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ABSTRACT

Hierarchies, as described in mathematical morphology, represent nested regions of in-
terest and provide mechanisms to create concepts and coherent data organization. They
facilitate high-level analysis and management of large amounts of data. Represented as
hierarchical trees, they have formalisms intersecting with graph theory and applications
that can be conveniently generalized. Due to the deterministic algorithms, the multiform
and distinct representations, and the absence of a direct way to evaluate the hierarchical
representation quality, it is hard to insert hierarchical information into a learning frame-
work and benefit from the recent advances in the field. Researchers usually tackle this
problem by refining the hierarchies for a specific media and assessing their quality for a
particular task. The downside of this approach is that it depends on the application, and
the formulations limit the generalization to similar data. This work aims to create a learn-
ing framework that can operate with hierarchical data and is agnostic to the input and the
application. The idea is to study ways to transform the data to a regular representation
required by most learning models while preserving the rich information in the hierarchical
structure. It proposes to study and formalize the concepts as graphs, a common point
for hierarchies and multimedia, and a topic of great interest for machine learning. The
methods in this study use edge-weighted image graphs and hierarchical trees as input,
evaluating different proposals on the edge detection and segmentation tasks. The primary
model is the Random Forest, a fast, inspectable, and scalable method suited to work with
high-dimensional data. Despite the media, tasks, and model choices, it focuses the formu-
lations on graphs and hierarchical trees and only uses the tasks to evaluate the response
produced by different characteristics. It gives the results in quantitative and qualitative
terms and offers statistical analyses of the data distribution and dimensionality, assessing
their impact on learning. Furthermore, it provides a critical systematic review of proposals
in the literature that integrates machine learning and hierarchies. It demonstrates that it
is possible to create a learning framework dependent only on the hierarchical data that
performs well in multiple tasks.
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INTRODUCTION

Hierarchies are an inherent property composing several elements in real life, relating
to how we naturally perceive patterns, scenes, and movement 1. According to Kurzweil
(2013) 2, there is a pattern identifier in the core of our visual perception, operating hierar-
chically to recognize parts, objects, and abstract concepts simultaneously. The perceptual
hierarchy is difficult to translate to computer models mimicking our ability to perceive
reality’s intrinsic nature. But, in visual media processing, mathematical morphology has
an edge in defining, creating, and manipulating hierarchies.

Hierarchical methods, formulated in mathematical morphology 3, provide semantically
arranged structures of nested regions that are easy to navigate and interpret, remaining
very popular since their creation 4 5. However, they are hard to evaluate and insert into
learning frameworks to benefit from the recent advances in the field 6.

This thesis centers its study on hierarchies, aiming to create a learning framework that
could operate on the hierarchical structures from the media processing perspective. This
introduction presents the context defining hierarchies, details the problem of inserting
them into a learning framework, and states the goals of this study, establishing some
hypotheses and questions to answer. In the end, it presents the organization of the thesis
to facilitate the navigation through the document.

1. Marr David (1982). Vision: a computational investigation into the human representation and
processing of visual information.

2. Kurzweil Ray (2013). How to create a mind: the secret of human thought revealed.
3. Najman Laurent and Talbot Hugues (2013a). Mathematical morphology: from theory to appli-

cations.
4. Meyer Fernand and Beucher Serge (1990). Morphological segmentation.
5. Massaro Alessandro (2021). Image vision advances.
6. Perret Benjamin, Cousty Jean, Guimaraes Silvio Jamil F., et al. (2018). Evaluation of hier-

archical watersheds.
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Introduction

Contextualizing hierarchies

Hierarchies are broadly defined in the literature and could represent different notions.
For instance, literature presents hierarchies as a method’s abstraction 7, a description
of model architectures 8, and a form to organize features 9 or related concepts 10. This
broad definition reinforces the notion that hierarchies are the natural organization form
of data, particularly the visual data in multimedia, where multiple models try to mimic
this organization 11 12.

Morphological hierarchies use non-linear transformations to gather information based
on the reaction they produce 13. In this sense, it defines hierarchical principles as transfor-
mations obtained by applying the proper operators. The operators and concepts present
a solid mathematical formalism using the non-linear geometric space to represent the
formulations and generalize the set theory of complete lattices 14.

Their methods represent nested regions of interest that provide easy navigation and
merging operations to build more semantically significant objects from lower-level in-
stances. In multimedia processing, the region delineation considers the media’s building
blocks, such as pixels, voxels, and frequency, applied to tasks such as image segmentation,
video action recognition, and time series processing 15. At the same time, hierarchies pro-
duce multiform representations, their algorithms are primarily deterministic, and there is
no direct way to evaluate their quality.

Recently, deep learning architectures drastically changed the computational paradigm
for visual tasks 16. The main advantage of deep learning methodology is that it does not
require an engineered model to operate, meaning it can learn the features to represent the

7. Ilin Roman, Watson Thomas, and Kozma Robert (2017). Abstraction hierarchy in deep learning
neural networks.

8. Liu Yun et al. (2019). Richer convolutional features for edge detection.
9. Lin Tsung-Yi et al. (2017). Feature pyramid networks for object detection.

10. Fan Jianping et al. (2017). HD-MTL: hierarchical deep multi-task learning for large-scale visual
recognition.

11. Lindsay Grace W. (2021). Convolutional neural networks as a model of the visual system: Past,
present, and future. 10.

12. Dotsenko Viktor S. (1986). Hierarchical model of memory. 1-2.
13. Najman Laurent and Talbot Hugues (2013a). Mathematical morphology: from theory to appli-

cations.
14. Serra Jean (2006). A lattice approach to image segmentation.
15. Bosilj Petra, Kijak Ewa, and Lefèvre Sébastien (2018). Partition and inclusion hierarchies of

images: a comprehensive survey.
16. O’Mahony Niall et al. (2019). Deep learning vs. traditional computer vision.
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data and the models to describe it 17. The success of these approaches relies on a hierarchy
of concepts learned through the network 18. For instance, in the object recognition task,
the raw pixel on the input layer is understood as segments and parts until composing the
object concept at the last layers.

The typical deep learning approach is far from ideal, as it imposes a rigid structure for
the input, which limits their generalization capabilities for multiform data 19. Furthermore,
even with the recent advances in explaining and inspecting the networks, the reasoning
behind the inferences remains obscure 20 21 and needs to be more empirical than formal.

In both subject areas—hierarchies of partitions and deep learning—hierarchy is the
reaction created by the applied operations. Hierarchies of partitions have the hierarchies
as an integral part of the structures, but deterministic methods producing heterogeneous
data are challenging to improve using machine learning. In contrast, deep learning presents
implied hierarchical concepts, but the generalization and reasoning are limited.

17. Liu Weibo et al. (2017). A survey of deep neural network architectures and their applications.
18. Zeiler Matthew D. and Fergus Rob (2014). Visualizing and understanding convolutional net-

works.
19. Bacciu Davide et al. (2020). A gentle introduction to deep learning for graphs.
20. Kuo Jay (2016). Understanding convolutional neural networks with a mathematical model.
21. Montavon Grégoire, Samek Wojciech, and Müller Klaus-Robert (2018). Methods for inter-

preting and understanding deep neural networks.
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Problem formulation

In practical applications, morphological hierarchies help perform semantic tasks in
visual data processing, such as object proposal, semantic contour, and semantic segmen-
tation 22. However, they require thorough preprocessing of the data 23 24 and strategies to
deal with issues like over/under-partitioning of the space 25 26 or selecting an ideal number
of regions 27. Therefore, it is difficult to generalize a successful approach to other media
and tasks.

For a generalization in terms of the media, most challenges regard the characteriza-
tion of the information, mainly: the media data presents different characteristics, and the
media’s building blocks composing the regions have different connotations. These differ-
ences in form and connotation eventually become limiting factors. The models created
to solve a problem could only deal with that particular data type, despite their eventual
similarities. In terms of task, the generalization is challenging due to the lack of a mea-
sure assessing the quality of a hierarchy, which requires an empirical refinement through
a series of trial-and-error fittings for a particular application.

Furthermore, creating a framework to operate on hierarchies presents some consider-
able additional challenges besides the problem of generalization, namely: (i) the product of
the hierarchies is multiform, meaning they have different sizes, components, and interpre-
tations; and (ii) the same data could create multiple hierarchical structures depending on
the hierarchical operators and constraints. Therefore, applying the morphological hierar-
chies in an agnostic learning framework requires a strategy to overcome the deterministic,
the quality assessment, and the heterogeneous aspects.

22. Bosilj Petra, Kijak Ewa, and Lefèvre Sébastien (2018). Partition and inclusion hierarchies of
images: a comprehensive survey.

23. Clément Michaël, Kurtz Camille, and Wendling Laurent (2018). Learning spatial relations
and shapes for structural object description and scene recognition.

24. Nguyen Tin T. et al. (2019). Feature extraction and clustering analysis of highway congestion.
25. Nandy Kaustav et al. (2011). Supervised learning framework for screening nuclei in tissue sections.
26. Zwettler Gerald and Backfrieder Werner (2015). Evolution strategy classification utilizing

meta features and domain-specific statistical a priori models for fully-automated and entire seg-
mentation of medical datasets in 3D radiology.

27. Meyer Fernand (2001). Hierarchies of partitions and morphological segmentation.
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This thesis argues that it is possible to directly insert the hier-
archical structures in a learning framework and benefit from the
embedded information to create a model for visual tasks that is
agnostic to the media and task.

Thesis statement

Goals and questions

The main goal of this thesis is to design a learning framework that can
operate on hierarchical data and is agnostic to the media and task. In doing
so, it must deal with the generalization challenges and place a strategy to conform the
hierarchical information to a learning framework. Therefore, the investigative study in
this thesis aims to answer three main questions:

Question 1: How do hierarchical methods model various media information,
and what are the practical challenges faced when applying them to a

learning framework?

In the hierarchical study, a critical understanding is how the media’s building blocks
relate at the low level to group them in homogeneous regions. Visual data, such as images
and videos, are organized data structures, and information such as color, spatial distance,
or variance defines homogeneity. And although defining homogeneous regions and their
connotations are particular for each media, the grouping strategy and their storage in the
hierarchical structure follow the same rules.

Given these considerations, this thesis studies the hierarchical structures, inspect-
ing their strengths and limitations. It also offers a systematic review of the literature
on “Learning on hierarchies”, which inquires how hierarchies are inserted in a learning
framework. It assesses the advantages of hierarchical information in the learning process
and the improvement machine learning can bring to the hierarchical representation.
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Hierarchical representations contain valuable information embed-
ded in their structures for a generic learning framework, and the
learning framework could assist in processing the structure.

Hypothesis 1

Question 2: How to create a learning framework agnostic to media and tasks?

Answering this question requires defining an appropriate representation, ideally shared
among most media types and provided with the capacity to retain the information pre-
sented in the original media. And also, the task definition should not impose assumptions
on the data source.

Graphs are structures used to represent objects, and the primary concern in graph
theory is how these objects are interconnected. They can depict many data and carry
information about the objects in their components, including from different domains, such
as numerical, textual, and logical. In this sense, despite their differences, multimedia data
share the same rules once modeled as graphs. Also, one way to represent hierarchical data
is as hierarchical trees. Therefore, both graphs and hierarchies have formalisms intersecting
with graph theory and applications that can be conveniently generalized.

Given these considerations, this thesis proposes taking graph representations to model
the learning framework. To be explicit, it does not present a multimedia applica-
tion. Instead, the formulations and considerations focus on the graph structures which is
a common point between hierarchies and multimedia modeling.

Furthermore, it proposes using the Random Forests 28, a fast, simple, and scalable
model capable of dealing with high dimensional data and with satisfactory results in
multiple tasks. The main challenge in this proposal concerns the regular representation
required by most machine learning algorithms, including Random Forests. The regular
representation is inherently opposed to the unconstrained nature of graphs. Hence, the
proposed strategy is to represent the graph’s components as vectors of selected attributes
and assess its capability to retain the information modeled in the graphs while remaining
discriminant for a task.

28. Breiman Leo (2001). Random forests.
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Using a selection of graph attributes as input to the learning frame-
work allows the formulation of a model agnostic to the media, and
casting the information at the graphs’ components level allows as-
signing each entry with a task label without imposing assumptions
on the data source.

Hypothesis 2

Question 3: Could the hierarchical structure provide useful information in an
agnostic learning framework?

Depending on the modeling choices of the graphs, it can create a particular structured
space known as grid graphs close to the spatial domain of the media. Presuming general-
ization on a grid graph can be deceptive, and more than the structural information may
be necessary for a discriminative representation. However, modeling the graphs from the
hierarchical structure provides a non-regular characterization of regions with notions of
order and navigation.

Answering this question requires considering the semantical arrangement within the
hierarchies, and any proposal must retain the structures and ordering relations consistent
with the hierarchical principles. Also, because there is no direct way to evaluate the
quality of a hierarchy, the learning model should support easy navigation between tasks
to asses various aspects through experimentation. Furthermore, the framework should rely
on something other than strategies to adequately prepare the data for a specific task or
refine the structures for an application.

Given these considerations, this thesis proposes to use the topological and regional fea-
tures of the hierarchical structure, transposed to an ordered representation that respects
their original arrangement.

The topology of the hierarchical structures alone could be used in
a learning framework to solve multiple tasks if it preserves their
semantical arrangement.

Hypothesis 3
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Thesis organization
Given these goals and questions, this thesis is organized into three main parts, each

addressing one question and corroborating one hypothesis. Specifically:

Part 1: comprises Chapters 1 and 2, assessing the first question. Chapter 1 contextualize
morphological hierarchies, presents the hierarchical methods’ strengths and limita-
tions, and describes the different hierarchical types used in the thesis. It also ex-
plains and formalizes graphs and hierarchies on the shared notation describing their
components and terminologies, followed by a discussion in a typical framework de-
limiting the target problem for this thesis. Chapter 2 features a systematic review
of the literature on “Learning on hierarchies”, which is the first on the theme to the
best of our knowledge. The search aims to gather the learning strategies applied to
the hierarchical structures and portray the most promising approaches relevant to
this work.

Part 2: comprises Chapters 3 and 4, assessing the second question. Chapter 3 provides
some graph considerations contemplated as essential to this work’s development and
presents a literature review of machine learning on graphs, exploring the motiva-
tions, strategy, and main issues. It reviews deep learning on graphs to formulate the
pertinence and identify the limitations, concentrating on the multimedia processing
perspective. Chapter 4 presents the case study for a learning framework operating
on a selection of graph attributes, establishing the framework for the hierarchical
structures. It assesses the regular representation problem and contains investigative
experiments, results, and analysis.

Part 3: comprises Chapter 5 , assessing the third and final question. Chapter 5 presents the
culmination of the proposals, expanding the concepts and strategies to the hierar-
chical data. It creates and delivers a learning framework operating directly on the
hierarchical data, focusing the formulations solely on the structural components of
the hierarchies.

The final chapter Conclusions, at the end of this document, presents a discussion con-
sidering the different aspects of the experimental investigation, summarizes the observed
properties, and draws some findings to guide future work in the hierarchical study.

Fig. 1 presents a graphical overview of the document organization, indicating the
association between the main sections and their subject matter.

22



Introduction

Part II

Chapter 3

Review:
Learning on graphs

Chapter 4

Case study formulation
(Sections 4.1 to 4.3)

Case study assessment
(Section 4.4)

Part I

Chapter 1

Graph
(Section 1.1)

Hierarchies
(Sections 1.2 and 1.3)

Problem definition
(Section 1.4 and 1.5)

Problem assessment
(Section 1.6)

Chapter 2

Review:
Learning on hierarchies

Part III

Chapter 5

Topological attributes
(Section 5.1)

Data analysis
(Section 5.1.1)

Topological assessment
(Section 5.1.2)

Regional attributes
(Section 5.2)

Regional assessment
(Section 5.2.1 and 5.2.2)Review:
Learning on hierarchies

Conclusion

Literature review

Experimental
Theoretical

Figure 1: Figure presenting a graphical outline of the document grouped by parts and displaying the main
sections. The colors indicate the theme (theoretical, experimental, and literature review), and the
arrows show the conceptual dependency between the chapters and sections. All sections within
a part are interdependent.
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Chapter 1

HIERARCHIES AND GRAPHS

The theory of hierarchies is well defined in mathematical morphology, presenting for-
mulations with a solid theoretical foundation working as a base for a broad range of
applications and efficient implementations. The hierarchical functions on mathematical
morphology are rooted in the algebraic theory of complete lattices, modeling non-linear
transformations with set operators to correlate whole sets of values 1. The scale-set theory,
a sub-area of mathematical morphology, formalizes the hierarchical principles guiding the
morphological operators 2.

Definition 1: Hierarchical principles
In the scale-set theory formalization, a structure could be defined as a hierarchy if
it follows two hierarchical principles: (i) the principle of causality: a particular
element at one hierarchical level should be present at any consecutive level; and (ii)
the principle of locality: regions must be stable when creating or removing partitions.

Guigues, Cocquerez, and Men (2006) formalisms for the hierarchical principles
are in the image domain, as do most literature 3 and mathematical morphology studies 4.
Primarily because of the natural correlation between image coordinates and the lattice
structure but also because of the clear region connotation and the visually inspectable
results.

However, hierarchies represent partitions defined for regions, often called hierarchies
of partitions 5. Partitions segment the space into disjoint regions with a perceptual mean-
ing 6. The regions could characterize desired characteristics from various sources, such as

1. Najman Laurent and Talbot Hugues (2013a). Mathematical morphology: from theory to appli-
cations.

2. Guigues Laurent, Cocquerez Jean Pierre, and Men Hervé Le (2006). Scale-sets image analysis.
3. Fehri Amin (2018). Image characterization by morphological hierarchical representations.
4. Serra Jean (2006). A lattice approach to image segmentation.
5. Ronse Christian (2014). Ordering partial partitions for image segmentation and filtering: merging,

creating and inflating blocks.
6. Serra Jean (2006). A lattice approach to image segmentation.
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pixels, voxels, frequency transformations, or sound waves 7. Independently of the media,
hierarchies provide ordered representations of regions at different scales given a criterion.

In Cousty, Najman, and Benjamin Perret (2013) 8, the authors provided formal
links between the morphological partitions and edge-weighted graphs. This connection
offers additional media generalization tools since graphs are often considered a generic
data structure 9. In practical terms, it models any sets of objects given their connections
and relative position. Despite the difference between the multimedia data, once modeled
as graphs, they share the same rules in graph theory.

This chapter introduces the theory of hierarchies as graphs. Section 1.1 formalizes
graph concepts describing their components and terminologies and providing some essen-
tial considerations. Section 1.2 connects graphs and hierarchies, and Section 1.3 describes
the different hierarchical types contemplated in the thesis.

The remainder of the thesis manuscript tackles the problem delineated in Sections 1.4
and 1.5. These sections illustrate a typical pipeline for hierarchies, presenting some impor-
tant considerations and delimiting the problem. Ensuing, some experiments in Section 1.6
establish a baseline. Finally, a brief discussion in Section 1.7 summarizes the main points
of this chapter.

1.1 Graph’s formalism and notions
This section offers the main concepts of graph theory, defining components, terminolo-

gies, and notions relevant to this work.

Definition 2: Graph
A graph G (V, E) consists of a finite set of vertices, denoted by V , and a finite set of
edges denoted by E, where E ⊆ V × V . If (u, v) ∈ E for two vertices u, v ∈ V then u

and v are adjacent vertices.

The notion of vertices relates to representing the data’s elemental components, and a
graph is non-empty if V ̸= ∅. The notion of edges relates to the connections and dynamics
between the parts, and a graph is nontrivial whenever E ̸= ∅. Also a graph is complete
if E = V × V , undirected if (u, v)⇐⇒ (v, u) and direct if (u, v) ̸= (v, u), ∀u, v ∈ V .

7. Bosilj Petra, Kijak Ewa, and Lefèvre Sébastien (2018). Partition and inclusion hierarchies of
images: a comprehensive survey.

8. Cousty Jean, Najman Laurent, and Perret Benjamin (2013). Constructive links between some
morphological hierarchies on edge-weighted graphs.

9. Najman Laurent and Cousty Jean (2014). A graph-based mathematical morphology reader.
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Definition 3: Adjacency relation
The set E induces a unique adjacency relation Γ on V , which associates u ∈ V with
Γ(u) = {v ∈ V |(u, v) ∈ E}. Γ is reflexive (u ∈ Γ(u)) and symmetric (v ∈ Γ(u) ⇐⇒
u ∈ Γ(v)).

The adjacency relation is the graph’s architecture, guiding the edges’ disposition. In
multimedia processing, the adjacency relation is usually in a regularly structured form as
a grid. The regular grid is invariant, meaning that translating the media elements create
the same graph as in the original position. Standard grid adjacency in 2D spaces is the
squared orthogonal shape named 4−adjacency, the octilinear form in the 8−adjacency,
or the hexagonal structure in the 6− adjacency relation. The 4− and 8−adjacency are
spatially close to the coordinate systems of most media and could be intuitively extended
to higher dimensions. Contrary to the 6−adjacency that is hard to expand into higher
dimensions 10, but is prominent in morphological processing for its isotropic properties.
Alternatives to the grid adjacency involve distance parameters determining the reach of
each vertex or a selection criterion based on a pattern or media property.

Multiple functions could be associated with each vertex and edge, enhancing the rela-
tional aspects, the data interpretation, and inserting metric properties.

Definition 4: Edge-weighted graph
An edge-weighted graph is denoted by G(V,F), in which F : V × V → R is a
function that weights the edges of G (V, E). Also, F(E) represents the weighted map
for the function F on the set E.

The nature of F determines which characteristics the graph preserves, and selecting
a function could be considered a similarity measure problem between two finite sets of
points, where {w = F(u, v)|(u, v) ∈ E} is the weight w of an edge (u, v) ∈ E that could
describe the dissimilarity of u and v. Typically, the weights computed by the weighting
function ponder the navigation on the graph.

Definition 5: Path and descending path
A path π = (v0, . . . , vℓ) is an ordered sequence of vertices with size ℓ connecting v0

to vℓ if (vi−1, vi) ∈ E for any i ∈ {1, . . . , ℓ}. In an edge weighted graph, a path is
descending if for any i ∈ {1, . . . , ℓ− 1}, F(vi−1, vi) ≥ F(vi, vi+1).

10. Najman Laurent and Cousty Jean (2014). A graph-based mathematical morphology reader.
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The paths on a graph define the navigation between the elements, and the edges deter-
mine the possible routes. Multiple contexts could be attributed using paths. Most notable
are the discrete distance between vertices based on the number of edges necessary to nav-
igate from one to another, the weighted interpretation of distance between components,
or the relations on shared paths. A connected graph has a path from v to u for all
u, v ∈ V .

Another way to define and interpret a graph is through subsets of all possible vertices
and edges. For instance, the subsets could be created by a given path or a filtering criterion
on the weights or components.

Definition 6: Subgraph
A graph G' = (V ', E') is subgraph of G (V, E) if V ' ⊆ V and E' ⊆ E, then G and
G' are ordered by the inclusion relation G' ⊑ G, where G' is smaller than G. A lattice
is a set of all subgraphs of G preserving the inclusion order ⊑.

Regarding the computational declaration of a graph, it is usually represented either
as an adjacency list or an adjacency matrix. An adjacency list uses an array of vertices
containing lists of {u ∈ Γ(v),∀(u, v) ∈ E}, including the associated weights in the case
of an edge-weighted graph. This representation captures all graph’s components but can
be challenging to parse. The adjacency matrix is a |V | × |V | matrix and [[u, v]] ←
value, if (u, v) ∈ E, where value is either 1, representing the presence of an edge, or
the weight in an edge-weighted graph. This representation is more suitable for many
algorithms but can be challenging to process for large sets of vertices.

The concepts and notions presented here are for a better comprehension of the theory
in this work. Graph structures are versatile and adaptable to the desired context; hence
most definitions are preceded by terms such as “usually”, “commonly”, or “often”. The
following sections will expand these definitions, adapting them accordingly to the context
of media and hierarchical analysis.

1.2 Hierarchies from graphs to graphs

The hierarchical operators are delineated in the mathematical morphology domain.
This section introduces the essential concepts for the hierarchical operators in mathemat-
ical morphology but focuses on the definitions for graphs. It refers the reader to the com-
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prehensive work in Najman and Talbot 2013b 11 and the excellent general formalization
in Serra (2006) 12 and Ronse (2014) 13 for more details on mathematical morphology.

Classical mathematical morphology is based on algebraic operations on lattices (a
partially ordered set), defining operators and filters that produce information on the
reaction they cause. The main operators are dilatation and erosion, which respectively
retrieve the least upper bound (supremum) and the greatest lower bound (infimum) in any
family of elements. These operators are related by adjunction and deliver new operators
and morphological filters when applied successively. There are many properties of these
operators, but crucially they are increasing and idempotent 14, delivering reliable results.

Serra (2006) formalizes hierarchies as algebraic operators in the complete lattice
that creates faces of a tessellation, characterized as segmented regions. The image space
is undoubtedly the principal definition space for the hierarchical theory, and most appli-
cations are for image processing, notably image segmentation 15 16 and remote sensing 17.
Nevertheless, similarly structured visual media, such as hyper-spectral 18 and multi-modal
images 19, videos 20 21 22, or even structured time measurements like sensor data time se-
ries 23 24, are also processed with hierarchical algorithms if given a proper characterization
of interrelations.

Hierarchies defined on graphs facilitate this characterization. In classical morphol-

11. Najman Laurent and Talbot Hugues (2013b). Mathematical morphology: from theory to appli-
cations. Complete work.

12. Serra Jean (2006). A lattice approach to image segmentation.
13. Ronse Christian (2014). Ordering partial partitions for image segmentation and filtering: merging,

creating and inflating blocks.
14. Najman Laurent and Cousty Jean (2014). A graph-based mathematical morphology reader.
15. Soille Pierre and Najman Laurent (2012). On morphological hierarchical representations for

image processing and spatial data clustering.
16. Randrianasoa Jimmy Francky et al. (2018). Binary partition tree construction from multiple

features for image segmentation.
17. Maia Deise Santana et al. (2021). Classification of remote sensing data with morphological at-

tribute profiles: a decade of advances.
18. Tochon Guillaume et al. (2018). Advances in utilization of hierarchical representations in remote

sensing data analysis.
19. Kiran Bangalore Ravi and Serra Jean (2015). Braids of partitions.
20. De Souza Kleber Jacques et al. (2013). Hierarchical video segmentation using an observation

scale.
21. Xu Chenliang, Xiong Caiming, and Corso Jason J. (2012). Streaming hierarchical video seg-

mentation.
22. Wang Dezhao et al. (2021). Combining progressive rethinking and collaborative learning: a deep

framework for in-loop filtering.
23. Alonso-Gonzalez Alberto, Lopez-Martinez Carlos, and Salembier Philippe (2014). Polsar

time series processing with binary partition trees.
24. Nguyen Tin T. et al. (2019). Feature extraction and clustering analysis of highway congestion.

31



Partie I, Chapter 1 – Hierarchies and graphs

ogy, structuring elements are the parameters for the operators. On graphs, the modeling
choices for the edges, weights, and adjacency relation define the parameters. While the
graphs represent the interrelations, the hierarchical structure provides a non-regular char-
acterization of regions with notions of order and navigation.

This work focus on the hierarchies of partitions modeling the space on edge-weighted
graphs. The remainder of this chapter follows the notations in Cousty, Najman, and
Benjamin Perret (2013) 25 and the comprehensive work in Najman and Talbot 2013b 26.
For insights connecting morphological hierarchies and the hierarchies on edge-weighted
graphs, the work in Najman and Cousty (2014) 27. And for generalizations of hierarchies
of partitions and hierarchical types, the work in Cousty, Najman, Kenmochi, et al.
(2018) 28.

A hierarchy operating on the edge-weighted graph defines non-gridded regions as sub-
sets of the set of vertices. For the graph G (V, E) and subgraph G' = (V ', E'), the graph
induced by V' is a graph G = (V ', ϵ) where V ' ⊆ V and ϵ = {(u, v) ∈ E |u, v ∈ V '}.
V ' is connected for G if the graph induced by V ' is connected. V ' is a connected com-
ponent of G if V ' is connected for G and maximal. Maximal means that for any other
subset of V , if there is a connected superset of V ', it represents the same V ' set.

Definition 7: Hierarchy on graph vertices
A set H ⊆ V, where V denotes the set of all subsets on V , is a hierarchy on V if
H1∩H2 ∈ {∅, H1, H2} for any two elements H1, H2 ∈ H and complete if {V } ∈ H and
{{v} ∈ H | ∀ v ∈ V } ∈ H.

Without loss of generalization, for G denoting the set of all subgraphs of G, H ⊆ G
is a hierarchy on G if H1, H2 ∈ {(∅, ∅), H1, H2} for any for any H1, H2 ∈ H, and it
is complete if G ∈ H and {({v}, ∅)} ∈ H. These notations characterize a direct forest
and tree, respectively, which portray the hierarchy as a Hasse diagram, also known as the
dendogram 29 representation of the hierarchy.

A tree is a particular case of a direct graph. In a tree, we denote vertices as nodes
and distinguish them based on their positions in the structure. The root is the single node

25. Cousty Jean, Najman Laurent, and Perret Benjamin (2013). Constructive links between some
morphological hierarchies on edge-weighted graphs.

26. Najman Laurent and Talbot Hugues (2013b). Mathematical morphology: from theory to appli-
cations. Complete work.

27. Najman Laurent and Cousty Jean (2014). A graph-based mathematical morphology reader.
28. Cousty Jean, Najman Laurent, Kenmochi Yukiko, et al. (2018). Hierarchical segmentations

with graphs: quasi-flat zones, minimum spanning trees, and saliency maps.
29. Sokal Robert R. and Rohlf James (1962). The comparison of dendrograms by objective methods.
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at the top of the tree that connects all the other nodes. From the root, every subsequent
node is a child. They can be either an internal node, from which other nodes branch, or
a leaf with no children at the bottom of the tree. The root and internal leaves are the
parents of their children. From the root, each node in the path to a leaf characterizes one
level, and the maximum number of levels defines the depth of a tree. The altitude of
a node starts from the leaves until reaching the node, and it is inversely proportional to
the depth of the node.

Hierarchies are a graph in the form of a hierarchical tree. In a hierarchical tree, for
H1, H2 ∈ H, H2 is a child of H1 if H2 is the largest proper subset of H1 and if H2 ⊆ H ⊆
H1, H = H2 or H = H1 for any H ∈ H. An element of H without a child is called a
minimum of H.

Definition 8: Partition
A partition P is a set of non-empty disjoint subsets of V , meaning that ∀X, Y ∈ P,
X and Y are regions, X ∩ Y = ∅ if X ̸= Y and ∪{X ∈ P = V }. Any element v ∈ V

belongs to a unique region, a singleton partition of P, denoted [P]v.

Partitions characterize regions that go from the singleton element on the vertices to
the entire set of vertices representing a single region in a complete partition. It regulates
that there is no intersection between regions (no element could be present in two different
regions simultaneously) and that the union of all regions composes the data. In terms of
disjoint sets, the definition leads to a complete lattice 30 where operators are a dilation
and an erosion if they preserve the union and intersection, respectively.

The partition set is ordered from finer in P' to coarser in P'' if any region in P' is
present in P'' for any P',P'' ∈ P. This ordered relation conveys the idea of refinement.
Also, navigating the partition from finer to coarser, commonly codded as bottom-up,
impart the concept of region aggregation. In contrast, the opposite, top-down, is the
concept of region splitting 31.

Definition 9: Hierarchy of partitions
A hierarchy of partitions H = (P0, . . . ,Pk) is a sequence of partitions on V , such
that [P]i−1 is a refinement of [P]i ∀i ∈ {1, . . . , k} where k is the number of levels in
the hierarchy characterizing its altitude and depth.

30. Serra Jean (2006). A lattice approach to image segmentation.
31. Ronse Christian (2014). Ordering partial partitions for image segmentation and filtering: merging,

creating and inflating blocks.
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As a sequence of partitions, the hierarchy preserves the non-empty disjoint sets notion
and the ordered relation. The union of all partitions of H creates the set of regions of RH,
and the inclusion relation on the partitions induces a tree structure.

Definition 10: Hierarchical partition tree
In this context, the hierarchical partition tree TH is the tree representing the
hierarchy H = (P0, . . . ,Pk) created from the edge-weighted graph where:

— the root node represents the single partition Pk = {V },

— the set of leaves L represents the partition P0, where P0 = {[P]v | ∀ v ∈ V },

— the parent of a node n in the set of nodes N representing the region Rn of RH is
the smallest region of RH that is strictly larger than Rn, and

— the depth dn of a node n ∈ N is its number of parents.

There are multiple ways to represent a hierarchy of partitions, straightforward as a
hierarchical partition tree with all the partitions in a single structure. Another way is by
a cut presenting one partition of the hierarchy at a time. The cut can be a horizontal
cut 32 if all regions are extracted at the same hierarchical level or a non-horizontal cut 33

if searching for regions at different levels for one representation.

1.3 Types of hierarchies

Thus far, the discussions about hierarchies and partitions modeling the space on edge-
weighted graphs considered only the structural components of the graphs: the vertice and
edge sets. This section introduces the weights, which regulate how regions are formed, the
criterion to merge and create new ones, and the order to pursue.

The hierarchical construction algorithms use the weights and regions on the partitions
to characterize the type of hierarchy created. Among the many types 34, this thesis con-
templates three particular hierarchical types grouped by their ordering method on the
hierarchical tree. Namely:

32. Perret Benjamin, Cousty Jean, Guimaraes Silvio Jamil F., et al. (2018). Evaluation of hier-
archical watersheds.

33. Guigues Laurent, Cocquerez Jean Pierre, and Men Hervé Le (2006). Scale-sets image analysis.
34. Bosilj Petra, Kijak Ewa, and Lefèvre Sébastien (2018). Partition and inclusion hierarchies of

images: a comprehensive survey.

34



1.3. Types of hierarchies

1. Altitudes ordering based on a minimum distance criterion: binary partition hierar-
chies 35;

2. Altitudes ordering based on increasing values of edge-weights criterion: quasi-flat
zones 36 and strongly constrained connectivity hierarchies 37; and

3. Altitudes ordering based on a geometric criterion: hierarchical watersheds 38 39.

All these constructions algorithms could be defined on the edge-weighted graphs discerned
as minimum spanning trees (MST) or minimum spanning forests (MSF) 40 41.

Definition 11: Minimum spanning tree and Minimum spanning forest
The edge-weighted subgraph (G',F) is a minimum spanning tree of (G,F) if G' is
connected, V ' = V , and the sum of the weights defined by F in G' is less or equal than
any other subgraph of (G,F) whose vertex is V . Furthermore, a minimum spanning
forest is the minimum spanning tree of all connected components in G.

The binary partition hierarchies 42 (BPH) is the hierarchy of partitions of V that
solves the MST for the edge-weighted graph G(V,F) with the Kruskal’s algorithm 43 for
the binary partition tree (BPT). The construction algorithm is recursive, starting from
the partition of singletons [P]v where each unitary region is a tree, the set of edges E, and
the set of weights {w = F(u, v) | (u, v) ∈ E}. At each iteration, the algorithm selects the
edge of minimum weight if it connects two distinct trees representing a region to form a
new one. The procedure repeats until the partition of a single region Pk is created, for
k = |V | − 1. The internal nodes represent the MST of G(V,F).

The quasi-flat zones (QFZ) hierarchies comprise the hierarchies induced directly

35. Salembier Philippe and Garrido Luis (2000a). Binary partition tree as an efficient representa-
tion for image processing, segmentation, and information retrieval.

36. Cousty Jean, Najman Laurent, Kenmochi Yukiko, et al. (2018). Hierarchical segmentations
with graphs: quasi-flat zones, minimum spanning trees, and saliency maps.

37. Soille Pierre (2008). Constrained connectivity for hierarchical image partitioning and simplifica-
tion.

38. Meyer Fernand (1996). The dynamics of minima and contours.
39. Beucher Serge (1994). Watershed, hierarchical segmentation and waterfall algorithm.
40. Cousty Jean and Najman Laurent (2011). Incremental algorithm for hierarchical minimum span-

ning forests and saliency of watershed cuts.
41. Najman Laurent, Cousty Jean, and Perret Benjamin (2013). Playing with Kruskal: algorithms

for morphological trees in edge-weighted graphs.
42. Salembier Philippe and Garrido Luis (2000a). Binary partition tree as an efficient representa-

tion for image processing, segmentation, and information retrieval.
43. Kruskal Joseph B. (1956). On the shortest spanning subtree of a graph and the traveling salesman

problem.
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from the edge-weight graph 44. Its construction algorithm takes the set of ordered weights
on the edges and defines each level of the hierarchy as the set of connected component
partitions whose weights are smaller than a threshold value λ. The threshold values cover
the range of weights in the graph.

Formally, consider an edge-weighted graph (G,F), the set of connected components
of G denoted by C, a subgraph G' of G, an weight value {w = F(u, v)|(u, v) ∈ E} and
the range of values E for all weight values of E. A hierarchy of quasi-flat-zones induced
in the edge-weighted graph is defined as:

QFZ(G', w) = (C(wV
λ (G'))|λ ∈ E)

for the elements:

wλ(G') is the λ-level set of all edges of G' whose weight values are less than λ;

wV
λ (G') is the λ-level graph whose edges are wλ(G') and vertices V ;

C(wV
λ (G')) is the λ-level partition of connected components partition induced by the

λ-level graph of G';

The strongly constrained connectivity hierarchy 45, also known as α−trees, is a
case of the QFZ, where the induced partitions are maximal for the connected components
at a specific thresholding value. Formally, for the set of vertices V of the edge-weighted
graph G(V,F), we say V is α−strongly connected for α ∈ R+ if there is a path π =
(v0, . . . , vℓ) connecting v0 to vℓ where all the edge weights are smaller than α. The strongly
constrained hierarchy is composed of all the α−strongly connected components of G

defined as the maximal α'−connected sets of V where α′ ∈ R+ and α' ≤ α.
The hierarchical watershed 46 47 extends the classical morphological watershed 48,

and it is an intuitive approach to map weights into partitions. One of the intuitions
behind the classical watershed is the principle of the drop of water flowing on a topological
surface. The watersheds are the lines separating the multiple downward regional minima.
In media processing, the topological surface is usually created by magnitude values, in

44. Cousty Jean, Najman Laurent, Kenmochi Yukiko, et al. (2018). Hierarchical segmentations
with graphs: quasi-flat zones, minimum spanning trees, and saliency maps.

45. Soille Pierre (2008). Constrained connectivity for hierarchical image partitioning and simplifica-
tion.

46. Meyer Fernand (1996). The dynamics of minima and contours.
47. Beucher Serge (1994). Watershed, hierarchical segmentation and waterfall algorithm.
48. Beucher Serge (1979). Use of watersheds in contour detection.
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which mountains are the regions with comparatively higher magnitudes, and basins and
valleys are the ones from lower magnitudes.

This principle is used in the hierarchies of watersheds to create a sequence of segmen-
tations as connected elements formalized as a MSF representing the flooded regions in all
possible levels. In the context of edge-weighted graphs, the principle of the drop of water
is interpreted as a graph cut, known as a watershed cut, that is not uniquely defined for a
weight map. However, the watershed hierarchies as a relative MSF are optimal and unique
for a watershed cut 49.

To obtain a partition in the hierarchy, it takes the weighted graph and a subset of graph
vertices called markers representing regional minima on the weight map. If the markers
are ranked and ordered, it creates a sequence of nested partitions where each hierarchy
level represents a marker’s extinction value 50. The notion behind an extinction value is
the minimum value that makes a region disappear (be merged) into another region.

The extinction values are usually grouped and ranked based on a given geometric
criterion that reflects its region’s topological properties. Common criteria are: (i) area,
ranking regions by their size; (ii) dynamics, ranking regions by their depth; and (iii) vol-
ume, ranking regions by balancing the size and the depth.

The ensuing formal definition of the hierarchical watershed in the edge-weighted graph
follows Cousty, Giles Bertrand, et al. (2009) and Cousty and Najman (2011).

First, consider G' and G'' as two subgraphs of G. G' is an extension of (or rooted on)
G'' in G if: (i) G'' ⊆ G', and (ii) G' contains exactly one component of G''.

Now, consider M a graph of all subsets minima of the edge-weighted graph (G,F).
In M, each minimum is a subgraph G' of G that: (i) is connected, (ii) the weight map
F(E') of the edges E' in G' has a unique value, and (iii) any adjacent edge to G' is strictly
greater than the value in F(E').

For E' as a subset of the edges of G, E' is a watershed cut (or simply watershed)
of the weight map F(E) if: (i) the complementary set E' of E' is an extension of M,
and (ii) if for any (u, v) ∈ E' there exists two descending paths π1 = (v0, . . . , vℓ) and
π2 = (u0, . . . , uℓ') such that vℓ and uℓ' are vertices of two distinct minima in M, and
F(u, v) ≥ F(v0, v1) whenever π1 is non-trivial, and respectively, F(u, v) ≥ F(u0, u1) for
a non-trivial π2.

49. Cousty Jean, Bertrand Giles, et al. (2009). Watershed cuts: minimum spanning forests and the
drop of water principle.

50. Vachier Corinne and Meyer Fernand (1995). Extinction value: a new measurement of persis-
tence.
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The watershed from markers computed from subsets of minima of the edge-weighted
graph have a dual in terms of regions that are formalized as graph forests. Constructing
such forest from an ordered set of minima is equivalent to a MSF relative to subgraphs.
Formally, for G' and G'' as two subgraphs of G, G' is a relative (or rooted) MSF of G in
G'' if: (i) G' is rooted in G''; (ii) V ' = V ; (iii) and the sum of weights of G' is less than
any other possible subgraphs that satisfies (i) and (ii).

Taking MF as the set of weight minima, S = (M1, . . . , Mℓ) as a sequence of pairwise
minima distinct on the weight values and G = (G1, . . . , Gℓ) as a sequence of subgraphs of
G, G is a MSF hierarchy of S if for any i ∈ [0, ℓ], Gi−1 ⊑ Gi and the subgraph Gi is a
MSF rooted in ⊔[MF \ {Mj | [1, i]}], for ⊔ denoting the supremum of a family of values.
The MSF hierarchy induces a hierarchy of partitions on V that is optimal.

All of these hierarchical methods have linear or quasi-linear implementations 51 52, and
as shown in Najman, Cousty, and Benjamin Perret (2013) and Cousty, Najman,
Kenmochi, et al. (2018), one type of hierarchy can be inferred from another. For instance,
removing any consecutive nodes with equal values in a BPT induces a QFZ, and filtering
the QFZ by the maxima creates a strongly constrained hierarchy. Efficient implementa-
tions of the hierarchical watershed involve computing a weight map whose QFZ reflects
the desired watershed if each connected component contains exactly one marker and the
markers are ranked by the weight values.

Each construction algorithm has its particular properties and interpretation of the
data. However, the set of rules on the hierarchical principles and the ordered representation
of regions create a shared space convenient for commuting from one type to another if
one representation is not adequate for an application. The mathematical formalism in
the morphological domain may be daunting at the outset. Still, most methods provide
intuitive notions, and the construction methods require hardly any parameters other than
the ones provided by the already modeled edge-weighted graph. Combining these aspects
with efficient implementations makes the hierarchies an appealing alternative to introduce
a semantic interpretation into media processing. In this context, semantics relates to
partitioning the perceptual space into regions with some meaningful relation embedded
in a single structure.

51. Najman Laurent and Couprie Michel (2006). Building the component tree in quasi-linear time.
52. Najman Laurent, Cousty Jean, and Perret Benjamin (2013). Playing with Kruskal: algorithms

for morphological trees in edge-weighted graphs.
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Figure 1.1: Figure illustrating a typical pipeline using hierarchies for image processing. First, it transforms
each image to the gray-scale magnitudes used to create the edge-weighted graphs. Then,
the hierarchical method computes the desired hierarchy based on its criterion. Because the
hierarchical structure is multi-layered, selecting a certain level, a combination, or a specific
number of regions is necessary to filter the structure and create a single output evaluated on
the task.

1.4 Typical hierarchical pipeline
This section introduces a typical pipeline, illustrated in Fig. 1.1, that applies the

hierarchies defined for an edge-weighted graph to an image processing task and, at each
step, provides considerations relevant to this work’s development.

Usually, image applications are tasks defined for three-channel colored images. De-
spite the availability of existing hierarchical methods applied directly on the color chan-
nels 53 54 55, operating on colored images requires strategies to either map dissimilarities
between pixels on multiple dimensions 56 or combine the hierarchies independently de-
fined on each channel 57. Therefore, the general approach is to model the graph from the
monocolored images, such as the grayscale representation of pixel intensities. The problem
with simply working on the grayscale space is that it usually results in significant vari-
ation across regions with distinct absolute values, making it harder to map which value
represents a region change 58.

An alternative is to use image gradients, which are transformation processes that

53. Salembier Philippe and Garrido Luis (2000a). Binary partition tree as an efficient representa-
tion for image processing, segmentation, and information retrieval.

54. Soille Pierre (2008). Constrained connectivity for hierarchical image partitioning and simplifica-
tion.

55. Merciol Franlois and Lefevre Sébastien (2012). Fast image and video segmentation based on
alpha-tree multiscale representation.

56. Aptoula Erhan, Weber Jonathan, and Lefèvre Sébastien (2013). Vectorial quasi-flat zones
for color image simplification.

57. Kurtz Camille, Naegel Benoit, and Passat Nicolas (2014). Connected filtering based on multi-
valued component-trees.

58. Meyer Fernand and Beucher Serge (1990). Morphological segmentation.
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aim to enhance desirable properties of an image, particularly the visual perception of
contours. Traditional gradient methods, such as Laplacian and Sobel, rely on kernel filters
measuring local variation. In 2014, Dollar and Zitnick (2015) proposed the structured
edge detection (SED), a fast method to create gradients. After the work in Benjamin
Perret, Cousty, Silvio Jamil F. Guimaraes, et al. (2018), measuring the gain in using
SED on the hierarchical pipeline, it is becoming a principal source for the edge-weighted
graph 59 60 on hierarchical processing.

After adequately preparing the image, the following steps on the pipeline are the
graph and the hierarchical construction. Defining the graph representation is a modeling
question with various connotations. Still, the graphs created from images present a unique
transformed space close to the spatial domain in a grided form. As for the hierarchical
construction, each type has its particular characteristics, and this work contemplates the
hierarchies described in Section 1.3 to be used through the experimental investigations.

Once constructed, it is necessary to decide how to represent the hierarchies to be
applied to a task since most ground-truth references need a flat form for comparison. In
this step resides the central problem this thesis tackles. The trivial approach is a series of
horizontal cuts selecting multiple independent partitions representing the hierarchy 61 62.
The selection could indicate the desired number of regions portrayed on the partition or a
threshold of the hierarchical levels. This process can be strenuous if searching for an ideal
number of regions, as one could search from a single region to the total number of regions
in the hierarchy, which is variable among the many representations. Or, if thresholding
the levels, one crucial detail present at one hierarchical level could be merged on the
subsequent levels. Even further, as pointed out in Benjamin Perret, Cousty, Silvio
Jamil F. Guimaraes, et al. (2018), the metric used to evaluate the selection can be
misleading, and a good horizontal cut for one specific hierarchy does not guarantee that
it will be ideal for another on the same dataset.

Other representation strategies include post-processing the hierarchies by flattening 63,

59. Perret Benjamin, Cousty Jean, Guimarães Silvio Jamil Ferzoli, et al. (2019). Removing non-
significant regions in hierarchical clustering and segmentation.

60. Otiniano-Rodríguez Karla et al. (2019). Hierarchy-based salient regions: a region detector based
on hierarchies of partitions.

61. Perret Benjamin, Cousty Jean, Guimaraes Silvio Jamil F., et al. (2018). Evaluation of hier-
archical watersheds.

62. Pont-Tuset Jordi and Marques Ferran (2012). Supervised assessment of segmentation hierar-
chies.

63. Xu Chenliang, Whitt Spencer, and Corso Jason J. (2013). Flattening supervoxel hierarchies by
the uniform entropy slice.
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realigning 64 65 or filtering 66 67 68 69 70 the structure. These strategies rely on identifying less
relevant regions and re-ponder or merge these regions, creating more concise representa-
tions. The problem with these approaches is that defining the importance is subjective
and strongly related to a media or task.

Alternatively, one could search for the ideal representation with a non-horizontal cut
on the hierarchy 71 72 73 74, which is, by all means, a combinatorial problem. One possible
solution is to create a model that learns this ideal representation directly from the struc-
ture and uses the model to adapt unseen sets of hierarchies 75 76 77. However, inserting the
hierarchies in a learning framework is difficult since they have heterogeneous represen-
tations, for instance, in their altitudes, number of regions, and component connections.
Furthermore, the construction algorithms are primarily deterministic, and there is no
direct way to evaluate their quality other than applying it to a task.

1.5 Illustrating the problem

Through a series of illustrations, this section shows the challenges of working and
applying the hierarchies with the trivial approach. It aims to illustrate the problem and
present some points for consideration.

64. Adão Milena M., Guimarães Silvio Jamil F., and Jr Zenilton K. G. Patrocínio (2020). Learning
to realign hierarchy for image segmentation.

65. Chen Yuhua et al. (2016). Scale-aware alignment of hierarchical image segmentation.
66. Perret Benjamin, Cousty Jean, Guimarães Silvio Jamil Ferzoli, et al. (2019). Removing non-

significant regions in hierarchical clustering and segmentation.
67. Barcelos Isabela Borlido et al. (2019). Exploring hierarchy simplification for non-significant

region removal.
68. Xu Yongchao, Geraud Thierry, and Najman Laurent (2016). Connected filtering on tree-based

shape-spaces.
69. Paris Sylvain and Durand Fredo (2007). A topological approach to hierarchical segmentation

using mean shift.
70. Salembier Philippe, Liesegang Sergi, and Lopez-Martinez Carlos (2019). Ship detection in

SAR images based on maxtree representation and graph signal processing.
71. Arbelaez Pablo, Pont-Tuset Jordi, et al. (2014). Multiscale combinatorial grouping.
72. Cousty Jean and Najman Laurent (2014). Morphological floodings and optimal cuts in hierar-

chies.
73. Guigues Laurent, Cocquerez Jean Pierre, and Men Hervé Le (2006). Scale-sets image analysis.
74. Bejar Hans H. C., Guimaraes Silvio Jamil Ferzoli, and Miranda Paulo A. V. (2020). Efficient

hierarchical graph partitioning for image segmentation by optimum oriented cuts.
75. Chierchia Giovanni and Perret Benjamin (2020). Ultrametric fitting by gradient descent.
76. Kiran B. Ravi and Serra Jean (2014). Global–local optimizations by hierarchical cuts and climb-

ing energies.
77. Kiran Bangalore Ravi and Serra Jean (2015). Braids of partitions.
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For the hierarchical construction, it contemplates the discussed hierarchies and refers
to them as:

— QFZ: quasi-flat zones;
— ALPHA: strongly constrained connectivity hierarchies; and
— WATER-*: hierarchical watersheds.

The complete nomenclature for the hierarchical watershed depends on the geometric crite-
rion: (i) WATER-AREA; (ii) WATER-DYN; (iii) WATER-VOL; and (iv) WATER-PAR.
The first three are the ones previously discussed in Section 1.3. The last one, WATER-
PAR, refers to the topological criterion proposed in Benjamin Perret, Cousty, Silvio
Jamil F. Guimaraes, et al. (2018) that counts the number of parents a node has on
the MST representing the graph to determine its extinction values and use them as the
criterion for hierarchical construction. The BPH is intuitive and extensively used in many
contexts. Still, they are rarely applied directly into the vertex set representing each pixel
of an image due to the considerable size the structure could assume. Therefore, here and
in all experimental sections, it will be excluded.

Consider the typical pipeline presented in Fig. 1.2, which highlights the step in consid-
eration and the two main cut strategies. The application illustrated is the segmentation
task where either a threshold value selects an altitude level to create a partition or a
certain number of desired regions determine the appropriate level to probe. In the hypo-
thetical simplified case illustrated, both strategies return the same section to demonstrate
that could be a correspondence between the two types of horizontal cuts.

While with the threshold approach, it is possible to search in a limited space, as in
the case of normalized altitudes, one could infinitely divide this space, and the number
of returned regions is uncertain. In contrast, performing the cut with a specific number
of regions will give the closest approximation available in the structure to the parameter
value. Depending on the task, selecting the number of regions could be more appropriate.
However, the search space is limited only by the total number of regions in the hierarchy,
and there is no way of knowing the number of regions that will return the complete
object(s) of interest.

The goal of the cuts is to find the best partition for the task. And defining the best is
subjective and often an accommodation in the degree of detail portrayed. As illustrated
in Fig. 1.3, small regions could be either clutter or an essential part of the representation
regarding the ground-truth. Furthermore, besides the subjectivity of this decision, defining
one satisfactory cut for one instance in the dataset may not be adequate for another, as
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Input image Preprocessing Graph Hierarchy Cut Task

cut by altitude level cut by number of regions

Figure 1.2: Figure illustrating with simplified images a typical pipeline using hierarchies for the segmen-
tation task. It highlights the two most common strategies to create a more suitable represen-
tation for the task evaluation: horizontal cuts by thresholding the altitude levels or selecting
the desired number o regions. In this hypothetical example, both cuts give the same partition.
The parameter for the number of regions results in the closest approximation to the desired
amount allowed by the structure. For instance, if the parameter were four instead of five, the
selection must decide if it is at most 4, which would produce a single region, or at least four,
which would give the five areas.

also illustrated in Fig. 1.3, even if using the same modeling strategy and hierarchical
structure.

Another consideration regards the type of hierarchy defined by the construction al-
gorithm. As illustrated in Fig. 1.4, different hierarchical construction strategy creates
different representations of the same data. Among the types considered in this thesis,
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Input image Image ground-truthWATER-VOL saliency map
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Figure 1.3: Figure illustrating the partitions created by thresholding the hierarchical altitudes. Selecting a
low altitude level usually results in a clustered section. Conversely, choosing high levels results
in a less detailed output, which may be uninformative depending on the task. Intermediary
levels usually present a compromise between targeting the relevant objects and representing
small components. For instance, level 0.3 on the plane image lose some details, such as the
paddles and the logo at the wing. However, it keeps both wheels and the tail logo, but the
main object remains over-segmented relative to the ground-truth. The main object is more
concise at level 0.5 on the plane image, but most details are merged. Not all observations
hold for the woman with a tissue image, where level 0.1 is closer to the ground-truth than
level 0.5. Complete hierarchies are illustrated as saliency maps with magnitudes inverted for
clearer visualization and balanced weights for better distribution.

44



1.5. Illustrating the problem

l lInput image

Ground-truth

l l WATER-VOL WATER-AREA WATER-PAR

WATER-DYN QFZ ALPHA

l lGrayscale
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Ground-truth
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l lImage gradient

Figure 1.4: Figure illustrating the different outputs created by the hierarchical construction algorithms
in the study. The hierarchical watersheds produce similar maps region-oriented, with very
subtle differences in the details—except for the WATER-DYN, which ranks the regions by
their depth, creating more contour-oriented maps. Similarly, the QFZ highlights more of the
contours due to the organization of increasing values. The ALPHA hierarchies, more often
than not, create a limited number of altitudes due to their strong constraints. The figure
also demonstrates the impact the gradient input wields on the construction algorithm. From
the stronger delimitation on the gradient, the saliency maps show more details in the region-
oriented hierarchies, higher values for WATER-DYN and QFZ, and more distributed areas that
meet the ALPHA constraints. Saliency maps illustrated with magnitudes inverted for more
clear visualization.
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the hierarchical watershed mechanism maps magnitudes into partitions and represents
the topological surface of regions between the higher magnitudes at different levels. Con-
sequently, the hierarchies of watersheds reflect these areas in their contour maps with
very subtle visual differences among the distinct geometric criterion. For instance, the
area criterion indicates the region’s size distribution; the volume ponders both the size
and the depth distribution, which creates more diminished contours for lower magnitudes
between the regions. The criterion by the number of parents has the strongest values on
lower topographical regions because in pondering the parents, it measures the number of
climbings necessary to arrive at a new regional minimum. Therefore, the hierarchical map
remains region-oriented, with contours expressing the contrast in the input.

The most distinguished contour map for the watersheds is the one taking dynamics as
the geometric criterion. The notion of dynamics of a minimum relates to the depth notion
or relative altitudes, reflecting the height to climb before reaching any point with a lower
altitude than a said minimum. This criterion is known as uniform flooding, because it
grows uniformly with the altitudes. Consequently, the hierarchical maps are more contour-
oriented than the other watersheds.

The quasi-flat zones hierarchy also presents contour-oriented maps, but all contrasting
contours in the input are present but flattened by increasing values. Finally, the α-tree
imposes stringent constraints, which results in an over-partitioned hierarchy with, more
often than not, only two hierarchical levels or a reduced number. This type of hierarchy
has a practical application where the input needs simplification without splitting internal
areas. It relies on highly contrasted input for a better distribution of regions.

These considerations lead to the second illustration set in Fig. 1.4, where the same
hierarchical types receive a graph created from the image gradient instead of the grayscale
magnitudes. The two sets of images highlight the importance of the media’s modeling
before applying it to hierarchical construction algorithms. And how independently of the
input, the hierarchies will interpret and organize the data according to its rules.

Fig. 1.5 illustrates the effect of thresholding the hierarchical levels on different wa-
tershed hierarchies. Typically, in a balanced hierarchy, lower levels are cluttered, and
intermediary levels have the best compromise between details and conciseness, as shown
for the watershed by volume and area. However, this is different from a rule as seen for
the watershed by dynamics and the number of parents. While for the number of parents,
the lower levels are also representative, for dynamics, it is the only one. Furthermore, the
range between proper representation and uninformative can vary largely between types.
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Figure 1.5: Figure comparing results produced by the same threshold value in different watershed hierar-
chies created for the graph modeling the grayscale image and one specific image. It aims to
illustrate that no one cut solution is suitable for all, for instance. For some, lower levels (0.1)
are usually cluttered representations (WATER-VOL and WATER-AREA). Still, it is suitable
for others (WATER-PAR and WATER-DYN). Intermediary levels (0.3 and 0.5) are usually a
good level for a cut, except for the contour-oriented representation (WATER-DYN). Also, a
slightly fainted contour on the main object could cause it to be merged at much earlier stages
(WATER-AREA at 0.5).

For instance, while for the number of parents, all levels illustrated could be considered a
suitable partition, the area one merges the main object with the background much earlier
in the tree.

The same considerations could be made when searching for the number of regions. For
some representations, only a few regions would retrieve a concise representation (equiv-
alent to good at intermediary levels); for others, a more significant number is required
(equal to proper at lower levels). The quasi-flat zone represents most contours, and the
α−tree is overall over-segmented. In this type of visual analysis, they produce images
perceived as noisy; therefore, they are not illustrated.

This final observation leads to the final consideration of this section: the evaluation
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of the task. Assertions of good and bad representations and the best level or number
of regions are all relative to the application. The analysis of the illustrations conforms
with our perception of uniform regions and could be associated with the segmentation
task. However, the detailed contours in some hierarchies could be more adapted to studies
searching for high points in the data. For instance, the α−tree in the context of these
illustrations seems to produce only noise. Yet, for some applications, such as aerial analysis
with high-resolution images, it presents a suitable arrangement between simplification and
flexibility.

Furthermore, one should also be mindful of the metric chosen for the evaluation since
some can be misleading. For instance, segmentation metrics that do not weigh true and
false contributions tend to favor bad segmentations since the areas of interest are usually
smaller than the background.

The goal of these considerations is to highlight that beyond the data modeling, and,
despite the abundance of information embedded in the hierarchies, without careful con-
siderations in choosing the hierarchical type, the parsing strategy, the representation for
the task, and the metrics, media processing strategies could overlook the potential in
these structures. For instance, sets of data without large quantities of labeled data or
applications that require dependable outputs usually rely upon regional analysis methods
that provide a consistent data organization, such as those provided by the hierarchical
analysis.

1.6 Experimenting in the typical pipeline

This section shows some experiments with the typical pipeline and the trivial approach
in two image tasks: edge detection and segmentation, that this work will use throughout.

The edge detection dataset is the Berkeley Segmentation Dataset and Benchmark
(BSDS500) 78, which offers edge detection and segmentation labels. It contains 500 natural
images (200 train, 100 validation, and 200 test) of the same size. Each image has multiple
labels performed by different annotators; thus, this work performs a majority vote to create
a single label. The challenging images in this dataset present: (i) complicated patterns,
(ii) occluded objects, (iii) objects indistinguishable from the background by color, and
(iv) high-contrast patterns.

78. Martin D. et al. (2001). A database of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological statistics.
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Figure 1.6: Sampled images from the BSDS500 dataset with their respective boundary ground truths. The
dataset contains colored natural images and challenging images with complicated patterns,
occluded objects, main objects indistinguishable from the background by color, and objects
with patterns of high contrast. Also, each image contains multiple labels where line intensities
indicate agreement among annotators.

For the segmentation task, it presents two binary segmentation public datasets: Birds 79

and Sky 80. The Birds dataset contains 50 images of birds, and the Sky dataset includes
60 images of planes and the sky. Both datasets have manual annotations for the image
segmentation task, and no official train/test sets division exists. Therefore, a random
selection of the images split the datasets into 35/15 train/test for Birds and 40/20 for
Sky. Fig. 1.7 illustrates the Birds dataset and the challenges it presents, namely, the
images usually portraying the birds close to a body of water, with areas of high-intensity
lights and annotations covering only one leading object, despite the presence of multiple
similar objects in the surroundings. Fig. 1.8 illustrates the Sky dataset, which contains
images annotated for the background instead of the main object. Usually, the region of
interest covers large portions of the image but ignores the central part.

The pipeline takes the colored images in the datasets and computes the grayscale
magnitudes without any additional preprocessing of the images. Next, it constructs the
graph with a 4−adjacency (takes the four orthogonal values around a particular pixel)
and the Euclidean distance on the magnitudes for the weighting function. The hierar-
chy construction explores the aforementioned hierarchies: QFZ, ALPHA, WATER-VOL,

79. Mansilla Lucy A. C. and Miranda Paulo A. V. (2016). Oriented image foresting transform
segmentation: connectivity constraints with adjustable width.

80. Alexandre Eduardo Barreto (2017). IFT-SLIC: geração de superpixels com base em agrupamento
iterativo linear simples e transformada imagem-floresta.
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Figure 1.7: Sampled images from the Birds dataset with their respective segmentation ground truths. The
dataset contains colored natural images, manually annotated. The images usually portray the
birds close to a body of water, with areas of high-intensity lights and the annotations cover
only one main object, despite the presence of multiple similar objects in the surroundings.

Figure 1.8: Sampled images from the Sky dataset with their respective segmentation ground truths. The
dataset contains colored natural images, manually annotated. The ground truths in this dataset
are for the image’s background instead of the main object. Usually, the region of interest covers
large portions of the image but ignores the central part.

WATER-AREA, WATER-DYN, and WATER-PAR. It does not perform additional post-
processing, such as filtering the hierarchies, realigning, or balancing the levels.

The BSDS500 dataset proposes an evaluation system for methods using it. The eval-
uation takes an edge map and threshold the values in the range [0, 1[ with a 0.01 step
computing the precision-recall F1−score at all threshold values. The results are then pre-
sented in terms of optimal dataset scale (obtained in the threshold that best represents
most of the images), optimal image scale (obtained for each image at its best scale), and
average precision through all scales. For non-hierarchical methods, this evaluation works
to process soft edge maps, which is why methods producing fuzzy maps usually perform
better, such as in Yun Liu et al. (2019) 81. For hierarchical methods, this evaluation allows
the assessment of different levels of details in the hierarchical partitions. For clarity, the

81. Liu Yun et al. (2019). Richer convolutional features for edge detection.
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Figure 1.9: Results of the typical pipeline for the BSDS500 dataset. Shaded points represent the best score
and threshold for individual images, and the solid line is the average score on the dataset scale.
Perfect score=1.

results presented in this section for the BSDS500 dataset are only for the optimal dataset
scale. It gives the average score obtained in the threshold that best represents most images,
which is the most challenging and the best to evaluate the overall performance.

The segmentation datasets use the Jaccard similarity coefficient score as the metric,
which measures in the interval [0, 1] the intersection size divided by the union of two sets.
Formally, given two sets, A and B, the Jaccard score is computed as follows:

Jaccard(A,B) = |A ∩ B|
|A ∪ B|

It is equivalent to the precision-recall F1−score on binary sets. Therefore, for evaluating
the segmentation task, the horizontal cut strategy selects the partition and binarizes it
for a direct assessment against the ground-truth.
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1.6.1 Horizontal cut by threshold

Fig. 1.9 shows the results obtained in the BSDS500 dataset. Simply taking the contour
maps does not yield good results, particularly for the region-oriented maps created by the
watershed hierarchies by volume, area, and number of parents. Their application is usually
through selecting the number of regions since, if not balanced, the significant areas are all
in the lower end of the tree, and the evaluation method needs to take more slices in those
regions. One could change the steps in the dataset evaluation threshold. However, there is
an incentive to keep the evaluation parameters for comparison with other methods. The
region-oriented watersheds are not the only ones with a bad performance since all types
present unsatisfactory results.

The results presented here are to establish a baseline, not to say that hierarchical
structures are ineffectual for the edge detection task. On the contrary, many hierarchical
proposals in this dataset present competitive results. However, each successful method also
gives one strategy to improve or filter the hierarchical contours. For instance, Arbelaez,
Maire, et al. (2009) 82 proposed a technique that constructs hierarchical boundary maps
from an edge map where the boundaries between consistent regions are reinforced and
small areas removed (scores 0.71 on the dataset scale). Maninis et al. (2018) 83 takes pre-
computed contours using the side-outputs of a convolutional network for constructing the
hierarchies (scores 0.73 on the dataset scale). Taylor (2013) 84 uses normalized cuts to
reduce internal regions and sharpen the contours between contrasting areas (scores 0.67
on the dataset scale). Arbelaez, Pont-Tuset, et al. (2014) 85 creates the hierarchies
at multiple image scales independently and combines them into a single contour map
weighing the strength of each contour using machine learning (scores 0.725 on the dataset
scale). Furthermore, Benjamin Perret, Cousty, Silvio Jamil F. Guimaraes, et al.
(2018) shows the gain quantitatively in score by filtering small areas on another dataset
with the same task.

For the segmentation datasets, the horizontal cuts by threshold range are in [0, 1] with
a step of 0.001. The smaller steps count for the hierarchical watershed region-oriented
methods that, without balancing the structure, produce most of its contours at the bot-

82. Arbelaez Pablo, Maire Michael, et al. (2009). From contours to regions: An empirical evalua-
tion.

83. Maninis Kevis-Kokitsi et al. (2018). Convolutional oriented boundaries: from image segmentation
to high-level tasks.

84. Taylor Camillo Jose (2013). Towards fast and accurate segmentation.
85. Arbelaez Pablo, Pont-Tuset Jordi, et al. (2014). Multiscale combinatorial grouping.
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Figure 1.10: Results of the typical pipeline for the Birds and Sky datasets. Colored shaded areas represent
individual image scores through the hierarchical levels, and the solid line is the average.
Perfect score=1. 53
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tom of the structure. Fig. 1.10 presents the results for the segmentation datasets. Both
datasets give the average Jaccard score achieved by binarizing the images through differ-
ent hierarchical levels. The first large region is taken as the background, and all the others
are merged as the foreground. The challenge on the Sky dataset (large areas containing
the object of interest where the background usually is) could be solved by inverting the
region label, and all the watershed methods achieve, at some level, a good result (above
0.79 score). For QFZ, higher levels on the hierarchies perform better as multiple contour
lines are merged to form a single region. However, it achieves a plateau close to the 0.7
threshold with an average score of 0.45. The only representation that does not present a
satisfactory result is the ALPHA hierarchy, where the multiple small regions with a slight
variation in the altitude levels created by the construction algorithm do not have a clear
cut between the background and foreground for the binarization. The same occurs for
ALPHA in the Birds dataset.

The other hierarchies also have an unsatisfactory performance in Birds. The image
illumination conditions create peaks in the magnitude values that make it difficult to
distinguish the main objects and the body of water in the background. Also, the algorithms
will create similar partitions for the many objects portrayed in the images, while only one
is considered a valid answer. As shown in the graphics in Fig. 1.10, for Birds, all the
other methods perform well for some images, but the bad ones have close to zero scores,
dragging the average.

1.6.2 Horizontal cut by the number of regions

For the cut by the number of regions, the experiments explore an extensive range of
parameters defining the number of desired regions. Precisely: {2, 3, 4, 5, 6, 7, 8, 9, 10, 20,

30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. The selection
criterion follows the “at least” rule, meaning that the cut will take the first level available
in the structure that contains at least the amount of regions passed as parameters.

In this approach, for the BSDS500 dataset, instead of passing all the contours in the
hierarchy as saliency maps, each cut’s contours are binarized and evaluated in a single
scale. Fig. 1.11 illustrates the results obtained on the BSDS500. As shown, this strategy
considerably improves the results on this dataset, particularly for the region-oriented
maps. For them, the selection by the number of regions retrieves the most significant
regions, independent of their position in the tree. The contour-oriented methods curves
indicate that expanding beyond the search range may produce even better maps. However,
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Figure 1.11: Results of the typical pipeline with a cut by the number of regions for the BSDS500 dataset.
Shaded points represent the best score for individual images, and the solid line is the average
score on the dataset scale. Perfect score=1.

the systematic search becomes arduous after a certain value. Furthermore, because of
the “at least” policy, the ALPHA representation has almost the same edge map for all
number of regions. A close inspection of this type in this particular dataset shows that
the minimum amount of regions for most inputs is around 14000.

For the segmentation datasets, the binarization procedure is similar to the cut by a
threshold but with a more explicit definition of background/foreground, where the regions
returned by the cut parameter are taken as foreground. Fig 1.12 shows the results for both
segmentation datasets. For Sky, the WATER-VOL, WATER-AREA, and WATER-DYN
have very similar results as the cut by threshold with only a few regions. Emphasis on
the WATER-PAR that kept an equal score through most of the range, slightly decreasing
the average after arriving at the peak score with ten regions (a decrease of 3% with
1000 regions). It indicates no significant change in the number of parents during the
construction for most of the region range evaluated. Contrasting these results with the
cut by threshold, they indicate that the WATER-PAR has much smaller regions at the
bottom of the tree than the other two region-oriented watersheds.

Because of the nature of the Sky dataset, there is much more leniency in adding
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Figure 1.12: Results of the typical pipeline with cut by the number of regions for the Birds and Sky.
Colored shaded areas represent individual images score for the number of regions, and the
solid line is the average. Perfect score=1.
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small regions to the large area composing the background or vice-versa. For instance,
the same stable score is observed for all the region-oriented watersheds on the Birds
dataset. However, for Birds, the score remains unchanged because most images present
white outputs altogether. In the remaining, only a few areas are added to the output
as the number of regions increases. Also, they achieve a lower score with the number of
regions because, contrary to the Sky dataset, the highly contrasted areas on the input
images spread the areas on the tree that are more easily covered by thresholding the
structure than selecting an undefined number of ideal regions. This last observation is
particularly true for the contour-oriented hierarchies, where the score slowly mounts as
new regions are added to the partition without achieving similar scores to the threshold
strategy. In fact, in both datasets, the region cut with a similar score to the threshold cut
for WATER-DYN starts with 20000 regions and QFZ with 50000.

1.6.3 Final considerations on the typical pipeline experiments

The experiments were performed in two tasks (image segmentation and edge detec-
tion) using a single media (images). A single output on the image space is required to
evaluate the structures on the tasks. To achieve that, the experimental pipeline uses the
trivial approach by a horizontal cut using two common strategies: selecting the number of
regions or selecting a threshold value on the altitude levels. The experiments extensively
searched for the parameter value for each cut strategy, namely 27 different regions in the
range [2, 1000] and over a thousand altitude values. The experiment results with both cut
strategies showed that a successful application is not always evident.

For instance, no set of parameters on either tasks or cut strategy gives good results
with the ALPHA representation. On the edge detection task, the parameter search for
a horizontal cut by a threshold on the altitude levels did not result in any satisfactory
value for any hierarchical type. The cut by the number of regions improved the values,
particularly for the region-oriented types (WATER-VOL, WATER-AREA, and WATER-
PAR), but not enough to place the results among the state-of-the-art on the BSDS500
dataset.

The segmentation task on the Sky dataset with the region-oriented hierarchical types
showed promising results with both cut strategies, although the WATER-VOL and WATER-
AREA perform better with smaller values on the cut by the number of regions. The
contour-oriented hierarchies are considerably more sensitive to the cut parameters on this
dataset. QFZ and WATER-DYN only showed some satisfactory results with the cut by
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altitude values in a small range. Finally, all types with both cut strategies performed very
poorly on the segmentation task on the Birds dataset. From the results, one may con-
clude that the hierarchical structures are unsuitable for this task. Fairly, the illumination
condition, the background, and the annotations on the images make in this dataset make
it very challenging for most known image processing strategies in the literature.

Besides the search for the hierarchical type, the strategy cut, and the parameters,
multiple other decisions must be taken to apply the hierarchies to the tasks, such as
the binarization value, the determination of the regions characterizing the foreground or
background, and the evaluation metric that properly reflects the quality of the images
created. All of these factors have a significant impact on the final results. They may
deter an interested researcher from further investigating this type of structure even if
it provides a richer representation than the media alone. Furthermore, even if the ideal
set of parameters is found and the results are satisfactory, there is no guarantee that it
will perform similarly with a different related media and task. The experiments in this
section showed precisely that and demonstrated that a successful application requires a
deep understanding of media and tasks and multiple experimentations.

1.7 Discussion on hierarchies and the typical pipeline

The hierarchical operators are delineated in the mathematical morphology domain.
Classical mathematical morphology is based on lattice algebraic operations, and the image
scope is the principal definition space for the hierarchical theory. However, given a proper
characterization of regions and interrelations, hierarchies could be used to process many
media types.

Hierarchies defined on graphs facilitate this generic media characterization since graphs
are versatile, adaptable to the desired context, and often considered a generic data struc-
ture. Intrinsically, hierarchies structured as hierarchical trees are a particular type of
graph; therefore, the graph theory is a common point for both media and hierarchies.

The graph representation of media is a modeling question with various connotations
(to be discussed in Chapter 3). Still, the primary concern in graph theory is how the
components are related. The graph formalism for the elements, the relationships, and the
operations are defined for sets of data. In hierarchical analysis, the region definition is in
the structural components on the vertices and edges, and the edge weights and adjacency
relation choices define the parameters for the hierarchical operators.
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The hierarchical structure provides a non-regular characterization of regions with no-
tions of order and navigation without needing many parametrizations other than those
offered by the already modeled edge-weighted graph. They introduce a semantic inter-
pretation into media processing through meaningful partitioning of the perceptual space.
Hierarchical operators are idempotent and provide a consistent data organization. Each
construction algorithm has particular properties, but they share common rules that facil-
itate commuting and inferring from one type to another if needed.

The output of a hierarchical algorithm is an elaborated scheme with an organic rep-
resentation in the form of a tree, where each internal node represents a hierarchical level,
the media components are portrayed on the leaves, and paths on the tree connect the
modeled regions. However, many different aspects must be considered when applying a
hierarchy to a task, from choosing the hierarchical type, the parsing strategy, the proper
representation, and the evaluation metric. All of these aspects are crucial in a successful
application.

Among the necessary considerations for the applications, selecting the hierarchical
type may be the most straightforward because of their shared rules and the easy type
change without pipeline alteration. However, it is not always clear if the inadequacy
comes from the hierarchical construction or the evaluation method since some metrics
may not correctly reflect subtle changes in the representation. Furthermore, some tasks
may require additional parsing, such as binarization, which is in itself not evident and
can undermine the representation.

Undoubtedly, the most crucial consideration is selecting how the hierarchy is rep-
resented for the application. The trivial approach with horizontal cuts creates a single
partition that adequates the hierarchical structure to the usual ground-truths of a task
for evaluation. The process could be strenuous if searching for an ideal number of regions
or could disregard important details if thresholding by hierarchical levels. Also, a good
horizontal cut for one specific hierarchy does not guarantee that it will be ideal for an-
other on the same dataset. Non-horizontal cuts are potentially better, but the efforts thus
far rely on combinatorial search. Finally, even considering all the different aspects and
systematically searching for an ideal cut may not suffice for a good performance.

Preprocessing the data in the hierarchical pipeline are often necessary and requires
a deep understanding of the media, the region connotation in the hierarchies, and the
task. Post-processing may also be required by filtering, balancing, or realigning the struc-
ture, consequently facilitating the analysis, but it is media and task-dependent. Possible
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solutions include creating a model that learns the ideal representation directly from the
structure or uses the structure as a basis for the model applied to a task. Chapter 2
will provide an overview of the strategies in the literature dealing with these problems
assessing how they are used for various media and tasks.

This thesis argues that the hierarchical information embedded in the hierarchies could
be applied directly in a learning framework without making assumptions about the media
or the task. It proposes (in Chapter 5) to represent the hierarchy by selecting attributes on
the structure that preserve their original arrangement, creating a regular representation
that a learning framework could use directly on a task.
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Chapter 2

HIERARCHIES AND MACHINE LEARNING

Hierarchies provide rich representations of nested regions that could help solve multiple
computational problems, particularly multimedia processing. However, the applications
usually require one single outline for evaluation. The arduous strategy of performing
a series of horizontal cuts covering the entire hierarchy and evaluating each partition
often leads to sub-par performances regarding the abundance of information embedded
in the structure. Combinatorial non-horizontal search for cuts or flattening and region
filtering are common strategies with no obvious solution. They all depend on the metric
used to evaluate the selection, which can be misleading. Furthermore, finding an ideal
representation for one specific structure does not guarantee that it will be suitable for any
other hierarchy or task.

Machine learning techniques could facilitate this process by creating models leveraging
the hierarchical data and the application. For instance, they could assemble the informa-
tion in the structure and intermediate the task. Or they could parse the hierarchies to
create more suitable representations and produce a replicable model. Furthermore, ma-
chine learning techniques usually consider entire datasets for modeling instead of analyzing
each entry individually and are evaluated on unseen data for a more robust assessment.
However, since there is no direct measurement of quality on the hierarchical structure
itself, applying machine learning to hierarchies remains an open question.

This chapter features a literature review on the theme "Learning on hierarchies", gath-
ering the strategies that combine machine learning and hierarchical data on the same
framework. The search aims to collect information on methods that: (i) apply the hi-
erarchies to a learning framework assessing how the structure assists on the task; and
(ii) apply the learning strategies to the hierarchical structures assessing how the learning
helps improve the representation.

The search by itself is complicated due to ambiguous and extensively used terms such
as "hierarchies" and "hierarchical". Simply searching for "hierarchical"+"learning" or "hier-
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archies"+"learning" retrieves a myriad of results that includes hierarchies of abstractions 1,
architectures 2, features 3, or concepts 4. Therefore, the search keys combined "learning"
or "learn" with commonly used terms to describe morphological hierarchies such as "hi-
erarchies of partitions", "partition tree", "inclusion tree", and "component tree". Also, it
included specific hierarchical types nomenclatures of interest for this thesis, namely "quasi-
flat zones", "binary partition trees", and "alpha-trees". For the "hierarchies of watersheds",
there is no consistent naming in the literature, and simply "watershed" or "watershed
merge trees" occasionally refers to the hierarchical form in question. The review includes
all the watershed names and briefly outlines the strategies on the classical watershed
outside the hierarchical structure for completeness.

These search keys retrieved 225 publications from 1990 to 2022 from the IEEE, ACM,
and Science Direct databases. From the total retrieved, the review will omit 161 due to
the following:

— Not in the English language: 2 publications.

— Bad quality: 8 publications with either an incomplete set of references or an unclear
methodology for review.

— Comparison: 33 publications mention the target hierarchies but only to compare
with their proposed methods outside the scope of the review.

— No learning: 20 publications mention a machine learning method but only to
compare with a hand-engineered proposal in a hierarchical context, such as meth-
ods proposing a similarity measure for the tree nodes or a re-arrangement of the
structures that do not involve a learning step.

— No hierarchy: 48 publications that, despite refining the search keys, still retrieve
undesirable hierarchies or reference geological tasks that take the literal meaning of
the word watershed.

— Survey: 17 surveys or book chapters without a method proposal, only a compilation
of methods in a domain such as remote sensing or image processing. This review
will take these publications only as guiding references.

1. Ilin Roman, Watson Thomas, and Kozma Robert (2017). Abstraction hierarchy in deep learning
neural networks.

2. Liu Yun et al. (2019). Richer convolutional features for edge detection.
3. Lin Tsung-Yi et al. (2017). Feature pyramid networks for object detection.
4. Fan Jianping et al. (2017). HD-MTL: hierarchical deep multi-task learning for large-scale visual

recognition.
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— Post-processing: 33 publications show methods that create the hierarchies after
the learning step.

Methods expressed as post-processing use the learning step to create better low-level
maps for the hierarchical construction 5 6 7 or use the hierarchies to improve the method’s
results in a task as a strategy to combine the learned features and data 8 9 or add a semantic
connotation 10. There are some notable works in this category. For instance, the work in
Arbeláez et al. (2011) presents a method (gPb-owt-ucm) that learns improved contour
maps and uses them as local minima seeds for constructing the watershed hierarchies. The
learning step takes clues from the brightness, color, and texture information cropped from
image paths at different scales. And in conjunction with contour feature maps extracted
from the eigenvectors of the spectral clustering algorithm 11, it trains a logistic regression
model by gradient ascent on the edge detection task. After the learning step, it applies the
hierarchical watershed and evaluates the hierarchies created from the improved contours
on the segmentation task. The representation is as ultrametric contour maps, which
transforms contour probability maps into a hierarchical boundary map.

Similarly, Maninis et al. (2018) uses the learning step to create contour maps at mul-
tiple intermediate layers of a convolutional network. Side-outputs of the network weights
are mapped to the image domain as contour maps at different scales. The hierarchy is
not strictly defined. Instead, it is implied from the different scales of the network. How-
ever, in the end, the learned contours are combined using ultrametric maps. But, since
the learning step disregards the hierarchical information to perform the task or improve
the hierarchical representation, the "post-processing" methods will be omitted from the
review.

The remainder of this chapter will present the review results. Section 2.1 contains the
methods employing the hierarchies to a learning framework, assessing how the structure
assists in the task and how the authors format the hierarchical information for the applica-

5. Arbeláez Pablo et al. (2011). Contour detection and hierarchical image segmentation.
6. Kim Eunji et al. (2022). Deep learning-based phenotypic assessment of red cell storage lesions for

safe transfusions.
7. Sinchuk Yuriy et al. (2021). Geometrical and deep learning approaches for instance segmentation

of CFRP fiber bundles in textile composites.
8. Maninis Kevis-Kokitsi et al. (2018). Convolutional oriented boundaries: from image segmentation

to high-level tasks.
9. Chen Yanlin et al. (2020). Automatic segmentation of individual tooth in dental CBCT images

from tooth surface map by a multi-task FCN.
10. Zheng Wenfeng et al. (2021). Improving visual reasoning through semantic representation.
11. Shi Jianbo and Malik J. (2000). Normalized cuts and image segmentation.
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tion. Section 2.2 presents the methods implementing learning strategies to the hierarchical
structures assessing how the learning helps improve the representation and the evaluation
choices made by the authors. Furthermore, Section 2.2 includes some hand-engineered
techniques for transforming the hierarchies and some local-optimization strategies that
are not framed as machine learning and, therefore, not retrieved by the search keys. For
completeness, Section 2.3 presents the approaches for the non-hierarchical watershed,
briefly describing the methods, and Section 2.4 the learning strategies inspired by the
hierarchical construction algorithms.

Finally, Section 2.5 displays the review’s conclusions, summarizing the method’s goals,
strategies, and motivations. It is particularly interested in the assessment of : (i) the
types of media, how the authors model their representation both on the hierarchical
structure and the task; (ii) the types of hierarchies and which role they play in the
learning framework; and (iii) the machine learning methods and the reasons for choosing
them.

2.1 Hierarchies applied to learning

This section presents the strategies that use the hierarchies to assist the machine learn-
ing algorithms in performing a task. It groups the methods into two categories regarding
how they use the regions defined in the hierarchical structure. Namely: (i) the regions on
the tree nodes define the space for feature extraction (Section 2.1.1); or (ii) the regions
represent masks applied on the media for features extraction (Section 2.1.2).

2.1.1 Regions defined on the tree nodes

There are two medical applications in this category, E. Grossiord et al. (2017) 12,
and Padilla et al. (2021) 13. Both methods propose a strategy to combine Computed
Tomography (CT) images, grayscale images often labeled, and 3D Positron Emission
Tomography (PET) images that gives reliable information about changes in tumor tissues
but are challenging to parse automatically.

12. Grossiord Eloise et al. (2017). Automated 3D lymphoma lesion segmentation from PET/CT
characteristics.

13. Padilla Francisco Javier Alvarez et al. (2021). Random walkers on morphological trees: a seg-
mentation paradigm.
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In E. Grossiord et al. (2017), they propose to use max-tree 14 to model the PET
images, which facilitates the detection of extremal intensity values in the structure for
a fast match with the labeled boundary maps in the CT images. The description uses
the region’s shape, the pixels within the areas for intensity and histogram statistics, and
the textural 3D spatial information. The target task is segmentation, where a supervised
classification on the CT labels allows keeping only the desired regions for analysis. The
biggest challenge in their framework is that the labels need to be precisely defined in
the image space; instead, they are given within a bounding box. They choose to label
positively any element in the region touching the box region without overlapping areas.
The learning model is the Random Forest (RF) 15 because of the large space of features
compared to the small number of data samples and the good generalization model.

Similarly, in Padilla et al. (2021), the authors propose to use the spatial correspon-
dence between PET and CT images to compute complementary attributes for the task
in a graph context. In their proposal, the PET images are re-scaled to the CT resolution.
Both are represented as the hierarchical tree of shapes 16 (a dual hierarchical representa-
tion of min/max-trees 17 merged in another hierarchy to balance coarse and fine regions).
Each region of the tree is described only by structural and regional features. Namely: rel-
ative distance between parent and node, number of voxels on the region, barycenter, and
region compactness. To reduce the number of nodes, they propose to filter the structure
by searching for stable areas (finite differences along all the branches induced by a node 18)
regarding each attribute and performing a majority vote to determine the most critical
regions. The labels are hand-selected foreground/background seeds in the 3D voxel. The
task is performed by label propagation using Random Walk 19 algorithm. Random Walk
performs a statistical distribution analysis and is often considered a pattern finder in the
graph context. Given subsets of non-overlapping vertices, it determines the probability of
reaching one set or another by solving the combinatorial Dirichlet problem in the graph
represented as a Laplacian matrix.

Hu, T. Shi, et al. (2021) 20 proposes an aerial analysis solution using high-resolution

14. Salembier Philippe, Oliveras Albert, and Garrido Luis (1998). Antiextensive connected op-
erators for image and sequence processing.

15. Breiman Leo (2001). Random forests.
16. Monasse Pascal and Guichard Frédéric (2000). Scale-space from a level lines tree.
17. Salembier Philippe, Oliveras Albert, and Garrido Luis (1998). Antiextensive connected op-

erators for image and sequence processing.
18. Nistér David and Stewénius Henrik (2008). Linear time maximally stable extremal regions.
19. Grady Leo (2006). Random walks for image segmentation.
20. Hu Zhongwen, Shi Tiezhu, et al. (2021). Scale-sets image classification with hierarchical sample
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aerial images as input. Because of the large scale of the images, this method uses homo-
geneous regions pre-segmented as superpixels 21 instead of using the pixel as the unitary
element on the graph. A spatially constrained hierarchy 22 (a Binary Partition Tree that
takes color-texture information to compute the cost of merging two regions) is then created
for the superpixels vertices and color-texture dissimilarity measure for the edges. Further-
more, small regions are merged to reduce the representation given a size parameter. The
authors argue that selecting a single scale for an application depends on the task and
is not robust. Therefore hand-picked samples from multiple scales are set for description
together with different depths in the same path as candidates. The descriptors include
information on spectral, textural, binary patterns, and region geometry. The labels for
the classification task are propagated to all related nodes in a path, and regions with
multiple labels are discarded. The model for the task is the Random Forest because of its
good performance and high computational efficiency, trained with the features extracted
from the structure and image associated with their respective labels. During the test, all
nodes in the hierarchy are subjected to the predictions, taking the levels with the best
estimations for the segmentation task, improving the robustness of selecting an optimal
scale map.

In Clément, Kurtz, and Wendling (2018) 23, the authors first pre-group the image
pixels using the Mean Shift clustering algorithm 24 then they construct a hierarchical vari-
ation of the Binary Partition Tree that probe the grouped pixels colors to select a union
that is maximal for the similarity criterion 25. The hierarchy organizes the image’s objects
and their subparts. Using these subdivisions, a structural description of the image can be
computed through an attribute relational graph (ARG) and a Force Histogram decom-
position 26 characterizing directional spatial relations. In the proposed ARG, the vertices
represent the hierarchical nodes with attributes describing region shapes. The edges repre-
sent the hierarchical connections provided with attributes characterizing relative position.

enriching and automatic scale selection.
21. Felzenszwalb Pedro F. and Huttenlocher Daniel P. (2004). Efficient graph-based image seg-

mentation.
22. Hu Zhongwen, Wu Zhaocong, et al. (2013). A spatially-constrained color–texture model for hier-

archical VHR image segmentation.
23. Clément Michaël, Kurtz Camille, and Wendling Laurent (2018). Learning spatial relations

and shapes for structural object description and scene recognition.
24. Comaniciu Dorin and Meer Peter (2002). Mean shift: a robust approach toward feature space

analysis.
25. Ward Joe H. (1963). Hierarchical grouping to optimize an objective function.
26. Garnier Mickaël, Hurtut Thomas, and Wendling Laurent (2012). Object description based on

spatial relations between level-sets.
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2.1. Hierarchies applied to learning

Table 2.1: Summary of methods that use the hierarchies to assist the machine learning algorithm in
performing a task, where the regions in the hierarchical structure define the space for feature
extraction. The table includes information about the nature of the features.

Reference Domain Media Task Hierarchy Model Features

E. Grossiord et al.
(2017)

medical 3D PET,
CT images

segmentation max-tree RF pixel, 3D texture,
geometry

Clément, Kurtz,
and Wendling
(2018)

image
analysis

RGB
images

classification BPT BOW, SVM HOG, structural
decomposition

Padilla et al.
(2021)

medical 3D PET,
CT images

segmentation tree of
shapes

Random
walker

structural

Hu, T. Shi, et al.
(2021)

aerial
analysis

high-resol.
images

segmentation,
classification

BPT RF spectral, textural,
patterns, geometry

Both sets of attributes are extracted from the Force Histogram decompositions. Addition-
ally, they compared the performance on the task using only the structural descriptor or
combining it with descriptions of pixels within the objects and parts with the histogram
of gradient descriptors (HOG 27) of the pixels within the objects and parts. The repre-
sentation with information about the image properties and structure gave considerably
better results.

Furthermore, the authors proposed to aggregate this representation with a bag-of-
features model 28—variation of the bag-of-words (BOW) scheme that represents words (or
features) by histograms of occurrence given a reference dictionary—named bags-of-shapes-
and-relations, that not only conforms the representation to a learning-friendly format but
also works as a consistent compression of the structure. The task is performed using a
support vector machine (SVM 29) with labels of object classes for classification.

All methods in this category place a strategy to reduce the size of the hierarchical
representations, either by filtering, compression, or hand-picked samples. Applied for clas-
sification or segmentation tasks, they are defined for image analysis and with additional
challenges to adapt the methods to 3D images in medical applications. The hierarchical
types are all some variation of the binary partition trees. Regarding the learning model,
Random Forest deals with large amounts of data and presents good generalization. At the

27. Dalal Navneet and Triggs Bill (2005). Histograms of oriented gradients for human detection.
28. Everingham Mark et al. (2010). The pascal visual object classes (VOC) challenge.
29. Cortes Corinna and Vapnik Vladimir (1995). Support-vector networks.
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same time, the bag-of-features paradigm provides a good solution for the task and the size
of the hierarchical structure. Furthermore, all methods rely on features extracted from
both the media and the regions defined in the hierarchy, except for the random walker
approach that takes only the structure of the hierarchical tree represented as graphs to
propagate the task label. Table 2.1 presents a summary of the methods in this category.

2.1.2 Regions as media masks

The authors in Serna and Marcotegui (2014) 30 propose an image analysis solution
for the 3D point clouds problem classification. Their strategy takes three steps: detection,
segmentation, and classification. The image space defines the detection and segmentation
steps. First, they project the point clouds as elevation images, where each pixel has the
spatial dimension plus the altitude information. This projection creates the first set of
candidates of interest using the spatial continuity of elements. The second set of objects
includes candidates for removal created by a series of classical mathematical morphology
operations, such as the top-hat to fill holes and the opening to remove unwanted noisy
regions 31. The problem is that these operations also remove some thin objects of interest.
That is why they create a third set of candidates from the quasi-flat zone hierarchies 32.
They use the hierarchical structure thresholded by a high enough level to merge some
elements on the ground but sufficiently low to keep the objects that the morphological
operators will likely remove. The three sets of image object candidates are combined and
filtered by a series of hand-engineered operations to create a segmented image with all
the essential objects separated into coherent regions.

After the segmentation, they describe each segmented region with color and geometri-
cal features plus some neighboring information, such as the number of adjacent areas and
non-empty pixels in the vicinity. Finally, the learning step uses the set of features for a hi-
erarchical classification 33. Hierarchical classification is an iterative process, where at each
iteration, the data is partitioned using generic labels to subsequent classifications with
more specific ones with only a few samples. The few sampled classes are also why they
have chosen the SVM as a learning model, plus the benefit of comparing their strategy

30. Serna Andrés and Marcotegui Beatriz (2014). Detection, segmentation and classification of
3D urban objects using mathematical morphology and supervised learning.

31. Hernandez Jorge and Marcotegui Beatriz (2009). Filtering of artifacts and pavement segmen-
tation from mobile LiDAR Data.

32. Meyer Fernand (1998). From connected operators to levelings.
33. Avcı Murat (2000). A hierarchical classification of landsat TM imagery for land cover mapping.
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with similar methods on the task.
In Sun et al. (2015) 34, the authors propose a strategy to identify textual information in

natural images. Their method relies on a thorough preprocessing of the images to identify
and isolate possible text candidates and on the efficient implementation of the max-tree
hierarchy 35. The hierarchy delineates the regions with possible text and organizes the
candidates based on their visual characteristics. Specifically, they convert the input image
to grayscale and take the magnitudes, the hue, and the saturation 36 on the original and
inverted intensities, resulting in six different images for the same input. The additional
images help select less noise and extra pixels in the hierarchy, where one max-tree is built
for each of the six images. Each region on the hierarchy is an extremal value, and the
contrast of neighboring pixels helps identify text information on the images.

The method’s core resides in the strategies to merge and prune the structure to create
the best set of candidates representing individual text characters. The merge step simpli-
fies the text line, grouping subtrees regions and reducing isolated components’ ambiguity.
Then the candidates’ raw pixels information is taken as features, allowing pruning ac-
cording to their shapes and textures. The training data is labeled based on the form of
the regions, such as thin, elongated, and squared, and used in an iterative classification
scheme. At each iteration of a shallow neural network, the quality of the predicted text
proposals is verified by human annotators, selecting the unambiguous predictions that
will guide a new iteration with more accurate pruning and labeling.

The method in Díaz, González, and Romero (2009) 37 has three learning steps
for classifying parasitic infection in microscopic images. The first step takes thoroughly
preprocessed images with a series of domain-specific low-level modifications, such as low-
pass filters, luminance correction, and color channel selection. The preprocessing aims to
increase the contrast between the background and the blood cells in the foreground for a
k−nearest neighborhood (kNN) binary classification model using normalized RGB values
as features.

Many cell centers are classified as backgrounds because of their non-uniform colors,
justifying the construction of the dual min/max-tree Salembier, Oliveras, and Gar-

34. Sun Lei et al. (2015). A robust approach for text detection from natural scene images.
35. Najman Laurent and Couprie Michel (2006). Building the component tree in quasi-linear time.
36. Chong Hamilton Y., Gortler Steven J., and Zickler Todd (2008). A perception-based color

space for illumination-invariant image processing.
37. Díaz Gloria, González Fabio A., and Romero Eduardo (2009). A semi-automatic method for

quantification and classification of erythrocytes infected with malaria parasites in microscopic im-
ages.
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rido (1998) hierarchies. Merging the dual regions fill holes while keeping the boundaries.
Furthermore, filtering the merged hierarchy by small area size removes small parts that are
usually a result of noise in the background. Conversely, large areas could indicate clumped
cells that the second learning step could separate. From the image created from the large
area selection on the tree, they use the expectation-maximization clustering strategy 38 to
separate better candidates. The clustering method takes a template estimated ideal re-
gion, iteratively matching regions for a better correlation between the input shape and the
template. Each iteration separates the found matches until the remaining area is smaller
than a predetermined value. The final learning step takes all the suitable region features
(color, shape, intensity, texture, and relational features) and trains a SVM to classify the
cells. They also experimented with a multilayer perceptron model, but the SVM gave the
best results.

In summary, the strategies in this category require a complete understanding of how
the media’s low-level components interact in the space and how they relate to the task.
The authors model hand-engineered parameters to select subregions in the hierarchical
structure. For instance, the hierarchical structure in Serna and Marcotegui (2014) is
crucial because the known characteristics of the objects of interest could be easily filtered
on the hierarchy and prevent their removal by the morphological operators. Also, in Sun
et al. (2015), the hierarchy organizes and delineates the regions, and the learning algorithm
gives information to prune and merge the hierarchy with the help of human annotators.
Finally, in Díaz, González, and Romero (2009), the hierarchies are used as a filtering
technique to fill holes, remove irrelevant objects, and indicate tangled regions based on
the knowledge of the area size that the elements typically appear. Overall, once all these
methods identified the objects of interest for the target task, they could be described with
media features and applied to well-known learning models. Table 2.2 presents a summary
of the methods in this category.

2.2 Learning applied to hierarchies

This section comprises the strategies that use the learning step to improve the hier-
archical segmentation. The review here is less concerned with the application and more
focused on the strategy applied to the structure. The methods in this section are grouped

38. Dempster Arthur P., Laird Nan M., and Rubin Donald B. (1977). Maximum likelihood from
incomplete data via the em algorithm.
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Table 2.2: Summary of methods that use the hierarchies to assist the machine learning algorithm in
performing a task, where the regions define masks in the media for feature extraction. The
table includes information about the nature of the features.

Reference Domain Media Task Hierarchy Model Features

Serna and
Marcotegui
(2014)

urban
analysis

3D point
clouds

detection,
segmentation,
classification

quasi-flat
zones

SVM color, geometry,
neighborhood

Sun et al. (2015) image
analysis

RGB
images

text
detection

max-tree Neural
network

raw pixel data

Díaz, González,
and Romero
(2009)

medical RGB
images

classification min/max-tree kNN,
SVM,
density
clustering

color, intensity,
shape, texture,
relational

based on the strategy used to transform the hierarchies with the learning model. Namely:
(i) non-horizontal-cuts; (ii) node selection either by filtering important nodes or pruning
less significant ones; (iii) realignment; and (iv) flattening.

These strategies aim to simplify the hierarchies or create a representation more suited
to perform a task using a learning model to facilitate the process. Table 2.3 presents a
summary of the methods retrieved by the search keys. However, each category section
includes some reference methods without a learning step and strategies the authors did
not formulate as machine learning and, therefore, were not retrieved by the search.

2.2.1 Non-horizontal cuts

Non-horizontal cut strategies select multiple regions at several levels in the hierar-
chy. The selection usually involves a combinatorial search of various partitions 39 or an
optimization function on energy measures. The primary energy functional applied in hier-
archies was formulated by Mumford and Shah (1985) 40, where the energy optimization
is presented as a trade-off metric pondering data fidelity and a boundary regularization
term.

B. Ravi Kiran and Serra (2014) 41 presents a theoretical study of optimization func-

39. Cardelino Juan et al. (2013). A contrario selection of optimal partitions for image segmentation.
40. Mumford David and Shah Jayant (1985). Boundary detection by minimizing functionals.
41. Kiran B. Ravi and Serra Jean (2014). Global–local optimizations by hierarchical cuts and climb-

ing energies.
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Table 2.3: Summary of methods that use machine learning models to to simplify or improve a hierarchical
representation. The table includes only the methods retrieved by the search keys.

Reference Strategy Hierarchy Model Features

Benjamin Perret and
Collet (2015)

filtering max-tree density
clustering

Tree attributes

Wonder A. L. Alves,
C. F. Gobber, et al.
(2020)

filtering tree of shapes neural network residual, color,region
shape, tree attributes

Chenliang Xu, Whitt, and
Corso (2013)

flattening tree of shapes local energy
optimization

color, contour, or average
magnitudes

Pinto et al. (2014) flattening hierarchical
watershed

kNN graph similarity matrix

Y. Xu, Géraud, and
Najman (2016)

flattening tree of shapes local energy
optimization

color, contour, or average
magnitudes

Kurtz, Passat, et al.
(2012)

non-horizontal
cut

BPT BOW color, morphology, tree
attributes

Kurtz, Stumpf, et al.
(2014)

non-horizontal
cut

BPT BOW region decomposition

Uzunbas, Chao Chen, and
Metaxas (2016)

non-horizontal
cut

hierarchical
watershed

CRF regional, boundary

Yuhua Chen et al. (2016) realignment multiple hierarchies proposed
regressor forest

color,graph metrics, region
shape,textural

Adão, Silvio Jamil F.
Guimarães, and Jr (2020)

realignment hierarchical
watershed, hGB

neural
network, RF

color,graph metrics, region
shape,textural

tions on energy measures for non-horizontal cuts in hierarchies. They argue that there are
only two ways to obtain a unique minimal cut: limiting the number of partitions or impos-
ing constraints on the energy. They investigate energy optimization methods and their
unique optima assessing how to combine regions on energy, particularly energies com-
puted in different feature spaces. Also, they determine how the methods simplify the
combinatorial formulations and how they guarantee an optimal solution. Their work de-
fines two families of climbing energies: by addition and by supremum in optimal cuts
based on global and local constraints. Furthermore, they contrast hierarchical cuts as a
less complex and more flexible solution over non-hierarchical optimal flow graph cuts 42

and conditional random field models.

42. Boykov Yuri, Veksler Olga, and Zabih Ramin (2001). Fast approximate energy minimization
via graph cuts.
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Guigues, Cocquerez, and Men (2006) 43 interpret the energy of a partition as an
additive function of Mumford and Shah energies within its components, which simpli-
fies the combinatorial search. Koepfler, Lopez, and Morel (1994) 44 and Salembier
and Garrido (2000b) 45 also use global constraints on additive energies. Koepfler,
Lopez, and Morel (1994) builds the hierarchy by iteratively increasing the weight on
the boundary regularization term. Salembier and Garrido (2000b) presents a practical
application of these principles that streamline the optimal solution as the most accurate
image simplification for a given parameter. Soille (2008) presents an alternative to the
additive function and creates a constrained connectivity defined in terms of the supremum
of energies, and Akçay and Aksoy (2008) 46 defines a local constraint instead of global.

Another theoretical work on non-horizontal cuts and their properties is presented in
Cousty and Najman (2014) 47, where the authors establish a direct correlation between
non-horizontal cuts and morphological flood filtering in image analysis.

Kurtz, Passat, et al. (2012) 48 and the extended version in Kurtz, Stumpf, et al.
(2014) 49 proposes a cut strategy for multiresolution images relying on user-defined ex-
ample and a model that learns how to mimic the user. The core of the strategy is the
correspondence of regions in multiresolution images modeled with BPT, where the manu-
ally defined cut at one resolution could be reproduced in another related tree. In Kurtz,
Passat, et al. (2012), they model the user interaction with a BOW scheme where k-means
extract centroids characterizing the user-selected regions by color and morphological fea-
tures, and normalized histograms describe them. The subsequent interactions are auto-
matic, where they minimize the comparative distance of histograms at different levels and
create the next set of centroids for the following resolution. The extended version replaces
the features characterizing the regions by the region decomposition on the subsequent res-
olution. Therefore, the histograms model the region composition in terms of radiometric

43. Guigues Laurent, Cocquerez Jean Pierre, and Men Hervé Le (2006). Scale-sets image analysis.
44. Koepfler Georges, Lopez Christian, and Morel Jean-Michel (1994). A multiscale algorithm

for image segmentation by variational method.
45. Salembier Philippe and Garrido Luis (2000b). Connected operators based on region-tree pruning

strategies.
46. Akçay Gokhan and Aksoy Selim (2008). Automatic detection of geospatial objects using multiple

hierarchical segmentations.
47. Cousty Jean and Najman Laurent (2014). Morphological floodings and optimal cuts in hierar-

chies.
48. Kurtz Camille, Passat Nicolas, et al. (2012). Extraction of complex patterns from multiresolution

remote sensing images: A hierarchical top-down methodology.
49. Kurtz Camille, Stumpf André, et al. (2014). Hierarchical extraction of landslides from multires-

olution remotely sensed optical images.

73



Partie I, Chapter 2 – Hierarchies and machine learning

clusters. Another change from the original proposal is the insertion of domain-specific a
priori knowledge that reduces the user interactions in the cut-by-example stage.

Uzunbas, Chao Chen, and Metaxas (2016) 50 presents the segmentation task as
optimal labeling in a graph where the hierarchical trees (hierarchical watershed) model
the space of all possible segmentations. The features describing the regions are extracted
from 3D data color, volume, and boundaries. The learning step selects a non-horizontal
collection of nodes by training a conditional random field on labels indicating the segmen-
tation quality (under, proper, over-segmented -1,0,1) derived from the max score with the
ground-truth propagated with dynamic programming and restricted on hierarchical prin-
ciples. The maximum a priori prediction corresponds to the segmentation and presents
regions in multiple levels as significant. Their application is neuron segmentation, which is
a sensitive output; therefore, their method allows user correction by offering only the re-
gions of uncertainty (marginals of the graph model) to facilitate the interaction. Provided
with the user input and the model predictions, the nodes on the hierarchy are adjusted,
and the process repeats until the user is satisfied with the result.

2.2.2 Node selection

Strategies that select important nodes or remove others based on a particular impor-
tance criterion. Traditionally outside a learning framework, the selection is based on a
specific attribute, energy values, iterative mergings, or using a hierarchy to cluster an-
other 51 52. The methods presented in this section are the ones that entrust the selection
to a learning model.

Wonder A. L. Alves, C. F. Gobber, et al. (2020) 53 presents a filtering strategy
that removes undesirable regions based on the concepts of residual operators and ulti-

50. Uzunbas Mustafa Gokhan, Chen Chao, and Metaxas Dimitris (2016). An efficient conditional
random field approach for automatic and interactive neuron segmentation.

51. Perret Benjamin and Collet Christophe (2015). Connected image processing with multivariate
attributes: an unsupervised Markovian classification approach.

52. Grossiord Éloïse et al. (2020). Shaping for PET image analysis.
53. Alves Wonder A. L., Gobber Charles F., et al. (2020). Image segmentation based on ultimate

levelings: from attribute filters to machine learning strategies.
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mate levelings introduced in earlier proposals 54 55 56 57. First, the authors define residual
values as the difference between an image and a transformed image using any morpho-
logical operator such as top-hat or skeleton. Then they define an ultimate leveling as the
residual value of two consecutive morphological operations on a hierarchical scaled space,
specifically the tree of shapes. The authors then establish an equivalence between the
ultimate leveling and a pruning operation on the tree nodes, arguing that some residues
may characterize undesired regions and guide the hierarchical filtering. Most of the earlier
proposals explore recursive algorithms that propagate the residual values in the hierarchy
in a top-down approach exploring multiple region criterion and constraints strategies.

In C. Gobber, Wonder A. L. Alves, and Ronaldo F. Hashimoto (2018), they
include the Mumford-Shah energy functional optimization as a filtering criterion on the
residual regions. In the more recent publication, Wonder A. L. Alves, C. F. Gobber,
et al. (2020), they argue that some residuals are computed from undesirable areas and
should be disregarded; hence, they introduce a learning step on the framework that assists
in retrieving the desirable residues. More specifically, they propose to: (i) construct a new
hierarchy using the ultimate leveling; (ii) learn the similarity between ground-truth and
residual regions using a neural network; and (iii) filter the hierarchy combining the residual
levels and the learned similarity.

In the pipeline, first, they compute the tree of shapes from the input images. Then the
ultimate levelings prune the hierarchy and define the residual regions, where each is de-
scribed using features from residual values, color, region shape, and tree attributes. In the
learning step, the initial labels provided to the model take the maximum match between
the ground-truth classes and a measure of similarity between a residual region and the
ground-truth. In the testing phase, the regions are subjected to the network predictions,
and a threshold on the estimated value decides if a residual region is undesirable. The
final step in the pipeline defines the best residual regions as the ones with the highest
prediction values. It reconstructs the hierarchical tree taking only disjoint residual regions
that cover the entire space.

Benoît Naegel et al. (2007) presents an early attempt to learn the filtering of a com-

54. Alves Wonder Alexandre Luz, Morimitsu Alexandre, et al. (2013). Extraction of numerical
residues in families of levelings.

55. Alves Wonder Alexandre Luz and Hashimoto Ronaldo Fumio (2014). Ultimate grain filter.
56. Alves Wonder A. L., Hashimoto Ronaldo F., and Marcotegui Beatriz (2017). Ultimate level-

ings.
57. Gobber Charles, Alves Wonder A. L., and Hashimoto Ronaldo F. (2018). Ultimate leveling

based on Mumford-Shah energy functional applied to plant detection.
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ponent tree. They construct multivariate attribute vectors with features from the image
and the hierarchical structure on a selected set of nodes on the hierarchical tree. The model
is a multivariate Gaussian, learning a Mahalanobis distance that expresses the probabil-
ity that a node belongs to the desired class of nodes manually selected. Thresholding the
learned distance filters undesired nodes on the tree. Similarly, Benjamin Perret and
Collet (2015) performs a probabilistic analysis of attribute distribution on a max-tree
hierarchy without pre-selecting the nodes or manually providing the labels. Instead, the
max-tree defines a markovian probabilistic model 58 that aims to find each tree node’s most
probable hidden label, where the tree attributes at each node serve as observation values.
This distribution is then classified, unsupervised, using the expectation-maximization al-
gorithm for estimated labels. The classification results associate a value with each node
that could be thresholded for a class-oriented node selection.

2.2.3 Realignment

An alternative hierarchical simplification is performed directly in the contour map.
The strategies change the contour depths and provide a solution for the whole set of
images. The realignment strategies combine two simplification procedures into the same
framework: a scale learning step equivalent to a non-horizontal cut in the structure and
a flattening step that provides an easy-to-cut non-trivial solution for the segmentation
problem while keeping the other nested regions on different scales.

Yuhua Chen et al. (2016) 59 proposes a prediction scheme that learns the scale of
the partitions and re-aligns the structure to provide a middle section in the hierarchy
that ideally retrieves all salient objects with a single cut without internal subregions. The
scale learning step uses a proposed regressor forest that applies a dynamic optimization
function on energy levels and restricts the predictions to sustain the hierarchical principles.
To create the learning data, each region in the hierarchy with an area bigger than 50
pixels is described using media features. The regions receive a label indicating if it is
under, properly, or over-segmented. The labels are computed as an Intersection over Union
measure with the ground-truth, where negative values indicate under, positive over, and
0 is the proper segmentation. After training the regressor, the predicted scales are used
to re-align the hierarchies’ ultrametric contour maps by a local linear transformation

58. Bouman Charles A. and Shapiro Michael (1994). A multiscale random field model for Bayesian
image segmentation.

59. Chen Yuhua et al. (2016). Scale-aware alignment of hierarchical image segmentation.
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placing the learned ideal scale at the threshold of 0.5. They test their strategy on multiple
hierarchies.

Adão, Silvio Jamil F. Guimarães, and Jr (2020) 60 proposes a similar approach
experimenting with a RF and a neural network for the regression step. They also use two
different types of hierarchies hGB 61 (a hierarchical segmentation method based on graphs)
and the gPb-owt-ucmArbeláez et al. (2011). Furthermore, the authors also propose an
alternative scoring measure for label attribution that incorporates the region size in the
measure.

2.2.4 Flattening

Methods in this category flatten the hierarchy into a non-trivial segmentation.
Chenliang Xu, Whitt, and Corso (2013) 62 introduced the flattening solution for the

tree of shapes modeling supervoxels in a segmentation task. Their methods use a greedy
algorithm that provides a local optimization for the Mumford-Shah energy functional. The
optimization process gives an importance value for some attribute that favors removing
levels with weak contrast or a complex pattern. However, the order that the levels are
removed is not local and impacts other nodes on the path. They solve this problem by
sorting the level lines by the attribute importance and progressively eliminating the levels
that minimize the energy functional. The output of this process is a single segmentation
solution that no longer preserves the hierarchical principles.

The extension of this work in Y. Xu, Géraud, and Najman (2016) 63 introduces an
attribute function in the energy functional. The attribute function in this new formulation
characterizes the persistence of each shape in the hierarchy under energy minimization.
They also propose the saliency map representing the entire simplified hierarchy in a single
image where the extinction values characterize the contour strengthens. Therefore, the new
solution presents the flattened hierarchy with the semantical meaning preserved in the
contours intensities.

Pinto et al. (2014) presents a strategy that learns the distance on the hierarchical

60. Adão Milena M., Guimarães Silvio Jamil F., and Jr Zenilton K. G. Patrocínio (2020). Learning
to realign hierarchy for image segmentation.

61. Guimarães Silvio et al. (2017). Hierarchizing graph-based image segmentation algorithms relying
on region dissimilarity.

62. Xu Chenliang, Whitt Spencer, and Corso Jason J. (2013). Flattening supervoxel hierarchies by
the uniform entropy slice.

63. Xu Yongchao, Géraud Thierry, and Najman Laurent (2016). Hierarchical image simplification
and segmentation based on Mumford–Shah-salient level line selection.
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watershed, re-weighting its edges for an easier cut in the segmentation task. Their method
constructs the hierarchical trees from the input images and computes the similarity matrix
of the regions defined in the structure. The learning step uses a kNN model to learn the
distances separating regions across multiple instances. Iteratively it updates the values on
the similarity matrix to better describe the inter and intra-relations between regions. In
practical terms, the iterative distance update is a re-weight condition on the hierarchical
regions. The final segmentation is obtained with a normalized cut 64 on the re-weighted
similarity matrix.

2.3 Learning on classical Watershed

The review retrieved 28 publications with the non-hierarchical watershed 65 66 67 be-
cause the search keys included "watershed" to circumvent nomenclature inconsistencies.
For completeness, the assessment comprises these publications assessing their applications,
strategies, justification for the watershed, and the use of the machine learning models.

Medical applications

Most of the publications propose a medical application with images, with varying
sources, including: (i) histological 68 69 70, (ii) microscopic 71 72 73, (iii) cytological 74, (iv) x-ray 75,

64. Shi Jianbo and Malik J. (2000). Normalized cuts and image segmentation.
65. Meyer Fernand and Beucher Serge (1990). Morphological segmentation.
66. Bleau Andrè and Joshua Leon (2000). Watershed-based segmentation and region merging.
67. Vincent Luc and Soille Pierre (1991). Watersheds in digital spaces: an efficient algorithm based

on immersion simulations.
68. Yoon Ji-Seok et al. (2019). Automated integrated system for stained neuron detection: An end-

to-end framework with a high negative predictive rate.
69. Xie Lipeng et al. (2020). Integrating deep convolutional neural networks with marker-controlled

watershed for overlapping nuclei segmentation in histopathology images.
70. Whitney Jon et al. (2022). Quantitative nuclear histomorphometry predicts molecular subtype

and clinical outcome in medulloblastomas: preliminary findings.
71. Li Kaiyue, Ding Guangtai, and Wang Haitao (2018). L-FCN: A lightweight fully convolutional

network for biomedical semantic segmentation.
72. Chakravarthy Adithi D. et al. (2020). A thrifty annotation generation approach for semantic

segmentation of biofilms.
73. Liu Ting et al. (2013). Watershed merge forest classification for electron microscopy image stack

segmentation.
74. George Yasmeen Mourice et al. (2014). Remote computer-aided breast cancer detection and di-

agnosis system based on cytological images.
75. Demir Fatih (2021). DeepCoronet: a deep LSTM approach for automated detection of Covid-19

cases from chest X-ray images.
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(v) biofilm 76 77, and (vi) cervical 78 79. In those applications, the classical watershed seg-
ments the input image, and the boundary map is used to help isolate the regions of interest
for the target task.

Some medical applications use the watershed in higher dimensional data, such as 3D
microscopic 80, cellular culture 81, magnetic resonance imaging (MRI) 82, and CT 83 images,
or neural activity maps in 3D (spatial dimensions + sensor) 84 or 4D (spatial+signal+time) 85.
For those, the channels are: (i) independently segmented in Roy, Mazumdar, and
Chowdhury (2020); (ii) projected into the two-dimensional space in Nandy et al. (2011)
Oztan et al. (2011), and Zwettler and Backfrieder (2015); or (iii) processed sep-
arately and later combined with graph-optimizing geometrical constraints in Matejek
et al. (2019). In Whitney et al. (2022), the watershed segment the spatial dimension,
and the signal over time data localize specific regions matching the signal activity.

In all medical applications, the authors often justify using the watershed over another
segmentation method because it produces coherent regions consistent with the image
gradients or because of the lack of large annotated sets of data. Indeed, in Chakravarthy
et al. (2020) and Nandy et al. (2011), their target task is to create annotated data using
the watershed contour map as a guide. In Chakravarthy et al. (2020), they preprocess
and binarize the input images. The binarized gradient image works as the marker for
the watershed. The watershed contours create binary edge/non-edge labels that train
a convolutional network that produces segmentation, the U-net 86. Experts’ annotations

76. Chakravarthy Adithi D. et al. (2020). A thrifty annotation generation approach for semantic
segmentation of biofilms.

77. Molina Angel et al. (2021). Automatic identification of malaria and other red blood cell inclusions
using convolutional neural networks.

78. Alush Amir, Greenspan Hayit, and Goldberger Jacob (2009). Lesion detection and segmen-
tation in uterine cervix images using an ARC-level MRF.

79. Alush Amir, Greenspan Hayit, and Goldberger Jacob (2010). Automated and interactive
lesion detection and segmentation in uterine cervix images.

80. Nandy Kaustav et al. (2011). Supervised learning framework for screening nuclei in tissue sections.
81. Oztan Basak et al. (2011). Classification of breast cancer grades through quantitative characteri-

zation of ductal structure morphology in three-dimensional cultures.
82. Zwettler Gerald and Backfrieder Werner (2015). Evolution strategy classification utilizing

meta features and domain-specific statistical a priori models for fully-automated and entire seg-
mentation of medical datasets in 3D radiology.

83. Roy Rukhmini, Mazumdar Suparna, and Chowdhury Ananda S. (2020). MDL-IWS: multi-view
deep learning with iterative watershed for pulmonary fissure segmentation.

84. Matejek Brian et al. (2019). Biologically-constrained graphs for global connectomics reconstruc-
tion.

85. Diego Ferran et al. (2013). Automated identification of neuronal activity from calcium imaging
by sparse dictionary learning.

86. Ronneberger Olaf, Fischer Philipp, and Brox Thomas (2015). U-net: convolutional networks
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later refine the segmentation output. After meticulous preprocessing, in Nandy et al.
(2011), they compute the watershed for the images, use k-means to create clusters on
the image intensity values, and reject the watershed regions intersecting with the lowest
intensity clusters. The remaining areas are then iteratively merged using differences in
the magnitudes to create new sets of markers. The final regions are then described with
morphological and textural features and classified using a neural network with a single
hidden layer. The manually annotated regions portray their quality as well or poorly
segmented. The authors advocate for their strategy to accelerate manual annotations of
unlabeled data.

Another common claim among all methods is the problem with over-segmentation. To
deal with this problem, Alush, Greenspan, and Goldberger (2009) and Alush,
Greenspan, and Goldberger (2010) only take the contours overlapping with the
ground-truth as paths to extract features of the pixel’s magnitudes and create two dic-
tionaries of edge/non-edge using principal component analysis (PCA) and k-means in a
BOW framework. They normalize the BOW histograms as probabilities distribution for a
belief-propagation scheme taking the regions on the watershed as Markov Random Fields
(MRF) for the final segmentation. Some strategies rely on specialist markers before the
segmentation, such as in Whitney et al. (2022), or depend on domain specif prepro-
cessing, such as the green channel filtering in Molina et al. (2021). Demir (2021) only
computes the Sobel gradient for the input but uses a variation of the classical water-
shed that associates a minimizing function with the original markers to recalculate the
boundaries.

More commonly, the over-segmentation issue is dealt with a series of preprocessing
steps, such as the denoising, color normalization, and median signal filter in Yoon et al.
(2019) to crop images patches on the watershed regions to be used as input for a convolu-
tional neural network (CNN). Similarly, in George et al. (2014), they perform histogram
and contrast equalization, gradient computation, high-signal filter, and pre-clustering to
the input image to reduce over-segmentation and isolate the regions to be described by
their shape and texture for a SVM classification of breast cancer cells. In Zwettler
and Backfrieder (2015), there is no preprocessing. Instead, they use an evolutionary
classification model on all watershed regions described as similarity histograms of local
and regional features.

for biomedical image segmentation.
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Aerial analysis

The second leading domain is aerial analysis, where usually the watershed mask regions
on aerial images for description. The justification for using watershed regions is that it
is a fast discrete operation with reliable results to reduce complexity. They argue that it
is simpler to process regions instead of individual pixels, particularly for high-resolution
and hyperspectral images as in Sébastien Derivaux et al. (2007) 87 and S. Derivaux
et al. (2010) 88. It also facilitates processing signal data such as laser imaging, detection,
and ranging (LiDAR) 89 and synthetic aperture radar (SAR) 90.

Like in medical applications, aerial analysis methods also require preprocessing the
images to reduce over-segmentations. However, the strategies are much more domain
specific. For instance, in Cretu and Payeur (2013) 91, among other procedures, they
filter the green channel in the aerial images because they are searching for buildings, and
the green color is typically associated with trees and vegetation. They also remove shadow
areas to avoid mixing their contour with the buildings. After creating the watershed, they
further process the segmented images by applying morphological operators to filter small
areas. The remaining regions are described and classified using the SVM model.

The proposal in Tao Liu, Im, and Quackenbush (2015) is specifically conceived to
improve the watershed contours and diminish the over-segmentation problem. To improve
the contours, they propose a recursive step to drag the initial borders closer to the de-
lineated object by measuring and thresholding the distance from the region’s center and
the borders, pondering the height information in the sensor data and the neighboring
pixels as reference parameters. To reduce over-segmentation, they perform a wavelet de-
composition of the vertical distribution of LiDAR points and train the Random Forest
on labels indicating if a region is inside a tree region or separates two tree regions. The
areas classified as inside the tree should are merged. The labels are manually attributed
by sampling multiple regions at multiple scales and used as references. The classification
is recursive until there is no change in the regions.

87. Derivaux Sébastien et al. (2007). On machine learning in watershed segmentation.
88. Derivaux S. et al. (2010). Supervised image segmentation using watershed transform, fuzzy clas-

sification and evolutionary computation. 15.
89. Liu Tao, Im Jungho, and Quackenbush Lindi J. (2015). A novel transferable individual tree

crown delineation model based on Fishing Net Dragging and boundary classification.
90. Mao Xueyue, Xiao Xiao, and Lu Yilong (2022). PolSAR data-based land cover classification

using dual-channel watershed region-merging segmentation and bagging-ELM.
91. Cretu Ana-Maria and Payeur Pierre (2013). Building detection in aerial images based on wa-

tershed and visual attention feature descriptors.
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In Sébastien Derivaux et al. (2007) and S. Derivaux et al. (2010), they also propose
a strategy to reduce over-segmentation by inserting two learning steps in the watershed
algorithm. The first one uses fuzzy classification to create probability maps learned from
feature vectors extracted from the input images. The watershed is then computed in the
probability map. The second learning step added is a supervised evolutionary segmen-
tation on the watershed parameters: threshold, catchment basins, the euclidean distance
between two regions, and a region membership flag. The evaluation criterion for the genetic
algorithm optimizes criterion representing over and under-segmentation. In txsm08 92, they
also propose an evolutionary algorithm strategy, but they provide a co-occurrence matrix
of magnitude levels and a wavelet decomposition as features. The evolutionary function
learns the cluster label of the watershed regions defined for the images. Their proposal is
a generic approach with one application in remote sensing and two others in artificial and
natural images.

Lopez-Fandino et al. (2018) 93 proposes a distinctive approach among the reviewed,
where the authors present a strategy to process multi-temporal hyperspectral images for
change detection. They use autoencoders to extract features for all channels, reducing the
dimension of the spectral channels in the process. In parallel, they create the watershed
for individual spatial dimensions, the grayscale space averaging the magnitudes inside a
region. Then they take consecutive images in the temporal axis, marking the pixels that
changed in time and removing the non-changed pixels from the image. The final classifi-
cation takes only the masked pixels represented by the autoencoders’ learned features and
applies them to a SVM model. Without watershed mapping and masking, this type of
processing would be infeasible due to the dimensions of the images and spectral channels.

Other applications

Cheng Chen and G. Fan (2010) 94 combines localization and segmentation on the same
framework. They argue that a correct location will encourage accurate shape-constrained
segmentation. The watershed creates segmentations. Each region is taken individually to
be matched with the contour priors for optimization. New regions are recursively proposed

92. Jiao Licheng et al. (2010). Natural and remote sensing image segmentation using memetic com-
puting.

93. Lopez-Fandino Javier et al. (2018). Stacked autoencoders for multiclass change detection in
hyperspectral images.

94. Chen Cheng and Fan Guoliang (2010). Coupled region-edge shape priors for simultaneous local-
ization and figure-ground segmentation.
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or merged based on the contours inside a sliding window.
Distinctly, Levner and H. Zhang (2007) 95 they propose to train a linear model on

pixel features to create a probability map used as image input for the watershed and
experimented with different threshold parameters on the maps to propose other markers.
However, the markers often did not lie within the object boundary, and multiple markers
were provided for the same region. Their final approach was to use the morphological
erosion of the ground-truth to create the set of markers.

Other applications are mostly segmentation proposals applied for RGB images 96 97 98.
The input in Börold et al. (2020) 99 is depth images. They rely upon extensive signal
and image preprocessing to level all the information in the same space (depth, space, and
gaussian distribution). Once adequately prepared, they proceed with the usual: create the
watershed segmentation, crop patches in the image, and classify the data, in their case
using a pre-trained convolutional adapted to count components in an industrial context.

Table 2.4 presents a summary of all methods reviewed in this section.

Table 2.4: Summary of methods that use the non-hierarchical watershed to assist the machine learning
algorithm in performing a task, or methods where the machine learning supports improving the
watershed contours.

Reference Domain Media Task Model

Alush, Greenspan, and
Goldberger (2009)

medical cervical images segmentation BOW, MRF

Alush, Greenspan, and
Goldberger (2010)

medical cervical images segmentation BOW, MRF

Nandy et al. (2011) medical microscopy 3D Annotation Neural networks

Oztan et al. (2011) medical celular culture 3D classification SVM

Diego et al. (2013) medical neural activity 4D segmentation Sparse coding

Ting Liu et al. (2013) medical microscopy segmentation RF

George et al. (2014) medical cytological classification SVM

Zwettler and Backfrieder
(2015)

medical MRI 3D segmentation Evolutionary

95. Levner Ilya and Zhang Hong (2007). Classification-driven watershed segmentation.
96. Xin Hai et al. (2011). Human head-shoulder segmentation.
97. Nagoda Nadeesha and Ranathunga Lochandaka (2018). Rice sample segmentation and classi-

fication using image processing and support vector machine.
98. Ma Wenping et al. (2012). Image segmentation based on a hybrid Immune Memetic Algorithm.
99. Börold Axel et al. (2020). Deep learning-based object recognition for counting car components to

support handling and packing processes in automotive supply chains.
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Reference Domain Media Task Model

K. Li, Ding, and H. Wang (2018) medical microscopy semantic
segmentation

Proposed

Yoon et al. (2019) medical histological detection CNN

Matejek et al. (2019) medical neural activity 3D segmentation Greedy opt.

Chakravarthy et al. (2020) medical microscopy,
biofilms

annotation U-net

Roy, Mazumdar, and Chowdhury
(2020)

medical CT 3D segmentation CNN

L. Xie et al. (2020) medical histological segmentation CNN

Demir (2021) medical X-ray classification CNN

Molina et al. (2021) medical blood smear classification CNN

Whitney et al. (2022) medical histological classification RF

Sébastien Derivaux et al. (2007) aerial high-resolution,
hyperspectral

semantic
segmentation

Fuzzy,
evolutionary

S. Derivaux et al. (2010) aerial high-resolution,
hyperspectral

semantic
segmentation

Fuzzy,
evolutionary

Jiao et al. (2010) aerial aerial images segmentation evolutionary

Cretu and Payeur (2013) aerial aerial images classification SVM

Tao Liu, Im, and Quackenbush
(2015)

aerial LiDAR segmentation RF

Lopez-Fandino et al. (2018) aerial multitemporal
hyperspectral

change detection,
classification

Autoencoders,
SVM

X. Mao, Xiao, and Yilong Lu
(2022)

aerial SAR classification Neural net.
bagging

Cheng Chen and G. Fan (2010) image RGB segmentation,
localization

Proposed

Xin et al. (2011) image RGB segmentation Adaboost

Nagoda and Ranathunga (2018) agriculture RGB segmentation,
classification

SVM

Börold et al. (2020) industrial 3D images classification,
counting

CNN

Levner and H. Zhang (2007) learn
markers

granulometry segmentation Linear model

W. Ma et al. (2012) learning RGB, SAR segmentation Proposed
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2.4 Learning algorithms inspired by watershed
The final section in this review regards three retrieved publications that present a

learning scheme inspired by the watershed algorithm.
Challa et al. (2022) propose two methods with a watershed-inspired classifier. The

first one 100 extends the watershed algorithm for edge-weighted graphs to a semi-supervised
classification scheme. In their proposal, the markers represent known labeled data points,
and the algorithm partitions the remaining vertices by their sorted edge weights in the
same fashion as in the watershed. Their study shows the properties of this classifier and
establishes a correlation between a traditional classifier maximum margin principle (such
as in the SVM) with the maximal margin partition in their method. Furthermore, they
also propose an ensemble scheme to deal with redundant features by taking subsamples of
data and markers to construct multiple classifiers and compute a weighted average taken
as final labels.

They present the second method 101 as an alternative to the softmax layer in convolu-
tional networks. In this approach, they propose a triplet loss function to train the neural
network that induces a trainable parameter in the first watershed classifier and enforces
order distances. More specifically, the neural network produces a set of features taken
alongside some labeled markers for the watershed classifier label attribution. The triplet
loss function collects each labeled entry and compares it with positive and negative input,
minimizing the distance for the former and maximizing for the latter. The network uses
the triplet loss as the cost, and a new classifier is computed at each epoch. The authors
report superior performances with experiments in multiple hyperspectral image datasets,
compared with the state-of-the-art neural network architectures and different classifiers
for the triplet function.

In Bai and Urtasun (2017) 102, they incorporate the watershed strategy in a convolu-
tional neural network architecture for semantic segmentation. They propose a two-stage
network. In the first stage, they modified a VGG16 network 103 to avoid spatial reduc-
tion and keep the input’s dimensions. It takes the input images filtered to keep only the
relevant pixels regarding the segmentation ground-truth on the color channels and in-
corporates the ground-truth as an additional channel. The VGG16 learns the direction

100. Challa Aditya et al. (2019). Watersheds for semi-supervised classification.
101. Challa Aditya et al. (2022). Triplet-watershed for hyperspectral image classification.
102. Bai Min and Urtasun Raquel (2017). Deep watershed transform for instance segmentation.
103. Simonyan Karen and Zisserman Andrew (2015). Very deep convolutional networks for large-scale

image recognition.
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to the nearest border for each image pixel by estimating the direction of descent of the
energy. Occluded objects will have opposing directions, which improves the distinction of
different elements in the image.

The second stage is a generic convolutional network module inspired by the watershed
algorithm that learns to map the directions to energy values. Instead of gray levels, the
module uses the learned energy for topology. The first stage produces a two-channel vector
with the image resolution size, while the second creates a bin bucket vector representing
possible energy levels in pixel distance. In the bin bucket, bin 0 indicates the background
and very close pixels (2-pixel distance), and higher-numbered bins correspond to regions in
the object’s interior. The second stage learning function attributes the bin by maximizing
the energy level near zero to facilitate a cut that gives different classes at different bins. The
object instances are represented as energy basins followed by cuts into a single energy level.
In their formulation, bin 1 gives small objects such as people, bicycles, and motorcycles,
and bins 2 to 4 give cars, buses, trains, and so forth. They evaluated their proposal in
the Cityscapes dataset 104, and their results were more than doubled the state-of-the-art
when published and remain relevant in multiple class categories.

2.5 Review discussion
The review found that hierarchies assisting the machine learning algorithms in per-

forming a task define regions delimiting areas for feature extraction or represent masks
applied on the media. Almost all methods rely on media features for the learning step
and often require reducing the size of the hierarchical representations, either by filtering,
compression, or hand-picked samples. The strategies in this category require a complete
understanding of how the media’s low-level components interact in the space and how
they relate to the task.

Unsurprisingly the predominant media is images, and most applications are classifica-
tion, segmentation, or detection. There are many domains, but the most dominant is the
aerial and medical analysis and generic image processing. Regarding the models, Random
Forest, SVM, and neural networks are often the models of choice for their robustness and
generalization capabilities.

Among the methods using machine learning applied in the hierarchical structure, the
typical approach is the energy optimization strategy to identify regions of interest inside

104. Cordts Marius et al. (2016). The cityscapes dataset for semantic urban scene understanding.
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the hierarchical structure. Another common technique is to transfer the learning target
to a parallel task that induces a response on the hierarchical nodes. Most of the methods
present complex solutions or combinatorial analysis. Learning the hierarchical structure
remains an active open research topic.

The majority of retrieved results in the review are for the non-hierarchical watershed.
It is prevalent among medical applications that rely on coherent and consistent regions. A
widespread problem among all methods using the classical watershed is over-segmentation.
Many strategies rely on thorough preprocessing for successful applications, while others
propose learning techniques to merge some regions or select areas of interest.

Finally, one unexpected result of the search is learning models inspired by the water-
shed algorithm that presents promising results for inference in multiple tasks.
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Chapter 3

GRAPHS, MEDIA, AND MACHINE

LEARNING

Graphs are structures used to represent objects, and the primary concern in graph
theory is how these objects are interconnected. They can depict many data and carry
information about the objects in their components, including from different domains,
such as numerical, textual, and logical. All deliberations in this work are centered on
graph theory as they could provide generalization tools for: (i) the hierarchical structures
depicted in a tree structure; (ii) the multimedia data; and (iii) a media-independent
learning framework.

This chapter presents a literature review of machine learning on graphs, exploring the
motivations, strategy, and fundamental issues (Section 3.1). To formulate the pertinence
and identify the limitations, it provides a systematic review of deep learning on graphs,
concentrating on the multimedia processing perspective (Section 3.1.2). At this chapter’s
end are a brief discussion and some final considerations that advocate for the framework
choices (Section 3.2).

3.1 Review learning on graphs
Machine learning on graphs is a topic of great interest due to: (i) its autonomy—once

you have your learning system operating in terms of vertices and edges, the data’s source
becomes virtually irrelevant; (ii) the multiple possibilities of applications; and (iii) the
capacity to represent multivariate information.

However, employing graphs to known learning frameworks presents a few challenges,
that is to say: (i) the size, particularly for graphs representing digital media, due to the
original media dimension (often large) combined with dense adjacency relation and all
the additional information stored on vertices and edges; and (ii) the graph’s arbitrary
structure—generally not well-defined beginning and end, two connected vertices are not
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necessarily close, multiple possible paths—where machine learning algorithms usually ex-
pect systematic inputs.

The size issue demands large amounts of computational time and resources. Usually,
researchers approach this problem by working on subgraphs, pairwise comparisons, and
compact representations. Or even by choosing a machine learning method suited to oper-
ate in high-dimensional feature space. Yet, each of these solutions presents its own set of
issues.

As for the arbitrary structure issue, depending on the graph’s size, working on the
adjacency matrix can be a desirable solution, but it is rarely an option when working
with multimedia. There are strategies to transform the graph properties into vectorial
representations, which may result in information loss from constraining the graph’s struc-
ture and requires careful consideration. It requires selective parsing and must account for
the graph type, the task it is trying to solve, and the proximity between the graph and
the original data.

This section reviews the leading machine learning strategies that deal with graphs,
including their strengths and limitations. The goal is to assess the recent approaches,
their proposals to adapt the methods for media processing tasks, and the connections
between what is learned and what is represented on the graphs. More precisely, it will
discuss: (i) graph embedding, as methods dedicated to creating vectorial representations of
graphs (Section 3.1.1); (ii) deep learning on graphs with a systematic review of applications
on multimedia data (Section 3.1.2); and (iii) random forests on graphs, a fast learning
method adapted to work with high-dimensional data (Section 3.1.3).

3.1.1 Graph embedding

In machine learning, graph embedding methods aim to codify graph components into
a vectorial representation as a preprocessing step in a pipeline. The goal is to preserve the
most relevant properties of the graph without losing too much information on the process.
Many researchers resort to graph embeddings, considering that available machine learning
methods on graphs are limited. At the same time, they are widely available in vectorial
space, where operations are more straightforward and faster.

An ideal embedding method would keep all the relevant information, such as the
topology, the modeled relationships, and essential features. But defining and finding this
information is not always trivial. There is a general agreement that longer embeddings
preserve relatively more information, but they can increase the embedding time and create
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a high-dimensional feature space.
There are three main categories of strategies for graph embedding methods:

1. Matrix factorization: Algebraic models. Main methods: Locally Linear Embed-
ding (LLE) 1, Laplacian EigenMaps strategy 2 and Generalization of High-Order
Proximity (HOPE) 3.

2. Random walk: Probabilistic strategies. Main methods: Deep Walk 4 and Node2Vec 5.

3. Deep approaches: multi-layered neural networks. Main method: Structural Deep
Network Embedding (SDNE) 6.

The matrix factorization category incorporates algebraic methods filtering with arrays
of values or functions the graphs represented as adjacency matrices. They use a series of
decomposition matrix operations to project the response into a linear representation. In
LLE, for instance, matrix row vectors are projected to the k-near neighbors and then re-
constructed back to the original vectors. The final representation includes the projections
that best reconstruct the original matrix. The Laplacian EigenMaps strategy adapts the
Laplace-Beltrami operator for manifold, in which linear projections aim to preserve local
information and suppress outliers. The HOPE algorithm is proposed for large graphs, aim-
ing to maintain high-order proximities using single-value decomposition as a generalized
eigenvalue problem, with incremental perturbation of the values to capture the dynamics
of the graph. These models have a solid theoretical base and produce meaningful repre-
sentations, but they are very computationally expensive for large graphs 7.

In the random walk category, probabilistic methods aim to identify similarities in
a path within the graph using random node sampling. The word2vec strategy 8 is the
inspiration for this category, which transforms word sentences into embedded vectors by
applying the skip-gram model—a one-hidden-layer neural network operating in a fake

1. Roweis Sam T. and Saul Lawrence K. (2000). Nonlinear dimensionality reduction by locally
linear embedding.

2. Belkin Mikhail and Niyogi Partha (2001). Laplacian eigenmaps and spectral techniques for
embedding and clustering.

3. Ou Mingdong et al. (2016). Asymmetric transitivity preserving graph embedding.
4. Perozzi Bryan, Al-Rfou Rami, and Skiena Steven (2014). Deepwalk: online learning of social

representations.
5. Grover Aditya and Leskovec Jure (2016). Node2vec: scalable feature learning for networks.
6. Wang Daixin, Cui Peng, and Zhu Wenwu (2016). Structural deep network embedding.
7. Makarov Ilya et al. (2021). Survey on graph embeddings and their applications to machine learn-

ing problems on graphs.
8. Goldberg Yoav and Levy Omer (2014). Word2vec explained: deriving Mikolov et al.’s negative-

sampling word-embedding method.
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task: given a word, the skip-gram model would try to predict its neighboring words.
Objectively, the word2vec framework is not interested in the predictions of the skip-gram;
it just wants to learn the weights of the hidden layer, reasoning that similar words should
have similar values. Deep Walk uses random walks to produce embeddings by sampling
the graph with random walks coded as one-hot vector input for training on skip-gram
and the embedded output is the hidden layer weights. Node2vec is a similar method, but
with a biased random walk that could exploit the paths in-depth and broad and better
infer the graph structure. Because of their procedures, the methods in the random walk
category are less resource intensive than the matrix factorization, and they usually have
an excellent capability to identify the graph structure but fail to incorporate the graph
features in the final representation.

In the deep approach category, there is the structural deep network embedding (SDNE)
which has two autoencoders with shared weights. The embedding is the distance of weights
calculated for every single node on the graph and measured for all pairs of connected nodes.
SDNE is highlighted because it is explicitly a graph embedding method. Still, many deep
learning networks for graphs are a graph embedding method since the loss functions
could be used to penalize dissimilarities and transmute the data to a set of features
extracted from the network weights. The deep approaches usually produce meaningful sets
of features representing the graph features. Still, their algorithms impose many restrictions
on the input form and are memory intensive for large graphs.

3.1.2 Deep learning on graphs

Machine learning on graphs is in concert with the dominance of deep learning methods
proposals in recent years 9. Since the original proposal of the graph neural network in
Scarselli et al. (2009) 10 and Micheli (2009) 11, there has been a fast-growing number
of methods with end-to-end networks for graphs. Many now-common mechanisms such as
convolution, attention, and recursion keep up the architectures for graphs with the trend
advances of general convolutional networks. There are a multitude of application of deep
networks operating on graphs, particularly for solving tasks in complex network analysis,
natural language processing, and chemistry design.

Recently these methods have been generalized for media problems, specially for spatio-

9. Bacciu Davide et al. (2020). A gentle introduction to deep learning for graphs.
10. Scarselli F. et al. (2009). The graph neural network model. 1.
11. Micheli A. (2009). Neural network for graphs: a contextual constructive approach. 3.
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temporal modeling. This section presents a systematic review on multimedia processing
in deep learning to provide clues on how authors model multimedia data as graphs and
how they apply them to deep graph networks.

A search on the terms graph neural or graph networks combined with the terms im-
age, video and multimedia within the period of 2013 to 2021 from the databases IEEE,
ACM and Science Direct retrieved 162 publications in total, of which 97 were excluded
due to: (i) methods targeting undesired media types (26 publications); (ii) model not
targeting graphs (29 publications); (iii) a general application strategy (34 publications);
and (iv) presentation of survey compilation (8 publications).

The 65 publications reviewed, the methods are grouped based on the input media,
namely: (i) videos, combining proposals for traditional videos, sequence of sensor and
skeleton frames, multi-video data, and video recommendation systems; and (ii) images,
combining proposals for point cloud information, aerial images, images with red, green,
blue color channels (RGB) and their variant with an additional depth channel (RGBD).
Then six identified categories for the reviewed publications based on how the authors
incorporate the graphs into the task they are trying to solve:

1. Traditional tasks (16%): Media represented as graphs in well-known tasks.

2. Multi-modal association (12%): Graphs used to join data from different domains.

3. Higher dimensions (10%): Graphs used to incorporate an additional dimension.

4. Enhanced tasks (26%): Graphs to expand the task concept to a more complex goal.

5. Semantic tasks (28%): Graphs to perform tasks with semantic signification.

6. Data augmentation (8%): Graphs to expand datasets with few labels or images.

Regarding the network architectures, proposals are applications of known graph net-
works, namely the original Graph Neural Network in Scarselli et al. (2009) and its
variations as Gated Graph Neural Network 12, and Graph Convolutional Networks 13 14 15

as variations from Micheli (2009). Some researchers propose variations of these mod-

12. Li Yujia et al. (2016). Gated graph sequence neural networks.
13. Bruna Joan et al. (2014). Spectral networks and locally connected networks on graphs.
14. Niepert Mathias, Ahmed Mohamed, and Kutzkov Konstantin (2016). Learning convolutional

neural networks for graphs.
15. Atwood James and Towsley Don (2016). Diffusion-convolutional neural networks.
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els 16 17 18, while others explore novel methods 19, other architectures such as autoencoders 20

and recursive messaging passing 21, and even embedding 22 23 24 applied to traditional deep
methods.

The following sections briefly discuss each category that resulted from the review,
presenting a summary of the methods by their media and task.

Traditional tasks

This category encapsulates proposals for well-known tasks in multimedia processing,
such as classification, recognition, and segmentation. By media and task, they could be
outlined them as follows:

Videos: methods aim to solve the problem of human action recognition and classifi-
cation, in which: (i) skeleton data for action recognition have the joints represented
as vertices and connecting bone structures as edges 25 26 27; and (ii) feature extraction
on the video frame sequence through the graph network for classification 28.

Images: methods use a cluster of pixels, superpixels, or regions of interest of the
images represented as vertices. Then these graphs are fed into a graph network
for vertice classification or are embedded for structural change comparison. More
specifically: (i) saliency detection: superpixels are pooled together as nodes, and
the edge information separates the background and the foreground 29; (ii) disease

16. Qi Xiaojuan et al. (2017). 3D graph neural networks for RGBD semantic segmentation.
17. Acuna David et al. (2018). Efficient interactive annotation of segmentation datasets with polygon-

RNN++.
18. Li Zongmin et al. (2019). Graph attention neural networks for point cloud recognition.
19. Chen Siheng et al. (2019). PCT: large-scale 3D point cloud representations via graph inception

networks with applications to autonomous driving.
20. Gidaris Spyros and Komodakis Nikos (2019). Generating classification weights with GNN de-

noising autoencoders for few-shot learning.
21. Li Wanhua et al. (2020). Graph-based kinship reasoning network.
22. Huang Jiashuang et al. (2020). A novel node-level structure embedding and alignment represen-

tation of structural networks for brain disease analysis.
23. Herzig Roei et al. (2019). Spatio-temporal action graph networks.
24. Wu Le et al. (2020). Learning to transfer graph embeddings for inductive graph based recommen-

dation.
25. Chen Yuxin et al. (2020). Graph convolutional network with structure pooling and joint-wise

channel attention for action recognition.
26. Liu Jinde et al. (2020). Kinematic skeleton graph augmented network for human parsing.
27. Si Chenyang et al. (2020). Skeleton-based action recognition with hierarchical spatial reasoning and

temporal stack learning network.
28. Chen Da et al. (2020). Hierarchical sequence representation with graph network.
29. Ji Wei et al. (2020). Context-aware graph label propagation network for saliency detection.
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prediction: extracts regions of interest in images (brain, eyes), cluster information
represented as vertices, embed the graph and compare structural change or clas-
sify vectors 30 31; (iii) object recognition: volume in images represented as trees to
find optimal subgraphs for the task 32; (iv) image captioning: implicitly model the
relationship among regions of interest 33 34; and (v) image recognition: propose hy-
pergraph labels on pixel-level for knowledge graph classification 35.

Most methods in this category use graphs to enrich the representation with connec-
tions between different media elements, guide networks’ attention, and structure irregular
information like in superpixels. Their goal is to improve the performance on the task,
but it usually requires prior knowledge of the data to model the graph connections. This
modeling is not always evident, as pointed out by Yuxin Chen et al. (2020) and Si et al.
(2020). Also, inserting the graph information into the learning processes adds new chal-
lenges, such as regularization in Ji et al. (2020), and measures strong responses to minor
structural changes mentioned in J. Huang et al. (2020).

Multi-modal association

Methods that use the graph structure to combine information from multiple domains
besides the original media, such as text, sounds, or contextual attributes. By media and
task, they could be outlined them as follows:

Videos: all studied proposals targeted video recommendation systems, which con-
sider the interactions between users and items and the item contents from various

30. Huang Jiashuang et al. (2020). A novel node-level structure embedding and alignment represen-
tation of structural networks for brain disease analysis.

31. Sakaguchi Aiki, Wu Renjie, and Kamata Sei-ichiro (2019). Fundus image classification for
diabetic retinopathy using disease severity grading.

32. Selvan Raghavendra et al. (2020). Graph refinement based airway extraction using mean-field
networks and graph neural networks.

33. Wang Junbo et al. (2020). Learning visual relationship and context-aware attention for image
captioning.

34. Fu Sichao, Yang Xinghao, and Liu Weifeng (2018). The comparison of different graph convolu-
tional neural networks for image recognition.

35. Shi Lei et al. (2019). Skeleton-based action recognition with directed graph neural networks.
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modalities (e.g.,visual, acoustic, and textual) 36 37 38 39.

Images: authors propose to use graphs to represent different domains of information
on vertices and use the edges to model the proximity between them by quantifica-
tion or messaging passing between interactions. Specifically: (i) object matching:
compatibility between two objects based on their visual features, as well as their
contexts (social attitudes, time, and place) 40; (ii) image captioning: uses graphs to
formulate more complex, non-sequential dependencies among proposals of image re-
gions and phrases 41; (iii) disease prediction: vertices represent patients or healthy
controls accompanied by a set of features, while the graph edges incorporate asso-
ciations between subjects containing imaging and non-imaging information 42; and
(iv) object tagging: formulate item tagging as a link prediction problem between
item vertices and tag vertices. 43.

Contents such as pixels of an image and user’s preferences or video sequences and
interactions are different in their form and semantic meaning. Traditional ways to codify
high-level information (such as interests, preferences, and interactions) as sequences of
words or values ignore semantics and the relationship to the original data, as pointed
out by Jinguang Wang et al. (2020). Therefore, the graphs in this category are vital
in connecting heterogeneous information that can be used and interpreted in a learning
framework.

36. Wang Jinguang et al. (2020). Multimodal graph convolutional networks for high quality content
recognition.

37. Wei Yinwei et al. (2019). MMGCN: Multi-modal graph convolution network for personalized rec-
ommendation of micro-video.

38. Gong Jibing et al. (2020). Attentional graph convolutional networks for knowledge concept rec-
ommendation in MOOCs in a heterogeneous view.

39. Wu Le et al. (2020). Learning to transfer graph embeddings for inductive graph based recommen-
dation.

40. Cucurull Guillem, Taslakian Perouz, and Vazquez David (2019). Context-aware visual com-
patibility prediction.

41. Bajaj Mohit, Wang Lanjun, and Sigal Leonid (2019). G3raphGround: graph-based language
grounding.

42. Parisot Sarah et al. (2018). Disease prediction using graph convolutional networks: application
to autism spectrum disorder and Alzheimer’s disease.

43. Mao Kelong et al. (2020). Item tagging for information retrieval: a tripartite graph neural network
based approach.
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Higher dimensions

In this category, the methods that use the graphs to incorporate an additional dimen-
sion to the conventional data to solve an enhanced task on the traditional formulation.
they could be outlined them as follows:

Videos: graphs combine features extracted from multiple frames in different camera
footage or different videos for the tasks of: (i) cross-view fusion 44, in which frame
descriptions from multi-view cameras are aggregated and updated through a graph
network; and (ii) multi-video summarization 45, in which a graph network measures
the importance and relevance of each video shot in its video and the whole video
collection.

Images: graphs combine image features on the pixel level for geometric positioning
in the global scenario. More specifically, for: (i) RGBD semantic segmentation: each
node in the graph corresponds to a set of points on the depth dimension and is
associated with features extracted from 2D images 46; (ii) point cloud recognition:
3D space coded into voxels and graph networks to represent 3D points’ position for
each voxel 47 48 49.

Overall, the graphs in this category gather multiple points in different spaces in an
ordered manner. The networks can measure and refine affinities between the components
through the connections modeled in the graphs. Connections that are otherwise ignored
or subjected to discretization or merging errors, as pointed out by He, Q. Liu, and Y.
Yang (2020) and S. Chen et al. (2019).

Enhanced tasks

The methods in this category use graphs to take the concepts associated with a tra-
ditional task and expand them into a more complex goal through modeling connections.

44. He Xin, Liu Qiong, and Yang You (2020). MV-GNN: multi-view graph neural network for com-
pression artifacts reduction.

45. Wu Jiaxin, Zhong Sheng-hua, and Liu Yan (2020). Dynamic graph convolutional network for
multi-video summarization.

46. Qi Xiaojuan et al. (2017). 3D graph neural networks for RGBD semantic segmentation.
47. Bouritsas Giorgos et al. (2019). Neural 3D morphable models: spiral convolutional networks for

3D shape representation learning and generation.
48. Li Zongmin et al. (2019). Graph attention neural networks for point cloud recognition.
49. Chen Siheng et al. (2019). PCT: large-scale 3D point cloud representations via graph inception

networks with applications to autonomous driving.
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For instance, instead of just recognizing a person in a scene, one could identify them every
time they re-appear in another location. Alternatively, train a network for classification
and expand the inference for classes never seen. By media and task, they could be outlined
them as follows:

Videos: (i) multiple object tracking and action recognition: data association prob-
lems enhance their models with the graph relationship information between numer-
ous objects 50 51 52; (ii) zero/few-shot learning: classification task to unseen objects or
object co-segmentation task uses the relationship between objects or regions repre-
sented as graphs to propagate information 53 54 55; and (iii) person re-identification:
person re-identification: local features and iterative feature affinity connections to
construct graphs used to identify a person and locate its reappearance 56.

Images: (i) zero/few-shot learning and change detection: classification to unseen
image classes, correlating images features or clusters to iteratively updates edges
weights for final prediction 57 58 59; (ii) feature characterization and matching: hand-engi-
neered graph representation from evident visual structure to find patterns or to
transform the position into local features 60 61 62 63; (iii) similarity reasoning: rela-
tional reasoning of extracted features in networks with a kinship graph of features 64;

50. Schulter Samuel et al. (2017). Deep network flow for multi-object tracking.
51. Ma Cong et al. (2019). Deep Association: end-to-end graph-based learning for multiple object

tracking with conv-graph neural network.
52. Herzig Roei et al. (2019). Spatio-temporal action graph networks.
53. Gao Junyu and Xu Changsheng (2020). CI-GNN: building a category-instance graph for zero-shot

video classification.
54. Wang Wenguan et al. (2019). Zero-shot video object segmentation via attentive graph neural

networks.
55. Gao Junyu, Zhang Tianzhu, and Xu Changsheng (2021). Learning to model relationships for

zero-shot video classification.
56. Wu Yiming et al. (2020). Adaptive graph representation learning for video person re-identification.
57. Kim Jongmin et al. (2019). Edge-labeling graph neural network for few-shot learning.
58. Liu Hongying et al. (2019). A novel deep framework for change detection of multi-source hetero-

geneous images.
59. Gidaris Spyros and Komodakis Nikos (2019). Generating classification weights with GNN de-

noising autoencoders for few-shot learning.
60. Zhang Zhen and Lee Wee Sun (2019). Deep graphical feature learning for the feature matching

problem.
61. Sidorov Oleksii and Hardeberg Jon Yngve (2019). Craquelure as a graph: application of image

processing and graph neural networks to the description of fracture patterns.
62. Shin Seung Yeon et al. (2019). Deep vessel segmentation by learning graphical connectivity.
63. Jimenez-Sanchez Daniel, Ariz Mikel, and Ortiz-de-Solorzano Carlos (2020). Unsupervised

learning of contextual information in multiplex immunofluorescence tissue cytometry.
64. Li Wanhua et al. (2020). Graph-based kinship reasoning network.

100



3.1. Review learning on graphs

and (iv) person re-identification and group identification: expand the identification
task to multiple shots or groups of people by representing individual features as
vertices and edges, modeling similarities between them 65 66.

In general, the graphs in this category do not represent the media. Instead, the vertices
represent a set of features, a cluster of data, or object concepts. Like in the category of the
traditional task that requires prior knowledge to model the data, it is even more significant
in this category. The modeling here often relates the information to a particular position
or a link to other known classes. The considerable advantage gained with the graphs’ use
is that instead of performing multiple tasks independently and consecutively, they can all
be encapsulated and improve the inferences.

Semantic tasks

So far, the categories covered used the graphs to integrate high-level concepts or en-
hance high-level data comprehension. Now it presents methods that formulate their prob-
lems in a complex semantic task. However, similarly, they use graphs to improve the
traditional representation and link the data to higher concepts. By media and task, they
could be outlined them as follows:

Videos: (i) scene parsing: explore objects interactions by modeling nodes as de-
tected objects and discriminative paths with class activation maps for connections 67;
(ii) subtle visual communication: spatio-temporal graph neural network to explicitly
represent interactions in social scenes to infer gaze communications 68; and (iii) rea-
soning: a scene graph is built on top of segmented object instances within and across
video frames to predict pedestrians’ intent 69.

65. Li Yaoyu et al. (2019). Adaptive feature fusion via graph neural network for person re-identification.
66. Huang Ziling et al. (2019). DoT-GNN: domain-transferred graph neural network for group re-

identification.
67. Luo Wu et al. (2019). Improving action recognition with the graph-neural-network-based interac-

tion reasoning.
68. Fan Lifeng et al. (2019). Understanding human gaze communication by spatio-temporal graph

reasoning.
69. Liu Bingbin et al. (2020). Spatiotemporal relationship reasoning for pedestrian intent prediction.
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Images: (i) reasoning 70 71, scene understanding 72 73 74 75, emotion recognition 76 77 and
visual question answering 78 79 80: relate identified objects with context, regions, and
interactions with other objects or components. The graph representations are usu-
ally straightforward based on information and objects, and researchers applying
these graphs to graph networks obtain good results; and (ii) semantic segmentation:
image represented by a graph, which nodes contain different feature maps for richer
representation and edges reflecting relationships of the nodes 81

Luo et al. (2019) stated that ignoring the interactions between components fails the
scene understanding task, making graphs crucial. This statement holds for many of the
tasks in this category. Particularly for modeling complex relationships with subtle cues
such as emotion and visual expression in Singh et al. (2019) and L. Fan et al. (2019) or
relating agents and effects as in Chuang et al. (2018) or even intention and position as
in B. Liu et al. (2020). The rigid grid on the media is usually not enough for the task,
and the graphs can provide a more flexible structural layout.

Data augmentation

The methods in this category aim to solve a well-known problem with deep learning:
its performance is conditional to large amounts of data, and there is not enough annotated
data. Consequently, the proposals here create more annotated data by assigning labels
of known data to others closely related in the graphs. Specifically: (i) connect and ana-
lyze the similarity between images for datasets with few labels or few images to expand

70. Chuang Ching-Yao et al. (2018). Learning to act properly: predicting and explaining affordances
from images.

71. Yang Guang et al. (2020). Graph-based neural networks for explainable image privacy inference.
72. Suhail Mohammed and Sigal Leonid (2019). Mixture-kernel graph attention network for situa-

tion recognition.
73. Chen Gongwei et al. (2020). Scene recognition with prototype-agnostic scene layout.
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data 82 83; (ii) group different datasets on the same domain 84; and (iii) to map image la-
bels to embeddings or features that would serve as labels rather than the traditional class
labels 85 86. Overall, their strategies benefit from the graphs’ capability to relate entities
and, consequently, help improve the performance of deep networks in many tasks.

Final considerations

Deep learning and graphs help solve multiple tasks, especially those that involve high-
level reasoning, complex iterations, and semantic meaning. The graphs provide ways to
integrate dimensions, features, and heterogeneous data, model proximity between mul-
tiple components, and track relationships through media’s space and time. Some task
completion seems achievable only with graphs because their complex relationships are
not evident in a rigid grid, while others are enhanced. Finally, graphs even help advance
the deep learning study field itself by helping create annotated data. As a downside, mod-
eling the graphs usually requires a profound prior knowledge of the data, and inserting the
graph information into the learning processes adds new challenges regarding dimensions,
form, and regularization.

3.1.3 Random Forest on graphs

First proposed by Breiman 87, the Random Forest (RF) is a fast, simple and scal-
able machine learning algorithm for classification and regression 88. Random Forests has
proved successful in many applications and is referred to as a general-purpose learning
algorithm 89. RF is a non-parametric ensemble method for supervised classification and
regression, consisting of randomized independent trees. It relies on randomizing selected
data and features and has extensive practical uses in many domains.

Although the RFs are empirically successful in suppressing noises, the statistical and

82. Acuna David et al. (2018). Efficient interactive annotation of segmentation datasets with polygon-
RNN++.

83. Schroeder Brigit, Tripathi Subarna, and Tang Hanlin (2019). Triplet-aware scene graph em-
beddings.

84. Renton Guillaume et al. (2019). Graph neural network for symbol detection on document images.
85. Li Jinghui and Fang Peiyu (2019). FVGNN: a novel GNN to finger vein recognition from limited

training data.
86. Shao Huikai and Zhong Dexing (2019). Few-shot palmprint recognition via graph neural networks.
87. Breiman Leo (2001). Random forests.
88. Cutler Adele, Cutler D. Richard, and Stevens John R. (2012). Random forests.
89. Biau Gérard and Scornet Erwan (2016). A random forest guided tour.
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mathematical properties of the procedure are still obscure 90 91. Some authors 92 93 believe
that randomness performs as an implicit regularization process, promoting consistency
and noise suppression. In the presence of complex signals permeated with noise, RFs
behave as interpolating classifiers that encourage large consistent regions and reduce the
effect of noise. Also, most authors agree that most unwanted behavior occurs when the
input data is highly correlated. Scornet (2016) is one of the theoretical pieces aiming to
explore the mathematical properties of the method, and it provides an interesting parallel
between RFs and kernel methods.

RF is somewhat accepted on graphs as a viable method to perform tasks such as
learning features, mining data, predicting labels and connections, and measuring similar-
ity. Particularly in recent years, due to its good results and fast processing. It is possible
to find methods integrating graphs and RF in many areas, such as image 94, text 95 96,
and natural language processing 97, as in social network analysis 98 99 100 and medical appli-
cations 101 102 103(non-exhaustive citation). Most research results on terms relating to RF
and graphs are associated with medical applications and social network graphs. These
methods profit from large graph embeddings and deep graph features combined with RF
predictions. Only possible due to the graphs being not densely connected—although the
high-dimensional feature does not impose a limitation for the RFs method, it can be a

90. Biau Gérard and Scornet Erwan (2016). A random forest guided tour.
91. Scornet Erwan (2016). Random forests and kernel methods.
92. Wyner Abraham et al. (2017). Explaining the success of adaboost and random forests as inter-
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challenge for the embedding process.
As in many machine learning algorithms, RF requires a systematic input, and a strat-

egy must be placed to deal with the arbitrary structure of the graphs. Besides the embed-
dings mentioned above 104 105 106 107 108 109, authors also propose to use the adjacency ma-
trix 110, network topology measures (e.g.,centrality, community, degrees) 111 112, selection
of graph attributes 113 114, pairwise comparison of vertex or edges 115, and graph feature
inference methods 116. In Karunaratne and Boström (2009), the authors studied dif-
ferent forms to adapt the graph structure for RF without losing too much information and
concluded that the choice has a significant impact on the performance and that keeping
as much information about the structure is beneficial.

Some authors focus their interest on a modified RF to better operate on graphs.
In Guillame-Bert and Dubrawski 2017, for instance, they use a constrain value during
the split that is itself the determinant value of a relation between two vertices. Likewise,
in Liang and D. Huang 2019, the importance of different features on the graph is
weighted and later used to bias the sampling to give a bigger chance to sample more
critical elements.

In summary, RFs use graphs from diverse data types, although media is not the most
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prominent source. However, since the source becomes irrelevant to the RF learning steps
once modeled as graphs, the crucial decision is the strategy to transpose the graph to
the regular representation required. Graph embeddings and network topology measures
are the most frequent strategy. However, executing the former imposes limitations on the
graph size, and the latter produces highly correlated values from graphs sourced from
gridded data.

3.2 Discussion on graphs, media, and learning

The great incentive to center the considerations towards graph processing is that they
are critical for hierarchical analyses, as a model operating on generic graphs can be later
generalized to hierarchical structures. Also, machine learning operating on graphs provides
a form to create an agnostic model regarding the media since the data’s source becomes
virtually irrelevant once the system works in terms of vertices and edges. As seen, machine
learning on graphs is a topic of great interest.

In a graph representing digital media with arbitrary dimensions, the vertices may cor-
respond to the media’s units, such as pixels, voxels, or data points. This approach usually
results in large sets of vertices but favors back-and-forth operations. Alternatively, the ver-
tices could correspond to objects inferred from the data, such as superpixels, partitions,
and surfaces, creating a more concise representation but requiring complex mappings
dependent on the grouping strategy.

Graph embedding methods are suitable for creating a systematic representation of the
graphs that allow their utilization in multiple learning frameworks. But embeddings are
very expensive in terms of computational resources and are prohibitive for large graphs.

Deep learning methods on graphs are a contemporary solution to many tasks, primarily
semantic and high-level analysis. Despite their improvements in inferring information, they
impose limitations regarding the underlying graph and the modeling choices. A prevalent
approach when handling deep learning on graphs in a multimedia context is to favor
modeling the concepts and abstractions rather than the raw media data and placing
careful designing decisions such as sampling and randomization.

Finally, Random Forest on graphs provides solutions for many computational prob-
lems, particularly medical applications and social network analysis. The most significant
limitation of aggregating graphs and Random Forests is the systematic input required
by the model. Careful graph parsing must take place, considering the type of graph, its
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proximity to the original data, and the expected results.
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Chapter 4

CASE STUDY: LEARNING ON GRAPHS

This chapter presents the case study for a learning framework operating on a selection
of graph attributes aggregated with the Random Forest model. Motivation goes beyond a
good performance in an application; it relies on a proposal of a machine learning framework
working on graphs that could later be exploited for the hierarchical structures.

The main challenge in this framework concerns the regular representation required
by most machine learning algorithms, which is inherently opposed to the unconstrained
nature of graphs. Nevertheless, conforming to it allows processing graphs with general
learning methods and avoids the long computations of graph networks operating on raw
data and embedding strategies. Furthermore, the framework must also consider the high-
dimensional space usually presented with graphs representing digital media and the label
attribution strategy that should not impose assumptions on the data source to later
generalize to other tasks.

The discussions about graph creation and manipulation can be made generic enough
to model many media 1. However, the proposals of the case study are for image graphs.
Dealing with graphs created from images has a unique modeling space. The spatial con-
nectivity gives a structured representation of a grid graph: close to the spatial domain
and strengthened by the relational aspects of the graphs. Cognizant of this unique space,
this chapter investigates the relational aspects while pondering the particular conditions
for image processing. It evaluates the impact of the characteristics on the results obtained
on two different tasks and discourses on elements that could not be generalized.

The study proposes to use edge-weighted graphs aggregated with the Random For-
est (RF) 2. The edge-weighted graph acts as a transformation filter based on local dif-
ferences 3. And, as in the case of many spatial filters based on local differences, it tends

1. Bertrand Gilles et al. (2013). Mathematical morphology: from theory to applications.
2. Breiman Leo (2001). Random forests.
3. Elmoataz A., Lezoray O., and Bougleux S. (2008). Nonlocal discrete regularization on

weighted graphs: a framework for image and manifold processing.
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to respond strongly to noise 4. It is expected that the RF attribute selection and implicit
regularization process 5 can mitigate this aspect while reinforcing desirable characteristics.
Also, the RF mechanics allows it to work with high-dimensional data, making it a fast,
simple, and scalable method 6 for the investigation. Finally, it proposes to describe the
graphs at the vertice’s level, which allows training the model on the discrete space by
associating each entry with a single label.

This chapter has three parts. The first part describes the study’s methodological com-
ponents and comprises Sections 4.1, 4.2, and 4.3. More precisely, Section 4.1 formalizes
the edge-weighted image graphs, Section 4.2 discusses the strategy to create the regular
representation based on a selection of graph attributes, and Section 4.3 describes the RF
mechanics and the application in the proposed framework. The second part contains the
experimental investigation, where Section 4.4 describes the investigative steps and the
methodology pipeline. It presents the inquiry in three progressive stages:

1. Section 4.4.1 assesses the selection of the attributes of the graph;

2. Section 4.4.2 applies the results as image gradients in the segmentation task; and

3. Section 4.4.3 addresses some identified limitations and extends the formalism.

Finally, Section 4.5 makes the final part, which presents a discussion considering the
different aspects of the experimental investigation, summarizes the observed properties,
and draws some conclusions to guide the hierarchical study.

4.1 Image graphs
For the graph G defined on the image domain, the adjacency relation Γ between

the pixels is typically a structured adjacency relation, such as 4− or 8−adjacency in a
grid form. Neighborhood denotes a collection of adjacent vertices and usually is taken
clockwise, starting by the north of a pixel and following the adjacency relation. The set
of vertices V = {v1, v2, . . . , vN} represents the N pixels of the image. The collection of
functions associated with each vertex is denoted by f : V ⊂ Z2 → R. Common functions in
f include low-level descriptors, variations in the color space, or the gray-scale magnitudes.
The grayscale magnitude function, denoted by fgray, plays an essential role in the image

4. Fogel I. and Sagi D. (1989). Gabor filters as texture discriminator.
5. Wyner Abraham et al. (2017). Explaining the success of adaboost and random forests as inter-

polating classifiers.
6. Cutler Adele, Cutler D. Richard, and Stevens John R. (2012). Random forests.
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graph as the most common source to calculate the weighting function F in the edge-
weighted graph G(V,F).

Edge weighting functions ideally should characterize dissimilarities. Therefore, dis-
tance functions are more suitable, where the Euclidean distance is the most common,
defined in E as:

Feuc(u, v) =
√

(fgray(u)− fgray(v))2, ∀u ∈ Γ(v) (4.1)

In representing dissimilarities, the edge weights may characterize the local variation
around a vertex and serve as an image gradient operator bounded by the adjacency
relation. Weighting edges as an image gradient operator acts as a transformation filter on
the image, creating a transformed space by changing the contrast of the original image
and spreading the intensity levels 7.

Definition 12: Graph gradient operator
The graph gradient operator for edge-weighted graph G(V,F) at vertex u could
be defined as:

∇Ff(u) = (∂v1f(u), . . . , ∂vi
f(u)),∀vi ∈ Γ(u) (4.2)

where ∂vf(u) is the edge derivative of f at a vertex u ∈ V along the edge e = (u, v) ∈
E:

∂vf(u) = ∂f

∂e

∣∣∣∣∣
u

= F(u, v) (4.3)

The topology choices, such as the adjacency relation and the weighting function’s prop-
erties, condition the interaction between the image data and the preserved characteristics
on the edge-weighted graph.

4.2 Regular representation of graph’s attributes
The case study proposes to use the information on the edges and vertices to represent

the graph in a learning framework. The main challenge concerns the strategy to parse the
data and create a regular input required by most learning algorithms without losing too
much information.

The proposed strategy depicts each vertex of the edge-weighted image graph as a vec-
tor of selected attributes. The selection belongs to two categories of attributes: (i) vertex

7. Elmoataz A., Lezoray O., and Bougleux S. (2008). Nonlocal discrete regularization on
weighted graphs: a framework for image and manifold processing.
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attributes (XV ), representing the vertices functions; and (ii) edge weights (XF), rep-
resenting the weight values in every edge on the adjacency of v. Thus, the vertex is a
vector Xv with dimension p = |Gatt|, where Gatt is the set Gatt = {XV XF}.

Definition 13: Regular representation of the edge-weighted image graph
The proposed regular representation of a edge-weighted image graph G = (V,F) is
XG = ((X1, Y1), . . . , (X|V |, Y|V |)), where |V | is the number of vertices each represented
as a vector Xv ∈ Rp and a single label Yv.

Repeating the procedure for all graphs in the training set and concatenating the
XG outputs makes a regular training input D for the learning framework, where D =
((X1, Y1), . . . , (XT , YT )) and T is the total number of vertices in the training set. For the
test set, the procedure takes the regular representation of each graph in the validation/test
set and individually subjects them to the estimations.

4.3 Random Forest as regularizers
The Random Forest predictor described in Breiman (2001) is a non-parametric ma-

chine learning method for classification and regression. And although there are many
variations on the framework to create random trees and random forests 8, the original
algorithm is known for its successful performance in multiple tasks 9.

At the core of the RF is the randomization of sampled data distributed to supervise
the training of independent decision trees and the aggregation of the results for the final
prediction. The randomness performs as an implicit regularization process promoting
consistency 10 and noise suppression 11. The RF acting as a regularizer on the spatial
filters can diminish the noise, mitigate any eventual poor topology choice and accentuate
strong connections.

Following the notations in Biau and Scornet (2016), the RF predictor consists of M

randomized trees. In each internal node m of a tree in the forest, there is a split function
h(x, θm) for a query point x with parameters θm. During training, the parameters θm are
learned, usually by maximizing the information gain (in classification) or minimizing the

8. Biau Gérard and Scornet Erwan (2016). A random forest guided tour.
9. Cutler Adele, Cutler D. Richard, and Stevens John R. (2012). Random forests.

10. Gérard Biau, Devroye Luc, and Lugosi Gábor (2008). Consistency of random forests and
other averaging classifiers.

11. Wyner Abraham et al. (2017). Explaining the success of adaboost and random forests as inter-
polating classifiers.
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(a) Input image (b) Graph gradient operator (c) RF output

Figure 4.1: Illustration of the graph gradient operator and the Random Forest(RF) regularization effect.
It presents a challenging input image with transparent materials, a body of water, object
occlusion, and objects with similar colors. The graph gradient operator is an image projection
of the graph. The RF output is the predictions trained on the edge detection for the graph
and mapped back to the image domain.

mean square error (in regression) to split the data samples covered by m into two subsets
with the maximum proportion of instances belonging to the same label. In the test phase,
it applies an unseen set of data to h at each split node, and the test result determines the
path the data will perform until it reaches a terminal node with the label prediction.

Dollar and Zitnick (2015) 12 proposed a method for structured edge detection
(SED) that was fast and precise in predicting object edges in an image. The SED method
extends the RF formalism to the general structured output space using local segmenta-
tion masks on cropped patches in the image feature space and the ground truth. The
core idea was to map similar structured labels in a given node to the same discrete label.
But because the similarity in structured space is complex, the authors proposed a reduced
intermediary space instead of calculating the continuous variance of entropy on the nodes.

In contrast, this study proposes using image graphs as RF inputs, where instead of
using the complex structured output space, it creates a structured input on the standard
discrete label. In that, it defines: (i) the neighborhoods inside the graph delineate the
regions of analysis; (ii) the graph attributes define the feature space; and (iii) the discrete
label attribution for the edge detection task is centered on the graph’s vertices. Therefore
a single label assigns the entirety of a neighborhood. At inference, it uses the RF as a
regression estimator averaging all predicted values of the M trees. It then maps the RF
predictions back to the image space in the form of image gradients, where they can be
evaluated qualitatively and quantitatively.

Fig. 4.1 illustrates the regularization effect of the RF. It shows the input image, the

12. Dollar Piotr and Zitnick C. Lawrence (2015). Fast edge detection using structured forests.
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Testing phase

Training phase

Train images Grayscale Weighted graph Regular input D
|XF| = 64, n = 4 Y

N1 N2 N3 · · · N63 N64 Label

1.0 1.5 2.5 · · · 1.5 2.0 0

0.0 0.5 1.5 · · · 0.5 1.0 0

2.0 2.0 2.5 · · · 0.5 1.5 1

0.5 2.5 1.5 · · · 1.0 0.5 0
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Average predictions for gradient image
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Figure 4.2: Figure illustrating the framework from the input image to the Random forest predictions com-
puting the gradients. First, it transforms each image to the gray-scale magnitudes. Then, it cal-
culates the weights for each image pixel as a grid graph, here illustrated with the 4−adjacency
relation. The next step transforms the graph structure to a regular representation with the
selected attributes to serve as input for the Random Forest model. The regular input for the
training set includes the associated label: the unique discrete label on the edge detection
ground truth. During the test, the Random Forest subject each vertex of the test graphs
to prediction, where the estimated values are mapped back to the image coordinates as an
intensity value for evaluation.

Khalimsky grid projection 13 of the weighted graph, and the RF predictions mapped back
to the image domain. As shown, the RF predictions capture and reinforce the main char-
acteristics modeled in the graph and remove isolated features counted as noise.

4.4 Investigative steps

This study analyses the viability of the regular representation of the graph’s attributes
in a learning pipeline through experimentation. Fig. 4.2 illustrates with simplified exam-
ples the pipeline for the proposed framework. It uses the Berkeley Segmentation Dataset
and Benchmark (BSDS500) 14, which offers edge detection and segmentation labels.

For the task, it trains the RF on the edge detection task, where the test labels Y ∈
{0, 1}, and all entries in D have a unique discrete label on the vertices. In the test step,
it makes the regular representation XG for each graph in the validation/test set, omitting
the label, and individually subjects them to the estimations of the RF. The final estimated
values are mapped back to the image coordinates as gradients.

13. Khalimsky Efim, Kopperman Ralph, and Meyer Paul R. (1990). Computer graphics and con-
nected topologies on finite ordered sets.

14. Martin D. et al. (2001). A database of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological statistics.
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The experimental evaluation is a series of investigative steps. At each step there are
four stages:

1. create the edge-weighted graph gradient operator from the input image (Section 4.1);

2. create the regular representation of the graph (Section 4.2);

3. train the RF on the edge detection task to obtain the gradients (Section 4.3); and

4. evaluate the quality of the gradients on image tasks.

The first investigative step assesses the choices of graph attributes, and Section 4.4.1
presents a qualitative analysis examining the resulting image gradient from each selection.
The second step, in Section 4.4.2, evaluates the quality of the image gradients created from
the best set of graph attributes on the segmentation task applying the gradients as input to
a segmentation algorithm. The third and last step, in Section 4.4.3, extends the formalism
to exploit better the relationships modeled by the graphs, mainly focusing on the RF
mechanics and limitations. And besides the extended formalism, it adds evaluations on
edge detection and comparisons with deep learning approaches on edge detection and
region segmentation.

4.4.1 Inspecting the graph’s attributes

This section contains the investigative step assessing the attributes choices through
a qualitative analysis of the resulting gradients. For the qualitative analysis, the images
presented are the result of the estimated values for the images on the validation set,
predicted by the trained RF with M = 150.

This step investigates the following characteristics:

1. the adjacency relation;

2. the weighting function;

3. the neighboring size; and

4. the vertex attributes.

The neighboring size is entirely related to the graph’s properties, therefore, detached
from the media source. The adjacency relation and the weighting function refer to the
modeling choices, which are often concerned with graphs (see Chapter 3). From the stand-
point of the framework, it is indifferent to the modeling choices and bears upon only the
values and connections. But from the task perspective, the choices condition the interac-
tion between the data and the graph, impacting the results. The last aspect, the vertex
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(a) Input image (b) 4-adjacency (c) 8-adjacency

Figure 4.3: Illustration of the adjacency relation effect on the final gradient.

attributes, is the most critical considering an agnostic framework. Likewise, from the
framework perspective, it is just a set of values stored on the vertices to be or not con-
sidered during execution. However, conceptually, it is a direct reference to the media
properties, particularly if the function represents image descriptors.

Adjacency relation

The first assessment is the adjacency relation in 4−adjacency or 8−adjacency. As illus-
trated in Fig. 4.3, the predicted images have subtle differences, but the ones created from
the 8−adjacency are less noisy overall, and the objects’ borders and regions are clearer
and more defined. These aspects indicate that more connections make representations
bounded on mutual characteristics, can assist the learning process, and enhance desirable
features. In the following, it will thus only consider 8−adjacency.

Weighting function

Another assessment is the choice of the weighting function on the edges of the graph.
Besides the Feuc in Equation 4.1, standard weighting functions provided by many popular
tools to create and manipulate graphs 15 16 includes:

Fmax(u, v) = max{fgray(u), fgray(v)},∀u ∈ Γ(v) (4.4)
Fmin(u, v) = min{fgray(u), fgray(v)},∀u ∈ Γ(v) (4.5)
Fmean(u, v) = mean = (fgray(u) + fgray(v))/2,∀u ∈ Γ(v) (4.6)

15. Perret B. et al. (2019). Higra: hierarchical graph analysis.
16. MATLAB version 7.10.0 (R2010a) (2010).
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(a) Ground-truth (b) Feuc (c) Fℓ0

(d) Fmean (e) Fmax (f) Fmin

Figure 4.4: Illustration of the weighting function effect on the final gradient image.

Although any of those functions are valid functions for the edges, as they could represent
the aspects in a vertex neighborhood, these functions do not characterize similarities
between vertices. Another function commonly available is a cardinality function, denoted
by Fℓ0(u, v), corresponding to the total number of nonzero values among f(u) and f(v).
Therefore Fℓ0 : R→ {0, 1, 2} and it is not very descriptive.

As illustrated in Fig. 4.4, the Feuc is, as expected, the best weighting function to
model the neighborhood of a vertex among the evaluated functions. It presents a good
result due mainly to the expected behavior induced by the function properties on the
metric space. The other functions that do not represent the variation around a vertex,
Fmax, Fmin, and Fmean, show spread noise to more significant regions in the resulting
images. The particular case of Fℓ0 does not represent variation or is very descriptive, and
the results demonstrate the RF’s limitations for an extremely noisy and correlated input.
In the following, it will only consider Feuc as the weighting function.

Neighboring size

This assessment pertains to the edge weights (XF) attributes for a given vertex
v. It represents v by the set of edge weights between the adjacent vertices. Therefore
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(a) Input image (b) |XF | = 8 (c) |XF | = 64

Figure 4.5: Illustration of the neighboring size effect on the final gradient image

(a) Ground truth (b) XV = low-level descriptors (c) XV = ∅

Figure 4.6: Illustration of the inclusion of vertex attributes impact’s in the final gradient

XF = {Feuc(u, v) | ∀u ∈ Γ(v)} and |XF | = 8. The investigation goes further and includes
the adjacency of the immediate neighbors of v. Therefore, XF = {Feuc(u, v),Feuc(y, u)}
for all u ∈ Γ(v) and ∀y ∈ Γ(u) and |XF | = 64.

Fig. 4.5 illustrates the gradients from the two variations. As shown, as the represen-
tation size grows, the more information the RF has to decide if a particular vertex is, in
fact, an edge. It translates into higher confidence values on the edges and less on the other
elements of the original image. Nonetheless, different textures and uniform regions con-
tinue to present homogeneous values to distinguish them. In the following, |XF | = 64
for the neighboring size.

Vertex attributes

The final assessment concerns the inclusion or not of the vertex attributes (XV )
belonging to the set of vertices functions f . Without the vertex attributes, XV = ∅ in
the regular representation. When included, it maps v ∈ V into a set of low-level color
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descriptors proposed in Dollar, Belongie, and Perona (2010) 17. The descriptor takes
the original RGB colors on the image pixel. It calculates three color channels in CIE-LUV
color space 18, two normalized gradient magnitude channels, and eight gradient orientation
channels, resulting in a 13−dimension vector of features for each vertex. Therefore |XV | =
13.

As shown in Fig. 4.6, including the vertex attributes results in less noise, stronger
borders, and more details on the final image gradients. It could be due to the additional
information inserted on the representation or other clues about local variation provided by
the gradient magnitude and orientation in the descriptor. Nonetheless, including the low-
level descriptors as vertex attributes on the representation establishes a solid link to the
media source. Most of the following investigative steps will include the vertex attributes
on the representation to maintain the most desirable characteristics on the gradient and
facilitate the image analysis on the segmentation task in Sections 4.4.2 and 4.4.3.

RF parameters search

Completeness requires one final assessment unrelated to the attributes of the graph but
crucial to the task: the RF parameters. The RF is simple and intuitive but requires setting
many parameters for its execution. The framework used the Random Forest Regressor in-
cluded in the scikit-learn Python package 19, which provides a parallelized implementation
over the trees. To set the RF parameters, a grid search on the number of estimators (num-
ber of trees), the bootstrap sample size, and the number of sampled features for the split
explored the best set of parameters for the application. It used the validation set and the
regular representation with the best set of attributes. The score is the F1−measure for
the precision-recall on the edges.

Fig. 4.7 illustrates that regardless of the parameter, among all executions, the score
varies in [ 0.5777, 0.6249 ], less than 5% gain. The number of estimators and the number
of sampled features impacted the training time greatly. Furthermore, the search briefly
explored limiting the depth of the trees, which resulted in reduced training times but
much lower score values for all combinations (below 0.40 score).

In the end, a compromise on the parameters among the best score results and reason-

17. Dollar Piotr, Belongie Serge, and Perona Pietro (2010). The fastest pedestrian detector in
the west.

18. Tkalcic Marko and Tasic Jurij (2003). Colour spaces: perceptual, historical and applicational
background.

19. Pedregosa Fabian et al. (2011). Scikit-learn: machine learning in Python.
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Figure 4.7: Grid search results for the RF parameters: data sample size, feature sample, and number of
estimators. Evaluated in terms of training time (average on the dark line and occurrences as
lighter dots) and F1−measure score for the precision-recall on the edges (average).

able training time resulted in estimators = 500, samples = 25% of T , #features = log2(p)
and no control over the depth of the trees.

Final considerations on graph attributes

The case study proposes a straightforward approach to create a systematic graph in-
put applied in a learning framework: use the available information on the graph edges and
vertices to represent each vertex as a vector of selected attributes. The first investigative
step assessed the selection and established: (i) |XV | = 13, the original image informa-
tion stored in each vertex as the low-level descriptors proposed in Dollar, Belongie,
and Perona (2010). (ii) |XF | = 64, the weight values produced by the Feuc function
in 8−adjacency relation, including also the weights of the adjacency of the immediate
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neighbors. Therefore, p = |Gatt| = 77.
From now on, graph-based image gradient (GIG) refers to the proposed method

with the selected attributes. 20 Algorithm 1 describes the steps to create the regular GIG
representation for one graph XG using an edge-weighted graph G(V,F) and p = 77 for
the selected attributes. For clarity, the operations not detailed in Algorithm 1 are:

— ones[[size]]: creates an array filled with the one value of size size. The operation
ones plays a dual function: allocates the necessary memory and acts as a padding
value (the maximal dissimilarity) for the vertices with an incomplete adjacent set
(vertices created from the pixels close to the image border).

— getLabel(v): gets the ground-truth label for the vertex v.

— getDescriptors(v): gets the attributes stored in v. Here, the set of low-level color
descriptors proposed in Dollar, Belongie, and Perona (2010), extracted during
the graph creation, mapping the RGB colors of an image pixel into three color
channels in CIE-LUV color space, two normalized gradient magnitude channels,
and eight gradient orientation channels.

— append(array): appends row-wise the computed 1D array vector for each vertex to
the 2D matrix representing the graph.

In general, the expected result of the proposed framework is a very descriptive image
gradient in which: (i) object boundaries are highlighted (including very small components);
(ii) image textures are firmly represented with different simplified patterns; and (iii) large
regions are uniform with the distinction of shadow regions. By contrast, unsatisfactory
results are usually created not descriptive weighting function and source images with: (i) a
low signal-to-noise ratio; and (ii) very similar colors on different objects and patterns.

4.4.2 Evaluating image gradients on segmentation

Creating an image gradient is a transformation process that aims to enhance the desir-
able properties of an image while leaving aside the noise and non-descriptive elements 21.
Many algorithms in image processing rely on a good image gradient to adequately per-

20. Gradient computation code available at https://github.com/RaquelAlmeida/GIG.git
21. Gonzalez Rafael (2009). Digital image processing.
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Algorithm 1: Regular representation GIG
Input : G = (V,F): an edge-weighted graph, a flag isTrainSet indicating if G is a

train instance, and the expected representation size p.
Output : XG = {(X1, Y1), . . . , (X|V |, Y|V |)}: set of regular representations of the

graph vertices attributes Xv ∈ Rp and its associated labels Yv in case when
G is a train instance.

Function getAttributes(v):
1 if isTrainSet then
2 Xv = ones[[p + 1]]
3 Yv = getLabel(v)
4 Xv[[p + 1]]← Y // at p + 1 position
5 else Xv = ones[[p]]
6 colorFeatures← getDescriptors(v)
7 Xv ← colorFeatures
8 firstNeighbors← {u | ∀u ∈ Γ(v)}
9 secondNeighbors← {q | ∀q ∈ Γ(u) and ∀u ∈ firstNeighbors}

10 Xv ← {F(u, v) | ∀u ∈ firstNeighbors}
11 Xv ← {F(q, u) | ∀q ∈ secondNeighbors and ∀u ∈ firstNeighbors}
12 return Xv

Main:
1 for vertex v in V do
2 Xv = getAttributes(v)
3 XG ← append(Xv)
4 end
5 return XG

form tasks 22 23 such as classification 24 and segmentation 25. For this reason, this section
evaluates the quality of the image gradients created from the best set of graph attributes
assessed in Section 4.4.1 on the image segmentation task. It argues that although the
borders constitute an essential characteristic of the objects depicted in images, other
properties that reflect uniformity, homogeneity, and continuity are also important for the
interpretation of coherent regions, particularly in the task of image segmentation.

Image segmentation may be considered a semantic task, and it is an active topic of

22. Tzimiropoulos G et al. (2010). Robust FFT-based scale-invariant image registration with image
gradients.

23. Neggers J. et al. (2016). On image gradients in digital image correlation.
24. Sharifi M., Fathy M., and Mahmoudi M.T. (2002). A classified and comparative study of edge

detection algorithms.
25. Hirata Roberto et al. (2000). Color image gradients for morphological segmentation.
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research 26. This task consists in partitioning perceptually similar pixels into sets of regions
representing areas of interest. Usually, this task is done in two stages: (i) the extraction
of image characteristics that facilitates interpretation and further analysis; and (ii) the
mapping of these characteristics into coherent regions.

A coherent region is a subjective concept, but according to to Domínguez and
Morales (2016) 27, it must present characteristics such as: (i) uniformity; (ii) continuity;
(iii) contrast between adjacent regions; and (iv) well-defined boundaries.

Independently on how well-designed a mapping method is, most of them are limited by
the characteristics extracted in the first stage. For instance, taking the grey-level contrast
in the first stage produces a great variation between regions, and very distinct absolute
values make it hard to determine which value actually represents a region change.

Fast and inexpensive to compute, image gradients are commonly used as a pre-
processing step in multiple applications, such as medical analysis 28, text extraction 29,
video processing 30 31 and segmentation 32. Even with the advent of deep networks, gradi-
ent use continues to be relevant due to its performance 33. Also, the gradients are used as
support for some networks, providing enhanced features or reducing complexity 34 35 36.

Traditional gradient methods, such as Laplacian and Sobel, are kernel filters for local
variation, highlighting the borders of objects, and are usually very sensitive to abrupt
changes in the original image. As detailed in Section 4.3 the method SED 37 is fast and

26. Mittal Himanshu et al. (2022). A comprehensive survey of image segmentation: clustering meth-
ods, performance parameters, and benchmark datasets.

27. Domínguez Didier and Morales Roberto Rodriguez (2016). Image segmentation: advances.
28. Soni Akanksha and Rai Avinash (2021). Automatic cataract detection using Sobel and morpho-

logical dilation operation.
29. Jeong Hyeonwoo, Choi Ye-Chan, and Choi Kang-Sun (2021). Parallelization of levelset-based

text baseline detection in document images.
30. Honeycutt Wesley T. and Bridge Eli S. (2021). UnCanny: exploiting reversed edge detection

as a basis for object tracking in video.
31. Eetha Sagar, Agrawal Sonali, and Neelam Srikanth (2018). Zynq FPGA based system design

for video surveillance with Sobel edge detection.
32. Junejo Aisha Zahid et al. (2018). Brain tumor segmentation using 3D magnetic resonance imaging

scans.
33. Lakshmi M. Muthu and Chitra P. (2020). Tooth decay prediction and classification from X-ray

images using deep CNN.
34. Naveen P. and Sivakumar P. (2021). Adaptive morphological and bilateral filtering with ensemble

convolutional neural network for pose-invariant face recognition.
35. Tu Zhuowen et al. (2008). Brain anatomical structure segmentation by hybrid discrimina-

tive/generative models.
36. Prabaharan L. and Raghunathan A. (2021). An improved convolutional neural network for

abnormality detection and segmentation from human sperm images.
37. Dollar Piotr and Zitnick C. Lawrence (2015). Fast edge detection using structured forests.
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(a) Input image (b) Ground-truth (c) SED

(d) Sobel (e) Laplacian (f) GIG

Figure 4.8: SED gradient presents reinforced fuzzy borders of the main objects and small details are in
large ignored. Sobel presents very thin edges for both large and small objects, while large
uniform regions, such as the asphalt and vegetation are discretely represented. For Laplacian,
it is perceived a large amount of noise for objects, edges and patterns. GIG computed enhanced
borders for both large and small objects and image textures are firmly represented with different
simplified patterns.

precise in predicting object edges and became a common approach as image gradient
creator for the segmentation task 38 39 40. In turn, GIG firmly depicts the edges of large
and small objects as well as uniform regions and patterns on the image, making it a very
descriptive image gradient. Fig. 4.8 illustrates the gradient computed by GIG, SED, Sobel,
and Laplacian.

This investigative step evaluates the proposed GIG both qualitatively and quantita-
tively on the segmentation task and compares it to the widely used gradients from SED,
Sobel, and Laplacian. It does not propose a segmentation approach; instead, it evaluates
the strategy to extract image characteristics in an application. It applies the compared

38. Perret Benjamin, Cousty Jean, Guimaraes Silvio Jamil F., et al. (2018). Evaluation of hier-
archical watersheds.

39. Perret Benjamin, Cousty Jean, Guimarães Silvio Jamil Ferzoli, et al. (2019). Removing non-
significant regions in hierarchical clustering and segmentation.

40. Otiniano-Rodríguez Karla et al. (2019). Hierarchy-based salient regions: a region detector based
on hierarchies of partitions.
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methods as input for the watershed hierarchies 41.
The watershed hierarchy maps image gradients to segmentation, and its performance

depends on the gradient input, making it the ideal candidate for evaluating the methods.
It is worth mentioning that, thanks to this hierarchical structure, it is straightforward
to compute segmentation with an exact number of regions, for instance, from 2 to 5000
regions. This allows the analysis of a small number of regions closer to the ground truth,
a medium number of regions for region consistency, and a very large number of regions
(1000 and 5000), in which results are similar to a superpixel segmentation method.

Qualitative analysis on the segmentation task

Fig. 4.9 illustrates the gradient images obtained from the compared methods for the
input images on the first row. As SED is a method for edge detection, it generally produces
gradient images with soft edges close to the ground-truth boundaries, which guarantees its
success on the edge detection task. Nonetheless, other aspects present in the input image,
such as textures and small details, are wildly ignored. Sobel presents more details without
significant distinctions (regarding the magnitude of values) for components other than the
main object. Laplace, in turn, is permeated by noise on the object and background. For
GIG, the gradients have a balance between highlighted firm edges, different textures, and
uniform regions presented with homogeneous values distinguishing them. It is important
to consider that Sobel and Laplacian depend on parameters definition, such as the kernel
size. For the Sobel gradients, the parameters are the gradient magnitude with the ℓ2−norm
and a 3× 3 kernel size calculated from the gray-scale image. For the Laplacian, the zero-
crossing with a threshold at 0.04 of maximum value.

The 2nd row of Fig. 4.9 presents visual representations of the watershed hierarchies
created from the gradients. The hierarchies presented as saliency maps allow the visu-
alization and understanding of the hierarchies 42. The saliency maps show the regions of
importance mapped by the watershed method, indicating the strength and limitations
of the final segmentation. As a hierarchical model, the watershed regions are stable and
causal, meaning that no new region is created or removed, only merged and split, depend-
ing on the number of regions criteria. Therefore, the borders visualized on the saliency
maps will not change their contours, and their strength indicates the region’s proximity.

41. Cousty Jean and Najman Laurent (2011). Incremental algorithm for hierarchical minimum span-
ning forests and saliency of watershed cuts.

42. Cousty Jean, Najman Laurent, Kenmochi Yukiko, et al. (2018). Hierarchical segmentations
with graphs: quasi-flat zones, minimum spanning trees, and saliency maps.
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(a) Input and GT (b) SED (c) Sobel (d) Laplace (e) GIG

Figure 4.9: 1st row: Input image and the gradients created by the compared methods. 2nd row: Boundary
ground-truth and watershed hierarchies represented as saliency maps that allow us to visualize
the hierarchy of regions. 3rd row: Segmentation ground-truth and the segmented images with
10 regions as criterion.

In knowing that, the 3rd row of Fig. 4.9 shows the result of the segmentation created using
ten regions as a criterion. The firm contours on SED and GIG give a good delineation of
the main object while it invades part of the plane with Sobel. All details are lost using the
SED gradient, while Sobel partially recovers part of the cross, GIG recovers the paddle,
and both present the wheel. The background invades both the object and details using
Laplace as a result of the noise on the gradient.

Fig. 4.10 presents more examples of segmented images from GIG, SED, and Sobel
gradients, illustrating some variation in the number of regions, including the superpixel
effect with a large number of regions (3rd column). In the 1st column, a successful instance
of the proposed method in which the presence of strong borders and large uniform regions
on the input image, captured by the GIG gradient, created a better segmentation. Using
SED, the fuzzy edges limit the delineation of the main object, while the weak contour in
Sobel prevents its detection. An observed limitation of the proposed method is presented
in the 2nd column. When the input image shows objects with high-contrast patterns, such
as zebras and tigers, the GIG gradient’s detail works against the object’s distinction. This
is also partially observed on Sobel, but not with the SED gradient, in which the pattern
details are softly represented inside the object. On the super-segmented images in the 3rd
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Figure 4.10: Segmentation results obtained from GIG, SED and Sobel gradients with varying number of
regions (Left: 3, middle: 5, right: 1000).

column, the soft edges on SED do not produce a good segmentation. At the same time,
large regions with Sobel are indistinct, creating many very small regions on the main
object with little to no large parts of the duck, the water, and the shadow.

Quantitative analysis on the segmentation task

In terms of training time, in the standard discrete label and the graph attribute se-
lection on GIG, all the 150 trees on the RF are trained in less than three minutes, while
for SED, in the same CPU, each tree (of the eight trees for the presented results) takes
approximately four hours. The inference takes a fraction of a second for each image in all
compared methods.

For the quantitative metrics, there is two types of image partition interpretation mea-
sures, as categorized and defined in Pont-Tuset and Marques (2013) 43: (i) Preci-
sion-recall for regions, using a pixel-wise comparison for overall performance in terms of
F1−measure; and (ii) Probabilistic Rand Index (PRI), a pixel-wise measure that considers
the multiple ground truths presented for each image on the BSDS500 dataset. Table 4.1
presents the results for both metrics. The F1−measure results for regions are presented
in terms of the optimal dataset scale (ODS), optimal image scale (OIS), and average pre-
cision (AP) through all scales, and the PRI in terms of ODS. The superior results of GIG

43. Pont-Tuset Jordi and Marques Ferran (2013). Measures and meta-measures for the supervised
evaluation of image segmentation.
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Figure 4.11: Pair-wise F1−measure results (red dots) on the best scale for each method, counting each
image on the test set. The values in the boxes is the number of images that are better for a
particular method. Proposed is better than all compared method, with statistical significance
(p−value less than 10e-17).

on all metrics indicate that the strong borders combined with the uniform region informa-
tion positively impact the hierarchies of watershed segmentation. Finally, in Fig. 4.11, we
present a pair-wise comparison of individual images on the best scale of each compared
method. As one can see, the proposed GIG produces considerably better-segmented im-
ages and are all statistically significant (p−value less than 10e-17).

Table 4.1: F1−measures for regions and PRI presented in terms of the optimal dataset scale (ODS),
optimal image scale (OIS) and average precision (AP) through all scales. Perfect score=1.

F1−measure for regions PRI

Gradient ODS OIS AP ODS

GIG 0.620 0.688 0.507 0.786
SED 0.559 0.617 0.477 0.746
Sobel 0.579 0.655 0.481 0.742
Laplacian 0.511 0.583 0.476 0.741

Final considerations on the segmentation task

This investigative step verified the viability of the proposed representation as a gradi-
ent applied to the segmentation task. GIG and other popular gradient methods, namely
SED, Sobel, and Laplace, were used as input for the watershed hierarchies segmentation
method that relies on a good image gradient. GIG on the structured input proved to be
not only viable but also considerably faster to train than the structured output in SED.
Also, a quantitative analysis of the produced segmentations confirmed the visual results
and demonstrated that GIG is a better candidate for creating image gradients for the
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segmentation task.

4.4.3 Extended formalism

The GIG representation considers the type of graph, its proximity to the original
data, and the expected results, allowing the processing of the graphs as regular data with
a fast machine learning algorithm and avoiding the long computations of graph networks.
The last investigative step extends the GIG formalism to exploit better the relationships
modeled by the graphs, mainly focusing on the RF mechanics and limitations. Namely, it
proposes:

1. Region adjacency graphs (GIG-RAG): Extends the formalism from the bijec-
tive correspondence of vertices and pixels in GIG to vertices and a set of regions
produced by an initial segmentation into image superpixels. This approach could
reduce the number of data points during training and impact the gradient and the
computational cost;

2. Positional features (GIG-Positional): The vertices corresponding to the pixels
on the image’s border have an incomplete set of neighbors. In GIG, they received
padding values that disregarded the missing value’s position on the regular represen-
tation. In the positional feature approach, it only takes the vertices with a complete
set of adjacent vertices to avoid changing the feature connotation during training;

3. Unique paths (GIG-Unique): The regular representation of the grid graph in
GIG is redundant, meaning not all values are unique as the vertices on the grid path
share some neighbors. The unique path approach considers only the first instance
of a neighboring vertex in a region, reducing the representation’s size and allowing
the region’s expansion.

Besides the extended formalism, it adds evaluations on edge detection and compar-
isons with deep learning approaches 44 45 on edge detection and segmentation. It aims to
advocate for the assertion that a good gradient for image segmentation should present
more than precise object contours by comparing it with even more accurate edge maps.
And for completeness, it also evaluates GIG-Edge, the GIG variant considering only edge
attributes.

This step presents the quantitative analysis for edge detection and segmentation tasks,
using the F1−measure for the precision-recall metrics for boundaries and regions. It also

44. Xie Saining and Tu Zhuowen (2017). Holistically-nested edge detection.
45. Liu Yun et al. (2019). Richer convolutional features for edge detection.
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assesses the Probabilistic Rand Index (PRI) 46 measure. Results are in terms of the optimal
dataset scale (ODS), optimal image scale (OIS), and average precision (AP) through all
scales. The scales for the boundaries are different thresholds applied to the edge maps to
create a binary image and, for the regions, the desired number of segmented regions.

GIG defined on region adjacency graphs

The proposed region adjacency graph approach (GIG-RAG) reduces the number of
vertices by presenting regions of grouped pixels in the set of vertices instead of a single
pixel as in GIG. The GIG-RAG requires a strategy to group the pixels and considerations
for edges, weights, and label attribution.

Given an edge-weighted grid graph G = (V,F) and a set SI = {r1, . . . , rR} of grouped
pixels into R regions for an image I, the edge-weighted RAG graph Grag has one vertex
for each labeled region in SI , thus Vrag = {vl | l ∈ {1, R}}. There is an edge between
two vertices in Vrag if an edge connects two vertices in the original grid graph G, hence:
Erag = {{vp, vq} | vp, vq ∈ Vrag ∧ p ̸= q ∧ ∃{u, v} ∈ E |u ∈ rp ∧ v ∈ rq}. The set Erag

induces a unique adjacency relation on Vrag, which associates vq ∈ Vrag with Γ(vq) =
{vp ∈ Vrag|(vp, vq) ∈ Erag}. For the weighting function, it averages the edges’ weights in
G, Frag(uq, vq) = mean{F(u, v) | ∀{u, v} ∈ E |u ∈ rp ∧ v ∈ rq}.

Finally, label attribution in GIG-RAG takes a majority vote of the pixels within a
region to determine the region label. Also, because it has multiple vertices within each
region, it does not use the vertex attributes XV ; thus, GIG-RAG attributes are only the
edge weights XFrag of a regular number of closest adjacent regions. For GIG-RAG, p = 64
(no vertex attributes), and it uses the terminology GIG-RAG-R to indicate the number
of desired regions of grouped pixels, where R is in {1k, 5k, 10k, 50k}.

Despite removing the vertex attributes, GIG-RAG continues to be connected to the
media source because of the strategy required to group the pixels. However, this strategy
is closer to a modeling choice like the weighting function and adjacency relation than a
media-dependent feature.

The initial segmentation into image superpixels to group the pixels proposes a well-
consolidated method called simple linear iterative clustering (SLIC) 47. SLIC is an iter-
ative method, which clusters the pixels with the closest center, initially distributed in a

46. Pont-Tuset Jordi and Marques Ferran (2013). Measures and meta-measures for the supervised
evaluation of image segmentation.

47. Achanta Radhakrishna et al. (2010). Slic superpixels. 149300.
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regular grid, evaluates the similarity within a cluster, and recalculates the centers until
convergence. SLIC execution is fast and easy to set the parameters, and the number of
produced regions is the closest approximation to the number of desired regions passed as
a parameter.

To evaluate the impact of the superpixel quality in the GIG-RAG strategy, it adds
some comparisons with a more modern method: the superpixel segmentation with fully
convolutional networks (SpixelFCN) 48. The SpixelFCN is a deep network trained to assign
each pixel of an image, initially partitioned into a regular grid, to one of its neighboring
grids. The network is an auto-encoder, in which the encoder learns the features, and the
decoder aims to group pixels with similar features and enforce compactness. SpixelFCN
is easy to set and overall produces better regions, but as in many deep network methods,
it is limited in the number of created regions since the regular grid has a fixed size. To
increase the number of superpixels, one should increase the scale of the input image.

Positional features

RF is an ensemble of multiple decision trees in which each independent tree takes
local decisions to split the data considering a combination of features. The position of the
features is an essential factor, as the model would assume that any subsequent data in
that specific position would represent the same feature. GIG added padding values to the
vertices that do not have all neighbors in the grid path, disregarding the position that the
missing value would assume if present. GIG-Positional will take only the vertices with a
complete set of adjacent vertices, creating a more regular representation for training. Like
GIG, GIG-positional has p = 77.

Unique path

The unique path consideration tackles the redundancy created when transposing the
edge-weighted graph to a regular representation. In Algorithm 1, when it takes the first and
second adjacent neighbors, it inevitably casts repeated values to the regular representation
as many vertices share some neighbors within the grid path. While this redundancy is not
necessarily a problem, out of the 64 values obtained with two levels of neighbors with
an 8−adjacency relation, only 24 of these values are unique. The GIG-Unique approach
considers only the first instance of a neighboring vertex within a region. Removing the

48. Yang Fengting et al. (2020). Superpixel segmentation with fully convolutional networks.
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redundant values allows the expansion of the region of analysis while maintaining a similar-
sized representation.

GIG-Unique proposes two variations with an 8−adjacency relation: (i) two levels of
neighbors, a 5 × 5 grid on the original image, 24 values instead of 64; and (ii) four
levels of neighbors, a 9× 9 grid, 80 values instead of 4096. For all variations, the regular
representation has the same attributes as GIG, Gatt = {XV XF}, but different dimensions
for the edge’s attributes. The terminology GIG-U -Unique, with U in {24, 80} indicates
the number of unique values, thus |XF |, leading to p = 37 and p = 93, respectively.

Results on edge detection - extended formalism

First, it evaluates each proposed strategy’s impact on the representation performance
regarding the quality of the edge maps (illustrated in Fig. 4.12(f)-(k)). Table 4.2 presents
the relevant results in the validation set for the edge detection task. It omitted some
similar values in Tables 4.2-4.4 to avoid repetition. All variations of the GIG-U -Unique
presented similar gradients (thin contours and discreet textures) and results (less than
1.5% difference in all metrics). Moreover, all the GIG-Unique strategies had similar score
metrics to the original GIG, indicating that there is not much gain in expanding the region
of analysis and that the GIG redundancy does not compromise the RF generalization. The
GIG-Positional results indicated that the feature position is, in fact, an essential factor
during training, and the edge maps created have the best performance on the task among
all the compared proposals. GIG-Edge shares the number of regions with GIG while not
considering the vertex attributes as GIG-RAG, and the results reinforced the importance
of vertex attributes in the gradients and the score.

The GIG-RAG strategy considerably reduced the training time proportionally to the
number of regions. Nevertheless, it also reduced the performance of the task. As shown
in Table 4.2, SpixelFCN has a slight advantage over SLIC superpixels, but it is limited
on computational resources to create a larger number of regions. For instance, to make
50k regions with SpixelFCN, one must work with images scaled to ∼ 9 times the original
size. As illustrated in Fig. 4.13, the computed gradients vary with the number of regions,
fewer regions create larger superpixels, and the predicted label is applied to a larger area
creating gradients of regions instead of contours. Increasing the number of regions creates
more contour-oriented gradients, which is crucial for the edge detection task.

Table 4.3 presents the best of the proposed methods, GIG and GIG-Positional. We
compared with some leading deep methods on the task: the Holistically-Nested Edge
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(a) Input (b) Ground truth (c) SED (d) HED

(e) RCF (f) GIG (g) GIG-24-Unique (h) GIG-80-Unique

(i) GIG-RAG-50k (j) GIG-Edge (k) GIG-Positional (l) GIG filtered

Figure 4.12: Gradient computations for the input image in (a). SED, HED, and RCF present reinforced
contours of the main objects but almost no details; also, most contours are fuzzy, particularly
for SED and HED. GIG computes enhanced borders for large and small objects and firm
representations of textures. GIG-Unique gradients present thin contours close to the ground-
truth and discreet textures (g, h). GIG-RAG gradient with 50k regions computed with SLIC
presents a contour-oriented gradient with little texture information (i), the same is true for
the GIG-Edge variation (j). GIG-Positional gradients (k) have slightly stronger borders for
the main objects than GIG. In (l), the GIG gradient filtered by the morphological opening
operation presenting thicker contours.

Detection 49 (HED, illustrated in Fig.4.12(d)) and the Richer Convolutional Features for
Edge Detection 50 (RCF, illustrated in Fig.4.12(e)). Both HED and RCF produced bet-
ter edge maps (F1−measures reported by the authors). Still, they required considerably
longer training times (measured using a GPU during 10, 000 iterations on the required
augmented dataset, following S. Xie and Tu (2017)). It also includes results from SED
(illustrated in Fig. 4.12(c)), which formalism is parallel to GIG. SED, GIG, and GIG-
Positional were all trained using the same CPU, with parallelized computation over the
trees in 8 CPU cores, wherein the SED’s RF is composed of 8 trees and ours of 500. The

49. Xie Saining and Tu Zhuowen (2017). Holistically-nested edge detection.
50. Liu Yun et al. (2019). Richer convolutional features for edge detection.
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Table 4.2: Quantitative results on edge detection. F1−score for boundaries in terms of optimal dataset
scale (ODS), optimal image scale (OIS) and average precision (AP) through all scales (perfect
scores=1). Executed on the validation set.

Method ODS OIS AP

GIG 0.623 0.651 0.619

GIG-RAG-600 (SLIC) 0.441 0.471 0.461
GIG-RAG-1k (SLIC) 0.472 0.502 0.463
GIG-RAG-5k (SLIC) 0.522 0.546 0.505
GIG-RAG-10k (SLIC) 0.542 0.566 0.541
GIG-RAG-50k (SLIC) 0.593 0.623 0.587

GIG-RAG-600 (SpixelFCN) 0.498 0.525 0.448
GIG-RAG-1k (SpixelFCN) 0.509 0.538 0.474
GIG-RAG-5k (SpixelFCN) 0.553 0.581 0.562
GIG-RAG-10k (SpixelFCN) 0.546 0.571 0.554
GIG-RAG-50k (SpixelFCN) - - -

GIG-Unique-24 0.618 0.645 0.621
GIG-Unique-80 0.615 0.640 0.619

GIG-Edge 0.605 0.611 0.599
GIG-Positional 0.632 0.667 0.669

(a) SLIC 1k regions (b) SLIC 5k regions (c) SLIC 10k regions

(d) SpixelFCN 1k regions (e) SpixelFCN 5k regions (f) SpixelFCN 10k regions

Figure 4.13: Illustration of the gradient computations for the GIG-RAG strategy comparing the outputs
of both tested superpixel algorithms. Gradients from SLIC present more apparent emphasis
on the contours, while the ones from SpixelFCN preserve more texture information.
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training time reflects the gain of the structure input on GIG instead of the structured
output on SED. Furthermore, the GIG-Positional scores were comparable to SED. For
the inference time, all methods took only a fraction of a second for each image, whereas
RCF and ours were slightly faster.

Table 4.3: Quantitative results on edge detection.Comparison of the best proposed methods on the edge
detection task with some of the well-acknowledged methods on the dataset. It presents the
F1−scores for boundaries in terms of optimal dataset scale (ODS), optimal image scale (OIS)
and average precision (AP) through all scales, the training and inference time (per image) for
all compared methods. Perfect scores=1. Executed on the test set.

F1−score boundaries Train time Inference time

Method ODS OIS AP (hh:mm:ss) (s/image)

SED 0.712 0.724 0.750 03:53:18 0.452
HED∗ 0.782 0.804 0.833 11:03:42 0.215
RCF∗ 0.811 0.830 0.947 10:43:25 0.141

GIG 0.635 0.661 0.648 00:09:18 0.179
GIG-Positional 0.660 0.718 0.739 00:11:22 0.167
∗ Trained using GPU and F 1−score as reported by the authors.

Results on segmentation - extended formalism

It evaluates the segmentation task for all the proposed GIG variants, the deep methods,
and SED. Table 4.4 shows that the worst metrics are for the GIG-RAG with a small
number of regions (1k and 5k) computed from SLIC. The GIG-RAG gradients computed
from SpixelFCN and SLIC with a larger number of regions (10k and 50k) perform like some
of the best edge detection methods (SED and GIG-Positional). HED and GIG-Edge have
similar performance on the task, whereas GIG-Edge has an advantage on the PRI metric
and the AP. GIG performs better than both in all metrics. GIG-Unique underperforms
compared to GIG, except for the F1−measure dataset scale, meaning that there is a
certain number of segmented regions to choose and have more consistent results.

Finally, the RCF results outperformed GIG and the others proposed in all metrics.
The gradients produced by GIG and RCF are very different, from the detail level to the
contours’ thickness. To investigate the thickness factor, it applies the operation opening—
a well-known mathematical morphology filtering operation, consisting of one erosion to
remove small regions followed by one dilation to increase object boundaries—on the GIG
gradients to expand the contours. The erosion operation used a kernel 3 × 3 to avoid
enlarging small points, followed by a 4 × 4 dilation kernel. Figure 4.12(l) illustrates the
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Table 4.4: Quantitative results on segmentation task. Segmentation results for all compared methods when
applied as gradient input to the hierarchical watershed method. Results presented as F1−scores
for boundaries in terms of optimal dataset scale (ODS), optimal image scale (OIS), and average
precision (AP) through all scales, and for the Probabilistic Rand Index (PRI). Perfect F1−score
and PRI=1. Executed on the test set.

F1−ecore regions PRI

Gradient ODS OIS AP ODS OIS

SED 0.559 0.617 0.477 0.746 0.742
HED 0.616 0.687 0.485 0.747 0.746
RCF 0.721 0.787 0.548 0.835 0.877

GIG-RAG-1k (SLIC) 0.537 0.571 0.420 0.718 0.727
GIG-RAG-5k (SLIC) 0.540 0.580 0.427 0.728 0.729
GIG-RAG-10k (SLIC) 0.549 0.598 0.438 0.737 0.739
GIG-RAG-50k (SLIC) 0.582 0.638 0.482 0.758 0.788

GIG-RAG-1k (SpixelFCN) 0.550 0.607 0.470 0.749 0.780
GIG-RAG-5k (SpixelFCN) 0.558 0.624 0.535 0.758 0.786
GIG-RAG-10k (SpixelFCN) 0.559 0.625 0.518 0.756 0.786
GIG-RAG-50k (SpixelFCN) - - - - -

GIG-24-Unique 0.624 0.652 0.456 0.777 0.795
GIG-80-Unique 0.625 0.656 0.449 0.781 0.791

GIG 0.620 0.689 0.508 0.788 0.820
GIG-Edge 0.613 0.674 0.487 0.768 0.798
GIG-Positional 0.599 0.619 0.465 0.742 0.751

GIG (filtered) 0.645 0.715 0.556 0.832 0.885

result, where the GIG gradient presented thicker contours while retaining most of its
details.

As shown in Table 4.4, this operation resulted in better segmentation, indicating that
thick contours are crucial to the task. Also, despite the overall improved RCF results, the
GIG filtered representation outperforms RCF in the AP. It is comparable or better in the
PRI metrics, which ponder areas without consent among the annotators, such as the small
details better captured in GIG. Fig. 4.14 illustrates the segmentations with highlights on
some critical areas.

A statistical analysis for GIG to validate the segmentation results is presented in
Fig. 4.15 scatter graphics to illustrate. GIG is better than the best edge maps methods
(SED, HED, and GIG-Positional) with statistical significance (p−values < 10e− 17) and
comparable to the GIG-Unique representations (p−values ∼0.02). GIG is statistically
better than GIG-Edge (p−value < 10e−14) despite both presenting similar segmentation
metrics. The RCF comparison is with the GIG filtered version, which was still inferior to
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(a) Ground truth (b) RCF (c) GIG (d) GIGfiltered

Figure 4.14: Samples of the segmentations with 10 regions produced by RCF, GIG and GIG filtered
by the morphological operation. The black areas in the ground-truth (a) indicate regions
without consent among the annotators. Overall, the RCF (b) boundaries between regions
are cleaner. GIG (c) and its filtered version (d) have more details from the object along
with some background information. Also, the filtered version is more concentrated in certain
details and areas of the background. In the second row, region highlights to illustrate the
remarks.

the RCF (p−value < 10e− 9) despite the improvement from GIG.

Final considerations on the extended formalism

The extended formalism presented three strategies to explore larger image areas and
make changes driven by the RF mechanics to achieve a well-considered learning frame-
work operating on graphs. It demonstrated that reducing the number of data points by
grouping the image pixels before the graph creation reduced the training time but com-
promised the performance on the edge detection and segmentation tasks. Also, expanding
the analysis region by removing redundancy yielded similar results to the original pro-
posal, indicating that the initial area of study already captured the necessary information,
and the redundancy did not diminish the RF generalization in this particular application.
Finally, the strategy that considered the position of the features regarding the RF mecha-
nism resulted in better results in the edge detection task. Overall, it validated the original
selection of attributes, where GIG was superior to the grouped pixels and the positional
strategies and equivalent to the extended region.

Edge maps as gradients are commonly used as a preprocessing step in many applica-

137



Partie II, Chapter 4 – Case study: Learning on graphs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GIG (148)

SED (52)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GIG (103)

HED (97)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GIG (144)

GIG-POS (56)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GIG (107)

GIG-80-Unique (93)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GIG (115)

GIG-Edge (85)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FILTERED (83)

RCF (117)

Figure 4.15: Pair-wise comparison of the F1−measure results (red dots) on the best scale for each
method. The boxes’ values are the number of images that are better for a particular method.
GIG-Positional named as GIG-POS and GIG filtered as FILTERED.

tions because they are fast to compute and usually facilitate image analysis. Knowing the
application and the type of analysis, one should always consider if the contour-oriented
image simplification is enough for the task. The experiments proposed an application on
the hierarchical watershed. It is important to notice that the core of the hierarchical wa-
tershed resides on the cost value and the markers representing the topology of a region,
both extracted from the image magnitudes.

From this perspective, the success of this method relies on a good gradient image that
reflects the distribution of the original image. The usual gradients with well-delineated
contours provide clear extreme values for ranking, but these values are constantly con-
trasted with neighboring regions. Therefore, the depiction of uniformity and small details
in conjunction with strong contours could provide additional context.

The results showed that better edge maps do not necessarily translate to better seg-
mentation. For instance, gradients with fuzzy contours like those produced by SED and
HED are not the best candidates, despite having good metrics on the edges. The small
GIG-RAG representations are primarily gradients of regions instead of edges, yet, their
segmentation results are better than one could imagine, except for the precision metric.
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HED and GIG-Edge have similar segmentation metrics but distinct gradients: HED
has fuzzy, thick contours with little details, while GIG-Edge has thin, detailed contours.
GIG performed better than both in all metrics: GIG shares the thick contours but not the
fuzziness with HED and shares the details with GIG-Edge, plus additional information
about patterns.

To identify which characteristics command the improvement, one could examine the
GIG-Unique methods, which also performed better than HED and GIG-Edge. GIG and
GIG-Unique share sharp contours, details, and information patterns, indicating that these
are the factors that differ and improve from HED and GIG-Edge. In contrast, GIG per-
forms better than GIG-Unique and is varied by the thicker contours. The importance
of the details and pattern information is evident in the results obtained with GIG-RAG
from SLIC and SpixelFCN. While a larger number of superpixels with SLIC arrives at
more contour-oriented gradients, the pattern information preserved with SpixelFCN gives
superior segmentation metrics and values comparable with SED and HED, even with as
little as 1k regions.

Overall, gradients with thick, sharp contours perform better. But as indicated in the
qualitative analysis and the precision and PRI metrics for the filtered GIG compared to
RCF, additional details and information about uniform regions positively contributed to
the segmentation results regarding small objects and uniformity.

4.5 Case study discussion

Using the available information on the graph edges and vertices is a viable method to
represent the image graph in a learning framework. It allows controlling the representation
size and selecting the information depicted considering the type of graph, its proximity to
the original data, and the expected results. Furthermore, representing the graphs at the
vertex level allows maintaining the analyses on the discrete space by assigning a single
label for an entry. This assignment is particularly advantageous with the graph strategy
since it represents an entire region on a single vertex, and the task makes no assumptions
about the media.

The RF as the learning paradigm is fast to train with the proposed representation in
the discrete analysis space and, therefore, ideal for the experimental pipeline that requires
the investigation of multiple aspects. Also, the RF paired with the edge-weights gradient
operator acts as a regularizer diminishing noise, accentuating strong connections, and
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mitigating any eventual poor topology choice. Furthermore, mapping the RF predictions
back to the image space in the form of image gradients allows the evaluation of the results
qualitatively and quantitatively.

A quality assessment of the topology choices addressed the considerations about the
type of graph and its proximity to the original media. From the framework perspective,
all attributes are just sets of values stored on the vertices and edges of the graph. But
conceptually, the image graph creates a unique transformed space close to the spatial
domain of the images, strengthened with relational aspects on the edges of the graph.

The experimental investigation on the attribute selection established that represent-
ing larger regions through the neighboring size and the number of connections with the
adjacency relation translates into higher confidence values on the edges and less noise in
the resulting images. Also, the weighting function must characterize similarities in the
original data to be descriptive. The adjacency relation and the weighting function are
modeling choices, conditioning the interaction between the data and the graph. The RF
regularization mitigates most poor topology choices, except when the input is extremely
noisy and correlated. The final assessment of the attribute selection regards the vertex
attributes representing low-level descriptors of the image. Including the vertex attributes
in the regular representation makes a direct reference to the media but results in less
noise, stronger borders, and more details on the final image gradients, hence crucial to
the practical applications assessed.

For the rest of this document, GIG refers to the image gradients obtained by mapping
the predictions of the RF, trained on edge detection labels, and receiving the regular repre-
sentation of the selected attributes of the edge-weighted graphs as input. GIG’s gradients
are generally very descriptive, with firm contours of the objects and other characteristics
such as minor components, textures, and large uniform regions.

Gradients are commonly used as a preprocessing step in many applications because
they are fast to compute and usually facilitate image analysis, particularly for the seg-
mentation task. Compared with other popular gradient strategies, GIG’s gradients, as
input for the watershed hierarchies segmentation method, produced better-segmented
images than traditional gradient methods like SED, Sobel, and Laplace. Comparing it
with more elaborated edge maps, like the ones made by deep approaches HED and RCF,
demonstrated that the segmentation task’s performance depends on the characteristics
portrayed on the gradient. Overall, better segmentations result from gradients with thick
and sharp contours and additional details that contribute to identifying small objects,
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and information about uniform regions provides consistency.
Regarding the assessment of the extended formalism, exploring larger regions did not

yield better results or gradients, indicating that the initial attribute selection already
captured the necessary information, and the redundancy did not diminish the RF gener-
alization in this particular application. The strategy addressing the question of missing
values in the regular representation, created by the vertices of the image’s border, directly
influences the feature connotation considering the RF mechanics. Therefore, addressing
this aspect improved the results of the edge detection task.

Finally, regarding the performance of edge detection (the task the model is trained on),
the results could be better compared with the deep methods or SED. However, observing
the outputs showed that the procedures that perform better on the task are the ones with
thicker contours. This is a result of the evaluation method proposed for the dataset, which
compares each pixel with the multiple ground-truth pixels. Therefore, the representations
with a more significant margin on the contours are more likely to match the ground-truth.
Because GIG is centered on the analysis of the vertices, the more confident the RF is in
distinguishing a vertice as a contour from its surrounding vertices, the more precise the
predictions are, resulting in thinner contours. Nonetheless, the other aspects portrayed
on the gradients, such as the large uniform regions and simplified patterns, could be
considered a failure on the task, even if beneficial for other applications and descriptive
of the properties relayed by the graphs.
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Chapter 5

LEARNING ON HIERARCHICAL

ATTRIBUTES

Thus far, this thesis has shown that: (i) Hierarchies are rich structures that require
careful considerations when applied to a task (Chapter 1); (ii) There is great interest in the
literature to integrate hierarchies and machine learning in the same framework, but the
application could also be challenging and dependent on the media and task (Chapter 2);
(iii) Graphs are dynamic structures for modeling multimedia, but like hierarchies, require
thoughtful considerations when applied in a machine learning framework (Chapter 3); and
(iv) Aggregating regular representations of graph attributes with Random Forests create
a viable pipeline that is generic for the task when the label attribution is at the graph
components level but dependent on media features for a good performance (Chapter 4).

This chapter presents the culmination of the proposals, expanding the concepts and
strategies to the hierarchical data. It delivers a learning framework operating directly
on the hierarchies, focusing the formulations on the structural components. The pipeline,
illustrated in Fig. 5.1, is similar to the case study, but instead of selecting graph attributes,
it creates the regular representation from the hierarchical structure attributes.

The hierarchical construction in this chapter contemplates the same hierarchies de-
scribed in Chapter 1, with similar nomenclatures: QFZ, ALPHA, WATER-AREA, WATER-
DYN, WATER-VOL, and WATER-PAR. It presents two strategies for selecting attributes
from the hierarchical structures for regular representation. The first one, shown in Sec-
tion 5.1, uses the topological properties taking the hierarchical trees as inputs. The second
one, in Section 5.2, computes regional features deduced from the hierarchies and their con-
joined graph.

Each strategy section presents the representation, a discussion about its properties,
and experiments on the edge detection and segmentation tasks. The topological approach
provides additional information about the distribution of values in the hierarchies that
could be valuable to understand the structures within the learning framework. Therefore,
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Input GIG Graph Hierarchy Regular RF Predictions

Figure 5.1: Figure illustrating the framework from the input image to the Random forest predictions
performing the task. First, it computes the GIG gradient for each image in the dataset. Then,
it calculates the edge-weighted graphs, here illustrated with the 4−adjacency relation. The
next steps constructs the hierarchies from the graphs and creates a regular representation with
topological attributes of the hierarchical trees to serve as input for the Random Forest model.
The regular input for the training set includes the associated label: the unique discrete label
on the task for each leaf of the tree. During the test, the Random Forest subject each leaf of
the test hierarchies to prediction, where the estimated values are mapped back to the image
coordinates for evaluation.

Section 5.1.1 presents a data analysis of this representation. Section ?? offers experiments
combining different attributes and evaluations on both tasks for completeness. Finally,
Section 5.3 presents a brief discussion of the main findings in this chapter.

5.1 Topological attributes

This section presents a strategy to create a regular representation of the hierarchies
to be applied in the RF by selecting topological properties from the hierarchical trees.

Some methods presented in Section 2.1.1 propose similar approaches. For instance,
in E. Grossiord et al. (2017) 1, they use the hierarchies aggregated with RF, but the
features used as input for the RF are taken from the media guided by the regions defined
in the hierarchies. In Hu, T. Shi, et al. (2021) 2, they also use the RF as the learning
method but only for a few sampled regions in the hierarchy described by media features
and information about the regions’ geometry. In Padilla et al. (2021) 3, besides using
the hierarchies to model the correspondence between different media, they also define the
features to be applied in a Random walker method. Precisely, each represented region

1. Grossiord Eloise et al. (2017). Automated 3D lymphoma lesion segmentation from PET/CT
characteristics.

2. Hu Zhongwen, Shi Tiezhu, et al. (2021). Scale-sets image classification with hierarchical sample
enriching and automatic scale selection.

3. Padilla Francisco Javier Alvarez et al. (2021). Random walkers on morphological trees: a seg-
mentation paradigm.
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in the hierarchy is characterized as a set of attributes describing the relative distance
between a parent and a node, the number of components within the region, the barycenter
value, and the region compactness metrics. However, they do not use all regions in the
hierarchy. Instead, to reduce the number of nodes, they filter the structure by searching
for stable areas regarding each attribute and perform a majority vote to determine the
most critical regions. Their final representation is therefore suited for that task and that
media (segmentation on PET/CT images).

The proposal presented here follows a different direction. First, it avoids any feature
extracted from the media and only uses the information on the hierarchical tree. Also, it
does not select any particular region that better suits an application. Instead, the entire
structure is represented in a vectorial form that preserves its semantical arrangement.
Furthermore, the task label attribution is performed at the leaf level at the bottom of the
tree; therefore, each leaf has a unique discrete label.

To be precise, a hierarchical tree TH representing the hierarchy of partitions H =
(P0, . . . ,Pk) created from the edge-weighted graph G(V,F) has a set of nodes N , and the
depth dn of a node n ∈ N is its number of parents. At the bottom of this tree, there is a
collection of leaves L representing the partition P0, where P0 = {[P]v | ∀ v ∈ V } and each
l ∈ L corresponds to a v ∈ V . The proposed representation depicts each leaf l ∈ L as a
vector Tl of selected attributes. The selection corresponds to topological characteristics
representing a node n ∈ N by one of the following attributes:

— Altitude: the value inversely proportional to the depth of the node n.

altn = 1/dn

— Area: sum of the number of leaves on the subtree τn rooted on the node n.

arean = |{Ln} | , for Ln = {l | ∀ l ∈ τn},Ln ⊆ L

— Volume: in a tree is a value computed recursively, pondering the area, relative
altitude regarding its parent parn, and the sum of volumes of all nodes in the
subtree τn rooted in the node n. The volume of a leaf node is 0.

voln = arean × | altn − altparn
| +

∑
volc , for c ∈ childrenn

voln = 0 if n is l ∈ Ln.
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— Dynamics: correspond to the extinction value En for the height of a node n. The
extinction value is a measure of each local minimum for a regional attribute. The
attribute height is the difference between the altitude of the node parent parn and
the altitude of the deepest non-leaf node in the subtree τn rooted on the node
n. In a tree with increasing altitudes, the node extinction value En for the height
corresponds to a threshold value such that n remains minima when all nodes with
heights smaller than the threshold are removed. Intuitively, the extinction value
indicates when a region will be merged into another region.

dynn = En for the attribute height

In Tl, the selected attribute is computed for all parents of l. Each leaf has a variable
number of parents; therefore, the dimension pt of the vector Tl is standardized by the
maximum depth in all TH computed for a dataset. Also, the leaves with a smaller set of
parents than the maximum depth receive a padding value of -1 because the attributes
considered for the selection have all positive values. To be precise, the range for the
attributes alt and dyn is [ 0, 1 ], and for area and vol is [ 0, |L| ].

To keep the semantical meaning in the regular representation, the attributes repre-
senting the parents of a leaf node are put in the order they appear transversing the
hierarchical tree. The order could be ascending (from leaf to root) or descending (from
root to leaf).

From the case study in GIG representation, there is the question of label attribution.
Considering that there is a direct correspondence between the set of vertices in the graph
and the set of leaves in the tree, the same assumptions about a single label for an entry
agnostic for the task are also valid for this part of the study. However, while the assignment
on the graph allowed representing an entire region on a single vertex, on the hierarchy,
the single label represents multiple regions that share a path on the tree.

Definition 14: Regular representation of hierarchical topological attributes
The proposed regular representation on topological attributes TH of a hierarchical
tree TH in the set T of all hierarchies in a dataset is: TH = ((T1, Y1), . . . , (T|L|, Y|L|)).
In TH, each leaf l ∈ L is represented as a vector Tl with a single label Yl . Tl =
[[topo(par1), . . . , topo(parpar)]] for all par parent nodes in the set Pl of parents of l,
and topo ∈ {alt, area, vol, dyn} for the attribute candidates.
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The size of Tl is pt and pt = max(dn) , ∀n ∈ N in all TH ∈ T. If |Pl| < pt, a padding
value -1 fills the remaining positions in the vector Tl.

The training input Dt on topological attributes for the RF concatenates all the TH
of the hierarchies TH ∈ T that corresponds to a training instance on the dataset, where
Dt = ((T1, Y1), . . . , (TTl

, YTl
)) and Tl is the total number of leaves in the training set.

For the test instances, the procedure takes the regular representation of each hierarchy in
the test set and individually subjects them to the RF estimations without the labels.

Algorithm 2 describes the steps to create and store the regular representation on
topological attributes for both the training input Dt and the individual test instances.
For clarity, the operations not detailed in Algorithm 2 are:

— getDepth(hierarchical tree): gets the maximum depth in the hierarchical tree.

— max(list): retrieves the maximum value in a list of values.

— empty[[nrows, ncols]]: allocates an array memory space of size number of rows by
the number of columns.

— getLabel(leaf): gets the ground-truth label for a leaf node.

— negativeOnes[[size]]: creates an array filled with the negative one value of size size.
The operation plays a dual function: it allocates the necessary memory and acts as a
padding value outside the valid range of the candidate attributes for the leaf whose
set of parents is smaller than the maximum depth in the entire dataset.

— getParents(leaf): gets the list of parents for a leaf node.

— invert(list): invert list order.

— getAttribute(attribute, node): computes the node specified attribute.

— index(element, list): retrieves the index of an element on a list.

— append(array): appends array vector to another array row-wise.

The following sections will investigate this representation where: (i) Section 5.1.1 in-
spects the question about the representation order regarding the way to transverse the
hierarchical tree and presents a data analysis of the feature distribution in the topological
representation; and (ii) Section 5.1.2 shows some experiments, evaluating the proposed
strategy in the image tasks.
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Algorithm 2: Regular representation topological attributes
Input : T: a set of hierarchical trees computed for a dataset, a parameter

topo ∈ {alt, area, vol, dyn} indicating the topological attribute to be
computed, and a flag order indicating if the representation is from root to
leaf (descending) or leaf to root (ascending).

Output : Dt: a regular training input for the learning framework, and a regular
representation TH for all TH in the test set.

Function getRegular (TH , pt):
1 TH = empty[[ | L | , pt + 1 ]]
2 if TH isTrainInstance then
3 Y = getLabel(l) for all l ∈ L
4 TH[[ : , pt + 1 ]]← Y // leaves labels at added column at the end
5 else TH = TH[ | L | , pt ]
6 for l ∈ L do
7 Tl = negativeOnes[[ pt ]]
8 parentList = getParents(l)
9 if order==descending then parentList=invert(parentList)

10 for par ∈ parentList do
11 attp =getAttribute(topo , par)
12 Tl[[index(par, parentList)]]← attp

13 end
14 TH[[ leaf, : ]]← append(Tl)
15 end
16 return TH

Main:
1 for TH ∈ T do
2 depthList=getDepth(TH)
3 end
4 pt = max(depthList)
5 Dt = [[ ]]
6 for TH ∈ T do
7 TH=getRegular(TH , pt)
8 if TH isTrainInstance then
9 Dt ← append(TH)

10 else save(TH)
11 end
12 save(Dt)
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5.1.1 Data analysis: Topological representation

Understanding the distribution of the values using the topological representation is
beneficial to guide the decisions regarding the learning step and better comprehend the
hierarchical structure.

Representation order assessment

The first assessment regards the order of the regular representation on the leaves. The
goal is to keep the semantical meaning in the hierarchical tree by preserving the order
modeled in the structure. However, the set of parents for a leaf could either be taken from
root to leaf (descending) or leaf to root (ascending).

It is crucial to notice that another consequence of the multiformity in the hierarchies
is that different leaves have a variable amount of parents on the structure. Furthermore,
it may not be an alignment between the feature position in the regular representation
and the parent position in the hierarchical tree. For instance, in the ascending order,
the first parent of a leaf node occupying the first position on the feature vector could
be close to the root if, in its path, there are few hierarchical levels. While for another
leaf node, there are many levels in the path, and the parent with a semantic equivalence
with the first one will be many positions later in the feature vector. The GIG extended
experiments in Section 4.4.3 indicated that the RF performs better when there is a mean-
ingful correspondence between the features and the position they assume in the regular
representation.

To investigate this aspect and select an order for the topological approach, the exper-
iments in this section train a RF classifier with 150 estimators and the regular represen-
tation created with both orders, referred to as Ascending and Descending. The labels for
the training set are for the binary segmentation task on the Birds dataset—the smallest
and more critical collection of images in the experiments with the typical pipeline (Sec-
tion 1.6). It trains one model for each hierarchy (named ALPHA, QFZ, WATER-VOL,
WATER-PAR, WATER-AREA, and WATER-DYN) and each attribute in question: alti-
tudes (named alt), area, dynamics (named dyn), and volume (named vol). The classifier
predictions for each leaf on the binary segmentation labels are directly mapped back to
the image space for evaluation. The evaluation metric is the Jaccard score.

Table 5.1 presents the results obtained with each representation for each topological
attribute grouped by the representation order in question. The results demonstrate that
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Table 5.1: Quantitative results (Jaccard score metric for the classifiers predictions) on the segmentation
task. Comparison of the results obtained with the two representation orders on the different
hierarchical types for the proposed attributes. Bold values are the best between the two and
red the best among all. Perfect score=1.

Ascending Descending

Hierarchy Dimensions Alt Area Dyn Vol Alt Area Dyn Vol

QFZ 106 0.139 0.308 0.154 0.263 0.070 0.148 0.123 0.104
ALPHA 13 0.167 0.177 0.165 0.175 0.153 0.153 0.140 0.142
WATER-VOL 232 0.196 0.256 0.190 0.240 0.062 0.172 0.132 0.149
WATER-AREA 82 0.203 0.208 0.165 0.210 0.178 0.179 0.149 0.170
WATER-DYN 81 0.178 0.303 0.173 0.278 0.063 0.109 0.137 0.165
WATER-PAR 66 0.222 0.240 0.217 0.209 0.197 0.270 0.111 0.166

the ascending order produces a better model for this strategy.
Although a complete interpretation of the features and values in the RF model may

be challenging due to the size of the model and the data, some valuable clues could be
excerpted by probing the model nodes. Therefore, to provide some clarity on the relation
between the model and the order of the features on the training data, it is proposed to
inspect the feature position importance on the decision nodes of the model and probe
the values used for the split to investigate how one distribution favors the learning step.
Specifically, after training, it inspects the model Gini importance of a feature position,

computed as the normalized total reduction of the criterion brought by that feature.
Furthermore, it gathers per feature position the value used for the split in every split
node and every tree in the forest.

Fig. 5.2 presents some selected representations for this dataset. Namely: (i) QFZ-area
(the best result); (ii) WATER-VOL-altitudes (the worst result); and (iii) WATER-PAR-area
(the only one with descending order performing better than ascending).

The charts in Fig. 5.2 show that essential features for the classifier in the ascending
order occur at the initial positions of the feature vector for all representations. It indicates
that most decisions are based on the values at the bottom of the hierarchical structure.
For the descending order, the importance distribution has a normal shape, occurring at
different stages for different hierarchies. Presumably, the importance also favors lower
levels of the hierarchical tree, but the features start to represent them later in the vector.

Interestingly, when contrasted with the value distribution, it is possible to verify that
the decision nodes in the ascending order favor valid values in the representation and, at
large, ignore the padding values. The same is not true for the descending order, where the
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Figure 5.2: Illustration of the feature importance and data value distribution inside decision nodes of the
RF. Red charts (top-rows) are for the feature importance in the model, showing in percent
the importance a feature has on the RF decisions. Blue charts (bottom-rows) are the value
frequency occurrence in a decision node for the split, where -1 indicates padding values for the
altitude attribute and -6 for the area (area presented in log10 scale for better visualization).

padding value frequently occurs in all charts in the decision nodes. WATER-PAR-area is
the only representation in descending order that performs better than ascending and the
one where the padding value is less frequent in the model (4.23%) among all types.

Another critical observation regards the value distribution on the worst representation
for this dataset (WATER-VOL-altitudes). Besides representing the largest dimension,
most of the model’s decisions are made in a very small range of values. The following
section will assess the data distribution of each representation and attribute.

The other results that are not illustrated held for the observations regarding the rep-
resentation order and distribution. Therefore, for the remainder of the experiments with
the topological strategy, explore only the ascending order.
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Table 5.2: The table shows the training data overview per dataset. It contains the total number of leaves
(#—training sample), the feature vector dimension (Dim—maximum depth in dataset), and
the percent of padding values in the regular representation (Padding %—number of positions
in the feature vector where parent set is smaller than maximum depth).

BSDS Birds Sky

Hierarchy # Dim Padding(%) # Dim Padding(%) # Dim Padding(%)

QFZ

30
,8

80
,2

00

149 25.46

10
,3

31
,5

20

107 17.42

10
,3

90
,1

86

101 18.53
WATER-DYN 122 37.16 82 20.61 79 21.25
ALPHA 18 79.99 14 74.47 15 75.40
WATER-VOL 239 78.80 233 73.75 241 64.51
WATER-AREA 80 69.85 83 65.98 76 57.41
WATER-PAR 69 65.51 67 58.05 58 51.77

Data distribution: topological representation

Individual inputs will construct a different hierarchy, but analyzing the values in the
training set gives a notion about the global distribution.

Table 5.2 presents a summary of the training data per input dataset. Each leaf on the
hierarchy corresponds to a vertice on the graph, which in turn corresponds to a pixel on
the image. Creating the training data on the leaf level produces sizable data sets. The
RF mechanics allows to work with such dimensions, but a different model would require
a strategy to deal with the sample size.

Regarding the feature vector dimension, the length varies between the hierarchical
types but is partially constant for the same type between the datasets. The most abrupt
change happens for the BSDS500 dataset and the contour-oriented representations QFZ
and WATER-DYN if compared to the other two datasets. This indicates that more hier-
archical levels were constructed, which could result from the highly patterned images.

The two extremes in the feature vector size are ALPHA and WATER-VOL. At one end,
ALPHA has a maximum of 18 dimensions, while WATER-VOL presents over 230 levels
(which could pose difficulties for the learning process). Interestingly, both types represent
the most significant amount of padding values, where over 70% of all values are padding.
Other hierarchical types also have a considerable amount of padding, namely WATER-
AREA and WATER-PAR (more than half of all values). The only two types with more
valid values than padding are QFZ and WATER-DYN. The excessive padding indicates a
large variety on the hierarchical levels, which is not surprising but can negatively impact
the learning process. Inspecting the data by feature position shows that only the first 3
to 5 positions (number of parents) do not contain any padding.

Regarding the distribution of valid values, Fig. 5.3 illustrates, for all hierarchies and
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Figure 5.3: Visual distribution of the values distribution on the Birds dataset. Presents all considered
hierarchical types and attributes.

155



Partie III, Chapter 5 – Learning on hierarchical attributes

attributes considered, the values’ occurrence in the Birds’ training set, regardless of their
position on the feature vector. The distribution portrayed considers only the valid values
without the padding.

Most values have minor occurrences in all representations (less than 2%), which is
not a problem if the model could capture these unique values for the prediction. QFZ
and WATER-DYN present similar contour maps; as expected, the distribution of their
values is also similar for all attributes except dynamic. In WATER-DYN, higher values
of the dynamics attribute (above 0.8) are better distributed than in QFZ, indicating that
WATER-DYN construction still discerns regional minima areas at higher levels, and QFZ
has the steepest climb close to the root. These differences could be perceived in their
contour maps, where QFZ have the sharpest edges on the main contours (see Fig 1.4 for
an example).

WATER-VOL, WATER-AREA, and WATER-PAR all have similar contour maps and
similar distributions by attribute. The most discernable is WATER-PAR, with slightly
more evenly distributed values. There are some similitudes in the ALPHA and WATER-
VOL structures; for instance, both present most of their values at lower altitude levels,
but their extinctions values are disparate. A closer look at the area attribute shows that
most of the regions in ALPHA are either very small or very large, while in WATER-VOL,
it increasingly accumulates towards larger areas. In fact, WATER-VOL has the smoothest
distribution of area among its peers (WATER-PAR and WATER-AREA).

The experiments in the typical pipeline (Section 1.6) showed that individual inputs
from different datasets and hierarchical types have very distinct structures to analyze
with the horizontal cut strategy. However, when grouped in a single set, the different
hierarchies present the same behavior for various attributes.

The observations in this section made for Birds could also fit the other two datasets.
Table 5.3 shows a summary of the distribution of the values for all hierarchical types and
considered attributes, and as one can see, despite their visual differences, the training set
of data is very similar between datasets.

The BSDS500 is distinguished from the others by the number of unique values. Still, it
also has three times more samples, and the distribution overall is similar by the mean and
standard deviation. Another distinction regards the area attribute on the Sky dataset, in
which the mean and deviation are considerably higher than the others, especially since
the number of unique values is a par with the other similar-sized dataset. This indicates
that the construction algorithms are grouping larger areas under the same node, which is
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Table 5.3: The table presents distribution values for the topological approach for all datasets, hierarchical
types, and considered attributes. It offers the number of distinct values (unique) , the mean, and
the standard deviation (std) for a particular representation. Distinguished areas are highlighted.

Altitudes

BSDS Birds Sky

Hierarchy Unique Mean Std Unique Mean Std Unique Mean Std

QFZ 6,218 0.458 0.272 2,195 0.427 0.257 2,359 0.418 0.254
WATER-DYN 5,594 0.414 0.259 1,362 0.432 0.263 1,605 0.414 0.258
ALPHA 3,154 0.235 0.146 1,395 0.273 0.169 1,516 0.271 0.170
WATER-VOL 163,014 0.005 0.029 38,425 0.005 0.030 37,982 0.002 0.018
WATER-AREA 45,967 0.018 0.057 11,383 0.015 0.056 10,656 0.009 0.039
WATER-PAR 23,295 0.039 0.085 5,674 0.029 0.074 5,713 0.029 0.071

Dynamics

BSDS Birds Sky

Hierarchy Unique Mean Std Unique Mean Std Unique Mean Std

QFZ 4,825 0.371 0.235 1,632 0.321 0.199 1,822 0.328 0.206
WATER-DYN 5,593 0.414 0.259 1,361 0.432 0.263 1,604 0.414 0.258
ALPHA 5,033 0.515 0.332 2,237 0.508 0.311 2,410 0.508 0.314
WATER-VOL 163,013 0.005 0.029 38,424 0.005 0.030 37,981 0.002 0.018
WATER-AREA 45,966 0.018 0.057 11,382 0.015 0.056 10,655 0.009 0.039
WATER-PAR 23,294 0.039 0.085 5,673 0.029 0.074 5,712 0.029 0.071

Area

BSDS Birds Sky

Hierarchy Unique Mean Std Unique Mean Std Unique Mean Std

QFZ 21,051 56,279 59,354 8,003 91,001 126,990 8,706 77,596 101,303
WATER-DYN 20,372 51,835 57,413 7,587 72,631 116,024 8,331 65,034 93,319
ALPHA 2,070 6,214 14,253 898 8,743 41,102 899 13,716 44,769
WATER-VOL 30,138 27,559 27,245 14,510 22,901 33,002 16,060 46,176 61,011
WATER-AREA 17,837 19,959 23,838 9,340 16,567 29,684 8,943 28,003 49,108
WATER-PAR 18,470 21,121 25,357 9,392 18,427 40,202 8,881 24,216 45,600

Volume

BSDS Birds Sky

Hierarchy Unique Mean Std Unique Mean Std Unique Mean Std

QFZ 187,316 7,304 23,633 62,928 5,966 31,109 65,689 5,335 26,558
WATER-DYN 165,729 5,109 19,195 48,941 5,912 31,676 51,523 5,430 27,345
ALPHA 108,255 320 5,637 42,573 255 7,030 42,590 322 7,427
WATER-VOL 1,276,149 45 1,689 351,126 76 3,456 304,232 63 3,043
WATER-AREA 530,230 113 2,572 149,179 174 4,996 128,934 158 4,706
WATER-PAR 361,415 187 3,287 103,549 264 6,339 91,036 270 5,863

interesting giving the nature of the dataset task.
Overall, the quantitative analysis reinforces the visual one: (i) WATER-VOL, WA-

TER-AREA, and WATER-PAR present small regions and variation (create various unique
values with low mean and std), particularly for the attributes altitudes and dynamics;
(ii) the three types have similar distribution among them, where WATER-VOL is more
spread out than the others (considerably more unique values but similar mean and std);
(iii) ALPHA creates fewer regions than the other hierarchical types (less unique) with
abrupt changes on the tree levels (relatively large deviation); and (iv) the differences
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between QFZ and WATER-DYN are subtle. One separate observation derived from the
information in Table 5.3, is that the distribution for the attributes altitudes and dynamics
are nearly identical for the region-oriented hierarchies.

Perhaps the most valuable analysis when preparing data for machine learning is corre-
lation and co-variance, but given the size of the data, both in the number of samples and
feature size, coupled with the variation on individual values, any meaningful analysis in
those terms would be overwhelming. Opportunely, the RF model is lenient in its execution
time and generalization capability, allowing further assessment through experimentation.

5.1.2 Experiments: Topological representation

This section shows the experiments with the topological approach on the two im-
age tasks: edge detection in the BSDS500 dataset and segmentation in Birds and Sky.
The pipeline takes the colored images in the datasets and computes the GIG gradient
without any additional preprocessing of the images. Next, it constructs the graph with a
4−adjacency and the Euclidean distance on the gradient for the weighting function.

The hierarchy construction explores the aforementioned hierarchies: QFZ, ALPHA,
WATER-VOL, WATER-AREA, WATER-DYN, and WATER-PAR. It does not perform
additional post-processing, such as filtering the hierarchies, realigning, or balancing the
levels. The regular representation takes all the topological attributes considered for selec-
tion: altitudes, area, dynamics, and volume. The models are trained separately without
a combination of hierarchical types or features. Like in GIG, the label attribution for the
tasks is discrete and binary but at the leaf level instead of the vertex.

For the BSDS500, the pipeline uses a RF regressor as a model, where the average
predictions are mapped back to the image domain for evaluation. It allows comparisons
with other methods by using the proposed evaluation system for boundaries that takes
an edge map and threshold the values in the range [0, 1[ with a 0.01 step computing
the F1−score at all scales. Usually, the results are then presented in terms of optimal
dataset scale, optimal image scale, and average precision. However, due to the number of
variations considered and for clarity, the results presented in this section for the BSDS500
are only for the optimal dataset scale. It gives the score obtained in the threshold that
best represents most images, averaging the predictions, which is the best to evaluate the
overall performance and the most challenging.

For the segmentation datasets, the pipeline considers a RF classifier where predictions
for each leaf on the binary segmentation labels are directly mapped back to the image
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Table 5.4: Final parameters for the grid search results for the Random Forest : number of trees in the
forest (est), the minimum number of samples to split an internal node (split), the minimum
number of samples to be a leaf node (leaf), percent for the bootstrap sample size (samples),
amount of sampled features for the split (feat - a function on the whole set of features), and
the maximum depth of the trees (depth).

Altitudes Area

Hierarchy est split leaf samples feat depth est split leaf samples feat depth

QFZ 40 5 4 10% sqrt None 500 10 2 10% sqrt 100
ALPHA 20 10 20 50% log2 10 300 10 20 10% sqrt 10
WATER-VOL 300 10 20 10% auto 100 300 2 20 10% log2 100
WATER-AREA 50 10 1 10% auto 10 80 2 2 75% auto 10
WATER-DYN 100 2 4 10% log2 50 70 5 10 50% auto None
WATER-PAR 500 5 20 All sqrt 10 80 2 20 10% sqrt 10

space for evaluation. In this case, the evaluation metric is the Jaccard score.

Random Forest parameters

For the Random Forest parameters, it performs a grid search using the Random For-
est classifier for all hierarchies and the attributes: area and altitudes. The grid search
evaluation takes the F1−score on the edge detection task in the BSDS500 dataset in the
validation set. The RF parameters in consideration are: (i) number of trees in the forest;
(ii) minimum number of samples to split an internal node; (iii) the minimum number of
samples to be a leaf node; (iv) percent for the bootstrap sample size; (v) amount of sam-
pled features for the split; and (vi) the maximum depth of the trees. Table 5.4 presents
the final parameters for each representation.

Due to the number of variations and the similitudes in the data distribution, the final
parameters for altitudes will also be used for dynamics, and the ones for the area be
used for volumes. Also, the search contemplates only the BSDS500 because it is the most
extensive set, with more unique values, and the only one provided with a validation set.
The final parameters for BSDS500 will be used for the other datasets.

Quantitative analysis

Table 5.5 shows the results for all variations on the three datasets compared with
the best scale on the typical trivial approach (cut by threshold on altitude levels and by
the number of regions—Section 1.6) and the representations from graph attributes (from
Section 4.4.3). The graph’s results are the best with the GIG, the best with only the edge
attributes (GIG-Edge), and the best with only color features (onlyColor).

159



Partie III, Chapter 5 – Learning on hierarchical attributes

Table 5.5: Quantitative comparison of the results obtained in all datasets for the graph representation, the
typical, and the topological approach. F1−score for best dataset scale for the BSDS500 and
average Jaccard score for Birds and Sky. Emphasizes the best scores per approach variation; a
green highlight for the best values per dataset for the topological approach; and red emphasis
on the best score among strategies per dataset. Perfect scores=1.

BSDS Sky Birds

G
ra

p
h GIG 0.65 0.86 0.29

GIG-Edge 0.61 0.78 0.27
onlyColor 0.64 0.85 0.28

T
yp

ic
al

Hierarchy Threshold Regions Threshold Regions Threshold Regions

ALPHA 0.21 0.33 0.00 0.00 0.15 0.13
QFZ 0.26 0.28 0.45 0.01 0.30 0.05
WATER-DYN 0.27 0.42 0.79 0.13 0.29 0.15
WATER-VOL 0.20 0.55 0.89 0.87 0.36 0.24
WATER-AREA 0.24 0.53 0.83 0.83 0.30 0.22
WATER-PAR 0.24 0.53 0.90 0.86 0.32 0.24

T
op

ol
og

ic
al

Hierarchy Alt Area Dyn Vol Alt Area Dyn Vol Alt Area Dyn Vol

ALPHA 0.63 0.55 0.60 0.61 0.67 0.81 0.61 0.78 0.18 0.18 0.15 0.15
QFZ 0.60 0.60 0.57 0.58 0.67 0.90 0.47 0.89 0.14 0.37 0.07 0.15
WATER-DYN 0.64 0.62 0.62 0.63 0.67 0.92 0.47 0.90 0.17 0.20 0.06 0.11
WATER-VOL 0.57 0.58 0.53 0.56 0.90 0.96 0.90 0.95 0.26 0.37 0.06 0.17
WATER-AREA 0.51 0.50 0.46 0.48 0.85 0.82 0.84 0.82 0.26 0.31 0.18 0.18
WATER-PAR 0.54 0.54 0.50 0.51 0.91 0.95 0.72 0.92 0.28 0.41 0.20 0.27

Compared with the typical approach, the topological strategy improves the results
for almost all hierarchical types for all datasets (except for WATER-DYN in Birds). The
additional benefit is that it does not require an empirical search on the hierarchical levels
and regions for evaluation. Furthermore, the proposed approach presents the best results
among all the compared methods in the segmentation datasets. In edge detection, the
GIG approach is slightly better than the best on topological (WATER-DYN altitudes).
Also, the graph and the topological perform better than using only the color.

Regarding the individual hierarchical types, the most significant improvement from
the typical is the ALPHA hierarchy in all datasets. Parsing and binarizing the ALPHA
structures with horizontal cuts is very difficult. However, the regular representation with
topological attributes captures enough information for the learning model to discriminate
between classes. Furthermore, the number of padding values did not disturb the model
performance in any hierarchical type. WATER-VOL with area attributes is even the best
variation for the Sky dataset.

The attribute altitudes perform better on the edge detection and the area on the seg-
mentation, which matches the task goals with the attributes’ properties. Despite slightly
worst results, the attributes dynamics and volume have similar values with their counter
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5.1. Topological attributes

attributes (altitudes and area, respectively).
Regarding execution times, the entire pipeline is very fast to compute. On average,

creating the regular sets takes 500 seconds for all the +30 million leaves and the test
instances on the BSDS500. Birds and Sky, with +10 million, takes 40 seconds on average.
These time measures include the initial pass to retrieve the maximum depth in the dataset
and the IO operations. In Algorithm 2, there are two nested for loops. However, they are
included to facilitate the comprehension of the structure. In practice, all hierarchical im-
plementations use the Higra python module 4, which provides fast functions that retrieve
parents and attributes in real-time through efficient indexation.

The training time using the scikit 5 RF parallel implementation over 50 CPU cores
is relative to the number of trees and representation size. On average, the training takes
less than ten minutes for most variations. Nevertheless, the models with 300 or 500 can
take as long as 2 hours to train. With a feature vector with 230 dimensions and 300
RF estimators, WATER-VOL takes almost 6 hours to complete the training. Above all
else, the longest step on the pipeline is the external evaluation of the BSDS500. The
benchmarked algorithm takes approximately 4 hours to process each variation.

The most critical aspect of the topological approach regards the computational re-
sources required to process large sets of data. Most variations could be processed with a
typical 8GB RAM machine, but the WATER-VOL representation with over 230 feature
vector dimensions in all datasets and the BSDS500 with 30 million leaf samples regardless
of the attribute (except ALPHA) demand over 20GB memory. WATER-VOL on BSDS500
requires over 30GB. Just storing the data on the CPU memory could be challenging. The
RF random sampling makes it robust for this issue, but it may pose a problem for other
models.

Final considerations on the topological approach

Representing the hierarchical structures by taking the entire set of parents of a leaf
retains the semantical information embedded on the hierarchical trees without the need
to filter or select a particular level for evaluation. Also, making the representation at the
leaf level allows the discrete label attribution that does not demand considerations specific
to a task. Furthermore, using only the topological attributes from the hierarchical tree
structure allows for constructing a generic model for the media.

4. Perret B. et al. (2019). Higra: hierarchical graph analysis.
5. Pedregosa Fabian et al. (2011). Scikit-learn: machine learning in Python.
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Partie III, Chapter 5 – Learning on hierarchical attributes

Experiments with the topological approach showed that it not only contains crucial
information about the hierarchies but also improves the typical approach’s performance
in both tasks. Particularly for the ALPHA representation, which in the trivial method
had close to zero performance in all tasks and datasets on the topological approach, it is
competitive with other contour-oriented types (with only a few dimensions).

Regarding the representation choices, the attributes altitudes and area presented the
best results for the task most related to the information they portray. For the hierarchi-
cal types, overall, the contour-oriented representations give the best results in the edge
detection task and WATER-VOL and WATER-PAR in the segmentation task.

The topological strategy constructs a regular representation that could be used in
most available learning models. However, the dimensions of this representation could
be challenging in terms of computational resources. The efficient implementations for
hierarchical structures and the flexibility of the RF model allow working with these sizable
structures. However, considering that most of the feature positions are filled with padding
values, one may wonder if it is not possible to create another regular representation that
also preserves the semantical structure but is reduced in size.

5.2 Regional attributes

The second strategy proposes using a set of regional attributes to represent the hierar-
chical structure instead of the topological ones. Procedurally, this approach is equivalent
to performing horizontal cuts by altitude levels, but rather than creating a representation
for each cut and evaluating them individually, the proposed method represents all of them
systematically as a regular representation.

Equally to the topological approach, the regional strategy avoids any feature extracted
from the media and only uses the information on the hierarchical tree and the conjoined
graph. Similar methods in the literature (Section 2.1) use the region defined in the hierar-
chies to gather features from the media or even extract subparts of the input to bolster the
learning model. By keeping the formulation on the structures, the proposed framework
evades making any decision at the media level and relies on the already modeled data on
the graphs and hierarchies.

Like before, the challenge in the framework is to create a regular representation that
could be used by the learning algorithm while preserving the important information on
the structures. The topological approach made a vectorial representation for each leaf
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5.2. Regional attributes

on the hierarchical tree, portraying its parents’ topological attributes. In the regional
process, it is proposed the same leaf-centered representation. However, each position on
the feature vector portrays a selected characteristic of the region created by a horizontal
cut on altitude levels that contains said leaf.

To be precise, a hierarchical tree TH representing the hierarchy of partitions H =
(P0, . . . ,Pk) created from the edge-weighted graph G(V,F), denoted as the conjoined
graph, has a set of nodes N and k levels. Each node n ∈ N represents a region Rn that
is the union of all regions on the subtree τn rooted on the node n. RH is the set of regions
of H and the union of all partitions of H. A cut is a partition P of V made of regions of
H. A horizontal cut is a partition P = Pi for i ∈ {0, . . . , k}. A horizontal cut by altitude
levels defines the partition by a threshold σ on its altitude values. Two regions R and R′
are in the same region Rn if n is their lowest common ancestor that have altn > σ.

At the bottom of this tree, there is a collection of leaves L representing the partition
P0, where P0 = {[P]v | ∀ v ∈ V } and each l ∈ L corresponds to a v ∈ V . Consider β as a
series of altitude levels to cut the hierarchy H. The proposed representation depicts each
leaf l ∈ L as a vector Rl of size |β|. At each position of this vector, there is a cut Pσ for
σ ∈ β. Thus, the leaf l is represented by a selected regional attribute for the region Rn

where n is the lowest parent of l whose altn > σ. The attribute selection corresponds to
one of the following:

— Area: Represents the same concept as in the topological approach; however, the
regional analysis defines the number of leaves on the region Rn created by the cut
on node n.

areaRn = |{LRn}|, for LRn = {l | ∀ l ⊆ Rn},LRn ⊆ L

— Contour strength: The contour of a node in the hierarchical tree ζ is the number
of edges on the conjoined weighted graph shared among the regions merged by a
node. The contour strength is the average of edge weights on the contour.

contourRn =
∑{F(u, v) | ∀u, v ∈ ζ}

|ζ|
where: ζ ={(u, v) ∈ E | ∀u ∈ R ∧ v ∈ R′ and ∀R,R′ ⊆ Rn}

— Inertia: Computes Hu’s first moment of inertia for the node n characterizing the
shape of the region Rn. This regional attribute can only be computed if the conjoint
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Partie III, Chapter 5 – Learning on hierarchical attributes

graph is a 2D grid graph (for example, modeling an image or a video frame). In 2D
grid graphs, each vertice could be associated with a pair of coordinates (x, y) that
indicates its relative position in the 2D grid. Consider coord the set of coordinates
of all vertices (corresp. leaves) in the region Rn defined by the node n. Consider
also (x̄, ȳ) as the coordinates of the centroid of the region Rn. The first moment of
inertia for Rn is defined as:

inertiaRn =(µ20 + µ02)
(areaRn)2 , where:

µij =
∑

(x− x̄)i(y − ȳ)j, ∀ (x, y) ∈ coord and i, j ∈ {0, 2}

— Gaussian: Estimates the Gaussian distribution of leaf weights in the region Rn

defined by the node n. The function returns two values: the mean and the variance.
The leaf weights could be defined for any attribute or set of attributes (where one
could calculate the co-variance). Here, the leaf weights are the sum of the weights
of the edges that comprise the vertice equivalent of the leaf.

gaussianRn
= [[meanRn , varRn ]]

where:

meanRn = WRn

areaRn

for WRn =
∑
{F(u, v) | ∀u ∈ Γ(v) and v = l ∈ LRn} , and

varRn = (meanRn)2

areaRn

− (meanRn)2

In Rl, the selected attribute is computed for all regions created by the cut σ ∈ β.
Therefore, the ordered representation is preserved on the cut despite not representing
every possible region in the hierarchy. Furthermore, the regional strategy is consider-
ably easier to standardize than the topological approach. The topological approach took
the maximal possible depth in all hierarchies in a dataset. Therefore, it created high-
dimensional data for some types of hierarchies and, more often than not, multiple padding
positions due to the multiform structures. For the current strategy, it is proposed to select
only a few steps in the normalized altitudes creating a reduced set of features guaranteed
to be present in all hierarchical types.

As the case may be, some altitude selections could benefit one representation over
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5.2. Regional attributes

another. For instance, as shown in Section 1.6, the hierarchies of watersheds by area,
volume, or the number of parents may present an unbalanced distribution of regions for
some datasets, where most are distinguished at lower levels on the structure. However,
since the goal is to create a generic framework, the formulations of the cuts will take evenly
distributed steps on the hierarchical levels and investigate through experimentation and
data analysis if it conveys the necessary information for the learning model.

Definition 15: Regular representation of hierarchical regional attributes
The proposed regular representation on regional attributes RH of a hierarchical tree
TH in the set T of all hierarchies in a dataset is: RH = ((R1, Y1), . . . , (R|L|, Y|L|)).
In RH, each leaf l ∈ L is represented as a vector Rl with a single label Yl . Rl =
[reg(σ1), . . . , reg(σ|β|)] for all σ cuts in β and the regional attribute reg ∈ {area,

contour, inertia, gaussian}. The size of Rl is | β |.

The training input Dr on regional attributes for the RF concatenates all the RH of
the hierarchies TH ∈ T that corresponds to a training instance on the dataset, where
Dr = ((R1, Y1), . . . , (RTl

, YTl
)) and Tl is the total number of leaves in the training set.

For the test instances, the procedure takes the regular representation of each hierarchy in
the test set and individually subjects them to the RF estimations without the labels.

Algorithm 3 describes the steps to create and store the regular representation on
regional attributes for both the training input Dr and the individual test instances. For
clarity, the operations not detailed in Algorithm 3 are:

— empty[[nrows, ncols]]: allocates an array memory space of size number of rows by
the number of columns.

— getLabel(leaf): gets the ground-truth label for a leaf node.

— getParentLabel(level, hierarchy): gets the parents’ node labels for all leaves that
satisfy the cut level condition.

— getAttribute(attribute, node list): computes the regional attribute for the node list
in the cut.

— append(array): appends array vector to another array row-wise.

The following sections will investigate this representation and Section 5.2.1 shows
some experiments, evaluating the proposed strategy qualitatively and quantitatively in
the image tasks.
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Algorithm 3: Regular representation regional attributes
Input : T: a set of hierarchical trees computed for a dataset, a parameter

reg ∈ {area, contour, inertia, gaussian} indicating the regional attribute
to be computed, and a list β with values indicating the altitude levels for the
cut.

Output : Dr: a regular training input for the learning framework, and a regular
representation RH for all TH in the test set.

Function getRegular (TH , β):
1 pt = |β |
2 if reg == gaussian then RH = empty[[ | L | , (2 ∗ pt) + 1 ]]
3 else RH = empty[[ | L | , pt + 1 ]]
4 if TH isTrainInstance then
5 Y = getLabel(l) for all l ∈ L
6 RH[[ : , pt + 1 ]]← Y // leaves labels at added column at the end
7 else RH = RH[ | L | , pt ]
8 for cut ∈ β do
9 leafLabel=getParentLabel(cut, TH) // gets node cuts for all leaves

10 regionAttribute=getAttribute(reg,leafLabel)
11 Rl[:, cut]← regionAttribute
12 end
13 return RH

Main:
1 Dr = [[ ]]
2 for TH ∈ T do
3 RH=getRegular(TH , β)
4 if TH isTrainInstance then
5 Dr ← append(RH)
6 else save(RH)
7 end
8 save(Dr)

5.2.1 Experiments: Regional representation

This section shows the experiments with the regional approach on the two image tasks:
edge detection in the BSDS500 dataset and segmentation on Birds and Sky. The pipeline
takes the same initial steps, colored images to GIG gradient without any additional pre-
processing followed by the graph creation with a 4−adjacency and the Euclidean distance
for the weighting function. The hierarchy construction explores the aforementioned hierar-
chies: QFZ, ALPHA, WATER-VOL, WATER-AREA, WATER-DYN, and WATER-PAR.
It does not perform additional post-processing.
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5.2. Regional attributes

Table 5.6: Final parameters for the grid search results for the Random Forest: number of trees in the forest
(est), the minimum number of samples to split an internal node (split), the minimum number
of samples to be a leaf node (leaf), percent for the bootstrap sample size (samples), amount of
sampled features for the split (feat - a function on the whole set of features), and the maximum
depth of the trees (depth).

Area Contour

Hierarchy est split leaf samples feat depth est split leaf samples feat depth

QFZ 200 2 10 10% sqrt 100 250 5 4 50% auto 50
ALPHA 100 2 10 All log2 None 40 10 10 25% log2 None
WATER-VOL 40 2 4 10% log2 10 70 5 1 All sqrt 10
WATER-AREA 1 5 2 All log2 10 60 2 2 10% auto None
WATER-DYN 200 5 10 10% sqrt 100 250 5 4 50% sqrt None
WATER-PAR 150 5 1 All log2 10 500 5 1 25% auto 10

Gaussian Inertia

Hierarchy est split leaf samples feat depth est split leaf samples feat depth

QFZ 100 10 4 10% sqrt 100 300 5 1 25% log2 100
ALPHA 10 5 20 10% auto 150 100 2 20 10% auto None
WATER-VOL 500 5 20 75% log2 150 150 10 1 10% sqrt 10
WATER-AREA 200 2 4 10% sqrt 150 200 5 10 75% sqrt 10
WATER-DYN 250 10 10 All auto None 40 10 2 10% log2 100
WATER-PAR 500 10 2 10% log2 50 500 10 4 10% auto 10

The regular representation takes all the regional attributes considered for selection:
area, contour, inertia, and Gaussian. For the cut step, it considers the makes cuts in
the range ]0, 1[ with a 0.1 step and adds the 0.01 and 0.99 for the extremal regions in
the structure. This creates a regular representation with 11 dimensions. Except for the
Gaussian attribute that has two values for each position, totaling 22 in feature length.
The number of samples per dataset remains the same.

The models are trained separately without a combination of hierarchical types or
attributes. The label attribution and evaluation metrics are the same as in the topological
approach. Also, the same models are used: RF classifier for the segmentation and RF
regressor for the edge detection.

Random Forest parameters

For the Random Forest parameters, it performs a grid search using the Random Forest
classifier for all hierarchies and for all regional attributes. The grid search evaluation
takes the F1−score on the edge detection task in the BSDS500 dataset evaluating the
validation set. The RF parameters in consideration are: (i) number of trees in the forest
(est); (ii) minimum number of samples to split an internal node (split); (iii) the minimum
number of samples to be a leaf node (leaf); (iv) percent for the bootstrap sample size
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Table 5.7: Quantitative comparison of the results obtained in all datasets for the graph representation,
the typical, the topological, and the regional approach. F1−score for best dataset scale for the
BSDS500 and average Jaccard score for Birds and Sky. Emphasizes the best scores per approach
variation; a green highlight for the best values per dataset for the topological approach; and
red emphasis on the best score among strategies per dataset. Perfect scores=1.

BSDS Sky Birds

G
ra

p
h GIG 0.65 0.86 0.29

GIG-Edge 0.61 0.78 0.27
onlyColor 0.64 0.85 0.28

T
yp

ic
al

Hierarchy Threshold Regions Threshold Regions Threshold Regions

ALPHA 0.21 0.33 0.00 0.00 0.15 0.13
QFZ 0.26 0.28 0.45 0.01 0.30 0.05
WATER-DYN 0.27 0.42 0.79 0.13 0.29 0.15
WATER-VOL 0.20 0.55 0.89 0.87 0.36 0.24
WATER-AREA 0.24 0.53 0.83 0.83 0.30 0.22
WATER-PAR 0.24 0.53 0.90 0.86 0.32 0.24

T
op

ol
og

ic
al

Hierarchy Alt Area Dyn Vol Alt Area Dyn Vol Alt Area Dyn Vol

ALPHA 0.63 0.55 0.60 0.61 0.67 0.81 0.61 0.78 0.18 0.18 0.15 0.15
QFZ 0.60 0.60 0.57 0.58 0.67 0.90 0.47 0.89 0.14 0.37 0.07 0.15
WATER-DYN 0.64 0.62 0.62 0.63 0.67 0.92 0.47 0.90 0.17 0.20 0.06 0.11
WATER-VOL 0.57 0.58 0.53 0.56 0.90 0.96 0.90 0.95 0.26 0.37 0.06 0.17
WATER-AREA 0.51 0.50 0.46 0.48 0.85 0.82 0.84 0.82 0.26 0.31 0.18 0.18
WATER-PAR 0.54 0.54 0.50 0.51 0.91 0.95 0.72 0.92 0.28 0.41 0.20 0.27

R
eg

io
n

al

Hierarchy Area Contour Gaussian Inertia Area Contour Gaussian Inertia Area Contour Gaussian Inertia

ALPHA 0.62 0.65 0.67 0.62 0.78 0.43 0.75 0.95 0.36 0.55 0.25 0.49
QFZ 0.64 0.63 0.66 0.58 0.82 0.56 0.91 0.96 0.32 0.53 0.27 0.51
WATER-DYN 0.64 0.65 0.66 0.65 0.86 0.61 0.80 0.82 0.36 0.27 0.25 0.26
WATER-VOL 0.38 0.37 0.36 0.44 0.80 0.73 0.96 0.87 0.44 0.69 0.61 0.44
WATER-AREA 0.62 0.62 0.55 0.65 0.76 0.56 0.96 0.68 0.32 0.54 0.57 0.24
WATER-PAR 0.61 0.63 0.60 0.65 0.89 0.54 0.95 0.71 0.50 0.71 0.64 0.32

(samples); (v) amount of sampled features for the split (feat - a function on the whole
set of features); and (vi) the maximum depth of the trees (depth). Table 5.4 presents the
final parameters for each representation.

Quantitative analysis

Table 5.7 shows the results with the regional strategy for all variations on the three
datasets. It is presented alongside with the results from the best scale on the typical trivial
approach, the representations from graph attributes, and the variations on the topological
approach.

As shown, the regional strategy presents the best results in all datasets. Even for
the challenging Birds, there is at least one attribute for all hierarchical types that give a
satisfactory result. WATER-DYN is the only type with all scores below 0.5, yet it remains
considerably better than the other strategies for this dataset.

In BSDS500, the regional features are overall better than the topological attributes,
except for the WATER-VOL hierarchy. As seen in the data analysis (Section 5.1.1),
WATER-VOL has the smoothest area distribution among its peers, where most regions

168



5.3. Hierarchical attributes discussion

are concentrated at the lower end of the trees, particularly for the BSDS500 dataset. It is
compelling to believe that the cut levels neglected most of the discernable values in this
structure.

Regrettably, there is not a single attribute that one could point out as the best se-
lection for the regional strategy, like the altitudes and area in the topological approach.
However, the Gaussian presents, in general, superior results on the different tasks. Be-
cause the Gaussian attribute quantifies the region distribution on the hierarchical trees,
it assimilates the representation with the task. For instance, for the contour-oriented
hierarchies, it is the best for edge detection, and for the region-oriented, the best for seg-
mentation. Future applications of this strategy may consider the task at hand to select a
hierarchical type that most agrees with the objectives and use the Gaussian attribute for
the representation.

Regarding the execution time, the most costly step, the evaluation, remains unchanged
since it is external to these proposals. However, the data creation takes approximately
one-fifth of the time in the topological, namely 110 seconds for BSDS500 and 10 seconds
for the others. The training time is also reduced, taking from 70 seconds to a maximum of
10 minutes depending only on the RF parameter (mainly the number of estimators and
maximal depth). The computational resources demand is less than 4GB of RAM for all
approaches.

5.3 Hierarchical attributes discussion

This chapter presented two strategies to process hierarchical data in a learning pipeline
that creates the regular representation required by most machine learning models while
preserving the ordered information embedded in the structures.

The first strategy represents all the hierarchical levels in the form of topological at-
tributes of set parent nodes that traverse the hierarchical trees from leaves to root. The
maximum depth in a dataset’s entire set of hierarchies standardizes the feature vectors.
This strategy not only improved the results obtained with a typical approach with the hi-
erarchies but also provided an overview of the value distribution when all the hierarchical
information is taken as a whole. Data analysis of this distribution showed that despite the
differences between the types and individual constructions for the inputs, the aggregated
values present similar characteristics.

The second strategy aims to preserve the ordered representation, but instead of repre-
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senting each level, it presents the hierarchical structure as a set of regional attributes. This
approach parallels a series of horizontal cuts by thresholding the hierarchy by altitude.
Still, instead of creating and evaluating each partition, all the regions are presented as
regional attributes on a path. This approach resulted in a more compact representation
that captured the critical information on the hierarchies and improved the results in all
experiments.

The strategy formulates both proposed representations using only the information on
the hierarchical structure and its conjoined graph. Therefore, the media depiction is at
the discretion of the graph modeling. Similarly, label attribution takes the labels directly
from the leaf that represent the primary components on the graph, exempting any further
considerations on the task.
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CONCLUSION

The main goal of this thesis was to design a generic learning framework that could
operate on hierarchical data. To do so, it must deal with the generalization challenges
in media and tasks and place a strategy to conform the hierarchical data to a learning
framework. It argued that it is possible to directly insert the hierarchical structures in a
learning framework benefiting from the embedded information.

It is challenging because hierarchical structures are rich multiform representations of
ordered data and learning models usually require systematic structures to operate. Also,
no direct metric could indicate the quality of a hierarchical structure, and this process
usually relies on performance measurements on a task.

This thesis presented the study in three parts, each assessing a crucial aspect of achiev-
ing the primary goal. The first part contextualized and delimitated the problem in theory
and literature. The second one investigated the capabilities of an agnostic model using
graphs as an anchor point between multimedia data and hierarchies. The last and final
part gathered the information to propose the final framework using the hierarchical struc-
ture, inserted in a learning framework that relies solely on the hierarchical information to
operate. The following sections will conclude each of these parts, highlighting the most
significant points connected with the initial questions and hypothesis.

Conclusions Part I: Hierarchical data

The first part of this thesis comprised Chapter 1 and 2 assessing the question: How
do hierarchical methods model various media information, and what are the
practical challenges faced when applying them to a learning framework? With
the hypothesis:

171



Hierarchical representations contain useful information embedded
in their structures for a generic learning framework, and the learn-
ing framework could assist in parsing the structure.

Hypothesis 1

Chapter 1 contextualized the hierarchies as portrayed in mathematical morphology,
which presents formulations with a solid theoretical foundation, efficient implementations,
and guiding principles of order. A structure could be defined as a hierarchy if it follows
two hierarchical principles: (i) the principle of causality: a particular element at one
hierarchical level should be present at any consecutive level; and (ii) the principle of
locality: regions must be stable when creating or removing partitions. The formalisms are
usually for image data, but in general, they characterize regions and could model any
desired characteristics providing ordered representations in the visual domain.

Chapter 1 also introduced the theory of hierarchies as graphs, formalizing graph con-
cepts and describing their components and terminologies. Furthermore, it outlined the
different hierarchical types contemplated in the thesis, inserted in a typical framework
presenting through illustrations and experiments the challenges and problems usually
faced when applying the structures in a task.

It showed that the application requires a deep understanding of the media, the region
connotation in the hierarchies, and the task. Additionally, parsing the structures must
consider many aspects crucial for a good performance, which is even more critical con-
sidering that it relies on the task to evaluate its quality. Using the trivial approach with
horizontal cuts, searching for an ideal partition for an application could be strenuous and
neglect essential details present in the hierarchies.

Chapter 2 featured a systematic review of the literature on "Learning on hierarchies",
which is the first on the theme. The review gathered the strategies that combine machine
learning and hierarchical data on the same framework. The search retrieved 225 publica-
tions, and after filtering by the relevance for the scope of this work, it reviewed 64 methods
grouped by the way the hierarchical information is inserted into the learning framework.
Namely, methods that: (i) applies the hierarchies to a learning framework assessing how
the structure assists on the task and how the authors format the hierarchical information
for the application.; and (ii) applies the learning strategies to the hierarchical structures
assessing how the learning helps improve the representation.
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It also included some hand-engineered techniques for transforming the hierarchies into
a more suitable representation for the tasks and some local-optimization strategies that
are not framed as machine learning and, therefore, not retrieved by the search keys. The
review also added two other categories to group the methods that did not fit the problem
tackled in this thesis but whose purposes are relevant in the context. Namely, approaches
for the non-hierarchical watershed and learning strategies inspired by the hierarchical
construction algorithms.

The review assessed: (i) the types of media, how the authors model their representation
both on the hierarchical structure and the task; (ii) the types of hierarchies and which
role they play in the learning framework; and (iii) the machine learning methods and the
reasons for choosing them.

The review found that hierarchies assisting the machine learning algorithms in per-
forming a task define regions delimiting areas for feature extraction or represent masks
applied on the media. Almost all methods rely on media features for the learning step
and often require reducing the size of the hierarchical representations, either by filtering,
compression, or hand-picked samples. The strategies in this category require a complete
understanding of how the media’s low-level components interact in the space and how they
relate to the task. Most applications are classification, segmentation, or detection. There
are many domains, but the most dominant is the aerial and medical analysis and generic
image processing. Regarding the models, Random Forest, SVM, and neural networks are
often the models of choice for their robustness and generalization capabilities.

Among the methods using machine learning applied in the hierarchical structure, the
typical approach is the energy optimization strategy to identify regions of interest inside
the hierarchical structure. Another common technique is to transfer the learning target
to a parallel task that induces a response on the hierarchical nodes. Most of the methods
present complex solutions or combinatorial analysis. Learning the hierarchical structure
remains an active open research topic.

The majority of retrieved results in the review are for the non-hierarchical watershed.
It is prevalent among medical applications that rely on coherent and consistent regions. A
widespread problem among all methods using the classical watershed is over-segmentation.
Many strategies rely on thorough preprocessing for successful applications, while others
propose learning techniques to merge some regions or select areas of interest.

Answer 1: Hierarchies are rich structures that could model a myriad of data.
It facilitates the analysis of complex problems in multiple domains. However,
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they require careful consideration and parsing the structures can be challeng-
ing and limit their applications. There is great interest in the literature on
integrating hierarchies and machine learning in the same framework. Still, it
usually relies on media features and provides solutions not easily generalized
for similar tasks. Learning the hierarchical structure remains an active open
research topic.

Conclusions Part II: Learning on graphs
The second part of this thesis comprised Chapter 3 and 4 assessing the question:

Question 2: How to create a learning framework agnostic to media and tasks?
With the hypothesis:

Using a selection of graph attributes as input to the learning frame-
work allows a construction agnostic to the media, and modeling it
at the graphs’ components level allows assigning each entry with a
task label without imposing assumptions on the data source.

Hypothesis 2

Defining the graph representation is a modeling question with various connotations.
They are used to represent generic objects, and the primary concern in graph theory is
how these objects are interconnected. They can depict many data and carry information
about the objects in their components, including from different domains. All deliberations
in this work were centered on graph theory as they could provide generalization tools for:
(i) the hierarchical structures depicted in a tree structure; (ii) the multimedia data; and
(iii) a media-independent learning framework.

Chapter 3 presented a literature review of machine learning on graphs, exploring the
motivations, strategy, and fundamental issues. It concentrated its analysis on the mul-
timedia processing perspective and gathered information to advocate for the proposed
framework choices.

In a graph representing digital media with arbitrary dimensions, the vertices may cor-
respond to the media’s units, such as pixels, voxels, or data points. This approach usually
results in large sets of vertices but favors back-and-forth operations. Alternatively, the ver-
tices could correspond to objects inferred from the data, such as superpixels, partitions,
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and surfaces, creating a more concise representation but requiring complex mappings
dependent on the grouping strategy.

Graph embedding methods are suitable for creating a systematic representation of the
graphs that allow their utilization in multiple learning frameworks. But embeddings are
very expensive in terms of computational resources and are prohibitive for large graphs.
Deep learning methods on graphs are a contemporary solution to many tasks, primarily se-
mantic and high-level analysis. Despite their improvements in inferring information, they
impose limitations regarding the underlying graph and the modeling choices. Particularly
when modeling media data. A general approach when handling deep learning on graphs
in a multimedia context is to model the concepts and abstractions rather than the raw
media data. Random Forest on graphs provides solutions for many computational prob-
lems, particularly medical applications and social network analysis. The most significant
limitation of aggregating graphs and Random Forests is the systematic input required
by the model. Careful graph parsing must take place, considering the type of graph, its
proximity to the original data, and the expected results.

Chapter 4 presented the case study for a learning framework operating on a selection of
graph attributes aggregated with the Random Forest model. Beyond a good performance
in an application, the motivation relied on a proposal of a machine learning framework
working on graphs that could later be exploited for the hierarchical structures. The study
proposed to use edge-weighted graphs acting as a transformation filter based on local
differences in images and the RF as a regularization process to mitigate some noise and
reinforce desirable characteristics. Also, it described the graphs at the vertice’s level, which
allows training the model on the discrete space by associating each entry with a single
label.

Dealing with graphs created from images has a unique modeling space. From the
framework perspective, all attributes are just sets of values stored on the vertices and
edges of the graph. But conceptually, the image graph creates a unique transformed space
close to the spatial domain of the images, strengthened with relational aspects on the
edges of the graph. Cognizant of this unique space, it investigated the relational factors of
the graphs while pondering the particular conditions for image processing. It evaluated the
impact of the characteristics on the results obtained on two different tasks and discoursed
aspects that could not be generalized.

A quality assessment of the topology choices addressed the considerations about the
type of graph and its proximity to the original media. The experimental investigation on
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the attribute selection established that representing larger regions through the neighboring
size and the number of connections with the adjacency relation translated into higher
confidence values on the edges and less noise in the resulting images. Also, the weighting
function must characterize similarities in the original data to be descriptive. The adjacency
relation and the weighting function are modeling choices, conditioning the interaction
between the data and the graph. The RF regularization mitigates most poor topology
choices, except when the input is extremely noisy and correlated. The final assessment
of the attribute selection regards the vertex attributes representing low-level descriptors
of the image. Including the vertex attributes in the regular representation makes a direct
reference to the media but results in less noise, stronger borders, and more details on the
final image gradients, hence crucial to the practical applications assessed.

The main challenge in the framework concerned the regular representation required
by most machine learning algorithms, which is inherently opposed to the unconstrained
nature of graphs. Furthermore, the framework also considered the high-dimensional space
usually presented with graphs representing digital media and the label attribution strategy
that should not impose assumptions on the data source to later generalize to other tasks.
The RF mechanics allows it to work with high-dimensional data, making it a fast, simple,
and scalable method for the investigation. Also, the RF paired with the edge-weights gra-
dient operator acts as a regularizer diminishing noise, accentuating strong connections,
and mitigating any eventual poor topology choice. Furthermore, mapping the RF predic-
tions back to the image space in the form of image gradients allows the evaluation of the
results qualitatively and quantitatively.

The images obtained by mapping the predictions of the RF, trained on edge detection
labels, and receiving the regular representation of the selected attributes of the edge-
weighted graphs as input, presented characteristics of image gradients, referred to as
GIG. GIG’s gradients are generally very descriptive, with firm contours of the objects and
other aspects such as minor components, textures, and large uniform regions. Gradients
are commonly used as a preprocessing step in many applications because they are fast to
compute and usually facilitate image analysis, particularly for the segmentation task.

Compared with other popular gradient strategies, GIG’s gradients, as input for the
watershed hierarchies segmentation method, produced better-segmented images than tra-
ditional gradient methods like SED, Sobel, and Laplace. Comparing it with more elabo-
rated edge maps, like the ones made by deep approaches HED and RCF, demonstrated
that the segmentation task’s performance depends on the characteristics portrayed on
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the gradient. Overall, better segmentations result from gradients with thick and sharp
contours and additional details that contribute to identifying small objects, and informa-
tion about uniform regions provides consistency. The strategy addressing the question of
missing values in the regular representation, created by the vertices of the image’s bor-
der, directly influences the feature connotation considering the RF mechanics. Therefore,
addressing this aspect improved the results of the edge detection task.

Regarding the performance of edge detection (the task the model is trained on), the
results could be better compared with the deep methods or SED. However, observing the
outputs showed that the procedures that perform better on the task are the ones with
thicker contours. This is a result of the evaluation method proposed for the dataset. The
representations with a more significant margin on the contours are more likely to match the
ground truth. Because GIG is centered on the analysis of the vertices, the more confident
the RF is in distinguishing a vertice as a contour from its surrounding vertices, the more
precise the predictions are, resulting in thinner contours. Nonetheless, the other aspects
portrayed on the gradients, such as the large uniform regions and simplified patterns,
could be considered a failure on the task, even if beneficial for other applications and
descriptive of the properties relayed by the graphs.

Answer 2: Graphs are dynamic structures for modeling multimedia, but
like hierarchies, they require thoughtful considerations when applied in a ma-
chine learning framework. Using the available information on the graph edges
and vertices is a viable method to represent a graph in a learning framework.
It allows controlling the representation size and selecting the information de-
picted considering the type of graph, its proximity to the original data, and
the expected results. Furthermore, representing the graphs at the vertex level
allows maintaining the analyses on the discrete space by assigning a single la-
bel for an entry. This assignment is particularly advantageous with the graph
strategy since it represents an entire region on a single vertex, and the task
makes no assumptions about the media.

Conclusions Part III: Learning on hierarchies

The final part of this thesis comprises Chapter 5, assessing the third and final question:
Question 3: Could the hierarchical structure provide useful information in an
agnostic learning framework? With the hypothesis:
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The topology of the hierarchical structures alone could be used in
a learning framework to solve multiple tasks if it preserves their
semantical arrangement.

Hypothesis 3

Depending on the modeling choices of the graphs, it can create a particular structured
space known as grid graphs close to the spatial domain of the media. Presuming general-
ization on a grid graph can be deceptive, and more than the structural information may
be necessary for a discriminative representation. However, modeling the graphs from the
hierarchical structure provides a non-regular characterization of regions with notions of
order and navigation.

Chapter 5 presented the culmination of the proposals, expanding the concepts and
strategies to the hierarchical data. It proposed two strategies for representing the hierar-
chical structures: (i) by the topological properties taking the hierarchical trees as inputs;
and (ii) by regional features deduced from the hierarchical topology with their conjoined
graph. Both were formulated using only the information on the hierarchical structure and
its conjoined graph. Therefore, the media depiction is done at the discretion of the graph
modeling. Furthermore, the task label attribution is performed at the leaf level at the
bottom of the tree, where each leaf has a unique discrete label. While the assignment
on the graph allowed representing an entire region on a single vertex, on the hierarchy,
multiple regions that share a path on the tree are represented in a single leaf.

The topological approach proposed using the entire set of parents of a leaf node de-
scribed by their topological attributes. Representing the hierarchical structures by sets of
parents of a leaf retains the semantical information embedded on the hierarchical trees
without the need to filter or select a particular level for evaluation. Understanding the
distribution of the values using the topological representation was beneficial to guide
the decisions regarding the learning step and to better comprehending the hierarchical
structure.

The first assessment regarded the order of the regular representation on the leaves. The
order could be ascending (from leaf to root) or descending (from root to leaf). Because of
the multiformity in the hierarchies, different leaves have a variable amount of parents on
the structure and may not be an alignment between the feature position in the regular
representation and the parent position in the hierarchical tree. The case study in GIG
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indicated that the RF performs better when there is a meaningful correspondence between
the features and the position they assume in the feature vector. Therefore, to provide some
clarity on the relation between the model and the order of the features on the training
data, the analysis inspected the feature position importance on the decision nodes of the
model and probed the values used for the split. Experiments showed that the ascending
order provided more consistent distributions favored by the model.

Experiments with the topological approach showed that it contains crucial information
about the hierarchies and not only improved the results obtained with a typical approach
with the hierarchies but also provided an overview of the value distribution when all the
hierarchical information is taken as a whole. Data analysis of this distribution showed that
despite the differences between the types and individual constructions for the inputs, the
aggregated values present similar characteristics. Regarding the representation choices,
the attributes altitudes and area presented the best results for the task most related to
the information they portray. The contour-oriented hierarchies give the best results in the
edge detection task with the altitudes attribute and WATER-VOL and WATER-PAR in
the segmentation task with the area.

The topological strategy constructed a regular representation that could be used in
most available learning models. However, the dimensions of this representation could be
challenging in terms of computational resources, particularly considering that most of
the feature positions were filled with padding values. The efficient implementations for
hierarchical structures and the flexibility of the RF model allowed us to work with sizable
structures, but using this approach with a different model could be challenging.

The second strategy proposed to use of a set of regional attributes to represent the
hierarchical structure. Procedurally, it is equivalent to performing horizontal cuts by al-
titude levels, but rather than creating a representation for each cut and evaluating them
individually, the proposed method represented all of them systematically as a regular rep-
resentation. The second strategy also aimed to preserve the ordered representation, but
instead of representing each level, it presents the hierarchical structure as a set of regional
attributes ordered on the feature position. This approach resulted in a more compact
representation that captured the critical information on the hierarchies and improved the
results in all experiments.

Regrettably, there was not a single attribute that one could point out as the best
selection for the regional strategy, like the altitudes and area in the topological approach.
However, the Gaussian presented, in general, superior results on the different tasks. Be-
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cause the Gaussian attribute quantifies the region distribution on the hierarchical trees,
it assimilates the representation with the task. For instance, for the contour-oriented
hierarchies, it is the best for edge detection, and for the region-oriented, the best for seg-
mentation. Future applications of this strategy may consider the task at hand to select a
hierarchical type that most agrees with the objectives and use the Gaussian attribute for
description.

Answer 3: This thesis demonstrated that it is possible to create a learning
framework dependent only on the hierarchical data that performs well in mul-
tiple tasks with different models. It created and delivered a learning framework
operating directly on the hierarchical structure, avoiding any feature extracted
from the media and only using the information on the hierarchical tree and
graph. Also, it did not select any particular region that better suited an ap-
plication. Instead, the entire structure is represented in a vectorial form that
preserves its semantical arrangement. Furthermore, label attribution takes the
labels directly from the leaf that represent the primary components on the
graph, exempting the framework from making any further considerations on
the task.

Perspectives and future work

The applications and experiments developed in this thesis were all performed on the
image space because it allows an easy visual inspection of the result’s quality. However,
all proposals are formulated on the structures of the graphs or hierarchies or both. Fur-
thermore, the literature review showed that both subjects are extensively used to model
many media types, particularly visual media.

The thesis proposals provide solutions to incorporate the structures in a learning
framework representing the structure in a format supported by many machine learning
models. Also, they remove the need for detailed scrutiny regarding selecting an appropriate
level or region and provide a way to experiment with multiple hierarchical types without
changing the considerations. Furthermore, the label attribution at the components level
removes the task concerns such as binarization and foreground/background selection for
evaluation.

An application in another media type could take the same considerations of attribute
selection since once the media is modeled as a hierarchy or graph, they will all share
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the same rules in that space. Particularly the hierarchical structures that additionally
incorporate the notions of order and navigation in their rules in a non-gridded form.

If generalization is not a concern in future applications, one could use the proposed
strategies to transpose the structure to the vectorial space while taking the appropriate
measures to improve the results on a media-specific task. For instance, one could better
model the media in the hierarchical or graph space using pre-processing techniques or
even region selection (if the type of region of interest is known).

Another way to improve task performance using the proposed strategies is by selecting
a different machine learning model. The Random Forest model was chosen in the thesis
because it is fast, inspectable, and scalable. It allowed the execution of multiple exper-
iments with the raw media data without the time cost or designing decisions to favor
scalability that other models would require.

One possible direction for future work on the already proposed strategies is to combine
the attributes selected from the graphs and hierarchies in the same or different categories
of features, enriching the information presented to the machine learning model. Another
possibility is to apply a strategy to reduce the structure prior to the attribute selection
or employ a data reduction strategy after the features are in a vectorial form. However,
one must always be mindful of the semantical arrangement and hierarchical rules when
using such techniques.

Finally, the thesis demonstrated that creating a learning framework operating with
hierarchical data that performs well in multiple tasks and is media agnostic is possible.
The proposals work with any hierarchical type, including the ones not created from graphs.
However, they do not improve the hierarchical structure, and learning a hypothetical ideal
hierarchy remains an open problem.

Main contributions
— Learning framework on graph attributes for image processing (Published in 34th

Conference on Graphics, Patterns, and Images - Awarded as best paper).

— Extended formalism on graphs attributes exploring more extensive input areas
through region adjacency graphs and changes driven by the model mechanics (Pub-
lished in Pattern Recognition Letters).

— Learning framework operating directly on the hierarchical data, focusing the formu-
lations solely on the structural components of the hierarchies (submitted).

181



— Critical systematic review of the literature on "Learning on hierarchies", which is
the first on the theme to the best of our knowledge.

The thesis demonstrates that it is possible to create a learning
framework operating with hierarchical data that performs well in
multiple tasks with different models.

Contribution to knowledge
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Titre : Apprentissage sur les graphes et les hiérarchies

Mot clés : graphes, hiérarchies morphologiques, apprentissage automatique, forêt aléatoire

Résumé : Les hiérarchies, telles que dé-
crites dans la morphologie mathématique, re-
présentent des régions d’intérêt imbriquées et
fournissent des mécanismes pour créer des
concepts et une organisation cohérente des
données. Elles facilitent l’analyse de haut ni-
veau et la gestion de grandes quantités de
données. Représentées sous forme d’arbres
hiérarchiques, elles ont des formalismes croi-
sés avec la théorie des graphes, et des ap-
plications qui peuvent être facilement géné-
ralisées. En raison des algorithmes détermi-
nistes, des représentations multiformes et dis-
tinctes, et de l’absence d’un moyen direct
d’évaluer la qualité de la représentation hiérar-
chique, il est difficile d’insérer des informations
hiérarchiques dans un cadre d’apprentissage
et de bénéficier des avancées récentes dans
le domaine. Les chercheurs s’attaquent géné-
ralement à ce problème en affinant les hié-
rarchies pour un média spécifique et en éva-
luant leur qualité pour une tâche particulière.
L’inconvénient de cette approche est qu’elle
dépend de l’application et que les formula-
tions limitent la généralisation à des données
similaires. Ce travail vise à créer un cadre
d’apprentissage qui peut fonctionner avec des
données hiérarchiques et qui est agnostique
à l’entrée et à l’application. L’idée est d’étu-
dier les moyens de transformer les données
en une représentation régulière requise par la
plupart des modèles d’apprentissage tout en

préservant la richesse de l’information dans
la structure hiérarchique. Il propose d’étudier
et de formaliser les concepts sous forme de
graphes, un point commun pour les hiérar-
chies et le multimédia, et un sujet de grand
intérêt pour l’apprentissage automatique. Les
méthodes proposées dans cette étude uti-
lisent des graphes d’images pondérés par des
arêtes et des arbres hiérarchiques comme en-
trée, et évaluent différentes propositions sur
les tâches de détection des contours et de
segmentation. Le modèle principal est la forêt
aléatoire, une méthode rapide, verifiable et ex-
tensible, adaptée au travail avec des données
de grandes dimensions. Malgré les médias,
les tâches et les choix de modèle , il concentre
les formulations sur des graphes et des arbres
hiérarchiques, et n’utilise les tâches que pour
évaluer la réponse produite par différentes ca-
ractéristiques. Il donne les résultats en termes
quantitatifs et qualitatifs et propose des ana-
lyses statistiques de la distribution et de la
dimensionnalité des données, évaluant ainsi
leur impact sur l’apprentissage. En outre, il
fournit une revue systématique de la litera-
ture sur des propositions qui intègrent l’ap-
prentissage automatique et les hiérarchies. Il
démontre qu’il est possible de créer un cadre
d’apprentissage dépendant uniquement des
données hiérarchiques qui fonctionne dans
plusieurs tâches.



Title: Learning on graphs and hierarchies

Keywords: graphs, morphological hierarchies, machine learning, random forest

Abstract: Hierarchies, as described in mathe-
matical morphology, represent nested regions
of interest and provide mechanisms to cre-
ate concepts and coherent data organization.
They facilitate high-level analysis and man-
agement of large amounts of data. Repre-
sented as hierarchical trees, they have for-
malisms intersecting with graph theory and
applications that can be conveniently general-
ized. Due to the deterministic algorithms, the
multiform and distinct representations, and the
absence of a direct way to evaluate the hierar-
chical representation quality, it is hard to insert
hierarchical information into a learning frame-
work and benefit from the recent advances in
the field. Researchers usually tackle this prob-
lem by refining the hierarchies for a specific
media and assessing their quality for a particu-
lar task. The downside of this approach is that
it depends on the application, and the formu-
lations limit the generalization to similar data.
This work aims to create a learning framework
that can operate with hierarchical data and is
agnostic to the input and the application. The
idea is to study ways to transform the data to a
regular representation required by most learn-
ing models while preserving the rich informa-

tion in the hierarchical structure. It proposes to
study and formalize the concepts as graphs,
a common point for hierarchies and multime-
dia, and a topic of great interest for machine
learning. The methods proposed in this study
use edge-weighted image graphs and hierar-
chical trees as input, and it evaluates different
proposals on the edge detection and segmen-
tation tasks. The primary model is the Ran-
dom Forest, a fast, inspectable, and scalable
method suited to work with high-dimensional
data. Despite the media, tasks, and model
choices, it focuses the formulations on graphs
and hierarchical trees and only uses the tasks
to evaluate the response produced by different
characteristics. It gives the results in quanti-
tative and qualitative terms and offers statis-
tical analyses of the data distribution and di-
mensionality, assessing their impact on learn-
ing. Furthermore, it provides a critical system-
atic review of proposals in the literature that
integrates machine learning and hierarchies.
It demonstrates that it is possible to create a
learning framework dependent only on the hi-
erarchical data that performs well in multiple
tasks.
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RÉSUMÉ

Les hiérarchies, telles que décrites dans la morphologie mathématique, représen-
tent des régions d’intérêt imbriquées et fournissent des mécanismes pour créer des
concepts et une organisation cohérente des données. Elles facilitent l’analyse de haut
niveau et la gestion de grandes quantités de données. Représentées sous forme
d’arbres hiérarchiques, elles ont des formalismes croisés avec la théorie des graphes,
et des applications qui peuvent être facilement généralisées. En raison des algorithmes
déterministes, des représentations multiformes et distinctes, et de l’absence d’un moyen
direct d’évaluer la qualité de la représentation hiérarchique, il est difficile d’insérer
des informations hiérarchiques dans un cadre d’apprentissage et de bénéficier des
avancées récentes dans le domaine. Les chercheurs s’attaquent généralement à ce
problème en affinant les hiérarchies pour un média spécifique et en évaluant leur qual-
ité pour une tâche particulière. L’inconvénient de cette approche est qu’elle dépend de
l’application et que les formulations limitent la généralisation à des données similaires.
Ce travail vise à créer un cadre d’apprentissage qui peut fonctionner avec des données
hiérarchiques et qui est agnostique à l’entrée et à l’application. L’idée est d’étudier les
moyens de transformer les données en une représentation régulière requise par la
plupart des modèles d’apprentissage tout en préservant la richesse de l’information
dans la structure hiérarchique. Il propose d’étudier et de formaliser les concepts sous
forme de graphes, un point commun pour les hiérarchies et le multimédia, et un sujet
de grand intérêt pour l’apprentissage automatique. Malgré les médias, les tâches et les
choix de modèle , il concentre les formulations sur des graphes et des arbres hiérar-
chiques, et n’utilise les tâches que pour évaluer la réponse produite par différentes
caractéristiques. Il donne les résultats en termes quantitatifs et qualitatifs et propose
des analyses statistiques de la distribution et de la dimensionnalité des données, éval-
uant ainsi leur impact sur l’apprentissage. En outre, il fournit une revue systématique
de la literature sur des propositions qui intègrent l’apprentissage automatique et les
hiérarchies. Il démontre qu’il est possible de créer un cadre d’apprentissage dépen-
dant uniquement des données hiérarchiques qui fonctionne dans plusieurs tâches.
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INTRODUCTION

Les hiérarchies sont une propriété inhérente qui compose plusieurs éléments de la
vie réelle, liés à la façon dont nous percevons naturellement les motifs, les scènes et
les mouvements 1. Selon KURZWEIL (2013) 2, il existe un identifiant de modèle au cœur
de notre perception visuelle, fonctionnant de manière hiérarchique pour reconnaître
simultanément des parties, des objets et des concepts abstraits. La hiérarchie percep-
tive est difficile à traduire en modèles informatiques imitant notre capacité à percevoir
la nature intrinsèque de la réalité. Mais, dans le traitement des médias visuels, la mor-
phologie mathématique a un avantage dans la définition, la création et la manipulation
des hiérarchies.

Les méthodes hiérarchiques, formulées en morphologie mathématique 3, fournissent
des structures sémantiquement organisées de régions imbriquées faciles à naviguer,
à interpréter, et restent très populaires depuis leur création 4 5 6 7 8 9 10. Cependant, elles
sont difficiles à évaluer et à insérer dans les frameworks d’apprentissage pour béné-
ficier des avancées récentes dans le domaine 11.

Cette thèse centre son étude sur les hiérarchies, visant à créer un cadre d’apprentis-
sage qui pourrait opérer sur les structures hiérarchiques du point de vue du traitement
des médias. Cette introduction présente le contexte définissant les hiérarchies, dé-

1. Marr David (1982). Vision: a computational investigation into the human representation and
processing of visual information.

2. Kurzweil Ray (2013). How to create a mind: the secret of human thought revealed.
3. Najman Laurent and Talbot Hugues (2013a). Mathematical morphology: from theory to appli-

cations.
4. Meyer Fernand and Beucher Serge (1990). Morphological segmentation.
5. Beucher Serge (1994). Watershed, hierarchical segmentation and waterfall algorithm.
6. Najman Laurent and Schmitt Michel (1996). Geodesic saliency of watershed contours and hier-

archical segmentation.
7. Krishnammal Perumal Muthu et al. (2022). Wavelets and convolutional neural networks-based

automatic segmentation and prediction of MRI brain images.
8. Paiva Katrine et al. (2022). Performance evaluation of segmentation methods for assessing the

lens of the frog Thoropa miliaris from synchrotron-based phase-contrast micro-CT images.
9. Makrogiannis Sokratis et al. (2021). A system for spatio-temporal cell detection and segmenta-

tion in time-lapse microscopy.
10. Massaro Alessandro (2021). Image vision advances.
11. Perret Benjamin, Cousty Jean, Guimaraes Silvio Jamil F., et al. (2018). Evaluation of hier-

archical watersheds.

4



taille la problématique de leur insertion dans un cadre d’apprentissage, et énonce les
objectifs de cette étude, en établissant quelques hypothèses et questions auxquelles
répondre. Enfin, elle présente l’organisation de la thèse pour faciliter la navigation dans
le document.

Contextualisation des hiérarchies

Les hiérarchies sont largement définies dans la littérature et pourraient représen-
ter différents concepts. Par exemple, dans la littérature les hiérarchies sont présentés
comme une abstraction de méthode 12, une description des architectures de modèles 13

et une forme pour organiser les fonctionnalités 14 ou les concepts 15. Cette définition
large renforce l’idée que les hiérarchies sont la forme d’organisation naturelle des don-
nées, en particulier les données visuelles dans le multimédia.

Les hiérarchies morphologiques utilisent des transformations non linéaires pour re-
cueillir des informations en fonction de la réaction qu’elles produisent 16. En ce sens,
elles définissent les principes hiérarchiques comme des transformations obtenues en
appliquant les opérateurs appropriés. Les opérateurs et concepts présentent un for-
malisme mathématique solide utilisant l’espace géométrique non linéaire pour représen-
ter les formulations et généraliser la théorie des ensembles des réseaux complets 17.

Leurs méthodes représentent des régions d’intérêt imbriquées qui facilitent la navi-
gation et les opérations de fusion pour créer des objets sémantiquement plus sig-
nificatifs à partir d’instances de niveaux inférieurs. Dans le traitement multimédia, la
délimitation de la région prend en compte les éléments constitutifs du média, tels que
les pixels, les voxels et la fréquence 18. Dans le même temps, les hiérarchies produisent
des représentations multiformes, leurs algorithmes sont principalement déterministes
et il n’existe aucun moyen direct d’évaluer leurs qualités.

12. Ilin Roman, Watson Thomas, and Kozma Robert (2017). Abstraction hierarchy in deep learning
neural networks.

13. Liu Yun et al. (2019). Richer convolutional features for edge detection.
14. Lin Tsung-Yi et al. (2017). Feature pyramid networks for object detection.
15. Fan Jianping et al. (2017). HD-MTL: hierarchical deep multi-task learning for large-scale visual

recognition.
16. Najman Laurent and Talbot Hugues (2013a). Mathematical morphology: from theory to appli-

cations.
17. Serra Jean (2006). A lattice approach to image segmentation.
18. Bosilj Petra, Kijak Ewa, and Lefèvre Sébastien (2018). Partition and inclusion hierarchies of

images: a comprehensive survey.
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Récemment, les architectures d’apprentissage en profondeur ont radicalement chan-
gé le paradigme de calcul pour les tâches visuelles 19. Le principal avantage de la
méthodologie d’apprentissage en profondeur est qu’elle ne nécessite pas de modèle
d’ingénierie pour fonctionner, ce qui signifie qu’elle peut apprendre les fonctionnalités
pour représenter les données et les modèles pour les décrire 20. Le succès de ces ap-
proches repose sur une hiérarchie de concepts appris via le réseau 21. Par exemple,
dans la tâche de reconnaissance d’objets, les pixels bruts sur la couche d’entrée sont
compris comme des segments et des parties jusqu’à la composition du concept d’objet
aux dernières couches.

L’approche typique d’apprentissage en profondeur est loin d’être idéale, car elle
impose une structure rigide pour l’entrée, ce qui limite ses capacités de généralisa-
tion pour les données multiformes 22. De plus, même avec les progrès récents dans
l’explication et l’inspection des réseaux, le raisonnement derrière les inférences reste
obscur 23 24 et doit être plus empirique que formel.

Dans les deux domaines — hiérarchies des partitions et apprentissage en profon-
deur — la hiérarchie est la réaction créée par les opérations appliquées. Les hiérar-
chies de partitions font partie intégrante des structures, mais les méthodes déter-
ministes produisant des données hétérogènes sont difficiles à améliorer à l’aide de
l’apprentissage automatique. En revanche, l’apprentissage en profondeur présente des
concepts hiérarchiques implicites, mais la généralisation et le raisonnement sont limi-
tés.

Formulation du problème

Dans les applications pratiques, les hiérarchies morphologiques aident à effectuer
des tâches sémantiques dans le traitement des données visuelles, telles que la propo-
sition d’objet, le contour sémantique et la segmentation sémantique 25. Cependant, ils

19. O’Mahony Niall et al. (2019). Deep learning vs. traditional computer vision.
20. Liu Weibo et al. (2017). A survey of deep neural network architectures and their applications.
21. Zeiler Matthew D. and Fergus Rob (2014). Visualizing and understanding convolutional net-

works.
22. Bacciu Davide et al. (2020). A gentle introduction to deep learning for graphs.
23. Kuo Jay (2016). Understanding convolutional neural networks with a mathematical model.
24. Montavon Grégoire, Samek Wojciech, and Müller Klaus-Robert (2018). Methods for inter-

preting and understanding deep neural networks.
25. Bosilj Petra, Kijak Ewa, and Lefèvre Sébastien (2018). Partition and inclusion hierarchies of

images: a comprehensive survey.
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nécessitent un prétraitement minutieux des données 26 27 et des stratégies pour traiter
des problèmes tels que le sur/sous-partitionnement de l’espace 28 29 ou la sélection d’un
nombre idéal de régions 30. Par conséquent, il est difficile de généraliser une approche
réussie à d’autres médias et tâches.

Pour une généralisation en termes de médias, la plupart des défis concernent la
caractérisation de l’information, principalement : les données des médias présentant
des caractéristiques différentes, et les blocs de construction des médias composant
les régions qui ont des connotations différentes. Ces différences de formes et de con-
notations finissent par devenir des facteurs limitants. Les modèles créés pour résoudre
un problème ne pouvaient traiter que ce type de données particulières, malgré leurs
éventuelles similitudes. En termes de tâche, la généralisation est difficile en raison de
l’absence d’une mesure évaluant la qualité d’une hiérarchie, ce qui nécessite un raf-
finement empirique à travers une série d’ajustements par essais et erreurs pour une
application particulière.

De plus, la création d’un cadre pour opérer sur des hiérarchies présente des dé-
fis supplémentaires considérables en plus du problème de généralisation, à savoir :
(i) le produit des hiérarchies est multiforme, ce qui signifie qu’elles ont des tailles, des
composants et des interprétations différentes ; et (ii) les mêmes données pourraient
créer plusieurs structures hiérarchiques en fonction des opérateurs hiérarchiques et
des contraintes. Par conséquent, l’application des hiérarchies morphologiques dans
un cadre d’apprentissage agnostique nécessite une stratégie pour surmonter les as-
pects déterministes, l’évaluation de la qualité et les aspects hétérogènes.

26. Clément Michaël, Kurtz Camille, and Wendling Laurent (2018). Learning spatial relations
and shapes for structural object description and scene recognition.

27. Nguyen Tin T. et al. (2019). Feature extraction and clustering analysis of highway congestion.
28. Nandy Kaustav et al. (2011). Supervised learning framework for screening nuclei in tissue sections.
29. Zwettler Gerald and Backfrieder Werner (2015). Evolution strategy classification utilizing

meta features and domain-specific statistical a priori models for fully-automated and entire seg-
mentation of medical datasets in 3D radiology.

30. Meyer Fernand (2001). Hierarchies of partitions and morphological segmentation.
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Cette thèse soutient qu’il est possible d’insérer directement les
structures hiérarchiques dans un cadre d’apprentissage, et de
bénéficier des informations intégrées pour créer un modèle
généralisable pour les tâches visuelles qui est agnostique au mé-
dia et à la tâche.

Énoncé de thèse

Objectifs et questions

L’objectif principal de cette thèse est de concevoir un cadre d’apprentissage
qui peut fonctionner sur des données hiérarchiques et qui est agnostique au
média et à la tâche. Ce faisant, il doit faire face aux défis de la généralisation et
mettre en place une stratégie pour conformer la hiérarchie des informations à un cadre
d’apprentissage. Par conséquent, l’étude d’investigation dans cette thèse vise à répon-
dre à trois questions principales :

Question 1 : Comment les méthodes hiérarchiques modélisent-elles diverses
informations médiatiques et quels sont les défis pratiques rencontrés lors de

leur application à un cadre d’apprentissage ?

Dans l’étude hiérarchique, une compréhension critique est la façon dont les blocs
de construction des médias se rapportent au niveau inférieur pour les regrouper dans
des régions homogènes. Les données visuelles, telles que les images et les vidéos,
sont des structures de données organisées, et des informations telles que la couleur,
la distance spatiale ou la variance définissent l’homogénéité. Et bien que la définition
des régions homogènes et leurs connotations soient particulières à chaque média, la
stratégie de regroupement et leur stockage dans la structure hiérarchique suivent les
mêmes règles.

Compte tenu de ces considérations, cette thèse étudie les hiérarchies dans le
contexte multimédia et inspecte leurs forces et leurs limites. Elle propose également
une revue systématique de la littérature sur « l’apprentissage des hiérarchies », qui
s’interroge sur l’insertion des hiérarchies dans un cadre d’apprentissage. Elle évalue
les avantages de l’information hiérarchique dans le processus d’apprentissage et l’amé-
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lioration que l’apprentissage automatique peut apporter à la représentation hiérar-
chique.

Les représentations hiérarchiques contiennent des informa-
tions précieuses intégrées dans leurs structures pour un cadre
d’apprentissage générique, et ce cadre d’apprentissage pourrait
aider au traitement de la structure.

Hypothèse 1

Question 2 : Comment créer un cadre d’apprentissage indépendant des médias
et des tâches ?

Répondre à cette question nécessite de définir une représentation appropriée, idéa-
lement partagée entre la plupart des types de médias et dotée de la capacité de retenir
l’information présentée dans le média d’origine. De plus, la définition de la tâche ne doit
pas imposer d’hypothèses sur la source de données.

Les graphes sont des structures utilisées pour représenter des objets, et la prin-
cipale préoccupation de la théorie des graphes est de savoir comment ces objets
sont interconnectés. Ils peuvent représenter de nombreuses données et transporter
des informations sur les objets dans leurs composants, y compris dans différents do-
maines, tels que numérique, textuel et logique. En ce sens, malgré leurs différences,
les données multimédia partagent les mêmes règles une fois modélisées sous forme
de graphes. De plus, une façon de représenter les données hiérarchiques consiste à
utiliser des arbres hiérarchiques. Par conséquent, les graphes et les hiérarchies ont
des formalismes qui se croisent avec la théorie des graphes, et des applications qui
peuvent être facilement généralisées.

Compte tenu de ces considérations, cette thèse propose de prendre des représen-
tations graphes pour modéliser le cadre d’apprentissage. Pour être explicite, la thèse
ne présente pas d’application multimédia. Cependant, les formulations et considéra-
tions se concentrent sur les structures de graphes comme point commun entre les
hiérarchies et la modélisation multimédia. En outre, la thèse suggère d’utiliser les forêts
aléatoires 31, un modèle rapide, simple et évolutif capable de traiter des données de
grande dimension et d’obtenir des résultats satisfaisants dans plusieurs tâches.

31. Breiman Leo (2001). Random forests.
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Le principal défi de cette proposition concerne la représentation régulière requise
par la plupart des algorithmes d’apprentissage automatique, y compris les forêts aléa-
toires. La représentation régulière est intrinsèquement opposée à la nature non con-
trainte des graphes. Ainsi, la stratégie proposée est de représenter les composantes du
graphe comme des vecteurs d’attributs sélectionnés et d’évaluer sa capacité à retenir
l’information modélisée dans les graphes tout en restant discriminant pour une tâche.

L’utilisation d’une sélection d’attributs de graphe comme entrée
dans le cadre d’apprentissage permet la formulation d’un mo-
dèle indépendant des médias, et la diffusion des informations au
niveau des composants des graphes permet d’attribuer à chaque
entrée une étiquette de tâche sans imposer d’hypothèses sur la
source de données.

Hypothèse 2

Question 3 : La structure hiérarchique pourrait-elle fournir des informations
utiles dans un cadre d’apprentissage agnostique ?

Selon les choix de modélisation des graphes, elle peut créer un espace structuré
particulier appelé graphes grilles proche du domaine spatial du média. Présumer une
généralisation sur un graphe en grille peut être trompeur, de plus que les informations
structurelles peuvent être nécessaires pour une représentation discriminative. Cepen-
dant, la modélisation des graphes à partir de la structure hiérarchique fournit une car-
actérisation non régulière des régions avec des notions d’ordre et de navigation.

Pour répondre à cette question, il faut tenir compte de l’arrangement sémantique au
sein des hiérarchies, et toute proposition doit conserver les structures et les relations
d’ordonnancement conformes aux principes hiérarchiques. Ainsi, comme il n’existe au-
cun moyen direct d’évaluer la qualité d’une hiérarchie, le modèle d’apprentissage doit
faciliter la navigation entre les tâches pour évaluer divers aspects par l’expérimentation.
En outre, le cadre doit s’appuyer sur autre chose que des stratégies pour préparer
adéquatement les données pour une tâche spécifique ou affiner les structures pour
une application.

Compte tenu de ces considérations, cette thèse propose d’utiliser les caractéris-
tiques topologiques et régionales de la structure hiérarchique, transposées à une repré-
sentation ordonnée qui respecte leur disposition d’origine.
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La topologie des structures hiérarchiques seule pourrait être
utilisée dans un cadre d’apprentissage pour résoudre plusieurs
tâches si elle préserve leur arrangement sémantique.

Hypothèse 3

Organisation de la thèse

Compte tenu de ces objectifs et de ces questions, cette thèse est organisée en
trois parties principales, chacune abordant une question et corroborant une hypothèse.
Spécifiquement :

Partie 1 : comprend les chapitres 1 et 2, évaluant la première question. Le chapi-
tre 1 contextualise les hiérarchies morphologiques, présente les principaux fac-
teurs faibles et forts des méthodes hiérarchiques, et décrit les différents types
hiérarchiques utilisés dans la thèse. Il explique et formalise également les graphes
et les hiérarchies sur la notation partagée décrivant leurs composants et leurs
terminologies, suivi d’une discussion dans un cadre type délimitant le problème
cible de cette thèse. Le chapitre 2 présente une revue systématique de la lit-
térature sur « l’apprentissage des hiérarchies », qui est la première sur le thème
à notre connaissance. La revue de littérature vise à rassembler les stratégies
d’apprentissage appliquées aux structures hiérarchiques et à mettre en évidence
les approches les plus prometteuses et pertinentes pour ce travail.

Partie 2 : comprend les chapitres 3 et 4, évaluant la deuxième question. Le
chapitre 3 fournit quelques considérations sur les graphes considérés comme
essentiels au développement de ce travail, et présente une revue de la littéra-
ture sur l’apprentissage automatique sur graphes, en explorant les motivations,
la stratégie et les principaux problèmes. Il passe en revue l’apprentissage profond
sur graphes pour en formuler la pertinence et identifier les limites, en se concen-
trant sur la perspective du traitement multimédia. Le chapitre 4 présente l’étude
de cas d’un framework d’apprentissage opérant sur une sélection d’attributs de
graphe, établissant le framework pour les structures hiérarchiques. Il évalue le
problème de représentation régulière et contient des expériences d’investigation,
des résultats et des analyses.
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Partie 3 : comprend le chapitre 5, évaluant la troisième et dernière question.
Le chapitre 5 présente l’aboutissement des propositions, élargissant les con-
cepts et les stratégies aux données hiérarchiques. Il crée et délivre un cadre
d’apprentissage opérant directement sur les données hiérarchiques, focalisant
les formulations uniquement sur les composants structurels des hiérarchies.

Le chapitre Conclusions par partie (inclus dans ce résumé) présente une discussion
considérant les différents aspects de l’investigation expérimentale, résume les pro-
priétés observées et tire des conclusions pour guider les travaux futurs dans l’étude
hiérarchique.

La figure ci-dessous présente un aperçu graphique de l’organisation du document
original complet, indiquant l’association entre les sections principales et leur sujet.

Introduction

Part II

Chapter 3

Review:
Learning on graphs

Chapter 4

Case study formulation
(Sections 4.1 to 4.3)

Case study assessment
(Section 4.4)

Part I

Chapter 1

Graph
(Section 1.1)

Hierarchies
(Sections 1.2 and 1.3)

Problem definition
(Section 1.4 and 1.5)

Problem assessment
(Section 1.6)

Chapter 2

Review:
Learning on hierarchies

Part III

Chapter 5

Topological attributes
(Section 5.1)

Data analysis
(Section 5.1.1)

Topological assessment
(Section 5.1.2)

Regional attributes
(Section 5.2)

Regional assessment
(Section 5.2.1 and 5.2.2)Review:
Learning on hierarchies

Conclusion

Literature review

Experimental
Theoretical

Figure présentant un aperçu graphique du document original complet regroupé par parties et affichant les
principales sections. Les couleurs indiquent le thème (théorique, expérimental et revue de la littérature) et les
flèches montrent la dépendance conceptuelle entre les chapitres et les sections. Toutes les sections d’une partie
sont interdépendantes.
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CONCLUSIONS PAR PARTIE

Cette thèse soutient qu’il est possible d’insérer directement les
structures hiérarchiques dans un cadre d’apprentissage, et de
bénéficier des informations intégrées pour créer un modèle
généralisable pour les tâches visuelles qui est agnostique au mé-
dia et à la tâche.

Énoncé de thèse

L’objectif principal de cette thèse était de concevoir un cadre d’apprentissage géné-
rique pouvant fonctionner sur des données hiérarchiques. Pour ce faire, il doit faire face
aux défis de la généralisation dans les médias et les tâches, et mettre en place une
stratégie pour conformer les données hiérarchiques à un cadre d’apprentissage. Il a
fait valoir qu’il est possible d’insérer directement les structures hiérarchiques dans un
cadre d’apprentissage bénéficiant de l’information embarquée.

C’est difficile parce que les structures hiérarchiques sont des représentations mul-
tiformes riches de données ordonnées et que les modèles d’apprentissage nécessi-
tent généralement des structures systématiques pour fonctionner. De plus, aucune
meusure directe ne peut indiquer la qualité d’une structure hiérarchique, et ce proces-
sus repose généralement sur des mesures de performance sur une tâche.

Cette thèse a présenté l’étude en trois parties, chacune évaluant un aspect crucial
de la réalisation de l’objectif principal. La première partie a contextualisé et délimité le
problème en théorie et en littérature. La seconde a étudié les capacités d’un modèle
agnostique utilisant des graphes comme point d’ancrage entre les données multimé-
dias et les hiérarchies. La dernière partie a rassemblé les informations pour proposer
le cadre final utilisant la structure hiérarchique, insérée dans un cadre d’apprentissage
qui s’appuie uniquement sur les informations hiérarchiques pour fonctionner. Les sec-
tions suivantes concluront chacune de ces parties en soulignant les points les plus
significatifs liés aux questions et hypothèses initiales.
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Conclusions Partie I : Données hiérarchiques

La première partie de cette thèse comprenait les chapitres 1 et 2 évaluant la ques-
tion : Comment les méthodes hiérarchiques modélisent-elles diverses informa-
tions médiatiques et quels sont les défis pratiques rencontrés lors de leur appli-
cation à un cadre d’apprentissage ? Avec l’hypothèse :

Les représentations hiérarchiques contiennent des informa-
tions utiles intégrées dans leurs structures pour un cadre
d’apprentissage générique, et le cadre d’apprentissage pourrait
aider à analyser la structure.

Hypothèse 1

Le chapitre 1 a contextualisé les hiérarchies telles qu’elles sont décrites dans la
morphologie mathématique qui présente des formulations avec une base théorique
solide, des implémentations efficaces et des principes directeurs d’ordre. Une structure
pourrait être définie comme une hiérarchie si elle suit deux principes hiérarchiques :
(i) le principe de causalité : un élément particulier à un niveau hiérarchique doit être
présent à n’importe quel niveau consécutif ; et (ii) le principe de localité : les régions
doivent être stables lors de la création ou de la suppression de partitions. Les forma-
lismes sont généralement pour les données d’image, mais en général, ils caractérisent
les régions et pourraient modéliser toutes les caractéristiques souhaitées fournissant
des représentations ordonnées dans le domaine visuel.

Le chapitre 1 a également introduit la théorie des hiérarchies sous forme de graphes,
formalisant les concepts de graphes et décrivant leurs composants et terminologies.
En outre, il a décrit les différents types hiérarchiques envisagés dans la thèse, insérés
dans un cadre typique présentant à travers des illustrations et des expériences les dé-
fis et les problèmes généralement rencontrés lors de l’application des structures dans
une tâche. Il a montré que l’application nécessite une compréhension approfondie des
médias, de la connotation de la région dans les hiérarchies et de la tâche.

De plus, l’analyse des structures doit prendre en compte de nombreux aspects
cruciaux pour une bonne performance, ce qui est d’autant plus critique qu’elle s’appuie
sur la tâche pour évaluer sa qualité. En utilisant l’approche triviale avec des coupes
horizontales, la recherche d’une partition idéale pour une application peut être ardue
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et négliger des détails essentiels présents dans les hiérarchies.

Le chapitre 2 a présenté une revue systématique de la littérature sur « l’apprentissa-
ge des hiérarchies », qui est la première sur le thème. La revue de littérature a rassem-
blé les stratégies qui combinent l’apprentissage automatique et les données hiérar-
chiques sur le même cadre. La recherche a récupéré 225 publications et, après filtrage
par pertinence par rapport à la portée de ce travail, elle a passé en revue 64 méth-
odes regroupées selon la manière dont les informations hiérarchiques sont insérées
dans le cadre d’apprentissage. À savoir, les méthodes qui : (i) appliquent les hiérar-
chies à un cadre d’apprentissage en évaluant comment la structure aide à la tâche
et comment les auteurs formatent les informations hiérarchiques pour l’application ; et
(ii) appliquent les stratégies d’apprentissage aux structures hiérarchiques en évaluant
comment l’apprentissage contribue à améliorer la représentation.

Les techniques conçues à la main pour transformer les hiérarchies en une représen-
tation plus adaptée aux tâches et certaines stratégies d’optimisation locale qui ne sont
pas encadrées par l’apprentissage automatique et, par conséquent, non récupérées
par les clés de recherche, ont également été inclus dans la revue. En plus, deux autres
catégories ont été ajoutés pour regrouper les méthodes qui ne correspondaient pas au
problème abordé dans cette thèse mais dont les finalités sont pertinentes dans le con-
texte. A savoir, des approches pour le bassin versant non-hiérarchique et des stratégies
d’apprentissage inspirées des algorithmes de construction hiérarchique.

La revue de littérature a évalué : (i) les types de médias, comment les auteurs modè-
lent leur représentation tant sur la structure hiérarchique que sur la tâche ; (ii) les types
de hiérarchies et quel rôle elles jouent dans le cadre d’apprentissage ; et (iii) les méth-
odes d’apprentissage automatique et les raisons de les choisir. Elle a révélé que les
hiérarchies aidant les algorithmes d’apprentissage automatique à effectuer une tâche
définissent des régions délimitant des zones pour l’extraction de caractéristiques ou
représentent des masques appliqués sur les médias. Presque toutes les méthodes
reposent sur des fonctionnalités multimédias pour l’étape d’apprentissage et néces-
sitent souvent de réduire la taille des représentations hiérarchiques, soit par filtrage,
compression ou échantillons sélectionnés à la main. Les stratégies de cette catégorie
nécessitent une compréhension complète de la manière dont les composants de bas
niveau des médias interagissent dans l’espace et de leur relation avec la tâche. La
plupart des applications sont la classification, la segmentation ou la détection. Les do-
maines sont nombreux, mais les plus dominants sont l’analyse aérienne et médicale
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et le traitement d’images génériques. En ce qui concerne les modèles, la forêt aléa-
toire, les SVM et les réseaux de neurones sont souvent les modèles de choix pour leur
robustesse et leurs capacités de généralisation.

Parmi les méthodes utilisant l’apprentissage automatique appliquées dans la struc-
ture hiérarchique, l’approche typique est la stratégie d’optimisation énergétique pour
identifier les régions d’intérêt à l’intérieur de la structure hiérarchique. Une autre tech-
nique courante consiste à transférer la cible d’apprentissage vers une tâche parallèle
qui induit une réponse sur les nœuds hiérarchiques. La plupart des méthodes présen-
tent des solutions complexes ou une analyse combinatoire. L’apprentissage de la struc-
ture hiérarchique reste un sujet de recherche actif et ouvert.

La majorité des résultats extraits de la revue de littérature concernent le bassin
versant non hiérarchique. Il est répandu parmi les applications médicales qui reposent
sur des régions cohérentes et homogènes. Un problème répandu parmi toutes les mé-
thodes utilisant le bassin versant classique est la sur-segmentation. De nombreuses
stratégies reposent sur un prétraitement approfondi pour des applications réussies,
tandis que d’autres proposent des techniques d’apprentissage pour fusionner cer-
taines régions ou sélectionner des domaines d’intérêt.

Réponse 1 : les hiérarchies sont des structures riches qui peuvent modéliser
une myriade de données. Elles facilitent l’analyse de problèmes complexes dans
de multiples domaines. Cependant, elles nécessitent une attention particulière,
et l’analyse des structures peut être difficile et peut limiter leurs applications.
Il y a un grand intérêt dans la littérature sur l’intégration des hiérarchies et sur
l’apprentissage automatique dans le même cadre. Pourtant, cet apprentissage
s’appuie généralement sur des fonctionnalités multimédias et fournit des solu-
tions difficiles à généraliser pour des tâches similaires. L’apprentissage de la
structure hiérarchique reste un sujet de recherche actif et ouvert.

Conclusions Partie II : Apprentissage sur graphes

La deuxième partie de cette thèse comprenait les chapitres 3 et 4 évaluant la ques-
tion : Question 2 : Comment créer un cadre d’apprentissage agnostique aux mé-
dias et aux tâches ? Avec l’hypothèse :

16



L’utilisation d’une sélection d’attributs de graphe comme entrée
dans le cadre d’apprentissage permet la formulation d’un mo-
dèle indépendant des médias, et la diffusion des informations au
niveau des composants des graphes permet d’attribuer à chaque
entrée une étiquette de tâche sans imposer d’hypothèses sur la
source de données.

Hypothèse 2

La définition de la représentation en graphe est une question de modélisation aux
connotations diverses. Ils sont utilisés pour représenter des objets génériques, et la
principale préoccupation de la théorie des graphes est de savoir comment ces ob-
jets sont interconnectés. Ils peuvent représenter de nombreuses données et trans-
porter des informations sur les objets dans leurs composants, y compris de différents
domaines. Toutes les délibérations de ce travail ont été centrées sur la théorie des
graphes car elle pourrait fournir des outils de généralisation pour : (i) les structures
hiérarchiques représentées dans un arbre ; (ii) les données multimédia ; et (iii) un cadre
d’apprentissage indépendant des médias.

Le chapitre 3 a présenté une revue de la littérature sur l’apprentissage automatique
sur graphes, en explorant les motivations, la stratégie et les problèmes fondamentaux.
Il a concentré son analyse sur la perspective du traitement multimédia et a recueilli des
informations pour plaider en faveur des choix de cadre proposés.

De cette perspective, le graphe représentant un média numérique avec des dimen-
sions arbitraires, les sommets peuvent correspondre aux unités du média, telles que
des pixels, des voxels ou des points de données. Cette approche se traduit générale-
ment par de grands ensembles de sommets, mais favorise les opérations de va-et-
vient. Alternativement, les sommets pourraient correspondre à des objets déduits des
données, tels que des superpixels, des partitions et des surfaces, créant une représen-
tation plus concise mais nécessitant des mappages complexes dépendant de la stra-
tégie de regroupement.

Les méthodes de plongement des graphes conviennent à la création d’une représen-
tation systématique qui permettent leurs utilisations dans plusieurs cadres d’apprentis-
sage. Mais les plongements sont très coûteux en termes de ressources de calcul
et sont prohibitifs pour les grands graphes. Les méthodes d’apprentissage en pro-
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fondeur sur les graphes sont une solution contemporaine à de nombreuses tâches,
principalement l’analyse sémantique et de haut niveau. Malgré leurs améliorations
dans l’inférence d’informations, ils imposent des limitations concernant le graphe sous-
jacent et les choix de modélisation. En particulier lors de la modélisation de données
multimédias. Une approche générale lors de la gestion de l’apprentissage en pro-
fondeur sur des graphes dans un contexte multimédia consiste à modéliser les con-
cepts et les abstractions plutôt que les données multimédias brutes. La forêt aléatoire
en graphes fournit des solutions à de nombreux problèmes de calcul, en particulier
pour les applications médicales et l’analyse des réseaux sociaux. La limitation la plus
importante dans l’agrégation des graphes et des forêts aléatoires est l’entrée systé-
matique requise par le modèle. Une analyse minutieuse du graphe doit avoir lieu, en
tenant compte du type de graphe, de sa proximité avec les données d’origine et des
résultats attendus.

Le chapitre 4 a présenté l’étude de cas d’un cadre d’apprentissage fonctionnant
sur une sélection d’attributs de graphe agrégés avec le modèle des forêts aléatoires.
Au-delà d’une bonne performance dans une application, la motivation reposait sur une
proposition d’un framework d’apprentissage automatique travaillant sur des graphes
qui pourraient être exploités ultérieurement pour les structures hiérarchiques. L’étude
a proposé d’utiliser des graphes pondérés par les arêtes agissant comme un filtre de
transformation basé sur les différences locales dans les images. La forêt aléatoire fonc-
tionne comme un processus de régularisation pour atténuer certains bruits et renforcer
les caractéristiques souhaitables. De plus, l’étude de cas décrit les graphes au niveau
du sommet, ce qui permet d’entraîner le modèle sur l’espace discret en associant
chaque entrée à une seule étiquette.

Traiter des graphes créés à partir d’images dispose d’un espace de modélisation
unique. Du point de vue du framework, tous les attributs ne sont que des ensembles
de valeurs stockées sur les sommets et les arêtes du graphe. Mais conceptuellement,
le graphe d’images crée un espace transformé unique proche du domaine spatial des
images, renforcé par des aspects relationnels sur les arêtes du graphe. Consciente
de cet espace unique, la thèse a investigué les facteurs relationnels des graphes
tout en s’interrogeant sur les conditions particulières de traitement des images. Elle
a aussi évalué l’impact des caractéristiques sur les résultats obtenus sur deux tâches
différentes et traitait d’aspects non généralisables.

Une évaluation de la qualité des choix de topologie a abordé les considérations sur
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le type de graphe et sa proximité avec le media d’origine. L’étude expérimentale sur
la sélection d’attributs a établi que la représentation de régions plus grandes à travers
la taille voisine et le nombre de connexions avec la relation de contiguïté se traduisait
par des valeurs de confiance plus élevées sur les bords de l’objet et moins de bruit
dans les images résultantes. De plus, la fonction de pondération doit caractériser les
similitudes dans les données d’origine pour être descriptive. La relation d’adjacence et
la fonction de pondération sont des choix de modélisation, conditionnant l’interaction
entre les données et le graphe. La régularisation de la forêt aléatoire atténue la plupart
des mauvais choix de topologie, sauf lorsque l’entrée est extrêmement bruyante et
corrélée. L’évaluation finale de la sélection d’attributs a concernée les attributs de som-
met représentant des descripteurs de bas niveau de l’image. L’inclusion des attributs
de vertex dans la représentation régulière fait une référence directe au média mais
entraîne moins de bruit, des bordures plus fortes et plus de détails sur les gradients
d’image finaux, donc cruciaux pour les applications pratiques évaluées.

Le principal défi du cadre concernait la représentation régulière requise par la plu-
part des algorithmes d’apprentissage automatique, qui s’oppose par nature à la nature
non contrainte des graphes. En outre, le cadre a également pris en compte l’espace
de grande dimension généralement présenté avec des graphes représentant les mé-
dias numériques et la stratégie d’attribution d’étiquettes qui ne devrait pas imposer
d’hypothèses sur la source de données pour généraliser ultérieurement à d’autres
tâches. La mécanique la forêt aléatoire lui permet de travailler avec des données de
grande dimension, ce qui en fait une méthode d’investigation rapide, simple et évolu-
tive. En outre, la forêt aléatoire associée au graphe agit comme un régulateur diminuant
le bruit, accentuant les connexions fortes et atténuant tout éventuel mauvais choix de
topologie. De plus, les mappages des prédictions de la forêt aléatoire dans à l’espace
image sous la forme de gradients d’image permet l’évaluation qualitative et quantitative
des résultats.

Les images obtenues en mappage des prédictions de la forêt aléatoire, créé sur
les étiquettes de détection de bords de l’objet, et recevant la représentation régulière
des attributs sélectionnés des graphes pondérés par les arêtes en entrée, présentaient
les caractéristiques des gradients d’image, appelées dans la thèse « graph image gra-
dient» (GIG). Les gradients créés par GIG sont généralement très descriptifs, avec
des contours fermes des objets et d’autres aspects tels que des composants mineurs,
des textures et de grandes régions uniformes. Les dégradés sont couramment utilisés
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comme étape de prétraitement dans de nombreuses applications car ils sont rapides
à calculer et facilitent généralement l’analyse d’image, en particulier pour la tâche de
segmentation.

Par rapport à d’autres stratégies de gradient populaires, les gradients de GIG, en
tant qu’entrées pour la méthode de segmentation des hiérarchies des bassins ver-
sants, ont produit des images mieux segmentées que les méthodes de gradient tradi-
tionnelles comme SED 32, Sobel et Laplace. La comparaison avec des cartes des bords
de l’image plus élaborées, comme celles réalisées par les approches profondes HED 33

et RCF 34, a démontré que les performances de la tâche de segmentation dépendent
des caractéristiques représentées sur le gradient. Dans l’ensemble, de meilleures seg-
mentations résultent de gradients avec des contours épais et nets et des détails sup-
plémentaires qui contribuent à l’identification de petits objets, et les informations sur
les régions uniformes assurent la cohérence.

En ce qui concerne les performances de détection des bords (la tâche sur laque-
lle le modèle est enseigné), les résultats pourraient être meilleurs par rapport aux
méthodes profondes ou SED. Cependant, l’observation des résultats a montré que
les procédures les plus performantes sur la tâche sont celles avec des contours plus
épais. Ceci est le résultat de la méthode d’évaluation proposée pour l’ensemble des
données. Les représentations avec une marge plus importante sur les contours sont
plus susceptibles de correspondre à les données réelles de référence. Parce que GIG
est centré sur l’analyse des sommets, plus le la forêt aléatoire est confiant dans la
distinction d’un sommet en tant que contour de ses sommets environnants, plus les
prédictions sont précises, ce qui donne des contours plus fins. Néanmoins, les autres
aspects représentés sur les gradients, tels que les grandes régions uniformes et les
motifs simplifiés, pourraient être considérés comme un échec à la tâche, même s’ils
sont bénéfiques pour d’autres applications et descriptifs des propriétés relayées par
les graphes.

Réponse 2 : Les graphes sont des structures dynamiques pour la modéli-
sation multimédia, mais comme les hiérarchies, ils nécessitent des considéra-
tions réfléchies lorsqu’ils sont appliqués dans un cadre d’apprentissage au-
tomatique. L’utilisation des informations disponibles sur les arêtes et les som-
mets du graphe est une méthode viable pour représenter un graphe dans un

32. Dollar Piotr and Zitnick C. Lawrence (2015). Fast edge detection using structured forests.
33. Xie Saining and Tu Zhuowen (2017). Holistically-nested edge detection.
34. Liu Yun et al. (2019). Richer convolutional features for edge detection.
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cadre d’apprentissage. Elle permet de contrôler la taille de la représentation
et de sélectionner les informations représentées en tenant compte du type de
graphe, de sa proximité avec les données d’origine et des résultats attendus. De
plus, la représentation des graphes au niveau des sommets permet de maintenir
les analyses sur l’espace discret en attribuant un seul label à une entrée. Cette
affectation est particulièrement avantageuse avec la stratégie des graphes car
elle représente une région entière sur un seul sommet et la tâche ne fait aucune
hypothèse sur le média.

Conclusions Partie III : Apprentissage des hiérarchies

La dernière partie de cette thèse comprend le chapitre 5, évaluant la troisième et
dernière question : Question 3 : La structure hiérarchique pourrait-elle fournir des
informations utiles dans un cadre d’apprentissage agnostique ? Avec l’hypothèse :

La topologie des structures hiérarchiques seule pourrait être
utilisée dans un cadre d’apprentissage pour résoudre plusieurs
tâches si elle préserve leur arrangement sémantique.

Hypothèse 3

Selon les choix de modélisation des graphes, ils peuvent créer un espace struc-
turé particulier appelé graphes grilles proche du domaine spatial du média. Présumer
une généralisation sur un graphe en grille peut être trompeur, de plus, les informations
structurelles peuvent être nécessaires pour une représentation discriminative. Cepen-
dant, la modélisation des graphes à partir de la structure hiérarchique fournit une car-
actérisation non régulière des régions avec des notions d’ordre et de navigation.

Le chapitre 5 a présenté l’aboutissement des propositions, élargissant les con-
cepts et les stratégies aux données hiérarchiques. Il a proposé deux stratégies pour
représenter les structures hiérarchiques : (i) par les propriétés topologiques prenant
les arbres hiérarchiques comme entrées ; et (ii) par des traits régionaux déduits de la
topologie hiérarchique avec leur graphe conjoint. Les deux stratégies ont été formulés
en utilisant uniquement les informations sur la structure hiérarchique et son graphe
conjoint. Par conséquent, la représentation des médias se fait au gré de la modéli-
sation graphe. De plus, l’attribution de l’étiquette de tâche est effectuée au niveau de
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la feuille au bas de l’arbre, où chaque feuille a une étiquette discrète unique. Alors
que l’affectation sur le graphe permettait de représenter une région entière sur un seul
sommet, sur la hiérarchie, plusieurs régions partageant un chemin sur l’arbre et sont
représentées dans une seule feuille.

L’approche topologique a proposé d’utiliser l’ensemble des parents d’un nœud feuille
décrit par leurs attributs topologiques. La représentation des structures hiérarchiques
par des ensembles de parents d’une feuille conserve les informations sémantiques in-
tégrées dans les arbres hiérarchiques sans qu’il soit nécessaire de filtrer ou de sélec-
tionner un niveau particulier pour l’évaluation. Consevoir la distribution des valeurs à
l’aide de la représentation topologique a été bénéfique pour guider les décisions con-
cernant l’étape d’apprentissage et pour mieux comprendre la structure hiérarchique.

La première évaluation de la topologie hiérarchique portait sur l’ordre de la représen-
tation régulière sur les feuilles. L’ordre peut être ascendant (de la feuille à la racine) ou
descendant (de la racine à la feuille). En raison de la multiformité dans les hiérarchies,
différentes feuilles ont un nombre variable de parents sur la structure et peuvent ne pas
être un alignement entre la position de l’entité dans la représentation régulière et la po-
sition du parent dans l’arbre hiérarchique. L’étude de cas dans GIG a indiqué que le la
forêt aléatoire fonctionne mieux lorsqu’il existe une correspondance significative entre
les caractéristiques et la position qu’elles prennent dans le vecteur de caractéristiques.

Par conséquent, pour clarifier la relation entre le modèle et l’ordre des caractéris-
tiques sur les données d’apprentissage, une analyse a inspecté l’importance de la po-
sition des caractéristiques sur les nœuds de décision du modèle et a sondé les valeurs
utilisées pour le chemin divisé dans l’arbre de la forêt aléatoire. Les expériences ont
montré que l’ordre croissant fournissait des distributions plus cohérentes favorisées
par le modèle.

Des applications avec l’approche topologique ont montré qu’elle contient des infor-
mations cruciales sur les hiérarchies, et non seulement améliorait les résultats obtenus
par une approche typique avec les hiérarchies, mais fournissait également un aperçu
de la distribution des valeurs lorsque toutes les informations hiérarchiques sont prises
dans leur ensemble. L’analyse des données de cette distribution a montré que malgré
les différences entre les types et les constructions individuelles pour les entrées, les
valeurs agrégées présentent des caractéristiques similaires.

En ce qui concerne les choix topologiques représentés, les attributs altitude et su-
perficie ont présenté les meilleurs résultats pour la tâche la plus liée à l’information
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qu’ils dépeignent. Par example, les hiérarchies orientées contour donnent de meilleurs
résultats dans la tâche de détection des contours avec l’attribut topologique altitude, et
les hiérarchies orientées région pour la tâche de segmentation avec l’attribut topologique
superficie.

La stratégie topologique a construit une représentation régulière qui pourrait être
utilisée dans la plupart des modèles d’apprentissage disponibles. Cependant, les di-
mensions de cette représentation pourraient être difficiles en termes de ressources
de calcul, en particulier compte tenu du fait que la plupart des positions des carac-
téristiques étaient remplies de valeurs de rembourrage. Les implémentations efficaces
pour les structures hiérarchiques et la flexibilité du modèle la forêt aléatoire ont permis
de travailler avec des structures importantes, mais l’utilisation de cette approche avec
un modèle différent pourrait être difficile.

La deuxième stratégie proposait d’utiliser un ensemble d’attributs régionaux pour
représenter la structure hiérarchique. Du point de vue procédural, cela équivaut à
effectuer des coupes horizontales par niveaux d’altitude, mais plutôt que de créer
une représentation pour chaque coupe et de les évaluer individuellement, la métho-
de proposée les représentait toutes systématiquement sous forme de représentation
régulière. La deuxième stratégie visait également à préserver la représentation ordon-
née, mais au lieu de représenter chaque niveau, elle présente la structure hiérarchique
comme un ensemble d’attributs régionaux ordonnés sur la position de l’entité. Cette
approche a abouti à une représentation plus compacte qui a capturé les informations
critiques sur les hiérarchies et amélioré les résultats dans toutes les expériences.

Malheureusement, il n’y avait pas un seul attribut régional unique que l’on puisse
désigner comme la meilleure sélection pour la stratégie régionale, comme les altitudes
et la superficie dans l’approche topologique. Cependant, la gaussienne a présenté, en
général, des résultats supérieurs sur les différentes tâches. Comme l’attribut gaussien
quantifie la distribution des régions sur les arbres hiérarchiques, il assimile la représen-
tation à la tâche. Par exemple, pour les hiérarchies orientées contours, c’est la meilleure
pour la détection des contours, et pour les hiérarchies orientées région, la meilleure
pour la segmentation. Les applications futures de cette stratégie peuvent considérer la
tâche à accomplir pour sélectionner un type hiérarchique qui correspond le mieux aux
objectifs et utiliser l’attribut gaussien pour la description.

Réponse 3 : Cette thèse a démontré qu’il est possible de créer un cadre d’ap-
prentissage dépendant uniquement des données hiérarchiques qui fonctionne

23



bien dans plusieurs tâches avec différents modèles. Elle a créé et livré un cadre
d’apprentissage opérant directement sur la structure hiérarchique, évitant toute
fonctionnalité extraite du média et n’utilisant que les informations de l’arbre
hiérarchique et du graphe. De plus, elle n’a pas sélectionné de région particu-
lière mieux adaptée à une application, en préservant ainsi un aspect agnos-
tique. Au lieu de cela, la hierarchie entière est représentée sous une forme vecto-
rielle qui qui a retenu le l’arrangement sémantique de la structure hiérarchique.
De plus, l’attribution d’étiquettes prend les étiquettes directement de la feuille
représentent les principaux composants des hiérarchies, exemptant ainsi le fra-
mework de toute autre considération sur la tâche.

Perspectives et travaux futurs

Les applications et expérimentations développées dans cette thèse ont toutes été
réalisées sur l’espace image, car cela permet une inspection visuelle aisée de la qualité
du résultat. Cependant, toutes les propositions sont formulées sur les structures des
graphes ou des hiérarchies ou les deux. De plus, la revue de la littérature a montré que
les deux sujets sont largement utilisés pour modéliser de nombreux types de médias,
en particulier les médias visuels.

Les propositions de thèse fournissent des solutions pour incorporer les structures
dans un cadre d’apprentissage représentant la structure dans un format pris en charge
par de nombreux modèles d’apprentissage automatique. En outre, ils suppriment le
besoin d’un examen détaillé concernant la sélection d’un niveau ou d’une région ap-
propriée et offrent un moyen d’expérimenter plusieurs types hiérarchiques sans mod-
ifier les considérations. De plus, l’attribution d’étiquettes au niveau des composants
supprime les problèmes de tâche tels que la binarisation et la sélection de premier
plan/arrière-plan pour l’évaluation.

Une application dans un autre type de média pourrait prendre les mêmes consid-
érations de sélection d’attribut puisqu’une fois que le média est modélisé comme une
hiérarchie ou un graphique, ils partageront tous les mêmes règles dans cet espace.
Notamment les structures hiérarchiques qui intègrent en plus les notions d’ordre et de
navigation dans leurs règles sous une forme non maillée.

Si la généralisation n’est pas une préoccupation dans les applications futures, on
pourrait utiliser les stratégies proposées pour transposer la structure à l’espace vec-
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toriel tout en prenant les mesures appropriées pour améliorer les résultats sur une
tâche spécifique au média. Par exemple, on pourrait mieux modéliser les médias dans
l’espace hiérarchique ou graphique en utilisant des techniques de prétraitement ou
même une sélection de région (si le type de région d’intérêt est connu).

Une autre façon d’améliorer les performances des tâches à l’aide des stratégies
proposées consiste à sélectionner un modèle d’apprentissage automatique différent.
La forêt aléatoire a été choisi comme modèle dans la thèse, car elle est rapide, in-
spectable et évolutif. Elle a permis l’exécution de plusieurs expériences avec les don-
nées brutes des médias sans le coût en temps ni les décisions de conception favorisant
l’évolutivité que d’autres modèles exigeraient.

Une direction possible pour les travaux futurs sur les stratégies déjà proposées
est de combiner les attributs sélectionnés à partir des graphiques et des hiérarchies
dans la même ou différentes catégories de caractéristiques, enrichissant les informa-
tions présentées au modèle d’apprentissage automatique. Une autre possibilité est
d’appliquer une stratégie pour réduire la structure avant la sélection des attributs ou
d’employer une stratégie de réduction des données une fois que les entités sont sous
forme vectorielle. Cependant, il faut toujours garder à l’esprit l’arrangement sémantique
et les règles hiérarchiques lors de l’utilisation de ces techniques.

Enfin, la thèse a démontré qu’il est possible de créer un cadre d’apprentissage
fonctionnant avec des données hiérarchiques, performant dans plusieurs tâches et in-
dépendant des médias. Les propositions fonctionnent avec n’importe quel type hiérar-
chique, y compris celles qui ne sont pas créées à partir de graphiques. Cependant, ils
n’améliorent pas la structure hiérarchique et l’apprentissage d’une hypothétique hiérar-
chie idéale reste un problème ouvert.

Principales contributions

— Cadre d’apprentissage sur les attributs de graphes pour le traitement d’images
(Publié à la 34e Conference on Graphics, Patterns and Images 35. Récompensé
comme meilleur article de la conference).

— Formalisme étendu sur les attributs de graphes explorant des zones d’entrée plus

35. Almeida Raquel, Patrocínio Jr. Zenilton K. G., et al. (2021). Descriptive image gradient from
edge-weighted image graph and random forests.

25



étendues à travers des graphes de contiguïté de régions et des changements en-
traînés par la mécanique du modèle (publié dans Pattern Recognition Letters 36).

— Cadre d’apprentissage opérant directement sur les données hiérarchiques, focal-
isant les formulations uniquement sur les composantes structurelles des hiérar-
chies (article soumis).

— Revue systématique critique de la littérature sur « l’apprentissage des hiérar-
chies », qui est la première sur le thème à notre connaissance.

La thèse a démontre qu’il est possible de créer un cadre
d’apprentissage avec des données hiérarchiques qui fonctionne
bien dans plusieurs tâches et est agnostique aux médias.

Contribution à la connaissance :

36. Almeida Raquel, Kijak Ewa, et al. (2022). Graph-based image gradients aggregated with random
forests.
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