RGB image of 900 × 600
pixels (height×width). Plots have an average length of 310.8 characters, and titles

an average length of 18.6 characters. For text input, in unimodal or multimodal

settings, we can choose either plot or title. The results of both configurations were

computed and are displayed in this paper.

A previous crawling on TMDb had been made by [Mangolin et al., 2020]. It

contained only 10,594 movies, as the authors aimed to retrieve other pieces of

data such as trailer video clips and subtitles. They had not included titles in their

dataset. From these movies, 10,554 (i.e., 99.6%) can also be found in Plotster.

For comparison, we isolated the posters and plots from this dataset, and verified

that our results obtained on the full Plotster were still valid on this subset.

In another control experiment, we verified that CLIP’s improved performance

on the Plotster dataset was not a result of specific movie posters, plots and titles

from TMDb having been included in CLIP’s training (as the training set is not

public, there is no direct way to determine this). For our control experiment, we

crawled TMDb again, looking for movies with a release date later than January

5, 2021, date of the OpenAI blog post introducing CLIP. We thus assume that

2https://github.com/Bila12/Plotster_dataset
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Figure 5.2: A data sample from Plotster. The image displayed here is property of
The Walt Disney Company / Marvel Entertainment and under the CC BY-SA 2.0
license.

most of this data could not have been included in CLIP’s training dataset. The new

crawl resulted in 20,280 movies, only 93 of which had been present in the original

Plotster dataset. We tested on these 20,280 new samples the classifiers trained on

Plotster (only in unimodal settings), and report the corresponding results.

Masking

CLIP has been found to have an ability to “read” text inside images [Goh et al., 2021].

As most of the images in the Book Cover dataset and in Plotster have text on them,

and as this text could be informative about the genre of the book or movie, we
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Bert-base Bert-large CLIP-T

None ∅ 63.33 ± 0.18 64.02 ± 0.74 64.60 ± 0.30
RN50 55.17 ± 0.37 63.93 ± 0.36 63.92 ± 0.55 64.13 ± 0.37
BiT-M 60.0 ± 1.46 61.93 ± 2.05 63.16 ± 2.82 62.77 ± 0.72
CLIP 63.07 ± 0.23 66.03 ± 0.15 66.03 ± 0.6 65.58 ± 0.38

NoneVision
Text

Table 5.1: Accuracies for the MVSA dataset. CLIP is the best vision model,
CLIP-T the best text model. All text models perform similarly in both unimodal
and multimodal setting, except when paired with CLIP (which yields the best
performance of each column).

None Bert-base Bert-large CLIP-T

∅ 54.70 ± 0.25 54.92 ± 0.43 57.28 ± 0.27
RN50 10.04 ± 4.33 54.85 ± 0.52 55.53 ± 0.39 57.20 ± 0.49
BiT-M 29.33 ± 0.92 50.11 ± 0.57 50.49 ± 0.59 52.60 ± 0.46
CLIP 53.75 ± 0.23 60.38 ± 0.34 60.62 ± 0.27 60.66 ± 0.26
RN50 10.41 ± 2.43 54.26 ± 0.25 55.11 ± 0.17 57.26 ± 0.29
BiT-M 24.87 ± 0.99 48.93 ± 0.77 50.09 ± 0.71 52.08 ± 0.59
CLIP 33.04 ± 0.21 57.86 ± 0.45 58.47 ± 0.40 59.54 ± 0.28

None

Standard

Masked

Vision
Text

Table 5.2: Accuracies for the Book Cover dataset (standard images on top, masked
images on the bottom). CLIP and CLIP-T are the best performing models of each
unimodal test, and together provide the best multimodal combination for both
standard and masked images. Masks diminish the performance of all models (and
their combinations), but the advantage for CLIP (and CLIP-T) remains.

worried that this ability could give CLIP an unfair advantage over other vision

models. To minimize this possibility, we created alternative versions of these two

datasets by applying a masking procedure on the images (see Figure 5.1). We used
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Bert-base Bert-large CLIP-T Bert-base Bert-large CLIP-T

∅ .314 ± .01 .323 ± .01 .397 ± .00 .582 ± .00 .599 ± .01 .612 ± .00
RN50 .090 ± .01 .338 ± .01 .363 ± .01 .393 ± .02 .578 ± .01 .599 ± .01 .599 ± .01
BiT-M .415 ± .01 .490 ± .01 .499 ± .01 .507 ± .01 .625 ± .01 .637 ± .01 .631 ± .01
CLIP .526 ± .01 .559 ± .01 .558 ± .01 .593 ± .01 .672 ± .00 .683 ± .00 .687 ± .00
RN50 .070 ± .01 .335 ± .02 .352 ± .01 .383 ± .02 .576 ± .01 .597 ± .01 .596 ± .01
BiT-M .372 ± .00 .457 ± .02 .480 ± .01 .490 ± .01 .617 ± .01 .631 ± .01 .621 ± .01
CLIP .449 ± .01 .525 ± .01 .534 ± .01 .564 ± .00 .658 ± .00 .667 ± .00 .676 ± .00

None
Title Plot

None

Standard

Masked

Vision
Text

Table 5.3: f1-scores for the Plotster dataset. CLIP is the best model in vision,
CLIP-T the best in text whether titles or plots are given as input, and CLIP+CLIP-T
is the best multimodal combination in all cases. The masking doesn’t affect the
advantage for CLIP.

the EAST algorithm [Zhou et al., 2017] to generate bounding boxes around text;

if the score given to a text detection reached a certain threshold, a black rectangle

was applied over the corresponding bounding box. On top of that, a second

algorithm detects the remaining small white text using a thresholding method, a

saturation filter and a size filter, and then does a Telea inpainting [Telea, 2004] to

remove it.

The results on the datasets with masks are reported along with those of the

originals.

Results

To compare the generalization capabilities of our text, vision, and multimodal

models, we focus on transfer learning and few-shot learning settings.
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Transfer learning

Our first experiment is transfer learning. We use the pretrained networks (see

Section 5.2) with frozen weights as encoders, and train a new classification head

for each of our datasets in unimodal or multimodal settings.

For transfer learning in single-label classification (sentiment on MVSA, book

genre), we plug on top of the frozen feature vector encoder one dense layer (ReLu

activations) bringing the dimensions down to 256, and then another dense layer

(softmax activation) for the classification. We then train only the weights of these

2 layers on the classification task with a Cross-Entropy Loss; therefore the network

learns to output a probability density over the classes.

For multi-label classification (movie genres) the loss is a Binary Cross-Entropy

Loss, and therefore the second dense layer outputs a number between 0 and 1 for

each class. As the ground-truth label vector for one sample is a 19-dimensional

one-hot vector, we round the 19-dimensional prediction of the network to get

a binary predicted label vector. A f1-score [Pedregosa et al., 2011] comparing

the predicted label vector to the ground-truth vector is reported, as raw accuracy

is not a reliable measurement for multi-label classification. The f1-score takes

into account the number of True Positives (TP), False Positives (FP) and False

Negatives (FN) according to the following formula:

f1 = TP
TP + 1

2 × (FN + FP)
The f1-score is computed for each movie, and subsequently averaged over the

test set of each dataset. For f1-scores, as for accuracy, the higher the better.

Tables 5.1 and 5.2 show the results on the single-label datasets: MVSA and
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Book Cover. The first column corresponds to the result of the vision-only ex-

periment, the first line to those of the text-only experiments, and the other cells

display the results of the multimodal ones. Table 5.3 shows the results for the

multi-label dataset (Plotster). In all tables, the best vision-only performance is

highlighted in bold, the best text-only is underlined and the best multimodal one

is both underlined and bold. The standard deviation is calculated over five ex-

periments with different random seeds and random initialization of the weights of

the classifiers.

On MVSA (Table 5.1), CLIP is the best performing vision-only model

and CLIP-T the best text-only model. The best multimodal combinations are

CLIP+Bert-base and CLIP+Bert-large, with CLIP+CLIP-T near the same level

(less than 0.5 percentage point behind). This is not unexpected, as CLIP-T counts

much fewer parameters than Bert-base or Bert-large (see section 5.2).

For the Book Cover dataset (Table 5.2), CLIP is by far the best performing

vision model, both with the standard covers and with the masked covers as input.

The difference between CLIP’s accuracy (53.8%) and the other two (RN50: 10.0%;

BiT-M: 29.3%) remains high in the masked configuration (with CLIP at 33.0%

and the other two below 25%), even though CLIP has lost the ability to read

the text on the covers. This indicates that CLIP’s reading ability is not the sole

explanation for its advantage over vision-only models. CLIP-T is again the best

text-only model. Here, the best multimodal combination is CLIP+CLIP-T for both

standard and masked configurations. Finally, compared to previously established

SOTA performance on the Book Cover dataset by [Lucieri et al., 2020], CLIP

easily beats the previous visual SOTA (27.8 % accuracy), CLIP-T the previous

textual SOTA (55.6%), and CLIP+CLIP-T the previous bimodal SOTA (55.7%).
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Concerning our new Plotster dataset (Table 5.3), similar conclusions emerge.

In vision-only conditions, RN50 performs relatively poorly; in the standard dataset,

CLIP largely outperforms BiT, and this difference decreases but remains in the

masked dataset. In text-only conditions, CLIP-T is the best model, both with titles

and plots as input. Finally, in the multimodal settings, CLIP+CLIP-T is always the

best-performing combination, whether using standard or masked images, title or

plot as textual inputs. As before, the prevalence of CLIP in all task settings, even

when text has been removed from the movie posters, indicates that its superiority

in our movie genre transfer learning task is not solely due to its reading ability.

We surmise that this advantage reflects a form of semantic grounding resulting

from CLIP’s multimodal training.

We also tested CLIP, CLIP-T and their combination on a subset of Plotster

corresponding to the dataset of [Mangolin et al., 2020], in order to compare with

previous SOTA values. We found that CLIP beats the previously established visual

SOTA (f1-score of 0.603 against 0.409), CLIP-T the textual SOTA (f1-score of

0.589 against 0.488) and CLIP+CLIP-T the bimodal SOTA (0.670 against 0.628).

In a separate control experiment, we tested all our models (trained on the

entire Plotster training set) on a new set of movies, all released after OpenAI’s

initial blogpost introducing the CLIP model. On this new test set, CLIP’s f1-score

changes from 0.526 to 0.439, BiT’s goes from 0.415 to 0.318 and RN50’s from

0.090 to 0.020. CLIP-T’s (with title as text input) goes from 0.397 to 0.276,

Bert-large from 0.323 to 0.237 and Bert-base from 0.314 to 0.229. The general

diminution of the f1-score across all networks is probably due to the fact that

features trained to classify older movies do not work equally well when they are

applied to more recent movies. Nevertheless, CLIP and CLIP-T remain the top-
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performing models; as it is unlikely that these recent movie posters and captions

had been included in CLIP’s training dataset, we conclude that CLIP’s high

transfer-learning performance on Plotster is not a consequence of prior exposure

to these stimuli, but a true form of generalization.

In general, we see that in all the unimodal settings, CLIP outperforms the

other vision models, and CLIP-T the other text models. This is true, even though

CLIP has roughly the same number of parameters than RN50 or BiT-M, and fewer

dimensions in its latent space (and thus, less parameters in its classifier head).

Similarly, CLIP-T counts much fewer parameters than Bert-base or Bert-large

(although it has a higher-dimensional latent space than Bert-small). In most of the

multimodal settings, changing from one visual model to CLIP or from one textual

model to CLIP-T improves performance (the only exceptions are for CLIP-T on

MVSA and on Plotster with plots as text inputs). The best multimodal models

always involve CLIP, and also involve CLIP-T in all cases except MVSA. This

makes the CLIP + CLIP-T combination the best overall multimodal model in our

experiments.

Few-shot learning

The second experiment we conduct is a visual few-shot learning task: we measure

test classification accuracy based on exposure to a small number of randomly

chosen training samples (or “prototypes”) from each class. We can thus compare

the results for our datasets with those of [Devillers et al., 2021], who also measured

visual few-shot learning performance.

In their paper, [Devillers et al., 2021] used a single prototype vector for each
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Figure 5.3: Few-shot learning accuracy (vision-only) over single label datasets
(Book Covers, MVSA) and f1-score over the multilabel Plotster datasets. The
leftmost panel reports average accuracy on 6 standard visual datasets used in
[Devillers et al., 2021] – namely CIFAR10, CIFAR100, CUB, FashionMNIST,
MNIST and SVHN. Accuracy was recomputed using the same method as for our
datasets; the conclusions are identical to those of [Devillers et al., 2021]: CLIP
does not perform better than RN50 or BiT in this few-shot learning setting. On
the contrary, for our datasets CLIP outperforms the two other vision models. The
advantage is reduced but still present when masks are applied.

class, obtained by averaging the latent representation of the N randomly drawn

training samples for that class. Here, we prefer to retain all N individual samples as

prototypes, and use a 1-nearest-neighbor (1-NN) classifier [Pedregosa et al., 2011]

to classify the new vectors. We verified that this method, when applied to the

same datasets as in [Devillers et al., 2021], does not alter their conclusion (see

the first plot of Figure 5.3). To select the class prototypes of Plotster (which is

a multiclass dataset), we randomly choose movies with a given class label. For

example, a movie with genres “adventure” and “action” could be randomly chosen

as a prototype of either genre. Moreover, when predicting the genres of a movie

using the 1-NN classifier, we predict all the genres of the closest prototype.
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Figure 5.3 reports the few-shot accuracy on the Book Covers and MVSA

datasets as well as the f1 score for the Plotster datasets. Contrary to the conclusion

of [Devillers et al., 2021] using standard visual datasets (see Figure 5.3, left), our

results show a clear advantage to CLIP in our more “human-centric” visual tasks,

even when masks are applied. For MVSA, the networks required more samples

(between 20 and 100) to reach above-chance accuracy than for the other datasets

(that use 1 to 10 samples). In that specific case, the three models are more difficult

to distinguish, but CLIP still appears better than the other two visual models.

Summary

In the visual domain, CLIP systematically outperforms the unimodal vision models

in transfer learning (Tables 5.1-5.3) and in visual few-shot learning (Figure 5.3),

despite having a smaller embedding space than the other two ResNet50-based

models. Part of CLIP’s superiority may be due to its ability to read, but the

advantage remains when text is removed from the images. This conclusion goes

against the observations of [Devillers et al., 2021] using standard visual datasets

(including SVHN, a digit reading dataset), where CLIP was never better (and often

slightly worse) than other ResNet50 based models, including RN50 and BiT-M.

We explain this difference by the nature of the classification performed: our tasks

involve human-centric concepts, as defined earlier.

In the text domain, CLIP-T, despite having been trained with fewer parameters

than the other two transformers (Bert-small and Bert-large), is systematically the

best performing model in transfer learning.

Across seven multimodal settings (MVSA dataset; Book Covers dataset
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[with / without masks]; Plotster with [titles / plots] × [with / without masks]),

CLIP+CLIP-T was the best multimodal combination in six cases. In the remaining

case (MVSA), it was a tie between CLIP+Bert-large and CLIP+Bert-small (two

language models that count many more parameters than CLIP-T).

We think that the semantic grounding provided by linguistic inputs when

training CLIP’s visual stream, and respectively, the visual grounding provided

by image features when training the CLIP-T language model, shaped their latent

space in a way that makes it possible to better grasp the human-centric components

of an image or a text.

Discussion and conclusion

CLIP’s generalization abilities were originally described in the context of zero-

shot learning [Radford et al., 2021], but they may also extend to other settings,

including transfer learning and few-shot learning. Past work has revealed that

this is not always the case [Devillers et al., 2021]. Considering the latent rep-

resentations learned by CLIP may help us better understand when multimodal

training does or does not benefit generalization abilities, continuing the work of

[Hossain et al., 2019]. In our case, it appears that one of the domains where the

improvement is most significant is when human-centric concepts are being judged.

During their joint contrastive training, CLIP and CLIP-T have learned to ex-

tract common information between image and text modalities, so that the two

streams would result in similar embedding vectors. This means that the represen-

tation of text in CLIP-T has been enriched with visual data, and symmetrically,

that the representation of images in CLIP has been improved by semantic or
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linguistic enrichment. This is what is collectively referred to as the “semantic

grounding” property [Harnad, 1990, Bender and Koller, 2020]. However, another

consequence of this multimodal contrastive training is that when learning a com-

mon ground between modalities, some relevant information could be lost. For

text, what cannot be directly linked to images (including grammatical or syntactic

properties); and for images, what is not directly relevant to the text description

(including fine-grained visual details that are rarely mentioned in the correspond-

ing caption). This information loss might be the reason why CLIP was found

to perform worse than standard vision-only models in a unimodal setting with

standard visual datasets [Devillers et al., 2021]. For the same reason, one could

actually expect that in a multimodal setting, the combination of CLIP’s vision and

text streams (CLIP+CLIP-T) could lead to worse performance than other combina-

tions (e.g. RN50+Bert). The unimodal networks are trained to capture the relevant

features of their modality, and when combined, could cover the multimodal feature

space more fully than CLIP, a network trained to discard information that is not

redundant across modalities. Our results show that, at least in our human-centric

classification tasks, this limitation was not consequential: CLIP, CLIP-T and their

combination often performed optimally. This may be because human-centric

information is particularly well captured by features expressed in both images and

text, rather than in each modality independently. On the other hand, this same

reasoning could explain why CLIP+Bert combinations performed slightly better

than CLIP+CLIP-T on MVSA: Bert may have provided additional information

not captured by CLIP, which was lacking in CLIP-T because of their redundant

embeddings (or, this might simply be due to the fact that Bert has many more

parameters than CLIP-T).
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Our suggestion that CLIP (and CLIP-T) perform particularly well when judg-

ing human-centric concepts resonates with recent findings relating CLIP’s repre-

sentations to human brain representations. [Goh et al., 2021] reported that some

artificial neurons in CLIP’s visual stream (but not in standard visual models like

Inception or ResNet) are systematically activated by specific “concepts” such as

a particular person, emotion, country, religion, etc. Furthermore, these neurons

could be equally activated by visual features (e.g., a photograph or drawing of the

person’s face) or by written text (e.g., the person’s name). The authors related this

multimodal invariance to properties of specific biological neurons found in the

human hippocampus and temporal medial lobe, called “concept cells”: these cells

would also systematically activate when presented with a picture, drawing or writ-

ten word representing a specific concept, such as a photograph of the actress Jen-

nifer Aniston or her written name [Quiroga et al., 2005, Reddy and Thorpe, 2014].

Indeed, more recently [Choksi et al., 2021] compared brain fMRI representations

in the human hippocampus with the patterns of representations measured in various

vision models. They found that CLIP and other networks trained with multimodal

objectives were more similar to human hippocampus representations than standard

vision models (including RN50 and BiT-M). This could explain why a multimodal

network like CLIP performs better when judging “human-centric concepts”.

To conclude, we think that it is crucial to investigate the specific domains in

which a multimodal training such as CLIP’s can (or cannot) improve generalization.

Our work indicates that multimodality will be key for developing algorithms

designed for human-centric tasks (even for unimodal tasks) such as detecting

emotions, analyzing personality, conducting a conversation or, more generally,

when human-machine interactions are involved.
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5.3 Afterword

This section completes the one before it. The visual modality is composed of

many domains. The understanding of some of them is improved when training

in a multimodal setting, while some other might not benefit from the current

multimodal methods. This shows that training on multimodal data is not sufficient

to improve the overall understanding of each domain. The method of training

is key, and still need to be improved in order to complete the third step (WS3)

described by [Bisk et al., 2020].

To sum-up what has been shown so far: when evaluating generalization abil-

ities, one cannot only focus on standard tasks and datasets. A modality’s repre-

sentation covers many subdomains, and multimodallity, especially in the case of

CLIP, has improved the representation of both text and images when it comes to

human-centric concepts, but this was somehow detrimental to more object-centered

representations.

Nonetheless, this is encouraging, as AI tends to become more and more human

compatible – interactions between human and AI driven robots being one of the

key objective the field is aiming at.

In the next section, we will take on a standard multimodal task and see how

we can very efficiently obtain some interesting results by leveraging CLIP’s latent

space properties. This will highlight another aspect of this latent space: its

incomplete multimodality and at the same time the impressive correspondence

between textual and visual vectors – which enables us to easily, at a very low

computational cost, translate between them by using cycle-consistent training.





Chapter 6

Improving image captioning with the Latent
CycleGAN

6.1 Preamble

The generalisation abilities of multimodal models can be assessed and leveraged

at the same time. This is what has been done previously, with transfer learning

and few-shot learning.

In this study, the task at hand is image captioning. So, contrary to the previous

experiment, where no translations were involved, and where the classification

required supervision and annotated data, we are here going to put in place an

image-to-text pipeline trained without supervision.

This is done in order to lower the computational cost of the task at hand, as big

pretrained multimodal models already exist, and we want to exploit the properties

of their rich latent space.

We will show that an unsupervised training method in the latent space of CLIP

141



142
CHAPTER 6. IMPROVING IMAGE CAPTIONING WITH THE LATENT

CYCLEGAN

can yield better results than a direct text-decoding pipeline, which will prove that

the cycle-consistency principle alone, as applied in CycleGAN [Zhu et al., 2017],

can be used to train a GAN in a latent space without having to explicitly generate

pieces of data (such as text or images). A side conclusion of this paper, that

establishes a proof of concept for a Latent CycleGAN, is that CLIP’s latent space

is not fully multimodal; text and image features are distinguishable and need to be

translated in one another to perform a multimodal translation task such as image

captioning.
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6.2 The Latent CycleGAN

CLIP-based image captioning via unsupervised
cycle-consistency in the latent space

Romain Bielawski & Rufin VanRullen

Abstract

Image captioning typically involves an image encoder to extract meaningful

image features, and a text decoder to generate appropriate sentences. Powerful

pretrained models can be used for both image encoding and text decoding; but in this

case, a separate multimodal translation stage between image-encoder output features

and text-decoder input features must be learned. One exception is when image and

text features are already aligned by construction, as in the CLIP model (Contrastive

Language and Image Pretraining – a bimodal network pretrained on 400M image-

text pairs). Pretrained CLIP-image features can be directly fed to a text-decoder

trained to reconstruct captions from their pretrained CLIP-text features. Here we

show that this direct captioning method is in fact sub-optimal. Instead, we propose

an alternative method to translate CLIP-image features into CLIP-text features in a

strictly unsupervised way, using the CycleGAN architecture – originally designed

for unpaired image-to-image translation. Our Latent CycleGAN, optimized solely

for an unsupervised cycle-consistency objective, generates CLIP-text latent features

conditioned on CLIP-image latent features and vice-versa. Using these CLIP-text

latent features as input to the text decoder, our method largely outperforms the direct

captioning method that uses CLIP-image features – despite the fact that CLIP’s

large-scale pretraining should have already aligned the two feature spaces. This

implies that cycle-consistency on unmatched multimodal data can be efficiently

implemented in a bimodal latent space, and that CLIP-based image captioning can

be improved without additional supervised training.
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Introduction

Multimodality is gaining popularity due to the recently available online resources

that make the creation of huge visio-linguistic datasets possible [Jia et al., 2021].

Many models have been created to perform specific bimodal tasks such as Visual

Question Answering or Image Captioning [Anderson et al., 2017, Lu et al., 2019,

Li et al., 2019, Singh et al., 2019], but some have been designed with a more gen-

eral objective: producing a multimodal latent vectorial space where images and

text can be represented and compared. Among these models, CLIP – an algo-

rithm trained with a multimodal contrastive objective on a large dataset (400M

samples) of image-caption pairs – has shown impressive zero-shot learning abili-

ties [Radford et al., 2021]. This model has recently been tested on tasks for which

it was not initially trained, such as transfer learning and few-shot learning on

unimodal and multimodal datasets, or image captioning, establishing new SOTA

results on some tasks [Bielawski et al., 2022, Mokady et al., 2021].

In the specific case of image captioning, many studies use pretrained mod-

els for image feature encoding as well as for text generation. An end-to-end

image-to-caption fine-tuning stage is typically required, however, to align visual

and linguistic representations in a supervised way on a matched image-caption

dataset [Chen et al., 2021, Fang et al., 2021, Zhou et al., 2019]. There is an obvi-

ous exception to this rule: when the pretraining of the model already aligned text

and image features – as in the case of CLIP. Therefore, here we aim at leveraging

this property by implementing a captioning pipeline that does not use matched

image-caption data.

We first train a “CLIP-text decoder” to reconstruct captions based on their



6.2. THE LATENT CYCLEGAN 145

textual features in CLIP’s latent space (a unimodal, linguistic objective); this text

decoder is subsequently frozen. Hence, we compare a direct captioning pipeline –

feeding the text-decoder with CLIP image features in order to generate a caption –

with a pipeline where a CycleGAN [Zhu et al., 2017] inspired translator – trained

with only unpaired visual and textual features – is used to convert image features

into text features before feeding them to the text-decoder. Even though CLIP’s

latent space was already pretrained with a brute-force approach to align its visual

and linguistic representations on 400M image-caption pairs, we demonstrate that

our feature conversion model trained using cycle-consistency in the CLIP latent

space significantly improves captioning performance, compared with the direct

method.

Dataset

To train our algorithms, we use the COCO [Lin et al., 2014] train 2014 dataset,

composed of images representing complex scenes, along with their descriptions.

We simply use the captions and the images independently, as two sets of unpaired

unimodal data from each modality.

For the evaluation, we use the COCO validation 2014 dataset.

Models

Pretrained models

We use CLIP ViT-B/32, a pretrained Vision-Transformer-based [Dosovitskiy et al., 2020]

CLIP checkpoint, as image and text encoder. CLIP’s vision encoder will be ther-
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after referred to as just CLIP, and CLIP’s text encoder will be called CLIP-T.

Text featurescaption Frozen CLIP-T

Trained CLIP-T
decoder

Figure 6.1: The text decoder is trained to reconstruct COCO train captions from
their textual embedding in CLIP’s latent space. It learns a mapping from CLIP-T
features to prefixes that condition the generation of text with a pretrained (frozen)
GPT-2. Note that the text-decoder is trained only with (unimodal) linguistic data.

In order to create our CLIP-T decoder (see Figure 6.1) we rely on the code

provided by [Mokady et al., 2021], inspired from [Li and Liang, 2021]. Their

decoder was originally trained on the CLIP image features of COCO images,

with the objective to reconstruct their corresponding captions (therefore using

paired vision-language data to align the text decoder training with pretrained

image features). Instead, our text decoder is trained in a unimodal setting on the

CLIP-T textual features of captions from the COCO train set (414K captions),

with the objective of regenerating the original text. This decoder uses GPT-
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2 [Radford et al., 2019] as a frozen language generator, and learns to produce

prefixes that condition the generation of text. The parameters of the text decoder

are shown in Table A.1 (Appendix ??). Once trained, our text decoder is frozen

and used as such in the two captioning pipelines that we compare.

Architecture

The architecture and training procedure of the Latent CycleGAN are shown in

Figure 6.2 to 6.4. It is trained as a CycleGAN on unpaired data from the image

and text modalities of the COCO train dataset (83K images and 414K captions).

The training takes two generators – one of text features, one of image features –

and two discriminators – to discriminate between real image (resp. text) features

and fake/generated ones (Figure 6.2).

Just as in any GAN, the objective of each generator is to fool the corresponding

discriminator. This is done by generating a fake latent vector in one modality, given

a real latent vector from the other (this source vector can thus be considered as

the noise that conditions the generation). The discriminator’s objective is to guess

whether any latent feature vector is real or generated (Figure 6.3). The generators

of a CycleGAN [Zhu et al., 2017] also have specific extra objectives. The cycle

consistency objective (Figure 6.4) minimizes the L1 loss between a feature vector

and its reconstruction when passed successively through the two generators (e.g.

an image feature vector is passed through the text feature generator, then this

vector is passed though the image feature generator: the result of this operation is

a reconstructed image feature vector). The identity objective aims at learning the

identity function when the image (resp. the text) generator is fed with an image
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Text featurescaption Frozen CLIP-T Image features Frozen CLIP image

Image feature
generation

Textualisation

Figure 6.2: The full architecture of the latent CycleGAN. The generators (purple
arrows) are trained with unmatched multimodal data from the COCO dataset. One
is trained to generate latent image features given a CLIP-T embedding, the other is
trained to produce latent text features given the image features, i.e. to “textualize”
them. Discriminators are not shown here.

(resp. text) feature vector.

Each generator is composed of 4 dense layers of dimension 512x512 with

Tanh activation; the discriminators are composed of two dense layers, one of

dimension 512x256, the other of 256x1, with LeakyReLU activation.
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Text featurescaption Frozen CLIP-T Image features

Image feature
generation

Image feature
discriminator

Figure 6.3: The GAN objective for Image feature generation: the generator must
fool the discriminator, which must distinguish between real and fake inputs (here,
between real image features and those translated from text features). A similar
training objective and discriminator network exists for the other “textualisation”
generator (not shown here).

After having trained the Latent Cycle-GAN to convergence, we can then

compare the two captioning pipelines illustrated in Figure 6.5.

The first one uses the fact that in CLIP’s latent space, the features extracted

from an image are intended to be as close as possible to the features computed

by CLIP-T for a matching caption. This similarity was enforced by extensive

contrastive training over 400M paired image-captions. Therefore, we may simply

feed our CLIP-T decoder (trained on text features) with image features, and

generate a corresponding caption.

The second pipeline uses the image-to-text-feature generator (the rest of the

Latent CycleGAN was only required during training, i.e. to compute and optimize

cycle-consistency). The image-to-text-feature generator is used for what we call
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Text featurescaption Frozen CLIP-T Image features

Image feature
generation

Textualisation

L1
reconstruction

loss

1

2

3

4

Figure 6.4: The cycle consistency objective consists in minimizing the L1 loss
between a feature vector and its reconstruction after passing successively through
both generators (here the translation of text features to and back from image
features). The same cycle-consistency objective is also applied with cycles starting
from the other (image) modality (not shown here).
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caption

Trained CLIP-T
decoder

Image features Frozen CLIP image Text featurescaption

Trained CLIP-T
decoder

Image features Frozen CLIP image

Textualisation

Figure 6.5: The two pipelines compared here for generating a caption. Our baseline
(left) relies on the fact that CLIP was trained to project an image and its caption as
close as possible in the latent multimodal space: the text decoder can thus generate
a caption when given image features. The second one uses our generator, trained
in an unsupervised way with unpaired multimodal data, to textualise the image
features before feeding them to the text decoder.

here "textualisation", i.e. it generates a text feature vector conditioned on an input

image feature vector. After the textualisation of an image vector, the textualised

vector is fed to the CLIP-T decoder to generate the caption.

Task

Given an image from the COCO dataset, the model’s task is to reconstruct

one of the corresponding captions. Several scores can be used to evaluate

the quality of the reconstruction. Here we dispay the BLEU-1 to BLEU-4

[Papineni et al., 2002] (BLEU-n counts matching n-grams in the model output to

n-grams in the reference text), the ROUGE_L [Lin, 2004] (measuring the longest

common subsequence between the model output and the reference), the CIDEr

[Vedantam et al., 2014] (computing the average n-gram cosine similarity between

the model output and several descriptions of reference and several n) and the
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Scoring Image features Textualised image
method as input features as input
BLEU-1 0.281 0.407
BLEU-2 0.120 0.231
BLEU-3 0.047 0.121
BLEU-4 0.020 0.062
ROUGE_L 0.239 0.341
METEOR 0.098 0.161
CIDEr 0.064 0.247

Table 6.1: Scores for image captioning on the COCO validation set, for the two
pipelines displayed in Figure 6.5. Higher scores indicate better captioning. The
captioning pipeline with image features as input to the text decoder underperforms,
compared to the one with features textualised using the text feature generator.

METEOR [Denkowski and Lavie, 2014] (a variation of BLEU that aligns the

reference and the output differently by incorporating semantic knowledge) scores.

Results

Results for the captioning task are displayed in Table 6.1. Despite the fact that

CLIP’s latent space was specifically designed and trained so that the encoding

of an image and its description are as similar as possible, the strategy of directly

using image latent features as input to the CLIP-T decoder does not perform well

(for all scoring methods).
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By simply training a Latent CycleGAN on unmatched COCO images and

description (i.e. training in an unsupervised way on approximately 82K images,

compared to the 400M image-text pairs of CLIP’s initial training set) the improve-

ment in score can go up to more than a factor 3.

Some uncurated examples of images and output captions from the COCO

validation set can be seen in Appendix ??.

Discussion and conclusion

CLIP’s bimodal alignment can allow image captioning at a SOTA level, but this

requires a fine-tuning with paired image-caption data [Mokady et al., 2021]. Since

image and text are projected in the same latent space, it is also possible to use a

direct captioning method with a trained CLIP-T decoder, without requiring any

bimodal training; however, as we show here, this method is sub-optimal. We

show how, using only unpaired images and captions, it is possible to significantly

improve performance, while still taking advantage of CLIP’s latent space mul-

timodal alignment. Nonetheless, the results of the unpaired translation method

implemented here remain far from the SOTA reached with supervised image cap-

tioning. Moreover, in our experiment, each caption implicitly matched an image

from the training dataset, even though the matching was not given to the model.

Finally, the translation module that has been designed here can be used as such

only for modalities that are not temporal or sequential by nature (like sound or

video), unless a fixed size vector can be extracted to represent these modalities. In

future work, one might try enlarging the training domain of each modality, and

incorporating data from separate, potentially larger unimodal datasets.
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Our work suggests that the geometries of the representation of the vision and

language modalities differ in CLIP’s latent space. That is, CLIP’s training has

not properly brought together the two modalities. If it had, the image features

would be directly usable by the text decoder, and our unsupervised “textualisation”

training would not help the caption generation. This means that CLIP can represent

vision and language in the same space, but vectors extracted from one domain are

not fully multimodal in the sense that they are not indistinguishable from vectors

from the other domain – in other words, modality-specific information appears

to interfere with full multimodality. Our Latent CycleGAN helps bridge the gap

between the two latent representations, by enabling a unimodal text decoder to

better understand image features, once they have been “textualised” by the text

feature generator.

The recently proposed DALL-E2 [Ramesh et al., 2022] model, which uses a

diffusion process to generate images from a caption, appears to have been based on

a similar realization. Their diffusion image generator was trained to reconstruct an

image given its CLIP image feature vector; however, for text-to-image generation,

they did not directly feed the CLIP-T embedding into the diffusion generator,

but first "translated" it into a suitable image-feature latent vector, exactly as we

propose here.

6.3 Afterword

The latent space of CLIP is not fully multimodal, despite its multimodal training.

The features extracted from an image are widely different from the features
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extracted from their corresponding caption. It was necessary to design a translator.

Fortunately, the feature are homeomorphic enough (just as pictures of horses and

pictures of zebras are similar and can be translated one into another).

An experiment which I conducted but that hasn’t been mentioned in this paper,

with Bert [Devlin et al., 2018] and ViT [Dosovitskiy et al., 2020] features, showed

that the same method for translation cannot operate between two unimodal latent

space, even though they share the same dimensionality – the performance of a

Latent CycleGAN in these spaces were the same as the other unimodal pipeline.

This means that CLIP’s latent space has somehow benefitted from multimodality,

partially but significantly enough so that an unsupervised translation algorithm

actually gains performance compared to a simple, unimodally trained image

captioning pipeline.





Chapter 7

General Discussion

In this dissertation I introduced several ways of assessing and leveraging efficiently

the abilities of multimodal models. It appears that the current types of multimodal

training bring some additional information to each domain’s representation, how-

ever it is also detrimental in some other ways. Let’s review some advantage and

drawbacks of multimodal training highlighted in this thesis.

7.1 What does multimodality bring to
representations?

The first study (in Chapter 4) shows that multimodal training does not bring any

advantage compared to a simple visual training when it comes to object detection

[Devillers et al., 2021]. It does not help either for adversarial robustness. This is

surprising, as one could expect two things from multimodality :

• That it improves generalisation in vision tasks thanks to the semantic infor-
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mation incorporated in the visual domain (as it has been done successfully

in [Baveye et al., 2015])

• That it improves adversarial robustness thanks to semantic segmentation

(e.g. that it prevents mistaking a dog and a truck on an image as they are

semantically very dissimilar)

Which is not the case for the current multimodal SOTA models on standard

visual dataset and neither targeted nor untargeted attacks.

A beginning of explanation comes from the study of textual, visual and bimodal

representational spaces; bimodal models do not stand in-between textual-only and

visual-only representations. They constitute their own domain, as if they had been

trained on a third modality that is neither vision nor language.

Hence, this modality needs to be investigated and evaluated. Multimodal

models are underperforming on standard visual tasks, but actually provide en-

hanced performances on what we have reffered to as "human-centric" tasks, at

least for CLIP, in textual, visual and bimodal settings. This means that – probably

partly given that multimodal dataset are crawled from the internet, where actual

human-to-human interactions happen – mutlimodal models such as CLIP are more

efficient when the human world is being considered and less when the task is

object-oriented.
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7.2 How can we efficiently leverage multimodal
pretraining?

A multimodal training requires a lot of annotated data to be competitive with other

unimodal models on standard tasks. In order to generate proper representations,

CLIP had to be trained on 400M image-caption pairs. This huge dataset enables

the model to learn feature that can generalize – sometimes better, sometimes

worse than their unimodal counterpart – and that we should be able to use without

having to retrain on another set of annotated data. That is what we have tried to

achieve with our Latent CycleGAN, by creating a captioning pipelines that operates

without having been trained on matched data (apart from CLIP’s pretraining) –

such a pipeline didn’t work with two separate unimodal models, which means that

multimodality is key in this context.

However, we remain far from SOTA, which means that CLIP’s feature space

cannot be leverage at very low computational cost with competitive performances

so far. Inventing unuspervised training methods that yield SOTA performances by

leveraging pretrained models is another challenge for the multimodal AI field.

7.3 Limits

The findings of our studies are limited to a subpart of the multimodal and unimodal

models. We mostly focused on CLIP on the multimodal side, on ResNets and

image transformers trained for image classification on the visual side, and on

BERT for the textual one.
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However, these models represent the current SOTA in all their respective

domains. They are also standard in terms of architecture, in terms of training

objective, and in terms of training dataset. It is not possible to exhaustively explore

all the architectures, methods and data preprocessing that exist. We selected the

algorithms by the fact that they had the broadest use and the best performances

in standard metrics, which means that they represent the current state of the field.

Our aim was to explore the possibilities of SOTA models, and the conclusion we

draw on multimodal versus unimodal models stands only for the current ones. In

the long run, we agree with [Bisk et al., 2020], which basically says that future

models will need to be multimodal – a kind of multimodal that doesn’t exist yet –

in order to be competitive.

Concerning our choice of the word "human-centric", one might wonder

whether it is the right one. Here we must admit that this term was used by

lack of a better one. It might be too general. The human-centric world is complex

and mostly unexplored by science. We think that, at least, we can say that emotion

detection and genre classification involve culture-dependent, somehow arbitrarily

determined concepts, which is not the case for the object oriented tasks studied in

the first paper. There is a subjective element to what genre or emotions can feel

like and be perceived, and that’s what we wanted to highlight in contrast to other,

more objective tasks.

Let’s add our generalization results might not apply to other datasets or other

modalities, but that they are probably not backbone dependent, as the only differ-

ences between models were their training datasets and objectives.

When it comes to our unsupervized method for image captioning using CLIP,

one obvious critique might be that we are far from reaching SOTA performances.
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And indeed, we can’t expect to compete with supervized training methods, espe-

cially with a small dataset like COCO.

Our goal here was to demonstrate that unsupervized training could lead to

better results than a simple pipeline plugged onto a multimodal latent space – a

side conclusion being that CLIP’s latent space is actually not fully multimodal.

This could also mean that with the next generation of multimodal algorithm, the

simple pipeline might gain some efficacy. It could also mean that our unsupervized

method might get closer to SOTA by simply applying it to a yet-to-be-conceived

multimodal space.

Nevertheless, we presented a proof of concept for a multimodal Latent Cy-

cleGAN. One can now try to train such an algorithm on more unmatched data,

possibly from different distribution, our training dataset being the unmatched

version of COCO captions and images. The Latent CycleGAN principle can also

be applied in a unimodal setting (in an image feature space for example, between

two image distributions), which, to our knowledge, hasn’t been done yet.

More generally, all our work about assessing and leveraging the generalization

abilities of multimodal models highlight the fact that modalities are not equivalent

and cannot be fully translated one into another. One might think that each modality

contains the same (amodal) information about the world, and that their only

difference is the shape that they are embodied in. We think that this view is partly

false. Only some subdomain of one modality can be translated to another one, and

this subdomain can vary depending on the target modality. By trying to create a

multimodal space, CLIP probably created a space where information that can be

embodied through both language and text are well represented, instead of creating

a space that represents all the information from both spaces. However, this fine
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representation of this intrinsically bimodal data allowed it to better depict some

parts of the human world – more specifically data that are used to communicate

between humans. This might be due to the fact that as humans, we tend to create

pieces of data that speak to several of our modalities at the same time in order to

better communicate. We might tend to stay within the range of information that

can be understood both through text and images, in order to use this redundancy

either to be better understood or to convey our message in a more striking way.

7.4 Future works

As stated above, the first thing to do with the Latent CycleGAN is to train it on

another unmatched multimodal dataset, such as Conceptual Caption for instance.

We didn’t have the time to do it, but that would probably yield slightly better

results than ours. Especially given that one limitation of the algorithm might be the

generalisation abilities of the text decoder, which is solely trained on the captions

of the dataset – and there is more textual data in Conceptual Caption (413,915

captions in COCO versus 3.3 millions in Conceptual Caption).

Of course, having more data from both modalities will surely lead to better

results for the CycleGAN itself.

But this is only a first step in using the Latent CycleGAN in different

context. Firstly, one can use it on a multimodal dataset (unmatched) where

the text is not (only) composed of the captions of the images, such as WIT

[Srinivasan et al., 2021], where images are extracted from Wikipedia pages, along

with their description, the title of the page and its introductory paragraph. Sec-
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ondly, one might try to go even further and gather as many images as possible, as

many text samples as possible and try the Latent CycleGAN on such a dataset,

where the distributions of images and text are completely unrelated. Given enough

data, the Latent CycleGAN might give some interesting results.

When it comes to the evaluation of the generalisation abilities of multimodal

models, there are two perspective I would have explored if I had the time – and

maybe will.

The first one is the adversarial robustness of multimodal models. It has been

explored in the first paper presented here for the visual domain, and it showed

that, contrary to what could be expected, semantic grounding didn’t provide extra

adversarial robustness. However, it would be interesting to look at targeted attacks

– where the goal of the attack is to fool the network by forcing it to infer a specific

class, which is obviously not the one of the image that is presented. If the semantic

grounding was somehow efficient, it should be more difficult to misclassify a

dog for a plane rather than a dog for a cat, because of the semantic distance

between concepts. This hypothesis can be tested with the adversarial attacks

results presented in [Devillers et al., 2021] with a little bit of analysis. The rate of

success of targeted adversarial attacks should decrease with the semantic distance

between the true class and the wrong one.

The second perpective would be a similar comparison as in the first paper,

but on the textual side, with standard textual tasks. Indeed, our conclusion stand

mostly for the visual domain, as the text modality was only introduced with

the human-centric tasks of the second article. It is not possible to state that the

language side of CLIP would not beat unimodal text model on standard tasks.

It actually might, because standard textual tasks cannot really be considered as
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object-oriented, contrary to standard visual ones.

7.5 Conclusive words

Multimodality in Artificial Intelligence is only at its beginning. The field now

needs to invent new methods of learning that take in account what unimodal models

can do and how these performances are obtained, to create models that outperform

the unimodal ones in all domains. Once such models are designed, another task is

how to engineer the feature space that they generate so that they can be efficiently

used for various tasks, in order to keep the downstream computational and data

cost low.



Bibliography

[Hug, ] Huggingface sentence transformer repository. https:

//huggingface.co/sentence-transformers. Accessed: 2022-02-

21.

[Lai, ] Laion-400-million open dataset.

[Agrawal et al., 2018] Agrawal, H., Desai, K., Wang, Y., Chen, X., Jain, R.,

Johnson, M., Batra, D., Parikh, D., Lee, S., and Anderson, P. (2018). nocaps:

novel object captioning at scale. CoRR, abs/1812.08658.

[Anderson et al., 2017] Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M.,

Gould, S., and Zhang, L. (2017). Bottom-up and top-down attention for image

captioning and VQA. CoRR, abs/1707.07998.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural

machine translation by jointly learning to align and translate.

[Baltrusaitis et al., 2017] Baltrusaitis, T., Ahuja, C., and Morency, L.-P. (2017).

Multimodal machine learning: A survey and taxonomy. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PP.

165

https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers


166 BIBLIOGRAPHY

[Baveye et al., 2015] Baveye, Y., Dellandréa, E., Chamaret, C., and Chen, L.

(2015). Liris-accede: A video database for affective content analysis. IEEE

Transactions on Affective Computing, 6(1):43–55.

[Bee et al., 2010] Bee, N., Pollock, C., Andre, E., and Walker, M. (2010). Bossy

or wimpy: Expressing social dominance by combining gaze and linguistic

behaviors. volume 6356, pages 265–271.

[Bender and Koller, 2020] Bender, E. M. and Koller, A. (2020). Climbing towards

NLU: On meaning, form, and understanding in the age of data. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics,

pages 5185–5198, Online. Association for Computational Linguistics.

[Bielawski et al., 2022] Bielawski, R., Devillers, B., Van De Cruys, T., and Van-

rullen, R. (2022). When does CLIP generalize better than unimodal models?

when judging human-centric concepts. In Proceedings of the 7th Workshop on

Representation Learning for NLP, pages 29–38, Dublin, Ireland. Association

for Computational Linguistics.

[Bisk et al., 2020] Bisk, Y., Holtzman, A., Thomason, J., Andreas, J., Bengio,

Y., Chai, J., Lapata, M., Lazaridou, A., May, J., Nisnevich, A., Pinto, N., and

Turian, J. (2020). Experience grounds language.

[Bojanowski et al., 2016] Bojanowski, P., Grave, E., Joulin, A., and Mikolov,

T. (2016). Enriching word vectors with subword information. CoRR,

abs/1607.04606.



BIBLIOGRAPHY 167

[Bowman et al., 2015] Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.

(2015). A large annotated corpus for learning natural language inference. In

Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing (EMNLP). Association for Computational Linguistics.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,

Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler,

D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,

Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and

Amodei, D. (2020). Language models are few-shot learners.

[Cassell et al., 1994] Cassell, J., Pelachaud, C., Badler, N., Steedman, M., Achorn,

B., Becket, T., Douville, B., Prevost, S., and Stone, M. (1994). Animated conver-

sation: Rule-based generation of facial expression, gesture spoken intonation

for multiple conversational agents. In Proceedings of the 21st Annual Confer-

ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, page

413–420, New York, NY, USA. Association for Computing Machinery.

[Cassell and Thórisson, 1999] Cassell, J. and Thórisson, K. (1999). The power of

a nod and a glance: Envelope vs. emotional feedback in animated conversational

agents. Applied Artificial Intelligence, 13:519–538.

[Chen et al., 2021] Chen, J., Guo, H., Yi, K., Li, B., and Elhoseiny, M. (2021). Vi-

sualgpt: Data-efficient image captioning by balancing visual input and linguistic

knowledge from pretraining. CoRR, abs/2102.10407.



168 BIBLIOGRAPHY

[Chen and Jin, 2017] Chen, S. and Jin, Q. (2017). Multi-modal conditional atten-

tion fusion for dimensional emotion prediction. CoRR, abs/1709.02251.

[Choksi et al., 2021] Choksi, B., Mozafari, M., Vanrullen, R., and Reddy, L.

(2021). Multimodal neural networks better explain multivoxel patterns in the

hippocampus. In Neural Information Processing Systems (NeurIPS) confer-

ence: 3rd Workshop on Shared Visual Representations in Human and Machine

Intelligence (SVRHM 2021).

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE

conference on computer vision and pattern recognition, pages 248–255. Ieee.

[Deng, 2012] Deng, L. (2012). The mnist database of handwritten digit images for

machine learning research. IEEE Signal Processing Magazine, 29(6):141–142.

[Denkowski and Lavie, 2014] Denkowski, M. and Lavie, A. (2014). Meteor uni-

versal: Language specific translation evaluation for any target language. In

Proceedings of the EACL 2014 Workshop on Statistical Machine Translation.

[Desai and Johnson, 2020] Desai, K. and Johnson, J. (2020). Virtex: Learning

visual representations from textual annotations. CoRR, abs/2006.06666.

[Devillers et al., 2021] Devillers, B., Choksi, B., Bielawski, R., and VanRullen, R.

(2021). Does language help generalization in vision models? In Proceedings

of the 25th Conference on Computational Natural Language Learning, pages

171–182, Online. Association for Computational Linguistics.



BIBLIOGRAPHY 169

[Devlin et al., 2018] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018).

BERT: pre-training of deep bidirectional transformers for language understand-

ing. CoRR, abs/1810.04805.

[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-

senborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold,

G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An image is worth 16x16

words: Transformers for image recognition at scale. CoRR, abs/2010.11929.

[Eminaga et al., 2018] Eminaga, O., Eminaga, N., Semjonow, A., and Breil, B.

(2018). Diagnostic classification of cystoscopic images using deep convolu-

tional neural networks. JCO Clinical Cancer Informatics, (2):1–8. PMID:

30652604.

[Engstrom et al., 2019a] Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., and

Tsipras, D. (2019a). Robustness (python library).

[Engstrom et al., 2019b] Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Tran,

B., and Madry, A. (2019b). Adversarial robustness as a prior for learned

representations.

[Fang et al., 2021] Fang, Z., Wang, J., Hu, X., Liang, L., Gan, Z., Wang, L., Yang,

Y., and Liu, Z. (2021). Injecting semantic concepts into end-to-end image

captioning. CoRR, abs/2112.05230.

[Finkelstein et al., 2001] Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E.,

Solan, Z., Wolfman, G., and Ruppin, E. (2001). Placing search in context: The



170 BIBLIOGRAPHY

concept revisited. In Proceedings of the 10th international conference on World

Wide Web, pages 406–414.

[Frome et al., 2013] Frome, A., Corrado, G., Shlens, J., Bengio, S., Dean, J., Ran-

zato, M., and Mikolov, T. (2013). Devise: A deep visual-semantic embedding

model.

[Gastaldi, 2021] Gastaldi, J. (2021). Why can computers understand natural

language?: The structuralist image of language behind word embeddings. Phi-

losophy Technology, 34.

[Geirhos et al., 2019] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-

mann, F. A., and Brendel, W. (2019). Imagenet-trained CNNs are biased

towards texture; increasing shape bias improves accuracy and robustness. In

International Conference on Learning Representations.

[Girshick et al., 2013] Girshick, R. B., Donahue, J., Darrell, T., and Malik, J.

(2013). Rich feature hierarchies for accurate object detection and semantic

segmentation. CoRR, abs/1311.2524.

[Goh et al., 2021] Goh, G., †, N. C., †, C. V., Carter, S., Petrov, M., Schubert,

L., Radford, A., and Olah, C. (2021). Multimodal neurons in artificial neural

networks. Distill. https://distill.pub/2021/multimodal-neurons.

[Goodfellow et al., 2014] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative

adversarial networks.



BIBLIOGRAPHY 171

[Harnad, 1990] Harnad, S. (1990). The symbol grounding problem. Physica D:

Nonlinear Phenomena, 42(1):335–346.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual

learning for image recognition. CoRR, abs/1512.03385.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory. Neural computation, 9:1735–80.

[Hossain et al., 2019] Hossain, M. Z., Sohel, F., Shiratuddin, M. F., and Laga, H.

(2019). A comprehensive survey of deep learning for image captioning. ACM

Comput. Surv., 51(6).

[Hu and Singh, 2021] Hu, R. and Singh, A. (2021). Transformer is all you need:

Multimodal multitask learning with a unified transformer.

[Iwana et al., 2017] Iwana, B. K., Rizvi, S. T. R., Ahmed, S., Dengel, A., and

Uchida, S. (2017). Judging a book by its cover.

[Jia et al., 2021] Jia, C., Yang, Y., Xia, Y., Chen, Y., Parekh, Z., Pham, H.,

Le, Q. V., Sung, Y., Li, Z., and Duerig, T. (2021). Scaling up visual and

vision-language representation learning with noisy text supervision. CoRR,

abs/2102.05918.

[Joulin et al., 2016a] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.

(2016a). Bag of tricks for efficient text classification. CoRR, abs/1607.01759.



172 BIBLIOGRAPHY

[Joulin et al., 2016b] Joulin, A., Van Der Maaten, L., Jabri, A., and Vasilache,

N. (2016b). Learning visual features from large weakly supervised data. In

European Conference on Computer Vision, pages 67–84. Springer.

[Karpathy and Fei-Fei, 2014] Karpathy, A. and Fei-Fei, L. (2014). Deep visual-

semantic alignments for generating image descriptions. CoRR, abs/1412.2306.

[Kolesnikov et al., 2019] Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,

J., Gelly, S., and Houlsby, N. (2019). Large scale learning of general visual

representations for transfer. CoRR, abs/1912.11370.

[Kriegeskorte et al., 2008] Kriegeskorte, N., Mur, M., and Bandettini, P. (2008).

Representational similarity analysis - connecting the branches of systems neu-

roscience. Frontiers in Systems Neuroscience, 2:4.

[Krizhevsky et al., ] Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian

institute for advanced research).

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 86:2278 – 2324.

[Li et al., 2019] Li, L. H., Yatskar, M., Yin, D., Hsieh, C., and Chang, K. (2019).

Visualbert: A simple and performant baseline for vision and language. CoRR,

abs/1908.03557.



BIBLIOGRAPHY 173

[Li et al., 2020] Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu,

H., Dong, L., Wei, F., Choi, Y., and Gao, J. (2020). Oscar: Object-semantics

aligned pre-training for vision-language tasks. CoRR, abs/2004.06165.

[Li and Liang, 2021] Li, X. L. and Liang, P. (2021). Prefix-tuning: Optimizing

continuous prompts for generation. CoRR, abs/2101.00190.

[Lin, 2004] Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of

summaries. In Text Summarization Branches Out, pages 74–81, Barcelona,

Spain. Association for Computational Linguistics.

[Lin et al., 2014] Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,

R. B., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).

Microsoft COCO: common objects in context. CoRR, abs/1405.0312.

[Lindsay, 2021] Lindsay, G. W. (2021). Convolutional neural networks as a

model of the visual system: Past, present, and future. Journal of Cognitive

Neuroscience, 33(10):2017–2031.

[Lu et al., 2019] Lu, J., Batra, D., Parikh, D., and Lee, S. (2019). Vilbert: Pre-

training task-agnostic visiolinguistic representations for vision-and-language

tasks. CoRR, abs/1908.02265.

[Lucieri et al., 2020] Lucieri, A., Sabir, H., Siddiqui, S. A., Rizvi, S. T. R., Iwana,

B. K., Uchida, S., Dengel, A., and Ahmed, S. (2020). Benchmarking deep

learning models for classification of book covers. SN Computer Science,

1(3):139.



174 BIBLIOGRAPHY

[Madry et al., 2017] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu,

A. (2017). Towards deep learning models resistant to adversarial attacks. arXiv

preprint arXiv:1706.06083.

[Mangolin et al., 2020] Mangolin, R. B., Pereira, R. M., Jr., A. S. B., Jr., C. N. S.,

Feltrim, V. D., Bertolini, D., and Costa, Y. M. G. (2020). A multimodal

approach for multi-label movie genre classification. CoRR, abs/2006.00654.

[Mehlmann et al., 2014] Mehlmann, G., Häring, M., Janowski, K., Baur, T., Geb-

hard, P., and Andre, E. (2014). Exploring a model of gaze for grounding in

multimodal hri.

[Miech et al., 2019] Miech, A., Zhukov, D., Alayrac, J.-B., Tapaswi, M., Laptev,

I., and Sivic, J. (2019). Howto100m: Learning a text-video embedding by

watching hundred million narrated video clips. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 2630–2640.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).

Efficient estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781.

[Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and

Dean, J. (2013b). Distributed representations of words and phrases and their

compositionality. Advances in Neural Information Processing Systems, 26.

[Miller, 1998] Miller, G. A. (1998). WordNet: An electronic lexical database.

MIT press.



BIBLIOGRAPHY 175

[Mokady et al., 2021] Mokady, R., Hertz, A., and Bermano, A. H. (2021). Clip-

cap: CLIP prefix for image captioning. CoRR, abs/2111.09734.

[Netzer et al., 2011] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and

Ng, A. Y. (2011). Reading digits in natural images with unsupervised feature

learning.

[Niu et al., 2016] Niu, T., Zhu, S., Pang, L., and El-Saddik, A. (2016). Sentiment

analysis on multi-view social data. In MultiMedia Modeling, page 15–27.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W. J. (2002).

Bleu: a method for automatic evaluation of machine translation.

[Park et al., 2021] Park, S.-W., Ko, J.-S., Huh, J.-H., and Kim, J.-C. (2021). Re-

view on generative adversarial networks: Focusing on computer vision and its

applications. Electronics, 10:1216.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and

Édouard Duchesnay (2011). Scikit-learn: Machine learning in python. Journal

of Machine Learning Research, 12(85):2825–2830.

[Pham et al., 2019] Pham, H., Liang, P. P., Manzini, T., Morency, L.-P., and

Póczos, B. (2019). Found in translation: Learning robust joint representations by

cyclic translations between modalities. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 33, pages 6892–6899.



176 BIBLIOGRAPHY

[Qiao et al., 2019] Qiao, T., Zhang, J., Xu, D., and Tao, D. (2019). Mirrorgan:

Learning text-to-image generation by redescription. CoRR, abs/1903.05854.

[Quattoni et al., 2007] Quattoni, A., Collins, M., and Darrell, T. (2007). Learning

visual representations using images with captions. In 2007 IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–8. IEEE.

[Quiroga et al., 2005] Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and

Fried, I. (2005). Invariant visual representation by single neurons in the human

brain. Nature, 435(7045):1102–1107.

[Radford et al., 2021] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,

Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and

Sutskever, I. (2021). Learning transferable visual models from natural language

supervision. CoRR, abs/2103.00020.

[Radford et al., 2018a] Radford, A., Narasimhan, K., Salimans, T., and Sutskever,

I. (2018a). Improving language understanding by generative pre-training.

[Radford et al., 2018b] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and

Sutskever, I. (2018b). Language models are unsupervised multitask learners.

[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and

Sutskever, I. (2019). Language models are unsupervised multitask learners.

[Ramesh et al., 2022] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,

M. (2022). Hierarchical text-conditional image generation with clip latents.



BIBLIOGRAPHY 177

[Rauber et al., 2017] Rauber, J., Brendel, W., and Bethge, M. (2017). Foolbox: A

python toolbox to benchmark the robustness of machine learning models. In Re-

liable Machine Learning in the Wild Workshop, 34th International Conference

on Machine Learning.

[Reddy and Thorpe, 2014] Reddy, L. and Thorpe, S. J. (2014). Concept cells

through associative learning of high-level representations. Neuron, 84(2):248–

251.
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Appendix A

Appendix: Text decoder parameters

Parameter # of epochs prefix length CLIP prefix length mapping type batch size fine-tune GPT-2 # of layers CLIP version
Value 20 40 40 Transformer 64 False 8 ViT-B/32

Table A.1: Parameters used for the training of the text decoder. For details see
clipclap.
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Appendix: Uncurated captioning examples
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186 APPENDIX B. APPENDIX: UNCURATED CAPTIONING EXAMPLES

Ground truth Pair of commodes side by side in unfinished bathroom area.
A torn apart bathroom with some toilets inside of it.
A demolished bathroom with two toilets and a window
The floor and wall of the bathroom are coming apart.
A toilet and bidet sit in a bathroom that is under construction.

Direct method Damaged CCTV image of restaurant staff posing
as uncanny and uncanny people.

Textualised input A view of a rough and dingy bathroom with many objects in it.



187

Ground truth A group of people are standing on the sandy beach.
Several people on the beach with their surf boards.
Three men and three women posing on a beach in front of surf boards.
A group of young people standing next to each other on a beach.
A group of people pose for a picture near surfboards.

Direct method A photograph of a young Irish kitty with a sun-dappled beach,
and her friends at the bottom of the ocean.

Textualised input The group of people posing and holding surfboards and a surf board.



188 APPENDIX B. APPENDIX: UNCURATED CAPTIONING EXAMPLES

Ground truth A cheesy pizza with red peppers is in a box.
A meal from japan or china on a tray.
A cheesy casserole covered with toppings is depicted.
A pizza with cheese and vegetables in a box.
A large square shaped pizza covered in melted cheese and veggies.

Direct method A quick chili sauce knife cut in the background,
and green beans, muffin, and muffin

Textualised input A bunch of cheese, ready to go and baked in a cheesy tortilla
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Ground truth A man stands beside his black and red motorcycle near a park.
A man in black jacket next to a red motorcycle.
An older man is standing beside a red motorcycle.
A man standing by a motor cycle on a street.
A man riding on the side of a red motorcycle.

Direct method A Frank Miller Fun Road shot taken from the time I was born in 2006.
Textualised input This person is showing on the road with some

fresh motorcycle parts on the horizon.


