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Abstract 

This dissertation deals with the use of RANS CFD commercial solvers for heat transfer 

computations of nuclear reactor components. The validation of two codes has been previously 

performed on reduced scale mock-ups at smaller Reynolds number scale in experimental 

facilities. The objective of this work has been to verify if the accuracy of calculation of the heat 

transfer coefficient with CFD evolves when approaching the real reactor scale Reynolds 

number. Experiments and CFD computations have been conducted for this purpose. The first 

step has been to lay down the basics of CFD and uncertainty quantification. The latter subject 

provides a working environment which consolidates the validation approach, as the 

comparisons are given by taking into consideration the different sources of uncertainty in heat 

transfer simulations and experiments. An important aspect of this work has been to develop a 

measurement methodology to retrieve heat transfer coefficient maps for water exchanging with 

a heated smooth wall with reasonable uncertainty. The method that has been chosen is based 

on the gypsum dissolution and the heat and mass transfer analogy. The measured mass transfer 

coefficient has been transposed to smooth wall heat transfer coefficient by considering the 

roughness of the gypsum surface after dissolution and the difference of heat and mass diffusion 

in water. The values of the heat transfer coefficient obtained have been compared to literature 

for Reynolds number in the range [104, 105] on the well documented case of heat exchange in 

a rectangular channel for turbulent flow, showing good agreement. Then, two commercial 

softwares were tested for computations of the heat transfer coefficient by reproducing the 

experiments. In the rectangular channel, the boundary conditions uncertainty during the 

experiments were propagated through the CFD simulations with two different methods: the 

deterministic sampling which uses a limited number of sigma points to propagate the 

covariance of the inputs and Monte Carlo method which relies on the estimation of large 

samples of the boundary conditions with a surrogate model based on gaussian process. These 

two methods have been found to yield identic results indicating that the boundary conditions 

uncertainty is negligible in comparison to the experimental uncertainty. Finally, the comparison 

between CFD and experiments has been done and combined to the experimental uncertainty to 

estimate the model error which has been found to decrease for increasing Reynolds numbers. 

The process has then been reproduced for comparisons of CFD and experiments in a 1/5th 

reduced scale mock-up of a steam generator water box. The measurement methodology has 

been adapted and combined both heat and mass transfer measurements. The 2D mass transfer 

data has been processed with the Proper Orthogonal Decomposition and the heat transfer 

measurements were used to measure the transposition factor. Heat and mass transfer data 

showed consistent values indicating good confidence on the heat and mass transfer analogy. 

The heat and mass transfer measurements were then combined to proceed to the uncertainty 

quantification of CFD on the Reynolds number range [105, 106]. The numerical error has been 



 

 

estimated with a grid convergence method (GCM) using Richardson extrapolation and was 

shown to be negligible. The same conclusion was drawn for the boundary conditions 

uncertainty which has been estimated with Monte-Carlo method. Finally, the comparison 

between CFD and experiments has been found to depend on the turbulence model, depend on 

near wall meshing and depend on software. It has also been concluded that the type of cells 

had an impact on simulations of the steam generator mock-up flow where tetrahedral cells 

yielded higher Nusselt number. The overall comparison between CFD computations and 

experiments finally showed the non-evolution of the model error with increasing Reynolds 

number. 



 

 

Résumé  

Le travail présenté dans ce document porte sur l’utilisation de la mécanique des fluides 

numérique ou, abrégé en anglais, CFD, pour des calculs de transferts thermique dans un 

réacteur nucléaire à l’aide de modèle de turbulence RANS. L’utilisation de ces codes dans 

l’industrie nucléaire nécessite une phase de validation qui permet de déterminer la précision 

des résultats calculés. Cette validation se fait sur maquette à une échelle géométrique réduite 

en laboratoire. La plupart du temps, la similitude du régime de turbulence basée sur la 

conservation du nombre de Reynolds entre l’échelle maquette et l’échelle réacteur ne peut être 

assuré en raison de la difficulté de reproduire expérimentalement les conditions réacteurs. Les 

résultats de la validation sont donc en général transposés à l’échelle réacteur en faisant 

l’hypothèse que la validité des modèles n’est pas remise en cause lors de l’approche de l’échelle 

réacteur.  Un des objectifs de cette thèse a été de vérifier cette hypothèse en étudiant l’évolution 

de l’erreur de modèle avec le nombre de Reynolds.  

L’estimation de l’erreur de modèle décrivant le biais et la variance sur les résultats 

induits par le modèle, repose sur l’existence de données expérimentales. La première étape a 

donc été de générer des données de transfert de chaleur en vue de la validation des codes STAR-

CCM+ et Fluent. Une méthode de mesure basée sur l’analogie entre le transfert de masse et de 

chaleur a été développée à cet effet. Cette méthode utilise un mur soluble de gypse qui exposé 

à l’eau se dissout. L’usure mesurée permet ensuite de remonter au nombre de Sherwood sur la 

surface. La méthode a d’abord été testée pour des mesures de coefficient d’échange dans un 

canal rectangulaire pour des nombres de Reynolds dans la gamme [104, 105]. Un facteur de 

transposition entre le nombre de Sherwood calculé et le nombre de Nusselt pour une paroi a 

température fixée et lisse a été proposé. Ce facteur prend en compte la rugosité de la surface 

de gypse après dissolution et la différence de propriété diffusives du transport de masse et de 

chaleur. Le nombre de Nusselt ainsi obtenu a été comparé aux données de la littérature et a 

montré un bon accord. La méthode a ensuite été adaptée pour des mesures dans une 

reproduction à l’échelle géométrique 1/5 d’une boite à eau de générateur de vapeur d’un 

réacteur nucléaire. Quatre emplacements de mesures ont été couverts en face d’un jet impactant 

et ont permis d’effectuer des mesures de coefficient de transfert de masse et de chaleur. Les 

expériences de transfert de masses ont été effectuée avec la dissolution du gypse permettant de 

calculer des cartes de Sherwood. Ces champs de Sherwood ont été traités à l’aide de la 

décomposition orthogonale aux valeurs propres (POD en anglais). D’autre part, les mesures de 

transfert de chaleur ont permis de mesurer deux valeurs moyennes du nombre de Nusselt sur 

les parties supérieurs et inférieurs des emplacements de mesure. Ces mesures ont permis le 

calcul du facteur de transposition entre le nombre de Sherwood obtenu par dissolution gypse 

et le nombre de Nusselt calculé depuis les mesures de coefficient d’échange thermique dans 

l’eau. De plus, l’effet de la rugosité sur la mesure de gypse a pu être étudié, son impact est 

cohérent avec les éléments trouvés dans littérature.  



 

 

La quantification de l’erreur de modèle nécessite aussi de quantifier les sources d’erreur 

et d’incertitude lors de calculs CFD. Parmi elles, l’incertitude des conditions limites pendant 

les essais a été propagée à travers le calcul du coefficient d’échange à l’aide de deux méthodes: 

le  « Deterministic Sampling » (DS), qui permet d’évaluer les moments statistiques des résultats 

des calculs à l’aide d’un échantillon contenant un faible nombre de points, et la méthode de 

Monte Carlo qui consiste à effectuer un nombre important de tirages aléatoires des conditions 

limites et d’estimer la réponse des calculs CFD pour chacune des réalisations. Cette dernière 

méthode repose sur la création d’un métamodèle avec les processus gaussiens, qui permet de 

reproduire la réponse des calculs CFD en un temps négligeable. Ces deux méthodes ont montré 

des résultats similaires pour des calculs avec un paramètre incertain, et il a été montré que cette 

incertitude est négligeable devant l’incertitude expérimentale pour les calculs dans le canal 

rectangulaire et la maquette de boite à eau de générateur de vapeur. L’évaluation de l’erreur 

numérique due à la discrétisation du domaine a été faite à l’aide d’une méthode de convergence 

du maillage pour un des modèles de turbulence testé. Il a été montré que cette erreur est 

négligeable pour les maillages utilisés. Enfin, l’erreur entre la CFD et l’expérience a été évaluée 

pour plusieurs modèles de turbulence et il a été montré que les résultats en sont fortement 

dépendant. De plus, le maillage proche paroi semble aussi impacter le calcul et une des 

perspectives de la thèse serait d’en quantifier l’effet. Enfin, l’erreur de modèle a pu être 

reconstruite à partir des différentes sources d’erreur et d’incertitudes, et il a été montré que 

celle-ci n’augmente pas lorsque le Reynolds augmente. 
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Introduction 

The knowledge of the flow behavior and of the heat transfers taking place in a nuclear reactor 

is essential to ensure the safety of the nuclear plant, whether it is in operating conditions, or 

incidental and accidental situations. From the thermal hydraulic aspect, the design of the 

primary circuit must take in considerations the thermal shocks than can occur in accidental 

situations in order to guarantee its physical integrity and the confinement of radioactivity. The 

thermal shocks are estimated from the convective heat transfer coefficient near solid 

boundaries, which is measured experimentally or obtained from numerical simulations. 

In the last decades, the boost of the computational power in industry resulted in the progressive 

replacement of the experimental approach by a numerical approach using Computational Fluid 

Dynamics (CFD) softwares. Their use in the nuclear industry requires a prior step of validation 

and verification (V&V). On one hand, the verification relates to the numerical implementation 

of the equations in the code (solver) and will not be covered in this document. On the other 

hand, the validation concerns the physical validity of the model used for the calculations which 

is partly investigated in this dissertation.  

 

In the nuclear industry, the validation process of CFD for heat transfer coefficient calculation 

is done according to the guidelines suggested by the American Society of Mechanical 

Engineers (ASME) (Coleman & Members, 2009). The results of simulations are compared to 

experimental measurements, and the different sources of uncertainty which affect the 

comparison are considered in order to increase the reliability of the validation process. This 

validation has been performed in the past with experimental data obtained on reduced scale 

mock-ups. The Reynolds number obtained in these experiments are lower than in a nuclear 

reactor. The validation on these experiments were found to yield results with a good agreement 

between CFD and experiments. The motivation of this work is to verify that the accuracy of 

CFD calculations of the heat transfer coefficient does not evolve between the validation scale 

on reduced scale mock-ups and the reactor scale. More precisely, the model error, relating to 

the accuracy of the turbulence modelling with CFD, has been investigated for Reynolds number 

approaching the reactor scale. In this context, the transposition error is defined from the 

evolution of the model error between the mock-up and the reactor scale and is investigated in 

this dissertation. 

For this purpose, experimental measurements of the heat transfer coefficient were retrieved at 

different turbulence regimes, and numerical simulations were launched for comparisons. 



 

 Introduction 

 

 

Therefore, this work combined experimental, numerical and theoretical aspects which will be 

discussed in this dissertation. The experimental aspect of this work is certainly the most 

important one, as the reliability of the uncertainty quantification process is mainly affected by 

the reliability of the measurements taken as reference.  

 

The first chapter focuses on the physical models underlying the calculation of heat transfer 

coefficient with CFD in industry and gives a short introduction to the uncertainty quantification 

process and to methods used for the evaluation of different sources of uncertainty.  

 

The second step of this work has been to develop a methodology to generate heat transfer data 

from gypsum dissolution measurements through the lens of the analogy between heat and mass 

transfer. Preliminary tests have been conducted in a rectangular channel which is a well-

documented flow configuration in literature. It has been observed that the surface aspect of the 

gypsum sample evolves during the experiments. The surface presents initially a smooth aspect, 

which is roughened as the gypsum dissolves in water. Therefore, the methodology had to 

consider this surface aspect for the comparison to smooth wall data. The methodology and the 

measurements for Reynolds number in the range [104, 105] are presented in Chapter 2.  

 

Then, CFD simulations were launched in order to estimate the accuracy of the calculated heat 

transfer coefficient in comparison to the experiments in the rectangular channel. Moreover, two 

uncertainty propagation technique were compared in this case. The Chapter 3 includes the 

presentation of the CFD model, the comparison to experiments and the results of a partial 

uncertainty quantification process as all the sources of error or uncertainties have not been 

quantified. This preliminary study also gives a first insight on the evolution of the model error 

on the experimental range.  

 

The validation approach presented in Chapter 2 and Chapter 3 has then been adapted for the 

case of a 1/5th scale mock-up of a steam generator water box. The quantity of interest is the 

heat transfer coefficient on a plate impinged by a jet. A heat transfer coefficient measurement 

device has been designed in order to include additional heat transfer data. Crossed 

measurements of heat and mass transfer coefficient were carried out to verify experimentally 

the heat and mass transfer analogy and to obtain estimations of the transposition factor. 

Moreover, the proper orthogonal decomposition has been introduced during these experiments 

in order to process the surface distribution of the mass transfer coefficient more efficiently. The 

experiments and their analysis are presented in Chapter 4. Moreover, this chapter includes a 

short bibliography on impinging jets.  

 

The experiments were then reproduced with CFD simulations with different turbulence models, 

grids and software in Chapter 5. In this chapter, the effect of the turbulence model, grid and 



 

 

near wall meshing on the calculation of the Nusselt number is investigated. Moreover, 

surrogate models were designed based on the computations that were performed.   

 

Finally, the quantification of the different sources of error and uncertainty leading to the 

calculation of the model error are presented in Chapter 6. The evolution with respect to the 

Reynolds number is depicted in order to verify that the accuracy of the simulations is not 

impaired when reaching the reactor scale.  

 

 





 

 

Chapter 1 Uncertainty quantification applied to 

Computational Fluid Dynamics 

The increase of computational power in the last decades has boosted the use of Computational 

Fluid Dynamics (CFD) for the modelling of turbulent flows in the industry. CFD became an 

essential tool making easier the design, being in aeronautics, spatial applications, nuclear 

industry and many others sector. Moreover, the reliability of the models has increased with 

time as authors in the scientific literature studied and calibrated them.  

In the nuclear industry, CFD has been used in order to develop new designs and improve the 

safety of nuclear plants. Their use requires a V&V (Validation and Verification) process in 

order to determine the reliability of the calculation for safety or design. This validation is 

carried out in the frame of uncertainty quantification (UQ), which consists in the identification 

of the different sources of uncertainty when comparing experiments and CFD simulations. The 

ASME (American Society of Mechanical Engineers) gave guidelines in (Coleman & Members, 

2009) for the validation and verification of CFD codes for heat transfer computations which 

have been adopted by the industrials. On one hand, the verification step concerns the numerical 

implementations of the solver and will not be covered in this dissertation. On the other hand, 

the validation aims to determine the deviation between computations and real-life situations. 

This validation relies on experimental data that is essential to have a reliable assessment of the 

accuracy of the codes. In nuclear plants, the obtention of heat transfer data in operating 

conditions is hardly conceivable due to the technical feasibility of measurements, thus, 

validation is done on reduced scale mock-ups in experimental facilities (Dolleans, et al., 2008; 

Goreaud, et al., 2004; Barbier, et al., 2009) for the different applications. Elements on the 

validation of RANS CFD simulations for the hydraulic behavior prediction in a nuclear plant 

are given in (Martinez & Galpin, 2014). An overall good agreement has been found between 

the experimental measurements and the CFD simulations.  

Most of the time, it is assumed that the accuracy of the CFD models is Reynolds number 

independent. The error between simulations and experiments is quantified on the reduced scale 

mock-up and transposed to the reactor scale. This assumption seems to be corroborated by 

elements in literature (Mannini, et al., 2010; Patel, et al., 1985), indicating that RANS 

simulations are more adapted to high turbulence regime, as the hydraulic behavior gets more 

regular, hence more predictive.  



2 Uncertainty quantification applied to Computational Fluid Dynamics 

 

 

The main objective of this dissertation is to study the evolution of the accuracy of CFD 

simulations when the Reynolds number increases to verify the transposability assumption. In 

this section, the principles for the modelling of turbulent flows and heat transfer with CFD 

codes are first presented. Then, the nomenclature given by the ASME for uncertainty 

quantification will be given, in addition to basics on statistics used for UQ.  

1.1 CFD Computations of heat transfer coefficient 

1.1.1 Conservation equations 

The computation of the heat transfer coefficient relies on the modelling and resolution of the 

flow field for a given flow configuration and set of boundary conditions. The fluid flow evolves 

according to the three following principles: 

- Conservation of mass 

- Conservation of momentum 

- Conservation of energy 

These three conservation principles lead to the general equations of mass, momentum and 

energy conservation, which can be applied to simulate the flow field and the heat exchanges.  

The equations are written in Cartesian coordinates with the notation (𝑥1, 𝑥2, 𝑥3), the velocity 

is written 𝒖 = (𝑢1, 𝑢2, 𝑢3) , its component in the 𝑥𝑖-direction is written 𝑢𝑖. In general, the 𝑥𝑖 

component of a vector is called by adding the index 𝑖 to its original notation. The time 

dependency is depicted by the time variable 𝑡. The tensor notation and Einstein notation is used 

with Cartesian coordinates system in the following section. The other variables included in the 

modelling of turbulent flow and heat transfer are, the density 𝜌, the pressure 𝑃, temperature 𝑇, 

total energy E, specific heat coefficient 𝐶𝑃, dynamic viscosity 𝜇, thermal conductivity 𝜆, the 

gravitational acceleration constant 𝑔.  

 

Continuity equation:  

The continuity equation calculated from the mass conservation is given by the following 

equation: 

 𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝑗)

𝜕𝑥𝑗
= 0 (1.1) 

 

Momentum equations:  

The conservation of momentum leads to three equations for each spatial direction. The equation 

in the 𝑥𝑖 direction is given by:  

 𝜕

𝜕𝑡
(𝜌𝑢𝑖) + 

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) =   

𝜕

𝜕𝑥𝑗
(𝜎𝑗𝑖) + 𝜌𝑔𝑖 

(1.2) 
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Here, 𝝈 = (𝜎𝑖𝑗)𝑖,𝑗∈[1;3]2 is the stress tensor.  

The convective term on the left side of the equation can be re-expressed by using the mass 

conservation equation (1.1) : 

 

𝜕

𝜕𝑡
(𝜌𝑢𝑖) + 

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = 𝜌 [

𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗
𝑢𝑖] + 𝑢𝑖 [

𝜕𝜌𝑢𝑗

𝜕𝑥𝑗
+
𝜕𝜌

𝜕𝑡
] = 𝜌 [

𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗
𝑢𝑖] 

 

which leads to the following formulation: 

𝜌 [
𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗
𝑢𝑖] = 𝜌

𝐷𝑢𝑖
𝐷𝑡

=
𝜕

𝜕𝑥𝑗
(𝜎𝑗𝑖) + 𝜌𝑔𝑖 

 

The operator  
𝐷

𝐷𝑡
 represents the “material derivative” 

 

Energy equation  

The conservation of energy for a single species without heat source can be written for the total 

energy 𝐸 as following with the material derivative: 

 𝜌
𝐷𝐸

𝐷𝑡
= −

𝜕

𝜕𝑥𝑗
𝑞𝑗 +

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜎𝑗𝑖) + 𝑢𝑖𝜌𝑔𝑖 

(1.3) 

 

Here, 𝒒 = (𝑞𝑗)𝑗∈[1,3] represents the heat flux.  

 

Simplification of the equations 

Hypotheses are given to simplify the equation and express the unknown quantities: 

- Newtonian fluid: the viscous stress field is linearly proportional to the strain rate field 

- Stokes hypothesis: the change of volume does not involve viscosity. 

- Fourier conduction law for heat transfer with constant thermal conductivity 𝜆  

- Incompressible flow 

- Constant density 

- Constant viscosity 

- No volumetric heat sources 

For an incompressible flow, the continuity equation (1.1) is reduced to: 

 𝜕𝑢𝑗

𝜕𝑥𝑗
= 0 (1.4) 

 

For a Newtonian fluid, the stress tensor can be expressed as following: 

𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗 

𝛿𝑖𝑗 is Kroenecker symbol which can be seen in this case as the identity matrix or the unitary 

tensor, 𝜏𝑖𝑗 is the viscous stress tensor.  
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The strain rate tensor 𝑆𝑖𝑗 related to the deformation of the fluid is defined by: 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

By assuming the previously enounced hypotheses, the viscous stress tensor can be expressed 

as following: 

𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 −
2

3
𝜇𝑆𝑘𝑘𝛿𝑖𝑗 

leading to,  

𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗 + 2𝜇𝑆𝑖𝑗 −
2

3
𝜇𝑆𝑘𝑘𝛿𝑖𝑗 

and, by reinjecting the expression of 𝜎𝑖𝑗 in (1.2):  

𝜕

𝜕𝑡
(𝜌𝑢𝑖) + 

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝑃

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑖
(2𝜇𝑆𝑖𝑗 −

2

3
𝜇𝑆𝑘𝑘𝛿𝑖𝑗) + 𝜌𝑔𝑖 

For constant dynamic viscosity and incompressible flow, it is possible to simplify further this 

equation: 

 𝐷𝑢𝑖
𝐷𝑡

= −
1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑖
2 + 𝑔𝑖 

(1.5) 

with, 𝜈 = 𝜇/𝜌 the kinematic viscosity.  

 

For the energy conservation equation, an alternative equation can be written for the internal 

energy. An equation is obtained for the mechanical energy by multiplying the momentum 

conservation equation (1.2) by 𝒖. By subtracting the total energy equation (1.3) by the 

mechanical energy equation, the following equation without heat sources for the internal 

energy 𝑒𝑖 can be written: 

𝐸 = 𝑒𝑖 +
1

2
𝑢𝑖
2 

𝐷𝑒𝑖
𝐷𝑡

= −𝑃
𝜕𝑢𝑗

𝜕𝑥𝑗
−
𝜕𝑞𝑗

𝜕𝑥𝑗
+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜏𝑗𝑖) 

The term 
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜏𝑗𝑖) and −𝑃

𝜕𝑢𝑗

𝜕𝑥𝑗
 relate respectively to the power of the viscous forces and to 

the power of the pressure force. The conduction heat flux is given by Fourier heat conduction 

law:  

𝑞𝑗 = −𝜆
𝜕𝑇

𝜕𝑥𝑗
 

Another formulation can be obtained by introducing the static enthalpy defined by: 

ℎ𝑠 = 𝑒𝑖 +
𝑃

𝜌
 

It can be shown that the energy equation can be expressed as following (Bejan, 2013) without 

volumetric source of energy:  
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𝜌
𝐷ℎ𝑠
𝐷𝑡

=
𝜕

𝜕𝑥𝑗
(𝜆
𝜕𝑇

𝜕𝑥𝑗
) +

𝐷𝑃

𝐷𝑡
+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜏𝑗𝑖) 

Finally, by introducing the specific heat and the thermal expansion coefficient of the fluid:  

𝐶𝑝 = (
𝜕ℎ𝑠
𝜕𝑇
)
𝑃
,   𝛽 = −

1

𝜌
(
𝜕𝜌

𝜕𝑇
)
𝑃

 

it is possible to rewrite the left-hand side as following (Bejan, 2013): 

𝜌
𝐷ℎ𝑠
𝐷𝑡

= 𝜌 [
𝜕ℎ𝑠
𝜕𝑡
+ 𝑢𝑗

𝜕ℎ𝑠
𝜕𝑥𝑗
] = 𝜌𝐶𝑝

𝐷𝑇

𝐷𝑡
+ (1 − 𝛽𝑇)

𝐷𝑃

𝐷𝑡
 

 

This leads to the temperature formulation of the energy conservation equation: 

𝜌𝐶𝑝
𝐷𝑇

𝐷𝑡
=
𝜕

𝜕𝑥𝑗
(𝜆
𝜕𝑇

𝜕𝑥𝑗
) + 𝛽𝑇

𝐷𝑃

𝐷𝑡
+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜏𝑗𝑖) 

 

In the case of low Mach number, the term relating to the viscous stress can be neglected, 

moreover, for incompressible liquids, 𝛽 = 0, leading to the simplified equation:   

 
𝜌𝐶𝑝

𝐷𝑇

𝐷𝑡
=
𝜕

𝜕𝑥𝑗
(𝜆
𝜕𝑇

𝜕𝑥𝑗
) (1.6) 

 

For constant thermal conductivity, the equation can be simplified to:  

 𝐷𝑇

𝐷𝑡
= 𝛼

∂2𝑇

𝜕𝑥𝑗
2 (1.7) 

 

with, 𝛼 = 𝜆/(𝜌𝐶𝑝 ) the thermal diffusivity in the fluid.  

In monophasic thermal hydraulic studies, the energy equation is used most of the time in the 

form (1.6) or  (1.7). A similar equation can be given for the transport of a single species in 

solution without mass sources. The equation can be written for the concentration 𝑐 as 

following:  

 𝐷𝑐

𝐷𝑡
= 𝐷𝑚

∂2𝑐

𝜕𝑥𝑗
2 (1.8) 

 

where 𝐷𝑚 is Fick’s law diffusion coefficient which is assumed to be constant.  

1.1.2 Non dimensional numbers 

The conservation equations include different fluxes and forces, which can be expressed with 

non-dimensional quantities.  

The Reynolds number gives the ratio between inertial forces and viscous forces: 

𝑅𝑒 =
𝑈𝐿

𝜈
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where 𝑈 is a characteristic velocity of the fluid, 𝐿 is a characteristic length which definition 

depends on the configuration of the flow. For instance, in pipe flow, 𝐿 = 𝐷𝐻 the hydraulic 

diameter of the pipe, for impinging jet, 𝐷𝐻 is the diameter of the nozzle. The characteristics of 

the flow turbulence depends on this Reynolds number. For instance, in pipes, distinct behaviors 

are observed around a critical Reynolds number 𝑅𝑒𝑐 ≈ 1000: for 𝑅𝑒 ≪ 𝑅𝑒𝑐, the viscosity 

effects are dominant, and the effect of shear stress due to the velocity gradients are limited. In 

this case called laminar flow, the solution of the equation is deterministic. For higher Reynolds 

numbers, the regime is turbulent. In these regimes, random fluctuations and chaotic behaviors 

are observed. This regime of flow involves higher rates of mixing leading to increased heat and 

mass transfer rates near boundaries and in the bulk. In a nuclear reactor, this particular property 

of turbulence is of interest because it leads to a more efficient cooling of the core of the reactor. 

 

The Prandtl number gives the ratio between the momentum diffusion coefficient and the heat 

transfer diffusion coefficient: 

𝑃𝑟 =
𝜈

𝛼
=
𝜇𝐶𝑝

𝜆
 

 

where 𝛼 and 𝜈 are respectively the heat diffusion coefficient and the kinematic viscosity of the 

fluid. In heat transfer studies, the value of the Prandtl number is of importance and affects the 

behavior of the heat fluxes near walls:  

- for low Prandtl numbers (𝑃𝑟 ≪ 1), the thermal diffusivity dominates, and the heat 

conduction is more significant than the convection. This is the case for liquid metals 

such as liquid sodium, or mercury. 

- for intermediate Prandtl numbers (𝑃𝑟~1), the heat and momentum are dissipated 

equally, the heat transfer is thus a combination of convection and conduction. This is 

the case for a lot of gases. 

- for large Prandtl numbers (𝑃𝑟 ≫ 1), the momentum is much more dissipated and heat 

transfers are mainly driven by convection. This is the case of oils since they have low 

thermal conductivity. 

The Schmidt number is analogous to the Prandtl number for mass transfer and is defined by:  

𝑆𝑐 =
𝜈

𝐷𝑚
 

with, 𝐷𝑚 the mass diffusion coefficient of the species in solution in the flow. 

 

The heat/mass transfer at the fluid/wall interface can be described with the Nusselt/Sherwood 

number being defined respectively by:  

𝑁𝑢 =
ℎ𝑐𝑜𝑛𝑣𝐷𝐻
𝜆

,     𝑆ℎ =
𝐾𝑐𝐷𝐻
𝐷𝑚

 

where, ℎ𝑐𝑜𝑛𝑣 and 𝐾𝐶 are respectively the convective heat transfer coefficient and the mass 

transfer coefficient. 𝐷𝐻 is a characteristic length defined as in the Reynolds number.  
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1.1.3 Modelling of turbulence 

1.1.3.1 Introduction 

Turbulent flows are by nature unsteady and chaotic. The resolution of the conservation 

equations (1.4), (1.5) and (1.7) written earlier for this regime is more challenging than for 

laminar flow. As explained in §1.1.3.2 one of the particularities of turbulent flow is the random 

fluctuations of the velocity. In these flows, the presence of eddies affects importantly the 

mixing and the heat and mass transfers near walls. Elements on the theoretical study of 

turbulent flows and their modelling can be found in (Pope, 2000). The equations given 

previously are complete in the sense that they do not require additional variables/equations in 

order to reproduce turbulent flow. Nevertheless, computing these equations requires an 

adequate time and space discretization in order to capture all the physical phenomenon, from 

the smaller eddy to the larger one. This approach is called Direct Numerical Simulation (DNS) 

and elements can be found in §9 of (Pope, 2000). The limiting aspect of this approach is the 

computing power required. In fact, the different scales (time, length) of the smaller eddies 

decrease with respect to the Reynolds number, such as the time required to compute industrial 

flow grows sharply to non-affordable CPU costs (see for instance §8.2 in (Pope, 2000)).  

Thus, alternative strategies are used. These methods rely on additional equations to model the 

eddies that are not captured by the mesh and their impact on the flow. Most of the time, RANS 

(Reynolds Averaged Navier Stokes) methodologies are used to model the impact of turbulence 

for an affordable cost. This approach is compatible with the use of grids with cells larger than 

the smallest eddies and represents only the largest ones. The smaller eddies characteristics are 

often described by turbulent quantities (turbulent kinetic energy, dissipation, viscosity, length 

…) which are transported in the flow.  

Large Eddy Simulation (LES) is another approach which is between the most complicated 

RANS model and DNS simulation in term of computational cost. In this methodology, the 

larger turbulent structures are represented; and the smaller structures lower than to the grid size 

are modelled with a sub grid model.  An introduction is given in §13 in reference (Pope, 2000). 

1.1.3.2 Reynolds Average of Navier Stokes Equations  

The RANS methodology is based on the decomposition of all the physical quantities as the 

sum of a steady contribution and a fluctuating term. This idea has been given the first time by 

Osborn Reynolds (Reynolds, 1895) from which the non-dimensional number is named. This 

proposal is based on experimental observations of the fluctuations associated to turbulence 

flow. 
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 The RANS decomposition can be written for a physical quantity 𝜙 as following:  

𝜙 = 𝜙 + 𝜙′, 𝜙′ = 0, 𝜙 = 𝜙 

 

where, �̅� corresponds to the time average value of the quantity 𝜙, 𝜙′ is the fluctuating part 

which time average value is zero. The instantaneous equations (1.4) (1.5) and (1.7) are then 

averaged regarding time in order to obtain for an incompressible flow with constant density 

and viscosity, the following RANS equations (Pope, 2000):  

𝜕𝑢�̅�

𝜕𝑥𝑗
= 0 

𝐷𝑢�̅�
𝐷𝑡

= −
1

𝜌

𝜕�̅�

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
 (𝜈

𝜕𝑢�̅�
𝜕𝑥𝑗

− 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) + 𝑔𝑖 

𝐷�̅�

𝐷𝑡
=
𝜕

𝜕𝑥𝑗
(𝛼
𝜕�̅�

𝜕𝑥𝑗
− 𝑢𝑗′𝑇′̅̅ ̅̅ ̅̅ ) 

It is noticeable that the RANS modelling of turbulence involves the same equations as (1.4) 

(1.5) and (1.7) for the mean quantities with an additional term due to the turbulent fluctuations. 

For the momentum equations, the appearing term is named Reynolds’s stress tensor and is 

defined as following: 

𝑅𝑖𝑗  = 𝑢𝑖
′𝑢𝑗
′ 

In the energy equation, the additional term due to the turbulent fluctuations is: 

𝑞𝑗,𝑡𝑢𝑟𝑏 = 𝜌𝐶𝑝𝑢𝑗′𝑇′̅̅ ̅̅ ̅ 

 

An analogous equation can be given for the transport equation of a single species in solution 

based on equation (1.8). The Reynolds decomposition for concentration 𝑐 is applied yielding 

the following equation:  

𝐷𝑐̅

𝐷𝑡
=
𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝑐̅

𝜕𝑥𝑗
− 𝑢𝑗′𝑐′̅̅ ̅̅ ̅) 

 

The RANS equations provided are still insufficient to solve the problem. Additional equations 

are required in order to solve the Reynolds stress tensor and the turbulent heat and mass fluxes. 

The eddy viscosity model is a simple approach to model turbulence. It relies on the calculation 

of an eddy viscosity with additional equations, which is then used to express the Reynolds 

stress tensor and the turbulent heat flux from the mean flow quantities. Most of the 

computations carried out in industry are based on this approach, as the computational cost and 

performance make it attractive. 
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1.1.3.3 Eddy viscosity model 

1.1.3.3.1 Introduction 

Eddy viscosity modelling of turbulence relies on the existence of an eddy viscosity 𝜈𝑡 from 

which the Reynolds stress tensor is expressed in combination to the mean strain rate tensor. 

This relation is written (Pope, 2000):  

𝑅𝑖𝑗 = 𝑢𝑖
′𝑢𝑗
′ =

2

3
𝑘𝛿𝑖𝑗 − 2𝜈𝑡𝑆𝑖𝑗̅̅̅̅  

with, 𝑘 the turbulent kinetic energy and 𝑆𝑖𝑗̅̅̅̅  the mean strain rate tensor defined as:  

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

In this case, the Reynolds stress is calculated from the mean flow, at the condition that 

additional equations are given to compute 𝜈𝑡. Different models can be used for the calculation 

of 𝜈𝑡: 

- algebraic models based on a mixing length: see the models given in (Baldwin & Lomax, 

1978) or in (Smith & Cebeci, 1967). These simple zero-equation models are used to 

express the turbulent viscosity as a function of the boundary layer velocity profile.  

- one-equation models: such as Prandtl model (Prandtl & Weighardt, 1945) where a 

mixing length 𝑙𝑚 is still specified with an additional transport equation for the turbulent 

kinetic energy 𝑘 enabling the computation of 𝜈𝑡. 

- two-equation models: transport equations are solved for two turbulent quantities which 

can be combined in order to extract all the other turbulent quantities of interest 

(turbulent length scale, turbulent timescale, eddy viscosity). Most of the models used 

in industry are from this class of models.  

- nonlinear eddy viscosity models  

 

The following sections will present two models that will be used in order to compute the heat 

transfer coefficient in the present work.  

1.1.3.3.2 Realizable 𝒌 − 𝝐 model 

The 𝑘 − 𝜖 model relies on the computations of the turbulent kinetic energy 𝑘 relating to the 

energy of the velocity fluctuations and the turbulent dissipation rate 𝜖 which relates to their 

dissipation. Two transport equations are given for their calculation. In its standard version, the 

eddy viscosity is then calculated such as:  

𝜈𝑡 =
𝐶𝜇𝑘

2

𝜖
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with, 𝐶𝜇 a model constant. The standard 𝑘 − 𝜖 (SKE) model has been suggested in (Jones & 

Launder, 1972) and the model calibration is given in (Lauder & Sharma, 1974).  

The Realizable 𝑘 − 𝜖  (RKE) model (Shih, et al., 1995) which is a more recent model 

implemented in CFD softwares is derived from the SKE model. This model introduces a new 

equation for 𝜖 and a functional relation of 𝐶𝜇 to the turbulent quantities, yielding more accurate 

computations. 𝐶𝜇 can be written: 

 
𝐶𝜇 =

1

𝐴0 + 𝐴𝑠𝑈
∗ 𝑘
𝜖 

 (1.9) 

 

with, 𝐴0 a calibration coefficient, 𝐴𝑠 and 𝑈∗ quantities derived from the mean strain rate tensor 

𝑆𝑖𝑗̅̅̅̅  and the mean vorticity tensor Ωij̅̅̅̅ : 

Ωij̅̅̅̅ =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

𝐴𝑠 = √6 cos(𝜙),   𝜙 =
1

3
arccos(√6 𝑊),   𝑊 =

𝑆𝑖𝑗𝑆𝑖𝑘𝑆𝑘𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑆3
 

 

Table 1.1: from (Shih, et al., 1995): model coefficient for RKE turbulence model 

𝐴0 𝜎𝑘 𝜎𝜖 𝐶1 𝐶2 𝐶𝜇 

4 1 1.2 Equation 

(1.10) 

1.9 Equation 

(1.9) 
 

𝑆 is the modulus of the mean strain rate tensor defined as 𝑆 = √𝑆𝑖𝑗̅̅̅̅ 𝑆𝑖𝑗̅̅̅̅  . 𝑈∗ is given by: 

𝑈∗ = √𝑆𝑖𝑗̅̅̅̅ 𝑆𝑖𝑗̅̅̅̅ + Ω𝑖𝑗̅̅ ̅̅ Ω𝑖𝑗̅̅ ̅̅  

The equations for 𝑘 and 𝜖 of the RKE model are written as following:  

𝐷𝑘

𝐷𝑡
=
𝜕

𝜕𝑥𝑗
[(𝜈 + 

𝜈𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
 ] − 𝑢𝑖

′𝑢𝑗
′
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜖 

𝐷𝜖

𝐷𝑡
=
𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡
𝜎𝜖
)
𝜕𝜖

𝜕𝑥𝑗
 ] + 𝐶1𝑆𝜖 −

𝐶2𝜖
2

𝑘 + √𝜈𝜖
 

 

The model coefficient  𝜎𝑘 , 𝜎𝜖 , 𝐶1, 𝐶2, 𝐶𝜇 are given in Table 1.1. 𝐶1 is calculated with: 

 
𝐶1 = max (0.43,

𝜂

5 + 𝜂
 ) , 𝜂 =

𝑆𝑘

𝜖
  (1.10) 

The coefficient 𝐴0 value has been obtained by calibration, 𝐴0 = 4 is chosen in order to 

reproduce the log law for boundary layer flow. 𝐶2 is obtained by calibrating the decay of 

turbulence downstream a grid. 𝐶1 is calibrated with experimental data obtained for 

homogeneous shear flow and boundary layer flow. 𝜎𝜖 is obtained from the log law of velocity 

in the inertial sublayer.  
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1.1.3.3.3 𝒌 −𝝎 SST model  

The 𝑘 − 𝜔 SST (KOSST) model (Menter, 1994) is another two-equation turbulence model 

which provides the eddy viscosity. This model is based on the 𝑘 − 𝜔 model formulated by 

Wilcox (Wilcox, 1988) and on a reformulation of the 𝑘 − 𝜖 model for the turbulent dissipation 

rate 𝜔 in the outer part of the boundary layer. This formulation aims to take advantage of 

Wilcox 𝑘 − 𝜔 model in near wall region which calculates better the boundary layers with 

adverse pressure gradients. This model does not use damping function near the wall (on the 

contrary of 𝑘 − 𝜖 models) which increases the numerical stability of the computation. In the 

outer part of the boundary layer, the dissipation rate of Wilcox model is very sensitive to the 

freestream values of turbulent dissipation rate, thus the model is switched to the 𝑘 − 𝜖 re-

formulation which is more reliable in this zone. A blending function 𝐹1 is introduced in order 

to differentiate the treatment in the log region and further from the wall in the outer region. 

 

Table 1.2: from (Menter, 1994)-: model coefficient for KOSST turbulence model 

𝑎1 𝛽∗ 𝜎𝑘1 𝜎𝑘2 𝜎𝜔1 𝜎𝜔2 𝛾1 𝛾2 

0.31 0.09 0.85 1.0 0.5 0.856 
𝛽1
𝛽∗
−
𝜎𝜔1𝜅

2

√𝛽∗
 

𝛽2
𝛽∗
−
𝜎𝜔2𝜅

2

√𝛽∗
 

 

 

The set of equations for the 𝑘 − 𝜔 SST model (Menter, 1994) can be written as following for 

constant density flows: 

𝐷𝑘

𝐷𝑡
=
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝑘𝜈𝑡)

𝜕𝑘

𝜕𝑥𝑗
 ] − 𝑢𝑖

′𝑢𝑗
′
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽∗𝜔𝑘 

𝐷𝜔

𝐷𝑡
=
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝜔𝜈𝑡)

𝜕𝜔

𝜕𝑥𝑗
 ] −

𝛾

𝜈𝑡
𝑢𝑖
′𝑢𝑗
′
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽𝜔2 + 2(1 − 𝐹1)𝜎𝜔2
1

𝜔
 
𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 

with, 𝐹1 the blending factor given by: 

𝐹1 = tanh(𝜒
4) 

  𝜒 = min [max (
√𝑘

0.09𝜔𝑦
;
500𝜈

𝑦2𝜔
) ,
4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦2
] ,   𝐶𝐷𝑘𝜔 = max(2𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−20) 

where, 𝑦 is the distance from the wall. The eddy viscosity is then obtained with, 

𝜈𝑡 =
𝑎1𝑘

max(𝑎1𝜔;Ω𝐹2)
 

with Ω the absolute value of the vorticity and 𝐹2 is given by: 

𝐹2 = tanh(𝜉
2) , 𝜉 = max (2

√𝑘

0.09𝜔𝑦
;
500𝜈

𝑦2𝜔
) 

Any model coefficient 𝜙 in 𝜎𝑘 , 𝜎𝜔 , 𝛽, 𝛾 are calculated from 𝜎𝑘1, 𝜎𝑘2, 𝜎𝜔1, 𝜎𝜔2, 𝛽1, 𝛽2, 𝛾1, 𝛾2 as 

following: 

𝜙 = 𝐹1𝜙1 + (1 − 𝐹1)𝜙2 
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The model coefficients are given in Table 1.2.  

1.1.3.3.4 Improvement of eddy viscosity models  

In the previous sections, two eddy viscosity models which are classically used in commercial 

CFD softwares have been presented. During their development, many authors added 

corrections enhancing their versatility. A curvature correction (Arolla & Durbin, 2013) can 

be added for both models when the flow presents curved boundaries which increases their 

accuracy. A correction can also be added on 𝑘 and 𝜖 (Spalart & Rumsey, 2007) in presence of 

ambient turbulence in order to obtain effective turbulent quantities. In compressible flows, 

an additional term is given (Sarkar & Balakrishnan, 1990). Another improvement 

implemented in most of the softwares is the two-layer approach (Rodi, 1991), which allows 

to solve 𝑘 and 𝜖 in the viscous layer differently. In this region, the transport equation for 𝑘 is 

solved and 𝜖 is given in regard of its distance from the wall with wall functions. The eddy 

viscosity calculated from this method is blended with the one obtained by the original 

formulation of the RKE by using a proximity indicator. This additional model is interesting 

from an industrial point of view since the boundary layer are not necessarily resolved in these 

cases where wall-functions can be used. The near wall meshing in these cases are unrefined 

which contributes to lower the cost of the computations. The treatment of the near wall region 

with wall functions will be presented in §1.1.3.5. For the KOSST model, an additional 

realizability constraint is given by Durbin (Durbin, 1996) in order to ameliorate the behavior 

of the model near stagnation points. An anomaly near stagnation point has been observed with 

two equations models where the turbulent dissipation is too small allowing high rates of 

turbulent kinetic energy. This constraint is in the form of a maximum on the turbulent time 

scale.  

1.1.3.3.5 SAS model 

Another approach which will be used is the Scale Adaptive Simulation (SAS) model presented 

in (Menter & Egorov, 2005; Menter, et al., 2004). This model has been developed to give an 

alternative to URANS modelling of transient flows. URANS are the transformation of the 

RANS equations from steady flow to unsteady flow. The averaging operation filters all the 

spectrum of the turbulent frequencies which in results fail to reproduce the turbulent structures 

of the flow. Their influence on the flow is modelled with additional equations and turbulent 

quantities such as the turbulent kinetic energy or dissipation rate. This approach is often 

insufficient when different physical phenomena interfere with the turbulence. The SAS model 

has been developed to reproduce RANS abilities in flows when the grid spacing is larger than 

the turbulent length scale and switch to LES when the turbulent length scale is larger than the 

grid. This behavior is possible due to similar formalism between LES and RANS approaches 

to model turbulence that will not be covered in this dissertation. The SAS model is based on a 
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two-equations eddy viscosity model for the turbulent kinetic energy 𝑘 and an integral length 

scale Φ = √𝑘𝐿 derived from Rotta initial formulation (Rotta, 1972). This formulation leads to 

the presence of a term with a length dimension in the dissipation equation which can be used 

to estimate the length of the turbulence structures. This method has been generalized to the 

KOSST model in (Menter & Egorov, 2005) which will be used in computations in this work. 

The model equations, model coefficient and calibration can be found in (Menter & Egorov, 

2005). 

 

1.1.3.4 Turbulent heat and mass transfer  

The Simple Gradient Diffusion Hypothesis (SGDH) is often given as a closure equation for 

the turbulent heat and mass fluxes’ terms. For heat and mass transfer, this closure equation is 

written: 

𝑢𝑗′𝑇′̅̅ ̅̅ ̅ = −𝛼𝑡
𝜕�̅�

𝜕𝑥𝑗
 , 𝑢𝑗′𝑐′̅̅ ̅̅ ̅ = −𝐷𝑚,𝑡

𝜕𝑐̅

𝜕𝑥𝑗
  

where 𝛼𝑡 and 𝐷𝑚,𝑡 are respectively the turbulent heat diffusion coefficient and turbulent mass 

diffusion coefficient. The SGDH assumes that the turbulence results in an enhancement of the 

thermal diffusivity (or mass diffusivity) which is represented by 𝛼𝑡 (respectively 𝐷𝑚,𝑡).  

These turbulent quantities are expressed from the turbulent Prandtl number 𝑃𝑟𝑡, Schmidt 

number 𝑆𝑐𝑡 and eddy viscosity 𝜈𝑡 as following:  

𝑃𝑟𝑡 =
𝜈𝑡
𝛼𝑡
, 𝑆𝑐𝑡 =

𝜈𝑡
𝐷𝑚,𝑡

 

The closure equations can be written: 

𝑢𝑗′𝑇′̅̅ ̅̅ ̅̅ = −
𝜈𝑡
𝑃𝑟𝑡
 
𝜕�̅�

𝜕𝑥𝑗
 , 𝑢𝑗′𝑐′̅̅ ̅̅ ̅ = −

𝜈𝑡
𝑆𝑐𝑡
 
𝜕𝑐̅

𝜕𝑥𝑗
  

 

For eddy viscosity model, 𝜈𝑡 is computed from the turbulent quantities. Different methods are 

used in order to get the turbulent Prandtl or Schmidt number with experiments or numerically. 

Indications on their estimation can be found in (Jischa & Rieke, 1979), (Kays, 1994). In 

general, getting accurate data on the turbulent Prandtl number is difficult as it requires to 

measure on a local point the fluctuating quantities as well as the mean shear stress. Thus, DNS 

simulation are used in most of the case in order to deduce the Prandtl number from temperature 

profiles which is then used when the turbulent scales are not resolved. For high molecular 

Prandtl number (𝑃𝑟 ≫ 1), the turbulent Prandtl number is stable and is often set to constant. 

Figure 1.1 shows the evolution of the turbulent Prandtl number according to the molecular 

Prandtl number. It is visible that the variation of the turbulent Prandtl number increases for low 

molecular Prandtl number which in this case cannot be set constant. For such fluids, a model 

must be implemented in order to get the good turbulent Prandtl number.  
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Figure 1.1: evolution of the turbulent Prandtl number as a function of the molecular Prandtl 

number from different experiments and calibrated model. From (Jischa & Rieke, 1979). 

 

Nevertheless, some studies show the variability of the Prandtl number with the non-

dimensional wall distance, and indication are given in (Kays, 1994). The turbulent Prandtl 

number is found to be a function of the Peclet number 𝑃𝑒 = 𝑃𝑟 𝑅𝑒 and stabilizes for high 

values. 𝑃𝑟𝑡 is also found to differ in the log region and the sublayer of the boundary layer. This 

variation with height is also found in (Koeltzsch, 2000) for the turbulent Schmidt number 𝑆𝑐𝑡. 

1.1.3.5 Wall treatment 

Most of the flow are bounded by walls. In turbulent flow, walls have an important impact as 

the shear stress increases at their vicinity due to the important decrease of the velocity from the 

external region to the wall surface where it reaches zero. In numerical simulations, the 

treatment of the walls consists of generating coherent boundary conditions for temperature, 

velocity, and the turbulent quantities. The behavior of these quantities near the wall have been 

studied and general equations have been given based on the similarity of wall bounded flows. 

First, the non-dimensional wall quantities will be presented, then, the wall functions which are 

used to predict the different quantities will be given.  
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1.1.3.5.1 Scaling of the near wall quantities 

In wall bounded flows with no slip conditions (𝑢 = 0 on the wall), the evolution of temperature, 

velocity or turbulence depends on the distance to the wall. The boundary layer is composed of 

three regions visible on Figure 1.2.  

The velocity and distance to the wall are nondimensionalized by wall quantities that are given 

further in this paragraph:  

- The viscous sublayer corresponds to the region in the direct vicinity of the wall. The 

velocity is low and viscous forces are preponderant. In this region, the non-dimensional 

velocity is a linear function of the wall distance 

- The log layer is further from the wall and corresponds to a region where the viscous 

forces are negligible in front of the turbulent viscosity. The velocity follows in this case 

a logarithmic law with respect to the wall distance.  

- The buffer layer is the zone between the viscous sublayer and the log layer. 

In CFD, the boundary conditions will thus be different regarding the height of the cell adjacent 

to the wall. When the adjacent cell is in the viscous boundary layer, the velocity and 

temperature profiles are easily calculated as they evolve linearly in this region. When the wall 

mesh is coarser and the adjacent cell centroid lies in the buffer layer or log layer, algebraic 

relations are given for the temperature, velocity and turbulent dissipation rate. These relations 

are made general by transforming the physical quantities into non dimensional ones. This 

operation is achieved by extracting the friction velocity 𝑢∗ representative of the flow in the 

near wall region. In the viscous sublayer, buffer layer, or log layer of the boundary layer, the 

expression of this velocity differs. The different expressions of 𝑢∗ in the viscous layer and log 

layer are given in Table 1.3. 

 

In the viscous sublayer, the friction velocity 𝑢∗ is calculated from the modulus of the tangential 

velocity, the viscosity and the wall distance. In the log region, this velocity is estimated from 

𝐶𝜇 the model coefficient given for the RKE and KOSST in §1.1.3.3 and 𝑘 the turbulent kinetic 

energy. A blended approach can be used in order to have a general function applicable in the 

two layers and approximate the buffer layer temperature and velocity profile. A wall proximity 

function 𝛾 is used in this case in order to make a smooth transition from the viscous sublayer 

to the log layer wall function:  

𝛾 = exp (−
𝑅𝑒𝑦

11
) ,   𝑅𝑒𝑦 =

√𝑘𝑦

𝜈
 

The definition of this velocity allows to define the non-dimensional wall distance 𝑦+, the non-

dimensional velocity 𝑢+, and non-dimensional temperature 𝑇+: 

𝑦+ =
𝑦𝑢∗

𝜈
, 𝑢+ =

𝑢

𝑢∗
, 𝑇+ =

𝜌𝐶𝑝𝑢
∗(𝑇 − 𝑇𝑤)

𝑞𝑤
 

With, 𝑞𝑤 the wall heat flux.  
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Figure 1.2: from (Wei & Willmarth, 1989) : Non dimensional mean velocity profiles, for 

𝑅𝑒 = 2970 (◌) , 𝑅𝑒 = 14 914 (□), 𝑅𝑒 = 22 776 (∆), and 𝑅𝑒 = 39 582 (∇) . The viscous 

layer (1), the buffer layer (2) and the log layer (3) are indicated.  

 

Table 1.3: near wall velocity in the different region of the boundary layer 

Sublayer Standard Wall function Blended Wall function 

Viscous sublayer 𝑢∗ =
𝜈|𝒗𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙|

𝑦
 

𝑢∗ = 𝛾
𝜈|𝒗𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙|

𝑦
+ (1 − 𝛾)𝐶𝜇

1
4𝑘
1
2 Buffer layer  

Log layer 𝑢∗ = 𝐶𝜇

1
4𝑘
1
2 

 

1.1.3.5.2 Wall functions 

The wall function for velocity is given by Reichardt blended wall function (Reichardt, 1951) 

which is valid for the viscous sublayer, buffer layer and log layer.  

𝑢+ =
1

𝜅
ln(1 + 𝜅𝑦+) + 𝐶 (1 − exp (−

𝑦+

𝑦𝑚
+) −

𝑦+

𝑦𝑚
+ exp(−𝑏𝑦

+)) 

with, 𝜅 the von Karman constant calibrated on experiments, and 𝐶,  𝑦𝑚
+ and 𝑏 defined as 

following: 

𝐶 =
1

𝜅
ln (

𝐸′

𝜅
),   𝑦𝑚

+ = max[3, 267(2.64 − 3.9𝜅)𝐸′0.0125] − 0.987,   𝑏 =
1

2
(𝑦𝑚

+
𝜅

𝐶
+
1

𝑦𝑚
+)   

where 𝐸′ =
𝐸

𝑓
, 𝐸 and 𝑓 being respectively the log law offset and a roughness function. For 

smooth wall, 𝑓 = 1.  
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For details on the impact of roughness on the wall functions, see (Jayatilleke, 1966). 

For temperature, a blended wall function is also used according to Kader’s formulation (Kader, 

1981) which gave satisfactory results for Prandtl numbers in the range [6 ∙ 10−3 , 40 ∙ 103].  

𝑇+ = exp(−Γ)𝑃𝑟 𝑦+ + exp (−
1

Γ
)𝑃𝑟𝑡 [

1

𝜅
ln(𝐸′𝑦+) + 𝑃] 

with,  

Γ =
0.01𝑐(𝑃𝑟 𝑦+)4

1 +
5
𝑐
𝑃𝑟3 𝑦+

, 𝑐 = exp(𝑓 − 1) 

𝑃 is obtained from (Jayatilleke, 1966): 

𝑃 = 9.24 [(
𝑃𝑟

𝑃𝑟𝑡
)

3
4
− 1] [1 + 0.28 exp (−0.007

𝑃𝑟

𝑃𝑟𝑡
 )]  

This temperature allows the computation of the turbulent wall heat flux: 

𝑞𝑤 = 𝜌𝐶𝑝𝑢
∗
𝑇𝐶 − 𝑇𝑤
𝑇𝑐
+  

where, 𝑇𝑐 is the evaluation of the temperature using Kader law and 𝑇𝑤 is the wall temperature.  

Wall conditions depending on the turbulence model are imposed for turbulent quantities and 

will not be covered here. A difference in the wall treatment should still be noted for 2-layer 

equation models, where the dissipation rate is imposed with an additional model leading to the 

computation of the dissipation rate and eddy viscosity (see for instance (Wolfshtein, 1969)). 

1.1.4 Conclusion 

Forced turbulent flows are of interest for industrials due to their peculiar behavior regarding 

mixing, which enhances heat transfer. However, their modelling can be challenging due to their 

chaotic behavior. Different approaches exist to simulate turbulent flow, including DNS, LES 

and RANS models. The two former approaches yield more accurate results, but their 

computational costs can quickly become prohibitive for industrial applications. Thus, RANS 

models are used most of the time to compromise cost and efficiency. Furthermore, the two-

layer approach which involves the use of wall functions is chosen most of the time in order to 

limit the number of cells in CFD grids for high Reynolds number applications. Most of these 

models are calibrated on specific canonical cases which might not be relevant for industrial 

flow configurations. One of the objectives of this dissertation is to verify the accuracy of these 

models’ implementations in commercial CFD softwares for heat transfer coefficient 

computations. The simulations that must be qualified are at the reactor scale involving very 

high Reynolds number in massive geometries. Different models described in this section will 

be investigated in the frame of Uncertainty quantification (UQ) in order to estimate confidence 

intervals on their calculations of heat transfer.  
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1.2 Uncertainty quantification 

The uncertainty quantification (UQ) process applied to predictive science can be seen as using 

probabilities and statistics to assess the reliability on the calculation of a quantity of interest. 

In fact, most of real-life situations include uncertainty due to the randomness of some physical 

phenomenon. In addition, the models that are used include most of the time uncertainty due to 

their inaccuracy. For instance, when making risk analysis, the consequence arising from this 

variability must be considered to insure the reliability of the decisions. In the nuclear industry, 

UQ is required to ensure the safety of a nuclear plant. More specifically, when CFD 

computations are used to predict heat transfer coefficient, confidence intervals must be given 

to take margins for safety. The estimation of these confidence intervals relies on the 

identification of the different sources of uncertainty. The impact of considering different 

sources of uncertainty in the conclusions of risk analysis can be found for launch accident 

scenario in (Frank, 1999), or for flood in (Merz & Thieken, 2005). The first step before 

proceeding to the uncertainty quantification is to identify the different sources of uncertainty, 

leading to the differentiation of two types of uncertainties:  

- Aleatory or natural uncertainty, which arises from phenomena presenting randomness. 

For instance, the evolution in time of a flow velocity will show some variability in 

turbulent flows. This type of uncertainty cannot be reduced by means of knowledge or 

more precise measurements. 

- Epistemic uncertainties, which are due to incomplete knowledge, but which can be 

reduced. For instance, the use of a turbulence model to represent turbulent flows with 

CFD induces an error due to the non-completeness of the model. In this case, the 

uncertainty can be reduced by supplementing the models with additional knowledge. 

In this section, statistical concepts will be reminded, then, the nomenclature and definitions 

provided by the ASME guide for the validation and verification of CFD codes used in the 

nuclear industry (Coleman & Members, 2009) will be given. Finally, the different sources of 

uncertainty and methods to assess their values will be presented.  

1.2.1 Definition and nomenclature in the UQ frame 

In order to standardize the notations used in the UQ frame, the definitions and notations that 

will be used have been taken from ASME (American Society of Mechanical Engineers) guide 

for the validation and verification of CFD codes (Coleman & Members, 2009): 

- Error is a recognizable deficiency in any phase or activity of modeling and simulation 

that is not due to lack of knowledge. In literature, this error is called epistemic 

uncertainty.  

- Uncertainty is a potential deficiency in any phase or activity of the modeling process 

that is due to lack of knowledge. This uncertainty is also known as aleatory 

uncertainty or natural uncertainty in literature. 
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The main idea behind the distinction of errors and uncertainties, is that errors can be reduced 

by employing more advanced models or more accurate numerical methods, or measurements. 

In contrast, uncertainties are related to unknown elements which by nature are unreducible.  

In this work, the Nusselt number (Nu) is investigated. The Nusselt number, related to the wall 

heat transfer coefficient, is an important parameter for safety analysis, which is either 

calculated from measurements or directly computed. In both cases, it is not possible to get its 

value with absolute certainty. In fact, the experimental measurements leading to its calculation 

are by nature uncertain due to the limitations of the measurement devices and due in this work 

to the turbulent behavior of the flow which adds fluctuations to the occurring heat transfer. 

Numerically, for a set of boundary conditions, the computed Nusselt number is determined, 

nevertheless, real physical situations present some randomness, especially the experimental 

flow configuration which is an input of the simulations. Thus, the use of Nusselt number data 

for safety analysis must include statistics, sensibility analysis for the estimation of confidence 

intervals. The Nusselt number is calculated from the wall heat transfer coefficient ℎ𝑐𝑜𝑛𝑣 as 

follows: 

𝑁𝑢 =
ℎ𝑐𝑜𝑛𝑣 𝐿

𝜆
 

as defined in §1.1.2.  

The convective heat transfer coefficient ℎ𝑐𝑜𝑛𝑣 is defined for a reference temperature 𝑇𝑟𝑒𝑓 by 

the following formula: 

ℎ𝑐𝑜𝑛𝑣 =
𝑞𝑤

𝑇𝑟𝑒𝑓 − 𝑇𝑤𝑎𝑙𝑙
 

 

where, 𝑞𝑤 is the wall heat flux and 𝑇𝑤𝑎𝑙𝑙 is the wall temperature. In experiments, the measure 

on 𝑞𝑤, 𝑇𝑟𝑒𝑓 and 𝑇𝑤𝑎𝑙𝑙 can include uncertainty or error that affect the calculation. The Nusselt 

number is then calculated with: 

For a realization the Nusselt number 𝛿𝑁𝑢 depicted by the random variable 𝑁𝑢 calculated with 

CFD codes, and when experimental data is available, the deviation between CFD computation 

and reality is decomposed as the sum of independent RV:  

𝛿𝐸𝐶𝐹𝐷/𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = 𝛿𝐸𝐶𝐹𝐷/𝑒𝑥𝑝 + 𝛿𝑈𝑒𝑥𝑝/𝑟𝑒𝑎𝑙𝑖𝑡𝑦  

where,  

- 𝛿𝐸𝐶𝐹𝐷/𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = 𝛿𝑁𝑢𝐶𝐹𝐷 − 𝛿𝑁𝑢𝑟𝑒𝑎𝑙𝑖𝑡𝑦: a realization of the error between the 

computation and the reality 𝑬𝑪𝑭𝑫/𝒓𝒆𝒂𝒍𝒊𝒕𝒚. 

- 𝛿𝐸𝐶𝐹𝐷/𝑒𝑥𝑝 = 𝛿𝑁𝑢𝐶𝐹𝐷 − 𝛿𝑁𝑢𝑒𝑥𝑝: a realization of the error between the computation 

and an experimental measurement 𝑬𝑪𝑭𝑫/𝐞𝐱𝐩. 

- δ𝑈𝑒𝑥𝑝/𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = 𝛿𝑈𝑒𝑥𝑝 = 𝛿𝑁𝑢𝑒𝑥𝑝 − 𝛿𝑁𝑢𝑟𝑒𝑎𝑙𝑖𝑡𝑦 : is a realization of the uncertainty on the 

measure 𝑼𝒆𝒙𝒑. 
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Moreover, if one has a prior knowledge of the models that are used for the calculation of a 

quantity with CFD codes, the error between a calculation and the reality can be expressed as:  

𝛿𝐸𝐶𝐹𝐷/𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = 𝛿𝐸𝑚𝑜𝑑𝑒𝑙 + 𝛿𝑈𝐵𝐶 + δ𝐸𝑛𝑢𝑚  

- 𝛿𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝: a realization of the uncertainty 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 on the calculation due to the 

uncertainty of the simulation inputs that have been propagated through the 

calculation. This term can be obtained with different methods which can be intrusive, 

meaning the propagation of the uncertain parameter is done by the solver which makes 

the calculation, or non-intrusive with methods relying on evaluation of the CFD 

calculation on specific points. 

- δ𝐸𝑛𝑢𝑚 : a realization of the numerical error. This error is done by the solver and exists 

because CFD computations are performed by discretizing a volume domain and the 

temporal domain in a finite number of elements instead of a solving in continuous 

domain.  

- δ𝐸𝑚𝑜𝑑𝑒𝑙 : a realization of the model error 𝑬𝒎𝒐𝒅𝒆𝒍 that is related to the inaccuracies of 

the models that are used such as turbulence model and wall treatment. Evaluating this 

term requires ultimately a comparison of computations and experiment as it will be 

done in this document.  

 

In practice, the mean value 𝜇 and standard deviation 𝜎 of 𝐸𝑚𝑜𝑑𝑒𝑙, 𝐸𝑛𝑢𝑚, and 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 are 

combined to estimate the mean value and standard deviation of 𝐸𝐶𝐹𝐷/𝑒𝑥𝑝. These quantities are 

then used to estimate a confidence interval on the calculation of the heat transfer coefficient 

with CFD, as depicted on the illustration Figure 1.3. Most of the time, a ± 2𝜎𝐸𝐶𝐹𝐷/𝑒𝑥𝑝 interval 

is given around the mean value in order to have the 95% confidence interval corresponding 

approximatively to the case of a random variable following a normal distribution. (see §1.2.2 

for definitions). For other distributions, a ± 𝑘 × 𝜎𝐸𝐶𝐹𝐷/𝑒𝑥𝑝 interval can be given with 𝑘 

depending on the distributions.  

The estimation of the model error can be done when experimental and numerical data are 

available. The two different ways to express the error between CFD and reality allows to 

calculate the model error as following: 

 

𝛿𝐸𝑚𝑜𝑑𝑒𝑙 = 𝛿𝐶𝐹𝐷/𝑒𝑥𝑝 + 𝛿𝑈𝑒𝑥𝑝 − 𝛿𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 − 𝛿𝐸𝑛𝑢𝑚  

 

For independent random variables following normal distributions, the mean and the standard 

deviation are given by: 

 

 
𝜇𝐸𝑚𝑜𝑑𝑒𝑙 = 𝜇𝐸𝐶𝐹𝐷/𝑒𝑥𝑝 + 𝜇𝑈𝑒𝑥𝑝 − 𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 − 𝜇𝐸𝑛𝑢𝑚  (1.11) 

 
𝜎𝐸𝑚𝑜𝑑𝑒𝑙 = √𝜎𝐸𝐶𝐹𝐷/𝑒𝑥𝑝

2 + 𝜎𝑈𝑒𝑥𝑝
2 + 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝

2 + 𝜎𝐸𝑛𝑢𝑚
2 (1.12) 
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Figure 1.3– calculation of a 95% confidence interval from the computed Nusselt number 

𝑁𝑢𝐶𝐹𝐷 and the error between CFD and reality 𝐸𝐶𝐹𝐷/𝑟𝑒𝑎𝑙𝑖𝑡𝑦 

 

In the nuclear industry, the model error bias 𝜇𝐸𝑚𝑜𝑑𝑒𝑙  and standard deviation 𝜎𝐸𝑚𝑜𝑑𝑒𝑙  are 

evaluated most of the time with experimental data obtained in reduced scale mock-ups. For 

instance, the validation of hydraulic calculations in the lower and upper plenum of an EPR 

(European Pressurized Reactor) has been done in a 1/5th scaled mock-up in (Dolleans, et al., 

2008; Goreaud, et al., 2004; Barbier, et al., 2009) for Reynolds number smaller than in the 

reactor. When dealing with UQ at the reactor scale, the evaluated modelling error at the mock-

up scale must be transposed, which could lead to the occurrence of a transposition error of the 

modelling error. The objective of this thesis is to evaluate the model error and its evolution 

when approaching the reactor scale in order to estimate the error due to the transposition. In 

this context, experimental measurements and computations of the heat transfer coefficient will 

be generated with the aim of quantifying the sources of error and uncertainty.  

1.2.2 Statistical concepts 

In this work, the studied data consist of series of numerical quantities, such as the time variation 

of the flowrate during an experiment or the surface variation of height on a non-flat surface. 

When measuring this data, random fluctuations are observed, resulting in uncertainties on the 

measured quantities. This section summarizes some definitions and concepts of the field of 

statistics used in order to quantify confidence intervals on these quantities. These elements can 

be found for example in (Ross, 1976).  

The definitions will be given for unidimensional random variables 𝑋 which realizations are in 

the space of real numbers. In this document, the following nomenclature is used: 

- Capital letters are related to random variables. 

- Small letter 𝑥 or Greek letter 𝛿𝑋 are realizations of the random variable 𝑋. 

- A 𝑝 dimension vector quantity 𝑿 = (𝑋1, … , 𝑋𝑝) will be written with bold fonts while a 

scalar quantity 𝑋 will be written with normal fonts. 

The probability density function (PDF) 𝑓 of a continuous random variable 𝑋 is used in order 

to calculate the probability with which 𝑋 takes its value in a given interval [𝑎, 𝑏]. This 

probability is obtained by integrating 𝑓 on this interval. The probability 𝑝(𝑋 ∈ [𝑎, 𝑏]) is written 

as following: 

𝑝(𝑋 ∈ [𝑎, 𝑏]) = ∫ 𝑓(𝑋)𝑑𝑋
𝑏

𝑎
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The quantiles of the PDF 𝑓 are the values that partition the total space covered by the random 

variable 𝑋 in intervals of equal probability. For instance, if we divide the range [𝑎, 𝑏] covered 

by 𝑋 in quantiles of 5%, the probability of realizations of 𝑋 on each interval is 5% (i.e. the area 

under 𝑓 on each of these intervals is constant). The first quantile 𝑞5%  corresponds to the 5% 

smallest realization of 𝑋 [𝑎, 𝑞5% ] while the last quantile would be the interval of the 5% highest 

realizations [𝑞95%, 𝑏].  

The Expectation value or Mean value of a random variable is a way to measure the average 

value a random variable will take for many realizations. In this dissertation, two notations are 

used 〈𝑋〉 and  𝜇𝑋. This quantity is calculated as following: 

〈𝑋〉 = 𝜇𝑋 = ∫ 𝑥𝑓(𝑥)𝑑𝑥
+∞

−∞ 

 

 

When the random variable takes discrete values 𝑥1, 𝑥2, … 𝑥𝑁, the mean is calculated with: 

𝜇𝑋 =
1

𝑁
∑𝑥𝑛

𝑁

𝑛=1

 𝑝(𝑋 = 𝑥𝑛) 

 

The variance 𝜎2 = 𝑉𝑎𝑟(𝑋) = 〈(𝑋 − 𝜇𝑋)
2〉 of a random variable is a way to measure how 

much the realization is expected to differ from the mean value. For a continuous random 

variable, this quantity is calculated with:  

𝜎𝑋
2 = ∫ (𝑥 − 𝜇𝑋)

2𝑓(𝑥)𝑑𝑋
+∞

−∞ 

 

𝜎𝑋 is called the standard deviation of the random variable 𝑋. In the following, the centered 

random variable 𝑋 − 𝜇 is denoted with the symbol 𝛿𝑋.  

When the RV takes discrete values 𝑥1, 𝑥2, … 𝑥𝑁, the variance is given by: 

𝜎𝑋
2 = ∑(𝑥𝑛 − 𝜇𝑋)

2𝑝(𝑋 = 𝑥𝑛)

𝑁

𝑛=1

 

 

Note that these ways to calculate the mean value and variance requires to know the probability 

function. When a random sample is a sequence of independent and identically distributed 

random variables from a distribution of expected mean value 𝜇𝑋 and variance 𝜎𝑋
2, it has been 

shown with the Central Limit Theorem that their distribution tends to fit a normal 

distribution, meaning that the sample mean, and variance converge to the expected values as 

the size of the sample grows:  

𝜇𝑋 = lim
𝑁→∞

1

𝑁
∑𝑥𝑛

𝑁

𝑛=1

   

𝜎𝑋
2 = lim

N→∞

1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑋)

2

𝑁

𝑛=1
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Estimations of 𝜇𝑋, and 𝜎𝑋 with samples of 𝑁 elements are denoted with the symbols 𝜇�̃� and 

𝜎�̃� 

Comment: iIn the following sections, it is assumed that the random samples are drawn 

independently and follow the same distribution allowing the use of the Central Limit Theorem. 

This assumption is often valid for measurements of physical quantities presenting fluctuations 

in time, nevertheless, in some cases, the signal can present correlated variations, as for instance 

sinusoidal oscillations, refuting the assumption of similarly distributed random variables. In 

these cases, the mean value and the variance of the sample can still be calculated, nevertheless, 

the PDF remains unknown. These values still give a good indication of the distribution of the 

data and can be used in order to generate confidence intervals for the realization of the supposed 

random variable.  

 

A random variable following the Normal distribution, or Gaussian distribution of mean 𝜇 

and standard deviation 𝜎 is written 𝑋~𝒩(𝜇, 𝜎). The PDF is as following:  

𝑓𝑋(𝑥) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2  

 

The previous concepts can be generalized to multidimensional realization spaces. A 

multidimensional random variable 𝑿 = (𝑋1, … . , 𝑋𝑝) can be seen as a set of unidimensional 

random variables following a multidimensional PDF 𝑓 which realization space is of dimension 

𝑝. Each element of the set can be dependent or independent of each other. A way to characterize 

how pairwise elements of the set of unidimensional random variables vary in relation to each 

other is to calculate the covariance for these two variables:  

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = ∫(𝑥𝑖 − 𝜇𝑋𝑖) (𝑥𝑗 − 𝜇𝑋𝑗) 𝑓(𝑥1, … , 𝑥𝑝)𝑑𝑥1…𝑑𝑥𝑝 

 

Comment: 𝐶𝑜𝑣(𝑋, 𝑋) = 𝑉𝑎𝑟(𝑋) and 𝐶𝑜𝑣(𝑋1, 𝑋2) = 𝐶𝑜𝑣(𝑋2, 𝑋1) 

The covariance can be extended to random vectors with inter-dependent components, as for 

example with three components:  

𝐶𝑜𝑣(𝑿) = (

𝑉𝑎𝑟(𝑋1) 𝐶𝑜𝑣(𝑋1, 𝑋2) 𝐶𝑜𝑣(𝑋1, 𝑋3)
𝐶𝑜𝑣(𝑋1, 𝑋2) 𝑉𝑎𝑟(𝑋2) 𝐶𝑜𝑣(𝑋2, 𝑋3)
𝐶𝑜𝑣(𝑋1, 𝑋3) 𝐶𝑜𝑣(𝑋2, 𝑋3) 𝑉𝑎𝑟(𝑋3)

) 

 

If the vector has 3 independent variables, the matrix will be diagonal with the variance elements 

on the diagonal.  
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The covariance matrix can also be evaluated for a sample of a continuous random variable with 

a finite number of elements sufficiently high enough: for a sample (𝑿𝑛)𝑛∈[1,𝑁]  =

(𝑋1,𝑛, … , 𝑋𝑝,𝑛)𝑛∈[1,𝑁|] with 𝑝 the number of random variables and 𝑁 the size of the sample:  

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = lim
𝑁→∞

1

𝑁 − 1
∑(𝑋𝑖,𝑛 −

𝑁

𝑛=1

𝜇𝑋𝑖)(𝑋𝑗,𝑛 − 𝜇𝑋𝑗) 

 

The generalization of the univariate normal distribution to the multidimensional case can be 

done: the covariance matrix is given in the place of the standard deviation. This generalization 

is named the multivariate normal distribution or joint normal distribution.  

A random variable 𝑿 = (𝑋1, … , 𝑋𝑝) follows a joint normal distribution of mean 𝝁 and 

covariance 𝚺, i.e., 𝑿~𝒩(𝝁, 𝚺),  if its PDF can be written as following:  

 

𝑓𝑿(𝑥1, … , 𝑥𝑝) =
1

(2𝜋)
𝑝
2√det 𝚺 

exp (−
1

2
(𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁)) 

 

with 𝝁 = (𝜇1, … , 𝜇𝑝)
𝑇
, and det 𝚺 the determinant of 𝚺 the covariance matrix. 

An example of how the covariance affects the shape of a multivariate distribution can be seen 

in the case of a couple of two random variables (𝑋1, 𝑋2) of mean (0,0) on Figure 1.4. The 

covariance matrix is in this case given by: 

 

𝐶 = (0.05
2 𝑎

𝑎 0.052
) 

 

The diagonal case 𝑎 = 0 corresponds to no covariance between 𝑋1 and 𝑋2 and is visible on 

Figure 1.4.a.  The non-diagonal case is given on Figure 1.4.b where 𝑎 = 0.052 × (−0.9) . It is 

noticeable, that in the case of non-diagonal covariance matrix, the correlation between the 

parameters is nonzero and has the same sign than the covariance.  

 

Moments of a random variable: The moments of a random variable can be seen as an 

alternative way to describe a RV from the PDF. The n-th statistical moment of the random 

variable 𝑋 is defined by:  

〈𝑋𝑛〉 = ∫ 𝑥𝑛𝑓(𝑥)𝑑𝑥
+∞

−∞

 

 

The first moment is the mean value 𝜇𝑋. With this first moment, we can define the n-th centered 

moment: 

〈𝛿𝑋𝑛〉 = ∫ (𝑥 − 𝜇𝑋)
𝑛𝑓(𝑥)𝑑𝑥

+∞

−∞
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(a) Diagonal 

 

(b) Non diagonal 

 
Figure 1.4 - Example of realizations of a 2D joint distribution: With diagonal covariance 

matrix (left) and non-diagonal covariance matrix (right) 

 

When the random variable is multivariate, this moment is called the marginal moment.  

Moreover, it is possible to calculate the mixed moment of a multidimensional RV 𝑿 =

(𝑋1, … , 𝑋𝑝) following the PDF 𝑓𝑿(𝒙):  

〈𝛿𝑋𝑖𝛿𝑋𝑗. . 𝛿𝑋𝑘〉 = ∫ (𝑥𝑖 − 𝜇𝑋𝑖) (𝑥𝑗 − 𝜇𝑋𝑗)… (𝑥𝑘 − 𝜇𝑋𝑘)𝑓𝑿(𝒙)𝒅𝒙
+∞

−∞

 

 

When the probability density function is not known, and when a sample (𝑋𝑖)𝑖∈[|1,𝑁|] with 

enough elements is available, it is possible to evaluate the mean value 𝜇𝑋 as stated previously 

and the n-th central moment of a sample with the following formula: 

〈𝛿�̃�𝑛〉 =
1

𝑁 − 1
∑(𝑥𝑘 − 𝜇𝑋)

𝑛

𝑁

𝑘=1

 

Equivalently, the mixed moment of a multivariate sample is calculated for a sample 

(𝑿𝑛)𝑛∈[|1,𝑁|]  = (𝑋1,𝑛, … , 𝑋𝑝,𝑛)𝑛∈[|1,𝑁 |] of a 𝑝 dimension multivariate RV with the following 

formula: 

〈𝛿𝑋𝑖𝛿𝑋𝑗 . . 𝛿𝑋𝑘〉 =
1

𝑁 − 1
∑(𝑋𝑖,𝑛 −

𝑁

𝑛=1

𝜇𝑋�̃�)(𝑋𝑗,𝑛 − 𝜇𝑋�̃�)(𝑋𝑘,𝑛 − 𝜇𝑋�̃�) 

1.2.3 Surrogate modelling  

In this dissertation, the Nusselt number is calculated with CFD for different flow 

configurations, operating conditions (flowrate, physical properties of the fluid) and models. In 

this context, the estimation with CFD of Nusselt number 𝑁𝑢 for a given set of operating 

conditions (or inputs) 𝒙𝒊𝒏𝒑𝒖𝒕𝒔 = (𝑥𝑖𝑛𝑝𝑢𝑡 1, 𝑥𝑖𝑛𝑝𝑢𝑡 2, … ) can be written: 

ℎ𝑐𝑜𝑛𝑣 = 𝑓(𝒙𝒊𝒏𝒑𝒖𝒕𝒔) 

where, 𝑓 represents the output of the underlying simulation model and flow configuration.  
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Similarly, experimental measurements of the heat transfer coefficient can be written as a 

function of the operating conditions depending on the flow configuration.  

In both cases, the estimation of 𝑓 for a wide range of inputs can be costly and is most of the 

time not affordable when thousands of inputs must be covered. In these situations, surrogate 

models can be used. A surrogate model is by definition an approximation of the function 𝑓 

enabling the estimation of the output for given inputs in negligible time. Surrogate models are 

estimated from available realization of 𝑓. For instance, when 𝑓 evolves as a linear function of 

the inputs, a linear regression on a limited number of training points (𝒙𝒊𝒏𝒑𝒖𝒕𝒔,𝒊, 𝑓(𝒙𝒊𝒏𝒑𝒖𝒕𝒔,𝒊)) 

enables the prediction of 𝑓 for arbitrary inputs in the range covered by the available 

realizations. In practice, linear regression is not suitable for all functions 𝑓 and more complex 

methods are used.  

The optimal spatial prediction problem or Kriging from the South African geostatistician D. G. 

Krige is one of these methods. Ordinary Kriging (OK) is one of the simplest methods used till 

today for spatial regression problems, its early development and principles are presented by N. 

Cressie in (Cressie, 1990). Suppose a sample of 𝑚 noisy observations of a quantity of interest 

(𝑓(𝒙𝒊))𝑖≤𝑚 is available for different inputs (𝒙𝒊)𝑖≤𝑚, kriging assumes: 

𝑓(𝒙𝒊) = 𝜇 + 𝛿(𝒙𝒊) 

 

where 𝛿 is a zero mean stochastic process of known covariance 𝐶 and 𝜇 the mean of the 

predictor. OK provides a predictor of 𝑓 denoted 𝑓∗ based on the observations and the known 

covariance 𝐶 which can be used to evaluate 𝑓 for any other inputs.  The estimator of 𝑓 provided 

with ordinary Kriging coincides with the Best Linear Unbiased Predictor (BLUP) which 

minimizes the prediction error (1.13): 

 

〈𝑓(𝑥) −∑𝜆𝑖𝑓(𝑥𝑖)

𝑚

𝑖=1

〉2 
(1.13) 

 
∑𝜆𝑖

𝑚

𝑖=1

= 1 (1.14) 

 

This predictor is linear as it is expressed from a linear combination of the observation (1.13), 

and it is unbiased due to the condition on the weights 𝜆𝑖 in (1.14). The coefficients 𝜆𝑖 

corresponding to the BLUP is obtained by combining the covariance matrix and the 

observations. A recent review of the use of kriging in surrogate modelling can be found in 

(Kleijnen, 2017; Kleijnen, 2009) in comparison to other surrogate models. 

 

In this dissertation, a different approach using Gaussian processes and Bayesian statistics was 

applied to estimate a surrogate model.  

Gaussian processes (GP) are a simple and general class of models of functions. A short and 

comprehensive description can be found in (Loyd, et al., 2014), which introduces Bayesian 
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statistics and gaussian processes for the linear regression problem.  A more detailed description 

can be found in (Rasmussen & Williams, 2006).  

In this dissertation, we are interested in regression problems: predicting continuous quantities 

from acquired data. When Gaussian processes are used for regression, they are combined with 

the Bayesian approach that consists of: 

- specifying prior beliefs on the parameters of the model that has been chosen using 

probability distributions 

- following rules of probability to update beliefs rationally (maximizing the 

likelihood) after observing data 

 

For example, let us investigate the use of Bayesian analysis combined to the linear regression 

model with Gaussian noise on the observed data that can be found in detail in (Loyd, et al., 

2014). A sample of training data 𝒙 = (𝑥𝑖)𝑖∈[1,𝑛] , 𝒚 = (𝑦𝑖)𝑖∈[1,𝑛] including error/noise 𝜖𝑖 on the 

measurement of 𝑦𝑖 is investigated in order to estimate the underlying function 𝑓 they represent. 

The data is written as following for a linear regression model which parameter is the slope 𝑚 

and.  

 
𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖, 𝑓(𝑥𝑖) = 𝑚𝑥𝑖  

(1.15) 

 

Priors must be given for this model: the noise and the slope are supposed to follow a zero-mean 

normal distribution such as 𝜖𝑖~𝒩(0, 𝜎𝜖
2 ) and 𝑚~𝒩(0,1). 

Comment: the linear model combined with the prior on 𝜖𝑖 and 𝑚 implicitly defines a joint prior 

for 𝒚 = {𝑦1, … , 𝑦𝑛}. 𝑦𝑖 is written as the sum of two RV following normal distribution implying 

that  

𝑦𝑖~𝒩(0, 𝑥𝑖
2 + 𝜎𝜖

2), 𝐶𝑜𝑣(𝑦𝑖, 𝑦𝑗) = 𝑥𝑖𝑥𝑗   

 

which, can be written as a joint Gaussian distribution: 

 𝒚~𝑁(𝟎, 𝚺) 

Σ𝑖𝑗 = 𝑥𝑖𝑥𝑗 + 𝛿𝑖
𝑗
𝜎𝜖
2 

(1.16) 

The presence of noisy inputs implies that the observations are realizations of a random process. 

Thus, the probability density of the observations given the parameters, called the likelihood can 

be defined.  

The different training points (𝑥𝑖, 𝑦𝑖) are drawn independently which leads to the following 

expression of the likelihood 𝑝(𝒚|𝑚, 𝒙): 

 

𝑝(𝒚|𝑚, 𝒙) =∏
1

√2𝜋𝜎𝜖2
exp(−

(𝑦𝑖 −𝑚𝑥𝑖)
2

2𝜎𝜖2
) 

𝑖

 

 

We are now looking for the posterior 𝑝(𝑚|𝒚, 𝒙) distribution in order to estimate the slope.  
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Bayes theorem is written: 

 

posterior =
likelihood × prior

marginal likelihood
 

𝑝(𝑚|𝑦, 𝑥) =
𝑝(𝑦|𝑚, 𝑥)𝑝(𝑚)

∫ 𝑝(𝑦|𝑚, 𝑥)𝑝(𝑚)𝑑𝑚
 

 

By replacing the different elements and keeping the parts which depends on 𝑚 (only the 

numerator) it is shown (Loyd, et al., 2014) that the posterior distribution follows a normal 

distribution:  

𝑝(𝑚|𝑦, 𝑥)~𝒩 (
∑ 𝑥𝑖𝑦𝑖𝑖

∑ 𝑥𝑖
2 + 𝜎𝜖2𝑖

,
𝜎𝜖
2

∑ 𝑥𝑖
2 + 𝜎𝜖2𝑖

) 

 

Its mean value is called the maximum a priori (MAP) estimate of 𝑚 which is the value of 𝑚 

maximizing the likelihood 𝑝(𝑦|𝑚, 𝑥). An example of estimation of the predictive density of 

the posterior is given on Figure 1.5. The red shades correspond to the quantiles of the predictive 

distribution 𝑝(𝑓(𝑥∗)|𝑿, 𝜇, 𝚺) where 𝑓(𝑥∗) is the evaluation of 𝑓 for an input 𝑥∗, 𝑿 = (𝒙, 𝒚) is 

the sample of training data, and 𝜇, 𝚺 are the prior beliefs on the model, (slope 𝑚 following a 

normal distribution and gaussian noise on the observation of the data). Realizations of the slope 

are given with solid line, and it is visible that adding training points reduces the sparseness of 

the predictions. The MAP is not shown but would correspond to the mean slope of the presented 

lines.  

 

  
Figure 1.5 – from (Loyd, et al., 2014): Example of linear regression using a gaussian process 

of mean 𝝁, kernel 𝚺 and Bayesian statistics. The realization points 𝑿 = (𝑥𝑖 , 𝑦𝑖)𝑖≤𝑁  are 

denoted with black points. The quantiles of the predictive density 𝑝(𝑓(𝑥∗)|𝑿, 𝝁, 𝚺) at each 

input locations are given with shades of red. Left: the predictive density is estimated from 3 

realizations (𝑥𝑖, 𝑦𝑖)𝑖≤𝑁, right: estimation from 15 realizations. 
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It is noticeable in the previous example how the Bayesian linear regression is a Gaussian 

Process as the model (1.15) combined to the prior on the model parameters is equivalent to 

define a consistent joint Gaussian distribution of the outputs given in (1.16). In the previous 

definition, “consistent” means that the observation of the larger set of variables does not impact 

the distribution of the smaller set. Meaning that if we assume  𝒚~𝑁(𝟎, 𝚺), then 𝑦𝑖~𝑁(0, Σ𝑖,𝑖).  

Making a prior on model parameters is equivalent to implicitly define a joint prior on the family 

(𝒚𝒊)𝑖∈[1,𝑛] which is a multivariate normal distribution with a covariance matrix (kernel 

function) depending on the model that is chosen. A Gaussian process is completely specified 

by its mean function 𝑚(𝑥) and covariance function or kernel 𝑘(𝑥, 𝑥′).  

 

For a gaussian process 𝑓(𝒙) we can define these quantities as: 

- 𝑚(𝒙) = 〈𝑓(𝒙)〉 

- 𝑘(𝒙, 𝒙′) = 〈(𝑓(𝒙) − 𝑚(𝒙))(𝑓(𝒙′) − 𝑚(𝒙′))〉  

The GP is denoted: 

𝑓(𝒙)~𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′) 

 

When data values (𝑓(𝒙𝒊))𝑖∈[1,𝑁]evaluated at points 𝑿 = {𝒙𝟏, … , 𝒙𝑵} are available, a gaussian 

process 𝑓~𝐺𝑃(𝜇, 𝑘) can be used to calculate the predictive distribution 

𝑝(𝑓(𝒙∗)| 𝒇(𝑿), 𝑿, 𝜇(. ), 𝑘(. , . )) (cf. (Duvenaud, 2014)) of the function value 𝑓(𝒙∗) at test point 𝒙∗.  

The expression takes the form: 

 

 𝑝(𝑓(𝒙∗)| 𝒇(𝑿), 𝑿, 𝜇(. ), 𝑘(. , . ))

=𝒩(𝑓(𝒙∗)|𝜇(𝒙∗) + 𝑘(𝒙∗, 𝑿)𝑘(𝑿, 𝑿)−𝟏(𝒇(𝑿) − 𝜇(𝑿)), 𝑘(𝒙∗, 𝒙∗)  
− 𝑘(𝒙∗, 𝑿)𝑘(𝑿, 𝑿)−1𝑘(𝑿, 𝒙∗)) 

(1.17) 

 

This expression depends importantly on the kernel that is chosen.  Different types of kernels 

have been investigated in reference (Duvenaud, 2014) as well as an automatic way of finding 

the kernel that is the most adapted to represent data. Examples of kernel that can be chosen 

with their hyper parameters are visible on Figure 1.6 (plotted in black solid line). In addition, 

the general shape obtained when plotting the prediction of a function 𝑓 from which the data is 

sampled (red or blue curve) are depicted.  The choice of the linear kernel (Lin) leads to a linear 

regression model. In contrast, a squared exponential kernel (SE) leads to smooth prediction of 

𝑓 which slope varies smoothly on the range of the data. Periodic functions can be predicted by 

using a periodic kernel (Per) which is composed of a periodic function and a gaussian.  
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Figure 1.6 – From (Duvenaud, 2014). Examples of kernel for GP (solid black line) and 

impact on the type of curves (blue and red) that can be found. 

 

Even though the expression (1.17) is complicated, the evaluation of this quantity only need a 

few matrix operations which takes a fraction of a second with numerical implementations 

which is quicker by several order of magnitudes than most of CFD runs presented in §1.1. Most 

of the data generated by CFD codes were further processed by using GP for the design of 

calibrated surrogate models predicting a given output for a cheap computational cost. The 

methodology used will be presented in the following chapters 

 

An example of the successive steps of generating a GP model in order to reproduce a function 

with a squared exponential (SE) kernel is shown on Figure 1.7 for the function: 

𝑓(𝑥) =
5

𝑥
cos (

𝑥

2
) + 1 

 

The estimation of the predictive distribution is done using scikit-learn (Pedregosa, 2011) 

written for the programing language Python. 

 

It is visible that for increasing training points (𝑁 = 2, 3 and 5), the update of the prior beliefs 

using Bayes theorem leads to predictions getting closer to the true signal. In addition, the 

estimated standard deviation gets smaller. 
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a) 𝑁 = 2 

 

b) 𝑁 = 3 

 

c) 𝑁 = 5 

 
Figure 1.7 - Example of regression of a function 𝑓 using a GP model with a squared 

exponential kernel – Red crosses correspond to measured points used in order to fit the true 

signal in solid black line. The black dashed curve corresponds to the prediction calculated 

after conditioning the GP with the data points. The shades of grey represent quantiles of the 

predictive density at each input location. 

 

1.2.4 Numerical methods for UQ 

Each source of error/uncertainty identified in §1.2.1 must be investigated and quantified in 

order to estimate a confidence interval on the computation of the Nusselt number with CFD. 

This quantification is done using different techniques: 

- The uncertainty of the simulation due to uncertain simulation inputs 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 is 

estimated by propagating the uncertainty of inputs through the calculation of the 

Nusselt with CFD. Two methods are tested in this dissertation described in §1.2.4.2. 

- The numerical error 𝐸𝑛𝑢𝑚 is estimated using Richardson extrapolation combined to a 

grid convergence method described in §1.2.4.3.  

 

The techniques are presented for the estimation of the uncertainty of scalar outputs, for 

instance, a local value of the calculated Nusselt number. However, multi-dimensional outputs 

will also be processed in this dissertation, for instance two dimensional maps of the Nusselt 

number on a surface. The presented techniques could be extended to these multi-dimensional 

outputs by simply applying them to each local value. Nevertheless, the computational cost of 

such an approach is prohibitive for high resolutions maps. Thus, the Proper Orthogonal 

Decomposition (POD) is used in this work to reduce the dimension of the output data and will 

be presented in §1.2.4.1.  
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1.2.4.1 Dimension reduction – Proper Orthogonal Decomposition 

POD (Proper Orthogonal Decomposition) is a post-processing technique which generates a 

modal decomposition of functions based on observations. This technique is used in a wide 

range of domain and is known under different names: 

- Karhun-Loève Transform (KLT) in pattern recognition (Sirovich & Kirby, 1987)? 

- Principal Components Analysis (PCA) in statistical literature (for example 

(Diamantaras & Kung, 1996)).  

- Proper Orthogonal Decomposition (POD) in mechanical engineering (Lumley, 1967). 

 

The use of POD in fluid mechanics answers to one problematic faced when studying the motion 

of turbulent flow, which is the reduction of the turbulent motion degrees of liberty to a small 

number. The first introduction of POD in fluid mechanics has been done by Lumley in 1967 

(Lumley, 1967), showing the advantages of this technique to capture the evolution of coherent 

structures in turbulent flows. The use of POD for this purpose is now widely spread and an 

early review can be found in (Berkooz, et al., 1993). 

The POD is one of the methods used to express for instance a function of time and space 𝑓(𝒙, 𝑡) 

in a function base (cosines, sines, polynomials …). In most of the cases, the spatial and 

temporal variations are separated in order to represent the system evolution as the temporal 

evolution of coherent structures facilitating the comprehension of the evolution. The POD is 

written: 

 

𝒇(𝒙, 𝑡) ≅ ∑𝑎𝑘(𝑡)𝜙𝑘(𝒙)

𝑁

𝑘=1

 
(1.18) 

 

where (𝜙𝑘)𝑘∈[1,𝑁] and (𝑎𝑘)𝑘∈[1,𝑁] are respectively the modes and components of the 

decomposition. The mathematical aspect of this decomposition (proof of optimal 

decomposition, existence…) can be found in an educational way in (Holmes, et al., 1997; 

Cordier & Bergmann, 2008). 

 

For instance, this method is used in (Podvin, et al., 2020) for the study of the turbulent 

structures which are generated around an Ahmed body, with 𝒇 being the velocity field. This 

method has been applied for 2D and 3D velocity fields. The spatial distribution of the modes 

and the temporal fluctuations of the components have been used to describe the behavior of the 

flow in the wake of the body. POD made simpler the study of this evolution as the number of 

free parameters in this case has been reduced from the spatial resolution of the initial grid on 

which the data is retrieved, to a small number of modes. Moreover, POD provided a modal 

base on which the comparison between experiments and computations was made simpler. Also, 

the fact that a low number of modes is used to reproduce accurately the behavior of the flow is 

harnessed for the construction of Reduced Order Models (ROM) (for instance (Holmes, et al., 
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1997; Podvin, 2011)). This construction can be done for instance with Galerkin projection of 

the Navier-Stokes equation combined to the POD decomposition with which the components 

𝑎𝑘(𝑡) are then solved. This specific aspect of POD makes its use attractive for optimization 

problems related to fluid mechanics. In fact, even though the development of CFD and 

computing performance made easier the study of hydraulic behaviors in industrial system, the 

large number of free parameters in such problems are not suitable for CFD approach which 

cost would be prohibitive. An example of the combination of POD to optimization is given in 

(Bergmann, et al., 2005) where optimization of the aerodynamic behavior of rotary cylinder is 

done with POD reduced order model.  

 

Different approaches exist for the POD, the one used in this work is based on the snapshot 

method given in (Sirovich & Kirby, 1987) for human face recognition. In this dissertation, the 

POD is applied to maps of the Nusselt number or Sherwood number which evolve with the 

Reynolds number. The Nusselt number defined from the convective wall heat transfer 

coefficient ℎ𝑐𝑜𝑛𝑣 is taken as example hereinafter.  

 

𝑁𝑆 simulations are used to provide outputs of the Nusselt number field which are called the 

snapshots. Let us suppose that the dimension of the snapshots is 𝑚, corresponding to the 

discretization of the Nusselt number field on a surface. The 𝑗-th snapshot can be written 𝑵𝒖𝒋 =

(𝑁𝑢1
𝑗
, 𝑁𝑢2

𝑗
, … , 𝑁𝑢𝑚

𝑗
). In addition, let us suppose that these snapshots were obtained for 

different fluid velocity leading to different Reynolds numbers (𝑅𝑒𝑗)𝑗∈[1,𝑁𝑆]
: 

𝑁𝑢𝑖
𝑗
=  𝑁𝑢(𝒙𝒊, 𝑅𝑒𝑗) 

 

Different steps are followed in order to find the modal base. In this dissertation, the whole data 

is organized in a snapshot matrix 𝐴 such as: 

 

𝐴 = (
𝑁𝑢1

1

⋮
𝑁𝑢𝑚

1

…
⋱
…

𝑁𝑢1
𝑁𝑆

⋮

𝑁𝑢𝑚
𝑁𝑆

) 

 

In the snapshot methodology, the modal basis is found by computing the 2-point spatial 

correlation matrix between the different snapshots at the different locations of the field. This 

matrix is given by 𝑀 =
1

𝑁𝑆
𝐴 𝐴𝑡  is computed. 

The POD is built in order to satisfy an optimality criterion, the POD provides a reduced 

dimension subspace of the input vectors on which the error between the projection and the 

original vector is minimized. It can be proven that finding the POD modes is equivalent to 

solving an eigenvalue problem on 𝑀 (Cordier & Bergmann, 2008). The matrix 𝑀 is positive 

and symmetric and thus diagonalizable and can thus be written: 

𝑀 = 𝑃𝐷 𝑃𝑡  
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where the columns of 𝑃 are the eigenvectors of 𝑀 which are the POD modes computed from 

𝐴.  

From the obtained eigenvectors 𝜙1, …𝜙𝑁𝑆, it is possible to reconstruct the different snapshots 

with: 

𝑁𝑢(𝑥𝑖 , 𝑅𝑒𝑗) = ∑〈𝑁𝑢𝑗 , 𝜙𝑘〉 𝜙𝑘(𝑥𝑖)

𝑁𝑆

𝑘=1

=∑𝑎𝑘(𝑅𝑒𝑗) 𝜙𝑘(𝑥𝑖)

𝑁𝑆

𝑘=1

 

In practice, all the eigenvectors are not kept, and a truncation is done to keep only 𝑁𝑃𝑂𝐷 modes. 

By construction, the eigenvalues obtained in 𝐷 are organized from the highest values to the 

lower values and represent the energy of each mode which in a sense represent their 

importance. The Relative Information Content (RIC) number is defined as following from the 

eigenvalues (𝜆𝑘)𝑘∈[1,𝑁]: 

𝑅𝐼𝐶(𝑖) =
∑ 𝜆𝑘
𝑖
𝑘=1

∑ 𝜆𝑘
𝑁𝑆
𝑘=1

 

 

Its value gives an indication of the relative importance of each mode which can be used to 

truncate the POD. In practice, the truncation will be carried out in order to obtain the mean 

distribution of the Nusselt number over the experiments. The deviation between the truncated 

POD and the original Nusselt number will be taken into account in the uncertainty of the 

Nusselt distribution when comparing experiments to CFD in the frame of uncertainty 

quantification.  

The modal base found from the snapshots is then used in order to reconstruct the Nusselt 

distribution from the truncated POD. 

  

1.2.4.2 Covariance propagation 

The operating conditions during heat or mass transfer experiments, which are in this 

dissertation, the turbulence regime in the test section and the diffusion properties of heat and 

mass transfer, are obtained through measurements. These measurements usually show aleatory 

time fluctuations and the models underlying the calculation of the physical properties (diffusion 

coefficient, thermal conductivity, solubility, density …) include most of the time an additional 

uncertainty. In the context of the uncertainty quantification of CFD calculation of the Nusselt 

number, the experimental configurations, and their operating conditions (flowrate, 

temperature, physical properties …) are reproduced. The influence of the uncertainty of the 

operating conditions on the simulation is quantified through the calculation of the inputs 

simulation uncertainty 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 depicted in §1.2.1. 
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The mean value 𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝  and standard deviation 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝  are calculated with:  

𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 = 𝑁𝑢 (𝝁𝒙𝒊𝒏𝒑𝒖𝒕𝒔) − 𝜇𝑁𝑢(𝒙𝒊𝒏𝒑𝒖𝒕𝒔) 

𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 = 𝜎𝑁𝑢(𝒙𝒊𝒏𝒑𝒖𝒕𝒔) 

 

where, 𝝁𝒊𝒏𝒑𝒖𝒕𝒔 denotes the mean values of the simulation inputs (typically the flowrate, 

temperature, physical properties). On one hand, 𝑁𝑢(𝝁𝒊𝒏𝒑𝒖𝒕𝒔) is obtained by considering the 

simulation for determined inputs (being their mean values 𝝁𝒊𝒏𝒑𝒖𝒕𝒔). On the other hand, 

𝜇𝑁𝑢(𝒙𝒊𝒏𝒑𝒖𝒕𝒔) and 𝜎𝑁𝑢(𝒙𝒊𝒏𝒑𝒖𝒕𝒔) are the mean value and standard deviation of the Nusselt number 

when taking into account the uncertainty of the simulation inputs. They are estimated with 

propagation techniques. The objective of uncertainty propagation is to estimate the probability 

density function (PDF) of an output when its calculation relies on uncertain inputs. Two general 

class of method exist to propagate uncertainty through computations:  

- Intrusive methods: the PDF is given, and the propagation is done directly by the 

solver. 

- Non-intrusive methods: The PDF is estimated from realization of the computations. 

The commercial CFD software used in this thesis do not include intrusive methods. Thus, only 

non-intrusive methods of uncertainty propagation will be used and presented. 

1.2.4.2.1 Random sampling - Monte Carlo 

The first method used in order to propagate uncertainty is Random Sampling (RS) coupled 

with Monte-Carlo method. Monte-Carlo methods are statistical approach which aim to build 

estimators of the output statistical moments based on a large number of realizations and the 

central limit theorem. The methodology used to propagate the inputs uncertainty on the 

calculation of the Nusselt number performs the following steps: 

- A random sample is generated for the input random variables (𝒙𝒊)𝑖≤𝑁𝑅𝑆 with a given 

joint probability density function. Random samples are drawn with a pseudo-random 

number generator. The theory of these generators will not be covered in this thesis. The 

random list generator used in this thesis is based on Mersenne twister algorithm. 

(Matsumoto & Nishimura, 1998). 

- An output sample (𝑁𝑢(𝒙𝒊))𝑖≤𝑁𝑅𝑆
 is evaluated from the sample of inputs by evaluating 

the response for each element of the sample.   

- By considering each draw as the realization of independent and identically distributed 

random variables and with the central limit theorem, the mean and standard deviation 

of output RV is estimated from asymptotic value of the mean and standard deviation 

calculated from the sample. 

The process for a single input parameter passed as argument in computations is depicted in 

Figure 1.8.  



36 Uncertainty quantification applied to Computational Fluid Dynamics 

 

 

 
Figure 1.8: Process of propagating a random variable (Gaussian for instance) 

through a code 

The mean and standard deviation of the Nusselt calculation can be written: 

𝜇𝑁𝑢 ≈
1

𝑁𝑅𝑆
∑𝑁𝑢(𝑥𝑖)

𝑁𝑅𝑆

1=1

 

𝜎𝑁𝑢 ≈
1

𝑁𝑅𝑆 − 1 
∑(𝑁𝑢(𝑥𝑖) − 𝜇𝑁𝑢)

2

𝑁𝑅𝑆

1=1

  

 

The disadvantage of this method is the required CPU times for each computation. In fact, these 

methods require thousands of draws in order to have converged statistics. However, the 

computation time for each case can take several hour or days with CFD codes. Thus, a 

surrogate model is designed prior to the MC draws with gaussian processes presented in 

§1.2.3. The evaluation of the CFD output is done with the surrogate model with a negligible 

computational cost allowing this kind of procedure.  

1.2.4.2.2 Deterministic sampling 

Another non-intrusive method has been used to propagate the simulation inputs uncertainty. 

This method is called Deterministic Sampling (DS) and is detailed in references (Hedberg & 

Hessling, 2015; Hessling, 2013). This method originates from the Unscented Kalmann 

Filtering (UKF) which uses weighted sigma points in order to propagate the covariance of 

gaussian inputs through nonlinear transformations (Julier, et al., 1995; Julier & Uhlmann, 

2004). This method relies on the representation of statistical information of the inputs with a 

sample, as it is for random sampling exposed in the previous paragraph. The difference between 

both methods is the number of elements in the sample which is significantly smaller in UKF 

(2𝑛 sigma points for 𝑛 uncertain parameters for UKF, thousands for RS); and the choice of the 

elements of the sample, which is not random in this case, but done with deterministic rules. 

In both cases, a gaussian distribution is fitted on the realizations of the output, either with the 

central limit theorem for RS, or by combining the evaluation of weighted sigma points for 

UKF. UKF presents the advantage of being affordable when the estimation of the output for a 

given set of inputs is non negligible (as it is for CFD). Nevertheless, it has been shown that the 
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performance of the UKF is impacted for increasing number of uncertain parameters due to the 

definition of the weights and sigma points that are chosen to evaluate the output (corresponding 

to the Standard excitation matrix in Appendix A).  

The main idea of evaluating the response of weighted sigma points to deduce the output 

distribution is kept in the formulation of the DS for uncertainty quantification on CFD 

simulations given in (Hedberg & Hessling, 2015). The difference resides in the choice of the 

sigma points and weights. An example of DS ensemble is given on Figure 1.9, where three 

sigma points (𝑋𝑖)𝑖∈[1,3] are chosen to represent an input RV 𝑋 following a univariate gaussian 

distribution that is given as an input of a function 𝑓. In this example, the function 𝑓 is defined 

as: 

𝑓(𝑥) = 3𝑥0.8 + 5 

 

The response is evaluated for these inputs, allowing at the end of the process to estimate the 

mean and standard deviation of the random variable 𝑓(𝑋) with: 

𝜇𝑓(𝑋) = 〈𝑓(𝑋)〉 =∑𝑤𝑖𝑓(𝑋𝑖)

3

𝑖=1

 

𝜎𝑓(𝑋) 
2 = 〈𝛿2𝑓(𝑋)〉 =∑𝑤𝑖(𝑓(𝑋𝑖) − 𝜇𝑓(𝑋))

2
3

𝑖=1

 

where, 𝑋𝑖 are the sigma points and 𝑤𝑖 are the associated weights. Ensembles with their weights 

are discussed in (Sahlberg, 2016) for gaussian distributions with some of them reported in 

Appendix A.  

In the general case, the probability density function of the inputs might not be a Gaussian and 

can even not be available. In these situations, the difficulty of this methodology resides in the 

choice of the sigma points and the weights. This choice is done by considering the statistical 

moments of the input random variables. The choice of the sample of 𝑛 elements �̃� =
(�̃�𝑖𝑗)𝑖∈[1,𝑛],𝑗∈[1,𝑝] for an input random variable 𝑿 = (𝑋𝑗)𝑗∈[|1,𝑝|] composed of 𝑝 independent 

variables of mean value 𝝁𝑿, can be done by respecting successive statistical moments of order 

𝑚.  

In the frame of DS using weighted sigma points, respecting the 𝑚-th statistical moment can be 

written for the parameter 𝑋𝑗 as following:  

 

∑𝑤𝑖

𝑛

𝑖=1

= 1, ∑𝑤𝑖(�̃�𝑖𝑗 − 𝜇)
𝑚

𝑛

𝑖=1

 = 〈𝛿𝑋𝑗
𝑚〉 

(1.19) 

Different strategies exist to choose a sample that respects these moments. In general, to encode 

𝑚 moments, a system of 𝑚 nonlinear equation needs to be solved which allows to get each 

sigma point (𝑿𝑖)𝑖∈[1,𝑛] of the sample.  
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Figure 1.9: Propagation with Deterministic Sampling of the uncertainty of an input following 

a normal distribution 𝒩(5,  0.5) through the function 𝑓. Three sigma points having each a 

weight representative of the input parameter PDF (left). The evaluation is shown on the 

middle plot with estimations of the resulting mean value and standard deviation. The output 

PDF is then shown on the right plot with the calculated mean (in blue) and a 2 sigma interval 

(red).  

 

Solving nonlinear equations is a hard task, thus another strategy discussed in (Hessling, 2013) 

consists of choosing sigma points and modifying the weights to reach the aimed statistical 

moment. In this case, the weights can be chosen by solving linear equations. 

The more sigma points are calculated; the more statistical moments can be respected. The work 

that is presented in the reference (Hedberg & Hessling, 2015) for propagation through CFD 

simulation shows that respecting four statistical moments are satisfactory for the creation of a 

sample with five independent uncertain parameters, with negligible change when taking into 

account higher order statistical moments. 

In this dissertation, the method will only be illustrated for the simple case of propagating the 

variance of a univariate random variable following a normal distribution through the 

calculation of the Nusselt number with CFD. In this case, the mean value and standard 

deviation of the output is estimated with: 

 

〈𝑁𝑢(𝑋)〉 =∑𝑤𝑖𝑁𝑢(𝑋𝑖)

𝑁

𝑖=1

 

〈𝛿𝑚𝑁𝑢(𝑋)〉 =∑𝑤𝑖(𝑁𝑢(𝑋𝑖) − 〈𝑁𝑢(𝑋)〉)
𝑚

𝑁

𝑖=1
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Where 𝑋𝑖 correspond to the sigma points chosen for the uncertain input 𝑋, and 𝑤𝑖 the associated 

weights.  

1.2.4.3 Grid Convergence Method (GCM) 

The equations modelling the dynamics of fluid flow have been set for continuous space and 

time coordinates. When solving these equations numerically, these coordinates are discretized, 

inducing an error in the computations. The method used in this thesis to estimate the numerical 

error is based on ASME work in reference (Coleman & Members, 2009) giving guidelines for 

its estimation. The approach is known as the Grid Convergence Method (CGM) which is based 

on the Richardson Extrapolation (RE) (Richardson, 1911). For a computed variable 𝑉 

dependent on the grid of size ℎ, the discretization error called the numerical error is estimated 

by making a Taylor expansion of 𝑉 for ℎ: 

𝐸(𝑉ℎ) = 𝑉𝑒𝑥𝑎𝑐𝑡 − 𝑉ℎ = 𝐶1ℎ + 𝐶2ℎ
2 +⋯  

where, 𝐶1, 𝐶2, … correspond to the derivative of 𝑉 when taken as a function of ℎ. 

Since its original formulation, this method has been extensively studied in literature leading to 

a good understanding of the results obtained. Indication of the method is given in (Celik, et al., 

2008). The use of this method for non-uniform grids is discussed in (Celik & Karatekin, 1997).  

The estimation of the numerical error in this dissertation has been done with the following 

steps: 

- Generate 𝑚 meshes with (𝑁𝑖)𝑖∈[|1,𝑚|] cells with a refinement factor desirably such as 

𝑟 =
ℎ𝑐𝑜𝑎𝑟𝑠𝑒

ℎ𝑓𝑖𝑛𝑒
> 1.3  where ℎ is the cells height 

- Evaluate the results of the computation 𝑦𝑁𝑖 of the quantity of interest 𝑦 for each mesh 

- Fit a function which is of the type 𝑦𝑁 = 𝑓(𝑁) = 𝑓0 +
𝑎

𝑁3
, with 𝑁 the number of cells of 

the model on the data (𝑁𝑖, 𝑦𝑁𝑖). 𝑓0 denotes the intersection of the regression law for 
1

𝑁
→ 0 and 𝑎 is another coefficient fitted on the data.  

- Determine with the fit the numerical error for a mesh of size 𝑁 : 

o Bias 𝜇𝐸𝑁𝑈𝑀(𝑁) = 𝑓(𝑁) − 𝑓0 =
𝑎

𝑁3
  

o Standard deviation 𝜎𝐸𝑁𝑈𝑀 = √
1

𝑚−1 
∑ (𝑓(𝑁𝑖) − 𝑦𝑁𝐼)

2𝑚
1  

1.3 Conclusion 

This chapter presented different turbulence models and wall treatment which are available in 

most of commercial CFD software. The turbulence closure provided by these models and the 

wall functions which are used have been calibrated in literature on specific test cases. 
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Therefore, their use in the industry undergoes a validation process which aims to determine 

their accuracy regarding real life situations in complex geometries. This validation is done in 

the uncertainty quantification frame which aims to identify and quantify the different sources 

of uncertainties (epistemic and aleatory) affecting the comparison between CFD and real-life 

experiments. In the nuclear industry, the validation of these codes is done with the approach 

given by the ASME guide for the validation of CFD when calculating the heat transfer 

coefficient. The nomenclature and definitions of the different source of uncertainties have been 

given in addition to methods to estimate their values. 

The validation is done on reduced scale mock-ups of nuclear plant components with reduced 

Reynolds number due to the difficulty to reach the Reynolds number of an operational reactor 

in experimental facilities. The transposability of the results between the mock-up and reactor 

scales is investigated in this dissertation. The extrapolation of the errors and uncertainties from 

experimental Reynolds numbers to the reactor scale Reynolds numbers could not be done 

during this thesis. The transposition of the errors to the reactor scale is studied in this 

dissertation by calculating the evolution of the model error with the Reynolds number. 

  

The first step for the estimation of the model error is the generation of experimental data with 

which the assessment of the deviation between CFD and experiments will be possible. An 

important aspect of this work has been the development of a measurement methodology based 

on the heat and mass transfer analogy. This measurement method has first been tested on a 

rectangular channel and compared to literature heat transfer coefficient data. The presentation 

of this step is given in Chapter 2. Then the uncertainty quantification process is applied to CFD 

computations with two commercial codes used in industry on the rectangular channel case in 

Chapter 3. Following these preliminary tests, the approach has been reproduced on an industrial 

geometry. Heat and mass transfer measurements were done in a steam generator water box 

mock-up for Reynolds number in the range [105, 106], which will be presented in Chapter 4. 

These experiments were reproduced with CFD in Chapter 5 with different turbulence models. 

The comparison between the experimental data and the CFD calculations, and the evolution of 

the model error will be presented in Chapter 6.  



 

 

Chapter 2 Mass transfer measurements in a 

rectangular channel and heat transfer analogy  

2.1 Introduction 

The work presented in this chapter has been published in the proceedings of the conference 

ATH’20 (Advances in Thermal Hydraulics) (Khayiguian, et al., 2020).  

A method based on the heat and mass transfer analogy has been used in order to generate heat 

transfer data for comparison with heat transfer simulations (CFD). In this study, the mass 

transfer coefficient has been measured experimentally for an extensive range of Reynolds 

number in a rectangular channel with the use of gypsum dissolution in water. Heat and mass 

transfer analogy has been studied in literature, for instance, a review can be found in (Goldstein 

& Cho, 1995) for measurements with naphthalene sublimation for estimations of thermal 

transfer in air. For gypsum dissolution in water, partial comparison with heat transfer has been 

made in (Chang, et al., 2013) for a cylinder in cross flow for Reynolds number around 6700. 

The measured distribution of the Sherwood number has been found to be in good agreement 

with heat transfer measurements at equal Reynolds number corroborating the heat and mass 

transfer analogy assumption. In this dissertation, the Reynolds numbers tested are much higher 

and the flow configuration is not the same. For these turbulence regimes, the gypsum surface 

roughness has been found to affect the mass transfer, which deviates from the smooth wall 

case. In this chapter, the analogy between heat and mass transfer is presented, then the effect 

of roughness on heat/mass transfer is detailed. Finally, the experimental apparatus and 

methodology used in order to obtain smooth wall heat transfer data from gypsum measurements 

will be presented with their results, in comparison of heat transfer data from literature. 
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2.2 Transposition of the mass transfer coefficient 

2.2.1 Heat and mass transfer analogy 

Heat and mass transfer are both diffusion process. The analogy between the two phenomena 

relies on the expression of the heat/mass flux which is either expressed with Fick law for mass 

diffusion or Fourier law for heat (Bejan, 2013). The similarity of these phenomenological laws 

leads to transport equations in flows which are the same in both case with different coefficient. 

For instance, the similarity between the heat and mass transfer can be understood by looking 

the Reynolds Average Navier Stokes (RANS) equations for mass and energy. The flow is 

supposed incompressible, and the effect of viscous stress in the energy equation from which 

the temperature equation is inferred is neglected. No volumetric heat or mass source are 

present. The equation can be written as following (Bejan, 2013) :   

𝜌𝐶𝑝𝑢𝑗
𝜕𝑇

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[𝜆
𝜕𝑇

𝜕𝑥𝑗
− 𝜌𝐶𝑝𝑢𝑗′𝑇′̅̅ ̅̅ ̅̅ ]  

𝑢𝑗
𝜕𝑐

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[𝐷
𝜕𝑐

𝜕𝑥𝑗
− 𝑢𝑗′𝑐′̅̅ ̅̅ ̅] 

 

For both quantities 𝑋 = 𝑇, 𝑐 , the term 𝑢𝑗′𝑋′̅̅ ̅̅ ̅̅  represent a fluctuating part due to the turbulence 

of the flow. The Simple Gradient Diffusion Hypothesis is expressed as following: 

𝑢𝑗′𝑇′̅̅ ̅̅ ̅ = −𝛼𝑡
𝜕�̅�

𝜕𝑥𝑗
 , 𝑢𝑗′𝑐′̅̅ ̅̅ ̅ = −𝐷𝑚,𝑡

𝜕𝑐̅

𝜕𝑥𝑗
  

 

with, 𝛼𝑡 and 𝐷𝑚,𝑡 respectively the turbulent heat diffusion coefficient and turbulent mass 

diffusion coefficient, related to the turbulent Prandtl number and Schmidt number: (see 

§1.1.3.4) 

𝑃𝑟𝑡 =
𝜈𝑡
𝛼𝑡
, 𝑆𝑐𝑡 =

𝜈𝑡
𝐷𝑚,𝑡

 

 

with, 𝜈𝑡 the eddy viscosity that can be defined for eddy viscosity turbulence model as indicated 

in §1.1.3.3. The equation above can be non-dimensionalized by introducing the Reynolds, 

Prandtl number and Schmidt numbers defined in §1.1.2 for a characteristic length 𝐷𝐻 and 

characteristic velocity of the flow 𝑈. Moreover, the dimensionless temperature and mass 

concentration can be defined as following:  

𝜃 =
𝑇 − 𝑇∞ 
𝑇𝑤 − 𝑇∞

    𝜙 =
𝑐 − 𝑐∞ 
𝑐𝑤 − 𝑐∞

 

 

The subscript 𝑤 denotes wall quantities and the subscript ∞ reference conditions.  
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By using 𝐷𝐻 as a reference length, and 𝑈 as reference velocity, the velocity and 𝑥-j coordinate 

derivative are non-dimensionalized as follows:  

𝜕

𝜕𝑥�̂�
=
𝐷𝐻𝜕

𝜕𝑥𝑗
,    𝑢�̂�  =

𝑢𝑗

𝑈
 

The equations can finally be written: 

 

�̂�𝑗
𝜕𝜃

𝜕𝑥�̂�
=

1

𝑅𝑒𝑃𝑟

𝜕

𝜕𝑥�̂�
[(1 +

𝜈𝑡
𝜈

𝑃𝑟

𝑃𝑟𝑡
)
𝜕𝜃

𝜕𝑥�̂�
]  

�̂�𝑗
𝜕𝜙

𝜕𝑥�̂�
=

1

𝑅𝑒𝑆𝑐

𝜕

𝜕𝑥�̂�
[(1 +

𝜈𝑡
𝜈

𝑆𝑐

𝑆𝑐𝑡
)
𝜕𝜙

𝜕𝑥�̂�
]  

 

It can be noticed that for equal Prandtl and Schmidt number, the solutions of these equations 

are the same for equal boundary conditions, equal diffusion properties and flow configuration. 

The difference between the two situations could arise from the turbulent Prandtl number and 

Schmidt number. In fact, as it has been quickly presented in §1.1.3.4, the turbulent 

Prandtl/Schmidt number evolves when getting close to the surface which could affect the 

Sherwood and Nusselt number comparison. Several orders of magnitude separate the Prandtl 

number of water and the Schmidt number of gypsum dissolving in water. Nevertheless, in both 

cases, the boundary layers are driven by convection. 

The heat/mass transfer at the fluid/wall are described with the Nusselt/Sherwood number 

defined in §1.1.2. The solution of the equations for energy and mass as depicted in the equations 

above gives the function describing the general behavior of the heat and mass transfer. With 

the use of Vaschy-Buckingham theorem, it is possible to write this solution as a function of the 

dimensionless numbers and dimensionless coordinates:  

 

𝑁𝑢 =  𝑔(𝑅𝑒, 𝑃𝑟, �̂�)  

𝑆ℎ = 𝑔(𝑅𝑒, 𝑆𝑐, �̂�) 

 

For identical flow configuration, boundary conditions and Prandtl and Schmidt numbers, the 

heat and mass transfer should be the same. Thus, the methodology used in this chapter in order 

to obtain the heat transfer coefficient from the gypsum dissolution technique has been to:  

- Find the functional relationship 𝑔 for the Sherwood number in the experimental range 

of Schmidt and Reynolds number, based on the experiments results and literature.   

- Transpose the relation to the aimed Prandtl number in order to evaluate the Nusselt 

number. 

2.2.2 State of the art 

A rich literature is available for the heat and mass transfer analogy, the most classical method 

to obtain the heat transfer coefficient from the knowledge of mass transfer coefficient is the 
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Chilton--Colburn J-factor analogy (see for instance (Bejan, 2013)). This analogy relies on the 

Reynolds analogy between heat transfer and wall friction for turbulent flow and can be written 

in a simplified way as following: 

 
𝑁𝑢 =

1

2
𝐶𝑓𝑅𝑒 𝑃𝑟

1
3, 𝑆ℎ =

1

2
𝐶𝑓𝑅𝑒 𝑆𝑐

1
3, 𝐶𝑓 =

𝜏𝑤
1
2𝜌𝑈∞

2
 (2.1) 

 

where 𝐶𝑓 is the friction coefficient, defined from the wall shear-stress 𝜏𝑤, the density 𝜌 and a 

reference velocity 𝑈∞. One can also express the friction factor 𝐶𝑓 as a function of the Reynolds 

number in order to express the Nusselt number (respectively Sherwood) number as a function 

of only the Reynolds and Prandtl (resp. Schmidt) numbers.  

Reynolds’s analogy expressed for heat and mass transfer in (2.1) can also be re-written as 

following:  

𝐹 =
𝑁𝑢

𝑆ℎ
= (
𝑃𝑟

𝑆𝑐
)
1/3

 

 

The coefficient 
1

3
 relating to the dependency of the heat (resp. mass) transfer to the Prandtl 

(resp. Schmidt) number is not suitable for all the configuration. Thus, the transposition factor 

𝐹 is written as a function of the Prandtl and Schmidt number as following:  

𝐹 = (
𝑃𝑟

𝑆𝑐
)
𝑛

 

 

where 𝑛 is chosen in the range [0.3, 0.4] depending on the configuration.  

 

The use of the analogy between heat and mass transfer for estimation of the Nusselt number 

from Sherwood measurements has been widely used with the naphthalene sublimation 

technique for measurements in air. In this case, the Schmidt and Prandtl number are of the same 

order of magnitude. A written article by Goldstein and Cho (Goldstein & Cho, 1995) reviews 

different measurements that have been carried out with the naphthalene and presents the pros 

and con of this method. Also, experimental validation of the analogy is presented in (Kulkarni, 

et al., 2017) and (Mittal, et al., 2017) for laminar and turbulent boundary layer flow and 

separated flow for a backward facing step. In these two cases of heat and mass transfer 

measurements, the transposition factor calculated was coherent with the previous formulation 

and showed spatial distributions of the transfers similar in both cases. For the gypsum 

dissolution, measurements have been done for a cylinder exchanging with water in crossflow 

at 𝑅𝑒 = 6700 and 𝑆𝑐 = 1500 in (Chang, et al., 2013). A scaling of the Sherwood number by 

𝑅𝑒1/2𝑆𝑐1/3 was proposed in order to compare the results to mass transfer measurements from 

(Sanitjai & Goldstein, 2001) with naphthalene sublimation at 𝑅𝑒 = 29 100, 𝑆𝑐 = 2.28, and to 

heat transfer measurements from (Van Meel, 1962; Sanitjai & Goldstein, 2004) respectively at 

𝑅𝑒 = 5320, 𝑃𝑟 = 0.71 and 𝑅𝑒 = 6630, 𝑃𝑟 = 139. The comparison is depicted on Figure 2.1, 
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showing that the gypsum dissolution profile is similar to other measure of heat and mass 

transfer. 

 

 
Figure 2.1 comparison of the radial distribution of the Sherwood number and Nusselt number 

around a cylinder in cross flow obtained with gypsum dissolution, naphthalene sublimation 

and heat transfer measurements. The Sherwood number is scaled by 𝑅𝑒1/2𝑆𝑐1/3 and the 

Nusselt number by 𝑅𝑒1/2𝑃𝑟1/3. From (Chang, et al., 2013). 

 

In both cases of heat and mass transfer, the Sherwood (resp. Nusselt number) is proportional 

to 𝑅𝑒1/2 and to 𝑆𝑐1/3 (resp. 𝑃𝑟1/3). It should be noted that the difference for high angle 𝜃 at 

𝑅𝑒 = 29 100 are well known and are not due to differences in the Schmidt or Prandtl numbers 

but to the higher Reynolds number. The similarity of heat and mass transfer measurement in 

this particular configuration shows that the analogy between heat and mass transfer can be of 

use to assess the spatial distribution of the transfers from one domain to the other.   

 

The use of gypsum dissolution for estimation of the heat transfer coefficient in identic 

configuration is almost nonexistent in the scientific literature. Most of the work concerns the 

geological field and the Flow Accelerated Corrosion (FAC) field. Some of these works were 

of interest, especially the ones concerning the study of the surface aspect of the gypsum after 

dissolution which was found to be essential for understanding the mass transfer with water. 

This specific aspect will be presented in the following section.  
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2.2.3 Roughness effect on the flow 

The calculation of the Sherwood number from the gypsum dissolution relies on the 

measurements of the surface wear as the gypsum sample dissolves in water. It has been shown 

in (Wang & Ewing, 2016; Wang & Ewing, 2017) that roughness develops as the dissolution 

occurs. The roughness elements affect the flow in the vicinity of the wall, enhancing in return 

the mass transfer with the gypsum sample. The roughness effect must thus be considered when 

transposing the measurements to smooth wall Nusselt number.  

The impact of roughness on friction, heat transfer and mass transfer has been studied in the 

past for many types of roughness elements and for different Prandtl/Schmidt numbers. 

Nikuradse (Nikuradse, 1950) was one of the pioneer in calculating the effect of roughness on 

the head loss and velocity profile in a pipe with a methodical approach: he created an artificial 

roughness by fixing sand grain at the walls and showed that the behavior of the near wall 

friction depends of the relative roughness 𝑒/𝑅  where  𝑒 and 𝑅  are respectively the roughness 

elements height and the pipe radius. The evolution of the near wall friction with the Reynolds 

number and the surface roughness in pipe flow is given on Figure 2.2. For Reynolds numbers 

such as log(𝑅𝑒) < 3.2, the flow is laminar, and the roughness does not affect the friction factor 

behavior. Differences start appearing for turbulent flows where both the roughness height and 

Reynolds number affect the evolution of the friction factor:  

- when the roughness elements are small enough to lie inside the viscous sublayer, the 

pipe can be considered smooth, and the friction only depends on the Reynolds number. 

The boundary layer thickness decreases for increasing Reynolds number, therefore, the 

size from which the roughness starts to be “intrusive” decreases for higher turbulence 

regime.   

- when the relative roughness increases, the friction reaches a transition region where it 

depends simultaneously on the Reynolds number and the roughness height. 

- if the roughness continues increasing, the friction factor becomes Reynolds number 

independent, it is the fully developed turbulent flow. 

 

The effect of roughness on heat, mass and momentum transfer has been studied in literature for 

different shape, aspect ratio of roughness elements while the most relevant parameters have 

been investigated in order to quantify precisely the effects.  

Differences have been observed for regular roughness (Dawson & Trass, 1972; Berger, et al., 

1979; Lolja, 2005) and non-regular roughness (Wang & Ewing, 2017; Postlethwaite & Lotz, 

1988; Coney, 1981). For non-regular roughness, typically eroded/corroded surfaces, the 

difficulty lies in the research of the parameters impacting the measures.  

In the case of gypsum surface, the surface aspect goes from a smooth wall at the beginning of 

the dissolution to a naturally roughened surface after dissolution. Gypsum roughness has been 

studied in the past in the geological field in order to understand structures that appears due to 

erosion/dissolution in karst systems (Blumberg, 1970; Allen, 1971; Blumberg & Curl, 1974; 

Villien, et al., 2005).  
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Figure 2.2: relation between the friction factor 𝑓 used to calculate the pressure drop per unit 

of length for given relative roughness 𝑒/𝑅 and Reynolds number 𝑅𝑒. From (Nikuradse, 

1950). 

 

These studies mainly focused on the evolution of the surface roughness elements shape which 

evolves during the dissolution and tends to reach a scallop aspect resembling corroded/eroded 

surfaces. In addition, it has been shown that the initiation of these roughness elements is 

impacted by the initial defects in the gypsum sample due to the formation of macro pores during 

the casting or due to eroding elements in the flow damaging the gypsum lining during the 

dissolution. In fact, the presence of these defects was shown to accelerate the appearance and 

growth of the surface roughness. The enhancement of mass transfer due to its development has 

been studied and quantified for pipe flow for Reynolds numbers going up to 200 000 (Wang & 

Ewing, 2016; Wang & Ewing, 2017). The enhancement has been correlated to the peak to 

valley roughness 𝑒𝑝−𝑣 and the spacing between the roughness elements 𝑙𝑠𝑡𝑟. The enhancement 

of the mass transfer due to the surface roughness is given in comparison to the non-dimensional 

peak to valley on Figure 2.3, for regular roughness (Dawson & Trass, 1972) and gypsum 

natural roughness (Wang & Ewing, 2017). It is noticeable that the effects of roughness differ 

importantly whether it develops naturally or remain static and organized.  
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Figure 2.3: evolution of the roughness enhancement of the Sherwood number with the 

dimensionless roughness height (peak to valley). From (Wang & Ewing, 2017).  

2.3 Experimental setup and configuration 

The experiments that will be presented in this chapter have been conducted in Framatome’s 

experimental facilities. The objective of these experiments was to test the gypsum methodology 

on a documented case in order to verify the transposability of the measure to the heat transfer 

coefficient before experiments on more complex geometries. A schematic view of the 

experimental setup is depicted on Figure 2.4. The test loop is an closed circuit where water is 

pumped from a tank which contains 250 𝑚3of water at ambient temperature. The water 

temperature is kept constant through a heater. The flowrate in the test section is adjusted 

electronically with a valve in order to control the pressure drop of the pump. A secondary 

circuit by-passing the test section is used in order to reach the targeted working temperature. 

Two thermocouples provide the inlet and outlet temperature of the test section which is a 

rectangular channel. The absolute and differential pressure is measured along the test section.  

The test section can be seen on Figure 2.5. 

 

The gypsum sample is molded in a 3D printed cast which is then inserted in a metallic holder 

visible on Figure 2.6. The sample is then mounted flushed to the inner section wall to avoid 

marching step default. At the inlet, a slowly divergent diffuser is present before entering the 

rectangular channel. The gypsum lining is located at a length 𝐿 = 20𝐷𝐻of the inlet with 𝐷𝐻 =

0.05𝑚. The aspect ratio of the duct is defined such as 𝐴𝑅 =
𝑤𝑖𝑑𝑡ℎ

ℎ𝑒𝑖𝑔ℎ𝑡
≈ 4.2.  
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Figure 2.4: schematic view of the experimental loop. 

 

 
Figure 2.5: view of the rectangular test section. The flow goes from right to left. 

 

 
Figure 2.6: metallic holder with the gypsum samples molded in 3D printed cast. 

2.4 Methodology 

Measurements of the mass transfer coefficient have been conducted in the channel where a 

soluble gypsum part of the wall has been exposed to a stream of water. The gypsum is cast by 
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mixing water and pure hydrocal (𝐶𝑎𝑆𝑂4 ∙
1

2
𝐻2𝑂 ) at a ratio balancing density and casting rate. 

Shortly the gypsum density increases by diminishing the mass ratio 
𝑀𝑊𝑎𝑡𝑒𝑟

𝑀ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑙
 but the time 

during which the slurry can be cast is shorter in turn. The choice of the water-gypsum ratio has 

been made after testing several combinations and with the help of indications on the effects of 

preparation on the cast gypsum found in the literature (Ochoa, et al., 2017; Ochoa, et al., 2018). 

The ratio has been finally set to 
𝑀𝑊𝑎𝑡𝑒𝑟

𝑀ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑙
= 0.8. Once the mixture is prepared, the slurry is 

poured within the holder pressed against a Teflon surface. This material choice ensures the 

smoothest conditions possible. The sample is then placed within a shaker in order to help the 

entrapped air bubbles to escape the slurry. This process eliminates most defects which 

potentially modify the dissolution and increase the roughness. Finally, the samples are dried at 

50°C in an oven for 8 hours, until all the excess water evaporates. Each sample is weighed 

before and after dissolution to measure their mass loss accurately.  

The instantaneous value of the physical properties at the time t are calculated with the mean 

temperature 𝑇(𝑡) =
1

2
(𝑇𝑖𝑛(𝑡) + 𝑇𝑜𝑢𝑡(𝑡) where 𝑇𝑖𝑛(𝑡) and 𝑇𝑜𝑢𝑡(𝑡) are respectively the inlet and 

outlet temperature of the test section given by the thermocouples. The temperature discrepancy 

𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑖𝑛(𝑡) is small within the time period of measurements in front of the respective 

fluctuations of 𝑇𝑖𝑛(𝑡) and 𝑇𝑜𝑢𝑡(𝑡). The important mixing in the test section leads to the 

assumption that the mean temperature 𝑇(𝑡) gives a good indication of the temperature in the 

test section. The acquisition frequency of the thermocouple was set at 2 Hz for experiments 

lasting between 45 minutes to 4 hours depending on the value of the Reynolds number. These 

durations denoted 𝑡𝑒𝑥𝑝 were chosen sufficiently high to dissolve enough gypsum for an 

appropriate measurement of the surface wear with the laser scan, but also sufficiently low to 

keep a relatively smooth surface topography. We must keep in mind that the gypsum surface 

naturally develops from a flat surface to a rough one when dissolving in water, thus affecting 

the mass transfer coefficient, as it has been shown in previous studies (Wang & Ewing, 2016; 

Wang & Ewing, 2017). Temperature measurements in time made possible the calculation 

of 𝑐𝑤, the wall concentration of [Ca2+] thanks to data from (Blount & Dickson, 1973) reported 

in (Klimchouk, 1996) which makes a review of the variables affecting gypsum dissolution. The 

solubility 𝑐𝑤 is tabulated for different temperature, enabling its estimation for arbitrary 

temperature using linear interpolation. Furthermore, the gypsum diffusion coefficient, 

𝐷𝑔𝑦𝑝𝑠𝑢𝑚, can be calculated via the Stokes–Einstein equation by assuming that the diffusion 

coefficient is proportional to the ratio 
𝑇

𝜇(𝑇)
 where 𝑇 is the fluid temperature and 𝜇(𝑇) the 

dynamic viscosity at temperature 𝑇. The value of 𝐷𝑔𝑦𝑝𝑠𝑢𝑚 at 25°𝐶 was obtained from (Wang, 

et al., 2015).This assumption was derived from Stokes law which enables the estimation of the 

viscous forces applied to a sphere in a viscous fluid. Einstein applied this formula in order to 

estimate the diffusion coefficient for a spherical particle following a Brownian motion in the 

fluid (see for instance (Miller, 1924)). The article (Simpson & Carr, 1958) compares this model 
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to experiments for ions H+ in water on an extended range of temperature and indicates a good 

agreement with experimental data until approximatively 40°C from which the bias between 

measurements and the model start to increase.  

The height of the surface wear is obtained with a laser scan of the surface. The surface sample 

was not originally flat due to the molding which has been done in 3D printed cast. The gypsum 

lining curvature followed the borders which have been extracted in order to correct the 

topography obtained from the scan. The impact of this correction is an increased uncertainty at 

the leading edge of the sample where the curvature was the most important. The corrected 

surface wear height is denoted 𝑤(𝑥, 𝑦). The density of the gypsum 𝜌𝑔𝑦𝑝𝑠𝑢𝑚 is obtained from 

the weight loss and the volume loss measured for each experiment. 

The temporal average of the local Sherwood number 𝑆ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ on the gypsum surface and the 

standard deviation 𝜎𝑆ℎ are then estimated on the time period 𝑡𝑒𝑥𝑝 as: 

𝑆ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑆ℎ(𝑥, 𝑦, 𝑡)〉𝑡 = 〈
𝜌𝑔𝑦𝑝𝑠𝑢𝑚

𝑐𝑤(𝑇(𝑡))

𝐷𝐻

𝐷𝑔𝑦𝑝𝑠𝑢𝑚(𝑇(𝑡))

𝑤(𝑥, 𝑦)

𝑡𝑒𝑥𝑝
〉𝑡 

𝜎𝑆ℎ(𝑥, 𝑦) = √〈(𝑆ℎ(𝑥, 𝑦) −  𝑆ℎ(𝑥, 𝑦, 𝑡))
2
〉𝑡 

 

where, the operator 〈. 〉𝑡 denotes the time average value during the experiment. 

The instantaneous Reynolds and Schmidt numbers are calculated with thermal properties 

evaluated at the temperature 𝑇(𝑡) and the flowrate.  

𝑅𝑒(𝑡) =
𝑈(𝑡)𝐷𝐻
𝜈(𝑇(𝑡))

, 𝑆𝑐(𝑡) =
𝜈(𝑇(𝑡))

𝐷𝑔𝑦𝑝𝑠𝑢𝑚(𝑇(𝑡))
 

 

The characteristic velocity 𝑈(𝑡) is calculated from the flowrate by assuming a flat profile of 

the velocity in the channel. Moreover, the evolution of 𝜈 with the temperature is retrieved from 

IAPWS 2008 data base (Huber, et al., 2009).  

The time average and the standard deviation of the Reynolds number and Schmidt number 

introduced earlier are then calculated from the measurements of the flowrate and temperature 

during the experiments. 

𝑅𝑒̅̅̅̅ = 〈𝑅𝑒(𝑡)〉𝑡, and, 𝜎𝑅𝑒 = √〈(𝑅𝑒(𝑡) − 𝑅𝑒̅̅̅̅ )2〉𝑡  

𝑆𝑐̅̅ ̅ = 〈𝑆𝑐(𝑡)〉𝑡, and, 𝜎𝑆𝑐 = √〈(𝑆𝑐(𝑡) − 𝑆𝑐̅̅ ̅)2〉𝑡  

 

The heat and mass transfer analogy tells us that the evolution of the mass transfer coefficient 

between the soluble wall and the stream of water along the surface is analogous to the 

development of the heat transfer coefficient that is often referred as Graetz problem, and which 

is indicated in schematical way on Figure 2.7.  
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Figure 2.7: evolution of the heat transfer coefficient for a developing boundary layer. 

 

The heat transfer coefficient goes from a maximum value (subscript max) at the leading edge 

of the fixed temperature wall to an asymptotic value (subscript a) at the end of the thermal 

boundary layer development. Elements on the dynamic of the thermal gradients are given in 

literature (Deissler, 1954; Sparrow, et al., 1957; Boelter, et al., 1948; Notter & Sleicher, 1972; 

Sleicher Jr, 1956). 

 

The experimental Sherwood number 𝑆ℎ is found to evolve from a maximum value to an 

asymptotic value which is also kept far downstream of the sample location. Furthermore, the 

dissolution rate is homogeneous in the spanwise direction 𝑦. Thus, the mass transfer coefficient 

in the spanwise direction is averaged (averaging operator 〈. 〉𝑦) and the standard deviation is 

calculated. These are referred respectively as  𝑆ℎ̂(𝑥) and 𝜎𝑆ℎ. Then an exponential decay law 

is fitted to the data, providing 𝑆ℎ̃𝑚𝑎𝑥 , 𝑆ℎ̃𝑎 and 𝑙 parameters: 

 

𝑆ℎ̂(𝑥) = 〈𝑆ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〉𝑦 

𝜎𝑆ℎ(𝑥) = √〈(𝑆ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑆ℎ̂(𝑥))
2
〉𝑦 

𝑆ℎ̃(𝑥) = (𝑆ℎ̃𝑚𝑎𝑥 − 𝑆ℎ̃𝑎) exp (−
𝑥

𝑙
) + 𝑆ℎ̃𝑎 

 

In addition, the parameters 𝑆ℎ̃𝑚𝑎𝑥 and 𝑆ℎ̃𝑎 are calibrated in order to fit the mean value of the 

Sherwood number associated with the mass loss.  This last process yields the parameters, 

𝑆ℎ𝑐𝑎𝑙,𝑚𝑎𝑥 and 𝑆ℎ𝑐𝑎𝑙,𝑎. The successive steps of the process are depicted on Figure 2.8. 

 

The different values of the asymptotic Sherwood number have been obtained at high Schmidt 

number depending on the temperature of the flow. The Schmidt number ranges from 700 to 

1800. A transposition to low Schmidt number (𝑆𝑐 = 10) has been carried out to make a 

comparison with heat transfer coefficient correlations from the literature for fluids having a 

Prandtl in the range [1, 10]. 
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(a) Mean profile 𝑆ℎ̂(𝑥) and interpolated 

curve 𝑆ℎ̃(𝑥). 

 

(b) Interpolated curve 𝑆ℎ̃(𝑥) and curve 

after calibration 𝑆ℎ𝑐𝑎𝑙(𝑥). 

 

Figure 2.8: evolution of the local Sherwood number profiles at different steps of the 

normalization process. The gray zone in figure (a) gives the 2𝜎  interval calculated when 

averaging in the transverse direction. The abscissa 𝑥 = 0 corresponds to the leading edge of 

the gypsum lining. 

 

In (Wang & Ewing, 2017), the enhancement of the mass transfer is correlated to the ratio 

between the peak to valley roughness 𝑒𝑝𝑣 and the roughness element spacing 𝑙𝑠𝑡𝑟. The 

regression law obtained was:  

𝐹𝑊 = (
𝑆ℎ𝑅
𝑆ℎ𝑆

)
𝑊𝑎𝑛𝑔

= 1.09 (
𝑒𝑝𝑣

𝑙𝑠𝑡𝑟
)
0.2

𝑅𝑒0.07 

 

This formula has been given for gypsum lining exposed to water for extended dissolution time. 

In the experiments, In the present experiments, the roughness has been limited and does not 

present the same aspect as in (Wang & Ewing, 2017). As we want to compare these experiments 

to heat transfer computations for smooth wall, two transposition factors have been proposed 

for the scaling of the Sherwood number. A first transposition is done using Gnielinski 

correlation (Gnielinski, 1967) for heat transfer which originally takes into account the friction, 

the Reynolds number and the Prandtl number. The correlation written for mass transfer is as 

following: 

𝑆ℎ𝐺(𝑅𝑒, 𝑃𝑟 = 𝑆𝑐, 𝑓) =

𝑓
8 
(𝑅𝑒 − 1000)𝑆𝑐   

1 + 12.7 (
𝑓
8
)

1
2
(𝑆𝑐

2
3 − 1) 

 

 

with, 𝑓 being the Darcy friction factor calculated as follows: 

1

√𝑓
= −2 log10 (

𝑒

3.71𝐷𝐻
+
2.51

𝑅𝑒√𝑓
) 



54 Mass transfer measurements in a rectangular channel and heat transfer analogy 

 

 

where, 𝑒 and 𝐷𝐻 are respectively the equivalent sandgrain roughness and the hydraulic 

diameter of the duct. Here the sandgrain roughness is defined as three times the root mean 

square (RMS) roughness height measured on each sample (Wang & Ewing, 2016). The 

transposition factor calculated between two situations at different Schmidt numbers 𝑆𝑐1, 𝑆𝑐2, 

and different wall friction coefficient 𝑓1, 𝑓2 is expressed as following:  

𝐹1 =
𝑆ℎ𝐺(𝑅𝑒, 𝑆𝑐1, 𝑓1)

𝑆ℎ𝐺(𝑅𝑒, 𝑆𝑐2, 𝑓2)
=
𝑓1 𝑆𝑐1
𝑓2 𝑆𝑐2

×
1 + 12.7 (

𝑓2
8
)

1
2
(𝑆𝑐2

2
3 − 1)

1 + 12.7 (
𝑓1
8
)

1
2
(𝑆𝑐1

2
3 − 1)

 

This transposition factor has been proposed for the quantification of the roughness effect of the 

mass transfer, as it takes into account the roughness height of the gypsum sample through the 

use of the friction factor 𝑓.  

To characterize the roughness height to the turbulence inner friction length scale 𝑙+, we also 

define the non-dimensional roughness height 𝑒+ as: 

𝑒+ =
𝑒

𝑙+
=
𝑒𝑢∗

𝜈
=
𝑒 𝑅𝑒

𝐷𝐻
√
𝑓

8
  

with 𝑢∗ the friction velocity.  

Another transposition factor 𝐹2 based on Dawson-Trass correlation (Dawson & Trass, 1972) 

for the Sherwood number is given and compared to 𝐹1.This transposition factor does not take 

into account friction unlike 𝐹1 and its use for transposition of Sherwood data obtained with 

gypsum should deviate from smooth wall data when the roughness height at the sample surface 

reaches sufficient height to affect the boundary layers. 

𝑆ℎ𝐷𝑇(𝑅𝑒, 𝑆𝑐) = 0.0153𝑅𝑒
0.88𝑆𝑐0.32, 𝐹2 =

𝑆ℎ𝐷𝑇(𝑅𝑒, 𝑆𝑐1)

𝑆ℎ𝐷𝑇(𝑅𝑒, 𝑆𝑐2)
= (

𝑆𝑐1
𝑆𝑐2
)
0.32

 

A total of 27 measurements have been performed at different temperatures and flowrates. The 

experimental mass transfer coefficient has been compared to heat transfer coefficient from 

literature obtained for smooth wall conditions, fixed temperature condition, established thermal 

and hydraulic boundary layer.  

2.5 Results and analysis 

2.5.1 Evolution of the operating conditions 

The flowrate and temperature at the inlet of the rectangular channel were found to fluctuate in 

time. The resulting instantaneous Reynolds number and Schmidt number in the channel were 

thus fluctuating during the experiments. A part of the Reynolds number evolution with time is 

given on Figure 2.9a for a measure done at 𝑅𝑒 ≈ 28 400.  
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(a) Variation of 𝑅𝑒 during the 

experiment. 

 

(b) Evaluation of the PDF with the sample 

histogram.  

 

Figure 2.9: evolution of the Reynolds number during the experiment at 𝑅𝑒 ≈ 28 400. (a) random 

fluctuations of the Reynolds number and (b) comparison of the sample histogram to the normal 

distribution defined from the mean and standard deviation 𝜇𝑅𝑒 and 𝜎𝑅𝑒 of the Reynolds number 

during the experiment.  

 

The total sample of approximatively 104 realizations is arranged on a normed histogram plot 

with 50 bins. The normal distribution 𝒩(𝜇𝑅𝑒, 𝜎𝑅𝑒), defined with the calculated temporal mean 

and standard deviation of the Reynolds number, is superimposed to the histogram on  Figure 

2.9b. In most of the experiments, the random fluctuations were shown to be well represented 

by a gaussian random variable. Exceptions were observed when the temperature in the channel 

was not established and evolved in time. An example is given on Figure 2.10 were the Reynolds 

increases during the experiments due to the rise of the temperature in the channel. In this case, 

the resulting PDF is distorted and deviates from the normal distribution. It has been assumed 

that the additional impact of this trend on the mean Nusselt number is negligible. However, the 

resulting standard deviation is higher in these cases.  

 

The same behavior is observed for the Schmidt number, thus, for the heat transfer 

computations, the water Prandtl number is also assumed to be uncertain and to follow a normal 

distribution. In addition, it has been observed that the Reynolds and Schmidt number 

fluctuations are correlated. A sample of realizations for an experiment at 𝑅𝑒 ≈ 19 200  and 

𝑆𝑐 ≈ 1300 is shown on Figure 2.11a, while the estimated probability density function is given 

on Figure 2.11b. The non-diagonal elements of the covariance matrix are non-zero in this case.  
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(a) Variation of 𝑅𝑒 during the 

experiment. 

 

(a) Evaluation of the PDF with the sample 

histogram. 

 

Figure 2.10: evolution of the Reynolds number with respect to time during an experiment where 

the temperature is not established (a) and approximate probability density function (b). 

 

(a) Realization of Reynolds and Schmidt 

number. 

 

(b) Estimated bivariate Gaussian 

distribution. 

 
Figure 2.11: estimation of the probability density function for an experiment at 𝑅𝑒 ≈ 19 200. 

The realizations of the Reynolds and Schmidt numbers during the experiment are shown on (a) 

and contours of the estimated probability density function is shown on (b).  

 

The Pearson correlation 𝜌𝑅𝑒,𝑆𝑐 coefficient is calculated in order to estimate the covariance 

matrix for given Reynolds and Schmidt numbers. This coefficient is defined by:  

𝜌𝑅𝑒,𝑆𝑐 =
𝐶𝑜𝑣(𝑅𝑒, 𝑆𝑐)

𝜎𝑅𝑒𝜎𝑆𝑐
 

 

The impact of this coefficient in the joint Gaussian probability density function can be seen on 

Figure 2.12. In the rectangular channel experiments, the Pearson coefficient takes its value in 

the range 𝜌𝑅𝑒,𝑆𝑐 ∈ [−1, −0.8] for the different experiments, which indicates a strong 

correlation between the Reynolds and Schmidt number fluctuations. Moreover, the standard 

deviation calculated from the time fluctuation of the Reynolds and Schmidt number during the 

dissolution has been found to be approximatively around 2% to 5% of the mean value.  
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(a) 𝜌 = −0.9 

 

(b) 𝜌 = −0.5 

 

(c) 𝜌 = 0 

 

(d) 𝜌 = 0.5 

 

(e) 𝜌 = 0.9 

 

Figure 2.12: Effect of the Pearson coefficient on the shape of the joint probability distribution 

isocontours. High values of the probability density function are given in yellow and low values in 

blue.  

 

2.5.2 Evolution of the Sherwood number on the experimental range 

For every experiment, the Sherwood number (𝑆ℎ𝑚𝑎𝑥 and 𝑆ℎ𝑎) has been transposed from the 

experimental Schmidt number measured in the range 𝑆𝑐 ∈ [700, 1800] to 𝑆𝑐 = 10 using the 

𝐹1 or 𝐹2 factors. This has been done in order to compare it to the asymptotic Nusselt number 

for a fluid at a Prandtl number 𝑃𝑟 =  10. The evolution in respect to the Reynolds number of 

the values are compared for a Reynolds number in the range [104;  105]. The comparison of 

the experimental asymptotic Sherwood number, which has been transposed with the two factors 

𝐹1 and 𝐹2, to the Nusselt number calculated with Gnielinski correlation and the Sherwood 

number calculated with Dawson—Trass correlation can be seen on Figure 2.13. Each set of 

data is compared to the correlation from which its transposition originates. It is noticeable that 

the 𝐹1 transposition factor, which includes the friction coefficient provides results that are close 

to Gnielinski correlation. The Dawson–Trass correlation 𝐹2 factor gives good results until a 

critical Reynolds from which the experimental data deviates. At this critical Reynolds number, 

the wall can no longer be considered as hydraulically smooth. This deviation is well correlated 

to the increase of the non-dimensional roughness height 𝑒+ in the different experiments with 

the Reynolds number visible on Figure 2.14. This deviation has remained even though the 

exposition time has been initially adapted to keep approximately the same mass loss during 

each experiment. It is found on Figure 2.14 that the deviation from the smooth wall law of the 

averaging non-dimensional roughness 𝑒+ corresponds approximately to the sample verifying 

𝑒+ ≥  20, indicating the necessity to use friction correction. This critical value is close to 𝑒+ ≈

 25 given in (Wang & Ewing, 2017) for the same situation of naturally developing roughness 

with gypsum dissolution. 
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Table 2.1 : correlation from literature. 

Gnielinski (Bergman, et 

al., 2011) 
𝑁𝑢(𝑅𝑒, 𝑃𝑟, 𝑓) =

𝑓
8
(𝑅𝑒 − 1000)𝑃𝑟   

1 + 12.7 (
𝑓
8
)

1
2
(𝑃𝑟

2
3 − 1) 

 

Dawson—Trass (Dawson 

& Trass, 1972) 

𝑆ℎ(𝑅𝑒, 𝑆𝑐)  =  0.0153 𝑅𝑒0.88 𝑆𝑐0.32 

Sieder—Tate (Bergman, 

et al., 2011) 
𝑁𝑢(𝑅𝑒, 𝑃𝑟)  =  0.031𝑅𝑒0.8 𝑃𝑟

1
3 

Dittus—Boelter 

(Bergman, et al., 2011) 
𝑁𝑢(𝑅𝑒, 𝑃𝑟)  =  0.021𝑅𝑒

4
5 𝑃𝑟0.4 

 

 

 

 
Figure 2.13: comparison of the asymptotic Sherwood number transposed to 𝑆𝑐 = 10  with 

the transposition factors 𝐹1 and 𝐹2. 

 

The transposed points obtained with 𝐹1 are compared to correlation from literature. The heat 

transfer correlations have been obtained from Sieder–Tate, Dittus–Boelter, Gnielinski, 

(Bergman, et al., 2011) and are reported in Table 2.1. The transposed measurements points are 

shown on Figure 2.15 with their measurement uncertainty bar and the grey zone corresponds 

to the mean deviation of the points from the calculated correlation. The comparison (using the 

analogy and from the experimental work) of the Nusselt or Sherwood number is shown on 

Figure 2.16 and the values found from our measurements are in good agreement with the known 

correlations. The Nusselt number obtained from the transposition of gypsum dissolution data 

is slightly higher than the data from the heat transfer domain. Besides Dittus–Boelter 

correlation, all the correlations are within the experimental uncertainty of the gypsum data. 
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(a) Equivalent sandgrain roughness. 

 

(b) Non dimensional roughness. 

 
Figure 2.14: roughness measurements: on the right, the red line corresponds to an observed 

critical value of the roughness height 𝑒+ (Wang & Ewing, 2017) from which the 

hydraulically smooth wall condition ends. In grey, the region for which the influence of the 

roughness is non-negligible for the conducted experiments. 

 

 

 
Figure 2.15: correlation on the asymptotic 

Sherwood number extracted from the data 

points and uncertainty calculated on the 

correlation (𝜇𝑆ℎ ± 2𝜎𝑆ℎ interval in grey). 

 
Figure 2.16: comparison of correlation 

obtained with gypsum to different 

correlations indicated on Table 2.1. The 

grey zone corresponds to the ± 2 𝜎𝑆ℎ 

interval. 
 

 

In addition, the ratio between the maximum value and the asymptotic value of the Sherwood 

number is determined and reported on Figure 2.17. It is found to be in the range [1.5, 2.5]. This 

value is in good agreement with the available data on the heat transfer coefficient evolution in 

the thermal entrance region of a pipe for a developed hydraulic boundary layer (Deissler, 1954; 

Boelter, et al., 1948; Sleicher Jr, 1956). These studies give a ratio between 1.3 and 3.5 for this 

range of Reynolds number. 
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Figure 2.17: ratio between the maximum and asymptotic value of the Sherwood number 

along the gypsum surface. Mean value over the experiments is indicated with the horizontal 

line while the grey zone gives the 𝜇 ± 2𝜎 interval zone. 

 

2.6 Conclusion 

Mass transfer experiments in a rectangular channel were conducted in Framatome’s 

experimental facilities with gypsum dissolution technique. The objective was to gain 

experience on this measurement methodology and prepare the future experiments on more 

complex geometries for generation of heat transfer coefficient data. For this purpose, the 

mass transfer coefficient obtained with the gypsum dissolution has been post-processed using 

the heat and mass transfer analogy. Two transposition factors have been tested for the 

comparison with heat and mass transfer correlations from literature. From the experiments, the 

following conclusions can be proposed: 

- the casting of the gypsum has an important role: the water/gypsum mixing ratio has 

been chosen by making a compromise between the casting rate and final density of the 

gypsum. The essential parameters that must be controlled are the defects near the 

gypsum surface and its smoothness when dried. 

- the surface topography must be measured with accuracy in order to process the 

roughness and transpose the measure to smooth walls. The transposition factor which 

did not consider the surface roughness showed deviation from smooth wall for the 

higher Reynolds number experiments. This factor is not suited for the scaling of the 

Sherwood number obtained with gypsum dissolution to smooth wall data.  

 

In this flow configuration, Darcy-Colebrook equation was available in order to estimate the 

friction factor. In addition, the functional relation between mass transfer, surface roughness 

and the Schmidt number was given with Gnielinski correlation for turbulent heat transfer. 



 61 

 

 

These two correlations were essential for the transposition of the Sherwood number to smooth 

wall Nusselt number. The resulting Nusselt number obtained from the transposition of the 

gypsum measurements showed good agreement with heat transfer data from literature. The 

obtained data will be processed in the next chapter in order to compare calculations of the heat 

transfer coefficient with CFD simulations. Nevertheless, these correlations might not be 

suitable in different flow configurations; thus, one of the two following solutions has to be 

considered in order to use gypsum dissolution technique for heat transfer data generation: 

- to estimate the transposition factor by studying the Sherwood number on a wider range 

of Schmidt number and roughness aspects.  

- To measure the transposition factor by making additional heat transfer measurements.  

 

 





 

 

Chapter 3 Uncertainty quantification on the 

rectangular channel 

In thermal hydraulics studies, Computational Fluid Dynamics (CFD) softwares are powerful 

tools used to resolve the fluid motion in 3D. In this chapter, the experiments conducted on the 

rectangular channel presented Chapter 2 are reproduced with two commercial softwares with 

the Realizable 𝑘 − 𝜖 (RKE) turbulence model that has been described in Chapter 1. This 

turbulence model is tested with or without wall law (with fine or coarse near wall meshing). 

The model will first be described, then, a comparison will be carried out with the experimental 

data discussed in Chapter 2. In addition, the simulation’s inputs uncertainty will be propagated 

with the two methods given in §1.2.4.2. Finally, the model error will be calculated for Reynolds 

numbers in the range [104, 105]. 

3.1 Presentation of the CFD model 

3.1.1 Geometry 

The geometry is the replica of the rectangular duct mock-up presented in Chapter 2. The 

gypsum lining is replaced in this case by a heated wall at fixed wall temperature condition. A 

CAD view can be seen on Figure 3.1, with the heated wall given in red. A summary of the 

channel dimensions is given Table 3.1 

 

Table 3.1: dimensions of the rectangular channel. 

Duct length 34 𝐷𝐻 

Aspect ratio 𝑨𝑹 =
Width

height
 ≈ 4.2 

Dimensions of the heated 
surface 

1.2 𝐷𝐻 × 2𝐷𝐻 

Abscissa of the start of the 
heated surface 

≈ 22𝐷𝐻 
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Figure 3.1: view of the geometry for simulations in the rectangular duct. Inlet in beige, 

adiabatic wall in grey, outlet in orange. The location of the gypsum sample during the 

experiment is given in red.  

3.1.2 Grid 

Different meshes have been tested for simulations carried out with the commercial CFD 

softwares STAR-CCM+ and Fluent. Two different methodologies are used for the two 

softwares: the range of flowrate imposed at the channel inlet is wide, inducing for a fixed near 

wall mesh a large difference of the 𝑦+ values (see §1.1.3.5) on the surface of interest in the 

extreme cases. Thus, the near wall meshing has been adapted in order to reduce the bias due to 

evolution of 𝑦+ values with the Reynolds number. In this study, all the grids are composed of 

hexahedral cells. 

Two grids were designed for STAR-CCM+ simulations in order to test the differences between 

simulations with and without wall functions:  

- grid 1S: the mesh is designed with near wall cells remaining in the viscous sublayer of 

the boundary layer. In other words, the grid has been set up in order to respect  𝑦+ ≤ 1 

for all the computations.  

- grid 2S: the near wall mesh size is adapted to every case in order to respect 𝑦+ ∈
[30, 50] on all boundaries. The height of the cell is generated with an empirical 

correlation. The surface size of the cells is refined near the measurement location of the 

gypsum sample indicated in red on Figure 3.1. This has been done in order to have a 

better spatial discretization of the heat transfer coefficient in the streamwise direction.   
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Sections of the grids 1S and 2S at the fixed temperature wall location are given on Figure 3.2. 

For 1S, the section meshing is the same at the inlet, with a hyperbolic refinement in the 

extruding direction in order to reduce the number of cells far from the interest region. For 2S, 

different refinement levels are shown.  

 

a) 1S 

 

b) 2S 

 
Figure 3.2: view of a section of the channel near the fixed temperature wall for the different 

meshing strategies: grid 1S (a) and grid 2S(b). For grid 2S, different refinement levels are 

depicted.  

 

For Fluent simulations, two meshing approaches have been used as well:  

- grid 1F: the near wall cell height is set such as the non-dimensional wall distance 

respects 𝑦+ < 1 on all the boundaries.  

- grid 2Fa and 2Fb: two grids have been designed in order to respect 30 < 𝑦+ < 100. 

Contrarily to grid 2S no adaptive near wall meshing has been set. The simulations were 

divided in two groups according to the flowrate imposed at the inlet of the channel.  

Sections of the different grids 1F, 2Fa and 2Fb are shown on Figure 3.3. A summary of the 

number of cells for each grid is given in Table 3.2 

 

Table 3.2 : approximate number of cells for the different grids. 

Grid Min number of cells Max number of cells 

1S ≈ 1 750 000 

2S ≈ 10 000 ≈ 230 000 

1F ≈ 1 920 000 

2F ≈ 110 000 ≈ 220 000 
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(a) 1F. 

 

 

 
(b) 2Fa and 2Fb. 

 

 

Figure 3.3: mesh1F and 2F: view of a section of the channel at the inlet near the fixed 

temperature wall for the different meshing strategies. (a) Grid 1F with near wall refinement and 

(b) 2F without.  

 

The surface mesh refinement zone corresponding to the measurement location on the 

experiments described in Chapter 2 is shown on Figure 3.4. 

 

(a)2S 

 

(b)2Fa 

 
Figure 3.4: view from the top of the mesh in the refinement region near the gypsum measurement 

location: (a) grid 2S for a high flowrate situation and (b) grid 2Fa. 
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3.1.3 Boundary conditions and physical properties 

Table 3.3 : physical properties of Water. 

Parameter Value 

Density 𝜌 = 998.8 𝑘𝑔 ∙ 𝑚−3 

Dynamic 

viscosity 
𝜇 =  1.10 ∙ 10−3 𝑃𝑎 ∙ 𝑠 

Thermal 

conductivity 
𝜆 = 0.587 𝑊 ∙ 𝑚−1 ∙ 𝐾−1 

Specific heat 

coefficient 
𝐶𝑝 =

𝜆𝑃𝑟

𝜇
 

 

 

The boundary conditions that have been imposed are set as constant as following:  

- Fixed temperature surface 𝑇𝑤𝑎𝑙𝑙 at the location corresponding to the position of the 

gypsum samples during the experiments. The position can be seen in red on Figure 3.1. 

The wall temperature is set to 𝑇𝑤𝑎𝑙𝑙 = 303𝐾. 

- Adiabatic surface on the side boundaries. 

- Imposed volumetric flowrate 𝑄 with a flat velocity profile at the inlet at temperature 

𝑇𝑖𝑛 = 300𝐾. 

 

The inlet volumetric flowrate 𝑄 is parametrized by the Reynolds number as following:  

𝑄 =
𝜇 𝑅𝑒 𝑆

𝜌 𝐷𝐻
 

 

where, 𝑆 is the area of the section of the channel. The physical properties of the fluid are 

indicated on Table 3.3. It can be noticed that the specific heat coefficient 𝐶𝑝 of the fluid is set 

up accordingly to the thermal conductivity 𝜆, dynamic viscosity 𝜇 and targeted Prandtl number 

𝑃𝑟.  

The simulations have been parametrized by the Reynolds and Prandtl number. The flowrate 

and specific heat coefficient are adjusted accordingly. The range covered by the Reynolds 

number and Prandtl number are respectively [104, 105] and [2, 10]. 

3.1.4 Data processing 

The output data extracted from the simulations is the Nusselt number over the heated wall:  

𝑁𝑢(𝑥, 𝑦) =
ℎ𝑐𝑜𝑛𝑣(𝑥, 𝑦)𝐷𝐻

𝜆
=
𝑞𝑤(𝑥, 𝑦) 𝐷𝐻
𝜆(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑖𝑛)

 

where, 𝑞𝑤(𝑥, 𝑦) is the wall heat flux surface distribution. The other parameters have been 

described earlier.  
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(a) Evaluation of 𝑁𝑢𝑚𝑎𝑥 and 𝑁𝑢𝑎. 

 

(b) Evaluation of 𝑁𝑢0 and 𝑁𝑢2𝐷. 

 
Figure 3.5: evaluation of the parameters describing the Nusselt profile for simulations at 

𝑅𝑒 = 104 and 𝑃𝑟 = 2. The exponential fit is given in red and the CFD values of 𝑁𝑢(𝑥) on 

the grid is black circles. (a) extraction of the fit parameters  𝑁𝑢𝑚𝑎𝑥 and 𝑁𝑢𝑎 for the 

simulation on Grid 1S and (b) extraction of 𝑁𝑢0 and 𝑁𝑢2𝐷 on Grid 2S. 

 

The variations of the Nusselt number in the transverse direction 𝑦 has been found negligible in 

front of the variations in the direction 𝑥 since the lateral walls were relatively far from the 

heated wall. Some variations in the 𝑦 direction were still noticeable in some cases as it can be 

seen on Figure 3.5a where the data obtained from the heated wall is arranged in a (𝑥, 𝑁𝑢). The 

abscissa 𝑥 on the graph is set to zero at the leading edge of the heated wall. In the experiments, 

the evolution following the 𝑥 direction has been found to fit well an exponential decay function 

in comparison to other decreasing functions. An exponential function is thus fitted on the 

profile obtained from CFD on the 𝑁𝑢(𝑥, 𝑦) data: 

𝑁𝑢(𝑥) = (𝑁𝑢𝑚𝑎𝑥 − 𝑁𝑢𝑎) exp (−
𝑥

𝑙
) + 𝑁𝑢𝑎 

 

Important differences were noticed on the Nusselt number evolution between the refined wall 

mesh simulations and the coarse wall mesh simulations. In fact, when coarse wall mesh are 

used, the establishment of the Nusselt number starting at the leading edge of the heated wall is 

not reproduced as it is visible on Figure 3.5b. The exponential decay function is not adapted in 

this situation, thus, two additional quantities are extracted from the CFD simulations Nusselt 

number in order to retrieve the maximum value of the Nusselt number at the leading edge and 

the minimum value at the end of the wall: 

- the value 𝑁𝑢0 = 𝑁𝑢(𝑥 = 0), corresponding to the Nusselt number at the leading edge 

of the heated wall.  

- the value at the end of the heated wall 𝑁𝑢2𝐷 = 𝑁𝑢(𝑥 = 2𝐷𝐻).  
 

The average value of 𝑁𝑢0 and 𝑁𝑢2𝐷 in the 𝑦 direction is taken. The fit and the evaluation of 

the different parameters is shown on computations for fine and coarse near wall meshing on 
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Figure 3.5. The difference at the leading edge of the heated wall is visible between the grids 

1S and 2S. The same difference has been observed for grids 1F and 2F.  

3.2 Investigation of the Nusselt number along the heated wall 

3.2.1 Results of the CFD simulations  

3.2.1.1 Differences between the models 

 
Figure 3.6: comparison of the Nusselt profile along the heated wall for the different CFD 

models for 𝑅𝑒 = 100 000 and 𝑃𝑟 = 10. Computations with Fluent (green) and STAR-

CCM+ (black). 

 

Differences are observed on the establishment of the Nusselt number between the models. An 

example is given on Figure 3.6 for 𝑅𝑒 = 105 and 𝑃𝑟 = 10. Models with fine near wall meshing 

𝑦+ < 1 (Gris 1S and Grid 1F) do not use wall laws and reproduce the thermal entrance effect 

which is observed in experiments (cf. Chapter 2). This effect is not captured by the models 

with unrefined near wall meshing 𝑦+ ≥ 30 (Grid 2S and Grid 2F) using wall laws. However, 

as soon as the thermal boundary layer is close to be established, the difference between the 

Nusselt number obtained with or without law reduces significantly. 

In addition, for equivalent model with different codes, a slight bias is observed between 1F and 

1S, and 2S and 2F. Fluent computes a higher value of the heat transfer coefficient than STAR-

CCM+. The differences might be due to different numerical schemes and grids which were not 

the same in the two cases. The difference of the wall function implementation between the two 

softwares should not be the cause as it is visible that the models 1S and 1F which does not use 

wall functions still show differences. The differences between the codes still has to be 

investigated.  
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3.2.1.2 Nusselt number of established thermal boundary layer 

The Nusselt number for an established boundary layer is given by 𝑁𝑢𝑎 and 𝑁𝑢2𝐷 described in 

§3.1.4. The results of 𝑁𝑢𝑎 computed without wall law is depicted on Figure 3.7 for the 

simulation inputs 𝑅𝑒, 𝑃𝑟 given by the design of experiment 𝑈50(10
1 × 51). Only three Prandtl 

number are showed on the figure for clarity. The dependence of the Nusselt number to the 

Reynolds number and Prandtl number is calculated by making a regression with a power law. 

 

(a) 1F 

 

(b) 1F 

 

(c) 1S 

 

(d) 1S 

 
Figure 3.7: asymptotic Nusselt number calculated with Grid 1F ((a) and (b)) and Grid 

1S ((c) and (d)). The Nusselt is divided by 𝑃𝑟𝑐 with c= 0.39 for 1F (b) and c= 0.34 

for 1S (d). 

 

For the models 1S and 2S, the asymptotic Nusselt number is found to depend on 𝑃𝑟0.34, while 

𝑃𝑟0.39 has been found for models 1F and 2F. The results on the asymptotic Nusselt number for 

wall law computations (2S and 2F) are very similar to 𝑦+ < 1  (1S and 1F) computations. A 

power law is fitted for 𝑁𝑢2𝐷, which can be written: 

 
𝑁𝑢2𝐷 = 𝑎 𝑅𝑒

𝑏 𝑃𝑟𝑐 (3.1) 

The coefficient 𝑎, 𝑏 and 𝑐 are given for each model in Table 3.4. 
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Table 3.4 : coefficient of the fitted power law fit on 𝑁𝑢2𝐷. 

Meshing 𝑎 𝑏 𝑐 

Grid 1S 0.0449 0.763 0.34 

Grid 2S 0.0163 0.857 0.34 

Grid 1F 0.0358 0.779 0.39 

Grid 2F 0.0334 0.793 0.39 
 

 

The comparison between the correlations obtained from the different simulations for the 

quantity 𝑁𝑢2𝐷 on Figure 3.8 for 𝑃𝑟 = 10. 

 

 
Figure 3.8: comparison of the different correlations given for the asymptotic Nusselt number 

for the different software and grids.  

 

The results correspond to what is observed on the Nusselt profile at 𝑅𝑒 = 105 on   Figure 3.6: 

the value of the Nusselt number calculated with Fluent is larger than with STAR-CCM+. 

Furthermore, the Nusselt number calculated with wall laws (Grid 2F and 2S) is larger when the 

calculation is carried out without wall laws (Grid 1F and 1S).   

3.2.1.3 Establishment of the Nusselt profile  

The entrance effect at the leading edge of the heated wall due to the establishment of the 

thermal boundary layer is analyzed. It has been noticed on Figure 3.6 that resolution with or 

without wall law changes significantly the calculated fields on this zone. The maximum value 

of the Nusselt number 𝑁𝑢0 is compared for all the different models on Figure 3.9a. The value 

𝑁𝑢𝑚𝑎𝑥/𝑁𝑢𝑎 is given for the computations with grid 1S and grid 1F as a function of the 

Reynolds number on Figure 3.9b. For models with wall laws, it is visible that this entrance 

effect is not taken into account which leads to significantly lower values of the Nusselt number 

at the leading edge of the heated wall for grid 2S and 2F.  
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(a) 𝑁𝑢0 for the different computations 

 

(b) Ratio 𝑁𝑢0/𝑁𝑢2𝐷 for Grid 1S and 1F 

 
Figure 3.9: comparison of the entrance effect for the different computations. (a) Maximum Nusselt 

number on the profile as a function of the Reynolds number for all computations. (b) Comparison 

for Grid 1S and 1F of the ratio 𝑁𝑢𝑚𝑎𝑥/𝑁𝑢𝑎. 

 

Nevertheless, the difference over the heated wall between model with and without wall laws 

decreases with the Reynolds number and for lower Prandtl numbers. In fact, this observation 

is based on the decrease of the characteristic length of the exponential fit with the Reynolds 

number as it is seen on Figure 3.10. On this figure, 𝑙 is plotted as a function of the Reynolds 

number for three different Prandtl numbers for Grid 1S and Grid 1F. It is noticeable that this 

length increases for lower Prandtl number. For the higher Reynolds numbers, the characteristic 

length is in the range [5%, 10%] of the hydraulic diameter 𝐷𝐻. At this regime, the boundary 

layer is developed on most of the heated wall. 

 

 
Figure 3.10: evolution of the characteristic length of the exponential fit for Grid 1S and Grid 

1F. 
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3.2.2 Comparison to experiments 

The comparison is carried out with the experimental data obtained with gypsum dissolution in 

Chapter 2, and with data obtained in literature for turbulent heat transfer. 

3.2.2.1 Established thermal boundary layer Nusselt number 

The asymptotic Nusselt number obtained in Chapter 2 is compared to the correlation obtained 

with gypsum dissolution 𝑁𝑢𝑎,𝑒𝑥𝑝 and to Gnielinski correlations for turbulent heat transfer 

indicated in Table 2.1. The comparison is depicted for the different grids on Figure 3.11 for 

simulations at 𝑃𝑟 = 10. 

 

 
Figure 3.11: comparison of the asymptotic Nusselt number obtained from experimental 

correlations and numerical correlations for the different grids. The grey zone corresponds to 

the interval 𝑁𝑢𝑎,𝑒𝑥𝑝 ± 2 𝜎𝑒𝑥𝑝 of the gypsum dissolution experiments correlation.  

 

A first observation for this Prandtl number is that all the numerical simulations are within the 

𝑁𝑢𝑎,𝑒𝑥𝑝 ± 2 𝜎𝑒𝑥𝑝 interval indicated in grey on Figure 3.11, with 𝜎𝑒𝑥𝑝 the estimated standard 

deviation of the correlation corresponding to the root mean square error between the 

experimental points and the correlation.  

The comparison between numerical and experimental data from the gypsum dissolution 

measurement is given on a logarithmic scale in Figure 3.12. The same is done with Gnielinski 

correlation of heat transfer coefficient on Figure 3.13. This bias corresponding to the mean 

value of the error 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 is given relatively to the computed value of the Nusselt number in 

percent: 

𝐵𝑖𝑎𝑠 = 100 
𝑁𝑢𝐶𝐹𝐷 − 𝑁𝑢𝐸𝑋𝑃

𝑁𝑢𝐶𝐹𝐷
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(a) 1S  

 

(b) 2S 

 

(c) 1F 

 

(d) 2F 

 

Figure 3.12 : relative bias on the calculation of the asymptotic Nusselt number compared to 

gypsum dissolution experimental data.  

 

The accuracy of the models indicated by the bias, is globally the same. When comparing the 

data to the correlation obtained with gypsum dissolution measurement, the bias decreases with 

increasing Reynolds number. Moreover, the bias is larger for the higher Prandtl numbers. The 

bias values obtained for the higher Reynolds number are in the range [−15%, 10%] of the 

CFD values. The bias is similar when comparing with Gnielinski correlation. Its values remain 

in the range [−10% , 25%] for all the performed computations which is slightly better than the 

comparison with gypsum for low Reynolds. The bias decreases for increasing Prandtl number, 

especially for Grid 2S which seems more sensible to variations of the Prandtl number. Finally, 

with Gnielinski correlation, the iso-contours curve for increasing Reynolds number and reach 

horizontal line which indicate that the bias tends to become independent of the Reynolds 

number. This behavior is visible for low Prandtl number for all grids. For Grid 2S, this tendency 

is much more visible as it seems that the bias stabilizes to a value in the range [0%, 15%] 

which depends only on the Prandtl number. This behavior is less visible with Gypsum 

dissolution where the iso-contours are parallel.  
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(a) 1S  

 

(b) 2S. 

 

(c) 1F 

 

(d) 2F. 

 
Figure 3.13 : relative bias on the calculation of the asymptotic Nusselt number compared to 

Gnielinski correlation.   

3.2.2.2 Establishment of the Nusselt profile 

For all the simulations, the Nusselt number maximum is reached at the leading edge of the 

heated wall where the temperature gradients are the most important. This result has also been 

observed on the experimental data obtained from gypsum dissolution as it can be seen on Figure 

2.17. The ratio between the leading-edge value and the established boundary layer value of the 

Nusselt number is found to be in the range [1.5, 2.5]. No clear tendency with the Reynolds 

number is visible as the experimental data in this zone are too noisy. The characteristic length 

has not been processed as the uncertainty on the leading edge were too large. In literature, the 

ratio can be found in (Boelter, et al., 1948) for a wide range of hydraulic conditions. It is shown 

that the impact of the establishment of the velocity profile at the entrance region has a 

significant impact, as the shape of the developing thermal boundary layer and the amplitude at 

the leading-edge changes drastically for varying geometries. For a circular pipe with a long 

calming section at the entrance, the value is found to range in [1.5 , 2.5] and is found to decrease 
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with the Reynolds number. In comparison, the ratio calculated from the Nusselt profiles 

obtained on the grid 1S and 1F were in the range [2 , 3] as depicted on Figure 3.9.  

3.3 Determination of the uncertainty 𝑼𝒊𝒏𝒑𝒖𝒕𝒔,𝒆𝒙𝒑 

3.3.1 Introduction 

The uncertainty quantification process applied to the rectangular channel simulation consists 

of assessing the values of the different sources of errors and uncertainties depicted in §1.2.1. 

In this paragraph, 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝, the uncertainty resulting from the propagation of the uncertainty 

of the simulation’s input parameters will be quantified. In this numerical case corresponding 

to the reproduction of the experiments presented in Chapter 2, two input variables of the 

simulation are uncertain when comparing to experiments :  

- the Reynolds number at the inlet of the channel which was found to fluctuate around 

2% to 5% of the mean value during the experiments. This fluctuation was the result of 

the fluctuation of the temperature and flowrate in the channel. The Reynolds number is 

adjusted in the simulation with the inlet flowrate. 

- the Prandtl number of the simulation which value is adjusted by modifying the specific 

heat of water. During the mass transfer measurements experiments, the Schmidt number 

was found to fluctuate around 2% to 5% due to the fluctuation of the temperature in the 

channel. 

 

The flowrate at the inlet of the channel and the specific heat of water were thus set as uncertain 

in order to reproduce the variability of the Reynolds and Schmidt numbers observed during the 

experiments (see §2.5.1). In addition, the fluctuation of both non dimensional quantities were 

correlated. The Pearson correlation coefficient was introduced:  

 

𝜌𝑅𝑒,𝑆𝑐 =
𝐶𝑜𝑣(𝑅𝑒, 𝑆𝑐)

𝜎𝑅𝑒𝜎𝑆𝑐
 

 

This coefficient was found to vary in the range [−1,−0.8] for all experiments, with a mean 

value of the coefficient 𝜇𝜌𝑅𝑒,𝑆𝑐 = −0.89. This mean value of the Pearson correlation coefficient 

calculated from the experiments has been chosen for the generation of the bivariate Gaussian 

distribution representing the probability density function of the two dimensional input random 

variable (𝑅𝑒, 𝑃𝑟) that will be propagated through the calculation of the Nusselt number.  
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Two approaches have been tested in order to propagate the inputs uncertainty through the 

computation of the heat transfer coefficient:  

- Method 1: a surrogate model is designed from the computations of the heat transfer 

coefficient. This surrogate model is generated using Gaussian processes §1.2.3 with the 

python library scikit-learn. Monte Carlo draws were used on this surrogate model to 

propagate the inputs uncertainty §1.2.4.2.1.  

- Method 2: the propagation is achieved with Deterministic Sampling (DS) presented in 

§1.2.4.2.2. The output uncertainty is estimated from 𝑁 computations with 𝑁 depending 

on the number of inputs and of the aimed accuracy.  

3.3.2 Method 1: Surrogate model and Monte-Carlo method 

This first method implemented to propagate the input uncertainty is based on random sampling. 

This method which is described in §1.2.4.2.1 estimates the mean value and standard deviation 

of the output from large number of computations of the heat transfer coefficient. The CPU time 

for one computation with CFD makes this approach unfeasible for most of industrial 

application. Thus, an intermediate step is added in order to design a surrogate model which can 

estimate the CFD response as a function of the input parameters with an affordable cost. This 

surrogate model is generated from the results of CFD computations which are combined with 

Bayesian statistics and Gaussian process theory described in §1.2.3.  

 

In this work, the surrogate model predicting the Nusselt number is designed using gaussian 

processes and Bayesian statistics. Its training relies on observations; thus, a design of 

experiment (DoE) map is designed in order to choose the inputs for computation of the heat 

transfer coefficient. Different technics are used to generate a DoE, some which are sequential 

in order to refine iteratively the surrogate model by adding data where the surrogate model 

accuracy is not fine enough. Other DoE are predefined, such as uniform, maximizing entropy 

and others. Elements on various DoE can be found in (Kleijnen, 2018). In this work, a uniform 

design (UD) has been generated in order to cover the range of input conditions.  

𝑅𝑒 ∈ [104, 105] 

𝑃𝑟 ∈ [2, 10] 

 

This UD is written 𝑈50(10
1 × 51). This notation 𝑈𝑛(𝑞1

𝑠1 , … , 𝑞𝑝
𝑠𝑝) is given for UD with mixed 

levels, where 𝑈 stands for Uniform, 𝑛 gives the total number of runs, 𝑞𝑗 the number of level 

and 𝑠𝑗 the number of factors. This design is depicted on Figure 3.14.  
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Figure 3.14: levels of the Reynolds and Prandtl number for the uniform design 

𝑈50(10
1 × 51).  

 

Literature and experiments on the rectangular channel (cf. Chapter 2) indicate a trend of the 

Nusselt number which is unchanged on the investigated range of simulation inputs. In this case, 

the design 𝑈50(10
1 × 51) is appropriate for the creation of the surrogate model and do not 

require local refinement at specific region of the DoE. For an input space with a higher 

dimension and for more complex responses, other DoE should be used in order to have an 

accurate surrogate model and limit the number of CFD runs required.  

 

The data inputs are written 𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵) and the outputs 𝒚 = (𝑦1, 𝑦2, … 𝑦𝑁). Each 

output 𝑦𝑖 is the asymptotic Nusselt number computed with CFD with simulation inputs 𝒙𝒊 =

(𝑅𝑒𝑖, 𝑃𝑟𝑖). The outputs are considered as a realization of a random Gaussian process 

𝑓~𝐺𝑃(𝜇, 𝑘(𝒙, 𝒙′)) with 𝜇 the mean of the Gaussian process and 𝑘 the covariance function.  

A joint prior is given for the realizations 𝒚 = (𝑦1, 𝑦2, … 𝑦𝑁) by assuming a Squared-

Exponential (SE) kernel. In addition, the output is assumed to include white noise of mean zero 

and of variance 𝜎𝑒
2. In this case, the covariance (or kernel) function 𝑘 can be written as 

following: 

𝑘(𝒙𝒊, 𝒙𝒋) = 𝜎𝑓
2 exp(−

𝑑(𝒙𝒊, 𝒙𝒋)
2

2𝑙2
) + 𝜎𝑒𝛿𝑖𝑗 

 

where, 𝑑(𝒙𝒊, 𝒙𝒋) is the cartesian distance between 𝒙𝒊 and 𝒙𝒋, 𝜎𝑓 is the signal variance, 𝑙 is a 

characteristic length and 𝛿𝑖𝑗 is the Kronecker function. The “training” of the gaussian process 

consists of finding the best parameters for the regression of the observation points. This set of 

best parameters 𝜽 = (𝑙, 𝜎𝑒 , 𝜎𝑓) is found by maximizing the likelihood 𝑝(𝜽|𝑿, 𝒚).  
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The algorithm used in order to compute the predictive distribution 𝑝(𝑓(𝒙∗)| 𝒇(𝑿), 𝑿, 𝜇(. ), 𝑘(. , . )) 

mean and variance (1.17) are based on the implementation of Algorithm 2.1 from (Rasmussen 

& Williams, 2006) in the python library scikit-learn (Pedregosa, 2011). The mean value of the 

process 𝜇 is set to the mean value of the outputs 𝒚.  

 

(a) 𝑙 = 0.3 

 

(b) 𝑙 = 3 

 
Figure 3.15: data generated from a GP with a SE kernel and test points indicated with red 

crosses. The predictive mean is indicated with dashed line, the real function with a solid 

black line. The length scale 𝑙 of the SE kernel is fixed with (a) 𝑙 = 0.3. and (b) 𝑙 = 3. Shades 

of grey indicate quantiles of the predictive distribution. 

 

An example of the effect of changing the parameter 𝑙 can be seen on an arbitrary 1D case 

depicted on Figure 3.15. This example has been generated with scikit-learn by computing the 

predictive mean distribution of the GP for the SE kernel summed with white noise with 𝑙 = 0.3 

and 𝑙 = 3. The error variance is set to 𝜎𝑒 = 1 and the signal variance 𝜎𝑓 is adjusted in order to 

maximize the likelihood. It is visible that the parameters influence on the predictive mean and 

variance is significant. Large values of 𝑙 tend to smooth curves while small values of 𝑙 tend to 

return the mean value of the gaussian process everywhere except in the immediate vicinity of 

the test points.  

For the rectangular channel case, the SE kernel has been chosen due to the smooth aspect of 

the response of the gaussian process with this kernel and the limited number of hyper 

parameters to fit. The input space is two dimensional, thus, two lengths 𝑙1, 𝑙2 are defined 

respectively for the Prandtl number axis and the Reynolds number axis. Moreover, the data is 

considered noise free, and a simple Gaussian kernel is used with 𝜎𝑒 = 0 and 𝜎𝑓 = 1 in order 

to fit the exact CFD value on the training points. Once the kernel is chosen and the training 

data generated, the accuracy of the surrogate model is evaluated by splitting randomly the 

training data in two groups. One group is used in order to generate the surrogate model and 

calibrate the values of (𝑙1, 𝑙2), the other to estimate the accuracy of the prediction compared to 

the results of CFD simulations. This step is repeated 𝑁𝑆 times, allowing to estimate the mean 

and variance of the surrogate model which indicates its accuracy. In this study, a split 80%/20% 

of training/evaluation data is used. Finally, when the surrogate model is trained and the 
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accuracy is satisfying, random samples of couples 𝑅𝑒𝑖, 𝑃𝑟𝑖 are generated and injected as inputs 

of the surrogate model to estimate the mean and variance of the output with Monte Carlo 

method. This method has also been applied for a one-dimensional input space at constant 

Prandtl number in order to compare its results to Deterministic Sampling described in the 

following paragraph.  

3.3.3 Method 2: Deterministic Sampling  

This second approach uses Deterministic Sampling described in §1.2.4.2.2. It provides an 

estimation of the mean and standard deviation of the CFD output for uncertain simulation 

inputs from a weighted sample of the Nusselt computations. In this chapter, only the Reynolds 

number of the simulated test section is set as uncertain following a univariate Gaussian 

distribution 𝑅𝑒 ~ 𝑁(𝜇𝑅𝑒, 𝜎𝑅𝑒). It has been indicated in §1.2.4.2.2 that the sigma points that are 

used to create the deterministic sample ensembles are chosen in order to respect the statistical 

moments of the input random variables. The four centered statistical moments of the normal 

distributions of variance 𝜎2 are:  

〈𝛿𝑋〉 = 0,   〈𝛿𝑋2〉 = 𝜎2,   〈𝛿𝑋3〉 = 0,   〈𝛿𝑋4〉 = 3𝜎4 

 

Ensembles used in this work can be found in (Sahlberg, 2016) which also gives a methodology 

to combine these ensembles. One simple ensemble that can be used to propagate the variance 

of the input is the Standard ensemble used in the Unscented Kalmann filtering (UKF) (Julier 

& Uhlmann, 2004) (see §1.2.4.2.2) The sigma points  �̃� and the weights 𝑾 used are defined as 

following: 

𝑾 = (

1

2
1

2

),   �̃� =  (
𝜇 + 𝜎
𝜇 − 𝜎) 

It can be easily verified that this ensemble respects the three first moments. Instead of using 

this ensemble, an extension called the “Zero Padding” ensemble has been chosen. The 

difference between these two ensembles is the presence of the centered point 𝑅𝑒 = 𝜇𝑅𝑒 which 

is combined with a more important weight in order to reproduce the fourth statistical moment.  

𝑾 = 

(

 
 
 

1

6
1

6
2

3)

 
 
 
,   �̃� =  (

𝜇 − √𝟑𝜎

𝜇 + √𝟑𝜎
𝜇

) 
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Figure 3.16: design of experiment used for the CFD runs for the propagation of five uncertain 

Reynolds numbers through the calculation of the Nusselt number with Deterministic 

Sampling. 

 

We can verify that this ensemble reproduces the four first statistical moment of any Gaussian 

distribution 𝑋. This verification is done by calculating each of the four first centered moments 

with the weighted approach: 

𝑤1 + 𝑤2 + 𝑤3 = 1 

(
1

6
(𝜇 − √3𝜎) +

1

6
(𝜇 + √3𝜎) +

2

3
 𝜇)) = 𝜇  

(
1

6
(𝜇 − √3𝜎 − 𝜇)

2
+
1

6
(𝜇 + √3𝜎 − 𝜇)

2
 +
2

3
 (𝜇 − 𝜇)2 ) =

1

6
 3𝜎2 +

1

6
 3𝜎2 = 𝜎2 

(
1

6
(𝜇 − √3𝜎 − 𝜇)

3
+
1

6
(𝜇 + √3𝜎 − 𝜇)

3
 +
2

3
 (𝜇 − 𝜇)3 ) = 0 

(
1

6
(𝜇 − √3𝜎 − 𝜇)

4
+
1

6
(𝜇 + √3𝜎 − 𝜇)

4
 +
2

3
 (𝜇 − 𝜇)4 ) = 3𝜎4 

 

Only the mean 𝜇𝑁𝑢 and standard deviation 𝜎𝑁𝑢 of the Nusselt number are of interest in this 

present work. They are calculated with: 

 

𝜇𝑁𝑢 =∑𝑤𝑖𝑁𝑢(𝑅𝑒𝑖)

3

𝑖=1

  
(3.2) 

 

𝜎𝑁𝑢 =∑𝑤𝑖(𝑁𝑢(𝑅𝑒𝑖) − 𝜇𝑁𝑢)
2

3

𝑖=1

 (3.3) 

 

The design of experiment map used in order to estimate the mean and standard deviation of the 

uncertain output 𝑁𝑢 is depicted on Figure 3.16. The Prandtl number is fixed and set to 𝑃𝑟 = 5. 



82 Uncertainty quantification on the rectangular channel 

 

 

The mean and variance of the output Nusselt number are estimated for five uncertain Reynolds 

number. 

3.3.4 Summary of performed computations 

The computations performed for the different grids and software are recapitulated in Table 3.5. 

 

Table 3.5 : approaches used for uncertainty propagation through RANS simulations with 

the different grids 

Meshing 𝑈50(10
1 × 51) DS – Zero Padding 

Grid 1S Yes Yes 

Grid 2S Yes No 

Grid 1F Yes No 

Grid 2F Yes No 
 

3.3.5 Results of the propagation 

3.3.5.1 Method 1: Surrogate model and Monte-Carlo method 

This method relies on the creation of a surrogate model 𝑁�̂� estimating the response of CFD 

codes for arbitrary simulation inputs (𝑅𝑒 and 𝑃𝑟). First, the accuracy of the surrogate model is 

estimated. The methodology to estimate the accuracy of the surrogate model is as follows: 

- The data points 𝑅𝑒𝑖, 𝑃𝑟𝑖, 𝑁𝑢𝑖  retrieved from the CFD simulations on the DoE are split 

in two groups : 80% of the data 𝑅𝑒𝑡𝑟𝑎𝑖𝑛,𝑖, 𝑃𝑟𝑡𝑟𝑎𝑖𝑛,𝑖, 𝑁𝑢𝑡𝑟𝑎𝑖𝑛,𝑖 is used to train the 

surrogate model 𝑁�̂�, while 20% of the data 𝑅𝑒𝑒𝑣𝑎𝑙,𝑖, 𝑃𝑟𝑒𝑣𝑎𝑙,𝑖, 𝑁𝑢𝑒𝑣𝑎𝑙,𝑖 is used to evaluate 

the error between the predictions 𝑁�̂�(𝑒𝑒𝑣𝑎𝑙,𝑖, 𝑃𝑟𝑒𝑣𝑎𝑙,𝑖) − 𝑁𝑢𝑒𝑣𝑎𝑙,𝑖  

- This process is repeated 𝑁𝑆 times, the separation of the data in two groups is done 

randomly considering a equal probability for each point of the DoE.  This is done with 

a method implemented in scikit-learn based on pseudo random numbers generator.  

- The mean and standard deviation of the prediction error are retrieved from the 𝑁𝑆 

samples.  

 

In this work, 𝑁𝑆 = 500, the mean error is estimated over the 500 prediction of the error which 

is found to be on inferior to 0.1% of the given value which is assumed to be negligible. One of 

the random separations of training and evaluation points is given on Figure 3.17a, the Nusselt 

number is given with a colormap. On Figure 3.17b and Figure 3.17c, the mean and standard 

deviation of the surrogate model is calculated for Grid 2S. The surrogate model based on the 

computations with this grid showed the biggest values of standard deviation which is given in 

percent of the mean predicted value.  
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On the case depicted Figure 3.17b and Figure 3.17c, the standard deviation is found to be 

approximatively 0.25% of the prediction at the center of the domain. This standard deviation 

grows larger on the border and reaches 1 to 2%. On the center of the domain, the prediction 

error is neglected when estimating 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝. Nevertheless, on the border of the 𝑅𝑒 − 𝑃𝑟 

space, the diminution of the surrounding data leads to an increased error which can have an 

impact on the prediction of the Nusselt number. Thus, the surrogate model that is generated for 

predicting the Nusselt number is bounded to the range of Reynolds number:  

𝑅𝑒 ∈ [2 ∙ 104, 9 ∙ 104], 𝑃𝑟 ∈ [3, 9] 

 

The simulation inputs 𝑅𝑒, 𝑃𝑟 probability density function is modelled with a joint gaussian 

distribution. During the experiments, the Reynolds and Schmidt values have been found to 

fluctuate in the worst case about 2% around their mean value. Thus, a sample has been 

generated for a 2D joint Gaussian distribution 𝑿 around different mean points 𝝁𝑿 = (𝜇𝑅𝑒, 𝜇𝑃𝑟) 

with a covariance matrix defined as following: 

𝐶𝑜𝑣(𝑅𝑒, 𝑃𝑟) = (
𝜎𝑅𝑒
2 𝐶

𝐶 𝜎𝑃𝑟
2 ) , 𝐶 = 𝜌𝑅𝑒,𝑆𝑐 𝜎𝑅𝑒𝜎𝑃𝑟 

 

where, 𝜎𝑅𝑒 = 0.02 𝜇𝑅𝑒 and 𝜎𝑃𝑟 = 0.02 𝜇𝑃𝑟. 𝐶 is calculated from the Pearson correlation 

coefficient 𝜌𝑅𝑒,𝑆𝑐 = −0.89 (see §3.3.1).   

The surrogate model designed for prediction of the established thermal boundary layer Nusselt 

number is denoted with the symbol 𝑁�̂�(𝑅𝑒, 𝑃𝑟). A sample of 10 000 realization of this joint 

Gaussian distribution has been generated with a pseudo random number generator implemented 

in the python library numpy. The mean value and standard deviation of the Nusselt number are 

computed by estimating the mean and standard deviation of the predictions for each realization 

of the sample (𝑅𝑒𝑖, 𝑃𝑟𝑖)𝑖∈[1,10 000]: 

𝜇𝑁𝑢 =
1

10 000
∑ 𝑁�̂�(𝑅𝑒𝑖, 𝑃𝑟𝑖)

10 000

1=1

 

𝜎𝑁𝑢 =
1

10 000 − 1
∑ (𝑁�̂�(𝑅𝑒𝑖, 𝑃𝑟𝑖) − 𝜇𝑁𝑢)

2
10 000

1=1

  

 

The uncertainty due to the uncertain simulation inputs 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 mean value and standard 

deviation are then calculated with:  

𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 = 𝑁𝑢(𝜇𝑅𝑒 , 𝜇𝑆𝑐) − 𝜇𝑁𝑢 

𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 = 𝜎𝑁𝑢 
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(a) Example of repartition between training and evaluation data 

 

(b) Mean of the 𝑁𝑆 surrogate model 

 

(c) Standard deviation of the 

𝑁𝑆 surrogate model 

 
Figure 3.17 :construction of the surrogate model for the established boundary layer Nusselt for 

Grid 2S. (a) Example of training (○) – evaluation (□) separation of the data for one of the 𝑁𝑆 

surrogate model created. (b) Resulting surrogate model mean and (c) standard deviation. 

 

The relative bias and standard deviation on the computation of the Nusselt number are defined 

as following:  

𝐵𝑖𝑎𝑠 = 100
𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝
𝑁𝑢(𝜇𝑅𝑒, 𝜇𝑆𝑐)

 

𝑆𝑇𝐷 = 100
𝜎𝑁𝑢

𝑁𝑢(𝜇𝑅𝑒, 𝜇𝑆𝑐)
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(a) Bias 1S 

 

(b) STD 1S 

 

(c) Bias 2S 

 

(d) STD 2S 

 

(e) Bias 1F 

 

(f) STD 1F 

 

(g) Bias 2F 

 

(h) STD 2F 

 

Figure 3.18 : 𝐵𝐼𝐴𝑆 and 𝑆𝑇𝐷 for the different computations 
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The results for all grids are depicted on Figure 3.18. The relative bias is lower than 0.1% of the 

value given by CFD 𝑁𝑢(𝜇𝑅𝑒 , 𝜇𝑃𝑟) on most of the studied range and is thus assumed negligible. 

The standard deviation is found to be in the range [1%, 2%] of the CFD estimation 

𝑁𝑢(𝜇𝑅𝑒, 𝜇𝑃𝑟). Moreover, it can be noticed that the differences between the grids are small. The 

propagation of the boundary condition uncertainty on this case yields low standard deviation 

and bias due to the low uncertainty on the Reynolds number and Schmidt number during the 

experiment. The impact they have on the computed Nusselt number is limited and can be 

assumed negligible with respect to the experimental uncertainty.  

 

3.3.5.2 Method 2: Deterministic Sampling 

Deterministic sampling (DS) has been used to propagate the uncertainty of one uncertain 

parameter which is the Reynolds number. This uncertainty has been estimated for the Nusselt 

number at the exiting edge of the heated wall 𝑁𝑢2𝐷 for the five following mean Reynolds 

number: 10 000, 32 000, 55 000, 77 500 and 100 000 at 𝑃𝑟 = 5. The Reynolds number is 

assumed to follow a normal distribution 𝒩(𝜇𝑅𝑒, 𝜎𝑅𝑒) where the standard deviation 𝜎𝑅𝑒 is 

defined as follows: 

 

𝜎𝑅𝑒 = 0.02 𝜇𝑅𝑒 

 

The objective of these computations was to compare for a simple case this method with the 

previous one relying on surrogate modelling and Monte Carlo draws. The method 1 depicted 

in the previous section is reproduced for the propagation of the uncertain Reynolds number 

defined previously for Nusselt obtained at 𝑃𝑟 = 5. The generation of the training data for the 

training of the surrogate model was done by transposing the data obtained on the DoE depicted 

Figure 3.14 to 𝑃𝑟 = 5 by using the Prandtl dependency found in Table 3.4.  Only the results 

are presented, as the process has already been described in the previous section.  

 

The calculation of the mean value of the Nusselt number 𝜇𝑁𝑢 and its standard deviation 𝜎𝑁𝑢 

with DS is realized with equations (3.2) and (3.3). An example of propagation with DS is given 

on Figure 3.19. The 𝜇𝑁𝑢 ± 2𝜎𝑁𝑢 interval calculated is given and covers the 3 runs.  

 

The uncertainty 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 is quantified around the five Reynolds numbers. The standard 

deviation and bias are given in percent of the CFD simulation on Figure 3.20:  

 

𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 = 100 
𝑁𝑢(𝜇𝑅𝑒 , 𝑃𝑟 = 5) − 𝜇𝑁𝑢
𝑁𝑢(𝜇𝑅𝑒, 𝑃𝑟 = 5)

 

𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 = 100 
𝜎𝑁𝑢

𝑁𝑢(𝜇𝑅𝑒 , 𝑃𝑟 = 5)
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Figure 3.19: example of the resulting standard deviation of the 𝑁𝑢2𝐷 for 𝑅𝑒 = 100 000. 

The CFD runs values are given with the symbols (○). The mean and standard deviation of 

𝑁𝑢2𝐷 are respectively given by the black cross and error bar. The total error bar length is 

4𝜎 

 

 

The bias is found to be lower than 1% for all the estimation points. Moreover, no visible 

tendency is observed. The maximum value is about −0.18%  of the CFD run for 𝑅𝑒 = 77 500. 

The standard deviation fluctuates in the range 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 ∈ [1.5%, 2%], and as for the bias, 

no visible tendency is observed.  

 

The comparison between the results yielded by the two propagation methods is given on Figure 

3.21.  It should be reminded that the first approach to propagate the uncertainty of inputs relies 

on the training of a surrogate model for the prediction of the Nusselt number in the range 𝑅𝑒 ∈

[104, 105]. The bias is similar for both methods and lower than 1%. For 𝑅𝑒 = 105, the 

difference is more significant but is most certainly due to the loss of accuracy of the surrogate 

model around this Reynolds number which is on the border of the Reynolds domain. The 

standard deviation is also similar for both methods and no evolution is observed with the 

Reynolds number. In both case, 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 remains in the range 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 ∈

[0.015 𝑁𝑢𝐶𝐹𝐷(𝜇𝑅𝑒), 0.02 𝑁𝑢𝐶𝐹𝐷(𝜇𝑅𝑒)] where 𝑁𝑢𝐶𝐹𝐷(𝜇𝑅𝑒) is the Nusselt number estimated 

at a given mean Reynolds number. 
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Figure 3.20: results of the uncertainty quantification with Deterministic Sampling for Grid 

2S. The bias is close to zero and is indicated with text for each estimation point. The 

standard deviation is given with error bars. 

 

 
Figure 3.21 : comparison of the bias and standard deviation of 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 between method 

1 and method 2 (in % of the CFD simulation prediction) 

 

3.3.5.3 Conclusion  

Two methods have been presented in order to propagate the uncertainty of the simulation inputs 

through the calculation of the established thermal boundary layer Nusselt number with CFD. 

For this study, the relative standard deviation of the resulting uncertainty has been found to be 

of the same order of magnitude as the uncertainty of the inputs which is around 2% for the 

experiments on the rectangular channel. This low level of uncertainty on the inputs does not 
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affect the mean value as the bias induced 𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 has been found to be lower than 0.1% of 

the Nusselt number for most of the CFD runs with the different models. This low bias is mostly 

due to the smoothness of the CFD response and the quasi-linear behavior in respect to the 

Reynolds and Prandtl numbers. Differences are observed with the surrogate modelling 

methodology when propagating one or two uncertain parameters. In the latter case, the 

correlation between the two parameters has been considered and the resulting uncertainty has 

been found smaller than for a unique uncertain parameter. Finally, the uncertainty found by 

both methods are similar, differences are only visible on the border of the design of experiment 

map where the accuracy of the surrogate model designed in method 1 decreases.  

3.4 Estimation of the model error 𝑬𝒎𝒐𝒅𝒆𝒍 

The mean and standard deviation of the model error 𝐸𝑚𝑜𝑑𝑒𝑙 are estimated from the different 

sources of uncertainty: 

𝜇𝐸𝑚𝑜𝑑𝑒𝑙 = 𝜇𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 + 𝜇𝑈𝐸𝑋𝑃 − 𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 − 𝜇𝐸𝑛𝑢𝑚  

𝜎𝐸𝑚𝑜𝑑𝑒𝑙 = √𝜎𝐸𝐶𝐹𝐷/𝐸𝑋𝑃
2 + 𝜎𝑈𝐸𝑋𝑃

2 + 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝
2 + 𝜎𝐸𝑛𝑢𝑚

2  

The different sources of uncertainty are chosen as follows: 

- Error between the computations and experiments 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 : the mean value is 

calculated as in §3.2.2 by comparing the correlations obtained for the Nusselt number 

with the different models to the correlation from Gnielinski and the correlation from 

the gypsum dissolution measurements. The standard deviation is taken as zero as the 

computations are noise-free. The potential randomness of the realization of the 

experimental data is taken into account in the experimental uncertainty 𝑈𝐸𝑋𝑃.   

- Experimental uncertainty 𝑈𝐸𝑋𝑃 : the standard deviation has been estimated during the 

experiments as a function of the Reynolds number. This standard deviation is calculated 

by combining the temporal variations of the measurements and the square error between 

the experimental point and the calculated correlation. Its value is high for low Reynolds 

number reaching 70% of the predicted value but decreases significantly for the higher 

Reynolds number to 10%. The bias is assumed to be zero, which has been partially 

verified on this case by comparing to other heat transfer correlation from literature. For 

Gnielinski correlation, the mean is assumed to be zero, and the standard deviation on 

the correlation is defined as 10% of the experimental value. 

- Numerical error 𝐸𝑁𝑈𝑀 : this source of error has been assumed negligible with respect 

to the other sources of error and uncertainty.  A rough estimation of this error has been 

achieved with a grid convergence at a specific Reynolds number (see §1.2.4.3), which 

yielded a bias and standard deviation around 1% of the calculated Nusselt number. The 

obtention of this error will be presented with more details in Chapter 6.  

- Uncertainty of the simulation inputs 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 : the bias is negligible when 

compared to 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃. Furthermore, its standard deviation can also be neglected with 
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respect to the standard deviation of 𝑈𝐸𝑋𝑃. Thus, the contribution of this uncertainty to 

the modelling error on the rectangular channel case was neglected.  

Only the bias calculated from the difference between experiments and CFD runs and the 

standard deviation due to the experimental uncertainty are important in order to quantify 

𝐸𝑚𝑜𝑑𝑒𝑙. This remark underlines the importance of experimental data for the quantification of 

the model error of CFD.  

The bias of the model error is approximated to be the bias of 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃. The evolution with the 

Reynolds and Prandtl number is depicted on Figure 3.12 when comparing to the correlation 

obtained from gypsum dissolution measurements and on Figure 3.13 when comparing the 

simulation calculation of the established Nusselt number 𝑁𝑢2𝐷 to Gnielinski correlation. It is 

visible that the bias is more important with Gypsum dissolution for low Reynolds reaching 

40% for the lowest Prandtl numbers. For the higher Reynolds numbers, this bias is in the range 

[−10%, 10%] of the CFD value. When comparing with Gnielinski correlation, the bias is 

lower for the smaller Reynolds number reaching in the worst case 30%. For the higher 

Reynolds number, the bias is in the range [−10%, 17%]. For both experimental data, the bias 

is similar for high Reynolds number.  

 

The evolution of the model error is depicted for 𝑃𝑟 = 2 and 𝑃𝑟 = 10, for Grid 1S and 2S on 

Figure 3.22 and for Grid 1F and 2F on Figure 3.23. The bias and the standard deviation are 

given relatively to the estimation of the Nusselt number with CFD: 

 

𝐵𝑖𝑎𝑠 =
𝑁𝑢𝐶𝐹𝐷 + 𝜇𝐸𝑚𝑜𝑑𝑒𝑙

𝑁𝑢𝐶𝐹𝐷
, 𝑆𝑇𝐷 =

𝜎𝐸𝑚𝑜𝑑𝑒𝑙
𝑁𝑢𝐶𝐹𝐷

 

 

The difference in the calculation of the model error with Gnielinski correlation and gypsum 

dissolution data is significant for the lowest Reynolds numbers. For the largest Reynolds 

number, the bias between experiments and CFD is similar for both experimental data. In both 

cases, the bias stabilizes itself for high Reynolds numbers and is lower for the higher Prandtl 

number. For all grids except (2F), the calculation with CFD underestimates the value of the 

heat transfer coefficient for high Prandtl number and high Reynolds number. For 𝑃𝑟 =  10 the 

bias stabilizes to negative values in the range [−10%, 0%]. For low Prandtl numbers, CFD 

overestimates the heat transfer coefficient. The difference between models with or without wall 

laws is similar for the implementation in commercial codes: the value with wall law yields 

results approximatively 10% higher than without.  
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(a) 1S – Comparison to gypsum data 

 

(b) 1S – Comparison to Gnielinski correlation 

 

(c) 2S– Comparison to gypsum data 

 

(d) 2S – Comparison to Gnielinski correlation 

 
Figure 3.22 : evolution of the model error mean and standard deviation for Prandtl number equal to 2 and 

10 for grid 1S and 2S. The model error is estimated with gypsum data on (a) and (c), and with Gnielinski 

correlation (b) and (d). Cross symbols indicate the bias relatively to 𝑁𝑢𝐶𝐹𝐷 and the error bar gives a 

± 𝜎𝐸𝑚𝑜𝑑𝑒𝑙  interval.  
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(a) 1F – Comparison to gypsum data 

 

(b) 1F – Comparison to Gnielinski correlation 

 

(c) 2F– Comparison to gypsum data 

 

(d) 2F – Comparison to Gnielinski correlation 

 
Figure 3.23 : evolution of the model error mean and standard deviation for Prandtl number equal to 2 and 

10 for grid 1F and 2F. The model error is estimated with gypsum data on (a) and (c), and with Gnielinski 

correlation (b) and (d). Cross symbols indicate the bias relatively to 𝑁𝑢𝐶𝐹𝐷 and the error bar gives a 

± 𝜎𝐸𝑚𝑜𝑑𝑒𝑙  interval. 

 

  



 93 

 

 

3.5 Conclusion 

The experiments that were conducted in the rectangular channel have been reproduced 

numerically with CFD.  This has been realized in order to quantify the model error defined in 

§1.2.1. In this case, the quantification relied on the estimation of: 

- the experimental uncertainty on the Nusselt number 𝑈𝐸𝑋𝑃. 

- the error between CFD and experiments 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 which has been calculated for the 

different models and for experimental data originating from gypsum dissolution 

measurements and Gnielinski correlation for turbulent heat transfer in a pipe.  

- the uncertainty when considering uncertain inputs 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝. 

 

The work that has been achieved enabled to draw the following conclusions:  

- the Nusselt number obtained from CFD for an established thermal boundary layer is in 

a good agreement with the experimental data, whether it is with the gypsum 

measurements or Gnielinski correlation. The bias has been found to decrease with the 

Reynolds number and remain within the experimental uncertainty. 

- the establishment of the Nusselt number at the leading edge of the heated wall is not 

well captured by model including wall laws. However, this effect reduces for increasing 

Reynolds numbers and Prandtl numbers presenting shorter establishment lengths.  

- both methodologies tested in order to propagate the inputs uncertainty give similar 

results. The first methodology which relies on surrogate models presents the advantage 

of enabling the quantification of this uncertainty on a global scale. The second one 

based on Deterministic Sampling has the advantage to have a significantly lower cost. 

These two approaches can be used according to the situation. Nevertheless, it has been 

shown that this source of uncertainty is negligible.  

 

Finally, the uncertainty quantification on the rectangular channel highlighted the importance 

of experimental measurements for the estimation of the model error. In fact, in this study, all 

other source of error/uncertainty have been neglected with respect to the standard deviation of 

the experimental uncertainty and the mean value of the gap between CFD and experiments. 

These two quantities were found to be of the same order of magnitude.  

 

The methodology that has been used on the rectangular channel to quantify the model 

uncertainty will be reproduced on a more complex geometry presented in the following 

chapters. However, the results on the rectangular channel seem to indicate that the validation 

process should focus on the comparison between CFD and experiments. In fact, the operating 

conditions during the mass transfer experiments depicted in Chapter 2 were well controlled. 

The resulting uncertainty on the input parameters of the simulations were low as well, with an 

impact on the calculations of the Nusselt number screened by the experimental uncertainties. 





 

 

Chapter 4 Heat and mass transfer measurements 

in a steam generator mock-up 

4.1 Introduction  

The previous mass transfer experiments presented in Chapter 2 showed the possibility to use 

gypsum dissolution in order to estimate the heat transfer coefficient for an isothermal wall by 

using heat and mass transfer analogy. Thus, this methodology is adapted in this chapter for 

measurements in a steam generator water box mock-up, in an impinging jet configuration. 

During the experiments, roughness develops on the dissolving gypsum surface and affects the 

flow which in return affects the mass transfer coefficient. This phenomenon leads to an 

enhancement of the mass transfer which has been observed and quantified for gypsum in the 

case of pipes in (Wang & Ewing, 2017) and investigated in the rectangular channel. These 

methodologies could not be used in the experiments that will be presented in this chapter due 

to the difference of flow configuration which did not allow to use the same correlations. Since 

correlations were not available, a measurement device has been adapted from (Mourgues, et 

al., 2013) in order to retrieve surface average values of the heat transfer coefficient on the 

measurement locations in addition to the mass transfer data obtained with gypsum dissolution. 

The combination of both heat and mass transfer experimental data could then be used to have 

a more reliable transposition of the Sherwood maps yielded by the gypsum dissolution 

technique to Nusselt maps. 
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4.2 Experimental setup 

4.2.1 Presentation of the mock-up  

 
Figure 4.1: Framatome’s technical center facility – Steam generator water box mock-up. 

 

A test campaign has been launched in a 1/5 scale mock-up of a one-half steam generator water 

box (SGWB). The objective is to study the behavior of heat and mass transfer coefficient at 

different locations of the test section with the evolving flowrate. A view of the mock-up can be 

seen on Figure 4.1. The test section corresponding to the SGWB is the bottom part of the 

mockup below the grid. Six measurements location are provided to make measurements of the 

heat and mass transfer coefficient in the test section:  

- four measurements locations are available on the partition plate. These locations are 

given on Figure 4.2a. Both heat and mass transfer measurements were carried out on 

the four visible slots by inserting measurement devices. Only one location could be 

measured at a time. The heat and mass transfer between the flow and the measurement 

locations are driven by the impingement of a jet exiting the inlet nozzle visible Figure 

4.2b. The approximative impingement region is given in red on Figure 4.2a.   

- another measurement location is available in the inlet nozzle which connects the 

hydraulic loop to the SGWB. The part that must contain the gypsum sample can be 

replaced thanks to flanges depicted on Figure 4.2b at the junction between the inlet pipe 

and the test section.  

- the last location is on the grid or tubular sheet. An area zone of the bottom part of the 

grid between the upper volume of the mock-up and the water box can be replaced by a 

gypsum sample used for mass transfer measurements. It is necessary to dismantle the 

upper part of the mock-up with the help of an electric hoist available in the facility to 

place the sample.  
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(a) Partition plate 

 

(b) Inlet nozzle 

 
Figure 4.2: Framatome’s technical center facility – Steam generator water box mock up. (a) 

Partition plate with the four measurements location and the approximative location of the stagnation 

zone in red. (b) Inlet nozzle of the mock-up, the direction of the flow is indicated with the red 

arrow.  

 

 
Figure 4.3: schematic view of the experimental setup 
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(a) Gypsum sample holder 

 

(b) Thermal probe holder 

 

Figure 4.4: view of the measurement device for the partition plate: (a) Mass transfer measurement 

device (b) Heat transfer measurement device. 

 

A schematic view of the experimental setup is given Figure 4.3, it consists of a closed loop of 

circulating water in which the flowrate, temperature and pressure are imposed. The water is 

pumped from a tank which contains 250 𝑚3of water at ambient temperature. The pressurization 

pump is used in order to fill the loop and pressurize the circuit. The water is heated in a 

secondary loop. The circulation pump punctures water from the heater loop in order to reinject 

hot water in the test section. The first step when operating the mock-up is to by-pass the test 

section in order to heat the water in the loop. The water is heated progressively as the 

temperature of the loop reaches the set point temperature of the heater. The pump is briefly 

stopped, the measurement device is then placed flushed to the wall before connecting the test 

section to the loop. Then, the by-pass is switched which enables the filling of the test section 

and the static pressure is increased to 𝑃 = 5 𝑏𝑎𝑟𝑠. The circulation pump is then re-started and 

is used with the regulation valve in order to impose the flowrate. The water passes through a 

rectifier which flattens the velocity profile in the inlet pipe. The water then flows through the 

inlet pipe which is approximatively 20 𝐷𝐻 long, where 𝐷𝐻 is the diameter of the pipe. The 

water then enters the SGWB section bellow the grid from the nozzle of the pipe and impinges 

the partition plate where the gypsum samples or the heat transfer measurement device are 

located, before going through the grid and exiting the test section in the upper volume. The 

inlet and outlet temperatures, the flowrate and the static pressure are measured in the loop with 

an acquisition frequency of 2Hz. When operating the loop with gypsum dissolution 

measurements, the by-pass must be switched after each experiment in order to drain the water 

of the test section and replace the dissolved sample. The heat transfer measurement device is 

connected directly to an acquisition system which retrieves data during the circulation. Thus, 

the measurements done for different flowrates can be recorded in-line and do not require this 

whole by-passing process for successive experiments. The devices used for the measurement 

on the partition plate are depicted on Figure 4.4. 

The fabrication process of the gypsum samples is the same than in Chapter 2 at the difference 

that the slurry is poured directly in the metallic holder in order to have a flatter surface after 
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the cast when compared to 3D printed molds. Gypsum dissolution measurements yield two 

dimensional maps obtained by scanning the surface wear at the end of the experiment. The heat 

transfer measurement device is used to retrieve the surface average heat transfer coefficient on 

two circular surfaces visible on Figure 4.4b. The methodology used to retrieve the heat and 

mass transfer coefficients is described in the following section. In this dissertation, only heat 

and mass transfer coefficients on the partition plate data will be presented.  

4.2.2 Heat and mass transfer for an impinging jet 

The heat and mass transfer measurements that will be presented in this chapter are performed 

on a plate which is impinged by a circular jet. Impinging jets have been of particular interest 

in the thermal hydraulic field because of the high transfer rates involved in this configuration 

between the flow and walls. The heat and mass transfer between the impinging jet and the plate 

has been investigated in the literature and the main characteristics affecting the transfer rates 

are: 

- the nozzle/plate non dimensional distance 𝑍/𝐷𝐻   with 𝑍 the wall distance and 𝐷𝐻 the 

diameter of the nozzle. 

- whether the jet is confined or unconfined,  

- whether the jet is submerged or a free surface jet 

- the shape of the nozzle 

- the angle formed by the jet axis and the plate normal 

- the Reynolds and Prandtl numbers of the jet 

- the presence of multiple jets in grids.  

A wide literature exists on the effect of these parameters on the heat and mass transfer rates. A 

review for single circular jet can be found in (Jambunathan, et al., 1992), from which Figure 

4.5 has been taken. This figure depicts the different zones of the jet:  

- Zone 1: developing flow, initial mixing region. The surrounding fluid is entrained into 

the jet leading to a reduction of the speed. This zones contains a core visible with dotted 

lines. This core corresponds to the zone where 𝑈𝑚 ≈ 𝑈𝑛, with 𝑈𝑚 and 𝑈𝑛 being 

respectively the velocity at the centerline and at the nozzle exit. This region gets smaller 

as the distance from the nozzle exit increases until 𝑍~6 𝐷𝐻 where it disappears 

- Zone 2: established jet. In this region, the axial velocity decreases and it has been shown 

that the decrease of the velocity is proportional to the distance from the end of the core. 

- Zone 3: deflection zone. In this region the decrease of the axial velocity is much higher, 

leading to the rise of the static pressure. This zone has been found to be approximatively 

2𝐷𝐻 large 

- Zone 4: wall jet. The flow in this region shows an important rise of the transversal 

velocity followed by a decrease at greater distances. In this region, the heat transfer is 

higher than for parallel flow because of the higher generation of turbulence by the shear 

between the wall jet and the flow  
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Figure 4.5: flow zones in an impinging jet – zone 1, initial mixing zone ; zone 2, established 

jet ; zone 3, deflection zone ; zone 4, wall jet. From (Jambunathan, et al., 1992) 

 

The heat and mass transfer in the steam generator mock-up corresponds to an oblique circular 

jet, confined and submerged with a nozzle-to-plate distance 𝑍/𝐷𝐻  = 2. For this nozzle to plate 

spacing, zone 2 disappears as the impingement occurs before the establishment of the jet. The 

impact of this parameter is important on the heat and mass transfer coefficient as it can be seen 

on Figure 4.6 from (Jambunathan, et al., 1992): 

- A local minimum is present at the stagnation point. In this region, it has been shown 

for analytical solution of laminar flow that the Nusselt number is proportional to 𝑈𝑚
0.5. 

Moreover, the heat transfer in this zone is maximized for high turbulent intensities. 

- Peaks at 𝑋/𝐷𝐻  ≈ 0.5 and 𝑋/𝐷𝐻  ≈ 2. The first peak is due to the increase of the 

transversal velocity in the deflection zone. The second is due to the presence of vortices 

that forms in the shear regions.  

 

A more recent review can be found in (Zuckerman & Lior, 2006) which analyzes more 

precisely the physical mechanism involved in jet impingement to understand the different 

behavior of the heat transfer in the different region of the plate. 

Furthermore, the topology is subject to variations, and important difference are expected for 

the steam generator mock-up which cumulates distinctive characteristics. First of all, the jet 

axis is oblique, the inclination of the impinging jet has been found to affect the symmetry of 

the radial distribution (Ma, et al., 1997) as it can be seen on the radial distribution of the Nusselt 

number on Figure 4.7. Moreover, the position of the maximum heat transfer has been found to 

vary with the jet inclination. In addition, the pipe upstream of the nozzle is bent as depicted in 

Figure 4.2b and a length 𝑙 ≈ 2𝐷𝐻 is left for water before exiting the nozzle and impinging the 

partition plate. The enhancement of the heat transfer coefficient by modifying the geometry of 
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the nozzle has been studied in literature in the frame of passive control which aims to modify 

the jet structure without energy inputs.  

 

 
Figure 4.6: effect of the nozzle/plate non dimensional distance on the radial variation of the 

heat transfer coefficient centered around the stagnation point. In red, the case 𝑍/𝐷𝐻  = 2 

corresponding to the mock-up situation is highlighted. From (Jambunathan, et al., 1992) 

 

Elements can be found for instance in (Brouillot, 2016) for the study of heat transfer with lobed 

jet. At the exit of the nozzle of the steam generator water box mock-up, the velocity and 

turbulent profiles are significantly affected by the bend. The effect of bent pipe on the velocity 

and turbulent intensity profile can be found in different sources (Sudo, et al., 1998; Sakakibara 

& Machida, 2012; Kalpakli & Örlü, 2013). The curvature affects the velocity distribution, the 

flow in the center of the pipe is displaced outwards due to centrifugal forces, while the flow on 

borders of the pipe travel inward. These displacements induce the appearance of two counter 

rotating vortices which behavior has been studied and observed to be unsteady for turbulent 

flows. A view of the velocity field on a section downstream the bend can be seen on Figure 

4.8, which is obtained with Particle Image Velocimetry (PIV) in (Kalpakli & Örlü, 2013). In 

the mock-up, the distance between the bent section and the nozzle exit is not long enough for 

the velocity profile to regain its symmetry and will thus affect the jet structure and the resulting 

heat transfer on the partition plate. 
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Figure 4.7: radial distribution of the Nusselt number on 

a plate for an oblique circular jet impinging with an 

incidence angle 𝜃 = 45°. From (Ma, et al., 1997) 

 
Figure 4.8: transversal velocity vector 

field downstream a 90° bend pipe and 

amplitude of the velocity indicated 

with a heat map. 𝑊𝑏 is the bulk speed. 

From (Kalpakli & Örlü, 2013) 
 

 

Also, the jet is confined and submerged with important recirculation in the hemispheric 

volume. Water passes through a grid downstream the bulk which also adds to the complexity 

of the flow. 

Different correlations for heat transfer in the stagnation zone reviewed in (Jambunathan, et al., 

1992) are given in Table 4.1. It can be noticed that Hoogendoorn (Hoogendoorn, 1977) 

introduces the turbulence intensity number 𝑇𝑢 in the correlation of the Nusselt number at the 

stagnation point. Furthermore, correlations are given in (Li & Garimella, 2001) for the effect 

of the Prandtl number in the range [0.7, 25.2 ] on the heat transfer for a confined submerged 

jet. The correlation here introduces the effective heat source to orifice diameter ratio 
𝐷𝑒

𝐷
.  

 

Table 4.1 : correlation from literature. 

Source Correlation 

Popiel and Boguslawski 

(1988) (Jambunathan, et 

al., 1992)  

1.2 ≤
𝑍

𝐷
≤  5 and 4 000 < 𝑅𝑒 < 63 000  

𝑆ℎ𝑆 = (0.508 + 0.051
𝑧

𝐷
)𝑅𝑒0.5𝑆𝑐0.4  

 

Hoogendoorn (1977) 

(Jambunathan, et al., 

1992) 

 

1 ≤
𝑍

𝐷
≤ 10 and 𝑅𝑒 = 66 000 

𝑁𝑢𝑆
𝑅𝑒0.5

= 0.65 + 2.03 (
𝑇𝑢 𝑅𝑒0.5

100
) − 2.46 (

𝑇𝑢 𝑅𝑒0.5

100
)

2

 

Li and Garimella (Li & 

Garimella, 2001) 

7.1 < 𝑃𝑟 < 25.2, 1 <
𝑍

𝐷
< 5, 4 000 <  𝑅𝑒 < 23 000 

𝑁𝑢𝑆 = 1.409 𝑅𝑒
0.497 𝑃𝑟0.444  (

𝑙

𝐷
)
−0.058

(
𝐷𝑒
𝐷
)
−0.272
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Figure 4.9: evolution of the exponent 𝑎 with the radial displacement from the stagnation 

point for the empirical lawi 𝑁𝑢 ∝ 𝑅𝑒𝑎. From (Jambunathan, et al., 1992). 

 

By combining various experimental data in (Jambunathan, et al., 1992) it is suggested that 

𝑁𝑢 ∝ 𝑅𝑒𝑎 with 𝑎 depending on the distance from the stagnation point as depicted on Figure 

4.9. Near the stagnation zone, the exponent is smaller than in the wall jet region as the flow 

tends to be laminar. This tendency decreases with increasing 𝑍/𝐷. Far from the stagnation 

region, the differences due to 𝑍/𝐷 reduce significantly.  

4.2.3 Data reduction 

4.2.3.1 Time averaging process 

The objective of the measurements on the steam generator mock-up is to study the evolution 

of the heat and mass transfer rates according to the flowrate. The non-dimensional quantities 

that are related to heat transfer are the Nusselt number and the Prandtl number. For mass 

transfer, the equivalent quantities are the Sherwood number and the Schmidt number.  The 

turbulence regime is given by the Reynolds number 𝑅𝑒. Their definition is given in §1.1.2. The 

characteristic length used in the expression of the Nusselt, Sherwood and Reynolds number is 

the diameter of the inlet nozzle. The characteristic velocity of the Reynolds number is 𝑈 the 

mean velocity in the inlet pipe calculated from the flowrate and the section of the pipe, 

assuming a uniform velocity profile.  The temperature 𝑇(𝑡) during the experiment is calculated 

by averaging the inlet and outlet temperatures obtained with thermocouples upstream and 

downstream the test section. The difference of temperature between these two locations is 

negligible in front of the temporal variation of the temperature during the experiments. Thus, 

this temperature has been assumed representative of the test section temperature. The physical 

properties are calculated over time from the temperature evolution and are averaged over time 

with operator 〈, 〉𝑡. in the same way as in Chapter 2.  
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(a) Evolution of temperature fluctuations ( 𝑇 − �̅�) / 𝜎𝑇 and velocity fluctuation  

( 𝑈 − �̅�) / 𝜎𝑈  

 

(b) Evolution of the Reynolds number 

fluctuations. 

 

(c) Evolution of the Schmidt number 

fluctuations. 

 
Figure 4.10: evolution of the boundary conditions during dissolution for an experiment at 

𝑅𝑒̅̅̅̅ = 7.5 ∙ 105 and 𝑆𝑐̅̅ ̅ = 1.2 ∙ 103 

 

An example of the evolution of the Reynolds number and Schmidt number during the gypsum 

dissolution is given on Figure 4.10 for an experiment at 𝑅𝑒̅̅̅̅ = 7.5 ∙ 105 and 𝑆𝑐̅̅ ̅ = 1.2 ∙ 103. It 

is visible on Figure 4.10a that after the beginning of the dissolution, the surface average 

velocity calculated from the flowrate stabilizes quickly and presents random fluctuations. In 

contrast, during all the experiment, the temperature evolves with a clear predictable behavior. 

The behavior of the Reynolds and Schmidt numbers during the experiments are the same than 

for the temperature, as it can be observed on Figure 4.10b and Figure 4.10c. The approximated 

standard deviations 𝜎𝑅𝑒 and 𝜎𝑆𝑐 in this case are found to be around 3% of the given value of 

𝑅𝑒̅̅̅̅  and 𝑆𝑐̅̅ ̅ corresponding to the temperature variations. In this work, the behavior of the 

boundary conditions during the dissolution due to the temperature establishment is assumed to 

be of small significance on the integral value of the Sherwood number that is measured. The 

impact is assumed to be within the experimental uncertainty range. The trend is thus not 

corrected and kept for the calculation of the boundary conditions uncertainty. 2𝜎 confidence 

intervals are shown for comparison with the sample on Figure 4.10a and Figure 4.10b. The 

signal is most of the time within this interval except at the beginning of the experiment where 

the fluctuations are the biggest.  
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4.2.3.2 Mass transfer measurement 

The mass transfer coefficient 𝐾𝑐 at the sample location is calculated as following for a gypsum 

lining dissolving in water:  

𝐾𝐶 =
 𝜌𝑔𝑦𝑝𝑠𝑢𝑚

𝑐𝑤 − 𝑐0
 
𝑑ℎ(𝑥, 𝑦)

𝑑𝑡
 

where 𝜌𝑔𝑦𝑝𝑠𝑢𝑚 is the density of gypsum, 𝑐𝑤 is the solubility of gypsum in water, 𝑐0 is the 

concentration of the gypsum in the bulk which can be approximated to be zero during the 

experiment and 𝑑ℎ/𝑑𝑡 is the height variation rate while dissolving. This quantity evolves in 

time as the surface roughness develops and enhances the mass transfer. The mass transfer 

coefficient obtained with gypsum dissolution is an integral value which includes a period where 

the wall can be considered smooth and another where the roughness affects the transfer.  

The correction due to the variations of 𝑑ℎ/𝑑𝑡 with the roughness evolution will be estimated 

from the heat transfer coefficient measurements. The raw wear Δℎ𝑟 is obtained from a laser 

scan of the sample topography before and after experiment with a resolution of 

50 𝜇𝑚 × 50 𝜇𝑚. 

Δℎ𝑟 = ℎ𝑎𝑓𝑡𝑒𝑟 − ℎ𝑏𝑒𝑓𝑜𝑟𝑒 

Then a Gaussian filter of order 0 with 𝜎𝑓𝑖𝑙𝑡𝑒𝑟 = 1𝑚𝑚 is applied in other to separate the small 

spatial fluctuations from the slope/waviness of the surface. The parameters of the filtering have 

been set in an empirical way by trials. The filtered wear matrix Δℎ𝑓 is retrieved from the 

filtering and the roughness matrix 𝑒 is yielded from 𝑒 = Δℎ𝑟 − Δℎ𝑓. This matrix is used to 

obtain all the data related to roughness. The different matrices are depicted on Figure 4.11 for 

a sample that was obtained from location 2. The local Sherwood number is then calculated as 

following: 

𝑆ℎ(𝑥, 𝑦) = ⟨
𝐾𝑐 𝐷𝐻
𝐷𝑚

⟩
𝑡

=  𝜌𝑔𝑦𝑝𝑠𝑢𝑚𝐷𝐻 ⟨
1

𝑐𝑤 𝐷𝑚
⟩
𝑡

 
Δℎ𝑓(𝑥, 𝑦)

𝑡𝑒𝑥𝑝
 

The density 𝜌𝑔𝑦𝑝𝑠𝑢𝑚 is measured for the different samples, 𝑐𝑤 is evaluated from the measured 

temperature using data from (Klimchouk, 1996), 𝑡𝑒𝑥𝑝 is the dissolution duration and 𝐷𝑚 is 

evaluated at the measured temperature with Stokes-Einstein equation and the diffusion 

coefficient value at 25°C (Wang & Ewing, 2016) (Simpson & Carr, 1958) as it has been done 

in Chapter 2. Furthermore, the roughness matrix surface is resampled with 1 𝑐𝑚 × 1 𝑐𝑚 

windows on which the following quantities are determined: 

- the RMS roughness 𝑒𝑅𝑀𝑆 calculated as the root mean square of the surface’s peaks and 

valleys. 

- The peak valley roughness 𝑒𝑝𝑣 which is defined as the mean of the five maximums peak 

to valley height.  

- the ratio between the peak valley roughness and the spacing between the roughness 

elements 
𝑒𝑝𝑣

𝑙𝑠𝑡𝑟
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(a) Raw wear 

 

(b) Filtered wear 

 

(c) Roughness 

 
Figure 4.11: example of the treatment of surface data obtained for an experiment on location 2: (a) 

raw wear Δℎ𝑟 (b) filtered wear Δℎ𝑓  and (c) roughness matrix 𝑒 

(a) Division of the original matrix and extraction of profiles in multiple directions. 

 

(b) Extraction of one line at 

𝜃 = 30° 

 

(c) Extraction of 𝑒𝑝𝑣 and 𝑙𝑠𝑡𝑟 

 
Figure 4.12: steps for the extraction of 𝑒𝑝𝑣 and 𝑙𝑠𝑡𝑟 for 𝑅𝑒 ≈ 106 and 𝑆𝑐 ≈ 6 ∙ 102 (a) division 

of the original surface in windows of 1 𝑐𝑚 × 1 𝑐𝑚 and extraction of profiles for a given range of 

angles. (b) Example of profile inclined of 𝜃 ≈ 30° from the horizontal line and (c) associated 

height from which 𝑒𝑝𝑣 and 𝑙𝑠𝑡𝑟 are extracted. 
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The peak to valley roughness 𝑒𝑝𝑣  and the spacing between roughness elements 𝑙𝑠𝑡𝑟 have been 

calculated by extracting profiles of the roughness matrix in the flow direction. This direction 

is estimated with the algorithm described in Appendix B. The process applied for the extraction 

of 𝑒𝑝𝑣 and 𝑙𝑠𝑡𝑟 depicted on Figure 4.12 for an experiment at 𝑅𝑒 = 106 and 𝑆𝑐 = 6 ∙ 102 is as 

following: 

- The average and standard deviation of the angle detected is used in order to generate a 

list of angles to test. 

- For each angle, profiles are extracted from the roughness surface. 

- All the peaks and valleys are extracted which allow to calculate an average distance 

between the roughness elements and an average peak to valley height. 

 

The subdivision of the original matrix is given on Figure 4.12a, and the profiles extracted 

following two different angles are shown in red. The spacing between the profiles has been 

increased in order to enhance the clarity of the figure but, the successive profiles are stuck 

together. An example of extraction of peaks and valleys is given Figure 4.12c for a specific 

profile given on  Figure 4.12b. The extracted peak to valley height is averaged over the profiles 

of the window and averaged for the given angle range.  

4.2.3.3 Heat transfer measurement 

Two surface average values of the heat transfer coefficient are measured with the device 

depicted on Figure 4.13. The measurement zones are two discs on top of the device. The heat 

transfer coefficient on these two surfaces is calculated by estimating the heat flux at the 

solid/liquid interface and from the estimation of the wall temperature. The heat flux and the 

wall temperature are estimated with a modified version of the device used in (Mourgues, et al., 

2013) for critical heat flux measurements. These two quantities are estimated from 

measurements with thermocouples depicted with red dot in the steel cylinder body. Two heated 

cartridges are inserted at the bottom of each probe, leading to the heating of the whole body. 

The heat is then evacuated from the top of the device where the flow exchanges with the heated 

surface. An insulating resin is poured between the metallic carrier and the two cylindrical 

probes in order to limit the lateral heat loss and insure a linear temperature gradient profile in 

the probe and a heat flux in the probe nearly equal to the heat flux in the vicinity of the wall in 

the fluid region. The temperature profile in each probe is estimated from 4 temperature 

measurements.  
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Figure 4.13: view of the measurement device with a computer aided design software. The 

iso-contours of temperature are given on a section of the model.   

 

The top thermocouple has been placed close to the surface in order to have a better estimation 

of the wall temperature. The heat flux 𝜙 and wall temperature 𝑇𝑤𝑎𝑙𝑙 are estimated from Fourier 

law of conduction heat transfer. The heat flux is estimated from the thermal conductivity of the 

probe and the slope of the temperature profile which is found by minimizing the square error 

between the data and the regression law of the linear evolution of temperature with the position 

of the thermocouples: 

𝜙𝑝𝑟𝑜𝑏𝑒 = −𝜆
𝑑𝑇

𝑑𝑥
 

The wall temperature is then estimated with: 

𝑇𝑤𝑎𝑙𝑙 = 𝑇4 − 𝜙𝑝𝑟𝑜𝑏𝑒(𝑋4 − 𝑋𝑤𝑎𝑙𝑙) 

 

where, 𝑋4, 𝑇4 are respectively the position and temperature of the thermocouple near the wall, 

and 𝑋𝑤𝑎𝑙𝑙 the abscissa of the wall boundary.  

This leads to the calculation of the heat transfer coefficient with:  

ℎ𝑐𝑜𝑛𝑣,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
𝜙𝑝𝑟𝑜𝑏𝑒

𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑟𝑒𝑓
 

where, the temperature measured at the inlet of the test section was chosen for 𝑇𝑟𝑒𝑓.  

The Nusselt number on the upper and lower side of the measurement device by considering the 

inlet nozzle diameter as the characteristic length, and the film temperature 0.5 ∙ (𝑇𝑟𝑒𝑓 + 𝑇𝑤𝑎𝑙𝑙) 

for the evaluation of the thermal conductivity of water 𝜆𝑤𝑎𝑡𝑒𝑟 in. 

𝑁𝑢 =
ℎ𝑐𝑜𝑛𝑣,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐷𝐻

𝜆𝑤𝑎𝑡𝑒𝑟
 

The dimensions and materials of the measurement device were chosen after numerical 

simulations. These simulations were done to estimate the lateral heat loss in the cylinder probes 

and thus estimate the bias on ℎ𝑐𝑜𝑛𝑣,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 which has been taken into account in the 

performed measurements. The power of the heated cartridges is controlled electronically in 
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order to have a fixed wall temperature condition during the experiment. The flowrate and 

temperature in the test section were stabilized for the measurements. 

4.3 Heat and mass transfer measurements on the partition plate 

4.3.1 Mass transfer measurements 

4.3.1.1 Introduction 

(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 

Figure 4.14: Reynolds and Schmidt numbers covered for the experiments on the partition 

plate on (a) location 1, (b) 2, (c) 3 and (d) 4. The given value corresponds to the average 

value during the dissolution.  

 

The time average Reynolds number and Schmidt number during the gypsum dissolution is 

given for all the experiments carried out on the partition plate on Figure 4.14. The experiment 

that have been performed were done at 𝑆𝑐 ≈ 1 200 and 𝑆𝑐 ≈ 600.  
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(a) Evolution of 𝜎𝑅𝑒/𝑅𝑒 with 𝑅𝑒  

 

(b) Evolution of 𝜎𝑆𝑐/𝑆𝑐  with 𝑅𝑒 

 
Figure 4.15: evolution of the standard deviations of the operating conditions during the 

dissolution for all experiments (a) Reynolds number, (b) Schmidt number.  

 

The different measurement locations are indicated on Figure 4.2a. On location 1, additional 

Schmidt numbers were investigated for 𝑅𝑒 ≈ 5 ∙ 105.   

The operating conditions of the experiment have been averaged over time with the 

methodology depicted in §4.2.2. The standard deviation of the Schmidt number and Reynolds 

number 𝜎𝑅𝑒, 𝜎𝑆𝑐 are given for all the experiments on all location on Figure 4.15. The standard 

deviation of the Reynolds number during dissolution remains low and in most of the case below 

3% of 𝑅𝑒  value. For the Schmidt number, the standard deviation is slightly higher and 

stabilizes around 5-6% of 𝑆𝑐.  

4.3.1.2 Evolution of the surface average value of the Sherwood number 

The evolution of the surface average Sherwood number 𝑆ℎ̅̅ ̅𝑚𝑒𝑎𝑛 is given as a function of the 

Reynolds number for the different locations on Figure 4.16. The experiments with the highest 

Schmidt number yielded the higher surface average Sherwood numbers. The Sherwood number 

has been divided by 𝑆𝑐
0.44

 following the correlations obtained in (Li & Garimella, 2001) for 

impingement at different Prandtl number fluids. This power coefficient might not be adapted 

as it has been obtained near the stagnation zone of the impinged plate. In comparison, the 

Sherwood has been measured far from the stagnation zone which might imply a lower 

coefficient on the power law. 

The evolution of this normalized Sherwood number for the different locations is given on 

Figure 4.17. The Sherwood number evolution with the Reynolds number is similar for all 

locations for low Reynolds. An increased variability appears for higher Reynolds numbers 

between the locations. Location 1 shows the lowest transfer rates which is coherent with the 

fact that its radial distance from the stagnation point is estimated to be the largest ( ≈ 2.2 𝐷𝐻 , 

1.3 𝐷𝐻 for location 2 and 3; or 0.4 𝐷𝐻 for location 4).  
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(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 
Figure 4.16: evolution of the surface average Sherwood number as a function of the Reynolds 

number on (a) location 1, (b) 2, (c) 3 and (d) 4. The different colors data obtained at 𝑆𝑐 =

6 ∙ 102 (black) and 𝑆𝑐 = 1.2 ∙ 103 (red),   

 

The differences between locations 2, 3 and 4 are within the experimental uncertainty which has 

been found to be in the range 5%, 10% of the given Sherwood number value.  

Correlations are given for the surface average Sherwood number at the different locations:  

𝑆ℎ̅̅ ̅𝑚𝑒𝑎𝑛,1 = 9.79 ∙ 10
−5 𝑅𝑒

1.268
 𝑆𝑐

0.44
 

𝑆ℎ̅̅ ̅𝑚𝑒𝑎𝑛,2 = 8.33 ∙ 10
−6 𝑅𝑒

1.464
 𝑆𝑐

0.44
 

𝑆ℎ̅̅ ̅𝑚𝑒𝑎𝑛,3 = 1.94 ∙ 10
−6 𝑅𝑒

1.587
 𝑆𝑐

0.44
 

𝑆ℎ̅̅ ̅𝑚𝑒𝑎𝑛,4 = 6.31 ∙ 10
−6 𝑅𝑒

1.486
 𝑆𝑐

0.44
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Figure 4.17: evolution of 𝑆ℎ̅̅ ̅𝑚𝑒𝑎𝑛/𝑆𝑐
0.44

 as a function of the Reynolds number at the 

different locations  

4.3.1.3 Local evolution of the Sherwood number 

The surface distribution of the Sherwood number has been found to fluctuate from an 

experiment to another. However, these fluctuations are small and a general idea of the 

Sherwood distribution over the gypsum surface at each location is given on Figure 4.18. The 

view is given from the backside of the partition plate for experiments at 𝑅𝑒 ≈ 4 ∙ 105. The 

stagnation point is not measured; it is estimated to be slightly above location 4 which is the 

nearest sample. This sample presented the most variability from an experiment to another and 

the largest surface gradients. It is noticeable on location 1, 2 and 3 that a high value of the 

Sherwood number occurs from the leading edge. This leading edge is hypothetic as the flow is 

not observed directly during the experiments. Nevertheless, the flow direction is estimated for 

the different locations from their location relatively to the estimated impingement location, and 

from the velocity direction measured with the algorithm depicted in Appendix B. The estimated 

direction of the flow is indicated on Figure 4.18e. The gradients follow the flow direction for 

these locations and the decrease of Sherwood number is certainly due to the deceleration of the 

fluid flow. For location 4, a different behavior is observed, as the Sherwood number is lower 

on the upper side of the sample which is closer to the stagnation region. This behavior is most 

certainly due to the presence of a local minimum of the Sherwood number near the stagnation 

region due to lower velocities as it is expected for this configuration (see Figure 4.6).  

 

The proper orthogonal decomposition has been applied to the Sherwood number obtained at 

the four measured locations in order to study the spatial fluctuations of the Sherwood 

distribution with the Reynolds and Schmidt number evolution. The module modred (Belson, 

et al., 2014) is used to perform the POD of the full set of the experiments conducted at each 

specific location with the Snapshot methodology described in §1.2.4.1. 
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(a) Location 1  

 

(b) Location 2  

 

(c) Location 3  

 

(d) Location 4  

 

(e) Schematic view of the location disposition. from the back of the partition plate.  

 
Figure 4.18: evolution of the local Sherwood number over the gypsum sample for all 

locations at 𝑅𝑒 ≈ 4 ∙ 105, 𝑆𝑐 ≈ 1200. The local value of the Sherwood number is indicated 

with a heat map (low Sherwood in blue and large values in red). The view is from the back 

of the partition plate which is given in a schematic way in (e). The estimated flow direction 

and stagnation region are indicated respectively with red arrows and dotted line circle. 

 

POD is used to express the Sherwood number 𝑆ℎ̅̅ ̅(𝑅𝑒, 𝑆𝑐, 𝑥, 𝑦) as following: 

𝑆ℎ̅̅ ̅(𝑅𝑒, 𝑆𝑐, 𝑥, 𝑦) = ∑ 𝑎𝑘(𝑅𝑒, 𝑆𝑐)𝜙𝑘(𝑥, 𝑦)

𝑁𝑆𝑁𝐴𝑃

𝑘=1

 

where, 𝜙𝑘 are the modes of the POD calculated from the snapshots of the Sherwood 

distribution obtained with the gypsum dissolution for each couple 𝑅𝑒, 𝑆𝑐 of the experiments. 

𝑎𝑘 are the components of the POD which are assumed to depend on the Reynolds number and 

the Schmidt number. This approach is used in general for snapshots of time evolving velocity 

field, which results in time evolving components 𝑎𝑘(𝑡). In this present application, the 

Sherwood number is discretized spatially.  

A snapshot matrix 𝑆ℎ̅̅ ̅(𝑅𝑒, 𝑆𝑐, 𝑥, 𝑦) obtained from an experiment at operating conditions 

𝑅𝑒𝑗, 𝑃𝑟𝑗 is “flattened” into a vector 𝑆ℎ𝑗̅̅ ̅̅ = (𝑆ℎ𝑗
1, … , 𝑆ℎ𝑗

𝑁) where 𝑁 is the number of local points 

𝑥𝑖 , 𝑦𝑖. The inverse operation can also be done in order to reshape the vector into a matrix. 𝑁𝑆𝑁𝐴𝑃 

snapshots of the Sherwood number fields are used for the calculation of the modes and 

components of the POD.  
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(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 
Figure 4.19: relative information content (RIC) of the modes calculated from the POD for 

all the locations.  

 

In this case, the Sherwood number has been divided by its surface average value in order to 

construct the snapshot matrix 𝐴 indicated in §1.2.4.1. This division has been done to 

“normalize” the importance of all the snapshots which was initially inhomogeneous on the 

Reynolds range due to higher amplitudes of the transfer at high Reynolds.  

The modes 𝜙𝑘 and components 𝑎𝑘 of the snapshots are calculated with modred. As indicated 

in §1.2.4.1, the POD base is obtained by solving an eigenvalue problem. The relative 

importance of each mode can be estimated from the eigenvalues associated to each mode. 

The relative information content (RIC) of each mode has been calculated and is shown on 

Figure 4.19. The first mode corresponding in this case approximatively to the mean value over 

the experiment has been found to contain most of the information (𝑅𝐼𝐶(1) > 0.99 for location 

1, 2 and 3, while 2 modes are required on location 4 in order to get the same amount of 

information. For all the locations, no influence of the Schmidt number has been observed on 

the components other than the scaling of the amplitude of the Sherwood due to the difference 

of diffusion properties.  
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Thus, it is assumed that the POD can be written: 

 

𝑆ℎ̅̅ ̅(𝑅𝑒, 𝑆𝑐, 𝑥, 𝑦) = 𝑆𝑐̅̅ ̅0.44( ∑ 𝑎𝑘(𝑅𝑒)𝜙𝑘(𝑥, 𝑦)

𝑁𝑆𝑁𝐴𝑃

𝑘=1

) 

The scaling by 𝑆𝑐0.44 has been chosen in order to be consistent with the choice done earlier in 

the correlation given in §4.3.1.2, in comparison to literature’s data near the stagnation zone of 

an impinging jet.  

The truncation of the POD of the Sherwood number distribution to the 𝑁𝑃𝑂𝐷 is written: 

𝑆ℎ̅̅ ̅(𝑅𝑒, 𝑆𝑐, 𝑥, 𝑦) = 𝑆𝑐̅̅ ̅0.44(∑ 𝑎𝑘(𝑅𝑒)𝜙𝑘(𝑥, 𝑦)

𝑁𝑃𝑂𝐷

𝑘=1

) + 𝜖𝑁𝑃𝑂𝐷 = 𝑆ℎ
̅̅ ̅

𝑁𝑃𝑂𝐷(𝑅𝑒, 𝑆𝑐, 𝑥, 𝑦) + 𝜖𝑁𝑃𝑂𝐷 

where, 𝑁𝑃𝑂𝐷 is the truncation order, 𝑆ℎ̅̅ ̅𝑁𝑃𝑂𝐷 is the truncated POD of the Sherwood number and 

𝜖𝑁𝑃𝑂𝐷 is the truncation error between the original snapshot and the reconstruction from 𝑁𝑃𝑂𝐷 

modes.  

The results on location 1 are depicted Figure 4.20. The surface distribution of the first mode 

𝜙1 gives the general shape of the local Sherwood and is coherent with the observed data. The 

increase of the coefficients 𝑎1 associated to this mode is correlated to the Reynolds number 

increase between the different experiments. The second mode appearance results in an increase 

of the surface gradients of the Sherwood distribution. The expression of this mode increases 

the value of the mass transfer coefficient at the leading edge of the gypsum wall on the right of 

the sample. Its appearance seems to be more significant for large Reynolds numbers. However, 

this mode seems to be of importance only for few experiments where no distinctive 

characteristics were observed (no correlation to roughness, wear, or Schmidt number during 

experiment). It has been assumed that the appearance of this mode is related to border effects 

which appear under conditions that were not identified. The third mode 𝜙3 impacts the value 

of the Sherwood number on the upper part of the sample where the amplitude is reduced. 

Variation of 𝑎3 are observed for experiment at Reynolds number above 5 ∙ 105. The lower 

Reynolds numbers show approximatively constant values of 𝑎3.  

The root-mean-square-error (RMSE) and the mean absolute error (MAE) have been calculated 

between the original snapshots 𝑆ℎ𝑗̅̅ ̅̅ = (𝑆ℎ̅̅ �̅�
1, … , 𝑆ℎ̅̅ �̅�

𝑁) and their truncated POD 𝑆ℎ̅̅ ̅𝑁𝑃𝑂𝐷,𝑗 =

(𝑆ℎ̅̅ ̅𝑁𝑃𝑂𝐷,𝑗
1 , … , 𝑆ℎ̅̅ ̅𝑁𝑃𝑂𝐷,𝑗

𝑁 ) with 𝑁𝑃𝑂𝐷 modes as following: 

𝑅𝑀𝑆𝐸(𝑅𝑒𝑗, 𝑆𝑐𝑗) = √
1

𝑁 − 1 
∑(

𝑆ℎ̅̅ ̅𝑁𝑃𝑂𝐷,𝑗
𝑛 − 𝑆ℎ̅̅ �̅�

𝑛

𝑆ℎ̅̅ ̅𝑁𝑃𝑂𝐷,𝑗
𝑛

)

2𝑁

𝑛=1

 

𝑀𝐴𝐸(𝑅𝑒𝑗 , 𝑆𝑐𝑗) =  
1

𝑁 − 1 
∑

|𝑆ℎ̅̅ ̅𝑁𝑃𝑂𝐷,𝑗
𝑛 − 𝑆ℎ̅̅ �̅�

𝑛|

𝑆ℎ̅̅ ̅𝑁𝑃𝑂𝐷,𝑗
𝑛

𝑁

𝑛=1
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(a) 𝜙1 

 

(b) 𝜙2 

 

(c) 𝜙3 

 

(d) 𝑎1(𝑅𝑒) 

 

(e) 𝑎2(𝑅𝑒) 

 

(f) 𝑎3(𝑅𝑒) 

 

Figure 4.20: first three modes  𝜙1, 𝜙2, 𝜙3 of the POD on location 1 and associated 

components 𝑎1, 𝑎2, 𝑎3 plotted as function of the Reynolds number during the dissolution.  

 

These two errors yield an approximation of the local difference between the reconstruction and 

the original map in percent relatively to the reconstruction. Their value is given for location 1 

on Figure 4.21. In this case, the difference between the reconstructed and original maps is 

around 10%. The 𝑀𝐴𝐸 gives lower values than the 𝑅𝑀𝑆𝐸 which is due to the square exponent 

on the difference which tends to increase the weight of high local differences. Finally, a power 

law is fitted for 𝑎1 at location 1 and has the following expression:  

 

 
𝑎1(𝑅𝑒̅̅̅̅ ) = 0.0933  𝑅𝑒̅̅̅̅

1.271 (4.1) 

 

The fit is given on Figure 4.22. The experimental points are on average around 10% of the 

predicted value with the fit. In the worst case, the deviation is around 15%. 

 

The first three modes calculated from the POD on location 2 and the components calculated 

for the different snapshots are given on Figure 4.23. The first mode 𝜙1 contains most of the 

information on the surface distribution of the Sherwood number. The maximum Sherwood 

number is at the bottom right side of the sample. It then evolves slightly on the surface and 

presents small gradients when compared to location 1. The evolution of the first component 𝑎1 

is correlated to the Reynolds number’s evolution as for location 1.  
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(a) 𝑅𝑀𝑆𝐸 as a function of 𝑅𝑒 

 

(b) 𝑀𝐴𝐸 as a function of 𝑅𝑒 

 
Figure 4.21: Surface average truncation error with 𝑁𝑃𝑂𝐷 = 1 for the different experiments 

on location 1 (a) RMSE and (b) MAE. 

 

 
Figure 4.22: correlation for 𝑎1 as a function of the Reynolds number for location 1. The 

experimental points are depicted with circles, the fit is given with the purple dotted line.   

 

The second mode ϕ2 behavior is different,  most of the components show similar values, only 

two snapshots present significant differences of amplitude as it can be seen on Figure 4.23e. 

The parameters which govern its appearance are not identified. Finally, the values of the 

component 𝑎3 stays approximatively constant until 𝑅𝑒 > 5 ∙ 105 where its amplitude increases 

significantly. Its effect is an enhancement of the local Sherwood number at the leading edge of 

the sample and on the left-hand side of the sample. This mode has increasing importance as the 

Reynolds increases as it can be seen on Figure 4.23f.  
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(a) 𝜙1 

 

(b) 𝜙2 

 

(c) 𝜙3 

 

(d) 𝑎1(𝑅𝑒) 

 

(e) 𝑎2(𝑅𝑒) 

 

(f) 𝑎3(𝑅𝑒) 

 
Figure 4.23: first three modes of the POD on location 2 and associated components plotted 

as function of the Reynolds number during the dissolution.  

 

(a) 𝑅𝑀𝑆𝐸 as a function of 𝑅𝑒 

 

(b) 𝑀𝐴𝐸 as a function of 𝑅𝑒 

 
Figure 4.24: calculated bias between the reconstructed map and the original map when using 

one mode. (a) RMSE and (b) MAE for the different experiment on location 2  

 

For this location, the POD has been truncated to the first mode only which leads to the RMSE 

around 10% and MAE around 8% in the worst case. The results for all the snapshots are given 

on Figure 4.24. A power law is fitted on the component 𝑎1 evolution with the Reynolds number, 

the fit is compared to the experimental points on Figure 4.25. The average deviation between 
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the correlation and the points is 11% with maximum deviation for the lowest Reynolds numbers 

(30%). The calculated correlation for 𝑎1 is: 

 

 
𝑎1 = 0.0101 𝑅𝑒

1.447 (4.2) 

 
Figure 4.25: correlation for 𝑎1 as a function of the Reynolds number for location 2. The 

experimental points are depicted with circles, the fit is given with the purple dotted line.   

 

The same process is applied on location 3, the three modes calculated from the POD on location 

3 and the components calculated for the different snapshots are given on Figure 4.26. As for 

the previous locations, the first mode 𝜙1 contains most of the information on the surface 

distribution of the Sherwood number. The Sherwood number presents its maximum value at 

the leading edge on the upper right side of the sample. The gradients follow the flow direction 

and goes from maximum to minimum at the bottom left side of the sample. The component 𝑎1 

increases with the Reynolds number similarly to the other locations. For this location, the 

coefficients related to the second mode ϕ2  and the third mode 𝜙3 shows significant variation 

only for some experiments at high Reynolds. The impact of 𝜙2 is a reduction of the mass 

transfer at the bottom left side of the sample. For 𝜙3, the component alternates between 

negative and positive values.  

The distribution of 𝜙3 seems to be related to the holes from which the gypsum slurry is poured 

when casting the gypsum sample. The coordinates of one of the holes coincides with the red 

spot that can be seen on Figure 4.26c. This result indicates a potential additional effect of the 

casting on the dissolution other than the defects due to air trapped bubbles initiating roughness. 

This phenomenon had been captured on other locations, but the experiments were filtered as 

the quality of the data was too low. The POD has finally been truncated to one mode. The 

RMSE and MAE calculated for the different snapshots is given Figure 4.27. The error 

committed when reconstructing with one mode is around 10% of the reconstructed value. In 

the worst case (one isolated experiment at 𝑅𝑒 ≈ 1.5 ∙ 105, this RMSE is around 25%. 
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Moreover, the power law fitted on the component is compared to the experimental points on 

Figure 4.28.  

(a) 𝜙1 

 

(b) 𝜙2  

 

(c) 𝜙3  

 

(d) 𝑎1(𝑅𝑒) 

 

(e) 𝑎2(𝑅𝑒) 

 

(f) 𝑎3(𝑅𝑒) 

 
Figure 4.26: first three modes of the POD on location 3 and associated components plotted 

as function of the Reynolds number during the dissolution.  

 

(a) 𝑅𝑀𝑆𝐸 as a function of 𝑅𝑒 

 

(b) 𝑀𝐴𝐸 as a function of 𝑅𝑒 

 
Figure 4.27: calculated bias between the reconstructed map and the original map when using 

one mode. (a) RMSE and (b) MAE for the different experiment on location 3 
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Figure 4.28: correlation for 𝑎1 as a function of the Reynolds number for location 3. The 

experimental points are depicted with circles, the fit is given with the purple dotted line.   

 

The average deviation between the correlation and the points is 13%. The RMSE has been 

calculated to be around 60% in the worst case for an experiment. The next biggest deviation is 

around 25%. The calculated correlation for 𝑎1 is: 

 

 
𝑎1 = 0.0023 𝑅𝑒

1.571 (4.3) 

 

Finally, the location 4 is investigated and the first three modes are given Figure 4.29. For this 

location, two modes are required in order to have 𝑅𝐼𝐶 > 0.99. The first mode 𝜙1 shows a 

maximum value at the bottom of the sample. In this case, the estimated leading edge of the 

sample on the top left of the sample has a minimal Sherwood. Then the local Sherwood number 

increases in the vertical direction and reaches its maximum before decreasing and exiting the 

sample. This samples seems to cross two regions: the stagnation region on the upper side of 

the sample where a local minimum seems to be reached, and a second region near the deflection 

zone where the flow accelerates which leads to higher mass transfer and a local maximum.  

The second mode 𝜙2 carries more importance for location 4 than for other locations. In this 

case, the upper side of the sample is not modified, but the local maximum’s amplitude is 

enhanced resulting in a change of the surface distribution. Moreover, the components 𝑎2 show 

a clear trend for Reynolds above 𝑅𝑒 > 5 ∙ 105. The importance of this mode grows with the 

Reynolds number. The third mode 𝜙3 is also related to the Sherwood number at the center of 

the sample, however, the component for the different experiments do not have a visible 

behavior correlated to the experiment Reynolds number.  
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(a) 𝜙1 

 

(b) 𝜙2 

 

(c) 𝜙2 

 

(d) 𝑎1(𝑅𝑒) 

 

(e) 𝑎2(𝑅𝑒)  

 

(f) 𝑎3(𝑅𝑒) 

 

Figure 4.29: first three modes of the POD on location 4 and associated components plotted 

as function of the Reynolds number during the dissolution.  

 

(a) 𝑅𝑀𝑆𝐸 as a function of 𝑅𝑒 

 

(b) 𝑀𝐴𝐸 as a function of 𝑅𝑒 

 

Figure 4.30: calculated bias between the reconstructed map and the original map when using 

one mode. (a) RMSE and (b) MAE for the different experiment on location 4 

 

For this location, a reconstruction with one mode leads to RMSE and MAE over 20%. Thus, 

two modes have been used for the reconstruction of the snapshots. The associated RMSE and 

MAE are given on Figure 4.30 where the relative error of the reconstruction is around 10% of 

the reconstructed Sherwood. Finally, a correlation is given for the components 𝑎1 in the form 

of a power law. The power law is compared to the experimental points on Figure 4.31. The 
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deviation of the experimental points is around 8% of the predicted value. The maximum 

deviation occurs at low Reynolds number and its value is around 30%. The correlation has been 

calculated to be: 

 
𝑎1 = 0.0049 𝑅𝑒

1.505  (4.4) 

 

A power law is not adapted for the second mode components. Thus, another method must be 

used to generate 𝑎2 for a given Reynolds number.  

 

 
Figure 4.31: correlation for 𝑎1 as a function of the Reynolds number for location 4. The 

experimental points are depicted with circles, the fit is given with the purple dotted line.   

 

4.3.1.4 Conclusion of the mass transfer coefficient measurements 

The results presented in this paragraph have been obtained by measuring the local Sherwood 

number from the gypsum dissolution technique. Correlations have been given for the surface 

average Sherwood number at different locations of the partition plate. The scaling of the surface 

average Sherwood number with the Schmidt number could not be accurately predicted given 

the measurements, thus a scaling by 𝑆𝑐0.44 has been chosen in regard to the available literature 

on the Prandtl effect on the Nusselt number at the stagnation region for an impinging jet (Li & 

Garimella, 2001). The measurements were performed further from the stagnation region which 

could lead to lower exponent on the scaling law. The exponents on the Reynolds number for 

the correlation of the component related to the first POD mode 𝑎1were all found to be larger 

than 1, which means the curve has a positive curvature. This exponent is most certainly due to 

the effect of roughness that has still to be quantified with smooth wall measurements. 

Furthermore, the acquisition of Sherwood maps with gypsum dissolution also enabled the 

investigation of the evolution of the surface distribution with the Reynolds number with the 

help of POD. No effect of the Schmidt number has been observed on the Sherwood number 
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distribution over the experimental range, apart from the scaling of the amplitude due to 

different diffusion properties. For most of the locations (1, 2 and 3), only one mode is important 

and allows to reproduce the experimental values of the Sherwood maps with an accuracy 

around 10%. No experimental variables have been found to explain the evolution of the 

components related to the other modes. The fluctuations of the higher order modes coefficients 

seem to be related to an impact of non-controlled variables at the casting step. For low Reynolds 

number, the impact of these variable is not observed. The increase of the Reynolds number 

gives more importance to these differences, which induce additional variability of the surface 

distribution. For location 4 which is the nearest to the stagnation region, a local minimum has 

been observed on the upper half of the sample. The increase of the local Sherwood in the flow 

direction when reaching the lower part of the sample seem to indicate that location 4 crosses 

the stagnation zone and the deflection zone where the fluid accelerates. At this location, the 

surface distribution of the local Sherwood number presents larger variations which might be 

due to the Reynolds evolution from an experiment to the other. Thus, two modes had to be 

considered for the reconstruction of the Sherwood maps with POD in order to have the same 

accuracy than other locations. Finally, correlations have been given for the evolution with the 

Reynolds number of the components 𝑎1 associated to the first POD mode 𝜙1 for all locations. 

4.3.2 Heat transfer measurements 

The heat transfer coefficient on the four locations of the partition plate depicted Figure 4.18 

has been investigated for 𝑃𝑟 ≈ 6 and 𝑅𝑒 ∈ [105, 106]. The experimental conditions (𝑅𝑒, 𝑃𝑟) 

for each experiment are given on Figure 4.32.  

In addition, measurements were carried out for 𝑃𝑟 ≈ 4 and 𝑃𝑟 ≈ 8 on location 1 in order to 

investigate the influence of the Prandtl number on the measured Nusselt. 

The time average of the surface average Nusselt number on the upper and lower half of the 

measurement device (resp. 𝑁𝑢̅̅ ̅̅ 𝑈  and 𝑁𝑢̅̅ ̅̅ 𝐷 are depicted for all locations on Figure 4.33. The 

error bars give a ± 2 𝜎𝑁𝑢 interval which is calculated from: 

- the propagation of the uncertainty on the position of the thermocouples and of the 

measured temperature through the calculation of the Nusselt. 

- the temporal fluctuations of the instantaneous Nusselt number calculated during the 

experiment.  

 

The relative error on the calculated Nusselt number is around 10% and remains stable on the 

whole range of the data. The correlations for the different locations are obtained with power 

laws that can be written: 

𝑁𝑢(𝑅𝑒, 𝑃𝑟) = 𝑎  𝑅𝑒𝑏 𝑃𝑟𝑐 
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(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 
Figure 4.32: boundary conditions 𝑅𝑒, 𝑃𝑟 swept for the different locations.    

 

In these experiments, 𝑐 has been set to 0.44 as it has been done for mass transfer measurements 

(see §4.3.1.2), the coefficient 𝑎 and 𝑏 are given for the different locations on  Table 4.2. The 

coefficient 𝑏 for location 1, 2 and 3 are between 0.7 and 0.9. These coefficients are comparable 

to the coefficients depicted on Figure 4.9 obtained for different radial displacement. Moreover, 

location 4 is the nearest of the stagnation zone. In this zone, the exponent 𝑏 of the power law 

fit is expected to be lower and is found to be in the range [0.5, 0.6] on Figure 4.9 for comparable 

nozzle to plate spacing. This is observed for 𝑁𝑢𝐷 where the 𝑏 = 0.57. 

 

The average value 𝑁𝑢𝑚 =
1

2
( 𝑁𝑢̅̅ ̅̅ 𝑈 + 𝑁𝑢̅̅ ̅̅ 𝐷) is compared for the different locations on Figure 

4.34. On location 4, the values on the upper and lower half of the device are given in dotted 

line. The Nusselt number on the upper side of the device 𝑁𝑢̅̅ ̅̅ 𝑈 has approximatively the same 

amplitude as 𝑁𝑢𝑚 on locations 1, 2 and 3. In comparison, the values of 𝑁𝑢̅̅ ̅̅ 𝐷  are much lower 

than at other locations. Location 1 which is the further from the stagnation region is the second 

lowest value of the Nusselt number.  
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(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 

Figure 4.33: evolution of the Nusselt number as a function of the Reynolds number at location 1. 

(a) evolution of 𝑁𝑢𝑈 and 𝑁𝑢𝐷 with the Reynolds number (fit plotted with solid line) 

 

Table 4.2 : coefficient 𝑎, 𝑏 of the power law fitted on the experimental data 

Location 𝑎 𝑏 

1 
𝑁𝑢𝑈,1 0.109 0.740 

𝑁𝑢𝐷,1 0.128 0.734 

2 
𝑁𝑢𝑈,2 0.0297 0.834 

𝑁𝑢𝐷,2 0.0389 0.826 

3 
𝑁𝑢𝑈,3 0.0626 0.792 

𝑁𝑢𝐷,3 0.0215 0.872 

4 
𝑁𝑢𝑈,4 0.0843 0.766 

𝑁𝑢𝐷,4 0.851 0.571 
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Figure 4.34: comparison of the mean Nusselt number over the surface 𝑁𝑢𝑚 at the different 

locations on the experimental range.𝑁𝑢𝐷 and 𝑁𝑢𝑈 are given in purple dotted line for 

location 4.  

 

(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 

Figure 4.35: ratio 𝑁𝑢𝑈/𝑁𝑢𝐷 as a function of the Reynolds number for the different location on the 

partition plate. (𝑃𝑟 = 4 ∶ ∇, 𝑃𝑟 = 6 ∶ O , 𝑃𝑟 = 8 ∶ ∎). 
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Finally, the ratio 𝑁𝑢̅̅ ̅̅ 𝑈/𝑁𝑢̅̅ ̅̅ 𝐷 is given on Figure 4.35 for the different locations. No clear 

behavior of 𝑁𝑢̅̅ ̅̅ 𝑈/𝑁𝑢̅̅ ̅̅ 𝐷 is visible with the Prandtl number on location 1, the evolution of the 

ratio with respect to the Reynolds number seems to increase in both case with similar trend, 

the value is quite stable and shows small differences on the upper and lower half values. For 

location 2, the ratio first decreases from 0.9 to 0.75, then bounces back and reaches values 

around 0.9 at high Reynolds number. For location 3, the Nusselt number on the upper side 𝑁𝑢̅̅ ̅̅ 𝑈 

is initially 10% bigger than 𝑁𝑢̅̅ ̅̅ 𝐷 for low Reynolds number. The ratio then decreases for 

increasing Reynolds numbers and reach values around unity. For location 4, the Nusselt is 

uniform at low Reynolds. For increasing Reynolds number, the ratio 𝑁𝑢̅̅ ̅̅ 𝑈/𝑁𝑢̅̅ ̅̅ 𝐷 increases 

significantly and reaches 1.5 for the highest Reynolds number covered. It seems that the value 

would still get larger by extending the range of the data. The detailed comparison of the heat 

and mass transfer coefficient will be done in the next section. 

4.4 Transposition of mass transfer data with the heat and mass 

transfer analogy 

4.4.1 Data processing 

Heat and mass transfer coefficient values were obtained through measurements on the four 

locations of the partition plate depicted on Figure 4.2a  

- The local Sherwood number is obtained at the four locations. The Reynolds number 

covered for the different experiments is in the range [105, 106]. The Schmidt number 

is in the range [600, 1200].  

- The surface average Nusselt number is calculated from the measurements on the upper 

and lower parts of each location. The experiments cover the range of Reynolds number 

[105, 106] for Prandtl number in the range [4, 8].  
 

These measurements were used in order to calculate the transposition factor from gypsum 

dissolution data to heat transfer data in the case of a fixed temperature wall exchanging with 

water. This transposition factor considers the difference between the diffusion properties of 

heat and ions which dissolve from the gypsum. Moreover, this transposition also takes into 

account the difference of the surface aspect which is rough for mass transfer and smooth for 

heat transfer. The zones on the upper side and lower side (resp. 𝑈 and 𝐷) extracted from the 

gypsum surface to make the comparison with heat transfer data are depicted on Figure 4.36. 

These zones correspond to the measurements zones for heat transfer data depicted on Figure 

4.13. The surface average Sherwood and Nusselt numbers obtained from these zones are 

depicted respectively by symbols 𝑆ℎ̅̅ ̅𝑈, 𝑆ℎ̅̅ ̅𝐷 and 𝑁𝑢̅̅ ̅̅ 𝑈 , 𝑁𝑢̅̅ ̅̅ 𝐷.  
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(a) Original Sherwood number matrix 

 

(b) Zones U and D 

 
Figure 4.36: extraction of mass transfer data for transposition factor calculations (a) 

original Sherwood number distribution with extractions zones indicated inside the dotted 

lined circles. (b) Extracted zones U and D on which the surface average Sherwood 

numbers 𝑆ℎ̅̅ ̅𝑈 and 𝑆ℎ̅̅ ̅𝐷 are calculated. 

 

Three transposition factors 𝐹1, 𝐹2 𝐹3 are calculated for the different experiments at the different 

Reynolds number 𝑅𝑒̅̅̅̅ : 

𝐹1 =
𝑆ℎ̅̅ ̅(𝑅𝑒̅̅̅̅ , 𝑆𝑐̅̅ ̅)

𝑁𝑢̅̅ ̅̅ (𝑅𝑒̅̅̅̅ , 𝑃𝑟 = 6)
, 𝐹2 = 𝐹1  (

6

𝑆𝑐̅̅ ̅
)
0.44

, 𝐹3 = 𝐹1 (
6

𝑆𝑐̅̅ ̅
)
0.33

 

𝐹1 denotes the transposition factor which consider the differences between the diffusion 

properties and the surface aspect of the measurement 𝑆ℎ̅̅ ̅. 𝑁𝑢̅̅ ̅̅  is estimated for Reynolds number 

𝑅𝑒̅̅̅̅  at 𝑃𝑟 = 6 with the correlations given in Table 4.2. The effect of roughness is assumed to 

be independent of the Schmidt number. The effect of the roughness on the heat and mass 

transfer is thus separated from the effect of the diffusion properties leading to the definition of 

𝐹2 and 𝐹3 which are estimation of the roughness enhancement, considering the Schmidt and 

the Prandtl numbers impact on the transfer can be modelled by a power law.: 

𝑆ℎ̅̅ ̅

𝑁𝑢
∝ (

𝑆𝑐̅̅ ̅

𝑃𝑟
)

 𝑐

× 𝐹(𝑅𝑒, 𝑒+)  

with 𝑐 = 0.44 for 𝐹2 and 𝑐 = 0.33 for 𝐹3. 𝑒+ is the non-dimensional roughness height defined 

from the turbulence inner friction length scale 𝑙+ based on estimation of the friction velocity 

𝑢∗ from Darcy friction factor as in §2.4.  

𝑒+ =
𝑒

𝑙+
=
𝑒 𝑅𝑒

𝐷𝐻
√
𝑓

8
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1

√𝑓
= −2 log10 (

3 × 𝑒𝑅𝑀𝑆
3.71𝐷𝐻

+
2.51

𝑅𝑒√𝑓
) 

 

where, 𝑒 a characteristic height of the roughness (RMS roughness, peak-valley roughness or 

other).  

 

The function 𝐹(𝑅𝑒, 𝑒+) denotes the similarity function quantifying the enhancement of the heat 

and mass transfer with the Reynolds number and the non-dimensional roughness 𝑒+. The 

independency of 𝐹 to the Schmidt number is found to be false for mass transfer with regular 

V-shaped grooves roughness in (Dawson & Trass, 1972). However, the fluctuations of the data 

obtained with gypsum dissolution has been found to be important due to the high discrepancy 

of the surface aspect between experiments. These important variations screened the variations 

due to the Schmidt number.  

The experimental transposition will then be compared to the transposition given in (Wang & 

Ewing, 2017): 

𝐹𝑊 = (
𝑆ℎ𝑅
𝑆ℎ𝑆

)
𝑊𝑎𝑛𝑔

= 1.09 (
𝑒𝑝𝑣

𝑙𝑠𝑡𝑟
)
0.2

𝑅𝑒0.07 

where, 𝑒𝑝𝑣 is the peak to valley and 𝑙𝑠𝑡𝑟 is the spacing between roughness elements which 

extraction from the gypsum samples surface is described on Figure 4.12.  

The non dimensional peak to valley roughness 𝑒𝑝𝑣
+  will also be used to investigate the effect of 

the roughness on the heat and mass transfer.  

4.4.2 Surface distribution 

The ratio 𝑁𝑢̅̅ ̅̅ 𝑈/𝑁𝑢̅̅ ̅̅ 𝐷 and 𝑆ℎ̅̅ ̅𝑈/𝑆ℎ̅̅ ̅𝐷 of the heat and mass transfer on the upper and lower part of 

the measurement devices (position 𝑈 and 𝐷) are compared on Figure 4.37.  

The ratio is compared for the original maps and the reconstructed maps from the truncated 

POD of the Sherwood number 𝑆ℎ1, 𝑆ℎ2, 𝑆ℎ3  with respectively 1, 2 and 3 modes. The heat and 

mass transfer measured with the heat transfer coefficient measurement device and the gypsum 

dissolution technique on location 1 and 2 show similar distributions: the ratio remains stable 

with the Reynolds number showing small variations. The deviation between the heat and mass 

transfer points shows small changes on the experimental range. The results on location 3 shows 

a decrease of the ratio with the Reynolds number for both heat and mass transfer measurements. 

Moreover, the deviation between these two sets of data gets more significant as the Reynolds 

increases. These differences might be due to larger heat transfer rates at the leading edge 

compared to mass transfer due to the establishment of the thermal boundary layer. The large 

difference between the diffusive properties of heat and mas transfer in the presented 

measurement might explain partially this behavior. This entrance effect has been discussed in 

§2.4, and the impact should decrease with the Reynolds number.  
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(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 

Figure 4.37: ratio 𝑁𝑢̅̅ ̅̅ 𝑈/𝑁𝑢̅̅ ̅̅ 𝐷 as a function of the Reynolds number for the different location 

on the partition plate compared to 𝑆ℎ̅̅ ̅𝑈/𝑆ℎ̅̅ ̅𝐷 The ratio is calculated from the original maps and 

the truncated POD of the Sherwood number 𝑆ℎ1, 𝑆ℎ2, 𝑆ℎ3 calculated respectively with 1, 2 

and 3 modes (blue, red and green). 

 

Another reason could explain the increasing difference for larger Reynolds numbers. During 

gypsum dissolution, the flow is affected by the roughness as it progresses across the gypsum 

surface. Furthermore, when the gypsum dissolves, the surface flatness is affected and could 

impact the flow in the vicinity of the surface resulting in slightly distorted surface distribution. 

These effects should be more significant for increasing Reynolds number as the boundary 

layers get thinner. The enhancement of the Sherwood number along the gypsum surface has 

been also investigated in §4.3.1.3. It has been shown that the surface distribution changes for 

increasing Reynolds number because of the appearance of secondary modes. The influence of 

each POD mode on the surface distribution of the Sherwood number compared to the heat 

transfer measurements is given on Figure 4.37. The ratio obtained with one mode corresponds 

approximatively to the mean value of the ratio over the Reynolds range for all the locations. 

The additional effect of mode 2 and 3 on locations 1 and 2 is low and do not ameliorate the 

comparison between heat and mass transfer. The results on location 3 are slightly different, the 

inclusion of mode 2 for 𝑅𝑒 < 5 ∙ 105 yields a lower difference between heat and mass transfer 

but deteriorate the comparison for higher Reynolds number.  
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Furthermore, an increase of the discrepancy of the surface distribution between the different 

experiments is observed when considering mode 3. The evolution of the ratio is much more 

significant for heat and mass transfer on location 4. The heat transfer coefficient ratio evolves 

with the Reynolds from 1 to 1.5 and from 0.75 to 1.75 for mass transfer coefficient. In both 

cases, the results show an increase of the ratio with the Reynolds number. This evolution is 

present for mass transfer measurements when taking into account mode 2 which impacts the 

distribution by translating the maximum heat transfer present in mode 1 on the bottom of the 

sample up. As for the other locations, the ratio calculated from heat transfer yields larger values 

at low Reynolds number. The deviation between 𝑁𝑢̅̅ ̅̅ 𝑈/𝑁𝑢̅̅ ̅̅ 𝐷 and 𝑆ℎ̅̅ ̅𝑈/𝑆ℎ̅̅ ̅𝐷 is similar than for 

other locations.  

 

In conclusion, the surface distribution of the heat and mass transfer fluxes remains 

approximatively constant for evolving Reynolds number on these three locations. The 

differences between heat and mass transfer distribution are around 20% and are the results of: 

- Differences in the diffusion properties which impact the establishment of the thermal 

and concentration boundary layers. The size of these boundary layers are different when 

measuring heat and mass transfer. Compared to mass transfer measurements with 

gypsum dissolution, the heat transfer measurement device could be more affected by 

the entrance effect due to larger thermal boundary layer. This effect should decrease for 

higher Reynolds number and could explain the stabilization of the ratio measured on 

heat transfer data. 

- Differences in the surface aspect. Gypsum dissolution technique leads to the appearance 

of a step at the leading edge of the surface and roughness which enhances the mass 

transfer coefficient. In contrast, heat transfer measurements are done with a smooth 

surface. The differences between heat and mass transfer gets more significant for 

increasing Reynolds number as the boundary layer gets thinner and more affected by 

the surface changes.  

4.4.3 Transposition factor  

The three transposition factors 𝐹1, 𝐹2 and 𝐹3 are calculated and given as function of the average 

Reynolds number 𝑅𝑒̅̅̅̅  on Figure 4.38a, Figure 4.38b and Figure 4.38c. The value covered by 𝐹1 

are in the range [5, 20]. The difference of the transposition factor for the different Schmidt 

number is clearly visible on Figure 4.38a, with 𝐹1 returning larger values for the set of 

experiment presenting Schmidt numbers at 𝑆𝑐̅̅ ̅ = 1200 (indicated with squares) compared 

to 𝑆𝑐̅̅ ̅ = 600 (circles). The differences seem to disappear for 𝐹2 and 𝐹3  when transposing the 

data to 𝑆𝑐̅̅ ̅ = 6 with a visible collapse of the data obtained at both Schmidt numbers. The 

transposition 𝐹2 is lower than 1 for 𝑅𝑒̅̅̅̅ < 5 ∙ 105 from which it increases to maximum values 

around 2 for the higher Reynolds numbers. 𝐹3 follows the same behavior but is translated to 

higher values.  
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(a) 𝐹1 

 

(a) 𝐹2 

 

(b) 𝐹3  

 

Figure 4.38: evaluation of the transposition factor (a) 𝐹1,  (b) 𝐹2 and (c) 𝐹3 for locations 1 (red), 

2 (blue), 3 (green) and 4 (purple). Experimental points obtained at 𝑆𝑐̅̅ ̅ ≈ 600 (○) and 𝑆𝑐̅̅ ̅ ≈ 1200 

(□). Data obtained on zones 𝑈 and 𝐷 is given respectively with unfilled and filled symbol.  

 

The transposition factor is around unity and increases steadily with the Reynolds number 

increase. The scaling of the diffusion effect with 𝑐 = 0.33 seems to be more likely than 𝑐 =

0.44. In fact, for equivalent Schmidt number and Prandtl number, the transposition number 

should be around unity or at least give higher rates for rough surfaces. The coefficient 𝑐 = 0.44 

was found in (Ma, et al., 1997) for measurements in the stagnation zone for 𝑅𝑒 < 26 000. This 

coefficient might not be adapted for higher Reynolds numbers. In addition, the flow is more 

turbulent in the wall jet region where the measurements were carried out. Also, the Prandtl and 

Schmidt effect on heat and mass transfer might not be constant. In either case, the transposition 

factor 𝐹 is multiplied by 4 in between 𝑅𝑒̅̅̅̅ = 105 and 106. The effect of diffusion is corrected 

thereafter by dividing the Sherwood number by 𝑆𝑐̅̅ ̅0.33 in order to have a transposition factor 

around unity for the experiments with the lowest Reynolds number. The evolution of 𝐹3 is 

studied as a function of the non-dimensional surface roughness 𝑒𝑝𝑣
+  . 
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(a) 𝐹3 

 

(b) 𝑒𝑝𝑣
+  as a function of 𝑅𝑒̅̅̅̅  

 

Figure 4.39: effect of the roughness on the transposition factor.  (a) Evolution of the transposition 

factor at  𝑆𝑐̅̅ ̅ = 𝑃𝑟̅̅ ̅ = 1 as a function of 𝑒𝑝𝑣
+  on location 1 (red), 2 (blue), 3 (green) and 4 (purple) on 

𝑈 (○) and 𝐷 (□). (b) Evolution of the calculated 𝑒𝑝𝑣
+  on 𝑈 (○) and 𝐷 (□) as a function of the 

Reynolds number.  

 

The evolution of 𝐹3 for equal diffusion properties and changing surface aspect with 𝑒𝑝𝑣
+  is given 

on Figure 4.39a. Two zones are visible on this figure: for 𝑒𝑝𝑣
+ < 5, the transposition factor is 

below 1 and increases rapidly from 1 to 2. Then, the slope of the transposition factor gets lower, 

and the discrepancy between the different locations increases. This difference could be due to 

the scaling of 𝐹 with the Reynolds number as it has been found in (Wang & Ewing, 2017). All 

the locations are not exposed to the same local Reynolds number, implying a different effect 

of the roughness on the mass transfer at each location. The roughness 𝑒𝑝𝑣
+  is also shown as a 

function of the experiment Reynolds number 𝑅𝑒 on Figure 4.39b. The non-dimensional 

roughness is found to increase significantly for experiments such as 𝑅𝑒 > 5 ∙ 105.  

 

Finally, the Sherwood number for rough surface 𝑆ℎ/𝑆𝑐̅̅ ̅0.33, the Sherwood number transposed 

with Wang correlation and the Sherwood number transposed with 𝐹3 are compared on Figure 

4.40 for the different locations. The difference between the rough values and the transposed 

values is obvious. 𝐹𝑊 and 𝐹3 give the same order of magnitude, however, Wang transposition 

used as such without correcting the Reynolds number seems to be inaccurate. In fact, the 

transposition seems to overestimate the effect of roughness when compared to the experiment 

on location 1 where the velocity is the lowest, on location 2 and 3 the results are similar and of 

the same order of magnitude while the results on location 4 are similar for 𝐹𝑊 and 𝐹3 on the 

lower half 𝐷 but significantly different on the upper half 𝑈.  

These differences may also be due to the difference in the extraction of the roughness 

characteristics. 
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(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 

Figure 4.40: comparison of the rough Sherwood number 𝑆ℎ/𝑆𝑐̅̅ ̅0.33 (black) to transposed Sherwood 

numbers 𝑆ℎ/𝐹 with 𝐹 = 𝐹3 (blue) and 𝐹 = 𝐹𝑊 (red) (Wang & Ewing, 2017). The values estimated 

on position 𝑈 are denoted with squares and 𝐷 with triangles.  

 

 

4.4.4 Discussion 

The heat and mass transfer measurements enabled the calculation of the transposition factor in 

this configuration of an impinging jet. First, the scaling due to the difference in the diffusion 

properties seems more coherent with 𝑆𝑐̅̅ ̅0.33 than 𝑆𝑐̅̅ ̅0.44 which had been chosen in regard to the 

available data in literature for heat and mass transfer near stagnation region of an impinging 

jet. In addition, the transposition factor between the Sherwood obtained with gypsum mass 
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transfer measurement and the Nusselt number obtained with smooth wall heat transfer 

measurements is well correlated to the roughness which develops during gypsum experiments. 

However, differences have been observed on the transposition factor between the different 

measurement locations for equal surface roughness. This could indicate that the transposition 

depends also on the local Reynolds number at the different measurement locations. This seems 

coherent with the transposition factor 𝐹𝑊 obtained in a S-shaped pipe configuration (Wang & 

Ewing, 2017) which depends on the Reynolds number. Thus, it seems difficult to determine 

the heat transfer coefficient amplitude from gypsum measurement alone. Additional tests must 

be done to determine if a general law can be given on the transposition factor for any 

configuration by introducing a local Reynolds number or another local information that can be 

extracted from the gypsum surface after dissolution.  

Finally, the surface distribution of the heat and mass transfer coefficients could be partially 

compared by investigating the ratio between the exchange on the upper and lower half of the 

measurement’s locations. This partial comparison made with the assistance of POD yielded a 

good agreement between both measurements, yielding stable surface distribution in both cases 

on locations 1, 2 and 3, and an evolving surface distribution on location 4. This indicate that 

gypsum measurement can be used to estimate heat transfer coefficient distributions.  

4.5 Conclusion 

In conclusion, the heat and mass transfer coefficient were measured on the partition plate of 

the steam generator water box mock-up (SGWB). The mass transfer measurements yielded 

Sherwood maps on extended zones while heat transfer coefficient measurements allowed to 

retrieve two surface average values of the Nusselt number over the upper and lower half of the 

measurement device. Correlations have been given on the surface average values in order to 

estimate the heat and mass transfer for various operating conditions (Reynolds, Prandtl, 

Schmidt numbers). Furthermore, the proper orthogonal decomposition (POD) has been applied 

on the Sherwood maps data at different location of the partition plate. This decomposition gave 

a general idea of the evolution of the surface distribution of the Sherwood number along the 

gypsum surface. This distribution has then been compared to the one obtained for the heat 

transfer coefficient and has been found to be in good agreement. The differences have been 

discussed in regards of the results: 

- The establishment of the thermal and concentration boundary layers are different due 

to the large difference of heat and mass diffusion properties during the heat and mass 

transfer experiments. The effect of the developing thermal boundary layer on the 

surface distribution of the Nusselt number should decrease with the Reynolds number.  

- At high Reynolds, the roughness that develops on the gypsum surface affects the 

amplitude of the transfer and induces distortion of the surface distribution.  
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Also, the transposition factor between the Sherwood number and the Nusselt number has been 

investigated. Difficulty remains when separating the effect of the diffusion properties and 

roughness properties on the similarity function bounding the Sherwood number and the Nusselt 

number. Nevertheless, it has been observed that the enhancement of the mass transfer due to 

the development of the surface roughness as gypsum dissolves is divided in two zones, the 

Sherwood number enhancement first increases significantly until 𝑒𝑝𝑣
+ ≈ 5 from which the slope 

becomes more moderate. In addition, for 𝑒𝑝𝑣
+ > 5, the transposition factor is higher for 

locations with more important mass transfer rates: in decreasing order, the transposition factor 

is more important for locations 3, 4, 2 and 1. This local behavior of the effect of roughness 

implies that the current gypsum dissolution methodology might not be sufficient to estimate 

the amplitude of heat transfer for any flow configuration. However, the surface distribution can 

be estimated with good confidence.  

 

In this particular configuration of an impinging jet,  the combination of heat and mass transfer 

data obtained in the SGWB mock-up allows to generate Nusselt maps that will be used in 

Chapter 6 for the uncertainty quantification of CFD codes. This generation will be achieved by 

scaling the amplitude of the heat transfer thanks to the heat transfer experiments, while the 

surface distribution will be given by using the truncated POD discussed earlier.  

 

Some uncertainties remain on the similarity of the development of the temperature and 

concentration boundary layers. In the future, heat transfer measurement could be carried out in 

the rectangular channel presented Chapter 2 in order to quantify accurately the effect of the 

thermal boundary layer establishment on the measured surface average value of the Nusselt 

number. Moreover, the transposition from high Schmidt data 𝑆𝑐 ≈ 102~103 to 𝑆𝑐 ≈ 1 − 10 

should be investigated by testing intermediary Schmidt numbers when measuring mass transfer 

coefficient. A more accurate transposition factor due to diffusion effect will naturally lead to 

quantify more precisely the effect of the gypsum roughness on the mass transfer. Finally, the 

scaling of the roughness effect by the local Reynolds number should be investigated to verify 

if a transposition factor can be given for any flow configuration.  

 





 

 

Chapter 5 CFD simulations on the steam generator 

mock-up 

5.1 Introduction 

Experiments were conducted in a mock-up of a steam generator water box. The retrieved heat 

and mass transfer coefficient data presented in Chapter 4 make possible the evaluation of CFD 

codes for heat transfer simulations. The flow configuration of the experiments has been 

reproduced with commercial CFD softwares and computations of the convective heat transfer 

coefficient have been performed for Reynolds number in the range 𝑅𝑒 ∈ [105, 106] and Prandtl 

number in the range 𝑃𝑟 ∈ [1,9]. This chapter presents the different numerical models that have 

been designed, the data reduction and the results of heat transfer computations on the partition 

plate of the model. Furthermore, the proper orthogonal decomposition (POD) and Gaussian 

processes have been used in order to design surrogate models to predict the Nusselt number 

surface distribution for given Reynolds and Prandtl numbers. Their design and accuracy will 

be discussed.  

 

5.2 CFD model 

5.2.1 Geometry 

The geometry of the CFD model is depicted in Figure 5.1. The water first flows through a 

straight pipe on a distance 𝐿 ≈ 20𝐷𝐻 with 𝐷𝐻 the diameter of the pipe. Then it passes through 

a bended pipe before entering the steam generator water box (SGWB). The flow impinges a 

plate, which corresponds to the partition plate of a steam generator. The mixing in the water 

box is important and leads to high transfer rates on the partition plate. Water then flows through 

a grid, the tubular sheet, before entering a water volume and exiting the test section from the 

upper part of the geometry.  
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(a) Geometry 

 

(b) Boundary conditions 

 
Figure 5.1: CAD model of the SGWB mock-up. 

5.2.2 Grid 

The simulations done with CFD aim to reproduce the operating conditions  covered by the 

experiments in the steam generator water box mock-up presented in Chapter 4. In these 

experiments, the flowrates have been set in order to cover the range of Reynolds number 

[105, 106]. All the CFD models designed for simulations in the SGWB use wall functions (see 

§1.1.3.5) for the calculation of heat transfer coefficient. The height of the cells adjacent to the 

flow has been set in order to keep the values of 𝑦+ (see §1.1.3.5) in the range (30 < 𝑦+ < 300) 

for the Reynolds numbers that were explored. Thus, two grids have been used to constraint the 

minimum 𝑦+ value: 

- LRE (“Low” Reynolds) grid: for the range 𝑅𝑒 ∈ [105, 5 ∙ 105] 

- HRE (“High” Reynolds) grid: for the range 𝑅𝑒 ∈ [5 ∙ 105, 106] 

 

The grids designed for computations with STAR-CCM+ use polyhedral cells, while the one 

used for Fluent simulations use tetrahedral cells. These meshes will be respectively denoted 

with the subscript POLY and TET. A grid convergence has been realized in order to estimate 

the numerical error due to the numerical schemes involved in the resolution of the equations 

by the solver. The estimation is presented in Chapter 6. This grid convergence has only been 

carried out for one of the turbulence models tested (Realizable 𝑘 − 𝜖 model). The number of 

cells in each of the designed grids is indicated in Table 5.1.  
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Table 5.1 : number of cells in the different grids 

GRID Number of cells 

LREPOLY 12 685 520 

HREPOLY 8 769 695 

LRETET 11 991 153 

HRETET 11 421 615 
 

5.2.2.1 𝐋𝐑𝐄𝐏𝐎𝐋𝐘 and 𝐇𝐑𝐄𝐏𝐎𝐋𝐘 

(a) Section of the water box 

 

(b) Section of the pipe upstream 

 
Figure 5.2: view of the grid LREPOLY near the zone of interest: (a) in the water box (b) in 

the pipe upstream the water box. 

 

The flow domain has been meshed with polyhedral cells in the water box entry box, the tubular 

plate and the upper part. The grid in the upstream pipe has been done by extruding the mesh at 

the interface between the pipe and the inlet nozzle of the SGWB downstream the bend in order 

to have conformal interfaces. The difference between the LRE and HRE meshes is the height 

of the first prism layer and the total number of prism layer visible on Figure 5.2 in the fluid 

domain near the walls. 

A view of the mesh in the water box and upstream pipe is given on Figure 5.2. The prism layer 

in the two grids have been set as following:  

- In the grid: the minimum non-dimensional wall distance 𝑦+ on the walls is set such as 

𝑦𝑚𝑖𝑛
+ < 1  

- Everywhere else: 𝑦𝑚𝑖𝑛
+ > 30 

5.2.2.2 𝐋𝐑𝐄𝐓𝐄𝐓 and 𝐇𝐑𝐄𝐓𝐄𝐓: 

Two grids have been designed for simulations with Fluent. The grids have been realized with 

tetrahedral cells and prism layers near boundaries. The mesh on the interface between the 
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upstream pipe and the SGWB has been extruded in the pipe. The same has been executed 

downstream the tubular plate in order to mesh the upper water volume. The prism layer in the 

two grids have been designed as following:  

- In the grid: 𝑦𝑚𝑖𝑛
+ < 1 

- Everywhere else: 𝑦𝑚𝑖𝑛
+ > 30 

A view  of the mesh is given on Figure 5.3.  

 

(a) Section of the water box 

 

(b) Section of the pipe upstream 

 

Figure 5.3: view of the grid LRETET near the zone of interest: (a) in the water box (b) in the 

pipe upstream the water box. 

 

5.2.3 Physical model 

The models that have been adopted for the following simulations are summarized in Table 5.2. 

The flow is assumed incompressible, with a constant density. Different turbulence models will 

be compared in this chapter: the Realizable 𝑘 − 𝜖 (RKE), 𝑘 − 𝜔 SST (KOSST) depicted in 

§1.1.3.3 will be used for computations on the grids LREPOLY and HREPOLY. Moreover, the 

simulations were carried out with the Elliptic Blending Reynolds Stress Model (EB-RSM) from 

(Manceau & Hanjalic, 2002) on this grid. This model is a Reynolds stress transport (RST) 

model different from eddy viscosity models. RST approaches to model turbulence are more 

costly as a transport equation is given for each component of the Reynolds stress tensor. Details 

on this modelling approach can be found in Chapter 11 of (Pope, 2000). The RKE and Scale 

Adaptive Simulation (SAS) model §1.1.3.3.5 will be used on the grids LRETET and HRETET. 

The near wall meshing has been set in order to guarantee that the non-dimensional wall distance 

𝑦+ value (see §1.1.3.5.1) remains such as 𝑦+ > 30 everywhere, except on the grid’s wall where 

the mesh has been refined in order to have 𝑦+ < 1. Thus, a blended wall law was required and 

has been used in order to support both cases as depicted in §1.1.3.5.2.  
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Table 5.2: summary of the physical model for the CFD simulations 

Equation Models 

Mass conservation Incompressible flow 

Turbulence RKE, KOSST, EB-RST, SAS 

Equation of state Constant density 

Time evolution Steady simulation 
 

5.2.4 Boundary conditions and physical properties 

The physical properties are given in Table 5.3. The properties are set as constant function of 

temperature, the specific heat coefficient is parametrized and takes multiple values in order to 

test different Prandtl numbers. 

 

Table 5.3: physical properties of the fluid 

Property Value 

Density 𝜌 = 997.561 𝑘𝑔.𝑚−3 

Thermal conductivity 𝜆 =  0.620271 𝑊.𝑚−1. 𝐾−1 

Dynamic viscosity 𝜇 = 8.8871 ∙ 10−4 𝑃𝑎. 𝑠 

Specific heat 𝑐𝑝 =
𝑃𝑟𝜆

𝜇
 

 

 

The boundary conditions of the CFD model are depicted on Figure 5.1b. A uniform mass 

flowrate 𝑄𝑚 is imposed at the inlet of the model, the inlet temperature 𝑇𝑖𝑛 = 300𝐾 is set as 

constant. The turbulent intensity and turbulent length scale imposed at the inlet are respectively 

𝐼𝑡𝑢𝑟𝑏 = 0.1 and 𝐿𝑡𝑢𝑟𝑏 = 0.1𝐷 where 𝐷 is the diameter of the inlet pipe. The boundary 

conditions in the simulations where set as following:  

- A pressure outlet is imposed at the exit of the model 

- The walls of the steam generator water box (given in red in Figure 5.1b) are set to be 

constant at 𝑇𝑤𝑎𝑙𝑙 = 303𝐾 

- The other walls are set as adiabatic.  

- No-slip wall condition is imposed on all walls.  

 

The simulations were also parametrized by the Reynolds number as it has been done in §3.1.3. 

Once the Reynolds and Prandtl number are chosen, the mass flow inlet is set to 𝑄𝑚 = 𝜌 ∙
𝜋𝐷2

4
∙

(
𝑅𝑒𝜇

𝜌𝐷
)  and the specific heat is set to 𝑐𝑝 =

𝑃𝑟𝜆

𝜇
. 

The CFD runs cover the range 𝑅𝑒 ∈ [105, 106] and 𝑃𝑟 ∈ [1,9], the design of experiment (DoE) 

used is given Figure 5.4. The DoE has been adapted differently for computations using STAR-

CCM+ and Fluent. The respective simulation inputs of the DoE for both simulations are given 
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in Appendix C. It has been designed using an in-house tool based on Shannon’s information 

theory and Bayesian statistics in order to maximize the information of the sample. The points 

(𝒙𝒋)𝒋∈[𝟏,𝑵]
 are taken as realization of a Gaussian process 𝑍 with a covariance matrix 

𝐶 (𝑍(𝒙𝒋), 𝑍(𝒙𝒋))  that has been chosen to be a squared exponential. If we assume that the field 

that is investigated follows the prior, the design of experiment maximizing Shannon’s entropy 

is the one maximizing the determinant of the covariance matrix. Thus, an optimization 

procedure is applied on the points (𝒙𝒋)𝒋∈[𝟏,𝑵]
 in order to maximize the determinant of the 

covariance matrix. This optimization is achieved by switching candidate points of the DoE 

with other points. The candidates are chosen by evaluating the information content of the points 

based on their distance from each other. The details on the theory and algorithm will not be 

covered in this manuscript. A review of the use of Bayesian statistics and information theory 

for DoE generation can be found in (Chaloner & Verdinelli, 1995).  

 

 
Figure 5.4: design of experiment of the computations for grids LRE (blue) and HRE (red).  

5.3 Data reduction 

This manuscript focuses on the evolution of the heat transfer coefficient on the partition plate 

for different flowrates in the mock-up and different diffusive properties. The problem is 

formulated with dimensionless numbers:  

- The diffusive properties of the fluid are given by the Prandtl number 

- The turbulent regime for water is given by the Reynolds number. 

- The convective heat transfer coefficient is given by the local Nusselt number.  

 

The convective heat transfer coefficient ℎ𝑐𝑜𝑛𝑣 is calculated by the CFD software from the wall 

heat flux and the wall temperature as following: 

ℎ𝑐𝑜𝑛𝑣 =
𝑞𝑤(𝑥, 𝑦)

𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑟𝑒𝑓
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where 𝑞𝑤(𝑥, 𝑦) is the wall heat flux obtained from the CFD simulations and 𝑇𝑟𝑒𝑓 is a reference 

temperature which is chosen to be the inlet temperature in this work. An example of the heat 

transfer coefficient surface distribution obtained with CFD is given on Figure 5.5. The four 

visible rectangles give the location of the measurements during the experiments of Chapter 4. 

The data is extracted on the surface mesh and is then linearly interpolated on a regular grid in 

order to simplify the comparison with the experiments and the comparison between different 

grids. Furthermore, the velocity and turbulence of the flow have been extracted on a plane 

section depicted on Figure 5.6. 

 

 
Figure 5.5: heat transfer coefficient surface distribution calculated with CFD at 𝑅𝑒 = 106 

an 𝑃𝑟 = 6. Rear view of the partition plate. 

  
Figure 5.6: view of the vertical plane section including the jet axis on which the velocity 

field and turbulence is investigated.  

5.4 Surrogate models  

A surrogate model has been designed for the reconstruction of the Nusselt number on the 

partition plate for a given turbulence model and grid. This has been carried out for each of the 

tested turbulence model and for grids LRE and HRE.  
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Figure 5.7: Example of prediction of the Nusselt number on the partition plate from the 

surrogate models 𝑎1̂,  𝑎2̂, 𝑎3̂ and 𝑎4̂ and the modes 𝜙1, 𝜙2, 𝜙3 and 𝜙4 for 𝑹𝒆 = 𝟖 ∙ 𝟏𝟎𝟓 and 

𝑷𝒓 = 𝟐. The values of the surrogate models with respect to the Reynolds and Prandtl 

numbers and the surface distribution of the modes are indicated on a heat map with low 

values in blue and high values in red. The predicted Nusselt number is indicated on the right 

side of the figure. 

 

First, the POD has been applied to snapshots of the Nusselt number (𝑁𝑢𝑗)1≤𝑗≤𝑁𝑆𝑁𝐴𝑃
obtained 

from the simulation on the DoE given Figure 5.4 with a given model and grid. The POD applied 

to a snapshot 𝑁𝑢𝑗 for simulation inputs 𝑅𝑒𝑗 , 𝑃𝑟𝑗 can be written: 

𝑁𝑢𝑗(𝑅𝑒𝑗 , 𝑃𝑟𝑗 , 𝑥, 𝑦) = ∑ 𝑎𝑛(𝑅𝑒𝑗 , 𝑃𝑟𝑗)𝜙𝑛(𝑥, 𝑦)

𝑁𝑆𝑁𝐴𝑃

𝑛=1

 

where, 𝑎𝑛 are the coefficient of the POD related to the POD modes 𝜙𝑛. A truncation to the 𝑟 

first modes can be done to express the Nusselt number from fewer coefficient and modes at the 

cost of a truncation error 𝜖𝑟 committed when reconstructing the snapshots.  

𝑁𝑢𝑗(𝑅𝑒𝑗 , 𝑃𝑟𝑗 , 𝑥, 𝑦) = ∑𝑎𝑛(𝑅𝑒𝑗, 𝑃𝑟𝑗)𝜙𝑛(𝑥, 𝑦)

𝑟

𝑛=1

+ 𝜖𝑟(𝑅𝑒𝑗 , 𝑃𝑟𝑗 , 𝑥, 𝑦) 

 

In this work, 𝑟 = 4 has been considered in order to limit the truncation error 
𝜖𝑟

𝑁𝑢
< 0.05.  
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The Nusselt field obtained for arbitrary inputs 𝑅𝑒, 𝑃𝑟 can also be expressed in the POD base:  

𝑁𝑢(𝑅𝑒, 𝑃𝑟, 𝑥, 𝑦) ≈ ∑𝑎𝑛(𝑅𝑒, 𝑃𝑟)𝜙𝑛(𝑥, 𝑦)

𝑟

𝑛=1

+ 𝜖𝑟(𝑅𝑒, 𝑃𝑟, 𝑥, 𝑦) 

Finding the coefficients 𝑎𝑛 for these inputs is equivalent to solving an interpolation problem 

from the realization obtained (𝑎𝑛(𝑅𝑒𝑗, 𝑃𝑟𝑗))
1≤𝑗≤𝑁𝑆𝑁𝐴𝑃

 on the DoE. In this work, gaussian 

processes (see §1.2.3) were used to predict the four first components of the POD of the Nusselt 

number. The predictors or surrogate models are denoted 𝑎1̂,  𝑎2̂, 𝑎3̂ and 𝑎4̂. 

The Nusselt number is then reconstructed for arbitrary Reynolds and Prandtl numbers with:  

𝑁�̂�(𝑅𝑒, 𝑃𝑟, 𝑥, 𝑦) = ∑𝑎�̂�(𝑅𝑒, 𝑃𝑟)𝜙𝑛(𝑥, 𝑦)

𝑟

𝑛=1

 

The gaussian processes used to predict the components were defined with a squared 

exponential kernel. A schematic view of the reconstruction from the surrogate models 𝑎1̂,  𝑎2̂, 

𝑎3̂ and 𝑎4̂ and the different modes can be seen on Figure 5.7. It is noticeable that the POD 

enables the reconstruction of the Nusselt number for arbitrary boundary conditions 𝑅𝑒, 𝑃𝑟 from 

4 scalar values 𝑎1̂(𝑅𝑒, 𝑃𝑟),  𝑎2̂(𝑅𝑒, 𝑃𝑟), 𝑎3̂(𝑅𝑒, 𝑃𝑟) and 𝑎4̂(𝑅𝑒, 𝑃𝑟).  

5.5 Results 

5.5.1 Introduction 

A view of the velocity field for 𝑅𝑒 = 106 and 𝑃𝑟 = 6 is given on Figure 5.8. The velocity 𝑽𝒏 

is defined from the local velocity 𝒖 and the reference velocity 𝑈 as following:  

𝑽𝒏 =
𝒖

𝑈
, 𝑈 =

𝑅𝑒 𝜇

𝜌 𝐷
  

 

The velocity profile in the upstream pipe is initially flat, then an acceleration of the flow is 

visible at the bend location in the upper wall, while the flow separates and decelerates at the 

lower wall. Downstream the bend, the flow is separated in two zones. The flow separation 

visible on the upper wall leads to the presence of a zone with lower velocity on the upper part 

of the pipe. On the opposite side, the flow accelerates and is pushed downward. 

At the junction of these zone, shear stress is important and leads to higher turbulence. When 

entering the steam generator water box, the high velocity flow reaches the partition plate and 

exchanges heat with the fixed temperature wall. The flow then passes through the tubular sheet 

before entering the upper volume. A reduction of the velocity is visible near the impingement 

point.  
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(a) Vector field 𝑽𝒏  

 

 

(b) |𝑽𝒏| 

 
Figure 5.8: view of the velocity on a plane section of the geometry. The magnitude |𝑽𝒏| is 

given with a heat map.  

 

The results covered in this chapter focus on the heat transfer coefficient on the partition plate 

and on the parameters affecting its calculation. The performed simulations made possible the 

comparison of the heat transfer coefficient in different situations: 

- The influence of the type of cell in the grid has been investigated at 𝑅𝑒 = 106 and 𝑃𝑟 =
6 with polyhedral and tetrahedral cells. The computations were carried out with the 

Realizable 𝑘 − 𝜖 (RKE) turbulence model and with wall functions to allow 𝑦+ > 30 

meshing. The implementation of this model with two commercial software will be 

compared.  

- The influence of the mesh refinement in the near wall region of the fluid will be 

examined with two grids at 𝑅𝑒 = 5 ∙ 105 and 𝑃𝑟 = 4.  

- The evolution of the Nusselt number surface distribution as a function of the Reynolds 

and Prandtl numbers will be investigated on the design of experiment (DoE) given 

Figure 5.4. The different turbulence model tested are the RKE model, the 𝑘 − 𝜔 𝑆𝑆𝑇 

(KOSST) model, the Elliptic Blending Reynolds stress transport model (EB-RSM) and 

the Scale Adaptive Simulation (SAS) model.  

 



 149 

 

 

5.5.2 Influence of the grid  

Comparisons between the Nusselt number yielded by Fluent and STAR-CCM+ with HRETET 

are given on Figure 5.9a and Figure 5.9b. The Nusselt number obtained through computations 

with STAR-CCM+ on HREPOLY is given Figure 5.9c. Both simulations were achieved using 

the Realizable 𝑘 − 𝜖 (RKE) turbulence model with similar wall treatment. The computations 

were done at 𝑅𝑒 = 106 and 𝑃𝑟 = 6. The stagnation point has been retrieved by looking for the 

minimum of the velocity near the wall. Its location has been found to fluctuate negligibly 

around a mean value indicated in blue on Figure 5.9.  

Similarities can be noticed on the given Nusselt fields: 

- The three fields present banana shaped iso-contours where the Nusselt number takes its 

maximum values near the stagnation point. This banana shape is included in a central 

zone delimited by the iso-contour 𝑁𝑢 ≈ 4000.  

- A second zone is present on the upper right corner of the partition plate. The velocity 

in this location is lower resulting in lower Nusselt number.  

 

The size of these zones and the amplitude of the Nusselt number differs in the three cases. The 

local relative difference between 𝑁𝑢HRETET  obtained with STAR-CCM+ and 𝑁𝑢HRETET  

obtained from Fluent on HRETET at the coordinates (𝑥, 𝑦) is calculated as following:  

Δ𝑁𝑢𝑆𝑂𝐹𝑇𝑊𝐴𝑅𝐸(𝑥, 𝑦) = 𝑁𝑢𝐻𝑅𝐸TET,𝑆(𝑥, 𝑦) − 𝑁𝑢𝐻𝑅𝐸TET,𝐹(𝑥, 𝑦) 

 

The difference between the two mesh is given by Δ𝑁𝑢𝐺𝑅𝐼𝐷 making the difference between 

𝑁𝑢HREPOLY  and 𝑁𝑢HRETET  calculated with STAR-CCM+ on the grid HREPOLY and HRETET: 

Δ𝑁𝑢𝐺𝑅𝐼𝐷(𝑥, 𝑦) = 𝑁𝑢HREPOLY,𝑆(𝑥, 𝑦) − 𝑁𝑢HRETET,𝑆(𝑥, 𝑦) 

 

The evolution of Δ𝑁𝑢𝑆𝑂𝐹𝑇𝑊𝐴𝑅𝐸 and Δ𝑁𝑢𝐺𝑅𝐼𝐷 on the partition plate is given on Figure 5.10. 

The computation with Fluent 𝑁𝑢HRETET,𝐹 yields value around 5% to 10% larger than 

𝑁𝑢HRETET,𝑆 obtained with the same grid with STAR-CCM+.  

Furthermore, it can be seen on Figure 5.10a that the difference Δ𝑁𝑢𝑆𝑂𝐹𝑇𝑊𝐴𝑅𝐸 is more important 

far from the stagnation zone on the far left side of the plate. The demarcation between the main 

central zone and the secondary zone on the right of the stagnation region presents high gradients 

of the Nusselt number. Small spatial variations of the distribution of the Nusselt number lead 

to high differences in this zone. The discrepancies are smaller near the stagnation point. The 

maximum heat transfer calculated with Fluent is approximatively 6% larger than with STAR-

CCM+. Also, differences are noticed on the Nusselt number computed with STAR-CCM+ with 

mesh HREPOLY and HRETET Figure 5.10b. Computations with HRETET yield on average 

Nusselt number 10% higher than HREPOLY. The Nusselt number differs at the center of the 

partition plate near the stagnation point. Computations with HREPOLY present a local minimum 

while none are visible with the tetrahedral mesh. 
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(a) HRETET Fluent 

 

(b)  HRETET STAR-CCM+ 

 

(c) HREPOLY STAR-CCM+  

 
Figure 5.9: comparison of Nusselt number calculated with STAR-CCM+ and Fluent on grid HRETET and 

HREPOLY. The comparison is done with the RKE model at 𝑅𝑒 = 106 and 𝑃𝑟 = 6. The blue cross corresponds 

to the stagnation point. 

 

(a) Δ𝑁𝑢𝑆𝑂𝐹𝑇𝑊𝐴𝑅𝐸 

 

(b)  Δ𝑁𝑢𝐺𝑅𝐼𝐷 

 
Figure 5.10: surface distribution of Δ𝑁𝑢𝐺𝑅𝐼𝐷 and Δ𝑁𝑢𝑆𝑂𝐹𝑇𝑊𝐴𝑅𝐸 on the partition plate. 
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(a) HREPOLY STAR-

CCM+ 

 

(b) HRETET with Fluent 

 

(c) HRETET with STAR-

CCM+ 

 

 
Figure 5.11: comparison of the turbulent kinetic energy computed with (a) STAR-CCM+ on 

HREPOLY, (b) Fluent and (c) STAR-CCM+ on HRETET at 𝑅𝑒 = 106  

 

These variations might be due to differences in the calculation of the turbulent kinetic energy 

between the different models. The turbulent kinetic energy 𝑘 is shown on a plane section 

containing the jet on Figure 5.11. The velocity difference between the upper and lower regions 

of the jet depicted on Figure 5.8 leads to shear stress at the junction of these two zones which 

results in high turbulence kinetic energy. Larger values of 𝑘 are computed with tetrahedral cells 

in the shear region around the jet and near the partition plate with tetrahedral meshes. 

Moreover, the computation with Fluent solver yields higher values of 𝑘 which could explain 

the 10% difference on average of the Nusselt number on the partition plate. In the following, 

simulations with STAR-CCM+ will be carried out on the grids with polyhedral cells and 

simulations with Fluent with the tetrahedral cells.  

At Reynolds numbers around 5 ∙ 105 and 𝑃𝑟 ≈ 4, the computations were performed with both 

grids LRE,HRE. The variation of the vector field 𝑽𝒏 on the partition plate’s vicinity with the 

different turbulence models has been investigated. The results were obtained with the RKE 

model, 𝑘 − 𝜔 SST model (KOSST) and the Elliptic Blending Reynolds stress transport model 

(EB-RSM) on grids LREPOLY and HREPOLY. A comparison of the velocity fields obtained with 

the different models is given on Figure 5.12 from the rear of the plate. The vector field 𝑽𝒏 is 

superposed to contours of the magnitude |𝑽𝒏|:  

- Around the stagnation point for |𝑽𝒏| < 0.6, the different models and grids give similar 

surface distribution. On the immediate right side of the stagnation region, differences 

occur between the different models with LREPOLY grid. In fact, the velocity of the flow 

going to the bottom right is smaller for the RKE and EB-RSM.  

- Differences can be noticed in the zone |𝑽𝒏| >  0.6. The velocity magnitude varies with 

the different grids. At the bottom left of the stagnation region; the values of the velocity 

calculated with the RKE and KOSST models are larger with the HRE grid which yields 
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lower 𝑦+ values on the cells adjacent to the partition plate. Moreover, the iso contours 

|𝑽𝒏| ≈ 0.4 and 0.6 on the upper left of the plate are further away with HREPOLY leading 

to lower gradients in this zone.  

The local difference Δ𝑉𝐺𝑅𝐼𝐷(𝑥, 𝑦) between the grids LREPOLY and HREPOLY is defined as 

following: 

 Δ𝑉𝐺𝑅𝐼𝐷(𝑥, 𝑦) = 2
|𝑉𝑛|LRE(𝑥, 𝑦) − |𝑉𝑛|HRE(𝑥, 𝑦)

|𝑉𝑛|LRE(𝑥, 𝑦) + |𝑉𝑛|HRE(𝑥, 𝑦)
   

 

This difference corresponds to a relative difference between the calculations of the velocity 

with the two grids in comparison to the mean velocity 
|𝑽𝒏|LRE(𝑥,𝑦)+|𝑽𝒏|HRE(𝑥,𝑦)

2
.  

The value of Δ𝑉𝐺𝑅𝐼𝐷(𝑥, 𝑦) on the partition plate is given on Figure 5.13 for the different 

turbulent models.  

The iso contours computed from the different models show similarities:  

- To the right of the stagnation zone, the velocity magnitude obtained with grid HRE is 

larger than with LRE. A zone is delimited by a banana shaped isocontour Δ𝑉𝐺𝑅𝐼𝐷 ∈
[10%, 20%] going from the bottom center of the plate to the upper right.  

- A pattern delimited by the iso contours Δ𝑉𝐺𝑅𝐼𝐷 ∈ [−20%, 20%] can be seen near the 

stagnation point. This pattern is present due to the high velocity gradients calculated in 

this zone where the flow accelerates importantly. Slightly different distributions induce 

high local differences in these zones.  

- For increasing radial distance from the stagnation point, the velocity obtained with the 

grid LRE becomes larger. The relative difference grows larger due to the scale of the 

velocity getting lower.  

 

The surface average value on the partition plate of |𝑉𝑛| denoted |Vn|𝑚 calculated for the two 

grids LRE and HRE, is given in Table 5.4. The average value 𝜇|𝑉𝑛| obtained from the two grids 

and the surface average value of Δ𝑉𝐺𝑅𝐼𝐷 denoted Δ𝑉𝐺𝑅𝐼𝐷,𝑚 is also given. It can be noticed that 

the RKE model and EB-RSM model are less affected than the KOSST model showing more 

important variations. The KOSST gets closer to RKE and EB-RSM models with the HRE grid 

which has 𝑦+ values closer to 30 on the cells adjacent to the plate. The larger value of 𝜎|𝑉| for 

the KOSST might be due to the non-convergence of the grid for calculations with this model. 

In fact, the HREPOLY grid contains less cells than the LREPOLY grid. This has been found to 

affect only slightly the field with the RKE model when the grid convergence was done, 

however, the simulation with the KOSST might require more refined meshes.  

The near wall mesh refinement of the fluid domain has been shown to be of importance in the 

computations of the near wall velocity. The high gradients zone located near the stagnation 

zone where the flow accelerates is the most sensitive to the 𝑦+ values on the plate. However, 

as it has been shown for the RKE and EB-RSM turbulence model, the mean velocity over the 

partition plate is only slightly affected. High relative differences are also present in low velocity 

regions far from the stagnation region.  
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(a) RKE LREPOLY 

 

(b) RKE HREPOLY 

 

(c) KOSST LREPOLY 

 

(d) KOSST HREPOLY 

 

(e) EB-RSM LREPOLY 

 

(f) EB-RSM HREPOLY 

 

 
Figure 5.12: velocity on the first cell next to the partition plate. Computations with the polyhedral 

mesh for 𝑅𝑒 ≈ 5 ∙ 105 and 𝑃𝑟 ≈ 4 
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(a) RKE 

 

(b)  KOSST 

 

(c) EB-RSM 

 

 
Figure 5.13: Δ𝑉𝐺𝑅𝐼𝐷 for the different computations at 𝑅𝑒 = 5 ∙ 105 and 𝑃𝑟 = 4 obtained on 

the polyhedral mesh  

 

Table 5.4: statistics on the field |𝑽𝒏| for the different computations. 

 |Vn|LRE,𝑚  |Vn|HRE,𝑚 𝜇|𝑉𝑛| Δ𝑉𝐺𝑅𝐼𝐷,𝑚 

RKE 0.5088 0.4969 0.5028 2% 

KOSST 0.5881 0.5371 0.5626 9% 

EB-RSM 0.4782 0.4886 0.4834 -2% 
 

5.5.3 Surface distribution of the Nusselt number 

5.5.3.1 Overview 

The surface distribution of the Nusselt number on the grids LRETET and HRETET are given on 

Figure 5.14. The computations are carried out with the RKE model and Scale Adaptive 

Simulation (SAS) model with Fluent at 𝑅𝑒 = 5.5 ∙ 105 and 𝑃𝑟 ≈ 4. The Nusselt number 

obtained with STAR-CCM+ on LREPOLY and HREPOLY with the RKE model, 𝑘 − 𝜔 SST 

model (KOSST) and the Elliptic Blending Reynolds stress transport model (EB-RSM) are 

given on Figure 5.15. Moreover, the maximum Nusselt number 𝑁𝑢𝑀𝐴𝑋 and, the mean value 

and standard deviation of the minimum 𝑦+ on the plate 𝜇𝑦+ ± 2𝜎𝑦+  are given for each case. 
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(a) RKE LRETET 

 

(b) RKE HRETET 

 

(c) SAS LRETET 

 

(d) SAS HRETET 

 

 

Figure 5.14: surface distribution of the Nusselt number on the partition plate at 𝑅𝑒 ≈ 5.5 ∙ 105 

𝑃𝑟 ≈ 4 for the different turbulence models on grids LRETET and HRETET. 

 

Differences are noticed between the SAS model and the RKE model on LRETET, HRETET:  

- The Nusselt number computed with the RKE model is significantly higher than the 

SAS.  

- The RKE model do not include a local minimum at the center of the plate contrarily to 

the SAS model as it has already been found in Figure 5.9.  

- For the SAS model, the surface distribution of the Nusselt number has been calculated 

through the time averaging of a transient simulation with fixed boundary conditions. 

The resulting field is noisier than with the RKE model. The residuals have been 

monitored to insure the convergence of the computations. This aspect might disappear 

by averaging the fields over longer time.  

- The results obtained with HRETET with lower 𝑦+ values yield higher gradients of the 

Nusselt number around the stagnation zone. The main aspect of both surface 

distribution are unchanged.  
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(a) RKE LRES 

 

(b) RKE HRES 

 

(c) KOSST LRES 

 

(d) KOSST HRES 

 

(e) EB-RSM LRES 

 

(f) EB-RSM HRES 

 

 

Figure 5.15: surface distribution of the Nusselt number on the partition plate at 𝑅𝑒 ≈ 4.8 ∙ 105 

𝑃𝑟 ≈ 4 for the different turbulence models on grids LRES and HRES.  

 

The surface distribution of the Nusselt number obtained from the polyhedral grids 

LREPOLY, HREPOLY with all the turbulence models presents some similarities. A local minimum 

is found around the stagnation region. On the right side of this minimum transfer region, a 

banana shaped zone where the Nusselt number takes its maximum values is visible. On the 

right of this banana shaped zone, a low Nusselt number region is present for all the cases.  
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The amplitude, location and shape of these zones differ according to the turbulence model and 

𝑦+ values: 

- The amplitude of the Nusselt number differs significantly between the turbulence 

models. The RKE presents the highest values of the Nusselt number.  

- The shape and location of the iso contours near the local minimum are sensitive to the 

𝑦+ values. High 𝑦+ values on the partition plate result in the translation of the local 

minimum on the upper left of its location for lower 𝑦+ values. The translation for the 

RKE and EB-RSM are significant when compared to the translation of the iso contours 

of the velocity profile presented in §5.5.2. 

- The amplitude of the Nusselt number differs with the 𝑦+ values. The RKE model is the 

less sensitive to these variations while the results obtained from the KOSST and EB-

RSM show significant variations. 

In conclusion of this first study, the structure of the iso contours of the Nusselt number on the 

partition plate is similar for all the turbulence models except for the RKE model runs on the 

tetrahedral grid. However, significant differences are observed regarding the amplitude and 

location of the isocontours on the partition plate. The model yielding the lowest values of the 

Nusselt number is the EB-RSM, while the RKE yields the highest values. The KOSST yields 

approximatively 22% lower values of the maximum Nusselt number than the RKE on 

equivalent grids, which is comparable to the 28% calculated between the SAS and the RKE on 

the same grids. Finally, the near wall 𝑦+ value has been found to affect the computation of the 

Nusselt number with the different turbulent models. The RKE using the polyhedral grid is the 

less sensitive model. The KOSST, EB-RSM ad SAS show important variations of the Nusselt 

surface distribution, mean value and maximum value. This might be due to the fact that the 

grid convergence which led to the choice of LREPOLY and HREPOLY was realized with RKE 

simulations. The quality might not be sufficient and is likely to impair the accuracy of the 

results for too high 𝑦+ values near 𝑅𝑒 = 5 ∙ 105 with grids LRE and near 𝑅𝑒 = 106 with grids 

HRE.  

The differences between these different models when modelling the heat transfer on the plate 

are discussed in (Zuckerman & Lior, 2006) which makes a review of the results of numerical 

studies concerning the heat transfer prediction on plates impinged by turbulent jets. Hybrid 

methods (such as SAS) and SST methods (as KOSST) are found to have similar performance 

regarding the prediction of the locations of the maximum values while the performance of RKE 

are found to be slightly lower on this aspect. In addition, important errors can be anticipated 

regarding the magnitude of the Nusselt number which are between 15% to 40% depending on 

the model. In comparison, Reynolds stress models have been found to predict the amplitude of 

the Nusselt number with a more important error. Considering all these aspects and the cost 

associated to computations with these models, KOSST, SAS and RKE models should be 

favored for the predictions of heat transfer coefficient for impinging jet configurations. 
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5.5.3.2 Nusselt number on the measurement locations 

(a) Location 1 

 

(b) Location 2 

 

(c) Location 3 

 

(d) Location 4 

 
Figure 5.16: evolution of the surface average Nusselt number calculated on the different 

measurements locations of the partition plate for the different turbulence models. a) 𝑁𝑢1,  b) 𝑁𝑢2, 

c) 𝑁𝑢3 and d) 𝑁𝑢4.  

 

The surface average Nusselt number obtained on the measurement locations depicted in Figure 

5.5 are retrieved and studied as a function of the Reynolds number on the design of experiment 

presented Figure 5.4. The surface average value of the Nusselt number on the locations 1, 2, 3 

and 4 are denoted respectively 𝑁𝑢1, 𝑁𝑢2, 𝑁𝑢3 and 𝑁𝑢4. The values obtained from different 

Prandtl numbers simulations are scaled with 𝑃𝑟0,33 to be comparable. It is noticeable that the 

RKE model simulations on the tetrahedral and polyhedral grids yield the larger values of the 

Nusselt number on all locations.  
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Some differences are observed between the results obtained with the RKE model on polyhedral 

and tetrahedral grids. These differences were observed in §5.5.2 and seem to be due mainly to 

the difference of the grids.  

 

The values of the Nusselt number obtained from the SAS and KOSST simulations are close to 

each other. In addition, the amplitude of the Nusselt number is approximatively 25% lower 

with these models than the RKE model on locations 2 and 3 where the velocity is the highest 

on the plate. The largest differences between the models are observed on location 4 which is 

the closest from the stagnation region. On these locations, the RKE model yields larger values 

of the Nusselt number.  

 

The simulations with the SAS model at low Reynolds were not sufficiently converged which 

is visible on location 1 where high variability of the Nusselt distribution was observed. On 

location 2 and 3, the discrepancy between the values obtained with the EB-RSM and the other 

models increases near 𝑅𝑒 ≈ 5 ∙ 105 separating the two grids LRE and HRE. This indicates an 

increased sensibility of the EB-RSM to high values of the 𝑦+ value on the cells adjacent to the 

partition plate.  

5.5.3.3 Variations with the Reynolds and the Prandtl number 

The surface distribution of the Nusselt number evolves with respect to the Reynolds and Prandtl 

numbers. An example is given on Figure 5.17 for the computations made for 𝑅𝑒 = 5 ∙ 105 and 

𝑅𝑒 = 106 at 𝑃𝑟 = 6. It can be noticed that increasing the Reynolds number has the effect of 

elongating the iso-contours of the Nusselt number delimiting the stagnation region for all the 

turbulence models.  

The proper orthogonal decomposition (POD) is applied to the snapshots of the Nusselt number 

distribution on the partition plate in order to study its evolution with the Reynolds and Prandtl 

number as depicted in §5.4. The POD is truncated to 𝑟 = 4 modes and components from the 

original 50 modes that were calculated from the 50 snapshots, in order to limit the mean 

truncation error over the partition to 5%. The mean absolute error (MAE) between a snapshot 

of the Nusselt number on the partition plate 𝑁𝑢𝑗 and the truncated POD of this snapshot at 

order 𝑟, 𝑁𝑢𝑗,𝑟 is calculated with: 

 

MAE(𝑅𝑒, 𝑃𝑟) = ⟨
|𝑁𝑢𝑗(𝑥, 𝑦, 𝑅𝑒, 𝑃𝑟) − 𝑁𝑢𝑗,𝑟(𝑥, 𝑦, 𝑅𝑒, 𝑃𝑟)|

𝑁𝑢𝑗(𝑥, 𝑦, 𝑅𝑒, 𝑃𝑟)
⟩

𝑆

  

 

where, 〈 〉𝑆 is the surface average value over the plate’s surface. The evolution of the MAE 

on the design of experiment and other details on the POD can be found in Appendix D.  
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 𝑅𝑒 = 5 ∙ 105 𝑅𝑒 = 106 

RKE 

HREPOLY 

  

KOSST 

HREPOLY 

  

EB-RSM 

HREPOLY 

  

RKE HRETET 

  

SAS HRETET 

  

Figure 5.17: evolution of the surface distribution between 𝑅𝑒 = 5 ∙ 105 and 𝑅𝑒 = 106 

at 𝑃𝑟 = 6. The scale has been adapted by dividing the Nusselt by its maximum value. 

 

Differences around 5% were observed locally on the partition plate in high gradients zones due 

to the displacement of some contours with evolving Reynolds and Prandtl numbers. The 

evolution of the MAE for the different models have been found to decrease with respect to the 

Reynolds number. 

- For simulations performed with the RKE turbulence model on LREPOLY, the MAE has 

been found to be go from 5% for the lower Reynolds numbers, to values lower than 

2% for 𝑅𝑒 > 2 ∙ 105. On HREPOLY, the error remains under 0.5%.  

- The MAE calculated for the reconstruction of the Nusselt number with the RKE 

turbulence model on LRETET and HRETET  yields slightly higher errors than for the 

polyhedral grid. The error remains lower than 4% for 𝑅𝑒 > 2 ∙ 105 and reaches 2% at 

𝑅𝑒 > 3 ∙ 105. On the HRETET grid, the accuracy is higher and remains globally under 

1%.  
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- For the KOSST model simulations conducted on LREPOLY and HREPOLY, the MAE is 

around 5% for the lowest Reynolds numbers then decreases and remains around 1-2% 

for the cases 𝑅𝑒 > 2 ∙ 105 except for some isolated snapshots where the MAE is around 

2.5-3%  

- Similar truncation errors are observed for the reconstruction of the Nusselt number 

surface distribution calculated with the EB-RSM model, the MAE calculated vary from 

around 6% to 2-3% on the LREPOLY grid. Then MAE remains around 1-1.5% on 

HREPOLY. 

- The surface distribution of the Nusselt number on the partition plate computed with the 

SAS model fluctuates more than with the other models. The MAE is found to vary from 

30% at 𝑅𝑒 = 105  to values in the range 15%-25% for 𝑅𝑒 > 2 ∙ 105.  

 

 

The four modes 𝜙1, 𝜙2, 𝜙3 and 𝜙4 obtained from the POD of the Nusselt number distribution 

calculated from the RKE simulations on the grid LREPOLY and HREPOLY are given respectively 

on Figure 5.18 and Figure 5.19. The related POD components 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are calculated  

for the snapshots of the design of experiment given Figure 5.4. Interpolation are then done in 

order to predict the values of the components for arbitrary Reynolds and Prandtl numbers in 

the Reynolds-Prandtl domain as indicate in §5.4. The surrogate models for the predictions of 

the components are denoted 𝑎1̂,  𝑎2̂, 𝑎3̂ and 𝑎4̂. Iso contours of the predictions are given Figure 

5.20.  

The comparison of both grids is analyzed: 

- The first mode 𝜙1 is approximatively the same for the two meshes. It gives the general 

shape of the surface distribution of the Nusselt number. The banana shape is visible and 

the local minimum as well. The evolution of the component 𝑎1̂ on the Reynolds Prandtl 

domain for both grids do not presents any peaks or valleys. The component increase is 

correlated to both the increase of the Reynolds and Prandtl number.  

- The second mode 𝜙2 of the two grids show similar aspects with opposite signs. The 

same can be said for the isocontours of the components  𝑎2̂ calculated with the two 

grids showing. This mode affects the spreading of the stagnation zone and pushes the 

zone with high values of the Nusselt number away. The evolution of the components is 

affected by both the Reynolds and the Prandtl number. For high Reynolds numbers, the 

Prandtl numbers effect is negligible, the isocontours tend to be vertical lines. The 

spacing between these lines starts to increase significantly for 𝑃𝑟 < 3.  

- The modes 𝜙3 obtained on LREPOLY and 𝜙4 on HREPOLY simulations are similar to 

mode 𝜙2. The components are mainly affected by the Reynolds number, moreover, its 

presence is related to the evolution of the local minimum on the upper left of the 

partition plate. As a result, the pattern visible on modes 𝜙1 including a local maximum 

on the upper left region is pushed outwards for large Reynolds values.  

- Finally, the last mode 𝜙4 with LREPOLY and 𝜙3 with HREPOLY affects the Nusselt 

number at the center of the partition plate which decreases for higher Prandtl numbers. 
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The components are mainly affected by the Prandtl number. The differences between 

the two grids is higher close to the tubular plate and on the bottom left near the border.  

 

 

(a) 𝜙1 

 

(b) 𝜙2 

 

 

(c) 𝜙3 

 

(d) 𝜙4 

 
Figure 5.18: modes calculated with the snapshots of the Nusselt number with the RKE model 

on grid LREPOLY 

 

(a) 𝜙1 

 

(b) 𝜙2 

 

 

(c) 𝜙3 

 

(d) 𝜙4 

 
Figure 5.19: modes calculated with the snapshots of the Nusselt number obtained with the RKE 

model on grid HREPOLY 
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(a) �̂�1LRE 

 

(b) �̂�1HRE 

 

(c) �̂�2LRE 

 

(d) �̂�2HRE 

 

(e) �̂�3LRE 

 

(f) �̂�3HRE 

 

(g) �̂�4LRE 

 

(h) �̂�4HRE 

 
 

Figure 5.20: predictions of the components associated to the modes obtained with the RKE 

model on grids LREPOLY and HREPOLY. The predicted values are given with a heat map.  



164 CFD simulations on the steam generator mock-up 

 

 

 

 

The process has been repeated for the other turbulence models. The details of the POD modes 

and of the components’ evolution are given in Appendix D. The results were similar to the ones 

obtained for the RKE turbulence model simulations: the first mode gives the mean surface 

distribution of the Nusselt number, and its component increases monotonously as a function of 

the Reynolds and Prandtl numbers. Two modes 𝜙2 and 𝜙3 (or 𝜙4) depend mainly on the 

Reynolds number and affect the spread of the local minimum of the Nusselt number. Finally, 

the fourth mode 𝜙4 (or 𝜙3 in some cases) affects the Nusselt on the center of the partition plate 

and depends only on the Prandtl number. Some differences were noticed such as:  

- The waviness of the iso-contours of the components 𝑎3 and 𝑎4 on the Design of 

Experiment (DoE) range (except for the RKE model on the tetrahedral grid): in general, 

the data included more noise than the RKE model which can explain this tendency.  

- The SAS model third and fourth modes are too noisy, the components could not be 

predicted accurately. Thus, these modes have not been kept for the reconstruction of 

the Nusselt number.  

 

The accuracy of the prediction on the Nusselt number distribution 𝑁�̂� with the process depicted 

§5.4 is estimated with the absolute error between 𝑁�̂� on the DoE points 𝑅𝑒𝑗 , 𝑃𝑟𝑗 and the 

snapshots 𝑁𝑢𝑗 obtained for identic inputs (𝑅𝑒𝑗 , 𝑃𝑟𝑗) on the partition plate with: 

Δ𝑁𝑢𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒,𝑗 = 2
|𝑁�̂�(𝑅𝑒𝑗 , 𝑃𝑟𝑗)  − 𝑁𝑢𝑗|

𝑁�̂�(𝑅𝑒𝑗 , 𝑃𝑟𝑗) + 𝑁𝑢𝑗
 

 

where, 
𝑁�̂�(𝑅𝑒𝑗,𝑃𝑟𝑗)+𝑁𝑢𝑗

2
 is the mean value between both values of the Nusselt number.  

The mean value and standard deviation of Δ𝑁𝑢𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒,𝑗 over all the snapshots 

(𝑁𝑢𝑗)1≤𝑗≤𝑁𝑆𝑁𝐴𝑃
 has been calculated in order to estimate the local values of the error when 

predicting the Nusselt number distribution with the surrogate model. The surface distribution 

of the mean local error 𝜇Δ𝑁𝑢𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒  is given on Figure 5.21 for the different grids and 

turbulence model. It can be noticed that 𝜇Δ𝑁𝑢𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒  is of the same order of magnitude than 

the error between the original snapshots of the Nusselt number and their truncated POD. The 

additional error due to surrogate modelling is negligible when compared to the truncation error.  
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Figure 5.21: evolution of 𝜇Δ𝑁𝑢𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒  on the partition plate for the different models.   
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5.6 Conclusion 

The experiments on the steam generator presented in Chapter 4 were reproduced with CFD 

simulations. Different turbulence models and grids have been tested, yielding different Nusselt 

number on the partition plate where the measurements have been done.  

The importance of the grid has been investigated and it has been found that for equal model 

(RKE), tetrahedral grids and polyhedral grids yield different results regarding the Nusselt 

number distribution on the partition plate. This difference seems related to differences in the 

calculation of the turbulent quantities near the plate, where higher turbulence rates were 

calculated with the tetrahedral grid leading to higher transfer rates. The differences that have 

been observed on the results of the RKE simulations with STAR-CCM+ and Fluent were 

significantly decreased when solving on the same grids.  

The wall meshing has also been found to have an important impact on the Nusselt distribution, 

high 𝑦+ values on the cell adjacent to the plate led to lower Nusselt number, and lower 

gradients. These results might be related to the observation made in Chapter 3, where the 

maximum Nusselt number at the leading edge of a heated wall is underestimated with wall 

laws and high minimum 𝑦+ values. Furthermore, it has been observed on Figure 5.17 that the 

central region of the plate including a local minimum of the Nusselt number spread out as the 

Reynolds number increases. This effect seems more likely to be due to the minimum 𝑦+ values 

being too high. In fact, the comparison of the surface distribution of the Nusselt number 

at∙𝑅𝑒 = 5 ∙  105 on Figure 5.15 for different 𝑦+ values corroborate this assumption.  

Finally, the turbulence models that have been tested on identical grids led to different surface 

distribution of the Nusselt number on the partition plate and different amplitudes. These 

differences will likely affect the comparison with the experimental data, especially near the 

stagnation region where the gradients are important and the difference between the models is 

more significant.  

Finally, a surrogate model has been designed for each numerical case in order to simplify the 

comparison to experimental data in the following chapter. These surrogate models have been 

designed by combining the proper orthogonal decomposition technique to Gaussian processes. 

This enabled the prediction of Nusselt number 2D maps on the partition plate for arbitrary input 

conditions with an error being of the same order of magnitude of the POD truncation error 

which has been limited to 5% for all the cases, except for the surrogate model trained with the 

SAS data showing increased truncation on the upper left of the plate, far from the impingement 

region.  

 

 



 

 

Chapter 6 Uncertainty quantification on the steam 

generator 

6.1 Introduction  

In this chapter, the model error related to the error induced by the physical model underlying 

the calculation of the heat transfer coefficient with CFD simulations given in §1.2.1 is 

investigated on the steam generator water box mock-up case. The model error is calculated 

from the experimental and numerical data which have been generated respectively with heat 

and mass transfer measurements presented in Chapter 4 and CFD simulations in Chapter 5. 

This model error 𝐸𝑚𝑜𝑑𝑒𝑙 can be expressed as the combination of other sources of error and 

uncertainty as given in (1.11) and (1.12):  

 

 
𝜇𝐸𝑚𝑜𝑑𝑒𝑙 = 𝜇𝐸𝐶𝐹𝐷/𝐸𝑥𝑝 + 𝜇𝑈𝑒𝑥𝑝 − 𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 − 𝜇𝐸𝑛𝑢𝑚   

 
𝜎𝐸𝑚𝑜𝑑𝑒𝑙 = √𝜎𝐸𝐶𝐹𝐷/𝐸𝑥𝑝

2 + 𝜎𝑈𝑒𝑥𝑝
2 + 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝

2 + 𝜎𝐸𝑛𝑢𝑚
2   

 

The following sections will each focus on the determination of each term in the previous 

equations of 𝜇𝐸𝑚𝑜𝑑𝑒𝑙  and 𝜎𝐸𝑚𝑜𝑑𝑒𝑙 . The process will be done for the different CFD models that 

have been used for the simulations including:  

- different turbulence models (Realizable 𝑘 − 𝜖, 𝑘 − 𝜔 SST and SAS turbulence models)  

- different meshing methodologies (polyhedral and tetrahedral cells)  

 

The evolution of the model error according to the Reynolds number will be investigated on the 

range 𝑅𝑒 ∈ [105, 106].  

  



168 Uncertainty quantification on the steam generator 

 

 

6.2 Experimental uncertainty  

The experimental uncertainty 𝑈𝐸𝑋𝑃 plays a key role in the estimation of the model error and 

more generally of the validation process. This section aims to assess this uncertainty for the 

heat and mass transfer measurements presented in Chapter 4. The definition of the 

dimensionless quantities can be found in §1.1.2. The Reynolds, Prandtl, Schmidt, Nusselt and 

Sherwood numbers are respectively denoted by 𝑅𝑒,  𝑃𝑟, 𝑆𝑐, 𝑁𝑢 and 𝑆ℎ.  

 

The uncertainty on 𝑅𝑒, 𝑃𝑟 and 𝑆𝑐 were estimated from the evolution in time of the flowrate 

and temperature during the experiments. The variations of these quantities included random 

fluctuation and a common time varying fluctuation due to the establishment of the temperature 

in the mock-up at the start of the experiment. This can be seen on Figure 4.10 showing the 

evolution of the Reynolds and Schmidt numbers during the gypsum dissolution experiments. 

The uncertainty of the Reynolds and Schmidt numbers during the mass transfer experiments 

can be modelled with a joint gaussian distribution with a non-zero covariance between 𝑅𝑒 and 

𝑆𝑐. Its value is estimated by measuring the Pearson correlation coefficient 𝜌𝐸𝑋𝑃. This 

coefficient is calculated for the different experiments with: 

𝜌𝐸𝑋𝑃 =
𝐶𝑜𝑣(𝑅𝑒𝐸𝑋𝑃 , 𝑆𝑐𝐸𝑋𝑃)

𝜎𝑅𝑒𝐸𝑋𝑃𝜎𝑆𝑐𝐸𝑋𝑃
 

 

For the gypsum dissolution experiments on the steam generator water box mockup, the Pearson 

coefficient has been found to be around -0.9 indicating a high correlation between the Reynolds 

and Schmidt numbers. This is normal as both quantities are calculated from the temperature 

which was found to fluctuate significantly in time. The fluctuations of the flowrate could be 

neglected in comparison, which explains the strong correlation between the Reynolds and 

Schmidt fluctuations. Finally, the negative covariance is due to the fact that the Reynolds and 

Schmidt numbers are respectively an increasing function and a decreasing function of the 

temperature.  

 

The temperature fluctuations during the heat transfer coefficient measurements were smaller. 

In this case, the experiments have been realized on longer time resulting on the establishment 

of the temperature which was found to fluctuate around 1% of the mean value. In these 

experiments, the average of the Pearson coefficient over the experiments was found around 

𝜌𝐸𝑋𝑃 = −0.6.  
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Furthermore, 𝜌𝐸𝑋𝑃 has been found to fluctuate from an experiment to the other in the range 

[−1,0] with 75% of the experiments in the range [−1, −0.5]. The fluctuations of these 

quantities during the experiments induce an uncertainty on the Reynolds and Prandtl numbers 

of the simulations which will be taken into account for the estimation of 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 in §6.4.  

 

The evolution of the Nusselt and Sherwood number 𝑁𝑢 and 𝑆ℎ on the partition plate of the 

steam generator mock-up has been studied. The measurements’ locations, the measurement 

device and the respective quantities that have been recovered from the experiments are given 

on Figure 6.1. The Nusselt number maps 𝑁𝑢𝑒𝑥𝑝(𝑅𝑒, 𝑃𝑟, 𝑥, 𝑦) used for the comparison between 

experiments and CFD combine the information retrieved from the heat and mass transfer 

measurements: 

- The surface distribution is obtained through the Sherwood number measurements on a 

surface with a 50𝜇𝑚 × 50𝜇𝑚 resolution as shown on Figure 6.1c.  

- The amplitude of the Nusselt number is obtained with heat transfer measurements with 

the device depicted  Figure 6.1b. 

 

The predicted Nusselt number field on a given location is given by:  

 

 
𝑁𝑢𝑒𝑥𝑝(𝑅𝑒, 𝑃𝑟, 𝑥, 𝑦) =

𝜙(𝑅𝑒, 𝑥, 𝑦)

𝐹(𝑅𝑒, 𝑃𝑟)
 

𝐹 =

𝜙𝑈(𝑅𝑒)
𝑁𝑢𝑈(𝑅𝑒, 𝑃𝑟)

+
𝜙𝐷(𝑅𝑒)

𝑁𝑢𝐷(𝑅𝑒, 𝑃𝑟)

2
 

(6.1) 

 

where, 𝜙 refers to the surface distribution of the Nusselt number which is defined such as the 

surface average value is equal to one (i.e. 〈𝜙(𝑥, 𝑦)〉𝑆 = 1). 𝜙𝑈 and 𝜙𝐷 refer respectively to the 

surface average value of the surface distribution 𝜙 on positions 𝑈 and 𝐷. The surface 

distribution 𝜙 does not have any dimension, and corresponds to a function of the Reynolds 

number only for location 4 where it has been found to fluctuate in the experiments (see 

§4.3.1.3).  

 

The surface distribution 𝜙 is predicted from the modal base obtained with proper orthogonal 

decomposition (POD) applied to the snapshots of the Sherwood number on the different 

locations (details on the results can be found in §4.3.1.3). On location 1, 2 and 3, one mode is 

sufficient to estimate the surface distribution on all the experimental range with a satisfactory 

accuracy. The surface distribution used is thus the first mode 𝜙1 of the POD. The surface 

distribution of the Sherwood number on location 4 has been found to vary more importantly 

on the experimental range, two modes were thus required in order to ensure a similar accuracy 

as the other locations. In this case, the surface distribution is reconstructed by predicting the 

components 𝑎1 and 𝑎2 for a given Reynolds. The surface distribution is then divided by the 
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mean value. Power laws reproducing the evolution of the components 𝑎1 with respect to the 

Reynolds number have been given in §4.3.1.3 on the different locations. The component 𝑎2 is 

predicted for a given Reynolds number by using Gaussian process. A squared exponential 

kernel has been chosen for the Gaussian process, moreover, the measured data used to train the 

model were assumed to present Gaussian noise.  

 

The scaling of the Nusselt number amplitude is calculated from the correlations obtained from 

the heat transfer measurements on the upper and lower half of the measurement device given  

in Table 4.2 (for 𝑁𝑢𝑈 and 𝑁𝑢𝐷).  A scaling by 𝐹𝑈 = 𝜙𝑈/𝑁𝑢𝑈 would lead to surface average 

values of the Nusselt number equal to 𝑁𝑢𝑈 on location 𝑈. The scaling with 𝐹𝐷 = 𝜙𝐷/𝑁𝑢𝐷 

would lead to surface average values of the Nusselt number equal to 𝑁𝑢𝐷 on location 𝐷. Here, 

the scaling is done by considering the mean value 𝐹 = 0.5 ∙ (𝐹𝑈 + 𝐹𝐷) due to slight difference 

observed between 𝐹𝑈 and 𝐹𝐷. The uncertainty on this transposition factor has not been taken 

into account in the experimental uncertainty.  

 

𝑁𝑢𝑒𝑥𝑝 can be seen as a mean value of the realization of the real Nusselt field 𝑁𝑢𝑟𝑒𝑎𝑙𝑖𝑡𝑦 during 

the experiments. The deviation between these two values is assumed to be a realization of the 

experimental uncertainty 𝑈𝐸𝑋𝑃:  

 

𝛿𝑈𝐸𝑋𝑃 = 𝑁𝑢𝑒𝑥𝑝 − 𝑁𝑢𝑟𝑒𝑎𝑙𝑖𝑡𝑦 

 

The bias 𝜇𝑈𝐸𝑋𝑃  of the experimental uncertainty is assumed equal to zero. The correction done 

on the heat transfer coefficient measured by the device presented in §4.2.3.3 ensure that the 

amplitude obtained from the heat transfer measurements is unbiased. The potential differences 

between the surface distribution obtained at high Schmidt numbers in the range [600, 1200] 

and the surface distribution for Prandtl numbers in the range 𝑃𝑟 ∈ [1, 10] are supposed to be 

negligible. Moreover, the local bias induced by the surface roughness of the gypsum samples 

will be assumed to be corrected by the truncation of the POD to the first modes. Nevertheless, 

variability has been observed on: 

1. the estimation of the distribution 𝜙(𝑥, 𝑦) denoted 𝜎𝜙
2(𝑥, 𝑦).  

2. the experimental Nusselt number 𝜎𝑁𝑢𝑈
2  and 𝜎𝑁𝑢𝐷

2  obtained on the discs 𝑈 and 𝐷.  

 

In this work, the standard deviation of 𝑁𝑢𝑒𝑥𝑝 has been estimated by propagating the uncertainty 

of 𝜙, 𝑁𝑢𝑈 and 𝑁𝑢𝐷 with Monte Carlo methods. A joint normal distribution is given for 𝑁𝑢𝑈, 

𝑁𝑢𝐷 and 𝜙. 𝑁𝑢𝑈, 𝑁𝑢𝐷 and the local values of the spatial distribution 𝜙 are assumed to be 

independent. Their standard deviation is given by 𝜎𝑁𝑢𝑈,𝜎𝑁𝑢𝐷 𝜎𝜙.  
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(a) Measurement locations 

 

(b) Heat transfer measurements  

 

(c) Mass transfer measurements 

 

Figure 6.1: Overview of the measurements on the steam generator mock-up.  (a) measurement 

locations on the partition plate.  (b) View of the measurement device and evolution of the Nusselt 

number with the Reynolds number on position 𝑈 and 𝐷. (c) View of the gypsum sample and 

examples of measured surface distribution on location 1 and 2.  
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The relative standard deviation 𝜎𝜙/𝜙 of the surface distribution has been estimated by using 

the local root mean square error RMSE(𝑥, 𝑦) and the local mean absolute error MAE(𝑥, 𝑦), 

calculated from the predicted surface distribution 𝜙(𝑥, 𝑦) and the distribution of the 𝑁𝑆𝑁𝐴𝑃 

snapshots of the Sherwood number (𝑆ℎ𝑗(𝑥, 𝑦))
𝑗≤𝑁𝑆𝑁𝐴𝑃

 obtained from the experiments divided 

by their surface average value 〈𝑆ℎ𝑗〉𝑆. 

 

 

MAE(𝑥, 𝑦) = ∑
|𝜙(𝑅𝑒𝑗, 𝑥, 𝑦) − 𝑆ℎ𝑗(𝑥, 𝑦)/〈𝑆ℎ𝑗〉𝑆. |

𝜙(𝑥, 𝑦)

𝑁𝑆𝑁𝐴𝑃

𝑗=1

 
(6.2) 

RMSE(𝑥, 𝑦) =  √
1

𝑁𝑆𝑁𝐴𝑃 − 1 
∑ (

𝜙(𝑅𝑒𝑗 , 𝑥, 𝑦) − 𝑆ℎ𝑗(𝑥, 𝑦)/〈𝑆ℎ𝑗〉𝑆.

𝜙(𝑅𝑒𝑗 , 𝑥, 𝑦)
)

2𝑁𝑆𝑁𝐴𝑃

𝑗=1

 
(6.3) 

 

The results for the four locations are given on Figure 6.2. The RMSE yields larger values due 

to the square exponent on the difference term. The deviation of the surface distribution around 

the 1st mode 𝜙1 is found to be small on locations 1, 2 and 3. The deviation increases near 

borders. The surface average value of 𝜎𝜙/𝜙  and its maximum value is given on Table 6.1. It 

is noticeable that the uncertainty on location 4 including more spatial variations is higher. The 

values of the MAE and RMSE over the positions  𝑈 and 𝐷 are indicated in Table 6.2.  

 

Table 6.1: 𝜎𝜙/𝜙 mean and maximum values, estimated with the MAE and RMSE  

Location 
MAE RMSE 

Mean Maximum Mean Maximum 

1 5.6% 19% 6.9% 24% 

2 5.3% 14% 6.5% 19% 

3 5.7% 17% 7.1% 19% 

4 8.6% 15% 12% 22% 
 

 

Table 6.2: 𝜎𝜙/𝜙 on 𝑈 and 𝐷 

Location 
MAE RMSE 

𝑈 𝐷 𝑈 𝐷 

1 4.2% 5.3% 5.2% 6.5% 

2 4.6% 5.4% 5.6% 6.7% 

3 5.4% 4.9% 6.6% 6.0% 

4 7.9% 7.6% 11% 11% 
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LOCATION 1 

 

  

LOCATION 2 

 

  

LOCATION 3 

 

  

LOCATION 4 

 

  
 

Figure 6.2: Surface distribution of MAE(𝑥, 𝑦) and RMSE(𝑥, 𝑦) for the different location. The 

contour corresponds to the iso-values [3.75%, 7.5%, 11.25%, 15%].  
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(a) 1 

 

(b) 2 

 

(c) 3 

 

(d) 4 

  

Figure 6.3: Standard deviation of the experimental uncertainty on the Nusselt number for the 

different locations. 

 

The uncertainty on the Nusselt number 𝑁𝑢𝑈 and 𝑁𝑢𝐷 is due to the fluctuation of the velocity 

and temperature during the experiments. Their standard deviations  𝜎𝑁𝑢𝑈 and 𝜎𝑁𝑢𝐷 were 

estimated to be 10% of the predicted values 𝑁𝑢𝑈 and 𝑁𝑢𝐷. The local values of 𝜎𝜙 are taken 

from the RMSE matrices given Figure 6.2. The resolution of the distribution has been 

downgraded in order to generate larger samples with Monte Carlo methods for the estimation 

of the standard deviation 𝜎𝑁𝑢𝑒𝑥𝑝. A sample of 105 elements is generated. The standard 

deviation of the local Nusselt number is given on Figure 6.3. 

In conclusion, the predicted Nusselt number 𝑁𝑢𝑒𝑥𝑝 combines the surface distribution measured 

with the gypsum dissolution technique, and the Nusselt calculated from the heat transfer 

measurement device. The combination of both uncertainties has been propagated with Monte 

Carlo method which allowed to estimate the standard deviation of the experimental uncertainty 

𝜎𝑁𝑢𝐸𝑋𝑃 . The standard deviation has been found to be in the range [5%, 13%] on locations 1, 2 

and 3. On location 4, the standard deviation is higher but remains below 20% on the surface.  

The evolution of the experimental uncertainty has been assumed to be constant on the 

experimental range. Additional work can be done in the future in order to estimate the 

uncertainty with more accuracy for evolving Reynolds number due to: 

- the evolution of the error between the truncated POD of the Sherwood number and the 

original snapshots with the Reynolds number evolution 

- the evolution of the deviation between the experimental points and correlation of the 

Nusselt number on positions 𝑈 and 𝐷 
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6.3 Numerical error 

The numerical error 𝐸𝑁𝑈𝑀 relates to the error which arises when solving the equations on 

discretized grid and space. This error can be reduced by refining the spatial grid. The 

computations were done for steady state convection; the numerical error will thus be calculated 

from the estimation of the error due to the mesh refinement. The details on the numerical model 

(geometry, grid, physical model …) can be found in §5.2. The runs with the Scale Adaptive 

Simulations model (see §1.1.3.3.5) were carried out for an unsteady flow, however the 

influence of the time step on the numerical error will not be covered in this dissertation.  

Four grids were designed for the computations of heat transfer with CFD in the steam 

generator: 

- The grids LRETET, HRETET with tetrahedral cells. The two grids were used respectively 

for the computations on the range 𝑅𝑒 < 5 ∙ 105 and 𝑅𝑒 > 5 ∙ 105.  

- The grids  LREPOLY, HREPOLY  with polyhedral cells. 

The numerical error 𝐸𝑁𝑈𝑀(𝑠) for a specific grid with cells of size 𝑠 has been assessed with 

Richardson extrapolation (see §1.2.4.2).  

 

𝐸𝑁𝑈𝑀(𝑠) = 𝑁𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑁𝑢𝑠 = 𝐶1𝑠 + 𝐶2𝑠
2 +⋯  

 

where 𝐶1, 𝐶2, …  are coefficient that have to be found. In this dissertation, the numerical error 

is written as following by keeping only the first order term: 

𝐸𝑁𝑈𝑀(𝑠) = 𝑁𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑁𝑢𝑠 = 𝐶1𝑠 

 

Instead of defining a grid size 𝑠, the evolution of the numerical error is estimated from the 

number of cells by replacing 𝑠 by 1/𝑁3, where, 𝑁 is the number of cells in the domain. A 

linear regression is performed to estimate 𝐶1 and 𝑁𝑢𝑒𝑥𝑎𝑐𝑡 which is the Nusselt number 

calculated when free of error. These parameters are estimated with a least square approach by 

fitting a linear curve on the evolution of 𝑁𝑢 with five grids. 𝑁𝑢𝑒𝑥𝑎𝑐𝑡 is estimated by calculating 

the intersection of the linear regression with the y-axis. The number of cells of each grid is 

given in Table 6.3. It has been noticed that the grid 1 was too coarse, thus, only the results 

obtained with grids 2, 3, 4 and 5 will be used to estimate 𝐸𝑁𝑈𝑀. An example of the process of 

calculating the numerical error is given on Figure 6.4. The numerical error on the surface 

average Nusselt number over the partition plate 𝑁𝑢𝑀𝐸𝐴𝑁 at 𝑅𝑒 = 5.5 ∙ 105 and 𝑅𝑒 = 4.6 ∙ 105 

is estimated. The numerical error mean value and standard deviation are found to be below 1% 

of the predicted value with the reference mesh except for HREPOLY which is around 1.6%. It is 

noticeable that the regression quality differs from a case to the other. For instance, the evolution 

of 𝑁𝑢𝑀𝐸𝐴𝑁 with the grid size on HRETET visible on Figure 6.4b seems to be converged. In fact, 

the fluctuations are within 1% of the prediction of 𝑁𝑢𝑀𝐸𝐴𝑁 for the different grid size.  
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Table 6.3: Number of cells of the different grids. The reference grids are given with bold 

characters.  

Grid LREPOLY HREPOLY LRETET HRETET 

1 2.4 ∙  106   3 ∙  106 5 ∙  106 5 ∙  106 

2 5.1 ∙  106 6.9 ∙  106 7.5 ∙  106 7 ∙  106 

3 7.9 ∙  106 𝟖. 𝟕 ∙  𝟏𝟎𝟔 𝟏. 𝟐 ∙  𝟏𝟎𝟕 𝟏. 𝟏 ∙  𝟏𝟎𝟕 

4 𝟏. 𝟐 ∙  𝟏𝟎𝟕 1.3 ∙  107 2.2 ∙  107 2.1 ∙  107 

5 2.0 ∙  107 3.7 ∙  107 3.8 ∙  107 6.6 ∙  107 
 

 

(a) LRETET 

 

(b) HRETET 

 

(c) LREPOLY 

 

(d) HREPOLY 

 
Figure 6.4: Examples of evolution of the mean Nusselt number over the partition plate 

with 1/𝑁3 at 𝑅𝑒 = 5.5 ∙ 105 (LRETET and HRETET) and 𝑅𝑒 = 4.6 ∙ 105 (LREPOLY and 

HREPOLY) . 𝜇𝐸𝑁𝑈𝑀(𝑠) is calculated from the difference between 𝑁𝑢𝑒𝑥𝑎𝑐𝑡  and 𝑁𝑢(1/𝑁3) 

given in dashed lines.   

 

The evaluation of this uncertainty has been done for the Realizable 𝑘 − 𝜖 turbulence model 

(RKE) (see §1.1.3.3.2 for details). The Nusselt number obtained from the different grids were 

interpolated on the same grid to estimate the local values of 𝐸𝑁𝑈𝑀 on the partition plate. The 

results for 𝑅𝑒 = 5 ∙ 106 are shown on Figure 6.5. The results at 𝑅𝑒 = 105 and 𝑅𝑒 = 106 were 

similar. The bias 𝜇𝐸𝑀𝐸𝐴𝑁 is found to be below 1% for all the grids except for HREPOLY due to 

a larger cell size. The standard deviation 𝜎𝐸𝑁𝑈𝑀  is negligible on most of the partition plate 

except at the junction of low Nusselt and high Nusselt zones where high gradients are present.  
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GRID 𝜇𝐸𝑁𝑈𝑀  𝜎𝐸𝑁𝑈𝑀  

LREPOLY 

  

HREPOLY 

  

LRETET 

  

HRETET 

  

 

  

Figure 6.5: Local values of 𝜇𝐸𝑁𝑈𝑀  and 𝜎𝐸𝑁𝑈𝑀  on the partition plate at 𝑅𝑒 = 5 ∙ 105 

 

Table 6.4: 𝜇𝐸𝑁𝑈𝑀  and 𝜎𝐸𝑁𝑈𝑀  averaged over the partition plate 

Grid 
𝑅𝑒 = 105 𝑅𝑒 = 5 ∙ 105 𝑅𝑒 = 106 

𝜇𝐸𝑁𝑈𝑀  𝜎𝐸𝑁𝑈𝑀  𝜇𝐸𝑁𝑈𝑀  𝜎𝐸𝑁𝑈𝑀  𝜇𝐸𝑁𝑈𝑀  𝜎𝐸𝑁𝑈𝑀  

LREPOLY −0.15% 1.7% −0.09% 0.85%   

HREPOLY   -1.8% 0.97% -2.1% 1.0% 

LRETET 0.18% 2.5% −0.21% 1.15%   

HRETET   −0.13% 1.8% −0.35% 1.5% 
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For grids HREPOLY and HRETET, the standard deviation increases at the center of the plate. The 

surface average of 𝜇𝐸𝑁𝑈𝑀  and 𝜎𝐸𝑁𝑈𝑀  are calculated for different Reynolds numbers 𝑅𝑒 = 105,

𝑅𝑒 = 5 ∙ 105 and 𝑅𝑒 = 106 and are given on Table 6.4. On average, 𝐸𝑁𝑈𝑀 remains 

approximatively constant for different Reynolds number. 

6.4 Propagation of the uncertainty of the simulation inputs 

The Reynolds and Schmidt numbers during the gypsum dissolution experiments have been 

found to fluctuate around 5% of the mean value, while the standard deviation of the Reynolds 

and Prandtl number during the heat transfer experiments are found to be between 0.5% and 1% 

of their mean value. The impact of the simulation’s Reynolds and Prandtl number uncertainty 

on the computations of the Nusselt number with CFD is calculated by propagating their 

covariance through the calculation. The propagation is done with Monte Carlo method depicted 

in §1.2.4.2.1: 

- The Reynolds and Prandtl number are assumed to follow a joint normal distribution. 

The mean values of the Reynolds number around which the propagation will be 

performed were chosen in the range 𝑅𝑒 ∈ [105, 106]. The mean Prandtl number has 

been fixed at 𝜇𝑃𝑟 = 6. The covariance matrix is assumed to be diagonal as the Prandtl 

and Reynolds fluctuations are assumed to be independent.  

- A random sample of 𝑁𝑆𝐴𝑀𝑃𝐿𝐸 element (𝑅𝑒𝑖, 𝑃𝑟𝑖)𝑖≤𝑁𝑆𝐴𝑀𝑃𝐿𝐸  following the joint 

distribution is generated using a random number generator. 

- The Nusselt number on the partition plate 𝑁𝑢𝑖 is predicted for each point of the sample 

using the surrogate models depicted in §5.4. The prediction of the surrogate model is 

denoted 𝑁�̂�𝑖.  

- The uncertainty on the Nusselt number due to the inclusion of the simulation inputs 

uncertainty 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝is then calculated with: 

𝜇𝑁𝑢𝑖̂ = 
1

𝑁𝑆𝐴𝑀𝑃𝐿𝐸
∑  𝑁�̂�𝐶𝐹𝐷,𝑖

𝑁𝑆𝐴𝑀𝑃𝐿𝐸

1=1

 

𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 = 𝜇𝑁𝑢𝑖̂ − 𝑁�̂�(𝜇𝑅𝑒 , 𝜇𝑃𝑟 ) 

𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 =
1

𝑁𝑆𝐴𝑀𝑃𝐿𝐸 − 1
∑ ( 𝑁�̂�𝐶𝐹𝐷,𝑖 − 𝜇𝑁𝑢𝑖̂ )

2

𝑁𝑆𝐴𝑀𝑃𝐿𝐸

1=1

 

 

The additional error due to the surrogate model accuracy can be found on Figure 5.21. It is 

neglected for all models except for the Scale Adaptive Simulations (SAS) for which the bias 

and variance of the prediction were more significant (5%-15%).  
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The standard deviation of the Prandtl number and Reynolds have been set to 5% of the mean 

value. The covariance matrix 𝐶 of the joint distribution can be written as following:  

𝐶 = (
(0.05𝜇𝑅𝑒)

2 0

0 (0.05𝜇𝑃𝑟)
2)  

 

The bias 𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝  has been found to be below 1% of the predicted values 𝜇𝑁�̂� for all the 

computations with a maximum for the SAS model around 0.5%. The standard deviation has 

been found to be around 4-5% of the predicted mean value 𝜇𝑁𝑢𝑖̂  An example of the surface 

distribution of the standard deviation 𝜎𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝
 is given on Figure 6.6 for simulations with 

two turbulence models with grid LREPOLY. It is noticeable that for this level of uncertainties, 

𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝  can be estimated to have a negligible bias, with a resulting standard deviation on 

the Nusselt number of the same order of magnitude as the uncertainty on the Reynolds and the 

Prandtl number uncertainties. No particular behaviour of this error with the Reynolds number 

has been noticed. Furthermore, the gradients on the plate are negligible and indicate that the 

variation of the boundary conditions do not affect significantly the surface distribution.  

An additional test has been performed by modifying the non-diagonal elements in the 

covariance matrix. The non-diagonal elements have been set in order to have completely 

correlated variables: 

𝐶 = (
𝜎𝑅𝑒
2 𝜎𝑅𝑒𝜎𝑃𝑟

𝜎𝑅𝑒𝜎𝑃𝑟 𝜎𝑃𝑟
2 ) 

 

The resulting standard deviation 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝  has been found to be reduced to 2.5%-3%. 

In conclusion, the impact of the uncertainty of the boundary conditions during the experiments 

has been propagated though the computations of the Nusselt number with CFD. The bias 

𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 induced by the fluctuations is negligible in front of other sources of uncertainty. 

The variance 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 is directly related to the standard deviation of the Reynolds and 

Prandtl number during the experiments. The experimental Nusselt number’s amplitude is 

calculated with the heat transfer measurements for which the boundary conditions have been 

found to fluctuate around 1% of the mean value. Moreover, these two fluctuations were 

correlated in time. The standard deviation 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝/𝑁�̂�(𝜇𝑅𝑒 , 𝜇𝑃𝑟) in this case is found to be 

around 1% which is negligible in the quantification of the model error in front of the 

experimental uncertainty. This level of uncertainty is significantly lower than the experimental 

uncertainty on the Nusselt number which standard deviation is around 20%  of the provided 

value.  
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(a) Realizable 𝑘 − 𝜖 

 

(b) 𝑘 − 𝜔 𝑆𝑆𝑇 

 

 

Figure 6.6: Example of surface distribution 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 on the partition plate at 𝑅𝑒 = 2.5 ∙ 105 

and 𝑃𝑟 = 6 

6.5 Gap between the computations and the experiments 

The gap 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 corresponds to the deviation between the experiments and the calculations 

with Computational Fluid Dynamics codes (CFD). It has been noticed in Chapter 5 that the 

computations of the Nusselt number’s surface distribution differs between the different 

turbulence models and grids (type of cell; wall meshing). The four measurement locations on 

which the comparison between CFD results and experiments were performed are reminded on 

Figure 6.7a. Examples of the Nusselt number surface distribution calculated with different 

turbulence models are given on Figure 6.7b.  

The importance of the variation of the Nusselt number distribution for the different CFD runs 

can be seen on Figure 6.7b. Moreover, its shape is affected by the increase of the 𝑦+ values  on 

the cells adjacent to the partition plate for increasing Reynolds number as it can be seen on 

Figure 5.17. These variations of the surface distribution affect the calculation at the 

measurement locations:  

- the measurement locations 1 and 2 are affected by the displacement of a local minimum 

heat transfer region from the center of the plate to the upper.  

- locations 3 and 4 are affected by this central zone in addition to the position of the 

“banana” shaped maximum region. Its shape, length and amplitude depend on the 

turbulence model and wall meshing.  

 

In comparison, the results analyzed in §4.3.1.3 showed less significant variations of the 

Sherwood number surface distribution with the Reynolds number. Some discrepancies have 

been observed between the lower Reynolds number experiments and the larger Reynolds 

number ones, however, they were most certainly due to the increase of the roughness effects at 

high turbulence regimes. 
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(a)  

 

(b)  

 
Figure 6.7: (a) Measurement locations and (b) example of surface distribution of the Nusselt 

number obtained with the different models  

 

In addition, the amplitude of those fluctuations is much lower than the ones observed in the 

CFD simulations. These fluctuations have been considered in the experimental uncertainty. On 

location 4, an evolution has been detected by both heat and mass transfer measurements. The 

ratio between the heat and mass transfer on the upper side and lower side of the measurement 

device has been found to increase in the measured range which seem to indicate a variation of 

the local minimum position near the stagnation region on the plate. The mean 𝜇𝐸𝐶𝐹𝐷/𝐸𝑋𝑃  and 

standard deviation 𝜎𝐸𝐶𝐹𝐷/𝐸𝑋𝑃  of 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 are first calculated as following: 

- The mean is calculated by comparing the Nusselt maps generated from the experiments 

𝑁𝑢𝐸𝑋𝑃  to the calculation of CFD 𝑁𝑢𝐶𝐹𝐷 on the measurement locations. 

- The standard deviation should be zero as the simulations are deterministic. The 

randomness of 𝑁𝑢𝐸𝑋𝑃 and 𝑁𝑢𝐶𝐹𝐷 are taken into account respectively in 𝑈𝐸𝑋𝑃 and 

𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝.  

The relative root-mean-square-error (RMSE) and the relative mean-absolute-error (MAE) are 

defined between 𝑁𝑢𝐶𝐹𝐷 and 𝑁𝑢𝐸𝑋𝑃 as follows:  

 
MAE(𝑁𝑢𝐶𝐹𝐷 , 𝑁𝑢𝐸𝑋𝑃) =

〈𝑁𝑢𝐶𝐹𝐷(𝑥, 𝑦)  − 𝑁𝑢𝐸𝑋𝑃(𝑥, 𝑦)〉𝑆
𝑁𝑢𝑟𝑒𝑓

 (6.4) 

 

RMSE(𝑁𝑢𝐶𝐹𝐷 , 𝑁𝑢𝐸𝑋𝑃) =

√〈(𝑁𝑢𝐶𝐹𝐷(𝑥, 𝑦)  − 𝑁𝑢𝐸𝑋𝑃(𝑥, 𝑦))
2
〉𝑆

𝑁𝑢𝑟𝑒𝑓
 

(6.5) 

 

where, 〈 〉𝑆 is the surface average value of the function on the comparison window, and 𝑁𝑢𝑟𝑒𝑓 

is a reference Nusselt number which is chosen to be the maximum of the Nusselt number which 

is the quantity of interest when calculating. The surface average value of 𝑁𝑢𝐶𝐹𝐷 over the 

partition plate is chosen for 𝑁𝑢𝑟𝑒𝑓. This value is representative of the Nusselt number over the 

partition plate and can be chosen to compare the performance on the different locations. 

Moreover, it allows to scale easily the relative error that are given in the following presentation 

of the results. 



182 Uncertainty quantification on the steam generator 

 

 

(a) Evaluation of the RMSE on the window 

 

(b) Comparison of 𝑁𝑢𝐸𝑋𝑃 and 𝑁𝑢𝐵𝐸𝑆𝑇  

 
Figure 6.8: Example of the extraction of the RMSE between the experimental Nusselt number 

𝑁𝑢𝐸𝑋𝑃 and the CFD Nusselt number extracted on a window around the experimental location. 

The Nusselt number distribution 𝑁𝑢𝐵𝐸𝑆𝑇 is extracted from the partition plate by translating the 

location as indicated on (a) The RMSE is calculated from comparison windows translated in 

the square dashed window. The original comparison window is given in black solid lines. The 

minimum RMSE location on which 𝑁𝑢𝐵𝐸𝑆𝑇  is extracted is given in red. The comparison is 

shown on (b). 

 

It has been observed that the variations of the non-dimensional wall mesh height 𝑦+ on the first 

cell layer over the partition plate results in the fluctuations of the surface distribution affecting 

importantly the comparison between 𝑁𝑢𝐸𝑋𝑃 and 𝑁𝑢𝐶𝐹𝐷. An example is given on Figure 6.8, 

for computations done with the elliptic blending Reynolds stress model (EB-RSM). On Figure 

6.8a, the Nusselt distribution over the partition plate 𝑁𝑢𝐶𝐹𝐷 is shown, with the position of the 

measurement device. It is visible by looking to the experimental Nusselt number 𝑁𝑢𝐸𝑋𝑃 on 

Figure 6.8b that the shape of the surface distribution 𝑁𝑢𝐶𝐹𝐷 differs from the experiment at the 

measurement position. However, the straight lines isocontours of the Nusselt number visible 

on 𝑁𝑢𝐸𝑋𝑃 can be found by translating the comparison window to the bottom right of the 



 183 

 

 

original location. The best fit is tracked with the minimum of the RMSE error defined in (6.5) 

and is visible in red on Figure 6.8a. 

 

Table 6.5: Surrogate models used for the determination of the error 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃. 

Turbulence model Surrogate model Software 

Realizable 𝑘 − 𝜖 (Polyhedral grid) 𝑁�̂�𝑅𝐾𝐸𝑆  STAR-CCM+ 

Realizable 𝑘 − 𝜖 (Tetrahedral grid) 𝑁�̂�𝑅𝐾𝐸𝐹  Fluent 

𝑘 − 𝜔 SST 𝑁�̂�𝐾𝑂𝑆𝑆𝑇, STAR-CCM+ 

Scale Adaptive Simulation 𝑁�̂�𝑆𝐴𝑆 Fluent 
 

 

The evaluation of 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 is realized with predictions of 𝑁𝑢𝐶𝐹𝐷 with the surrogate model 

trained from the computations results on the range depicted Figure 5.4. The notation for each 

turbulence model is given in Table 6.5. 

6.5.1 Realizable 𝒌 − 𝝐  

The RKE model has been tested with STAR-CCM+ (RKES) and Fluent (RKEF) on different 

grids (respectively on polyhedral and tetrahedral grids). The grid influence on the computations 

has been investigated in §5.5.2. The comparison of the Nusselt number obtained with the two 

grids has been performed with STAR-CCM+: simulations performed with the tetrahedral grid 

yielded higher values of the Nusselt number. The use of the same grid for computations with 

both softwares reduces the difference between their results.  

The local difference between CFD and experiments is evaluated over the range 𝑅𝑒 ∈

[105, 106]. The local relative error Δ𝑁𝑢(𝑥, 𝑦) is defined as follows:  

 
Δ𝑁𝑢(𝑥, 𝑦) =

𝑁𝑢𝐶𝐹𝐷(𝑥, 𝑦) − 𝑁𝑢𝐸𝑋𝑃(𝑥, 𝑦)

𝑁𝑢𝑟𝑒𝑓
 (6.6) 

 

The surface average value of 𝑵𝒖𝑪𝑭𝑫 over the partition plate is chosen for 𝑁𝑢𝑟𝑒𝑓. The average 

of Δ𝑁𝑢(𝑥, 𝑦) calculated over the simulations Reynolds number range 𝑅𝑒 ∈ [105, 106] and for 

𝑃𝑟 = 6 is given for 𝑁𝑢𝐶𝐹𝐷 = 𝑁�̂�𝑅𝐾𝐸𝑆  and 𝑁�̂�𝑅𝐾𝐸𝐹 on Figure 6.9. Moreover, the evolutions of 

the MAE and RMSE defined in (6.4) and (6.5) are given as a function of the Reynolds number 

for all location on Figure 6.10. On most of the Reynolds range, the simulations with both 

models underestimate the Nusselt number’s amplitude on locations 1, 2 and 3. This 

underestimation stabilizes at high Reynolds number. In addition, it can be noticed that 

switching to a finer mesh near 𝑅𝑒 = 5 ∙ 105 reduces importantly the deviation between the 

experiments and the simulations on location 2 for RKES and location 3 for RKE𝐹. This might 

be due to the fact that locations 2 and 3 are both closer to the stagnation point, respectively on 

the upper side and lower side of the plate.  
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Location 𝜇Δ𝑁�̂�RKE𝑆
 𝜇Δ𝑁�̂�RKE𝐹

 

1 

  
2 

  
3 

  
4 

  

Figure 6.9: Average over the range 𝑅𝑒 ∈ [105, 106] of the local relative error between  

𝑁�̂�𝑅𝐾𝐸𝑆 , 𝑁�̂�𝑅𝐾𝐸𝐹  and 𝑁𝑢𝐸𝑋𝑃.   
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Location Δ𝑁�̂�RKE𝑆 Δ𝑁�̂�RKE𝐹 

1 

  

2 

  

3 

  

4 

  
Figure 6.10: Evolution of the deviation between 𝑁𝑢𝐶𝐹𝐷 and 𝑁𝑢𝐸𝑋𝑃. The MAE is given in 

black solid line, the min and max value of the absolute error over the surface are given in 

dotted line respectively in blue and red. The RMSE is given with solid dashed line.  

 

The 𝑦+ values in these zones are higher than those in location 1 and as such, they are more 

affected by the evolution of the surface distribution for increasing Reynolds number. In both 

cases, the evolution of the surface distribution induces a bias which is corrected when switching 
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grids. Finally, the Nusselt number’s amplitude on location 4 is overestimated with CFD in both 

cases on the upper half of the samples in comparison to the experiments. On this location, the 

maximum values on the bottom half of the sample are well calculated with RKEF and RKES 

giving an upper and lower bound of the experiments. However, the minimum value on the 

upper part is overestimated with both simulations.  

(a) 𝑅𝑒 = 5.5 105 (b) 𝑅𝑒 = 1 ∙ 106 

  
Figure 6.11: Example of minimum RMSE extraction on location 4 for 𝑅𝐾𝐸𝑆 

(a) Displacement 

 

(b) 𝚫𝑵𝒖 Original  

 

(c) 𝚫𝑵𝒖 Best fit 

 

Figure 6.12: Comparison of 𝚫𝑵𝒖 on location 3 for the original location and the moved window  

 

The sensitivity of the gap between experiments and CFD to the location of the comparison 

window is investigated. The original comparison window (“Exp”) and the minimum RMSE 

comparison window (“Best”) for location 4 is given on Figure 6.11.. The comparison is done 

at two Reynolds number for the predictions with 𝑁�̂�𝑅𝐾𝐸𝑆 on the thinner near wall mesh HRE. 

On this grid, the minimum of the RMSE follows the displacement of the central zone near the 

upper left of the plate. Similar behaviors have been observed for the other locations when 

computing with RKES model. For some of the locations, the window was too small reach a 

local minimum of the RMSE. In these cases, the best fit locations were found on the border of 

the window. An example is given for location 3 on Figure 6.12. It is likely that the banana 

shaped iso contour spreads further in reality than what is calculated with the RKE. The 
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evolution of the minimum RMSE is given on Figure 6.13 in comparison to the RMSE 

calculated at the measurement location. 

 

Location RKES RKEF 

1 

  

2 

  

3 

  

4 

  
Figure 6.13: Evolution of the deviation between 𝑁𝑢𝐶𝐹𝐷 and 𝑁𝑢𝐸𝑋𝑃 with the windowed 

approach. The evolution of the minimum RMSE over the window is given in red. Its mean 

value in solid black line. 
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The minimum RMSE given in red decreases with the Reynolds number, except on location 4 

where both RKES, RKEF overestimate the Nusselt number.  

It is noticeable that with the window approach, the difference between experiments and 

simulations decreases. It can be noticed that the RKEF simulations are more accurate regarding 

the maximum heat transfer in comparison to RKES simulations which underestimates the 

Nusselt number’s amplitude more importantly. The differences between these two models are 

mainly due to the grid which is different in both cases (tetrahedral vs. polyhedral cells) and to 

the solver’s parameters which were different in both cases. When using equal grids and similar 

parameters in the solver, this difference is significantly reduced (cf. §Figure 5.9 and Figure 

5.10). 

In conclusion of the simulations performed with RKES. and RKEF models:  

- The computations with the RKE model underestimate the Nusselt number amplitude on 

the partition plate when compared to the experimental data, except near the stagnation 

zone where the local minimum found experimentally is significantly overestimated 

with RKES and RKEF simulations. The accuracy is better when comparing experiments 

and simulations on a translated window around the measurement position.  

- Simulations using the tetrahedral grid was shown to be closer to the experimental 

Nusselt number obtained on the mock-up than the polyhedral grid on which the Nusselt 

number’s amplitude was found lower.   

- The deviation between CFD and experiments show important values at low Reynolds 

number, and then decreases around 20%-40% of the reference Nusselt value. The best 

performance are obtained on location 2 where the deviation with the experimental data 

is within 10% for the high Reynolds number simulations. On the other hand, the 

overestimation of the Nusselt number observed on location 4 reaches values at high 

Reynolds number around 30% to 60% depending on the model. On location 1, the 

performances are bad at low Reynolds numbers with important underestimations of the 

amplitude of the Nusselt number. At high Reynolds the accuracy is better (deviations 

around 15%-20%) and show smaller evolution.  

- Translating the comparison window between experiments and CFD simulations affects 

importantly the results. The enhancement of the accuracy seems correlated to the 

displacement of the patterns visible on the Nusselt number distribution with the increase 

of the minimum 𝑦+ values on the partition plate.  

- The effect of near wall meshing of the fluid domain on the amplitude of the Nusselt 

number has been noticed on locations 2 and 3 when switching grids for simulations 

with intermediate Reynolds numbers. The deviation between CFD and experiment is 

significantly reduced for the mesh with the finer wall meshing. This might be because 

the wall functions used in the model cannot be used with to high values of the non-

dimensional wall height 𝑦+ of the cells adjacent to the walls. Additional tests can be 

done in the future to investigate the impact of the wall meshing on the simulation 

results.  
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6.5.2 𝒌 −𝝎 SST and Scale Adaptive Simulation 

The same process depicted in the previous section for the RKE turbulence model will be 

applied to the Nusselt number obtained with 𝑁�̂�𝐾𝑂𝑆𝑆𝑇 , 𝑁�̂�𝑆𝐴𝑆. The SAS model used in the 

simulations are based on the KOSST model (see §1.1.3.3.3) which has been reinterpreted as a 

𝑘 − 𝐿 model with 𝐿 a turbulent length scale (Menter & Egorov, 2005). This explain the 

similarities that have been observed in the surface distribution of the Nusselt number with both 

models (see Figure 5.14 and Figure 5.15). It should be reminded that the deviation of the 

surrogate model 𝑁�̂�𝑆𝐴𝑆 accuracy is significantly larger than 𝑁�̂�𝐾𝑂𝑆𝑆𝑇, especially near location 

1 on the upper left of the partition plate (see Figure 5.21). Moreover, it should also be reminded 

that the grid convergence has been done on the RKE. Some of the computations with the 

KOSST also seemed to be defective as undampened oscillations of the Nusselt number field 

have been observed during the convergence at the final state.  

 

The evolution of the MAE and RMSE defined in (6.4) and (6.5) with the Reynolds number is 

given on Figure 6.14 on the four measurement locations. The average local error between 

𝑁𝑢𝐶𝐹𝐷 and 𝑁𝑢𝐸𝑋𝑃  defined in (6.6) over the range 𝑅𝑒 ∈ [105, 106] is given on Figure 6.15. 

 

Different comments can be given on the comparison between the SAS, KOSST and 

experiments at the measurement locations:  

- It is noticeable that both models underestimate importantly the Nusselt number on the 

different locations.  

- The values of the Nusselt number computed by the KOSST and SAS models show 

important similarities as it can be seen on Figure 6.14, except on location 1. On this 

location, the deviation CFD-experiments calculated with the SAS model is more 

important. This coincides with the observation made on Figure 5.21: some of the results 

of the SAS model used for the comparison were not well converged on this specific 

location, leading to higher uncertainty in this zone which could explain the differences 

between both models.  

- The deviation is significant for the lower Reynolds numbers, however, the surface 

average deviation given by the RMSE, and MAE also decreases significantly with 

respect to the Reynolds number increase.  
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Location KOSST SAS 
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3 

  

4 

  

Figure 6.14: Average over the range 𝑅𝑒 ∈ [105, 106] of the local relative error between  

𝑁�̂�KOSST, 𝑁�̂�SAS and 𝑁𝑢𝐸𝑋𝑃. 
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Location KOSST SAS 
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3 

  

4 

  
Figure 6.15: Evolution of the deviation between 𝑁𝑢𝐶𝐹𝐷 and 𝑁𝑢𝐸𝑋𝑃 for the KOSST and 

SAS models. The MAE is given in black solid line, the min and max value of the absolute 

error over the surface are given in dotted line respectively in blue and red. The RMSE is 

given with solid dashed line. 

 



192 Uncertainty quantification on the steam generator 

 

 

 

(a) 𝑅𝑒 = 4.5 105 (b) 𝑅𝑒 = 5.5 ∙ 105 

  
Figure 6.16: Example of displacement of the comparison with the SAS model for 𝑅𝑒 =

4.5 ∙ 105  and 𝑅𝑒 = 5.5 ∙ 105.  

 

A sensitivity to the comparison window has also been tested with these models. The surface 

distribution of the KOSST and SAS were found to present the most fluctuations on the 

Reynolds range. Especially around location 4. An example is given for the SAS model on 

Figure 6.16 near 𝑅𝑒 = 5 ∙ 105 where the grid is switched in order to reduce the 𝑦+ values on 

the partition plate. It is noticeable that for the high 𝑦+ situation at 𝑅𝑒 = 4.5 105, the 

comparison is best when displaced on the left of the window. The effect of the 𝑦+ reduction is 

the repositioning of the patterns visible on the surface distribution. When the minimum 𝑦+ 

values are closer to 𝑦+ = 30 the minimum RMSE position is closer to the original position of 

the measurements. The minimum value of the RMSE on the window is given as a function of 

the Reynolds number on Figure 6.17 in comparison to the RMSE calculated at the measurement 

location. 

 

For both cases, the surface distribution obtained at the minimum RMSE position shows better 

comparison to experimental values, especially for 𝑅𝑒 > 5 ∙ 105 where the effect of looking on 

a window reduces significantly the deviation. Finally, the results with the KOSST model were 

found to yield lower Nusselt number than the RKE model which was found to be closer to the 

experimental data. The SAS model results on the other hand were comparable to the RKE 

model of STAR-CCM+. Both SAS and KOSST model results on location 4 were found to be 

closer to experiments than the RKE model. 
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Location KOSST SAS 
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4 

  

Figure 6.17: Evolution of the deviation between 𝑁𝑢𝐶𝐹𝐷 and 𝑁𝑢𝐸𝑋𝑃 for the KOSST and SAS 

models with the windowed approach. The evolution of the minimum RMSE over the window 

is given in red. Its mean value in solid black line, while a 𝜇 ± 2𝜎 interval is given in grey.  
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6.5.3 Conclusion 

The comparison between CFD and experiments has been done for different turbulence models. 

The Realizable 𝑘−𝜖, the 𝑘−𝜔 SST and SAS models have been used with two grids and 

softwares. They have been used to generate the distribution of the Nusselt number on the 

partition plate of the mock-up and were compared to experiments. This comparison has been 

done by calculating the root mean square error between the Nusselt maps obtained 

experimentally and numerically for flows at Reynolds number in the range [105, 106].  

- The RKE model yields better estimation of the Nusselt number amplitude in wall jet 

regions far from the stagnation zone than the KOSST and SAS models. The RMSE 

decreases from high values at low Reynolds number simulations: maximum values of 

the RMSE around 60% in the worst case on location 3, to values around 20%-40% 

depending on the locations. Most of the locations show RMSE below 20% at high 

Reynolds number simulations. In the stagnation region, near location 4, the KOSST and 

SAS model are more accurate with RMSE around 20% at high Reynolds numbers. In 

comparison the RKE overestimates importantly the Nusselt number in this zone (RMSE 

around 50%)  

- The simulation using the RKE model with tetrahedral cells provides results closer to 

experimental data than the polyhedral mesh simulation which underestimates the 

amplitude of the Nusselt number. The simulations using the KOSST and SAS models, 

were done respectively with the polyhedral grid and the tetrahedral grid. Differences of 

the same order of magnitude were found (around 20%).  

- A sensitivity to the location of the comparison window where the RMSE between 

experiments and simulations is calculated has been done. This sensitivity has been done 

in order to estimate the effect of the variations of the Nusselt distribution for increasing 

Reynolds number. Some elements indicate that these variations were correlated to the 

increase of the 𝑦+ value in the cells adjacent to the partition plate. (see §5.5.3.3 ). The 

high gradients region show a high sensitivity to the comparison window were small 

translations of the window could be used to reduce the deviation between experiments 

and simulations.  

- The influence of the mesh refinement near walls has been observed for simulations at 

intermediate Reynolds number, where a switch between grids LRE and HRE has been 

done. The refinement of the near wall mesh reduces significantly the deviation between 

the experimental and numerical Nusselt number, which might indicate that this 

deviation can be contained by limiting the minimum 𝑦+ values on the partition plate.   

The deviation between CFD and experiments evolves on the Reynolds range: at low Reynolds, 

the accuracy provided by both models were bad, showing important deviations. The accuracy 

was found to be better at high Reynolds number. In addition, the variations of the deviation get 

lower with the increase of the Reynolds number.  
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Some elements still must be investigated to have a reliable estimation of the evolution of the 

error 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 with the increase of the simulation’s Reynolds number: 

- The approach used to generate the experimental data impacts importantly the results of 

the comparisons, especially the transposition and the generation of the Nusselt 

distribution with POD. Additional work could be done to verify the sensitivity to the 

processing method.  

- The influence of the wall meshing on the accuracy of the simulation has not be 

dissociated from the Reynolds number influence. Simulations could be done for 

different refinement of wall meshing in order to investigate the subject. 

6.6 Model error 

The model error combines the different sources of uncertainty calculated previously with the 

following formula:  

𝜇𝐸𝑚𝑜𝑑𝑒𝑙 = 𝜇𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 + 𝜇𝑈𝐸𝑋𝑃 − 𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 − 𝜇𝐸𝑁𝑈𝑀 

𝜎𝐸𝑚𝑜𝑑𝑒𝑙 = √𝜎𝐸𝐶𝐹𝐷/𝐸𝑋𝑃
2 + 𝜎𝑈𝐸𝑋𝑃

2 + 𝜎𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝
2 + 𝜎𝐸𝑁𝑈𝑀

2   

 

The different sources of uncertainty have ben quantified in the previous sections:  

- The standard deviation 𝜎𝑈𝐸𝑋𝑃  of the experimental uncertainty 𝑈𝐸𝑋𝑃 on the Nusselt 

measurements is given on Figure 6.3 and is found to be in the range [7%, 15%] of the 

calculated Nusselt number on  location 1, 2 and 3. On location 4, 𝜎𝑈𝐸𝑋𝑃 ∈ [10%, 20%]. 

The bias is estimated from the heat loss calculation in the measurement device 

described in §4.2.3.3. The correction is applied in order to have an unbiased 

measurement.  

- The numerical error 𝐸𝑁𝑈𝑀 has been quantified for the RKE model. The bias is found to 

take maximum local values of 2% of their mean with RKES on the range 𝑅𝑒 ∈
[5 ∙ 105, 106]. The standard deviation is approximatively of the same order of 

magnitude. This bias has been assumed negligible in front of the error between CFD 

and experiment 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃. The standard deviation has also been assumed negligible in 

comparison of the experimental uncertainty standard deviation 𝜎𝑈𝐸𝑋𝑃 .  

- The uncertainty when considering the simulation inputs uncertainty 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 has also 

been calculated and it has been shown that this uncertainty is negligible in comparison 

to 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 and 𝑈𝐸𝑋𝑃 with values of the bias below 1% and standard deviations around 

5%.  

- The deviation between CFD and experiments 𝐸CFD/EXP has been calculated for the 

different models. The standard deviation is assumed to be zero. The bias is given for a 
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moving comparison window, for which the minimum of the RMSE given (6.5) is 

obtained. 

 

The importance of the experimental data is highlighted in this quantification of the model error 

where the only relevant uncertainties are both related to the experiments. The calculation of the 

model error is done at 𝑃𝑟 = 6 which was the Prandtl number during the heat transfer coefficient 

measurements. 

The evolutions of the bias and standard deviation with respect to the Reynolds number are 

given for the Realizable 𝑘−𝜖 model (RKE) computations with STAR-CCM+ and Fluent on 

Figure 6.18. The calculation for the Scale Adaptive Simulation (SAS) model and 𝑘−𝜔 SST 

(KOSST) model is given on Figure 6.19. The bias and standard deviation are given relatively 

to the mean Nusselt number on the partition plate.  

It can be noticed that the evolution of the standard deviation of the model error 𝜎𝐸𝑚𝑜𝑑𝑒𝑙/𝑁𝑢𝑟𝑒𝑓 

decreases with respect to the Reynolds number for all the turbulence models. The values are 

larger than the ones indicated in 𝜎𝑈𝐸𝑋𝑃  in §6.2 because the results were given relatively to the 

measurements. The mean Nusselt number over the plate is lower which has the effect of 

enlarging the relative values. The RKE models yield larger values of the Nusselt number which 

explains why the relative standard deviation is lower that the KOSST and SAS models.  

 

The bias also seems to stabilize for increasing Reynolds, the value differs greatly between the 

different models and locations. It has been shown that switching to the tetrahedral cells makes 

the calculated Nusselt number grow in amplitude in (§5.5.2) explaining the differences 

obtained from Fluent and STAR-CCM+ simulations using the RKE model. These differences 

decrease with the Reynolds number for location 1 and 2. Also, the differences between code 

and grids were reduced importantly when comparing the SAS and the KOSST. It should be 

noticed that the calculations of the Nusselt number with the SAS and KOSST models on 

location 4 near the impingement zone are less sensitive to the Reynolds number evolution.  

 

Finally, the bias is within the experimental uncertainty for all the models, except for location 4 

with the RKE model.  
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(a) 𝜇𝐸𝑚𝑜𝑑𝑒𝑙/𝑁𝑢𝑟𝑒𝑓 

 

(b) 𝜎𝐸𝑚𝑜𝑑𝑒𝑙/𝑁𝑢𝑟𝑒𝑓 

 
Figure 6.18: evolution of the mean value and standard deviation of the model error 𝐸𝑚𝑜𝑑𝑒𝑙 of the RKE model 

relatively to the mean value over the partition plate. The model error is calculated on location 1 (red), 2 (blue), 

3 (green) and 4 (purple). The computations with STAR-CCM+ are given in solid lines while the dashed lines 

are obtained from Fluent computations 

 

(a) 𝜇𝐸𝑚𝑜𝑑𝑒𝑙/𝑁𝑢𝑟𝑒𝑓 

 

(b) 𝜎𝐸𝑚𝑜𝑑𝑒𝑙/𝑁𝑢𝑟𝑒𝑓 

 
Figure 6.19: evolution of the mean value and standard deviation of the model error 𝐸𝑚𝑜𝑑𝑒𝑙 of the SAS (dashed 

lines) and KOSST (solid lines) models relatively to the mean value over the partition plate. The model error is 

calculated on location 1 (red), 2 (blue), 3 (green) and 4 (purple). 
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6.7 Conclusion 

The measurements and the computations of the heat transfer coefficient described in Chapter 

4 and Chapter 5 were compared. An uncertainty quantification process has been applied to the 

Nusselt number calculated with CFD. The different sources of uncertainty have been identified 

and estimated. 

 

It has been noticed that the numerical error 𝐸𝑁𝑈𝑀 which is related to the grid resolution was 

negligible for RKE simulations. The grids that were used in §6.4 were shown to show small 

differences in their calculation of the Nusselt number. This error has not been estimated on the 

other turbulence model. It has been assumed that the numerical error was the same for the 

different turbulence models which is questionable in view of the increased deviation between 

CFD and experiments with the KOSST and SAS model.  

 

The uncertainty arising from the simulation inputs uncertainty 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 has also been found 

to be negligible. The uncertainty of the Reynolds number and Prandtl number during the 

experiment have been propagated with Monte-Carlo method on a surrogate model. The 

resulting uncertainty has been found to differ whether the input parameters were defined with 

zero covariance or not. The bias and standard deviation have been found to be negligible when 

compared to the experimental uncertainty and to the gap between CFD and experiments. 

 

An important aspect of this uncertainty quantification has been to find an appropriate 

methodology to generate experimental Nusselt number maps for given Reynolds and Prandtl 

numbers with reasonable experimental uncertainty 𝑈𝐸𝑋𝑃. This prediction has been done by 

combining the 2D maps obtained from Sherwood number measurements and surface average 

data obtained from Nusselt measurements. An analytical function is given for prediction of the 

experimental Nusselt number from the measurements. The uncertainty on the measurements 

has then been propagated through this analytical function with Monte Carlo method and yielded 

the most significant contribution to the model error’s variance. 

 

Finally, the error between CFD and experiments 𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 has been evaluated for the different 

turbulence models. It has been observed that the bias was affected by both the type of cells in 

the grid, the wall meshing and turbulence models. The computations with the RKE model with 

both softwares tested were found to provide more accurate results in view of the experimental 

data than the KOSST and SAS models. Moreover, the discrepancy between the Nusselt 

number’s calculation by both softwares was found to be reduced when using identical grids. 

The results with the SAS and KOSST models were found to underestimate the experimental 

Nusselt number 𝑁𝑢𝐸𝑋𝑃 more importantly, however, the surface distribution of the Nusselt 

number has been observed to be more accurate with these models near the stagnation region.  
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It should be noted that the non-dimensional near wall distance 𝑦+ values on the partition plate 

have an impact on the accuracy of the computations: 

- Larger values of 𝑦+ decrease the amplitude of the maximum Nusselt number. 

- The surface distribution is distorted when the 𝑦+ values increase which leads to 

important differences between CFD and experiments when comparing on the 

measurement locations.  

 

The model error 𝐸𝑚𝑜𝑑𝑒𝑙 has been deduced from the different sources of error and uncertainty. 

𝐸𝐶𝐹𝐷/𝐸𝑋𝑃 and 𝑈𝐸𝑋𝑃 were found to be dominant in front of the other sources 𝑈𝑖𝑛𝑝𝑢𝑡𝑠,𝑒𝑥𝑝 and 

𝐸𝑁𝑈𝑀. The bias of the model error has been found to be bounded by the experimental 

uncertainty.  

 

In the future, the impact of the 𝑦+ on the calculation of the Nusselt number values should be 

explored. Clearly, when the Reynolds number is large, the effect of near wall meshing plays a 

lower role, nevertheless, confirmation must be given by comparing different wall meshing.  

 

 

  





 

 

Conclusion and perspectives  

The use of CFD softwares in the nuclear industry requires validation. The difficulty to obtain 

heat transfer data at the reactor scale led to a validation on reduced scale mock-ups, which 

present lower Reynolds numbers. The objective of this dissertation was to investigate the 

evolution of the model error for calculation of the heat transfer coefficient with RANS 

simulations according to the Reynolds number evolution in order to verify that its bias and 

standard deviation values do not increase between these two scales. The approach proposed in 

this dissertation was to: 

- generate experimental heat transfer coefficient data on an extended range of Reynolds 

number  

- reproduce the experiments with CFD simulation for identical flow configuration and 

boundary conditions 

- proceed to the uncertainty quantification in order to obtain the evolution of the model 

error according to the Reynolds number.  

 

The experimental aspect was certainly the most challenging as a new method relying on 

gypsum dissolution and on the heat and mass transfer analogy had to be developed. The method 

was first tested on the well-documented case of the rectangular channel flow. The work 

achieved on this flow configuration is presented in Chapter 2. During the experiments, it has 

been observed that the roughness which develops on the gypsum surface during the gypsum 

dissolution induced a bias for high Reynolds numbers. The correction of this bias was critical 

as the models that had to be tested in CFD provide smooth wall heat transfer coefficients. The 

enhancement of the mass transfer coefficient has been estimated with a transposition factor 

based on Gnielinski correlation of heat transfer which uses Darcy friction factor. The heat 

transfer data generated with this transposition factor was found to be in a good agreement with 

literature. Moreover, the test that have been carried out on the rectangular channel showed the 

importance of the preparation of the gypsum samples on the repeatability of the measurements. 

  

The experimental data obtained was then used for the uncertainty quantification of two 

commercial CFD codes in Chapter 3. The work gave first insights on the importance of each 

source of error and uncertainty. Moreover, these simulations brought to light the differences 

between calculation with or without wall law with the Realizable 𝑘 − 𝜖 turbulence model, 



202 Conclusion and perspectives 

 

 

yielding significant differences regarding the establishment of the heat transfer coefficient, and 

smaller differences in the calculation of the heat transfer coefficient for an established thermal 

boundary layer. Differences between the heat transfer coefficient calculated with both codes 

were also noticed. Also, the uncertainty quantification process highlighted the relative 

importance of the experiments which are involved in the two main contributions of the model 

error being the experimental uncertainty 𝑈𝐸𝑋𝑃 and the error between CFD and experiments 

𝐸𝐶𝐹𝐷/𝐸𝑋𝑃. In addition, two approaches were used in order to propagate the simulation inputs 

uncertainty through CFD simulations which yielded similar results. Finally, it has been found 

that the model error remains approximatively constant for increasing Reynolds numbers, with 

a difference between experiments and CFD remaining within the experimental uncertainty of 

the measurements.  

 

Following this initial testing phase, the approach was reproduced on a reduced scale mock-up 

of a steam generator water box. The experimental measurements were presented in Chapter 4. 

The methodology used to transpose gypsum mass transfer data to the heat transfer domain had 

to be adapted, as the correlations on which the calculation relied in  Chapter 2 were no longer 

appropriate for the flow configuration. In this case, the proposed approach was to make both 

heat and mass transfer measurements in order to estimate the surface distribution and amplitude 

of the heat transfer coefficient on the measurement locations. The heat transfer measurement 

device was designed to obtain two surface average values of the heat transfer coefficient which 

enabled the calculation of the transposition factor between mass transfer on rough walls and 

heat transfer on smooth walls. The surface distribution was obtained from gypsum dissolution 

measurements which were processed with the proper orthogonal decomposition. Partial 

comparison has been made between heat and mass transfer measurements which seemed to 

corroborate the heat and mass transfer analogy.  

 

CFD calculations where then performed on the steam generator mock-up, which are presented 

in Chapter 5. The computations were performed with different turbulence models and different 

grids. The resulting values of the heat transfer coefficient on the plate opposing the jet were 

found to vary significantly for the different wall distance 𝑦+ of the cells adjacent to the partition 

plate. The maximum heat transfer coefficient calculated has been found to decrease for 

increasing minimum 𝑦+ values on the plate. Moreover, a translation of the patterns visible on 

the surface distribution of the heat transfer coefficient was observed. In addition, important 

differences were found between the turbulent models, the Realizable 𝑘 − 𝜖 turbulence model 

calculations yielded higher values of the heat transfer coefficient compared to the 𝑘 − 𝜔 SST 

model values. Differences between STAR-CCM+ and Fluent were observed for simulations 

using RKE model. These differences were shown to be significantly reduced when calculating 

on the same grids.  
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The comparison with experiments and the uncertainty quantification process was presented in 

Chapter 6. The numerical error was estimated with a grid convergence method for 

computations with the Realizable 𝑘 − 𝜖 model. The values of the bias and standard deviation 

were found to be negligible with respect to other sources of error and uncertainties. The same 

conclusion was drawn for the uncertainty due to the simulation inputs uncertainty. The 

experimental uncertainty was estimated by combining the variability of the surface distribution 

observed with the gypsum measurements, and the uncertainty on the measured heat transfer 

coefficient due to the fluctuations of the operating conditions during the experiments. Finally, 

the error between CFD and experiments was evaluated for the computations presented in 

Chapter 5. The Realizable 𝑘 − 𝜖 model was able to predict the most accurately the maximum 

heat transfer coefficient. In comparison, the 𝑘 − 𝜔 SST model and the Scale Adaptive 

Simulation model gave better results regarding the surface distribution but both models 

underestimated more importantly the heat transfer on the measurement locations. However, 

these latter models were able to predict a local minimum of the heat transfer coefficient 

observed in the experiments which were not captured in the Realizable 𝑘 − 𝜖 simulations. 

Moreover, a bias was induced on the comparison between experiments and CFD due to the 

evolution of the spatial distribution of the heat transfer coefficient for increasing Reynolds 

number. The 𝑦+ value was not constant for all simulations, and its increase for a fixed mesh 

and larger Reynolds number has been found to modify the surface distribution. Thus, a method 

has been defined to estimate the bias by shifting the comparison around the measurement 

locations. The resulting model error was found to decrease for increasing Reynolds number for 

all the different simulations that were performed. Moreover, the bias between CFD and 

experiment was found to remain within the experimental uncertainty of the measurements. In 

addition, the deviation seems to be controlled by the mesh refinement near the walls. It has 

been observed in some cases that refining the mesh near wall boundaries in the fluid domain 

leads to a significant decrease of the deviation between experiments and simulations. The 

overall accuracy of the tested models (KOSST, SAS, RKE) at high Reynolds was found to be 

in the worst case around 40%. The precise determination of the “absolute” value of the model 

uncertainty of the investigated CFD codes was not the main target of this thesis. However, the 

order of magnitude of the uncertainty computed is found consistent with the margin usually 

taken in engineering analyses.  

 

Following the last experimental and CFD results, perspectives can be drawn. From the 

experimental point of view, the impact of roughness on the mass transfer could be investigated 

further. Mass transfer data obtained with gypsum dissolution is available for experiments 

presenting difference in their roughness. This data might be sufficient to estimate a functional 

relation between the surface roughness and the enhancement of mass transfer. Otherwise, 

experiments could be done in order to obtain the mass transfer coefficient with different surface 

aspect by increasing or decreasing the exposition time of the gypsum samples in water. This 

functional relation could then be used in order to transpose the data to the heat transfer domain 
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without having to rely on heat transfer coefficient measurements. This would be particularly of 

interest for two other measurement locations in the steam generator mock-up which were not 

presented in this document. On these locations, only mass transfer data were available, the 

availability of a transposition factor in this case would enable the comparison of CFD 

simulation on two additional reference locations: the inlet nozzle of the jet, where the flow 

separates downstream a bend, and on the tubular plate which could give information on the 

repartition of the flowrate in the grid. Moreover, additional tests on roughness could be carried 

out, Framatome’s experimental facility have the possibility to coat the surface of the heat 

transfer measurement device for it to display a rough surface. The dependency of the 

enhancement of heat and mass transfer with roughness with respect to the Prandtl number and 

Schmidt number could be investigated for different kinds of roughness and enable the 

comparison of wall laws for rough surfaces.  

 

From the numerical point of view, the influence of the wall grid refinement on the surface 

distribution of the heat transfer coefficient affected the comparison between CFD and 

experiments. Additional simulations could be performed with more refined near wall meshes 

in order to have a more reliable estimation of the model error. Also, the grid convergence 

method could be applied to the models other than the Realizable 𝑘 − 𝜖 model in order to verify 

that their results were not affected by non-converged grids.  

Some differences were found between the turbulent quantities with the different models. A 

study of the effect of the jet turbulence and its correlation to the heat transfer coefficient surface 

distribution could be performed in order to explain the differences between the models.  

Finally, the simulations could be done for higher Prandtl number approaching the Schmidt 

number during the experiments in order to verify the prediction abilities of RANS CFD in these 

cases.  

 

In conclusion, it has been observed that the accuracy of the turbulence models used in 

commercial CFD softwares is not impaired for increasing Reynolds numbers in the range 

investigated, which is an element corroborating the fact that the validation carried out on 

reduced scale mock-ups for reactor scale applications do not induces an additional error due to 

the difference of turbulence scales.  
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Appendix A  Deterministic sample ensembles 

Let 𝑿 be a multidimensional random variable of dimension 𝑝, 𝑿 = (𝑋1, … , 𝑋𝑝) of known 

marginal moments 〈𝛿𝑋𝑗
𝑚〉. The aim of Deterministic Sampling (DS) is to provide an ensemble 

of sigma points �̃� which represents the random variable 𝑿 and respects most of its statistical 

moments. The approach presented in §1.2.4.2.2 relies also on the calculation of weights which 

can be placed in a vector 𝑾. 

𝑾 = (

𝑤1
⋮
𝑤𝑁
) , �̃� = (

�̃�1,1 ⋯ �̃�1,𝑝
⋮ ⋱ ⋮
�̃�𝑁,1 ⋯ �̃�𝑁,𝑝

) 

The marginal moments are then be calculated with:  

𝝁(�̃�) = �̃�𝒕 𝑾, 〈𝜹𝒎�̃�〉 = (( �̃�𝒕 − 𝟏𝟏×𝑵⊗ �̃�𝒕 𝑾)°𝒎)𝑾 

with, 𝟏𝟏×𝑵 a matrix of dimension 1 × 𝑁 full of 1, ⊗ the symbol for Kronecker product between 

the matrixes 𝐴 = (𝑎𝑖𝑗)𝑖,𝑗∈[1,𝑚]×[1,𝑛] and the matrix 𝐵: 

𝐴⊗ 𝐵 = (
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵
)  

with, 𝑨°𝑚 the Hadamard power 𝑚 of 𝑨 which is taking the power 𝑚 of each element of the 

matrix 𝑨.  

The difficulty of DS resides in the calculation of �̃� and 𝑾 in order to encode the known 

statistical moments 〈𝛿𝑋𝑗
𝑚〉 or mixed moments. When no weights are used, satisfying the 

constraints on the statistical moments is equivalent to solve a nonlinear system of equations 

which can be hard to do, and which can even yield non real solutions. The linearization of the 

equations with the use of weights simplifies the process of encoding statistical moments but do 

not necessarily provides satisfactory results regarding propagation for any choice of weights 

(see for instance Appendix E (Sahlberg, 2016) where the weighted approach can yield a 

negative standard deviation). The method to find the ensembles and weight can be found in 

more detail in (Sahlberg, 2016). DS has been used in the nuclear industry for uncertainty 

propagation and comparisons have been done with other propagation methods such as 

polynomial chaos expansion or random sampling. The comparison showed that this method 
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can provide accurate results for very attractive costs. In this dissertation, the case of one 

uncertain parameter has been presented; however, the real advantage of this method is when 

the number of independent random variables gets higher as the cost of other methods to 

propagate uncertainty becomes prohibitive on industrial cases. 

  

 
Figure A.1: ensembles of two parameters without any covariance (left) with positive 

covariance (right) 

 

In this appendix, some excitation matrices (from (Sahlberg, 2016; Hessling, 2013)) used to 

design the ensemble �̃� will be presented. The excitation matrices �̂� are general for any cases 

and depend only on the number of random parameters. These matrices are then scaled to the 

input random variables by introducing their covariance matrix 𝑪 and mean values 〈𝑿〉 =

(〈𝑋1〉,… 〈𝑋𝑝〉) in order to obtain �̃� (see (Hessling, 2013)): 

 

�̃� = 〈𝑿〉 ⊗ 𝟏𝟏×𝑵 + 𝑼𝑺𝑼𝒕  �̂� 

where, 〈𝑿〉 ⊗ 𝟏𝟏×𝑵 is a matrix containing the 𝑁 same lines corresponding to the mean value 

of each unidimensional RV 𝑋𝑖: 

〈𝑿〉 ⊗ 𝟏𝟏×𝑵 = (

〈𝑋1〉 ⋯ 〈𝑋𝑝〉

⋮ ⋱ ⋮
〈𝑋1〉 ⋯ 〈𝑋𝑝〉

)}𝑁 lines 

𝑺 corresponds to a diagonal matrix containing the standard deviation in the principal directions 

of 𝑪, and 𝑼 corresponds to a unitary matrix which accounts for the correlation between the 

parameters. In practice these two matrices are found by diagonalizing the matrix 𝑪. 

Then a set of weights 𝑾 can be calculated for this ensemble of sigma points. An algorithm is 

given in (Sahlberg, 2016) (§3.4 for unidimensional independent variables and in §3.5 for 
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multidimensional correlated variables). An example of ensemble for two independent random 

variables and correlated variables can be seen on Figure A.1.  

 

In this appendix, the case of independent variables with symmetrical distributions will be 

considered in order to simplify the comprehension. In this case, the sigma points are found with 

𝑈 = 𝐼, where 𝐼 is the identity matrix. The terms of the activation matrix are scaled by the 

standard deviation of each parameter and translated by the mean values. For instance, for two 

independent uncertain parameters 𝑋1, 𝑋2 of mean values 𝜇1, 𝜇2 and standard deviation 𝜎1, 𝜎2, 

if the activation matrix is written: 

𝑉 = (
−1 1
1 −1

)  

the sigma points matrix �̃� is given by: 

�̃� = (
𝜇1 − 𝜎1 𝜇2 + 𝜎2
𝜇1 + 𝜎1 𝜇2 − 𝜎2

) 

A.1 Standard  

This excitation matrix contains 2𝑝 samples were 𝑝 is the number of input random variables.  

�̂�𝑆𝑇𝐷 = √𝑝(𝐼𝑝×𝑝 −𝐼𝑝×𝑝) 

where, 𝐼𝑝×𝑝 is the identity matrix of dimension 𝑝.  

This matrix is the one originally used in the Unscented Kalman Filtering (UKF) to propagate 

the covariance of random variables through functions. This ensemble has the advantage to be 

simple to evaluate, however, its use is often discouraged as the results become unsatisfactory 

for large values of 𝑝 due to the scaling by √𝑝 (see (Hessling, 2013; Julier & Uhlmann, 2004)). 

The weights are equal for all the samples.  

A.2 Hadamard  

This matrix is defined only for orders which are power of 2 (see Appendix D (Sahlberg, 2016)):  

𝐻2𝑛 = {
1,                                                2𝑛 = 1

(
𝐻2𝑛−1 𝐻2𝑛−1
𝐻2𝑛−1 −𝐻2𝑛−1

) ,     for      2𝑛 > 1
 

 

For instance, the three first Hadamard matrices defined for 𝑝 = 1, 𝑝 = 2, and 𝑝 = 4 are: 

𝐻1 = (1)   𝐻2 = (
1 1
1 −1

)    𝐻4 = (

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

) 
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This matrix can be modified in order to be generalizable for any number of parameters 𝑝. The 

modified Hadamard matrix is denoted by letter 𝑀𝑝: 

𝑀𝑝 = 𝐻𝑚(: ,2: 𝑝 + 1) 

 

where, 𝑚 is the smallest integer such as 𝑚 ≥ 𝑝 + 1 with 𝑚 a power of 2. 𝐻𝑚(: ,2: 𝑝 + 1) 

corresponds to the first 𝑝 columns of the matrix 𝐻𝑚 starting from the second column. The four 

first matrices are:  

𝑀1 = (
1
−1
)       𝑀2 = (

1 1
−1 1
1 −1
−1 −1

)       𝑀3 = (

1 1 1
−1 1 −1
1 −1 −1
−1 −1 1

)   

   𝑀4 =

(

 
 
 
 
 

1 1 1 1
−1 1 −1 1
1 −1 −1 1
−1 −1 1 1
1 1 1 −1
−1 1 −1 −1
1 −1 −1 −1
−1 −1 1 −1)

 
 
 
 
 

 

These two activation matrices are used with sets of equal weights.  

A.3 Gauss Heavy Middle 

This matrix is based on the modified Hadamard matrix by adding a row containing the centered 

test:  

𝐺𝑝 = √3(
𝑀𝑝
01×𝑝

) 

where, 𝑀𝑝 is the modified Hadamard matrix of order 𝑝, and 01×𝑝 a row of 𝑝 elements all set 

to zero.  

The weights are calculated differently in this case in order to satisfy the four first moments of 

any symmetric distribution with same shape. The weights are equal for all the non-centered 

samples:  

𝑊 =
1

𝑘

〈𝛿2𝑋〉2

〈𝛿4𝑋〉
   

where, 𝑘 is the number of rows in the matrix 𝐺𝑝, 〈𝛿2𝑋〉 and 〈𝛿4𝑋〉 are the second and fourth 

moment of the random variables. For distribution with the same shape, the ratio 
〈𝛿2𝑋〉2

〈𝛿4𝑋〉
 are equal. 

The weight of centered test is deduced from the other as following: 

𝑊𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 1 −
〈𝛿2𝑋〉2

〈𝛿4𝑋〉
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Appendix B  Detection of the adjacent flow 

direction.  

 
Figure B.1: example of steps for the extraction of the ridges angle. 

 

An algorithm has been developed in order to estimate the direction of the flow in the near wall 

region adjacent to the gypsum sample. This algorithm is based on the fact that ridges are formed 

on the gypsum sample surface during dissolution, which direction seems to be colinear to the 

flow direction (see for instance (Villien, et al., 2005)).  

The detection of the direction of the flow on the gypsum surface is done on smaller windows 

which size has been chosen in an empirical way by making trials. The roughness matrix 𝑒 (see 

§0) is used. The steps for each window are as follows:   

1. filtering of the image with a gaussian filter in order to have smooth contours  

2. extracting the peaks or holes of the image with an algorithm from (Robinson & Whelan, 

2004) implemented with the python library scikit-image (Van der Walt, et al., 2014) 

3. thresholding the height of the matrix. The matrix is binarized (containing 0 or 1 with 

respect to their value compared to the threshold) 

4. isolating the non-connected elements of the matrix which presents an elongated surface 

aspect  



B-2 Detection of the adjacent flow direction. 

 

 

5. a linear regression is fitted on each of the isolated elements in order to calculate the 

angle of the line with the horizontal axis.  

6. calculation of the average value and standard deviation for all the isolated elements.  

The different steps can be found on Figure B.1. 

 

(a) Filtered element 

 

(b) Nonfiltered element 

 
Figure B.2: example of non-connected elements. The element (a) is filtered due to a too 

important aspect ratio while element (b) combines an acceptable aspect ratio in regard to the 

maximum length and a low enough fractal dimension.   

 

The step 4 which consists of isolating non-connected elements of the matrix with elongated 

surface aspect is done with the following methodology:  

- A threshold size is given in order to keep only the biggest elements in the binarized 

matrix.  

- the aspect ratio 𝐴𝑅 (Area/perimeter) is calculated for each element with the binarized 

matrix and the contours matrix. 

- the maximum length separating two points of the elements 𝑙𝑚𝑎𝑥 is calculated and a 

filtering is done in order to keep the elements with: 

𝑙𝑚𝑎𝑥 > 𝐾 × 𝐴𝑅 

𝐾 is a calibrated constant.  

- The fractal dimension of the element is calculated and an additional filtering on 

elements with to high values is performed. This process enables the filtering of elements 

with low aspect ratios which presents folded structures on which the extraction of a 

direction includes too much uncertainty. 

 

Examples of a filtered element and of an element that has been kept are given on Figure B.2.  

 

An example of the result of the algorithm for a sample exposed to the flow on location 2 (see 

§4.2) is given Figure B.3. It is noticeable that for some windows, a large standard deviation is 

calculated which indicates some limitation of the algorithm relating to the filtering of the non-

connected elements of the binarized matrix. Nevertheless, satisfactory estimations of the flow 

directions could be done by combining the information retrieved for all the experiments.   
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Figure B.3: Example of the calculation of the mean value and standard deviation of the flow 

direction with the algorithm presented on a sample exposed to the flow on location 2.On 

the left side, the mean value 𝜇 is given with blue filled circles while the standard deviation 

𝜎 is given with the error bar indicating 𝜇 ± 2𝜎 intervals. On the right side, the heat map 

indicates the amplitude of the wear with red values relating to maximum values and blue to 

minimum values. The black arrows give the mean direction of the flow, and the red arrows 

give  𝜇 ±  2𝜎 intervals on the flow direction. 

 

A ±20° interval is found for the flow direction on the sample by keeping the only the 

calculation with low standard deviation.  

 





 

 

Appendix C  Design of experiment for the CFD 

simulations 

Design of experiments of Fluent simulations 

 

BRE HRE 

Re Pr Re Pr 

400265 1.84211 896682 1.84211 

395728 8.57895 891280 8.57895 

137095 4.78947 583384 4.78947 

504627 7.73684 1020921 7.73684 

477403 3.10526 745435 3.10526 

540927 9 707622 5.21053 

191544 6.47368 761639 1.84211 

164319 3.52632 534768 6.05263 

454716 4.36842 869673 6.47368 

218768 2.26316 707622 3.94737 

96258 6.05263 815656 9 

255068 1 1069536 2.26316 

341279 5.21053 648204 1.42105 

363966 6.89474 977707 3.52632 

463789 2.26316 945297 1 

545464 5.21053 977707 2.26316 

545464 2.26316 810255 4.78947 

255068 4.36842 567178 1 

522777 1.42105 761639 8.15789 

400265 6.05263 1069536 6.05263 

155245 7.73684 534768 3.10526 

168857 1 993913 5.63158 

418415 7.73684 1069536 3.52632 

545464 6.89474 572581 6.89474 

545464 3.94737 923690 5.21053 

382116 3.52632 669811 8.15789 

259605 8.15789 534768 9 
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96258 9 675212 2.26316 

314054 6.05263 853469 3.94737 

96258 3.94737 637401 9 

227843 5.63158 540170 3.94737 

182469 9 923690 7.31579 

264143 6.89474 621195 5.63158 

255068 3.10526 1037126 1.42105 

354891 2.68421 545572 7.73684 

96258 2.68421 729229 9 

300442 9 1026323 4.78947 

486477 6.05263 767042 6.47368 

354891 1 540170 1.84211 

304980 1.84211 929092 4.36842 

445641 1 977707 9 

96258 6.89474 966904 6.47368 

327667 7.73684 788648 5.63158 

359429 4.36842 1069536 9 

96258 1.42105 837263 7.73684 

454716 6.89474 659008 7.31579 

96258 8.15789 831862 1 

436566 5.21053 891280 3.10526 

155245 1.84211 659008 6.47368 

459253 9 729229 1 

 

 

Design of experiments of STAR-CCM+ simulations 

 

BRE HRE 

Re Pr Re Pr 

349910 1.84211 783876 1.84211 

345944 8.57895 779153 8.57895 

119848 4.78947 509992 4.78947 

441143 7.73684 892485 7.73684 

417343 3.10526 651656 3.10526 

472876 9 618601 5.21053 

167447 6.47368 665822 1.84211 

143647 3.52632 467492 6.05263 

397511 4.36842 760265 6.47368 

191246 2.26316 618601 3.94737 

84149 6.05263 713044 9 

222980 1 934985 2.26316 

298345 5.21053 566658 1.42105 

318178 6.89474 854708 3.52632 
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405443 2.26316 826375 1 

476842 5.21053 854708 2.26316 

476842 2.26316 708322 4.78947 

222980 4.36842 495825 1 

457009 1.42105 665822 8.15789 

349910 6.05263 934985 6.05263 

135715 7.73684 467492 3.10526 

147614 1 868875 5.63158 

365777 7.73684 934985 3.52632 

476842 6.89474 500548 6.89474 

476842 3.94737 807486 5.21053 

334045 3.52632 585546 8.15789 

226946 8.15789 467492 9 

84149 9 590268 2.26316 

274545 6.05263 746099 3.94737 

84149 3.94737 557213 9 

199180 5.63158 472215 3.94737 

159514 9 807486 7.31579 

230913 6.89474 543046 5.63158 

222980 3.10526 906652 1.42105 

310245 2.68421 476937 7.73684 

84149 2.68421 637489 9 

262646 9 897207 4.78947 

425276 6.05263 670545 6.47368 

310245 1 472215 1.84211 

266613 1.84211 812209 4.36842 

389577 1 854708 9 

84149 6.89474 845263 6.47368 

286446 7.73684 689433 5.63158 

314212 4.36842 934985 9 

84149 1.42105 731932 7.73684 

397511 6.89474 576102 7.31579 

84149 8.15789 727210 1 

381644 5.21053 779153 3.10526 

135715 1.84211 576102 6.47368 

401477 9 637489 1 

 

 





 

 

Appendix D  POD on the Nusselt field over the 

partition plate.   

 

The proper orthogonal decomposition (POD) has been applied to snapshots of the Nusselt 

number on the partition plate of the steam generator water box which have been calculated in 

Chapter 5 for different Reynolds and Prandtl numbers on the design of experiments given on 

Figure 5.4. The results for the Realizable 𝑘 − 𝜖 (RKE) have been depicted in §5.5.3.3. This 

appendix gives the results for the other turbulence models including: 

- The four first modes of the POD applied to snapshots obtained from simulation with 

the 𝑘 − 𝜔 SST model (KOSST), simulations with the RKE model of Fluent and 

simulations with the SAS turbulence model.  

- The evolution of the components 𝑎1(𝑅𝑒, 𝑃𝑟), 𝑎2(𝑅𝑒, 𝑃𝑟), 𝑎3(𝑅𝑒, 𝑃𝑟), and 

𝑎4(𝑅𝑒, 𝑃𝑟).  

- The mean absolute error MAE calculated between the original snapshots and the 

reconstructed surface distribution from the truncated POD with four modes. 

MAE = ⟨
|𝑁𝑢𝑂𝑅𝐼𝐺𝐼𝑁𝐴𝐿 − 𝑁𝑢𝑃𝑂𝐷|

𝑁𝑢𝑂𝑅𝐼𝐺𝐼𝑁𝐴𝐿
⟩

𝑆

  

where, ⟨ ⟩𝑆 denotes the surface average value.  

D.1 Modes calculated for the different turbulence models 

The four first modes are given for: 

- The KOSST simulations with STAR-CCM+ on grids LREPOLY and HREPOLY on 

Figure D.1 and Figure D.2. 

- The SAS simulations with Fluent on grids LRETET and HRETET on Figure D.3 and  

Figure D.4. 
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- The RKE simulations with Fluent on grids LRETET and HRETET on Figure D.5 and 

Figure D.6. 

(a) 𝜙1 

 

(b) 𝜙2 

 

 

(c) 𝜙3 

 

(d) 𝜙4 

 
Figure D.1: surface distribution of the four first POD modes 𝜙1, 𝜙2, 𝜙3 and 𝜙4 obtained with 

snapshots of the Nusselt number calculated with the KOSST model on LREPOLY.  

 

 

 

(a) 𝜙1 

 

(b) 𝜙2 

 

 

(c) 𝜙3 

 

(d) 𝜙4 

 
Figure D.2: surface distribution of the four first POD modes 𝜙1, 𝜙2, 𝜙3 and 𝜙4 obtained with 

snapshots of the Nusselt number calculated with the KOSST model on HREPOLY. 
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(a) 𝜙1 

 

(b) 𝜙2 

 

 

(c) 𝜙3 

 

(d) 𝜙4 

 
Figure D.3: surface distribution of the four first POD modes 𝜙1, 𝜙2, 𝜙3 and 𝜙4 obtained with 

snapshots of the Nusselt number calculated with the SAS model on LREPOLY 

 

 

 

(a) 𝜙1 

 

(b) 𝜙2 

 

 

(c) 𝜙3 

 
 

(d) 𝜙4 

 

Figure D.4: surface distribution of the four first POD modes 𝜙1, 𝜙2, 𝜙3 and 𝜙4 obtained with 

snapshots of the Nusselt number calculated with the SAS model on HREPOLY 
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(a) 𝜙1 

 

(b) 𝜙2 

 

 

(c) 𝜙3 

 

(d) 𝜙4 

 
Figure D.5: surface distribution of the four first POD modes 𝜙1, 𝜙2, 𝜙3 and 𝜙4 obtained with 

snapshots of the Nusselt number calculated with the RKE model on LRETET. 

 

 

(a) 𝜙1 

 

(b) 𝜙2 

 

 

(c) 𝜙3 

 

(d) 𝜙4 

 
Figure D.6: surface distribution of the four first POD modes 𝜙1, 𝜙2, 𝜙3 and 𝜙4 obtained with 

snapshots of the Nusselt number calculated with the RKE model on HRETET 
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Different comments can be given on the modes obtained:  

- The first mode calculated with the SAS model and KOSST model show similar surface 

distribution with slight difference on the location of the iso contour 𝜙1 = 0.006 and on 

the surface distribution on the upper left side of the plate.  

- The modes 𝜙2, 𝜙3 and 𝜙4 calculated for the SAS model seem to be more related to the 

noise present in the different calculated Nusselt number distribution, than to coherent 

structures evolving for the different Reynolds and Prandtl numbers.  

- The importance of modes 𝜙3 and 𝜙4 for simulations with grid 𝐿𝑅𝐸 and 𝐻𝑅𝐸 seem to 

be reversed. This is the case for simulations with the KOSST turbulence model and the 

RKE turbulence model. Furthermore, it has been also observed for the simulations with 

STAR-CCM+ with the RKE turbulence model in §5.5.3.3.  

D.2 MAE of the truncated POD 

The MAE between the original snapshots and the truncated POD is calculated and its evolution 

with respect to the Reynolds number is depicted for the different turbulence models and grids. 

The results are summarized on Figure D.7. Comments on the results are given in §5.5.3.3. 
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RKEStar−CCM+ 

  

RKEFLUENT 

  

KOSST 

  

SAS 

  
 

Figure D.7: MAE calculated between the truncated POD and the original snapshots with four modes.   

 



Appendix D D-7 

 

 

D.3 Surrogate modelling of the components 

The components 𝑎𝑘(𝑅𝑒𝑗 , 𝑃𝑟𝑗) of the snapshots 𝑁𝑢𝑗 associated to the modes 𝜙𝑘 obtained with 

POD were used to design surrogate models �̂�𝑘. These were then used to predict the components 

on a much finer grid than the original design of experiment given Figure 5.4. The predictions 

of the components with �̂�1, �̂�2, �̂�3 and �̂�4 in the range 𝑅𝑒 ∈ [105, 106] and 𝑃𝑟 ∈ [1, 9] is given 

for the Nusselt number obtained from the different turbulence models simulations. The 

surrogate models were designed separately for the range 𝑅𝑒 ∈ [105, 5 ∙ 105] and 𝑅𝑒 ∈

[5 ∙ 105, 106], as POD was applied separately on these respective intervals:  

- the values of the components obtained from the surrogate models designed for KOSST 

simulations are given on Figure D.8 

- the predictions of the components for the SAS model simulations are given on Figure 

D.9 

- the surrogate models designed for the RKE turbulence model simulations carried out 

with Fluent are given on Figure D.10 

The surrogate models were created with gaussian process and Bayesian statistics as depicted 

in §5.4. A squared exponential kernel has been chosen. 

Different observations can be given regarding the results:  

- First, the surrogate model created for the prediction of the components for the RKE 

model simulations with Fluent show significant similarities with the RKE simulations 

with STAR-CCM+ depicted in §5.5.3.3. Slight differences are visible on �̂�3HRE and 

�̂�4LRE where the surface distribution is wavier for the simulations with Fluent than with 

STAR-CCM+.  

- The isocontours of the values predicted with the surrogate model created for the KOSST 

simulations show an increased waviness starting from the second mode. The location 

of these wavy isocontours corresponds to point where oscillatory convergence has been 

observed on the calculations. The simulations with HREb grid did not show these 

fluctuations.  

- The values of the components calculated for the SAS model show a coherent behaviour 

for 𝜙1. However, for higher order modes, the components were found to fluctuate more 

importantly than for the other simulations. The surrogate model calculated for mode 𝜙2 

still shows a behaviour that seem correlated to the Reynolds and Prandtl evolution, but 

for 𝜙3 and 𝜙4 the large variability of the fluctuations impacted negatively the results of 

the prediction with the surrogate model.  
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(a) �̂�1LRE 

 

(b) �̂�1HRE 

 

(c) �̂�2LRE 

 

(d) �̂�2HRE 

 

(e) �̂�3LRE 

 

(f) �̂�3HRE 

 

(g) �̂�4LRE 

 

(h) �̂�4HRE 

 
 

Figure D.8: predictions of the components associated to the modes obtained with the KOSST 

model on grids LREPOLY and HREPOLY. The predicted values are given with a heat map.  
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(a) �̂�1LRE 

 

(b) �̂�1HRE 

 

(c) �̂�2LRE 

 

(d) �̂�2HRE 

 

(e) �̂�3LRE 

 

(f) �̂�3HRE 

 

(g) �̂�4LRE 

 

(h) �̂�4HRE 

 
 

Figure D.9: predictions of the components associated to the modes obtained with the KOSST 

model on grids LREPOLY and HREPOLY. The predicted values are given with a heat map.  

 

 

  



D-10 POD on the Nusselt field over the partition plate. 
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Figure D.10: predictions of the components associated to the modes obtained with the RKE 

model on grids LRETET and HRETET. The predicted values are given with a heat map.  
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