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Chapter 1

Introduction

1.1 Motivations and main results

Uunlike combinatorial random graphs as the Erdés—Reényi model (see [14] for their seminal paper
or [6] for a very complete reference) in which all the edges occur with the same probability and
independently of each other, the vertices of a geometric random graph are embedded in a metric
space and the probability that an edge {z,y} occurs, depends on geometric considerations as for
example the distance between x and y. Taking into account the geometry of the ambient space,
the geometric random graphs are useful to modelize many fields as statistical physics and parti-
cles systems, communication networks, population dynamics, image analysis etc. See the book of
Penrose |20] for a general reference on the topic.

In 2008, Baccelli and Bordenave introduce the Radial Spanning Tree (RST) in the Euclidean
plane to modelize communication networks [I]. The RST is a geometric random graph defined
from a homogeneous Poisson Point Process (PPP) N (with intensity 1) and rooted at the origin 0.
It is obtained by connecting each point z € N to its parent A(z), defined as the closest point to z
among all 2/ € N'U{0} that are closer to the origin than z (in the sense of the Euclidean distance
[.]), i.e. among (N U {0}) N B(0,|z]). A semi-infinite path of the RST is defined as a sequence
of Poisson points (2,)n>0 € (N U {0} with 2o = 0 and 2, = A(zp41) for any n > 0. A semi-
infinite path (z,),>0 admits an asymptotic direction 6 € [0, 27] if 2,,/|2,| tends to € as n tends
to infinity. The topological properties of the bi-dimensional Euclidean RST are well-understood:
Baccelli and Bordenave showed that a.s. any semi-infinite path admits an asymtpotic direction;
a.s. every asymptotic direction is reached by at least one semi-infinite path and there exists a.s.
a unique semi-infinite path in any given deterministic asymptotic direction. These results on the
infinite paths are completed by Baccelli, Coupier & Tran [2].

By construction the RST is distribution invariant w.r.t. rotations but not w.r.t translations.
This lack constitutes a real drawback to study some of its properties, as the vertical fluctuations of a
(radial) path starting from (n,0) (with n large). To overcome this obstacle, Baccelli and Bordenave
introduce an auxiliary model, called the Directed Spanning Forest (DSF), which approximates in
distribution, locally and far from the origin the RST. The Euclidean DSF is a random forest whose
vertex set is given by the homogeneous PPP N. For any vector u € R?, the (Euclidean) DSF with
direction u is the graph obtained by connecting each point z € N to the closest point to z among
all points 2’ € A/ that are further in the direction u, i.e. such that (2’ — z,u) > 0.

The RST and DSF with direction w = —(1,0) constructed on the same PPP A can be locally
coupled far from the origin. It is not difficult to be convinced by the fact that, with probability
tending to 1 with n, any Poisson point z € B((n,0),r) (with  not depending on n) admits the
same ancestor for the RST and for the DSF. See [I]. This means that locally and far from the
origin, i.e. inside the ball B((n,0),r), the radial behavior of RST paths disappears and the RST
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Figure 1.1: To the left, the Euclidean RST rooted at the origin and to the right the DSF with
direction u = (0, 1).

looks like (in distribution) to the DSF with direction u = —(1,0).

More than a tool to study the RST, the DSF is an interesting mathematical object in itself with
beautiful properties. Coupier and Tran showed in 2013 that, in dimension 2, all the DSF paths
coalesce (the DSF is actually a tree!) and it does not contain bi-infinite paths with probability 1
[12]. In addition, Coupier, Saha, Sarkar & Tran developed tools to split trajectories in i.i.d. blocks
[11], and stated that the DSF at a diffusive scale converges in distribution to the Brownian Web.
See [27] for an overview on the Brownian Web. Let us add that these new tools, extended to higher
dimensions, should allow to prove that, like many other directed forests, the DSF paths coalesce
in dimension d € {2,3} but not in dimension d > 4, and contain no bi-infinite paths whatever the
dimension. Such results have been proved for several other directed forest, e.g. see [L3] [14] 26].
One main difficulty in the RST and DSF constructed on PPP lies in the fact that although their
definitions are simple, complex dependencies between points are then created and are very intricate
to study. In [1I, 2} 12, I1], many tools specific to the Euclidean RST and DSF are developed.

Many random objects present radically different behaviours depending on whether they are
considered in an Euclidean or hyperbolic setting. With the dichotomy of recurrence and transience
for symmetric random walks [20], one of the most emblematic example is given by continuum per-
colation models. Indeed, the Poisson-Boolean model contains at most one unbounded component
in R? [21] whereas it admits a non-degenerate regime with infinitely many unbounded components
in the hyperbolic plane [23]. The difference is mainly explained by the fact that the hyperbolic
space is non-amenable, i.e. the measure of the boundary of a large subset is not negligible w.r.t.
its volume. For this reason, arguments based on comparison between volume and surface, such as
the Burton & Keane argument [6], fail in hyperbolic geometry. Discovering new behaviors of the
hyperbolic RST-DSF (to be defined) w.r.t. their Euclidean counterparts is the initial motivation
of this thesis.

There is a growing interest for the study of random models in a hyperbolic setting. Let us cite
the work of Benjamini & Schramm about the Bernoulli percolation on regular tilings and Voronoi
tesselation in the hyperbolic plane [3], and the work of Calka & Tykesson about asymptotic visibility
in the Poisson-Boolean model [8]. Mean characteristics of the Poisson-Voronoi tesselation have
also been studied in a general Riemannian manifold by Calka, Chapron & Enriquez [6]. Recently,
Hansen & Miiller have studied the behavior of the critical probability p.(\) (for the existence of an
infinite cluster) in the percolation model on the Voronoi tessellation generated by a homogeneous
PPP with intensity A on the hyperbolic plane. On the one hand, they show in [I8] that p.(\) tends
to 1/2 as A — +oo, confirming a conjecture of Benjamini & Schramm [3]. On the other hand, they
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stated in [19] that p.(\) is asymptotically equal to 7\/3 as A — 0, answering a question of [3]. Let
us also mention the recent work of Linker, Mitsche, Schapira & Valesin on the contact process on
random hyperbolic graphs [21].

Another motivation for this work is the following: the geometry of complex networks seems to
be hyperbolic. In [5], Boguna, Papadopoulos & Krioukov put forward evidences that the hidden
underlying geometry of such networks as social networks, scientific collaborator networks, com-
puter networks is hyperbolic, and that hyperbolic geometry emerges spontaneously in the process
of their formation (see Bianconi & Rahmede [4] or Fountoulakis et al. [I6]). Moreover, in [5], a
surprisingly good maximum likelihood fit of the Random Hyperbolic Graph model (introduced by
the same authors in [20]), was shown for the embedding of the network formed by the autonomous
systems of the Internet.

For any integer d > 2, the hyperbolic space H? is a d-dimensional Riemannian manifold,
homogeneous, with constant negative curvature, that can be chosen equal to —1 without loss of
generality. It can be represented by several models, all related by isometries: we will mainly work
with the Poincaré disc model and the upper half-space. The hyperbolic space H¢ admits a set of
ideal boundary points OH?, and Hd := H? U 9H? denotes the hyperbolic space endowed with its
boundary. For background in hyperbolic geometry, the reader may refer to [7] or [19].

Let A be a homogeneous PPP of intensity A > 0 in H?. Recall that the intensity A matters
in the hyperbolic setting by acting on the curvature of the space, unlike in the Euclidean setting
in which the intensity can be chosen equal to 1 without loss of generality. The definition of the
hyperbolic RST is similar to the Euclidean case. Working with the Poincaré disc model, its vertex
set is AU {0} and each vertex z € N is connected to the closest Poisson point among those that
are closer to the origin than z:

A(z) = argmin  d(Z/, 2)
2’€(NU{0})NB(r)

where d(+, -) denotes the hyperbolic distance and B(r) the corresponding ball with radius r centered
at 0. The hyperbolic Radial Spanning Tree in H? is a tree rooted at the origin whose vertex set
V = N U{0} and edge set E := {(z,A(2)),z € N}. Remark that AU {0} does not contain
isosceles triangles with probability 1: the parent A(z) is then a.s. unique.

Whereas the hyperbolic RST defined above is the natural hyperbolic version of the Euclidean
RST, we could define several hyperbolic versions of the Euclidean DSF because there exist several
ways to follow a direction in the hyperbolic space. But one of them is more relevant since it
approximates in distribution, locally and far from the origin the hyperbolic RST and we want to
preserve the link between Fuclidean RST and DSF for their hyperbolic counterparts. Hence, the
hyperbolic Directed Spanning Forest is defined as follows. Working with the upper half-space, we
choose to connect each Poisson point z = (21, ...,24) € N to the closest Poisson point to z (for the
hyperbolic distance) among all points 2’ = (2, ...,2}) € N with 2/, > z4. An equivalent and more
intrinsic definition of this model using horodistances is given in the sequel.

It is worth pointing out that (both Euclidean and hyperbolic) RST and DSF present some
strong dependence phenomenons due to their construction rules. Let us focus on the DSF on the
upper half-space. When a Poisson point z is connected to its parent A(z), this automatically cre-
ates a region, precisely the upper half-space above A(z) intersected with the ball B(z,d(z, A(2)),
which is empty of Poisson points. The parent of A(z) cannot belong to this region. This means that
the previous steps of a DSF path influences the next ones. Hence, the DSF presents dependence
phenomenons inside a single path and between different paths.

Chapter 2 is devoted to the study of the hyperbolic DSF. After detailing its definition (with
horodistances) and its first properties (no cycles, non-crossing paths and finite degree), we get a
complete description of its topological properties which are radically different from the Euclidean
case. Indeed, for any dimension, the hyperbolic DSF is a tree (i.e. all the DSF paths coalesce)
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Figure 1.2: Simulation of the two-dimensional hyperbolic RST, with A = 30, in the Poincaré disc
model. The edges are represented by geodesics. The different connected components of the RST
(apart from the root) are represented with different colors.

50

0

150

10

Figure 1.3: Simulation of the hyperbolic DSF in the half-space model, with A =1 (to the top) and A = 10
(to the bottom). The local behaviour of the hyperbolic DSF depends on the intensity A because the space is
curved.

containing infinitely many bi-infinite branches, whose asymptotic directions are investigated.
Chapters 3 and 4 concern the hyperbolic RST and the study of its semi-infinite paths in every
dimension. It is proved that a.s. every semi-infinite path admits an asymptotic direction and
each asymptotic direction is reached by at least one semi-infinite path. Moreover, the RST path
converging to any given (deterministic) asymptotic direction is a.s. unique. However, there exist
random directions in which several RST paths converge. This set of exceptional random directions
is dense in OH? and countable in dimension d = 2. Finally, we show that the subset of OH¢ of
asymptotic directions reached by semi-infinite paths passing through a given Poisson point z has
a non-empty interior. In dimension d = 2, this means that a.s. there is no random direction in
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which more than two RST paths converge. To our knowledge, this statement which is conjectured
for most of bi-dimensionnal geometric radial tree studied in the literature, has been stated for only
one model, namely the last-passage percolation tree in the quadrant N? with exponential weights,
by Coupier [11].

1.2 Hyperbolic geometry

Let us recall that H?! denotes the d + 1-dimensional hyperbolic space, and H denotes the half-

space model defined:
H := {(x1,...,2q,y) € Ry >0}
endowed with the metric
ds2 da? + ... + da? + dy?
SH = y2 .

We refer to [7] and [I9] for general introduction to hyperbolic geometry.

1.2.1 The distance formula

Proposition 1.2.1 (Distance formula in the half-space model). Let z; = (x1,y1) € H and z5 =
(z2,y2) € H. Let k = |1 — x2||/y1 and v = ya/y1. Then

_ K2+ (v —1)2 K2+ (v+1)2
d = 2tanh™! - | =% —F 1.2.1
(Z17 22) an ( K2 + (U + 1)2 v ( )
where @ : [4,+00) — Ry is increasing and defined as
_ 1+ /1—4/t
@t:2tanh1(\/1—4t>=1n — | .
() / 1—/1—4/t
Let us recall that the height of a point z = (x,y) € H is defined as h := In(y).

Corollary 1.2.2 (Distance between the points on the same vertical line). Let x € RY, 31,9, € R% .
Consider the two points zy = (x,y1) and z2 = (z,y2). Then

d(z1,22) = |In(y2/y1)| = |h(z1) — h(22)|.
Corollary 1.2.3 (Distance between two points on the same horizontal hyperplane). Let y € R,
let R >0 and z1, 72 € R? with |1 — 22| = R. Then

d(z1,22) =21In (5) + o(1) when R — oc.

where z; = (x;,y), i = 1,2. Moreover, for all R > 0, d(z1,22) < %.

Proof of Proposition[2.2.1] and its corollaries. Step 1: It is enough to consider the case of dimen-
sion 2 (d = 1). Let (H?,ds3) be the two dimensional half-space endowed with the Hyperbolic
metric, and (H*™' ds3, ) be the (d + 1)-dimensional half-space with Hyperbolic metric. Let
21 = (z1,y1), 22 = (v2,y2) € H¥'. Then the map

:H> — H™!

(z,y) — (fffﬁxw y) (1.2.2)

|x2 — 1]
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is an isometry from (Ha,ds3) to ¢(Hz) C (H*™', ds3,,). Recall that m, : (z,y) — z and m :
(z,y) — y denote the projections on the z-axis and on the y-axis respectively. Note that 21,29 €
»(H2), and

e (z) =y, T H(2) = v2,  mee T (22) — mee T (21)|| = |lme — | (1.2.3)

Thus, the distance formula (3.7.1)) in H? immediatly implies the same formula in H9*?.

Step 2: Proof in dimension 2.
Let us first apply isometry Dy, o T ,,, that sends z; to (0, ). Tt leads to:

der,za) = a (10,60 (2L ) ) a(0.), () (1.2.4)
Y1 Y2
where k and v has been defined in Proposition [2.2.1 O

We wove on to show the particular cases of the distance formula, i.e. Corollaries and
2.0

Proof of Corollary[1.2.3 Let v € RY, y;,y» € RY, and set 2, = (2,41), 22 = (z,y2). Then,
k= |lz —z[|/y1 = 0 and v = yo/y1. Thus, Proposition [2.2.1] gives,

- —1)? 1 (Y2 — 0
d(21, ) = 2tann 1 | W2l =V :2tah1< ) .
(2122 ' ( (y2/y1 +1)2 " Y2 + Y1 n(yz/y1)

Proof of Corollary[1.2.3, Let y € R%, let R > 0 and x1, 22 € R? with |Jzq — 22| = R. Then

oy o V.V NP !
(21, 22) = 2tanh ( <R/y>2+4>—“anh < 1‘<R/y>2+4>'

When R — oo,

4
1+ 1_4(R/y)2+4 N <R)2+4N <R>2
1— /1 — —4_ Y )

(R/y)>+4

Thus

d(z1,22) =1n

1+,/1 - g
( /y: i —2ln<R)+0(1) as R — oo.
1=y~ mprm Y

For the second part of Corollary let us consider the C'-regular path ~y : [0,1] — H defined
as v(t) = (x1 + t(x2 — 21),y). Then

ol el R

this completes the proof of Corollary O
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1.2.2 Horodistance functions

Let us define the horodistance functions (see Definition 2.4 of Chapter. In H*!, the horodistance
formalizes the notion of "distance from a point at infinity".

Definition 1.2.4 (Horodistance functions). Let zg € HY"! be an arbitrary point, considered as
the origin. Given a point at infinity I € OH*!, the horodistance function Hy : HYt' — R is
defined as

Hi(z) := lim d(z 2') —d(z0, 7). (1.2.6)

z'—=1

The level sets of Hj, i.e. the sets of points at the same horodistance to I, are called horospheres
(centerered at I). Horospheres in (H,ds?) are represented in Figure

Proposition 1.2.5. In the half-space representation (H,ds%), the horodistance function Hoo is
given (modulo an additive constant) by:

Hoo((7,y)) = — In(y).

Proof. Without loss of generality, we can set the origin point zy at (zg,y0) := (0,1). Let z =
(x,y) € H. By the distance formula (Proposition [1.2.5)), for any 2’ = (2/,y') € H,
(=l /9> + (' Ty~ 1)? [P+ (7~ 1))
: [V EEE LTV i)
d(z,2") —d(z0,72") =In —1In
1 U=l /st iy 12 L It —1%)
(' —=[l/y)*+ (" /y+1)? =12+ (y'+1)2)
Hxi—xlli-&-(yi—y)z _ %
—In lz"—2[?+(y"+y)* l"[?+(y'+1)?) (1.2.7)
Lz |2+ (y'~1)2) _ /e alP iy —y)?
[l 2+ (y'+1)?) llo’ —[l?+(y’'+v)*

When 2/ — oo (ie. |2/ + ||yl|* — o0), 2" — z|* + (' £ v)?|| ~ ||2]|> + v, idem for
|z'||? + (v +1)?||. Thus

llz" =z |2+ (y’' —y)>
P VA = cax rmnd

—1 1.2.8
14 /1Pt =1?) ( )
2’112+ (y'+1)?)
as 2z’ — oco. Moreover,
Y [ R ™
l=]* + (3" + 1) =]* + (3" + 1)
2y’ 2
Y as 2/ — oo, (1.2.9)

o —zl]* + (v +1)* ]| + ¢

and, similarly,

e ey dyy’
|2 — || + (¥ +y)? 2/ — =2 + (¥ +y)?

/

N 2yy L%
H:c’ a2+ (Y + y)2 Hx’ll“‘ +y?

Therefore, plugging (|1.2.8)) and ( - in gives,

lim d(z,2") — d(Zo7Z ) = —In(y),

z'—o00

as 2/ — oo. (1.2.10)

this achieves the proof. O
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1.2.3 The change-of-coordinates formula
Lemma 1.2.6. Let

dr/?
P(§+1)

be the (d — 1)-dimensional surface of the unit sphere in R, Let zo € H'! and let f: Ry — Ry
be measurable. Then

S(d) :=

[ ) d = () [ f(p)sinb(o)? dp.
Hd+1 Ry
Proof. Let us consider the (d+1)-dimensional open-ball model (I, ds?) and we can suppose without
loss of generality that zp = 0.

The first step is to compute, for 0 < r < 1, the hyperbolic radius p(r) of the Euclidean ball of
radius r centered at 0. Consider a point z € I with ||z|| = r. We have

"M
p(r) = /0 T2 ds = 2tanh™'(r).

Now, let f : Ry — R, be some measurable function. Recall that S(d) is the (Euclidean)
surface of the unit sphere in R?. Then

9d+1 4, 2d+1d7‘
f]]—ﬂd+1 f(d(Z7 ZO)) dZ - /['f(d(z’ O ( ||Z|| d+1 = / f d 7"2)d+1
The change of variable p = 2tanh™(r) gives:
dpi5— > :
fus (e 20)) d = S(@ [ fp2t Z)dﬂ = (@) [ slp)sinn(o) ap.
0
which proves Lemma O

1.3 The Mass Transport principle in R?

Theorem 1.3.1 (Mass Transport Principle). Let w be some positive diagonally invariant measure
on R? x R, Then for any measurable set A C RY with nonempty interior, the following identity
holds:

(A x RY) = n(R? x A),
these values can be eventually infinite.
For s € R?, define T, : R? x R? — R% x R? by Ty(x,2') = (x + s,2" + s5). We first show:

Lemma 1.3.2. Let 7w be diagonally invariant measure on R? x R%. We suppose that m is finite on
compact sets. Then for all measurable set E C R x R, 7(E) = n(T4E).

Proof of Lemma[1.3.3 Let s € R For R > 0, let us define Kz = [-R, R]? and Kp = K x K.
Fix R > 0. Define ¥ := {F € B(R? x R%), n(EN Kg) = n(Ts(E N Kg))}. Then ¥ is a monotone
class since m(KR) < oo by assumption. Define Uy := {A x B, A,B € B(R%)}. Then ¥, is a
7-system and since 7 is diagonal invariant, for all measurable sets A, B C R?,

T((Ax ByNKg) =7((ANKR)x (BNKR)) =n(Ts(ANKg) x Ts(BN Kg))
=7m(Ts((A x B) N Kg).
Thus ¥g C W. Moreover ¥, generates the o-algebra B(R? x R?). Thus the Monotone Class

Theorem gives that Ug = B(R? x R?). That is, for all measurable set £ C R* x R, 7(EN Kg) =
m(Ts(E N Kg)). Taking R — oo, we obtain 7(E) = n(Ts(E)). O
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Proof of Theorem [2.3.3 Let us define the following measures on R%:
vi(A) = m(AxRY, 1p(A4) :=7(R? x A)

for all measurable set A C R?. Since 7 is diagonally invariant, for all s € RY, vy (T, A) = (T A x
R?) = (A x RY) = vy (A), therefore v, is translation invariant. By the same argument, 15 is also
translation invariant.

Let us consider the case there exists some open set A C R such that v1(A4) < co. We can
consider without loss of generality that A is bounded. Then v; is a multiple of the Lebesgue
measure. Suppose for the moment that v5(A) < co. Then vy is also a multiple of the Lebesgue
measure. Let B C R? be measurable with 0 < Leb(B) < 0o, we show that v;(B) = v»(B). Both
measures 7(- X B) and w(B X -) are o-finite since v; and v4 are. Thus, Fubini gives,

fRd 7(TsB x B) ds = / / lyer.p dn({z} x B) ds
s€R? JzeRe

= /ERd /eRd ]-zET,;B ds dﬂ'({(l?} X B)
= Leb(B)7(R? x B) = v1(B)

and

Jpam(BxT_(B) ds = / / lyer_.p dn(B x {z}) ds
seR? JzeRd

:/ Rd/ R 1z€T_SB ds d’IT(B X {IIZ})
= Leb(B)7(B x R?Y) = 15(B).

Thus, since 7 is diagonal invariant and 0 < Leb(B) < oo,

v1(B) = Leb(B)™* /

7(TsB x B) ds = Leb(B)’l/ 7(B x T_4B) ds = v3(B).
]Rd

Rd
Therefore, since both v; and vy are multiple of the Lebesgue measure, v1 = v5. That is, for all
measurable set A C RY, 7(A x RY) = (R4 x A).

This proves the theorem under the assumption v2(A) < co. For r > 0, define F, := {(z,2’) €
RY x R?, ||z —2'|| < r} and define the measure 7,.(-) := 7(-N F,.). Let us show that 7, is diagonally
invariant. Let A, B C R? be measurable. Since v is finite on compact sets (it is a multiple of the
Lebesgue measure), so is 7. Thus Lemma with £ = (A x B) N F, gives,

m(Ax B) =m((Ax B)NF,)=n(Ts((Ax B)NE.)) = n(Ty(A x B)N F})
= (T, A x T, B)

since F,. = T,F,. Therefore 7, is diagonally invariant. Moreover, 7,.(4 x R?) < 7(A4 x R?) < cc.
Define A, := {x € RY, d(z, A) < r}. Since A is bounded, so is A,. Thus 7,.(R?x A) < 7(A, x A) <
7(A, x RY) < co. Then the previous calculations apply to m,.. By monotone convergence, for all
measurable set £ C R?, 7,.(E) T 7(E), therefore, for all measurable set A C R?,

(A x RY) = lim 7.(A x RY) = lim 7,.(R% x A) = n(R? x A).
7—00 =00
This achieves the proof in the case there exists some open set A C R? such that 7(A x R?) < oo.
A symmetric argument applies if there exists some open set A C R? such that m(R? x A) < oo.
Finally, the remaining case is that for all open set A C R¢, m(A x R?) = 7(R? x A) = co. The
conclusion follows immediately in this case. This achieves the proof. O
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Chapter 2

The Directed Spanning Forest in
hyperbolic space

The Euclidean Directed Spanning Forest (DSF) is a random forest in R? introduced by Baccelli
and Bordenave [I] and we introduce and study here the analogous tree in the hyperbolic space. The
topological properties of the Euclidean DSF have been stated for d = 2 and conjectured for d > 3
(see further): it should be a tree for d € {2,3} and a countable union of disjoint trees for d > 4.
Moreover, it should not contain bi-infinite branches whatever the dimension d. In this paper, we
construct the hyperbolic DSF and we give a complete description of its topological properties, which
are radically different from the Euclidean case. Indeed, for any dimension, the hyperbolic DSF is
a tree containing infinitely many bi-infinite branches, whose asymptotic directions are investigated.

The strategy of our proofs consists in exploiting the Mass Transport Principle, which is adapted
to take advantage of the invariance by isometries. Using appropriate mass transports is the key
to carry over the hyperbolic setting ideas developed in percolation and for spanning forests. This
strategy provides an upper-bound for horizontal fluctuations of trajectories, which is the key point
of the proofs. To obtain the latter, we exploit the representation of the forest in the hyperbolic
half space.

2.1 Introduction

Many random objects present radically different behaviours depending on whether they are con-
sidered in an Euclidean or hyperbolic setting. With the dichotomy of recurrence and transience for
symmetric random walks [20], one of the most emblematic example is given by continuum perco-
lation models. Indeed, the Poisson-Boolean model contains at most one unbounded component in
R? [21] whereas it admits a non-degenerate regime with infinitely many unbounded components in
the hyperbolic plane [23]. The difference is mainly explained by the fact that the hyperbolic space
is non-amenable, i.e. the measure of the boundary of a large subset is not negligible with respect
to its volume. For this reason, arguments based on comparison between volume and surface, such
as the Burton and Keane argument [6], fail in hyperbolic geometry. For background in hyperbolic
geometry, the reader may refer to [7] or [19].

Hence there is a growing interest for the study of random models in a hyperbolic setting. Let
us cite the work of Benjamini & Schramm about the Bernoulli percolation on regular tilings and
Voronof tesselation in the hyperbolic plane [3], and the work of Calka & Tykesson about asymptotic
visibility in the Poisson-Boolean model [8]. Mean characteristics of the Poisson-Voronoi tesselation
have also been studied in a general Riemannian manifold by Calka et. al. [6]. In addition,
huge differences between amenable and non-amenable spaces are well known in a discrete context

19
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4, 18, 21].

It is in order to highlight new behaviors that we investigate the study of the hyperbolic coun-
terpart of the Euclidean Directed Spanning Forest (DSF) defined in R¢ by [1]. To our knowledge,
this is the first study of a spanning forest in the hyperbolic space.

Geometric random trees are well studied in the literature since it interacts with many other
fields, such as communication networks, particles systems or population dynamics. We can cite the
work of Norris and Turner [22] establishing some scaling limits for a model of planar aggregation.
In addition, hyperbolic random graphs are well-fitted to modelize social networks [5].

The Euclidean DSF is a random forest whose introduction has been motivated by applications
for communication networks. The set of vertices is given by a homogeneous Poisson Point Process
(PPP) N of intensity A in R%. For any unit vector u € R?, the (Euclidean) DSF with direction u
is the graph obtained by connecting each point z € N to the closest point to x among all points
a2’ € N that are further in the direction u (i.e. such that (z' — x,u) > 0).

The topological properties of the Euclidean DSF are now well-understood. Coupier and Tran
showed in 2010 that, in dimension 2, it is a tree that does not contain bi-infinite branches [12].
Their proof used a Burton & Keane argument, so it cannot be carried over the hyperbolic case.
In addition, Coupier, Saha, Sarkar & Tran developed tools to split trajectories in i.i.d. blocks
[11], and these tools may permit to show that the Euclidean DSF is a tree in dimension 2 and 3
but not in dimension 4 and more (see [II, Remark 18, p.35]). This dichotomy and the absence of
bi-infinite branches for any dimension d have been proved for similar models defined on lattices
and presenting less geometrical dependencies [22 [14] [T, 13]. Indeed, compared with these models,
the DSF exhibits complex geometrical dependencies : given a Poisson point z € N, knowing the
position of its parent A(z) implies the knowledge that some region above A(z), the upper part
of a hyperbolic ball centered at z is empty of Poisson points, which affects the future evolution
of trajectories (Figure , and thus destroys nice Markov properties available for the models on
lattices mentioned above.

The hyperbolic space is a homogeneous space with constant negative curvature, that can be
chosen equal to —1 without loss of generality. It can be represented by several models, all related
by isometries. We will work in the (d 4+ 1)-dimensional upper half-space H := {(z1,...,24,y) €
R+ > 0} |7, p.69] endowed with the metric

9 dz? + ...+ dz? + dy?
dsy = 5 .
Yy

This representation is well adapted to our problem as explained in Section Now, let us
define the hyperbolic DSF. The set of vertices is given by a homogeneous PPP N of intensity A > 0
in (H,ds?%). Given a point x € N, choosing its closest vertex according to a given direction can
be interpreted in different ways in the hyperbolic space. Hence several hyperbolic DSF could be
considered. We choose to connect each point z = (z1,...,24,y) € N to the closest point to z (for
the hyperbolic distance) among all points 2’ = (21, ...,2},y’) € N with 3y > y (called the parent
of z). An equivalent and more intrinsic definition of this model using horodistances is given in
the core of the article. The main interest of this definition is the preservation of the link between
the DSF and the Radial Spanning Tree (RST) existing in the Euclidean setting. The (Euclidean)
RST, also defined by [I], is a random tree whose set of vertices is given by a homogeneous PPP N
plus the origin 0 and defined by connecting each point x € N to the closest point to  among all
points 2’ € N U{0} such that ||2’|| < ||z|. In the Euclidean setting, the DSF approximates locally
the RST in distribution far from the origin. This remains true in the hyperbolic setting for our
definition of hyperbolic DSF, although the RST is not considered here. The study of the hyperbolic
RST and its link with the DSF is devoted to a future work. A simulation of the hyperbolic DSF
is given in Figure 2.1

In this paper, we give a complete description of the topological properties of the hyperbolic DSF
which present huge differences with the Euclidean case : whatever the dimension d, the hyperbolic
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DSF is a.s. a tree (Theorem [2.1.1)) and admits infinitely many bi-infinite branches (Theorem [2.1.2)).
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Figure 2.1: Simulation of the DSF in the half-space model, with A = 1 (to the top) and A = 10
(to the bottom). The local behaviour of the hyperbolic DSF depends on the intensity A because
the space is curved. For instance the average number of descendants is larger for A = 1 than for

A = 10. But its topological properties do not depend on A (see Theorems and [2.1.2)

For the DSF, being a tree means that all branches eventually coalesce, i.e. any two points
z,y € N have a common ancestor somewhere in the DSF. For any bounded measurable subset
A € R?, we can define its coalescing height T, as the smallest 7 > 0 such that every branches
passing through A x {€°} have merged below ordinate e” (see Definition . Here is our first
main result:
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Theorem 2.1.1. For alld > 1 and for all intensity A > 0, the hyperbolic DSF in dimension d+ 1
is a.s. a tree. Moreover, if d =1, for all a > 0, the coalescing height T|_4 4 admits exponential
tail decay: for any t >0,

P [T[,a’a] > t] < 2apae”t,

where the positive constant cg will be specified later (in Proposition .

The coalescence in every dimension is specific to the hyperbolic case, since in the Euclidean
case, it is expected that the DSF is a tree in dimension 2 and 3 only. For d = 1, the coalescing
height admits exponential tail decay in the hyperbolic case whereas P[r(_, 4 > t] € ©(a/+/t) when
t — oo in the Euclidean case (since it can be compared to the coalescing height of two Brownian
motions starting from (—a,0) and (a, 0) and directed to the top). The coalescence of all trajectories
can be heuristically explained by the fact that two trajectories starting from the ordinate e® almost
remain in a cone: their typical horizontal deviations at ordinate e' are of order e!. So, roughly
speaking, they remain at the same hyperbolic horizontal distance from each other as they go up,
implying that they must coalesce. This behaviour is due to the hyperbolic metric and does not
occur in R?,

A bi-infinite branch can be identified as a sequence of Poisson points (z,)nez € NZ such that
Zn+1 is the parent of z, for all n € Z. In the half-space representation, the boundary hyperplane
R? x {0} are points at infinity for the hyperbolic geometry (a proper definition is given in the core
of the article). We say that a bi-infinite branch converges to a point at infinity (z,0) € R? x {0}
towards the past if it converges downwards to (x,0) (it is properly defined in Definition[2.2.16)). Our
second main result concerns bi-infinite branches and their asymptotic directions. The (d + 1)-th
coordinate y is seen as the time; the future is upward and the past is downward.

Theorem 2.1.2. For all d > 1 and for all intensity X > 0, the following assertions hold outside a

set of probability zero:

(i) The hyperbolic DSF admits infinitely many bi-infinite branches.

(ii) Every bi-infinite branch of the hyperbolic DSF converges toward the past.

(iii) For every x € R?, there exists a bi-infinite branch of the hyperbolic DSF that converges to

(z,0) toward the past.

(iv) Such a branch is unique for almost every x € R%. The set of x € Re for which there is no

uniqueness is dense in RY. It is moreover countable in the bi-dimensional case (i.e. ifd=1).
Moreover, for any deterministic x € RY, the bi-infinite branch converging to (x,0) toward the

past is unique a.s.

This result is specific to the hyperbolic case since the Euclidean DSF does not admit bi-infinite
branches [12].

The existence of bi-infinite branches can be suggested by the following heuristic. In the half-
space representation, because of the hyperbolic metric, the density of points decreases with the
height, implying that a typical point will have a mean number of descendants larger than 1. Thus
the tree of descendants of a typical point could be compared to a supercritical Galton-Watson tree
and then should be infinite with positive probability. According to this heuristic, the hyperbolic
DSF should admit infinitely many bi-infinite branches. On the contrary, in the Euclidean DSF, a
typical point has a mean number of descendants equal to 1 (it can be seen by the Mass Transport
Principle discussed later). Hence the corresponding analogy leads to a critical Galton-Watson tree
which is finite a.s., which suggests that the Euclidean DSF does not admit bi-infinite branches.

The key point of the proofs is to upper-bound horizontal fluctuations of trajectories, both
forward (i.e. upward) and backward (i.e. downward). Roughly speaking, we establish that a
typical trajectory almost remains in a forward cone. Controlling the fluctuations of trajectories is
a common technique to obtain the existence of infinite branches and to control their asymptotic
directions: it is done for the RST in [I], and also by Howard & Newman in the context of first
passage percolation [15].
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To do it, we proceed in two steps. We first use a percolation argument to upper-bound fluctua-
tions on a small vertical distance. Then we generalise the bound on an arbitrary vertical distance
by a new technique based on the Mass Transport Principle (Theorem . This principle roughly
says that for a given mass transport with isometries invariance properties (Definition , the
incoming mass is equal to the outgoing mass. Most models in hyperbolic space studied in the liter-
ature are invariant by the group of all isometries, which is unimodular (i.e. the left-invariant Haar
measure is also right-invariant), and the Mass Transport in the hyperbolic space [3 pp. 13-14]
is well-adapted for these models. However, the hyperbolic DSF is only invariant by the group of
isometries that fix a particular point at infinity, and this group is not unimodular (the invariance
properties are explained in Section . For this reason, the Mass Transport Principle cannot
be used in the same way. Instead, we introduce a slicing of H into levels R? x {e*} for t € R, and
we typically consider appropriate mass transports from R? x {e!1} to RY x {e'2} with ¢; < t5, in
order to obtain useful equalities by identifying the incoming mass and the outgoing mass.

The rest of the paper is organized as follows. In Section [2.2.1] we set some reminders on
hyperbolic geometry. We also define the hyperbolic DSF in more details and we give its basic
properties.

In Section [2.3] we state some technical results derived from the Mass Transport Principle in
R?. These results are well fitted to take advantage of the translation invariance of the model in
distribution.

In Section we establish upper-bounds for horizontal fluctuations of forward (i.e. upward)
and backward (i.e. downward) trajectories, which is the key point of the proofs. In particular, we
show that a typical trajectory almost stays in a forward cone. A block control argument is used
to upper-bound the fluctuations on a small vertical distance, and Mass Transport arguments are
used to deduce the general bound.

In Section [2.5] we exploit the control of horizontal fluctuations to prove the coalescence in any
dimensions (Theorem . The idea behind it is that, since two trajectories almost stay in cone,
they roughly stay at the same hyperbolic horizontal distance to each other as they go up, thus
they must coalesce. We also give a simpler proof of coalescence in the bi-dimensional case based
on planarity.

In Section 2.6 we prove Theorem [2.1.2] We use a second moment technique to show the
existence of bi-infinite branches, based on the control of forward horizontal fluctuations. We
exploit the control of fluctuations backward to prove the results concerning asymptotic directions.

2.2 Definition of the hyperbolic DSF and general settings

We denote by N the set of non-negative integers and by N* the set of positive integers. After

recalling some facts on the hyperbolic space H4*! (Section [2.2.1)), we consider an homogeneous
PPP on H%*! and construct the hyperbolic DSF (Section [2.2.2)).

2.2.1 The hyperbolic space and the half-space model

For d € N*, the (d + 1)-dimensional hyperbolic space, denoted by H*! is a (d + 1)-dimensional
Riemannian manifold, homogeneous and isotropic, and of constant negative curvature equal to —1.
The reader may refer to [7] or [I9] for background on hyperbolic geometry. The space H4*! can be
described with several isometric models and we will work in the half-space model, defined as the
upper half-space H := {(z1,...,7q4,y) € R¥* 4 > 0} endowed with the metric

dzi+ ...+ da? + dy?
y? '

2 .
dSH =
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yll

O X
Figure 2.2: The geodesics on (H,ds?) are of two types: on the one hand, the vertical straight

lines {x = a} for any a € R? (in red) and, on the other hand, the semi-circles contained in H and
centered at a point of the boundary hyperplane 0H (in blue).

The metric ds% naturally gives a volume measure py on (H,ds%), given by

di — dzxy...dzgdy
K g+t

Note that the last coordinate y plays a special role with respect to the other ones. The metric
becomes smaller as we get closer to the boundary hyperplane 0H = R? x {0}, and this boundary
is at infinite hyperbolic distance from any point of H. In the following, we will identify the point
(71, ..., 2441) € H with the couple (z,y) € R? x R with @ := (z1,...,24) and y := x441. The
coordinate z is referred as the abscissa and y as the ordinate. For z = (z,y) € H, we denote by
75 (%) = x the abscissa of z and by m,(z) = y its ordinate. We also define its height as h(z) := In(y).
The height can be positive or negative depending whether y > 1 or y < 1. All along the paper, we
will use the level 0 (with ordinate €°) as a reference.

Let us set some general notation. We denote by d(-,-) the hyperbolic distance in (H, ds%;) and
by ||-|| the Euclidean norm in R%U{oc}, with the convention ||oo|| = co. For 21, 2o € H, we denote
by [21, 22] the geodesic between z; and zo and by [z1, 22]eue the Euclidean segment between z; and
zo. For z € H and p > 0, let By (z,p) := {2’ € H, d(z,2') < p} be the hyperbolic ball centered at
z of radius p. For z € R? and r > 0, let Bga(z,7) := {2’ € R%, |2/ — z|| < r} be the Euclidean
ball centered at x of radius r. If there is no ambiguity, we will replace the notations By (-,-) and
Bga(+,-) with B(-,-). Finally, for z = (x,y) € H and p > 0, we define the upper semi-ball

Bi(2,p) = B (2, p) N (R x (y,0)).

It is the part of the (hyperbolic) ball B (z,p) that is above the hyperplane R? x {y} containing
2. This hyperplane is a curved subspace of (H, ds?), so it does not split By (z, p) in two isometric
pieces.

We now state some useful facts about the half-space model. In (H, ds%), hyperbolic spheres are
also Fuclidean spheres. Moreover, the Euclidean center and the hyperbolic center belong to the
same vertical line, but they do not coincide [7, Fact 1, p.86]. Hence, if 21, 22,23 € H are aligned
in this order for the Euclidean metric (i.e. zo € [21, 23]euct), then d(z1, 20) < d(z1, 23). We will use
the following distance formula to do precise calculations in the half space model:

Proposition 2.2.1 (Distance formula). Let z1 = (z1,y1) € H and z2 = (v2,y2) € H. Let



2.2. DEFINITION OF THE HYPERBOLIC DSF AND GENERAL SETTINGS 25

# = |lz1 — w2l /y1 and v =y2/y1. Then

B 1 K2+ (v—1)2\ K2+ (v+1)2
d(z1,22) = 2tanh ( W) =0 <v ) (2.2.1)

where @ : [4,+00) — Ry is increasing and defined as

®(t) = 2tanh ( 1- 4/t> =In (ﬂ) '

Remark 2.2.2. Given the ratio v = ya/y1, the distance d(z1, 22) increases with k. In particular,
when y1, yo are fixed, the distance d(z1, 22) is minimal when z; = .

The proof of Propositionis given in the Supplementary materials (Section. We now
discuss some particular cases of the distance formula. For two points on a same vertical straight
line, 21 = (z,y1) and 23 = (x,y2), their distance is d(z1,22) = |In(y2/y1)| = |h(z1) — h(22)].
This shows that the notion of height is compatible with the hyperbolic distance, this justifies the
relevance of this notion. In particular, for z = (x,e?) and p > 0; consider the hyperbolic (closed)
ball Bg(z,p). Then the top (i.e. the point with the highest ordinate) of By (z,p) is precisely
(x,e'*P), and the bottom (i.e. the point with the lowest ordinate) of By (z, p) is (z,et=7).

For two points on the same horizontal hyperplane, z; = (z1,y) and 22 = (x2,y), denoting by
R = ||x1 — x2]| their horizontal Euclidean distance, their hyperbolic distance can be estimated
when R — oo by d(z1,22) = 2In(R/y) + o(1). Moreover, for any R > 0, d(z1,22) < R/y.

The hyperbolic space H?*! is equipped with a set of points at infinity, denoted by OH*!. In
the half-space model (H,ds%), the points at infinity are identified by the boundary hyperplane
OH = R? x {0}, plus an additional point at infinity in all directions, obtained by compactification
of the closed half-space R? x R . This particular point at infinity will be denoted by oco.

2.2.2 Definition of the hyperbolic DSF

Poisson point processes

Let E = R? or H?. For any measurable subset A C E, we denote by |A| its volume (it is either
Leb(A) in the Euclidean case or p(A) in the hyperbolic case). Let us denote by Ng the space of
locally finite subsets of E, and for A C E measurable, let Ns(A) be the space of locally finite
subsets of A. The spaces Ng and Ng(A) are equipped with the o-algebra generated by counting
applications (i.e. of the form 5 — #(n N K) for any compact set K).

Definition 2.2.3 (Homogeneous Poisson point process (PPP)). For A > 0, a point process N is
called homogeneous Poisson point process of intensity A if for any measurable set A C E, #(NNA)
is distributed according to the Poisson law with parameter A|A.

It can be shown that there is a unique probability measure on Ng satisfying this condition.
Moreover, if N is a homogeneous PPP and A, ..,.A,, C E are pairwise disjoint measurable subsets,
then N N Ay, ..., NN A, are mutually independent [§].

Horodistance

In H!, the horodistance formalizes the notion of "distance from a point at infinity".

Definition 2.2.4 (Horodistance functions). Let 2o € H?*! be an arbitrary point, considered as
the origin. Given a point at infinity I € OH*!, the horodistance function Hy : HY' — R is
defined as

Hi(z) := lim d(z,2") — d(z0,2"). (2.2.2)

z' =1
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The existence of the limit is proved in Chapter (1} Section Any change of the
origin point zg only affects the function H; up to an additive constant. So H; is naturally defined
modulo an additive constant.

The level sets of Hj, i.e. the sets of points at the same horodistance to I, are called horospheres
(centerered at I). Horospheres in (H,ds?) are represented in Figure

Proposition 2.2.5. Consider (H,ds%) and recall that the boundary point oo has been defined in
Section |2.2.1. The horodistance function Ho is (modulo an additive constant):

Hoo((7,y)) = —In(y).

We refer to the Proposition [I.2.5] of Chapter [I] for a proof.

Figure 2.3: Horospheres centered at I in the half-space representation.

The DSF in hyperbolic space

We now introduce our model of DSF in H*!. Fix A > 0 and let N be a homogeneous PPP of
intensity A in HY!. Consider a point at infinity I € OH?t!, devoted to be the direction of the
DSF or the target point. The choice of I is analogous to the choice of the direction vector u in
the Euclidean case. In R, each z € N is connected to its closest Poisson point among those that
are "further" than z in some direction w. Similarly, in the hyperbolic case, we connect each point
z € N to the closest Poisson point among those that are "further in direction I", where being
"further in direction I" is formalized by the notion of horodistance (Definition [2.2.4)).

Definition 2.2.6 (Directed Spanning Forest in H4*1). Let I € OH*!. We call Directed Spanning
Forest (DSF) in H*+! of direction I the oriented graph whose set of vertices is N and obtained by
connecting each z € N to its parent A(z) defined as

Az) == argmin d(z' — 2).
/€N, Hi(z')<H1(z)

A sketch of the construction is given in Figure[2.4] The choice of the direction I only affects the
law of the DSF up to an isometry. Indeed, for any two points at infinity I, I’ € OH*!, there exists
an isometry that sends I on I’. In the following, we will work in the half-space representation
(H,ds?) (Section and we set the direction I = oo for convenience. Indeed, the horodistance
function H only depends on the ordinate (Proposition [2.2.5), and Huo(21) < Hoo(22) if and only
if 1 > y2. Thus, the parent of z is its closest Poisson point among those having higher ordinate
than z.

Definition [2:2.6] does not specify the shape of edges, but the results announced in Theorems
[2.17] and 2.1.2 only concern the graph structure of the hyperbolic DSF, so their veracity do not
depend on the way points are connected. Here, we choose to connect each point z € N to its parent
A(z) by the Euclidean segment [z, A(2)]euc- It is more natural to represent edges with hyperbolic
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geodesics, but the choice of Euclidean segments will appear more convenient for the proofs. The
main reason of this choice is that we want that the y-coordinate increases along a given edge, and
it is not the case using geodesics. Thus, we define the random subset DSF C H as the union of all
Euclidean segments [z, A(2)]cuc for z € N: DSF =, n[2, A(2)]euct-

Remark 2.2.7. For z € N, by definition of the parent A(z), the upper semi-ball B (z,d(z, A(2)))
contains no points of V.

Convention 2.2.8. This (random) upper semi-ball B, (z,d(z, A(z))) will be more simply denoted

Proposition 2.2.9. The DSF in H*! is a forest a.s.

Proof. Suppose that the hyperbolic DSF contains a cycle (2, ...zx—1). Consider the point of the
cycle with the lowest ordinate. Then, by construction, both neighbors of z; in the cycle must by
parents of z;, but z; has only one parent, this is a contradiction. Therefore, the DSF does not
contain cycles, it is a forest. O

Proposition 2.2.10. Almost surely, the DSF is non-crossing and has finite degree.
Proposition is show in the Appendix (Section

I =00

7777

Figure 2.4: Sketch of construction of the hyperbolic DSF. This picture illustrates dependence
phenomenons existing in a single trajectory and between trajectories. Given a Poisson point
z € N, knowing the position of its parent A(z) implies the knowledge that some region above
A(z), the upper part of a hyperbolic ball centered at z (the crosshatched area) is empty of Poisson
points, which affects the future evolution of trajectories, and thus destroys nice Markov properties
in the hyperbolic DSF.

General notations

If Xy,..., Xy are random variables, we denote by o(Xji,..., X;) the sigma-algebra generated by
X1, ..., Xp. If a random variable X is measurable w.r.t. (), then for n € Ng, we denote by X (n)
the value of X when N = 1. Let us also denote by T : « — x + s the translation by s in R%.
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Let z € DSF. Since the DSF is non-crossing [I4, Section 3.1], there exists a unique zg € N
such that z € [z0, A(20))euct- Then we define

zy =z, 2t := A(z0). (2.2.3)

For z € DSF, we define the trajectory from z as [z, zt)euct U UneN[A(")(zT),A(”Jrl)(z)r))eucl,
where A := Ao ...0 A n times.

Definition 2.2.11. For all t € R, we define the level t, denoted by L;, as the set of abscissas of
points in DSF with height ¢:

L; ={r € R (z,¢') € DSF}.

Definition 2.2.12. Let t; < t3, and let & € L£;,. The trajectory from (z,e’') crosses the level ¢,
(the hyperplane R? x {e’2}) at most at one point. It could a priori never cross the level ty, if the
y-coordinate stays indefinitely below e*2. Thus we define Ai';’ (z) as the point 2’ € R? such that
(2, e'?) belongs to the trajectory from (z,e’’) and we set Aif (x) = oo if this trajectory does not
cross the level to. The point Aj*(z) is called the ancestor of z.

R

Ly,

Actually, it will be shown later that the y-coordinates always goes to infinity a.s.:
Proposition 2.2.13. Almost surely, for all t; < to, for all x € Ly, if (z) # oo.
This statement is proved in Section 2:4.4]

Definition 2.2.14. Let t; < {9, and let x € £;,. We define the sets of descendants of x, denoted
by D}?(z), as the set of points 2’ € Ly, such that (z,e’?) belongs to the trajectory from (z/,e'?):
Dp*(z) = {2’ € Ly, AP (2') = z}.

("Evetz)ﬁ to

*
c ’Dﬁf (x) x {etr}
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Definition 2.2.15. Let A C R? be measurable. We define the coalescing height of A, denoted by
TA, a8

T4 = inf{t > 0,Vz,2’ € LoN A AL(z) = Aj(2')} € Ry U {o0}.
It it the lowest height where all trajectories from points of (Lo N A) x {e%} coalesce.

The following definition concerns bi-infinite branches, i.e. branches that are infinite in both
directions.

Definition 2.2.16. Let f : R — R%. We say that f encodes a bi-infinite branch if for all t; < to,
f(t2) = AP (f(t1)). In this case, the subset {(f(t),e!), t € R} C H is called a bi-infinite branch of
the DSF.

We denote by BI the random set of functions f : R — R¢ that encode a bi-infinite branch.

2.2.3 Preliminary properties

We will exploit invariance by isometries of the model. The family of translations TH : (z,y) —
(r + s,y) for s € RY and the dilations Dy : (z,y) — (\z,\y) are isometries of (H,ds?%) [T}
p.79], thus they preserve the law of N. Moreover, these isometries fix the point oo (isometries of
(H,ds%) are naturally extended to the set of points at infinity). Therefore they also preserve the
horodistance function H., modulo an additive constant, so they preserve the graph structure of
the DSF in law.

In addition, these isometries preserve Euclidean segments. Then, they preserve the law of the
random subset DSF. A consequence of this translation invariance property is that, for all ¢ € R,
L; is a stationary point process.

It will be required to have a control of moments for the number of points of £; in a given
compact set:

Proposition 2.2.17. We have E[#(L: N Bra(0, R))?] < oo for allt € R and p, R > 0.
We refer to the Appendix (Section [2.7.3]) for the proof.

Corollary 2.2.18. For allt € R, L; has finite intensity apge™%, where aq is the intensity of Lo.

Proposition implies Corollary|2.2.18. By Proposition with p = 1, £; has finite inten-
sity for all ¢ € R. Then we can define « as the intensity of Ly. For ¢t € R, the dilation D, preserves

the DSF in distribution, so £; % e!Ly. Then £; has finite intensity age~? for any t € R. O

In the following, we will have to consider the law of DSF conditionally to {z € L.}, for given
r € R% and t € R. Thus we define the probability measure P,cr,[-] on Ns as the Palm distribution
of N conditioned on x € £ (and let Eycp,[] its associated expectation). The definition of this
probability measure follows the standard definition of Palm measures, however it should be a
probability measure on all the point process (on Ng) and not only on £;, that is why we need to
re-define properly this probability distribution.

Proposition-definition 2.2.19 (Conditional distribution given {x € L;}).
e (Definition) For T' C Mg measurable, we define the measure ur on R? by

> ]-TZSNEF‘| (2.2.4)

seLiNA

ur(A) =E

for all measurable set A C R%. Note that ur depends on ¢ and .
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e (Proposition) For all measurable set I' C Mg, the measure pr is invariant by translations and
finite on compact sets.

e (Definition) Then for all measurable set I' C Ng, pur is a multiple of the Lebesgue measure,
so we can define:

dpr

Prec,[I'] := oo TdLeb”

(2.2.5)

e (Proposition) The map I' — P, [['] so defined is a probability measure on Ng. We denote
by Ezecr, its associated expectation.

We refer to the Supplementary materials (Section [2.8.1))for the proof of Proposition-Definition
2219

Lemma 2.2.20. (Invariance by dilations). Let t,t’ € R. We have
Poeg, [Derr—:(N) € -] = Poeg,, [N €]

The proof of Lemma, is also given in the Supplementary materials (Section [2.8.1)).

2.3 The Mass Transport Principle and its consequences

In this section, we state a main ingredient of the proofs, the Mass Transport Principle and explore
some consequences.

2.3.1 The Mass Transport Principle

This theorem is an adaptation of its version on the hyperbolic plane, which is due to Benjamini
and Schramm [3| p.13-14].

Definition 2.3.1 (Diagonally invariant measure). Let 7 be some measure on R? x R? for the Borel
o-algebra. We say that 7 is diagonally invariant if for all 2 € RY,

m(Ax B)=n(T,AxT,B).

Theorem 2.3.2 (Mass Transport Principle). Let w be some positive diagonally invariant measure
on RY x R, Then for any measurable set A C RY with nonempty interior, the following identity
holds:

(A x RY) = n(R? x A),
these values can be eventually infinite.

A proof of Theorem is given in the Supplementary materials (Section . The intuition
behind the Mass Transport Principle can be understood as follows. The measure 7 describes a mass
transport from R? to R?, that is, m(A x B) corresponds to the amount of mass transported from
A to B. Then the Mass Transport Principle asserts that the outgoing mass equals the incoming
mass.

In the literature, the study of percolation in hyperbolic space mostly concerns models that
are invariant under any isometry of H*! (see for instance, the Poisson-Boolean model studied in
[23] or the Poisson-Voronoi model studied in [3]). Thus it is relevant to use the Mass Transport
Principle on H*! [3] to study these models. However, our model of DSF is directed, so it is only
invariant under isometries that fix the target point. This group of isometries is not unimodular,
so this version of the Mass Transport on H%"! cannot be used for the study of the DSF. Instead
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of considering mass transports on H?*!, we typically consider mass transport from level ¢; to level
to (for t1,ty € R), that is why we need the Mass Transport on R,

We now state some consequences of the Mass Transport Principle, that play a central role in the
control of horizontal fluctuations of trajectories (proofs of Theorems[2.4.4]and [2.4.5]in Section [2.4).
We first define the concepts of weight function and association function (Section [2.3.2)). From these
objects, we construct diagonally invariant measures and obtain different equalities by identifying
both sides of equality given in the Mass Transport Principle (Section [2.3.3). Proofs are given in
Section 2.3.41

2.3.2 Association functions and weight functions

Let us introduce a random variable Y independent of N, valued in some measurable space Y.
In a majority of applications, the extra random variable Y will not be necessary. However, an
extra random variable will be used in the proof of (ii) in Theorem because some association
function using extra randomness will be considered.

Association functions

Definition 2.3.3 (Association function, general case). Let ¢ € R. We call level t-association
function or more simply association function a measurable function f : R% x Ng x T — R? such
that

e f is valued in L;, more precisely

Vz e RY, f(z,N,Y) € L; as.

e fis translation invariant, in the following sense: for all € N, for all z, 2’ € R?,

Fla+2, Ton,¥) L fa,n,Y) + 2/

We set the notation f(z) := f(x, N,Y). An association function can be seen as a (translation
invariant) random function from R? to R

For most of applications, f will not depend on Y (Y will be deterministic). This case will be
refered as the non-marked case. In this case, the notation f(x,n,Y) will be replaced by f(x,n) for
simplicity.

Definition 2.3.4. [Cell of a point] Let t € R, and let f be a level t-association function. For
x € Ly, we define the cell of = as the (random) subset of R%:

Af(z) = {2’ €R?, f(a') = =z}

Ezample 2.3.5. The most useful example to keep in mind is the following: f(x,n) is defined as the
point of Ly(n) the closest to x:

F(a,m) = argmin |~z
xz'€Lo(n)

Then f is a level 0-association function independent of Y (the non-marked case). Moreover, for
x € Lo, As(x) is the Voronof cell of x associated to the point process Lo.

Example 2.3.6. Suppose that Y is a (homogeneous) PPP on R? independent of N. Define f(z,7, &)
as the point of £o(n) the closest to  among all points 2’ € Lo such that the ball B(z', ") contains
no points of £&. Then f is a level 0-association function.

Another association function depending on a extra argument Y will be constructed in Section

247
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Weight functions

Definition 2.3.7 (Weight function, general case). We call weight function a measurable function
w:RYx Ng x T — R, that is translation invariant in the following sense: for all ) € Mg and for
all z, 2’ € RY,

w(z,n,Y) @ w(z+ 2, Tyn,Y).

We set the notation
w(z) == w(z,N,Y).
A weight function can be seen as a random application from R? to R .
The case where w does not depend on Y will be referred as the non-marked case. In this case,

we replace the notation w(z,n,Y") by w(z,n).

Ezample 2.3.8. Consider the function w(z,n) := Lyer,mllAb(z)(n) — z||. It is the horizontal
deviation between levels 0 and 1 of the trajectory from (z,e’) when z € Ly. Then w is a weight
function in the non-marked case.

Ezample 2.3.9. Suppose that Y is a random variable independent of N and valued in N*. We can
define w(z,n,n) as the distance (|| - || in RY) between z and the point of Ly which is the n-th
closest to . Then w is a weight function.

Weighted association functions

Definition 2.3.10. Let ¢t € R. We call level t-weighted association function (or more simply,
weighted association function) a couple (f,w), where f is an association function and w is a weight
function, such that the couple (f,w) is translation invariant in distribution, that is, for all n € Ng
and for all z, 2’ € R%:

(flo+" Tom, ), wia+a', T, V) @ (flom,Y) +2', wlz,n,Y)). (2.3.1)

Note that, in the non-marked case (f and w does not depend of Y'), the condition (2.3.1) is
useless.

Ezample 2.3.11. Consider the association f introduced in Example f(z,n) is the point of
Lo(n) the closest to . Let w(x,n) := ||z — f(z,n)||. Then w is a weight function and (f,w) is a
weighted association function (in the non-marked case).

Ezample 2.3.12. Consider the association function f introduced in Example 2.3.6] Then define
w(z,n, &) = #(£N B(0,e%)). Then w is a weight function, however the couple (f,w) is not a
weighted association function.

2.3.3 Results derived from the Mass Transport Principle
Let us extend the Palm distribution P,¢., defined in Section on o(N) to o(N,Y) by setting:
Pocc, [N €T, Y €T’ =Pyer, [N € T|P[Y €T

for all T' € Ng and TV C Y. This defines a probability measure on o(N,Y), and it also extends the
notation E,¢r,[X] to random variables X measurable w.r.t. o(N,Y).

Lemma 2.3.13. Let x € R? andt € R. Let w: RY x Ng x T — R, be a weight function. Then
for all measurable set A C R?,

seLiNA

E = age ¥ Leb(A)Eoer, [w(0))]. (2.3.2)
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Proposition 2.3.14. Let t1,ty € R with t; < t5. Let w: R* x Ny x ¥ — R, be a weight function.
Then

Eoeg,, [w(0)] = ed(tl—tQ)E[)e[:tz Z w(z)| . (2.3.3)
z€D;2(0)

Corollary 2.3.15 (Expected number of descendants). Let t1,ts € R with t; < to. We have
Eoec,, [#D32(0)] = e?21). (2:3.4)
In particular, for all x € L;,, #fo (x) < 0.

Proof of Corollary knowing Proposition|[2.3.14 Applying Proposition to w = 1 leads
to (2.3.4).

Thus, we obtain that Poer,, [#D}?(0) < oo] = 1. Then we apply Lemma [2.3.13{ with A = R¢
to the weight function w’ defined as

/
w (1‘»77) = 1m€[,t2 (n),#D:f (z)(n)=o00"

It leads to:
E [#{{E S ﬁtgv #Dif ((E) = OO}] = E Z U}/({E) = OOEOGCQ [wl(o)]
€Ly,
= 0oPocr,, [#D; (x) = 0] = 0.
Thus, for all z € Ly,, #D}*(z) < cc. O

Proposition 2.3.16. Lett € R and let (f,w) be a level t-weighted association function. Then

E [w(0)] = ape” “Eoer, [/A w(x) dw} . (2.3.5)

£(0)

Corollary 2.3.17 (Expected volume of a typical cell). Let t € R, f be a level t-association
function. Applying Proposition with w = 1 (it is easy to check that (f,w) is a weighted
association function), we obtain:

Eoer, [Leb(A;(0))] = ag te.
Proposition 2.3.18. Lett € R and p > 1. Let f be a level t-association function. Then
Eoec, [Leb(A7(0))47/4] < Cp acE[| £(0) ), (236)

where Cp, q is a positive constant that only depends on p and d.

2.3.4 Proofs
We first prove Lemma [2.3.13]

Proof of Lemma[2.3.13. We first prove the non-marked case. Let w : R? x Ng — R, be a weight
function in the non-marked case.

For 1 € N, define g(n) = w(z,n). By translation invariance, for all » € R%, n € Ng, w(r,n) =
w(x, Tpu—rn) = g(Tp—rn). In particular w is entirely determined by g.
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Let I' C Ng be measurable. For all measurable set A C R,

El Z w(s,N)] =E Z w(x, Ty—sN)

sELNA sELNA

=E

Z g(Tx—sN)]

seLiNA

and
]Easeﬁt [’LU(J?, N)] = Eweﬁt [g(N)]

Thus it suffices to prove that the identity

E

> g(T“N)} = ape” ULeb(A)Eper, [g(N)] (2.3.7)
sELLNA

holds for all measurable functions g : Mg — R, and all measurable set A C R. Let I' C Ng and
A C R? be measurable. We show (2.3.7) for g = 1r:

E [ZSELtOA g(Tm—sNﬂ =E

Z ]-TI_SNEF‘| :OzoeidtLeb(A zEﬁf by -

seLiNA
= aoefdtLeb(A)Ezggt [1ner] = Eeer, [9(N)],

so (2.3.7) holds for g = 1p. Since both sides of equality (2.3.7) are linear in g, (2.3.7) holds for
2.3.7

all step functions. Now we pass to the limit to obtain (2.3.7)) for all measurable function g. Let
g : Ns — R, be measurable, and consider a non-decreasing sequence (g, )nen of step functions
that converges to g. By monotone convergence theorem,

nh—>H;o T Z gn(TxfsN) = Z g(TzfsN) a.s

seLiNA seLiNA
Then by monotone convergence theorem,
E[ > gn(Tx_sN)] — El > g(THN)]. (2.3.8)
seELNA seELNA

On the other hand, again by monotone convergence,

Evee,[9(N)] — Erer,lg(N)]. (23.9)

By (2.3.8) and (2.3.9) we obtain for g by passing to the limit.

We wove on to show the general case. Let us denote by Py the distribution of N (probability
measure on Ng) and by Q the distribution of Y’ (probability measure on T). Let w:RIXNgx YT —
R4 be a weight function in the general case. Define w(x,n) f{ x,n, &) Q(d€) for all x € RY,
n € Ng. Then w is a weight function in the non-marked case, so by the non—marked case applies
to w:

E

Z ﬁ)(s)] = age” YLeb(A)Eper, [(z)). (2.3.10)

seLiNA

For all n € Ng,

S as= Y / (2, 1,€) Qd€) = / S wsn,€) Q).

sELL(n)NA s€Ly(n)NA SEEt(n)ﬁA
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Therefore

E[Ycrna®(s) = /n > i(s,n) dPa(n) = / > w(s,n, &) Pa(dn) @ Q(dE)

z€L(n)NA M8 seL,(n)NA

=E| > w(s) (2.3.11)

s€EL(nNA

since N and Y are independent. On the other hand,

Evec, [i(z) = / 0 €) Bre, (i) © Q) = Eee,[w(w) (23.12)

by definition of E,c,,. Finally, the conclusion is obtained by combining (2.3.10)), (2.3.11) and
(12.3.12)). O

The proofs of Propositions [2.3.14] and [2.3.16] are based on the Mass Transport Principle.

Proof of Proposition[2.3.17. Let us define the following measure 7 on R? x R%:

m(E) =E Zﬁ: 1(17 A:?m)eEw(w)
TELy

for all measurable set £ C R? x R%. This measure = may be interpreted as the following mass
transport: from all point z € L, , we transport a mass w(z) to its ancestor A2 (z). The diagonally
invariance of 7 easily follows from the translation invariance property of the model, we refer to [14]
Section 5.4| for the details. By the Mass Transport Principle (Theorem, for any measurable
set A C R? with non-empty interior, 7(A x R?) = 7(R% x A). On the one hand,

TAXRY=E| > lyeaw(@)| =E| Y w(z)| = age " Leb(A)Eoeg,, [w(0)],(2.3.13)
€Ly, r€Ly NA

where Lemma [2.3.13] has been applied to w with ¢ = ¢; and z = 0. On the other hand,

d _ —
7(R*x A) =E E 1’4:? (x)eAw(ac) =E E 1A:§(I):m,w(m‘)
€Ly x€Lyy
- z'e[)tzﬂA

=E| > > w()|. (2.3.14)

€Ly, NA zG'DE (z')

Consider the level to-weight function
h(xlﬂ%f) = 1z’eﬁt2 Z w(xanag)
2€D;2 (2')(n)

The fact that h is a weight function directly follows from translation invariance, precise com-
putations are done in [I4, Section 5.4]. Lemma [2.3.13|applied to h with ¢t =ty and x = 0 gives,

rRx ) BEDE | SN S )| = age e Leb(A)Boer,, | Y w(z)| (2:3.15)

2'€L1;NA 3D} () z€D;2(0)

By combining (2.3.13), (2.3.15) and the Mass Transport Principle with some open set A C R¢
verifying Leb(A4) < oo, we obtain ([2.3.3]). O
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Proof of Proposition[2.3.16, Let us consider the measure on R? x R? defined as

A(8) = | [ Lesones (o) de]

for all E € R? x R%. This measure 7 may be interpreted as the following Mass Transport: for each
point x € R?, we transport a mass w(z, f(x)) dz from x to f(z). The measure E is diagonally
invariant, thus the Mass Transport Principle applies. On the one hand:

T(AxRY) =E { /A w(z) dx} - /A E[w(z)] dz = / E [w(0)] dz = Leb(A)E[w(0)]. (2.3.16)

A

—
=

where the translation invariance of (f,w) was used in the third equality. Indeed, w(z, N,Y) =

w(0,T_,N,Y) @ w(0,N,Y) so E[w(z)] = E[w(0)] for all z € R%. On the other hand,

/Rd Z 1f(p)y=ar w(T) dx]

' ELNA

E[ > / Ly(a)=ar w(2) dx] E[ > / w() dx] (2.3.17)
' e€LiNA R T/ ELNA Af(a:’)

Let h: R% x Ng x T — R, be defined as h(x',n,&) = fAf(m/)(n) w(x,n,&) dr. This function h is a
weight function (details in [I4] Section 5.4]), so, by Lemma [2.3.13| applied to h with 2 = 0,

El 3 / w(z) dm]:aoedtLeb(A)IEOGLt [ / w(z) dx]. (2.3.18)
a'eLnA YA (@) A (0)

Thus, by (2.3.17) and (2.3.18]), we obtain

7R x A) =E [/R 15 (en w(x) dx} —E

7(R? x A) = ape”"Leb(A)Eoer, [ / w(x) dx] : (2.3.19)

As(0)
Finally, we obtain (2.3.5) by combining (2.3.16)), (2.3.19) and the Mass Transport Principle for
some open set A C R? verifying Leb(A) < oc. O

Proof of Proposition[2.3.18 Let us consider the function w defined as w(xz,n, &) = || f(x,n, &) —z|P
for x € R% n € Ng and £ € Y. It follows from translation invariance that the couple (f,w) is
a level t-weighted association function (details in [I4] Section 5.4]). Proposition [2.3.16] applied to
||||P dm] (2.3.20)

E[I£(0)7] = aoe™"Eoer, VA 1/ () — [ dw] = age” "Eoer, V

£(0) A4 (0)

because f(z) = 0 for all € A¢(0). Suppose for the moment that the following inequality holds
Poc,-almost surely:

Leb(A(0) /7 <y | o lel” do (2.3.21)
f

where C, 4 is a constant that only depends on p and d. Then

(2.3.21) . -2.3.20 C’ edt
Eoc ez, [Leb(A 7(0)) 4774 =< Cp aFocc, [ / ()lellp dx] = 7”50 E[[lF(O)["],
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SO holds for Cp, 4 = C~’p7d /. It remains to show that holds Pye,-almost surely.
For 7 > 0 we denote by B, := {z € R?, ||z|| < r} the Euclidean ball of radius r centered at the
origin, and we denote by 9(d) := Leb(B;) the volume of the unit ball in R%. We rewrite ||x||” as
fooo ITSHprr?’*ldr. On the event {0 € £;}, Fubini’s Theorem gives,

fAf(O) [ ]|P dz :/ / Loeas o) lrgia) prP~ dr dx:/ / Loca, (0)\B, prP=t dx dr
R JO 0 R

Leb(A 7 (0)) 1/d
9(d) )

_ /0 P ILeb(A; (0)\B,) dr > /O ( P (Leb(A(0)) — Leb(B,)) dr

(Leb(Af(o)))l/d
()
-/ pro =Y (Leb(A(0)) — 0(d)r) dr
0
19(d) (Leb(Af(O)))l/d p
D p+d @ —p/d 1+p/d
= |Leb(A P i = /4 Leb(A +p/d,
b 07 = S e[ L 0(a) ) Leb(A(0))
Therefore (2.3.21) holds for C,, 4 = (1 + p/d)¥(d)?/¢. This completes the proof. O

2.4 Controlling fluctuations of trajectories

In order to show the main results (Theorems and , the key point of the proofs is to
upper-bound horizontal fluctuations of trajectories.

2.4.1 Cumulative Forward Deviation and Maximal Backward Deviation

We first define the Cumulative Forward Deviation (CFD) and Maximal Backward Deviation (MBD)
that measure horizontal deviations, then we state the results concerning CFD and MBD.

Definition 2.4.1 (Cumulative Forward Deviation). Let ¢t; < t5. For x € L4, we define the
Cumulative Forward Deviation for x from level t; to level ¢5, denoted by CFD,’E (x), as

0

%Atl (x)|| ds.

ta
CED () = [
ty

The quantity CFDif (x) can be considered as the cumulative horizontal deviations (i.e. projected
on R?) of the trajectory starting from (z,e’t) between level ¢ and level to. If Af (z) = oo for
some s € [t1,t2], we set CFD*(z) = oo.

We give an equivalent definition of the quantity CFDE (z). We suppose that AZ () < o0
(else CFD{?(z) = co). Let us define the points zyqrt = (z,€!); and zs0p = (A}?(2),€2);. Thus
Zstop 18 on the trajectory from zgtqrt, let n € N such that zs,, = A(n)(zstart)- Let us introduce
(z0,€"0) = 20 = Zstart, (T4, %) = 2; = AW (2404¢) for i € [1,n]. In particular, z, = Zstop- Then:

Proposition 2.4.2 (Alternative writing of CFD).

AL (z) — 2| if n=0,
CFD (z) = n-l _
21 — x| + Z [@iv1 — il + A2 (2) — znll if n > 1.

i=1

Proof. If n =0 then (z,e") and (A}?(z),e'2) belong to the same edge, so the function £ A has

constant direction. Then
t t2 8 s b2 a s t t

CFDy} (z) = —Aj (%) o AL (@) ds|| A (2) = [| A () — 2.
1 " 88 1 £ 68 1 1 1

ds—‘
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If n > 1, then
; ui |l 9 s n—1l ;g 0 . to ) .
CFD{(z) = /t 5o A% (@) ds+; /u |E A @) s /u |35 A @) ds
"o SV S
= ’ ; %.Atl (x) ds|| + ; /u %.Atl(x) ds|| + ’ . %Atl (x) ds

n—1

=z —all + D lwics — @l + 1A (2) — 2.
i=1

For the second equality, we used the fact that, for each term of the sum, the function s — %Afl
has constant direction in the corresponding integration interval. O

Note that CFD upperbounds the horizontal deviations, in the following sense: for all ¢; < ¢,

and x € Ly,
t t
2 a 2
Zogs dsll <
| i) as —/h

1
Definition 2.4.3 (Maximal Backward Deviation). We define the Mazimal Backward Deviation of
x from level ¢; to level t2, denoted by MBDif (x), as

0

A2 () — | = oA (@)

ds = CFD}*(z).

max CFD(a') if Dy?(z) # 0
MBD{* (z) = { *'€Pi(@)
0 otherwise.

This is the maximal cumulative horizontal deviations among all trajectories between levels ¢; and
ty and ending at (x,e'?) .

The following theorem controls the cumulative forward deviation (CFD).

Theorem 2.4.4. (Forward fluctuations control.) Let p > 1.

(i) Let Y be a random variable independant of N. Let Xy be a random point of Loy (i.e. a random
point of R? such that Xo € Ly a.s.), measurable w.r.t. o(N,Y), and such that E[||Xo||P] < oo.
Then there exists a constant K > 0 that only depends on p,d and X (but not on the distribution of
Xo) such that:

limsup E [(e_t CFDB(XO))Z)} <K.

t—o0

(i) We have

limsup Boee, | (¢ CFD)(0))"] < oc. (2.4.1)
t—o0

The intuition behind Theorem [2.4.4] is the following. Let us consider a typical trajectory.
Because of the hyperbolic metric on (H, ds% ), the horizontal fluctuations increase as the trajectory
goes up. More precisely, the fluctuations around height h are to the order of e. Then the forward
cumulative deviation between height 0 and height h is almost determined by the last steps of
the trajectory, and it is to the order of e”. This behaviour is typical to hyperbolic geometry. In
Euclidean geometry, the fluctuations around height h are to the order of 1 for all h.

The following theorem controls the backward maximal deviation (MBD).
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Theorem 2.4.5. (Backward fluctuations control.) For allp > 1,

limsup Eoez, [MBD? ,(0)"] < oc. (2.4.2)
h—o0
The intuition behind Theorem is that horizontal fluctuations decrease toward the past
(recall that the fluctuations around height h are of order e’*), so the sum of fluctuations between
level —oo and 0 of a typical trajectory must by bounded.
The rest of this section is devoted to the proofs of Theorems and It will be also
proved that almost surely, the y-coordinate goes to infinity along any trajectory (Proposition

P21y,

2.4.2 Sketch of the proofs

The proofs are organized as follows. First, we control horizontal deviations between level 0 and
level ¢ for some small § > 0. More precisely, we prove the following proposition:

Proposition 2.4.6. Recall that CFD has been defined in Definition[2.4.1 There exists § > 0 such
that, for allp > 1,

Eocz, [CFDS(O)Z’] < 0. (2.4.3)

In particular, for allt € [0,6], Poecg,-a.s., A§(0) # oo.

The proof of Proposition [2.4.6] based on a block control argument, is done in Section [2:4.3] In
Section we deduce Proposition [2.2.13] from Proposition

Then, we prove (i) in Theorem @ as follows: we propagate the control up to level § given by
Proposition [2.4.6] to obtain a control up to level ¢ for all ¢ > 0. It will be done by induction: from
a control up to level ¢, we deduce a new control up to level ¢ + §, by using Proposition [2.4.6] and
mass transport arguments. The proof of (i) is done in Section m

In order to prove (ii), we will apply (i) to some particular X, measurable w.r.t o(N,Y’), where
Y is some random variable independent of N. The extra randomness that will be used in the
definition of X is the reason why we introduced the extra random variable Y in Section The
proof of (ii) is done in Section [2.4.7]

Finally we prove Theorem [2.4.5[in Section m The proof is based on (ii) in Theorem m
and mass transport arguments.

2.4.3 Proof of Proposition [2.4.6

Step 1: a block control argument.

We pave R? with cubes of edge length R, where R > 0 is sufficiently large and will be chosen
later. For a = (a1, ...,aq) € Z4, let us define the cube K, := [[,;«4[R(a; — 1/2), R(a; + 1/2)).
Let us also define the bottom and top cells ¥ = K, x [e°,¢e’) and W% := K, x [¢°, €], where
0 < 6 <1/2 is sufficiently small and will be chosen later.

For a € Z¢, we say that K, is good if U® contains no points of N, and ¥’ contains at least one
point of N, i.e. we define the event

Good(a) := {N NV =0} N {N NTVL £ 0}

Note that the event Good(a) only depends on N N (W2 U W) and the cells (¥2 U U!) are disjoint,
so the events Good(a) are mutually independent. Moreover they have the same probability by
invariance by horizontal translations.
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For m € N, we say that K, is m-very good, if K, is good and if all cubes at distance at most
m of the K, are good:

VeryGood,, (a) := ﬂ Good(a').

e
x eO

K,

Figure 2.5: A good cube

We can consider the random field V;, : Z¢ — {0,1} defined as V,(a) = 1veryGood,, (a) for
all @ € Z%. We denote by Y,,(X) the connected component of the subgraph induced by {a €
72, Vi (a) = 0} containing the origin if V;,,(0) = 0 (otherwise we set Y, = 0)). This is the connected
component of (indices of) non m-very good cubes containing the origin. Let T, = Uaer,, Ko We
also define p,, := sup{|al|, a € T;n} € NU{oo} the radius of T,,, with the convention sup ) = 0.
Note that those quantities depend on § and R.

In order to prove Proposition we will prove that, for m large enough, any trajectory from
a 0-level point in Ko x {€°} crosses the level § at most "just after" it exits T, x [?, 00), and that
we can choose R, such that T,, is small (i.e. its radius admits exponential moment).

More precisely, we will use the two following lemmas. The first lemma asserts that, when a
trajectory (projected on the z-axis hyperplane) crosses a m-very good cube for m large enough,
then it crosses the level § not far from this cube.

Lemma 2.4.7. There exists m € N depending only on d such that, almost surely, for all R > 1
and for all 6 € (0,1/2], the following happens: for all m-very good cube K, for all0 <t <t' <§
and for all x € L N K,,

IAY () — Ral| < mR. (2.4.4)

The next lemma asserts that, R and § can be chosen such that the radius p,, of the "bad"
component admits exponential moments.

Lemma 2.4.8. For all m € N, there exists R > 1 and 6 € (0,1/2] such that for all a > 1,
Plpn, > a] < e~ (2.4.5)

Lemma [2.4.7] will be proved in Step 4. In order to show that the radius admits exponential
moment, we will use a theorem due to Liggett, Schonmann and Stacey [I8, Theorem 0.0, p.75] to
show that the field (V;,(a))qeze is dominated from below by a product random field with density
p that can arbitrarily close to 1 as P[VeryGood,,(0)] is close to 1. Lemma will be proved in
Step 5.

Choose m that satisfies Lemma[2.4.7] Then choose R,d > 0 that satisfies Lemma [2.4.§] for the
value of m previously chosen. We will prove in Steps 2 and 3 that Proposition [2.4.6] holds for the

chosen value of §, assuming Lemmas and
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Step 2: we show that almost surely, for all x € £y N Ky, and for all ¢’ € [0, ¢],
lAG () — 2| < R(Vd +m + pm +1). (2.4.6)

The intuition behind this inequality is the following. If z € Ly N Ky, when the trajectory from
(7, ¢eY) exits the "bad" component Y,,, which has radius p,,, it crosses a m-very good cube. Then
Lemma asserts that the trajectory should exit the strip R? x [¢”, ’] at most at distance mR
from the center of this cube.

The conclusion is immediate if p,, = co, so we suppose that p,, < oo in the following. Let
x € LoN Ky and ¢ € [0,0]. If Ky is very good, then by Lemma applied with ¢t = 0,
AL (z)|| < mR, so || A5 (z) — z|| < mR+ ||z]| < R(m + v/d/2), so we are done.

Suppose that K is not m-very-good. Then Y,, # 0. Let us define the outer-boundary of Y,,
and Y, by Oput T = {a € Z% a ¢ T,, and 3a' € T,p, |la —a'|| = 1}.

By definition 9y, is made of (indices of) very good cubes. Moreover, for all a € Oyt L,
la| < pm + 1. Since p,, < oo, T, is bounded so there are a finite number of points of N in
T, x [€, et/}. Then the trajectory starting from (z,e®) should exit T, x [e°, etl], so by continuity
it should cross A(T,, x [°,e!']). Consider the first time (i.e. the lowest level) when the trajectory
crosses (T, x [0, €!]), i.e.

tmin = min{t > 0, (A5(x), e') € (T x [, e"])}.

The time t,,;, is well-defined since 8(Tm X [eo,et,]) is closed. If ¢4, = t' (Case 1 in Figure
, then for all t € [0,¢], A(z) € T, so |AL(z) — z|| < pmR + |lz] < R(pm + Vd/2) +
RVd/2 = R(py, + Vd), so we are done. Otherwise (Case 2 in Figure 2.6), tyin < t'. In this
case, Af{’”‘" (x) € oY, so Aé’“" x) € K, for some a € 0y Xpy. Since a € 97,,, K, is a very
good cube, therefore by Lemma , | AL (2) — Ral| < ||A§:nn (Abmin(2)) — Ra| < mR. Then
|AY () — || < || Ral| + || Ra — Af ()] + [[2]] < R(pm +1) + mR+ RVd/2 = R(Vd+m+ py + 1),
this completes the proof of .

% Very good cube

D Bad cube

Case 1
Figure 2.6: Representation of the trajectory from (z,e°) below level
Step 3: end of proof of Proposition Let x € Lo N K. By Inequality (2.4.6) proved in Step

2, the trajectory starting from (z,e°) is entirely contained in the cylinder C := B(0, R(v/d + m +
pm + 1)) x [€°, €°] before exiting the strip R? x [e?,e®]. Then this portion of trajectory is made
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of Euclidean segments whose horizontal deviations are upperbounded by 2R(\/3 +m+ pm +1).
Moreover, the number of segments is (roughly) upperbounded by 1 + #(N NC). Then

CFD)(z) < 2R(Vd+m + pm + 1) (1 + #(N NC)). (2.4.7)

By construction, p,, admits exponential moments, and #(N NC) admits exponential moments,

therefore, 2R(vVd 4+ m + py, + 1)(1 + #(NNC)) € L? for all p > 1.
Now, let p > 1. Lemma [2.3.13| applied to the weight function g(z,n) = CFDg(x)(n)p, with
A =[-1/2,1/2]%, gives:

aoBoec, [CFDY(x)’| =E| 3 CFDj(x)"
z€[—1/2,1/2]4

12.4.7)
Z E {#(50 N[=1/2,1/2]%) [2R(VA +m + pm + 1)(1 + #(N N C))]”] . (24.8)

By Proposition #(LoN[-1/2,1/2]%) € L?. Moreover, 2R(Vd +m+ pp, + 1) (1 +#(N N
C)) € L?" by the previous discussion. Thus Cauchy-Schwartz gives,

E [#(go N[=1/2,1/2]%) [2R(Vd +m + pm + 1)(1 + #(N N C))]”} < o0, (2.4.9)

so, combining (2.4.8]) and (2.4.9)), we obtain Egep, [CFDS(O)”} < 00, this proves Proposition [2.4.6

Step 4: proof of Lemma[2:4.7] Consider m € N large enough that will be chosen later. Let R > 1
and § € [0,1/2]. Let a € Z? and suppose that K, is an m-very good cube. Let 0 < ¢ <’ < § and
x € LN K,, define 29 = (z, ') and let z = z9; € N (recall that the notation zo; has been defined
by . Let B = Bga(Ra, Rm). By definition of a m-very good cube, none of the K, when
" — allo < m contains points of N and since B is included in the union of K, for ||a’ —allcc < m,
NN (B x[ee])=0. Thus A(z) ¢ B x [%,e'].

Suppose m > RvV/d/2. Then K, C B, so zg = (z,¢e°) € K,x {1} € Bx[e% e']. So [0, A(2)]euc
must cross either B x {e!'}, or OB x [¢°,e!']. In the first case, Al (z) € B, so we are done. Now
we eliminate the case [20, A(2)]euet N (OB x [€2,€!']) # 0.

The following arguments are illustrated in Figure Suppose by contradiction that [zg, A(2)]euel
crosses OB x [, e!'], and denote by z; the intersection point. Since z; € [20, A(2)]euet, d(z0,21) <
d(zp, A(2)) (recall that d(-,-) denotes the hyperbolic distance). Since K, is a good cube, by
definition of a good cube there exists some zo € N N VY. Since h(z2) > 6 > h(z) > h(z),
d(z,A(z)) < d(z,z2) by definition of the parent. So d(z,z1) < d(z,A(2)) < d(z,23). Consider
E:={z € H, d(z/,z1) <d(#,22)}. E is the region of H containing z; delimited by the mediator
totally geodesic hyperplane of [z1,23]. Since y(z1) < €’ < y(z2), = is either a semi (Euclidean)
ball centered at a point of R? x {0} if y(21) < y(z2), or a half-space of H delimited by a vertical
hyperplane if y(z1) = y(2z2). In both cases, = is convex (for the Euclidean metric). Therefore, since
z € Z by the previous discussion and z; € = by definition, by convexity zg € Z, so

d(Zo, Zl) S d(Zo, 2’2). (2410)

Recall that z9 = (z,€'), and we set z1 = (z1,y1),22 = (72,¥2). So ||z1 — Ral| = mR, y; €
[et,et'], o € K, 50 ||xa—Ral| < RVd/2 and ys € [e¥', e°]. We use the distance formula (Proposition
2.2.1) to compare d(zp,z1) and d(zg, z2). We obtain

(lz1 = z)l/e")? + (y1/e" + 1)2)
y1/et '

d(z0, 21) :@(



2.4. CONTROLLING FLUCTUATIONS OF TRAJECTORIES 43

Since ef <y < e and t >0, 1 < yy/e* < e'. Since z € K, ||z — Ral| < RVd/2 so ||z1 — z|| >
|z1 — Ral| — |Ra — z|| > R(m — v/d/2). Therefore, since ® is increasing

(R(m - \/&/2)/et)2 +4

d(z0,z1) > @ - > (RQ(m —Vd/2)%e " + 4€_tl)
e
> ¢ (R2(m —Vd/2)%e 32 4e—1/2) 7 (2.4.11)
since t' < 6 < 1/2. Moreover
_ t\2 t 1 2
TP (EECTEST S Y
yz/e

Since 1 < et <yy <e, 1 <yo/et <e. Since z,29 € Kg, |29 — || < RVd. Therefore, since ® is
increasing,

d(20,21) < @ (R*de " + (e + 1)*) < @ (R*d + (e +1)?). (2.4.12)

Comparing the bounds in (2.4.11) and (2.4.12)), a sufficient condition for d(zo, z1) > d(zo, 22) is
that:

) (R2(m —Vdj2)2e3? + 4671/2) > & (R2d + (e +1)?)
— R%(m —V/d/2)?e 3/ 4+ 4e=1/? > R%2d + (e + 1)?

e+1 2—4671/2
— R?> (miﬁ)m%f?,/z_d. (2.4.13)

(e+1)2—4et/ (e+1)2—4et,
Asm — oo, Va5 d 0, so we can choose m large enough such that /2o 37 d <

1. For this value of m, and since R > 1, we have d(zo, 21) > d(z0, z2), which contradicts (2.4.10]).
This proves Lemma [2.4.7]

0=

Empty of points

Figure 2.7: Case we want to rule out: the situation implies d(zo, z1) < d(z0, 22), whereas compu-
tations lead to d(zo, z1) > d(zo0, 22).
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Step 5: proof of Lemma Let m € N. By translation invariance, P[Good(a)] = P[Good(0)]
for all a € Z4. Since the events Good(a) are mutually independent, for all a € Z¢, P[VeryGood,, (a)] =
P[Good(O)](2m+l)d. By definition, for a € Z¢, the event VeryGood,, (a) only depends on the events
Good(a’) with ||a’ — al|s < m. In particular, the events VeryGood,, (a) are not mutually indepen-
dent. However, the dependencies are only local. Let a,a’ € Z¢ such that ||a — a'||o > 2m. For all
a" € Z%, we can’t have both ||a” — alloc < m and ||@” — ||« < m. Therefore, VeryGood,,(a) is
independent of the family of events (VeryGood,,(a'))aez4,|ja'—al|o>2m- S0 the field (V. (a))qeza
is 2m-dependant.

Thus Theorem 0.0 of [18] tells us that there exists a non-decreasing function x : [0,1] — [0, 1]
verifying lim; 1 x(¢) = 1 (and independent of the parameters R,d) such that, if (V;),eza is a
product random field of intensity x (P[V;,(0) = 1]), then (Vin(a))gezae =st (Ya )aezd for the product
order on {0, l}Zd.

It is well known that there exists some p. > 0 such that for all p < p., in the product random
field (Yy)qeza of density p, the radius of the cluster containing the origin admits exponential

moments, see for instance Chap 6. of [I6]. Choose such p. > 0. Pick p/, < 1 such that x(p) > 1—p,

—d
for all p > pl (it is possible since lim,_,; x(p) = 1), and set p} = pm D <1 Tt s shown in

the next paragraph that P[Good(0)] > p for judiciously chosen R,§. Then P[VeryGood,,(a)] =
]P’[Good(O)](zm“)d > pl.. Therefore x (P[VeryGood,,(a)]) > 1 — p. by our choice of p,. So the field
(Ya)aeza is a product random field with density larger than 1 — p.. By our choice of p., it implies
that the radius of the component of {a € Z%, Y, = 0} containing the origin admits exponential
moments, which implies that p,, admits exponential moments by stochastic domination.

It remains to show that we can choose R > 1 and § € (0,1/2] such that P[Good(0)] > p%. Since
W) and W) are disjoint, by independence

P[Good(0)] =P[N N W, =0JP[N N W, # 0] = exp (—Au(Ph)) (1 — exp(=Au(¥h))).

We have
, L1 e (@t
\IJ — dydr =R
/KO / 4 d 1
and
e q —(d+1)§ _ —(d+1)
= / / — dy dz = RiS c .
Ko Jed Yy d+ 1
o= (d+1)/2_ ,—(a+1)
Let k := = . If 6 < 1/2, then

—(d+1)/2 _ p—(d+1)

= kR%.
d+1 "

u(Wh) = RS

Since 1—exp (—)\HRd) — 1 when R — oo, we can pick R large enough such that 1—exp (—)\KJRd) >
VP

Now R is chosen, and at R fixed, (\I/Z) — 0 when § — 0, so exp (—)\,u(\llg)) — 1 when 6 — 0.
We pick & small enough (and also smaller than 1/2) such that exp (—Au(¥%)) > /pf. For this
choice of (R, 9),

P[Good(0)] = exp (—Au(¥7)) (1 — exp(—Au(¥))))
> exp (—)\de) (1 —exp(—=Au¥}h))) > pl,

this proves Lemma [2.4.8 and completes the proof of Proposition [2.4.6]
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2.4.4 Proof of Proposition [2.2.13
In the following, we consider > 0 such that Proposition holds. Let us deduce Proposition

[2:2.13 from Proposition [2.4.6]

Proof of Proposition[2.2.13 By Proposition Pocr, [AJ(0) = o] = 0. Recall that A)(z)(n)
is the value of A$(z) when N = 5. Define the weight function (in the non-marked case) w(x,n) =

Loero(n) and A%(x)(n)=oo 1O T € R? 1 € Ns. Lemma [2.3.13| applied with A = R? gives,

E[#{z € Lo, Aj(z) = 00} =E lz w(x)] = ooEoer, [w(0)] = 0oPoer, [A)(z) = ] = 0.

€Ly

Thus a.s., for all z € Ly, AS(z) # co.
The dilation invariance property of the model implies that, for all h € R, a.s., for all z € Ly,
Al () 2 00, We define

Hy :=sup{h >0, Vx € Lo, Al(z) # oo} € [0, ]

Note that Hy > ¢ by the previous discussion. Suppose that P[Hy < oo] > 0. Then there exists
some (deterministic) hg > 0 such that Plhg < Hy < hg 4+ 6] > 0. On this event, there exists some
& € Ly such that A}°(z) # oo but AY (Ao (z)) = AP0+ () = oo. Therefore 2’ := Al (z)) satisfies
Aj (2') = 0o. So P [3z € Ly,, A) (x) =o0] > 0, which contradicts the previous discussion. So
Hp = 00 as., i.e. a.s. for all h > 0 and for all x € Lo, Al(z) # .

By dilations invariance, the same result is true for each level ¢t € R: for all ¢ € R, a.s., for all
x € Ly and for all h > 0, A" () # oo. Therefore, almost surely, V¢ € Q, Vh € Ry, A" (z) # oc.
Every trajectory crosses a rational level t € Q, since it is the case for every non-horizontal Euclidean
segments. Thus we can replace Q by R in the above conclusion. This completes the proof. O

2.4.5 Proof of (i) in Theorem [2.4.4

Let p > 1. Recall that § > 0 is chosen according to Proposition [2.4.6

The strategy of the proof consists in iterating the control of horizontal deviation up to level §
given by Proposition [2.4.0] to obtain a control up to level ¢ for all ¢ > 0. It will be shown that, for
all t > 0,

1/p

E (”Xo * CFDE(XO))T : (2.4.14)

€t+5 et

t+6 p /e
<||Xo||+CFDo <Xo>>] <olE

where
pls) = e s + Cos7i7, (2.4.15)

where Cy > 0 is a constant that only depends of p, d, A.

The key point is that the function ¢ defined in (2.4.15)) admits a fixed point. As it will be shown
later, the factor e~9 in the first term of the r.h.s. comes from the dilation invariance.
Because of the metric of (H,ds?), the horizontal fluctuations of the lowest part of a trajectory are
compressed by rescaling so they have negligible impact on the total cumulated deviations. This
is specific to hyperbolic geometry; in Euclidean geometry, the same argument leads to a roughly
non-optimal upper-bound of horizontal deviations.
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Step 1: we prove (i) assuming (2.4.14)).

p11l/p
By assumption, (W) } = E[HXOHP]UP < 00, so by iterating (2.4.14])), since

€

© is non-decreasing, we get for all n € N,

n py1/p
. <||Xo||+CFD06<Xo>>] <o (BIIXI71), (2.4.16)

end

where ™ = @ o...op n times. Let t > 0 and n = [t/d] (thus 6(n — 1) < ¢t < on). Then, using
the fact that ¢ — CFD{ (X)) is non-decreasing,

S 10| + CFDY (X0)\ "] " 1o + CFDL(X0)\ "] "
E[(e™'CFD)(X0))"] " <E ( Do > _ it ( FDy )
e e
X0l + CFD24 (X,) )" " gz .
< e’E — 0 < S (IE (1 Xo]I7] /p) . (2.4.17)
e

The function ¢ is continuous, non-decreasing and admits a unique positive fixed point sy =
1+d/p
( Co ) such that

1—e=9%
p(s) >sif0<s<sg
p(s)=sif s€{0,s0}
o(s) < s if s > s.
Therefore, since E [||X0||p]1/p € (0,00), " (E [||X0||p]1/p> — sop when n — oo. Combining this
with (2.4.17)), we obtain that (i) holds for K = €°s.

Step 2: we show that (2.4.14)) holds for all ¢t > 0.
Let ¢t > 0. By Minkowski inequality,
p11/p
E [ (1Xoll + CFD§ (X0) )|

=E [(IIXOH + CFDB(XO))”} " [(CFD6+5(X0) B CFDB(XO))p] 1/p |

so, multiplying both sides by e *~°, we obtain
pq1/p 1/p
5 Kmn + CFD6+5<X0>> ] < o'R K”XOH + CFDf)(Xo))p]
et+5 - et
—t—6 t+6 t mi/p
+e 'R [(CFD0 (Xo) — CFDO(XO)) ] . (2.4.18)

The first term in the r.h.s. of (2.4.18) corresponds to e~%s, with

1/p
s=E [(e‘t(HXoH + CFDtO(XO)))p} . The factor e~ comes from the rescaling and is crucial for
the existence of the fixed point.
It remains to upperbound the second term by Cysr+é. We use Proposition [2.3.16| to rewrite

P
the quantity E [(CFD6+5(X0) — CFDS(XO)) } Let us introduce the level t-weighted association

function (f, w;) defined as

{ fi(,n, &) = AG(Xo(T-2n, ) + x)(n) € Li(n)
wy (2,1,€)) = CFD{ (fi(z,n,€))P.
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for all z € R% n € N and &€ € Y. Checking that (f;,w;) is well-defined and is a level t-weighted
association function is done in [I4, Section 6.6]. Proposition [2.3.16| applied to (f, w;) gives,

E [w;(0)] = ave” “Eoer, [/A

wy(x) dx] . (2.4.19)
$:(0)

We have
E [wy(0)] = E [CFD{*? (4h(X0))"] = E [(CFD (Xo) - CFDB(XO))p}

and, since for all z € Ay, gy, fi(z) =0,

Eoer, [/ wy () dx
Ay, (0)

where V;(0) = Leb(Ay, (0)). Then (2.4.19) can be rewritten as:

= Eoer, [ / CFD{*(0) d:c] = Eoer, [Vt(o) CFD§+5(0)P]
A+ (0)

P
E KCFD@”(XO) - CFD@(XO)) } = age “Eoer, [Vt(()) CFD§+5(0)p] . (2.4.20)
By Proposition [2.3.1§ applied to f;,
Eocc, [Vt(ofﬂﬂ/d} < Cyp 4e™E [||AL(X0) 7] < Cpae™E [(||X0|| + CFDB(XO))p} (2.4.21)

since || A§(Xo)|| < || Xoll + CFD{(Xo). Thus Holder inequality gives,

4 _p_
Fuc, [0 CED07] < B [0 * B [cPDi0p]

(2.4.21)

42

d + _d P
T T [ (| X0l + CFDY(X0))”| ™ Boee, [CED{ (0) |77 (24.22)

IN
Q

Since
CFD{(0)(N) = ¢' CFDG(0)(De-N),
by dilation invariance (Lemma ,
Eoer, [CFDY(0)7] = !t DEoc,, [CFDY(0)*] .
Then can be rewritten as
Eoec, [V3(0) CFD{™* (0]
< Cﬁ SPHITER [(||Xo|| + CFDf)(XO))p] wa Eocr, [CFDS(O)Hd] 1 (9.493)

Then

=

(CFD§™ (Xo) — CFDY(0))"| BEP ageEoer, [Vi(0) CFD (0)7]

E-123) 4 D e »
< Pt TIRIE [(||X0H + CFD}( X)) }

d
p+d

Eoec, |CFD)(0) | "™

d
2 —_—
p+d

< CoeFHE [ (| Xo | + CFDY(Xo))" | (2.4.24)
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- _d ]
where Co = aoC} ) Eoeg, [CFDS(O)Z’M] """ < o0 by Proposition [2.4.6 We rewrite (2.4.24) as

e~ °E [(CFDB*‘S (Xo) — CFDg(XO))p] v
d
p(p+d)

< Cy/Pe"HIE | (|1 Xoll + CFD}(Xo))' |

=Cy/Pe R (2.4.25)

d
(XOH + CFD}(Xo) ”

et

Combining d?.4.18|) and (I2.4.25I) we obtain that (2.4.14) holds with Cy = C’é/pe*‘s. This completes
the proof.

2.4.6 A geometrical lemma
We now prove the following lemma:

Lemma 2.4.9. For allp > 1, we have

P
E [(min ||x||> } < 00.
€Ly

This will be used in the proof of (ii) in Theorem and several times in the following.

Proof. We will in fact prove that mingez, ||| admits exponential moments. Choose A > 0 large
enough such that, for z1, 22 € R%, if ||z1 — 22]| > A then d((z1,€°), (z2,€")) > 6. For n € N, define

pn = (Aney,0), B, := Bu(pn,1), B, := Bu(pn,3).
Let us also define
Bl= =B n(R?x (0,e%), Bl =Bln[R?x [ x)).

For n € N, we now define the event E,, meaning that there is exactly one point of N in Bl~,
exactly one point of N in B}~ and no more points in B3:

E,:={#(NNB")=#(NNB:") =1and #(N N B3) =2}.

The event E,, only depend on the process N inside the ball B3, and the balls (B2),cn are pairwise
disjoint by our choice of A, so the events (E,,) are mutually independent. Moreover they all have
the same probability p > 0. It is shown in the next paragraph that, on F,,, mingez, ||| < An+ 3.
Consider nyi, = min{n € N, E,, occurs}. The random variable n,;, is distributed according to a
geometric distribution so it admits exponential moments. Since min,¢ ||z| < Anmin + 3, it implies
Lemma 2.4.9]

It remains to show that E,, implies mingez, ||z|| < An + 3. Fix n € E,, and consider z_ (resp.
24 ) the unique point in n N BL~ (resp. n N BL*). For any 2z € B*(21)(n),

(zvpn) < d(Z, 21) + d(zlapn) < d<zlv 22) + d(zlapn) < Qd(zhpn) + d(pn7 22) < 37

so BT (z1)(n) C B2. Since n N B2 contains no more points than z; and z, this implies that
BT (z1)(n) = 0, so [21, 22]eucr € DSF(n). Consider the intersection point z = (g, €%) of [21, 22]eue
and the hyperplane R? x {1}. Then z € B? so, by the discussion below Proposition |lx —
Aneq|| < d(z,pn) < 3. Thus [[z]| < An+ 3, and = € Lo(n), so mingezym) ||7]| < An + 3. This
completes the proof of Lemma [2:4.9] O
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2.4.7 Proof of (ii) in Theorem

Let p > 1. Let us consider some level 0-association function f verifying E [||f(0)]*’] < oo and
Eoez, [Leb(Af(0))*] < co. The construction of such a f is done later, we assume its existence
for the moment.

We need to upper-bound the quantity Eocz, [(e‘tCFDf)(O))p}, but, as it is shown below, part

(i) of Theorem and mass transport arguments allow us to control the quantity
Eocr, [Leb(Af(O)) (e_tCFD(t)(O))p ] for any p'.
Thus we apply Cauchy-Schwartz inequality to make the desired quantity appear:

EOEEO (CF];O(O)>‘|
¢ 2p7 1/2
< Eoec, | Leb(A(0)) (CFD(O)) ] Eoec, [Leb(A(0)7]">.  (2.4.26)

We now upper-bound the first factor in the r.h.s. of (2.4.26]). By (i) applied to X, := f(0), since
E [ f(0)[*"] < oo,

t 2p
limsup E (CFD(;(tf(O))> ]<oo. (2.4.97)
Let
w(z,n, &) = (CFDO(f(:t,n,g))(n)) '

Then (f,w) is a level 0-weighted association function, so by Proposition [2.3.16

crpir)\ ] CFDS(f(2))\ ™
E {( P ) } = oEoer, [/Af(o) (Zt ) dxr

FDt 2p
= aO]E()Eﬁo lLeb(Af(O)) <(jet0(0)> ] . (2428)
Therefore by (2.4.27) and (2.4.28)),
FD}(0)\
limsup Eoeg, lLeb(Af(O)) (C(;(O)) ] < 00. (2.4.29)
t—o0

Finally, combining , and the assumption Eoep, [Leb(Af(O))’l] < 00, we obtain
([2:43), so (i) is proved.

It remains to show that there exists a level 0-association function f such that E [||£(0)[?"] < oo
and Eger, [Leb(Af(0)) 7] < oo. Let T = R?/Z? be the d-dimensional torus, and let Y be a random
variable independent of N and uniformly distributed on R?/Z<.

Now, fix n € N and &€ € R%/Z%. Let us construct f(z,n,¢) for all x € R? as follows. We pave
R? by cubes of size 1 such that (any representative for) £ is a node of the grid. More precisely, let
u = (uy,...,uq) € R? be a representative for ¢, and define

d
K(€) = {H[ul +aj,u; +a; +1), a=(ay,...,aq) € Zd}.

=1
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Clearly, this definition does not depend of the choice of the representative u, so K(§) is well-defined.
We construct f(-, 7, &) separately on each cube K € K(€). Let K € K(€) and let b = (b, ..., bg) € RY
be the vertex of K with the lowest coordinates (that is, such that K = [[",[bs,b; + 1)). Let
n(K) := #(Lo(n) N K) be the number of 0-level points in K. If n(K) = 0, then, for all z € K, we
set f(x,n,&) to be the point of Ly(n) the closest to = (in case of equality pick, say, the smallest
for the lexicographical order). Now suppose n(K) > 1. We divide K into n(K) equal slices: for
1 <j <n(K), we set

d—1 . .
Jj—1 J
S;(K) = g [bi,bi-f—l) X |:bd—|- n(K)’bd_Fn(K))'

Let 21, ..., T, (k) be the n(K) points of Lo(n) N K (in, say, the lexicographical order). For 1 < j <
n(K), we send the slice S;(K) on z;, i.e. for all z € S;(K), we set f(x,n,§) = z;.

We now show that f is a level 0-association function. First, for all z € R%, n € Ng, £ € T,
f(x) € Ly by construction. We now check the translation invariance. Let z,2’ € R? and n € Ns.
By construction, for all u € R, f(x + 2/, Tpn,u+ ') = f(x,n,%) + 2/, where T denotes the class
of z in R?/Z%. Then, since Y @ Y+a, f(e+2",TpnY)= f(x,n,Y)+ 2, so f is an association
function.

We move on to show that E [|[f(0)]|*’] < co. By construction f(0) is either the point of Lo
the closest to 0, or a point of the cube K containing the origin. Thus, almost surely, ||f(0)| <
minger, ||| V vd. By Lemma .&I’ E [(mingez, ||#]])?] < oo therefore E [|| f(0)]|?] < oo.

We finally show that Eger, ‘_Leb(Af(O))_l} < 0. For x € L;, we note K(x) the (random) cube
of K(Y) containing x. By construction, almost surely, Af(0) contains at least a slice of volume
1/n(K(0)) (plus eventually additional points contained in empty cubes), therefore

Leb(Af(0)) > = Eoer, [Leb(A(0))7!] < Eoeg, [n(K(0))]. (2.4.30)

n(K(0))

Let us introduce the weight function w(z,n,£) := 1,er,n(K(0))(n, ). Applying Lemma [2.3.13| to
w with A = [-1/2,1/2]¢ leads to

E > n(K(x))| = aoEoer, [n(K(0))]. (2.4.31)
z€LoN[—1/2,1/2]4

Since a.s. K(z) C [-3/2,3/2]¢ for all x € [-1/2,1/2],
E[Suczanor/za/20 (K@) <E [#(Lo N[-1/2,1/21%) #(£0 N [-3/2,3/2]%)]
]

< E [#(Lo N [-3/2,3/2])
< 0o by Proposition (2.4.32)

Combining (2.4.30), (2.4.31) and (2.4.32), we obtain that Eoez, [Leb(Af(0))71] < co. This com-

pletes the proof.

2.4.8 Proof of Theorem [2.4.5]

In order to prove Theorem [2.4.5] we will use that, for all a,¢ > 0 and p > 1:

Eoez, [MBD?,_,(0)] < 2P~ 1e=P) (Egep, [MBD?,(0)?] + Egeg, [CFDG(0)P]) . (2.4.33)
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Step 1: we prove Theorem assuming (2.4.33). We can suppose p > d since the result for
p > d immediately implies the result for all p > 1. Then 2°~1e®(@=P) — 0 when a — 00, s0 we can
choose ag > 0 such that 2P~ 1e®(@=P) < 1. For n € N, we define:

Sy = sup Eoeg, [MBDOft(O)p} :
t€[nao,
(n+1)ao]

Then we need to prove that limsup,,_, . S, < co. Let s € [0,a0]. Applying (2.4.33) with t = 0
and a = s leads to

E [MBD?,(0)7] < 20~ 1e*(*P)Ec ., [CFD;(0)]

since Eoer, [MBDS(O)I’] = 0. Using the fact that Pocg,-a.s., the function s — CFDg(0) is non-
decreasing and that ¢*(?~?) < 1, we obtain

Vs € [0, a0), E [MBD? (0)] < 2P 'Eqe,, [CFD§(0)7] < 0o (2.4.34)

since Eger, [CFD{°(0)P] < oo by (ii) in Theorem [2.4.4] Therefore Sy < co.
Let n € N. Then

Sp+1= sup E[MBD?,_, (0)]

t€[nao,
(n+1)ao]
24.33) L J 0
< sup 2P7'e™l7P) (Egep, [MBDY,(0)P] + Eoeg, [CFDE°(0)7])
t€[nao,
(n+1)ao]

= 9P~ 1gao(d—p) S[up Eoez, [MBD?,(0)”] + Eoez, [CFD;°(0)7]
t€nao,
(n+1)ac]

= p(Sn) (2.4.35)
where ¢ : Ry — Ry is defined as
p(t) =20~ e®@P) (t + Eoer, [CFDE°(0)7] ).

The function ¢ is well-defined since Eger, [CFDg?(0)P] < co. By iterating (2.4.35)), since ¢ is
non-decreasing, we get S, < ¢™(Sp), where ¢ = @ o...0 ¢ n times. Since 2¢%*P) < 1, p is a
contraction linear mapping, it admits a finite fixed point to and ¢™(Sp) — to. Therefore

lim sup Eoer, [MBDL(O)”] = limsup S,, < limsup ¢"(Sy) =ty < 0.
t—o0

n—oo n—oo

This proves Theorem [2.4.5

Step 2: we show (2.4.33)).

Let a,t > 0 and p > 1. For x € Lj, we have
MBD?, . (z) = max CFDY,  (2")

x”GDgt_a(z)

= max (CFDZ{ ,(z")+ CFD?,(AZ{_,(2"))

7t7
a:”GD(lt_a(z) @

= max max CFD~¢ ,(2") + CFD° ,(z'
I’E’D[la(l’) zuep:ta_a(m,) ( t ( ) ( ))

= MBD-% (2') + CFDY (z)).
a:’erg%_if(x) ( t a(‘r ) a(m ))
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Therefore

EOELO [MBDgtfa (0);0]

= Foer, me%l‘?x(o) (MBDZ{_, (z) + CFDO_a(a:))p

<Eoer, | >, (MBDZ{ ,(x)+ CFD’,(x))"
LzeD? ,(0)

<Boez, | Y, 27" (MBDZ{ ,(x)’+ CFD’,(x)")
_:DGDEG(O)

= 2p—1 EOEKO Z MBD:??a((E)p + EOGZ:O Z CFDga(x)p 3

LzeD? ,(0) zeDY (0)

(2.4.36)

where Jensen was used in the second inequality. Now, we use the Mass Transport Principle to
rewrite the quantities Eoez, |2 epo (o) MBD:?_a(x)p} and Eoeg, [erpg 0) CFD(la(;p)P] Let

us introduce the two weight functions w; and wsy defined as

wi(w,n) = loer ,(yMBDZ{_,(2)P(n), wa(x,n) = loer 0y CFDY,(2)" (7).

Applying Proposition 2:3.14] to wy with t; = —a,t; = 0 leads to:
Eocz, | Y, MBDZ{ ,(2)"| = e“Eoec_, [MBDZ{ ,(0)"].
zeDY (0)
For all n € Ng such that 0 € £L_,[n], we have
MBDZ{_,(0)(1) = ¢~ *"MBD(0)(Dea1),
so by scale invariance (Lemma applied with ¢t = —a,t’ = 0),

Eoer_, [MBDZ{_,(0)?] = e"Eoez, [MBD?,(0)?] .

Combining (2.4.37) and (2.4.38)), we obtain:

Boec, | 9, MBDZ{ ,(x)"| = e "PEoer, [MBD”,(0)"].
ZEDE(”(O)

The same calculations with wy lead to

Eoce, | Y. CFDY ()| = e PEge,, [CFDG(0)7].
zeDY (0)

(2.4.37)

(2.4.38)

(2.4.39)

(2.4.40)

Finally, we rewrite (2.4.36) using (2.4.39) and (2.4.40)), we obtain (2.4.33)). It completes the proof.

2.5 Proof of coalescence

In this section we prove Theorem
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2.5.1 A short proof in dimension 1+ 1

We first prove Theorem in the bi-dimensional case (i.e. d =1). It is based on planarity, so it
only works for d = 1. A general (but more complex) proof of coalescence in all dimensions is given
after. A useful consequence of planarity we shall need is the following:

Lemma 2.5.1. Supposed = 1. Lett > 0 andx € Ly. If x1,22,23 € Lo are such that x1 < x2 < 3,
and if x1,x3 € Di(x), then x4 € Di(x).

Proof of Lemma[2.5.1 Let z1,x9,23 € Lo such that 1 < o < z3, and z1,23 € D§(x). Since
the DSF is non-crossing [14} Section 3.1], the trajectory from (z2,e”) cannot cross the trajectories
from (x1,¢e%) and (z3,€°). The point (z,e”) belongs to both trajectories from (x1,¢e%) and (z3, €°),
so it also belongs to the trajectory from (z2,e°), so xo € Df(z). O

For ¢t > 0, we define B; as the set of points of level ¢t that have descendants at level 0; for
x € By, we define M (z) as the left-most descendant of x at level 0:

Byi={z € Ly, D) 0}, Mi(x)=inf Dh(x) € {-o0} UR.
We now prove:

Lemma 2.5.2. Almost surely, for all x € By, My(z) = min D§(x) (or equivalently M;(x) > —o00),
that is, each point x € By admits a left-most descendant at level 0.

Proof of lemma[2.5.2 Since D(x) is locally finite and non empty for all z € By, it suffices to show
that inf Df(z) > —oo for all z € By a.s. Consider the event

A= {3z € By, inf Df(r) = —o0}.

On A, we show that there is a unique x € By such that inf Df(z) = —oco. Indeed, suppose
that inf Df(2') = —oco for some 2/ € B;. Let & € D(x). Pick &' € Df(z’) such that ' < & (such
a @' exists since inf Df(z) = —oc). Then pick 2" € Df(x) such that ’ < #’. By Lemma [2.5.1

%' € Df(x) which implies z = '.

Suppose that P[A] > 0. Then, conditionally to A, we can define X as the (random) unique
x € By such that Df(z) = —oo. Since the event A is invariant by translations, the distribution of
N conditioned by A is also invariant by translations. Therefore the law of X must be invariant
by translations, but there’s no probability distribution on R invariant by translations. This is a
contradiction, therefore P[A] = 0. O

We call level t-separating points the points My(z) for x € B; . We denote by S; := {My(z), = €
B} the set of level t-separating points. Let us prove:

Lemma 2.5.3. If S; N [~a,a] =0, then 7_q 4 < t.

Proof. Suppose that S; N [—a,a] = 0. Let z,2" € [—a,a] with < 2/, and suppose that Af(z) #
Ab(2"). Consider # = M;(A4(x')). Suppose that & < z. Thus # < x < 2/, and by construction %
and 2’ have the same ancestor at level t. Then by Lemma[2.5.1] = € D)(Af(2’)), which contradicts
x # 2'. Therefore & > x. Moreover & < 2’ by construction, so x < & < a, therefore & € [—a, a].
But & € Sy, this contradicts S; N [—a,a] = 0. Thus for all x,2" € [—a,a], Al(z) = Af(z’), which
implies 7|44 < ¢ O

We show that the level ¢- separating points are rare when ¢ is large. We apply the Mass
Transport Principle (Theorem on R with the following mass transport: from each point with

descendants at level 0 we transport a unit mass to its left-most descendant.
The following measure m expresses this mass transport:

m(Ax B)=E [ > 1Mt(m)€B] :

rEB:NA
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The measure 7 is diagonally invariant because horizontal translations preserve the DSF’s dis-
tribution. Then, by the Mass Transport Principle, m(A x R) = n(R x A) for all A C R with
non-empty interior. On the one hand,

7(A x R) = E[#(B, N A)] < E[#(L1, N A)] = ape~Leb(A) (2.5.1)

and, on the other hand,

T(Rx A)=E [Z Linwea| =E | D Loca@| =E[#(S: N A)]. (25.2)
€Dy €Dy,
z'€A

Therefore, combining (2.5.1) and (2.5.2) with A = [—a,a], we obtain E[#(S; N [—a,a])] <

2aagpe”t. Hence
P[S; N [~a,a] # 0] < E[#(S; N [~a,a])] < 2acpe™".

By Lemma [2.5.3} it implies that P[r[_, . > t] < 2aape™", which proves the second statement
of Theorem [2.1.1] The fact that the DSF is almost surely a tree immediately follows. Indeed,

{The DSF is a tree} = {Va € N, 3t €N, 1_qq <t} = (] I J T {70 < t}-
aeN teN

Therefore

. ok . <
P[The DSF is a tree] 111151\] ¥ 113\11 T P[1—a,q <.
Since for all a > 0, P[7[_4,q < t] > 1 — 2a0pe™" =2 1, we obtain
—00
P[The DSF is a tree] = liHI\IT +1=1,
ac
which proves Theorem ford=1.

2.5.2 General case: ideas of the proof

We move on to show the coalescence for all dimensions d. Let us consider two trajectories starting
from level 0. The choice of those trajectories will be discussed later. We want to prove that those
two trajectories coalesce.

The intuition behind the coalescence can be understood as follows. We can deduce from The-
orem [2.4.4] that the two trajectories stay almost in a cone. That is, for A large enough and for all
height h large enough, their projection on R? at height h are contained in Bga (0, Ae") with high
probability. That is, they stay close to each other as they go up. Then, at each height, they have
a positive probability to coalesce, so they must coalesce.

This is true because the metric of H becomes larger as the ordinate increases, so this behaviour
is specific to the Hyperbolic geometry. In Euclidean space, the two trajectories move away from
each other as they go up, so the same argument cannot be used. Indeed, we expect that the DSF
in R? with d > 4 does not coalesce.

The idea of the proof is the following. We suppose by contradiction that the two trajectories
do not coalesce with positive probability. We consider some height h large enough such that, with
high probability, the process N below height A almost determines if the two trajectories coalesce
or not. Then, on the event of non-coalescence and apart from an event of small probability, the
probability of coalescence conditionally to the process N below height h is close to 0.
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On the other hand, with high probability, for some large fixed A > 0, both trajectories are
contained in the cylinder Bga(0, Ae”) x (0,e”) (that is, the two trajectories are not too far from
each other). Thus we show that we can modify the process above height & in a way that forces the
two trajectories to coalesce, and we show that the set of configurations above height A that forces
coalescence has probability bounded below independently of h. This contradicts the fact that the
probability of coalescence knowing the process IV below height h can is close to 0 with macroscopic
probability.

Some technical difficulties are due to the geometry of the model and the fact that a modification
of the point process above height h can affect trajectories below height h.

2.5.3 Introduction and notations

Let d > 1. The following notations are illustrated in Figure Let p1,p2 € Q4 x (QnN (0,¢%))
two points of H below level 0 with rational coordinates. We define Z; (resp. Zs) as the (random)
point of N N (R? x (0, %)) the closest to p; (resp. pa):

Z; = argmin d(p;, Z;).
(z,y)EN,
y<l1

for i = 1,2. We will prove that the trajectories from Z; and Z, coalesce almost surely, i.e. that
a.s. there exists n > 0 such that A"(Z,) = A™(Z3), where A" = Ao...o A n times. If this is
proved, then the result will be true almost surely for all p;,ps € Q¢ x (QN (0,€%)) simultaneously,
which implies that the whole DSF coalesces a.s.

For t > 0, define k;(t) as the unique non-negative integer such that [A*®)Z; AR®O+17,)
crosses the level t. It is well defined a.s. because each trajectory starting below the level t crosses
the level ¢ a.s.

Let A,h, M,§,e > 0 be five parameters that will be chosen later. We define

K(M,h,6): ={(z,y) € H, y> e and d(z,(0,eM) < M}
= By ((0,e"), M) N (R? x ("%, 00)).

Note that K(M,h,d) = D K(M,0,8) so K(M,h,d) and K(M,0,6) are isometric.

Let Fin(M,h,8) (resp. Four(M,h,d)) be the o-algebra on Ng generated by the process N
inside K (M, h, ) (resp. outside K(M, h,0)).

Finally, define

Slice(A, h, 8) := Bga (0, Ae") x ("7, eM).

Notice that Slice(A4, h, ) = D.nSlice(A4,0,7), so Slice(A4, h,J) and Slice(A4,0,0) are isometric.
We now introduce the following events. The event CO means that trajectories from Z; and Zo
coalesce:

CO = {In >0, A"(Z1) = A"(Z2)}.

The event Cyl(A, h) means that below the level h, trajectories from Z; and Z5 are entirely contained
in the cylinder Bga (0, Ae”) x (0,e"):

Cyl(A,h) :={For i = 1,2, for all 0 < n < k;(h),
A™(Z;) € Bga(0, Ae™) x (0,eM)}.

Let us also define

EmptySlice(A, i, d) := {N N Slice(A, h, §) = 0},

Approx(M,e,6,h) = {’}P’[CO|}"0M(M, h,0)] — ].CO’ < 5}.
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2.5.4 Heart of proof of coalescence

The proof of coalescence is based on the three following lemmas.

Lemma 2.5.4. We have

lim liminf P[Cyl(A, )] = 1.

A—o0 h—oo

Lemma 2.5.5. Let M,e,6 > 0. We have

lim P[Approx(M,e,d,h)] = 1.
h—o0

Lemma 2.5.6. Let A,§ > 0. There exist M, > 0, such that, for all h > §:
Cyl(A, h) N EmptySlice(A, h,§) C {P[CO|Four (M, h,d)] > €}. (2.5.3)

Lemmas [2.5.4] 2.5.5] and 2.5.6] are proved in Sections [2.5.5, 2.5.6] and [2.5.7] respectively. We
assume them for the moment and we prove that trajectories from Z; and Zs coalesce almost surely,
ie. P[CO] = 1. Let us suppose by contradiction that P[CO] < 1. We choose the parameters
A, h, M, 0,¢e as follows:

e We first choose A large enough such that liminf,_, . P[Cyl(4, k)] > 1 — P[CO°]/3, it is pos-
sible by Lemma [2.5.4] Then we pick hq large enough such that for all & > ho, P [Cyl(A, k)] >
1 — P[CO%/3.

e Then we choose § > 0 small enough such that, for all A > 0, P[EmptySlice(4, h,d)] >
1 —P[CO°]/3. Tt is possible since P[EmptySlice(A, h, d)] does not depend on h by dilatation
invariance and, for all A > 0 (recall that p is the Hyperbolic volume):

;irr(l) w(Slice(A4, h,8)) = p ﬂ | Slice(A, h,8) | = p(Bga(0, Ae™) x {"}) =0,
—
540

SO

P[EmptySlice(A, h, )] = exp(—Au(Slice(4, h, §)) 6—>0 1.
—

e Then we choose M,e > 0 such that, for all A > ¢, inclusion (2.5.3)) holds. It is possible by
Lemma [2.5.6l

e We finally choose h large enough (and larger than hg and §) such that
P [Approx(M,e,d,h)] > 1 — P[CO°]/3. It is possible by Lemma [2.5.5

Define
E := Cyl(A, h) N EmptySlice(A, h, §) N Approx(M, e, §, h) N CO°.

With this choice of parameters, all the events Cyl(A, h), EmptySlice(A, h, §) and Approx(M, e, d, h)
have probability larger than 1 — P[CO°]/3. Therefore

IP) C
P[Cyl(A, h)° U EmptySlice(A, h, 0)¢ U Approx(M, e, 4, h)° U CO| < 3@ + P[CO] = 1.

Then P[E] > 0. On E, since both Approx(M,e,d, h) and CO occur, P[CO|Fyyu (M, h,0)] < &; on
the other hand, by (2.5.3)), on E, P[CO|Fpu:(M, h,d)] > €. This is a contradiction, therefore the
assumption P[CO] < 1 is wrong, so P[CO] = 1. This proves Theorem
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2.5.5 Proof of Lemma [2.5.4]

The proof is based on Theorem and Markov inequality. For i € {1, 2}, define
Ci(A,h) := {For all 0 < n < k;(h), A™(Z;) € Bra(0, Ae™) x (0,e")}.
Then Cyl(A, h) = C1(A, h) N Ca(A, h), therefore it suffices to prove that, for
i =1,2, lima_oo liminfy o0 P[C;(A, R)] = 1.
Let i € {1,2}. Let us define X; to be the (random) point of £q such that (X;,e?) belongs to
the trajectory from Z;. Now, we write C;(A, h) as the intersection of two events C; (A,h) and

Cj (A, h), that means respectively that the trajectory is contained in the cylinder below (resp.
above) the level 0. We define

C; (A, h) := {For all 0 < n < k;(0), A"(Z;) € Bra(0, Ae™) x (0,¢%)}
and
CH (A R) = { sup [AH(X,)[| < Ae"}.
0<t<h
Thus C;(A, k) = C; (A, h)NC; (A, h). Clearly, for all A > 0, limj,_,o, P[C; ] = 1 because the trajec-
tory from Z; goes above the level 0. It remains to show that lim 4, liminf,_,o P[C;" (A, h)] = 1.

We would like to apply Theorem [2.4:4) to X; with, say p = 1, but this would demand showing
E[|| X;||]] < co. A workaround is done by using the following trick. Let B > 0. Define

X if | Xl < B
XB = . :
i argmin ||z|| otherwise.
z€Lo

Using Proposition with p = 1, we get that E [||X7]|]] < co. Thus Theorem applied to
X5 with p =1 gives,

su Ab(XE XP|| + CFDR (X
limsupE Post<n ”h o(X; )”] <limsupE IX 71+ - 0(X7) < 00. (2.5.4)
h—o0 € h— 00 e
By Markov inequality,
E [su AL (X B
lim sup Plsupy<,<p, [|A5(X2)| > Ae"] < limsup [suPo<t<n 'L o(XD)I]
h—o0 - h—o00 Ae
= A ' limsupE [e‘h sup ||.A6(XF)||]
h— 00 0<t<h
— 0 when A — oo, (2.5.5)

by (2.5.4).
We now need to replace XZB by X; in (2.5.5). It will be done by taking B — oo. For A, B,h > 0,

{ sup ||AL(XP)|| < Ae" and XP = XZ} C {CH(A,h)},
0<t<h
S0
P[CF (A, h)] 21 —P[ sup [|AG(X])| > Ae"] - PIX; # X[
0<t<h

Thus, for all B > 0,
lim liminf P[C]"(A,h)] >1— lim limsupP[ sup [A5(X7)| > Ae"] - PXP # X;]
h

A—00 h—o0 A—00 KB yo0o 0<t<

1 -PXP + X (2.5.6)

Since P[X? # X;] < P[X; > B] 2 0, we obtain the wanted result by taking B — oo in |i
—o0
This proves Lemma
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2.5.6 Proof of Lemma [2.5.5|

Let M,e,6 > 0. For h > 0, we denote by Fj,_ the o-algebra generated by the process N on
R? x (0,e"7?). Since R? x (0,e"7%) € K(M,h,8)°, Fn C Four(M,h,0). Since Uy, T Fao =
o(N), the martingale convergence theorem gives,

lim E[lcou‘—h,] = ]-CO a.s. (2.5.7)
h—o0
We define

Ey = {[El1colFa-] ~ Teo| 2 5} Bz i= {[ElLcolFou(M, b, 6)) ~ Ellco|Fa-]| =

By (2.5.7), limp 00 P[E1] = 0.

Suppose for the moment that limy,_,o, P[E3] = 0. Then

N ™

lim P[EY N E5) =1~ lim P[By U By] = 1.
—00

h—o0

Moreover, on EY N EY, by triangular inequality,
EfLco| Four (M, h,8)] — 1co| <.
Therefore, limy, o [Approx(M,e, 4, h)] = 1, which proves Lemma [2.5.5]
It remains to show that limp,_, o, P[E3] = 0. Let us define
X(h) = E[lco|Fout(M, h,5)].

Since Fj— C Four, we have E[lco|Fr—] = E[X(h)|Fn-], so Ey can be rewritten as {|X(h) —
E[X (h)|Fr-]| > €/2}. By Markov inequality,

D) HX(h) . ]E[X(h)|]—"h_}‘ ‘]-"h_]

P HX(h) - E[X(h)|]-"h_]’ > g’fh_} < - a.5.

So, on the one hand, by triangular inequality and because X (h) > 0 a.s.,

P[Es|Fr-] < i [X(h) +E[)§(h)fh_]‘fh_] = 4]E[X(};)|}—h_} a.s.

On the other hand, again by triangular inequality and because 1 — X (h) > 0 a.s.,

2E [(1 - X(0) + (1~ EXWIFD|Fa-|  am (1 — x(0))7]
g €

P [Ea|Fp-] <

Thus

Pl | < CEXOIAINO - EXOIAD)

Since E[X (h)|Fr—] = E[lco|Fr-] = 1co when h — oo,

AE[X (W) Fn) A (1= EX(A)|Fn])) _ AEX ()| Fn-] — 1o

— 0 a.s.
£ I3 h—o0
Therefore limp,_, o P[E2|Fr—] = 0 a.s., so dominated convergence theorem gives that limy_, . P[Fa] =

0. This completes the proof of Lemma [2.5.5
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2.5.7 Proof of Lemma [2.5.6

Let us introduce the following notation. For n € Ng, we define
Nin :an(M7h76)7 nout:an(M7h75)c'

In particular, N;,, = NN K(M,h,d) and Ny = NN K(M, h,§)¢, are two independent PPPs of
intensity A on K (M, h,d) and K (M, h,0)¢ respectively.

Let A, > 0 and consider n € Cyl(A, h) N EmptySlice(A4, h, d). The idea of the proof is to build
an event FC(n) on Ng(K (M, h,d)), of probability bounded below by some € > 0 independent of
7, such that, when we replace the process n inside the box K (M, h,d) by some 7., € FC(n), then
we force trajectories from Z; and Z5 to coalesce.

For i = 1,2, consider the point (z;,1;) = AF"(Z;)(n) (ie. the highest point of N in the
trajectory below the level h). Notice that ||z;|| < Ae” since n € Cyl(A,h). We define three balls
as follows:

]

Blown _ g, ((xi7eh—6/2)7 g) fori=1,2, B“ = By ((O,eh+5/2), 2) :

We now make the choice of M. For h > 0, define

[1]

(h) = {= € H, d (2 Bra(0, Ae") x {e"~9/2}) < 5/2}.

So Z(h) is a compact set and Z(h) = D..Z(0), therefore Z(h) and Z(0) are isometric. By con-
struction, since [|a1 ||, ||z2| < Ae”, Bfewn, Bgewn c Z(h). Let us pick M large enough such that,
for all z%*" € Z(0) and for all 2*? € By ((0,e%/?),5/2),

By (23w d(z%°w™, 2*P)) € By ((0,€%), M).
Since
Z(h) = D.Z(0), B"P = D Bg((0,€°),8/2),
this choice of M guarantees that, for all h > 0, for all z9°“" € Z(h) and z*P € B,
By (29w, d(z9°v", 2%P)) € By ((0,e"), M). (2.5.8)
We define FC(7) as the event on Ng(K(M,h,§)) where there is exactly one point in Bgown,
exactly one point in B§°"", exactly one point in B"P and no other point in K (M, h,):
FC(n) = {nl, € Ns(K(M,h,0)),
#(ni, O BL*"") = 1 and #(n, 0 B3™") = 1 and #(n;,, 1 B"") = 1
and n}, \(B{°“™ U Bd*vm U BYP) = (Z)}.
This defines an event FC(n) on Ng(K (M, h,d)) for any n € Cyl(A, h) N EmptySlice(A4, h, ).
We will use the two following claims.

Claim 2.5.7. For any n € Cyl(A, h) N EmptySlice(A, h, ), the event FC(n) forces coalescence,
that is: for all nj,, € FCM), 0" := Now U, € CO.

Claim 2.5.8. There exists € > 0 independent of h such that P[N;, € FC(n)] > € for all n €
Cyl(A, h) N EmptySlice(A, h, 6).

Suppose for the moment Claims and Choose ¢ as in Claim Then, since, Fi,
and F,,¢ are independent, for any n € Cyl(A, h) N EmptySlice(A, h, §),

P[CO|Nout — nout] - ]P)[nout U Nzn S CO] 2 P[Nln € Fc(n)] > €,
so Lemma is proved.
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We now prove Claim Let n},, € FC(n) and consider i’ := 1y, Un,,. Define 2;? (resp.
257) as the unique point of B (resp. By") and z“? as the unique point of B“P.

If we change the point process N inside the box K (M, h,d), we potentially change trajectories
from Z; and Zs below the level h — §, so care is required. However, we will see that this is not a
real problem. Since Z;, Z, are measurable w.r.t the process N below level 0 (i.e. NNR? x (0,¢?)),
and since K (M, h,8) € R% x (e"?,00), changing the point process in K (M, h, ) does not affect
the positions of Z; and Z,. That is, Z1(n) = Z1(1'), Z2(n) = Za2(n').

For i = 1,2, we show that, for the realisation 7, the trajectory from Z; contains z“P (which
proves that trajectories from Z1 and Zs coalesce).

By our assumption on M (| and since z@own € Bdown c Z(h),

BH( doum d( down up)) C BH((O,eh),M).

Thus, since z*? is higher than 2" and the only points in K (M, h,d) are zfown, zdown ur the
parent of z{°*" is necessarily zdo“’” or 2%, and the parent of z4°“™ is necessarily zd"w" or z'P. In
all cases, z"P is on both trajectories from zd"“’” and zgown,

Now let us define

ki = max{l € [0, k;(h)[, AY(Zi)(n) = AZ:)(n)} U {ki(h)},
and
P = AN(Z),

ep down ,down
’ Z2

We show that the new parent of z]” is one of the three points z{ or zy,, (that is,
A(ZPY(n') € {zfown, zdown upl). This implies that the trajectory from Z; contains z,, for the
realisation 7’.

Suppose k; < k;(h) (that is, the change inside K (M, h, §) affects the trajectory from Z; before
the highest point below the level h, it is Case 1 in Figure . Set

(@77 g TT) = AR (n).

rJ 1

By assumption 47" < e”. Sincen € Cyl(A h,d), |23 || < Ae". Thus, since n € EmptySlice(A4, h, §),
y?Pt < =% Therefore A(2{?)(n) € 1/, so the new parent of 2°" is (strictly) closer to z’” than
its previous parent; in particular the new parent cannot be in 7. The only possibility is that the new
parent of z;? is one of the three points z{°w", z§own or 2P (1 e. A(z;P)(n') € {zflown, zdown upl).

Cons1der now the remaining case (Case 2 in Figure , ki = k;(h) (that is, the trajectory is
unchanged up to A*(")(Z,)). In this case, z;” = A*(")(Z,). Since n € EmptySlice(4, h,§), and
since ||z;|| < Ae” (recall that (x;,y;) are coordlnates of AF(M(Z)), y; < eP=%. Therefore, 28°w" is
higher than z;°’. Then it suffices to show that 2] is closer to %™ than to its previous parent,
Le. d(z? do“’”) < d(z]P, A(2]")(n)). Indeed, it implies that the new parent of 2]’ cannot be

? 7,
in 7, so it is necessarily 2", zg°wn or z%P. It is the case if

Blown < B3P .= By (25, d(}", A(2P)(n))).

The inclusion follows from the construction of B°“". Indeed, by construction, the center of Bfown
and z;" have the same abscissa, so BI°“"™ and B*P are centered at the same abscissa. Since the
helght of A(z;")(n)) is larger than h, the top (i.e. highest point) of the ball B**F has height larger
than h. Moreover, its bottom (i.e. lowest point) has height smaller than h — ¢ since 2 has height
smaller than h — §. On the other hand, the top of B#*™ has height ¢ and its bottom has height
eh=9. Tt follows that Bdown C Bsep This proves Claim

We finally prove Claim The event F'C(n) can be realised in two different ways: (i) there
is exactly one point of Nm in B“p , exactly one point in B{¥"™ N B°*"™ and no other points in
K(M,h,6), or (ii) there is exactly one point in BY?, exactly one point in Bfwn\ Bgewn = exactly
one point in BZ°™\ B and no other points in K (M, h,§). It is not hard to see that, whatever
n € Cyl(A, h) N EmptySlice(A, h,d), one of the two possibilities occurs with uniformly lower-
bounded probability, depending whether B{l"“’” N Bgou’" is large or not. The details are given in
[14, Section 7.7].
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no points of 7,
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Figure 2.8: If we replace the point process n inside K (M, h,d) by some 7., € FC(n), then, for
i = 1,2, the new trajectory (in red) from Z; is forced to go through z,,. Either it follows the
previous trajectory (in blue) up to Zj,() which is connected to piown " ydown op 5., (Case 2,
represented in full line), or it takes a short cut (Case 1, represented in dashed line).

2.6 The bi-infinite branches and their asymptotic directions

In this section we prove Theorem [2.1.2]

2.6.1 Notations and sketch of the proof

Let us first introduce some notations. Recall that BI is the set of functions f : R — R? that encode
a bi-infinite branch (see Definition .

Let us denote by Z the set of (abscissas of) points at infinity in R? x {0} that are the limit of
at least one infinite branch in the direction of the past:

T:={z cR% 3f € B, Jim f(t) ==}
——00

Definition 2.6.1. Let t € R and & € £;. We call the cell of z, denoted by U.(z), the set of
abscissas x of points at infinity in R% x {0} such that there exists a infinite branch in the direction
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of past starting from (z,e’) that converges to (z’,0):

() := {2/ € R 3f € B, f(t) =z and Jim f(t)=2a"}. (2.6.1)
——00
Thus T = J,cr, Vi(x). In Step 1, we show that every infinite branch in the direction of the

past converges to a point at infinity (point (ii) in Theorem [2.1.2)), which is a direct consequence of
Theorem Then we show in Step 2 that the DSF is straight with probability 1 (Proposition
3.2.7). Recall that the Maximal Backward Deviation (MBD) has been defined in Definition [2.4.3]

Proposition 2.6.2. The following occurs with probability 1:
Vo € Lo, lim max liminf MBD_}(z') = 0. (2.6.2)

N—00, 1./ PO t—o00
nenN ¥ EPZ, (@)

The property is called the straightness property. For simplicity, lim inf;_,. MBD_}'(2)
will be denoted by MBD~"_(z').

The rest proof is organized as follows. In Step 3, we show that the cells ¥, (z) are closed and
we check measurably conditions on W;(z) and Z. In Step 4, we use a second moment technique to
show that there exists infinitely many bi-infinite branches (the point (i)). It will follow that Z is
dense in R?,

Then we show that Z is a closed subset of R? (Step 5). To do this, it is sufficient to show that
the family of cells {Wo(z), = € Lo} is locally finite, that is, every ball B C R? intersects finitely
many cells. Thus it follows that Z is a dense closed subset of R?, therefore Z = R?. It proves (iii).

In Step 6, we prove (iv). The uniqueness follows from coalescence.

2.6.2 Step 1: proof of (ii)
By Theorem [2.4.5| applied with p = 1 and Fatou Lemma:

Eoer, [MBDY (2)] < lim inf Boe £, [MBD? ,,(0)] < limsupEqeg, [MBD?,,(0)] < co. (2.6.3)
—00 h— 00
Then, almost surely, for all z € £y, MBD? __(z) < oco. For any f € BI, and any h > 0,

0
[ )] de < MBD?,,(£(0))

thus

0
/ 1(8)] dt < liminf MBDY, (£(0)) = MBD (£(0)) < oo by (2.6.3),

so limy—, o f(t) exists. Then any bi-infinite branch admits an asymptotic direction toward the
past.

2.6.3 Step 2: proof of straightness

The proof of straightness is based on Theorem It is equivalent to prove the following
statement:

P li ax MBD™% =1.
0€Lo n—1>1£107$6%1(ix(0) “o(x)
neN n
Let n € N. Consider the weight function

w(@,n) := Loec_, MBDZL (2)*".
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Proposition applied to w with ¢t; = —n and ¢, = 0 gives,

Eoer ., [MBDZ% (0)*'] = ¢ "Eocz, | >, MBDIL(2)*
xeD° (0)

—n

Thus

< Eoer, Z MBDZY, (m)Qd

EOegol max MBD™” ()%
zeDY, (0)

z€D®  (0)

= e"Eoes_, [MBDZZ(0)%] = e "Eope,, [MBD? (0)*]. (2.6.4)

where invariance by dilation (Lemma [2.8.2)) was used in the last equality (with ¢ = —n and t' = 0).
By Theorem applied to any p > 1 and Fatou Lemma,

Eoez, [MBD? _(0)"] = Eoer, {litrginfMBDgt(O)p} < liminf Ege, [MBDY,(0)7] < 0o. (2.6.5)

Thus, by taking p = 2d,

(2.6.4) ©-6.5)
Boec, max MBD™Z (2)*| "< ZefdnEoeLU [MBDQOO(O)M] Z 0.
nGNweDgn(O) neN

It follows that Y . max,cpo (o) MBDZ (2)?¢ < 00 Poer,-a.s., this implies Proposition

2.6.4 Step 3: the cells ¥,(x) are closed and measurability conditions

Definition 2.6.3. A point (x,e!) € DSF is said to be connected to infinity if for all ¢/ < t,
D}, (z) # 0. We denote by DSF* C DSF the set of points that are connected to infinity.

For t € R, 2g € L, we define the random subset of descendants of (xq, e*):
Dy(z0) := {(z,¢") € DSF®, x € D}, (z0)} C DSF>,

The facts that U, (xg) is closed for all t € R and xg € L; a.s. will be deduced from the following
lemma:

Lemma 2.6.4. The following occurs outside a set of probability zero: for allt € R, xg € Ly and
r € RY, x € Wy(wg) if and only if (x,0) € Dy(wg) (where = denotes the closure operator).

Lemma implies that, outside a set of probability zero, for all ¢t € R and xg € L¢, Wi(zp) =
Dy(w0) N (R? x {0}) is closed in R?. Tt can also be deduced from Lemma that the maps

d,: RIxRIxNg —R
(w,20,m) = Logec,(m leew, (z0) ()
for any t € R, and
d: R'xNg —R
(@,n) = leez(),

are measurable if N is equipped with the completed o-algebra (for the probability measure P),
which will be required in the following steps. The details concerning these measurability conditions
are given in [14, Section 8.4].
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Proof of Lemma[2.6.]} Let t € R and x¢ € L;. It is clear that € U;(x¢) implies that (z,0) €
Dy(x0). Let us suppose (z,0) € Di(xg) and we show that 2 € U;(xg). Let us construct a sequence
(z7,) € (RY)N inductively such that, at each step n € N, !, € L4y, x},y € D;_1_,(x),) and
(ZC, O) S Dt—n(zn)-

We set , = xo. Let n € N and suppose that z), has been constructed. Since

Dy_n(z},) = (R x (0, "71]) N U Dy_pq(2")

@ €D{Zn_y(x7,)
t—n . e7e .
and #D;”;_(x) < oo with probability 1 (Corollary [2.3.15), it follows that

Dy—n(ay,) N (R x {0}) = U (De—n—1(a") N (R? x {0})). (2.6.6)

2D ()

t—n—

Since (z,0) € Dy_,(x},), by (2.6.6) it is possible to choose z/,,, € D,1_,(x}) such that
(.13, O) (S Dt—n—l(x/n+1)~

This construction defines a sequence (x,),en such that, for all n € N, (z),,0) € D,_,, (). The
sequence of points (z/,,e'~™) naturally defines a infinite branch toward the past and it remains to

no

show that this branch converges to (x,0) toward the past. By Step 1, this branch converges to
some point at infinity, thus it suffices to show that z!, — = as n — oc.
Let us assume for the moment that

Vn €N, ||z}, — | < MBD" 2 (x),). (2.6.7)
Then, by the straightness property (Proposition [3.2.7)),

2!, — x| < MBD* ”(2,) < Iqax( )MBD;"(x”) — 0 as n — oo.
z"€D;_, (zo

It remains to prove 1' Let n € N. Let € > 0. Since x € D;_, (), there exists to <t —n
and zo € Dy, "(x],) such that (z2,t2) € DSF™ and [lz2 — 2| < e. Let t3 < to. Since (22,t2) €

n
DSF>, there exists some z3 € D?(x2). Thus,

7, =zl < [, — x2|| + [J2 — @] < CFDg; ™ (w2) +¢
< CFD}, "(x3) + ¢ < MBD}, "(},) + ¢.

Thus ||z, — z|| < MBD}, "(x},) 4 ¢ for any t3 small enough, then
2!, — z|| < lim inf MBD! ™ + ¢ = MBD" (), + ¢.
/—00
Since this is true for any ¢ > 0, we obtain (2.6.7), this completes the proof of Lemma [2.6.4] O

2.6.5 Step 4: T is nonempty and dense in R?

The main part of the proof consists in proving that Z # @ (i.e. the point (i) in Theorem [2.1.2)).
The density will follow easily. The proof is based on a second moment method, Theorem [2:4.4] and
Lemma [2.3.18] For ¢t > 0, let us define the level t-association function f; as follows:

fr(z,m) == Ag (argmin " — xll) (),

z'€Lo(n)
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for any z € R? and n € Ns. That is, we consider the point =’ of £o(n) the closest to = and we
follow the trajectory from z’ up to the level t. We apply a second moment method on V;(0) :=
Leb(Ay,(0)) (recall that Ay, (-) is defined in Definition . First, Corollary m gives that
IEOG ct [V:(0)] = ay'ed, where o has been defined in Pr0p051t10n We now apply Theorem
4| to upper-bound Eoe, [V;(0)?].

Let Xo 1= argmin, . Hx|| be the point of Ly the closest to 0. By Proposition [2.4.9} E[|| Xo||?] <
00. Then (i) in Theorem applied to Xg with p = d gives,

limsup e~ “E [||A}(Xo)[|?] < limsupE l(”XOH i CtFDB(XO))d] < 00. (2.6.8)
t—o0 t—00 e
Applying Proposition to f; with p = d, we obtain
Eoec, [Vi(0)?] < Caae™E[|| f1(0)[|] = Ca,ae™E[|| A5 (X0)[14]- (2.6.9)
Then
h?isup e 2ME[V;(0)?] 229 liixisup Ca.ae” "E[||.A5(0)[|] 00. (2.6.10)

By scale invariance (Lemma and Cauchy-Schwartz,

EOEEO [‘/t (O)]2

Pocz, [D24(0) # 0] = Poer,[D5(0) # 0] = Pocc, [Vi(0) > 0] > Eocz, [Vi(0)2]°

Thus

0 : 0 e *"Eoer, V2 (0)]?
POGZ:O [Vt Z 07 th(o) 7& (Z)] = tli>rgo POEEO [th(o) 7é (Z)] > htIE)lOI.}f e thEOE[, [V (0)2]

—2
)

~ limsup e 2oz, [V4(0)?]

t—o00

> 0 by (2.6.10).

Note that, if the DSF has finite degree (which happens with probability 1), then a point (z,€°)
with z € Ly belongs to an infinite branch if and only if for all ¢ > 0, DY, (z) # (. Thus

Poer, [0 belongs to a bi-infinite branch] > 0.

It easily follows that there exists a bi-infinite branch with positive probability, and bi-infinite
branches converge in the direction of the past by Step 1, so P[Z # ()] > 0. Since the event Z # () is
translation invariant, it implies P[Z # ()] = 1 by ergodicity.

We move on to show that Z is dense in R? almost surely. Let 2 € R? and » > 0. By translation

invariance, 7 4 T,Z. Moreover, by dilation invariance, for all v’ > 0, T 4 D, Z. Thus, since

Z#0as.,
PZ N B(x,r) # 0] =P[IT,ZNB(x,r)+# 0] =PZnNB0,r)#0)
=P[D,/»INB(0,r) # 0] =P[ZNB(0,r) #0] — 1 as r’ — oo,
thus P[Z N B(z,7) # 0] = 1. Since R? admits a countable basis, it follows that Z is dense in R?
almost surely.
2.6.6 Step 5: 7 is closed in R?

Since Wy (z) is closed in R? for all = € Ly by Step 3, it is sufficient to show that the family of cells
(Uo(2))zer, is locally finite almost surely, i.e. for any ball B C R? of radius 1, BN Wy(x) # () for
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finitely many = € Lo. Let B C R? be some ball of radius 1, it will be shown that B intersects
finitely many cells a.s. The conclusion will immediately follow since R admits a countable basis.
By translation invariance it is enough to consider B(0, €°).

For t € R and = € £;, we define the radius of the cell ¥;(z), denoted by Rad:(x), as

Rad;(z) := sup ||z’ —z].
' €W, (x)

with the convention sup () = 0, where W;(z) is defined in ([2.6.1). We now show that Radg(z) <
MBD _ (z). Let 2’ € ¥g(x). There exists f € BI such that f(0) = z and lim;_, o, f(t) = 2'.
Thus

0 0
w’—xlle/ f’(t)dtHg/ If'(#)]| dt < liminf MBD{(z) = MBD? (x).

Since this is true for each z’ € ¥y(x), Radg(z) < MBD(lOO(as). Thus, by 1) for any p > 1,
Eoecr,[Rado(0)P] < co. For x € Ly, we now define the augmented cell of x by the set of points 2’
that are at distance at most 1 from ¥q(x):

Uy (z) := {2/ € RY, 3o’ € Vy(x), |2 — 2| < 1}.

Note that Wo(x) N B(0,e%) # 0 if and only if 0 € ¥{(z), this is the reason why ¥{(z) has been
introduced. Thus what we want to show is that 0 € U} (z) for finitely many x € Ly. It is done by
the Mass Transport Principle. From each = € Lj, we transport a unit mass from = to each unit
volume of ¥{(z). It corresponds to the measure m defined as

m(E) :=E [Z / 1(z.0eE dac/] .
x€Lg 6(36)

for all E C R? x R?. Let A be a nonempty open subset of R%. On the one hand,

T(AxRY) =E l 3" Leb(Wy(x)) | = aoLeb(A)Eoe, [Leb(¥5(0))],

x€LoNA

where Lemma [2.3.13]is used in the second equality. On the other hand,

m(RTx A) =E Z/ lyrca da’ Z / Lutew,(s) da’
\Il(/) €Ly A

€Ly
=E [/A #{x € Lo, 2’ € Uy(z)} dw’} = /AIE[#{:JS € Ly, 2 € Uy(z)}] d’

=E

_ /A E [#{z € Lo, 0 € Uy(2)}] da’ = Leb(A)E [#{z € Lo, 0 € W)(x)}].

Fubini was used in second, third and fourth equality and translation invariance was used in the
fifth equality. Thus, since 7 is diagonally invariant, the Mass Transport Principle gives,

E[#{z € Lo, 0 € ¥((x)}] = apEoer, [Leb(¥((0))].
Denoting by 9(d) the volume of the unit ball in R?, we have
Eoec, [Leb(¥5(0))] < Eoe, [0(d)(Rado(0) + 1)) < 2719(d) (Eoer, [Rado(0)7] + 1) < oo,

it follows that E [#{z € Ly, 0 € ¥(z)}] < oo, this proves that the family {Uy(z), = € Lo} is
locally finite almost surely.
Therefore, Z is dense and closed in R?, thus Z = R?. This proves (iii) in Theorem
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2.6.7 Step 6 proof of (iv)

Let us call Z’ the set of (abscissas of) points in R? x {0} which are the limit in the direction of
past of at least two bi-infinite branches:

I/ = {JU € Rdaafth € BI’ fl 7& f2 and tl}{llmfl(t) - t—lgr—noon(t) - 33}

The proof that &' : (z,7n) — 1.cz(n) is measurable, done in Step 3, can be easily adapted to
show that (2,7) = 1,e7/(y) is also measurable. By translation invariance and Fubini,

E[Leb(Z')] =E {/Rd lyez da:] = /Rd Plz € 7] dz = /Rd P[0 € Z'] dz = P[0 € T'].

Thus, in order to show that Leb(Z’) = 0 a.s., we will prove that P[0 € Z'] = 0.
Consider the set of bi-infinite branches that converges to (0,0) in the direction of the past. For
t € R, let P(t) be the set of t-level points through which these branches pass:

P(t) :={f(t), f € Bl and t_l)ir_noof(t) =0t={ze Ly 0€ T ()}

We define the coalescing time of 0, denoted by 7y, as the first time ¢ for which all branches
converging to (0,0) in the direction of the past have coalesced:

70 := inf{t e R, #P(t) =1} e RU{—00,+00}.

Let us show that 79 < 400 a.s. It has been shown in Step 3 that the family of cells {U(x), = €
Lo} is locally finite, so #P(0) < oo a.s. (and it is also true that #P(t) < oo for all t). By
coalescence (Theorem 7 there exists a.s. some ¢ > 0 such that a.s. (and it is also true
that #P(t) < oo for all t). By coalescence (Theorem 1 trajectories starting from the points
{(z,€e%), x € P(0)} coalesce before time ¢. For such a t, #P(t) = 1, therefore 79 < co a.s.

By dilation invariance, for all t € R, 7 4 To + t, therefore the only possibility is that 79 = —oc0
a.s. This implies that #P(t) = 1 for all t € R a.s., so there exists a unique f € BI such that
lim;—, o f(¢t) = 0. This shows that P[0 € Z'] = 0 so Z’ has measure zero almost surely.

We move on to show that Z’ is dense in R?. We first show that Z’ # () a.s. Let us suppose that
7' = ) with positive probability. On the event {Z' = (}}, the cells {¥(z), x € Lo} are pairwise
disjoint. So for all x € Ly,

Uo(x)" = | ().
z' €Ly
z' #£x
Since the cells Uy(x) are closed in RY (Step 3) and the family {Wo(x) x € Lo} is locally finite
(Step 5), both W (z) and ¥y (x)° must be closed in R%. By connectivity, this implies that Uo(z) is 0
or R% and there is unique = € R? such that Wy(z) = R?. Then, conditioning to the event {Z’ = 0},
the law of the unique random X € £y such that ¥Uo(X) = R? must be translation invariant, which
is impossible. Therefore P[Z’ = (] = 0.
We now show that Z’ is dense in R? by the same argument that have been use to show that Z
is dense. For any 2 € R? and 0 < ¢ < R < oo, by translation and dilation invariance,

P[Z' N B(z,e)] =P[Z’ N B(0,R)] - 1 as R — o0,

so P[Z' N B(z,¢)] = 1. Since R? admits a countable basis, we can conclude that Z’ is dense in R?
almost surely.

The last point is to show that Z’ is countable in the bi-dimensional case (d = 1). Note that,
for € R, & € 7' if and only if there exists some level t € R and two points z,,zo € £, with
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X1 # g such that x € U;(x1) NP;(x2). Moreover the level ¢ can be chosen rational without loss of
generality. Thus it suffices to show that, for a given level ¢t € Q, Uy, zoer,, o122, (Te(z1) N Ti(z2))
is countable. Let us consider the set L{° := {z € Ly, U, (z) # 0}. Since it is a discrete subset
of R, let us index its elements by Z in the ascending order: £{° = {z,, n € Z}. It has been
shown that, for n € Z, Uy(z,) C R is closed (Step 3) and bounded (Step 5); moreover it has to
be connected by planarity. Thus ¥;(x,,) is a segment (eventually reduced to a single point); let us
write Wy(x,) = [an, by] for all n € Z. Again by planarity, b, < a,1 for all n € N (else a trajectory
from (by,0) should cross a trajectory from (an+1,0)). Moreover, since the segments [a,, b,] cover
R, b, < apq1 80 ap, = byyq for all n € Z. Finally, the set of points in R belonging to two different
cells [ayn, by are exactly the set of extremities {a,, n € Z}, so it is countable. This completes the

proof.

We can wonder what are the possible numbers of bi-infinite branches sharing a same asymptotic
direction toward the past. This question is unsolved, but we can give the following conjecture:

Conjecture 2.6.5. Almost surely, the mazximal number of bi-infinite branches sharing a same
asymptotic direction toward the past is d + 1. That is,

ar:réz@#{f € BI, t_l)lr_noo ft) ==z} =d+1.

The intuition behind this conjecture can be explained as follows. Let us consider the family
of cells {U(x), = € L;) for a given level ¢+ € R. They cover R? and they do not overlap except
for boundaries. A boundary point shared by k cells corresponds to an asymptotic direction with
k branches that have not coalesced at level ¢. It is reasonable to expect that it exists d + 1 cells
sharing a same boundary point, but that it does not exist d 4+ 2 cells overlapping at a same point.
If this is true for every level t € R, it implies the existence of d + 1 branches sharing a same
asymptotic direction but the non-existence of d 4+ 2 such branches.

2.7 Appendix : first properties of the hyperbolic DSF

In this section, we show Proposition [3.2.2]

2.7.1 The edges never cross

Let us show that the DSF is non-crossing a.s. We first run out the case d > 2. Almost surely, N
does not contain four coplanary points, so two edges never cross.

In the following, we suppose d = 1. Recall that m, : (x,y) — y is the projection on the
y-coordinate. Let 21,22 € Ng and suppose that [z1, A(21)]euct N [22, A(22)]euct # 0. We denote
by Peyuc the intersection point of [z1, A(21)]euct and [22, A(22)]ecuct- Let us suppose that there are
no two points z1, zo with my(21) = m,(22) (this happens with probability 0). We will prove the
following:

Claim 2.7.1. The geodesics [z1, A(z1)] and [z2, A(22)] meet at one point Ppy,,.

We suppose Claim for the moment. We have m,(A(21)) > my(Peuct) > my(22), thus by
definition of the parent, d(z2, A(22)) < d(z2, A(z1)). Then

(22, A(2z2)) < d(22, A(z1))
(22, Phyp) + d(Phyp, A(21)), (2.7.1)

d(227 Phyp) + d(Phyp7 A(ZQ)) =
<

QU

50 d(Phyp, A(22)) < d(Phyp,A(2z1)). On the other hand, interchanging z; and 2z, in the pre-
vious calculation leads to d(Phyp, A(21)) < d(Phyp, A(22)). This is a contradiction. Therefore
[217A(Z1)]eucl N [227A(Z2)]eucl - @
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It remains to show Claim For i = 1,2, consider the simple closed curve supported on
[2i, A(2i)] U [z, A(2i)]euci- Let us denote by R; the region of H inside this closed curve. We
now show that R; contains no point of N. Both [z;, A(2;)]euea and [z;, A(2;)] are contained in
By (z,d(z, A(z;))) since By (zi,d(zi, A(2;))) is a Euclidean ball so it is convex for both Hyperbolic
and Euclidean metrics. Moreover, m,(A(z;)) > my(2;), so both [z;, A(z;)] and [z;, A(2i)]euar are
contained in the upper-half plane R? x (m,(2;),00). Thus, both [z;, A(z;)] and [z;, A(2;)]euar are
contained in B*(z;). By simple connexity, R; C BT (z;). Thus, since N N B*(z;) = 0, R; contains
no points of N.

By assumption [z1, A(21)]euct crosses [z2, A(22)]euc €xactly once, and none of the extremities z;
and A(z1) belong to Ry. Thus [z1, A(21)]euc should cross [z, A(22)] exactly once. Now, consider
[22, A(22)]. None of the extremities zo and A(z3) belong to Ry, so by the same argument, [z5, A(22)]
crosses [z1, A(z1)] exactly once. This proves Claim and achieves the proof of Proposition ?7?.

2.7.2 The DSF has finite degree

We move on to show that the DSF is locally finite a.s. Fix the origin zg := (0,e?). Consider
N’ = N U{z} and consider the DSF on N’. Since N is a Poisson Point Process, N’ has same law
as the Palm version of N conditioned that zy € N. The origin zy has one parent almost surely, so
it has to be shown that zo has finitely many sons almost surely. We apply Campbell formula [§].
Consider the function
F:NsgxH! — R,
(m:2) = 1B, (2d(z,0)"N=0 (2.7.2)

For z € N, if z is a son of 2y then By (z,d(z,2)) =0 so F(N\{z},z) = 1. Therefore,

E [#{z €N, (z,2) € E}} <E

> F(N\{Z}yz)]

zEN

:/HdIE[F(N,z)] dz
_ /H exp (— Mi(B* (z,d(=, 0)))) dz,
_ /H exp (= Ma(B*(0,d(z, 20)))) dz, (2.7.3)

where Campbell formula was used in the first equality. The last inequality holds since, for all p > 0
B™(z, p) have same volume as B (2, p) by isometry invariance. We now rewrite the integral above
using the following coordinates transformation formula:

Lemma 2.7.2. Let f: Ry — Ry. Then
fdle0) dz = [ s(o)f(e) dp (274)
H R,

s: Ry — Ry is some function. This function verify s(p) ~ Be™ when p — oo for some constant
6> 0.

The proof of lemma is given in Chapter [1| (see Proposition [2.7.2)). This formula applied
to f(p) = p(BT(20,p)) and (2.7.3)) lead to:

E[#{z € N, (2,2) € B} < fy, s(p)e B Gon)) dp, (2.7.5)
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In order to show that the right-hand side is finite, we need to lower-bound u(B™ (29, p)). Sup-
pose for the moment that, for all p large enough,

W(B*(20,p)) = e/, (2.7.6)

Then

E|#{z €N, (z,20) € E}} S/ s(p)ef’\“(BJr(Z“’p))) dp
Ry

/ s(p) exp(=Ae®’?) dp
R
o0

IN

+

< (2.7.7)

since s(p) ~ Bexp(dp) < exp(Ae®/?). Thus 0 has a finite number of sons almost surely, this shows
that the DSF is locally finite almost surely.
It remains to show (2.7.6)). Let p > 0. Consider the cylinder

C, := Bga(0,e%°) x [1,¢” — 7). (2.7.8)

The claim is that, when p is large enough, C, C B*(0,p). Indeed, by the discussion below
Corollary it follows that the Euclidean center of By (zo,p) is (e” + e~?)/2, thus by reflec-
tional symmetry with respect to the hyperplane RY x {(e? + e~?)/2}, it suffices to show that
Bga(0,€3°) C Bp (0, p) for p large enough. It follows from Corollarythat7 for r large enough,
d((0,¢€°), (z,¢")) < 5/2In(r) for all & € Bga(0,7), thus, for p large enough Bga (0, e37) C By (2o, p)
and the claim is proved.

Finally, we can easily compute the volume of C,,:

eP—e—P

dz n

w(C,) = ne%dp/ g Ee%d" when p — o0. (2.7.9)
1

where 7 denotes the volume of the (Euclidean) unit ball in R%. Thus, for p large enough,

1(B* (20, p)) = u(Cp) = %e%dp > /3, (2.7.10)

this achieves the proof.

2.7.3 Controlling the number of points at a given level

We finally prove Proposition By the dilation invariance property of model, it is enough to
show it for ¢ = 0. Let R > 0. We will in fact prove that (#Lo N B(0, R))? admits exponential
moments. Let n € N, and L > 0 depending on n that will be chosen later. Let us partition
#Lo N B(0, R) in two sets:

E<p :={x € #LoN B(0, R), d((x,e"),(0,e)) < L},
E.p = {x € #Lo,N B(0,R), d((z,€%)},(0,e%)) > L}.

We have
P[#Lo N B(0,R) > n] <P[E<y > n]+ P[E~, # (]. (2.7.11)

Then we will upperbound the two terms of this sum.
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Step 1: we upperbound P[E<y, > n].
Clearly, #E<;, < #(N N By ((0,€°),L). Let us denote by V the Hyperbolic volume of #(N N
Bu((0,€%), L). We use the following lemma to estimate V:

Lemma 2.7.3 (Volume of a Hyperbolic ball). For any zy € H4t!,

S(d)

1(B(zy,p)) ~ 7o e when p — oco.

This Lemma follows from Lemma m applied to f = 1y, and easy computations. Then,
when L — oo, large enough, V ~ S(d)/(d2%)e?l = O(eF). So #N N By ((0,€°), L) is distributed
according to a Poisson law of parameter AV < Ce?" for some constant C' large enough. We use
the following Chernoff bound [25]:

Lemma 2.7.4 (Chernoff bound for a Poisson distribution). If X s distributed according to a
Poisson low of parameter a > 0, then, for n > «a,

e‘a(ea)”.

nn

P[X >n| <

See [25] for a proof. Applying this bound to #N N B ((0,e°), L) leads to:

eXp(fCedL)(CedLJrl)”

P[#E<; > n] < P#(N 0 By ((0,¢"), L) > n] < -

(2.7.12)

if n > Ce®" and for L large enough.

Step 2: we upperbound P[E~ [, # (].
For x € E~ 1, by triangular inequality and Corollary 7?7,

d((%eo)iv(%@o)ﬂ d((x760)7($760)¢)
d((ﬂ;‘, eo)i’ (0’ 60)) - d((ﬂ;‘, 60)7 (07 60))

2
>

The second part ofCorollaryglves that d((z, €°), (0,€")) < ||z|| < R. Thend((z,€°),, (x,e%)4) >
d((z,€°);,(0,€%)) — R. Thus N N B*((x,e%),d((x,e%);,(0,€°) — R) = 0. Let us define the set

EL; ={z2€ N, d(z,(0,e")) > L and NN B*(z,d(z,(0,¢")) — R) = 0}.
Then #E~;, < #E}. Consider the function f: Ng x H — Ry defined as
f(2,m) == 14(2,(0,60))> L1 B+ (2,d(=,(0,e%))— R)=0-
By Campbell formula [8] and Fubini,

E[#E. lz f(z N\{z}] [/ f(z,N) dz} —/ P[z € E'] dz. (2.7.13)

zEN

For z € H such that d(z,(0,e°)) < L, P[z € EL ;] =0. If d(z,(0,€")) > L, then

(2.7.6) 0
Plz € B ] = exp(—\u(B* (z,d(z, (0,°)) — R))) EZS exp (—Aedw(%(‘le >>*R>/3) . (2.7.14)
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Thus, using the change of coordinates formula (Lemma [2.7.2)),
<

H

E[#EL,] exp <_)\6d(d(27(0,60))7R)/3> &

= S(d)/ Sinh(p)dexp <7>\6d(pr)/3) dp
L

< S(d)/ exp (dp — )\ed(”fR)/?’) dp for L large enough.
L
For L large enough, since dp — Ae®(P—F)/3 < _er/4,

S S 00
E[#E. ;] g/L e dpg/L erltee"t = [—46—6”“L — 4" (2.7.15)

Step 3: conclusion. We now combine upperbounds obtained in Step 1 and Step 2. Let us take

L= éln(;lc*)’

then Ce?® = n/2. Consider n large enough such that upperbounds (2.7.12) and (2.7.15)) are
satisfied. Then

E7.11)
< PlE<L =2 n]+PEsL # 0]

BT BT exp(—n/2)(en/2)"  doxp (_61/(4(1) ln(n/(?C)))
< et

() e (- e))

1/(5d)
for n large enough.

P[#Lo N B(0, R) = n]

<e ™

Therefore #Lo N B(0, R) € LP for all p > 1, this achives the proof of Proposition [2.2.17]

2.8 Appendix: Palm measure, conditioning the DSF on z €
Ly

In this section, we define the Palm distribution of the DSF conditioned that = € L; for given
r € RY and t € R. We refer to [?, Definition 2.6] for the definition of the hyperbolic DSF [?,
Definition 2.11] for the definition of the point process L.

2.8.1 Definition of P,.,

Let us fix z € R t € R. We define the probability measure on N corresponding to N conditioned
by the event {z € L£;}. We follow the classic definition of Palm measures [§]. Recall that, for
s € R, T, denotes the translation by s.

Proposition-definition 2.8.1 (Conditional distribution given {x € L;}).

e (Definition) For T' C Mg measurable, we define the measure yur on RY by

Z 17 SNEF] (2.8.1)

seLiNA

ur(A) =E

for all measurable set A C R%. Note that ur depends on ¢ and x.
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e (Proposition) For all measurable set I' C N, the measure pr is invariant by translations and
finite on compact sets.

e (Definition) Then for all measurable set I' C Ng, pur is a multiple of the Lebesgue measure,
so we can define:

dpr

Peec,[T] == coe—Tdleh’

(2.8.2)

where aq is the intensity of L.

e (Proposition) The map I' — P,er, [I'] so defined is a probability measure on Ng. We denote
by Ezer, its associated expectation.

Thus we defined a probability measure on Ng. In the following, if an event F (resp. a random
variable X) is measurable w.r.t. o(IN), we denote by P.cr,[E] (resp. Eyer,[X]) the probability of
E (resp. the expectation of X) when N is distributed according to the probability measure Pycp, .

Proof. We begin with the second point. Let I' C N5 be measurable. For all measurable set A C R¢
and r € R%:

pr(TA) =E| > 1TzsNeF] =E Yol ,wer
seLNT, A se(T—Ly)NA
=E| Y 1Tm—sN€F‘| = pr(A).
seELiNA

We used the fact that the translation 7, preserves the DSF distribution in the fourth equality.

Then pr is invariant by translations. Let K C R? be some compact set. Then ur(K) < E[#(L; N

K)] = e~ #agLeb(K) < oo because L; has finite intensity e~%ap. This proves the second point.
For the fourth point, we have, by taking A = [0,1]¢ in the definition of ur,

Prcr, I = aaleth Z 17, . Ner

s€L:N[0,1]4

We show that P,cp, is a positive measure. First, Pyer,[I'] > 0 for all measurable set I' C Mg and

Puec,[0] = 0. The o-additivity follows from the monotone convergence theorem.
Moreover

Poer, [Ns] = a5 'e®E [#£,0[0,1]4] =1,
s0 P,er, is a probability measure on Ns. O
Lemma 2.8.2. (Invariance by dilations). Let t,t' € R. We have
Poeﬁt [Det’ft(N) € ] = POeﬁt/ [N € ]
Proof. For all measurable set I' ¢ Ny and A C R?, we consider

W =E| Y e
seELNA

ur(A) =E l Z 17 . ner

sELLNA
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Let A C R such that Leb(A) > 0. By definition

io_,_,r(A)

Pocs, [Doo—(N) €T] =Poes, [N € D, v (T)] = v Leb(A)

E [ZseﬁtnA 1T_SN6D6,H,F}

2.8.3
ape~%Leb(A) ( )
We have
El > 1r_.nep, ,v| =E > 1De,,/_toTsNeF‘|
SELNA sEL,NA
=E Z cht’—tOT,et—t/SNer . (284)
s€et’ —t(LiNA)
Since D,vv— 0T _ ooy =T_g0D_v_, and N @ D, v_+N,
E [Es&et/_t([ltﬁA) 1Det/*toT_ct7t/sN6F:| =E Z 1T,SoDﬁt/7tNEF
SELy[D 41y NNet' —t A
=E > 17 ner| - (2.8.5)
Ls€Ly [N]Net' —tA

Combining (2.8.3)),(2.8.4) and (2.8.5)), we obtain

Pocz, [D.v—.(N) €T E > ser ner—a 1T—sN€F} (e "t A)
ot [Der-+(N) €T] = ape~Leb(A) ~ age~9'Leb(et' "t A)
== POGL,// [N S F] 5

so Lemma [2.8:2] is proved. O
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Chapter 3

The Radial Spanning Tree in
hyperbolic space

In this chapter, we define and analyze an extension to the d-dimensional hyperbolic space of the
Radial Spanning Tree (RST) introduced by Baccelli and Bordenave in the two-dimensional Eu-
clidean space [I]. In particular, we will focus on the description of the infinite branches of the tree.
The properties of the two-dimensional Euclidean RST are extended to the hyperbolic case in every
dimension: almost surely, every infinite branch admits an asymptotic direction and each asymp-
totic direction is reached by at least one infinite branch. Moreover, the branch converging to any
deterministic asymptotic direction is unique almost surely. To obtain results for any dimension, a
completely new approach is considered here. Our strategy mainly relies on the two following in-
gredients. First, the hyperbolic metric allows us to obtain fine control of the branches’ fluctuations
in the hyperbolic DSF without using planarity arguments. Then, we couple the hyperbolic RST
with the hyperbolic DSF introduced and studied in Chapter

3.1 Introduction

Geometric random trees are well studied in the literature since they interact with many other fields,
such as communication networks, particles systems or population dynamics. Several works have
established scaling limits for two-dimensional radial trees [I0, 0] and translation invariant forests
[11l 22| I4]. In addition, random spanning trees appear in the context of first passage percolation
[I5]. A complete introduction to geometric random graphs is given in Penrose [20].

The Radial Spanning Tree (RST) is a random tree whose introduction in the two-dimensional
Euclidean space has been motivated by applications for communication networks [I]. The con-
struction of this tree is the same on the plane R? or on the hyperbolic space H? (presented below).
The set of vertices is given by a homogeneous Poisson Point Process (PPP) N of intensity A. The
RST rooted at the origin 0 is the graph obtained by connecting each point z € A to its parent A(z),
defined as the closest point to z among all points 2z’ € A/U{0} that are closer to the origin than z.
This defines a random tree rooted at the origin with a radial structure. An infinite backward path
is defined as a sequence of Poisson points (z,)n>0 € (N U {ODN with 2o = 0 and z, = A(zn41)
for any n > 0. Given an infinite path, we will say that the forward direction is towards 0 and the
backward direction is towards infinity.

The topological properties of the bi-dimensional Fuclidean RST are well-understood. Baccelli
and Bordenave showed that almost surely, any infinite backward path admits an asymtpotic direc-
tion; moreover, a.s., every asymptotic direction is reached by at least one infinite backward path
and there exists a.s. a unique infinite path in any given deterministic asymptotic direction [I].
These results on the infinite paths are completed by Baccelli, Coupier & Tran [2].

7
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For any integer d > 2, the hyperbolic space H? is a d-dimensional Riemannian manifold with
constant negative curvature, that can be chosen equal to —1 without loss of generality. It admits
a set of ideal boundary points H¢, and H? := H? U H? denotes the hyperbolic space endowed
with its boundary. It is a non-amenable space, i.e. the measure of the boundary of a large subset
is not negligible with respect to its volume. The hyperbolic space is defined in more details in [7]
and [I9)].

There is a growing interest for the study of random models in a hyperbolic setting. Ben-
jamini and Schramm establish percolation results on regular tilings and Voronoi tessellation in
the hyperbolic plane [3]. Mean characteristics of the Poisson-Voronoi tessellation have also been
considered in a general Riemannian manifold by Calka et al. [6]. This interest is explained by at
least two reasons. First, hyperbolic random graphs are well-fitted to model social networks [5]. In
addition, strong differences have been noticed for properties of random models depending whether
they are considered in an Euclidean or hyperbolic setting. Indeed, some hyperbolic random graphs
admits a non-degenerate regime with infinitely many unbounded components in the hyperbolic
space [23] [16], which is generally not the case in the Euclidean space. In addition, behaviours of
non-amenable spaces are well studied in a discrete context |4}, 18], 21].

Thus it is natural to consider and study the hyperbolic RST, which we define in the same way
as the Euclidean RST. A simulation of the two-dimensional hyperbolic RST is given in Figure
In this paper, we extend the results of Baccelli and his coauthors to hyperbolic geometry in every
dimension. Here is our main result:

Theorem 3.1.1. For any dimension d > 1 and any intensity \, the following happens:

(i) almost surely, any infinite backward path (z,)nen admits an asymptotic direction, i.e. there
exists 2oo € OHY such that lim, o 2, = 2oo (in the sense of the topology of Hi+1);

(ii) almost surely, for any I € OH*! | there exists an infinite backward path (z,) with asymptotic
direction I (i.e. such that lim, . 2, = 1);

(iii) for any deterministic boundary point I € OHITL the path with asymptotic direction I is
almost surely unique;

(iv) the set of boundary points with two infinite backward paths is dense in OHIH;
(v) this set is moreover countable in the bi-dimensional case (i.e. d =1).

Establishing the results announced in Theorem |3.1.1] in every dimension constitutes the main
originality of this paper. For the two reasons explained further, the proofs of Baccelli and Bordenave
in the 2D-Euclidean setting [I] cannot be generalised to higher dimensions.

In both contexts R? and He*+!, for any d > 1, the proofs of (i), (ii), (iv) and (v) of Theorem|[3.1.1]
follow the strategy of Howard and Newman [15], which is to show that the tree is straight, that is,
the descendents subtree of a vertex far from the origin is included in a thin cone. To prove that the
2D-Euclidean RST is straight, Baccelli and Bordenave used a translation invariant model derived
from the RST: the Directed Spanning Forest (DSF), which constitutes a local approximation of
the RST far from the origin [I]. They exploit the theory of Markov chains to bound from above
fluctuations of trajectories in the DSF and then, they deduce the straightness of the RST via
planarity. This strategy cannot be generalised to higher dimensions. However, in H?, we manage
to control the angular deviations of branches in the RST without resorting to an auxiliary model,
which required planarity in the Euclidean setting. The hyperbolic metric guarantees that angular
deviations decay exponentially fast with the distance to the origin, which is strong enough to show
straightness.

In addition, in the Euclidean context, the uniqueness part (point (iii) in Theorem is only
proved in dimension 2 since it strongly uses planarity [I5] [T], and the strategy of proof cannot be
generalised to higher dimensions. To prove (iii) in H¢, our strategy consists in exploiting the link
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existing between the hyperbolic RST and another random graph, the hyperbolic DSF, defined and
studied in Flammant 2019 [I2], which is the hyperbolic counterpart of the Euclidean DSF used
by Baccelli and Bordenave. Roughly speaking, the hyperbolic DSF can be defined as the limit
of the hyperbolic RST when the origin point tends to an ideal boundary point. Similarly to the
Euclidean setting, it constitutes a local approximation of the RST far from the origin. The proof
of (iii) exploits the coalescence of the hyperbolic DSF (i.e. it is almost surely a tree) [12], Theorem
1.1], which is a non-trivial fact obtained by exploiting the mass-transport principle, and a local
coupling between the two models.

After defining the hyperbolic RST and giving its basic properties, we define two quantities
that encode angular fluctuations along trajectories, the Cumulative angular Forward Deviations
(CFD) and the Maximal Backward Deviations (MBD). We then establish upper-bounds of these
quantities: first, we upper-bound the Maximal Backward Deviations in a thin annulus of width § >
0 (Proposition and then we deduce a global control of MBD in the whole space (Proposition
, that roughly says that angular deviations decay exponentially fast with the distance to the
origin. From this upper-bound, we deduce that the RST is straight in the sense of Howard &
Newman (Proposition [3.2.7). The points (i), (ii), (iv) and (v) in Theorem [3.1.1] can be deduced
from straightness and the upper-bound of MBD given by Proposition @ The point (iii) (the
uniqueness part) is done by exploiting a local coupling existing between the RST and the DSF far
from the origin.

The rest of paper is organized as follows. In Section [3.2] we set some reminders of hyperbolic
geometry and we define the hyperbolic RST. Then, we give its basic properties and a road-map
of the proofs. We also announce the upper-bounds of angular deviations (Propositions and
and the straightness property (Proposition [3.2.7). The proof of Theorem is done in
Section [3:3] Proposition [3.2.7] is proved in Section [3.4] and the proofs of Propositions [3.2.6] and
are done in Section

3.2 Definitions, notations and basic properties

We denote by N the set of non-negative integers and by N* the set of positive integers. In the rest
of the paper, ¢ (resp. C') will be some small (resp. large) constant whose value can change from a
line to another.

3.2.1 The hyperbolic space

We refer to [7] or [19] for a complete introduction to hyperbolic geometry. For d € N*, the (d + 1)-
dimensional hyperbolic space, denoted by H?*!, is a (d 4 1)-dimensional Riemannian manifold of
constant negative curvature —1 that can be defined by several isometric models. One of them is
the open-ball model consisting in the unit open ball

I={(21, ., xap1) € R 2+ 423, <1} (3.2.1)
endowed with the following metric:

da? + ..+ da? |

2 2 -
1—x1—...—xd+1

ds? =4 (3.2.2)

This model is rotation invariant. The metric becomes smaller as we get closer to the boundary
unit sphere 91, and this boundary is at infinite distance from the center 0.
The volume measure on (I,ds?), denoted by Voly, is given by

dVO]] _ 2d+1 dl‘1...d.rd+1

. (3.2.3)
1—af—. -2l
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Figure 3.1: Simulation of the two-dimensional hyperbolic RST, with A = 30, in the Poincaré disc
model. The edges are represented by geodesics. The different connected components of the RST
(apart from the root) are represented with different colors.

In this model (I,ds?), the geodesics are of two types: the diameters of I and the arcs that
are perpendicular to the boundary unit sphere 9I. We refer to discussion [7, P.80] for a proof.
Moreover, this model is conformal, which means that the hyperbolic angle between two geodesics
corresponds to their Euclidean angle in the open-ball representation.

An important fact about hyperbolic geometry is that all points and all directions play the same
role. More precisely, H%t! is homogeneous and isotropic. It means that the group of isometries
of Ho*! acts transitively on the unit tangent bundle of H?!: given two points z,y € H**! and
two unit tangent vectors u € T,H*1 v € T,H**!, there exists an isometry g of H4"! such that
g(xz) = y and that pushes forward « on v. The notations T}, T, and the vocabulary relating to
Riemannian geometry are defined in [I7]. We refer to [I9], Proposition 1.2.1 p.5, for a proof.

The hyperbolic space Hé+! is naturally equipped with a set of points at infinity, and the most
natural way to identify these points is to use the open-ball model. In (I,ds?), the set of points
at infinity is identified by the boundary unit sphere dI. We denote by OH%*! the boundary set
(represented by the boundary unit sphere in (I, ds?)) and by Hd+! := He+1 UgH*H! the hyperbolic
space H4H! plus the set of points at infinity, with the topology given by the closed ball. A point
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Figure 3.2: Geodesics in the open ball model

Zoo € OH is called ideal point or point at infinity.

We denote by d(-, -) the hyperbolic distance in H*!, and by ||-|| the Euclidean norm in R%, with

. —d+1
the convention ||oo|| = co. Let us denote by Vol the volume measure on H*+!. For z;, 2, € H * ,
let us denote by [z1, 23] the geodesic between z; and zo. Moreover, we set the notations:

[21, 2= [21, 22]\{ 22}, ]2, 20] = 21, 22]\{ 21}, J21, 22[\({z2} U {22}).
Let us denote by [z1, z2) (resp. (z1, 22]) the semi-geodesic passing threw zs (resp. z1) and ending

at z1 (resp. zp). For z1,29,23 € H * , 212223 is the measure of the corresponding (non-oriented)
hyperbolic angle. For any subset B C Hd+1, B denotes the closure of B in Hd+1, For any point
z € Ho+1 and 0 > 0, Cone(z,0) := {2’ € H¥*! 202/ < 6} is defined as the cone of apex 0 and
aperture 6 (if & > 7 then Cone(z,6) is the hole space H4*1). In addition, for 7 > 0 and » € H4*!,
we define

Bg(ry(z,0) := Cone(z,0) N S(r). (3.2.4)

Let 0 € HY"! be some arbitrary origin point (it can be thought as the center of the ball in
the open-ball representation), which will plays the role of the root of the RST. For z € H*! and
r > 0, we denote by B(z,r) := {7 € H, d(z,2') < r} (vesp. S(z,7r):= {2 € H, d(z,7') =r})
the hyperbolic ball (resp. sphere) centered at z of radius r, and we set B(r) := B(0,r) (resp.
S(r) := 5(0,7)). For z € R? and r > 0, let us also denote by Bga(z,7) := {2’ € R, ||z’ — x| < r}
the Euclidean ball centered at x of radius r.

Let us denote by S? the unit Euclidean sphere in R%*! and by v its d-dimensional volume
measure. Since the RST is a rooted graph, a convenient way to represent points in H?*! is to
use polar coordinates. Recall that 0 is the origin point. For any point z € Ht!, we denote by
z = (r;u) its polar coordinates w.r.t. 0: r is its distance to 0 and u € UToH*! ~ S is its direction
(UToHYH! is the unitary tangent space of 0 in H*!). In polar coordinates, the volume measure
Vol is given by

dVol(r;u) = sinh(r)¢ dr dv(u). (3.2.5)

A direct consequence of this is that the volume of a ball of radius r is given by:

Vol(B(r)) = / sinh(r)? dr dv(S?) = Sgsinh(r)? < e when r — oo, (3.2.6)
0
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where S is the d-dimensional volume of S¢.

The hyperbolic law of cosines [24], p.13] is a well adapted tool to compute distances using polar
coordinates. Given z; = (r1;u1), 22 = (12, up) € H¥!, the hyperbolic law of cosines gives,

cosh d(z1, z2) = cosh(ry) cosh(rs) — (u1,ug) sinh(ry) sinh(rs). (3.2.7)

3.2.2 The hyperbolic RST

In the rest of the paper, the dimension d and the intensity A > 0 are fixed. Let A" be a homogeneous
PPP of intensity A in H?*!. The definition of the hyperbolic RST is similar to the Euclidean case.
The set of vertices is AU {0}. Each vertex z € N is connected to the closest Poisson point among
those that are closer to the origin than z:

Definition 3.2.1 (Radial Spanning Tree in H?*!). For any z = (r;u) € N, the parent of z is
defined as
A(z) :== argmin d(2,2).
z’€NNB(r)

We call Radial Spanning Tree (RST) in H*! rooted at 0 the oriented graph (V, E) where
Vi=NU{0}, E:={(zA()), ze N}.

It is possible to assume that A" U {0} does not contain isosceles triangles, since this event has
probability 1. Thus the ancestor A(z) is well-defined.

For 2 € NU{0} and k € N, let us define A% (z2) = Ao..0 A k times and AF)(2) = {2/ €
N, A®) (') = 2} (in particular A1) (z) is the set of daughters of z). For z € N and r > 0, let us
define

Bt (z,7) := B(z,7) N B(0,d(0,2)) and BT (2) := BT (2,d(z, A(2))).

By definition of the parent, B*(z) NN = () for all z € N.

Definition does not specify the shape of edges, but the results announced in Theorem
only concern the graph structure of the hyperbolic RST, so their veracity does not depend
on the geometry of edges. It is more natural to represent edges with hyperbolic geodesics, but
we do another choice which will appear more convenient for the proofs. Given z; = (r1;u1),20 =
(r2;uz) € HA! such that 0 ¢ [21, 2], we define a path [21, 25]*, in an isotropic way, verifying the
two following conditions:

i) the distance to the origin 0 is monotonous along the path [z1, z2]*,
ii) the distance to z; is also monotonous along this path.

It will be necessary for the proofs that the shape of edges satisfy conditions (i) and (ii), and the
geodesic [z1, z2] does not verify condition (i) in general. Since 0 ¢ [z1,22], u1 and ug are not
antipodal, thus one can consider the unique geodesic path 7y, u, : [0,1] — UToH?! on the sphere
with constant speed connecting u; to uy (UToHYH! is the unitary tangent space of 0 in H?t!).
Hence we define the path [z1, 22]* as

0,1 — H!

t = ((1 - t)rl +t7"2;’}/ul7u2 (¢r1,r2,m(t)))a (328)
where ¢, ., 7775 ¢ [0,1] = [0,1] is defined as:
6r (1) = — arccos (1-1%) sir%h(rl) + t cos(u1uz) sinh(rz) .
LIz Uy, Uz sinh((1 — t)ry + try)
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This function ¢,., ., z77; is built to ensure that the distance to the origin 27 is monotonous along
the path [z1, z2]*. Indeed, by the hyperbolic law of cosines (3.2.7)),

coshd(z1, (1 = t)r1 + t72; Yuy us (0(1)))
= cosh(ry) cosh((1 — t)ry + try) — cos(o(t) (1, uz)) sinh(ry) sinh((1 — )ry + tro)
=t [cosh(ry) cosh(ra) — cos(uy, uz) sinh(ry) sinh(rs)]

is monotonous in ¢.

We define [z1, zo[*:= [21, 22]*\{22} and ]z1, z0]* := [21, 22]*\{21}. It is possible to assume that
N does not contain two points 21, z2 such that 0 € [21, 23] since this event has probability 1. Let
us now define the random set RST by connecting each point 2 € N to A(z) by the path [z, A(z)]*:

RST := | | [z A(2)[".

2EN

It may exist some points z belonging to several paths [z1, A(z1)[*, ..., [2k, A(2x)[*; in that case, z
is counted with multiplicity k& in RST. Formally, RST =, [2, A(2)[*x {2} C H™! x HL, ie.
an element z = (2/,2”) € RST is a couple where 2’ € H*! is a point of the RST and 2" is the
root of an edge containing 2’. For z = (2’ 2") € RST, we define

zp=2", 2z =A(").

In the following, we will commit an abuse of notations by considering that RST < H*! and
identifying an element z = (2, 2”") € RST to the corresponding point 2’ € H*!. Given z € RST,
let n := min{k > 0, A®)(2;) = 0} be the number of steps required to reach the origin from z; we
define the trajectory from z as

7(2) = [z, 2]" U {A(k) z1), A(k'H)(zT)

For r > 0, we define the level r as
L, :=RSTNS(r).

For 0 < r <+’ and for 2’ € L,+, the ancestor at level r of z’, denoted by A" (2') is the intersection
point of w(z") and S(r). For 0 < r < v’ and for z € L,, the set of descendents at level ' is defined
as D7 (z) == {2’ € L,z € n(')} (we extend the notation for z ¢ L, by setting D’ (z) := ). For
z = (r;u) € RST, the descendents subtree of z is defined as D(z) := (U, DI (2). In addition, we

call infinite backward path a sequence (z;);en € (HdH)N such that zop = 0 and z; = A(z;41) for all
i > 0.
Let us end this section with basic properties about RST proved in Appendix

Proposition 3.2.2. The RST is a tree and it has finite degree a.s. Moreover, in the bi-dimensional
case (d = 1), the representation of the RST obtained by connecting each vertex z € N to its parent
A(2) by the geodesic |z, A(z)] (instead of [z, A(2)]* ) is planar, i.e. their is no two points z1,22 € N
such that [z1, A(z1)] N [z2, A(22)] # 0.

3.2.3 Sketch of proofs

In order to prove our main result (Theorem [3.1.1)), the key point is to upper-bound angular devia-
tions of trajectories. We first introduce two quantities, the Cumulative Forward angular Deviations
(CFD) and Mazimal Backward Deviations (MBD) to quantify those fluctuations.



84

CHAPTER 3. THE RADIAL SPANNING TREE IN HYPERBOLIC SPACE

Figure 3.3: Representation of levels r and 7/, the ancestor A" (-) and the set of descendents D7 (-)
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Definition 3.2.3 (Cumulative Forward angular Deviations). Let 0 < r < ' and 2/ € S(r).
If 2/ ¢ RST, we set CFD; (2') = 0 by convention and we now suppose that z’ € RST. Let
z = A7 (/). We define the Cumulative Forward angular Deviations of 2z’ between levels r and r’
as

20z if 2 L= Zi,

CFD! ()= — n! — A
2/0z4 + Z AR (2£)0AE+D) (21) 4 2102 else,

k=0
where n is the unique non negative integer such that A(")(z,’r) = z.

Definition 3.2.4 (Maximal Backward angular Deviations). Let 0 < r < 7/ and z € S(r). We
define the Mazimal Backward angular Deviations between levels r and ' as

0 if z ¢ RST,
sup  max CFD! (2")if z € RST.

r'elr,r’] z”ED,,T,” (z)

MBD” (2) :=

We extend the definition to 7’ = oo by setting:
MBDX(z) := lim MBDZ (),

r’—o00
/
the limit exists since 7’ +— MBD! (z) is non-decreasing.

These quantities will be upper-bounded in two steps. First, a percolation argument is used
to control angular deviations in any annulus of width § > 0 for some small § > 0 (Proposition
3.2.5) and then we deduce a global control of angular deviations (Proposition [3.2.6]). Recall that

Bg(r)(+,-) is defined in (3.2.4).

Proposition 3.2.5. There exists § > 0 such that, for any p > 1, there exists C = C(d,p) > 0
such that for any v >0, 8 > 0 and any direction u € S¢,

E 3 (MBD:+5(Z))p < Chler(@—p), (3.2.9)
2€Bg(r) (u,0)NRST

Proposition 3.2.6. For any p large enough, there exists some constant Cp > 0 such that, for any
0 <719 <o00, A>0 and any direction u € St,

E > (MBD2(2))" | < CpAemoP.
zeBS(TO)(u,Ae*TO)ﬂRST

These controls of angular deviations will be first used to show that the RST is straight (Propo-
sition |3.2.7). The straightness property is the key to show (i), (ii) and (iv) in Theorem

Proposition 3.2.7 (straightness property). Almost surely, the following happens. For any e > 0,
there exists some Ry > 0, such that, for any radius ro > Ro, for any z € RST with d(0,z) > ro,
the descendents subtree D(z) is contained in a cone of apex 0 and aperture e~ (=90 e for any

22" € D(z), 202" < e~ (17870,

The proof of (iii) in Theorem 3.1.1]exploits the controls of angular deviations (Proposition [3.2.6)
and the link existing between the RST and the hyperbolic Directed Spanning Forest introduced
in [I2]: the DSF approximates locally the RST far from the origin. The unicity of the infinite
backward path with some given deterministic asymptotic direction has been shown for the DSF
[5], and the local coupling existing between the two models permits to show that this property
remains true for the RST.
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3.3 Proof of Theorem [3.1.1]

Here we assume that Propositions [3.2.6] and [3.2.7] are proved and we show that it implies Theorem
B11

3.3.1 The existence part: proof of (i),(ii),(iv) and (v)

It will be shown in this section that any infinite backward path admits an asymptotic direction and
that any ideal boundary point is the asymptotic direction of an infinite backward path (point (i) and
(ii) in Theorem [3.1.1)). The strategy consists, in exploiting the straightness property (Proposition
3.2.7)):

Let (2,) be an infinite backward path, we prove that (z,) admits an asymptotic direction. For
n > 0, let us decompose z, in polar coordinates: z, = (rp;u,). Proposition immediately
implies that the sequence (un)n>0 is a Cauchy sequence in U ToHAH ~ §?, thus it converges, so
(2n) converges to some boundary point z,, € OHI*!.

Let ¥ = {lim, o 2n, (2,) is an infinite backward path} C OH?*! be the set of asymptotic
directions reached by at least one infinite backward path. In order to prove that U = 9H?t!, we
proceed in two steps: we first show that W is dense in OH%!, then we show that ¥ is closed in
5Hd+1.

Since the RST is an infinite tree with finite degree a.s. (Proposition , there exists an infinite
backward path from 0 and the corresponding infinite backward path converges to an ideal boundary
point by the previous paragraph, thus ¥ # () almost surely.

We denote by Stab(0) the set of isometries that fix 0, in particular it contains rotations centered
at 0. Let B be an open subset of 9H%t!. Since 9Ht! ~ S? is compact, there exists finitely many
isometries 71, ..., vx € Stab(0) such that | J,_, 7B = OH*1. The random set RST is invariant

in distribution by Stab(0), so the events {¥ N~; B # 0} all have the same probability. Since ¥ # ()

neighborhood ® C H*! of B, the event {¥ N B # ()} is entirely determined by A N @, therefore
it has probability 0 or 1. Thus ¥ N B # () almost surely. Since the topology on OH*! admits a
countable basis, ¥ is almost surely dense in OH%*H!.

It remains to show that ¥ is a closed subset of JH*!. Let I € W (recall that W is the closure
of ¥ in HA+1). We construct by induction a sequence (2,),>1 € NV is an infinite backward path

such that, for any ¢ € N, I € D(z;). Suppose 0, ..., z;_1 already defined such that z; = A(z;41) for

0<j<i—2and I € D(z_1). Since the vertex z;_; has finitely many daughters, there exists
some z € A (z,_1) such that I € D(z). Thus we define z; as such a 2.
We now use straightness to show that the infinite backward path (z,) constructed above con-
verges to I (and thus [ . This infinite backward path converges to some I’ € 9H*! by (i). Let
3.2.7]

e > 0, by Proposition there exists some ¢ > 0 such that D(z;) (and thus D(z;)) is contained

I—

in a cone of apex 0 and aperture at most €. Since both I and I’ belong to D(z;), I0I’ < e. Thus
I = I, which achieves the proof of the existence part.

Proof of (iv) and (v) Let us denote by U/ C 9H*! the set of asymptotic directions with two
infinite backward paths. To show (iv), we first show that, a.s. ¥’ # ). For z € RST, let us define
U, C OH™! as the set of asymptotic directions of infinite backward paths from z. By the same
argument as in Step 2, U is a closed subset of 9HY*!. By (ii), a.s., there exists at least two infinite
backward paths, so there exists a.s. some level rg > 0 with two points connected to infinity. Thus
{U,, z € L(rg)} is a covering of OH?*! by closed subsets, where at least two of them are nonempty.
Since OHY*t! is connected, it implies that there exists 2y, 2o € £, such that ¥, NW¥_, # (. Thus
T #£0 a.s.
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We use the same argument as in Step 2 to deduce that ¥’ is dense. Let B be an open subset
of OH™!. Since OHI*! ~ S is compact, there exists finitely many isometries 71, ..., 7 € Stab(0)
such that J,_, ,vB = OH4*tL. The random set RST is invariant in distribution by Stab(0),
so the events T'; := {¥' N ;B # 0} all have the same probability. Since ¥ # ) almost surely,

P {Ulzlk Fi] = 1 therefore P(T';) > 0. In addition, for any neighborhood ® C HI+! of B, the

event T'; is entirely determined by A N ®, therefore it has probability 0 or 1. Thus ¥'NB # (
almost surely. Since the topology on JH?! admits a countable basis, ¥’ is almost surely dense in
aquLl'

The proof of (v) is done by exploiting the planarity in the bi-dimensional case (Proposition
. Let us associate to any z., € ¥’ a couple of vertices P(200) = (21,22) € N? with 21 # 25
such that zo, € U,, N ¥,,. By planarity, such an application P must be injective. Indeed, if
Zoo 7 2L, are such that P(ze) = P(2),) = (21, 22), then there exists four distinct backward infinite
paths joining zo, t0 21, 2o t0 22, 25, t0 21 and 2/ to z3. This implies that two paths among them
intersect each other, even if the representation of edges are replaced by geodesics, which contradicts
planarity. Therefore ¥’ is a.s. countable in the case d = 1.

3.3.2 The uniqueness part: proof of (iii)

The strategy is to exploit the link between the hyperbolic RST and the hyperbolic DSF. Let us
consider the (d + 1)-dimensional half-space model (H, ds?):

dz? + ...+ dz? + dy?
H={(z1,...,xq,y) € R ¢ >0}, ds*= i + +2 x5+ dy '
Yy

In the following, we will identify the point (x1,...,z441) € H with the couple (z,y) € RY x R%
with

T = (1’1, "'axd)a Y = Tg41. (331)

The coordinate x is referred as the abscissa and y as the ordinate. Let us remind that, in the half-
space representation, the boundary set H?*! is identifyied as the boundary hyper-plane RY x {0},
plus an additinal point at infinity denoted by oo, obtained by compactifying the closed half-space
R? x R,. Let us define I, as the boundary point represented by (0,0) in H.

Let N be a PPP inside (H,ds?), and, for any h > 0, let us define RST(h) as the Radial
Spanning Tree of A with origin O(h) := (0,¢e"), and let us define DSF as the Directed Spanning
Forest of N with direction oo (defined in [B]). Given z € N let Apsr(z) be the parent of z in DSF,
and let Agrgr(n)(2) be the parent of z in RST(h). We will also consider, for any given h > 0, the
direction toward I, defined as u := (0,...,—1) € UTO(h)]HIdJrl ~ S?. The proof is based on the
two following propositions. The next one asserts that the RST(h) and the DSF coincide in a given
compact set when h is large enough.

Proposition 3.3.1 (Coupling between RST and DSF). Let K C H*! be some compact set. Then
hhm ]P’[VZ eNNK, ARST(h)(Z) = ADSF(Z)] =1.
— 00
For A,a,h > 0, let us define:

Vois(A, h) := Coneon)(Iso, Ae ™)\ B(O(h), h),
Vois' (A, a, h) := (B(O(h), h + a) N Conepn) (1so, Ae")\B(O(h), h),
Vois” (A, a, h) := Coneo (I, Ae™ """ N\B(O(h), h + a),
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where Cone,, (z,0) denotes the cone with apex zy, direction z and aperture 6. Let us also define:

Cyl(A) := Baa (0, A) x (0, ‘;’] CH,

Cyl'(A,a) := Bga (0, A) x [;e_“, g] C H,

Cyl”"(A,a) := Bga (O,Aefa) X <0, ;ea} C H.

The sets Vois(A4, h), Vois' (A, a, h), Vois” (A, a, h) and Cyl(A), Cyl'(A, a),Cyl”" (A, a) are represented
in Figure We will use the following geometrical fact:

Lemma 3.3.2. For any A,a > 0, h can be chosen large enough such that
Vois(A,h) C Cyl(A), Vois' (A,a,h) C Cyl(A,a), and Vois'(A,a,h) C Cyl'(A,a). (3.3.2)

For A, h > 0, let us define the event E(A, h) saying that every infinite backward path converging
to I in RST(h) restricted to the annulus H?+1\ S(O(h), h) are contained in Vois(A, h):

E(A,h) := {¥Vz € RST(h) N (H**\S(O(h), 1)), Lo € Drsr(n(2) — =z € Vois(4, h)},

where Drgr(p)(2) denotes the descendents subtree of z in RST(h). Let us also define, for A, h,a > 0,
the event E’'(A, h, a) saying that every infinite backward path converging to I, in RST(h) restricted
to the annulus HY\S(O(h), h + a) are contained in Vois” (4, a, h):

E'(A,a,h) = {¥z € RST(h) N (H"N\S(O(h),h + a)), Isc € Drsrn)(2) => 2 € Vois”(A,a, h)}.

The following proposition asserts that, uniformly in h, the events E(A,h) and E(A,a,h) occur
with high probability when A is large.

Proposition 3.3.3. We have

lim liminf P[E(A,h)] =1, lim liminfP[E'(A, a,h)] =1 for any a > 0.

A—o0 h—oo A—o0 h—oo

Let us assume Propositions [3:333] and Lemma[3.3:2) for the moment and let us prove part
(iii) of Theorem For h > 0, let us define the event

U(h) := {there is a unique infinite backward path converging to I, in RST(h)}

By isometries invariance, P[U(h)] is independent of h, and let us suppose for contradiction that
q:=P[U(h)] > 0. For A,a,h > 0, let us define the event

CO(A,a,h) :={Vz € NNCyl'(4,a), Arsr(n)(2) = Apsr(2)}
By Proposition [3:3.3] A can be chosen such that

lihmianP[E(A,h)} >1-—gq/4, P[E'(A,a,h)]>1-q/4.
—00

Then, by Proposition applied to the compact set K := Cyl'(A,a) and Lemma h can
be chosen large enough such that inclusions (3.3.2)) hold and such that

P[CO(A,a,h)] > 1—q/4, P[E(Ah)]>1—q/4and P[E'(A,a,h)] >1—q/4.
Let us define the event Z(a) as

Z(a) :=U°NE(A,h) N E'(A,a,h) NCO(A,a,h),
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and define

z=) U 2.

ap>0a>ag

For the choices of ¢, h done before, P[Z(a)] > ¢/4 and so P[Z] > ¢/4 > 0. On the event Z(a),
and because inclusion holds, there exists two infinite backward paths in RST(h) whose
restrictions to R? x (0,3/2] are contained in Cyl(A,a) and converging to I.., and intersecting
Cyl”(A, a). These two infinite backward paths coincide with those of DSF inside Cyl'(4, a). Thus,
in DSF, there exists two infinite backward paths contained in Cyl(A, a) and intersecting Cyl” (A4, a).
Therefore, since this is true for all a > 0, on the event Z, it is possible to construct two infinite
backward paths converging to I, in DSF using the fact that DSF is locally finite (it is true by [5}
Proposition 9]). However, by [5, Theorem 3], there almost surely a unique infinite backward path
converging to I, in DSF. This leads to a contradiction, which achieves the proof.

Figure 3.4: Representation of the sets Vois(A,h), Vois'(4,a,h), Vois”(A,a,h) and Cyl(A),
Cyl'(A,a), Cyl”"(A,a). The backward paths of RST(h) converging to 0 (in blue) are all con-
tained in Vois” (4, a, h) up to level h+a and contained in Vois(A4, a, k) up to level h. In the dashed
area (Cyl'(4,a)), the DSF and RST(h) coincide.

yeR

O(h)

Cyl(A) Cyl'(A, a)

x € R

Proof of Proposition[3.3.1] Let us define, for z = (z,y) € N and h > 0:
Bisp(2) = B(z,d(2,A(2))) N (R % (y,00)),  Bigpq(2) := Bz, d(2, A(2))) N (y,00).

Let K C H! be some compact set. For any given z € NN K, h > 0, Apsr(z) = Arst(n)(2) if
and only if N'N (BSSF(Z)AB;{STW(Z)) = (). For any z € H4*!, Vol(BﬁSF(z)AB§ST(h)(z)) — 0 as
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h — oo (recall that Vol is the hyperbolic volume). Campbell formula [§] gives,
E [#{ € NN Bz d(z A). NN (Bhop(2)ABsp () # 0)]

~ A P [Nm (Bise (2)ABigr () # @} dVol(2)
B(z,d(z,A(z)))

=\ 1-— exp(—)\Vol(BBrSF(z)AB;{ST(h)(z))) dVol(z) — 0 as h — oo
B(z,d(z,A(z)))

by dominated convergence. Proposition [3.3.] follows.

Proof of Proposition[3.3.3

For n € N and h > 0, let us define the event
Fy(h) := {3z € Bg(n)(u, 2" 'e™"), MBDy®(z) > 2"~ "}.

We now show that for n € N and h > 0, E(2",h)° C U,,>, Fa(h). If E(2", h)¢ does not occur,
then there exists some z € S(h)\Bgn)(u,2"e™") such that I € Drgr(n)(2), so, for the value
of m € Nx,, such that 2™ < 20I, < 2™+!, 2 € Bs(n)(u,2me™") and MBD;®(z) > 2"e " >

Z/Ofto > 2™ thus F,,,(h) occurs.
Therefore

P[E(2",h)] > 1= > P[F.(h)].

m>n

We now upper-bound P[F},(h)]. On F,(h), the following occurs:

) MBDj (2)P > 2"e™P", (3.3.3)
2€Bg(n) (u,2"tte~h)NRST

thus, by Markov inequality,

Propm
>

P [Fo(h)] < 27"PeP"'E MBD{® (2)? < Og2ntd-p)

2EBg(n)(u,2n e ")NRST

for some Cg > 0 depending only on p. Combining this with (3.3.3)) for some p > d leads to

gm(d—p)

this proves the first part of Proposition [3.3:3] The second part be deduced from the first part by
applying the dilation (z,y) — (e%r, e®y) (which is an isometry of (H,ds?)).

Proof of Lemma[3.3.3 Let A,a,h > 0, and let z = (z,y) € Vois(A, k). Considering the totally
geodesic plane containing I,z and O(h) (represented by a half-plane in H), it is possible to
suppose d = 1 without loss of generality. We apply the distance and angle formulas in (H,ds?)
(Propositions and [3.7.2)).

Let z = (z,y) € Vois(A,h). On the one hand, z(woo < Ae™", so, taking h large enough
such that Ae™" < 7/2,
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thus, for h large enough,

2xel

< Ae "

— )

—h < t 20e M < t -5 5
|zle™" < arctan |2ze™"| < arctan P —

so |z| < A.
On the other hand, d(O(h), z) > h, so

_ 4yeh
2tanh ™! [ /1 - ——F——
. (\/ A + (y+e”)2>

|z|<A 4 dye=h
> 2 tanh 1-— (,’L‘e_h>2 T (ye_h T 1)2 = d(O(h)a Z) > ha

SO

L+ /1~ gy 2 el
e < = —1=—+o(e") when h — oo,

- 4yeh 4yeh
L= 1= mrgree 1= \/1- mxirony !

for h large enough this implies y < 3/2. The two other inclusions are shown by similar computa-
tions. O

3.4 Proof of Proposition |3.2.5

We use a bloc control argument similar to [5, Section 6.3]. Let 6 > 0 small and A > 0 large that
will be chosen later. For ro > 2 and z € S(rg), let us define

Uy(rg,z) := Cone(z,34e~") N (B(rg+ §)\B(ro)),
Ws(rg,2z) = Cone(z,Ae”™)N (B(ro)\B(ro —1)). (3.4.1)
A point z € S(ro) is said to be good if the following event G(rg, z) occurs:
G(ro,z) == {N N¥i(rg,z) =0 and N NWs(rg, z) # 0} . (3.4.2)

A good point is represented in Figure [3.5]
Let us define the random subsets ¥(ro) C S(ro) and x(ro) C H¥1\{0} as

X(ro) = U Cone(z, Ae™"™), x(ro) := U 10, 2) € HYTI\{0}. (3.4.3)
z€S(ro), z€x(ro)
G(ro,z) occurs

The region x(r¢) is the controlled region, where the cumulative forward deviations in the annulus
S(ro + 8)\S(r¢) will be upper-bounded. This control of fluctuations are given by the following
lemma:

Lemma 3.4.1. There exists some deterministic constant Cgeom > 0 such that for any ro > 2,
5 € [ro,r0 + 9], and z € LN x(r0), CFD; (2) < Cyeome™ ™.

Lemma [3:4.3] will be proved in Section [3.4.4]
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S(To + 5)

H W (rg, 2)

U2 (rg, 2)

Stro—1) S0

Figure 3.5: The point z is a good point; the fluctuations of trajectories crossing Bg(,)(z, Ae™")
(in blue) are well controlled.

For any o > 2, we cover the sphere S(rg) by balls of angular radius e~ such that the number
of balls overlapping at a given point never exceeds some constant K. To proceed, we use the
following lemma:

Lemma 3.4.2. There exists K = K(d,p) € N* such that, for any ro > 2, there exist a non-negative
integer N(ro) > 0 and a family of points 21, ..., 2N(r,) € S(r0) such that:

i UlSiSN(ro) BS(TO)(Z“ e—To) = S(To),

o Vz e S(ro), #{1 <i < N(ro), 2z € Bs(ro)(2i,67)} < K.

Moreover, there exists Cpay = Cpau(K,d) > 0 such that, for any ro > 2, z € S(rg) and A > 1, the
number of balls intersecting Bg(yy)(z, Ae™"0) is upper-bounded by ChranA%:

ACha > 0, Vrg > 2, Vz € S(To), VA >1,
#1<i< N(TO),BS(TO)(Zi,e_TO) N BS(TO)(Z,AG_TO) * (Z)} < CbauAd.

We refer to Section [3.:4.4] for the proof of Lemma [3.4.2]

For 1 <i < N(rg), z; is said to be inhibited if the ball Bg(,.)(z;,e™") intersects S(ro)\X, and
the corresponding event is denoted by Inhib(4). Let ¥(r) C [1, N(ro)[ be the union of all inhibited
balls:

U(rg) := U Bs(rg)(zi, ™).
1<i<N(ro),
Bs(rg) (21,7 70)N(S (ro) \X)#0

The region W is the augmented uncontrolled region, that contains (H?*\{0}) \x. For z € S(ro),

let Cl(z) be the cluster of z in ¥(ry) and let us also define (recall that ]0, z) is the semi-geodesic
starting at 0 and containing z, without 0):

Cl(z) = J 10,2) c H*"\{0}.

2€C1(z)
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We define the angular radius of Cl(z) as Rad(z) := sup,cci(z) 70z
The next lemma asserts that the connected components of the augmented uncontrolled region
U are small (the radius admits exponential tail decay):

Lemma 3.4.3. There exists § > 0 small enough, A > 0 large enough and some constant cgec > 0
such that, for any B large enough, ro > 2 and z € S(ro),

P[e™ Rad(z) > B] < e~ ¢a=B,
Lemma [3.:4.3] is proved in Section

In addition, we need a control of the number of points in a given region of a sphere S(rg), which
is given by the next lemma:

Lemma 3.4.4. For any p > 1, there exists a constant C = C(d,p) > 0 such that, for any ro > 0
and any direction z € Bg(r,),

E [# (L, N Bs(ro)(z,e7™))’] < C.
We refer to Section [3.4:4] for the proof of Lemma [3.4.4] Let us choose A, > 0 as in Lemma
@ and Cgeom as in Lemma @
3.4.1 Step 1: a deterministic upper-bound of MBDZSM(-)
For z € S(ro), let us define
M(z) := #N N Cl(z) N (S(ro + 6)\S(r0)). (3.4.4)
This step is devoted to the proof of the following upper-bound: almost surely, for any z € S(rg),
MBD}2*(2)P < 2P7 (2PRad(2)P(M (2) + 1)P + C? o7 P70). (3.4.5)

The quantity MBD;EM(z) takes into account backward paths from z that ends (in the backward
direction) before level rg + § and backward paths reaching level ro + §. For z € S(rg), we define
Stop(z) as the set of ending points of backward paths from z stopping before level rg 4+ § (recall

that D(2) := U,>,, Dr,(2)):
Stop(z) == {2’ = (r';u/) e NND(2), ro <1’ <ro+0, ATV() =0}

For any 2’ € Do*(z) U Stop(z), one the two following cases occur. Either the branch from 2’ to
z stays inside Cl(z), or it crosses x(ro). Let us define C (resp. C’) as the set of couples (z, z’) such
that the branch from 2’ to z crosses x(ro) (resp. does not cross x(ro)):
C:={(2,2), z € S(ry), 2 € Dj3*°(2) UStop(z), s € [ro,m0 + 0], ALT°(2) € x},
C':={(z7), 2€ S(rg), 2 € D:SH(Z) U Stop(z), Vs € [ro, o + 4], A§°+6(2’) ¢ x}.

Moreover, for any (z,z') € C, we define hit(z, z’) as the highest level where the branch from z’ to
z hits x(ro):

hit(z, 2') := max{s € [ro, 70 + 0], AT°(2') € x},

where the max is over a set which is finite a.s.
Let 1 <i < N(ro). Let 2 € Bg(ry)(2i,€77), 2/ = (r';u/) € Do+ (2) U Stop(z), we now upper-

bound CFDZ; (/). Let us first consider the case where (z,2’) € C’ (the branch between z and 2z’
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does not cross x(rg)). Then this branch stays inside Cl(z). Thus it crosses at most M (z) points
of NV, therefore

CFD, (2) < 2Rad(z)(M(2) + 1).
In the other case, (z,2') € C, let 2" = (r";u”) := hit(z, 2’). Let p > 1. Then, by Jensen inequality,
’ 7 p "
CFDI ()P < (CFD:O (") + CFD:9,+5(Z’)) < op1 (CFD;O ('Y + CFD:9,+5(,Z/)P)
By the same argument as in the previous case,
CFD;, (2") < 2Rad(z)(M(z) + 1),

and, by Lemma CFD:?,M (2") < Cgeome™ ", since, by definition of 2”, the part of trajectory
between z” and z is included in Cl(z). Thus,

CFDY, (2P < 2P~ 1 (2PRad(2)P(M(2) + 1)P + CPyye P™) . (3.4.6)
The upper-bound (3.4.6) holds whatever (z, z’) belongs to C or C’. Tt follows that (3.4.5) holds for
any z € S(ro).
3.4.2 Step 2: a control of the tail decay of M (z)

Recall that, for z € S(rg), M(z) is defined in (3.4.4). In this step, it is shown that, for any
z e S(To)t

E [M(2)*] <C (3.4.7)

for some C' = C(p) > 0.

The quantity M (z) is the number of Poisson points inside a random part of the thin annulus
S(ro + 8)\S(ro), whose diameter admits exponential tail decay (Lemma [3.4.3)).

Let z € S(rg). For given R > 0, let us define

Reg(R) := Cone(z;, Re™™) N (S(ro + 8)\S(r0)).
For any R,m >0,
{M(z) >m} C {Rad(z) > Re™™} U {# (N N Reg(R)) > m}
thus
P[M(z) >m] < P[Rad(z) > Re” "] + P[# (N NReg(R)) > m]. (3.4.8)

By Lemma P [Rad(z) > Re™"] < e~“ecf The random variable # (A N Reg(R))) is dis-
tributed according to the Poisson law with parameter AVol(Reg(R)). Recall that v the d-dimensional
volume measure on S?. Denoting by u the direction of z,

Av(Reg(R)) = Aw({u/, (u,u’) < Re™"})Vol((S(ro + 6)\S(r¢)) < CRY. (3.4.9)

for some constant C' > 0 independent of ¢, R, since Vol(S(ro + 4)) = O (™) by (3.2.6). Thus
#(N NReg(R)) <5 P(CR?). Thus Chernoff bound for the Poisson distribution [25] leads to:

efcRd (CeRd)m

mm

P [#(N NReg(R)) > m] < (3.4.10)
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for any m > CR®. Let us chose R = (m/(2eC))*? (thus m = 2eCR?). It leads to:

P AN N Reg(R)) > m] < (;”) < (;)m (3.4.11)

Finally, we combine (3.4.8), Lemma [3.4.3| and (3.4.11) to obtain:

P[# (W N CI(z) N (S(ro + O\S(r0)) > m] < e “elt 4 @m

— exp (—cdec(m/2eC)1/d> n (;)m < exp(—cm/d) (3.4.12)
for some C' > 0. Therefore:
E [# (W N CI(2) N (S(r0 + O\S(r0))) "]
- /0 “p [# (N N CI(2) N (S(ro + O)\S(r0))) > m1/<4p>} dm

(3.4.12)

/ exp(—em/@P)) dm < oo,
0
which proves (3.4.7)).

3.4.3 Step 3: conclusion
By (3.4.5), for any 1 <i < N(ro),

Z MBD:SJHS(Z)P < 2P~ 14fRST N B(roy (zi¢7™)}
2€Bg(rg) (71,6770 )NRST

(ZPRad(z)p(M(z) +1)P + Cgcome*pro) .
It follows by Cauchy-Schwartz and Minkowski that

E > MBD;+ (2)?
2€B5(rg) (21,6770 )NRST

< CE [#{RST 11 By (21, e~)}2) /B [ (Rad(z) 2 )" + e7)?]

1/2

< CE [#{RST N Bs(,)(21,e" )}}1/2( [Rad(z;)2" M (2)*] +e*pro)

1/2
< CE [#{RST N Bs(yy) (i, e 7)}?] "
x (JE [Rad(z:)*] " E [M(2)*]"* *Wo) (3.4.13)
for some C' = C(p) > 0. By Lemma [3.4.4] applied to p = 2,
E [#{RST N By () (2, ) }*] < C, (3.4.14)

for C' independent of 79, z;. By Lemma [3.4.3]
E [Rad(z)%] = e "o / P [e*™°Rad(z;)" > B| dB
0
- e*m/ P [e‘”“Rad(zi) > Bﬂ dB
0

oo 1
< 674%/ e—caee B gp o (3.4.15)
0
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Then, by combining (3.4.13), (3.4.14])), (3.4.15)) and (3.4.7)),

E ) MBD° 0 (2)P| < Ce P, (3.4.16)
2€B5(ry) (71,670 )NRST

for some C' = C(p) > 0.

The final step is to sum over all 7 such that Bg(,,)(2i,e~"°) intersects Bgyy)(u, ) for any given
uw € S?and > 0. Let # > 0. By Lemma it can be assumed that Bg,,)(z;,e”"°) intersects
Bs(ry)(2i,0) for at most Chane? 0% values of i € [1, N(rq)[. Therefore

E > MBD P (z)P | = > E > MBD!+(z)P

ZGBS(TO)(u,G)ﬁRST 1<i<N(ro), ZEBS(,.0>(Zi,€7T0)r‘IRST
Bs(ry) (2i,770)
NBs(rgy) (u,0)#0

B2.10)
< Ce P#{1 < i < N(r0), Bs(ro) (i €7™) N Bg(ryy (u, ) # 0}

< Ce(d—p)ro 9d7

which achieves the proof of Proposition [3.2.5

3.4.4 Proof of Lemmas [3.4.1], [3.4.2], 3.4.3], [3.4.4

Proof of Lemma[54.1 Let ro < s <ry+0d and z; € x(ro) N L(s). Since z1 € x(r9), G(z1) occurs.
Let 29 = (ro;u0) := 21y, 22 = (12, u2) := AL°(21), 24 = (r3,u3) := 211 and 23 € [20, z4]* is such that

,270?4 = 3Ae ™. Since G(z1) occurs, there exists some 2z’ = (r';u’) € Wy(rg,21). Let us suppose
that 21029 > 3A4e~". It will be shown that

d(z0,2") < d(z0, 23). (3.4.17)

It implies by construction of [zo, z4]* that d(zo,2’) < d(z0,24), which contradicts the fact that
z4 = A(zp). It follows that ilze < 3Ae~"™, and since W¥i(rg,z1) NN = 0, it implies that
CFD°(21) < 3Ae™ ", so Lemma holds with Cgeom = 3A4.

We move on to show . By the hyperbolic law of cosines ,

coshd(zg,2') = cosh(rg) cosh(r’) — cos(290z") sinh(rg) sinh(r')
=1+ (1 — cos(2902")) sinh(rg) sinh (")
<1+ (1 — cos (200/;1 + Ae_m)) sinh(rg) sinh(r")
<1+ (1 — cos (zo/()\zl + Ae*m)> sinh(rq)?
and

coshd(zg, z3) = cosh(rg)cosh(rs) — COS(Z()/O??,) sinh(rg) sinh(r — 3)
=1+ (1 — cos(29023)) sinh(rg) sinh(rs)
=1+ (1 — cos (zﬁ)z + zTO?;;;)) sinh(rg) sinh(rs)

>14 (1 — cos (z?(-)\m + Ae‘”’)) sinh(rg)?.

>1+(1—cos (ZFO\ZJ + 3A6_T°)) sinh(rg) sinh(r3)

This proves (3.4.17)), which achieves the proof of Lemma O



3.4. PROOF OF PROPOSITION 7?7 97

Proof of Lemma[3.4.2 Proving the first part of Lemma[3.4.2)is equivalent to show that there exists
some K € N such that, for any ¢ > 0, the Euclidean unit sphere S? can be covered by balls of
radius € such that the number of balls overlapping some given point € S? is bounded by K,
which is a standard fact.

We move on to show the second part, i.e. the existence of Cy,y; > 0 such that, for any rg > 2,
z € S(rg) and A > 1, the number of balls intersecting Bg(,)(2z, Ae™"™) is upper-bounded by
ChranA?. Let u € S be the direction of z and let A > 1. For i € [1, N(ro)[, the ball Bg(,)(zi,e~™)
(z, Ae ™) if and only if 20z < (A+1)e . Thus

intersects Bg(r,)

U Bs(ro)(2i,€7) | € Bg(ry) (2, (A +2)e™0).

1<i<N(ro),
B (rg)(zi,e”"0)N
Bs(rg)(2,Ae™70)#£0

Recall that v denotes the d-dimensional volume measure on S?. There exists C' > 0 such that, for
any ro > 2,

viu, aug < e "0} > Ce 0%
Moreover,
v{u, g < (A+2)e ™} < (A+2)e )",
thus the number of balls intersecting Bg(y,) (2, Ae~") is upper-bounded by:

. r Crond
Ku{u, uuo/g\(A—i— 2)e "0} < K ((A+2)e™ ) Aél 3dKAd’
v{u, uug < e "o} ce~Tod c
the conclusion follows. O

Proof of Lemma[3.4.3 Recall that, for 1 < i < N(ro), Bg(ry)(2i,e~™) is said to be inhibited if
Bs(ro)(zi,€77) N (S(r0)\x) # 0. Let us first estimate the probability that a given z; is inhibited.
Let 1 < i < N(rg). Let us consider the following events:

E(i) := {N N Cone(z;, (3A + 1)e™™) N (B(rg + §)\B(ro)) = 0},
E'(i) := {N N Cone(z;,(A—1)e ™) N (B(ro)\B(ro — 1)) # 0}.
We now show that E(i) N E’(i) C Inhib(i)°. Let z € Bg(yy)(2:,e7"). By triangular inequality,
W1(ro, z) C Come(z;, (3A+1)e™") N (B(ro +6)\B(ro)) and
Cone(z;, (A —1)e™") N (B(ro + 6)\B(ro)) C ¥a(ro, 2).

Therefore, on the event F(i) N E’(i), z is good (i.e. G(rg, z) occurs). Thus, Inhib(:)¢ occurs, which
shows that E(i) N E’(¢) C Inhib(7)°. It follows that P[Inhib(¢)] < P[E(i)¢] + P[E’(7)¢]. Since

Vol(Cone(z;, (3BA+ 1)e™") N (B(ro + 6)\B(ro)))

ro+0
_ / v, (uu') < (3A+ 1)e~" ) sinh(r) dr < C5A®

To

for some C > 0 independent of A, rg, 5. Thus
P[E(i)] < 1— e A
An analogous computation for E’(i) leads to:
P[E' ()] < o AcA?

for some ¢ > 0 independent of A, rg, d.
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We move on to show that A and & can be chosen such that P[Inhib(i)] < 2C; 1 (6A + 4)~/3
for any 1 < i < N(rp). Indeed, let us first chose A such that e*)‘CAdCban(6A +4)? < 1/3. Then
let us chose § such that 1 — e~A84" < Cp1(6A+4)~/3. Hence

2
P[Inhib(z)] < P[E(i)°] + P[E'(5)°] < 1 — e 04" 4 e=2ed” < gcb—,;u((sA +4)79

We finally show that, for this choice of A,Jd, there exists cqec > 0 such that for any B large
enough, ro > 2 and z € S(rg),

P[e"™Rad(z) > B] < e~ CaeB,

Fix 7o > 2 and z € S(rp). For given k, let us denote by P(k) the set of sequences z;,- - ,2;
among the {z;, 1 <i < N(rg)} such that:

k

1. d(z,2) < e,
2. forany 0 <j <k —1,d(z;,2,,,) < (6A+4)e",
3. for any 0 < j,j' <k, d(z,,2,) > (6A+2)e™™

Let us also denote by P(k) C P(k) the set of sequences z,, - - - ,z;, verifying 1., 2., 3. and such
that:
4. Ziy,- -+ , %, are inhibited.

It can be noticed that {Rad(z) > k(6A +4)} C {P(k) # 0} for any k € N, thus it is enough
to upper-bound {P(k) # 0} for any k € N. Let (2, - ,2,) € P(k). For 0 < j < k, the event
Inhib(z;,) only depends on the Poisson process A inside Cone(z;,, (34 4 1)e~"), therefore, by 3
the events Inhib(z;;) are mutually independent. Thus

. 2\ kt
P[(2i, - 2,) € P(k)] = P[Inhib(z;, )]+ < (3) Cr (64 4 4)= kD),

By Lemma for any 1 <4 < N(rg), the number of balls intersecting Bgy,)(z,0) is upper-
bounded by Cpaie®°0¢. Thus
#P(k) < OFL(6A + 4)7FD),
It follows that
PIRad() 2 K(64-+4) < PLP(R) £ 0] < B2 (6)

R k+1
< Coli ( > (6A + 4)dHD O F (64 4 4)~d0+D) < (2> :

3
Lemma [B.4.3] follows. O

W Do

Proof of Lemma[3.4.4} Let ro, M > 0 and z € S(rg). Let h > 0 that will be fixed later. We divide
the set L = {2’ € N, [/, A(2)]* € Bg(ry)(2,77°)} into two subsets L<j and L~} according to
the length of [2/, A(2)]:

Lep i ={2" €L, d(z',z) <h}, Lsp:={2 €L, dz,z)>h} (3.4.18)
Thus L = L<p U L+, and

P[#L > M] < P[#L<, > M] +P[Lsy # 0]. (3.4.19)
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We first upper-bound P [#L<;, > M]. Since L<j;, C B(z,h),
P[#L<y > M] < P[# (N N B(z,h)) > M].

By (3.2.6), Vol(B(z,h) < Ce for some C > 0 independent of ry. So the random variable
# (N N B(z,h)) is stochastically dominated by a Poisson law with parameter CAe?, thus, by the
Chernoff bound for the Poisson distribution [25],

e—C/\edh(C)\edh)M
MM

P[#L<) > M) < (3.4.20)

The second step is to upper-bound P [#L~j # 0]. Recall that, for r > 0,
Bt (z,7) := B(z,7) N B(0,d(0, 2)).

For any 2’ € Ly, by triangular inequality, denoting by z* the meeting point of [/, A(z")]* and
S(ro), d(z', A(2")) > d(2,2*) > d(Z, z) — d(z*, z). The hyperbolic law of cosines ([3.2.7) gives,

d(z*,z) = arcosh (cosh(ro — cos(z *OZ) Sinh(To)z)
< arcosh ( cosh(rg)® — cos(e™"°) sinh(rg)?)
= arcosh ( + (1 COS —ro )) Sinh(T‘o)Q)

S CdlS

for some Cyg;s > 0 independent of rq. Thus d(2, A(z")) > d(2, z) — Cais, 50 BT (2, (d(2’, 2) — Cais) +)
is empty of points. Therefore, by Campbell formula [§],

P[Lsp # 0] < E[#£L>4]

= )\/ P2 € Lsy] d2'
B(ro)\B(h)

< )\/ P [B*(z,(d(?,2) — Cais)+) NN = 0] d2’
B(ro)\B(h)

— / P [exp(—AVOl(B™ (=, (d(<, z) — Ciw)))] d2’
B(ro)\B(h

S / ]P’{exp( Aee” d(d(z',z)— Cdm)/2)] ds’
B(ro)\B(h)

0
)\S(d)/ exp(—Ace "2 sinh(r)? dr,

h

where S(d) denotes the surface area of the Euclidean unit ball S%.
When r — oo,

eXp(f/\cef’“d/Q) sinh(r)? = o (efrd/gee—rd/s)
thus N
S _ —rd/2\ o3 d . YR
(d) exp(—Ace )sinh(r)® dr = o (e 7
h

thus, for h large enough, and for any r¢ > 0,

_e—hd/3

P[Lsp # 0] <e

Finally, combining (3.4.19), (3.4.20) and (3.4.21)) with h = —In(M/(2CX))/d leads to Lemma
B.44 O

(3.4.21)
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3.5 Proof of Propositions and

We first prove Proposition [3.2.6]

Step 1: Let us fix p > 3d/2. For any ro > 0, n € N, let us define

Sn(A;10) := > MBDI " ()%,
2€Bg(ry)(u,Ae~"0)NRST

The strategy of the proof is to construct a family of non-negative random variables
(Y (A,70))ro,4,0050,nenw and (Y (A, 7)), 4,010 such that

(1) almost surely, Y, (A, rg) T Y™ (A, ry) when n — oo for any M, A, 7 > 0;
(2) supy,, P[YM(A 1) > M| =0 (M~2/3) when M — oo;
(3) the following implication holds almost surely:

Sn(A,10) < (M A YnM(A, ro))Adefz”’p = Spt+1(4,70) < YnAf_l(A,ro)Ad672T°p

Let us suppose for the moment that such random variables Y,M (A, 7o) and YM (A, ry) exist.
Let A,7g > 0 and M > 0. On the event {YM (A ,ry) < M}, it can be shown by induction that
Sn(A,mg) < MA%e=2"P for any n > 0. Indeed, Sy = 0, and if S,,(A4,79) < Y,M(A,rg)Ade2rop,
then, using that

1)
MAYM(A,rg) < MAYM(A 1) <YM(A, rg) since we are on the event {YM (A, 7y) < M}.

So Spt1(A,10) <YM (A, ro)A%e2"0P by (3), which achieves the induction.
Thus, for any A, rq, M > 0,

P[S, (A, ) > MA%e™270P] < P[YM(A,ro) > M] < CM~2/3 by (2). (3.5.1)

for M large enough and some constant C' > 0 independent of A, 7y, M. It follows that

C': = supE [S,(A,70) /24727 | = sup / P[S, (A, ) /2AT2eroP > M] dM
0

A,ro Ao
© ®
= sup/ P [S,(A, 1) > M?A%e ?ror] —< / CM~*3 dM < . (3.5.2)
A;ro JO 0

Let K :=# (N N Bg(ro) (1, Ae‘TO)). Let us apply Cauchy-Schwartz with the inner product defined
by (X,Y) =E [}, X;Yi],

E S (MBD;g+"5(z))p
2€Bg(rq)(u,Ae”"0)NRST
1/2
2p
<E 3 (MBD*"(2)) E [#Bs o) (1, Ae70)] /2

2€Bg(rg)(u,Ae~"0)NRST
=E |:Sn<Aa 7”0)1/2} E [#Bs(m)(u,Ae_”’)]

(3-5.2)
<" CTAY2eTTOPE [#Bg () (1, Ae70) NRST] /2. (3.5.3)

1/2
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Let us show that E [#BS(TU)(U,Ae_”’) N RST] < CA? for some C > 0 independent of A,ry. We
use the covering of S(rg) by balls of radius e~" introduced by Lemma in Section For

any 1 < i < N(rg), by Proposition applied with p = 1, E[#RST N Bg(,,(2i,1)] < C for C
independent of 7, z;. By Lemma the number of balls intersecting Bg(,,(2i,1) is bound by

ChanA?. It follows that E [#Bs(ro)(u, Ae~")N RST] < CAY
Thus, by (3.5.3),
ro+nd P —r
E 3 (MBDTg (z)) < Qe TP, (3.5.4)
2€Bg(rq)(u,Ae~"0)NRST

Since 7 — MBD;, (z) is non-decreasing for any z € S(r),

p
3 (MBDZ(2))” = lim 1 3y (MBD:g+"5(z)) . (3.5.5)
ZEBs(TO)(u,Ae_TU)ﬂRST zEBS(TO)(u,Ae—TO)ﬁRST

Proposition follows by (3.5.4) and by monotone convergence theorem.

Step 2: we build the random variables Y,M (A,70) and Y (A, 7).

Let A;mg < 0, let n € N. The strategy is to upper-bound S,,4+1 in function of S,,. Fix
2 € Bg(y)(u, Ae7"). The quantity MBD;g*‘"‘S takes into account finite backwards paths that stop
before level 7y + nd and those (potentially infinite) that continue after level rg + nd. Let us define
the random set Stop(z) as the set of ending points (in the backward direction) of finite paths from
z stopping before level rg + nd:

Stop(z) := {2/ = (r';u/) e NND(2), ro <7/ <rg+nd, A1) =0} CN.

By definition of MBDZS'HM (z) (resp. MBD:S"’("H)‘S(,Z)) (Definition ,

MBD;S*"(z) = . S CFDI (') V L, CFDI™ () (3.5.6)
and
MBD;o+ (12 (z) (3.5.7)
T —(r)eStop(2) CED], (=) v Dt <CFD;3W(2/) * MBDZSI;%H)(S(Z/)) '

For any p > 1, a,b > 0 and ¢ € [0, 1], Jensen inequality gives,

(a+b)P = <tz +(1- t)L)p <t (%)p +(1-1) ( a >p — 117PaP 4 (1 — 1)17PHP. (3.5.8)

1 1-t¢
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Applying (3.5.8)) with ¢t = 1/n? leads to:

ro+(n+1)0 2
MBD (D9 ()2
13.5.7)

’ 2p
5 max  CFD" (z)®V  max (CFD:P*”‘; (') + MBDT°+(7§+1)5(z’))
z'=(r";u’)EStop(z) 0 ZIED:8+n6(Z) 0 rotn

< max
z'=(r";u’)EStop(z)

1 e ro+nd 4dp— ro+(n+1)8
max [(1 - nz> (CFDrgJr (21)2;0) + pir—2 (MBDTngm; (Z/)zp)

z! ED:g_H“S (z)

1-2p
<(1- L max CFD” (2)?’)V  max CFDTotm(;1)2p
2 2 =( To 0

n T’;u/)estop(z) z/erD:g+n5(Z)

CFD! (/)% v

To

+n*72  max [MBDTOHHH)&(Z’)%]

i ro+nd
2/€D0 ™ (2)

1-2p

— 1 T n

B29(y MBD? ™ (2)% 4 p%=2  max [MBD o ;1)5(2:')21’} . (35.9)
TL2 0 Z/G'D;'8+n5(z) ro+mn

Summing (3.5.9) over all z € Bg(,y)(u, Ae™") leads to:

1 1-2p Ap—2 ro+(n+1)8 2
Spi1 < (1 - n2) S+ n*P > MBD;* [V ()% | L (3.5.10)
zEBS(TO)(u,Aefm)

2/ €Dt (2)
Let us place on the event {S, < M A%e=270P}, Then, for any z € B (rg)(u, Ae™),
MBDI° " (2)% < S, < M A%e=2rop,
so, for any 2’ € ng‘*‘"‘s(z)7 202 < MY/2p Ad/(2p) =m0 g

20l <202+ 201

< M3 A%re™" 4 Ae™™ since z € Bg(rg)(u, Ae™™)
< Ae™ " (M% + 1) since i <1.
2p
Therefore, for any z € Bg(n,)(u, Ae™"0),
DT (2) € By(rosns) (u Ae~To (M% + 1)) . (3.5.11)
Let us define
Zn(A,ro) = > MBD!* T ()2, (3.5.12)
2'€B(rg 4 (nt1)s) (0, Ac=0 (M1/(29) 4:1))NRST
By (B.5.11),
b MBD* D2 ()2 < 7, (A, 7o), (3.5.13)

2EBg(rq)(u,Ae”"0)
2/ €Dt (2)
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thus, combining (3.5.10) and (3.5.13)), on the event {S,, < M Ade=2"0P}

1 1-2p
Spy1 < <1 - n2) Sp+n'P2Z,. (3.5.14)

This upper-bound of S,, ;1 suggests the following definition of the random variables Y, (A, ry).
We set Y (A, 1) := 0, and for any n > 0,

1-2p
1
VM (Ar) = <1 - 2) YM(A, ro) +ntP72A7420P 7 (A, ry).
n
Let us also define YM (A, ry) := lim,, oo T Y,"*(A, 7o) (this is well-defined since n — Y,;™(A, rg) is
non-decreasing). We first show that the random variables Y,M (A, ) verify (3): for n € N, on the

event {S,, < (M AY,M(A rqg))Ade2roP} by (3.5.14),
1 1-2p
Sn+1 < (1 - 2> S, + n4P*QZn(A, T’o)
n

1-2p
S (]. - 2) YnM (A, TO)Ade_QT'Qp _|_ n4p_22n(A, TO)

n

1-2p
1

= Ade=2rop l(l - 2) YM(A, 7o) +ntP 2 A7 0P 7, (A, o)
n

< Adem2rory M (A 7).

Thus the random variables Y,M (A, rq) verify (3). We move on to show that (Y,* (A, 70))n. 11,47
and (YM(A,r0))m 4. also verify (2). To proceed, we upper-bound E[Y,M (A, rq)] by induction on
n.

For any M, A, rg, n, Proposition applied for § = Ae~" (Ml/@p) + 1) gives,

E[Z.(A,r0)] <C (Ae_r0 (M% + 1>)d e(d=2p)(ro+nd)

d
= ca® (M 41) e 2rotnli-=2s, (3.5.15)
Let us define, for any n € N,
1 1-2p
p(n) = (1 - 2) . q(n) = ntP=2end=2p)0 (3.5.16)
n
and
n—1
P(n) == T020p(k), Q(n) =Y a(k). (3.5.17)
k=0

with the convention P(0) = 1 and Q(0) = 0. It can be noticed that

lim P(n) < oo, lim Q(n) < oo since d —2p < 0. (3.5.18)
n—oo

n—oo

Let us show by induction on n that E[Y,M (A, r)] < C(MY/P) + 1)4P(n)Q(n) for any n € N. The
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assertion is clear for n = 0 and, for n > 0,

1 1-2p
E[Ynj\il(A7 TO)] = (1 - ng) E [YnM (Aa TO)] + n4p_2A_d€2T0pE [Zn(A, 7‘0)]

= p(n)E[Y,M (A, rq)] + A~ e2ror=m4=200 g (n) R [Z,,(A, r0)]

= pmEYM (A )] + € (M3 1 1) g(n)

<C (Mﬁ + 1)d [p(n)P(n)Q(n) + ¢(n)] by induction hypothesis
= ¢ (1% +1)" [P+ DQ) + ()]
<C (M* + 1)dP(n +1)Q(n + 1) since P(n +1) < 1, (3.5.19)

which achieves the induction. Thus, there exists some constant C' > 0 such that, for any M, A,rq >
0, for any n € N, E [YnM (4, 7"0)] <C (Ml/(zp) + 1)d. By monotone convergence,

E[YM(4,r0)] < € (MY 4 1)d.

Thus,for any M, A,rq > 0, Markov inequality gives,

C (MY @) £ 1)?
( i + ) :O(M72/3)

P I:Y]V[(A7,r0) > M] <
since 2p > 3d. Thus the family of random variables Y™ (A, rq) verifies (2). This achieves the proof.

Proof of Proposition This is a direct consequence of Proposition [3.2.6] Let ¢ > 0 and
let us choose p such that d/p < e. Applying Proposition with A = we™ gives that, for any
To 2 07

E > (MBDX(2))"| < Ceroldr), (3.5.20)
2€8(ro)NRST

Thus:
0 (1—¢) g ((d—p)+(1—¢€)p)
E§ max MBD —en <§O" —P)FA=E)p)
N (26%}: n(Z)e ) - N € <

since € < d/p. Therefore, a.s.,

lim e!=9" max MBD2°(z) — 0 as n — oco.
n— 00 z€L,

Moreover, rg — max,¢ Lo MBD%D is non-increasing, so for any n < rg <n+ 1,

=90 max MBD;?°(z) < max MBDZO(z)e(l_E)”’ < e!'7% max MBDZO(Z:)e(l_E)"7 (3.5.21)
2€Lr, 0 z€EL, z2€Ly

thus

lim max MBD(2)e! =9 — 0 as ry — oo.
7000 ZE Lo 0
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Define Ry such that, for any ry > Ry, e(l=2)70 maxec,, MBDY (2) < 1/2. For any ro > Ry,
z € Ly, 21,22 € D(2), defining r1 := d(0, z1) and 73 := d(0, 22),
71025 < 210z 4 2025 < CFDJ! (21) + CFD!2(2,) < MBD!! (2) + MBD2(z)
< 2MBD7;(2) <2 max MBD (') < e~ (1=9)ro, (3.5.22)
2’ €Ly,

This achieves the proof of Proposition [3.2.

3.6 Appendix A: proof of Proposition [3.2.2

We first show that the RST is a tree. If the RST contains some loop zg, - - , 2n, then the furthest
vertex to the origin in the loop, say z;, must have two parents, which contradicts the definition
of the RST. Moreover, for some given vertex z € N, the sequence (d (A(k)(z),O))k is decreas-
ing. In addition, since NN B(r) is finite for any r > 0, there is no infinite decreasing sequence
(d (A(k)(z),O))k. Thus A®)(z) = 0 for some finite & > 0. Therefore, the RST is a connected
graph, so it is a tree.

We move on to show that the RST is locally finite. Let zo = (ro; ug) € N'U{0}. Let us assume
for the moment that, for any z = (r;u) € H¢! and 7/ > 0,

Vol(B* (z,7")) > cer'")/2, (3.6.1)
for some ¢ independent of z,7. For zg = (ro;up), 2 = (r;u) € H?, let us define

a(2,20) = Lrsro 1B+ (2,d(2,20))nN =0

Thus, for any zg € N, z9 = A(z) if and only if a(z,z9) = 1. By Campbell formula [§],

E [#{ZO S Nv #A(il)(zo) = OO}:| =E Z lzzef\/‘ a(z,zp)=00 +P Z a(Z7O) = OO‘|
20EN zEN
:]P’[Z a(z,0) = oo + A ]P’lz a(z,zo):oo] dzo,
zeEN LiSes zEN

thus it suffices to show that P [Y_ - a(z,20) = oo] = 0 for any 2o € H*™'. Let zg = (ro;ug) €
H9*1. Note that, if d(z, z0) > 7o, then 0 € B¥(2,d(z, 29)) s0 a(z, z9) = 0. Thus, Campbell formula
gives,

E[Y,cnalz20)] =X Ela(z,20)] dz <\ LGz 20)<ro P[BT (2,d(2,20)) NN = 0] dz
Hd+1 Hd+1
=) La(z,20)<ro P [exp(—)\Vol(B+(z, d(z, zo)))] dz
Hd+1
l|
< )\/ P [exp(—)\ce*d/2 d(“ZO))} dz
Hd+1

)\S(d)/ exp(—Ace~"2) sinh(r)? dr,
0
< o0,

where S(d) denotes the surface area of the Euclidean unit ball S*. Thus P [}, a(z,20) = o] =
0.
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It remains to show (3.6.1). Let p > 0 and 0 < r < ry. Let 2/ € S(+’). Using the hyperbolic law
of cosines in the triangle 0zz' (3.2.7)),

2/ € Bt (z,p) <= d(z,2)<p
<= cosh(p) > cosh(rg) cosh(r) — cos(z/()\z’) sinh(rg) sinh(r)
cosh(rg) cosh(r) — cosh(p)

(2027) >
> cos(z02) 2 sinh(rg) sinh(r)

A study of the function r COSh(;;’ILC(iz];‘(SQE(C%Sh(p ) shows that, if p > 1, then this quantity is

non-decreasing when rg — 1 <7 < rg. Thus, forp>land 1 <rg—1<r <ro,
cosh(rg) cosh(r) — cosh(p) < cosh(rg)? — cosh(p) {— cosh(p) — 1
sinh(rg) sinh(r) - sinh(rg)? B sinh(rg)?

< 1— CeP2r0

for some C' > 0 independent of 7o, 7, p. Thus, there exists C' > 0 independent of ro, 7, p such that,
if p>1and 1 <rg—1<r <, if 202/ < CeP/?>~70 then 2/ € Bt (z,p). Therefore, by (3.2.5), if
p > 1 then (recall that v is the d-dimensional volume measure on S? and w is the direction of z),

Vol(BT(z,p)) > / v{u', (W' u) < ce?/? 70} sinh(r)¢ dr

7"01

70
> c/ [ed”/Q_d”’ A 1} sinh(r)d dr > cedPhr0)/2
ro—1
Therefore, the RST has finite degree a.s.

It remains to show that the geodesics [z, A(z)] for 2 € N do not cross a.s. in the bi-dimensional
case (d = 1). Let us suppose that there are no two points z1, ze with d(0,z1) = d(0, 22) (this
happens with probability 0). Let z; = (r1;u1), 22 = (r2;u2) € N and let us set A(z1) := (r};u)),
A(zg) := (ry; uy). Suppose that [z1, A(z1)] and [z2, A(22)] meet at some point Phyp := (Fhyp; Unyp)-
We have 7] < 7py, < 72, thus by definition of the parent, d(z2, A(22)) < d(22, A(21)). Then

(22, Pryp) + d(Pryp, A(22)) = d(22, A(22)) < d(22, A(21))
< d(z2, Pryp) + d(Phyp, A(21)), (3.6.2)
50 d(Phyp, A(22)) < d(Phyp, A(z1)). On the other hand, interchanging z; and 2z in the previous
calculation leads to d(Phyp, A(21)) < d(Phyp, A(22)). This is a contradiction. Therefore [z1, A(21)]N
[22, A(22)] = (). This achieves the proof of Proposition

3.7 Appendix B: computing distances and angles in the half-
space model

Proposition 3.7.1 (Distance formula). Let z1 = (z1,1y1) € H and zo = (v2,y2) € H. Let
k= |lz1 — x2||/y1 and v = y2/y1. Then

B 1 K2+ (v—1)2\ anh! B 4v
d(z1, 22) = 2tanh ( R2+(U+1)2>_2t h <\/1 H2+(v+1)2>. (3.7.1)

We refer to [5, Proposition 5] for a proof.

Proposition 3.7.2 (Angle formula). Let z = (x,y) € H and let h > 0. Recall that O(h) = (0,e")
and I, = (0,0). Ify < eh, then

h

—

2
I,O(h)z = arctan e

o2h

— 22— 2
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Proof of Proposition[3.7.2 The proof is done by considering the isometry that sends the half-space
model on the Poincaré disc model [7]. The Poincaré disc model is defined as:

I={(z,y) €R? 2? +4* <1}
endowed with the following metric:

dx? + dy?

ds? = 4",
o 1—a2+y?

(3.7.2)

The application ¢ : H — I defined as:

1

e AC ))

(z,y) =

is an isometry sending (0,1) on (0,0) [7]. Let us compose it with the dilation of factor e~" to build
an isometry from H to I sending O(h) on (0,0). We obtain the application ¢’ defined as

1
/ —h, N2 —h,\2 —h
= —1,-2
P@y) = ey e () (e )T~ 1, —2e7a)
1 2 2 2h h
:—x2+(y+eh)2(m +y® — e, —2ze")

The Poincare disc model is conform (i.e. the hyperbolic angles correspond to angles in the disc
model), and the geodesics containing the origin (0,0) are represented by straight lines, thus for
any two points 21,29 € I, the hyperbolic angle 210z coincides with the Euclidean one. For any

z=(x,y) € H, z0(h)I = d)’(z)/O\qb’(Ioo), where the second angle is taken in the disc model. Since
¢'(Io) = (—1,0), if y < €” then 20(h)Io < Z, thus
— 2zeh

20(h)I+ = arctan

72 + y2 _ 62h



108 CHAPTER 3. THE RADIAL SPANNING TREE IN HYPERBOLIC SPACE



Bibliography

(1]
(2]
(3]
4]
(5]
(6]
[7]
(8]

(9]
[10]

[11]
[12]

[13]
[14]

15]

[16]
[17]

(18]
[19]
[20]
[21]
22]
23]

[24]

[25]

F. Baccelli and C. Bordenave. The radial spanning tree of a poisson point process. The Annals of Applied
Probability, 17(1):305-359, 2007.

F. Baccelli, D. Coupier, and V.C. Tran. Semi-infinite paths of the two-dimensional radial spanning tree.
Advances in Applied Probability, 45(4):895-916, 2013.

I. Benjamini and O. Schramm. Percolation in the hyperbolic plane. Journal of the American Mathematical
Society, 14(2):487-507, 2001.

I. Benjamini and O. Schramm. Percolation beyond zd, many questions and a few answers [mr1423907|. Selected
works of Oded Schramm, 1:2, 2011.

M. Boguna, F. Papadopoulos, and D. Krioukov. Sustaining the internet with hyperbolic mapping. Nature
communications, 1:62, 2010.

P. Calka, A. Chapron, and N. Enriquez. Mean asymptotics for a poisson-voronoi cell on a riemannian manifold.
arXiv preprint arXiw:1807.09043, 2018.

J.W. Cannon, W.J. Floyd, R. Kenyon, and W.R. Parry. Hyperbolic geometry. Flavors of geometry, 31:59-115,
1997.

S.N. Chiu, D. Stoyan, W.S. Kendall, and J. Mecke. Stochastic geometry and its applications. John Wiley &
Sons, 2013.

C. Coletti and L.A. Valencia. The radial brownian web. arziv. org/abs/1310.6929 v1, 2013.

D. Coupier, J.F. Marckert, and V.C. Tran. Directed, cylindric and radial brownian webs. Electronic Journal
of Probability, 24, 2019.

D. Coupier, K. Saha, A. Sarkar, and V.C. Tran. The 2d-directed spanning forest converges to the brownian
web. arXiv preprint arXiv:1805.09399, 2018.

D. Coupier and V.C. Tran. The 2d-directed spanning forest is almost surely a tree. Random Structures €
Algorithms, 42(1):59-72, 2013.

L. Flammant. The directed spanning forest in the hyperbolic space. arXiv preprint arXiv:1909.13731, 2019.

S. Gangopadhyay, R. Roy, and A. Sarkar. Random oriented trees: a model of drainage networks. The Annals
of Applied Probability, 14(3):1242-1266, 2004.

C.D. Howard and C.M. Newman. Geodesics and spanning trees for Euclidean first-passage percolation. Ann.
Probab., 29(2):577-623, 2001.

T. Hutchcroft. Percolation on hyperbolic graphs. Geometric and Functional Analysis, 29(3):766-810, 2019.

J.M. Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer Science & Business
Media, 2006.

R. Lyons and Y. Peres. Probability on trees and networks, volume 42. Cambridge University Press, 2017.
J. Paupert. Introduction to hyperbolic geometry. Arizona State University Lecture Notes, 2016.
M. Penrose. Random geometric graphs, volume 5. Oxford university press, 2003.

G. Pete. Probability and geometry on groups. Lecture notes for a graduate course, present version is at
hitp: //www. math. bme. hu/~ gabor/PGG. pdf, 2014.

R. Roy, K. Saha, and A. Sarkar. Random directed forest and the brownian web. In Annales de I’Institut Henri
Poincaré, Probabilités et Statistiques, volume 52, pages 1106-1143. Institut Henri Poincaré, 2016.

J. Tykesson. The number of unbounded components in the poisson boolean model of continuum percolation
in hyperbolic space. Electronic Journal of Probability, 12:1379-1401, 2007.

A.A. Ungar. Hyperbolic trigonometry and its application in the poincaré ball model of hyperbolic geometry.
Computers € Mathematics with Applications, 41(1-2):135-147, 2001.

E. Upfal. Probability and computing: randomized algorithms and probabilistic analysis. Cambridge university
press, 2005.

109



110 BIBLIOGRAPHY



Chapter 4

Thick track at infinity

The last chapter is devoted to another refinement of the result by Howard and Newman [I5].
When the tree is straight, their theorem says that each boundary point I € 9H¢ is the asymptotic
direction of a semi-infinite branch of the considered tree and that the set of boundary points that
are asymptotic directions for at least two semi-infinite branches is a dense set (and countable in
dimension d = 2). It is then natural to investigate the existence of boundary points targeted by
more than two semi-infinite paths. For the RST, this last question remains open in the Euclidean
space, but in the present chapter, we resolve it in the hyperbolic setting. We prove in Theorem
that any infinite subtree of the RST generates a thick track on OH?. In the bi-dimensional
case, this implies there is no (random) asymptotic direction I € dH? with more than two semi-
infinite branches (Corollary which completes the description of semi-infinite branches and
their asymptotic directions of the hyperbolic RST started in Chapter 3.

Recall that the tree is straight in the sense that the descendants subtree of a vertex far from the
origin is included in a thin cone. In the Fuclidean setting, the straightness of the RST is proved by
Baccelli and Bordenave [I] using that the DSF was a translation invariant model that constitutes
a local approximation of the RST far from the origin. They exploit the theory of Markov chains to
bound from above fluctuations of trajectories in the DSF and then, they deduce the straightness
of the RST via planarity. Their strategy hence cannot be generalised to higher dimensions. In
Chapter [3] the straightness of the hyperbolic RST is obtained in any dimension by estimates of the
angular deviations of branches. These estimates can be carried without resorting to an auxiliary
model and hence allows to overcome planarity arguments. The hyperbolic metric guarantees that
angular deviations decay exponentially fast with the distance to the origin, which is strong enough
to show straightness.

4.1 Main result

We consider in this chapter the Radial Spanning Tree (RST) on the hyperbolic space H¢ defined
in Chapter [3] We will work here with the unit open ball model (see Section of Chapter
page [79). The boundary of H¢ is here identified with the unit sphere. In the sequel, For z € H¢
and p > 0, B(z, p) denotes the hyperbolic ball centered at z of radius p. Also, we denote by S(z, p)
the sphere of radius p and center z. For 6 > 0, Cone(z;0) is the cone of axis z and aperture 6:

Cone(z,0) = {2’ € He, 202/ < 6}.

We set Bg(,)(z,0) = Cone(z;60) N S(r).

111



112 CHAPTER 4. THICK TRACK AT INFINITY

The RST is constructed on a Poisson point process with intensity A of the hyperbolic space H¢,
denoted by N. For a point z € N, let us denote by

D(z) == U AT () ={Z eN, In>0, A () =2}
n>0

the set of Poisson points in the descending subtree of z. See Section[3.2.2)of Chapter [3|for notations
previously introduced. Let D> (z) be the set of boundary points reached by descendants of z, i.e.
the set of boundary points I € 9H? which are the asymptotic directions of semi-infinite paths of
descendants of z. In this chapter, we prove that any Poisson point z having an infinite number
of descendants generates a thick track at infinity, i.e. its set of boundary points D*°(z) has a
non-empty interior.

Theorem 4.1.1. A.s. for any vertex z € N, either z admits a finite number of descendants or

Ini(D>(z)) # 0.

Since the hyperbolic RST satisfies the finite degree property (see [0, Proposition 2.2]), the
subtree rooted at a given vertex z having infinitely many descendants, contains a semi-infinite
branch which admits an asymptotic direction by [6, Theorem 1.1 (4)]. In other words, D> (z) # 0.
What Theorem [£.1.1] really means is

a.s. forany z € NV D®(2) # 0 = Int(D™(2)) #0 .

In the bi-dimensional case, Theorem completes the description of semi-infinite branches
and their asymptotic directions of the hyperbolic RST started in [6], based on the strategy of
Howard and Newman [7] and on the fact that the hyperbolic RST is straight (see [0, Prop. 2.7]).
The first three items are given by [6, Theorem 1.1].

Corollary 4.1.2. The following properties concern the hyperbolic RST in HZ2.

(0) A.s. any semi-infinite branch admits an asymptotic direction and, for any (random) I € OH?,
the hyperbolic RST contains a semi-infinite branch with asymptotic direction 1.

(i) For any (deterministic) I € OH?, the hyperbolic RST a.s. contains a unique semi-infinite
branch with asymptotic direction I.

(ii) A.s. the set of I € OH? such that the hyperbolic RST contains at least two semi-infinite
branches with asymptotic direction I is dense and countable in OH?2.

(iii) A.s. there is no (random) I € OH? with more than two semi-infinite branches.

Item (o) says that any asymptotic direction I € OH? is targeted by at least one semi-infinite
branch and exactly one if I is deterministic (Item (i)). There exist by Item (i) asymptotic
directions which are targeted by at least two semi-infinite branches but these directions are random
and few (only countable in dimension 2). Finally, Theorem specifies there is no random
asymptotic direction targeted by more than two semi-infinite branches.

Proof of Corollary (7i7). Assume the hyperbolic RST contains three different semi-infinite
branches having the same asymptotic direction I € 9H?, say v, 7' and v”. Let us denote by 79 > 0
a radius such that outside the ball B(0,rq) the three paths are disjoint (they share no vertices).
Since the hyperbolic RST satisfies the non-crossing path property, we can also assume by planarity
that 7’ is trapped between the two other paths in the following sense. For any radius r > g
large enough let (r,6,.) (resp. (r,0..), (r,0))) be the intersection point between the semi-infinite
branch « (resp. 7/, 7v”’) and the circle with radius 7 and centered at the origin. Then, modulo 27,
0, < 0. <0 and 0 -0, — 0asr — oco. Henceforth, any vertex 2’ of v/\(yU~") admits infinitely
many descendants but by planarity Int(D>°(2’)) = 0. This occurs with null probability thanks to
Theorem 111 U
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In the rest of this section, we now prove Theorem Let us introduce some notations. Let
ro > 0 and consider the closest Poisson point to (rg;0) (with polar coordinates) that we denote:

2o = argmin d(z, (r9; 0)).
zeN

Let us define by E(rg) the event on which zy generates an infinite subtree D(zg) of the hyperbolic
RST with a set of boundary points D*°(zp) of empty interior:

E(rg) = {D>(20) # 0 and Int(D>(z)) =0} . (4.1.1)

For 6 > 0, let us consider the set G(J) of descendants z of zy whose direct ancestors A(z) are not
too close to z:

G(6) = {z € D(2), d(z, A(2)) > 6}

and the set of corresponding radii:
H(S) = {r>0,3u € [0,2n),(r;u) € G(5)}.

Lemma establishes that, on the event F(rg), the descending subtree D(zp) a.s. admits
infinitely many elements in G(4) for 6 > 0 small enough.

Lemma 4.1.3. For any § > 0 small enough, the event E(rg) is included in {H(9) is unbounded},
up to some negligible event.

For any radius r > 0, let N,y = N N B(r) be the PPP A restricted to the ball B(r). Lemma
says that the r.v. P(E(ro) | V() is a.s. bounded away from 1 uniformly on r € #(9).

Lemma 4.1.4. For any 6 > 0 small enough, there exists € > 0 such that a.s.
Vr e H(d), P(E(ro) [Nppy)) <1—¢ . (4.1.2)

Combining Lemmas and we will now prove that P(E(rg)) = 0 from which Theorem
M11] follows. Proofs of Lemmas[4.1.3 and [£.1.4] are respectively postponed to Sections [.2] and [£.3]

Proof of Theorem[{.1.1. Choose § > 0 small enough and pick ¢ = £(§) > 0 as in Lemma On
the event E(rg), the martingale convergence theorem gives that:

Jim P(E(ro) [NB(r) = 1a@) =1 (4.1.3)
Besides, on the event E(rg), the set H(J) is a.s. unbounded and, provided r € H(9), the conditional
probability P(E(rg) | Np()) is smaller than 1 — e. This implies:

liTIgiOI.}fP(E(To) |NB(7‘)) <l-—e¢e, (4.1.4)
on the event F(rg). Both statements and are compatible only if P(E(rg)) = 0.

For any angle u, let E(r¢; u) be the event on which the closest Poisson point z to (ro; u) generates
an infinite subtree whose set of boundary points D> (z) has an empty interior. With this notation,
E(rp;0) = E(rg). By isotropy of the model and what precedees, P(E(ro;u)) = P(E(rg)) = 0.
Hence, the union of the events E(rg;u) with rational radius ro and rational angle u has null
probability. Since any Poisson point is the closest one to some rational element (ro;u) of HY, we
can conclude that a.s. any vertex z € A satisfies D*°(z) = () (which is equivalent to the finiteness

of D(2)) or Int(D>(z)) # 0. O
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4.2 Proof of Lemma 4.1.3

Let us consider d > 1 and 0 < § < 1. We denote by S? the unit sphere of H?. The proof of Lemma
[4133]is based on a percolation argument. To set it up, we need a covering of the hyperbolic space
H?, far from the origin, with a uniform control of overlappings. The next result is a rewritting of
Lemma 4.2 of [6].

Lemma 4.2.1. For any real number r > 2, there exists a family (zrm)1<m<1(r) of the (centered)
sphere S(r) with radius v such that:

U BS(T)(ZT,mveir) = S(T) )

1<m<I(r)

where Bg(y)(2rm,€”") = B(2pm,e”") NS(r).
Moreover there exists K = K(d) > 0 such that for any r > 2, z € S(r) and A > 1,

Card{1 <m < I(r): Bs()(zrm,e” ") N Bs(y(z,Ae”") #0} < KA. (4.2.1)

We consider the following covering. For an integer r larger than 2 and m € {1,...,I(r)}, the
block B, is defined as the part of the annulus B(0,7 + 1) \ B(0,7) based on Bg(,)(2r,m,e™"):

By := Cone(zy,m, e~ ") N (B(0,7 + 1)\ B(0,r)) . (4.2.2)

Let us note that in dimension d = 2, one can replace this covering by a partition (see Remark [£.2.3|
below).

Two blocks B, ,, and B, ,,,» are said adjacent, denoted by B;. ,,, ~ By, if they are at distance
from each other less than §. Lemma asserts that the volumes of B, ,,,’s are uniformly bounded
and the graph generated by the adjacency relation admits a bounded degree.

Lemma 4.2.2. There exist two positive constants C1 and Cy only depending on d such that for
all integer radius r > 2 and m € {1,...,I(r)},

Vol(By,m) < Cy (4.2.3)

and
Card{(r',m') : By ~ By} < Cs . (4.2.4)

Proof. Let us first prove ([£.2.3). It suffices to write Vol(B,,,) as
r+1
/ sinh?(u) du x Volga (Cone((1;0),e~") N S%)
where S? is the unit shere in R? and Volga is the Haar measure on S?. Thus
r+1 r+1
Vol(By.m) = / sinh?(u) du x Volga (Cone((1;0),e~")N Sd) < C/ e due=m < C

for some C > 0.

For the second inequality, two blocks B, ., and B, ,, are adjacent whenever B, s overlaps
{z€ H ; d(z,B,,) < d}. Since § < 1 this forces r’ to be in {r — 1,7, + 1} and B, to overlap
Cone(zym, (1 +6)e™"). Now, Lemma allows us to bound the number of such blocks. Using
on the sphere S(r'), with z = 2,,, and A = (1+8)e” =" < 2e, the constant Cy := 3K (2¢)¢
suits. O
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Remark 4.2.3. For the dimension d = 2, we partition H? into rings B(0, (n+1)log2)\ B(0,nlog?2).
The nth ring is paved by isometric blocs B,, ,,, for m € {0,---2™ — 1}:

2m 2m
By = {(r;@) eH|re[nlog2,(n+1)log2], 6 ¢ [mz—n,(er 1)2—”] }

Two blocks B, ., and B, . are considered adjacent (which is denoted by By, . ~ By m) if
Bynm N B(n';m’) # 0 (i.e. the two blocs share an edge or a corner). This relation of adjacency
defines a graph with degree bounded by 8.

Given ¢ < 1, a block B,.,, is said §-bad if it contains a Poisson point z such that d(z, A(z)) < 6.
Let us first prove that:
im supP (B, is 6-bad) =0 . (4.2.5)

1
0=0 rm

To do it, we use the Campbell formula combined with (4.2.3]). For any (r,m),

IP’(an is (5—bad) E[#{z € B, NN, d(z,A(z)) < 6}]

<
< E[#{zEBn,mﬂN7 B(Zvé)ﬁj\/‘?ém
/ AP (B(z,0) NN #0) dz

Br,m

AVol(By.m) (1 - efAVokB(z,a)))

which tends to 0 as 6 — 0 uniformly on (r,m) thanks to (4.2.3).
Thus, let us prove that we can choose § > 0 small enough so that the set of bad blocks

U= {B,,’m :r €N\ {0,1},1 <m < I(r) which are 5—bad}

is a.s. subcritical w.r.t. the adjacency relation. This can be done through an adaptation of the
Peierls argument. Given (r,m), let C, (k) be the set of paths with length & starting from the

block By, . Inequality (4.2.4]) leads to
Card(C,m(k)) < (Co)* .

A path m = (By, ..., By) in Cp (k) is said d-bad if all the blocks By, ..., By it contains are d-bad.
Then, the probability for B, ,, to belong to an infinite connected component of j-bad blocks is

upperbounded by
> P(mis d-bad)
Wecn,m(k)

for any k. Consider a set of pairwise non-adjacent blocks B;,, ..., B;, in ¥. The adjacency relation
has been defined so that the events {B;; is 6-bad}’s are mutually independent. Moreover, given
7w = (B1,...,Bg) in Chm(k), it is possible to find some indices {i1,...,4} C {1,...,k}, with
I =1(m) > k/Cs, such that the blocks B ., B;, are pairwise non-adjacent. Henceforth,

i1

P(r is 6-bad) < P(B;,, ..., B;, are §-bad) < 5"/,

where 7 := sup,. ,,, IP’(BT,m is §-bad). Choosing § small enough so that Cyn'/©? is strictly smaller
than 1, we then obtain that a.s. the block B, ,, cannot belong to an unbounded connected com-
ponent of J-bad blocks. Consequently, for this choice of §, the set ¥ is a.s. subcritical.

To conclude the proof of Lemma let us pick 0 < § < 1 as above and assume that D(zg)
is non empty, i.e. the descending subtree of zy admits (at least) one infinite backward path (2, )n>0-
Since the Poisson point process A is a.s. locally finite, the backward path (z,,),>0 cannot be stuck,
from some index, inside a bounded connected component of j-bad blocks. So it eventually comes
out of each connected component of J-bad blocks— which are a.s. all bounded. Two cases must
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be distinguished. Either (z,),>o visits infinitely many d-good blocks where of course a block is
said good if it is not bad. Hence, an infinite number of the z,’s satisfy d(z,, A(z,)) > §. Their
distances to the origin, which are also a.s. infinitely many, all belong to #H(d). Or, the backward
path (z,)n>0 jumps infinitely many times from a bad connected component to another one. But,
by construction, two different (bad) connected components are at distance from each other at least
d. As a consequence, in both cases, the set H(d) is unbounded.

4.3 Proof of Lemma 4.1.4]

For ro > 0, recall that z is the closest Poisson point to (rg;0) and the event E(rg) is defined
by D>®(z9) # 0 and Int(D>(29)) = @. Let 6 > 0 small enough as in Lemma So, for
a.e. configuration n € E(rg), there exists an unbounded sequence of radii (depending on 7) in
H(5). Let r > 7o be one of them. In the sequel we will work conditionally to Ny = 1p()-
Let z; = (r;u) € G(d) (in particular z; € N). By isotropy of the model and conditionally to
NB(,«) = NB(r), We can assume from now on that v = 0.

Let h,&" be positive parameters to be specified later. We set zo = (r + h;0) € H? (aligned
with z1). Below, we will ask that the ball B(z3,4") contains a (single) Poisson point z whose set of
descendants D(z) generates a thick track at infinity (plus additional conditions, see the event Fy
below). This is made possible thanks to Lemma which expresses that a positive proportion
of Poisson points in a small ball satisfies Int(D>(-)) # 0.

Lemma 4.3.1. There exist A > 0 (large) and co > 0 such that, for any 6’ > 0 and any hg > 0
large enough, for any r > 0, there exists h € [ho, ho + A] such that:

E[#{z € NN B(z,8), Int(D®(2)) # @}} > co Vol(B(6")) . (4.3.1)

Note also that among the previous parameters, only h = h(r) may depend on r.

Besides, it will be convenient that w.h.p. the set D(z) is not sensitive to the configuration
np(ry- This property is encoded by the event Deter(r, h,0’) and Lemma Let us set

Deter(ﬁ h7 6/) = {77/ 1 Vz € Nﬂ B(227 6/)7 VT]N7 D(z)[n%(r) U 7793@)0] = D(Z)[U/]} :
The event Deter(r, h,d’) has a probability tending to 1 as h — oo uniformly on 7:

Lemma 4.3.2. For any §' > 0,

lim sup P(Deter(r,h,d8')) =1 .

h—00 >0

Let us now introduce the event F' = F(r, h,d’) specifying that the ball B(zq,¢’) contains a
unique Poisson point z whose set of descendants D(z) generates a thick track at infinity and does
not depend on what happens in B(r):

(4.3.2)

_ / NN B(z2,0") = {z}, Int(D>(z2)) # 0,
F= {Ez ENNB(2,8) st. Deter(r, h,0") and D(z) C B(r +h+ ') } '

Lemmas and together allow to bound from below the probability of F:

Lemma 4.3.3. Let A,co as in Lemma m For any &' > 0 small enough, there exists € =
g(d8’,co) > 0 such that for any hg > 0 large enough, for any r > 0, there exists h € [ho, ho + A
such that:

P(F(r,h,6")) > € . (4.3.3)

Note also that among the previous parameters, only h = h(r) may depend on r.
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Proof of Lemma[f.3.3 Let A,cy as in Lemma Lemma in Section [4:4] states that for
any ¢ > 0 small enough, the following holds uniformly on r, A > 0:

max {P(3z € B(22,0'), D(2) ¢ B(r+h+6")°),E[#NNB(22,8") LunrB(z.6)>2] } < %VOI(B((S/)) :

max {P(D(z) ¢ B(r +h+08)°),E[#N N B(22,6') LynnB(e.6)>2] } < %VOI(B((S’)) :

Given such ¢’ > 0, we thus choose hq large enough according to Lemmas and such that
for any r > 0, there exists h = h(r) € [ho, ho + A] such that (4.3.1]) and

P(Deter(r, h,§')) > 1 — %VOI(B((S’)) .

Remark that hg is uniform on 7, only A = h(r) may depend on r. Henceforth, we can write

P(3lz € NN B(22,8), Int(D™(2)) #0) > E[#{z € NN B(2,0"): Int(D>®(2)) # 0}]
—E[#N N B(22,0") LynrB(20.6)>2)
> 91%\/01(3(5’))
and thus
P(F(r,h, &) > P(3z € NN Bz, 8), Int(D®(2)) # 0) %w(my))
> TVel(B(8)) -
So e = ©Vol(B(4')) is suitable. O

For M > 0, let us consider the subset U = U(r, h,§", M) of H? defined as
U= (B(r +h+ &)\ (B(r) U B(zs, 5/))) N Cone(0, Me™) . (4.3.4)

Given a configuration ' € F, if we remove all its points inside the set U then, for the resulting
configuration 7., the ancestor of z— the only Poisson point in B(z2, ") whose existence is ensured
by the event F —is z; which itself is a descendant of z;. This leads to Int(D>(zp)) # 0 , i.e.
nye € E(ro)¢. This construction requires that r € H(d) (there is no Poisson points too close to

21).

Lemma 4.3.4. For any h and M > h+ 1, for any r € H(5) and larger than ro, for any &' < 6/2,
the following statement holds. For each configuration ' such that r]jg(r) =g andn’ € F(r,h,d")

then ny. € E(rg)°.
We are now ready to prove Lemma [1.1.4]

Proof of Lemma[[.1.7} Parameters 8, h and r are chosen according to Lemma [£.3.3] Because it
requires Deter(r, h,0"), the event F(r,h,d") does not depend on Np(,). So, by Lemma m
P(F(T, h, (5/) |NB(T) = 77B(r)) = P(F(?”, h,é’)) >e€.

The simplifying assumption v = 0 made at the beginning of the section is justified here: condi-
tionally to Np(;, the angle u (of z; and ;) becomes deterministic and, by isotropy of the model,
the conditional probability of ' does not depend on the angle of z5.

Thus, for r € H(§), r > rg, and 0 < ¢’ < §/2, we can apply Lemmam

e <P((ny,mye) € Fr, 1,8 [ Noey =ns@y) < P((0,npe) € E(ro)° [ Np@y = n3(r))
= Py =0,7 € E(ro)° | Npw) = n5(r))
< P € E(ro)° | NBw) = nB(r)) -
In conclusion P(E(ro)|Np(r) = np(r)) is smaller than 1 — ¢ for any ~ € H(d) and r > ro. O

A
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r+h+4 00

Figure 4.1: This picture represents the geometric construction elaborated in Section .3} Black
circles are Poisson points. The ball B(zq,¢’) whose (deterministic) center zo is marked by a grey
square, contains only one Poisson point, namely z. Its set of descendants D(z) is represented by
the hatched region: on the picture, it satisfies Int(D>(2)) # @ (the bold black curve). When the
set U is emptying of Poisson points then A(z) = z; which will contradict E(rg).

This section ends with the proof of Lemma [£.3.4]

Proof of Lemma[{.3.4} Consider a configuration 7" which is equal to 7 inside the ball B(r) and
which belongs to the event F(r,h,¢"). Let us first assume that, for the configuration 7., the
Poisson point z (whose existence is given by F') is connected to z1, i.e.

A(z)[nye] = 21 - (4.3.5)

Let us prove that 7. € E(ro)¢. Sincen/ € F(r, h,d"), the set of descendants D(z)[r/] of z is included
in B(r+h+¢")°. So, removing Poisson points of 7, does no modify edges (z’, A(%')) of the RST,
for A(z') € D(z), and may only add new descendants. Hence, D(z)[n’] is included in D(z)[ny.]
which leads to Int(D>°(2))[ny.] # 0 since Int(D>°(2))[n] # 0. Finally, using A(z)[n;.] = 21, we
get Int(D>(z1))[ng] # 0 and the same holds for zy since z; is a descendant of zy. In conclusion,
under the assumption (4.3.5)), we have proved that ;. € E(r)°.

It then remains to show . Let R be the hyperbolic distance between z and z;. It is
sufficient to prove that BT (z, R) is included in U U B¥(21,d) since, after removing Poisson points
in U, z; would become the closest Poisson point to z. Here we use that r € H(4), i.e. the ball
B™(21,6) contains no other Poisson points except z;. Let us first remark that

R=d(z,z1) <d(z,22) +d(22,21) <& +h<h+1

with ¢’ < 1. So, taking M > h + 1 gives BT (z, R) C Cone(0, Me™"). Hence, it remains to prove
that the set V = B¥(z, R) N B(r) is included in BT (z1,6). To do it, let us introduce vy, vy and
vs as the intersection points between the geodesic (0z) and resp. the sphere with radius r + h
(and center 0), the sphere with radius r (and center 0) and the half-sphere of B*(z, R). Let us
denote by w the symmetric of z; w.r.t. the geodesic (0z). With this notations, V' is a spherical cap
whose basis is an (Euclidean) ball with (Euclidean) diameter [w, z;] and top point vs. We have
d(va, z1) < d(v1,22) < . Thus, by symmetry, d(w, z1) < d(w,ve) + d(va, z1) = 2d(ve,21) < 24"
Since vs, vo and z are on the same geodesic, we can write:

d(vs,v2) = d(v3, z) —d(z,v2) < R—h
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since v3 belongs to BT (z, R). With R < h + d', we get d(vs, z1) < d(vs,v2) + d(va,21) < 2.
Whenever §' < §/2, the three points w, 21 and vs are inside BT (21, ) which forces the spherical
cap V to be included in B*(z1,4) too. O

4.4 Proofs of additional lemmas

Lemma [4:3.T] does not occur in the Euclidean case, since, in the Euclidean case, the probability
that a typical point at level r belongs to an infinite branch tends to 0 as r — oo.

Proof of Lemma[{.3.1 Step 1. Let r > 0. By Cauchy-Schwarz inequality,

E[Y,cc, Vol(D®(2)))’

E[#{z € £y, Vol(D*(2)) > 0}] > — S VelD= ()] (4.4.1)
By [6, Theorem 1.1], gH4 ! = Uze[:ro Dy (z), so
E| Y Vol(D(2)| >¢ (4.4.2)

ZE»CTO

for some ¢ > 0 independent of rg. We now upper-bound the denominator in (4.4.1). For any
2 € Ly, let us upper-bound Vol(D;?(2)) using MBD.Y (2):

Vol(D*>(z)) < CMBD;® (2)* (4.4.3)
for some C > 0 independent of ry. Thus

> Vol(DE(2))> < C > MBDY(2)*. (4.4.4)

z2€Ly, 2€Lr,

Let us now apply the upper-bound of angular deviations: [6, Proposition 2.6] applied with A = 7e™™
and p = 2d gives,

E | Y MBD(2)*| < Ce?r (4.4.5)

ZESTO

for some C > 0 independent of ry. For any z € £,,,
Finally, combining (4.4.1), (4.4.2)), (4.4.4)) and (4.4.5)) gives,

E[#{z € L,,, Vol(D>®(z)) > 0}] cedro
E [#L;,] 2 E [#Ln] z2c (4.4.6)

for ¢ > 0 independent of rg, where inequality [0, Lemma 4.4] has been used in the last inequality.

Step 2. Conclusion. Let ¢ > 0 satisfying (4.4.6). We chose A > 0 large enough such that,
uniformly in 7 > 0 for r large enough. If § > 0 is small enough,
E[#{z € L, 2" ¢ B(r+ A—6)\B(r + 6) and Vol(D**(z)) > 0}]
E[#L,]

< /2. (4.4.7)

We have

E[#L,] ~ Ce™,  E[#N N B(r + A\B(r)] = A\Vol(B(r + A\B(r)) ~ e (4.4.8)
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for some C > 0. So, for r > 0 large enough,

E[#{2 € S(r + A)\B(r), Vol(D*(2)) > 0} _ E [#{z € L, 2! € B(r — 4) and Vol(D()) > 0}]
E#N N B(r + A\B(r)] = E[#L.,]

> dc/e1.4.9)
with ¢ > 0 uniform in r. By Campbell formula,
E [#{z € S(r + A)\B(r), Vol(D*(z)) > 0] = )\/ P[Vol(D*°(z)) > 0|z € N] d44.4.10)
S(r+A)\B(r)

Let 6 > 0. By Campbell formula and Fubini,
/ E [#{z' € B(z,6), Vol(D*(z)) > 0}] dz
S(r+A)\B(r)
= )\/ / P [Vol(D(z")) > 0|z € N] dz' d=
S(r+A)\B(r) J B(z,0)
=\ Vol(B(z2',8) N B(r + A)\B(r))P [Vol(D(z")) > 0]z' € N] dz'

z’€B(r+A+46)\B(r—9)

> AVol(B(0, ) / P[Vol(D(=')) > 0]’ € N] d=’
z'€B(r+A—358)\B(r+9)

> Vol(B(0,0)E [#{z € S(r+ A—0)\B(r + ), Vol(D>(z)) > 0] > cVol(B(r + A — §)\B(r + 9)).

for some ¢ > 0 uniform in r, 6. Thus there exists z € B(r+A—3§)\B(r+0) such that E [#{z’ € B(z,6), Vol(D*>(z)) > 0}] >
¢Vol(0,¢). By rotation invariance, there exists come radius v’ € [r + 4§, + A — §] such that for any
z € S(r), E[#{z" € B(z,0), Vol(D*(z)) > 0}] which concludes the proof of Lemma O

Proof of Lemma[.3.3 Let A > 0 that will be chosen later. Let 7,h > 0 and z € S(r + h). Let us
denote by x the union of descending subtrees of every Poisson point in B(z,d’):

X = U D(%").
2’eNNB(z,8")
We have
Deter(r, h, 2) C {32" = (', ) € x, d(',(A(")) >r" —r+ h}.
Thus

Deter(r, h, z) C {32/ = (+/,u/) € Cone(u’, Ae™"~"), d(2/, (A(2")) > v’ —r+h}U{x ¢ Cone(u/, Ae™""")}

It will be shown that

{32’/ _ (T’,u/) e NN COHQ(UI,AG_T_}L), d(z’, (A(ZI)) > r—r 4 h} < CAd/ e—d(r—w-&-h)e—Ace<r',,,~+h>/3) C(ﬁ/..él.ll)
r+h

and

P[{x ¢ Cone(u, Ae™""")}] < —. (4.4.12)

= Q

where C' > 0 is some constant independent of r, h, z. Let us prove (4.4.11)). The conclusion follows
from (4.4.11) and (4.4.12): for any A > 0,

= Q

lim sup P[Deter(r, h,-)] <

h—00 >0
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Since this is true for any A > 0, the conclusion follows. By Campbell formula,

P[32 = (v',u) € Cone(u/, Ae™"" "), d(z', (A(z')) > 1" — 1+ h]
<E [#{z’ = (r', ) € Cone(u, Ae™"""), d(/,(A(Z)) >+ —r+ h}]

:A/ P [B*(<,d(0,2) — r + h) d') "N = 0]
Cone(u,Ae—"—h)
. / / P[B* (2, —r+h) d) NN = 0] sinh()? du’ dr'by 6 (2.5)]
' >r4h Ju €S, wu<lAe—r—h
< C/OO Adefd(rfr'+h)ef)\V01(B+(z',rlfrJrh)) dr’
o r+h
oo ’
< C/ Ade—d(r—?'/-‘rh)e—)\ce(r —rh)/3)y dr'.
B r+h

We now prove (4.4.12). We use the control of angular deviations established in [6, Proposition
2.6], with p = 2d:

E Z CFDij_h_é(Zl/)Qd S Cefd(hrF’r‘f(;).

2"€Lrfh_s

where we recall that CFD:/ (2) is the cumulative forward angular deviations defined in [6, Defini-

tions 2.3] or Definition page [85| of Chapter

In addition, for the maximal backward angular deviations MBD:,(Z’) defined in [0, Definitions
2.4] (see also Definition page [85] of Chapter [3)),

MBDS? (2')4 (4.4.13)
2'=(r";u’)e(NNS(r+h)\S(r+h—35))
< > MBDE (A7 (=)
2'=(r";uw)e(NNS(r+h)\S(r+h—746))
< Y #H eNN(SEr+n\S(r+h—6)nD(")}IMBDY ()%,
2"E€Lrfh—s

thus Cauchy-Schwarz gives,

E| >  MBDY()! (4.4.14)
2" €Lyt h—s
1/2

<E > #{2' e NN (S(r+ h)\S(r +h—8) N D(z")}?

2'=(r";u’)ENNS(r+h)\S(r+h—46))

1/2

xE > MBDR (A7 5(2")*

2'=(r";u’)E(NNS(r+h)\S(r+h—35))

Thus, combining (4.4.13) and (4.4.14) and [6 Proposition 2.6]
E| Y MBDXY(:)!| <Certh, (4.4.15)

2"E€ELrfh—s
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Lemma 4.4.1. For any §' > 0 small enough, the following holds uniformly on r,h > 0:

2 Vol(B(5))

max {IP’(EIZ € B(22,8), D(2) ¢ B(T+h+5')c),]E[#NﬁB(22, ) I#NQB(Z%(;/)EQ}} < 0

Proof. We have, for §' small enough:
¢
IE[#./\/O B(ZQ, 5/) 1#/\/F‘IB(22,6’)Z2] < TBVOI(B((S/))
Let z € B(z9,¢’). By Campbell formula,

E[#{z e N, A(z')=zand 2’ ¢ B(r+ h+4)}]

—) / PIA() = 2| € N] d2/
B(r+h+6)\B(r+h)

=\ P[BY (2, d(z,2)) NN = 0] d2’
B(r+h+6)\B(r+h)

_ / exp(—AVol(B* (2, d(z, 2')))) d'
B(r4+h+8)\B(r+h)

It has been established in [6] Proposition 3.17] thus Vol(BT(z/, p)) > Ce~*/3 for some C' > 0 when
p is large enough. Thus

E#{z' e N, A(z') =z and 2’ ¢ B(r + h+4)}]

_ / exp(—AVol(B (2, d(z, ")) d='
B(r+h+8)\B(r+h)

< /\/ exp(—C\/3d(z,2")) d2’
B(r+h+8)\B(r+h)

<C / (VOl(B(r + h + O\B(r + h)) N B(z, p)) exp(—CAp/3) dp by Fubini(4.4.16)
pPER Y
< Cs. (4.4.17)
Then, again by Campbell formula,

P(3z € B(2,6), D(2) ¢ B(r + h+5)°)
<E[#WN NB(22,8), 32" € B(r+h+3)\B(r+h), A(z') = 2]

:)\/ PEz' e N, A(Z') =z and 2’ ¢ B(r+h+9)] dz
z€B(z2,0")

§)\/ E[#2 e N, A(Z')=zand 2’ ¢ B(r+ h+96)| dz
z€B(z2,0")

< Ot by

= 0(Vol(z2,8’)) when § — 0.

This concludes the proof of Lemma O
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English Summary

In this thesis, two models of geometric spanning random trees in hyperbolic geometry are studied:
the hyperbolic DSF (Directed Spanning Forest) and the hyperbolic RST (Radial Spanning Tree).
These are random graphs constructed on Poisson point processes in the hyperbolic space H? of
dimension d > 2 and which extend the definition of the DSF and the RST proposed in the Eu-
clidean setting by Baccelli and Bordenave (2007). The study and properties of these objects are,
in general, fundamentally different between the two geometries.

The DSF in R? is defined as follows. Any point 2 of the Poisson process is linked to its ancestor,
defined as the closest point of the Poisson process among all those lying in the half-space bounded
by the hyperplane passing through = and of chosen normal direction. To define the hyperbolic
DSF in H¢, we give ourselves a point at infinity Z (belonging to the boundary 0H?). Each point
x is connected to the nearest point of the Poisson process among all those which are closer to 7
than z (with respect to horodistances). The RST is a radial tree which can be defined in both R¢
and HY, relative to an origin O. There are several possible definitions of the hyperbolic RST in
H<, but one is naturally associated with the hyperbolic DSF and this is the one we will study.

After an introduction in Chapter 1, recalling the motivations and presenting the main tools
used in this thesis, the hyperbolic DSF is studied in Chapter 2. We describe precisely its proper-
ties, which differ from the Euclidean case. In particular, whatever the dimension, the hyperbolic
DSF is a tree (all trajectories coalesce) that contains an infinite number of bi-infinite branches, of
which we study the asymptotic directions. Chapters 3 and 4 deal with the hyperbolic RST and the
study of its semi-infinite branches, in dimensions greater than or equal to d = 2. Almost certainly,
each semi-infinite branch has an asymptotic direction and each angle is the asymptotic direction
of at least one semi-infinite branch. The semi-infinite trajectory of the RST that converges to a
given deterministic direction is almost certainly unique. However, the set of (random) directions
that are the boundary directions of several semi-infinite RST trajectories is dense in OH? and
countable in dimension d = 2. We show that the subset of H? which consists of the asymptotic
directions reached by the semi-infinite trajectories of the RST passing through a Poisson point z,
has non-empty interior. In dimension d = 2, this means that there is almost certainly no random
direction that is the limit of three semi-infinite branches of the RST. This result, often conjectured
for radial geometric tree models, has only been proved to our knowledge in one previous case (for
a last-pass percolation model).

Key words: continuum percolation, hyperbolic space, stochastic geometry, random geometric
tree, Directed Spanning Forest, Mass Transport Principle, Poisson point processes.
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Résumé

Dans cette thése, deux modéles d’arbres aléatoires géométriques couvrants en géométrie hyper-
bolique sont étudiés : la DSF (Directed Spanning Forest) et le RST (Radial Spanning Tree. 11
s’agit de graphes alétoires construits a partir de processus ponctuels de Poisson dans ’espace hy-
perbolique H? de dimension d > 2 et qui étendent la définition de la DSF et du RST proposée en
Euclidien par Baccelli et Bordenave (2007). L’étude et les propriétés de ces objets sont, de maniére
générale, fondamentalement différentes entre les deux géométries.

La DSF dans R? est définie de la facon suivante. Tout point = du processus de Poisson est relié¢
& son ancétre, défini comme étant le point du processus de Poisson le plus proche de z parmi tous
ceux qui se trouvent dans le demi-espace délimité par ’hyperplan passant par x et de normale une
direction choisie. Pour définir la DSF dans H?, on se donne un point & I'infini Z (appartenant au
bord OH?). Chaque point x est relié¢ au point du processus de Poisson le plus proche parmi tous
ceux qui sont plus proches de Z que x (au sens de I'horodistance). Le RST est un arbre radial
qui peut quant & lui étre défini & la fois dans R? et HY, par rapport a un point origine O. Il
existe plusieurs définitions possible du RST dans H?, mais I'une est naturellement associée a DSF
hyperbolique et c’est celle que nous étudierons.

Aprés une introduction au Chapitre 1, rappelant les motivations et présentant les principaux
outils utilisés dans cette thése, la DSF hyperbolique est étudiée au Chapitre 2. Nous décrivons
précisément ses propriétés, qui différent du cas Euclidien. En particulier, quelle que soit la dimen-
sion, la DSF hyperbolique est un arbre (toutes les trajectoires coalescent) qui contient une infinité
de branches bi-infinies, dont nous étudions les directions asymptotiques. Les Chapitres 3 et 4 con-
cernent le RST hyperbolique et I’étude de ses branches semi-infinies, en dimensions supérieures ou
égales & d = 2. Presque stirement, chaque branche semi-infinie admet une direction asymptotique
et chaque angle est la direction asymptotique d’au moins une branche semi-infinie. La trajectoire
semi-infinie du RST qui converge vers une direction déterministe donnée est unique presque stre-
ment. Cependant, I’ensemble des directions (aléatoires) qui sont les directions limites de plusieurs
trajectoires semi-infinies du RST est dense dans OH? et dénombrable en dimension d = 2. Nous
montrons que le sous-ensemble de OH? qui est constitué des directions asymptotiques atteintes par
les trajectoires semi-infinies du RST passant par un point de Poisson z, est d’intérieur non vide.
En dimension d = 2, cela signifie que presque stirement, il n’existe pas de direction aléatoire qui
soit limite de trois branches semi-infinies du RST. Ce résultat, souvent conjecturé pour les modéles
d’arbres géométriques radiaux, n’avait été démontré a notre connaissance que dans un seul cas
(pour un modele de percolation de dernier passage).

Mots clés : percolation, géométrie hyperbolique, géométrie stochastique, arbre aléatoire, forét
couvrante dirigée, forét couvrante radiale, branches semi-infinies, transport de masse, processus
ponctuel de Poisson.
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