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Abstract

Neural network models became highly popular during the last decade due to their e�ciency

in various applications. These are very large parametric models whose parameters must

be set for each speci�c task. This crucial process of choosing the parameters, known as

training, is done using large datasets. Due to the large amount of data and the size of the

neural networks, the training phase is very expensive in terms of computational time and

resources.

From a mathematical point of view, training a neural network means solving a large-scale

optimization problem. More speci�cally it involves the minimization of a sum of functions.

The large-scale nature of the optimization problem highly restrains the types of algorithms

available to minimize this sum of functions. In this context, standard algorithms almost

exclusively rely on inexact gradients through the backpropagation method and mini-batch

sub-sampling. As a result, �rst-order methods such as stochastic gradient descent (SGD)

remain the most used ones to train neural networks. Additionally, the function to minimize

is non-convex and possibly non-di�erentiable, resulting in limited convergence guarantees

for these methods.

In this thesis, we focus on building new algorithms exploiting second-order information

only by means of noisy �rst-order automatic di�erentiation. Starting from a dynamical

system (an ordinary di�erential equation), we build INNA, an inertial and Newtonian algo-

rithm. By analyzing together the dynamical system and INNA, we prove the convergence

of the algorithm to the critical points of the function to minimize. Then, we show that

the limit is actually a local minimum with overwhelming probability. Finally, we introduce

Step-Tuned SGD that automatically adjusts the step-sizes of SGD. It does so by cleverly

modifying the mini-batch sub-sampling allowing for an e�cient discretization of second-

order information. We prove the almost sure convergence of Step-Tuned SGD to critical

points and provide rates of convergence. All the theoretical results are backed by promising

numerical experiments on deep learning problems.
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Résumé

Les modèles de réseaux de neurones sont devenus extrêmement répandus ces dernières an-

nées en raison de leur e�cacité pour de nombreuses applications. Ce sont des modèles

paramétriques de très grande dimension et dont les paramètres doivent être réglés spéci-

�quement pour chaque tâche. Cette procédure essentielle de réglage, connue sous le nom de

phase d'entraînement, se fait à l'aide de grands jeux de données. En raison du nombre de

données ainsi que de la taille des réseaux de neurones, l'entraînement s'avère extrêmement

coûteux en temps de calcul et en ressources informatiques. D'un point de vue mathéma-

tique, l'entraînement se traduit sous la forme d'un problème d'optimisation en très grande

dimension impliquant la minimisation d'une somme de fonctions. Les dimensions de ce

problème d'optimisation limitent fortement les possibilités algorithmiques pour minimiser

une telle fonction. Dans ce contexte, les algorithmes standards s'appuient presque exclu-

sivement sur des approximations de gradients via la méthode de rétro-propagation et le

sous-échantillonnage par mini-lots. Pour ces raisons, les méthodes du premier ordre de type

gradient stochastique (SGD) restent les plus répandues pour résoudre ces problèmes. De

plus, la fonction à minimiser est non-convexe et potentiellement non-di�érentiable, limitant

ainsi grandement les garanties théoriques de ces méthodes.

Dans cette thèse, nous nous intéressons à construire de nouveaux algorithmes exploitant

de l'information de second ordre tout en ne nécessitant que de l'information bruitée du

premier ordre, calculée par di�érentiation automatique. Partant d'un système dynamique

(une équation di�érentielle ordinaire), nous introduisons INNA, un algorithme inertiel et

Newtonien. En analysant conjointement le système dynamique et l'algorithme, nous prou-

vons la convergence de ce dernier vers les points critiques de la fonction à minimiser. Nous

montrons ensuite que cette convergence se fait en réalité vers des minimums locaux avec très

grande probabilité. En�n, nous introduisons Step-Tuned SGD, qui, à partir d'une utilisa-

tion astucieuse des mini-lots, discrétise e�cacement de l'information du second-ordre a�n de

régler �nement les pas de SGD. Nous prouvons la convergence presque sûre de SGD vers les

points critiques et explicitons des vitesses de convergence. Tous les résultats s'accompagnent

d'expériences encourageantes sur des problèmes d'apprentissage profond (ou deep learning).
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1.5 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Introduced decades ago (Hebb, 1949; Rosenblatt, 1958), neural networks remained ignored

by a large part of the computer science community for a long time. They made a come back

in the 1980s (LeCun et al., 1989) and became highly used only in the late 2000s (G. E. Hinton

et al., 2006; Bengio, LeCun, et al., 2007). This upsurge of interest is mainly due to recent

breakthroughs achieved by neural networks in a wide spectrum of applications including

computer vision (Krizhevsky et al., 2012), linguistic (Mikolov et al., 2013), biology, physics,

etc. From this variety of applications was born deep learning, the branch of machine learning

that gathers the methods revolving around neural networks. The recent success of deep

learning is due to the combination of several favorable factors: the progress of computers,

the ease of accessing large datasets (Deng et al., 2009), open-source software (Rossum,

1995; Abadi et al., 2016; Paszke et al., 2019), etc., nonetheless, overcoming the issue of

training neural networks signi�cantly contributed to this success. Indeed, neural networks

are large-scale parameterized functions that must be set up for each speci�c application.

For determining the parameters, one must minimize a very large-scale sum of functions, the

so-called loss function. This loss function is non-convex and may also be non-smooth. The

resulting unconstrained optimization problem is tackled numerically, but the computational

cost is extremely high due to the size of the problem. To this day, the training relies on the

backpropagation (Rumelhart and G. E. Hinton, 1986), an optimized manner of computing

the gradient of the loss function. As a result, most algorithms available to train neural

networks belong to the class of stochastic �rst-order methods (Bottou and Bousquet, 2008),

of which the stochastic gradient descent (Robbins and Monro, 1951) is the prototypical

example.

While we are now able to train neural networks for many applications, the training re-

mains among the biggest challenges in deep learning (Bottou et al., 2018) since it often takes

long and requires signi�cant investments in computational resources and energy. Taking an

(extreme) example, the GPT-3 model (Brown et al., 2020) cost several millions of dollars

to be trained just once. This shows how important it is to �nd more e�cient algorithms

for training neural networks. Most of the widely used algorithms are originally designed for

convex optimization, e.g., ADAGRAD (J. Duchi et al., 2011), and few of them speci�cally

exploit the non-convex landscapes of deep learning loss functions. Taking the speci�c as-

pects of deep learning into account would however help to design faster methods. Yet, this

usually requires the computation of second-order derivatives, which is prohibitively compu-

tationally expensive due to the large-scale dimension of the optimization problem. Similarly,
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while the convergence of algorithms is well understood for convex functions (Moulines and

Bach, 2011), it reveals to be harder in deep learning. The convergence of several algorithms

has been shown for smooth networks typically by using Lipschitz gradient continuity as-

sumptions (Ghadimi and Lan, 2013; Li and Orabona, 2019), but guarantees are rare for

non-smooth neural networks, with some exceptions (D. Davis et al., 2020). The present

thesis aims to design new algorithms speci�cally exploiting second-order information to

alleviate the training of neural networks and to provide convergence guarantees under as-

sumptions that hold for most deep learning loss functions.

In this introduction chapter, we �rst present the basic principles of deep learning before

detailing the problem of training neural networks from an optimization perspective. We

then discuss more precisely the motivations for using second-order information, along with

the associated challenges. Finally, we specify the main problems that we address in this

thesis.

1.1 Deep learning: prerequisites

We �rst formulate deep learning as a supervised learning problem.

1.1.1 General supervised learning

A foundational interpretation of machine learning consists in assuming that there exists an

unknown ground-truth function (or prediction function) f truth representing for example a

physical of biological reality. Following the formalism of Hastie et al. (2009, Chapter 2),

this ground-truth is expressed through the relation

y = f truth (x); (1.1)

where x 2 RM and y 2 RD are respectively calledinput and output data, for some positive

integers M and D. Supervised machine learning aims to estimate this unknown function

f truth . In other words f truth represents a possibly very complex reality and one seeks a

model that behaves like this function. Machine learning models are a way of building such

a surrogate for f truth , the models take the form of parameterized functions,

f : (x; � ) 2 RM � RP 7! ŷ 2 RD ; (1.2)
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where again x 2 RM and ŷ 2 RD . The variable � 2 RP for P 2 N> 0 represents the

parameters of the modelf . The objective is roughly to choose the parameter� such that

for a given input x, the output ŷ = f (x; � ) predicted by the model is as �close� as possible

to the correct ground-truth output y = f truth (x).

Example. A famous example to illustrate this mathematical formalism is image classi�-

cation wherex 2 RM is an image made ofM pixels. Assume that we want to build a model

to state whether a cat is present in the image. The datay is thus a scalar associated to

the presence of a cat in the imagex: it takes the value 1 if there is a cat in the image and

0 if not. In this example, f truth would be a function encoding everything necessary to tell

whether a cat is present in the image. Determining exactlyf truth is out of reach, but it can

be approximated by a machine learning modelf whose parameters have to be well chosen

to achieve the same task asf truth .

1.1.2 Neural networks: concept

In this work, we will focus on a speci�c type of machine learning models: neural networks.

1.1.2.1 Mathematical representation

Neural networks (NNs) refers to a speci�c class of supervised machine learning models (1.2).

In this thesis we considerfeedforwardNNs, in which the model f in (1.2) has a compositional

structure. Let L 2 N> 0, the model reads,

f (�; � ) = f L

�
f L � 1

�
: : :

�
f 1(�; � (1) )

�
; � (L � 1)

�
; � (L )

�
; (1.3)

where for eachl 2 f 1; : : : ; Lg, f (�; � (l ) ) is a function from RD l � 1 to RD l , parameterized by

� (l ) 2 RPl , and where
P L

l=1 Pl = P, (� in (1.2) is the concatenation of all the � (l ) ) and

the dimensions(D l ) l2f 0;:::;L g can be chosen freely as long asD0 = M and DL = D. The

functions (f l ) l2f 1;:::;L g are called layers and L is thus the number of layers. The input

x 2 RM is often called input layer, while the function f L is the output layer and the other

functions (f l ) l2f 1;:::;L � 1g are calledhidden layers.

The prototypical example of these models is the Multi-Layer Perceptron (MLP) based

on the perceptron introduced by Rosenblatt (1958). In this model, for eachl 2 f 1; : : : ; Lg,

the layer f l consists in multiplying a matrix Wl 2 RD l � 1 � D l with the previous layer, then

adding a bias vector bl 2 RD l , and �nally composing the result with a function gl , typically
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applied coordinate-wise and calledactivation function . Given an input x 2 RM , the output

ŷ 2 RD of the NN is thus obtained by the relation,

ŷ = gL (WL gL � 1 (WL � 1 gL � 2 (: : : g2 (W2 g1(W1x + b1) + b2) : : : + bL � 2) + bL � 1) + bL ) :

(1.4)

The type of layers described above are calleddenselayers. Variations of the MLP can be

considered, in particular the dimensions of the matrices and vectors can be freely chosen as

long as they agree with the rules of matrix-vector products, the same holds for the domain

and codomain of the activation functions. Nowadays, the performances of computers allow

building NNs with a large number L of layers. In the literature and in the sequel, the term

Deep Neural Networks (DNNs) is thus often used, in comparison to �shallow� NNs which

refer typically to networks with only one or two layers. In (1.4), the variable � introduced

in (1.2) corresponds to the vector concatenation of the coe�cients of the matricesW1 to

WL and the coe�cients of the vectors b1 to bL . Thus P corresponds to the total number

of coe�cients of these matrices and vectors. We will specify in Section 1.1.4.1 how the

coe�cients of � are determined.

1.1.2.2 Graphical representation

Figure 1.1: Graph representation of a MLP. Illustration made with the package of Mark
(2017).

In addition to the mathematical de�nition, it is sometimes useful to represent DNNs as

acyclic graphs like in Figure 1.1. This �gure represents a MLP, the input layer is made ofM

green nodes, each one corresponding to a coe�cient of the inputx. The arrows between the
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green nodes and the blue ones represent the operations yieldingh1 = g1(W1x+ b1). The next

layer is then obtained by computing h2 = g2(W2h1+ b2) and so on until obtaining the output

ŷ. We will sometimes use this representation since some concepts are easier to understand

using graphs, in particular backpropagation (see Section 1.3.3.1). The term �feedforward�

also refers to the acyclic nature of the graph: going from the input on the left to the output

on the right. More generally, the term neural network comes from the analogy once made

between this graphical representation and the human brain (Hebb, 1949), although NNs

remain actually essentially a class of non-linear machine learning models.

1.1.3 Some popular architectures and activation functions

Neural networks form a broad class of models that goes far beyond MLPs, here we brie�y

present some other NN architectures that use other types of layers than dense ones. We

also discuss popular activation functions that will be used in the numerical experiments of

this manuscript.

1.1.3.1 Some NN architectures

There is an ever-growing number of new NN architectures, here we introduce some of the

most popular ones.

� Residual neural networks. Residual neural networks also known as ResNets (He

et al., 2016) are a quite simple but e�cient modi�cation of classical MLPs. A common

�aw of MLPs is that usually, if a MLP with L layers performs well for a given task,

then adding one or more layers may reduce its performance. This means that the

layers of the MLP fail to represent the identity mapping (otherwise additional layers

could simply behave like identity layers, not a�ecting the output). Residual networks

address this issue by adding mappings, calledskip-connections, between a layerl 2

f 1; : : : ; L � 2g and the layer l + 2 , skipping the layer l + 1 as represented in Figure 1.2.

� Convolutional Layers. Convolutional Neural Networks (CNNs, Fukushima and

Miyake 1982; LeCun et al. 1989) highly contributed to the success of NNs. These

NNs, inspired from the signal processing theory, were originally designed to speci�cally

exploit structures in images. To this aim, the input vector x is usually reshaped

in a matrix form, corresponding to the pixels of the image. Then, several small

�lters (small matrices) are convolved with the input x, yielding several images (one

per �lter). One then typically reduces the dimensions of these images usingpooling
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Figure 1.2: Graphical representation of a residual network. The arrows �jumping over lay-
ers� are called skip-connectionsand represent a mapping between a layerl 2 f 1; : : : ; L � 2g
and the layer l + 2 �skipping� the layer l + 1 . Such arrows could be used to connect all the
neurons of layersl and l + 2 but we draw only one of them so that the �gure can be red
more easily.

activation functions applied to patches of pixels: e.g., keeping only the maximum or

mean value among some neighbor pixels. This process forms aconvolutional layer

where the coe�cients of each �lter are parameters of the NN. CNNs are made of a

composition of convolutional layers, and one dense layer is often used as last layer

so that the dimensions of the output ŷ of the network matches the dimension of the

expected output y, as illustrated on Figure 1.3.

Note �nally that the de�nitions above may intersect each other. Di�erent types of layers

(dense, residual, convolutional, etc.) can be composed to create variations of the NNs

described above. For example, some popular NNs are both residual and convolutional (He

et al., 2016).

1.1.3.2 Activation functions and universal approximation

We just detailed some typical NN architectures, we did not however discuss precisely the

role of the activation functions (gl ) l2f 1;:::;L g. As previously stated, these are functions to

apply to each layer of the NN, for example in (1.4), g1(W1x) denotes the operation of

applying g1 to each coe�cient of the vector W1x. The de�nition is extremely general, almost

any real-valued (or even complex-valued) function can be considered, although to ease the

training (see Section 1.1.4), it is preferable to use �well-structured� ones. In addition to

the pooling activation functions discussed with the CNNs, we now present some popular
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Figure 1.3: Scheme of a CNN. An input matrix x is transformed into several small ma-
trices by a convolutional layer. These matrices are then again transformed into many
smaller matrices with the same process. Eventually, a dense layer turns these matri-
ces into a vector ouput ŷ. Here the parameter � corresponds to the coe�cients of the
�lters of the convolutional layers and the coe�cients of the dense layer. Drawn with
http://alexlenail.me/NN-SVG/LeNet.html .

univariate activation functions applied element-wise. The sigmoid (or logistic) function

t 2 R 7! 1=(1 + e� t ) is among the most popular choices, it is a smooth increasing function

whose limits are0 and 1 at �1 and + 1 respectively. Nowadays, theRecti�ed Linear Unit

(ReLU) activation function t 2 R 7! max(0; t) has also become widely used in �elds like

computer vision. Unlike the sigmoid, ReLU is unbounded ast ! + 1 . Both functions are

displayed on Figure 1.4.

Figure 1.4: The two most popular activation functions: the sigmoid and the ReLU functions.

There is no general rule for choosing which activation functions to use, yet, a fundamental

aspect is to choose non-linear ones. Indeed, if they were all linear then observe that, in

(1.4), the network f would be linear (or a�ne) as well and hence may struggle to accurately
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approximate some non-linear functionsf truth , see for example the XOR function (Goodfellow

et al., 2016, Part II, Chapter 6). On the contrary, it has been proved that non-linear NNs

are universal approximators. More precisely, several works among which Cybenko (1989),

Hornik et al. (1989), and Leshno et al. (1993) proved that even simple two-layers NNs

with Sigmoid or ReLU activation functions can approximate arbitrarily-well any measurable

function on a compact set when the width of the hidden layer increases (i.e. when the

dimensions ofW1 increase).

1.1.4 Supervised deep learning

So far we presented NNs as parameterized functions of� 2 RP used to approximate some

ground-truth function, we did not however specify how the parameter � 2 RP was chosen.

This question revolves around the aforementionedtraining procedure, which we �rst detail,

before connecting it to the problem ofgeneralization. All these aspects of building, training,

and using NNs presented in this section form thedeep learning(DL).

1.1.4.1 Training a neural network

The task of training DNNs is the main topic of this thesis. As we already explained, a NN

f is a function of both an input x 2 RM and a parameter� 2 RP which produces an output

ŷ = f (x; � ) 2 RD . Consider such a networkf , made of activation functions and layers as

presented in Section 1.1.2.

To approximate a ground-truth function f truth , one needs a dataset(xn ; yn )n2f 1;:::;N g

made of N 2 N> 0 pairs of elements(xn ; yn ) 2 RM � RD , linked for all n 2 f 1; : : : ; N g by

the relation yn = f truth (xn ) + � n where � n 2 RD represents a noise (for example induced

by imprecise measurements off truth ). This dataset is called training set. In the example of

Section 1.1.1, one would need a collection of images(xn )n2f 1;:::;N g, some that contain cats

and others that do not, and scalars(yn )n2f 1;:::;N g indicating the presence or absence of cats

in the images.

Using a dissimilarity measure` : RD � RD ! R, one then compares for eachn 2 f 1; : : : ; N g

the output ŷn = f (xn ; � ) of the NN with the correct output yn . The canonical example for̀

is the squared Euclidean distance onRD : `(yn ; ŷn ) = kyn � ŷnk2
2. This dissimilarity measure

must be thought of as an error between the expected output and the actual output of the

NN. The training becomes the problem of �nding a � 2 RP which minimizes `(yn ; ŷn ) for

each n 2 f 1; : : : ; N g. The canonical way to do so is to �nd � 2 RP which minimizes the
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sum of all the errors computed on the full dataset, namely,

J (� ) def=
NX

n=1

` (yn ; f (xn ; � )) ; (1.5)

this function J : RP ! R is calledloss function. We will sometimes denoteJ n the n-th term

of the sum in (1.5), i.e., for all � 2 RP , J n (� ) def= `(f (xn ; � ); yn ). Choosing the parameters

of the NN is thus formulated as the following optimization problem,

min
� 2 RP

J (� ): (1.6)

The training phase refers to the process of progressively minimizingJ using iterative opti-

mization algorithms. We will specify how this is done later in Section 1.3, the main objective

of this work is to build new algorithm to tackle (1.6). Before that, we introduce the notion

of generalization.

Remark 1.1. We presented the training of DNNs as a supervised learning problem. DNNs

can also be used for unsupervised tasks, i.e., using only input data but no output data.

Unsupervised deep learning can often be formulated as an optimization problem similar to

(1.6): for example in the case of auto-encoders (G. E. Hinton and Salakhutdinov, 2006),

each term in (1.5) would be replaced bỳ (xn ; f (xn ; � )) , for n 2 f 1; : : : ; N g. Despite the

similarities, we will mostly consider supervised DL problems in this work. We refer to

Hastie et al. (2009) for further discussions on supervised and unsupervised learning.

1.1.4.2 Generalization performances

It is important to keep in mind that the objective when training a DNN on a dataset is

to build a model to approximate f truth . For this purpose we shall not necessarily minimize

exactly the loss function J in (1.6). Indeed, the training set (xn ; yn )n2f 1;:::;N g only contains

a �nite number of (possibly imprecise) measurements off truth and hence there may exists

many candidate functions ~f 6= f truth such that for any n 2 f 1; : : : ; N g, yn = ~f (xn ) + � n . For

this reason, �nding the lowest value of J may result in a network f making very accurate

predictions on the training set but very poor predictions on other data not used during the

training phase. This issue is calledover�tting , we say that the model over�ts the training

set, whereas we would like it togeneralize well on other data. We refer to Hastie et al.

(2009, Chapter 7) for a general discussion on the problem of generalization.

To evaluate the generalization performance of the model the standard approach is to
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use another dataset(~xn ; ~yn )n2f 1;:::; ~N g of size ~N 2 N> 0 and called test set. This test set is

assumed to be sampled from the same functionf truth : ~yn = f truth (~xn ) + ~� n , where again
~� n represents a perturbation. It is not to be used while training the DNN but only after

to ensure that the model performs well on these data which were not used to choose the

parameter � of the NN. In practice one tracks atest error during the training to check that

the generalization performance is improving. The test error is a metric computed on the

test set (~xn ; ~yn )n2f 1;:::; ~N g to ensure that the NN f performs well on this set. For example,

one could simply consider the quantity

~NX

n=1

` (~yn ; f (~xn ; � )) ; (1.7)

which is similar to (1.5) but evaluated on the test set. We illustrate the question of general-

ization on the top row of Figure 1.5. The left �gure shows a modelunder�tting : It achieves

quite a large error both on training and test sets. In contrast, the model on the right �gure

performs very well on the training set but not at all on the test set, it over�ts. The model

on the middle �gure is more balanced than the other two, it works quite well on the training

set but the test error is lower than for other models. The emergence of the over�tting issue

can also be observed during the training phase as illustrated on the bottom of Figure 1.5.

When using algorithms in order to decreaseJ (during the training), a current phenomenon

occurs: at �rst the error on the test set is quite large but progressively decreases; then after

some time, this error stagnates or may even start to increase whereas the value ofJ keeps

decreasing. This indicates that minimizing exactly J is not always the best choice in order

for the model f to generalize well, it is sometimes preferable to stop the training before

reaching the minimum of J (Bengio, 2012), this is calledearly stopping.

There exists several approaches to overcome or at least mitigate the over�tting issue. For

example, assuming additional properties forf truth such as sparsity, bounding the norm of�

in (1.6) or using techniques like weight-decay regularization (Krogh and Hertz, 1992). More

generally, many factors impact generalization:f truth and the training set, the structure of the

DNN, the algorithm used to tackle (1.6), etc. The e�ect of these elements on generalization

is an active topic of research. In this work we will focus on minimizing (1.5) and hope that

this produces good generalization performances. To check that this is the case, we will at

least track a test error while doing DNN training experiments.

Now that we presented the main aspects of DL we will focus on the training of DNNs

and in particular on how one theoretically studies problems like (1.6) and tackles them

numerically.
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Under�tting:
high train and test errors

Balanced �tting:
medium train and test errors

Over�tting:
low train error - high test error

Figure 1.5: Top �gures illustrate the issues of over�tting and under�tting on a toy regression
problem. It is made on an example with synthethic data sampled from the functionf truth :
t 2 [0; 2] 7! 0:5t2 + 2 sin(3t)3=2. Bottom �gure illustrates the same issue but from an
optimization point of view. On this �gure, the blue curve represents the evolution of a loss
function J during the training of the NN. The red curve represents the evolution of a test
error on a test set, di�erent from the training set. In this example the test error increases
at late stages, in some training experiments it simply stagnates.

1.2 Properties of the minimization problem

Let N 2 N> 0 and P 2 N> 0, throughout this chapter and according to Section 1.1, we denote

(xn ; yn )n2f 1;:::;N g a training dataset, f is a NN and ` is a dissimilarity measure. We thus

consider a loss functionJ that takes the form (1.5).

1.2.1 Basic de�nitions and assumptions

As explained in Section 1.1.4, training the DNNf amounts (at least approximately) to �nd

a minimizer of J , notion which we now de�ne precisely.

De�nition 1.1. Let g : RP ! R, we say that � ? 2 RP is a local minimizer of g if there

12
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exists a neighborhood
 of � ? such that, for all � 2 
 ,

g(� ?) � g(� ): (1.8)

The de�nition of a global minimizer is very similar except that it requires (1.8) to hold

for all � 2 RP . The de�nition of local and global maximizers are the same with a reverse

inequality in (1.8). It is worth precising that if � ? is a local minimizer, then J (� ?) is called

a local minimum. However, in the literature it is common to make an abuse of terminology

by saying that � � ? is a local minimum�, we sometimes do the same in the sequel. In order

for the minimization problem to be well posed we make the following assumptions.

Assumption 1.1. The loss function J is lower-bounded,

� 1 < inf
� 2 RP

J (� ); (1.9)

and,

domJ def=
n

� 2 RP jJ (� ) < + 1
o

= RP : (1.10)

Lower boundedness is a very natural assumption. Indeed, to minimizeJ we expect

that it has at least a �nite in�mum. Actually, since J represents a sum of �errors� (see

Equation 1.5), Assumption 1.1 is often guaranteed by construction. For example,J is

greater or equal to 0 when ` is the squared Euclidean distance. The second part of the

assumption states that J does not take in�nite values on RP .

When J is smooth enough, we will denoterJ (� ) 2 RP and r 2J (� ) 2 RP � P the gradient

and the Hessian ofJ at � 2 RP respectively. For now, we assume thatJ is di�erentiable.

To �nd a point where J achieves a minimum, a key strategy is to seekcritical points , de�ned

next.

De�nition 1.2. Let g : RP ! R be a di�erentiable function. A point � ? 2 RP is called a

critical point of g if r g(� ?) = 0 .

The interest of critical points lies in one of Fermat's theorems.

Theorem 1.2 (Fermat's theorem for critical points) . Let g : RP ! R be a di�erentiable

function and let � ? 2 RP be a local minimum or a local maximum ofg, then, r g(� ?) = 0 .

Therefore, a necessary condition for a point to be a minimum of a di�erentiable function is

that it is a critical point of this function. We now recall the de�nition of a convex function.

13



Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

De�nition 1.3. A function g : RP ! R is convex if for any � 1; � 2 2 RP and 8� 2 (0; 1),

g(�� 1 + (1 � � )� 2) � �g (� 1) + (1 � � )g(� 2): (1.11)

A function is strictly convex if (1.11) holds with strict inequality.

Convexity arises in many optimization problems and is thus a very active �eld of research,

it has many bene�ts. This property can be used to design fast algorithms, and inequalities

like (1.11) are useful to analyze the convergence of algorithms, see for example Nesterov,

Y. (2003). In particular the necessary condition from Theorem 1.2 becomes su�cient for

di�erentiable functions: under the convexity assumption any critical point of J is a global

minimum. Thus, for smooth convex functions, solving (1.6) boils down to �nding a point

� ? 2 RP such that rJ (� ?) = 0 .

In practice, many widespread optimization algorithms are originally designed to minimize

convex functions, some of them are used in DL (SGD, ADAGRAD, etc.). Yet, this may be

problematic since DL loss functions are non-convex in general as we now explain.

1.2.2 Non-convex optimization

We now focus on the theoretical properties of the loss functions met in DL. In view of

(1.5), one can see that the analytical properties ofJ depend on those of̀ and the network

f . Observe in particular that the loss function J is non-convex in general. Indeed, while

the dissimilarity measure ` can be chosen to be smooth and convex, like in the example of

Section 1.1.4.1,(y; ŷ) 2 RD � RD 7! k ŷ � yk2
2, the structure of the network f in (1.4) makes

J a non-convex function ofRP in general. The reason is twofold, �rst the composition of

convex functions need not be convex.1 In addition, the activation functions may be neither

convex nor concave, see for example the sigmoid function presented on Figure 1.4.

For now we assume thatJ is di�erentiable. The lack of convexity makes the minimization

of J harder since Fermat's condition becomes insu�cient for �nding a global minimum.

Fermat's condition remains su�cient for some sub-classes of non-convex functions (e.g.,

quasi-convex functions), unfortunately, DL loss functions do not belong to any of these

classes in general. As a result, the loss functionJ may have local minima that are not

global, but also maxima or even critical points that are neither minima nor maxima. We

illustrate this on Figure 1.6 where a non-convex function has various types of critical points

1Su�cient conditions for the composition of convex functions to be convex typically requires monotonicity
assumptions.
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whereas the convex one has a unique global minimum.

Figure 1.6: Illustration of several types of critical points of non-convex functions compared
to convex ones. The function in blue is t 2 R 7! t2 � 2t � 2 and the one in black is
t 2 R 7! t2 + 10 sin(t).

The existence of spurious critical points complicates the theoretical analysis of the problem

(1.6). However, practitioners seem to often tackle such problems �almost as if there were

convex�: they mostly use algorithms made to progressively decreaseJ but not speci�cally

designed to avoid local minima or strict saddle points (critical points where the Hessian

has negative eigenvalues). The main reason for this is that such methods produce satisfying

results for many applications in practice: they often achieve a low value ofJ and yield good

generalization performances. Explaining this phenomenon is an active topic of research, but

some results suggests that the value ofJ at most local minima is likely to be small (close to

the global minimum) for DNNs with �su�ciently� wide layers (Choromanska et al., 2015).

Some works also argue that most critical points are actually strict saddle points and that the

main challenge is to escape them quickly as they may signi�cantly slow down the training

(Dauphin et al., 2014).

There are many other aspects making general non-convex optimization harder than the

special case of convex minimization. In particular, without convexity, (1.6) is di�cult to

tackle or even de�ne for non-smooth loss functions, which again, may occur in DL as we

now explain.

1.2.3 Non-smooth optimization

In addition to non-convexity, the loss functions in DL can also be non-di�erentiable. Unlike

convexity, di�erentiability is preserved by composing functions, here the non-smoothness
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comes from the use of some popular activation functions, with in particular the ReLU

function (see Figure 1.4) which is non-di�erentiable at 0.

Despite the non-smoothness, DL loss functions have some structural properties. Indeed,

they are usually made of a composition of linear functions (e.g., dense layers), piece-wise

polynomial (ReLU, squared Euclidean distance), or exponentials (sigmoid activation) and

logarithms (cross-entropy dissimilarity), etc. As a result, most of them aretame (D. Davis

et al., 2020). This notion will be de�ned precisely in Chapter 2, but formally, it means that

the graph of the loss functions can be split into a �nite number of pieces, each of which can

be described with inequalities involving polynomials, exponentials, etc. Thus, the study of

tame functions can be split into pieces on which they behave �well�. Additionally, while some

loss functions are non-di�erentiable, their structures make them locally Lipschitz continuous

in general.

De�nition 1.4. A function g : RP ! R is locally Lipschitz continuous, if for any � 2 RP ,

there exists a neighborhood
 of � and a constant L 
 > 0 (depending on
 ) such that for

any � 1; � 2 2 
 ,

jg(� 1) � g(� 2)j � L 
 k� 1 � � 2k ; (1.12)

where k�k is a given norm on RP , and L 
 is referred to as a Lipschitz constant of g on 
 .

A function g : RP ! RD is locally Lipschitz continuous if each of its coordinates is locally

Lipschitz continuous. A function g : RP ! R is said to be (globally) Lipschitz continuous if

there exists a Lipschitz constant such that(1.12) holds for any � 1; � 2 2 RP .

Throughout this thesis we will always study NNs, dissimilarity measures and loss func-

tions that are locally Lipschitz continuous. By Rademacher's theorem (Heinonen, 2005),

locally Lipschitz continuous functions are di�erentiable almost everywhere on RP , hence

their gradient is well-de�ned at almost any point of RP . The local Lipschitz continuity

will play an important role in the convergence analysis of the new algorithms that we will

introduce, even though this property itself is not su�cient in general to obtain convergence

results for general non-smooth non-convex functions (Daniilidis and Drusvyatskiy, 2020;

Rios-Zertuche, 2020).

While, DL loss functions are di�erentiable almost everywhere, non-smoothness cannot be

ignored. Indeed, algorithms may encounter points of non-di�erentiability and such points

may even be minima. The canonical example illustrating this is the functiont 2 R 7! j t j.

The latter is di�erentiable everywhere except at t = 0 , but this point is exactly the unique

global minimum. This function illustrates another hardship: the norm of the gradient is not

a sign of closeness to critical points. Indeed, although the gradient ofj � j is well-de�ned on
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Rnf 0g, it is always equal to � 1 and thus it never tends to 0 regardless how close we may be

to the minimum t = 0 . Of course similar issues also appear when considering second-order

derivatives (see later in Section 1.4.1).

A standard approach to deal with non-smoothness in optimization is to introduce a notion

of subgradient, generalizing the gradient for non-di�erentiable functions. For example, for

a di�erentiable convex function g : RP ! R and for any � 2 RP , the gradient r g(� ) is the

only element of RP such that,

8  2 RP ; g( ) � g(� ) + hr g(� );  � � i ; (1.13)

see Nesterov, Y. (2003, Chapter 2). Therefore, the standard de�nition of the subdi�erential

of a convex but non-di�erentiable function g at � 2 RP is simply the set,

n
v 2 RP

�
�
�8  2 RP ; g( ) � g(� ) + hv;  � � i

o
; (1.14)

and the elements of this set are called subgradients (see Rockafellar 1996). The subdi�er-

ential is thus a set-valued operator, and as we said, wheneverg is di�erentiable at � , this

subdi�erential simply reduces to fr g(� )g. Unfortunately, this de�nition of the subdi�eren-

tial only suits convex functions. For non-convex functions there may be no vector satisfying

the right hand-side inequality in the set (1.14). For example, the function t 2 R 7! �j t j is

a simple example of a non-convex function for which the set (1.14) is empty att = 0 . In

Chapter 2 we will address this issue using the Clarke subdi�erential (Clarke, 1990) which

is well-de�ned for locally Lipschitz continuous DL functions, but is however not fully com-

patible with calculus which generates other complications.

1.3 Large-scale optimization framework

As said at the beginning, DL had an irregular development. It was introduced quite a

long time ago (McCulloch and Pitts, 1943; Rosenblatt, 1958), was further developed thirty

years later (Rumelhart and G. E. Hinton, 1986; LeCun et al., 1989) but only became highly

used in the early 2010s after producing state-of-the-art results on problems such as the

ImageNet classi�cation challenge (Deng et al., 2009) with the AlexNet DNN (Krizhevsky

et al., 2012). The main reason for this late success originates from in the di�culty of

training DNNs. Indeed, assuming for now that J is di�erentiable, in Section 1.2.1 we

saw that seeking critical points was an appropriate strategy to �nd candidates for being

minimizers. However, �nding a closed-form solution � ? 2 RP to the equation rJ (� ?) = 0
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is not possible in general this is a system ofP non-linear equations. Hence, one must

resort to �nding approximate solutions numerically, usually using iterative algorithms. We

�rst present gradient descent, the most classical of these algorithms. Then, we specify the

computational limitations that made the training of DNNs unpractical for a long time and

�nally introduce fundamental tools for overcoming these limitations.

1.3.1 Gradient descent

Gradient descent (GD) is the archetypal method for minimizing a function and is used

in many applications. Its introduction goes back at least to Cauchy in 1847 according to

Lemaréchal (2012). Consider an initialization � 0 2 RP and a number 
 > 0 called step-size

(or learning rate in the DL literature), for all k 2 N the algorithm simply reads,

� k+1 = � k � 
 rJ (� k ): (1.15)

GD follows the idea of �steepest descent�: the vector �rJ (� k ) in (1.15) indicates the

direction in which an in�nitesimal variation of � k decreasesJ the most. Indeed, let � 2 RP ,


 > 0 small, k �k be a norm onRP and let d 2 RP such that kdk = 1 . By a Taylor expansion

and the Cauchy-Schwarz inequality, it holds,

J (� + 
d ) = J (� ) + hrJ (� ); 
d i + o(
 )

� J (� ) � 
 krJ (� )k kdk + o(
 ) = J (� ) � 
 krJ (� )k + o(
 ): (1.16)

Thus, observe that at �rst-order approximation, taking d = �rJ (� )=krJ (� )k is the opti-

mal choice to minimize the left-hand side of (1.16), hence the term �steepest descent� (see

Bertsekas 1999 for further details). This justi�cation for using �rJ (� ) as update direction

is based on arguments that hold in�nitesimally, they are not valid anymore when using

too-large step-sizes
 > 0. However, accurately choosing the step-size
 > 0 is not easy in

general as we will convey in Section 1.4.1. Despite its simplicity, GD can be very powerful,

in particular remark that (1.15) stabilizes if and only if rJ (� k ) = 0 , i.e., if and only if one

has found a critical point.

Apart from the choice of the step-size (which can be di�cult), GD simply requires one

to be able to evaluate the gradient rJ of the loss function. Even though this may seem

to be a very mild requirement, computing gradients is computationally expensive in DL for

reasons that we now make precise.
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1.3.2 The high computational cost of deep learning

The main challenge for training DNNs is to deal with the computational cost of DL. It has

two major causes.

1.3.2.1 DNNs are trained on large datasets

The ground-truth f truth (from Section 1.1.1) that one wishes to approximate is possibly very

complex. Thus, in order for NNs to generalize well (as discussed in Section 1.1.4.2) one must

often train them using very large datasets. These days, such datasets can be accessed fairly

easily, for example very large datasets of images (Deng et al., 2009) or texts (Marcus et al.,

1993) are publicly available online. This large amount of data available is the reason for

the famous term big data, it allows DNNs to achieve state-of-the-art performances on many

tasks. While large datasets are used for generalization purposes, they make the training

phase computationally expensive. Indeed, from a mathematical point of view, the size of

the dataset is the numberN of elements in the sum structure ofJ (see Formula 1.5), so, to

evaluate J at � 2 RP , one has to passN data through the NN. This is true for the gradient

rJ as well as explained next in Section 1.3.3.1.

1.3.2.2 DNNs have many parameters

Due to the training set being very large and the complexity of f truth , DNNs may also need

a very large number P of parameters to �t the training set well. This typically results

in P � 106, but some DNNs even have billions of parameters (Brown et al., 2020). The

resulting computational and storage costs (due both to the values ofN and P) made DL

unpractical for a long time. Nowadays, the ever-growing performances of computers allow

one to process and store gigabytes of data within a reasonable time. A notable improvement

is the use of graphics processing units (GPUs) in addition to the classical microprocessors

(also known as CPUs) (Owens et al., 2008).

Although the technical limitations that we presented are partially addressed by the avail-

ability of large datasets and the performances of computers, there is a crucial tool that eases

the training of DNNs: the backpropagationalgorithm.
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1.3.3 Di�erentiation of smooth DL loss functions

In this section we assume that the loss functionJ , the dissimilarity measure ` and all the

activation functions of the DNN considered are di�erentiable. As we said, training DNNs

relies on iterative algorithms like GD which are based on the ability of evaluating rJ ,

which is very expensive due to the large values ofP and N . The backpropagationalgorithm

(Rumelhart and G. E. Hinton, 1986) is an e�cient technique for di�erentiating NNs, it is

the keystone of the training.

1.3.3.1 Backpropagation: concept

We begin with an example, let g1; g2; g3 be three di�erentiable functions from R to R. For

any x 2 R, the intuitive way of computing g3 � g2 � g1(x) is to do successive compositions

�forwardly�: h1(x) = g1(x), then h2(x) = g2(h1(x)) and �nally h3(x) = g3(h2(x)) . With

these notations, assume that one wants to compute the e�ect of an in�nitesimal variation

of x on h3. The chain rule states that since the functionsg1, g2, g3 are di�erentiable, then,

h1 = g1, h2 = g2 � g1 and h3 = g3 � g2 � g1 are di�erentiable functions of x 2 R as well and

for all x 2 R,

dh3

dx
(x) =

dh3

dh2
(x)

dh2

dh1
(x)

dh1

dx
(x) = g0

3 (g2 (g1(x))) g0
2 (g1(x)) g0

1(x): (1.17)

Observe that to evaluate dh3
dx (x) we use twice the value ofh1 = g1(x) and once the value of

h2 = g2(h1) which are both computed when evaluatingg3 � g2 � g1(x). This suggests that

these values should be stored to avoid recomputing them, but also that one may prefer a

recursive implementation to numerically evaluate (1.17).

This illustrative example can be extended to DNNs due to their compositional structure.

For a MLP like (1.4) this means in particular that to evaluate the value of J and its partial

derivatives with respect to the coe�cients of each matrix W1; : : : ; WL , the most e�cient way

is to �rst evaluate J and store the intermediate compositions, then recursively compute the

derivatives �rst with respect to WL , and �nish with W1. For a more detailed introduction to

backpropagation we refer to Goodfellow et al. (2016, Part II, Chapter 6), but overall it is a

technique exploiting the compositional structure (1.3) in order to evaluate the gradientrJ

for a cost similar to the cost of evaluating the function J itself. SinceN and P are extremely

large, this algorithm is crucial for training DNNs. The computational complexity depends

of course on the architecture of the network and the activation functions. Nonetheless, the

complexity of a forward pass (for a single data) of a MLP like (1.4) is approximatelyO(P)
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(linear in the number of parameters of the network) and backpropagation has also a roughly

linear complexity. However, these complexities are stated with aO sign and hence involving

multiplicative constants which usually make the evaluations of gradients a little slower than

those of the loss function in practice (but of the same order of magnitude). Finally, note that

the word backpropagationcomes from the graphical representation of DNNs (Figure 1.1):

for � 2 RP , J (� ) is obtained by composition, starting from the input layer to the output in

a �forward� way, while the gradient rJ (� ) is obtained starting from the last layer, hence

�backward�.

1.3.3.2 Automatic di�erentiation and software implementation

Since backpropagation is a general method to di�erentiate compositions of functions, it is

also known asautomatic di�erentiation . It is implemented in the two most popular DL

libraries tensorflow (Abadi et al., 2016) and pytorch (Paszke et al., 2019). Given the

source code for evaluating a loss function, these libraries use automatic di�erentiation and

yield an e�cient implementation for evaluating the gradient of this loss function. Altogether

the high-level programming languages of these DL libraries provide �exibility of use and

portability: the code for training a DNN is very similar on a small laptop and on a large

cluster. They ease an e�cient use of each type of computer, taking the most of CPUs, GPUs,

and memory resources. For these reasons, they play a crucial role in the fast development

of DL. These libraries have become so useful that nowadays it may even appear irrelevant

to design algorithms for training DNNs if those are not implementable in such libraries.

Hence, almost all algorithms used for training DNNs are based on automatic di�erentiation

and are implementable inpytorch and tensorflow .

1.3.4 Mini-batch sub-sampling and stochastic algorithms

In this section, we consider a loss functionsJ which is di�erentiable, but the following

discussion can be extended to non-di�erentiable locally-Lipschitz continuous functions (see

Chapter 2). Thanks to the backpropagation algorithm we have a convenient way of evaluat-

ing the gradient rJ and thus we could use GD to train DNNs. Unfortunately, even-though

backpropagation is an e�cient method for computing gradients, the size N of the dataset

and the number P of parameters still make the evaluation of the gradient expensive. For

example, in the numerical experiments considered in Chapters 2 and 4, it would typically

take a few minutes to evaluaterJ exactly at one single point � 2 RP using a standard

GPU. It could even take hours for larger datasets and networks! While a few minutes for
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evaluating rJ may seem reasonable, the main issue is that we may have to run thousands

of iterations of GD so that the NN performs well. So we could theoretically compute exact

gradients but practitioners actually rely on an alternative strategy.

In DL, the classical approach is to use approximate values ofrJ via what is called mini-

batch sub-sampling. It consists in approximatingJ and rJ by computing only a few terms

of the sum in (1.5). More precisely, letB � f 1; : : : ; N g a subset of indices corresponding to

a sub-sample of the full dataset. For any� 2 RP consider the following quantities,

J B(� ) def=
1

jBj

X

n2 B

J n (� ); and, rJ B(� ) def=
1

jBj

X

n2 B

rJ n (� ); (1.18)

where jBj denotes the number of elements belonging to the setB. Subsets of indices such

as B are called mini-batches. Remark that if B � f 1; : : : ; N g, i.e., if B corresponds to the

full dataset, then we recoverJ B = J .

Such approximations of rJ yield a modi�ed version of GD: stochastic gradient descent

(SGD), it formally consists in replacing the gradient in the iterative process (1.15) by an

approximation as in (1.18). More precisely consider a random subsetA 2 f 1; : : : ; N g such

that for any � 2 RP , E [rJ A(� )] = rJ (� ), where the expectation is taken over the re-

alizations of the random subsetA. The most standard choice for this to hold is to take

A uniformly distributed over all the subsets of f 1; : : : ; N g of a given number of elements

(called batch-size). For example, consider mini-batches of size one (made of a single data

point). For such a choice we have indeed,

E [rJ A(� )] =
X

B
s.t. jBj=1

P(A = B ) rJ B(� ) =
X

B
s.t. jBj=1

1
N

rJ B(� )

=
1
N

X

B
s.t. jBj=1

X

n2 B

rJ n (� ) =
1
N

NX

n=1

rJ n (� ) = rJ (� ): (1.19)

The general case of mini-batches of an arbitrary (�xed) size can be obtained with similar

computations and enumeration arguments.

Now, consider a sequence(Bk )k2 N of realizations of independent copies ofA and a sequence

(
 k )k2 N of step-sizes, then SGD boils down to the iterative process,

� k+1 = � k � 
 k rJ Bk (� k ): (1.20)
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A convenient way of understanding SGD is to view it as anoisy version of GD by writing

the following equivalent formulation of (1.20),

� k+1 = � k � 
 k (rJ (� k ) + � k ) : (1.21)

Here, � k = rJ Bk (� k ) � rJ (� k ) compensates for the part of the gradient that is not con-

sidered in the update of SGD compared to GD. SinceBk is sampled from a random subset,

� k can be seen as a random variable callednoise. Additionally, since we choseBk such that

E [rJ Bk (� )] = rJ (� ), at iteration k, the conditional expectation of � k with respect to the

current iterate � k is thus,

E [� k j� k ] = E [rJ Bk (� k ) � rJ (� k )j� k ] = E [rJ Bk (� k )j� k ] � rJ (� k ) = 0 :

So(� k )k2 N is actually a sequence of zero-mean martingales (adapted to the �ltration induced

by the random mini-batches up to iteration k). This means that at every iteration the update

of SGD does not follow the steepest descent direction (unlike GD) but at least it does in

expectation.

For the sake of precision, SGD is a class of stochastic algorithms introduced by Robbins

and Monro (1951), and (1.20) corresponds to the mini-batch version of SGD. Nowadays,

mini-batch SGD remains the central algorithm for many applications and in particular

for training DNNs due to its limited computational cost. Indeed, mini-batch sub-sampling

allows one to iterate SGD much faster than GD when using small mini-batches. The reason is

that backpropagation is highly compatible with mini-batch sub-sampling since each gradient

rJ n , for n 2 f 1; : : : ; N g is evaluated independently of the others (by passing each data point

of the training set into the network and backpropagating). As a result, computing rJ B for

B � f 1; : : : ; N g is simply N=jBj times faster than computing rJ . To compare the speed

of methods when using mini-batches, it is often convenient to count theepochsrather than

the iterations. An epoch corresponds toN backpropagations (each for a single data), this

way, performing one iteration of GD or N=jBj iterations of SGD both correspond to one

epoch. So, SGD can be iterated faster than GD, but it uses imprecise update directions

(compared to GD), thus there are no guarantees in general that SGD will solve (1.6) faster

than GD. Nonetheless, in large-scale optimization problems (and in particular in DL) SGD

is often reported being signi�cantly faster empirically and is thus preferred to GD (Bottou

and Bousquet, 2008).

However, using approximations of the gradientrJ brings new issues. In particular, crit-
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ical points may not be stationary points2 of SGD (unlike GD): their may be an iteration

k 2 N of SGD such that rJ (� k ) = 0 but rJ Bk (� k ) 6= 0 and hence the algorithms escapes

the critical point � k . To overcome this issue the standard approach is to use a sequence of

vanishing step-sizes(
 k )k2 N that meets (for example) the Robbins-Monro condition (Rob-

bins and Monro, 1951),

+ 1X

k=1


 k = + 1 ; and,
+ 1X

k=1


 2
k < + 1 : (1.22)

Under appropriate assumptions (such as the uniform boundedness of the noise(� k )k2 N in

(1.21)), this condition is su�cient to ensure the convergence of SGD to critical points as

we will see in Chapter 4. We give a glimpse of this phenomenon on Figure 1.7 where we

see that SGD behaves indeed like a perturbed version of GD, and that it fails to converge

asymptotically to a critical point when used with non-vanishing step-sizes. Nonetheless,

taking a sequence of step-sizes that vanishes too quickly may considerably slow down SGD,

hence the choice of this sequence is critical in practice and often reveals to be a challenging

task. Some methods such as back-tracking line-search (Armijo, 1966) ease the choice of the

step-sizes. Unfortunately, most of these techniques require computing exact values ofJ

which, in DL, is almost as expensive as computing exact gradientsrJ and hence is not

suited for training DNNs.

1.4 Using second-order information for training DNNs

We just presented how training DNNs became achievable in many applications. However,

the training remains complicated, takes a long time, and requires a lot of computational

resources. In this context, we now explain why second-order information is promising to

alleviate these issues.

1.4.1 Motivations

For now, assume that J is twice continuously di�erentiable, there are several motivations

for exploiting second-order derivatives ofJ to train DNNs. First Newton's method can

be very e�cient on some large-scale machine learning problems (Berahas et al., 2020; Xu

et al., 2020). For example, it converges in a single iteration on the least-square problem: let

2A stationary point of an algorithm is a point where the algorithm remains stuck if it reaches it.
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Figure 1.7: Comparison of GD and SGD with and without vanishing step-sizes for minimiz-
ing J (� 1; � 2) = � 2

1 + 10� 2
2 whose global minimum(0; 0) is represented by the black cross in

the middle. The need for using vanishing step-sizes is highlighted by the pink curve which
seems to bounce �randomly� around the minimum, unlike the green curve.

A 2 RP � P be a positive de�nite matrix and b 2 RP , consider the function

Q : � 2 RP 7!
1
2

kA� � bk2
2: (1.23)

One can easily check that this function has a unique minimum at� = A � 1b. The function

Q is twice-di�erentiable and an iteration k 2 N of Newton's method applied to Q reads,

� k+1 = � k � r 2Q(� k ) � 1rQ (� k ) = � k �
�
AT A

� � 1 �
AT (A� k � b)

�
= A � 1b: (1.24)

So Newton's method does converge in one iteration for any initialization, regardless the

condition number of A, while GD can be very slow if A is poorly conditioned, see for

example Nocedal and S. Wright (2006, Chapter 2).

Second-order information can also be used to avoid strict saddle points. Indeed, under

Assumption 1.1, a necessary condition for a point� ? 2 RP to be a local minimum is

that rJ (� ?) = 0 and that r 2J (� ?) is positive semi-de�nite (it has only non-negative

eigenvalues). This gives for example the idea of building algorithms looking for directions

of negative curvature. Given a point � 2 RP such methods perform an update� + d where

d 2 RP is a direction spawned by the eigenvectors associated to the negative eigenvalues

of r 2J (� ) if such eigenvalues exists. This way, it is possible to build methods that do not

stop until they �nd a region where r 2J is non-negative.
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Finally, another �avor of second-order information is that it can help to choose the step-

size sequence(
 k )k2 N required by most algorithms. To simplify, consider GD and assume

that for any � 2 RP , the Hessianr 2J (� ) has no eigenvalues with magnitude larger than

L rJ > 0 (this means that L rJ is a Lipschitz constant of rJ ). Then consider an iteration

k 2 N of GD as in (1.15), for two consecutive iterates� k and � k+1 , by the Taylor-Lagrange

formula, there exists  2 RP such that,

J (� k+1 ) = J (� k ) + hrJ (� k ); � k+1 � � k i +
1
2

hr 2J ( )( � k+1 � � k ); � k+1 � � k i (1.25)

= J (� k ) � 
 krJ (� k )k2 +
1
2


 2hr 2J ( )rJ (� k ); rJ (� k )i (1.26)

�J (� k ) � 
 (1 �
L rJ 


2
)krJ (� k )k2: (1.27)

So if L rJ is known, we can take 
 < 2=LrJ and ensure that J (� k+1 ) � J (� k ), the

inequality above is called descent lemma, see for example Bertsekas (1999, Proposition

A.24). Here second-order information would help to estimateL rJ sinceL rJ is simply the

largest eigenvalue of the Hessianr 2J on RP . We could also consider to use second-order

information to compute local estimations of L rJ . This might accelerate the training but

would also ease the choice of the step-sizes.

To summarize, second-order information could substantially bene�t the training of DNNs

in many ways, there are however many obstacles. First computing the Hessian explicitly�a

matrix with P2 elements� or storing it is hardly possible. Worse, inverting it (for New-

ton's method) or computing its eigenvalues (for the purposes discussed above) is unpractical.

There are actually additional drawbacks: for non-smooth function second-order information

may be useless, for example the functiont 2 R 7! j t j is twice-di�erentiable almost every-

where but with zero second-order derivative. Secondly using only �noisy� quantities (via

mini-batch sub-sampling) may signi�cantly weaken the bene�ts of higher-order derivatives

even for smooth functions. For example, the update direction of SGD is inaccurate com-

pared to GD due to the noise(� k )k2 N discussed in Section 1.3.4 (Equation 1.21). Thus, we

may wonder if it is worth well-choosing the step-size
 k since the direction itself is impre-

cise. We refer to Bottou et al. (2018) for further discussion on the bene�ts of second-order

information for training DNNs and the associated challenges.

1.4.2 Precise problem statement

To sum up what we presented so far, our objective is to tackle the challenging task of

building e�cient algorithms for training DNNs. The training amounts to the minimization
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of high-dimensional non-convex functions which have possibly many spurious critical points.

In some cases we may even have to deal with the minimization of non-smooth loss functions

which is signi�cantly harder in non-convex settings. The high-dimensional nature of the

problem makes the use of backpropagation hardly avoidable and the storage of gradient

estimations is very limited. Furthermore, the loss function takes the form of a very large

�nite sum, enforcing the need of using mini-batch sub-sampling. In this context SGD

remains the fundamental tool for training DNNs due to its compatibility with the noisy

�rst-order optimization framework that we just summarized. However, the exploitation of

second-order information seems promising to build faster algorithms or ease the choice of

the step-sizes of SGD, but theoretical and technical limitations are manifold. In this work

we will thus tackle the following questions,

� Can one build practical algorithms exploiting second-order information despite all the

theoretical and technical limitations of deep learning?

� For these algorithms, does second-order information really bene�ts the training of

DNNs in the presence of mini-batch sub-sampling and non-smoothness?

� What convergence guarantees and rates can one derive for these algorithms in such a

general theoretical framework where convergence may seem unlikely to occur?

1.4.3 Overview of existing methods

We review some general ideas to tackle the problems stated above and then review existing

methods some of which exploit these ideas.

1.4.3.1 Second-order information via �rst-order oracles

Throughout this section, let � 2 RP be a point of RP and B � f 1; : : : ; N g a mini-batch. A

�rst idea to build second-order methods for DL is to �nd more a�ordable Newton-like meth-

ods. Adaptations of Newton's method have been proposed for many large-scale machine

learning applications (Martens, 2010; Byrd et al., 2011; Boyer and Godichon-Baggioni,

2020). Yet, few of these methods can be successfully applied to DL due to the compu-

tational cost and the mini-batch sub-sampling. Indeed, according to what we explained

in Section 1.4.1, assuming thatJ is twice-di�erentiable, Newton's method is an iterative

process whose updates take the form(r 2J (� )) � 1rJ (� ), and thus are very expensive to

compute. Some DL algorithms however manage to adapt Newton's method (ADAGRAD,

K-FAC, etc., which are introduced hereafter). They use a mini-batch estimation rJ B(� )
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of the gradient and a surrogate matrix, cheaper to compute and to invert than r 2J (� ).

With these elements they build a stochastic quasi-Newton update. Most methods presented

below somehow rely on this idea.

Regarding the use of �ne-tuned step-sizes discussed in Section 1.4.1. Unlike computing

the eigenvalues ofr 2J (� ), it is however possible to evaluate quantities such as the term

r 2J (� )rJ (� ) which appears in (1.26). Indeed, backpropagation can be adapted to evaluate

�Hessian times vector� products within quite a reasonable time (Pearlmutter, 1994). It is

however more expensive than computing gradients and its combination with mini-batch

sub-sampling yields poor performances in general (Martens et al., 2012).

Similarly, terms of the form r 2J (� )rJ (� ) can be approximated through �nite di�erences.

For example, a Taylor approximation with small 
 > 0 yields, rJ (� � 
 rJ (� )) ' rJ (� ) �


 r 2J (� )rJ (� ). Discretization is also used in quasi-Newton methods (see for example

Broyden 1967; Byrd et al. 2016). Yet, similarly to the idea above, �nite di�erences must be

used with care to be e�cient in presence of noisy gradients (Schraudolph et al., 2007). We

will investigate this later in Chapter 4.

1.4.3.2 Standard algorithms for training DNNs

Due to its high compatibility with the backpropagation and its relative e�ciency in practice,

SGD remains the fundamental method for training DNNs. We present other popular meth-

ods, some of which are direct extensions of SGD and some that already exploit second-order

derivatives. Throughout this section we assume thatJ is di�erentiable, (
 k )k2 N denotes

again a sequence of step-sizes,(Bk )k2 N are mini-batches and� k 2 RP , where k 2 N> 0 is the

index of the current algorithm iteration. We present the mini-batch version of each method.

Momentum methods. Momentum �or inertia� refers to a class of methods inherited

from the Heavy-Ball with Friction (HBF) method (Polyak, 1964). One iteration can be

described by the iterative process,

8
<

:

mk = �m k� 1 � 
 k rJ Bk (� k )

� k+1 = � k + mk

; (1.28)

where � 2 (0; 1). To understand the idea behind HBF, think of the graph of the loss

function�the set
n

(�; J (� ))
�
�
� � 2 RP

o
�as the landscapeof a mountain (the local minima

lie at the bottom of the valleys of this landscape). In this formalism, the sequence of
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iterates and values(� k ; J (� k )) k2 N of HBF represents the successive positions of the ball on

the landscape. This ball is subject to gravity (represented by�rJ or its approximation

�rJ Bk ) which pulls it down, it progressively accumulates speed (through the termmk in

Equation 1.28), this may produce an acceleration, resulting in a faster decrease of the loss

function. In the heavy-ball model, the ball is also slowed down by friction e�ects which

generate energy dissipation, so that the ball will eventually reach a rest point that we would

like to be a minimum. We will discuss the heavy-ball formalism further in Chapter 2.

There exists di�erent non-equivalent variations to HBF, the one presented here follows

the formulation of Sutskever et al. (2013). A popular variation is the Nesterov accelerated

gradient (NAG) method (Nesterov, 1983), for which an iteration is,

8
<

:

mk = � k� 1mk� 1 � 
 k rJ Bk (� k + � k� 1mk� 1)

� k+1 = � k + mk

: (1.29)

It is similar to (1.28) with the exception that the gradient of J Bk is not evaluated at � k

but rather extrapolated to the point � k + �m k� 1 and that � k may vary over the iterations

(originally, � k = k=k + 3 ).

ADAGRAD and RMSprop. The ADAGRAD method (J. Duchi et al., 2011) was orig-

inally proposed as a method for convex online learning but became very popular in DL due

to its e�ciency. It is a non-momentum method which basically reads,

8
<

:

� k =
q P k

k=0 rJ Bk (� k ) � rJ Bk (� k ) + "

� k+1 = � k � � diag (� k ) � 1 rJ Bk (� k )
; (1.30)

where � > 0, " > 0 is small, � is the element-wise product between vectors, the square-root

is applied element-wise, anddiag is the operator turning vectors into diagonal matrices.

ADAGRAD belongs to the family of adaptive methodswhich aims to adapt the step-size

to each iteration using �rst (or higher-order) information. As we said above, ADAGRAD

can be seen as a preconditioner method, replacing the Hessian in Newton's method, by

� diag (� k ) � 1. From (1.30), each coe�cient of the vector step-size� � � 1
k is decreasing ask

increases. This may result in the step-size becoming too small too quickly. Some variants

of ADAGRAD address this issue, for example RMSprop (Tieleman and G. Hinton, 2012)
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which uses an exponential moving average,

8
>>><

>>>:

vk = �v k� 1 + (1 � � )rJ Bk (� k ) � rJ Bk (� k )

� k =
p

vk + "

� k+1 = � k � � diag (� k ) � 1 rJ Bk (� k )

; (1.31)

here � 2 (0; 1) and again � > 0, " > 0.

The ADAM algorithm. ADAM is essentially a combination of RMSprop and momen-

tum, it reads, 8
>>>>>>><

>>>>>>>:

mk = � 1mk� 1 + (1 � � 1)rJ Bk (� k )

vk = � 2vk� 1 + (1 � � 2)rJ Bk (� k ) � rJ Bk (� k )

� k =
p

vk + "

� k+1 = � k � � diag (� k ) � 1 mk

; (1.32)

Again, � 1; � 2 2 (0; 1) and � > 0, " > 0. This algorithm was proposed by Kingma and Ba

(2015) and is probably the most-used algorithm for training DNNs apart from SGD. The

main reason for this is that ADAM is known to be more robust to the choice of its hyper-

parameters�; � 1; � 2 and " in practice than SGD is for the choice of its sequence of step-sizes

(
 k )k2 N. In particular, ADAM is known to provide satisfying results in many cases even

when using the default values for the hyper-parameters (provided in the original paper).3

This is an important advantage since tuning hyper-parameters is a highly time-consuming

task (Asi and J. C. Duchi, 2019).

Full matrix preconditioners. We now review some methods using this time a non-

diagonal matrix as preconditioner (in comparison to ADAGRAD). Again, these methods

recall of course Newton's method which uses the inverse of the Hessian
�
r 2J (� k )

� � 1 but

replace it by more computationally a�ordable matrices.

Among these methods, Natural Gradient (NG) (Amari, 1998), full-matrix ADAGRAD

(Agarwal et al., 2019) and similar methods revolve around replacing the Hessian by the

Gram (or Gauss-Newton) matrix rJ (� k )rJ (� k )T , or similar matrices such as the Fisher

information matrix. While being a�ordable, their computational cost is higher than those

of the methods presented above and is not compensated by signi�cant improvements in

3ADAGRAD and other adaptive methods seem to bene�t from similar qualities but this holds in particular
for ADAM.
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general (in particular for NG). The K-FAC algorithm (Martens and Grosse, 2015) speeds

up NG by �rst making a block-approximation of the Fisher information matrix (one block

per layer of the NN) and then computing a Kronecker approximation of each block to exploit

the fact that inverting a Kronecker product is straightforward. K-FAC is reported being

e�cient on several problems and is among the most popular algorithms although ADAM

and SGD remain the most used one by far. A block-matrix approach was also followed

by Dudar et al. (2017) which designed a sub-space trust-region method. Their algorithm

consists in building one update direction and one learning rate per layer of the NN. They

report competitive results for their method on dense networks.

Seeking directions of negative curvature. In Section 1.4.1 we previously discussed the

interest of looking for directions of negative curvature (eigenvectors associated to negative

eigenvalues of the Hessian ofJ ). This idea has been present in the literature for a few years

(Mizutani and Dreyfus, 2008), but remains quite ine�cient and unpractical in DL, again,

for computational reasons. Some progress has been made, for example Carmon et al. (2017)

proposed a method for detecting locally non-convex regions. Their method requires however

exact gradient evaluations, making it still unpractical for large NNs and datasets. Note that

the matrix rJ (� k )rJ (� k )T used in NG, K-FAC, etc., is always symmetric positive and as

such neglects the non-convex nature ofJ .

Some other methods. We presented the most famous methods for training DNNs, it

goes without saying that many variations of these methods have been proposed. We conclude

this section by giving a non-exhaustive list: there are several methods similar to ADAM

and ADAGRAD: ADAMW (Loshchilov and Hutter, 2019), Adabelief (Zhuang et al., 2020),

Adadelta (Zeiler, 2012), AMSgrad (Reddi et al., 2018), etc., and some other methods such

as the stochastic Barzilai-Borwein methods (Tan et al., 2016; Liang et al., 2019) or the

Lookahead algorithm (M. Zhang et al., 2019).

1.5 Organization of the manuscript

To tackle the problems presented above, the manuscript is organized as follows.

Chapter 2 introduces a new algorithm called INNA which stands for In ertial N ewton

A lgorithm. The starting point is a second-order continuous-time autonomous ordinary

di�erential equation (ODE) called DIN (Alvarez et al., 2002) and inspired by Newton's

second law of dynamics. The latter models a mix between accelerated gradient descent
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(see HBF in Section 1.4.3.2) and Newton's method via a term involving the Hessian of

the loss function. DIN is thus a second-order ODE both in �time� and �space�. However,

when using a �rst-order reformulation in time of this ODE, the Hessian terms vanishes as

well, making second-order derivatives implicit. Using the notion of Clarke's subdi�erential

we extend the ODE to non-smooth non-convex functions. We then evidence that mini-

batch sub-sampling combined with the Clarke subdi�erential generates spurious non-critical

stationary points. To cope with this we introduce a new notion of steady states and obtain a

new di�erential inclusion which we discretize to obtain the INNA algorithm. We then prove

the almost-sure convergence of sub-sequences of iterations of INNA to critical points using a

Lyapunov analysis combined with the results of Benaïm et al. (2005) on perturbed solutions

of di�erential inclusions. We additionally derive rates of convergence for the solutions of

the di�erential inclusion and investigate the empirical performances of INNA.

Chapter 3 studies the asymptotic behavior of INNA and the solutions of the DIN system

introduced in Chapter 2. While we previously showed that INNA almost surely converges

to critical points, we now focus on the nature of such limit points (minima, strict saddle

points etc.). Although INNA is a mix between inertial gradient descent�which is likely to

avoid strict saddle points (Lee et al., 2016; O'Neill and S. J. Wright, 2019)�and Newton's

method�which may converge to any type of critical point�we show, for smooth functions,

that a full-batch (i.e., without mini-batches) version of INNA is likely to avoid strict saddle

points for most initializations. The results rely on the stable manifold theorem and the

Hartman-Grobman theorem. Some numerical illustrations are provided.

Chapter 4 is dedicated to using second-order information for �ne-tuning the sequence

of step-sizes of SGD in non-convex settings. Using a simple variational model we retrieve

a step-size �rst-proposed by Alvarez and Cabot (2004), the latter being too computation-

ally expensive, we approximate it and make a connection with the step-size of Barzilai and

Borwein (1988). We then use the link between these step-sizes as well as empirical and

theoretical observations to modify the mini-batch sub-sampling in order to e�ciently ap-

proximate second-order information through discretization with noisy gradients. We prove

the almost sure convergence of the resulting algorithm, called Step-Tuned SGD, and derive

rates of convergence for the sequence of values of the loss function. We conclude with nu-

merical experiments suggesting that second-order information can indeed be e�ciently used

to �ne-tune the step-sizes of SGD when training DNNs.

The concluding chapter summarizes the results presented in this thesis. We then

discuss remaining open questions and draw some perspectives for future work.
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2.1 Introduction

We focus on building a new algorithm for training DNNs featuring inertia and Newtonian

behavior while requiring only noisy �rst-order information. In this chapter we tackle the

problems introduced in Section 1.4.2 in their more general form: we consider loss functions

that are non-convex but also non-smooth. However, most of the fundamental notions and

tools (backpropagation, SGD, etc.) discussed in the introduction chapter were de�ned for

smooth functions. Here we will thus introduce the Clarke subdi�erential (Clarke, 1990) as a

surrogate for gradients. We will also discuss the incompatibility of the combination of vanilla

backpropagation and mini-batch sub-sampling with the Clarke subgradient of non-smooth

non-convex loss functions, a problem ignored by most DL practitioners.

In such a general framework we will rely on the Ordinary Di�erential Equations (ODE)

approach introduced in Ljung (1977), and then developed by Benaïm (1999), Kushner and

Yin (2003), Benaïm et al. (2005), and Borkar (2009). It is useful to analyze optimization

algorithms. For example, assume temporarily that the loss functionJ is di�erentiable, recall

from (1.15) that two consecutive iterations � k 2 RP and � k+1 2 RP of GD with step-size 
 >

0 are linked by the relation � k+1 = � k � 
 rJ (� k ), or equivalently, (� k+1 � � k )=
 + rJ (� k ) = 0 .

Formally, when 
 is small (in a sense that can be made precise), we see that(� k+1 � � k )=


looks like a discretization of the derivative of some continuous-time di�erentiable function

� : R+ ! RP . Denoting by _� the derivative of � , the following ODE:

_� (t) + rJ (� (t)) ; for all t > 0; (2.1)

is a continuous-time model of the discrete GD algorithm, here the time parametert acts

as a continuous �iteration counter�. For a given initial condition � 0 2 RP , a di�erentiable

function � : R+ ! RP is called solution or trajectory of the ODE if � (0) = � 0 and (2.1)

holds for all t > 0.

The aforementioned literature gives a precise characterization of the link between contin-
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uous dynamics and discrete algorithms. In particular, it connects the asymptotic behavior

of discrete algorithms (as the iteration index k tends to + 1 ) and the limit (as time t tends

to + 1 ) of the solutions of their underlying ODEs. In particular, when the solutions of

an ODE converge�which means that they reach a limit as t tends to + 1 �if this limit

is a critical point of the loss function J , then under some conditions one may be able to

conclude that the corresponding discrete algorithm also converges to critical points ofJ .

This approach is relevant for many algorithms, in particular it is connected to the heavy-

ball interpretation of momentum methods discussed in Section 1.4.3.2. Indeed, letJ :

RP ! R be a di�erentiable loss function, the interpretation of a ball evolving on the graph

of J can be described by the following ODE,

•� (t)
|{z}

Inertial term

+ � _� (t)
| {z }

Friction term

+ rJ (� (t))
| {z }

Gravity e�ect

= 0 ; for t 2 [0; + 1 ); (2.2)

where � > 0, and � : R+ ! RP is a twice-di�erentiable function which represents the

position of a ball on the graph ofJ . Similarly to (2.1), _� and •� denote the �rst and second-

order time derivatives of � respectively. This ODE point of view echos Newton's law of

dynamics (the acceleration•� is equal to a sum of �forces�). HBF is thus sometimes referred

to as an acceleratedversion of gradient descent since (2.2) takes inertia into account. The

ODE paradigm was recently used in several works (Adil, 2018; D. Davis et al., 2020; Barakat

and Bianchi, 2021). Inertial �rst-order methods like (2.2) remain however hard to study

when adapted to non-di�erentiable functions since non-smoothness causes �shocks�: the

landscape of a non-di�erentiable loss function has �corners� and �walls� which generate a

discontinuity of the velocity _� .

Considering another ODE, Attouch and Redont (2001) showed that adding inertia to

continuous-time Newton's dynamics has a regularization e�ect. This later motivated the

combination of HBF and inertial Newton's method and led to the introduction of the fol-

lowing continuous-time dynamical system (or ODE) introduced in Alvarez et al. (2002) and

referred to as DIN (standing for �dynamical inertial Newton�). Just for now, let J : RP ! R

be a twice continuously di�erentiable loss function, DIN reads,

•� (t)
|{z}

Inertial term

+ � _� (t)
| {z }

Friction term

+ � r 2J (� (t)) _� (t)
| {z }

Newtonian e�ects

+ rJ (� (t))
| {z }

Gravity e�ect

= 0 ; for t 2 [0; + 1 ); (2.3)

where the notations are the same as in (2.2). It can be shown that when the solutions of

(2.3) converge, they converge to critical points ofJ (Alvarez et al., 2002). Hence, rather
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than using ODEs to analyze discrete algorithms, we will instead discretize a version of

DIN adapted to non-smooth functions in order to obtain an optimization algorithm which

possesses inertial and Newtonian properties and that is well suited for minimizingJ . Our

resulting second-order algorithm is called INNA.

Before going into the details, we illustrate one interest of mixing HBF and Newton's

method on Figure 2.1 for a simple non-smooth and non-convex function ofR2. This �gure

shows in particular how the additional term in (2.3), compared to (2.2), helps to reduce

parasitic �transverse� oscillations.

(a) � = 0 :5; � = 0 :01 (b) � = 0 :5; � = 0 :1

(c) � = 1 :3; � = 0 :1 (d) Objective function J (in log-scale)

Figure 2.1: Illustration of the role of the hyper-parameters of DIN on the non-smooth func-
tion J (� 1; � 2) = 100( � 2 � j � 1j)2 + j1 � � 1j. The results are simulated using a full-batch
version of the algorithm INNA introduced later (see Algorithm 1). Subplots (a-c) represent
the trajectories of the parameters� 1 and � 2 in R2 for three choices of hyper-parameters�
and � , see (2.3) for an intuitive explanation. Subplot (d) displays the values of the objec-
tive function J (� 1; � 2) for the three settings considered. The details of this experiment and
further discussions are provided in Section 2.6.1.

The previous discussions hold only for smooth functions. In the rest of this chapter, we

will adapt DIN to DL by overcoming the computational and conceptual di�culties raised
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by the second-order objects•� and r 2J (� ) appearing in (2.3). This is done by combining a

phase-space lifting method (a �rst-order reformulation of DIN) introduced in Alvarez et al.

(2002) with the use of the Clarke subdi�erential @J (see De�nition 2.2). We then evidence

a sum rule failure for non-smooth non-convex functions, whereas the sum-rule is crucial

for the theoretical convergence analysis of mini-batch algorithms. Yet, many DL studies

ignore the failure of the sum rule: practitioners sum sub-gradients when using optimization

algorithms for DL, but only analyze the methods under simplifying assumptions such as

smoothness or convexity. We tackle this di�culty as is, and show that the sum rule failure

creates additional spurious stationary points that are not (Clarke) critical. To address

this question, we introduce the notion of D-criticality. We �nally obtain a new �rst-order

di�erential inclusion that we discretize to obtain INNA. We then show the convergence of

INNA to such D-critical points.

The rest of this chapter is thus organized as follows. The step by step introduction of

INNA is described in Section 2.3. Its convergence is proved in Section 2.4, and we then

provide convergence rates for the solutions of the underlying continuous-time di�erential

inclusion (our non-smooth adaptation of DIN) in Section 2.5. Finally, Section 2.6 provides

some experimental results on DL benchmark problems using standard datasets (MNIST,

CIFAR-10, CIFAR-100). First, we discuss the essential properties of the loss functionJ

mentioned in the introduction chapter: local Lipschitz continuity and tameness.

2.2 A functional framework for non-smooth non-convex

optimization

We �rst recall some notations and discuss local Lipschitz continuity.

2.2.1 Locally Lipschitz continuous neural network and loss function

We keep the notations of the introduction and still consider a general type of DNNf :

(x; � ) 2 RM � RP 7! y 2 RD that is locally Lipschitz continuous in its parameter � (see

De�nition 1.4). This includes in particular the networks and activation functions intro-

duced in Section 1.1.3. As before, throughout this chapter we consider a training dataset

(xn ; yn )n2f 1;:::;N g and we recall that the loss function J takes the following form,

J (� ) =
NX

n=1

`(f (xn ; � ); yn ); (2.4)
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for a given dissimilarity measure ` : RD � RD ! R that we assume to be locally Lipschitz

continuous, so that J and each J n = `(f (xn ; :); yn ) are locally Lipschitz continuous on

RP . Despite non-smoothness and non-convexity, the loss function possesses a very strong

property called tameness. We now introduce this notion which is essential for the theoretical

analysis of Section 2.4.

2.2.2 Neural networks are tame functions

Tameness refers to a geometrical property shared by many functions and sets. It holds in

many �nite-dimensional optimization problems met in practice. Prominent classes of tame

objects are piecewise-linear or piecewise-polynomial objects (with �nitely many pieces),

and more generally, semi-algebraic objects. However, the notion is much more general,

as we intend to convey below. A rigorous de�nition is given at the end of this section

(De�nition 2.1).

As mentioned in the introduction (Section 1.2.3), sets or functions are called tame when

they can be described by a �nite number of basic formulas, inequalities, or Boolean oper-

ations involving standard functions such as polynomials, exponentials, or max functions.

We refer to Attouch et al. (2010) for illustrations, recipes and examples within a general

optimization setting or D. Davis et al. (2020) for a link with NNs. The reader is referred to

Van den Dries (1998), Coste (2000), and Shiota (2012) for foundational work on tameness.

Again, this property is powerful as it allows splitting the study of non-smooth objects on

an union of smooth pieces. This is the so-calledstrati�cation property of tame sets and

functions. In a non-convex optimization settings, the strati�cation property is crucial to

generalize qualitative algorithmic results to non-smooth objects.

In most �nite-dimensional DL problems, the loss functions J is tame. To understand this

assertion and illustrate the wide scope of the tameness assumption, let us provide concrete

examples (see also D. Davis et al. 2020). The lossJ is tame for any NN built from the

following traditional components:

� The NN f must have a �xed but arbitrary large number of layers of arbitrary di-

mensions and must be feedforward, meaning that it can be represented by a directed

acyclic graph as in Section 1.1.2.2.

� The activation functions must be among classical ones: ReLU, sigmoid, tanh, soft plus,

etc. including multivariate activation functions (norm, sorting, pooling), or functions

de�ned piecewise with polynomials, exponentials and logarithms.
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� The dissimilarity measure ` can be built from norms, logistic loss or cross-entropy,

or more generally functions de�ned piecewise using polynomials, exponentials and

logarithms.

Tameness is thus shared by many loss functions in DL, in addition, we can assume that

each term J n = `(f (xn ; :); yn ) in (2.4) is tame as well. The results above are obtained by

quanti�er elimination arguments using property (iii) below. For the sake of completeness,

we provide the precise de�nitions of tameness and o-minimality.

De�nition 2.1. [o-minimal structure] (Coste, 2000, De�nition 1.5) An o-minimal

structure on (R; + ; :) is a countable collection of setsO = fO qgq� 1 where eachOq is it-

self a collection of subsets ofRq, called de�nable subsets. They must have the following

properties, for eachq � 1:

(i) (Boolean properties) Oq contains the empty set, is stable by �nite union, �nite inter-

section and complementation;

(ii) (Lifting property) if A belongs toOq, then A � R and R � A belong toOq+1 .

(iii) (Projection or quanti�er elimination property) if P : Rq+1 ! Rq is the canonical

projection onto Rq then for any A in Oq+1 , the set P(A) belongs toOq.

(iv) (Semi-algebraicity) Oq contains the family of algebraic subsets ofRq, that is, every

set of the form

f � 2 Rq j Q(� ) = 0 g;

where Q : Rq ! R is a polynomial function.

(v) (Minimality property), the elements of O1 are exactly the �nite unions of intervals

and points.

A function is said to be de�nable in an o-minimal structure O if its graph can be de�ned1

in O.

From now on we �x an o-minimal structure O. A function or a set will be called

tame if it is de�nable in this o-minimal structure O.

2.3 From DIN to INNA: an inertial Newton algorithm

We describe the construction of our proposed algorithm INNA from the discretization of

the second-order ODE (2.3).
1This means that the graph can be described using �rst-order logic (formally, using quanti�ers on variables).
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2.3.1 Handling non-smoothness and non-convexity

We �rst generalize (2.3) to the non-smooth non-convex setting. Recall that the dynamical

system DIN is,
•� (t) + � _� (t) + � r 2J (� (t)) _� (t) + rJ (� (t)) = 0 ; (2.5)

whereJ is (for now) a twice-di�erentiable function, � � 0, � > 0 are two hyper-parameters

and � : R+ ! RP is a twice-di�erentiable function of R+ . We cannot exploit (2.5) directly

since in most DL applicationsJ is not twice di�erentiable (and even not di�erentiable at all).

We �rst overcome the explicit use of the Hessian matrix r 2J by introducing an auxiliary

variable  : R+ ! RP like in Alvarez et al. (2002). Consider the following dynamical

system,

8
<

:

_� (t) + � rJ (� (t)) +( � � 1
� )� (t) + 1

�  (t) = 0

_ (t) +( � � 1
� )� (t) + 1

�  (t) = 0
, for a.e. t 2 (0; + 1 ): (2.6)

This system is well de�ned even if J is only once di�erentiable. Additionally, as explained

in Alvarez et al. (2002), (2.5) is equivalent to (2.6) whenJ is twice di�erentiable. Indeed,

one can rewrite (2.5) into (2.6) by introducing  = � � _� � � 2rJ (� ) � (�� � 1)� . Conversely,

one can substitute the �rst line of (2.6) into the second one to retrieve (2.5). Since (2.6)

does not require the existence of second-order derivatives, it is a �rst-order generalization

of DIN.

Let us now introduce a new version of (2.6) for non-di�erentiable functions. According

to Rademacher's theorem, locally Lipschitz continuous functions are di�erentiable almost

everywhere. DenoteR the set of points whereJ is di�erentiable. Then, RP n R has zero

Lebesgue measure. It follows that for any� ? 2 RP nR, there exists a sequence of points inR

whose limit is � ?. Such limit sequences are useful for introducing the Clarke subdi�erential

(Clarke, 1990), de�ned next.

De�nition 2.2 (Clarke subdi�erential of locally Lipschitz functions) . Let g : RP ! R be

a locally Lipschitz continuous function. Sinceg is di�erentiable almost everywhere, denote

R � RP the set of points where di�erentiability holds. The Clarke subdi�erential of g at

� 2 RP , denoted by@g(� ), is the set de�ned by,

@g(� ) = conv
�

v 2 RP j 9(� k )k2 N 2 RN; such that � k ���!
k!1

� and r g(� k ) ���!
k!1

v
�

; (2.7)

whereconv denotes the convex hull operator. The elements of the Clarke subdi�erential are
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called Clarke subgradients.

The Clarke subdi�erential is a nonempty compact convex set. It coincides with the

gradient for smooth functions and with the traditional subdi�erential (1.14) for non-smooth

convex functions. As previously mentioned, and contrarily to the gradient and (1.14), it

does not enjoy a sum rule: the sum of the Clarke subdi�erentials of functions is not equal

to the Clarke subdi�erential of the sum of functions in general (the latter is included in the

former).

Thanks to De�nition 2.2, we can extend (2.6) to non-di�erentiable functions. Since @J (� )

is a set, we no longer study a di�erential equation but rather a di�erential inclusion , namely,

8
<

:

_� (t) + �@J (� (t)) +( � � 1
� )� (t) + 1

�  (t) 3 0

_ (t) +( � � 1
� )� (t) + 1

�  (t) 3 0
, for a.e. t 2 (0; + 1 ): (2.8)

For a given initial condition (� 0;  0) 2 RP � RP , we call solution (or trajectory ) of this system

any absolutely continuous curve(�;  ) from R+ to RP � RP for which (� (0);  (0)) = ( � 0;  0)

and (2.8) holds. Absolute continuity amounts to the fact that � is di�erentiable almost

everywhere with integrable derivative and,

� (t) � � (0) =
Z t

0

_� (s) ds; for t 2 [0; + 1 ).

Due to the properties of the Clarke subdi�erential, existence of a solution to di�erential

inclusions such as (2.8) is ensured, see Aubin and Cellina (2012); note however that unique-

ness of the solution does not hold in general due to the set-valued nature of (2.8). We will

now use the structure of (2.8) to build a new algorithm to train DNNs.

2.3.2 Discretization of the di�erential inclusion

To obtain the basic form of our algorithm, we discretize (2.8) according to the classical

explicit Euler method. Given (�;  ) a solution of (2.8) and any time tk � 0, set � k = � (tk )

and  k =  (tk ). Then, at time tk+1 = tk + 
 k with 
 k positive small, one can approximate
_� (tk+1 ) and _ (tk+1 ) by

_� (tk+1 ) '
� k+1 � � k


 k
; _ (tk+1 ) '

 k+1 �  k


 k
:
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For an initialization (� 0;  0) 2 RP � RP , this discretization yields the following algorithm,

for all k 2 N, 8
>>>><

>>>>:

vk 2 @J (� k )

� k+1 = � k + 
 k

�
( 1

� � � )� k � 1
�  k � �v k

�

 k+1 =  k + 
 k

�
( 1

� � � )� k � 1
�  k

�
(2.9)

The algorithm above is well de�ned for non-smooth non-convex loss functions likeJ ,

yet, it is not suited to train DNNs. First, numerically evaluating @J (� k ) is not possible

in general since there is no operational calculus for the Clarke subdi�erential; secondly, to

cope with the computational cost of DL we need to introduce a mini-batch sub-sampling

strategy similarly to the one for smooth functions (Section 1.3.4). This makes the absence

of sum rule even more critical. The next section is meant to address these issues and to

eventually design a practical algorithm, INNA.

2.3.3 INNA and a new notion of steady states

We consider again mini-batch sub-sampling, letB � f 1; : : : ; N g, we recall the de�nition of

J B,

J B : � 7!
X

n2 B

`(f (xn ; � ); yn ); (2.10)

and we denote@J B the Clarke subdi�erential of J B. However, as we already said, unlike

in the di�erentiable case, subdi�erentials do not sum up to a subdi�erential of the sum for

non-convex non-smooth functions in general, that is

@J B(� ) 6=
X

n2 B

@(̀f (xn ; � ); yn ):

A simple example is t 2 R 7! j t j � j t j = 0 . The Clarke subdi�erential of this function at

t = 0 is f 0g, whereas@(j0j) + @(�j 0j) = [ � 1; 1] + [ � 1; 1] = [ � 2; 2] 6= f 0g.

At this point we shall make an important precision. While the Clarke subdi�erential does

not enjoy a sum-rule, the automatic di�erentiation libraries mentioned in Section 1.3.3.2 im-

plement backpropagation using smooth calculus rules even for non-smooth and non-convex

loss functions. As a result, these implementations of backpropagation return objects that

are not Clarke subgradients in general. Despite the lack of mathematical justi�cations, such

practice provides satisfying results in many cases. Hence, in order to match this practice,

44



Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

we introduce a notion of steady states. They correspond to the stationary points gener-

ated by the combination of mini-batch sub-sampling with the sum-rule failure of the Clarke

subdi�erential. As we shall see, this allows both for practical applications and convergence

analysis. Doing so, we capture the real stationary points met in practice.

To this aim, and similarly to (1.18), we introduce the following objects, for any B �

f 1; : : : ; N g,

DJ B =
X

n2 B

@[`(f (xn ; �); yn )] ; DJ =
NX

n=1

@[`(f (xn ; �); yn )] : (2.11)

Observe that, for eachB, we haveDJ B � @J B and that J B is di�erentiable almost every-

where (again by Rademacher's theorem) withDJ B = @J B = frJ Bg, see Clarke (1990).

This means in particular that DJ = @J almost everywhere so the set of points where our

operator D does not coincide with the Clarke subgradient has zero measure.

A point satisfying 0 2 DJ (� ) will be called D-critical . Note that Clarke-critical points

(0 2 @J ) are D-critical points but that the converse is not true. This new operator D enjoys

favorable properties: sum and chain rules hold along continuous curves (see Lemmas 2.2 and

2.3 below). Additionally, we will prove the existence of a tame Sard's lemma (see Lemma

2.4). To our knowledge, this notion of D-critical points (or steady states) has not been

used previously in the literature and a direct approach modeling the mini-batch practice

has never been considered before.2 While this notion is needed for the theoretical analysis,

one should keep in mind that the introduction of DJ does not change the implementation

of algorithms in practice provided that the automatic di�erentiation library returns Clarke

subgradients of the functionsJ n , for n 2 f 1; : : : ; N g.

Ultimately, we can now rewrite the di�erential inclusion (2.8) by replacing @J with

DJ . This yields a di�erential inclusion adapted to study mini-batch approximations of

non-smooth loss functions. It simply reads,

8
<

:

_� (t) + �D J (� (t)) +( � � 1
� )� (t) + 1

�  (t) 3 0

_ (t) +( � � 1
� )� (t) + 1

�  (t) 3 0
, for a.e. t 2 (0; + 1 ): (2.12)

Discretizing this system gives a practical version of INNA. Let us consider a sequence

(Bk )k2 N of nonempty subsets off 1; : : : ; N g, chosen independently and uniformly at random

2Following a �rst version of the publication associated to this chapter (Castera et al., 2019b), Bolte and
Pauwels (2020b) have further developed the present ideas and in particular the connection to the back-
propagation algorithm.
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with replacement (like for smooth functions), and a sequence of positive step-sizes(
 k )k2 N.

For a given initialization (� 0;  0) 2 RP � RP , at iteration k � 0, our algorithm reads,

(INNA)

8
>>>><

>>>>:

vk 2 DJ Bk (� k )

� k+1 = � k + 
 k

�
( 1

� � � )� k � 1
�  k � �v k

�

 k+1 =  k + 
 k

�
( 1

� � � )� k � 1
�  k

�
(2.13)

Here again� � 0 and � > 0 are hyper-parameters of the algorithm. INNA in its practical

form is summarized in Algorithm 1.

Algorithm 1 INNA: an Inertial Newton Algorithm for deep learning

1: Objective function: J =
P N

n=1 J n , with J n : RP ! R locally Lipschitz continuous.
2: Input: � � 0, � > 0, a sequence of step-sizes(
 k )k2 N.
3: Input: nonempty mini-batches (Bk )k2 N.
4: Initialize (� 0;  0) 2 RP � RP ,
5: for k = 0 ; : : : do
6: vk 2

X

n2 Bk

@[J n (� k )]

7: � k+1 = � k + 
 k

�
(

1
�

� � )� k �
1
�

 k � �v k

�

8:  k+1 =  k + 
 k

�
(

1
�

� � )� k �
1
�

 k

�

9: end for

Note �nally that similarly to what we explained regarding SGD in Section 1.3.4, the mini-

batch sub-sampling in INNA yields a stochastic approximation of the full-batch algorithm

that one would obtain by choosing for all k 2 N, Bk = f 1; : : : ; N g, i.e., when J Bk = J .

Indeed, the vectorsvk in (2.13) may be written as vk = ~vk + � k , where ~vk 2 DJ (� k ) and

� k compensates for the missing subgradients and can be seen as a zero-mean noise. Hence,

INNA admits the following general abstract stochastic formulation,

8
>>>><

>>>>:

wk 2 DJ (� k )

� k+1 = � k + 
 k

�
( 1

� � � )� k � 1
�  k � �w k + � k

�

 k+1 =  k + 
 k

�
( 1

� � � )� k � 1
�  k

�
(2.14)

where (� k )k2 N is a sequence of random variables representing the noise like in Section 1.3.4.

While (2.13) is the version implemented in practice, this equivalent form (2.14) is more

convenient for the convergence analysis of the next section. We also point out that the
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equivalence between (2.13) and (2.14) holds thanks to the use ofDJ and would not hold

with @J as in (2.9).

2.4 Convergence results for INNA

We �rst state our main result regarding the convergence of INNA in DL.

2.4.1 Main result: accumulation points of INNA are critical

We now study the convergence of INNA. The main idea of the proof is to use the ODE ar-

gument to state that the discrete algorithm (2.13) asymptotically behaves like the solutions

of the continuous di�erential inclusion (2.12). In addition to tameness and local Lipschitz

continuity, we make the following assumptions, which can be easily ensured by practitioners.

Assumption 2.1 (Stochastic approximation). The sets (Bk )k2 N are taken independently

uniformly at random with replacement. The step-size sequence(
 k )k2 N is positive with
P

k 
 k = + 1 and satis�es 
 k = o
�

1
log k

�
, that is lim sup

k! + 1
j
 k logkj = 0 .

Typical admissible choices are
 k = C(k + 1) � a with a 2 (0; 1], C > 0. The main

theoretical result for INNA follows.

Theorem 2.1 (INNA converges to the set of D -critical points of J ). Assume that for

n 2 f 1; : : : ; N g, each J n is locally Lipschitz continuous, tame and that the step-sizes and

mini-batches satisfy Assumption 2.1. Set an initial condition (� 0;  0) and assume that there

exists C > 0 such that supk� 0 k(� k ;  k )k � C almost surely, where(� k ;  k )k2 N are generated

by INNA. Then, almost surely, any accumulation point �� of the sequence(� k )k2 N satis�es

DJ ( �� ) 3 0. In addition (J (� k )) k2 N converges.

Before proving Theorem 2.1, we make some important comments and illustrate this result.

2.4.2 Comments on the results of Theorem 2.1

� On the step-sizes. First, Assumption 2.1 o�ers much more �exibility on the choice

of the step-sizes than the usual Robbins-Monro condition (1.22) commonly used for

SGD. This is due to the �nite-sum structure of J , the boundedness assumption and

the local Lipschitz continuity which make the noise (� k )k2 N uniformly bounded and

hence sub-Gaussian. Using Benaïm et al. (2005, Remark 1.5), this allows for much
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larger step-sizes than in the more common �bounded second moment setting�. This

has an interest in practice as highlighted in Figure 2.4 of the experimental section.

� On the scope of the theorem. The results above are actually more general than

for DL loss functions. They hold for any locally Lipschitz continuous tame function

with �nite-sum structure and for the general stochastic process (2.14). We do not use

any other speci�c structure of DL loss functions. These results could be adapted for

other assumptions on the noise, in view of Benaïm et al. (2005).

� On D-criticality. The result of Theorem 2.1 states that the bounded discrete trajec-

tories of INNA are attracted by the D-critical points. The D-critical points include

local minima, and we will actually prove that INNA is likely to avoid strict saddle

points in the next chapter. This is also corroborated by the empirical observations

of Section 2.6.2. Although DJ coincides with @J almost everywhere, the notion of

D-criticality cannot be ignored. Indeed, if the algorithm was initialized on the D-

critical set, the algorithm would be stationary even if the initialization is non-Clarke

critical . Hopefully, in practice one can expect to avoid such points with overwhelming

probability. Indeed, following our introduction of D-critical points, Bolte and Pauwels

(2020a) proved that SGD almost surely converges to the set of Clarke-critical points

in practice. In other words, D -critical points that are not Clarke-critical are likely to

be avoided by SGD (see also Bianchi et al. 2020). The same result can be hoped for

INNA but have not been proved to this day.

� On the boundedness assumption. The boundedness assumption on the iterates is

a classical assumption for �rst or second-order algorithms, see for instance D. Davis et

al. (2020) and J. C. Duchi and Ruan (2018). When using deterministic algorithms (i.e.,

without mini-batch approximations), properties such as the coercivity3 of J can be

su�cient to remove the boundedness assumption for descent algorithms. This does not

remain true when dealing with mini-batch sub-sampling. Yet, in the case of INNA,

the coercivity of J would at least guarantee that the solutions of the continuous

underlying di�erential inclusion (2.12) remain bounded. Indeed, we will prove in

Section 2.4.4 that for any solution (�;  ) of (2.12), the function t � 0 7! 2(1 +

�� )J (� (t)) +





 (� � 1

� )� (t) + 1
�  (t)








2
is decreasing in time (see Lemma 2.6 hereafter).

As a consequence, we cannot haveJ (� (t)) ���!
t !1

1 so the coercivity of J would

guarantee that k� (t)k 6! 1 . Similarly, we would have k (t)k 6! 1 as well. However,

DL loss functions are not coercive in general and ensuring the boundedness assumption

in DL or even for non-convex semi-algebraic optimization problems is far beyond the
3J is said to be coercive if lim k � k!1 J (� ) = + 1 .
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scope of this thesis. Alternatively, we could have projected the iterates on a possibly

very large compact ball to ensure boundedness. Adding such a projection would

however imply to adapt the proof of convergence substantially, in particular the results

of Benaïm et al. (2005).

2.4.3 Preliminary variational results

Prior to proving Theorem 3, we extend some results known for the Clarke subdi�erential of

tame functions to the operator D that we previously introduced. First, we recall a useful

result of D. Davis et al. (2020) which follows from the projection formula in Bolte et al.

(2007b).

Lemma 2.2 (Chain rule for the Clarke subdi�erential) . Let J : RP ! R be a locally

Lipschitz continuous tame function, then J admits a chain rule, meaning that for any

absolutely continuous curve� : R+ ! RP , J � � is di�erentiable a.e. and for a.e. t � 0,

dJ
dt

(� (t)) = h_� (t); @J (� (t)) i = h_� (t); vi ; 8v 2 @J (� (t)) : (2.15)

Note that the function t � 0 7! J (� (t)) is di�erentiable for a.e. t > 0, despite the

non-di�erentiability of J (and possibly � ). This holds thanks to the absolute continuity of

� and the chain rule above. Additionally, notice that the value of dJ
dt (� (t)) in (2.15) does

not depend on the choice of the elementv taken in @J (� (t)) , this justi�es the notation

h_� (t); @J (� (t)) i .

We now prove a very similar chain-rule for the operatorD . Consider again a function with

an additive �nite-sum structure, J =
P N

n=1 J n , where again eachJ n : RP ! R is locally

Lipschitz continuous and tame, and recall that for any � 2 RP , we have the following:

DJ (� ) =
P N

n=1 @J n (� ). The following lemma is a direct generalization of the above chain

rule.

Lemma 2.3 (Chain rule for DJ ). Let J be a sum of tame functions as described above.

Let � : [0 ; 1] ! RP be an absolutely continuous curve so thatt 7! J (�( t)) is di�erentiable

almost everywhere. For a.e.t 2 [0; 1], and for all v 2 DJ (�( t)) ,

d
dt

J (�( t)) =
D

v; _�( t)
E

:

49



Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

Proof. By local Lipschitz continuity and absolute continuity, each J n is di�erentiable almost

everywhere and Lemma 2.2 can be applied:

d
dt

J n (�( t)) =
D

vn ; _�( t)
E

; for all vn 2 @J n (�( t)) and for a.e. t � 0.

Thus

d
dt

J (�( t)) =
NX

n=1

d
dt

J n (�( t)) =
NX

n=1

D
vn ; _�( t)

E
;

for any vn 2 @J n (�( t)) , for all n = f 1; : : : ; N g, and for a.e. t � 0. This proves the desired

result.

We �nish this section with a Sard lemma for D-critical values, which is an adaptation of

the Sard lemma of Bolte et al. (2007b) for the Clarke subdi�erential.

Lemma 2.4 (A Sard's theorem for tame D-critical values). Let,

D -crit def=
n

� 2 RP j DJ (� ) 3 0
o

;

then J (D-crit ) is �nite.

Proof. The set D-crit is tame and hence it has a �nite number of connected components.

It is su�cient to prove that J is constant on each connected component ofD -crit . Hence,

without loss of generality, assume that D-crit is connected and consider� 0; � 1 2 D-crit .

By Whitney regularity (Van den Dries, 1998, Chapter 3), there exists a tame continuous

path � joining � 0 to � 1. Since� is tame, the monotonicity lemma (see for example Kurdyka

1998, Lemma 2) states the existence of a �nite collection of real numbers0 = a0 < a 1 <

: : : < a q = 1 , such that � is C1 on each segment(aj � 1; aj ), j = 1 ; : : : ; q. We can then

apply Lemma 2.3 to each part � j(ai ;ai +1 ) of the path, and since the image of� is included

in D-crit , the derivative
d
dt

(J � �) is zero on each(ai ; ai +1 ). So, J � � is constant except

perhaps on the �nite set of points (aj ) j 2f 1;:::;qg, so it is constant by continuity. Hence,

J (� 0) = J (�(0)) = J (�(1)) = J (� 1).

2.4.4 Proof of convergence for INNA

To prove the convergence of INNA, we follow the stochastic method for di�erential inclusions

developed in Benaïm et al. (2005) which relies on the analysis of the di�erential system
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(2.12). The steady states (or stationary points) of (2.12) are given by,

S =
n

(�;  ) 2 RP � RP j 0 2 DJ (� );  = (1 � �� )�
o

: (2.16)

These points are initialization values for which the system does not evolve and remains

constant. Observe that the �rst coordinates of these points areD-critical for J and that

conversely anyD-critical point of J corresponds to a unique steady state inS. We now

de�ne an important tool for studying di�erential inclusions.

De�nition 2.3 (Lyapunov function) . Let V be a subset ofRP � RP , we say that E :

RP � RP ! R is a Lyapunov function for the setV and the dynamics(2.12) if,

(i) For any solution (�;  ) of (2.12) with initial condition (� 0;  0) 2 RP � RP , we have:

E(� (t);  (t)) � E (� 0;  0) for a.e. t � 0.

(ii) For any solution (�;  ) of (2.12) with initial condition (� 0;  0) 2 RP � RP n V, we

have:

E(� (t);  (t)) < E (� 0;  0) for a.e. t � 0.

In the mechanical formalism discussed in the introduction, a Lyapunov function represents

an energy that does not increase over time. Formally, the ball evolving on the landscape

of J loses energy and hence must eventually slow down. In practice, to establish that a

function is a Lyapunov, one proves that it is decreasing by di�erentiating with the chain

rules stated above. In the context of INNA, we will use Lemma 2.3. In order to build

a Lyapunov function for the dynamics (2.12) and the setS, for (�;  ) solution of (2.12),

consider the two following energy-like functions,

8
><

>:

Emin (� (t);  (t)) = (1 �
p

�� )2J (� (t)) + 1
2






 (� � 1

� )� (t) + 1
�  (t)








2

Emax (� (t);  (t)) = (1 +
p

�� )2J (� (t)) + 1
2






 (� � 1

� )� (t) + 1
�  (t)








2
:

(2.17)

Then the following lemma applies.

Lemma 2.5 (Di�erentiation along DIN trajectories) . Let (�;  ) be a solution of (2.12) with

initial condition (� 0;  0) 2 RP � RP . For a.e. t > 0, � and  are di�erentiable at t, (2.12)

holds,
_� (t )� _ (t )

� 2 DJ (� (t)) and

dEmin

dt
(� (t);  (t)) = �









p

� _� (t) �
1

p
�

�
_ (t) � _� (t)

� 








2

dEmax

dt
(� (t);  (t)) = �









p

� _� (t) +
1

p
�

�
_ (t) � _� (t)

� 








2
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Proof. De�ne E � (�;  ) = � J (� )+
1
2








 (� �

1
�

)� +
1
�

 









2

. We aim to choose� so that E � is a

Lyapunov function. BecauseJ is tame and locally Lipschitz continuous, using Lemma 2.3

we know that for any absolutely continuous trajectory � : R+ ! RP and for a.e. t > 0,

dJ
dt

(� (t)) = h_� (t); DJ (� (t)) i = h_� (t); v(t)i ; 8v(t) 2 DJ (� (t)) : (2.18)

Let � and  be solutions of (2.12). For a.e.t � 0, we can di�erentiate E � (�;  ) to obtain

dE �

dt
(� (t);  (t)) = � h_� (t); v(t)i + ( � �

1
�

)h_� (t); (� �
1
�

)� (t) +
1
�

 (t)i

+
1
�

h _ (t); (� �
1
�

)� (t) +
1
�

 (t)i ;
(2.19)

for all v(t) 2 DJ (� (t)) . Using (2.12), we get 1
� ( _� (t) � _ (t)) 2 DJ (� (t)) and � _ (t) =

(� � 1
� )� (t) + 1

�  (t) a.e. Choosingv(t) = 1
� ( _� (t) � _ (t)) yields:

dE �

dt
(� (t);  (t)) = �

*
_� (t);

_� (t) � _ (t)
�

+

� (� �
1
�

)
D

_� (t); _ (t)
E

�
1
�

D
_ (t); _ (t)

E
:

Then, expressing everything as a function of_� and 1
� ( � � ), one can show that a.e. onR+ :

dE �

dt
(� (t);  (t)) = � � k _� (t)k2 � �












_� (t) � _ (t)
�












2

+ ( � � �� � 1) h_� (t);
_� (t) � _ (t)

�
i

= �












p
� _� (t) +

�� + 1 � �
2
p

�

_� (t) � _ (t)
�












2

�

 

� �
(�� + 1 � � )2

4�

! 










_� (t) � _ (t)
�












2

:

We aim to choose� so that E � is decreasing that is
�
� � (�� +1 � � )2

4�

�
> 0. This holds

whenever � 2
�
(1 �

p
�� )2; (1 +

p
�� )2�

. We choose� min = (1 �
p

�� )2, and � max =

(1 +
p

�� )2, for these two values we obtain for a.e.t > 0 ,

8
>>><

>>>:

_E � min (� (t);  (t)) = �








p

� _� (t) + 1p
�

�
_� (t) � _ (t)

� 








2

_E � max (� (t);  (t)) = �








p

� _� (t) � 1p
�

�
_� (t) � _ (t)

� 








2
(2.20)

Remark �nally that by de�nition Emin = E � min and Emax = E � max .

Recall that S =
n

(�;  ) 2 RP � RP j 0 2 DJ (� );  = (1 � �� )� )
o

and de�ne E = Emin +
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Emax . By a direct integration argument, we obtain the following lemma.

Lemma 2.6 (E is Lyapunov function for INNA with respect to S). For all (� 0;  0) =2 S and

for any solution (�;  ) with initial condition (� 0;  0) 2 RP � RP ,

E (� (t);  (t)) < E (� 0;  0); for a.e. t > 0: (2.21)

We are now in position to provide the desired proof.

Proof of Theorem 2.1 . Lemmas 2.5 and 2.6 state thatE is a Lyapunov function for

the set S and the dynamics (2.12). Let S1 = f � 2 RP j (�;  ) 2 Sg which is exactly the set

of D -critical points of J . Using Lemma 2.4 of Section 2.4.3,J (S1) is �nite. Moreover, since

E(�;  ) = 2(1 + �� )J (� ) for all (�;  ) 2 S, E(S) is �nite as well, so in particular, E (S) has

empty interior.

Denote by L the set of accumulation points of the sequences(( � k ;  k )) k2 N produced by

(2.13) starting at (� 0;  0) and denote L1 the projection of L on RP � f 0g. We have the 3

following properties:

� By assumption, we have k(� k ;  k )k � C almost surely, for all k 2 N.

� By local Lipschitz continuity, for any k� k � C and any B � f 1; : : : ; N g, DJ B(� ) is uni-

formly bounded , hence the centered noise(� k )k2 N is a uniformly bounded martingale

di�erence sequence.

� By Assumption 2.1, the sequence(
 k )k2 N is chosen such that
 k = o( 1
log k ) (see Sec-

tion 2.4.2).

Then the su�cient conditions provided in Remark 1.5 of Benaïm et al. (2005) state that the

discrete process(� k ;  k )k2 N asymptotically behaves like the solutions of (2.12). We can then

combine Proposition 3.27 and Theorem 3.6 of Benaïm et al. (2005), to deduce that the limit

set L of the discrete process is contained in the setS where the Lyapunov function E has

vanishing derivatives. Thus, the setL1 (the set of the �rst coordinates of all accumulation

points) contains only D-critical points of J . In addition, E (L) is a singleton, and for all

(�;  ) 2 S, we haveE(�;  ) = 2(1+ �� )J (� ), soJ (L1) is also a singleton and the theorem fol-

lows.

�

We now have a practical new second-order algorithm for training DNNs with convergence

guarantees both for the iterates and the sequence of values of the loss function. Before

presenting numerical experiments for INNA, we derive rates of convergence for the solutions
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of the di�erential inclusion from which INNA is built.

2.5 Towards convergence rates for INNA

In the previous section, connecting INNA to the asymptotic behavior of the solutions of

(2.12) was one of the keys to prove the convergence of the discrete algorithm. We now turn

our attention to the continuous dynamical system: we focus on (2.8)�we no longer use

(2.12) and DJ although this would be possible but would require more technical proofs.

In this section and in this section only, we pertain to loss functionsJ that are real semi-

algebraic.4 Semi-algebraic functions are a particular type of tame functions: a set is called

semi-algebraic if it is a �nite union of sets of the form,

f � 2 RP j Q(� ) = 0 ; Qi (� ) < 0g

where Q; Qi are real polynomial functions. A function is called semi-algebraic if its graph

is semi-algebraic.

We will characterize the convergence rate of the solutions of the continuous-time sys-

tem (2.8) to critical points. Let us �rst introduce an essential mechanism to obtain such

convergence rates: the Kurdyka-Šojasiewicz (KL) property.

2.5.1 The non-smooth Kurdyka-Šojasiewicz property for the Clarke
subdi�erential

The non-smooth Kurdyka-Šojasiewicz (KL) property, as introduced in (Bolte et al., 2010),

is a measure of �amenability to sharpness� (as illustrated at the end of Section 2.5.3). Here

we state a uniform version for the Clarke subdi�erential of semi-algebraic functions following

Bolte et al. (2007b) and Bolte et al. (2014). In the sequel we denote by �dist� any given

distance onRP .

Lemma 2.7 (Uniform non-smooth KL property for the Clarke subdi�erential) . Let K be a

nonempty compact set and letG : RP ! R be a semi-algebraic locally Lipschitz continuous

function. Assume that G is constant on K, with value G?. Then there exist " > 0, � > 0,

4We could extend the results of this section to more general objects including analytic functions on bounded
sets. The semi-algebraicity assumption is made here for the sake of clarity.
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a 2 (0; 1) and � > 0 such that, for all

v 2
n

v 2 RP j dist(v; K) < "
o

\
n

v 2 RP j G? < G (v) < G ? + �
o

;

it holds that,

� (1 � a) (G(v) � G?) � a dist (0; @G(v)) > 1: (2.22)

In the sequel, we make an abuse of notation by writingk@J (�)k def= dist(0 ; @J (�)) . To

obtain a convergence rate, we will use inequality (2.22) on the Lyapunov functionE used

to prove the convergence of INNA. Before doing so we prove a general result of convergence

that is built around the KL property and that can be applied not only to (2.8) but also to

other dynamical systems.

2.5.2 A general asymptotic rate

We state a general theorem that leads to the existence of a convergence rate. This theorem

will hold in particular for (2.8). We start with the result.

Theorem 2.8. Let X : [0; + 1 ) ! RP be a bounded absolutely continuous trajectory and

let G : RP ! R be a semi-algebraic locally Lipschitz continuous function. If there exists

c1 > 0 such that for a.e. t > 0,

dG
dt

(X (t)) � � c1k(@G)(X (t))k2; (i)

then G(X (t)) converges to a limit valueG? and,

jG(X (t)) � G?j = O
�

1
t

�
:

If in addition there exists c2 > 0 such that for a.e. t > 0,

c2k _X (t)k � k (@G)(X (t))k; (ii)

then, X converges to a critical point of G with a rate5 of the form O(1=tb) with b > 0.

Proof. We �rst prove the convergence of t � 0 7! G(X (t)) . Suppose that (i) holds. Since

X is bounded and G is continuous, G(X (�)) is bounded. Moreover, from (i), G(X (�)) is

5 In some cases we even have linear rates or �nite-time convergence as detailed in the proof.
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decreasing, so it converges to some valueG?. To simplify suppose G � 0 and G? = 0 .

De�ne,

I =
n

x 2 RP j G(x) = 0
o

:

Suppose �rst that there exists s � 0, such that X (s) 2 I. SinceG(X (�)) is decreasing with

limit 0, then for all t � s, G(X (t)) = 0 and the convergence rate holds true.

Let us thus assume that for all t � 0, G(X (t)) > 0. The trajectory X is bounded in RP ,

hence there exists a compact setC � RP such that X (t) 2 C for all t � 0. De�ne K = I \ C.

It is a compact set sinceI is closed (by continuity of G) and C is compact. Moreover,G is

constant on K. As such by Lemma 2.7, there exist" > 0; � > 0, a 2 (0; 1) and a constant

� > 0 such that for all

v 2
n

v 2 RP ; dist(v; K) < "
o

\ f 0 < G (v) < � g;

it holds that

� (1 � a) (G(v)) � a dist (0; @G(v)) > 1:

We have G(X (t)) ! 0 so there existst0 � 0 such that for all t � t0, 0 < G (X (t)) < � .

Without loss of generality, we assumet0 = 0 . Similarly, we have dist(X (t); K ) ! 0, so we

may assume that for all t � 0, dist (X (t); K) < " . Thus, for all t � 0,

� (1 � a)G(X (t)) � ak@G(X (t))k > 1:

Going back to assumption (i), for a.e. t > 0, it holds that

dG
dt

(X (t)) � � c1k(@G)(X (t))k2;

but the KL property implies that for a.e. t > 0,

�k @G(X (t))k2 < �
1

� 2(1 � a)2 G(X (t))2a:

Therefore,
dG
dt

(X (t)) < �
c1

� 2(1 � a)2 G(X (t))2a; (2.23)

this is a di�erential inequality with respect to the function G(X (�)) . We consider two

cases depending on the value ofa. If 0 < a � 1=2, then for large-enought � 0, it holds
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G(X (t)) < 1 so � G(X (t))2a < � G(X (t)) and hence,

dG
dt

(X (t)) < �
c1

� 2(1 � a)2 G(X (t)) ;

so we obtain a linear rate. When1=2 < a < 1, we go back to (2.23), remark that for a.e.

t > 0,

G(X (t)) � 2a d
dt

G(X (t)) =
1

1 � 2a
d
dt

G(X (t))1� 2a < �
c1

� 2(1 � a)2 ; (2.24)

with 1 � 2a < 0. We can integrate (2.24) from 0 to t > 0:

G(X (t))1� 2a >
(2a � 1)c1

� 2(1 � a)2 t + G(X (0))1� 2a >
(2a � 1)c1

� 2(1 � a)2 t:

Since 1
1� 2a < � 1, one obtains a convergence rate of the formO

�
t

1
1� 2a

�
. In both cases the

rate is at least O
�

1
t

�
.

We assume now that both (i) and (ii) hold and prove the convergence of the trajectoryX

with a convergence rate. Lett > s > 0, by the fundamental theorem of calculus (provided

by the absolute continuity of X ) and the triangular inequality,

kX (t) � X (s)k �









Z t

s

_X (� ) d�







 �

Z t

s
k _X (� )k d�: (2.25)

We wish to bound k _X k using G. Using the chain rule (Lemma 2.2 of Section 2.4.3), for a.e.

� > 0,

d
d�

G(X (� ))1� a = (1 � a)G(X (� )) � ah _X (� ); (@G)(X (� )) i : (2.26)

Then, from (i), we deduce that for a.e. � > 0,

h _X (� ); (@G)(X (� )) i =
dG
d�

(X (� )) � � c1k(@G)(X (� ))k2; (2.27)

so

d
d�

G(X (� ))1� a � � c1(1 � a)G(X (� )) � ak(@G)(X (� ))k2: (2.28)

The KL property (2.22) implies that for a.e. � > 0,

� (1 � a)G(X (� )) � ak(@G)(X (� ))k < �
1
�

: (2.29)
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Putting this in (2.28) and using assumption (ii) we �nally obtain

d
dt

G(X (� ))1� a < �
c1

�
k(@G)(X (� ))k � �

c1c2

�
k _X (� )k: (2.30)

We can use that in (2.25),

kX (t) � X (s)k � �
�

c1c2

Z t

s

d
dt

G(X (� ))1� a d�

=
�

c1c2
(G(X (s))1� a � G(X (t))1� a):

(2.31)

Then, using the convergence rate that we already proved forG, we deduce that the Cauchy

criterion holds for X inside the compact (hence complete) subsetC � RP containing

the trajectory, so X converges. Then from (i) and the convergence ofX , we have that

lim inf t ! + 1 k@G(X (t))k = 0 because@Ghas closed graph. This shows that the limit ofX

is a critical point of G. Finally, taking the limit in (2.31) and using the convergence rate of

G we obtain a rate for X as well.

Remark 2.9. Theorem 2.8 takes the form of a general recipe to obtain a convergence

rate since it may be applied in many cases, to curves or �ows, provided that a convenient

Lyapunov function is given. Note also that it is su�cient for assumptions (i) and (ii) to

hold only after some timet0 > 0 as in such case, one could simply do a time shift to use

the theorem.

2.5.3 Application to INNA

We now apply Theorem 2.8 to the deterministic continuous dynamical system (2.8) from

which INNA is built.

Theorem 2.10 (Convergence rates). Suppose thatJ is semi-algebraic locally Lipschitz con-

tinuous and lower bounded. Then, any bounded trajectory(�;  ) that solves(2.8) converges

to a point ( ��; � ) 2 S, with a convergence rate of the formO
�
t � b

�
with b > 0. Moreover,

J (� (t)) converges to its limit �J with rate
�
�
�J (� (t)) � �J

�
�
� = O

�
1
t

�
.

Proof. Let (�;  ) be a bounded solution of (2.8). We would like to use Theorem 2.8 with

X = ( �;  ), and a well-chosen function. Recall the Lyapunov function introduced in the

proof of Theorem 2.1: E(� 1; � 2) = 2(1 + �� )J (� 1) +





 (� � 1

� )� 1 + 1
� � 2








2
, for all (� 1; � 2) 2

RP � RP . We proved a descent property forE along the solutions of (2.12), this holds also
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for the solutions of (2.8) since for all � 1 2 RP , @J (� 1) � DJ (� 1). Due to the properties of

J , the function E is semi-algebraic and locally Lipschitz continuous, so it remains to prove

that (i) and (ii) hold for E along the solution (�;  ) of (2.8).

For t � 0, denotew(t) = ( � � 1
� )� (t)+ 1

�  (t), then according to Lemma 2.5 for a.e.t > 0,

dE
dt

(� (t);  (t)) = �k
p

� _� (t) �
1

p
�

�
_ (t) � _� (t)

�
k2 � k

p
� _� (t) +

1
p

�

�
_ (t) � _� (t)

�
k2

= � 2� k _� (t)k2 �
2
�

k _ (t) � _� (t)k2 = � 2� k _� (t)k2 �
2
�

k�@J (� (t))k2

= � 2� k � �@J (� (t)) � w(t)k2 � 2� k@J (� (t))k2:

(2.32)

On the other hand, by standard results on the sum of di�erentiable and non-di�erentiable

functions, we have for all (�;  ) 2 RP � RP ,

@E(�;  ) = 2

0

@
(1 + �� )@J (� ) + ( � � 1

� )
�
(� � 1

� )� + 1
�  

�

1
�

�
(� � 1

� )� + 1
�  

�

1

A ; (2.33)

so for a.e. t > 0,

k@E(� (t);  (t))k2

4
=








 (1 + �� )@J (� (t)) + ( � �

1
�

)w(t)









2

+









1
�

w(t)









2

: (2.34)

We wish to �nd c1 > 0, such that 1
2

dE
dt + c1

4 k@Ek2 < 0. This follows from the following

claim.

Claim: let r1 > 0, r2 2 R, r3 > 0, then there exist C1 and C2 two positive constants such

that for any a; b2 R,

C1(a2 + b2) � (r1a + r2b)2 + r3b2 � C2(a2 + b2): (2.35)

Indeed, the function Q : (a; b) 7! (r1a+ r2b)2 + r3b2 is a positive de�nite quadratic form, C1

and C2 can be taken to be two eigenvalues of the positive de�nite matrix which represents

Q. Hence, (2.35) holds for alla and b.

Applying the previous claim to (2.32) and (2.34) leads to the existence ofc1 > 0 such

that for a.e. t > 0,
dE
dt

(� (t);  (t)) � � c1k@E(� (t);  (t))k2;

so assumption (i) holds for INNA.
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It now remains to show that (ii) of Theorem 2.8 holds i.e., that there existsc2 > 0 such that

for the solution (�;  ) of (2.8) and for a.e. t > 0, k@E(� (t);  (t))k2 � c2

�
k _� (t)k2 + k _ (t)k2

�
.

Using (2.8) and (2.34) we obtain:

k@E(� (t);  (t))k2

4
=










1
�

(1 + �� ) _� (t) +
�
(� �

1
�

) �
1
�

(1 + �� )
�

_ (t)









2

+
1
� 2 k _ (t)k2;

(2.36)

and applying again the claim above to (2.36) one can show that there existc2 > 0, such

that for a.e. t > 0,

k@E(� (t);  (t))k2 � c2

�
k _� (t)k2 + k _ (t)k2

�
:

So, assumption (ii) holds for (2.8). To conclude, we can apply Theorem 2.8 to (2.8) and the

proof is complete.

Remark 2.11. (a) Since the discrete algorithm INNA asymptotically resembles DIN (its

continuous-time version, see the proof of Theorem 2.1), the results above suggest that similar

behaviors and rates could be hoped for INNA itself. Yet, these results remain di�cult to

obtain in the case of DL, in particular in the mini-batch setting because of the noise(� k )k2 N.

(b) The proof above is signi�cantly simpler when�� > 1 since Alvarez et al. (2002) proved

that in this case, (2.8) is equivalent to a gradient system, thus assumptions(i) and (ii) of

Theorem 2.8 instantly hold.

(c) Theorems 2.8 and 2.10 can be adapted to the case where the Clarke subdi�erential is

replaced byDJ , but we do not state it here for the sake of simplicity.

(d) Theorems 2.8 and 2.10 are actually valid by assuming thatJ belongs to a polynomially

bounded o-minimal structure. One of the most common instance of such structures is the

one given by globally subanalytic sets (as il lustrated in an example below). We refer to Bolte

et al. (2007a) for a de�nition and further references.

Let us now comment the results of Theorem 2.10. First, we restrained the study to semi-

algebraic loss functionsJ , which are a subclass of tame loss functions. Most networks,

activation functions and dissimilarity measures mentioned in Section 2.2.2 fall into this

category. Nonetheless, the loss functions of the DL experiments of Section 2.6.2 are not semi-

algebraic. Indeed, the dissimilarity measure` used is the cross-entropy:`(f (xn ; � ); yn ) =

�
P D

d=1 1[yn ]d =1 log([f (xn ; � )]d). Such a function cannot be described by polynomials and

presents a singularity whenever[f (xn ; � )]d = 0 . Fortunately, for inputs restricted to a

compact set, due to the numerical precision but also to the �soft-max� functions often used

in classi�cation experiments, the outputs of the network f have values in["; 1] for some small
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" > 0. Therefore, the singularity at 0 is harmless and the cross-entropy acts as a globally

subanalytic function. As a consequence the non-smooth Šojasiewicz inequality holds, and

we could obtain the same rates.

The rate of convergence of the trajectory in Theorem 2.10 is non-explicit in the sense

that the exponent b > 0 is unknown in general. In the light of the proof of Theorem 2.8,

this exponent depends on the KL exponenta of the Lyapunov function, which is itself hard

to determine in practice. However, the intuition is that small exponents a may yield faster

convergence rates (indeed, whena 2 (0; 1=2) we actually have a linear rate). As an example,

for the function: t 2 R 7! j t jc with c > 1, the exponent at t = 0 is a = 1 � 1
c and thus, the

closerc is to 1, the smaller a is, and the faster the convergence becomes.

2.6 Experiments

In this section we �rst discuss the role and the in�uence of the hyper-parameters of INNA

as illustrated on the 2D example given in Figure 2.1. We then compare INNA with SGD,

ADAGRAD and ADAM on deep learning problems for image recognition.

2.6.1 Understanding the role of the hyper-parameters of INNA

Both hyper-parameters � and � can be seen as damping coe�cients from the viewpoint of

mechanics as discussed by Alvarez et al. (2002) and sketched in the introduction. Recall

that DIN, the second-order model used to build INNA, originally reads,

•� (t) = � � _� (t) � � r 2J (� (t)) _� (t) � rJ (� (t)) :

Rewriting DIN as above highlights the mechanical interpretation inspired by Newton's sec-

ond law of dynamics: the acceleration of a ball evolving on the landscape ofJ coincides

with a sum of forces applied to the ball. Three forces are at stake: the gravity�rJ and

two friction terms. The term � � _� acts as a stabilizer, reducing the speed_� . The parameter

� thus corresponds to aviscous dampingintensity similarly to the damping in the HBF

method (2.2). On the other hand the parameter � can be seen as aNewton damping co-

e�cient which takes into account the geometry of the landscape to brake or accelerate the

dynamics in an adaptive anisotropic fashion. Indeed, the term� � rJ 2(� ) _� accounts for

the correlation between the speed_� and the Hessian matrix of �J (� ) which represents the

variations of the gravity term �rJ (� ), see Alvarez and Pérez (1998) and Alvarez et al.
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(2002) for further insights.

We now turn our attention to INNA, and illustrate the versatility of the hyper-parameters

� and � in this case. We proceed on a 2D visual non-smooth ill-conditioned example

à la Rosenbrock, see Figure 2.1. For this example, we aim to �nd the minimum of the

function J (� 1; � 2) = 100( � 2 � j � 1j)2 + j1 � � 1j. This function has a V-shaped valley, and a

unique critical point at (1; 1) which is also the global minimum. Starting from the point

(� 1; 1:5) (the black cross), we apply INNA (without mini-batch sub-sampling) with constant

step-sizes
 k = 10 � 4. Figure 2.1 shows that when� is too small, the trajectory presents

many transverse oscillations as well as longitudinal ones close to the critical point (subplot

a). Then, increasing � signi�cantly reduces transverse oscillations (subplot b). Finally,

the longitudinal oscillations are reduced by choosing a higher� (subplot c). In addition,

these behaviors are also re�ected in the values of the objective function (subplot d). The

orange curve (�rst setting) presents large oscillations. Moreover, looking at the red curve,

corresponding to plot (c), there is a short period between20; 000 and 60; 000 iterations

when the decrease is slower than for the other values of� and � , but still it presents fewer

oscillations. In the longer term, the third choice (� = 1 :3, � = 0 :1) provides remarkably

good performances.

The choice of these hyper-parameters may come with rates of convergence for convex and

strongly convex smooth functions (Attouch et al., 2020). Following this work, one may also

consider to make � and � vary in time (for example like the famous Nesterov damping

coe�cient �
t , Su et al. 2014). In our DL experiments we will however keep these parameters

constant so that our theorems still hold. Yet, di�erent behaviors depending on (�; � ) can

also be observed for DL problems as illustrated on Figure 2.2 and described next. Although

we did not evidence some universal method to choose(�; � ), we used mechanical intuitions

to tune these parameters. The coe�cient � induces viscous damping, thus one may try

to reduce it when convergence appears to be slow. On the other hand, one may want to

increase� when large oscillations are observed. Yet, since� a�ects directly the subgradient

e�ect in (2.13), taking � too large may jeopardize the numerical stability of the algorithm.

We will study the role of the hyper-parameters further in Chapter 3. Indeed, as mentioned

in Remark 2.11-b, when�� � 1, (2.12) can be shown to be a gradient system. On the other

hand, when �� < 1 the dynamics is of a di�erent type. We will study how this re�ects on

INNA and the solutions of DIN.
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(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

Figure 2.2: Analysis of the sensibility of INNA to the choice of � and � for three di�erent
image classi�cation problems. Top: logarithm of the loss functionJ (� ) during the training.
Bottom: classi�cation accuracy on the test set.

2.6.2 Training a DNN with INNA

Before comparing INNA to concurrent algorithms in DL, we �rst describe the methodology

that we followed.

2.6.2.1 Methodology

� We train a DNN for classi�cation using the three most common image datasets:

MNIST, CIFAR-10, and CIFAR-100 (LeCun et al., 1998; Krizhevsky, 2009). These

datasets are composed of60; 000 small images associated with a label (numbers, ob-

jects, animals, etc.). We split the datasets into50; 000 images for training and 10; 000

for testing.

� Regarding the network, we use a slightly modi�ed version of Network in Network
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(NiN) (M. Lin et al., 2014). It is a reasonably large CNN with P � 106 parameters

to optimize. We use ReLU activation functions.

� The dissimilarity measure ` that is used in the empirical lossJ given by (2.4) is the

cross-entropy. The loss functionJ is optimized with respect to � (the weights of

the DNN) on the training data. The classi�cation accuracy of the trained DNN is

measured using the test data of10; 000 images. Measuring the accuracy boils down

to counting how many of the 10; 000 images were correctly classi�ed (in percentage).

� Based on the results of Section 2.6.1, we run INNA for four di�erent values of (�; � ):

(�; � ) 2 f (0:1; 0:1); (0:5; 0:1); (0:5; 0:5); (0:5; 1)g:

Given an initialization of the weights � 0, we initialize  0 such that the initial velocity is

in the direction of �rJ (� 0). More precisely, we use 0 = (1 � �� )� 0 � (� 2 � � )rJ (� 0).

� We compare our algorithm INNA with several algorithms introduced in Section 1.4.3.2:

SGD, ADAGRAD (J. Duchi et al., 2011) and ADAM (Kingma and Ba, 2015). At

each iteration k 2 N, we compute the approximation of @J (� ) on a subsetBk �

f 1; : : : ; 50; 000g of size 32. The algorithms are initialized with the same random

weights (drawn from a normal distribution). Five random initializations are con-

sidered for each experiment.

� Regarding the choice of the step-sizes, ADAGRAD and ADAM both use an adaptive

procedure based on past gradients, see (1.30) and (1.32). For the other two algorithms

(INNA and SGD), we use the classical step-size schedule
 k = 
 0p
k+1

with 
 0 > 0, which

meets Assumption 2.1. For all four algorithms, choosing the right initial step length

(
 0 > 0 for INNA and SGD, � > 0 for the other methods) is often critical in terms

of e�ciency. We choose this parameter using a grid-search: for each algorithm we

select the initial step-size that most decreases the training errorJ after �fteen epochs

(recall that one epoch essentially consists in a complete pass over the dataset). Note

that we could use more �exible step-size schedules, but we chose a standard schedule

for simplicity. Di�erent decay schemes are considered in Figure 2.4.

For these experiments, we usedkeras 2.2.4 (Chollet, 2015) with tensorflow 1.13.1

(Abadi et al., 2016) as backend. The INNA algorithm is available in pytorch , keras

and tensorflow : https://github.com/camcastera/Inna-for-DeepLearning/ (Castera,

2019).
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2.6.2.2 Results

Figure 2.2 displays the training lossJ and test accuracy with respect to the epochs for INNA

in its four hyper-parameter con�gurations considered and for the three datasets considered.

Figure 2.3 displays the performance of INNA with the hyper-parameter con�guration that

led to the smallest average training error in Figure 2.2, with comparison to SGD, ADAGRAD

and ADAM. In these two �gures (and also in subsequent Figure 2.4), solid lines represent

mean values and pale surfaces represent the best and worst runs in terms of training loss

and validation accuracy over �ve random initializations.

Figure 2.2 suggests that the tuning of the hyper-parameters� and � is not crucial to obtain

satisfactory results both for training and testing. The hyper-parameters mostly a�ect the

training speed, so, INNA looks quite stable with respect to these hyper-parameters. Setting

(�; � ) = (0 :5; 0:1) appears to be a good default choice6, nevertheless, tuning these hyper-

parameters is of course advised to get the most out of INNA.

Figure 2.3 shows what can be achieved with a moderately large network and coarse grid-

search tuning of the initial step-size. In our comparison, INNA and ADAM outperform SGD

and ADAGRAD for training. While ADAM seems to be faster in the early training phase,

INNA achieves the best accuracy almost every time especially on CIFAR-100 (Figure 2.3(b)).

Thus, INNA appears to be competitive in comparison to the other algorithms with the

advantage of having solid theoretical foundations and a simple step-size rule as compared to

ADAM and ADAGRAD. Additional DL experiments are performed in Section 4.5, where

INNA appears again to be e�cient for training and seems to possess very good generalization

properties, see Remark 4.5.

Finally, let us point out that although ADAM was faster in the experiments of Figure 2.3,

INNA can outperform ADAM using the slow step-size decay discussed in Section 2.4.2.

Indeed, in the previous experiments we used a standard decreasing step-size of the form


 0=
p

k + 1 for simplicity, but Assumption 2.1 allows for step-sizes decreasing much more

slowly. As such, we also considered decays of the form
 0(k + 1) � q with q � 1=2. The

results are displayed on top of Figure 2.4. Except whenq is too small (too slow decay, e.g.,

q = 1=16), these results show that some decays slower thanq = 1=2 make INNA a little

faster than any of the other algorithms. In particular, with a step-size decay proportional

to k� 1=4, INNA outperforms ADAM (bottom of Figure 2.4). This suggests that tuning q

can also signi�cantly accelerate the training process.

6This observation is con�rmed by additional experiments conducted on Section 4.5 of Chapter 4.
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(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

Figure 2.3: Comparison of INNA with concurrent algorithms: SGD, ADAM and ADA-
GRAD. Top: logarithm of the loss function J (� ) during the training. Bottom: classi�cation
accuracy on the test set.

2.7 Conclusion

In this chapter we introduced a new second-order method featuring inertial and Newtonian

behaviors. In Section 1.4.3.1 of the introduction, we presented the most common strategies

to exploit second-order information via �rst-order oracles. Here, we used a rather orthogonal

approach: we exploited the fact that DIN, a second-order ODE in time and space can be

rewritten as a �rst-order system not only in time but also in space. The resulting implicit use

of second-order information makes INNA highly compatible with �rst-order mini-batch sub-

sampling. We provided a powerful algorithmic convergence analysis under weak hypotheses

applicable to most DL problems. We also provided new general results to study di�erential

inclusions with the Clarke subdi�erential and obtain convergence rates for the continuous-

time counterpart of our algorithm, as well as general results for the solutions of a class of

di�erential inclusions. To our knowledge, the paper from which this chapter is adapted
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(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

Figure 2.4: On top: Training loss of INNA on three image classi�cation problems with
various step-size decays. In the legend,k� q means a step-size decay at iterationk of the
form 
 k = 
 0k� q. The bottom row show the comparison between INNA with a well-chosen
step-size decay and ADAM.

was the �rst one to rigorously handle the analysis of mini-batch sub-sampling for non-

smooth DNNs via the introduction of D-critical points. Our experiments show that INNA

is very competitive with concurrent algorithms for DL, with the advantage of having simple

and explainable hyper-parameters. Finally, the satisfactory performances of the numerical

experiments suggest that INNA seems to avoid spurious critical points and converge to

minima. Next chapter is devoted to providing a better understanding of this phenomenon.
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Chapter 3

Escape of Strict Saddle Points and

Asymptotic Behavior of INNA

This chapter is adapted from Castera (2021).
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3.1 Introduction

In Chapter 2, we introduced DIN, a second-order di�erential equation mixing Newton's

method and HBF. From DIN we built INNA, a practical algorithm to tackle (1.6) and train
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DNNs. While we proved that the accumulation points of INNA yield D-critical points of

J , we now study more precisely the nature of the critical points that INNA is likely to

�nd. Indeed, since the function J is non-convex, it may thus have spurious critical points

(critical points that are not local minima). It has been proved that gradient descent and

HBF are likely to avoid strict saddles (critical points wherer 2J has negative eigenvalues,

Goudou and Munier 2009; Lee et al. 2016; O'Neill and S. J. Wright 2019), however, vanilla

Newton's method (with unit step-sizes) is attracted by any type of critical points, not only

minima (see e.g., Dauphin et al. 2014), which is problematic when solving minimization

problems like (1.6). Since DIN mixes Newton's method and HBF, we would like to answer

the following question: are the solutions of DIN�and the INNA algorithm�likely to avoid

strict saddle points?

In order to get a better understanding of INNA, we consider a less general framework

than in Chapter 2. Here we study a loss functionJ : RP ! R which is twice continuously

di�erentiable on RP , and study a deterministic (full-batch) version of INNA with �xed

step-sizes. In this framework, we answer positively to the above question, both for DIN

and INNA, regardless the choice of the hyper-parameter� and for any � > 0. Additionally,

we shed light on the link between the choice of� and � and the asymptotic behavior of

the solutions of DIN, with in particular the emergence of spirals when�� < 1, this gives

a better understanding of the role played by these hyper-parameters. We also provide

numerical experiments illustrating the theoretical results.

Organization. The organization of this chapter is the following. We recall essential no-

tions and optimality conditions in Section 3.2, we then prove that the solutions of DIN

almost always avoid strict saddle points in Section 3.3.1, and study their qualitative behav-

iors in Section 3.3.2. Then, Section 3.4 is devoted to prove similar results for the discrete

algorithm INNA, some conclusions are �nally drawn. We �rst review the literature speci�-

cally related to this chapter.

Related work. As already said, DIN was �rst introduced by Alvarez et al. (2002). It

was then studied by many, in particular Attouch et al. (2014), Attouch et al. (2016), and

Shi et al. (2021) considered extensions of DIN where the hyper-parameters� and � vary

over time (unlike what we did in Chapter 2). INNA was not the only algorithm based on

the �rst-order equivalent formulation of DIN, this feature was also exploited by L. Chen

and Luo (2019) and Attouch et al. (2020) to build algorithms called HNAG and IPAHD

respectively. Regarding the e�ect of the parameters� and � , Attouch et al. (2020) and
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Attouch et al. (2021) recently provided a global understanding of the link between these

parameters and quantitative properties such as asymptotic rates of convergence for convex

and strongly-convex loss functions. Here we rather focus on qualitative properties (such as

the existence of spiraling solutions) and consider non-convex functions.

Our analysis mainly relies on results from the theory of dynamical systems, and in partic-

ular on the stable manifold theorem (Pliss, 1964; Kelley, 1966). This theorem can be used

to prove that optimization algorithms are likely to avoid strict saddle points, it has been

used for example by Goudou and Munier (2009) followed by Lee et al. (2016) and O'Neill

and S. J. Wright (2019) for gradient descent and HBF. Finally, to analyze the qualitative

behavior of DIN, we use the Hartman-Grobman Theorem (Grobman, 1959; Hartman, 1960).

3.2 Preliminary discussions and de�nitions

Before analyzing asymptotic behavior of optimization methods, we recall some fundamental

notions which will be important in what follows. We refer to the notions of minimizers and

maximizers introduced in Section 1.2.1 and in particular De�nition 1.1. We now recall the

following optimality conditions (see for example Nocedal and S. Wright 2006)�even-though

we already discussed them a little in Chapter 1�which will be central in this chapter.

Proposition 3.1 (Optimality conditions) . Let g: RP ! R be a twice continuously dif-

ferentiable function and let � ? 2 RP . If � ? is a local minimizer of g, then the following

holds:

� First-order condition: � ? is a critical point of g, i.e., r g(� ?) = 0 .

� Second-order condition: The Hessian matrix r 2g(� ?) is positive semide�nite. Equiv-

alently, all the eigenvalues ofr 2g(� ?) are non-negative.

Similarly, for any � ? 2 RP , if r g(� ?) = 0 and r 2g(� ?) is positive de�nite (or equivalently,

r 2g(� ?) has only positive eigenvalues), then� ? is a local minimizer of g.

Similar results hold for maximizers but with negativity conditions for the Hessian matrix.

The link between the eigenvalues of the Hessian matrix of the loss functionJ in (1.6),

and the nature of critical points plays a crucial role in the sequel. As mentioned in the

introduction, some critical points are irrelevant to minimize J , we distinguish three types:

� Those where the Hessian ofJ has only positive eigenvalues. From Proposition 3.1,

these points are local minima.

� The points where the Hessian matrix has at least one negative eigenvalue, which are
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Figure 3.1: Example of two functions whose Hessian matrices are singular at(0; 0). For the
function (� 1; � 2) 2 R2 7! 1

2 � 2
1 + 1

2 � 2
2 + � 1� 2 (on the left), the critical point (0; 0) (in red) is a

minimum. For the function (� 1; � 2) 2 R2 7! � 3
1 + � 2

2 (on the right), the critical point (0; 0)
is neither a minimum nor a maximum.

referred to asstrict saddle points. Such a point cannot be a local minimum, it is either

a maximum or not an extremum.

� The points where the Hessian matrix has only non-negative eigenvalues and at least one

zero eigenvalue, we call themnon-strict saddle points. Such points may be maximizers,

minimizers, or neither of them. For example, consider the functions(� 1; � 2) 2 R2 7!
1
2 � 2

1 + 1
2 � 2

2 + � 1� 2 and (� 1; � 2) 2 R2 7! � 3
1 + � 2

2. For both functions, (0; 0) is a critical

point and the eigenvalues of their Hessian matrices at(0; 0) are 0 and 2. Yet, one can

easily check that (0; 0) is a minimizer for the �rst function and is not an extremum

for the second one. These considerations are illustrated on Figure 3.1.

Due to the di�culties raised by the existence of non-strict saddle points, some results of

this chapter hold only for Morse functions, de�ned next.

De�nition 3.1. A twice continuously di�erentiable function g: RP ! R is a Morse function

if for any � 2 RP such that r g(� ) = 0 , the Hessianr 2g(� ) has no zero eigenvalues.

Morse functions are functions for which all saddles are strict and other critical points are

minima. Some of the following results are restricted to Morse functions, others are more

general, yet, in every case we will need the following assumption.

72



Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

Assumption 3.1. The loss function J has isolated critical points: for any � ? 2 RP such

that rJ (� ?) = 0 , there exists a neighborhood
 � RP of � ? such that � ? is the only critical

point inside 
 .

This assumption guarantees in particular that J has at most a countable (possibly in-

�nite) number of critical points. Note additionally that Assumption 3.1 holds for Morse

functions. Let us now move on to the analysis of DIN.

3.3 Continuous case: asymptotic behavior of the solutions of

DIN

We recall that in this chapter, J : RP ! R is a twice continuously di�erentiable function.

Let � � 0 and � > 0, we consider DIN for twice di�erentiable functions in its equivalent

�rst-order form,

8
<

:

_� (t) = �
�
� � 1

�

�
� (t) � 1

�  (t) � � rJ (� (t))

_ (t) = �
�
� � 1

�

�
� (t) � 1

�  (t)
; for all t > 0; (3.1)

where (�;  ) : R+ � R+ ! RP � RP is di�erentiable for all t > 0. SinceJ is twice continu-

ously di�erentiable, the existence and uniqueness (with respect to initial conditions) of the

solutions of (3.1) are granted by the Cauchy-Lipschitz theorem, see Alvarez et al. (2002).

Let us focus on the asymptotic behavior of the solutions with respect to initial conditions.

Necessary condition for being a stationary point. A key element in the proof of

convergence of INNA in Chapter 2 was that the stationary points of the solutions of DIN

yield D-critical points of J �which are simply critical points for smooth functions�see

(2.16). Indeed, sinceJ is di�erentiable, the set of stationary points of the solutions of (3.1)

is,

S =
n

(� ?;  ?) 2 RP � RP
�
�
�rJ (� ?) = 0 ;  ? = (1 � �� )� ?

o
;

and that a bounded solution(�;  ) of (3.1) converges to a point ofShence the �rst coordinate

� of a bounded solution converges to a critical point ofJ . We will study the type of points

of S which the solutions of (3.1) are likely to converge to, and then study the qualitative

asymptotic behavior of these solutions.
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3.3.1 DIN is likely to avoid strict saddle points

We start with our main result regarding the limit of the solutions of DIN.

3.3.1.1 Main convergence results

For convenience, we denote byS< 0 � S the set of stationary points (� ?;  ?) such that � ? is

a strict saddle point of J , namely,

S< 0
def=

n
(� ?;  ?) 2 S

�
�
�r 2J (� ?) has at least one negative eigenvalue

o
: (3.2)

Theorem 3.2. Suppose that Assumption 3.1 holds forJ , then for almost any initialization,

the corresponding solution of (3.1) does not converge to a point inS< 0.

Before proving the theorem, the following corollary is an immediate consequence suited

for practical applications.

Corollary 3.3. Assume that J is a twice continuously di�erentiable Morse function. As-

sume also thatJ is coercive (i.e., that lim k� k!1 J (� ) = + 1 ). Then for any initialization

the associated solution of(3.1) converges. Moreover, let(� 0;  0) be a non-degenerate ran-

dom variable onRP � RP , and let (�;  ) be the solution of (3.1) initialized at (� 0;  0) and

converging to (� ?;  ?) 2 RP � RP . Then with probability one with respect to the draw of

(� 0;  0), � ? is a local minimizer of J .

This corollary states in particular that for a coercive Morse function, we can pick an ini-

tialization sampled from a non-degenerate distribution onRP � RP , for example a Gaussian

or uniform distribution, and with probability one, the �rst coordinate of the limit of the

solution (with respect to the initialization) is a local minimizer of J .

Proof of Corollary 3.3. Using the remarks from Section 2.4.2, the coercivity ofJ guarantees

that any solution of (3.1) remains bounded, and from Alvarez et al. (2002), any bounded

solution is converging. Then the limit of any solution belongs toS. Let (� 0;  0) be a random

variable sampled from a non-degenerate distribution onRP � RP , by de�nition the support

of the distribution has non-zero measure. In addition, according to Theorem 3.2, the set

of initializations such that the solutions of (3.1) converge to S< 0 has zero measure. So,

almost surely with respect to the random variable (� 0;  0), the solution of (3.1) initialized

at (� 0;  0) converges towardSnS< 0. Finally, since J is a Morse function, SnS< 0 is exactly

the set of local minimizers.
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Remark 3.4. We could state a more general (but more abstruse) result than Corollary 3.3

which would not require the coercivity assumption but only that the set of initializations such

that the associated solution of(3.1) converges has positive Lebesgue measure. We will do so

for INNA (see Corollary 3.10).

We now introduce the main tool to prove Theorem 3.2: the stable manifold theorem.

3.3.1.2 The stable manifold theorem

To simplify the notations we introduce the following mapping,

G : (�;  ) 2 RP � RP 7!

0

@
�

�
� � 1

�

�
� � 1

�  � � rJ (� )

�
�
� � 1

�

�
� � 1

�  

1

A ;

so that (3.1) can be re-written,

d
dt

 
� (t)

 (t)

!

= G(� (t);  (t)) ; for all t > 0: (3.3)

For any (�;  ) 2 RP � RP , we also denote byJacG(�;  ) 2 R2P � 2P the Jacobian matrix of

G at (�;  ). Remark that for any (�;  ) 2 RP � RP , it holds (�;  ) 2 S () G(�;  ) = 0 , so

the stationary points of (3.1) are exactly the zeros ofG. We now state the stable manifold

theorem which is the keystone to prove Theorem 3.2.

Theorem 3.5 (Stable manifold theorem (Haragus and Iooss, 2010; Perko, 2013)). Let

F : R2P ! R2P be a C1 mapping and denote byJacF the Jacobian of F , consider the

autonomous ODE,
d�
dt

(t) = F (�( t)) ; for all t > 0: (3.4)

Let � ? 2 R2P such that F (� ?) = 0 . Let E sc(� ?) be the linear subspace ofR2P spanned by

the eigenvalues ofJacF (� ?) with non-positive real part. There exists a neighborhood
 of � ?

and a C1 manifold Wsc(� ?) tangent to E sc(� ?) at � ?�whose dimension is the number of

eigenvalues ofJacF (� ?) with non-positive real part�such that, for any solution � of (3.4),

(i) If �(0) 2 Wsc(� ?) \ 
 and for T � 0, �([0 ; T]) � 
 , then �([0 ; T]) � Wsc(� ?).

(Invariance)

(ii) If 8t � 0; �( t) 2 
 , then �(0) 2 Wsc(� ?).

We see why this theorem plays an important role in the proof of Theorem 3.2. It states in
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particular that all the solutions of (3.4) converging to � ? must enter inside Wsc(� ?) after

some time, and that Wsc(� ?) has zero measure as soon asJacF (� ?) has at least one positive

eigenvalue. We will show that this holds true for G and for any point in S< 0. Now that we

introduced our main tool, we can prove Theorem 3.2.

3.3.1.3 Proof of Theorem 3.2

We state an elementary useful lemma.

Lemma 3.6. Let � � 0, � > 0 and � 2 R. The quantity (� + �� )2 � 4� is non-positive if

and only if �� � 1 and � 2
�

2� ��
� 2 �

2
p

1� ��
� 2 ; 2� ��

� 2 +
2
p

1� ��
� 2

�
.

Proof of Lemma 3.6. Let � � 0, and � > 0, the function � 2 R 7! (� + �� )2 � 4� =

� 2� 2 + 2( �� � 2)� + � 2 is a second-order polynomial in� whose discriminant is16(1� �� ).

If �� > 1 this discriminant is negative thus the polynomial has no real roots and hence

is always positive. If �� � 1, then the discriminant is non-negative and the roots of the

polynomial are (2� �� )
� 2 �

2
p

1� ��
� 2 .

We now prove Theorem 3.2.

Proof of Theorem 3.2. Let (� ?;  ?) 2 RP � RP such that G(� ?;  ?) = 0 . We �rst compute

the eigenvalues ofJacG(� ?;  ?), in order to apply Theorem 3.5 to (3.3) around (� ?;  ?). By

di�erentiating G we obtain the following Jacobian matrix, displayed by block,

JacG(� ?;  ?) =

0

@
� � r 2J (� ?) �

�
� � 1

�

�
I P � 1

� I P

�
�
� � 1

�

�
I P � 1

� I P

1

A ; (3.5)

where I P denotes the identity matrix of RP � P . We need to compute the eigenvalues of

JacG(� ?;  ?) and study the sign of their real parts. In particular, we want to show that

if r 2J (� ) has a (strictly) negative eigenvalue (i.e.,(� ?;  ?) 2 S< 0), then JacG(� ?;  ?) has

at least one (strictly) positive eigenvalue, and thus according to Theorem 3.5, the stable

manifold associated to(� ?;  ?) has zero measure.

First, r 2J (� ?) is real and symmetric, so the spectral theorem states that there exists an

orthogonal matrix V such that V T r 2J (� ?)V is a diagonal matrix. Thus the matrix,

 
V T 0

0 V T

!

JacG(� ?;  ?)

 
V 0

0 V

!

=

0

@
� �V T r 2J (� ?)V �

�
� � 1

�

�
I P � 1

� I P

�
�
� � 1

�

�
I P � 1

� I P

1

A (3.6)
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is a sparse matrix with only 3 non-zero diagonals and whose eigenvalues are the same as those

of JacG(� ?;  ?). Exploiting the tridiagonal structure, there exists a symmetric permutation

U 2 R2P � 2P , speci�ed in (3.36) in Section 3.6 of the appendix of this chapter, such that we

can transform (3.6) into a block diagonal matrix,

UT

 
V T 0

0 V T

!

JacG(� ?;  ?)

 
V 0

0 V

!

U =

0

B
B
@

M 1
. . .

M P

1

C
C
A ; (3.7)

where for each p 2 f 1; : : : ; Pg, M p is a 2 � 2 matrix de�ned as follows. Denote by

(� p)p2f 1;:::;P g the eigenvalues ofr 2J (� ?), then�up to a symmetric permutation�for all

p 2 f 1; : : : ; Pg, M p =

0

@
�

�
� � 1

�

�
� �� p � 1

�

�
�
� � 1

�

�
� 1

�

1

A .

The eigenvalues ofJacG(� ?;  ?) are obtained by computing those of the matricesM p.

Let p 2 f 1; : : : ; Pg, the eigenvalues ofM p are the roots of its characteristic polynomial:

� M p : X 2 R 7! X 2 � trace(M p)X + det( M p), which gives for any X 2 R,

� M p (X ) = X 2 + ( � + �� p)X + � p: (3.8)

This is a second-order polynomial, whose discriminant is,

� M p

def= ( � + �� p)2 � 4� p: (3.9)

The eigenvalues ofM p depend on the sign of� M p which is given by Lemma 3.6. We now

show that if � p < 0, then M p has a positive eigenvalue.

First assume that � M p � 0. Lemma 3.6 states that in this case, we have�� � 1 and

� p 2
�

2� ��
� 2 �

2
p

1� ��
� 2 ; 2� ��

� 2 +
2
p

1� ��
� 2

�
. An elementary study of the function x 2 [0; 1] 7!

2 � x � 2
p

1 � x shows however that for 0 � �� � 1, 2� ��
� 2 �

2
p

1� ��
� 2 � 0, so � M p � 0

implies � p � 0. Thus, we do not need to further investigate the case� M p � 0 since this

case never occurs when� p < 0.

Suppose now that� M p > 0, then M p has two real eigenvalues,

8
><

>:

� p;+ = � (� + �� p )
2 +

p
� M p

2 = � (� + �� p )
2 +

p
(� + �� p )2 � 4� p

2

� p;� = � (� + �� p )
2 �

p
� M p

2 = � (� + �� p )
2 �

p
(� + �� p )2 � 4� p

2

: (3.10)
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In this case, assume that� p < 0. If � + �� p � 0, then � p;+ is a sum of a non-negative and

a positive term, so � p;+ > 0. If � + �� p � 0, then

2� p;+ = � (� + �� p) +
q

(� + �� p)2 + 4( � � p) > 0;

since 4(� � p) > 0. Overall, we showed that in every case,� p < 0 =) � p;+ > 0. So

whenever there existsp 2 f 1; : : : ; Pg such that � p < 0, JacG(� ?;  ?) has at least one positive

eigenvalue.

We can now apply the stable manifold theorem. Let(� ?;  ?) 2 S< 0. Let an initialization

(� 0;  0) such that the corresponding solution(�;  ) of (3.3) converges to(� ?;  ?). Denote

� : RP � RP � R ! RP � RP � R the �ow of the solutions of (3.3), so that we have

in particular for all t � 0, (� (t);  (t)) = �(( � 0;  0); t) and (� 0;  0) = �(( � (t);  (t); � t).

Consider the manifold Wsc(� ?;  ?) and the neighborhood
 as de�ned in Theorem 3.5. The

convergence of(�;  ) implies that there exists t0 � 0 such that for all t � t0, (� (t);  (t)) 2 
 ,

so according to Theorem 3.5,8t � t0, (� (t);  (t)) 2 
 \ Wsc(� ?;  ?). Expressing this in terms

of �ows, 8t � t0, �(( � 0;  0); t) 2 
 \ Wsc(� ?;  ?) and hence8t � t0,

�(( � 0;  0); t) 2
[

k2 N

� ( 
 \ Wsc(� ?;  ?); � k) ; (3.11)

where the right-hand side in (3.11) corresponds to the union overk 2 N of initial conditions

such that the associated solution has reached
 \ Wsc(� ?;  ?) at time k. Let

W(� ?;  ?) =
�

(� 0;  0) 2 RP � RP
�
�
�
� �(( � 0;  0); t) ����!

t ! + 1
(� ?;  ?)

�
; (3.12)

the set of all initial conditions such that the associated solution converges to(� ?;  ?). Ac-

cording to (3.11), we have proved that,

W(� ?;  ?) �
[

k2 N

� ( 
 \ Wsc(� ?;  ?); � k) : (3.13)

Now, we previously showed that since(� ?;  ?) 2 S< 0, JacG(� ?;  ?) has one or more positive

eigenvalues, so according to the stable manifold theorem, the dimension ofWsc(� ?;  ?) is

strictly less than 2P, hence this manifold has zero measure. Due to the uniqueness of the

solutions of (3.3), for any k 2 N, �( �; � k) is a local di�eomorphism, hence it maps zero-

measure sets to zero-measure sets. Consequently, the right-hand side in (3.13) is a countable

union of zero-measure sets, so it has zero measure as well, and the same goes forW(� ?;  ?).
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To conclude the proof of the theorem, by Assumption 3.1, the critical points are isolated

so their number is countable. So
S

(� ? ; ? )2 S< 0
W(� ?;  ?) is a countable union of zero-measure

sets so it has zero measure.

Remark 3.7. Keeping the notations of the proof of Theorem 3.2, we proved that forp 2

f 1; : : : ; Pg, if � p < 0 then � p;+ > 0. Looking at the proof, note that we could also show quite

easily that � p > 0 =) � p;+ < 0, so for any local minimizer with non-singular Hessian, the

associated stable manifold does not have zero measure. In particular, the stable manifold

associated to any local minima of a twice di�erentiable Morse functions does not have zero

measure.

3.3.1.4 On the complex eigenvalues of JacG

In the proof of Theorem 3.2 we showed that for any(� ?;  ?) 2 S, if an eigenvalue� p of the

HessianrJ (� ?) is negative, then the associated discriminant� M p is positive and thus the

eigenvalues ofJacG(� ?;  ?) are real. Note however that when there existsp 2 f 1; : : : ; Pg

such that � p � 0 (and hence in particular around local minima), we may have� M p � 0.

This is the case whenever�� � 1, and � p 2
�

2� ��
� 2 �

2
p

1� ��
� 2 ; 2� ��

� 2 +
2
p

1� ��
� 2

�
. When the

aforementioned conditions hold,JacG(� ?;  ?) has complex eigenvalues,

8
><

>:

� p;+ = � (� + �� p )
2 + i

p
� � M p

2 = � (� + �� p )
2 + i

p
4� p � (� + �� p )2

2

� p;� = � (� + �� p )
2 � i

p
� � M p

2 = � (� + �� p )
2 � i

p
4� p � (� + �� p )2

2

: (3.14)

Overall, we proved that DIN is likely to avoid strict saddle points, and we additionally

observed that around local minima, the JacobianJacG may or may not have eigenvalues with

non-zero imaginary part. The existence of complex eigenvalues may change the behavior of

the solutions around local minima. Next section is devoted to studying this matter.

3.3.2 Behavior of the solutions of DIN around stationary points

Accordingly to what we just discussed in Section 3.3.1.4, we wish to characterize the quali-

tative asymptotic behavior of the convergent trajectories of DIN.
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3.3.2.1 The Hartman-Grobman theorem

To this aim, we introduce the Hartman-Grobman theorem.

Theorem 3.8 (Hartman�Grobman (Perko, 2013)) . Consider the following dynamical sys-

tem,
d�
dt

(t) = F (�( t)) ; t 2 R (3.15)

where � : R ! R2P , F : R2P ! R2P is C1 and denote byJacF the Jacobian matrix of

F . Assume that there exists� ? 2 R2P such that F (� ?) = 0 and JacF (� ?) has only non-

zero eigenvalues. Then, there exists a neighborhood
 of � ? and a homeomorphismH (a

bijective continuous function whose inverse is continuous) such that, for any� 0 2 
 , if � is

a solution of (3.15) with �(0) = � 0, there exists an open interval of timeT � R containing

0 such that the function � = H � � is the solution of

d�
dt

(t) = Jac F (� ?)�( t); t 2 T; (3.16)

with initial condition �(0) = H (� 0). The homeomorphismH preserves the parameterization

by time (it does not reverse time).

This theorem essentially states that, in a neighborhood of a stationary point� ? where the

Jacobian matrix JacF (� ?) is non-singular the solutions of (3.15) have a qualitative behavior

similar to those of the linearized system (3.16).

3.3.2.2 Application to DIN

Application of the theorem. Let (� ?;  ?) 2 S be a stationary point of (3.1) such that

� ? is a local minimizer of J and such that r 2J (� ?) has only non-zero eigenvalues (this is

guaranteed for all local minima if J is a Morse function). Consider the di�erential equation,

d
dt

 
e� (t)
e (t)

!

= JacG(� ?;  ?)

 
e� (t)
e (t)

!

; t 2 R: (3.17)

According to Remark 3.7 and the proof of Theorem 3.2, all the eigenvalues ofJacG(� ?;  ?)

have strictly negative real parts. So there exists a homeomorphismH and a neighborhood


of (� ?;  ?) on which Theorem 3.8 holds. In particular, for any initial condition (� 0;  0) 2 
 ,

the associated solution of (3.3) converges to(� ?;  ?) (because the corresponding solution of

(3.17) converges to(� ?;  ?) and H preserves the parameterization by time).
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So for any initialization in (� 0;  0) 2 
 , the corresponding solution (�;  ) of (3.3) re-

mains in 
 , i.e., 8t � 0; (� (t);  (t)) 2 
 . Thus we can use the Hartman-Grobman around

(� (t);  (t)) for any t � 0. As a result, for any initialization in (� 0;  0) 2 
 , and for all t � 0,

the associated solution(�;  ) of (3.3) reads, (� (t);  (t)) = H � 1( e� (t); e (t)) where ( e�; e ) is

the solution of (3.17) with initial condition ( e� (t0); e (t0)) = H (� (0);  (0)) .

We give a more precise expression for this solution. As done in the proof of Theo-

rem 3.2 we can diagonalizeJacG(� ?;  ?): there exists a matrix Q 2 R2P � 2P such that

JacG(� ?;  ?) = QDQ � 1, where D = diag( � 1; : : : ; � 2P ), and (� p)f 1;:::;2P g are the eigenvalues

of JacG(� ?;  ?). Using the diagonalization, the solution of (3.17) is given for all t 2 R by 
e� (t)
e (t)

!

= QetD Q� 1

 
e� (0)
e (0)

!

. So going back to(�;  ), we have,

�
� (t);  (t)

�
= H � 1

�
QetD Q� 1H (� (0);  (0))

�
; for all t � 0: (3.18)

Finally, let any initialization (� 0;  0) 2 RP � RP (not necessarily belonging to
 ), such

that the corresponding solution (�;  ) of (3.3), converges to(� ?;  ?). Then there exists

t0 � 0 such that for all t � t0, (� (t);  (t)) 2 
 , and the arguments above apply aftert0.

Form of the solutions. We proved that after some time, a solution(�;  ) of (3.3) which

converges to(� ?;  ?) can be expressed with formula (3.18) (up to a time shift). If�� � 1 and

all the eigenvalues ofr 2J (� ?) are not in
�

2� ��
� 2 �

2
p

1� ��
� 2 ; 2� ��

� 2 +
2
p

1� ��
� 2

�
, or if �� > 1,

then all the eigenvalues ofJacG(� ?;  ?) are real so the coordinates ofQ� 1etD Q in (3.18) are

sums of exponential functions decreasing in time.

However, if �� � 1 and there exists eigenvalues ofr 2J (� ?) belonging to the interval

mentioned above, then there exists eigenvalues ofJacG(� ?;  ?) with non-zero imaginary part.

Let p 2 f 1; : : : ; Pg such that � p is an eigenvalue ofr 2J (� ?) belonging to the aforementioned

interval. From (3.14), there exists two complex eigenvalues:� (� + �� p )
2 � i

p
4� p � (� + �� p )2

2 , and

thus the coordinates of the matrix etD in (3.18) contain terms of the form,

e
� ( � + �� p )

2 t (cos(! pt) � i sin(! pt)) ;

where ! p =
p

4� p � (� + �� p )2

2 . So in this setting, and in this setting only, the imaginary

parts of the eigenvalues ofJacG(� ?;  ?) generate oscillating terms and the solution of the

linearized modelt 7! QetD Q� 1 (plus initial condition) spirals around (� ?;  ?) as it converges

toward it. This is illustrated on Figure 3.2 where such a behavior is indeed observed for a
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(numerically approximated) solution of (3.1). Note �nally that ! p is a decreasing function

of � , hence increasing the parameter� reduces the oscillations, which corroborates the

intuition discussed in Section 2.6.1 of Chapter 2.

3.3.2.3 Numerical illustration of the spiraling phenomenon

Setting. To illustrate the spiraling phenomenon, we consider a simple quadratic function

J : (� 1; � 2) 2 R2 7! � 2
1 + 2 � 2

2. This loss function is C2(R2), and for all (� 1; � 2) 2 R2, it has a

constant diagonal Hessianr 2J (� 1; � 2) =

 
2 0

0 4

!

. This is a convex function whose unique

global minimizer is (� ?;  ?) = (0 ; 0). Instead of solving exactly (3.1), we �nd an approximate

solution via the a full-batch version of INNA derived from (3.1) and presented in next section.

To do so, we ran the algorithm with very small step-sizes. The algorithm is initialized

at (1; 1). We consider two choices of parameters:(�; � ) = (2 ; 0:1) and (�; � ) = (2 ; 1).

The former illustrates the case �� < 1 while the second corresponds to the case where

�� > 1. According to Section 3.3.1.4, with the con�guration (�; � ) = (2 ; 0:1), the range of

eigenvalues for which we should observe spirals is approximately[1; 359]so both eigenvalues

of the Hessian ofJ lie in this interval.

Results. The expected behavior (discussed on Section 3.3.2.2) can be observed on the left

of Figure 3.2. When�� < 1 (red curve), the trajectory spirals around the critical point (0; 0).

On the contrary, the phenomenon does not occur when�� > 1 (orange curve). Remark

also that when zooming in�nitesimally close to (0; 0), the oscillating behavior is still present.

Note however that this qualitative result says nothing about the speed of convergence, as

evidenced on the right of Figure 3.2. Despite the presence of spirals, the setting where

�� < 1 yields a faster algorithm both in terms of loss function values and distance to the

objective. From a theoretical point of view, the Hartman-Grobman theorem connects the

solutions of (3.1) and those of its linearized approximation through a mapping which is

homeomorphic (hence continuous) but not necessarily di�erentiable. As a consequence, the

theorem does not guarantee that the speed of convergence is preserved. Regarding the study

of the speed of convergence, we refer to Attouch et al. (2020) and Attouch et al. (2021) in

a convex setting and to Theorem 2.10 for the non-convex case.

Vanishing viscous damping. To �nish this section, we empirically investigate the os-

cillating phenomenon when using an asymptotically vanishing damping. More precisely,

we consider a viscous damping� (t) that may vary over time, and in particular that pro-
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Zoom on [� 0:01; 0:01] � [� 0:015 ; 0:015] Zoom on [� 5; 5] :10 � 4 � [� 35; 35] :10 � 5

Figure 3.2: Illustration of the spiral phenomenon discussed in Section 3.3.2 on the function
J : (� 1; � 2) 2 R2 7! � 2

1 + 2 � 2
2. Top-left �gure displays the evolution of the iterates on the

landscape of the loss function with two zooms on bottom-left �gures. Right �gures show
the value of the loss function and the distance to the global minimizer(0; 0) as a function
of the iterations.

gressively decreases to zero ast ! 1 . Such damping has been given a lot of attention

after the work of Su et al. (2014) who made a connection between Nesterov's accelerated

gradient (Nesterov, 1983) and a di�erential equation with a damping proportional to 1=t.

As for DIN, if such a damping is used while keeping� �xed, we eventually have � (t)� � 1

after some time. Our approach is however purely empirical since the Hartman-Grobman

theorem holds only for autonomous ODEs1 (hence with � remaining constant). In this

setting we do observe spirals (see Figure 3.2), actually, we see on the blue curve that for

(� (t); � ) = (2 =t; 0:1), the spirals are so large that the algorithm is much slower than it was

for �xed values of (�; � ). However when taking a larger� (green curve), these oscillations

are damped (although still noticeable), yielding better performances in terms of speed.

1The theorem can be extended to some non-autonomous ODEs (Palmer, 1973), which we do not consider
for the sake of simplicity.
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3.4 Discrete case: INNA almost surely avoids saddle points

We now turn our attention to the asymptotic behavior of INNA introduced in Chapter 2.

Let � � 0 and � > 0 be two hyper-parameters. We designed INNA for non-smooth and

stochastic applications, however, in order to study its asymptotic behavior, we consider a

simpler framework. We analyze the algorithm for a loss functionJ that is twice continuously

di�erentiable and consider a deterministic version of the algorithm. In this framework, we

may use �xed step-sizes: let
 > 0 be a step-size, in this setting, we consider the deterministic

version of INNA as,

8
<

:

� k+1 = � k + 

h
� (� � 1

� )� k � 1
�  k � � rJ (� k )

i

 k+1 =  k + 

h
� (� � 1

� )� k � 1
�  k

i : (3.19)

For the rest of this chapter, when we mention INNA, we refer to the deterministic smooth

version (3.19). Since INNA is obtained by discretizing (3.1), we expect a similar behavior

for both dynamics. Actually, we showed in the previous chapter that the set of stationary

points of INNA is the same as that of DIN:

S =
n

(�;  ) 2 RP � RP
�
�
�rJ (� ) = 0 ;  = (1 � �� )�

o
:

In this section, we prove that INNA is unlikely to converge to strict saddle points, that is,

for almost any initialization. To this aim we recall the de�nition of the set S< 0 previously

introduced,

S< 0 =
n

(�;  ) 2 S
�
�
�r 2J (� ) has at least one negative eigenvalue

o
:

3.4.1 INNA generically avoids strict saddles

In order to derive results for INNA similar to those for DIN, we will have to carefully choose

the step-size
 > 0. To this aim, we need to assume the following.

Assumption 3.2. There existsL rJ > 0 such that the gradientrJ of the loss functionJ

is L rJ -Lipschitz continuous on RP (with respect to a given normk � k on RP ).

Recall from the introduction chapter that this assumption guarantees in particular that

at any point of RP , the eigenvalues ofr 2J are bounded byL rJ . Under this assumption

our main result regarding INNA follows.
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Theorem 3.9. Under Assumption 3.1 and 3.2, if � > 0 and the step-size
 is such that,

0 < 
 < min

 
�
2

+
�

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
; �

!

; (3.20)

�where the right-hand side in (3.20) is always positive� then for almost any initialization,

INNA does not converge to a point inS< 0.

We can again formulate a corollary suited for practical applications.

Corollary 3.10. Assume that J is a twice continuously di�erentiable Morse function and

that Assumption 3.2 holds. Let � > 0, � > 0 and a step-size
 such that 0 < 
 <

min
�

�
2 + �

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
; �

�
. Consider the algorithm INNA for such a choice

of �; � and 
 . Denote by CJ the set of initializations such that the associated sequences

of iterates of INNA remain bounded and converge. Assume thatCJ has positive Lebesgue

measure. Let (� 0;  0) be a non-degenerate random variable onCJ , and let (� k ;  k )k2 N be a

sequence generated by(3.19), initialized at (� 0;  0) and converging to(� ?;  ?) 2 RP � RP .

Then with probability one with respect to the draw of(� 0;  0), � ? is a local minimizer of J .

The proof follows similar lines as that of Corollary 3.3 and the practical consequences of

Corollary 3.10 are the same as those discussed for DIN. In order to prove Theorem 3.9, we

will use a version of the stable manifold theorem suited to the analysis of discrete processes.

3.4.2 Stable manifold theorem for discrete processes

We introduce a di�erent version of the stable manifold theorem. This version was used by

Lee et al. (2016) and O'Neill and S. J. Wright (2019) to analyze gradient descent and the

HBF methods respectively. For a function F : RP ! RP and for all k 2 N> 0, we introduce

the following notation: F k = F � : : : � F| {z }
k compisitions

. The theorem is the following.

Theorem 3.11 (III.7 (Shub, 2013)). Let � ? 2 R2P be a �xed point for the C1 local dif-

feomorphism F : U ! R2P where U � R2P is a neighborhood of� ?. Let Esc(� ?) be the

linear subspace spanned by the (complex) eigenvalues ofJacF (� ?) with magnitude less than

one. There exists a neighborhood
 of � ? and a C1 manifold Wsc(� ?) tangent to Esc(� ?)

at � ?�whose dimension is the number of eigenvalues ofJacF (� ?) with magnitude less than

one�such that, for � 0 2 R2P ,

(i) If � 0 2 Wsc(� ?) and F (� 0) 2 
 then F (� 0) 2 Wsc(� ?) (Invariance).
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(ii) If 8k 2 N> 0; F k (� 0) 2 
 , then � 0 2 Wsc(� ?).

Although we study an iterative algorithm and not the solutions of an ODE, the results

stated in Theorem 3.11 are very similar to those of Theorem 3.5, thus, the proof of Theo-

rem 3.9 follows steps similar to those of the proof of Theorem 3.2.

Formulating INNA to use Theorem 3.11. Proceeding similarly to Section 3.3.1, for

any (�;  ) 2 RP � RP , we rede�ne the mapping G as,

G

 
�

 

!

=

0

@
� + 


h
� (� � 1

� )� � 1
�  � � rJ (� )

i

 + 

h
� (� � 1

� )� � 1
�  

i

1

A ; (3.21)

so that an iteration k 2 N of INNA reads (� k+1 ;  k+1 ) = G(� k ;  k ). Remark that unlike for

(3.1), we now study the �xed points of G and not its zeros. Indeed, the iterative process

INNA consists in successive compositions of the operatorG and the set of �xed points of G

is exactly S. Indeed, let (�;  ) 2 RP � RP ,

G(�;  ) = ( �;  ) ()

8
<

:

� (� � 1
� )� � 1

�  � � rJ (� ) = 0

� (� � 1
� )� � 1

�  = 0

()

8
<

:

rJ (� ) = 0

 = (1 � �� )�
: (3.22)

So (�;  ) is a �xed point of G if and only if rJ (� ) = 0 and  = (1 � �� )� .

3.4.3 Proof of Theorem 3.9

Block-diagonal transformation. Throughout the proof we will use a block-diagonal

transformation. Let (�;  ) 2 RP � RP , sinceJ is C2(RP ) then G is C1(RP � RP ) and the

Jacobian matrix of G at (�;  ) (displayed by block) reads,

JacG(�;  ) =

0

@(1 � 
 (� � 1
� )) I P � 
� r 2J (� ) � 


� I P

� 
 (� � 1
� )I P (1 � 


� )I P

1

A : (3.23)
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Proceeding like in Section 3.3.1, their exists an orthogonal matrixV 2 RP � P and a permu-

tation U 2 R2P � 2P (de�ned in Section 3.6) such that,

UT

 
V T 0

0 V T

!

JacG(�;  )

 
V 0

0 V

!

U =

0

B
B
@

M 1
. . .

M P

1

C
C
A ; (3.24)

where for eachp 2 f 1; : : : ; Pg, M p =

0

@1 � 
 (� � 1
� ) � 
�� p � 


�

� 
 (� � 1
� ) 1 � 


�

1

A �up to a symmetric

permutation�and (� p)p2f 1;:::;P g are the eigenvalues ofr 2J (� ). To apply the stable manifold

theorem and prove Theorem 3.9 we needG to be a local di�eomorphism. This result is non-

straightforward to obtain, so we state it as a theorem before proving Theorem 3.9.

Theorem 3.12. Under Assumption 3.2, for any � > 0, � > 0 and

0 < 
 < min

 
�
2

+
�

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
; �

!

;

the mappingG de�ned in (3.21) is a local di�eomorphism from RP � RP to RP � RP .

We show this result later in Section 3.7 of the appendix of this chapter.

Application of Theorem 3.11 to prove Theorem 3.9. We can now prove Theo-

rem 3.9.

Proof of Theorem 3.9. Consider the mapping G de�ned in (3.21) with � > 0, � > 0 and

0 < 
 < min
�

�
2 + �

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
; �

�
. By direct application of Theorem 3.12,

G is a local di�eomorphism. Let (� ?;  ?) 2 RP � RP be a �xed point of G. Our goal is to

apply the stable manifold theorem in a neighborhood of this point.

To this aim, we study under which conditions on the eigenvalues ofr 2J (� ?) the eigen-

values ofJacG(� ?;  ?) have magnitude less than one. Throughout the proof we consider the

same block-diagonal transformation ofJacG(� ?;  ?) as in (3.24), and we keep the same no-

tations. Let p 2 f 1; : : : ; Pg, the eigenvalues ofM p are the roots of the following polynomial,

� M p (X ) = X 2 � trace(M p)X + det( M p)

= X 2 � (2 � 
 (� + �� p))X + 1 � 
 (� + �� p) + 
 2� p: (3.25)
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The discriminant of � M p is,

� M p = (2 � 
 (� + �� p))2 � 4(1 � 
 (� + �� p) + 
 2� p)

= 4 + 
 2(� + �� p)2 � 4
 (� + �� p) � 4 + 4
 (� + �� p) � 4
 2� p

= 
 2
�
(� + �� p)2 � 4� p

�
:

Remark that up to a factor 
 2 > 0, this is the same discriminant as in (3.9) from Sec-

tion 3.3.1. Therefore, we can once again use Lemma 3.6 to deduce that� M p is non-positive

if and only if �� � 1 and � p 2
�

2� ��
� 2 �

2
p

1� ��
� 2 ; 2� ��

� 2 +
2
p

1� ��
� 2

�
. We split the study with

respect to the sign of� M p .

� If � M p > 0, then M p has two real eigenvalues,

8
<

:

� p;+ = 1 � 1
2 
 (� + �� p) + 1

2 

q

(� + �� p)2 � 4� p

� p;� = 1 � 1
2 
 (� + �� p) � 1

2 

q

(� + �� p)2 � 4� p

: (3.26)

We then study whether the magnitudes of the eigenvalues are smaller or larger than

1, the computations are very similar to those of Section 3.3.1. If� p < 0, then j(� +

�� p)j <
q

(� + �� p)2 � 4� p, so � p;+ > 1 and � p;� < 1, so we have at least one

eigenvalue with magnitude larger than one. If � p = 0 , then � p;+ = 1 and2 j� p;� j =

j1 � 
� j � 1.

In order to be exhaustive, remark that if � p > 0, then (� + �� p) >
q

(� + �� p)2 � 4� p,

so 0 � � p;+ < 1 and �1 < � p;� < 1, so the bounds enforced on
 ensure that both

eigenvalues have magnitude less than1. This is indeed the case whenever� � p;� < 1,

which is equivalent to 

h
� + �� p +

q
(� + �� p)2 � 4� p

i
< 4 and the latter always

holds true. Indeed, when�� > 1, one can show that the function x > 0 7! � + �x +
p

(� + �x )2 � 4x is increasing (by di�erentiating it). Then, using Assumption 3.2 and

the upper bound enforced on
 it holds,



�
� + �� p +

q
(� + �� p)2 � 4� p

�

<
(� + �L rJ ) �

p
(� + �L rJ )2 � 4L rJ

2L rJ

�
(� + �L rJ ) +

q
(� + �L rJ )2 � 4L rJ

�

<
4L rJ

2L rJ
= 2 < 4: (3.27)

2This is ensured by the boundaries enforced on
 as shown in the proof of Theorem 3.12.
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On the other hand, when �� � 1, by studying again the function x > 0 7! � + �x +
p

(� + �x )2 � 4x, one can show3 that,

� + �� p +
q

(� + �� p)2 � 4� p

� max
�

2�; � + �L rJ +
q

(� + �L rJ )2 � 4L rJ

�
: (3.28)

Then if the maximum in the right-hand side of (3.28) is 2� , it holds,



�
� + �� p +

q
(� + �� p)2 � 4� p

�
� 2�
 � 2�� � 2 < 4;

and if the maximum is the other value, we use (3.27) again. To summarize, when

� M p > 0, � p � 0 () j � p;+ j � 1 and j� p;� j � 1.

� If � M p � 0 then this implies that � p � 0 so (� ?;  ?) 62S< 0 and we do not need

additional arguments. However, for the sake of completeness, we check whether the

manifold in Theorem 3.11 may have positive measure around local minimizers with

non-singular Hessian (in particular around any minimizer of a Morse function). The

eigenvalues ofM p are,

8
<

:

� p;+ = 1 � 1
2 
 (� + �� p) + i

2 

q

4� p � (� + �� p)2

� p;� = 1 � 1
2 
 (� + �� p) � i

2 

q

4� p � (� + �� p)2
: (3.29)

Both eigenvalues have the same magnitude,

j� p;+ j2 = j� p;� j2 =
�

1 �
1
2


 (� + �� p)
� 2

+
1
4


 2(4� p � (� + �� p)2)

= 1 � 
 (� + �� p) + 
 2� p; (3.30)

so,

j� p;+ j2 < 1 () � 
 (� + �� p) + 
 2� p < 0

() (
 � � )� p < � () 
 < � +
�
� p

: (3.31)

3The proof is similar to the one of Lemma 3.15 given in the appendix of this chapter.
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This is always true since,


 <
1
2

(� +
�

L rJ
) �

p
(� + �L rJ )2 � 4L rJ

2L rJ
�

1
2

(� +
�

L rJ
) � � +

�
� p

: (3.32)

We just proved that the eigenvalues ofJacG(� ?;  ?) have magnitude less than one if and

only if (� ?;  ?) 2 Sn S< 0.

We can now use the stable manifold theorem. Let(� ?;  ?) 2 S< 0. Let an initialization

(� 0;  0) such that the associated realization(� k ;  k )k2 N of INNA converges to(� ?;  ?). Con-

sider the manifold Wsc(� ?;  ?) and the neighborhood
 as de�ned in Theorem 3.11. Since

(� k ;  k )k2 N converges, there existsk0 2 N such that for all k � k0, (� k ;  k ) 2 
 , so according

to Theorem 3.11,8k � k0, (� k ;  k ) 2 
 \ Wsc(� ?;  ?). Rewriting this with the operator G,

8k � k0, Gk (� 0;  0) 2 
 \ Wsc(� ?;  ?), and hence8k � k0,

Gk (� 0;  0) 2
[

j 2 N

G� j (
 \ Wsc(� ?;  ?)) ; (3.33)

where G� j (
 \ Wsc(� ?;  ?)) corresponds to all the initial conditions such that INNA has

reached
 \ Wsc(� ?;  ?) after j iterations. Let

W(� ?;  ?) =
�

(� 0;  0) 2 RP � RP
�
�
�
�G

k (� 0;  0) ����!
k! + 1

(� ?;  ?)
�

; (3.34)

the set of all initial conditions such that INNA converges to (� ?;  ?). From (3.33), it holds

that,

W(� ?;  ?) �
[

j 2 N

G� j (
 \ Wsc(� ?;  ?)) : (3.35)

Then, we showed that since(� ?;  ?) 2 S< 0, then JacG(� ?;  ?) has at least one eigenvalue

with magnitude strictly larger than one, so according to the stable manifold theorem, the

dimension of Wsc(� ?;  ?) is strictly less than 2P, hence this manifold has zero measure.

By assumption the step-size
 is chosen such thatG is a local di�eomorphism (from The-

orem 3.12), so8k 2 N, G� k is also a local di�eomorphism, hence it maps zero-measure

sets to zero-measure sets. As a result, the right-hand side in (3.35) is a countable union of

zero-measure sets, so it has zero measure, as well asW(� ?;  ?).

This proves the theorem since Assumption 3.1 guarantees that there is at most a countable

number of critical points. So
S

(� ? ; ? )2 S< 0
W(� ?;  ?) is a countable union of zero-measure

sets so it has zero measure.
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(a) Initialization on the stable manifold of
the strict saddle

(b) Initialization close but outside of the
stable manifold of the strict saddle

Figure 3.3: Evolution of the iterates of INNA on the landscape of the toy function
J : (� 1; � 2) 2 R2 7! � 4

1 � 4� 2
1 + � 2

2. This function has two minimizers (�
p

2; 0) and (
p

2; 0)
and one strict saddle point (0; 0). The red and blue surfaces represent the parts where
J is locally concave and convex respectively. The stable manifold ofJ around (0; 0) is
represented by the grey curve. Left �gure shows the behavior of INNA for two choices of
hyper-parameters and for two initializations belonging to the stable manifold of (0; 0). In
this setting the algorithm does converge to the strict saddle(0; 0). When initialized near
but outside the manifold (right �gure), the algorithm avoids the strict saddle and converges
to a local minimizer for both choices of hyper-parameters.

3.4.4 Numerical Illustration

We �nish the study of INNA with a short empirical illustration of Theorem 3.9 on a toy

example. To this aim we consider the functionJ : (� 1; � 2) 2 R2 7! � 4
1 � 4� 2

1 + � 2
2. This

function is twice continuously di�erentiable on R2, non-convex, has a diagonal Hessian and

three critical points: two local minimizers (�
p

2; 0) and (
p

2; 0) and one strict saddle point

(0; 0). The landscape ofJ is displayed on Figure 3.3. The set of initializations such that

INNA converges to the strict saddle point (0; 0) is the manifold � 2 2 R 7! (0; � 2) which

has indeed zero measure onR2. Figure 3.3 shows that when initialized on this manifold,
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Table 3.1: Empirical validation of the results of Theorem 3.9

Percentage of convergence
to each critical point

Average number of
iterations to escape

a saddle point(�
p

2; 0) (
p

2; 0) (0; 0)

Initialization outside
the stable manifold,
very close to(0; 0)

INNA �� < 1 48,8% 51,2% 0% 36
INNA �� > 1 50,7% 49,3% 0% 35
GD 50,2% 49,8% 0% 37

Initialization on
the stable manifold

INNA �� < 1 0% 0% 100% -
INNA �� > 1 0% 0% 100% -
GD 0% 0% 100% -

the algorithm does converge to(0; 0) but when initialized anywhere else, it avoids the strict

saddle.

In addition to this illustration, we ran INNA and gradient descent�which is also known

for almost surely escaping strict saddle points (Lee et al., 2016)�for 1000random Gaussian

initializations sampled from N2(0; 10� 24), hence extremely close to the saddle point(0; 0).

We also perform the same experiment but with a random initialization on the stable mani-

fold. The results reported on Table 3.1 demonstrate that the algorithm always escapes the

saddle point and converges to one of the two local minimizers. This empirically illustrates

Theorem 3.9 and Corollary 3.10.

3.5 Conclusion

In this chapter, we provided a better understanding of the role played by the hyper-

parameters� and � . This could help users of INNA to choose these parameters in practical

applications. More importantly, we proved that the asymptotic behaviors of INNA and DIN

make them relevant to tackle non-convex minimization problems. In particular, we provided

conditions so that the deterministic version of INNA is likely to avoid strict saddle points

of smooth functions. We may expect a similar behavior for INNA in its stochastic form.

Indeed, one may intuitively think that the convergence to a strict saddle point is even more

unlikely to occur in this case since the random noise will make the iterates escape the zero-

measure stable manifold associated to this point (if they enter inside this manifold, which is

already unlikely). Yet, proving such results in the stochastic setting is not straightforward

and is left for future work. This concludes the part of this thesis on INNA, we will now
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move on to another algorithm.
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3.6 Permutation matrices

In this section, we specify the permutations matrices necessary to obtain the block diago-

nalization in (3.7) and (3.24). Denote by mod the modulo operator and let P 2 N> 0. We

can choose the permutation matrix U 2 R2P � 2P as the matrix whose coe�cients are all

zero except the following, for all p 2 f 1; : : : ; Pg,

if P is odd:

8
>>><

>>>:

UP � p+1 ;p = 1 � mod(p;2)

UP + p;2P � p+1 = mod( p;2)

Up;2P � p = mod( p;2)

;

if P is even:

8
>>>>>>><

>>>>>>>:

Up;p = mod( p;2)

UP + p;P + p = 1 � mod(p;2)

UP + p;p = mod( p;2)

Up;P + p = mod( p;2)

:

(3.36)

For example, for P = 3 and P = 4 this yields the following matrices (where the zero

coe�cients are omitted for the sake of readability),

0

B
B
B
B
B
B
B
B
B
B
@

� � � � 1 �

� 1 � � � �

� � 1 � � �

� � � � � 1

1 � � � � �

� � � 1 � �

1

C
C
C
C
C
C
C
C
C
C
A

and

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 � � � � � � �

� � � � 1 � � �

� � 1 � � � � �

� � � � � � 1 �

� 1 � � � � � �

� � � � � 1 � �

� � � 1 � � � �

� � � � � � � 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:
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3.7 Proof of Theorem 3.12

To prove Theorem 3.12, we introduce three technical lemmas.

Lemma 3.13. For any � > 0 and � > 0 such that �� > 1, the function

x 2 R> 0 7!
�
2

+
�
2x

�

p
(� + �x )2 � 4x

2x

is continuous and decreasing both onR> 0 and R< 0.

Proof of Lemma 3.13. Let � > 0 and � > 0 such that �� > 1. The function x 2 R> 0 7!
�
2 + �

2x �
p

(� + �x )2 � 4x
2x is clearly C1 (R> 0), and its �rst-order derivative is the function

x 2 R> 0 7! � �
p

(�x + � )2 � 4x+(2 � �� )x � � 2

2x2
p

(�x + � )2 � 4x
. Since the denominator is always positive, we study

the numerator of this derivative: de�ne h : x 2 R> 0 7! � �
p

(�x + � )2 � 4x � (2� �� )x+ � 2.

We will prove that h is negative by di�erentiating it: for all x 2 R> 0,

@h
@x

(x) = �
� (2� (�x + � ) � 4)
2
p

(�x + � )2 � 4x
+ �� � 2: (3.37)

@2h
@x2

(x) = �
4� (�� � 1)

(( �x + � )2 � 4x)
3
2

: (3.38)

Since�� > 1, for all x 2 R> 0, @2h
@x2 (x) < 0 and hence for allx 2 R> 0, @h

@x(x) < lim t ! 0
@h
@x(t) =

0. Soh is also decreasing onR> 0, and lim x! 0 h(x) = 0 , so for all x 2 R> 0, h(x) � 0 and the

claim is thus proved on R> 0. The proof is very similar on R< 0 except that h is increasing

on R< 0 but lim x! 0 h(x) = 0 , hence the result.

Lemma 3.14. For � > 0, � > 0 such that �� � 1, the function

x 2 R< 0 7!
�
2

+
�
2x

�

p
(� + �x )2 � 4x

2x

is continuous and increasing onR< 0.

Proof of Lemma 3.14. The proof follows the exact same steps as those of the proof of

Lemma 3.13, except that in (3.38), @2h
@x2 is always positive on R< 0, and we use that to

deduce that @h
@x de�ned in (3.37) is negative on R< 0. So h is decreasing onR< 0 and since

h(0) = 0 we eventually obtain the result.
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Lemma 3.15. Let � > 0, � > 0 such that �� � 1, the function

x 2 R> 0 n [
2 � ��

� 2 �
2
p

1 � ��
� 2 ;

2 � ��
� 2 +

2
p

1 � ��
� 2 ] 7!

�
2

+
�
2x

�

p
(� + �x )2 � 4x

2x

is continuous and increasing for x 2
�

0; 2� ��
� 2 �

2
p

1� ��
� 2

�
and continuous and decreasing

for x 2
�

2� ��
� 2 +

2
p

1� ��
� 2 ; + 1

�
.

Proof of Lemma 3.15. Let � > 0, � > 0 such that �� � 1. Denote by x � = 2� ��
� 2 �

2
p

1� ��
� 2

and x+ = 2� ��
� 2 +

2
p

1� ��
� 2 The function x 2 R> 0 n (x � ; x+ ) 7! �

2 + �
2x �

p
(� + �x )2 � 4x

2x

is C1 on (0; x � ) and on (x+ ; + 1 ). Its �rst-order derivative is x 2 R> 0 n (x � ; x+ ) 7!

� �
p

(�x + � )2 � 4x+(2 � �� )x� � 2

2x2
p

(�x + � )2 � 4x
. The denominator is positive, so we focus on the numerator,

de�ne h : x 2 R> 0 n (x � ; x+ ) 7! � �
p

(�x + � )2 � 4x � (2 � �� )x + � 2. For all x 2

R> 0 n (x � ; x+ ), the �rst and second-order derivatives of h are given by (3.37) and (3.38)

respectively.

Since �� < 1, @2h
@x2 is always positive, so@h

@x is increasing on both intervals. First, when

x ! 0 with 0 < x < x � , @h
@x(x) ! 0, so @h

@x is positive on (0; x � ) and h is increasing on

(0; x � ). Since h(0) = 0 and h is increasing, we proved the �rst part of the lemma. Then,

when x ! + 1 , @h
@x ! � 2, so @h

@x is negative on(x+ ; + 1 ) and h is decreasing on(x+ ; + 1 ).

Finally, h(x+ ) = � 4(1� �� )
� 2 �

2(2� �� )
p

1� ��
� 2 � 0.

We �nally use these lemmas to prove the theorem.

Proof of Theorem 3.12. Let (�;  ) 2 RP � RP . SinceJ is C2(RP ) then G is C1(R2P ) and

the Jacobian matrix JacG(�;  ) can be transformed into a block diagonal matrix as in (3.24)

where for any p 2 f 1; : : : ; Pg, M p is a 2 � 2 block of the diagonal and � p is the associated

eigenvalue ofJ (� ). To prove that G is a local di�eomorphism we prove that JacG(�;  ) is

invertible (i.e., that it has non-zero determinant) and then use the local inversion theorem.

It holds that det(JacG(�;  )) =
Q P

p=1 det(M p), and for eachp 2 f 1; : : : ; Pg,

det(M p) = (1 � 
 (� �
1
�

) � 
�� p)(1 �


�

) �


�


 (� �
1
�

) = 1 � 
 (� + �� p) + 
 2� p: (3.39)

Let p 2 f 1; : : : ; Pg, we want to choose
 such that det(M p) 6= 0 for any (�;  ) 2 RP �

RP , hence for any � p 2 [� L rJ ; L rJ ] (since the eigenvalues are bounded byL rJ from

Assumption 3.2).
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First, if � p = 0 , from (3.39), we must take 
 6= 1=� . From now on, we assume� p 6= 0 ,

so (3.39) is a second-order polynomial in
 and its discriminant is � 
 = ( � + �� p)2 � 4� p.

Notice that � 
 is a polynomial in � p and is exactly the discriminant that we studied in

Section 3.3.1; its sign is given by Lemma 3.6. When this discriminant is non-negative, there

exists two real roots to (3.39),

8
><

>:


 + = (� + �� p )
2� p

+
p

(� + �� p )2 � 4� p

2� p
= �

2 + �
2� p

+
p

(� + �� p )2 � 4� p

2� p


 � = (� + �� p )
2� p

�
p

(� + �� p )2 � 4� p

2� p
= �

2 + �
2� p

�
p

(� + �� p )2 � 4� p

2� p

: (3.40)

As before, we split the study with respect to the value of�� .

� If �� > 1, then � 
 � 0 and the roots of det(M p) are given by (3.40).

� First, when � p < 0,
q

(� + �� p)2 � 4� p > j� + �� pj, so 
 + < 0 and any positive

choice of 
 will never be equal to 
 + in this case. Then by Lemma 3.13,
 �

is a decreasing function of� p for � p < 0 and when � p ! 0, 
 � ! 1=� (using

L'Hôpital's rule), this yields a �rst condition 
 < 1=� .

� When � p > 0, observe that 
 + � 
 � > 0 so we focus the study on
 � .

Lemma 3.13 exactly states that 
 � is a decreasing function of� p > 0. Since

J has L rJ -Lipschitz gradient, � p � L rJ , so, for all � p 2 (0; L rJ ], 
 � �
�
2 + �

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
. Note in addition that when � p ! 0, 
 � ! 1=� ,

this is a simple way to prove that 1=� > �
2 + �

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
when

�� > 1.

To summarize, we had three conditions,
 6= 1=� , 
 < 1=� and 
 < �
2 + �

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
and we proved that the latter implies the �rst-two conditions. Re-

mark that the condition 
 < � holds but is not necessary in the case�� > 1, it is

present in the statement of the theorem to keep it as simple as possible.

� We now assume that�� � 1.

� If � p < 0, then � 
 > 0 and the roots are given by (3.40). As above, it holds thatq
(� + �� p)2 � 4� p > j� + �� pj, so 
 + < 0. Then Lemma 3.14 states that 
 �

is an increasing function of � p < 0, and when � p ! �1 , 
 � ! � . So we need


 < � .

� If � p > 0, then whenever � p 2 [2� ��
� 2 �

2
p

1� ��
� 2 ; 2� ��

� 2 +
2
p

1� ��
� 2 ], there are

no real roots sodet(M p) 6= 0 regardless the choice of
 > 0. If � p does not

belong to interval previously mentioned, the roots are given by (3.40). Remark
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that 
 + > 
 � > 0 so we focus on
 � . Using Lemma 3.15, 
 � is increasing

on (0; 2� ��
� 2 �

2
p

1� ��
� 2 ) and tends to 1=� when � p ! 0 (using L'Hôpital's rule).

The same lemma also state that
 � is decreasing on( 2� ��
� 2 +

2
p

1� ��
� 2 ; + 1 ), so

using the L rJ -Lipschitz gradient of J , 
 � � �
2 + �

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
on

this interval. Note however that we do not necessarily have1=� > �
2 + �

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
.

Overall, for �� � 1 we must have0 < 
 < min
�

�
2 + �

2L rJ
�

p
(� + �L rJ )2 � 4L rJ

2L rJ
; 1

� ; �
�

and �� � 1 =) � � 1=� hence the result.

In every case we proved that the conditions mentioned in the theorem are su�cient to ensure

that for all (�;  ) 2 RP � RP , det(JacG(�;  )) 6= 0 . So by the local inversion theorem,G is

a local di�eomorphism from RP � RP to RP � RP .
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Chapter 4

Second-order Step-size Tuning of SGD for

Non-convex Optimization

This chapter is adapted from Castera et al. (2021b).
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4.1 Introduction

In this last chapter, we focus on using second-order information for tuning the step-sizes of

SGD according to the discussion at the end of Section 1.4.1. GivenP 2 N> 0, we consider
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twice-di�erentiable loss functions J : RP ! R such that each term that constitutes its sum

structure in (1.5) is also twice di�erentiable. Recall from the introduction that for all k 2 N

and � k 2 RP , an iteration of SGD reads,

� k+1 = � k � 
 k rJ Bk (� k ); (4.1)

where Bk � f 1; : : : ; N g is a mini-batch and 
 k > 0 is a step-size. While adaptive methods

(ADAGRAD, RMSprop, etc.) act as preconditioners and prescribe vector step-sizes (see

Section 1.4.3.2), we focus exclusively on �ne-tuning the scalar step-sizes of vanilla SGD.

Our goal here is to adapt the step-sizes to the local shape (the localcurvature) of the land-

scape of the loss function, and account in particular for local convexity, local concavity,

etc. Such information can be estimated using second-order derivatives as we explain here-

after. However, we will have to overcome once more the computational cost of second-order

information and the noise produced by mini-batch sub-sampling strategies.

Our starting point is an in�nitesimal second-order variational model along the negative

gradient direction, close to what we did for GD in (1.25). Such in�nitesimal model is

particularly relevant in DL since one must use vanishing step-sizes to control the e�ects

of mini-batch sub-sampling (recall Figure 1.7). Second-order information is approximated

with �rst-order quantities using �nite di�erences. We will �rst derive a deterministic (or

full-batch) method. This deterministic method is not really new: it corresponds to a non-

convex version of the Barzilai-Borwein (BB) method (Barzilai and Borwein, 1988) and is

somehow a discrete non-convex adaption of the continuous gradient system considered in

Alvarez and Cabot (2004). It is also close to earlier work (Raydan, 1997), with the major

di�erence that our algorithm is supported by a variational model. These variational ideas

will then be essential to adapt our method to mini-batch sub-sampling.

The main contribution of this chapter is to e�ciently adapt the deterministic method

mentioned above to the mini-batch sub-sampling setting. The resulting algorithm is called

Step-Tuned SGD, it features �ne-tuned step-sizes which accelerate SGD in most of our

numerical experiments. We also provide convergence guarantees and rates for this new

algorithm. The proofs of this chapter are not based on the ODE approach that we used for

INNA. Instead, we use the smoothness assumption stated at the beginning of this chapter

and follow a more �classical� approach based on a descent lemma (see Section 4.4).

Regarding the organization of the chapter, the preliminary deterministic algorithm is

derived in Section 4.3.1 and is then adapted to mini-batch sub-sampling in Section 4.3.2.

Theoretical results are stated in Section 4.4 and DL experiments are presented in Section 4.5.
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We �rst review some literature that is speci�cally related to this chapter.

4.2 Literature related to this chapter

Our method belongs to the class of BB methods. Many variations of this method have

been proposed for deterministic optimization (Dai et al., 2002; Xiao et al., 2010; Biglari and

Solimanpur, 2013; Babaie-Kafaki and Fatemi, 2013; Curtis and Guo, 2016). Our methods

aims to detect the sign of the local curvature of the loss function using a convexity test

similar to those provided in Babaie-Kafaki and Fatemi (2013) and Curtis and Guo (2016).

BB methods may be quite unstable and are often stabilized with line-search techniques

(Armijo, 1966). As we explained in Chapter 1, classical line-search approaches are not well

suited for stochastic optimization since we never evaluateJ exactly. It is thus hard to

combine BB methods with noisy gradient estimates. Most stochastic BB algorithms (Tan

et al., 2016; Liang et al., 2019; Robles-Kelly and Nazari, 2019) overcome this issue with

averaging techniques in the style of SVRG (Johnson and T. Zhang, 2013). This reduces the

instability caused by mini-batch sub-sampling but only allows prescribing a new step-size at

every epoch. As such, they fail to capture local variations of curvature at each iteration. In

addition, the step-sizes of the vanilla BB algorithm are positive for strongly-convex functions

only. Since the methods stated above cannot capture local information, they cannot exploit

non-convexity and are limited to using absolute values to prevent negative step-sizes.

On the contrary, our stochastic method can adapt to local curvature every two itera-

tions and can thus discriminate �at, locally concave and locally convex regions. Regarding

the utilization of �atness and concavity of DL loss functions, the AdaBelief algorithm of

Zhuang et al. (2020) is worth mentioning. The latter uses the di�erence between the cur-

rent stochastic gradient estimate and the average over past gradients, this di�erence is then

used to prescribe a vector step-size in the style of ADAM. In comparison, our method uses

scalar step-sizes and aims to capture subtle variations as it computes a stabilized di�erence

between consecutive gradient estimatesbefore averaging.

Finally, the proofs of convergence of this chapter partially follow arguments provided by

Li and Orabona (2019) for the scalar version of ADAGRAD with the di�erence that we do

not assume the global Lipschitz continuity of the gradient.
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4.3 Design of the algorithm

We �rst build a preliminary full-batch algorithm based upon a simple second-order varia-

tional model. We then adapt this algorithm to address mini-batch stochastic approxima-

tions.

4.3.1 Deterministic full-batch algorithm

Second-order in�nitesimal step-size tuning. Let J : RP ! R a loss function, that we

assume to be twice di�erentiable. Let � 2 RP , given an update direction d 2 RP , a natural

strategy is to choose
 2 R that minimizes J (� + 
d ). Let us approximate 
 2 R 7! J (� + 
d )

around 0 with a Taylor expansion,

qd(
 ) def= J (� ) + 
 hrJ (� ); di +

 2

2
hr 2J (� )d; di : (4.2)

If the curvature term hr 2J (� )d; di is positive, then qd has a unique minimizer at,


 ? = �
hrJ (� ); di

hr 2J (� )d; di
: (4.3)

On the contrary when hr 2J (� )d; di � 0, the in�nitesimal model qd is concave (or equiva-

lently J is locally concave in the directiond) which suggests taking a large step-size
 > 0.

Indeed, sinceJ is locally convex around local minima, one will want to escape regions where

local concavity is detected. These considerations are illustrated on Figure 4.1.

Tuning gradient descent. In order to tune GD we choose the directiond = �rJ (� )

which gives,


 (� ) def=
krJ (� )k2

hr 2J (� )rJ (� ); rJ (� )i
: (4.4)

According to the previous discussion, we would ideally use
 k = 
 (� k ) for GD when 
 (� k ) >

0. Yet, we will later use a discretization procedure to overcome the computational cost of

(4.4), and it will then appear that seeking a step-size
 k such that, 
 k ' 
 (� k� 1) (again

when 
 (� k� 1) > 0) is not ideal but is less expensive. Letk � 1 be an iteration index of GD

and assume that� k� 1 2 RP and 
 k� 1 > 0 are known. Let us approximate the quantity,


 (� k� 1) =
krJ (� k� 1)k2

hr 2J (� k� 1)rJ (� k� 1); rJ (� k� 1)i
; (4.5)
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Figure 4.1: Illustration of negative and positive curvature steps. The functionq� represents
the variational model at � 0, with negative curvature. Concavity suggests taking a large
step to reach � 1. Then, at � 1, the variational model q+ has positive curvature and can be
minimized to obtain � 2.

using only �rst-order objects. We rely on two identities,

� � k
def= � k � � k� 1 = � 
 k� 1rJ (� k� 1); (4.6)

� gk
def= rJ (� k ) � rJ (� k� 1) ' � 
 k� 1CJ (� k� 1); (4.7)

where for all � 2 RP , CJ (� ) def= r 2J (� )rJ (� ) and (4.7) is obtained by Taylor's formula.

Combining the above leads us to consider the following step-size,


 k =

8
<

:

k� � k k2

h� � k ;� gk i if h� � k ; � gk i > 0

� otherwise
; (4.8)

where � > 0 is a hyper-parameter of the algorithm representing the large step-sizes to use

in locally-concave regions.

The resulting full-batch non-convex optimization method is detailed in Algorithm 2, in

which � > 0 is the learning rate as in ADAGRAD or ADAM, not to be confused with

the friction parameter of INNA. We insist on the fact that Algorithm 2 is present in the

literature under subtle variants (Raydan, 1997; Dai et al., 2002; Xiao et al., 2010; Biglari and

Solimanpur, 2013). It belongs to the class of non-convex BB methods. In particular, (4.8)
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Algorithm 2 Full-batch preliminary algorithm

1: Input: � > 0, � > 0
2: Initialize � 0 2 RP

3: � 1 = � 0 � � rJ (� 0)
4: for k = 1 ; : : : do
5: � gk = rJ (� k ) � rJ (� k� 1)
6: � � k = � k � � k� 1

7: if h� gk ; � � k i > 0 then
8: 
 k = k� � k k2

h� gk ;� � k i
9: else

10: 
 k = �
11: end if
12: � k+1 = � k � �
 k rJ (� k )
13: end for

coincides with the vanilla BB step-size whenh� � k ; � gk i is positive. The main di�erence

is that we introduce a scaling factor � to overcome the need of stabilizing the method

with line-search procedures (see Section 4.2). We do so in anticipation of the mini-batch

sub-sampling adaptation carried out in the next section, where line-search is unavailable.

Such a scaling factor� , is present in most DL optimizers (ADAGRAD, ADAM, RMSprop,

etc.) and generally requires tuning. Recall that our goal here is not to get rid of hyper-

parameter pre-tuning (which is an important problem as well) but rather to combine this �

with an automatic �ne-tuned sequence(
 k )k2 N in order to accelerate the training. Although

Algorithm 2 is close to existing methods, the interest of our variational viewpoint is the

characterization of the underlying geometrical mechanism supporting the algorithm. This

will be the key to designing an e�cient stochastic version of Algorithm 2 in Section 4.3.2.

Illustrative experiment. Before presenting the mini-batch version, we illustrate the

interest of exploiting negative curvature through the large-stepparameter � with a synthetic

experiment inspired from Carmon et al. (2017). We apply Algorithm 2 to a non-convex

regression problem of the formmin � 2 RP
P N

n=1 � (An � � bn ), speci�ed in Section 4.7 of the

appendix of this chapter, and where � is non-convex. We compare Algorithm 2 with a

classical BB method where absolute values are used when the step-size is negative1 (see, e.g.,

Tan et al. (2016) and Liang et al. (2019) in stochastic settings), we also compare the results

with GD used with Armijo's line-search method. As shown on Figure 4.2, Algorithm 2

e�ciently exploits local curvature and converges much faster than other methods.

1For a fair comparison we implement this method with the scaling-factor � of Algorithm 2.
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Figure 4.2: Values of the loss functionJ (� ) against iterations (each corresponding to a
gradient step) for the synthetic non-convex regression problem detailed in Section 4.7 of the
appendix of this chapter. The optimal value J ? is unknown and is estimated by taking the
best value obtained among all algorithms after105 iterations.

4.3.2 Stochastic mini-batch algorithm

We wish to adapt Algorithm 2 for DL applications, and in particular, make it compatible

with mini-batch sub-sampling. As in the previous chapters, let N 2 N> 0 and consider a

loss function J : RP ! R which takes the form of a sumJ =
P N

n=1 J n , where eachJ n is

assumed to be twice continuously di�erentiable.

Reminder on mini-batch sub-sampling. We consider the mini-batch sub-sampling

procedure described in Section 1.3.4. SinceJ n is di�erentiable for all n 2 f 1; : : : ; N g, for

any B � f 1; : : : ; N g, we recall the de�nition of the following quantities, for any � 2 RP ,

J B(� ) =
1

jBj

X

n2 B

J n (� ); and rJ B(� ) =
1

jBj

X

n2 B

rJ n (� ): (4.9)

where againjBj denotes the number of elements of the setB. Like in Section 1.3.4, the mini-

batches are independent copies of a random subsetA � f 1; : : : ; N g such that, J = E[J A]

and rJ = E[rJ A] (where the expectation is taken over the random draw ofA). This is

valid for example if A is taken uniformly at random over all possible subsets of �xed size,
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Algorithm 3 Step-Tuned SGD

1: Input: � > 0, � > 0
2: Input: � 2 [0; 1], ~m > 0, ~M > 0, � 2 (0; 1=2)
3: Initialize � 0 2 RP , G� 1 = 0P , 
 0 = 1
4: Draw independent random mini-batches(Bk )k2 N.
5: for k = 0 ; 1; : : : do
6: � k+ 1

2
= � k � �

(k+1) 1=2+ � 
 k rJ Bk (� k )

7: � k+1 = � k+ 1
2

� �
(k+1) 1=2+ � 
 k rJ Bk (� k+ 1

2
)

8: � � Bk = � k+ 1
2

� � k

9: � gBk = rJ Bk (� k+ 1
2
) � rJ Bk (� k )

10: Gk = �G k� 1 + (1 � � )� gBk

11: Ĝk = Gk=(1 � � k+1 )
12: if hĜk ; � � Bk i > 0 then

13: 
 k+1 =
k� � Bk

k2

hĜk ;� � Bk
i

14: else
15: 
 k+1 = �
16: end if
17: 
 k+1 = min(max( 
 k+1 ; ~m); ~M )
18: end for

as we shown in (1.19).

Second-order tuning of mini-batch SGD: Step-Tuned SGD. Our goal is to devise

a step-size strategy, based on the variational ideas developed earlier and on the quantityCJ

(de�ned right after Equation 4.6), in the context of mini-batch sub-sampling. First observe

that for � 2 RP ,

CJ (� ) = r 2J (� )rJ (� ) = r
�

1
2

krJ (� )k2
�

: (4.10)

So rewriting J as an expectation over the random subsetA, for all � 2 RP it holds

CJ (� ) = r
�

1
2

kE [rJ A(� )] k2
�

: (4.11)

In order to build an in�nitesimal model as in (4.4), this suggests the following mini-batch

estimator of CJ ,

CJ B (� ) def= r
�

1
2

krJ B(� )k2
�

= r 2J B(� )rJ B(� );

where B � f 1; : : : ; N g and � 2 RP .
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Like in the deterministic case, we reduce the computational cost by approximating our

new target quantity (4.12) with a Taylor expansion of J B between two iterations of SGD.

We obtain for any B � f 1; : : : ; N g, � 2 RP , and small 
 > 0,

� 
 CJ B (� ) ' rJ B(� � 
 rJ B(� )
| {z }

next iterate

) � rJ B(� ): (4.12)

In order to accurately approximate our target quantity, (4.12) indicates that we must com-

pute two gradient estimates on the same mini-batch. This suggests that we should use each

mini-batch twice in SGD and compute a di�erence of gradients only every two iterations.

Note that we could also compute an additional gradient estimate at each iteration of SGD

similarly to what Schraudolph et al. (2007) previously did for a stochastic BFGS algorithm,

but this would double the computational cost.

We now build the algorithm based on this principle. Let an initialization � 0 2 RP , and a

sequence of i.i.d. random mini-batches(Bk )k2 N, whose common distribution is the same as

A. We change the way of enumerating the iterations compared to the previous chapters. We

adopt the following convention: at iteration k 2 N and for � k 2 RP , the random mini-batch

Bk is used to compute a stochastic gradient estimaterJ Bk (� k ) and one iteration of SGD

is then performed (with a step-size that we discuss here-after). We denotek + 1
2 (rather

than k + 1 ) the index of the next iteration and � k+ 1
2

the corresponding iterate. Then, the

same mini-batchis used again to compute another stochastic gradient estimaterJ Bk (� k+ 1
2
)

and to perform the next iteration of SGD. Doing so, we obtain the next iterate � k+1 , at

this iteration we use the next mini-batch Bk+1 , etc. This new way of using mini-batches is

convenient in view of (4.12). Let us de�ne,

� gBk

def= rJ Bk (� k+ 1
2
) � rJ Bk (� k ); (4.13)

thereby � gBk forms an approximation of � 
 kCJ Bk
(� k ) that we can use to compute the next

step-size
 k+1 . We de�ne the di�erence between two iterates accordingly,

� � Bk

def= � k+ 1
2

� � k : (4.14)

We could now build a mini-batch adaptation of Algorithm 2. Before that, we additionally

stabilize the approximation of the target quantity in (4.12) by using an exponential moving

average of the previously computed(� gBj ) j � k . More precisely, we recursively computeGk

de�ned by,

Gk = �G k� 1 + (1 � � )� gBk : (4.15)
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We �nally introduce Ĝk = Gk=(1 � � k+1 ) to debias the estimator Gk such that the sum

of the weights in the average equals1. This mostly impacts the �rst iterations as � k+1

vanishes quickly; a similar process is often used for ADAM, see Kingma and Ba (2015).

The motivation for averaging is discussed in Section 4.3.3.

Altogether we obtain our main method: Algorithm 3, which we name Step-Tuned SGD,

as it aims to tune the step-size every two iterations and not only at each epoch like most

stochastic BB methods. Note that the main idea behind Step-Tuned SGD remains the same

as in the deterministic setting: we exploit the curvature properties of the (J Bk )k2 N through

the quantities hĜk ; � � Bk i to devise our method. Note that compared to Algorithm 2, the

iteration index is shifted by 1 so that the estimated step-size
 k+1 only depends on mini-

batches B0 up to Bk and is therefore conditionally independent ofBk+1 . This conditional

dependency structure is crucial to obtain the convergence guarantees given in Section 4.4.

Remark 4.1. Like Algorithm 2 and like most methods, Algorithm 3 does not alleviate the

need of tuning the scaling factor� , tuning this parameter remains indeed important in most

practical applications. Our main goal here is to accelerate SGD with �ne-tuned step-sizes,

this is analogous to our previous discussion on BB methods for deterministic applications

which often accelerate algorithms but must be stabilized with line-search strategies (replaced

here by the introduction of � ). To the best of our knowledge, in comparison to the epoch-

wise BB methods (Tan et al., 2016; Liang et al., 2019), Algorithm 3 is the �rst method that

manages to mimic the iteration-wise behavior of deterministic BB methods for mini-batch

applications.

4.3.3 Heuristic construction of Step-Tuned SGD

In the previous section, we described the main elements from which Algorithm 3 is made.

We now present the main ideas that led us to build Algorithm 3 this way and discuss the

hyper-parameters. Throughout this paragraph, we use the termgradient variation (GV)

which refers to the local variations of the gradient: it is simply the di�erence of the gradients

at two consecutive iterates. Our heuristic discussion blends discretization arguments and

experimental considerations. We use the non-convex regression experiment of Section 4.3.1

as a test for our intuition and algorithms. A complete description of the methods introduced

below is given in Section 4.9, we only sketch the main ideas.

First heuristic experiment with exact GVs. Assume that along any ordered collection

of points � 0; : : : ; � k 2 RP , one is able to evaluate the GVs ofJ , that is, terms of the form
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Figure 4.3: Values of the loss function against epochs for non-convex regression: heuristic
methods (dashed lines) of Section 4.3.3 are compared with Step-Tuned SGD (plain blue).
SGD serves as a reference to evidence the fast drop down e�ect of other methods. The
additional computational cost of Expected-GV and Exact-GV is ignored as these methods
are here only for illustration purposes (see Section 4.3.3).

rJ (� i ) � rJ (� i � 1), for 1 � i � k. Recall that for all i � 1, we denote � � i = � i � � i � 1

the di�erence between two consecutive iterates. In the deterministic setting, Algorithm 2 is

based on these GVs, indeed,

� k+1 = � k �
� k� � kk2

hrJ (� k ) � rJ (� k� 1); � � k i
rJ (� k ); (4.16)

whenever the denominator is positive. Given a sequence of independent random mini-

batches(Bk )k2 N chosen according to the previous discussions, a heuristic mini-batch version

of this recursion could be as follows,

� k+1 = � k �
� kk� � kk2

hrJ (� k ) � rJ (� k� 1); � � k i
rJ Bk (� k ); (Exact-GV)

where the di�erence between (4.16) and Exact-GV lies in the mini-batch estimation of the

update direction and the dependency of the scaling factor� k which aims to moderate the

e�ect of noise (generally � k ! 0 according to the discussion about vanishing step-sizes in

Section 1.3.4). As shown in Figure 4.3 the recursion Exact-GV is much faster than SGD

111



Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

especially for the �rst � 150 epochs which is often the main concern for DL applications.

Indeed, although SGD achieves a smaller value ofJ after a larger number of iterations (due

to other methods using larger step-sizes), this happens when the value ofJ is already low.

Overall the quantity Exact-GV seems very promising.

Yet, for large sums like in DL, the gradient-variation in Exact-GV is too computationally

expensive. One should therefore adapt (Exact-GV). A direct adaption would simply consist

in the algorithm,

� k+1 = � k �
� kk� � kk2

D
rJ Bk (� k ) � rJ Bk � 1 (� k� 1); � � k

ErJ Bk (� k ); (Stochastic-GV)

where mini-batches are used both to obtain a update direction and to approximate the

GV. Stochastic-GV yields almost no additional computational cost compared to vanilla

SGD since rJ Bk � 1 (� k� 1) is the previous update direction and is thus already computed

at iteration k. For this �naive� approach, we observe a dramatic loss of performance, as

illustrated in Figure 4.3. This reveals the need for using accurate stochastic approximations

of GVs.

Second heuristic experiment using expected gradient variations. Towards a more

stable approximation of the GVs, we consider the following recursion,

� k+1 = � k �
� kk� � kkkrJ Bk � 1 (� k� 1)k

h� E[CJ A (� k� 1)]; � � k i
rJ Bk (� k ); (Expected-GV)

where CJ A is de�ned in (4.12) and the expectation is taken over the independent draw of

the random subset A, conditioned on the other random variables. The main di�erence

with Exact-GV is the use of expected GVs instead of exact GVs, the minus sign ensures a

coherent interpretation in terms of GVs. The numerator in Expected-GV is also modi�ed

to ensure homogeneity of the steps with the other variations of the algorithm. Indeed,

CJ A (� k ) approximates a di�erence of gradients modulo a step-size, see (4.12). As illustrated

in Figure 4.3, the recursion Expected-GV provides performances comparable (and actually

superior) to Exact-GV, and in particular for both algorithms, we also recover the loss drop

which was observed in the deterministic setting (Figure 4.2 and Figure 4.3).

Then, remark that Algorithm 3 is nothing less than an approximate version of Expected-

GV which combines a double use of mini-batches with a moving average. Indeed, from

(4.12), considering the expectation over the random draw ofA, for any � 2 RP and small
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 > 0, we have,

� 
 E[CJ A (� )] ' E [rJ A (� � 
 rJ A(� )) � rJ A(� )] : (4.17)

The purpose of the term Ĝk in Algorithm 3 is precisely to mimic this last quantity, i.e., to

approximate the expectation in (4.17) with a moving average. The experimental results of

Algorithm 3 are very similar to those of Expected-GV, see Figure 4.3.

The above considerations on gradient variations (GVs) led us to propose Algorithm 3 as

a possible mini-batch version of Algorithm 2. The underlying geometric aspects discussed

in Section 4.3.2 were of course a major motivation as well.

Parameters of the algorithm. Algorithm 3 contains more hyper-parameters than in

the deterministic case, yet, we recommend keeping the default values for most of them.2

Like in most optimizers (SGD, ADAM, RMSprop, etc.), only the parameter � > 0 has to

be carefully tuned to get the most of Algorithm 3. Note that we enforce 
 k 2 [ ~m, ~M ]

for all k 2 N. The bounds stabilize the algorithm and also play an important role for

the convergence as we will show in Section 4.4. Note that we also enforce the step-size to

decrease using a decay of the form1=k1=2+ � where 0 < � < 1=2 is usually very close to0,

this way the Robbins-Monro condition (1.22) holds. This is again necessary to obtain the

convergence results presented next.

4.4 Theoretical results

We study the convergence of Step-Tuned SGD for general smooth non-convex stochastic

optimization which encompasses in particular smooth DL problems.

Main result. We recall that J is a �nite sum of twice continuously di�erentiable functions

(J n )n=1 ;:::;N . Hence, the gradient ofJ and the gradients of eachJ n , n 2 f 1; : : : ; N g are

locally Lipschitz continuous (see De�nition 1.4). We denote by 1
2N = f 0; 1

2 ; 1; 3
2 ; 2; : : :g the

set of half integers so that the iterations of Step-Tuned SGD are indexed byk 2 1
2N. We

assume that Assumption 1.1 holds forJ , the main theoretical result for Step-Tuned SGD

follows.

Theorem 4.2. Let � 0 2 RP , and let (� k )k2 1
2 N be a sequence generated by Step-Tuned SGD

2We suggest the following default values: (�; �; ~m; ~M; � ) = (2 ; 0:9; 0:5; 2; 0:001).
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initialized at � 0. Assume that there existsC1 > 0 such that almost surelysupk2 1
2 N k� kk <

C1. Then the sequence of values(J (� k )) k2 N converges almost surely and
�
krJ (� k )k2�

k2 N

converges to0 almost surely. In addition,

min
j 2f 0;:::;k � 1g

E
h
krJ (� j )k2

i
= O

�
1

k1=2� �

�
:

The results above state in particular that a realization of the algorithm reaches a point

where the gradient is arbitrarily small with probability one. Note that the rate depends on

the parameter � 2 (0; 1=2) which can be chosen by the user and corresponds to the decay

schedule1=(k + 1) 1=2+ � . In most cases, one will want to slowly decay the step-size so� ' 0

and the rate is close to1=
p

k + 1 .

An alternative to the boundedness assumption. In Theorem 4.2 we make the as-

sumption that almost surely the iterates (� k )k2 1
2 N are uniformly bounded, like we did for

INNA on Chapter 2. One can alternatively leverage additional regularity assumptions on the

loss function as Li and Orabona (2019) did for example for the scalar variant of ADAGRAD.

This is more restrictive than the locally-Lipschitz-continuous property of the gradient that

we used but for completeness we provide below an alternative version of Theorem 4.2 under

such assumptions.

Corollary 4.3. Let � 0 2 RP , and let (� k )k2 1
2 N be a sequence generated by Step-Tuned SGD

initialized at � 0. Assume that eachJ n and rJ n are Lipschitz continuous on RP for all

n 2 f 1; : : : ; N g, and assume thatJ is bounded below. Then the same conclusions as in

Theorem 4.2 apply.

Proof sketch of Theorem 4.2. The proof of our main theorem relies on more classical

arguments and computations than for INNA. Thus, we �rst present the key elements here

and postpone the fully-detailed proof to Section 4.8 of the appendix of this chapter. Here

are the main arguments.

� The proof relies on a descent lemma similar to (1.25): for any compact subsetK � RP

there exists L K > 0 such that for any � 2 K and d 2 RP such that � + d 2 K,

J (� + d) � J (� ) + hrJ (� ); di +
L K

2
kdk2: (4.18)

� Let (� k )k2 1
2 N be a realization of the algorithm. Using the boundedness assumption,

almost surely the iterates belong to a compact subsetK on which rJ and the gradient
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estimates (rJ Bk )k2 N are uniformly bounded. So at any iteration k 2 N, we may use

the descent lemma (4.18) on the update directiond = � 
 k rJ Bk (� k ) to bound the

di�erence J (� k+1 ) � J (� k ).

� As stated in Section 4.3.2, conditioning on B0; : : : ; Bk� 1 the step-size
 k is constructed

to be independent of the current mini-batch Bk . Using this and the descent lemma,

we show that there exist M 1; M 2 > 0 such that, for all k 2 N> 0,

E [J (� k+1 ) j B0; : : : Bk� 1] � J (� k ) �
M 1

(k + 1) 1=2+ �
krJ (� k )k2 +

M 2

(k + 1) 1+2 � : (4.19)

� Applying Robbins-Siegmund convergence theorem (Robbins and Siegmund, 1971) for

martingales to (4.19), using the fact that
P + 1

k=0
1

(k+1) 1+2 � < 1 , we obtain almost surely

that (J (� k )) k2 N converges and

+ 1X

k=0

1
(k + 1) 1=2+ �

krJ (� k )k2 < + 1 ; (4.20)

Since
P + 1

k=0
1

(k+1) 1=2+ � = + 1 , we deduce thatrJ (� k ) converges to zero almost surely,

using the local Lipschitz continuity of the gradient (from twice di�erentiability) and

an argument of Alber et al. (1998), see Lemma 4.6. The rate follows from considering

expectations on both sides of (4.19).

4.5 Application to deep learning

We �nally evaluate the performance of Step-Tuned SGD for training DNNs. We consider six

di�erent problems presented next and fully-speci�ed in Table 4.1. The results for Problems

(a) to (d) are �rst presented here while the results for Problems (e) and (f) are discussed

at the end of this section. We compare Step-Tuned SGD with SGD, RMSprop, ADAM and

our previously-introduced method INNA. The methodology is detailed below.

4.5.1 Settings of the experiments

We specify the two types of DL experiments that we will perform.

Details on the comparative experiments.
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� We consider image classi�cation problems on CIFAR-10 and CIFAR-100 (Krizhevsky,

2009) and the training of an auto-encoder on MNIST (LeCun et al., 2010).

� The networks are slightly modi�ed versions of Lenet (LeCun et al., 1998), ResNet-20

(He et al., 2016), Network-in-Network (M. Lin et al., 2014) and the auto-encoder of

G. E. Hinton and Salakhutdinov (2006).

� As speci�ed in Table 4.1 of the Supplementary, we used either smooth (ELU, SiLU) or

nonsmooth (ReLU) activation functions (although our theoretical analysis only applies

to smooth activation functions).

� For image classi�cation tasks, the dissimilarity measure is the cross-entropy, and for

the auto-encoder, it is the mean-squared error. In each problem we also add à2-

regularization parameter (a.k.a. weight decay) of the form �
2 k� k2

2.

� For each algorithm, we selected the learning rate parameter� (or 
 0 for INNA and

SGD) from the set f 10� 4; : : : ; 100g. The value is selected as the one yielding the

minimum training loss after 10% of the total number of epochs. For example, if

we intend to train the network during 100 epochs, the grid-search is carried on the

�rst 10 epochs. For Step-Tuned SGD, the parameter� was selected with the same

criterion from the set f 1; 2; 5g and for ADAM the momentum parameter was chosen

in f 0:1; 0:5; 0:9; 0:99g. All other parameters of the algorithms are left to their default

values even INNA for which we keep the default value(�; � ) = (0 :5; 0:1).

� Decay-schedule: To meet the conditions of Theorem 4.2 the step-size decay schedule

of SGD and Step-Tuned SGD takes the form1=q1=2+ � where q is the current epoch

index and � = 0 :001. It slightly di�ers from what is given in Algorithm 3 as we apply

the decay at each epoch instead of each iteration. This slower schedule still satis�es

the convergence conditions of Theorem 4.2.3 To ease the comparison we used the same

step-size decay schedule for INNA (although slower decays are possible as explained

in Section 2.4.2). RMSprop and ADAM rely on their own adaptive procedure and are

usually used without a step-size decay schedule.

� The experiments were run on a Nvidia GTX 1080 TI GPU, with an Intel Xeon 2640

V4 CPU. The code was written in python 3.6.9 andpytorch 1.4 (Paszke et al., 2019).

Remark 4.4. The settings for these experiments slightly di�ers from those of Chapter 2.

We test the algorithms on more problems, use additional types of DNNs, etc. This is mainly

3An alternative common practice consists in manually decaying the step-size at pre-de�ned epochs. This
technique, although e�cient in practice to achieve state-of-the-art results, makes the comparison of
algorithms harder, hence we stick to a usual Robbins-Monro type of decay.
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because two years passed between the experiments of each chapter. During this period, we

gained access to additional computational resources allowing us to consider more DL prob-

lems, with in particular the classi�cation of CIFAR-10 and CIFAR-100 with ResNets which

became the most popular benchmark problem. We added a weight-decay regularization as it

is now a standard practice. We also switched DL libraries, fromkeras and tensorflow to

pytorch .

Second experiment: mini-batch sub-sampling. Step-Tuned SGD departs from the

usual process of using a new mini-batch after each gradient update. Indeed, we use each

mini-batch twice in order to properly approximate curvature information, but also to main-

tain a computing time similar to standard algorithms. We performed additional experiments

to understand the consequences of using the same mini-batch twice, and in particular make

sure that this is not the source of the observed advantage of Step-Tuned SGD. In these

experiments all the methods are used with the mini-batch sub-sampling procedure of Step-

Tuned SGD detailed in Algorithm 3 (each mini-batch being used to perform two consecutive

gradient steps). The other settings remain the same as for the comparative experiments.

4.5.2 Results

We describe the results for the two types of experiments, the comparative one to assess the

quality of Step-Tuned SGD against concurrent optimization algorithms, and the other one

to study the e�ect of changing the way mini-batches are used.

Comparison with standard methods. The results for Problems (a) to (d) are displayed

on Figure 4.4. For each problem we display the evolution of the values of the loss function

and of the test accuracy during the training phase. We observe a recurrent behavior: during

early training Step-Tuned SGD has performances similar to other methods, then there is

a sudden drop of the loss (combined with an improvement in terms of test accuracy which

we discuss below). As a result, Step-Tuned SGD achieves the best training performance

among all algorithms on Problems (a) and (b) and at least outperforms SGD in �ve of the

six problems considered (result for Problems (e) and (f) are displayed on Figure 4.6). The

sudden drop observed is in accordance with our preliminary observations in Figure 4.3. We

note that a similar drop and improved results are reported for SGD and ADAM when used

with a manually enforced reduction of the learning rate, see e.g., He et al. (2016). Our

experiments show however that Step-Tuned SGD behaves similarly but automatically: the
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Table 4.1: Settings of the six di�erent deep learning experiments.

Problem (a) Problem (b) Problem (c)

Type Classi�cation Classi�cation Classi�cation

Dataset CIFAR-10 CIFAR-100 CIFAR-10

Network
ResNet-20
(Residual)

ResNet-20
(Residual)

Network-in-Network
(Nested)

BatchNorm Yes Yes Yes

Batch-size 128 128 128

Activation functions ReLU ReLU ELU

Dissimilarity measure Cross-entropy Cross-entropy Cross-entropy

Regularization � = 10 � 4 � = 10 � 4 � = 10 � 4

Grid-search 50 epochs 50 epochs 30 epochs

Stop-criterion 500 epochs 500 epochs 300 epochs

Problem (d) Problem (e) Problem (f)

Type Auto-encoder Classi�cation Classi�cation

Dataset MNIST CIFAR-10 CIFAR-10

Network
Auto-Encoder

(Dense)
LeNet

(Convolutional)
LeNet

(Convolutional)

BatchNorm No No Yes

Batch-size 128 128 128

Activation functions SiLU ELU ELU

Dissimilarity measure Mean square Cross-entropy Cross-entropy

Regularization � = 10 � 4 � = 10 � 4 � = 10 � 4

Grid-search 50 epochs 30 epochs 30 epochs

Stop-criterion 500 epochs 300 epochs 300 epochs
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Problem (a): training error Problem (b): training error Problem (c): training error Problem (d): training error

Problem (a): test accuracy Problem (b): test accuracy Problem (c): test accuracy Problem (d): test error

Figure 4.4: Classi�cation of CIFAR-10 and CIFAR-100 with ResNet-20 (left and middle-left
respectively), CIFAR-10 with NiN (middle-right) and training of an auto-encoder on MNIST
(right). This corresponds to Problems (a) to (d) speci�ed in Table 4.1. Continuous lines:
average values from 3 random initializations. Limits of shadow area: best and worst runs
(in training loss). For fair comparison values are plotted against the number of gradient
estimates computed (using back-propagation).

drop down is caused by the automatic �ne-tuning that the algorithm is designed to achieve

and not by a user-de�ned reduction of the step-size.

We remark that in Problem (d), ADAM and RMSprop are notably better than SGD and

Step-Tuned SGD. This may be explained by their vector step-sizes since auto-encoders are

often ill-conditioned, making methods with scalar step-sizes less e�cient. To conclude on

these comparative experiments, in most cases Step-Tuned SGD represents a signi�cant im-

provement compared to SGD. It also seems to be a good alternative to adaptive methods like

RMSprop or ADAM especially on residual networks. Note also that while some stochastic

second-order methods perform well mostly when combined with large mini-batches, hence

with less-noisy gradients (see for example the experiments of Martens and Grosse (2015)),

we obtain satisfactory performances with mini-batches of standard sizes.

In addition to e�cient training performances (in terms of loss function values), Step-

Tuned SGD generalizes well (as measured by test accuracy). For example Figure 4.4 shows

a correlation between test accuracy and training loss. Conditions or explanations for when

this happens are not fully understood to this day. Yet, SGD is often said to behave well
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Problem (a): training error Problem (b): training error Problem (c): training error Problem (d): training error

Figure 4.5: Experiment where each algorithms receives the same mini-batch for two consec-
utive iterations as in Algorithm 3. This allows comparing algorithms with respect to the
number of data processed. The problems and the framework are the same as in Figure 4.4.

with respect to this matter (Wilson et al., 2017) and hence it is satisfactory to observe that

Step-Tuned SGD seems to inherit this property.

E�ect of the mini-batch sub-sampling of Step-Tuned SGD. The results are pre-

sented on Figure 4.5. We observe that using each mini-batch twice usually reduces the

performance of SGD, INNA, ADAM and RMSprop except on Problem (c) where it bene�ts

the latter two in terms of training error. Thus, on these problems, changing the way of using

mini-batches is not the reason for the success of our method. On the contrary, it seems that

our goal which was to obtain a �ne-tuned step-size speci�cally for each iteration is clearly

achieved, but processing data more slowly, like Step-Tuned SGD does, can sometime impact

the performances of the algorithm.

Arguably these results show that the need for using each mini-batch twice appears to be

the main downside of Step-Tuned SGD. Thus, in problems where mini-batches may be very

di�erent we should expect other methods to be more e�cient as they process data twice

faster. We actually remark that our method achieves its best results on networks where

batch normalization (BatchNorm)�a technique that aims to normalize the inputs of neural

networks (Io�e and Szegedy, 2015)�is used. Figure 4.6 corroborates these observations:

BatchNorm has a positive e�ect on Step-Tuned SGD.

Remark 4.5 (On additional experimental results for INNA) . Let us take the opportunity

to use these experiments to make additional comments on the numerical performances of

INNA. Here we used (�; � ) = (0 :5; 0:1) that we previously proposed as default values. We

can see on Figure 4.4 and Figure 4.6 that INNA performs quite well: it is always among

the three best algorithms in terms of training performances except for Problem (e). On this
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Without BatchNorm (Problem

(e)): training error

With BatchNorm (Problem (f)):

training error

Without BatchNorm (Problem

(e)): test accuracy

With BatchNorm (Problem (f)):

test accuracy

Figure 4.6: Classi�cation of CIFAR-10 with LeNet with and without batch normalization,
corresponding to Problems (e) and (f) speci�ed in Table 4.1. These experiments illustrate
how batch normalization has a positive e�ect on Step-Tuned SGD.

problems, which is quite di�erent from the others, it seems that tuning(�; � ) is necessary

to obtain more satisfactory results. It is worth noticing that INNA seems to achieve very

good generalization scores (on all problems except Problem (d)). In particular, it generalizes

better than any other method even when it is not the best algorithm in terms of training (see

for example Problems (b) and (f)). These are empirical observations which may have many

causes. Yet, this very promising behavior may come from the damping properties il lustrated

on Figure 2.1 or the ability to escape strict saddle points proved in the previous chapter.

4.6 Conclusion

We presented a new method to tune SGD's step-sizes for stochastic non-convex optimization

within a �rst-order computational framework. In addition to the new algorithm, we also pre-

sented a generic strategy (Section 4.3.1 and 4.3.3) on how to use empirical and geometrical
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considerations to address the major di�culty of preserving favorable behaviors of determin-

istic algorithms while dealing with mini-batches. In particular, we tackled the problem of

adapting the step-sizes to the local landscape of non-convex loss functions with noisy gradi-

ent estimations. For a computational cost similar to SGD, Step-tuned SGD uses a step-size

changing every two iterations unlike other stochastic methods à la Barzilai-Borwein. We

proved asymptotic convergence results and convergence rates for our algorithm.

While our method does not alleviate hyper-parameter pre-tuning, it shows how an e�cient

automatic �ne-tuning of a simple scalar step-size can improve the training of DNNs. Step-

Tuned SGD processes data more slowly than other methods but by doing so manages to

�ne-tune step-sizes, leading to faster training in some DL problems with a typical sudden

drop of the error rate at medium stages, especially on ResNets.
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4.7 Details on the synthetic experiments

We detail the non-convex regression problem that we presented in Figure 4.2 and 4.3. Given

a matrix A 2 RN � P and a vectorb 2 RN , denoteAn the n-th row of A. The problem consists

in minimizing a loss function of the form,

� 2 RP 7! J (� ) =
1
N

NX

n
� (AT

n � � bn ); (4.21)

where the non-convexity comes from the functiont 2 R 7! � (t) = t2=(1 + t2). For more

details on the initialization of A and b we refer to Carmon et al. (2017) where this problem

is initially proposed. In the experiments of Figure 4.3, the mini-batch approximation was

made by selecting a subset of the lines ofA, which amounts to computing only a few terms

of the full sum in (4.21). We usedN = 500, P = 30 and mini-batches of size50.

In the deterministic setting we ran each algorithm during 250 iterations and selected the

hyper-parameters of each algorithm such that they achievejJ (� ) � J ?j < 10� 1 as fast

as possible. In the mini-batch experiments we ran each algorithm during250 epochs and

selected the hyper-parameters that yielded the smallest value ofJ (� ) after 50 epochs.

4.8 Proof of the theoretical results

We state a lemma that we will use to prove Theorem 4.2.

4.8.1 Preliminary lemma

The result is the following.

Lemma 4.6 (Alber et al. (1998, Proposition 2)). Let (uk )k2 N and (vk )k2 N two non-negative

real sequences. Assume that
P + 1

k=0 ukvk < + 1 , and
P + 1

k=0 vk = + 1 . If there exists a
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constant C > 0 such that 8k 2 N; juk+1 � uk j � Cvk , then uk ����!
k! + 1

0.

4.8.2 Proof of the main theorem

We can now prove Theorem 4.2.

Proof of Theorem 4.2. We �rst clarify the random process induced by the mini-batch sub-

sampling. Algorithm 3 takes a sequence of mini-batches as input. This sequence is repre-

sented by the random variables(Bk )k2 N as described in Section 4.3.2. Each of these random

variables is independent of the others. In particular, for k 2 N> 0, Bk is independent of the

previous mini-batchesB0; : : : ; Bk� 1. For convenience, we will denoteBk = f B0; : : : ; Bkg, the

mini-batches up to iteration k. Due to the randomness of the mini-batches, the algorithm

is a random process as well. As such, the current iterate� k is a random variable with a

deterministic dependence onBk� 1 and is independent ofBk . However, � k+ 1
2

and Bk are not

independent. Similarly, we constructed 
 k such that it is a random variable with a deter-

ministic dependence onBk� 1, which is independent ofBk . This dependency structure will

be crucial to derive and bound conditional expectations. Finally, we highlight the following

important identity, for any k � 1,

E [rJ Bk (� k )jBk� 1] = rJ (� k ): (4.22)

Indeed, the iterate � k is a deterministic function of Bk� 1, so taking the expectation overBk ,

which is independent ofBk� 1, we recover the full gradient ofJ since the distribution of Bk

is the same as that ofA in Section 4.3.2. Notice in addition that a similar identity does not

hold for � k+ 1
2

(as it depends onBk ).

We now provide estimates that will be used extensively in the rest of the proof. Recall

that the gradient of the loss function rJ is locally Lipschitz continuous sinceJ is twice

continuously di�erentiable. By assumption, there exists a compact convex setK � RP , such

that with probability 1, the sequence of iterates(� k )k2 1
2 N belongs toK. Therefore, by local

Lipschitz continuity, the restriction of rJ to K is Lipschitz continuous on K. Similarly,

each rJ n is also Lipschitz continuous onK. We denote by L K > 0 a Lipschitz constant

common to eachrJ n , for n = 1 ; : : : ; N . Notice that the Lipschitz continuity is preserved

by averaging, in other words,

8 B � f 1; : : : ; N g; 8 1;  2 2 K; krJ B( 1) � rJ B( 2)k � L Kk 1 �  2k: (4.23)
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In addition, using the continuity of the rJ n 's, there exists a constantC2 > 0, such that,

8 B � f 1; : : : ; N g; 8 2 K; krJ B( )k � C2: (4.24)

Finally, for a di�erentiable function g : RP ! R with L r g-Lipschitz continuous gradient,

we recall the descent lemma (see for example Bertsekas (1999, Proposition A.24) or Equa-

tion 1.25). For any � 2 RP and any d 2 RP ,

g(� + d) � g(� ) + hr g(� ); di +
L r g

2
kdk2: (4.25)

In our case since we only have theL K-Lipschitz continuity of rJ on K which is convex, we

have a similar bound for rJ on K: for any � 2 K and any d 2 RP such that � + d 2 K,

J (� + d) � J (� ) + hrJ (� ); di +
L K

2
kdk2: (4.26)

Let � 0 2 RP and let (� k )k2 1
2 N a sequence generated by Algorithm 3 initialized at� 0. By

assumption this sequence belongs toK almost surely. To simplify, for all k 2 N we denote

� k = �
 k (k + 1) � (1=2+ � ) the step-size. Fix an iteration k 2 N, we can use (4.26) with� = � k

and d = � � k rJ Bk (� k ), almost surely (with respect to the boundedness assumption),

J (� k+ 1
2
) � J (� k ) � � khrJ (� k ); rJ Bk (� k )i +

� 2
k

2
L KkrJ Bk (� k )k2: (4.27)

Similarly with � = � k+ 1
2

and d = � � k rJ Bk (� k+ 1
2
), almost surely,

J (� k+1 ) � J (� k+ 1
2
) � � khrJ (� k+ 1

2
); rJ Bk (� k+ 1

2
)i +

� 2
k

2
L KkrJ Bk (� k+ 1

2
)k2: (4.28)

We combine (4.27) and (4.28), almost surely,

J (� k+1 ) � J (� k ) � � k

�
hrJ (� k ); rJ Bk (� k )i + hrJ (� k+ 1

2
); rJ Bk (� k+ 1

2
)i

�

+
� 2

k

2
L K

�
krJ Bk (� k )k2 + krJ Bk (� k+ 1

2
)k2

�
:

(4.29)

Using the boundedness assumption and (4.24), almost surely,

krJ Bk (� k )k2 � C2 and krJ Bk (� k+ 1
2
)k2 � C2: (4.30)
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So almost surely,

J (� k+1 ) � J (� k ) � � k

�
hrJ (� k ); rJ Bk (� k )i + hrJ (� k+ 1

2
); rJ Bk (� k+ 1

2
)i

�

+ � 2
kL KC2:

(4.31)

Then, we take the conditional expectation of (4.31) overBk conditionally on Bk� 1 (the

mini-batches used up to iteration k � 1), we have,

E [J (� k+1 )jBk� 1] � E [J (� k )jBk� 1] + E
h
� 2

kL KC2

�
�
�Bk� 1

i

� E
h
� k

�
hrJ (� k ); rJ Bk (� k )i + hrJ (� k+ 1

2
); rJ Bk (� k+ 1

2
)i

� �
�
�Bk� 1

i
:

(4.32)

As explained at the beginning of the proof,� k is a deterministic function of Bk� 1, thus using

(4.22), E [J (� k )jBk� 1] = J (� k ). Similarly, by construction � k is independent of the current

mini-batch Bk , it is a deterministic function of Bk� 1. Hence, (4.32) reads,

E [J (� k+1 )jBk� 1] �J (� k ) + � 2
kL KC2 � � khrJ (� k ); E [rJ Bk (� k )jBk� 1]i

� � kE
h
hrJ (� k+ 1

2
); rJ Bk (� k+ 1

2
)i

�
�
�Bk� 1

i
:

(4.33)

Then, we use the fact that E [rJ Bk (� k )jBk� 1] = rJ (� k ). Overall, we obtain,

E [J (� k+1 )jBk� 1] �J (� k ) + � 2
kL KC2 � � kkrJ (� k )k2

� � kE
h
hrJ (� k+ 1

2
); rJ Bk (� k+ 1

2
)i

�
�
�Bk� 1

i
:

(4.34)

We will now bound the last term of (4.34). First we write,

� hrJ (� k+ 1
2
); rJ Bk (� k+ 1

2
)i

= �hrJ (� k+ 1
2
); rJ Bk (� k+ 1

2
) � rJ Bk (� k )i � hrJ (� k+ 1

2
); rJ Bk (� k )i :

(4.35)

Using the Cauchy-Schwarz inequality, as well as (4.23) and (4.24), almost surely,

jhrJ (� k+ 1
2
); rJ Bk (� k+ 1

2
) � rJ Bk (� k )ij � krJ (� k+ 1

2
)kkrJ Bk (� k+ 1

2
) � rJ Bk (� k )k

� krJ (� k+ 1
2
)kL Kk� k+ 1

2
� � kk

� krJ (� k+ 1
2
)kL Kk � � k rJ Bk (� k )k

� L KC2
2 � k :

(4.36)
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Hence,

� hrJ (� k+ 1
2
); rJ Bk (� k+ 1

2
)i � L KC2

2 � k � hrJ (� k+ 1
2
); rJ Bk (� k )i : (4.37)

We perform similar computations on the last term of (4.37), almost surely

� hrJ (� k+ 1
2
); rJ Bk (� k )i

= �hrJ (� k+ 1
2
) � rJ (� k ); rJ Bk (� k )i � hrJ (� k ); rJ Bk (� k )i

� krJ (� k+ 1
2
) � rJ (� k )kkrJ Bk (� k )k � hrJ (� k ); rJ Bk (� k )i

� L KC2k� k+ 1
2

� � kk � hrJ (� k ); rJ Bk (� k )i

� L KC2
2 � k � hrJ (� k ); rJ Bk (� k )i :

(4.38)

Finally by combining (4.35), (4.37) and (4.38), we obtain almost surely,

� hrJ (� k+ 1
2
); rJ Bk (� k+ 1

2
)i � 2L KC2

2 � k � hrJ (� k ); rJ Bk (� k )i : (4.39)

Going back to the last term of (4.34), taking the conditional expectation of (4.39), we have

almost surely,

� � kE
h
hrJ (� k+ 1

2
); rJ Bk (� k+ 1

2
)i

�
�
�Bk� 1

i
� 2L KC2

2 � 2
k � � kE [hrJ (� k ); rJ Bk (� k )ij Bk� 1]

� 2L KC2
2 � 2

k � � khrJ (� k ); E [rJ Bk (� k )jBk� 1]i = 2L KC2
2 � 2

k � � kkrJ (� k )k2:

(4.40)

In the end we obtain, for an arbitrary iteration k 2 N, almost surely,

E [J (� k+1 )jBk� 1] �J (� k ) � 2� kkrJ (� k )k2 + � 2
kL K(C2 + 2C2

2): (4.41)

To simplify we assume that ~M > � (otherwise set ~M = max( ~M; � )). We use the fact that,

� k 2 [ � ~m
(k+1) 1=2+ � ; � ~M

(k+1) 1=2+ � ], to obtain almost surely,

E [J (� k+1 )jBk� 1] �J (� k ) � 2
� ~m

(k + 1) 1=2+ �
krJ (� k )k2 +

� 2 ~M 2

(k + 1) 1+2 � L K(C2 + 2C2
2): (4.42)

Since by assumption, the last term is summable, we can now use the Robbins-Siegmund con-

vergence theorem (Robbins and Siegmund, 1971) to obtain that, almost surely,(J (� k )) k2 N
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converges and,
+ 1X

k=0

1
(k + 1) 1=2+ �

krJ (� k )k2 < + 1 : (4.43)

Since
P + 1

k=0
1

(k+1) 1=2+ � = + 1 , this implies at least that almost surely,

lim inf
k!1

krJ (� k )k2 = 0 : (4.44)

To prove that in addition lim
k!1

krJ (� k )k2 = 0 , we will use Lemma 4.6 withuk = krJ (� k )k2

and vk = 1
(k+1) 1=2+ � . So we need to prove that there existsC3 > 0 such that juk+1 � uk j �

C3vk . To do so, we use theL K-Lipschitz continuity of the gradients on K, triangle inequalities

and (4.24). It holds, almost surely, for all k 2 N,

�
�
�krJ (� k+1 )k2 � krJ (� k )k2

�
�
�

= ( krJ (� k+1 )k + krJ (� k )k ) � j k rJ (� k+1 )k � krJ (� k ) k j

� 2C2 jkrJ (� k+1 )k � krJ (� k )kj

� 2C2krJ (� k+1 ) � rJ (� k )k

� 2C2L Kk� k+1 � � kk

� 2C2L K






 � � k rJ Bk (� k ) � � k rJ Bk (� k+ 1

2
)







� 2C2L K
� ~M

(k + 1) 1=2+ �
krJ Bk (� k ) + rJ Bk (� k+ 1

2
)k

� 4C2
2L K

� ~M
(k + 1) 1=2+ �

:

(4.45)

So taking C3 = 4C2
2L K � ~M , by Lemma 4.6, almost surely,lim k! + 1 krJ (� k )k2 = 0 . This

concludes the part of the proof on almost sure convergence.

Regarding the rate, consider the expectation of (4.42) (with respect to the random vari-

ables(Bk )k2 N). The tower property of the conditional expectation gives

EBk � 1
[E[J (� k+1 )jBk� 1]] = E [J (� k+1 )] ;

so we obtain, for all k 2 N,

2
� ~m

(k + 1) 1=2+ �
E

h
krJ (� k )k2

i
� E [J (� k )] � E [J (� k+1 )] +

� 2 ~M 2

(k + 1) 1+2 � L K(C2 + 2C2
2):

(4.46)
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Then for K � 1, we sum from 0 to K � 1,

K � 1X

k=0

2
� ~m

(k + 1) 1=2+ �
E

h
krJ (� k )k2

i

�
K � 1X

k=0

E [J (� k )] �
K � 1X

k=0

E [J (� k+1 )] +
K � 1X

k=0

� 2 ~M 2

(k + 1) 1+2 � L K(C2 + 2C2
2)

= J (� 0) � E [J (� K )] +
K � 1X

k=0

� 2 ~M 2

(k + 1) 1+2 � L K(C2 + 2C2
2)

� J (� 0) � inf
 2 RP

J ( ) +
K � 1X

k=0

� 2 ~M 2

(k + 1) 1+2 � L K(C2 + 2C2
2);

(4.47)

The right-hand side is �nite, so there exists a constant C4 > 0 such that for any K 2 N, it

holds,

C4 �
KX

k=0

1
(k + 1) 1=2+ �

E
h
krJ (� k )k2

i
� min

k2f 1;:::;K g
E

h
krJ (� k )k2

i KX

k=0

1
(k + 1) 1=2+ �

� (K + 1) 1=2� � min
k2f 1;:::;K g

E
h
krJ (� k )k2

i
; (4.48)

and we obtain the rate.

4.8.3 Proof of the corollary

Before proving the corollary we recall the following result.

Lemma 4.7. Let g : RP ! R a Lipschitz continuous and di�erentiable function. Then r g

is uniformly bounded onRP .

We can now prove the corollary.

Proof of Corollary 4.3. The proof is very similar to the one of Theorem 4.2. Using the

Lipschitz continuity of rJ , the descent lemma (4.27) holds surely onRP . Furthermore,

since for all n 2 f 1; : : : ; N g, each J n is Lipschitz continuous, so isJ . Furthermore, from

Lemma 4.7, globally Lipschitz continuous functions have uniformly bounded gradients. This

is enough to obtain (4.42). It also holds that for all k 2 N, E [krJ Bk (� k )k] is uniformly

bounded. Overall these arguments allow to follow the lines of the proof of Theorem 4.2 and

the same conclusions follow by repeating the same arguments.

129



Appendices to Chapter 4

4.9 Description of auxiliary algorithms

We precise the heuristic algorithms used in Figure 4.3 and discussed in Section 4.3.3. Note

that the step-size in Algorithm 6 corresponds to Expected-GV but is written di�erently to

avoid storing an additional gradient estimate.

Algorithm 4 Stochastic-GV SGD

1: Input: � > 0, � > 0
2: Input: ~m > 0, ~M > 0, � 2 (0; 1=2)
3: Initialize � 0 2 RP , 
 0 = 1
4: Draw independent random mini-batches(Bk )k2 N

5: � 1 = � 0 � �
 0rJ B0 (� 0)
6: for k = 1 ; : : : do
7: � � k = � k � � k� 1

8: � gnaive
k = rJ Bk (� k ) � rJ Bk � 1 (� k� 1)

9: if h� gnaive
k ; � � Bk i > 0 then

10: 
 k = k� � k k2

h� gnaive
k ;� � k i

11: else
12: 
 k = �
13: end if
14: 
 k = min(max( 
 k ; ~m); ~M )
15: � k+1 = � k � �

(k+1) 1=2+ � 
 k rJ Bk (� k )
16: end for
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Algorithm 5 Exact-GV SGD

1: Input: � > 0, � > 0
2: Input: ~m > 0, ~M > 0, � 2 (0; 1=2)
3: Initialize � 0 2 RP , 
 0 = 1
4: Draw independent random mini-batches(Bk )k2 N

5: � 1 = � 0 � �
 0rJ B0 (� 0)
6: for k = 1 ; : : : do
7: � � k = � k � � k� 1

8: Gk = rJ (� k ) � rJ (� k� 1)
9: if hGk ; � � Bk i > 0 then

10: 
 k = k� � k k2

hGk ;� � k i
11: else
12: 
 k = �
13: end if
14: 
 k = min(max( 
 k ; ~m); ~M )
15: � k+1 = � k � �

(k+1) 1=2+ � 
 k rJ Bk (� k )
16: end for

Algorithm 6 Expected-GV SGD

1: Input: � > 0, � > 0
2: Input: ~m > 0, ~M > 0, � 2 (0; 1=2)
3: Initialize � 0 2 RP , 
 0 = 1
4: Draw independent random mini-batches(Bk )k2 N

5: Let A the random subset de�ned in Section 4.3.2
6: � 1 = � 0 � �
 0rJ B0 (� 0)
7: for k = 1 ; : : : do
8: � � k = � k � � k� 1

9: Gk = � �
(k� 1)1=2+ � 
 k� 1E [CJ A (� k� 1)]

10: if hGk ; � � Bk i > 0 then

11: 
 k = k� � k k2

hGk ;� � k i
12: else
13: 
 k = �
14: end if
15: 
 k = min(max( 
 k ; ~m); ~M )
16: � k+1 = � k � �

(k+1) 1=2+ � 
 k rJ Bk (� k )
17: end for
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Closing discussion

The primary goal of this thesis was to leverage second-order information in order to design

e�cient algorithms for training DNNs. We had two major practical challenges to address:

overcoming the computational cost of second-order information and adapting deterministic

methods to mini-batch sub-sampling while preserving their performances. We followed two

di�erent approaches in Chapter 2 and Chapter 4, and designed two algorithms.

� We built INNA from a second-order ODE rewritten into an equivalent �rst-order

system where the Hessian is implicit. This solved both problems at the same time: it

allowed building a second-order algorithm for no additional computational cost, but it

also allowed avoiding the discretization of second-order derivatives ofJ which makes

the algorithm more robust to mini-batch sub-sampling.

� Step-Tuned SGD takes inspiration from a variational model rather than an ODE. Un-

like INNA, a discretization of second-order derivatives was necessary to maintain an

a�ordable computational cost. A straightforward discretization does not mix well with

mini-batch sub-sampling. Thus, we rather used empirical and theoretical considera-

tions to �nd a surrogate variational quantity which takes the form of an expectation.

As such, the discretization of this surrogate quantity is more robust to mini-batch

sub-sampling which helps to preserve the behavior of deterministic BB methods in a

mini-batch setting.

As a result, we can answer positively to the �rst two questions raised in Section 1.4.2:

we provided two new practical methods for training DNNs, both bene�ting from second-

order information for a computational cost similar to the algorithms classically used to

train DNNs. In addition, our algorithms are motivated from a geometrical point of view,

while having simple update rules (this is true in particular for INNA). Second-order in-

formation does bene�t our algorithms in practice despite non-smoothness and mini-batch

sub-sampling. This is evidenced by higher training speeds and better generalization perfor-
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mances compared to standard methods on several DL benchmark problems.

As for our third question on theoretical guarantees, we analyzed our algorithms in a

framework that we tried to keep as close as possible to the reality of DNN training. To

achieve this, we combined existing techniques and overcame new challenges.

� We proved the convergence of INNA in a very general non-smooth stochastic frame-

work. To do so, we followed the ODE technique, but we showed that the mini-batch

sub-sampling of non-smooth functions brings new di�culties. We thus introduced a

new operator D and provided calculus results forD in order to prove convergence. In

a smooth deterministic framework we also proved that INNA is likely to avoid spurious

critical points.

� Regarding Step-Tuned SGD, we restrained the analysis to smooth loss functions but

used no global Lipschitz continuity assumptions. The proofs are based on a classical

descent lemma, yet, Step-Tuned SGD is harder to analyze than SGD with this tech-

nique. We had to carefully design our algorithm so that convergence may hold and

use several tricks to prove the convergence.

Overall, we proved the almost-sure convergence of the algorithms in DL and derived rates

of convergence which is di�cult in general for non-convex functions. These theoretical

guarantees support the fact that our algorithms can be used to train DNNs and help us to

get a better understanding of the behavior of these methods.

Perspectives and future work

While we carried out extensive theoretical analyses of our algorithms, we present some

possible improvements and ideas to investigate in the future.

� The convergence results of both algorithms rely on the same assumption: the almost-

sure boundedness of the iterates. Since this assumption is hard to ensure in practice,

we could consider a variant of each algorithm where we project the iterates on an

arbitrarily large compact subset of RP . However, proving the convergence in this case

would be non-straightforward, in particular for INNA since the results of Benaïm et

al. (2005) do not apply directly. We believe that the ODE technique can be adapted

to this setting but this remains to be done. Note that these concerns are mostly

theoretical. Indeed, since INNA and Step-Tuned SGD seem to provide satisfactory

results in numerical experiments, practitioners are unlikely to add a projection but

will rather use them in their present form.
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� Similarly, we proved the almost-sure convergence of INNA to D-critical points for

non-smooth tame functions. Actually, we believe that INNA is likely to converge to

Clarke critical points in practice. The work of Bolte and Pauwels (2020a) shows that

SGD almost surely avoidsD-critical points, we could prove similar results for INNA.

Again, this is mostly a theoretical matter, since in practice we observe that INNA

provides �valuable� results for the parameter � .

Finally, although INNA and Step-Tuned SGD bene�t from promising numerical and the-

oretical results, they are far from being as used as ADAM and SGD to this day. This is not

surprising since our algorithms are recent, yet, one may wonder whether this will change

in the near future. Since they are famous and provided by default in DL libraries, ADAM

and SGD will probably remain the �rst methods that practitioners try when training a

DNN. However, Step-Tuned SGD may be helpful in situations where choosing manually

an e�cient step-size decay is di�cult. Indeed, it seems to automatically �nd an e�cient

decay as evidenced by the �drop down� e�ect observed in numerical experiments. INNA

is a versatile algorithm with good generalization performances. Its �exibility comes from

its hyper-parameters � and � which require being tuned for some problems. This task will

probably be eased by the improvement of computational resources and in particular, the

increasing possibilities of performing parallel computations. This will favor INNA which

might become a suitable choice for DNNs that are hard to train with standard methods, in

particular due to its ability to reduce parasitic oscillations.
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Résumé Détaillé de la Thèse en Français

Mise en contexte

Deep Learning

Un principe fondateur du machine learning (ou apprentissage machine) consiste à supposer
qu'une réalité (biologique, physique, etc.) peut s'exprimer à travers une relation de la forme,

y = f truth (x);

où x 2 RM et y 2 RD sont respectivement appelées variables d'entrée et de sortie, et où
M et D sont des entiers naturels non nuls. La fonctionf truth , parfois appelée �fonction
vérité terrain� est inconnue et potentiellement très complexe et donc extrêmement di�cile
à déterminer. En machine learning, on cherche alors plutôt à trouver un modèle qui soit une
bonne approximation de f truth . Les réseaux de neurones sont une classe de ces modèles, ils
sont représentés par une fonctionf paramétrée par un vecteur� 2 RP (où P 2 N?). Étant
donné x et un choix de paramètre � , un réseau de neurones produit une variable de sortie
ŷ via la relation,

ŷ = f (x; � ):

L'objectif est de choisir le paramètre� de manière à ce quêy soit �le plus proche possible�
de la vérité y.

A�n de déterminer ce paramètre, on a recours à une procédure appelée �l'entraînement�
du réseau de neurones. Celle-ci se fait en utilisant une collection deN 2 N? données:
(xn ; yn )f 1;:::;N g liées pour tout n 2 f 1; : : : ; N g par la relation yn = f truth (xn ) (cette relation
peut éventuellement contenir un terme supplémentaire de perturbation). On cherche alors
à minimiser les erreurs de prédiction du réseauf sur ces données. Cela revient à trouver
� 2 RP qui minimise une fonction de la forme,

J (� ) =
NX

n=1

`(yn ; f (xn ; � )) ;
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où ` est une mesure de dissimilarité (typiquement,̀ : (y; ŷ) 2 RD � RD 7! k ŷ� yk2) et J est
appelée �fonction de perte�. D'autres problématiques sont liées à la minimisation de cette
fonction, par exemple la question de la généralisation (la prédiction sur des données non
utilisées pour l'entraînement). Le deep learning (ou apprentissage profond) désigne le fait
d'entraîner et d'utiliser des réseaux de neurones et tout ce qui y est lié.

Optimisation en grande dimension

L'entraînement d'un réseaux de neurones se formule donc comme un problème d'optimisation
non contraint:

min
� 2 RP

J (� ):

En raison de la structure du réseauf , la fonction J est en général non-convexe et parfois
non-di�erentiable. Le problème ci-dessus est donc posé dans un cadre très général, le rendant
di�cile à résoudre. En e�et, dans un cadre non-convexe et non-lisse, de nombreux problèmes
se posent tel que l'existence de minimiseurs locaux qui ne soient pas globaux, de points selles,
de singularités, etc. De plus, le jeu de donné d'entraînement et le vecteur de paramètres
du réseau sont généralement très grands, il en résulte un cout de calcul deJ très élevé,
rendant coûteuse la recherche numérique de solution.

Supposons pour le moment queJ soit di�érentiable, la méthode numérique la plus clas-
sique pour résoudre ce genre de problème est la descente de gradient. Pour une initialisation
� 0 2 RP , cet algorithme consiste en le processus itératif suivant, pour toutk 2 N,

� k+1 = � k � 
 rJ (� k );

où rJ désigne le gradient deJ et 
 > 0 est appelé �longueur de pas�. Cet algorithme
se formule de manière assez simple et requiert simplement l'évaluation du gradient de la
fonction de perte. Pour cela on utilise la méthode de backpropagtion (ou rétropropagation)
qui est une manière optimisée de calculer des gradients en deep learning. Bien que cela
rende l'évaluation du gradient raisonnable, le cout de calcul (et donc le temps d'exécution)
de la descente de gradient reste important car de nombreuses itérations sont en général
nécessaires pour obtenir des résultats satisfaisants.

Ainsi, une approche alternative s'avère plus e�cace en pratique: le sous-échantillonnage
par mini-lots. Cette technique consiste à remplacerrJ (� k ) dans la descente de gradient, par
une approximation calculée sur un sous-ensemble du jeu de données d'entraînement. Plus
précisément, on choisitBk � f 1; : : : ; N g et on calcule rJ Bk (� k ) =

P
n2 Bk

`(yn ; f (xn ; � )) .
L'algorithme obtenu est du type descente gradient stochastique (SGD), dont les itérations
k 2 N sont,

� k+1 = � k � 
 k rJ Bk (� k );

où (
 k )k2 N est une suite de longueurs de pas. Cet algorithme, bien qu'ancien (Robbins
and Monro, 1951) reste encore aujourd'hui l'outil de base pour entraîner des réseaux de
neurones.
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Motivations et problématiques

L'objectif principal de cette thèse est justement de proposer de nouveaux algorithmes pour
l'entraînement de réseaux de neurones. En particulier nous voulons aller plus loin que les
méthodes du premier ordre (telles que SGD) et construire des algorithmes exploitant de
l'information de second ordre (des dérivées secondes deJ ). Une telle approche présente de
nombreux avantages. Les méthodes d'ordre deux peuvent s'avérer plus rapides sur certains
problèmes et plus robustes à un mauvais conditionnement (en particulier la méthode de
Newton). L'information d'ordre deux permet aussi de déterminer le signe de la courbure
locale deJ et ainsi éviter plus e�cacement les maximums et les points selles. Elle peut
en�n aider à choisir la suite de longueurs de pas(
 k )k2 N.

Malgré les avantages indéniables d'une telle approche, celle-ci implique de relever plusieurs
dé�s de taille. Premièrement, et comme dit précédemment, la fonction de perteJ est
parfois non-di�erentiable (elle l'est en revanche presque partout), ce qui limite l'utilité des
dérivées d'ordre deux, quand celles-ci sont bien dé�nies. Ensuite, l'information du second
ordre peut s'avérer très coûteuse à calculer, et perdre tout béné�ce lorsque combinée au
sous-échantillonnage par mini-lots. En résumé, voici les trois principales problématiques
auxquelles nous nous intéressons.

� Peut-on construire des algorithmes exploitant e�cacement l'information de second-
ordre en dépit de toutes les limites techniques et théoriques du deep learning ?

� Pour ces algorithmes, est-ce que l'information de second-ordre pro�te réellement à
l'entraînement malgré le sous-échantil lonnage par mini-lots ?

� Quelles garanties et quelles vitesses de convergence pouvons-nous obtenir pour ces
algorithmes dans un cadre théorique où la convergence peut sembler incertaine ?

Nous résumons maintenant le contenu des trois chapitres qui tentent de répondre à ces
questions.

Résumé du Chapitre 2

Le point de se départ de ce chapitre est l'équation di�érentielle suivante, introduite par
Alvarez et al. (2002),

•� (t)
|{z}

Inertie

+ � _� (t)
| {z }

Frottement visqueux

+ � r 2J (� (t)) _� (t)
| {z }

E�et Newtonien

+ rJ (� (t))
| {z }

Gravité

= 0 ; pour tout t 2 [0; + 1 );

où, � est une fonction di�érentiable du temps (appelée solution ou trajectoire) et _� et •�
désignent ses dérivées premières et secondes, en�n� � 0 et � > 0 sont des hyper-paramètres.
Cette équation di�érentielle, appelée DIN pour �Dynamical Inertial Newton�, modélise un
mélange entre les méthodes de type gradient accéléré et de celles de type Newton. Elle
peut également s'interpréter du point de vue des lois de la mécanique, comme détaillé dans
l'équation ci-dessus.

139



Appendix A Résumé Détaillé de la Thèse en Français

En approximant les solutions de DIN par un processus de discrétisation, on peut construire
des algorithmes d'optimisation a�n de minimiser J . Cependant, DIN dans la forme ci-dessus
n'est pas adapté aux fonctions non-di�érentiables rencontrées en deep learning. Une partie
du chapitre est dédiée à trouver une formulation plus adaptée. Nous obtenons celle-ci en
reformulant DIN sous forme d'un système du premier ordre. Nous l'adaptons ensuite au
sous-échantillonnage par mini-lots et mettons en évidence que ce sous-échantillonnage pose
problème pour des fonctions non-lisses. Nous introduisons alors un nouvel opérateurD
(à valeur ensembliste) étendant les notions de gradients et sous gradients usuelles et non
adaptées au deep learning.

Nous obtenons un nouvel algorithme que nous appelons INNA et dont une itérationk 2 N
prend la forme suivante,

8
>><

>>:

vk 2 DJ Bk (� k )

� k+1 = � k + 
 k

�
( 1

� � � )� k � 1
�  k � �v k

�

 k+1 =  k + 
 k

�
( 1

� � � )� k � 1
�  k

�
;

où � � 0, � > 0 et (
 k )k2 N sont des hyper-paramètres de l'algorithme et8k 2 N, Bk �
f 1; : : : ; N g. À l'aide des résultats de Benaïm et al. (2005), nous établissons un lien entre
les comportements asymptotiques d'INNA et des solutions de DIN et prouvons ainsi la
convergence presque sûre d'INNA vers les points critiques deJ . En�n nous entraînons des
réseaux de neurones avec INNA et obtenons des résultats numériques très prometteurs.

Résumé du Chapitre 3

Le chapitre 3 poursuit l'analyse asymptotique de INNA et de DIN commencée dans le
chapitre 2. Alors que l'on a précédemment montré la convergence de INNA vers des points
critiques de J , on étudie maintenant la nature (minimums, points selles, maximums) des
points critiques trouvés en pratique, cette question est importante a�n de minimiser J .
INNA est un mélange de la méthode du gradient accéléré�connue pour éviter les points
selles stricts et les maximums (Lee et al., 2016; O'Neill and S. J. Wright, 2019)�et la
méthode de Newton�qui elle converge vers tout type de points critiques. Pour des fonc-
tions di�érentiables et pour l'algorithme utilisé sans sous-échantillonnage par mini-lots, nous
montrons qu'INNA a tendance à éviter les points selles strictes et les maximums quel que
soit le choix des hyper-paramètres dès lors que� > 0. Ces résultats sont obtenus en util-
isant le théorème de la variété stable. Nous apportons également un éclairage nouveau
sur DIN et INNA grâce au théorème d'Hartman-Grobman et nous illustrons les résultats
numériquement.
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Résumé du Chapitre 4

Ce dernier chapitre est indépendant des deux précédents. Dans celui-ci nous considérons
exclusivement des réseaux de neurones pour lesquels la fonction de perteJ est deux fois
di�érentiable. Notre objectif est de construire une procédure automatique a�n d'adapter la
suite (
 k )k2 N de longueurs de pas de SGD à la courbure de la fonctionJ . Notre approche se
base sur le modèle variationnel suivant. Si l'on souhaite mettre à jour le paramètre� 2 RP

en se déplaçant dans la directiond 2 RP alors la longueur de pas
 > 0 optimale (à l'ordre
deux) est celle qui minimise le modèle suivant:

qd(
 ) = J (� ) + 
 hrJ (� ); di +

 2

2
hr 2J (� )d; di :

Ainsi, si l'on considère d = �rJ (� ) comme dans la descente de gradient, et siJ est
localement convexe dans cette direction, ce modèle suggère le choix de longueur pas suivant,


 =
krJ (� )k2

hr 2J (� )rJ (� ); rJ (� )i
:

À l'inverse quand J est localement concave, on choisit d'ignorer ce modèle et de prendre
une longueur de pas plutôt grande. Ce choix de longueur de pas proposé par Alvarez and
Cabot (2004) étant trop coûteux à calculer, on a recours à une procédure de discrétisation.
À chaque itération k 2 N?, le pas proposé est �nalement le suivant,


 k =

8
<

:

k� k � � k � 1k2

h� k � � k � 1 ;rJ (� k )�rJ (� k � 1 )i if h� � k ; � gk i > 0

� sinon
;

où � > 0 est un hyper-paramètre à choisir. Cette longueur de pas est de type Barzilai-
Borwein (Barzilai and Borwein, 1988).

Elle nécessite de faire des calculs exacts de gradients, elle est donc adaptée à la descente
de gradient mais pas à SGD. Dans la suite du chapitre nous utilisons des considérations
empiriques et théoriques a�n de construire une adaptation de ce choix de longueur de pas qui
soit appropriée à SGD et dont les performances soient bonnes malgré le sous-échantillonnage
par mini-lots. On obtient �nalement un nouvel algorithme, appelé Step-Tuned SGD. Celui-ci
est une modi�cation simple et peu coûteuse de SGD qui s'avère très e�cace dans certaines
de nos expériences d'entraînement de réseaux de neurones, en particulier sur les réseaux
résiduels et ceux utilisant la fonctionnalité de �BatchNorm�.

En nous basant sur un �lemme de descente�, nous montrons la convergence presque sûre
de Step-Tuned SGD vers les points critiques deJ et explicitons une vitesse de convergence.
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