
HAL Id: tel-04186508
https://theses.hal.science/tel-04186508v1

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inertial and Second-order Optimization Algorithms for
Training Neural Networks

Camille Castera

To cite this version:
Camille Castera. Inertial and Second-order Optimization Algorithms for Training Neural Net-
works. Other [cs.OH]. Institut National Polytechnique de Toulouse - INPT, 2021. English. �NNT :
2021INPT0107�. �tel-04186508�

https://theses.hal.science/tel-04186508v1
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Présentée et soutenue par :

Titre :

Rapporteurs :

Membres du jury :
M. JALAL FADILI, ENSICAEN, Président

M. CEDRIC FEVOTTE, CNRS TOULOUSE, Membre
M. EDOUARD PAUWELS, UNIVERSITE TOULOUSE 3, Membre

M. JÉRÔME BOLTE, UNIVERSITE TOULOUSE 1, Membre
MME CLAIRE BOYER, UNIVERSITE SORBONNE, Membre

M. CAMILLE CASTERA

Mathématiques Appliquées

Inertial and Second-order Optimization Algorithms for Training Neural
Networks

le lundi 29 novembre 2021

Ecole doctorale :
Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Unité de recherche :
 Institut de Recherche en Informatique de Toulouse (IRIT)

Directeurs de Thèse :
M. CEDRIC FEVOTTE

M. EDOUARD PAUWELS

MME EMILIE CHOUZENOUX, INRIA
M. PASCAL BIANCHI, TELECOM PARISTECH

“Attendez il faut que ce soit vrai tout ce
qu’on dit là ?...”

— Bohort, Kaamelott

i

Remerciements
J’espère par ces quelques lignes parvenir à exprimer amitié et gratitude à ceux qui ont

partagé ces trois années avec moi et contribué à la réussite de cette thèse.

Pour commencer, merci évidemment à Cédric, Édouard et Jérôme, pour m’avoir tant
apporté scientifiquement tout en m’apprenant à voler de mes propres ailes, ainsi que pour
votre sympathie. Ce fut un grand plaisir de vous avoir comme encadrants, je garderai un
excellent souvenir de nos nombreuses discussions.

Je tiens à remercier les membres de mon jury de soutenance. Merci à Emilie Chouzenoux
et Pascal Bianchi d’avoir rapporté ma thèse, et à Jalal Fadili et Claire Boyer d’avoir été
examinateurs. Je suis honoré et très reconnaissant que vous ayez accepté d’évaluer mes
travaux.

Puisqu’on écrit rarement des remerciements, j’en profite pour exprimer ma gratitude aux
professeurs que j’ai eus tout au long de ma scolarité. Merci aussi à Luciano, Frédéric et
Pierre pour ces stages qui m’ont permis d’être prêt pour aborder la thèse. Une pensée aussi
pour ceux qui ont contribué scientifiquement à cette thèse au travers de discussions, en
particulier merci Emmanuel et Sixin pour vos conseils.

Cette thèse n’aurait pas été aussi joyeuse si je n’avais pas été si bien accueilli par les
membres de l’équipe SC : Marie, Nicolas, Thomas, Cédric, Emmanuel, Henrique et Elsa.
Merci aussi aux postdocs : Alberto, Dana, Sixin, Paul, Arthur, et Cassio et bien sûr à tous
les doctorants qui nous ont montré la voie à suivre : Olivier, Louis, Adrien, Étienne, Mouna,
Baha, Serdar et Maxime. Enfin, un grand merci à mes “contemporains” Claire, Vinicius,
Asma, Florentin et évidemment Pierre-Hugo, on en aura passé du temps ensemble. Je
penserai à vous du haut de mon parapente ! Un grand merci aussi au personnel administratif
qui m’a accompagné dans les nombreuses démarches, en particulier Annabelle, Clémentine
et Chloé.

À mes amis, grâce à qui je n’ai pas manqué d’occasions de relâcher la pression, les Lyon-
nais : Thomas, Baptiste, César, Alexis2, Jules2, Damien, JC, Marc, Agathe, et les Toulou-
sains : Romain, Thomas, Guillaume, Rama, Etienne, Karl, Nathan, et toute la famille, ainsi
que les Tchouss !

Merci à ma famille, ma sœur Gwenaëlle et mon frère Rémi (à ton tour maintenant). Pour
mes parents, vous qui m’avez toujours donné de (très) longues explications à mes questions
étant petit, voilà le résultat !

Enfin, à Soizick, merci d’avoir été à mes côtés pour cette aventure. Quelle histoire ça
aussi...

iii

Abstract

Neural network models became highly popular during the last decade due to their efficiency
in various applications. These are very large parametric models whose parameters must
be set for each specific task. This crucial process of choosing the parameters, known as
training, is done using large datasets. Due to the large amount of data and the size of the
neural networks, the training phase is very expensive in terms of computational time and
resources.

From a mathematical point of view, training a neural network means solving a large-scale
optimization problem. More specifically it involves the minimization of a sum of functions.
The large-scale nature of the optimization problem highly restrains the types of algorithms
available to minimize this sum of functions. In this context, standard algorithms almost
exclusively rely on inexact gradients through the backpropagation method and mini-batch
sub-sampling. As a result, first-order methods such as stochastic gradient descent (SGD)
remain the most used ones to train neural networks. Additionally, the function to minimize
is non-convex and possibly non-differentiable, resulting in limited convergence guarantees
for these methods.

In this thesis, we focus on building new algorithms exploiting second-order information
only by means of noisy first-order automatic differentiation. Starting from a dynamical
system (an ordinary differential equation), we build INNA, an inertial and Newtonian algo-
rithm. By analyzing together the dynamical system and INNA, we prove the convergence
of the algorithm to the critical points of the function to minimize. Then, we show that
the limit is actually a local minimum with overwhelming probability. Finally, we introduce
Step-Tuned SGD that automatically adjusts the step-sizes of SGD. It does so by cleverly
modifying the mini-batch sub-sampling allowing for an efficient discretization of second-
order information. We prove the almost sure convergence of Step-Tuned SGD to critical
points and provide rates of convergence. All the theoretical results are backed by promising
numerical experiments on deep learning problems.

v

Résumé

Les modèles de réseaux de neurones sont devenus extrêmement répandus ces dernières an-
nées en raison de leur efficacité pour de nombreuses applications. Ce sont des modèles
paramétriques de très grande dimension et dont les paramètres doivent être réglés spéci-
fiquement pour chaque tâche. Cette procédure essentielle de réglage, connue sous le nom de
phase d’entraînement, se fait à l’aide de grands jeux de données. En raison du nombre de
données ainsi que de la taille des réseaux de neurones, l’entraînement s’avère extrêmement
coûteux en temps de calcul et en ressources informatiques. D’un point de vue mathéma-
tique, l’entraînement se traduit sous la forme d’un problème d’optimisation en très grande
dimension impliquant la minimisation d’une somme de fonctions. Les dimensions de ce
problème d’optimisation limitent fortement les possibilités algorithmiques pour minimiser
une telle fonction. Dans ce contexte, les algorithmes standards s’appuient presque exclu-
sivement sur des approximations de gradients via la méthode de rétro-propagation et le
sous-échantillonnage par mini-lots. Pour ces raisons, les méthodes du premier ordre de type
gradient stochastique (SGD) restent les plus répandues pour résoudre ces problèmes. De
plus, la fonction à minimiser est non-convexe et potentiellement non-différentiable, limitant
ainsi grandement les garanties théoriques de ces méthodes.

Dans cette thèse, nous nous intéressons à construire de nouveaux algorithmes exploitant
de l’information de second ordre tout en ne nécessitant que de l’information bruitée du
premier ordre, calculée par différentiation automatique. Partant d’un système dynamique
(une équation différentielle ordinaire), nous introduisons INNA, un algorithme inertiel et
Newtonien. En analysant conjointement le système dynamique et l’algorithme, nous prou-
vons la convergence de ce dernier vers les points critiques de la fonction à minimiser. Nous
montrons ensuite que cette convergence se fait en réalité vers des minimums locaux avec très
grande probabilité. Enfin, nous introduisons Step-Tuned SGD, qui, à partir d’une utilisa-
tion astucieuse des mini-lots, discrétise efficacement de l’information du second-ordre afin de
régler finement les pas de SGD. Nous prouvons la convergence presque sûre de SGD vers les
points critiques et explicitons des vitesses de convergence. Tous les résultats s’accompagnent
d’expériences encourageantes sur des problèmes d’apprentissage profond (ou deep learning).

vii

Contents

1 Introduction: Challenges in Optimization for Training Neural Networks 1
1.1 Deep learning: prerequisites . 3

1.1.1 General supervised learning . 3
1.1.2 Neural networks: concept . 4
1.1.3 Some popular architectures and activation functions 6
1.1.4 Supervised deep learning . 9

1.2 Properties of the minimization problem . 12
1.2.1 Basic definitions and assumptions . 12
1.2.2 Non-convex optimization . 14
1.2.3 Non-smooth optimization . 15

1.3 Large-scale optimization framework . 17
1.3.1 Gradient descent . 18
1.3.2 The high computational cost of deep learning 19
1.3.3 Differentiation of smooth DL loss functions 20
1.3.4 Mini-batch sub-sampling and stochastic algorithms 21

1.4 Using second-order information for training DNNs 24
1.4.1 Motivations . 24
1.4.2 Precise problem statement . 26
1.4.3 Overview of existing methods . 27

1.5 Organization of the manuscript . 31

2 INNA: An Inertial Newton Algorithm for Deep Learning 35
2.1 Introduction . 36
2.2 A functional framework for non-smooth non-convex optimization 39

2.2.1 Locally Lipschitz continuous neural network and loss function 39
2.2.2 Neural networks are tame functions 40

2.3 From DIN to INNA: an inertial Newton algorithm 41
2.3.1 Handling non-smoothness and non-convexity 42
2.3.2 Discretization of the differential inclusion 43
2.3.3 INNA and a new notion of steady states 44

2.4 Convergence results for INNA . 47
2.4.1 Main result: accumulation points of INNA are critical 47
2.4.2 Comments on the results of Theorem 2.1 47
2.4.3 Preliminary variational results . 49
2.4.4 Proof of convergence for INNA . 50

ix

Contents

2.5 Towards convergence rates for INNA . 54
2.5.1 The non-smooth Kurdyka-Łojasiewicz property for the Clarke subd-

ifferential . 54
2.5.2 A general asymptotic rate . 55
2.5.3 Application to INNA . 58

2.6 Experiments . 61
2.6.1 Understanding the role of the hyper-parameters of INNA 61
2.6.2 Training a DNN with INNA . 63

2.7 Conclusion . 66

3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA 69
3.1 Introduction . 69
3.2 Preliminary discussions and definitions . 71
3.3 Continuous case: asymptotic behavior of the solutions of DIN 73

3.3.1 DIN is likely to avoid strict saddle points 74
3.3.2 Behavior of the solutions of DIN around stationary points 79

3.4 Discrete case: INNA almost surely avoids saddle points 84
3.4.1 INNA generically avoids strict saddles 84
3.4.2 Stable manifold theorem for discrete processes 85
3.4.3 Proof of Theorem 3.9 . 86
3.4.4 Numerical Illustration . 91

3.5 Conclusion . 92

Appendices to Chapter 3 95
3.6 Permutation matrices . 95
3.7 Proof of Theorem 3.12 . 96

4 Second-order Step-size Tuning of SGD for Non-convex Optimization 101
4.1 Introduction . 101
4.2 Literature related to this chapter . 103
4.3 Design of the algorithm . 104

4.3.1 Deterministic full-batch algorithm . 104
4.3.2 Stochastic mini-batch algorithm . 107
4.3.3 Heuristic construction of Step-Tuned SGD 110

4.4 Theoretical results . 113
4.5 Application to deep learning . 115

4.5.1 Settings of the experiments . 115
4.5.2 Results . 117

4.6 Conclusion . 121

Appendices to Chapter 4 123
4.7 Details on the synthetic experiments . 123

x

Contents

4.8 Proof of the theoretical results . 123
4.8.1 Preliminary lemma . 123
4.8.2 Proof of the main theorem . 124
4.8.3 Proof of the corollary . 129

4.9 Description of auxiliary algorithms . 130

Conclusion 133

A Résumé Détaillé de la Thèse en Français 137

References 141

xi

Notations and Acronyms

Below are some notations used in this manuscript. These are general guidelines, yet, some
notations are re-defined throughout the chapters.

Basic integers
M Input size of a neural network
D Output size of a neural network
P Number of parameters of a neural network
L Number of Layers of a neural network
N Size of a training dataset

Basic variables
x Input of a neural network
y Ground-truth output
ŷ Output of a neural network
θ Parameter of a neural network
(xn, yn)n∈{1,...,N} Training dataset
(θk)k∈N Iterates of an algorithm
(ξk)k∈N Noise produced by mini-batch sub-sampling
α, β, µ, ν, δ, ε Hyper-parameters of algorithms
γ Step-size
(γk)k∈N Sequence of step-sizes

Fonctions
f Neural network
ftruth Ground-truth function
` Dissimilarity measure
J Loss function
JB Approximation of J on a mini-batch B
(fl)l∈{1,...,L} Layers of a neural network
(gl)l∈{1,...,L} Activation functions of a neural network
(Wl)l∈{1,...,L} Matrices of dense layers
g, h, F,G Generic functions

xiii

Notations and acronyms

Sets
Sets are usually denoted with sans-serif or blackboard fonts
N Integer numbers
N>0 Positive integer numbers
R Real numbers
R+ Non-negative real numbers
S Set of stationary points
A Random subset
B Mini-batch
Ω Open subset
K Compact subset
[a, b] Closed interval
(a, b) Open interval

Operators
| · | Absolute value or cardinal of a set
‖ · ‖ Norm
〈·, ·〉 Scalar product
dist Distance
conv Convex hull
A−1 Inverse of the matrix A
AT Transposition of the matrix A
det Determinant of a matrix

Calculus
θ̇ Time derivative of θ (when θ is a trajectory)
d
dt Time derivative of a function
∇J Gradient of J
∇2J Hessian matrix of J
∂J Clarke sub-differential of J
DJ New differential operator for non-smooth tame functions
JacG Jacobian matrix of G∑

Summation symbol∫
Integration symbol

Probabilistic Notations
E [X] Expectation of X
E [X|Y] Expectation of X conditionally to Y

xiv

Notations and acronyms

Acronyms
NN Neural network
DNN Deep neural network
DL Deep learning
ReLU Rectified linear unit
ODE Ordinary differential equation
GD Gradient descent
SGD Stochastic gradient descent
HBF Heavy-ball with friction
INNA Inertial Newton algorithm
K-FAC Kronecker-factored approximate curvature
IPAHD Inertial proximal algorithm with Hessian damping
HNAG Hessian-driven Nesterov accelerated gradient
BB Barzilai-Borwein
KL Kurdyka-Łojasiewicz
GV Gradient variation
e.g. exempli gratia (for example)
i.e. id est (that is)
a.s. almost surely
a.e. almost every/everywhere

xv

Chapter 1

Introduction: Challenges in Optimization
for Training Neural Networks

Contents

1.1 Deep learning: prerequisites . 3
1.1.1 General supervised learning . 3
1.1.2 Neural networks: concept . 4
1.1.3 Some popular architectures and activation functions 6
1.1.4 Supervised deep learning . 9

1.2 Properties of the minimization problem . 12
1.2.1 Basic definitions and assumptions . 12
1.2.2 Non-convex optimization . 14
1.2.3 Non-smooth optimization . 15

1.3 Large-scale optimization framework . 17
1.3.1 Gradient descent . 18
1.3.2 The high computational cost of deep learning 19
1.3.3 Differentiation of smooth DL loss functions 20
1.3.4 Mini-batch sub-sampling and stochastic algorithms 21

1.4 Using second-order information for training DNNs 24
1.4.1 Motivations . 24
1.4.2 Precise problem statement . 26
1.4.3 Overview of existing methods . 27

1

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

1.5 Organization of the manuscript . 31

Introduced decades ago (Hebb, 1949; Rosenblatt, 1958), neural networks remained ignored
by a large part of the computer science community for a long time. They made a come back
in the 1980s (LeCun et al., 1989) and became highly used only in the late 2000s (G. E. Hinton
et al., 2006; Bengio, LeCun, et al., 2007). This upsurge of interest is mainly due to recent
breakthroughs achieved by neural networks in a wide spectrum of applications including
computer vision (Krizhevsky et al., 2012), linguistic (Mikolov et al., 2013), biology, physics,
etc. From this variety of applications was born deep learning, the branch of machine learning
that gathers the methods revolving around neural networks. The recent success of deep
learning is due to the combination of several favorable factors: the progress of computers,
the ease of accessing large datasets (Deng et al., 2009), open-source software (Rossum,
1995; Abadi et al., 2016; Paszke et al., 2019), etc., nonetheless, overcoming the issue of
training neural networks significantly contributed to this success. Indeed, neural networks
are large-scale parameterized functions that must be set up for each specific application.
For determining the parameters, one must minimize a very large-scale sum of functions, the
so-called loss function. This loss function is non-convex and may also be non-smooth. The
resulting unconstrained optimization problem is tackled numerically, but the computational
cost is extremely high due to the size of the problem. To this day, the training relies on the
backpropagation (Rumelhart and G. E. Hinton, 1986), an optimized manner of computing
the gradient of the loss function. As a result, most algorithms available to train neural
networks belong to the class of stochastic first-order methods (Bottou and Bousquet, 2008),
of which the stochastic gradient descent (Robbins and Monro, 1951) is the prototypical
example.

While we are now able to train neural networks for many applications, the training re-
mains among the biggest challenges in deep learning (Bottou et al., 2018) since it often takes
long and requires significant investments in computational resources and energy. Taking an
(extreme) example, the GPT-3 model (Brown et al., 2020) cost several millions of dollars
to be trained just once. This shows how important it is to find more efficient algorithms
for training neural networks. Most of the widely used algorithms are originally designed for
convex optimization, e.g., ADAGRAD (J. Duchi et al., 2011), and few of them specifically
exploit the non-convex landscapes of deep learning loss functions. Taking the specific as-
pects of deep learning into account would however help to design faster methods. Yet, this
usually requires the computation of second-order derivatives, which is prohibitively compu-
tationally expensive due to the large-scale dimension of the optimization problem. Similarly,

2

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

while the convergence of algorithms is well understood for convex functions (Moulines and
Bach, 2011), it reveals to be harder in deep learning. The convergence of several algorithms
has been shown for smooth networks typically by using Lipschitz gradient continuity as-
sumptions (Ghadimi and Lan, 2013; Li and Orabona, 2019), but guarantees are rare for
non-smooth neural networks, with some exceptions (D. Davis et al., 2020). The present
thesis aims to design new algorithms specifically exploiting second-order information to
alleviate the training of neural networks and to provide convergence guarantees under as-
sumptions that hold for most deep learning loss functions.

In this introduction chapter, we first present the basic principles of deep learning before
detailing the problem of training neural networks from an optimization perspective. We
then discuss more precisely the motivations for using second-order information, along with
the associated challenges. Finally, we specify the main problems that we address in this
thesis.

1.1 Deep learning: prerequisites

We first formulate deep learning as a supervised learning problem.

1.1.1 General supervised learning

A foundational interpretation of machine learning consists in assuming that there exists an
unknown ground-truth function (or prediction function) ftruth representing for example a
physical of biological reality. Following the formalism of Hastie et al. (2009, Chapter 2),
this ground-truth is expressed through the relation

y = ftruth(x), (1.1)

where x ∈ RM and y ∈ RD are respectively called input and output data, for some positive
integers M and D. Supervised machine learning aims to estimate this unknown function
ftruth. In other words ftruth represents a possibly very complex reality and one seeks a
model that behaves like this function. Machine learning models are a way of building such
a surrogate for ftruth, the models take the form of parameterized functions,

f : (x, θ) ∈ RM × RP 7→ ŷ ∈ RD, (1.2)

3

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

where again x ∈ RM and ŷ ∈ RD. The variable θ ∈ RP for P ∈ N>0 represents the
parameters of the model f . The objective is roughly to choose the parameter θ such that
for a given input x, the output ŷ = f(x, θ) predicted by the model is as “close” as possible
to the correct ground-truth output y = ftruth(x).

Example. A famous example to illustrate this mathematical formalism is image classifi-
cation where x ∈ RM is an image made of M pixels. Assume that we want to build a model
to state whether a cat is present in the image. The data y is thus a scalar associated to
the presence of a cat in the image x: it takes the value 1 if there is a cat in the image and
0 if not. In this example, ftruth would be a function encoding everything necessary to tell
whether a cat is present in the image. Determining exactly ftruth is out of reach, but it can
be approximated by a machine learning model f whose parameters have to be well chosen
to achieve the same task as ftruth.

1.1.2 Neural networks: concept

In this work, we will focus on a specific type of machine learning models: neural networks.

1.1.2.1 Mathematical representation

Neural networks (NNs) refers to a specific class of supervised machine learning models (1.2).
In this thesis we consider feedforward NNs, in which the model f in (1.2) has a compositional
structure. Let L ∈ N>0, the model reads,

f(·, θ) = fL
(
fL−1

(
. . .
(
f1(·, θ(1))

)
, θ(L−1)

)
, θ(L)

)
, (1.3)

where for each l ∈ {1, . . . , L}, f(·, θ(l)) is a function from RDl−1 to RDl , parameterized by
θ(l) ∈ RPl , and where

∑L
l=1 Pl = P , (θ in (1.2) is the concatenation of all the θ(l)) and

the dimensions (Dl)l∈{0,...,L} can be chosen freely as long as D0 = M and DL = D. The
functions (fl)l∈{1,...,L} are called layers and L is thus the number of layers. The input
x ∈ RM is often called input layer, while the function fL is the output layer and the other
functions (fl)l∈{1,...,L−1} are called hidden layers.

The prototypical example of these models is the Multi-Layer Perceptron (MLP) based
on the perceptron introduced by Rosenblatt (1958). In this model, for each l ∈ {1, . . . , L},
the layer fl consists in multiplying a matrix Wl ∈ RDl−1×Dl with the previous layer, then
adding a bias vector bl ∈ RDl , and finally composing the result with a function gl, typically

4

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

applied coordinate-wise and called activation function. Given an input x ∈ RM , the output
ŷ ∈ RD of the NN is thus obtained by the relation,

ŷ = gL (WL gL−1 (WL−1 gL−2 (. . . g2 (W2 g1(W1x+ b1) + b2) . . .+ bL−2) + bL−1) + bL) .
(1.4)

The type of layers described above are called dense layers. Variations of the MLP can be
considered, in particular the dimensions of the matrices and vectors can be freely chosen as
long as they agree with the rules of matrix-vector products, the same holds for the domain
and codomain of the activation functions. Nowadays, the performances of computers allow
building NNs with a large number L of layers. In the literature and in the sequel, the term
Deep Neural Networks (DNNs) is thus often used, in comparison to “shallow” NNs which
refer typically to networks with only one or two layers. In (1.4), the variable θ introduced
in (1.2) corresponds to the vector concatenation of the coefficients of the matrices W1 to
WL and the coefficients of the vectors b1 to bL. Thus P corresponds to the total number
of coefficients of these matrices and vectors. We will specify in Section 1.1.4.1 how the
coefficients of θ are determined.

1.1.2.2 Graphical representation

Input
layer x

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer ŷ

1

Figure 1.1: Graph representation of a MLP. Illustration made with the package of Mark
(2017).

In addition to the mathematical definition, it is sometimes useful to represent DNNs as
acyclic graphs like in Figure 1.1. This figure represents a MLP, the input layer is made ofM
green nodes, each one corresponding to a coefficient of the input x. The arrows between the

5

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

green nodes and the blue ones represent the operations yielding h1 = g1(W1x+b1). The next
layer is then obtained by computing h2 = g2(W2h1+b2) and so on until obtaining the output
ŷ. We will sometimes use this representation since some concepts are easier to understand
using graphs, in particular backpropagation (see Section 1.3.3.1). The term “feedforward”
also refers to the acyclic nature of the graph: going from the input on the left to the output
on the right. More generally, the term neural network comes from the analogy once made
between this graphical representation and the human brain (Hebb, 1949), although NNs
remain actually essentially a class of non-linear machine learning models.

1.1.3 Some popular architectures and activation functions

Neural networks form a broad class of models that goes far beyond MLPs, here we briefly
present some other NN architectures that use other types of layers than dense ones. We
also discuss popular activation functions that will be used in the numerical experiments of
this manuscript.

1.1.3.1 Some NN architectures

There is an ever-growing number of new NN architectures, here we introduce some of the
most popular ones.

• Residual neural networks. Residual neural networks also known as ResNets (He
et al., 2016) are a quite simple but efficient modification of classical MLPs. A common
flaw of MLPs is that usually, if a MLP with L layers performs well for a given task,
then adding one or more layers may reduce its performance. This means that the
layers of the MLP fail to represent the identity mapping (otherwise additional layers
could simply behave like identity layers, not affecting the output). Residual networks
address this issue by adding mappings, called skip-connections, between a layer l ∈
{1, . . . , L−2} and the layer l+ 2, skipping the layer l+ 1 as represented in Figure 1.2.

• Convolutional Layers. Convolutional Neural Networks (CNNs, Fukushima and
Miyake 1982; LeCun et al. 1989) highly contributed to the success of NNs. These
NNs, inspired from the signal processing theory, were originally designed to specifically
exploit structures in images. To this aim, the input vector x is usually reshaped
in a matrix form, corresponding to the pixels of the image. Then, several small
filters (small matrices) are convolved with the input x, yielding several images (one
per filter). One then typically reduces the dimensions of these images using pooling

6

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

Figure 1.2: Graphical representation of a residual network. The arrows “jumping over lay-
ers” are called skip-connections and represent a mapping between a layer l ∈ {1, . . . , L− 2}
and the layer l+ 2 “skipping” the layer l+ 1. Such arrows could be used to connect all the
neurons of layers l and l + 2 but we draw only one of them so that the figure can be red
more easily.

activation functions applied to patches of pixels: e.g., keeping only the maximum or
mean value among some neighbor pixels. This process forms a convolutional layer
where the coefficients of each filter are parameters of the NN. CNNs are made of a
composition of convolutional layers, and one dense layer is often used as last layer
so that the dimensions of the output ŷ of the network matches the dimension of the
expected output y, as illustrated on Figure 1.3.

Note finally that the definitions above may intersect each other. Different types of layers
(dense, residual, convolutional, etc.) can be composed to create variations of the NNs
described above. For example, some popular NNs are both residual and convolutional (He
et al., 2016).

1.1.3.2 Activation functions and universal approximation

We just detailed some typical NN architectures, we did not however discuss precisely the
role of the activation functions (gl)l∈{1,...,L}. As previously stated, these are functions to
apply to each layer of the NN, for example in (1.4), g1(W1x) denotes the operation of
applying g1 to each coefficient of the vectorW1x. The definition is extremely general, almost
any real-valued (or even complex-valued) function can be considered, although to ease the
training (see Section 1.1.4), it is preferable to use “well-structured” ones. In addition to
the pooling activation functions discussed with the CNNs, we now present some popular

7

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

Figure 1.3: Scheme of a CNN. An input matrix x is transformed into several small ma-
trices by a convolutional layer. These matrices are then again transformed into many
smaller matrices with the same process. Eventually, a dense layer turns these matri-
ces into a vector ouput ŷ. Here the parameter θ corresponds to the coefficients of the
filters of the convolutional layers and the coefficients of the dense layer. Drawn with
http://alexlenail.me/NN-SVG/LeNet.html.

univariate activation functions applied element-wise. The sigmoid (or logistic) function
t ∈ R 7→ 1/(1 + e−t) is among the most popular choices, it is a smooth increasing function
whose limits are 0 and 1 at −∞ and +∞ respectively. Nowadays, the Rectified Linear Unit
(ReLU) activation function t ∈ R 7→ max(0, t) has also become widely used in fields like
computer vision. Unlike the sigmoid, ReLU is unbounded as t → +∞. Both functions are
displayed on Figure 1.4.

4 3 2 1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sigmoid(t) = 1/(1 + e t)
ReLU(t) = max(0, t)

Figure 1.4: The two most popular activation functions: the sigmoid and the ReLU functions.

There is no general rule for choosing which activation functions to use, yet, a fundamental
aspect is to choose non-linear ones. Indeed, if they were all linear then observe that, in
(1.4), the network f would be linear (or affine) as well and hence may struggle to accurately

8

http://alexlenail.me/NN-SVG/LeNet.html

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

approximate some non-linear functions ftruth, see for example the XOR function (Goodfellow
et al., 2016, Part II, Chapter 6). On the contrary, it has been proved that non-linear NNs
are universal approximators. More precisely, several works among which Cybenko (1989),
Hornik et al. (1989), and Leshno et al. (1993) proved that even simple two-layers NNs
with Sigmoid or ReLU activation functions can approximate arbitrarily-well any measurable
function on a compact set when the width of the hidden layer increases (i.e. when the
dimensions of W1 increase).

1.1.4 Supervised deep learning

So far we presented NNs as parameterized functions of θ ∈ RP used to approximate some
ground-truth function, we did not however specify how the parameter θ ∈ RP was chosen.
This question revolves around the aforementioned training procedure, which we first detail,
before connecting it to the problem of generalization. All these aspects of building, training,
and using NNs presented in this section form the deep learning (DL).

1.1.4.1 Training a neural network

The task of training DNNs is the main topic of this thesis. As we already explained, a NN
f is a function of both an input x ∈ RM and a parameter θ ∈ RP which produces an output
ŷ = f(x, θ) ∈ RD. Consider such a network f , made of activation functions and layers as
presented in Section 1.1.2.

To approximate a ground-truth function ftruth, one needs a dataset (xn, yn)n∈{1,...,N}
made of N ∈ N>0 pairs of elements (xn, yn) ∈ RM × RD, linked for all n ∈ {1, . . . , N} by
the relation yn = ftruth(xn) + ζn where ζn ∈ RD represents a noise (for example induced
by imprecise measurements of ftruth). This dataset is called training set. In the example of
Section 1.1.1, one would need a collection of images (xn)n∈{1,...,N}, some that contain cats
and others that do not, and scalars (yn)n∈{1,...,N} indicating the presence or absence of cats
in the images.

Using a dissimilarity measure ` : RD×RD → R, one then compares for each n ∈ {1, . . . , N}
the output ŷn = f(xn, θ) of the NN with the correct output yn. The canonical example for `
is the squared Euclidean distance on RD: `(yn, ŷn) = ‖yn− ŷn‖22. This dissimilarity measure
must be thought of as an error between the expected output and the actual output of the
NN. The training becomes the problem of finding a θ ∈ RP which minimizes `(yn, ŷn) for
each n ∈ {1, . . . , N}. The canonical way to do so is to find θ ∈ RP which minimizes the

9

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

sum of all the errors computed on the full dataset, namely,

J (θ) def=
N∑
n=1

` (yn, f(xn, θ)) , (1.5)

this function J : RP → R is called loss function. We will sometimes denote Jn the n-th term
of the sum in (1.5), i.e., for all θ ∈ RP , Jn(θ) def= `(f(xn, θ), yn). Choosing the parameters
of the NN is thus formulated as the following optimization problem,

min
θ∈RP

J (θ). (1.6)

The training phase refers to the process of progressively minimizing J using iterative opti-
mization algorithms. We will specify how this is done later in Section 1.3, the main objective
of this work is to build new algorithm to tackle (1.6). Before that, we introduce the notion
of generalization.

Remark 1.1. We presented the training of DNNs as a supervised learning problem. DNNs
can also be used for unsupervised tasks, i.e., using only input data but no output data.
Unsupervised deep learning can often be formulated as an optimization problem similar to
(1.6): for example in the case of auto-encoders (G. E. Hinton and Salakhutdinov, 2006),
each term in (1.5) would be replaced by ` (xn, f(xn, θ)), for n ∈ {1, . . . , N}. Despite the
similarities, we will mostly consider supervised DL problems in this work. We refer to
Hastie et al. (2009) for further discussions on supervised and unsupervised learning.

1.1.4.2 Generalization performances

It is important to keep in mind that the objective when training a DNN on a dataset is
to build a model to approximate ftruth. For this purpose we shall not necessarily minimize
exactly the loss function J in (1.6). Indeed, the training set (xn, yn)n∈{1,...,N} only contains
a finite number of (possibly imprecise) measurements of ftruth and hence there may exists
many candidate functions f̃ 6= ftruth such that for any n ∈ {1, . . . , N}, yn = f̃(xn) + ζn. For
this reason, finding the lowest value of J may result in a network f making very accurate
predictions on the training set but very poor predictions on other data not used during the
training phase. This issue is called overfitting, we say that the model overfits the training
set, whereas we would like it to generalize well on other data. We refer to Hastie et al.
(2009, Chapter 7) for a general discussion on the problem of generalization.

To evaluate the generalization performance of the model the standard approach is to

10

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

use another dataset (x̃n, ỹn)n∈{1,...,Ñ} of size Ñ ∈ N>0 and called test set. This test set is
assumed to be sampled from the same function ftruth: ỹn = ftruth(x̃n) + ζ̃n, where again
ζ̃n represents a perturbation. It is not to be used while training the DNN but only after
to ensure that the model performs well on these data which were not used to choose the
parameter θ of the NN. In practice one tracks a test error during the training to check that
the generalization performance is improving. The test error is a metric computed on the
test set (x̃n, ỹn)n∈{1,...,Ñ} to ensure that the NN f performs well on this set. For example,
one could simply consider the quantity

Ñ∑
n=1

` (ỹn, f(x̃n, θ)) , (1.7)

which is similar to (1.5) but evaluated on the test set. We illustrate the question of general-
ization on the top row of Figure 1.5. The left figure shows a model underfitting: It achieves
quite a large error both on training and test sets. In contrast, the model on the right figure
performs very well on the training set but not at all on the test set, it overfits. The model
on the middle figure is more balanced than the other two, it works quite well on the training
set but the test error is lower than for other models. The emergence of the overfitting issue
can also be observed during the training phase as illustrated on the bottom of Figure 1.5.
When using algorithms in order to decrease J (during the training), a current phenomenon
occurs: at first the error on the test set is quite large but progressively decreases; then after
some time, this error stagnates or may even start to increase whereas the value of J keeps
decreasing. This indicates that minimizing exactly J is not always the best choice in order
for the model f to generalize well, it is sometimes preferable to stop the training before
reaching the minimum of J (Bengio, 2012), this is called early stopping.

There exists several approaches to overcome or at least mitigate the overfitting issue. For
example, assuming additional properties for ftruth such as sparsity, bounding the norm of θ
in (1.6) or using techniques like weight-decay regularization (Krogh and Hertz, 1992). More
generally, many factors impact generalization: ftruth and the training set, the structure of the
DNN, the algorithm used to tackle (1.6), etc. The effect of these elements on generalization
is an active topic of research. In this work we will focus on minimizing (1.5) and hope that
this produces good generalization performances. To check that this is the case, we will at
least track a test error while doing DNN training experiments.

Now that we presented the main aspects of DL we will focus on the training of DNNs
and in particular on how one theoretically studies problems like (1.6) and tackles them
numerically.

11

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

train error: 1.13
test error: 1.04

ftruth
Underfitting model
training set
test set

Underfitting:
high train and test errors

train error: 0.32
test error: 0.48

ftruth
Good model
training set
test set

Balanced fitting:
medium train and test errors

train error: 0.00
test error: 0.96

ftruth
Overfitting model
training set
test set

Overfitting:
low train error - high test error

underfitting good fit overfitting
Evolution of the training

Er
ro

r (
lo

ss
 fu

nc
tio

n)

Error on the training set
Error on an independent test set
Optimal value

Figure 1.5: Top figures illustrate the issues of overfitting and underfitting on a toy regression
problem. It is made on an example with synthethic data sampled from the function ftruth :
t ∈ [0, 2] 7→ 0.5t2 + 2 sin(3t)3/2. Bottom figure illustrates the same issue but from an
optimization point of view. On this figure, the blue curve represents the evolution of a loss
function J during the training of the NN. The red curve represents the evolution of a test
error on a test set, different from the training set. In this example the test error increases
at late stages, in some training experiments it simply stagnates.

1.2 Properties of the minimization problem

Let N ∈ N>0 and P ∈ N>0, throughout this chapter and according to Section 1.1, we denote
(xn, yn)n∈{1,...,N} a training dataset, f is a NN and ` is a dissimilarity measure. We thus
consider a loss function J that takes the form (1.5).

1.2.1 Basic definitions and assumptions

As explained in Section 1.1.4, training the DNN f amounts (at least approximately) to find
a minimizer of J , notion which we now define precisely.

Definition 1.1. Let g : RP → R, we say that θ? ∈ RP is a local minimizer of g if there

12

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

exists a neighborhood Ω of θ? such that, for all θ ∈ Ω,

g(θ?) ≤ g(θ). (1.8)

The definition of a global minimizer is very similar except that it requires (1.8) to hold
for all θ ∈ RP . The definition of local and global maximizers are the same with a reverse
inequality in (1.8). It is worth precising that if θ? is a local minimizer, then J (θ?) is called
a local minimum. However, in the literature it is common to make an abuse of terminology
by saying that “θ? is a local minimum”, we sometimes do the same in the sequel. In order
for the minimization problem to be well posed we make the following assumptions.

Assumption 1.1. The loss function J is lower-bounded,

−∞ < inf
θ∈RP

J (θ), (1.9)

and,
domJ def=

{
θ ∈ RP |J (θ) < +∞

}
= RP . (1.10)

Lower boundedness is a very natural assumption. Indeed, to minimize J we expect
that it has at least a finite infimum. Actually, since J represents a sum of “errors” (see
Equation 1.5), Assumption 1.1 is often guaranteed by construction. For example, J is
greater or equal to 0 when ` is the squared Euclidean distance. The second part of the
assumption states that J does not take infinite values on RP .

When J is smooth enough, we will denote ∇J (θ) ∈ RP and ∇2J (θ) ∈ RP×P the gradient
and the Hessian of J at θ ∈ RP respectively. For now, we assume that J is differentiable.
To find a point where J achieves a minimum, a key strategy is to seek critical points, defined
next.

Definition 1.2. Let g : RP → R be a differentiable function. A point θ? ∈ RP is called a
critical point of g if ∇g(θ?) = 0.

The interest of critical points lies in one of Fermat’s theorems.

Theorem 1.2 (Fermat’s theorem for critical points). Let g : RP → R be a differentiable
function and let θ? ∈ RP be a local minimum or a local maximum of g, then, ∇g(θ?) = 0.

Therefore, a necessary condition for a point to be a minimum of a differentiable function is
that it is a critical point of this function. We now recall the definition of a convex function.

13

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

Definition 1.3. A function g : RP → R is convex if for any θ1, θ2 ∈ RP and ∀λ ∈ (0, 1),

g(λθ1 + (1− λ)θ2) ≤ λg(θ1) + (1− λ)g(θ2). (1.11)

A function is strictly convex if (1.11) holds with strict inequality.

Convexity arises in many optimization problems and is thus a very active field of research,
it has many benefits. This property can be used to design fast algorithms, and inequalities
like (1.11) are useful to analyze the convergence of algorithms, see for example Nesterov,
Y. (2003). In particular the necessary condition from Theorem 1.2 becomes sufficient for
differentiable functions: under the convexity assumption any critical point of J is a global
minimum. Thus, for smooth convex functions, solving (1.6) boils down to finding a point
θ? ∈ RP such that ∇J (θ?) = 0.

In practice, many widespread optimization algorithms are originally designed to minimize
convex functions, some of them are used in DL (SGD, ADAGRAD, etc.). Yet, this may be
problematic since DL loss functions are non-convex in general as we now explain.

1.2.2 Non-convex optimization

We now focus on the theoretical properties of the loss functions met in DL. In view of
(1.5), one can see that the analytical properties of J depend on those of ` and the network
f . Observe in particular that the loss function J is non-convex in general. Indeed, while
the dissimilarity measure ` can be chosen to be smooth and convex, like in the example of
Section 1.1.4.1, (y, ŷ) ∈ RD×RD 7→ ‖ŷ− y‖22, the structure of the network f in (1.4) makes
J a non-convex function of RP in general. The reason is twofold, first the composition of
convex functions need not be convex.1 In addition, the activation functions may be neither
convex nor concave, see for example the sigmoid function presented on Figure 1.4.

For now we assume that J is differentiable. The lack of convexity makes the minimization
of J harder since Fermat’s condition becomes insufficient for finding a global minimum.
Fermat’s condition remains sufficient for some sub-classes of non-convex functions (e.g.,
quasi-convex functions), unfortunately, DL loss functions do not belong to any of these
classes in general. As a result, the loss function J may have local minima that are not
global, but also maxima or even critical points that are neither minima nor maxima. We
illustrate this on Figure 1.6 where a non-convex function has various types of critical points

1Sufficient conditions for the composition of convex functions to be convex typically requires monotonicity
assumptions.

14

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

whereas the convex one has a unique global minimum.

4 2 0 2 4
10

0

10

20

30

convex function
non-convex function
global minimum
local minimum
local maximum

Figure 1.6: Illustration of several types of critical points of non-convex functions compared
to convex ones. The function in blue is t ∈ R 7→ t2 − 2t − 2 and the one in black is
t ∈ R 7→ t2 + 10 sin(t).

The existence of spurious critical points complicates the theoretical analysis of the problem
(1.6). However, practitioners seem to often tackle such problems “almost as if there were
convex”: they mostly use algorithms made to progressively decrease J but not specifically
designed to avoid local minima or strict saddle points (critical points where the Hessian
has negative eigenvalues). The main reason for this is that such methods produce satisfying
results for many applications in practice: they often achieve a low value of J and yield good
generalization performances. Explaining this phenomenon is an active topic of research, but
some results suggests that the value of J at most local minima is likely to be small (close to
the global minimum) for DNNs with “sufficiently” wide layers (Choromanska et al., 2015).
Some works also argue that most critical points are actually strict saddle points and that the
main challenge is to escape them quickly as they may significantly slow down the training
(Dauphin et al., 2014).

There are many other aspects making general non-convex optimization harder than the
special case of convex minimization. In particular, without convexity, (1.6) is difficult to
tackle or even define for non-smooth loss functions, which again, may occur in DL as we
now explain.

1.2.3 Non-smooth optimization

In addition to non-convexity, the loss functions in DL can also be non-differentiable. Unlike
convexity, differentiability is preserved by composing functions, here the non-smoothness

15

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

comes from the use of some popular activation functions, with in particular the ReLU
function (see Figure 1.4) which is non-differentiable at 0.

Despite the non-smoothness, DL loss functions have some structural properties. Indeed,
they are usually made of a composition of linear functions (e.g., dense layers), piece-wise
polynomial (ReLU, squared Euclidean distance), or exponentials (sigmoid activation) and
logarithms (cross-entropy dissimilarity), etc. As a result, most of them are tame (D. Davis
et al., 2020). This notion will be defined precisely in Chapter 2, but formally, it means that
the graph of the loss functions can be split into a finite number of pieces, each of which can
be described with inequalities involving polynomials, exponentials, etc. Thus, the study of
tame functions can be split into pieces on which they behave “well”. Additionally, while some
loss functions are non-differentiable, their structures make them locally Lipschitz continuous
in general.

Definition 1.4. A function g : RP → R is locally Lipschitz continuous, if for any θ ∈ RP ,
there exists a neighborhood Ω of θ and a constant LΩ > 0 (depending on Ω) such that for
any θ1, θ2 ∈ Ω,

|g(θ1)− g(θ2)| ≤ LΩ ‖θ1 − θ2‖ , (1.12)

where ‖·‖ is a given norm on RP , and LΩ is referred to as a Lipschitz constant of g on Ω.
A function g : RP → RD is locally Lipschitz continuous if each of its coordinates is locally
Lipschitz continuous. A function g : RP → R is said to be (globally) Lipschitz continuous if
there exists a Lipschitz constant such that (1.12) holds for any θ1, θ2 ∈ RP .

Throughout this thesis we will always study NNs, dissimilarity measures and loss func-
tions that are locally Lipschitz continuous. By Rademacher’s theorem (Heinonen, 2005),
locally Lipschitz continuous functions are differentiable almost everywhere on RP , hence
their gradient is well-defined at almost any point of RP . The local Lipschitz continuity
will play an important role in the convergence analysis of the new algorithms that we will
introduce, even though this property itself is not sufficient in general to obtain convergence
results for general non-smooth non-convex functions (Daniilidis and Drusvyatskiy, 2020;
Rios-Zertuche, 2020).

While, DL loss functions are differentiable almost everywhere, non-smoothness cannot be
ignored. Indeed, algorithms may encounter points of non-differentiability and such points
may even be minima. The canonical example illustrating this is the function t ∈ R 7→ |t|.
The latter is differentiable everywhere except at t = 0, but this point is exactly the unique
global minimum. This function illustrates another hardship: the norm of the gradient is not
a sign of closeness to critical points. Indeed, although the gradient of | · | is well-defined on

16

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

R\{0}, it is always equal to ±1 and thus it never tends to 0 regardless how close we may be
to the minimum t = 0. Of course similar issues also appear when considering second-order
derivatives (see later in Section 1.4.1).

A standard approach to deal with non-smoothness in optimization is to introduce a notion
of subgradient, generalizing the gradient for non-differentiable functions. For example, for
a differentiable convex function g : RP → R and for any θ ∈ RP , the gradient ∇g(θ) is the
only element of RP such that,

∀ψ ∈ RP , g(ψ) ≥ g(θ) + 〈∇g(θ), ψ − θ〉, (1.13)

see Nesterov, Y. (2003, Chapter 2). Therefore, the standard definition of the subdifferential
of a convex but non-differentiable function g at θ ∈ RP is simply the set,{

v ∈ RP
∣∣∣∀ψ ∈ RP , g(ψ) ≥ g(θ) + 〈v, ψ − θ〉

}
, (1.14)

and the elements of this set are called subgradients (see Rockafellar 1996). The subdiffer-
ential is thus a set-valued operator, and as we said, whenever g is differentiable at θ, this
subdifferential simply reduces to {∇g(θ)}. Unfortunately, this definition of the subdifferen-
tial only suits convex functions. For non-convex functions there may be no vector satisfying
the right hand-side inequality in the set (1.14). For example, the function t ∈ R 7→ −|t| is
a simple example of a non-convex function for which the set (1.14) is empty at t = 0. In
Chapter 2 we will address this issue using the Clarke subdifferential (Clarke, 1990) which
is well-defined for locally Lipschitz continuous DL functions, but is however not fully com-
patible with calculus which generates other complications.

1.3 Large-scale optimization framework

As said at the beginning, DL had an irregular development. It was introduced quite a
long time ago (McCulloch and Pitts, 1943; Rosenblatt, 1958), was further developed thirty
years later (Rumelhart and G. E. Hinton, 1986; LeCun et al., 1989) but only became highly
used in the early 2010s after producing state-of-the-art results on problems such as the
ImageNet classification challenge (Deng et al., 2009) with the AlexNet DNN (Krizhevsky
et al., 2012). The main reason for this late success originates from in the difficulty of
training DNNs. Indeed, assuming for now that J is differentiable, in Section 1.2.1 we
saw that seeking critical points was an appropriate strategy to find candidates for being
minimizers. However, finding a closed-form solution θ? ∈ RP to the equation ∇J (θ?) = 0

17

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

is not possible in general this is a system of P non-linear equations. Hence, one must
resort to finding approximate solutions numerically, usually using iterative algorithms. We
first present gradient descent, the most classical of these algorithms. Then, we specify the
computational limitations that made the training of DNNs unpractical for a long time and
finally introduce fundamental tools for overcoming these limitations.

1.3.1 Gradient descent

Gradient descent (GD) is the archetypal method for minimizing a function and is used
in many applications. Its introduction goes back at least to Cauchy in 1847 according to
Lemaréchal (2012). Consider an initialization θ0 ∈ RP and a number γ > 0 called step-size
(or learning rate in the DL literature), for all k ∈ N the algorithm simply reads,

θk+1 = θk − γ∇J (θk). (1.15)

GD follows the idea of “steepest descent”: the vector −∇J (θk) in (1.15) indicates the
direction in which an infinitesimal variation of θk decreases J the most. Indeed, let θ ∈ RP ,
γ > 0 small, ‖·‖ be a norm on RP and let d ∈ RP such that ‖d‖ = 1. By a Taylor expansion
and the Cauchy-Schwarz inequality, it holds,

J (θ + γd) = J (θ) + 〈∇J (θ), γd〉+ o(γ)

≥ J (θ)− γ‖∇J (θ)‖ ‖d‖+ o(γ) = J (θ)− γ‖∇J (θ)‖+ o(γ). (1.16)

Thus, observe that at first-order approximation, taking d = −∇J (θ)/‖∇J (θ)‖ is the opti-
mal choice to minimize the left-hand side of (1.16), hence the term “steepest descent” (see
Bertsekas 1999 for further details). This justification for using −∇J (θ) as update direction
is based on arguments that hold infinitesimally, they are not valid anymore when using
too-large step-sizes γ > 0. However, accurately choosing the step-size γ > 0 is not easy in
general as we will convey in Section 1.4.1. Despite its simplicity, GD can be very powerful,
in particular remark that (1.15) stabilizes if and only if ∇J (θk) = 0, i.e., if and only if one
has found a critical point.

Apart from the choice of the step-size (which can be difficult), GD simply requires one
to be able to evaluate the gradient ∇J of the loss function. Even though this may seem
to be a very mild requirement, computing gradients is computationally expensive in DL for
reasons that we now make precise.

18

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

1.3.2 The high computational cost of deep learning

The main challenge for training DNNs is to deal with the computational cost of DL. It has
two major causes.

1.3.2.1 DNNs are trained on large datasets

The ground-truth ftruth (from Section 1.1.1) that one wishes to approximate is possibly very
complex. Thus, in order for NNs to generalize well (as discussed in Section 1.1.4.2) one must
often train them using very large datasets. These days, such datasets can be accessed fairly
easily, for example very large datasets of images (Deng et al., 2009) or texts (Marcus et al.,
1993) are publicly available online. This large amount of data available is the reason for
the famous term big data, it allows DNNs to achieve state-of-the-art performances on many
tasks. While large datasets are used for generalization purposes, they make the training
phase computationally expensive. Indeed, from a mathematical point of view, the size of
the dataset is the number N of elements in the sum structure of J (see Formula 1.5), so, to
evaluate J at θ ∈ RP , one has to pass N data through the NN. This is true for the gradient
∇J as well as explained next in Section 1.3.3.1.

1.3.2.2 DNNs have many parameters

Due to the training set being very large and the complexity of ftruth, DNNs may also need
a very large number P of parameters to fit the training set well. This typically results
in P ≥ 106, but some DNNs even have billions of parameters (Brown et al., 2020). The
resulting computational and storage costs (due both to the values of N and P) made DL
unpractical for a long time. Nowadays, the ever-growing performances of computers allow
one to process and store gigabytes of data within a reasonable time. A notable improvement
is the use of graphics processing units (GPUs) in addition to the classical microprocessors
(also known as CPUs) (Owens et al., 2008).

Although the technical limitations that we presented are partially addressed by the avail-
ability of large datasets and the performances of computers, there is a crucial tool that eases
the training of DNNs: the backpropagation algorithm.

19

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

1.3.3 Differentiation of smooth DL loss functions

In this section we assume that the loss function J , the dissimilarity measure ` and all the
activation functions of the DNN considered are differentiable. As we said, training DNNs
relies on iterative algorithms like GD which are based on the ability of evaluating ∇J ,
which is very expensive due to the large values of P and N . The backpropagation algorithm
(Rumelhart and G. E. Hinton, 1986) is an efficient technique for differentiating NNs, it is
the keystone of the training.

1.3.3.1 Backpropagation: concept

We begin with an example, let g1, g2, g3 be three differentiable functions from R to R. For
any x ∈ R, the intuitive way of computing g3 ◦ g2 ◦ g1(x) is to do successive compositions
“forwardly”: h1(x) = g1(x), then h2(x) = g2(h1(x)) and finally h3(x) = g3(h2(x)). With
these notations, assume that one wants to compute the effect of an infinitesimal variation
of x on h3. The chain rule states that since the functions g1, g2, g3 are differentiable, then,
h1 = g1, h2 = g2 ◦ g1 and h3 = g3 ◦ g2 ◦ g1 are differentiable functions of x ∈ R as well and
for all x ∈ R,

dh3
dx (x) = dh3

dh2
(x)dh2

dh1
(x)dh1

dx (x) = g′3 (g2 (g1(x))) g′2 (g1(x)) g′1(x). (1.17)

Observe that to evaluate dh3
dx (x) we use twice the value of h1 = g1(x) and once the value of

h2 = g2(h1) which are both computed when evaluating g3 ◦ g2 ◦ g1(x). This suggests that
these values should be stored to avoid recomputing them, but also that one may prefer a
recursive implementation to numerically evaluate (1.17).

This illustrative example can be extended to DNNs due to their compositional structure.
For a MLP like (1.4) this means in particular that to evaluate the value of J and its partial
derivatives with respect to the coefficients of each matrixW1, . . . ,WL, the most efficient way
is to first evaluate J and store the intermediate compositions, then recursively compute the
derivatives first with respect toWL, and finish withW1. For a more detailed introduction to
backpropagation we refer to Goodfellow et al. (2016, Part II, Chapter 6), but overall it is a
technique exploiting the compositional structure (1.3) in order to evaluate the gradient ∇J
for a cost similar to the cost of evaluating the function J itself. Since N and P are extremely
large, this algorithm is crucial for training DNNs. The computational complexity depends
of course on the architecture of the network and the activation functions. Nonetheless, the
complexity of a forward pass (for a single data) of a MLP like (1.4) is approximately O(P)

20

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

(linear in the number of parameters of the network) and backpropagation has also a roughly
linear complexity. However, these complexities are stated with a O sign and hence involving
multiplicative constants which usually make the evaluations of gradients a little slower than
those of the loss function in practice (but of the same order of magnitude). Finally, note that
the word backpropagation comes from the graphical representation of DNNs (Figure 1.1):
for θ ∈ RP , J (θ) is obtained by composition, starting from the input layer to the output in
a “forward” way, while the gradient ∇J (θ) is obtained starting from the last layer, hence
“backward”.

1.3.3.2 Automatic differentiation and software implementation

Since backpropagation is a general method to differentiate compositions of functions, it is
also known as automatic differentiation. It is implemented in the two most popular DL
libraries tensorflow (Abadi et al., 2016) and pytorch (Paszke et al., 2019). Given the
source code for evaluating a loss function, these libraries use automatic differentiation and
yield an efficient implementation for evaluating the gradient of this loss function. Altogether
the high-level programming languages of these DL libraries provide flexibility of use and
portability: the code for training a DNN is very similar on a small laptop and on a large
cluster. They ease an efficient use of each type of computer, taking the most of CPUs, GPUs,
and memory resources. For these reasons, they play a crucial role in the fast development
of DL. These libraries have become so useful that nowadays it may even appear irrelevant
to design algorithms for training DNNs if those are not implementable in such libraries.
Hence, almost all algorithms used for training DNNs are based on automatic differentiation
and are implementable in pytorch and tensorflow.

1.3.4 Mini-batch sub-sampling and stochastic algorithms

In this section, we consider a loss functions J which is differentiable, but the following
discussion can be extended to non-differentiable locally-Lipschitz continuous functions (see
Chapter 2). Thanks to the backpropagation algorithm we have a convenient way of evaluat-
ing the gradient ∇J and thus we could use GD to train DNNs. Unfortunately, even-though
backpropagation is an efficient method for computing gradients, the size N of the dataset
and the number P of parameters still make the evaluation of the gradient expensive. For
example, in the numerical experiments considered in Chapters 2 and 4, it would typically
take a few minutes to evaluate ∇J exactly at one single point θ ∈ RP using a standard
GPU. It could even take hours for larger datasets and networks! While a few minutes for

21

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

evaluating ∇J may seem reasonable, the main issue is that we may have to run thousands
of iterations of GD so that the NN performs well. So we could theoretically compute exact
gradients but practitioners actually rely on an alternative strategy.

In DL, the classical approach is to use approximate values of ∇J via what is called mini-
batch sub-sampling. It consists in approximating J and ∇J by computing only a few terms
of the sum in (1.5). More precisely, let B ⊂ {1, . . . , N} a subset of indices corresponding to
a sub-sample of the full dataset. For any θ ∈ RP consider the following quantities,

JB(θ) def= 1
|B|

∑
n∈B
Jn(θ), and, ∇JB(θ) def= 1

|B|
∑
n∈B
∇Jn(θ), (1.18)

where |B| denotes the number of elements belonging to the set B. Subsets of indices such
as B are called mini-batches. Remark that if B ≡ {1, . . . , N}, i.e., if B corresponds to the
full dataset, then we recover JB = J .

Such approximations of ∇J yield a modified version of GD: stochastic gradient descent
(SGD), it formally consists in replacing the gradient in the iterative process (1.15) by an
approximation as in (1.18). More precisely consider a random subset A ∈ {1, . . . , N} such
that for any θ ∈ RP , E [∇JA(θ)] = ∇J (θ), where the expectation is taken over the re-
alizations of the random subset A. The most standard choice for this to hold is to take
A uniformly distributed over all the subsets of {1, . . . , N} of a given number of elements
(called batch-size). For example, consider mini-batches of size one (made of a single data
point). For such a choice we have indeed,

E [∇JA(θ)] =
∑

B
s.t. |B|=1

P (A = B)∇JB(θ) =
∑

B
s.t. |B|=1

1
N
∇JB(θ)

= 1
N

∑
B

s.t. |B|=1

∑
n∈B
∇Jn(θ) = 1

N

N∑
n=1
∇Jn(θ) = ∇J (θ). (1.19)

The general case of mini-batches of an arbitrary (fixed) size can be obtained with similar
computations and enumeration arguments.

Now, consider a sequence (Bk)k∈N of realizations of independent copies of A and a sequence
(γk)k∈N of step-sizes, then SGD boils down to the iterative process,

θk+1 = θk − γk∇JBk(θk). (1.20)

22

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

A convenient way of understanding SGD is to view it as a noisy version of GD by writing
the following equivalent formulation of (1.20),

θk+1 = θk − γk (∇J (θk) + ξk) . (1.21)

Here, ξk = ∇JBk(θk) − ∇J (θk) compensates for the part of the gradient that is not con-
sidered in the update of SGD compared to GD. Since Bk is sampled from a random subset,
ξk can be seen as a random variable called noise. Additionally, since we chose Bk such that
E [∇JBk(θ)] = ∇J (θ), at iteration k, the conditional expectation of ξk with respect to the
current iterate θk is thus,

E [ξk|θk] = E [∇JBk(θk)−∇J (θk)|θk] = E [∇JBk(θk)|θk]−∇J (θk) = 0.

So (ξk)k∈N is actually a sequence of zero-mean martingales (adapted to the filtration induced
by the randommini-batches up to iteration k). This means that at every iteration the update
of SGD does not follow the steepest descent direction (unlike GD) but at least it does in
expectation.

For the sake of precision, SGD is a class of stochastic algorithms introduced by Robbins
and Monro (1951), and (1.20) corresponds to the mini-batch version of SGD. Nowadays,
mini-batch SGD remains the central algorithm for many applications and in particular
for training DNNs due to its limited computational cost. Indeed, mini-batch sub-sampling
allows one to iterate SGDmuch faster than GD when using small mini-batches. The reason is
that backpropagation is highly compatible with mini-batch sub-sampling since each gradient
∇Jn, for n ∈ {1, . . . , N} is evaluated independently of the others (by passing each data point
of the training set into the network and backpropagating). As a result, computing ∇JB for
B ⊂ {1, . . . , N} is simply N/|B| times faster than computing ∇J . To compare the speed
of methods when using mini-batches, it is often convenient to count the epochs rather than
the iterations. An epoch corresponds to N backpropagations (each for a single data), this
way, performing one iteration of GD or N/|B| iterations of SGD both correspond to one
epoch. So, SGD can be iterated faster than GD, but it uses imprecise update directions
(compared to GD), thus there are no guarantees in general that SGD will solve (1.6) faster
than GD. Nonetheless, in large-scale optimization problems (and in particular in DL) SGD
is often reported being significantly faster empirically and is thus preferred to GD (Bottou
and Bousquet, 2008).

However, using approximations of the gradient ∇J brings new issues. In particular, crit-

23

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

ical points may not be stationary points2 of SGD (unlike GD): their may be an iteration
k ∈ N of SGD such that ∇J (θk) = 0 but ∇JBk(θk) 6= 0 and hence the algorithms escapes
the critical point θk. To overcome this issue the standard approach is to use a sequence of
vanishing step-sizes (γk)k∈N that meets (for example) the Robbins-Monro condition (Rob-
bins and Monro, 1951),

+∞∑
k=1

γk = +∞, and,
+∞∑
k=1

γ2
k < +∞. (1.22)

Under appropriate assumptions (such as the uniform boundedness of the noise (ξk)k∈N in
(1.21)), this condition is sufficient to ensure the convergence of SGD to critical points as
we will see in Chapter 4. We give a glimpse of this phenomenon on Figure 1.7 where we
see that SGD behaves indeed like a perturbed version of GD, and that it fails to converge
asymptotically to a critical point when used with non-vanishing step-sizes. Nonetheless,
taking a sequence of step-sizes that vanishes too quickly may considerably slow down SGD,
hence the choice of this sequence is critical in practice and often reveals to be a challenging
task. Some methods such as back-tracking line-search (Armijo, 1966) ease the choice of the
step-sizes. Unfortunately, most of these techniques require computing exact values of J
which, in DL, is almost as expensive as computing exact gradients ∇J and hence is not
suited for training DNNs.

1.4 Using second-order information for training DNNs

We just presented how training DNNs became achievable in many applications. However,
the training remains complicated, takes a long time, and requires a lot of computational
resources. In this context, we now explain why second-order information is promising to
alleviate these issues.

1.4.1 Motivations

For now, assume that J is twice continuously differentiable, there are several motivations
for exploiting second-order derivatives of J to train DNNs. First Newton’s method can
be very efficient on some large-scale machine learning problems (Berahas et al., 2020; Xu
et al., 2020). For example, it converges in a single iteration on the least-square problem: let

2A stationary point of an algorithm is a point where the algorithm remains stuck if it reaches it.

24

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

-0.5 0.0 0.5
1

-0.5

0.0

0.5
2

Gradient Descent (without vanishing step-sizes)
SGD without vanishing step-sizes
SGD with vanishing step-sizes

Figure 1.7: Comparison of GD and SGD with and without vanishing step-sizes for minimiz-
ing J (θ1, θ2) = θ2

1 + 10θ2
2 whose global minimum (0, 0) is represented by the black cross in

the middle. The need for using vanishing step-sizes is highlighted by the pink curve which
seems to bounce “randomly” around the minimum, unlike the green curve.

A ∈ RP×P be a positive definite matrix and b ∈ RP , consider the function

Q : θ ∈ RP 7→ 1
2‖Aθ − b‖

2
2. (1.23)

One can easily check that this function has a unique minimum at θ = A−1b. The function
Q is twice-differentiable and an iteration k ∈ N of Newton’s method applied to Q reads,

θk+1 = θk −∇2Q(θk)−1∇Q(θk) = θk −
(
ATA

)−1 (
AT (Aθk − b)

)
= A−1b. (1.24)

So Newton’s method does converge in one iteration for any initialization, regardless the
condition number of A, while GD can be very slow if A is poorly conditioned, see for
example Nocedal and S. Wright (2006, Chapter 2).

Second-order information can also be used to avoid strict saddle points. Indeed, under
Assumption 1.1, a necessary condition for a point θ? ∈ RP to be a local minimum is
that ∇J (θ?) = 0 and that ∇2J (θ?) is positive semi-definite (it has only non-negative
eigenvalues). This gives for example the idea of building algorithms looking for directions
of negative curvature. Given a point θ ∈ RP such methods perform an update θ + d where
d ∈ RP is a direction spawned by the eigenvectors associated to the negative eigenvalues
of ∇2J (θ) if such eigenvalues exists. This way, it is possible to build methods that do not
stop until they find a region where ∇2J is non-negative.

25

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

Finally, another flavor of second-order information is that it can help to choose the step-
size sequence (γk)k∈N required by most algorithms. To simplify, consider GD and assume
that for any θ ∈ RP , the Hessian ∇2J (θ) has no eigenvalues with magnitude larger than
L∇J > 0 (this means that L∇J is a Lipschitz constant of ∇J). Then consider an iteration
k ∈ N of GD as in (1.15), for two consecutive iterates θk and θk+1, by the Taylor-Lagrange
formula, there exists ψ ∈ RP such that,

J (θk+1) = J (θk) + 〈∇J (θk), θk+1 − θk〉+ 1
2〈∇

2J (ψ)(θk+1 − θk), θk+1 − θk〉 (1.25)

=J (θk)− γ‖∇J (θk)‖2 + 1
2γ

2〈∇2J (ψ)∇J (θk),∇J (θk)〉 (1.26)

≤J (θk)− γ(1− L∇J γ

2)‖∇J (θk)‖2. (1.27)

So if L∇J is known, we can take γ < 2/L∇J and ensure that J (θk+1) ≤ J (θk), the
inequality above is called descent lemma, see for example Bertsekas (1999, Proposition
A.24). Here second-order information would help to estimate L∇J since L∇J is simply the
largest eigenvalue of the Hessian ∇2J on RP . We could also consider to use second-order
information to compute local estimations of L∇J . This might accelerate the training but
would also ease the choice of the step-sizes.

To summarize, second-order information could substantially benefit the training of DNNs
in many ways, there are however many obstacles. First computing the Hessian explicitly—a
matrix with P 2 elements— or storing it is hardly possible. Worse, inverting it (for New-
ton’s method) or computing its eigenvalues (for the purposes discussed above) is unpractical.
There are actually additional drawbacks: for non-smooth function second-order information
may be useless, for example the function t ∈ R 7→ |t| is twice-differentiable almost every-
where but with zero second-order derivative. Secondly using only “noisy” quantities (via
mini-batch sub-sampling) may significantly weaken the benefits of higher-order derivatives
even for smooth functions. For example, the update direction of SGD is inaccurate com-
pared to GD due to the noise (ξk)k∈N discussed in Section 1.3.4 (Equation 1.21). Thus, we
may wonder if it is worth well-choosing the step-size γk since the direction itself is impre-
cise. We refer to Bottou et al. (2018) for further discussion on the benefits of second-order
information for training DNNs and the associated challenges.

1.4.2 Precise problem statement

To sum up what we presented so far, our objective is to tackle the challenging task of
building efficient algorithms for training DNNs. The training amounts to the minimization

26

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

of high-dimensional non-convex functions which have possibly many spurious critical points.
In some cases we may even have to deal with the minimization of non-smooth loss functions
which is significantly harder in non-convex settings. The high-dimensional nature of the
problem makes the use of backpropagation hardly avoidable and the storage of gradient
estimations is very limited. Furthermore, the loss function takes the form of a very large
finite sum, enforcing the need of using mini-batch sub-sampling. In this context SGD
remains the fundamental tool for training DNNs due to its compatibility with the noisy
first-order optimization framework that we just summarized. However, the exploitation of
second-order information seems promising to build faster algorithms or ease the choice of
the step-sizes of SGD, but theoretical and technical limitations are manifold. In this work
we will thus tackle the following questions,

– Can one build practical algorithms exploiting second-order information despite all the
theoretical and technical limitations of deep learning?

– For these algorithms, does second-order information really benefits the training of
DNNs in the presence of mini-batch sub-sampling and non-smoothness?

– What convergence guarantees and rates can one derive for these algorithms in such a
general theoretical framework where convergence may seem unlikely to occur?

1.4.3 Overview of existing methods

We review some general ideas to tackle the problems stated above and then review existing
methods some of which exploit these ideas.

1.4.3.1 Second-order information via first-order oracles

Throughout this section, let θ ∈ RP be a point of RP and B ⊂ {1, . . . , N} a mini-batch. A
first idea to build second-order methods for DL is to find more affordable Newton-like meth-
ods. Adaptations of Newton’s method have been proposed for many large-scale machine
learning applications (Martens, 2010; Byrd et al., 2011; Boyer and Godichon-Baggioni,
2020). Yet, few of these methods can be successfully applied to DL due to the compu-
tational cost and the mini-batch sub-sampling. Indeed, according to what we explained
in Section 1.4.1, assuming that J is twice-differentiable, Newton’s method is an iterative
process whose updates take the form (∇2J (θ))−1∇J (θ), and thus are very expensive to
compute. Some DL algorithms however manage to adapt Newton’s method (ADAGRAD,
K-FAC, etc., which are introduced hereafter). They use a mini-batch estimation ∇JB(θ)

27

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

of the gradient and a surrogate matrix, cheaper to compute and to invert than ∇2J (θ).
With these elements they build a stochastic quasi-Newton update. Most methods presented
below somehow rely on this idea.

Regarding the use of fine-tuned step-sizes discussed in Section 1.4.1. Unlike computing
the eigenvalues of ∇2J (θ), it is however possible to evaluate quantities such as the term
∇2J (θ)∇J (θ) which appears in (1.26). Indeed, backpropagation can be adapted to evaluate
“Hessian times vector” products within quite a reasonable time (Pearlmutter, 1994). It is
however more expensive than computing gradients and its combination with mini-batch
sub-sampling yields poor performances in general (Martens et al., 2012).

Similarly, terms of the form∇2J (θ)∇J (θ) can be approximated through finite differences.
For example, a Taylor approximation with small γ > 0 yields, ∇J (θ−γ∇J (θ)) ' ∇J (θ)−
γ∇2J (θ)∇J (θ). Discretization is also used in quasi-Newton methods (see for example
Broyden 1967; Byrd et al. 2016). Yet, similarly to the idea above, finite differences must be
used with care to be efficient in presence of noisy gradients (Schraudolph et al., 2007). We
will investigate this later in Chapter 4.

1.4.3.2 Standard algorithms for training DNNs

Due to its high compatibility with the backpropagation and its relative efficiency in practice,
SGD remains the fundamental method for training DNNs. We present other popular meth-
ods, some of which are direct extensions of SGD and some that already exploit second-order
derivatives. Throughout this section we assume that J is differentiable, (γk)k∈N denotes
again a sequence of step-sizes, (Bk)k∈N are mini-batches and θk ∈ RP , where k ∈ N>0 is the
index of the current algorithm iteration. We present the mini-batch version of each method.

Momentum methods. Momentum –or inertia– refers to a class of methods inherited
from the Heavy-Ball with Friction (HBF) method (Polyak, 1964). One iteration can be
described by the iterative process,mk = µmk−1 − γk∇JBk(θk)

θk+1 = θk +mk

, (1.28)

where µ ∈ (0, 1). To understand the idea behind HBF, think of the graph of the loss
function—the set

{
(θ,J (θ))

∣∣∣ θ ∈ RP
}
—as the landscape of a mountain (the local minima

lie at the bottom of the valleys of this landscape). In this formalism, the sequence of

28

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

iterates and values (θk,J (θk))k∈N of HBF represents the successive positions of the ball on
the landscape. This ball is subject to gravity (represented by −∇J or its approximation
−∇JBk) which pulls it down, it progressively accumulates speed (through the term mk in
Equation 1.28), this may produce an acceleration, resulting in a faster decrease of the loss
function. In the heavy-ball model, the ball is also slowed down by friction effects which
generate energy dissipation, so that the ball will eventually reach a rest point that we would
like to be a minimum. We will discuss the heavy-ball formalism further in Chapter 2.

There exists different non-equivalent variations to HBF, the one presented here follows
the formulation of Sutskever et al. (2013). A popular variation is the Nesterov accelerated
gradient (NAG) method (Nesterov, 1983), for which an iteration is,mk = µk−1mk−1 − γk∇JBk(θk + µk−1mk−1)

θk+1 = θk +mk

. (1.29)

It is similar to (1.28) with the exception that the gradient of JBk is not evaluated at θk
but rather extrapolated to the point θk + µmk−1 and that µk may vary over the iterations
(originally, µk = k/k + 3).

ADAGRAD and RMSprop. The ADAGRAD method (J. Duchi et al., 2011) was orig-
inally proposed as a method for convex online learning but became very popular in DL due
to its efficiency. It is a non-momentum method which basically reads,Γk =

√∑k
k=0∇JBk(θk)�∇JBk(θk) + ε

θk+1 = θk − α diag (Γk)−1∇JBk(θk)
, (1.30)

where α > 0, ε > 0 is small, � is the element-wise product between vectors, the square-root
is applied element-wise, and diag is the operator turning vectors into diagonal matrices.
ADAGRAD belongs to the family of adaptive methods which aims to adapt the step-size
to each iteration using first (or higher-order) information. As we said above, ADAGRAD
can be seen as a preconditioner method, replacing the Hessian in Newton’s method, by
α diag (Γk)−1. From (1.30), each coefficient of the vector step-size αΓ−1

k is decreasing as k
increases. This may result in the step-size becoming too small too quickly. Some variants
of ADAGRAD address this issue, for example RMSprop (Tieleman and G. Hinton, 2012)

29

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

which uses an exponential moving average,

vk = βvk−1 + (1− β)∇JBk(θk)�∇JBk(θk)

Γk = √vk + ε

θk+1 = θk − α diag (Γk)−1∇JBk(θk)

, (1.31)

here β ∈ (0, 1) and again α > 0, ε > 0.

The ADAM algorithm. ADAM is essentially a combination of RMSprop and momen-
tum, it reads,

mk = β1mk−1 + (1− β1)∇JBk(θk)

vk = β2vk−1 + (1− β2)∇JBk(θk)�∇JBk(θk)

Γk = √vk + ε

θk+1 = θk − α diag (Γk)−1mk

, (1.32)

Again, β1, β2 ∈ (0, 1) and α > 0, ε > 0. This algorithm was proposed by Kingma and Ba
(2015) and is probably the most-used algorithm for training DNNs apart from SGD. The
main reason for this is that ADAM is known to be more robust to the choice of its hyper-
parameters α, β1, β2 and ε in practice than SGD is for the choice of its sequence of step-sizes
(γk)k∈N. In particular, ADAM is known to provide satisfying results in many cases even
when using the default values for the hyper-parameters (provided in the original paper).3

This is an important advantage since tuning hyper-parameters is a highly time-consuming
task (Asi and J. C. Duchi, 2019).

Full matrix preconditioners. We now review some methods using this time a non-
diagonal matrix as preconditioner (in comparison to ADAGRAD). Again, these methods
recall of course Newton’s method which uses the inverse of the Hessian

(
∇2J (θk)

)−1 but
replace it by more computationally affordable matrices.

Among these methods, Natural Gradient (NG) (Amari, 1998), full-matrix ADAGRAD
(Agarwal et al., 2019) and similar methods revolve around replacing the Hessian by the
Gram (or Gauss-Newton) matrix ∇J (θk)∇J (θk)T , or similar matrices such as the Fisher
information matrix. While being affordable, their computational cost is higher than those
of the methods presented above and is not compensated by significant improvements in

3ADAGRAD and other adaptive methods seem to benefit from similar qualities but this holds in particular
for ADAM.

30

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

general (in particular for NG). The K-FAC algorithm (Martens and Grosse, 2015) speeds
up NG by first making a block-approximation of the Fisher information matrix (one block
per layer of the NN) and then computing a Kronecker approximation of each block to exploit
the fact that inverting a Kronecker product is straightforward. K-FAC is reported being
efficient on several problems and is among the most popular algorithms although ADAM
and SGD remain the most used one by far. A block-matrix approach was also followed
by Dudar et al. (2017) which designed a sub-space trust-region method. Their algorithm
consists in building one update direction and one learning rate per layer of the NN. They
report competitive results for their method on dense networks.

Seeking directions of negative curvature. In Section 1.4.1 we previously discussed the
interest of looking for directions of negative curvature (eigenvectors associated to negative
eigenvalues of the Hessian of J). This idea has been present in the literature for a few years
(Mizutani and Dreyfus, 2008), but remains quite inefficient and unpractical in DL, again,
for computational reasons. Some progress has been made, for example Carmon et al. (2017)
proposed a method for detecting locally non-convex regions. Their method requires however
exact gradient evaluations, making it still unpractical for large NNs and datasets. Note that
the matrix ∇J (θk)∇J (θk)T used in NG, K-FAC, etc., is always symmetric positive and as
such neglects the non-convex nature of J .

Some other methods. We presented the most famous methods for training DNNs, it
goes without saying that many variations of these methods have been proposed. We conclude
this section by giving a non-exhaustive list: there are several methods similar to ADAM
and ADAGRAD: ADAMW (Loshchilov and Hutter, 2019), Adabelief (Zhuang et al., 2020),
Adadelta (Zeiler, 2012), AMSgrad (Reddi et al., 2018), etc., and some other methods such
as the stochastic Barzilai-Borwein methods (Tan et al., 2016; Liang et al., 2019) or the
Lookahead algorithm (M. Zhang et al., 2019).

1.5 Organization of the manuscript

To tackle the problems presented above, the manuscript is organized as follows.

Chapter 2 introduces a new algorithm called INNA which stands for Inertial Newton
Algorithm. The starting point is a second-order continuous-time autonomous ordinary
differential equation (ODE) called DIN (Alvarez et al., 2002) and inspired by Newton’s
second law of dynamics. The latter models a mix between accelerated gradient descent

31

Chapter 1 Introduction: Challenges in Optimization for Training Neural Networks

(see HBF in Section 1.4.3.2) and Newton’s method via a term involving the Hessian of
the loss function. DIN is thus a second-order ODE both in “time” and “space”. However,
when using a first-order reformulation in time of this ODE, the Hessian terms vanishes as
well, making second-order derivatives implicit. Using the notion of Clarke’s subdifferential
we extend the ODE to non-smooth non-convex functions. We then evidence that mini-
batch sub-sampling combined with the Clarke subdifferential generates spurious non-critical
stationary points. To cope with this we introduce a new notion of steady states and obtain a
new differential inclusion which we discretize to obtain the INNA algorithm. We then prove
the almost-sure convergence of sub-sequences of iterations of INNA to critical points using a
Lyapunov analysis combined with the results of Benaïm et al. (2005) on perturbed solutions
of differential inclusions. We additionally derive rates of convergence for the solutions of
the differential inclusion and investigate the empirical performances of INNA.

Chapter 3 studies the asymptotic behavior of INNA and the solutions of the DIN system
introduced in Chapter 2. While we previously showed that INNA almost surely converges
to critical points, we now focus on the nature of such limit points (minima, strict saddle
points etc.). Although INNA is a mix between inertial gradient descent—which is likely to
avoid strict saddle points (Lee et al., 2016; O’Neill and S. J. Wright, 2019)—and Newton’s
method—which may converge to any type of critical point—we show, for smooth functions,
that a full-batch (i.e., without mini-batches) version of INNA is likely to avoid strict saddle
points for most initializations. The results rely on the stable manifold theorem and the
Hartman-Grobman theorem. Some numerical illustrations are provided.

Chapter 4 is dedicated to using second-order information for fine-tuning the sequence
of step-sizes of SGD in non-convex settings. Using a simple variational model we retrieve
a step-size first-proposed by Alvarez and Cabot (2004), the latter being too computation-
ally expensive, we approximate it and make a connection with the step-size of Barzilai and
Borwein (1988). We then use the link between these step-sizes as well as empirical and
theoretical observations to modify the mini-batch sub-sampling in order to efficiently ap-
proximate second-order information through discretization with noisy gradients. We prove
the almost sure convergence of the resulting algorithm, called Step-Tuned SGD, and derive
rates of convergence for the sequence of values of the loss function. We conclude with nu-
merical experiments suggesting that second-order information can indeed be efficiently used
to fine-tune the step-sizes of SGD when training DNNs.

The concluding chapter summarizes the results presented in this thesis. We then
discuss remaining open questions and draw some perspectives for future work.

32

List of Publications

Accepted journal papers

q Castera et al. (2021a)
C. Castera , J. Bolte, C. Févotte, and E. Pauwels (2021). An Inertial Newton Algo-
rithm for Deep Learning. In Journal of Machine Learning Research (JMLR) 22.134,
pp. 1–31.
Available at: https://jmlr.csail.mit.edu/papers/v22/19-1024.html

q Castera et al. (2021b)
C. Castera , J. Bolte, C. Févotte, and E. Pauwels (2021). Second-order Step-size
Tuning of SGD for Non-convex Optimization. To appear in Neural Processing Letters.
Available on arXiv: https://arxiv.org/abs/2103.03570

Submitted journal papers

q Castera (2021)
C. Castera (coming in 2021). Inertial Newton Algorithms Avoiding Strict Saddle
Points.
Available on arXiv: https://arxiv.org/abs/2111.04596

International conferences

2 Castera et al. (2019a)
C. Castera , J. Bolte, C. Févotte, and E. Pauwels (2019). An Inertial Newton Al-
gorithm for Deep Learning. Poster and paper presented at the NeurIPS Workshop:
Beyond First-order Methods in Machine Learning.
Poster available at: https://camcastera.github.io
Proceedings available at: https://sites.google.com/site/optneurips19

33

https://jmlr.csail.mit.edu/papers/v22/19-1024.html
https://arxiv.org/abs/2103.03570
https://arxiv.org/abs/2111.04596
https://camcastera.github.io
https://sites.google.com/site/optneurips19

Chapter 2

INNA: An Inertial Newton Algorithm for
Deep Learning

This chapter is adapted from Castera et al. (2021a).

Contents

2.1 Introduction . 36
2.2 A functional framework for non-smooth non-convex optimization 39

2.2.1 Locally Lipschitz continuous neural network and loss function 39
2.2.2 Neural networks are tame functions 40

2.3 From DIN to INNA: an inertial Newton algorithm 41
2.3.1 Handling non-smoothness and non-convexity 42
2.3.2 Discretization of the differential inclusion 43
2.3.3 INNA and a new notion of steady states 44

2.4 Convergence results for INNA . 47
2.4.1 Main result: accumulation points of INNA are critical 47
2.4.2 Comments on the results of Theorem 2.1 47
2.4.3 Preliminary variational results . 49
2.4.4 Proof of convergence for INNA . 50

2.5 Towards convergence rates for INNA . 54
2.5.1 The non-smooth Kurdyka-Łojasiewicz property for the Clarke subd-

ifferential . 54
2.5.2 A general asymptotic rate . 55

35

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

2.5.3 Application to INNA . 58
2.6 Experiments . 61

2.6.1 Understanding the role of the hyper-parameters of INNA 61
2.6.2 Training a DNN with INNA . 63

2.7 Conclusion . 66

2.1 Introduction

We focus on building a new algorithm for training DNNs featuring inertia and Newtonian
behavior while requiring only noisy first-order information. In this chapter we tackle the
problems introduced in Section 1.4.2 in their more general form: we consider loss functions
that are non-convex but also non-smooth. However, most of the fundamental notions and
tools (backpropagation, SGD, etc.) discussed in the introduction chapter were defined for
smooth functions. Here we will thus introduce the Clarke subdifferential (Clarke, 1990) as a
surrogate for gradients. We will also discuss the incompatibility of the combination of vanilla
backpropagation and mini-batch sub-sampling with the Clarke subgradient of non-smooth
non-convex loss functions, a problem ignored by most DL practitioners.

In such a general framework we will rely on the Ordinary Differential Equations (ODE)
approach introduced in Ljung (1977), and then developed by Benaïm (1999), Kushner and
Yin (2003), Benaïm et al. (2005), and Borkar (2009). It is useful to analyze optimization
algorithms. For example, assume temporarily that the loss function J is differentiable, recall
from (1.15) that two consecutive iterations θk ∈ RP and θk+1 ∈ RP of GD with step-size γ >
0 are linked by the relation θk+1 = θk−γ∇J (θk), or equivalently, (θk+1−θk)/γ+∇J (θk) = 0.
Formally, when γ is small (in a sense that can be made precise), we see that (θk+1 − θk)/γ
looks like a discretization of the derivative of some continuous-time differentiable function
θ : R+ → RP . Denoting by θ̇ the derivative of θ, the following ODE:

θ̇(t) +∇J (θ(t)), for all t > 0, (2.1)

is a continuous-time model of the discrete GD algorithm, here the time parameter t acts
as a continuous “iteration counter”. For a given initial condition θ0 ∈ RP , a differentiable
function θ : R+ → RP is called solution or trajectory of the ODE if θ(0) = θ0 and (2.1)
holds for all t > 0.

The aforementioned literature gives a precise characterization of the link between contin-

36

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

uous dynamics and discrete algorithms. In particular, it connects the asymptotic behavior
of discrete algorithms (as the iteration index k tends to +∞) and the limit (as time t tends
to +∞) of the solutions of their underlying ODEs. In particular, when the solutions of
an ODE converge—which means that they reach a limit as t tends to +∞—if this limit
is a critical point of the loss function J , then under some conditions one may be able to
conclude that the corresponding discrete algorithm also converges to critical points of J .

This approach is relevant for many algorithms, in particular it is connected to the heavy-
ball interpretation of momentum methods discussed in Section 1.4.3.2. Indeed, let J :
RP → R be a differentiable loss function, the interpretation of a ball evolving on the graph
of J can be described by the following ODE,

θ̈(t)︸︷︷︸
Inertial term

+ α θ̇(t)︸ ︷︷ ︸
Friction term

+ ∇J (θ(t))︸ ︷︷ ︸
Gravity effect

= 0, for t ∈ [0,+∞), (2.2)

where α > 0, and θ : R+ → RP is a twice-differentiable function which represents the
position of a ball on the graph of J . Similarly to (2.1), θ̇ and θ̈ denote the first and second-
order time derivatives of θ respectively. This ODE point of view echos Newton’s law of
dynamics (the acceleration θ̈ is equal to a sum of “forces”). HBF is thus sometimes referred
to as an accelerated version of gradient descent since (2.2) takes inertia into account. The
ODE paradigm was recently used in several works (Adil, 2018; D. Davis et al., 2020; Barakat
and Bianchi, 2021). Inertial first-order methods like (2.2) remain however hard to study
when adapted to non-differentiable functions since non-smoothness causes “shocks”: the
landscape of a non-differentiable loss function has “corners” and “walls” which generate a
discontinuity of the velocity θ̇.

Considering another ODE, Attouch and Redont (2001) showed that adding inertia to
continuous-time Newton’s dynamics has a regularization effect. This later motivated the
combination of HBF and inertial Newton’s method and led to the introduction of the fol-
lowing continuous-time dynamical system (or ODE) introduced in Alvarez et al. (2002) and
referred to as DIN (standing for “dynamical inertial Newton”). Just for now, let J : RP → R
be a twice continuously differentiable loss function, DIN reads,

θ̈(t)︸︷︷︸
Inertial term

+ α θ̇(t)︸ ︷︷ ︸
Friction term

+β∇2J (θ(t))θ̇(t)︸ ︷︷ ︸
Newtonian effects

+ ∇J (θ(t))︸ ︷︷ ︸
Gravity effect

= 0, for t ∈ [0,+∞), (2.3)

where the notations are the same as in (2.2). It can be shown that when the solutions of
(2.3) converge, they converge to critical points of J (Alvarez et al., 2002). Hence, rather

37

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

than using ODEs to analyze discrete algorithms, we will instead discretize a version of
DIN adapted to non-smooth functions in order to obtain an optimization algorithm which
possesses inertial and Newtonian properties and that is well suited for minimizing J . Our
resulting second-order algorithm is called INNA.

Before going into the details, we illustrate one interest of mixing HBF and Newton’s
method on Figure 2.1 for a simple non-smooth and non-convex function of R2. This figure
shows in particular how the additional term in (2.3), compared to (2.2), helps to reduce
parasitic “transverse” oscillations.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

(a) α = 0.5, β = 0.01 (b) α = 0.5, β = 0.1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

0 20000 40000 60000 80000
Iterations

8

6

4

2

0

2

lo
g 1

0(
J(

1,
2)

)

= 0.5, = 0.01
= 0.5, = 0.1
= 1.3, = 0.1

(c) α = 1.3, β = 0.1 (d) Objective function J (in log-scale)

Figure 2.1: Illustration of the role of the hyper-parameters of DIN on the non-smooth func-
tion J (θ1, θ2) = 100(θ2 − |θ1|)2 + |1 − θ1|. The results are simulated using a full-batch
version of the algorithm INNA introduced later (see Algorithm 1). Subplots (a-c) represent
the trajectories of the parameters θ1 and θ2 in R2 for three choices of hyper-parameters α
and β, see (2.3) for an intuitive explanation. Subplot (d) displays the values of the objec-
tive function J (θ1, θ2) for the three settings considered. The details of this experiment and
further discussions are provided in Section 2.6.1.

The previous discussions hold only for smooth functions. In the rest of this chapter, we
will adapt DIN to DL by overcoming the computational and conceptual difficulties raised

38

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

by the second-order objects θ̈ and ∇2J (θ) appearing in (2.3). This is done by combining a
phase-space lifting method (a first-order reformulation of DIN) introduced in Alvarez et al.
(2002) with the use of the Clarke subdifferential ∂J (see Definition 2.2). We then evidence
a sum rule failure for non-smooth non-convex functions, whereas the sum-rule is crucial
for the theoretical convergence analysis of mini-batch algorithms. Yet, many DL studies
ignore the failure of the sum rule: practitioners sum sub-gradients when using optimization
algorithms for DL, but only analyze the methods under simplifying assumptions such as
smoothness or convexity. We tackle this difficulty as is, and show that the sum rule failure
creates additional spurious stationary points that are not (Clarke) critical. To address
this question, we introduce the notion of D-criticality. We finally obtain a new first-order
differential inclusion that we discretize to obtain INNA. We then show the convergence of
INNA to such D-critical points.

The rest of this chapter is thus organized as follows. The step by step introduction of
INNA is described in Section 2.3. Its convergence is proved in Section 2.4, and we then
provide convergence rates for the solutions of the underlying continuous-time differential
inclusion (our non-smooth adaptation of DIN) in Section 2.5. Finally, Section 2.6 provides
some experimental results on DL benchmark problems using standard datasets (MNIST,
CIFAR-10, CIFAR-100). First, we discuss the essential properties of the loss function J
mentioned in the introduction chapter: local Lipschitz continuity and tameness.

2.2 A functional framework for non-smooth non-convex
optimization

We first recall some notations and discuss local Lipschitz continuity.

2.2.1 Locally Lipschitz continuous neural network and loss function

We keep the notations of the introduction and still consider a general type of DNN f :
(x, θ) ∈ RM × RP 7→ y ∈ RD that is locally Lipschitz continuous in its parameter θ (see
Definition 1.4). This includes in particular the networks and activation functions intro-
duced in Section 1.1.3. As before, throughout this chapter we consider a training dataset
(xn, yn)n∈{1,...,N} and we recall that the loss function J takes the following form,

J (θ) =
N∑
n=1

`(f(xn, θ), yn), (2.4)

39

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

for a given dissimilarity measure ` : RD × RD → R that we assume to be locally Lipschitz
continuous, so that J and each Jn = `(f(xn, .), yn) are locally Lipschitz continuous on
RP . Despite non-smoothness and non-convexity, the loss function possesses a very strong
property called tameness. We now introduce this notion which is essential for the theoretical
analysis of Section 2.4.

2.2.2 Neural networks are tame functions

Tameness refers to a geometrical property shared by many functions and sets. It holds in
many finite-dimensional optimization problems met in practice. Prominent classes of tame
objects are piecewise-linear or piecewise-polynomial objects (with finitely many pieces),
and more generally, semi-algebraic objects. However, the notion is much more general,
as we intend to convey below. A rigorous definition is given at the end of this section
(Definition 2.1).

As mentioned in the introduction (Section 1.2.3), sets or functions are called tame when
they can be described by a finite number of basic formulas, inequalities, or Boolean oper-
ations involving standard functions such as polynomials, exponentials, or max functions.
We refer to Attouch et al. (2010) for illustrations, recipes and examples within a general
optimization setting or D. Davis et al. (2020) for a link with NNs. The reader is referred to
Van den Dries (1998), Coste (2000), and Shiota (2012) for foundational work on tameness.
Again, this property is powerful as it allows splitting the study of non-smooth objects on
an union of smooth pieces. This is the so-called stratification property of tame sets and
functions. In a non-convex optimization settings, the stratification property is crucial to
generalize qualitative algorithmic results to non-smooth objects.

In most finite-dimensional DL problems, the loss functions J is tame. To understand this
assertion and illustrate the wide scope of the tameness assumption, let us provide concrete
examples (see also D. Davis et al. 2020). The loss J is tame for any NN built from the
following traditional components:

– The NN f must have a fixed but arbitrary large number of layers of arbitrary di-
mensions and must be feedforward, meaning that it can be represented by a directed
acyclic graph as in Section 1.1.2.2.

– The activation functions must be among classical ones: ReLU, sigmoid, tanh, soft plus,
etc. including multivariate activation functions (norm, sorting, pooling), or functions
defined piecewise with polynomials, exponentials and logarithms.

40

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

– The dissimilarity measure ` can be built from norms, logistic loss or cross-entropy,
or more generally functions defined piecewise using polynomials, exponentials and
logarithms.

Tameness is thus shared by many loss functions in DL, in addition, we can assume that
each term Jn = `(f(xn, .), yn) in (2.4) is tame as well. The results above are obtained by
quantifier elimination arguments using property (iii) below. For the sake of completeness,
we provide the precise definitions of tameness and o-minimality.

Definition 2.1. [o-minimal structure] (Coste, 2000, Definition 1.5) An o-minimal
structure on (R,+, .) is a countable collection of sets O = {Oq}q≥1 where each Oq is it-
self a collection of subsets of Rq, called definable subsets. They must have the following
properties, for each q ≥ 1:

(i) (Boolean properties) Oq contains the empty set, is stable by finite union, finite inter-
section and complementation;

(ii) (Lifting property) if A belongs to Oq, then A× R and R×A belong to Oq+1.

(iii) (Projection or quantifier elimination property) if P : Rq+1 → Rq is the canonical
projection onto Rq then for any A in Oq+1, the set P(A) belongs to Oq.

(iv) (Semi-algebraicity) Oq contains the family of algebraic subsets of Rq, that is, every
set of the form

{θ ∈ Rq | Q(θ) = 0},

where Q : Rq → R is a polynomial function.

(v) (Minimality property), the elements of O1 are exactly the finite unions of intervals
and points.

A function is said to be definable in an o-minimal structure O if its graph can be defined1

in O.

From now on we fix an o-minimal structure O. A function or a set will be called
tame if it is definable in this o-minimal structure O.

2.3 From DIN to INNA: an inertial Newton algorithm

We describe the construction of our proposed algorithm INNA from the discretization of
the second-order ODE (2.3).

1This means that the graph can be described using first-order logic (formally, using quantifiers on variables).

41

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

2.3.1 Handling non-smoothness and non-convexity

We first generalize (2.3) to the non-smooth non-convex setting. Recall that the dynamical
system DIN is,

θ̈(t) + αθ̇(t) + β∇2J (θ(t))θ̇(t) +∇J (θ(t)) = 0, (2.5)

where J is (for now) a twice-differentiable function, α ≥ 0, β > 0 are two hyper-parameters
and θ : R+ → RP is a twice-differentiable function of R+. We cannot exploit (2.5) directly
since in most DL applications J is not twice differentiable (and even not differentiable at all).
We first overcome the explicit use of the Hessian matrix ∇2J by introducing an auxiliary
variable ψ : R+ → RP like in Alvarez et al. (2002). Consider the following dynamical
system, θ̇(t) + β∇J (θ(t)) +(α− 1

β)θ(t) + 1
βψ(t) = 0

ψ̇(t) +(α− 1
β)θ(t) + 1

βψ(t) = 0
, for a.e. t ∈ (0,+∞). (2.6)

This system is well defined even if J is only once differentiable. Additionally, as explained
in Alvarez et al. (2002), (2.5) is equivalent to (2.6) when J is twice differentiable. Indeed,
one can rewrite (2.5) into (2.6) by introducing ψ = −βθ̇−β2∇J (θ)−(αβ−1)θ. Conversely,
one can substitute the first line of (2.6) into the second one to retrieve (2.5). Since (2.6)
does not require the existence of second-order derivatives, it is a first-order generalization
of DIN.

Let us now introduce a new version of (2.6) for non-differentiable functions. According
to Rademacher’s theorem, locally Lipschitz continuous functions are differentiable almost
everywhere. Denote R the set of points where J is differentiable. Then, RP \ R has zero
Lebesgue measure. It follows that for any θ? ∈ RP \R, there exists a sequence of points in R
whose limit is θ?. Such limit sequences are useful for introducing the Clarke subdifferential
(Clarke, 1990), defined next.

Definition 2.2 (Clarke subdifferential of locally Lipschitz functions). Let g : RP → R be
a locally Lipschitz continuous function. Since g is differentiable almost everywhere, denote
R ⊂ RP the set of points where differentiability holds. The Clarke subdifferential of g at
θ ∈ RP , denoted by ∂g(θ), is the set defined by,

∂g(θ) = conv
{
v ∈ RP | ∃(θk)k∈N ∈ RN, such that θk −−−→

k→∞
θ and ∇g(θk) −−−→

k→∞
v

}
, (2.7)

where conv denotes the convex hull operator. The elements of the Clarke subdifferential are

42

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

called Clarke subgradients.

The Clarke subdifferential is a nonempty compact convex set. It coincides with the
gradient for smooth functions and with the traditional subdifferential (1.14) for non-smooth
convex functions. As previously mentioned, and contrarily to the gradient and (1.14), it
does not enjoy a sum rule: the sum of the Clarke subdifferentials of functions is not equal
to the Clarke subdifferential of the sum of functions in general (the latter is included in the
former).

Thanks to Definition 2.2, we can extend (2.6) to non-differentiable functions. Since ∂J (θ)
is a set, we no longer study a differential equation but rather a differential inclusion, namely,θ̇(t) + β∂J (θ(t)) +(α− 1

β)θ(t) + 1
βψ(t) 3 0

ψ̇(t) +(α− 1
β)θ(t) + 1

βψ(t) 3 0
, for a.e. t ∈ (0,+∞). (2.8)

For a given initial condition (θ0, ψ0) ∈ RP×RP , we call solution (or trajectory) of this system
any absolutely continuous curve (θ, ψ) from R+ to RP ×RP for which (θ(0), ψ(0)) = (θ0, ψ0)
and (2.8) holds. Absolute continuity amounts to the fact that θ is differentiable almost
everywhere with integrable derivative and,

θ(t)− θ(0) =
∫ t

0
θ̇(s) ds, for t ∈ [0,+∞).

Due to the properties of the Clarke subdifferential, existence of a solution to differential
inclusions such as (2.8) is ensured, see Aubin and Cellina (2012); note however that unique-
ness of the solution does not hold in general due to the set-valued nature of (2.8). We will
now use the structure of (2.8) to build a new algorithm to train DNNs.

2.3.2 Discretization of the differential inclusion

To obtain the basic form of our algorithm, we discretize (2.8) according to the classical
explicit Euler method. Given (θ, ψ) a solution of (2.8) and any time tk ≥ 0, set θk = θ(tk)
and ψk = ψ(tk). Then, at time tk+1 = tk + γk with γk positive small, one can approximate
θ̇(tk+1) and ψ̇(tk+1) by

θ̇(tk+1) ' θk+1 − θk
γk

, ψ̇(tk+1) ' ψk+1 − ψk
γk

.

43

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

For an initialization (θ0, ψ0) ∈ RP × RP , this discretization yields the following algorithm,
for all k ∈ N,

vk ∈ ∂J (θk)

θk+1 = θk + γk
(
(1
β − α)θk − 1

βψk − βvk
)

ψk+1 = ψk + γk
(
(1
β − α)θk − 1

βψk
) (2.9)

The algorithm above is well defined for non-smooth non-convex loss functions like J ,
yet, it is not suited to train DNNs. First, numerically evaluating ∂J (θk) is not possible
in general since there is no operational calculus for the Clarke subdifferential; secondly, to
cope with the computational cost of DL we need to introduce a mini-batch sub-sampling
strategy similarly to the one for smooth functions (Section 1.3.4). This makes the absence
of sum rule even more critical. The next section is meant to address these issues and to
eventually design a practical algorithm, INNA.

2.3.3 INNA and a new notion of steady states

We consider again mini-batch sub-sampling, let B ⊂ {1, . . . , N}, we recall the definition of
JB,

JB : θ 7→
∑
n∈B

`(f(xn, θ), yn), (2.10)

and we denote ∂JB the Clarke subdifferential of JB. However, as we already said, unlike
in the differentiable case, subdifferentials do not sum up to a subdifferential of the sum for
non-convex non-smooth functions in general, that is

∂JB(θ) 6=
∑
n∈B

∂`(f(xn, θ), yn).

A simple example is t ∈ R 7→ |t| − |t| = 0. The Clarke subdifferential of this function at
t = 0 is {0}, whereas ∂(|0|) + ∂(−|0|) = [−1, 1] + [−1, 1] = [−2, 2] 6= {0}.

At this point we shall make an important precision. While the Clarke subdifferential does
not enjoy a sum-rule, the automatic differentiation libraries mentioned in Section 1.3.3.2 im-
plement backpropagation using smooth calculus rules even for non-smooth and non-convex
loss functions. As a result, these implementations of backpropagation return objects that
are not Clarke subgradients in general. Despite the lack of mathematical justifications, such
practice provides satisfying results in many cases. Hence, in order to match this practice,

44

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

we introduce a notion of steady states. They correspond to the stationary points gener-
ated by the combination of mini-batch sub-sampling with the sum-rule failure of the Clarke
subdifferential. As we shall see, this allows both for practical applications and convergence
analysis. Doing so, we capture the real stationary points met in practice.

To this aim, and similarly to (1.18), we introduce the following objects, for any B ⊂
{1, . . . , N},

DJB =
∑
n∈B

∂ [`(f(xn, ·), yn)] , DJ =
N∑
n=1

∂ [`(f(xn, ·), yn)] . (2.11)

Observe that, for each B, we have DJB ⊃ ∂JB and that JB is differentiable almost every-
where (again by Rademacher’s theorem) with DJB = ∂JB = {∇JB}, see Clarke (1990).
This means in particular that DJ = ∂J almost everywhere so the set of points where our
operator D does not coincide with the Clarke subgradient has zero measure.

A point satisfying 0 ∈ DJ (θ) will be called D-critical. Note that Clarke-critical points
(0 ∈ ∂J) are D-critical points but that the converse is not true. This new operator D enjoys
favorable properties: sum and chain rules hold along continuous curves (see Lemmas 2.2 and
2.3 below). Additionally, we will prove the existence of a tame Sard’s lemma (see Lemma
2.4). To our knowledge, this notion of D-critical points (or steady states) has not been
used previously in the literature and a direct approach modeling the mini-batch practice
has never been considered before.2 While this notion is needed for the theoretical analysis,
one should keep in mind that the introduction of DJ does not change the implementation
of algorithms in practice provided that the automatic differentiation library returns Clarke
subgradients of the functions Jn, for n ∈ {1, . . . , N}.

Ultimately, we can now rewrite the differential inclusion (2.8) by replacing ∂J with
DJ . This yields a differential inclusion adapted to study mini-batch approximations of
non-smooth loss functions. It simply reads,θ̇(t) + βDJ (θ(t)) +(α− 1

β)θ(t) + 1
βψ(t) 3 0

ψ̇(t) +(α− 1
β)θ(t) + 1

βψ(t) 3 0
, for a.e. t ∈ (0,+∞). (2.12)

Discretizing this system gives a practical version of INNA. Let us consider a sequence
(Bk)k∈N of nonempty subsets of {1, . . . , N}, chosen independently and uniformly at random

2Following a first version of the publication associated to this chapter (Castera et al., 2019b), Bolte and
Pauwels (2020b) have further developed the present ideas and in particular the connection to the back-
propagation algorithm.

45

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

with replacement (like for smooth functions), and a sequence of positive step-sizes (γk)k∈N.
For a given initialization (θ0, ψ0) ∈ RP × RP , at iteration k ≥ 0, our algorithm reads,

(INNA)

vk ∈ DJBk(θk)

θk+1 = θk + γk
(
(1
β − α)θk − 1

βψk − βvk
)

ψk+1 = ψk + γk
(
(1
β − α)θk − 1

βψk
) (2.13)

Here again α ≥ 0 and β > 0 are hyper-parameters of the algorithm. INNA in its practical
form is summarized in Algorithm 1.

Algorithm 1 INNA: an Inertial Newton Algorithm for deep learning
1: Objective function: J =

∑N
n=1 Jn, with Jn : RP → R locally Lipschitz continuous.

2: Input: α ≥ 0, β > 0, a sequence of step-sizes (γk)k∈N.
3: Input: nonempty mini-batches (Bk)k∈N.
4: Initialize (θ0, ψ0) ∈ RP × RP ,
5: for k = 0, . . . do
6: vk ∈

∑
n∈Bk

∂ [Jn(θk)]

7: θk+1 = θk + γk

(
(1
β
− α)θk −

1
β
ψk − βvk

)
8: ψk+1 = ψk + γk

(
(1
β
− α)θk −

1
β
ψk

)
9: end for

Note finally that similarly to what we explained regarding SGD in Section 1.3.4, the mini-
batch sub-sampling in INNA yields a stochastic approximation of the full-batch algorithm
that one would obtain by choosing for all k ∈ N, Bk = {1, . . . , N}, i.e., when JBk = J .
Indeed, the vectors vk in (2.13) may be written as vk = ṽk + ηk, where ṽk ∈ DJ (θk) and
ηk compensates for the missing subgradients and can be seen as a zero-mean noise. Hence,
INNA admits the following general abstract stochastic formulation,

wk ∈ DJ (θk)

θk+1 = θk + γk
(
(1
β − α)θk − 1

βψk − βwk + ξk
)

ψk+1 = ψk + γk
(
(1
β − α)θk − 1

βψk
) (2.14)

where (ξk)k∈N is a sequence of random variables representing the noise like in Section 1.3.4.
While (2.13) is the version implemented in practice, this equivalent form (2.14) is more
convenient for the convergence analysis of the next section. We also point out that the

46

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

equivalence between (2.13) and (2.14) holds thanks to the use of DJ and would not hold
with ∂J as in (2.9).

2.4 Convergence results for INNA

We first state our main result regarding the convergence of INNA in DL.

2.4.1 Main result: accumulation points of INNA are critical

We now study the convergence of INNA. The main idea of the proof is to use the ODE ar-
gument to state that the discrete algorithm (2.13) asymptotically behaves like the solutions
of the continuous differential inclusion (2.12). In addition to tameness and local Lipschitz
continuity, we make the following assumptions, which can be easily ensured by practitioners.

Assumption 2.1 (Stochastic approximation). The sets (Bk)k∈N are taken independently
uniformly at random with replacement. The step-size sequence (γk)k∈N is positive with∑
k γk = +∞ and satisfies γk = o

(
1

log k

)
, that is lim sup

k→+∞
|γk log k| = 0.

Typical admissible choices are γk = C(k + 1)−a with a ∈ (0, 1], C > 0. The main
theoretical result for INNA follows.

Theorem 2.1 (INNA converges to the set of D-critical points of J). Assume that for
n ∈ {1, . . . , N}, each Jn is locally Lipschitz continuous, tame and that the step-sizes and
mini-batches satisfy Assumption 2.1. Set an initial condition (θ0, ψ0) and assume that there
exists C > 0 such that supk≥0 ‖(θk, ψk)‖ ≤ C almost surely, where (θk, ψk)k∈N are generated
by INNA. Then, almost surely, any accumulation point θ̄ of the sequence (θk)k∈N satisfies
DJ (θ̄) 3 0. In addition (J (θk))k∈N converges.

Before proving Theorem 2.1, we make some important comments and illustrate this result.

2.4.2 Comments on the results of Theorem 2.1

– On the step-sizes. First, Assumption 2.1 offers much more flexibility on the choice
of the step-sizes than the usual Robbins-Monro condition (1.22) commonly used for
SGD. This is due to the finite-sum structure of J , the boundedness assumption and
the local Lipschitz continuity which make the noise (ξk)k∈N uniformly bounded and
hence sub-Gaussian. Using Benaïm et al. (2005, Remark 1.5), this allows for much

47

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

larger step-sizes than in the more common “bounded second moment setting”. This
has an interest in practice as highlighted in Figure 2.4 of the experimental section.

– On the scope of the theorem. The results above are actually more general than
for DL loss functions. They hold for any locally Lipschitz continuous tame function
with finite-sum structure and for the general stochastic process (2.14). We do not use
any other specific structure of DL loss functions. These results could be adapted for
other assumptions on the noise, in view of Benaïm et al. (2005).

– On D-criticality. The result of Theorem 2.1 states that the bounded discrete trajec-
tories of INNA are attracted by the D-critical points. The D-critical points include
local minima, and we will actually prove that INNA is likely to avoid strict saddle
points in the next chapter. This is also corroborated by the empirical observations
of Section 2.6.2. Although DJ coincides with ∂J almost everywhere, the notion of
D-criticality cannot be ignored. Indeed, if the algorithm was initialized on the D-
critical set, the algorithm would be stationary even if the initialization is non-Clarke
critical. Hopefully, in practice one can expect to avoid such points with overwhelming
probability. Indeed, following our introduction of D-critical points, Bolte and Pauwels
(2020a) proved that SGD almost surely converges to the set of Clarke-critical points
in practice. In other words, D-critical points that are not Clarke-critical are likely to
be avoided by SGD (see also Bianchi et al. 2020). The same result can be hoped for
INNA but have not been proved to this day.

– On the boundedness assumption. The boundedness assumption on the iterates is
a classical assumption for first or second-order algorithms, see for instance D. Davis et
al. (2020) and J. C. Duchi and Ruan (2018). When using deterministic algorithms (i.e.,
without mini-batch approximations), properties such as the coercivity3 of J can be
sufficient to remove the boundedness assumption for descent algorithms. This does not
remain true when dealing with mini-batch sub-sampling. Yet, in the case of INNA,
the coercivity of J would at least guarantee that the solutions of the continuous
underlying differential inclusion (2.12) remain bounded. Indeed, we will prove in
Section 2.4.4 that for any solution (θ, ψ) of (2.12), the function t ≥ 0 7→ 2(1 +
αβ)J (θ(t)) +

∥∥∥(α− 1
β)θ(t) + 1

βψ(t)
∥∥∥2

is decreasing in time (see Lemma 2.6 hereafter).
As a consequence, we cannot have J (θ(t)) −−−→

t→∞
∞ so the coercivity of J would

guarantee that ‖θ(t)‖ 6→ ∞. Similarly, we would have ‖ψ(t)‖ 6→ ∞ as well. However,
DL loss functions are not coercive in general and ensuring the boundedness assumption
in DL or even for non-convex semi-algebraic optimization problems is far beyond the

3J is said to be coercive if lim‖θ‖→∞ J (θ) = +∞.

48

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

scope of this thesis. Alternatively, we could have projected the iterates on a possibly
very large compact ball to ensure boundedness. Adding such a projection would
however imply to adapt the proof of convergence substantially, in particular the results
of Benaïm et al. (2005).

2.4.3 Preliminary variational results

Prior to proving Theorem 3, we extend some results known for the Clarke subdifferential of
tame functions to the operator D that we previously introduced. First, we recall a useful
result of D. Davis et al. (2020) which follows from the projection formula in Bolte et al.
(2007b).

Lemma 2.2 (Chain rule for the Clarke subdifferential). Let J : RP → R be a locally
Lipschitz continuous tame function, then J admits a chain rule, meaning that for any
absolutely continuous curve θ : R+ → RP , J ◦ θ is differentiable a.e. and for a.e. t ≥ 0,

dJ
dt (θ(t)) = 〈θ̇(t), ∂J (θ(t))〉 = 〈θ̇(t), v〉, ∀v ∈ ∂J (θ(t)). (2.15)

Note that the function t ≥ 0 7→ J (θ(t)) is differentiable for a.e. t > 0, despite the
non-differentiability of J (and possibly θ). This holds thanks to the absolute continuity of
θ and the chain rule above. Additionally, notice that the value of dJ

dt (θ(t)) in (2.15) does
not depend on the choice of the element v taken in ∂J (θ(t)), this justifies the notation
〈θ̇(t), ∂J (θ(t))〉.

We now prove a very similar chain-rule for the operator D. Consider again a function with
an additive finite-sum structure, J =

∑N
n=1 Jn, where again each Jn : RP → R is locally

Lipschitz continuous and tame, and recall that for any θ ∈ RP , we have the following:
DJ (θ) =

∑N
n=1 ∂Jn(θ). The following lemma is a direct generalization of the above chain

rule.

Lemma 2.3 (Chain rule for DJ). Let J be a sum of tame functions as described above.
Let Γ : [0, 1] → RP be an absolutely continuous curve so that t 7→ J (Γ(t)) is differentiable
almost everywhere. For a.e. t ∈ [0, 1], and for all v ∈ DJ (Γ(t)),

d
dtJ (Γ(t)) =

〈
v, Γ̇(t)

〉
.

49

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

Proof. By local Lipschitz continuity and absolute continuity, each Jn is differentiable almost
everywhere and Lemma 2.2 can be applied:

d
dtJn(Γ(t)) =

〈
vn, Γ̇(t)

〉
, for all vn ∈ ∂Jn(Γ(t)) and for a.e. t ≥ 0.

Thus

d
dtJ (Γ(t)) =

N∑
n=1

d
dtJn(Γ(t)) =

N∑
n=1

〈
vn, Γ̇(t)

〉
,

for any vn ∈ ∂Jn(Γ(t)), for all n = {1, . . . , N}, and for a.e. t ≥ 0. This proves the desired
result.

We finish this section with a Sard lemma for D-critical values, which is an adaptation of
the Sard lemma of Bolte et al. (2007b) for the Clarke subdifferential.

Lemma 2.4 (A Sard’s theorem for tame D-critical values). Let,

D-crit def=
{
θ ∈ RP | DJ (θ) 3 0

}
,

then J (D-crit) is finite.

Proof. The set D-crit is tame and hence it has a finite number of connected components.
It is sufficient to prove that J is constant on each connected component of D-crit . Hence,
without loss of generality, assume that D-crit is connected and consider θ0, θ1 ∈ D-crit .
By Whitney regularity (Van den Dries, 1998, Chapter 3), there exists a tame continuous
path Γ joining θ0 to θ1. Since Γ is tame, the monotonicity lemma (see for example Kurdyka
1998, Lemma 2) states the existence of a finite collection of real numbers 0 = a0 < a1 <

. . . < aq = 1, such that Γ is C1 on each segment (aj−1, aj), j = 1, . . . , q. We can then
apply Lemma 2.3 to each part Γ|(ai,ai+1) of the path, and since the image of Γ is included

in D-crit , the derivative d
dt(J ◦ Γ) is zero on each (ai, ai+1). So, J ◦ Γ is constant except

perhaps on the finite set of points (aj)j∈{1,...,q}, so it is constant by continuity. Hence,
J (θ0) = J (Γ(0)) = J (Γ(1)) = J (θ1).

2.4.4 Proof of convergence for INNA

To prove the convergence of INNA, we follow the stochastic method for differential inclusions
developed in Benaïm et al. (2005) which relies on the analysis of the differential system

50

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

(2.12). The steady states (or stationary points) of (2.12) are given by,

S =
{

(θ, ψ) ∈ RP × RP | 0 ∈ DJ (θ), ψ = (1− αβ)θ
}
. (2.16)

These points are initialization values for which the system does not evolve and remains
constant. Observe that the first coordinates of these points are D-critical for J and that
conversely any D-critical point of J corresponds to a unique steady state in S. We now
define an important tool for studying differential inclusions.

Definition 2.3 (Lyapunov function). Let V be a subset of RP × RP , we say that E :
RP × RP → R is a Lyapunov function for the set V and the dynamics (2.12) if,

(i) For any solution (θ, ψ) of (2.12) with initial condition (θ0, ψ0) ∈ RP × RP , we have:
E(θ(t), ψ(t)) ≤ E(θ0, ψ0) for a.e. t ≥ 0.

(ii) For any solution (θ, ψ) of (2.12) with initial condition (θ0, ψ0) ∈ RP × RP \ V, we
have:
E(θ(t), ψ(t)) < E(θ0, ψ0) for a.e. t ≥ 0.

In the mechanical formalism discussed in the introduction, a Lyapunov function represents
an energy that does not increase over time. Formally, the ball evolving on the landscape
of J loses energy and hence must eventually slow down. In practice, to establish that a
function is a Lyapunov, one proves that it is decreasing by differentiating with the chain
rules stated above. In the context of INNA, we will use Lemma 2.3. In order to build
a Lyapunov function for the dynamics (2.12) and the set S, for (θ, ψ) solution of (2.12),
consider the two following energy-like functions,Emin(θ(t), ψ(t)) = (1−

√
αβ)2J (θ(t)) + 1

2

∥∥∥(α− 1
β)θ(t) + 1

βψ(t)
∥∥∥2

Emax(θ(t), ψ(t)) = (1 +
√
αβ)2J (θ(t)) + 1

2

∥∥∥(α− 1
β)θ(t) + 1

βψ(t)
∥∥∥2
.

(2.17)

Then the following lemma applies.

Lemma 2.5 (Differentiation along DIN trajectories). Let (θ, ψ) be a solution of (2.12) with
initial condition (θ0, ψ0) ∈ RP × RP . For a.e. t > 0, θ and ψ are differentiable at t, (2.12)
holds, θ̇(t)−ψ̇(t)

β ∈ DJ (θ(t)) and

dEmin
dt (θ(t), ψ(t)) = −

∥∥∥∥√αθ̇(t)− 1√
β

(
ψ̇(t)− θ̇(t)

)∥∥∥∥2

dEmax
dt (θ(t), ψ(t)) = −

∥∥∥∥√αθ̇(t) + 1√
β

(
ψ̇(t)− θ̇(t)

)∥∥∥∥2

51

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

Proof. Define Eλ(θ, ψ) = λJ (θ)+ 1
2

∥∥∥∥(α− 1
β

)θ + 1
β
ψ

∥∥∥∥2
. We aim to choose λ so that Eλ is a

Lyapunov function. Because J is tame and locally Lipschitz continuous, using Lemma 2.3
we know that for any absolutely continuous trajectory θ : R+ → RP and for a.e. t > 0,

dJ
dt (θ(t)) = 〈θ̇(t), DJ (θ(t))〉 = 〈θ̇(t), v(t)〉, ∀v(t) ∈ DJ (θ(t)). (2.18)

Let θ and ψ be solutions of (2.12). For a.e. t ≥ 0, we can differentiate Eλ(θ, ψ) to obtain

dEλ
dt (θ(t), ψ(t)) =λ〈θ̇(t), v(t)〉+ (α− 1

β
)〈θ̇(t), (α− 1

β
)θ(t) + 1

β
ψ(t)〉

+ 1
β
〈ψ̇(t), (α− 1

β
)θ(t) + 1

β
ψ(t)〉,

(2.19)

for all v(t) ∈ DJ (θ(t)). Using (2.12), we get 1
β (θ̇(t) − ψ̇(t)) ∈ DJ (θ(t)) and −ψ̇(t) =

(α− 1
β)θ(t) + 1

βψ(t) a.e. Choosing v(t) = 1
β (θ̇(t)− ψ̇(t)) yields:

dEλ
dt (θ(t), ψ(t)) = λ

〈
θ̇(t), θ̇(t)− ψ̇(t)

β

〉
− (α− 1

β
)
〈
θ̇(t), ψ̇(t)

〉
− 1
β

〈
ψ̇(t), ψ̇(t)

〉
.

Then, expressing everything as a function of θ̇ and 1
β (ψ− θ), one can show that a.e. on R+:

dEλ
dt (θ(t), ψ(t)) = −α‖θ̇(t)‖2 − β

∥∥∥∥∥ θ̇(t)− ψ̇(t)
β

∥∥∥∥∥
2

+ (λ− αβ − 1) 〈θ̇(t), θ̇(t)− ψ̇(t)
β

〉

= −
∥∥∥∥∥√αθ̇(t) + αβ + 1− λ

2
√
α

θ̇(t)− ψ̇(t)
β

∥∥∥∥∥
2

−
(
β − (αβ + 1− λ)2

4α

)∥∥∥∥∥ θ̇(t)− ψ̇(t)
β

∥∥∥∥∥
2

.

We aim to choose λ so that Eλ is decreasing that is
(
β − (αβ+1−λ)2

4α

)
> 0. This holds

whenever λ ∈
[
(1−

√
αβ)2, (1 +

√
αβ)2]. We choose λmin = (1 −

√
αβ)2, and λmax =

(1 +
√
αβ)2, for these two values we obtain for a.e. t > 0 ,

Ėλmin(θ(t), ψ(t)) = −

∥∥∥∥√αθ̇(t) + 1√
β

(
θ̇(t)− ψ̇(t)

)∥∥∥∥2

Ėλmax(θ(t), ψ(t)) = −
∥∥∥∥√αθ̇(t)− 1√

β

(
θ̇(t)− ψ̇(t)

)∥∥∥∥2 (2.20)

Remark finally that by definition Emin = Eλmin and Emax = Eλmax .

Recall that S =
{

(θ, ψ) ∈ RP × RP | 0 ∈ DJ (θ), ψ = (1− αβ)θ)
}
and define E = Emin +

52

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

Emax. By a direct integration argument, we obtain the following lemma.

Lemma 2.6 (E is Lyapunov function for INNA with respect to S). For all (θ0, ψ0) /∈ S and
for any solution (θ, ψ) with initial condition (θ0, ψ0) ∈ RP × RP ,

E(θ(t), ψ(t)) < E(θ0, ψ0), for a.e. t > 0. (2.21)

We are now in position to provide the desired proof.

Proof of Theorem 2.1. Lemmas 2.5 and 2.6 state that E is a Lyapunov function for
the set S and the dynamics (2.12). Let S1 = {θ ∈ RP | (θ, ψ) ∈ S} which is exactly the set
of D-critical points of J . Using Lemma 2.4 of Section 2.4.3, J (S1) is finite. Moreover, since
E(θ, ψ) = 2(1 + αβ)J (θ) for all (θ, ψ) ∈ S, E(S) is finite as well, so in particular, E(S) has
empty interior.

Denote by L the set of accumulation points of the sequences ((θk, ψk))k∈N produced by
(2.13) starting at (θ0, ψ0) and denote L1 the projection of L on RP × {0}. We have the 3
following properties:

– By assumption, we have ‖(θk, ψk)‖ ≤ C almost surely, for all k ∈ N.

– By local Lipschitz continuity, for any ‖θ‖ ≤ C and any B ⊂ {1, . . . , N}, DJB(θ) is uni-
formly bounded , hence the centered noise (ξk)k∈N is a uniformly bounded martingale
difference sequence.

– By Assumption 2.1, the sequence (γk)k∈N is chosen such that γk = o(1
log k) (see Sec-

tion 2.4.2).

Then the sufficient conditions provided in Remark 1.5 of Benaïm et al. (2005) state that the
discrete process (θk, ψk)k∈N asymptotically behaves like the solutions of (2.12). We can then
combine Proposition 3.27 and Theorem 3.6 of Benaïm et al. (2005), to deduce that the limit
set L of the discrete process is contained in the set S where the Lyapunov function E has
vanishing derivatives. Thus, the set L1 (the set of the first coordinates of all accumulation
points) contains only D-critical points of J . In addition, E(L) is a singleton, and for all
(θ, ψ) ∈ S, we have E(θ, ψ) = 2(1+αβ)J (θ), so J (L1) is also a singleton and the theorem fol-
lows.

�

We now have a practical new second-order algorithm for training DNNs with convergence
guarantees both for the iterates and the sequence of values of the loss function. Before
presenting numerical experiments for INNA, we derive rates of convergence for the solutions

53

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

of the differential inclusion from which INNA is built.

2.5 Towards convergence rates for INNA

In the previous section, connecting INNA to the asymptotic behavior of the solutions of
(2.12) was one of the keys to prove the convergence of the discrete algorithm. We now turn
our attention to the continuous dynamical system: we focus on (2.8)—we no longer use
(2.12) and DJ although this would be possible but would require more technical proofs.
In this section and in this section only, we pertain to loss functions J that are real semi-
algebraic.4 Semi-algebraic functions are a particular type of tame functions: a set is called
semi-algebraic if it is a finite union of sets of the form,

{θ ∈ RP | Q(θ) = 0,Qi(θ) < 0}

where Q,Qi are real polynomial functions. A function is called semi-algebraic if its graph
is semi-algebraic.

We will characterize the convergence rate of the solutions of the continuous-time sys-
tem (2.8) to critical points. Let us first introduce an essential mechanism to obtain such
convergence rates: the Kurdyka-Łojasiewicz (KL) property.

2.5.1 The non-smooth Kurdyka-Łojasiewicz property for the Clarke
subdifferential

The non-smooth Kurdyka-Łojasiewicz (KL) property, as introduced in (Bolte et al., 2010),
is a measure of “amenability to sharpness” (as illustrated at the end of Section 2.5.3). Here
we state a uniform version for the Clarke subdifferential of semi-algebraic functions following
Bolte et al. (2007b) and Bolte et al. (2014). In the sequel we denote by “dist” any given
distance on RP .

Lemma 2.7 (Uniform non-smooth KL property for the Clarke subdifferential). Let K be a
nonempty compact set and let G : RP → R be a semi-algebraic locally Lipschitz continuous
function. Assume that G is constant on K, with value G?. Then there exist ε > 0, δ > 0,

4We could extend the results of this section to more general objects including analytic functions on bounded
sets. The semi-algebraicity assumption is made here for the sake of clarity.

54

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

a ∈ (0, 1) and ρ > 0 such that, for all

v ∈
{
v ∈ RP | dist(v,K) < ε

}
∩
{
v ∈ RP | G? < G(v) < G? + δ

}
,

it holds that,
ρ(1− a) (G(v)−G?)−a dist (0, ∂G(v)) > 1. (2.22)

In the sequel, we make an abuse of notation by writing ‖∂J (·)‖ def= dist(0, ∂J (·)). To
obtain a convergence rate, we will use inequality (2.22) on the Lyapunov function E used
to prove the convergence of INNA. Before doing so we prove a general result of convergence
that is built around the KL property and that can be applied not only to (2.8) but also to
other dynamical systems.

2.5.2 A general asymptotic rate

We state a general theorem that leads to the existence of a convergence rate. This theorem
will hold in particular for (2.8). We start with the result.

Theorem 2.8. Let X : [0,+∞) → RP be a bounded absolutely continuous trajectory and
let G : RP → R be a semi-algebraic locally Lipschitz continuous function. If there exists
c1 > 0 such that for a.e. t > 0,

dG
dt (X(t)) ≤ −c1‖(∂G)(X(t))‖2, (i)

then G(X(t)) converges to a limit value G? and,

|G(X(t))−G?| = O

(1
t

)
.

If in addition there exists c2 > 0 such that for a.e. t > 0,

c2‖Ẋ(t)‖ ≤ ‖(∂G)(X(t))‖, (ii)

then, X converges to a critical point of G with a rate5 of the form O(1/tb) with b > 0.

Proof. We first prove the convergence of t ≥ 0 7→ G(X(t)). Suppose that (i) holds. Since
X is bounded and G is continuous, G(X(·)) is bounded. Moreover, from (i), G(X(·)) is

5In some cases we even have linear rates or finite-time convergence as detailed in the proof.

55

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

decreasing, so it converges to some value G?. To simplify suppose G ≥ 0 and G? = 0.
Define,

I =
{
x ∈ RP | G(x) = 0

}
.

Suppose first that there exists s ≥ 0, such that X(s) ∈ I. Since G(X(·)) is decreasing with
limit 0, then for all t ≥ s, G(X(t)) = 0 and the convergence rate holds true.

Let us thus assume that for all t ≥ 0, G(X(t)) > 0. The trajectory X is bounded in RP ,
hence there exists a compact set C ⊂ RP such that X(t) ∈ C for all t ≥ 0. Define K = I∩C.
It is a compact set since I is closed (by continuity of G) and C is compact. Moreover, G is
constant on K. As such by Lemma 2.7, there exist ε > 0, δ > 0, a ∈ (0, 1) and a constant
ρ > 0 such that for all

v ∈
{
v ∈ RP ,dist(v,K) < ε

}
∩ {0 < G(v) < δ} ,

it holds that
ρ(1− a) (G(v))−a dist (0, ∂G(v)) > 1.

We have G(X(t)) → 0 so there exists t0 ≥ 0 such that for all t ≥ t0, 0 < G(X(t)) < δ.
Without loss of generality, we assume t0 = 0. Similarly, we have dist(X(t),K) → 0, so we
may assume that for all t ≥ 0, dist (X(t),K) < ε. Thus, for all t ≥ 0,

ρ(1− a)G(X(t))−a‖∂G(X(t))‖ > 1.

Going back to assumption (i), for a.e. t > 0, it holds that

dG
dt (X(t)) ≤ −c1‖(∂G)(X(t))‖2,

but the KL property implies that for a.e. t > 0,

−‖∂G(X(t))‖2 < − 1
ρ2(1− a)2G(X(t))2a.

Therefore,
dG
dt (X(t)) < − c1

ρ2(1− a)2G(X(t))2a, (2.23)

this is a differential inequality with respect to the function G(X(·)). We consider two
cases depending on the value of a. If 0 < a ≤ 1/2, then for large-enough t ≥ 0, it holds

56

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

G(X(t)) < 1 so −G(X(t))2a < −G(X(t)) and hence,

dG
dt (X(t)) < − c1

ρ2(1− a)2G(X(t)),

so we obtain a linear rate. When 1/2 < a < 1, we go back to (2.23), remark that for a.e.
t > 0,

G(X(t))−2a d
dtG(X(t)) = 1

1− 2a
d
dtG(X(t))1−2a < − c1

ρ2(1− a)2 , (2.24)

with 1− 2a < 0. We can integrate (2.24) from 0 to t > 0:

G(X(t))1−2a >
(2a− 1)c1
ρ2(1− a)2 t+G(X(0))1−2a >

(2a− 1)c1
ρ2(1− a)2 t.

Since 1
1−2a < −1, one obtains a convergence rate of the form O

(
t

1
1−2a

)
. In both cases the

rate is at least O
(

1
t

)
.

We assume now that both (i) and (ii) hold and prove the convergence of the trajectory X
with a convergence rate. Let t > s > 0, by the fundamental theorem of calculus (provided
by the absolute continuity of X) and the triangular inequality,

‖X(t)−X(s)‖ ≤
∥∥∥∥∫ t

s
Ẋ(τ) dτ

∥∥∥∥ ≤ ∫ t

s
‖Ẋ(τ)‖ dτ. (2.25)

We wish to bound ‖Ẋ‖ using G. Using the chain rule (Lemma 2.2 of Section 2.4.3), for a.e.
τ > 0,

d
dτ G(X(τ))1−a = (1− a)G(X(τ))−a〈Ẋ(τ), (∂G)(X(τ))〉. (2.26)

Then, from (i), we deduce that for a.e. τ > 0,

〈Ẋ(τ), (∂G)(X(τ))〉 = dG
dτ (X(τ)) ≤ −c1‖(∂G)(X(τ))‖2, (2.27)

so

d
dτ G(X(τ))1−a ≤ −c1(1− a)G(X(τ))−a‖(∂G)(X(τ))‖2. (2.28)

The KL property (2.22) implies that for a.e. τ > 0,

− (1− a)G(X(τ))−a‖(∂G)(X(τ))‖ < −1
ρ
. (2.29)

57

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

Putting this in (2.28) and using assumption (ii) we finally obtain

d
dtG(X(τ))1−a < −c1

ρ
‖(∂G)(X(τ))‖ ≤ −c1c2

ρ
‖Ẋ(τ)‖. (2.30)

We can use that in (2.25),

‖X(t)−X(s)‖ ≤ − ρ

c1c2

∫ t

s

d
dtG(X(τ))1−a dτ

= ρ

c1c2
(G(X(s))1−a −G(X(t))1−a).

(2.31)

Then, using the convergence rate that we already proved for G, we deduce that the Cauchy
criterion holds for X inside the compact (hence complete) subset C ⊂ RP containing
the trajectory, so X converges. Then from (i) and the convergence of X, we have that
lim inft→+∞ ‖∂G(X(t))‖ = 0 because ∂G has closed graph. This shows that the limit of X
is a critical point of G. Finally, taking the limit in (2.31) and using the convergence rate of
G we obtain a rate for X as well.

Remark 2.9. Theorem 2.8 takes the form of a general recipe to obtain a convergence
rate since it may be applied in many cases, to curves or flows, provided that a convenient
Lyapunov function is given. Note also that it is sufficient for assumptions (i) and (ii) to
hold only after some time t0 > 0 as in such case, one could simply do a time shift to use
the theorem.

2.5.3 Application to INNA

We now apply Theorem 2.8 to the deterministic continuous dynamical system (2.8) from
which INNA is built.

Theorem 2.10 (Convergence rates). Suppose that J is semi-algebraic locally Lipschitz con-
tinuous and lower bounded. Then, any bounded trajectory (θ, ψ) that solves (2.8) converges
to a point (θ̄, ψ̄) ∈ S, with a convergence rate of the form O

(
t−b
)
with b > 0. Moreover,

J (θ(t)) converges to its limit J̄ with rate
∣∣∣J (θ(t))− J̄

∣∣∣ = O
(

1
t

)
.

Proof. Let (θ, ψ) be a bounded solution of (2.8). We would like to use Theorem 2.8 with
X = (θ, ψ), and a well-chosen function. Recall the Lyapunov function introduced in the
proof of Theorem 2.1: E(θ1, θ2) = 2(1 + αβ)J (θ1) +

∥∥∥(α− 1
β)θ1 + 1

β θ2
∥∥∥2
, for all (θ1, θ2) ∈

RP ×RP . We proved a descent property for E along the solutions of (2.12), this holds also

58

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

for the solutions of (2.8) since for all θ1 ∈ RP , ∂J (θ1) ⊂ DJ (θ1). Due to the properties of
J , the function E is semi-algebraic and locally Lipschitz continuous, so it remains to prove
that (i) and (ii) hold for E along the solution (θ, ψ) of (2.8).

For t ≥ 0, denote w(t) = (α− 1
β)θ(t)+ 1

βψ(t), then according to Lemma 2.5 for a.e. t > 0,

dE
dt (θ(t), ψ(t)) = −‖

√
αθ̇(t)− 1√

β

(
ψ̇(t)− θ̇(t)

)
‖2 − ‖

√
αθ̇(t) + 1√

β

(
ψ̇(t)− θ̇(t)

)
‖2

= −2α‖θ̇(t)‖2 − 2
β
‖ψ̇(t)− θ̇(t)‖2 = −2α‖θ̇(t)‖2 − 2

β
‖β∂J (θ(t))‖2

= −2α‖ − β∂J (θ(t))− w(t)‖2 − 2β‖∂J (θ(t))‖2.
(2.32)

On the other hand, by standard results on the sum of differentiable and non-differentiable
functions, we have for all (θ, ψ) ∈ RP × RP ,

∂E(θ, ψ) = 2

(1 + αβ)∂J (θ) + (α− 1
β)
(
(α− 1

β)θ + 1
βψ
)

1
β

(
(α− 1

β)θ + 1
βψ
) , (2.33)

so for a.e. t > 0,

‖∂E(θ(t), ψ(t))‖2

4 =
∥∥∥∥(1 + αβ)∂J (θ(t)) + (α− 1

β
)w(t)

∥∥∥∥2
+
∥∥∥∥ 1
β
w(t)

∥∥∥∥2
. (2.34)

We wish to find c1 > 0, such that 1
2

dE
dt + c1

4 ‖∂E‖
2 < 0. This follows from the following

claim.

Claim: let r1 > 0, r2 ∈ R, r3 > 0, then there exist C1 and C2 two positive constants such
that for any a, b ∈ R,

C1(a2 + b2) ≤ (r1a+ r2b)2 + r3b
2 ≤ C2(a2 + b2). (2.35)

Indeed, the function Q : (a, b) 7→ (r1a+ r2b)2 + r3b
2 is a positive definite quadratic form, C1

and C2 can be taken to be two eigenvalues of the positive definite matrix which represents
Q. Hence, (2.35) holds for all a and b.

Applying the previous claim to (2.32) and (2.34) leads to the existence of c1 > 0 such
that for a.e. t > 0,

dE
dt (θ(t), ψ(t)) ≤ −c1‖∂E(θ(t), ψ(t))‖2,

so assumption (i) holds for INNA.

59

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

It now remains to show that (ii) of Theorem 2.8 holds i.e., that there exists c2 > 0 such that
for the solution (θ, ψ) of (2.8) and for a.e. t > 0, ‖∂E(θ(t), ψ(t))‖2 ≥ c2

(
‖θ̇(t)‖2 + ‖ψ̇(t)‖2

)
.

Using (2.8) and (2.34) we obtain:

‖∂E(θ(t), ψ(t))‖2

4 =
∥∥∥∥ 1
β

(1 + αβ)θ̇(t) +
[
(α− 1

β
)− 1

β
(1 + αβ)

]
ψ̇(t)

∥∥∥∥2
+ 1
β2 ‖ψ̇(t)‖2,

(2.36)

and applying again the claim above to (2.36) one can show that there exist c2 > 0, such
that for a.e. t > 0,

‖∂E(θ(t), ψ(t))‖2 ≥ c2
(
‖θ̇(t)‖2 + ‖ψ̇(t)‖2

)
.

So, assumption (ii) holds for (2.8). To conclude, we can apply Theorem 2.8 to (2.8) and the
proof is complete.

Remark 2.11. (a) Since the discrete algorithm INNA asymptotically resembles DIN (its
continuous-time version, see the proof of Theorem 2.1), the results above suggest that similar
behaviors and rates could be hoped for INNA itself. Yet, these results remain difficult to
obtain in the case of DL, in particular in the mini-batch setting because of the noise (ξk)k∈N.
(b) The proof above is significantly simpler when αβ > 1 since Alvarez et al. (2002) proved
that in this case, (2.8) is equivalent to a gradient system, thus assumptions (i) and (ii) of
Theorem 2.8 instantly hold.
(c) Theorems 2.8 and 2.10 can be adapted to the case where the Clarke subdifferential is
replaced by DJ , but we do not state it here for the sake of simplicity.
(d) Theorems 2.8 and 2.10 are actually valid by assuming that J belongs to a polynomially
bounded o-minimal structure. One of the most common instance of such structures is the
one given by globally subanalytic sets (as illustrated in an example below). We refer to Bolte
et al. (2007a) for a definition and further references.

Let us now comment the results of Theorem 2.10. First, we restrained the study to semi-
algebraic loss functions J , which are a subclass of tame loss functions. Most networks,
activation functions and dissimilarity measures mentioned in Section 2.2.2 fall into this
category. Nonetheless, the loss functions of the DL experiments of Section 2.6.2 are not semi-
algebraic. Indeed, the dissimilarity measure ` used is the cross-entropy: `(f(xn, θ), yn) =
−
∑D
d=1 1[yn]d=1 log([f(xn, θ)]d). Such a function cannot be described by polynomials and

presents a singularity whenever [f(xn, θ)]d = 0. Fortunately, for inputs restricted to a
compact set, due to the numerical precision but also to the “soft-max” functions often used
in classification experiments, the outputs of the network f have values in [ε, 1] for some small

60

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

ε > 0. Therefore, the singularity at 0 is harmless and the cross-entropy acts as a globally
subanalytic function. As a consequence the non-smooth Łojasiewicz inequality holds, and
we could obtain the same rates.

The rate of convergence of the trajectory in Theorem 2.10 is non-explicit in the sense
that the exponent b > 0 is unknown in general. In the light of the proof of Theorem 2.8,
this exponent depends on the KL exponent a of the Lyapunov function, which is itself hard
to determine in practice. However, the intuition is that small exponents a may yield faster
convergence rates (indeed, when a ∈ (0, 1/2) we actually have a linear rate). As an example,
for the function: t ∈ R 7→ |t|c with c > 1, the exponent at t = 0 is a = 1− 1

c and thus, the
closer c is to 1, the smaller a is, and the faster the convergence becomes.

2.6 Experiments

In this section we first discuss the role and the influence of the hyper-parameters of INNA
as illustrated on the 2D example given in Figure 2.1. We then compare INNA with SGD,
ADAGRAD and ADAM on deep learning problems for image recognition.

2.6.1 Understanding the role of the hyper-parameters of INNA

Both hyper-parameters α and β can be seen as damping coefficients from the viewpoint of
mechanics as discussed by Alvarez et al. (2002) and sketched in the introduction. Recall
that DIN, the second-order model used to build INNA, originally reads,

θ̈(t) = −α θ̇(t)− β∇2J (θ(t))θ̇(t)−∇J (θ(t)).

Rewriting DIN as above highlights the mechanical interpretation inspired by Newton’s sec-
ond law of dynamics: the acceleration of a ball evolving on the landscape of J coincides
with a sum of forces applied to the ball. Three forces are at stake: the gravity −∇J and
two friction terms. The term −αθ̇ acts as a stabilizer, reducing the speed θ̇. The parameter
α thus corresponds to a viscous damping intensity similarly to the damping in the HBF
method (2.2). On the other hand the parameter β can be seen as a Newton damping co-
efficient which takes into account the geometry of the landscape to brake or accelerate the
dynamics in an adaptive anisotropic fashion. Indeed, the term −β∇J 2(θ)θ̇ accounts for
the correlation between the speed θ̇ and the Hessian matrix of −J (θ) which represents the
variations of the gravity term −∇J (θ), see Alvarez and Pérez (1998) and Alvarez et al.

61

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

(2002) for further insights.

We now turn our attention to INNA, and illustrate the versatility of the hyper-parameters
α and β in this case. We proceed on a 2D visual non-smooth ill-conditioned example
à la Rosenbrock, see Figure 2.1. For this example, we aim to find the minimum of the
function J (θ1, θ2) = 100(θ2 − |θ1|)2 + |1 − θ1|. This function has a V-shaped valley, and a
unique critical point at (1, 1) which is also the global minimum. Starting from the point
(−1, 1.5) (the black cross), we apply INNA (without mini-batch sub-sampling) with constant
step-sizes γk = 10−4. Figure 2.1 shows that when β is too small, the trajectory presents
many transverse oscillations as well as longitudinal ones close to the critical point (subplot
a). Then, increasing β significantly reduces transverse oscillations (subplot b). Finally,
the longitudinal oscillations are reduced by choosing a higher α (subplot c). In addition,
these behaviors are also reflected in the values of the objective function (subplot d). The
orange curve (first setting) presents large oscillations. Moreover, looking at the red curve,
corresponding to plot (c), there is a short period between 20, 000 and 60, 000 iterations
when the decrease is slower than for the other values of α and β, but still it presents fewer
oscillations. In the longer term, the third choice (α = 1.3, β = 0.1) provides remarkably
good performances.

The choice of these hyper-parameters may come with rates of convergence for convex and
strongly convex smooth functions (Attouch et al., 2020). Following this work, one may also
consider to make α and β vary in time (for example like the famous Nesterov damping
coefficient α

t , Su et al. 2014). In our DL experiments we will however keep these parameters
constant so that our theorems still hold. Yet, different behaviors depending on (α, β) can
also be observed for DL problems as illustrated on Figure 2.2 and described next. Although
we did not evidence some universal method to choose (α, β), we used mechanical intuitions
to tune these parameters. The coefficient α induces viscous damping, thus one may try
to reduce it when convergence appears to be slow. On the other hand, one may want to
increase β when large oscillations are observed. Yet, since β affects directly the subgradient
effect in (2.13), taking β too large may jeopardize the numerical stability of the algorithm.
We will study the role of the hyper-parameters further in Chapter 3. Indeed, as mentioned
in Remark 2.11-b, when αβ ≥ 1, (2.12) can be shown to be a gradient system. On the other
hand, when αβ < 1 the dynamics is of a different type. We will study how this reflects on
INNA and the solutions of DIN.

62

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

0 25 50 75 100 125 150 175 200
Epochs

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.10

0.20

0.30

0.40

0.50

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

INNA,
(α, β)=(0.1,0.1)
INNA,
(α, β)=(0.5,0.1)

INNA,
(α, β)=(0.5,0.5)
INNA,
(α, β)=(0.5,1.0)

Figure 2.2: Analysis of the sensibility of INNA to the choice of α and β for three different
image classification problems. Top: logarithm of the loss function J (θ) during the training.
Bottom: classification accuracy on the test set.

2.6.2 Training a DNN with INNA

Before comparing INNA to concurrent algorithms in DL, we first describe the methodology
that we followed.

2.6.2.1 Methodology

– We train a DNN for classification using the three most common image datasets:
MNIST, CIFAR-10, and CIFAR-100 (LeCun et al., 1998; Krizhevsky, 2009). These
datasets are composed of 60, 000 small images associated with a label (numbers, ob-
jects, animals, etc.). We split the datasets into 50, 000 images for training and 10, 000
for testing.

– Regarding the network, we use a slightly modified version of Network in Network

63

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

(NiN) (M. Lin et al., 2014). It is a reasonably large CNN with P ∼ 106 parameters
to optimize. We use ReLU activation functions.

– The dissimilarity measure ` that is used in the empirical loss J given by (2.4) is the
cross-entropy. The loss function J is optimized with respect to θ (the weights of
the DNN) on the training data. The classification accuracy of the trained DNN is
measured using the test data of 10, 000 images. Measuring the accuracy boils down
to counting how many of the 10, 000 images were correctly classified (in percentage).

– Based on the results of Section 2.6.1, we run INNA for four different values of (α, β):

(α, β) ∈ {(0.1, 0.1), (0.5, 0.1), (0.5, 0.5), (0.5, 1)} .

Given an initialization of the weights θ0, we initialize ψ0 such that the initial velocity is
in the direction of −∇J (θ0). More precisely, we use ψ0 = (1−αβ)θ0−(β2−β)∇J (θ0).

– We compare our algorithm INNA with several algorithms introduced in Section 1.4.3.2:
SGD, ADAGRAD (J. Duchi et al., 2011) and ADAM (Kingma and Ba, 2015). At
each iteration k ∈ N, we compute the approximation of ∂J (θ) on a subset Bk ⊂
{1, . . . , 50, 000} of size 32. The algorithms are initialized with the same random
weights (drawn from a normal distribution). Five random initializations are con-
sidered for each experiment.

– Regarding the choice of the step-sizes, ADAGRAD and ADAM both use an adaptive
procedure based on past gradients, see (1.30) and (1.32). For the other two algorithms
(INNA and SGD), we use the classical step-size schedule γk = γ0√

k+1 with γ0 > 0, which
meets Assumption 2.1. For all four algorithms, choosing the right initial step length
(γ0 > 0 for INNA and SGD, α > 0 for the other methods) is often critical in terms
of efficiency. We choose this parameter using a grid-search: for each algorithm we
select the initial step-size that most decreases the training error J after fifteen epochs
(recall that one epoch essentially consists in a complete pass over the dataset). Note
that we could use more flexible step-size schedules, but we chose a standard schedule
for simplicity. Different decay schemes are considered in Figure 2.4.

For these experiments, we used keras 2.2.4 (Chollet, 2015) with tensorflow 1.13.1
(Abadi et al., 2016) as backend. The INNA algorithm is available in pytorch, keras
and tensorflow: https://github.com/camcastera/Inna-for-DeepLearning/ (Castera,
2019).

64

https://github.com/camcastera/Inna-for-DeepLearning/

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

2.6.2.2 Results

Figure 2.2 displays the training loss J and test accuracy with respect to the epochs for INNA
in its four hyper-parameter configurations considered and for the three datasets considered.
Figure 2.3 displays the performance of INNA with the hyper-parameter configuration that
led to the smallest average training error in Figure 2.2, with comparison to SGD, ADAGRAD
and ADAM. In these two figures (and also in subsequent Figure 2.4), solid lines represent
mean values and pale surfaces represent the best and worst runs in terms of training loss
and validation accuracy over five random initializations.

Figure 2.2 suggests that the tuning of the hyper-parameters α and β is not crucial to obtain
satisfactory results both for training and testing. The hyper-parameters mostly affect the
training speed, so, INNA looks quite stable with respect to these hyper-parameters. Setting
(α, β) = (0.5, 0.1) appears to be a good default choice6, nevertheless, tuning these hyper-
parameters is of course advised to get the most out of INNA.

Figure 2.3 shows what can be achieved with a moderately large network and coarse grid-
search tuning of the initial step-size. In our comparison, INNA and ADAM outperform SGD
and ADAGRAD for training. While ADAM seems to be faster in the early training phase,
INNA achieves the best accuracy almost every time especially on CIFAR-100 (Figure 2.3(b)).
Thus, INNA appears to be competitive in comparison to the other algorithms with the
advantage of having solid theoretical foundations and a simple step-size rule as compared to
ADAM and ADAGRAD. Additional DL experiments are performed in Section 4.5, where
INNA appears again to be efficient for training and seems to possess very good generalization
properties, see Remark 4.5.

Finally, let us point out that although ADAM was faster in the experiments of Figure 2.3,
INNA can outperform ADAM using the slow step-size decay discussed in Section 2.4.2.
Indeed, in the previous experiments we used a standard decreasing step-size of the form
γ0/
√
k + 1 for simplicity, but Assumption 2.1 allows for step-sizes decreasing much more

slowly. As such, we also considered decays of the form γ0(k + 1)−q with q ≤ 1/2. The
results are displayed on top of Figure 2.4. Except when q is too small (too slow decay, e.g.,
q = 1/16), these results show that some decays slower than q = 1/2 make INNA a little
faster than any of the other algorithms. In particular, with a step-size decay proportional
to k−1/4, INNA outperforms ADAM (bottom of Figure 2.4). This suggests that tuning q
can also significantly accelerate the training process.

6This observation is confirmed by additional experiments conducted on Section 4.5 of Chapter 4.

65

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0
Epochs

-1.0

-0.5

0.0

0.5

1.0

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.10

0.20

0.30

0.40

0.50

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

SGD
ADAM
ADAGRAD

INNA,
(α, β)=(0.1,0.1)
INNA,
(α, β)=(0.5,0.1)

Figure 2.3: Comparison of INNA with concurrent algorithms: SGD, ADAM and ADA-
GRAD. Top: logarithm of the loss function J (θ) during the training. Bottom: classification
accuracy on the test set.

2.7 Conclusion

In this chapter we introduced a new second-order method featuring inertial and Newtonian
behaviors. In Section 1.4.3.1 of the introduction, we presented the most common strategies
to exploit second-order information via first-order oracles. Here, we used a rather orthogonal
approach: we exploited the fact that DIN, a second-order ODE in time and space can be
rewritten as a first-order system not only in time but also in space. The resulting implicit use
of second-order information makes INNA highly compatible with first-order mini-batch sub-
sampling. We provided a powerful algorithmic convergence analysis under weak hypotheses
applicable to most DL problems. We also provided new general results to study differential
inclusions with the Clarke subdifferential and obtain convergence rates for the continuous-
time counterpart of our algorithm, as well as general results for the solutions of a class of
differential inclusions. To our knowledge, the paper from which this chapter is adapted

66

Chapter 2 INNA: An Inertial Newton Algorithm for Deep Learning

(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

0 25 50 75 100 125 150 175 200
Epochs

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-3.00

-2.00

-1.00

0.00

1.00

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200

Epochs

−0.4

−0.2

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

:
lo

g
1
0
(J

(θ
))

k−1/2

k−1/4

k−1/8

k−1/16

0 25 50 75 100 125 150 175 200
Epochs

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

ADAM
INNA with decrease ∝ k−1/4

Figure 2.4: On top: Training loss of INNA on three image classification problems with
various step-size decays. In the legend, k−q means a step-size decay at iteration k of the
form γk = γ0k

−q. The bottom row show the comparison between INNA with a well-chosen
step-size decay and ADAM.

was the first one to rigorously handle the analysis of mini-batch sub-sampling for non-
smooth DNNs via the introduction of D-critical points. Our experiments show that INNA
is very competitive with concurrent algorithms for DL, with the advantage of having simple
and explainable hyper-parameters. Finally, the satisfactory performances of the numerical
experiments suggest that INNA seems to avoid spurious critical points and converge to
minima. Next chapter is devoted to providing a better understanding of this phenomenon.

67

Chapter 3

Escape of Strict Saddle Points and
Asymptotic Behavior of INNA

This chapter is adapted from Castera (2021).

Contents

3.1 Introduction . 69
3.2 Preliminary discussions and definitions . 71
3.3 Continuous case: asymptotic behavior of the solutions of DIN 73

3.3.1 DIN is likely to avoid strict saddle points 74
3.3.2 Behavior of the solutions of DIN around stationary points 79

3.4 Discrete case: INNA almost surely avoids saddle points 84
3.4.1 INNA generically avoids strict saddles 84
3.4.2 Stable manifold theorem for discrete processes 85
3.4.3 Proof of Theorem 3.9 . 86
3.4.4 Numerical Illustration . 91

3.5 Conclusion . 92

3.1 Introduction

In Chapter 2, we introduced DIN, a second-order differential equation mixing Newton’s
method and HBF. From DIN we built INNA, a practical algorithm to tackle (1.6) and train

69

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

DNNs. While we proved that the accumulation points of INNA yield D-critical points of
J , we now study more precisely the nature of the critical points that INNA is likely to
find. Indeed, since the function J is non-convex, it may thus have spurious critical points
(critical points that are not local minima). It has been proved that gradient descent and
HBF are likely to avoid strict saddles (critical points where ∇2J has negative eigenvalues,
Goudou and Munier 2009; Lee et al. 2016; O’Neill and S. J. Wright 2019), however, vanilla
Newton’s method (with unit step-sizes) is attracted by any type of critical points, not only
minima (see e.g., Dauphin et al. 2014), which is problematic when solving minimization
problems like (1.6). Since DIN mixes Newton’s method and HBF, we would like to answer
the following question: are the solutions of DIN—and the INNA algorithm—likely to avoid
strict saddle points?

In order to get a better understanding of INNA, we consider a less general framework
than in Chapter 2. Here we study a loss function J : RP → R which is twice continuously
differentiable on RP , and study a deterministic (full-batch) version of INNA with fixed
step-sizes. In this framework, we answer positively to the above question, both for DIN
and INNA, regardless the choice of the hyper-parameter β and for any α > 0. Additionally,
we shed light on the link between the choice of α and β and the asymptotic behavior of
the solutions of DIN, with in particular the emergence of spirals when αβ < 1, this gives
a better understanding of the role played by these hyper-parameters. We also provide
numerical experiments illustrating the theoretical results.

Organization. The organization of this chapter is the following. We recall essential no-
tions and optimality conditions in Section 3.2, we then prove that the solutions of DIN
almost always avoid strict saddle points in Section 3.3.1, and study their qualitative behav-
iors in Section 3.3.2. Then, Section 3.4 is devoted to prove similar results for the discrete
algorithm INNA, some conclusions are finally drawn. We first review the literature specifi-
cally related to this chapter.

Related work. As already said, DIN was first introduced by Alvarez et al. (2002). It
was then studied by many, in particular Attouch et al. (2014), Attouch et al. (2016), and
Shi et al. (2021) considered extensions of DIN where the hyper-parameters α and β vary
over time (unlike what we did in Chapter 2). INNA was not the only algorithm based on
the first-order equivalent formulation of DIN, this feature was also exploited by L. Chen
and Luo (2019) and Attouch et al. (2020) to build algorithms called HNAG and IPAHD
respectively. Regarding the effect of the parameters α and β, Attouch et al. (2020) and

70

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

Attouch et al. (2021) recently provided a global understanding of the link between these
parameters and quantitative properties such as asymptotic rates of convergence for convex
and strongly-convex loss functions. Here we rather focus on qualitative properties (such as
the existence of spiraling solutions) and consider non-convex functions.

Our analysis mainly relies on results from the theory of dynamical systems, and in partic-
ular on the stable manifold theorem (Pliss, 1964; Kelley, 1966). This theorem can be used
to prove that optimization algorithms are likely to avoid strict saddle points, it has been
used for example by Goudou and Munier (2009) followed by Lee et al. (2016) and O’Neill
and S. J. Wright (2019) for gradient descent and HBF. Finally, to analyze the qualitative
behavior of DIN, we use the Hartman-Grobman Theorem (Grobman, 1959; Hartman, 1960).

3.2 Preliminary discussions and definitions

Before analyzing asymptotic behavior of optimization methods, we recall some fundamental
notions which will be important in what follows. We refer to the notions of minimizers and
maximizers introduced in Section 1.2.1 and in particular Definition 1.1. We now recall the
following optimality conditions (see for example Nocedal and S. Wright 2006)—even-though
we already discussed them a little in Chapter 1—which will be central in this chapter.

Proposition 3.1 (Optimality conditions). Let g : RP → R be a twice continuously dif-
ferentiable function and let θ? ∈ RP . If θ? is a local minimizer of g, then the following
holds:

– First-order condition: θ? is a critical point of g, i.e., ∇g(θ?) = 0.

– Second-order condition: The Hessian matrix ∇2g(θ?) is positive semidefinite. Equiv-
alently, all the eigenvalues of ∇2g(θ?) are non-negative.

Similarly, for any θ? ∈ RP , if ∇g(θ?) = 0 and ∇2g(θ?) is positive definite (or equivalently,
∇2g(θ?) has only positive eigenvalues), then θ? is a local minimizer of g.

Similar results hold for maximizers but with negativity conditions for the Hessian matrix.
The link between the eigenvalues of the Hessian matrix of the loss function J in (1.6),
and the nature of critical points plays a crucial role in the sequel. As mentioned in the
introduction, some critical points are irrelevant to minimize J , we distinguish three types:

– Those where the Hessian of J has only positive eigenvalues. From Proposition 3.1,
these points are local minima.

– The points where the Hessian matrix has at least one negative eigenvalue, which are

71

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

1

0.5

0.0

0.5

2

0.5
0.0

0.5

(
1,

2)

1

0.5

0.0

0.5

2

0.5

0.0

0.5
(

1 ,
2)

Figure 3.1: Example of two functions whose Hessian matrices are singular at (0, 0). For the
function (θ1, θ2) ∈ R2 7→ 1

2θ
2
1 + 1

2θ
2
2 + θ1θ2 (on the left), the critical point (0, 0) (in red) is a

minimum. For the function (θ1, θ2) ∈ R2 7→ θ3
1 + θ2

2 (on the right), the critical point (0, 0)
is neither a minimum nor a maximum.

referred to as strict saddle points. Such a point cannot be a local minimum, it is either
a maximum or not an extremum.

– The points where the Hessian matrix has only non-negative eigenvalues and at least one
zero eigenvalue, we call them non-strict saddle points. Such points may be maximizers,
minimizers, or neither of them. For example, consider the functions (θ1, θ2) ∈ R2 7→
1
2θ

2
1 + 1

2θ
2
2 + θ1θ2 and (θ1, θ2) ∈ R2 7→ θ3

1 + θ2
2. For both functions, (0, 0) is a critical

point and the eigenvalues of their Hessian matrices at (0, 0) are 0 and 2. Yet, one can
easily check that (0, 0) is a minimizer for the first function and is not an extremum
for the second one. These considerations are illustrated on Figure 3.1.

Due to the difficulties raised by the existence of non-strict saddle points, some results of
this chapter hold only for Morse functions, defined next.

Definition 3.1. A twice continuously differentiable function g : RP → R is a Morse function
if for any θ ∈ RP such that ∇g(θ) = 0, the Hessian ∇2g(θ) has no zero eigenvalues.

Morse functions are functions for which all saddles are strict and other critical points are
minima. Some of the following results are restricted to Morse functions, others are more
general, yet, in every case we will need the following assumption.

72

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

Assumption 3.1. The loss function J has isolated critical points: for any θ? ∈ RP such
that ∇J (θ?) = 0, there exists a neighborhood Ω ⊂ RP of θ? such that θ? is the only critical
point inside Ω.

This assumption guarantees in particular that J has at most a countable (possibly in-
finite) number of critical points. Note additionally that Assumption 3.1 holds for Morse
functions. Let us now move on to the analysis of DIN.

3.3 Continuous case: asymptotic behavior of the solutions of
DIN

We recall that in this chapter, J : RP → R is a twice continuously differentiable function.
Let α ≥ 0 and β > 0, we consider DIN for twice differentiable functions in its equivalent
first-order form,θ̇(t) = −

(
α− 1

β

)
θ(t)− 1

βψ(t)− β∇J (θ(t))

ψ̇(t) = −
(
α− 1

β

)
θ(t)− 1

βψ(t)
, for all t > 0, (3.1)

where (θ, ψ) : R+ × R+ → RP × RP is differentiable for all t > 0. Since J is twice continu-
ously differentiable, the existence and uniqueness (with respect to initial conditions) of the
solutions of (3.1) are granted by the Cauchy-Lipschitz theorem, see Alvarez et al. (2002).
Let us focus on the asymptotic behavior of the solutions with respect to initial conditions.

Necessary condition for being a stationary point. A key element in the proof of
convergence of INNA in Chapter 2 was that the stationary points of the solutions of DIN
yield D-critical points of J—which are simply critical points for smooth functions—see
(2.16). Indeed, since J is differentiable, the set of stationary points of the solutions of (3.1)
is,

S =
{

(θ?, ψ?) ∈ RP × RP
∣∣∣∇J (θ?) = 0, ψ? = (1− αβ)θ?

}
,

and that a bounded solution (θ, ψ) of (3.1) converges to a point of S hence the first coordinate
θ of a bounded solution converges to a critical point of J . We will study the type of points
of S which the solutions of (3.1) are likely to converge to, and then study the qualitative
asymptotic behavior of these solutions.

73

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

3.3.1 DIN is likely to avoid strict saddle points

We start with our main result regarding the limit of the solutions of DIN.

3.3.1.1 Main convergence results

For convenience, we denote by S<0 ⊂ S the set of stationary points (θ?, ψ?) such that θ? is
a strict saddle point of J , namely,

S<0
def=
{

(θ?, ψ?) ∈ S
∣∣∣∇2J (θ?) has at least one negative eigenvalue

}
. (3.2)

Theorem 3.2. Suppose that Assumption 3.1 holds for J , then for almost any initialization,
the corresponding solution of (3.1) does not converge to a point in S<0.

Before proving the theorem, the following corollary is an immediate consequence suited
for practical applications.

Corollary 3.3. Assume that J is a twice continuously differentiable Morse function. As-
sume also that J is coercive (i.e., that lim‖θ‖→∞ J (θ) = +∞). Then for any initialization
the associated solution of (3.1) converges. Moreover, let (θ0, ψ0) be a non-degenerate ran-
dom variable on RP × RP , and let (θ, ψ) be the solution of (3.1) initialized at (θ0, ψ0) and
converging to (θ?, ψ?) ∈ RP × RP . Then with probability one with respect to the draw of
(θ0, ψ0), θ? is a local minimizer of J .

This corollary states in particular that for a coercive Morse function, we can pick an ini-
tialization sampled from a non-degenerate distribution on RP ×RP , for example a Gaussian
or uniform distribution, and with probability one, the first coordinate of the limit of the
solution (with respect to the initialization) is a local minimizer of J .

Proof of Corollary 3.3. Using the remarks from Section 2.4.2, the coercivity of J guarantees
that any solution of (3.1) remains bounded, and from Alvarez et al. (2002), any bounded
solution is converging. Then the limit of any solution belongs to S. Let (θ0, ψ0) be a random
variable sampled from a non-degenerate distribution on RP ×RP , by definition the support
of the distribution has non-zero measure. In addition, according to Theorem 3.2, the set
of initializations such that the solutions of (3.1) converge to S<0 has zero measure. So,
almost surely with respect to the random variable (θ0, ψ0), the solution of (3.1) initialized
at (θ0, ψ0) converges toward S \ S<0. Finally, since J is a Morse function, S \ S<0 is exactly
the set of local minimizers.

74

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

Remark 3.4. We could state a more general (but more abstruse) result than Corollary 3.3
which would not require the coercivity assumption but only that the set of initializations such
that the associated solution of (3.1) converges has positive Lebesgue measure. We will do so
for INNA (see Corollary 3.10).

We now introduce the main tool to prove Theorem 3.2: the stable manifold theorem.

3.3.1.2 The stable manifold theorem

To simplify the notations we introduce the following mapping,

G : (θ, ψ) ∈ RP × RP 7→

− (α− 1
β

)
θ − 1

βψ − β∇J (θ)
−
(
α− 1

β

)
θ − 1

βψ

 ,
so that (3.1) can be re-written,

d
dt

(
θ(t)
ψ(t)

)
= G(θ(t), ψ(t)), for all t > 0. (3.3)

For any (θ, ψ) ∈ RP × RP , we also denote by JacG(θ, ψ) ∈ R2P×2P the Jacobian matrix of
G at (θ, ψ). Remark that for any (θ, ψ) ∈ RP ×RP , it holds (θ, ψ) ∈ S ⇐⇒ G(θ, ψ) = 0, so
the stationary points of (3.1) are exactly the zeros of G. We now state the stable manifold
theorem which is the keystone to prove Theorem 3.2.

Theorem 3.5 (Stable manifold theorem (Haragus and Iooss, 2010; Perko, 2013)). Let
F : R2P → R2P be a C1 mapping and denote by JacF the Jacobian of F , consider the
autonomous ODE,

dΘ
dt (t) = F (Θ(t)), for all t > 0. (3.4)

Let Θ? ∈ R2P such that F (Θ?) = 0. Let Esc(Θ?) be the linear subspace of R2P spanned by
the eigenvalues of JacF (Θ?) with non-positive real part. There exists a neighborhood Ω of Θ?

and a C1 manifold Wsc(Θ?) tangent to Esc(Θ?) at Θ?—whose dimension is the number of
eigenvalues of JacF (Θ?) with non-positive real part—such that, for any solution Θ of (3.4),

(i) If Θ(0) ∈ Wsc(Θ?) ∩ Ω and for T ≥ 0, Θ([0, T]) ⊂ Ω, then Θ([0, T]) ⊂ Wsc(Θ?).
(Invariance)

(ii) If ∀t ≥ 0, Θ(t) ∈ Ω, then Θ(0) ∈Wsc(Θ?).

We see why this theorem plays an important role in the proof of Theorem 3.2. It states in

75

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

particular that all the solutions of (3.4) converging to Θ? must enter inside Wsc(Θ?) after
some time, and that Wsc(Θ?) has zero measure as soon as JacF (Θ?) has at least one positive
eigenvalue. We will show that this holds true for G and for any point in S<0. Now that we
introduced our main tool, we can prove Theorem 3.2.

3.3.1.3 Proof of Theorem 3.2

We state an elementary useful lemma.

Lemma 3.6. Let α ≥ 0, β > 0 and λ ∈ R. The quantity (α + βλ)2 − 4λ is non-positive if
and only if αβ ≤ 1 and λ ∈

[
2−αβ
β2 −

2
√

1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

]
.

Proof of Lemma 3.6. Let α ≥ 0, and β > 0, the function λ ∈ R 7→ (α + βλ)2 − 4λ =
β2λ2 + 2(αβ− 2)λ+α2 is a second-order polynomial in λ whose discriminant is 16(1−αβ).
If αβ > 1 this discriminant is negative thus the polynomial has no real roots and hence
is always positive. If αβ ≤ 1, then the discriminant is non-negative and the roots of the
polynomial are (2−αβ)

β2 ± 2
√

1−αβ
β2 .

We now prove Theorem 3.2.

Proof of Theorem 3.2. Let (θ?, ψ?) ∈ RP × RP such that G(θ?, ψ?) = 0. We first compute
the eigenvalues of JacG(θ?, ψ?), in order to apply Theorem 3.5 to (3.3) around (θ?, ψ?). By
differentiating G we obtain the following Jacobian matrix, displayed by block,

JacG(θ?, ψ?) =

−β∇2J (θ?)−
(
α− 1

β

)
IP − 1

β IP

−
(
α− 1

β

)
IP − 1

β IP

 , (3.5)

where IP denotes the identity matrix of RP×P . We need to compute the eigenvalues of
JacG(θ?, ψ?) and study the sign of their real parts. In particular, we want to show that
if ∇2J (θ) has a (strictly) negative eigenvalue (i.e., (θ?, ψ?) ∈ S<0), then JacG(θ?, ψ?) has
at least one (strictly) positive eigenvalue, and thus according to Theorem 3.5, the stable
manifold associated to (θ?, ψ?) has zero measure.

First, ∇2J (θ?) is real and symmetric, so the spectral theorem states that there exists an
orthogonal matrix V such that V T∇2J (θ?)V is a diagonal matrix. Thus the matrix,

(
V T 0
0 V T

)
JacG(θ?, ψ?)

(
V 0
0 V

)
=

−βV T∇2J (θ?)V −
(
α− 1

β

)
IP − 1

β IP

−
(
α− 1

β

)
IP − 1

β IP

 (3.6)

76

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

is a sparse matrix with only 3 non-zero diagonals and whose eigenvalues are the same as those
of JacG(θ?, ψ?). Exploiting the tridiagonal structure, there exists a symmetric permutation
U ∈ R2P×2P , specified in (3.36) in Section 3.6 of the appendix of this chapter, such that we
can transform (3.6) into a block diagonal matrix,

UT
(
V T 0
0 V T

)
JacG(θ?, ψ?)

(
V 0
0 V

)
U =

M1

. . .
MP

 , (3.7)

where for each p ∈ {1, . . . , P}, Mp is a 2 × 2 matrix defined as follows. Denote by
(λp)p∈{1,...,P} the eigenvalues of ∇2J (θ?), then—up to a symmetric permutation—for all

p ∈ {1, . . . , P}, Mp =

− (α− 1
β

)
− βλp − 1

β

−
(
α− 1

β

)
− 1
β

.
The eigenvalues of JacG(θ?, ψ?) are obtained by computing those of the matrices Mp.

Let p ∈ {1, . . . , P}, the eigenvalues of Mp are the roots of its characteristic polynomial:
χMp : X ∈ R 7→ X2 − trace(Mp)X + det(Mp), which gives for any X ∈ R,

χMp(X) = X2 + (α+ βλp)X + λp. (3.8)

This is a second-order polynomial, whose discriminant is,

∆Mp

def= (α+ βλp)2 − 4λp. (3.9)

The eigenvalues of Mp depend on the sign of ∆Mp which is given by Lemma 3.6. We now
show that if λp < 0, then Mp has a positive eigenvalue.

First assume that ∆Mp ≤ 0. Lemma 3.6 states that in this case, we have αβ ≤ 1 and

λp ∈
[

2−αβ
β2 −

2
√

1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

]
. An elementary study of the function x ∈ [0, 1] 7→

2 − x − 2
√

1− x shows however that for 0 ≤ αβ ≤ 1, 2−αβ
β2 − 2

√
1−αβ
β2 ≥ 0, so ∆Mp ≤ 0

implies λp ≥ 0. Thus, we do not need to further investigate the case ∆Mp ≤ 0 since this
case never occurs when λp < 0.

Suppose now that ∆Mp > 0, then Mp has two real eigenvalues,σp,+ = −(α+βλp)
2 +

√
∆Mp

2 = −(α+βλp)
2 +

√
(α+βλp)2−4λp

2

σp,− = −(α+βλp)
2 −

√
∆Mp

2 = −(α+βλp)
2 −

√
(α+βλp)2−4λp

2

. (3.10)

77

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

In this case, assume that λp < 0. If α+ βλp ≤ 0, then σp,+ is a sum of a non-negative and
a positive term, so σp,+ > 0. If α+ βλp ≥ 0, then

2σp,+ = −(α+ βλp) +
√

(α+ βλp)2 + 4(−λp) > 0,

since 4(−λp) > 0. Overall, we showed that in every case, λp < 0 =⇒ σp,+ > 0. So
whenever there exists p ∈ {1, . . . , P} such that λp < 0, JacG(θ?, ψ?) has at least one positive
eigenvalue.

We can now apply the stable manifold theorem. Let (θ?, ψ?) ∈ S<0. Let an initialization
(θ0, ψ0) such that the corresponding solution (θ, ψ) of (3.3) converges to (θ?, ψ?). Denote
Φ : RP × RP × R → RP × RP × R the flow of the solutions of (3.3), so that we have
in particular for all t ≥ 0, (θ(t), ψ(t)) = Φ((θ0, ψ0), t) and (θ0, ψ0) = Φ((θ(t), ψ(t),−t).
Consider the manifold Wsc(θ?, ψ?) and the neighborhood Ω as defined in Theorem 3.5. The
convergence of (θ, ψ) implies that there exists t0 ≥ 0 such that for all t ≥ t0, (θ(t), ψ(t)) ∈ Ω,
so according to Theorem 3.5, ∀t ≥ t0, (θ(t), ψ(t)) ∈ Ω∩Wsc(θ?, ψ?). Expressing this in terms
of flows, ∀t ≥ t0, Φ((θ0, ψ0), t) ∈ Ω ∩Wsc(θ?, ψ?) and hence ∀t ≥ t0,

Φ((θ0, ψ0), t) ∈
⋃
k∈N

Φ (Ω ∩Wsc(θ?, ψ?),−k) , (3.11)

where the right-hand side in (3.11) corresponds to the union over k ∈ N of initial conditions
such that the associated solution has reached Ω ∩Wsc(θ?, ψ?) at time k. Let

W(θ?, ψ?) =
{

(θ0, ψ0) ∈ RP × RP
∣∣∣∣Φ((θ0, ψ0), t) −−−−→

t→+∞
(θ?, ψ?)

}
, (3.12)

the set of all initial conditions such that the associated solution converges to (θ?, ψ?). Ac-
cording to (3.11), we have proved that,

W(θ?, ψ?) ⊂
⋃
k∈N

Φ (Ω ∩Wsc(θ?, ψ?),−k) . (3.13)

Now, we previously showed that since (θ?, ψ?) ∈ S<0, JacG(θ?, ψ?) has one or more positive
eigenvalues, so according to the stable manifold theorem, the dimension of Wsc(θ?, ψ?) is
strictly less than 2P , hence this manifold has zero measure. Due to the uniqueness of the
solutions of (3.3), for any k ∈ N, Φ(·,−k) is a local diffeomorphism, hence it maps zero-
measure sets to zero-measure sets. Consequently, the right-hand side in (3.13) is a countable
union of zero-measure sets, so it has zero measure as well, and the same goes for W(θ?, ψ?).

78

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

To conclude the proof of the theorem, by Assumption 3.1, the critical points are isolated
so their number is countable. So

⋃
(θ?,ψ?)∈S<0 W(θ?, ψ?) is a countable union of zero-measure

sets so it has zero measure.

Remark 3.7. Keeping the notations of the proof of Theorem 3.2, we proved that for p ∈
{1, . . . , P}, if λp < 0 then σp,+ > 0. Looking at the proof, note that we could also show quite
easily that λp > 0 =⇒ σp,+ < 0, so for any local minimizer with non-singular Hessian, the
associated stable manifold does not have zero measure. In particular, the stable manifold
associated to any local minima of a twice differentiable Morse functions does not have zero
measure.

3.3.1.4 On the complex eigenvalues of JacG

In the proof of Theorem 3.2 we showed that for any (θ?, ψ?) ∈ S, if an eigenvalue λp of the
Hessian ∇J (θ?) is negative, then the associated discriminant ∆Mp is positive and thus the
eigenvalues of JacG(θ?, ψ?) are real. Note however that when there exists p ∈ {1, . . . , P}
such that λp ≥ 0 (and hence in particular around local minima), we may have ∆Mp ≤ 0.

This is the case whenever αβ ≤ 1, and λp ∈
[

2−αβ
β2 −

2
√

1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

]
. When the

aforementioned conditions hold, JacG(θ?, ψ?) has complex eigenvalues,σp,+ = −(α+βλp)
2 + i

√
−∆Mp

2 = −(α+βλp)
2 + i

√
4λp−(α+βλp)2

2

σp,− = −(α+βλp)
2 − i

√
−∆Mp

2 = −(α+βλp)
2 − i

√
4λp−(α+βλp)2

2

. (3.14)

Overall, we proved that DIN is likely to avoid strict saddle points, and we additionally
observed that around local minima, the Jacobian JacG may or may not have eigenvalues with
non-zero imaginary part. The existence of complex eigenvalues may change the behavior of
the solutions around local minima. Next section is devoted to studying this matter.

3.3.2 Behavior of the solutions of DIN around stationary points

Accordingly to what we just discussed in Section 3.3.1.4, we wish to characterize the quali-
tative asymptotic behavior of the convergent trajectories of DIN.

79

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

3.3.2.1 The Hartman-Grobman theorem

To this aim, we introduce the Hartman-Grobman theorem.

Theorem 3.8 (Hartman–Grobman (Perko, 2013)). Consider the following dynamical sys-
tem,

dΘ
dt (t) = F (Θ(t)), t ∈ R (3.15)

where Θ : R → R2P , F : R2P → R2P is C1 and denote by JacF the Jacobian matrix of
F . Assume that there exists Θ? ∈ R2P such that F (Θ?) = 0 and JacF (Θ?) has only non-
zero eigenvalues. Then, there exists a neighborhood Ω of Θ? and a homeomorphism H (a
bijective continuous function whose inverse is continuous) such that, for any Θ0 ∈ Ω, if Θ is
a solution of (3.15) with Θ(0) = Θ0, there exists an open interval of time T ⊂ R containing
0 such that the function Φ = H ◦Θ is the solution of

dΦ
dt (t) = JacF (Θ?)Φ(t), t ∈ T, (3.16)

with initial condition Φ(0) = H(Θ0). The homeomorphism H preserves the parameterization
by time (it does not reverse time).

This theorem essentially states that, in a neighborhood of a stationary point Θ? where the
Jacobian matrix JacF (Θ?) is non-singular the solutions of (3.15) have a qualitative behavior
similar to those of the linearized system (3.16).

3.3.2.2 Application to DIN

Application of the theorem. Let (θ?, ψ?) ∈ S be a stationary point of (3.1) such that
θ? is a local minimizer of J and such that ∇2J (θ?) has only non-zero eigenvalues (this is
guaranteed for all local minima if J is a Morse function). Consider the differential equation,

d
dt

(
θ̃(t)
ψ̃(t)

)
= JacG(θ?, ψ?)

(
θ̃(t)
ψ̃(t)

)
, t ∈ R. (3.17)

According to Remark 3.7 and the proof of Theorem 3.2, all the eigenvalues of JacG(θ?, ψ?)
have strictly negative real parts. So there exists a homeomorphism H and a neighborhood Ω
of (θ?, ψ?) on which Theorem 3.8 holds. In particular, for any initial condition (θ0, ψ0) ∈ Ω,
the associated solution of (3.3) converges to (θ?, ψ?) (because the corresponding solution of
(3.17) converges to (θ?, ψ?) and H preserves the parameterization by time).

80

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

So for any initialization in (θ0, ψ0) ∈ Ω, the corresponding solution (θ, ψ) of (3.3) re-
mains in Ω, i.e., ∀t ≥ 0, (θ(t), ψ(t)) ∈ Ω. Thus we can use the Hartman-Grobman around
(θ(t), ψ(t)) for any t ≥ 0. As a result, for any initialization in (θ0, ψ0) ∈ Ω, and for all t ≥ 0,
the associated solution (θ, ψ) of (3.3) reads, (θ(t), ψ(t)) = H−1(θ̃(t), ψ̃(t)) where (θ̃, ψ̃) is
the solution of (3.17) with initial condition (θ̃(t0), ψ̃(t0)) = H(θ(0), ψ(0)).

We give a more precise expression for this solution. As done in the proof of Theo-
rem 3.2 we can diagonalize JacG(θ?, ψ?): there exists a matrix Q ∈ R2P×2P such that
JacG(θ?, ψ?) = QDQ−1, where D = diag(σ1, . . . , σ2P), and (σp){1,...,2P} are the eigenvalues
of JacG(θ?, ψ?). Using the diagonalization, the solution of (3.17) is given for all t ∈ R by(
θ̃(t)
ψ̃(t)

)
= QetDQ−1

(
θ̃(0)
ψ̃(0)

)
. So going back to (θ, ψ), we have,

(
θ(t), ψ(t)

)
= H−1

(
QetDQ−1H(θ(0), ψ(0))

)
, for all t ≥ 0. (3.18)

Finally, let any initialization (θ0, ψ0) ∈ RP × RP (not necessarily belonging to Ω), such
that the corresponding solution (θ, ψ) of (3.3), converges to (θ?, ψ?). Then there exists
t0 ≥ 0 such that for all t ≥ t0, (θ(t), ψ(t)) ∈ Ω, and the arguments above apply after t0.

Form of the solutions. We proved that after some time, a solution (θ, ψ) of (3.3) which
converges to (θ?, ψ?) can be expressed with formula (3.18) (up to a time shift). If αβ ≤ 1 and
all the eigenvalues of ∇2J (θ?) are not in

(
2−αβ
β2 −

2
√

1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

)
, or if αβ > 1,

then all the eigenvalues of JacG(θ?, ψ?) are real so the coordinates of Q−1etDQ in (3.18) are
sums of exponential functions decreasing in time.

However, if αβ ≤ 1 and there exists eigenvalues of ∇2J (θ?) belonging to the interval
mentioned above, then there exists eigenvalues of JacG(θ?, ψ?) with non-zero imaginary part.
Let p ∈ {1, . . . , P} such that λp is an eigenvalue of ∇2J (θ?) belonging to the aforementioned

interval. From (3.14), there exists two complex eigenvalues: −(α+βλp)
2 ±i

√
4λp−(α+βλp)2

2 , and
thus the coordinates of the matrix etD in (3.18) contain terms of the form,

e
−(α+βλp)

2 t (cos(ωpt)± i sin(ωpt)) ,

where ωp =
√

4λp−(α+βλp)2

2 . So in this setting, and in this setting only, the imaginary
parts of the eigenvalues of JacG(θ?, ψ?) generate oscillating terms and the solution of the
linearized model t 7→ QetDQ−1 (plus initial condition) spirals around (θ?, ψ?) as it converges
toward it. This is illustrated on Figure 3.2 where such a behavior is indeed observed for a

81

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

(numerically approximated) solution of (3.1). Note finally that ωp is a decreasing function
of β, hence increasing the parameter β reduces the oscillations, which corroborates the
intuition discussed in Section 2.6.1 of Chapter 2.

3.3.2.3 Numerical illustration of the spiraling phenomenon

Setting. To illustrate the spiraling phenomenon, we consider a simple quadratic function
J : (θ1, θ2) ∈ R2 7→ θ2

1 + 2θ2
2. This loss function is C2(R2), and for all (θ1, θ2) ∈ R2, it has a

constant diagonal Hessian ∇2J (θ1, θ2) =
(

2 0
0 4

)
. This is a convex function whose unique

global minimizer is (θ?, ψ?) = (0, 0). Instead of solving exactly (3.1), we find an approximate
solution via the a full-batch version of INNA derived from (3.1) and presented in next section.
To do so, we ran the algorithm with very small step-sizes. The algorithm is initialized
at (1, 1). We consider two choices of parameters: (α, β) = (2, 0.1) and (α, β) = (2, 1).
The former illustrates the case αβ < 1 while the second corresponds to the case where
αβ > 1. According to Section 3.3.1.4, with the configuration (α, β) = (2, 0.1), the range of
eigenvalues for which we should observe spirals is approximately [1, 359] so both eigenvalues
of the Hessian of J lie in this interval.

Results. The expected behavior (discussed on Section 3.3.2.2) can be observed on the left
of Figure 3.2. When αβ < 1 (red curve), the trajectory spirals around the critical point (0, 0).
On the contrary, the phenomenon does not occur when αβ > 1 (orange curve). Remark
also that when zooming infinitesimally close to (0, 0), the oscillating behavior is still present.
Note however that this qualitative result says nothing about the speed of convergence, as
evidenced on the right of Figure 3.2. Despite the presence of spirals, the setting where
αβ < 1 yields a faster algorithm both in terms of loss function values and distance to the
objective. From a theoretical point of view, the Hartman-Grobman theorem connects the
solutions of (3.1) and those of its linearized approximation through a mapping which is
homeomorphic (hence continuous) but not necessarily differentiable. As a consequence, the
theorem does not guarantee that the speed of convergence is preserved. Regarding the study
of the speed of convergence, we refer to Attouch et al. (2020) and Attouch et al. (2021) in
a convex setting and to Theorem 2.10 for the non-convex case.

Vanishing viscous damping. To finish this section, we empirically investigate the os-
cillating phenomenon when using an asymptotically vanishing damping. More precisely,
we consider a viscous damping α(t) that may vary over time, and in particular that pro-

82

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
k, 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

k,
2

(,) = 2,0.1
(,) = 2,1
(,) = 2/t,0.1
(,) = 2/t,1

Zoom on [−0.01, 0.01]× [−0.015, 0.015] Zoom on [−5, 5].10−4 × [−35, 35].10−5

0 1000 2000 3000 4000 5000 6000 7000
number of iteration k

10 64

10 55

10 46

10 37

10 28

10 19

10 10

10 1

(
k)

(,) = 2,0.1
(,) = 2,1
(,) = 2/t,0.1
(,) = 2/t,1

0 1000 2000 3000 4000 5000 6000 7000
number of iteration k

10 32

10 27

10 22

10 17

10 12

10 7

10 2

k

(,) = 2,0.1
(,) = 2,1
(,) = 2/t,0.1
(,) = 2/t,1

Figure 3.2: Illustration of the spiral phenomenon discussed in Section 3.3.2 on the function
J : (θ1, θ2) ∈ R2 7→ θ2

1 + 2θ2
2. Top-left figure displays the evolution of the iterates on the

landscape of the loss function with two zooms on bottom-left figures. Right figures show
the value of the loss function and the distance to the global minimizer (0, 0) as a function
of the iterations.

gressively decreases to zero as t → ∞. Such damping has been given a lot of attention
after the work of Su et al. (2014) who made a connection between Nesterov’s accelerated
gradient (Nesterov, 1983) and a differential equation with a damping proportional to 1/t.
As for DIN, if such a damping is used while keeping β fixed, we eventually have α(t)β ≤ 1
after some time. Our approach is however purely empirical since the Hartman-Grobman
theorem holds only for autonomous ODEs1 (hence with α remaining constant). In this
setting we do observe spirals (see Figure 3.2), actually, we see on the blue curve that for
(α(t), β) = (2/t, 0.1), the spirals are so large that the algorithm is much slower than it was
for fixed values of (α, β). However when taking a larger β (green curve), these oscillations
are damped (although still noticeable), yielding better performances in terms of speed.

1The theorem can be extended to some non-autonomous ODEs (Palmer, 1973), which we do not consider
for the sake of simplicity.

83

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

3.4 Discrete case: INNA almost surely avoids saddle points

We now turn our attention to the asymptotic behavior of INNA introduced in Chapter 2.
Let α ≥ 0 and β > 0 be two hyper-parameters. We designed INNA for non-smooth and
stochastic applications, however, in order to study its asymptotic behavior, we consider a
simpler framework. We analyze the algorithm for a loss function J that is twice continuously
differentiable and consider a deterministic version of the algorithm. In this framework, we
may use fixed step-sizes: let γ > 0 be a step-size, in this setting, we consider the deterministic
version of INNA as,θk+1 = θk + γ

[
−(α− 1

β)θk − 1
βψk − β∇J (θk)

]
ψk+1 = ψk + γ

[
−(α− 1

β)θk − 1
βψk

] . (3.19)

For the rest of this chapter, when we mention INNA, we refer to the deterministic smooth
version (3.19). Since INNA is obtained by discretizing (3.1), we expect a similar behavior
for both dynamics. Actually, we showed in the previous chapter that the set of stationary
points of INNA is the same as that of DIN:

S =
{

(θ, ψ) ∈ RP × RP
∣∣∣∇J (θ) = 0, ψ = (1− αβ)θ

}
.

In this section, we prove that INNA is unlikely to converge to strict saddle points, that is,
for almost any initialization. To this aim we recall the definition of the set S<0 previously
introduced,

S<0 =
{

(θ, ψ) ∈ S
∣∣∣∇2J (θ) has at least one negative eigenvalue

}
.

3.4.1 INNA generically avoids strict saddles

In order to derive results for INNA similar to those for DIN, we will have to carefully choose
the step-size γ > 0. To this aim, we need to assume the following.

Assumption 3.2. There exists L∇J > 0 such that the gradient ∇J of the loss function J
is L∇J -Lipschitz continuous on RP (with respect to a given norm ‖ · ‖ on RP).

Recall from the introduction chapter that this assumption guarantees in particular that
at any point of RP , the eigenvalues of ∇2J are bounded by L∇J . Under this assumption
our main result regarding INNA follows.

84

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

Theorem 3.9. Under Assumption 3.1 and 3.2, if α > 0 and the step-size γ is such that,

0 < γ < min
(
β

2 + α

2L∇J
−
√

(α+ βL∇J)2 − 4L∇J
2L∇J

, β

)
, (3.20)

—where the right-hand side in (3.20) is always positive— then for almost any initialization,
INNA does not converge to a point in S<0.

We can again formulate a corollary suited for practical applications.

Corollary 3.10. Assume that J is a twice continuously differentiable Morse function and
that Assumption 3.2 holds. Let α > 0, β > 0 and a step-size γ such that 0 < γ <

min
(
β
2 + α

2L∇J −
√

(α+βL∇J)2−4L∇J
2L∇J , β

)
. Consider the algorithm INNA for such a choice

of α, β and γ. Denote by CJ the set of initializations such that the associated sequences
of iterates of INNA remain bounded and converge. Assume that CJ has positive Lebesgue
measure. Let (θ0, ψ0) be a non-degenerate random variable on CJ , and let (θk, ψk)k∈N be a
sequence generated by (3.19), initialized at (θ0, ψ0) and converging to (θ?, ψ?) ∈ RP × RP .
Then with probability one with respect to the draw of (θ0, ψ0), θ? is a local minimizer of J .

The proof follows similar lines as that of Corollary 3.3 and the practical consequences of
Corollary 3.10 are the same as those discussed for DIN. In order to prove Theorem 3.9, we
will use a version of the stable manifold theorem suited to the analysis of discrete processes.

3.4.2 Stable manifold theorem for discrete processes

We introduce a different version of the stable manifold theorem. This version was used by
Lee et al. (2016) and O’Neill and S. J. Wright (2019) to analyze gradient descent and the
HBF methods respectively. For a function F : RP → RP and for all k ∈ N>0, we introduce
the following notation: F k = F ◦ . . . ◦ F︸ ︷︷ ︸

k compisitions

. The theorem is the following.

Theorem 3.11 (III.7 (Shub, 2013)). Let Θ? ∈ R2P be a fixed point for the C1 local dif-
feomorphism F : U → R2P where U ⊂ R2P is a neighborhood of Θ?. Let Esc(Θ?) be the
linear subspace spanned by the (complex) eigenvalues of JacF (Θ?) with magnitude less than
one. There exists a neighborhood Ω of Θ? and a C1 manifold Wsc(Θ?) tangent to Esc(Θ?)
at Θ?—whose dimension is the number of eigenvalues of JacF (Θ?) with magnitude less than
one—such that, for Θ0 ∈ R2P ,

(i) If Θ0 ∈Wsc(Θ?) and F (Θ0) ∈ Ω then F (Θ0) ∈Wsc(Θ?) (Invariance).

85

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

(ii) If ∀k ∈ N>0, F
k(Θ0) ∈ Ω, then Θ0 ∈Wsc(Θ?).

Although we study an iterative algorithm and not the solutions of an ODE, the results
stated in Theorem 3.11 are very similar to those of Theorem 3.5, thus, the proof of Theo-
rem 3.9 follows steps similar to those of the proof of Theorem 3.2.

Formulating INNA to use Theorem 3.11. Proceeding similarly to Section 3.3.1, for
any (θ, ψ) ∈ RP × RP , we redefine the mapping G as,

G

(
θ

ψ

)
=

θ + γ
[
−(α− 1

β)θ − 1
βψ − β∇J (θ)

]
ψ + γ

[
−(α− 1

β)θ − 1
βψ
] , (3.21)

so that an iteration k ∈ N of INNA reads (θk+1, ψk+1) = G(θk, ψk). Remark that unlike for
(3.1), we now study the fixed points of G and not its zeros. Indeed, the iterative process
INNA consists in successive compositions of the operator G and the set of fixed points of G
is exactly S. Indeed, let (θ, ψ) ∈ RP × RP ,

G(θ, ψ) = (θ, ψ) ⇐⇒

−(α− 1
β)θ − 1

βψ − β∇J (θ) = 0

−(α− 1
β)θ − 1

βψ = 0

⇐⇒

∇J (θ) = 0

ψ = (1− αβ)θ
. (3.22)

So (θ, ψ) is a fixed point of G if and only if ∇J (θ) = 0 and ψ = (1− αβ)θ.

3.4.3 Proof of Theorem 3.9

Block-diagonal transformation. Throughout the proof we will use a block-diagonal
transformation. Let (θ, ψ) ∈ RP × RP , since J is C2(RP) then G is C1(RP × RP) and the
Jacobian matrix of G at (θ, ψ) (displayed by block) reads,

JacG(θ, ψ) =

(1− γ(α− 1
β))IP − γβ∇2J (θ) − γ

β IP

−γ(α− 1
β)IP (1− γ

β)IP

 . (3.23)

86

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

Proceeding like in Section 3.3.1, their exists an orthogonal matrix V ∈ RP×P and a permu-
tation U ∈ R2P×2P (defined in Section 3.6) such that,

UT
(
V T 0
0 V T

)
JacG(θ, ψ)

(
V 0
0 V

)
U =

M1

. . .
MP

 , (3.24)

where for each p ∈ {1, . . . , P},Mp =

1− γ(α− 1
β)− γβλp − γ

β

−γ(α− 1
β) 1− γ

β

—up to a symmetric

permutation—and (λp)p∈{1,...,P} are the eigenvalues of∇2J (θ). To apply the stable manifold
theorem and prove Theorem 3.9 we need G to be a local diffeomorphism. This result is non-
straightforward to obtain, so we state it as a theorem before proving Theorem 3.9.

Theorem 3.12. Under Assumption 3.2, for any α > 0, β > 0 and

0 < γ < min
(
β

2 + α

2L∇J
−
√

(α+ βL∇J)2 − 4L∇J
2L∇J

, β

)
,

the mapping G defined in (3.21) is a local diffeomorphism from RP × RP to RP × RP .

We show this result later in Section 3.7 of the appendix of this chapter.

Application of Theorem 3.11 to prove Theorem 3.9. We can now prove Theo-
rem 3.9.

Proof of Theorem 3.9. Consider the mapping G defined in (3.21) with α > 0, β > 0 and
0 < γ < min

(
β
2 + α

2L∇J −
√

(α+βL∇J)2−4L∇J
2L∇J , β

)
. By direct application of Theorem 3.12,

G is a local diffeomorphism. Let (θ?, ψ?) ∈ RP × RP be a fixed point of G. Our goal is to
apply the stable manifold theorem in a neighborhood of this point.

To this aim, we study under which conditions on the eigenvalues of ∇2J (θ?) the eigen-
values of JacG(θ?, ψ?) have magnitude less than one. Throughout the proof we consider the
same block-diagonal transformation of JacG(θ?, ψ?) as in (3.24), and we keep the same no-
tations. Let p ∈ {1, . . . , P}, the eigenvalues ofMp are the roots of the following polynomial,

χMp(X) = X2 − trace(Mp)X + det(Mp)

= X2 − (2− γ(α+ βλp))X + 1− γ(α+ βλp) + γ2λp. (3.25)

87

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

The discriminant of χMp is,

∆Mp = (2− γ(α+ βλp))2 − 4(1− γ(α+ βλp) + γ2λp)

= 4 + γ2(α+ βλp)2 − 4γ(α+ βλp)− 4 + 4γ(α+ βλp)− 4γ2λp

= γ2
(
(α+ βλp)2 − 4λp

)
.

Remark that up to a factor γ2 > 0, this is the same discriminant as in (3.9) from Sec-
tion 3.3.1. Therefore, we can once again use Lemma 3.6 to deduce that ∆Mp is non-positive

if and only if αβ ≤ 1 and λp ∈
[

2−αβ
β2 −

2
√

1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

]
. We split the study with

respect to the sign of ∆Mp .

• If ∆Mp > 0, then Mp has two real eigenvalues,

σp,+ = 1− 1
2γ(α+ βλp) + 1

2γ
√

(α+ βλp)2 − 4λp
σp,− = 1− 1

2γ(α+ βλp)− 1
2γ
√

(α+ βλp)2 − 4λp
. (3.26)

We then study whether the magnitudes of the eigenvalues are smaller or larger than
1, the computations are very similar to those of Section 3.3.1. If λp < 0, then |(α +
βλp)| <

√
(α+ βλp)2 − 4λp, so σp,+ > 1 and σp,− < 1, so we have at least one

eigenvalue with magnitude larger than one. If λp = 0, then σp,+ = 1 and2 |σp,−| =
|1− γα| ≤ 1.

In order to be exhaustive, remark that if λp > 0, then (α+βλp) >
√

(α+ βλp)2 − 4λp,
so 0 ≤ σp,+ < 1 and −∞ < σp,− < 1, so the bounds enforced on γ ensure that both
eigenvalues have magnitude less than 1. This is indeed the case whenever −σp,− < 1,
which is equivalent to γ

[
α+ βλp +

√
(α+ βλp)2 − 4λp

]
< 4 and the latter always

holds true. Indeed, when αβ > 1, one can show that the function x > 0 7→ α + βx+√
(α+ βx)2 − 4x is increasing (by differentiating it). Then, using Assumption 3.2 and

the upper bound enforced on γ it holds,

γ

[
α+ βλp +

√
(α+ βλp)2 − 4λp

]
<

(α+ βL∇J)−
√

(α+ βL∇J)2 − 4L∇J
2L∇J

[
(α+ βL∇J) +

√
(α+ βL∇J)2 − 4L∇J

]
<

4L∇J
2L∇J

= 2 < 4. (3.27)

2This is ensured by the boundaries enforced on γ as shown in the proof of Theorem 3.12.

88

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

On the other hand, when αβ ≤ 1, by studying again the function x > 0 7→ α + βx+√
(α+ βx)2 − 4x, one can show3 that,

α+ βλp +
√

(α+ βλp)2 − 4λp

≤ max
(

2α, α+ βL∇J +
√

(α+ βL∇J)2 − 4L∇J
)
. (3.28)

Then if the maximum in the right-hand side of (3.28) is 2α, it holds,

γ

[
α+ βλp +

√
(α+ βλp)2 − 4λp

]
≤ 2αγ ≤ 2αβ ≤ 2 < 4,

and if the maximum is the other value, we use (3.27) again. To summarize, when
∆Mp > 0, λp ≥ 0 ⇐⇒ |σp,+| ≤ 1 and |σp,−| ≤ 1.

• If ∆Mp ≤ 0 then this implies that λp ≥ 0 so (θ?, ψ?) 6∈ S<0 and we do not need
additional arguments. However, for the sake of completeness, we check whether the
manifold in Theorem 3.11 may have positive measure around local minimizers with
non-singular Hessian (in particular around any minimizer of a Morse function). The
eigenvalues of Mp are,

σp,+ = 1− 1
2γ(α+ βλp) + i

2γ
√

4λp − (α+ βλp)2

σp,− = 1− 1
2γ(α+ βλp)− i

2γ
√

4λp − (α+ βλp)2
. (3.29)

Both eigenvalues have the same magnitude,

|σp,+|2 = |σp,−|2 =
(

1− 1
2γ(α+ βλp)

)2
+ 1

4γ
2(4λp − (α+ βλp)2)

= 1− γ(α+ βλp) + γ2λp, (3.30)

so,

|σp,+|2 < 1 ⇐⇒ −γ(α+ βλp) + γ2λp < 0

⇐⇒ (γ − β)λp < α ⇐⇒ γ < β + α

λp
. (3.31)

3The proof is similar to the one of Lemma 3.15 given in the appendix of this chapter.

89

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

This is always true since,

γ <
1
2(β + α

L∇J
)−

√
(α+ βL∇J)2 − 4L∇J

2L∇J
≤ 1

2(β + α

L∇J
) ≤ β + α

λp
. (3.32)

We just proved that the eigenvalues of JacG(θ?, ψ?) have magnitude less than one if and
only if (θ?, ψ?) ∈ S \ S<0.

We can now use the stable manifold theorem. Let (θ?, ψ?) ∈ S<0. Let an initialization
(θ0, ψ0) such that the associated realization (θk, ψk)k∈N of INNA converges to (θ?, ψ?). Con-
sider the manifold Wsc(θ?, ψ?) and the neighborhood Ω as defined in Theorem 3.11. Since
(θk, ψk)k∈N converges, there exists k0 ∈ N such that for all k ≥ k0, (θk, ψk) ∈ Ω, so according
to Theorem 3.11, ∀k ≥ k0, (θk, ψk) ∈ Ω ∩Wsc(θ?, ψ?). Rewriting this with the operator G,
∀k ≥ k0, Gk(θ0, ψ0) ∈ Ω ∩Wsc(θ?, ψ?), and hence ∀k ≥ k0,

Gk(θ0, ψ0) ∈
⋃
j∈N

G−j (Ω ∩Wsc(θ?, ψ?)) , (3.33)

where G−j (Ω ∩Wsc(θ?, ψ?)) corresponds to all the initial conditions such that INNA has
reached Ω ∩Wsc(θ?, ψ?) after j iterations. Let

W(θ?, ψ?) =
{

(θ0, ψ0) ∈ RP × RP
∣∣∣∣Gk(θ0, ψ0) −−−−→

k→+∞
(θ?, ψ?)

}
, (3.34)

the set of all initial conditions such that INNA converges to (θ?, ψ?). From (3.33), it holds
that,

W(θ?, ψ?) ⊂
⋃
j∈N

G−j (Ω ∩Wsc(θ?, ψ?)) . (3.35)

Then, we showed that since (θ?, ψ?) ∈ S<0, then JacG(θ?, ψ?) has at least one eigenvalue
with magnitude strictly larger than one, so according to the stable manifold theorem, the
dimension of Wsc(θ?, ψ?) is strictly less than 2P , hence this manifold has zero measure.
By assumption the step-size γ is chosen such that G is a local diffeomorphism (from The-
orem 3.12), so ∀k ∈ N, G−k is also a local diffeomorphism, hence it maps zero-measure
sets to zero-measure sets. As a result, the right-hand side in (3.35) is a countable union of
zero-measure sets, so it has zero measure, as well as W(θ?, ψ?).

This proves the theorem since Assumption 3.1 guarantees that there is at most a countable
number of critical points. So

⋃
(θ?,ψ?)∈S<0 W(θ?, ψ?) is a countable union of zero-measure

sets so it has zero measure.

90

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

1

2

1

0

1

2

2

2

1

0

1

2

(
1,

2)

2

0

2

4

(a) Initialization on the stable manifold of
the strict saddle

1

2

1

0

1

2

2

2

1

0

1

2

(
1,

2)

4

2

0

2

4

(b) Initialization close but outside of the
stable manifold of the strict saddle

1

2

1

0

1

2

2

2

1

0

1

2

(
1,

2)

4

2

0

2

4

Stable Manifold of (0, 0) INNA > 1 INNA < 1

Figure 3.3: Evolution of the iterates of INNA on the landscape of the toy function
J : (θ1, θ2) ∈ R2 7→ θ4

1 − 4θ2
1 + θ2

2. This function has two minimizers (−
√

2, 0) and (
√

2, 0)
and one strict saddle point (0, 0). The red and blue surfaces represent the parts where
J is locally concave and convex respectively. The stable manifold of J around (0, 0) is
represented by the grey curve. Left figure shows the behavior of INNA for two choices of
hyper-parameters and for two initializations belonging to the stable manifold of (0, 0). In
this setting the algorithm does converge to the strict saddle (0, 0). When initialized near
but outside the manifold (right figure), the algorithm avoids the strict saddle and converges
to a local minimizer for both choices of hyper-parameters.

3.4.4 Numerical Illustration

We finish the study of INNA with a short empirical illustration of Theorem 3.9 on a toy
example. To this aim we consider the function J : (θ1, θ2) ∈ R2 7→ θ4

1 − 4θ2
1 + θ2

2. This
function is twice continuously differentiable on R2, non-convex, has a diagonal Hessian and
three critical points: two local minimizers (−

√
2, 0) and (

√
2, 0) and one strict saddle point

(0, 0). The landscape of J is displayed on Figure 3.3. The set of initializations such that
INNA converges to the strict saddle point (0, 0) is the manifold θ2 ∈ R 7→ (0, θ2) which
has indeed zero measure on R2. Figure 3.3 shows that when initialized on this manifold,

91

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

Table 3.1: Empirical validation of the results of Theorem 3.9
Percentage of convergence

to each critical point
Average number of
iterations to escape

a saddle point(−
√

2, 0) (
√

2, 0) (0, 0)

Initialization outside
the stable manifold,
very close to (0, 0)

INNA αβ < 1 48,8% 51,2% 0% 36
INNA αβ > 1 50,7% 49,3% 0% 35
GD 50,2% 49,8% 0% 37

Initialization on
the stable manifold

INNA αβ < 1 0% 0% 100% -
INNA αβ > 1 0% 0% 100% -
GD 0% 0% 100% -

the algorithm does converge to (0, 0) but when initialized anywhere else, it avoids the strict
saddle.

In addition to this illustration, we ran INNA and gradient descent—which is also known
for almost surely escaping strict saddle points (Lee et al., 2016)—for 1000 random Gaussian
initializations sampled from N2(0, 10−24), hence extremely close to the saddle point (0, 0).
We also perform the same experiment but with a random initialization on the stable mani-
fold. The results reported on Table 3.1 demonstrate that the algorithm always escapes the
saddle point and converges to one of the two local minimizers. This empirically illustrates
Theorem 3.9 and Corollary 3.10.

3.5 Conclusion

In this chapter, we provided a better understanding of the role played by the hyper-
parameters α and β. This could help users of INNA to choose these parameters in practical
applications. More importantly, we proved that the asymptotic behaviors of INNA and DIN
make them relevant to tackle non-convex minimization problems. In particular, we provided
conditions so that the deterministic version of INNA is likely to avoid strict saddle points
of smooth functions. We may expect a similar behavior for INNA in its stochastic form.
Indeed, one may intuitively think that the convergence to a strict saddle point is even more
unlikely to occur in this case since the random noise will make the iterates escape the zero-
measure stable manifold associated to this point (if they enter inside this manifold, which is
already unlikely). Yet, proving such results in the stochastic setting is not straightforward
and is left for future work. This concludes the part of this thesis on INNA, we will now

92

Chapter 3 Escape of Strict Saddle Points and Asymptotic Behavior of INNA

move on to another algorithm.

93

Appendices to Chapter 3

3.6 Permutation matrices

In this section, we specify the permutations matrices necessary to obtain the block diago-
nalization in (3.7) and (3.24). Denote by mod the modulo operator and let P ∈ N>0. We
can choose the permutation matrix U ∈ R2P×2P as the matrix whose coefficients are all
zero except the following, for all p ∈ {1, . . . , P},

if P is odd:

UP−p+1,p = 1−mod(p, 2)

UP+p,2P−p+1 = mod(p, 2)

Up,2P−p = mod(p, 2)

,

if P is even:

Up,p = mod(p, 2)

UP+p,P+p = 1−mod(p, 2)

UP+p,p = mod(p, 2)

Up,P+p = mod(p, 2)

.

(3.36)

For example, for P = 3 and P = 4 this yields the following matrices (where the zero
coefficients are omitted for the sake of readability),

· · · · 1 ·
· 1 · · · ·
· · 1 · · ·
· · · · · 1
1 · · · · ·
· · · 1 · ·

and

1 · · · · · · ·
· · · · 1 · · ·
· · 1 · · · · ·
· · · · · · 1 ·
· 1 · · · · · ·
· · · · · 1 · ·
· · · 1 · · · ·
· · · · · · · 1

.

95

Appendices to Chapter 3

3.7 Proof of Theorem 3.12

To prove Theorem 3.12, we introduce three technical lemmas.

Lemma 3.13. For any α > 0 and β > 0 such that αβ > 1, the function

x ∈ R>0 7→
β

2 + α

2x −
√

(α+ βx)2 − 4x
2x

is continuous and decreasing both on R>0 and R<0.

Proof of Lemma 3.13. Let α > 0 and β > 0 such that αβ > 1. The function x ∈ R>0 7→
β
2 + α

2x −
√

(α+βx)2−4x
2x is clearly C∞(R>0), and its first-order derivative is the function

x ∈ R>0 7→ −α
√

(βx+α)2−4x+(2−αβ)x−α2

2x2
√

(βx+α)2−4x
. Since the denominator is always positive, we study

the numerator of this derivative: define h : x ∈ R>0 7→ −α
√

(βx+ α)2 − 4x−(2−αβ)x+α2.
We will prove that h is negative by differentiating it: for all x ∈ R>0,

∂h

∂x
(x) = −α(2β(βx+ α)− 4)

2
√

(βx+ α)2 − 4x
+ αβ − 2. (3.37)

∂2h

∂x2 (x) = − 4α(αβ − 1)
((βx+ α)2 − 4x)

3
2
. (3.38)

Since αβ > 1, for all x ∈ R>0, ∂
2h
∂x2 (x) < 0 and hence for all x ∈ R>0, ∂h∂x(x) < limt→0

∂h
∂x(t) =

0. So h is also decreasing on R>0, and limx→0 h(x) = 0, so for all x ∈ R>0, h(x) ≤ 0 and the
claim is thus proved on R>0. The proof is very similar on R<0 except that h is increasing
on R<0 but limx→0 h(x) = 0, hence the result.

Lemma 3.14. For α > 0, β > 0 such that αβ ≤ 1, the function

x ∈ R<0 7→
β

2 + α

2x −
√

(α+ βx)2 − 4x
2x

is continuous and increasing on R<0.

Proof of Lemma 3.14. The proof follows the exact same steps as those of the proof of
Lemma 3.13, except that in (3.38), ∂2h

∂x2 is always positive on R<0, and we use that to
deduce that ∂h

∂x defined in (3.37) is negative on R<0. So h is decreasing on R<0 and since
h(0) = 0 we eventually obtain the result.

96

Appendices to Chapter 3

Lemma 3.15. Let α > 0, β > 0 such that αβ ≤ 1, the function

x ∈ R>0 \ [2− αβ
β2 − 2

√
1− αβ
β2 ,

2− αβ
β2 + 2

√
1− αβ
β2] 7→ β

2 + α

2x −
√

(α+ βx)2 − 4x
2x

is continuous and increasing for x ∈
(

0, 2−αβ
β2 −

2
√

1−αβ
β2

)
and continuous and decreasing

for x ∈
(

2−αβ
β2 + 2

√
1−αβ
β2 ,+∞

)
.

Proof of Lemma 3.15. Let α > 0, β > 0 such that αβ ≤ 1. Denote by x− = 2−αβ
β2 −

2
√

1−αβ
β2

and x+ = 2−αβ
β2 + 2

√
1−αβ
β2 The function x ∈ R>0 \ (x−, x+) 7→ β

2 + α
2x −

√
(α+βx)2−4x

2x
is C∞ on (0, x−) and on (x+,+∞). Its first-order derivative is x ∈ R>0 \ (x−, x+) 7→
−α
√

(βx+α)2−4x+(2−αβ)x−α2

2x2
√

(βx+α)2−4x
. The denominator is positive, so we focus on the numerator,

define h : x ∈ R>0 \ (x−, x+) 7→ −α
√

(βx+ α)2 − 4x − (2 − αβ)x + α2. For all x ∈
R>0 \ (x−, x+), the first and second-order derivatives of h are given by (3.37) and (3.38)
respectively.

Since αβ < 1, ∂2h
∂x2 is always positive, so ∂h

∂x is increasing on both intervals. First, when
x → 0 with 0 < x < x−, ∂h

∂x(x) → 0, so ∂h
∂x is positive on (0, x−) and h is increasing on

(0, x−). Since h(0) = 0 and h is increasing, we proved the first part of the lemma. Then,
when x→ +∞, ∂h∂x → −2, so ∂h

∂x is negative on (x+,+∞) and h is decreasing on (x+,+∞).

Finally, h(x+) = −4(1−αβ)
β2 − 2(2−αβ)

√
1−αβ

β2 ≤ 0.

We finally use these lemmas to prove the theorem.

Proof of Theorem 3.12. Let (θ, ψ) ∈ RP × RP . Since J is C2(RP) then G is C1(R2P) and
the Jacobian matrix JacG(θ, ψ) can be transformed into a block diagonal matrix as in (3.24)
where for any p ∈ {1, . . . , P}, Mp is a 2 × 2 block of the diagonal and λp is the associated
eigenvalue of J (θ). To prove that G is a local diffeomorphism we prove that JacG(θ, ψ) is
invertible (i.e., that it has non-zero determinant) and then use the local inversion theorem.
It holds that det(JacG(θ, ψ)) =

∏P
p=1 det(Mp), and for each p ∈ {1, . . . , P},

det(Mp) = (1− γ(α− 1
β

)− γβλp)(1−
γ

β
)− γ

β
γ(α− 1

β
) = 1− γ(α+ βλp) + γ2λp. (3.39)

Let p ∈ {1, . . . , P}, we want to choose γ such that det(Mp) 6= 0 for any (θ, ψ) ∈ RP ×
RP , hence for any λp ∈ [−L∇J , L∇J] (since the eigenvalues are bounded by L∇J from
Assumption 3.2).

97

Appendices to Chapter 3

First, if λp = 0, from (3.39), we must take γ 6= 1/α. From now on, we assume λp 6= 0,
so (3.39) is a second-order polynomial in γ and its discriminant is ∆γ = (α+ βλp)2 − 4λp.
Notice that ∆γ is a polynomial in λp and is exactly the discriminant that we studied in
Section 3.3.1; its sign is given by Lemma 3.6. When this discriminant is non-negative, there
exists two real roots to (3.39),γ

+ = (α+βλp)
2λp +

√
(α+βλp)2−4λp

2λp = β
2 + α

2λp +
√

(α+βλp)2−4λp
2λp

γ− = (α+βλp)
2λp −

√
(α+βλp)2−4λp

2λp = β
2 + α

2λp −
√

(α+βλp)2−4λp
2λp

. (3.40)

As before, we split the study with respect to the value of αβ.

• If αβ > 1, then ∆γ ≥ 0 and the roots of det(Mp) are given by (3.40).

– First, when λp < 0,
√

(α+ βλp)2 − 4λp > |α+ βλp|, so γ+ < 0 and any positive
choice of γ will never be equal to γ+ in this case. Then by Lemma 3.13, γ−

is a decreasing function of λp for λp < 0 and when λp → 0, γ− → 1/α (using
L’Hôpital’s rule), this yields a first condition γ < 1/α.

– When λp > 0, observe that γ+ ≥ γ− > 0 so we focus the study on γ−.
Lemma 3.13 exactly states that γ− is a decreasing function of λp > 0. Since
J has L∇J -Lipschitz gradient, λp ≤ L∇J , so, for all λp ∈ (0, L∇J], γ− ≥
β
2 + α

2L∇J −
√

(α+βL∇J)2−4L∇J
2L∇J . Note in addition that when λp → 0, γ− → 1/α,

this is a simple way to prove that 1/α > β
2 + α

2L∇J −
√

(α+βL∇J)2−4L∇J
2L∇J when

αβ > 1.

To summarize, we had three conditions, γ 6= 1/α, γ < 1/α and γ < β
2 + α

2L∇J −√
(α+βL∇J)2−4L∇J

2L∇J and we proved that the latter implies the first-two conditions. Re-
mark that the condition γ < β holds but is not necessary in the case αβ > 1, it is
present in the statement of the theorem to keep it as simple as possible.

• We now assume that αβ ≤ 1.

– If λp < 0, then ∆γ > 0 and the roots are given by (3.40). As above, it holds that√
(α+ βλp)2 − 4λp > |α + βλp|, so γ+ < 0. Then Lemma 3.14 states that γ−

is an increasing function of λp < 0, and when λp → −∞, γ− → β. So we need
γ < β.

– If λp > 0, then whenever λp ∈ [2−αβ
β2 − 2

√
1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2], there are

no real roots so det(Mp) 6= 0 regardless the choice of γ > 0. If λp does not
belong to interval previously mentioned, the roots are given by (3.40). Remark

98

Appendices to Chapter 3

that γ+ > γ− > 0 so we focus on γ−. Using Lemma 3.15, γ− is increasing
on (0, 2−αβ

β2 −
2
√

1−αβ
β2) and tends to 1/α when λp → 0 (using L’Hôpital’s rule).

The same lemma also state that γ− is decreasing on (2−αβ
β2 + 2

√
1−αβ
β2 ,+∞), so

using the L∇J -Lipschitz gradient of J , γ− ≤ β
2 + α

2L∇J −
√

(α+βL∇J)2−4L∇J
2L∇J on

this interval. Note however that we do not necessarily have 1/α > β
2 + α

2L∇J −√
(α+βL∇J)2−4L∇J

2L∇J .

Overall, for αβ ≤ 1 we must have 0 < γ < min
(
β
2 + α

2L∇J −
√

(α+βL∇J)2−4L∇J
2L∇J , 1

α , β

)
and αβ ≤ 1 =⇒ β ≤ 1/α hence the result.

In every case we proved that the conditions mentioned in the theorem are sufficient to ensure
that for all (θ, ψ) ∈ RP × RP , det(JacG(θ, ψ)) 6= 0. So by the local inversion theorem, G is
a local diffeomorphism from RP × RP to RP × RP .

99

Chapter 4

Second-order Step-size Tuning of SGD for
Non-convex Optimization

This chapter is adapted from Castera et al. (2021b).

Contents

4.1 Introduction . 101
4.2 Literature related to this chapter . 103
4.3 Design of the algorithm . 104

4.3.1 Deterministic full-batch algorithm . 104
4.3.2 Stochastic mini-batch algorithm . 107
4.3.3 Heuristic construction of Step-Tuned SGD 110

4.4 Theoretical results . 113
4.5 Application to deep learning . 115

4.5.1 Settings of the experiments . 115
4.5.2 Results . 117

4.6 Conclusion . 121

4.1 Introduction

In this last chapter, we focus on using second-order information for tuning the step-sizes of
SGD according to the discussion at the end of Section 1.4.1. Given P ∈ N>0, we consider

101

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

twice-differentiable loss functions J : RP → R such that each term that constitutes its sum
structure in (1.5) is also twice differentiable. Recall from the introduction that for all k ∈ N
and θk ∈ RP , an iteration of SGD reads,

θk+1 = θk − γk∇JBk(θk), (4.1)

where Bk ⊂ {1, . . . , N} is a mini-batch and γk > 0 is a step-size. While adaptive methods
(ADAGRAD, RMSprop, etc.) act as preconditioners and prescribe vector step-sizes (see
Section 1.4.3.2), we focus exclusively on fine-tuning the scalar step-sizes of vanilla SGD.
Our goal here is to adapt the step-sizes to the local shape (the local curvature) of the land-
scape of the loss function, and account in particular for local convexity, local concavity,
etc. Such information can be estimated using second-order derivatives as we explain here-
after. However, we will have to overcome once more the computational cost of second-order
information and the noise produced by mini-batch sub-sampling strategies.

Our starting point is an infinitesimal second-order variational model along the negative
gradient direction, close to what we did for GD in (1.25). Such infinitesimal model is
particularly relevant in DL since one must use vanishing step-sizes to control the effects
of mini-batch sub-sampling (recall Figure 1.7). Second-order information is approximated
with first-order quantities using finite differences. We will first derive a deterministic (or
full-batch) method. This deterministic method is not really new: it corresponds to a non-
convex version of the Barzilai-Borwein (BB) method (Barzilai and Borwein, 1988) and is
somehow a discrete non-convex adaption of the continuous gradient system considered in
Alvarez and Cabot (2004). It is also close to earlier work (Raydan, 1997), with the major
difference that our algorithm is supported by a variational model. These variational ideas
will then be essential to adapt our method to mini-batch sub-sampling.

The main contribution of this chapter is to efficiently adapt the deterministic method
mentioned above to the mini-batch sub-sampling setting. The resulting algorithm is called
Step-Tuned SGD, it features fine-tuned step-sizes which accelerate SGD in most of our
numerical experiments. We also provide convergence guarantees and rates for this new
algorithm. The proofs of this chapter are not based on the ODE approach that we used for
INNA. Instead, we use the smoothness assumption stated at the beginning of this chapter
and follow a more “classical” approach based on a descent lemma (see Section 4.4).

Regarding the organization of the chapter, the preliminary deterministic algorithm is
derived in Section 4.3.1 and is then adapted to mini-batch sub-sampling in Section 4.3.2.
Theoretical results are stated in Section 4.4 and DL experiments are presented in Section 4.5.

102

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

We first review some literature that is specifically related to this chapter.

4.2 Literature related to this chapter

Our method belongs to the class of BB methods. Many variations of this method have
been proposed for deterministic optimization (Dai et al., 2002; Xiao et al., 2010; Biglari and
Solimanpur, 2013; Babaie-Kafaki and Fatemi, 2013; Curtis and Guo, 2016). Our methods
aims to detect the sign of the local curvature of the loss function using a convexity test
similar to those provided in Babaie-Kafaki and Fatemi (2013) and Curtis and Guo (2016).
BB methods may be quite unstable and are often stabilized with line-search techniques
(Armijo, 1966). As we explained in Chapter 1, classical line-search approaches are not well
suited for stochastic optimization since we never evaluate J exactly. It is thus hard to
combine BB methods with noisy gradient estimates. Most stochastic BB algorithms (Tan
et al., 2016; Liang et al., 2019; Robles-Kelly and Nazari, 2019) overcome this issue with
averaging techniques in the style of SVRG (Johnson and T. Zhang, 2013). This reduces the
instability caused by mini-batch sub-sampling but only allows prescribing a new step-size at
every epoch. As such, they fail to capture local variations of curvature at each iteration. In
addition, the step-sizes of the vanilla BB algorithm are positive for strongly-convex functions
only. Since the methods stated above cannot capture local information, they cannot exploit
non-convexity and are limited to using absolute values to prevent negative step-sizes.

On the contrary, our stochastic method can adapt to local curvature every two itera-
tions and can thus discriminate flat, locally concave and locally convex regions. Regarding
the utilization of flatness and concavity of DL loss functions, the AdaBelief algorithm of
Zhuang et al. (2020) is worth mentioning. The latter uses the difference between the cur-
rent stochastic gradient estimate and the average over past gradients, this difference is then
used to prescribe a vector step-size in the style of ADAM. In comparison, our method uses
scalar step-sizes and aims to capture subtle variations as it computes a stabilized difference
between consecutive gradient estimates before averaging.

Finally, the proofs of convergence of this chapter partially follow arguments provided by
Li and Orabona (2019) for the scalar version of ADAGRAD with the difference that we do
not assume the global Lipschitz continuity of the gradient.

103

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

4.3 Design of the algorithm

We first build a preliminary full-batch algorithm based upon a simple second-order varia-
tional model. We then adapt this algorithm to address mini-batch stochastic approxima-
tions.

4.3.1 Deterministic full-batch algorithm

Second-order infinitesimal step-size tuning. Let J : RP → R a loss function, that we
assume to be twice differentiable. Let θ ∈ RP , given an update direction d ∈ RP , a natural
strategy is to choose γ ∈ R that minimizes J (θ+γd). Let us approximate γ ∈ R 7→ J (θ+γd)
around 0 with a Taylor expansion,

qd(γ) def= J (θ) + γ〈∇J (θ), d〉+ γ2

2 〈∇
2J (θ)d, d〉. (4.2)

If the curvature term 〈∇2J (θ)d, d〉 is positive, then qd has a unique minimizer at,

γ? = − 〈∇J (θ), d〉
〈∇2J (θ)d, d〉 . (4.3)

On the contrary when 〈∇2J (θ)d, d〉 ≤ 0, the infinitesimal model qd is concave (or equiva-
lently J is locally concave in the direction d) which suggests taking a large step-size γ > 0.
Indeed, since J is locally convex around local minima, one will want to escape regions where
local concavity is detected. These considerations are illustrated on Figure 4.1.

Tuning gradient descent. In order to tune GD we choose the direction d = −∇J (θ)
which gives,

γ(θ) def= ‖∇J (θ)‖2

〈∇2J (θ)∇J (θ),∇J (θ)〉 . (4.4)

According to the previous discussion, we would ideally use γk = γ(θk) for GD when γ(θk) >
0. Yet, we will later use a discretization procedure to overcome the computational cost of
(4.4), and it will then appear that seeking a step-size γk such that, γk ' γ(θk−1) (again
when γ(θk−1) > 0) is not ideal but is less expensive. Let k ≥ 1 be an iteration index of GD
and assume that θk−1 ∈ RP and γk−1 > 0 are known. Let us approximate the quantity,

γ(θk−1) = ‖∇J (θk−1)‖2

〈∇2J (θk−1)∇J (θk−1),∇J (θk−1)〉 , (4.5)

104

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

Large step

θ0 θ1 θ2 = argmin(q+)

J
q−

q+

Figure 4.1: Illustration of negative and positive curvature steps. The function q− represents
the variational model at θ0, with negative curvature. Concavity suggests taking a large
step to reach θ1. Then, at θ1, the variational model q+ has positive curvature and can be
minimized to obtain θ2.

using only first-order objects. We rely on two identities,

∆θk
def= θk − θk−1 = −γk−1∇J (θk−1), (4.6)

∆gk
def= ∇J (θk)−∇J (θk−1) ' −γk−1CJ (θk−1), (4.7)

where for all θ ∈ RP , CJ (θ) def= ∇2J (θ)∇J (θ) and (4.7) is obtained by Taylor’s formula.
Combining the above leads us to consider the following step-size,

γk =

‖∆θk‖2

〈∆θk,∆gk〉 if 〈∆θk,∆gk〉 > 0

ν otherwise
, (4.8)

where ν > 0 is a hyper-parameter of the algorithm representing the large step-sizes to use
in locally-concave regions.

The resulting full-batch non-convex optimization method is detailed in Algorithm 2, in
which α > 0 is the learning rate as in ADAGRAD or ADAM, not to be confused with
the friction parameter of INNA. We insist on the fact that Algorithm 2 is present in the
literature under subtle variants (Raydan, 1997; Dai et al., 2002; Xiao et al., 2010; Biglari and
Solimanpur, 2013). It belongs to the class of non-convex BB methods. In particular, (4.8)

105

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

Algorithm 2 Full-batch preliminary algorithm
1: Input: α > 0, ν > 0
2: Initialize θ0 ∈ RP
3: θ1 = θ0 − α∇J (θ0)
4: for k = 1, . . . do
5: ∆gk = ∇J (θk)−∇J (θk−1)
6: ∆θk = θk − θk−1
7: if 〈∆gk,∆θk〉 > 0 then
8: γk = ‖∆θk‖2

〈∆gk,∆θk〉
9: else

10: γk = ν
11: end if
12: θk+1 = θk − αγk∇J (θk)
13: end for

coincides with the vanilla BB step-size when 〈∆θk,∆gk〉 is positive. The main difference
is that we introduce a scaling factor α to overcome the need of stabilizing the method
with line-search procedures (see Section 4.2). We do so in anticipation of the mini-batch
sub-sampling adaptation carried out in the next section, where line-search is unavailable.

Such a scaling factor α, is present in most DL optimizers (ADAGRAD, ADAM, RMSprop,
etc.) and generally requires tuning. Recall that our goal here is not to get rid of hyper-
parameter pre-tuning (which is an important problem as well) but rather to combine this α
with an automatic fine-tuned sequence (γk)k∈N in order to accelerate the training. Although
Algorithm 2 is close to existing methods, the interest of our variational viewpoint is the
characterization of the underlying geometrical mechanism supporting the algorithm. This
will be the key to designing an efficient stochastic version of Algorithm 2 in Section 4.3.2.

Illustrative experiment. Before presenting the mini-batch version, we illustrate the
interest of exploiting negative curvature through the large-step parameter ν with a synthetic
experiment inspired from Carmon et al. (2017). We apply Algorithm 2 to a non-convex
regression problem of the form minθ∈RP

∑N
n=1 φ(Anθ − bn), specified in Section 4.7 of the

appendix of this chapter, and where φ is non-convex. We compare Algorithm 2 with a
classical BB method where absolute values are used when the step-size is negative1 (see, e.g.,
Tan et al. (2016) and Liang et al. (2019) in stochastic settings), we also compare the results
with GD used with Armijo’s line-search method. As shown on Figure 4.2, Algorithm 2
efficiently exploits local curvature and converges much faster than other methods.

1For a fair comparison we implement this method with the scaling-factor α of Algorithm 2.

106

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

0 50 100 150 200 250
number of iterations

10−13

10−11

10−9

10−7

10−5

10−3

10−1

J
(θ

)
−
J
?

Algorithm 2
BB with absolute value
GD with Armijo LS

Figure 4.2: Values of the loss function J (θ) against iterations (each corresponding to a
gradient step) for the synthetic non-convex regression problem detailed in Section 4.7 of the
appendix of this chapter. The optimal value J ? is unknown and is estimated by taking the
best value obtained among all algorithms after 105 iterations.

4.3.2 Stochastic mini-batch algorithm

We wish to adapt Algorithm 2 for DL applications, and in particular, make it compatible
with mini-batch sub-sampling. As in the previous chapters, let N ∈ N>0 and consider a
loss function J : RP → R which takes the form of a sum J =

∑N
n=1 Jn, where each Jn is

assumed to be twice continuously differentiable.

Reminder on mini-batch sub-sampling. We consider the mini-batch sub-sampling
procedure described in Section 1.3.4. Since Jn is differentiable for all n ∈ {1, . . . , N}, for
any B ⊂ {1, . . . , N}, we recall the definition of the following quantities, for any θ ∈ RP ,

JB(θ) = 1
|B|

∑
n∈B
Jn(θ), and ∇JB(θ) = 1

|B|
∑
n∈B
∇Jn(θ). (4.9)

where again |B| denotes the number of elements of the set B. Like in Section 1.3.4, the mini-
batches are independent copies of a random subset A ⊂ {1, . . . , N} such that, J = E[JA]
and ∇J = E[∇JA] (where the expectation is taken over the random draw of A). This is
valid for example if A is taken uniformly at random over all possible subsets of fixed size,

107

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

Algorithm 3 Step-Tuned SGD
1: Input: α > 0, ν > 0
2: Input: β ∈ [0, 1], m̃ > 0, M̃ > 0, δ ∈ (0, 1/2)
3: Initialize θ0 ∈ RP , G−1 = 0P , γ0 = 1
4: Draw independent random mini-batches (Bk)k∈N.
5: for k = 0, 1, . . . do
6: θk+ 1

2
= θk − α

(k+1)1/2+δ γk∇JBk(θk)
7: θk+1 = θk+ 1

2
− α

(k+1)1/2+δ γk∇JBk(θk+ 1
2
)

8: ∆θBk = θk+ 1
2
− θk

9: ∆gBk = ∇JBk(θk+ 1
2
)−∇JBk(θk)

10: Gk = βGk−1 + (1− β)∆gBk
11: Ĝk = Gk/(1− βk+1)
12: if 〈Ĝk,∆θBk〉 > 0 then
13: γk+1 = ‖∆θBk‖

2

〈Ĝk,∆θBk 〉
14: else
15: γk+1 = ν
16: end if
17: γk+1 = min(max(γk+1, m̃), M̃)
18: end for

as we shown in (1.19).

Second-order tuning of mini-batch SGD: Step-Tuned SGD. Our goal is to devise
a step-size strategy, based on the variational ideas developed earlier and on the quantity CJ
(defined right after Equation 4.6), in the context of mini-batch sub-sampling. First observe
that for θ ∈ RP ,

CJ (θ) = ∇2J (θ)∇J (θ) = ∇
(1

2‖∇J (θ)‖2
)
. (4.10)

So rewriting J as an expectation over the random subset A, for all θ ∈ RP it holds

CJ (θ) = ∇
(1

2‖E [∇JA(θ)] ‖2
)
. (4.11)

In order to build an infinitesimal model as in (4.4), this suggests the following mini-batch
estimator of CJ ,

CJB(θ) def= ∇
(1

2‖∇JB(θ)‖2
)

= ∇2JB(θ)∇JB(θ),

where B ⊂ {1, . . . , N} and θ ∈ RP .

108

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

Like in the deterministic case, we reduce the computational cost by approximating our
new target quantity (4.12) with a Taylor expansion of JB between two iterations of SGD.
We obtain for any B ⊂ {1, . . . , N}, θ ∈ RP , and small γ > 0,

− γCJB(θ) ' ∇JB(θ − γ∇JB(θ)︸ ︷︷ ︸
next iterate

)−∇JB(θ). (4.12)

In order to accurately approximate our target quantity, (4.12) indicates that we must com-
pute two gradient estimates on the same mini-batch. This suggests that we should use each
mini-batch twice in SGD and compute a difference of gradients only every two iterations.
Note that we could also compute an additional gradient estimate at each iteration of SGD
similarly to what Schraudolph et al. (2007) previously did for a stochastic BFGS algorithm,
but this would double the computational cost.

We now build the algorithm based on this principle. Let an initialization θ0 ∈ RP , and a
sequence of i.i.d. random mini-batches (Bk)k∈N, whose common distribution is the same as
A. We change the way of enumerating the iterations compared to the previous chapters. We
adopt the following convention: at iteration k ∈ N and for θk ∈ RP , the random mini-batch
Bk is used to compute a stochastic gradient estimate ∇JBk(θk) and one iteration of SGD
is then performed (with a step-size that we discuss here-after). We denote k + 1

2 (rather
than k + 1) the index of the next iteration and θk+ 1

2
the corresponding iterate. Then, the

same mini-batch is used again to compute another stochastic gradient estimate ∇JBk(θk+ 1
2
)

and to perform the next iteration of SGD. Doing so, we obtain the next iterate θk+1, at
this iteration we use the next mini-batch Bk+1, etc. This new way of using mini-batches is
convenient in view of (4.12). Let us define,

∆gBk
def= ∇JBk(θk+ 1

2
)−∇JBk(θk), (4.13)

thereby ∆gBk forms an approximation of −γkCJBk
(θk) that we can use to compute the next

step-size γk+1. We define the difference between two iterates accordingly,

∆θBk
def= θk+ 1

2
− θk. (4.14)

We could now build a mini-batch adaptation of Algorithm 2. Before that, we additionally
stabilize the approximation of the target quantity in (4.12) by using an exponential moving
average of the previously computed (∆gBj)j≤k. More precisely, we recursively compute Gk
defined by,

Gk = βGk−1 + (1− β)∆gBk . (4.15)

109

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

We finally introduce Ĝk = Gk/(1 − βk+1) to debias the estimator Gk such that the sum
of the weights in the average equals 1. This mostly impacts the first iterations as βk+1

vanishes quickly; a similar process is often used for ADAM, see Kingma and Ba (2015).
The motivation for averaging is discussed in Section 4.3.3.

Altogether we obtain our main method: Algorithm 3, which we name Step-Tuned SGD,
as it aims to tune the step-size every two iterations and not only at each epoch like most
stochastic BB methods. Note that the main idea behind Step-Tuned SGD remains the same
as in the deterministic setting: we exploit the curvature properties of the (JBk)k∈N through
the quantities 〈Ĝk,∆θBk〉 to devise our method. Note that compared to Algorithm 2, the
iteration index is shifted by 1 so that the estimated step-size γk+1 only depends on mini-
batches B0 up to Bk and is therefore conditionally independent of Bk+1. This conditional
dependency structure is crucial to obtain the convergence guarantees given in Section 4.4.

Remark 4.1. Like Algorithm 2 and like most methods, Algorithm 3 does not alleviate the
need of tuning the scaling factor α, tuning this parameter remains indeed important in most
practical applications. Our main goal here is to accelerate SGD with fine-tuned step-sizes,
this is analogous to our previous discussion on BB methods for deterministic applications
which often accelerate algorithms but must be stabilized with line-search strategies (replaced
here by the introduction of α). To the best of our knowledge, in comparison to the epoch-
wise BB methods (Tan et al., 2016; Liang et al., 2019), Algorithm 3 is the first method that
manages to mimic the iteration-wise behavior of deterministic BB methods for mini-batch
applications.

4.3.3 Heuristic construction of Step-Tuned SGD

In the previous section, we described the main elements from which Algorithm 3 is made.
We now present the main ideas that led us to build Algorithm 3 this way and discuss the
hyper-parameters. Throughout this paragraph, we use the term gradient variation (GV)
which refers to the local variations of the gradient: it is simply the difference of the gradients
at two consecutive iterates. Our heuristic discussion blends discretization arguments and
experimental considerations. We use the non-convex regression experiment of Section 4.3.1
as a test for our intuition and algorithms. A complete description of the methods introduced
below is given in Section 4.9, we only sketch the main ideas.

First heuristic experiment with exact GVs. Assume that along any ordered collection
of points θ0, . . . , θk ∈ RP , one is able to evaluate the GVs of J , that is, terms of the form

110

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

0 50 100 150 200 250
number of epochs

10−2

10−1

100

J
(θ

)
−
J
?

Step-Tuned SGD (approx. of Expected-GV)
Expected-GV
Stochastic-GV (approx. of Exact-GV)
Exact-GV
SGD

Figure 4.3: Values of the loss function against epochs for non-convex regression: heuristic
methods (dashed lines) of Section 4.3.3 are compared with Step-Tuned SGD (plain blue).
SGD serves as a reference to evidence the fast drop down effect of other methods. The
additional computational cost of Expected-GV and Exact-GV is ignored as these methods
are here only for illustration purposes (see Section 4.3.3).

∇J (θi) − ∇J (θi−1), for 1 ≤ i ≤ k. Recall that for all i ≥ 1, we denote ∆θi = θi − θi−1

the difference between two consecutive iterates. In the deterministic setting, Algorithm 2 is
based on these GVs, indeed,

θk+1 = θk −
α‖∆θk‖2

〈∇J (θk)−∇J (θk−1),∆θk〉
∇J (θk), (4.16)

whenever the denominator is positive. Given a sequence of independent random mini-
batches (Bk)k∈N chosen according to the previous discussions, a heuristic mini-batch version
of this recursion could be as follows,

θk+1 = θk −
αk‖∆θk‖2

〈∇J (θk)−∇J (θk−1),∆θk〉
∇JBk(θk), (Exact-GV)

where the difference between (4.16) and Exact-GV lies in the mini-batch estimation of the
update direction and the dependency of the scaling factor αk which aims to moderate the
effect of noise (generally αk → 0 according to the discussion about vanishing step-sizes in
Section 1.3.4). As shown in Figure 4.3 the recursion Exact-GV is much faster than SGD

111

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

especially for the first ∼ 150 epochs which is often the main concern for DL applications.
Indeed, although SGD achieves a smaller value of J after a larger number of iterations (due
to other methods using larger step-sizes), this happens when the value of J is already low.
Overall the quantity Exact-GV seems very promising.

Yet, for large sums like in DL, the gradient-variation in Exact-GV is too computationally
expensive. One should therefore adapt (Exact-GV). A direct adaption would simply consist
in the algorithm,

θk+1 = θk −
αk‖∆θk‖2〈

∇JBk(θk)−∇JBk−1(θk−1),∆θk
〉∇JBk(θk), (Stochastic-GV)

where mini-batches are used both to obtain a update direction and to approximate the
GV. Stochastic-GV yields almost no additional computational cost compared to vanilla
SGD since ∇JBk−1(θk−1) is the previous update direction and is thus already computed
at iteration k. For this “naive” approach, we observe a dramatic loss of performance, as
illustrated in Figure 4.3. This reveals the need for using accurate stochastic approximations
of GVs.

Second heuristic experiment using expected gradient variations. Towards a more
stable approximation of the GVs, we consider the following recursion,

θk+1 = θk −
αk‖∆θk‖‖∇JBk−1(θk−1)‖
〈−E[CJA(θk−1)],∆θk〉

∇JBk(θk), (Expected-GV)

where CJA is defined in (4.12) and the expectation is taken over the independent draw of
the random subset A, conditioned on the other random variables. The main difference
with Exact-GV is the use of expected GVs instead of exact GVs, the minus sign ensures a
coherent interpretation in terms of GVs. The numerator in Expected-GV is also modified
to ensure homogeneity of the steps with the other variations of the algorithm. Indeed,
CJA(θk) approximates a difference of gradients modulo a step-size, see (4.12). As illustrated
in Figure 4.3, the recursion Expected-GV provides performances comparable (and actually
superior) to Exact-GV, and in particular for both algorithms, we also recover the loss drop
which was observed in the deterministic setting (Figure 4.2 and Figure 4.3).

Then, remark that Algorithm 3 is nothing less than an approximate version of Expected-
GV which combines a double use of mini-batches with a moving average. Indeed, from
(4.12), considering the expectation over the random draw of A, for any θ ∈ RP and small

112

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

γ > 0, we have,

−γE[CJA(θ)] ' E [∇JA (θ − γ∇JA(θ))−∇JA(θ)] . (4.17)

The purpose of the term Ĝk in Algorithm 3 is precisely to mimic this last quantity, i.e., to
approximate the expectation in (4.17) with a moving average. The experimental results of
Algorithm 3 are very similar to those of Expected-GV, see Figure 4.3.

The above considerations on gradient variations (GVs) led us to propose Algorithm 3 as
a possible mini-batch version of Algorithm 2. The underlying geometric aspects discussed
in Section 4.3.2 were of course a major motivation as well.

Parameters of the algorithm. Algorithm 3 contains more hyper-parameters than in
the deterministic case, yet, we recommend keeping the default values for most of them.2

Like in most optimizers (SGD, ADAM, RMSprop, etc.), only the parameter α > 0 has to
be carefully tuned to get the most of Algorithm 3. Note that we enforce γk ∈ [m̃, M̃]
for all k ∈ N. The bounds stabilize the algorithm and also play an important role for
the convergence as we will show in Section 4.4. Note that we also enforce the step-size to
decrease using a decay of the form 1/k1/2+δ where 0 < δ < 1/2 is usually very close to 0,
this way the Robbins-Monro condition (1.22) holds. This is again necessary to obtain the
convergence results presented next.

4.4 Theoretical results

We study the convergence of Step-Tuned SGD for general smooth non-convex stochastic
optimization which encompasses in particular smooth DL problems.

Main result. We recall that J is a finite sum of twice continuously differentiable functions
(Jn)n=1,...,N . Hence, the gradient of J and the gradients of each Jn, n ∈ {1, . . . , N} are
locally Lipschitz continuous (see Definition 1.4). We denote by 1

2N = {0, 1
2 , 1,

3
2 , 2, . . .} the

set of half integers so that the iterations of Step-Tuned SGD are indexed by k ∈ 1
2N. We

assume that Assumption 1.1 holds for J , the main theoretical result for Step-Tuned SGD
follows.

Theorem 4.2. Let θ0 ∈ RP , and let (θk)k∈ 1
2N

be a sequence generated by Step-Tuned SGD

2We suggest the following default values: (ν, β, m̃, M̃ , δ) = (2, 0.9, 0.5, 2, 0.001).

113

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

initialized at θ0. Assume that there exists C1 > 0 such that almost surely supk∈ 1
2N
‖θk‖ <

C1. Then the sequence of values (J (θk))k∈N converges almost surely and
(
‖∇J (θk)‖2

)
k∈N

converges to 0 almost surely. In addition,

min
j∈{0,...,k−1}

E
[
‖∇J (θj)‖2

]
= O

(1
k1/2−δ

)
.

The results above state in particular that a realization of the algorithm reaches a point
where the gradient is arbitrarily small with probability one. Note that the rate depends on
the parameter δ ∈ (0, 1/2) which can be chosen by the user and corresponds to the decay
schedule 1/(k+ 1)1/2+δ. In most cases, one will want to slowly decay the step-size so δ ' 0
and the rate is close to 1/

√
k + 1.

An alternative to the boundedness assumption. In Theorem 4.2 we make the as-
sumption that almost surely the iterates (θk)k∈ 1

2N
are uniformly bounded, like we did for

INNA on Chapter 2. One can alternatively leverage additional regularity assumptions on the
loss function as Li and Orabona (2019) did for example for the scalar variant of ADAGRAD.
This is more restrictive than the locally-Lipschitz-continuous property of the gradient that
we used but for completeness we provide below an alternative version of Theorem 4.2 under
such assumptions.

Corollary 4.3. Let θ0 ∈ RP , and let (θk)k∈ 1
2N

be a sequence generated by Step-Tuned SGD
initialized at θ0. Assume that each Jn and ∇Jn are Lipschitz continuous on RP for all
n ∈ {1, . . . , N}, and assume that J is bounded below. Then the same conclusions as in
Theorem 4.2 apply.

Proof sketch of Theorem 4.2. The proof of our main theorem relies on more classical
arguments and computations than for INNA. Thus, we first present the key elements here
and postpone the fully-detailed proof to Section 4.8 of the appendix of this chapter. Here
are the main arguments.

– The proof relies on a descent lemma similar to (1.25): for any compact subset K ⊂ RP

there exists LK > 0 such that for any θ ∈ K and d ∈ RP such that θ + d ∈ K,

J (θ + d) ≤ J (θ) + 〈∇J (θ), d〉+ LK
2 ‖d‖

2. (4.18)

– Let (θk)k∈ 1
2N

be a realization of the algorithm. Using the boundedness assumption,
almost surely the iterates belong to a compact subset K on which ∇J and the gradient

114

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

estimates (∇JBk)k∈N are uniformly bounded. So at any iteration k ∈ N, we may use
the descent lemma (4.18) on the update direction d = −γk∇JBk(θk) to bound the
difference J (θk+1)− J (θk).

– As stated in Section 4.3.2, conditioning on B0, . . . ,Bk−1 the step-size γk is constructed
to be independent of the current mini-batch Bk. Using this and the descent lemma,
we show that there exist M1,M2 > 0 such that, for all k ∈ N>0,

E [J (θk+1) | B0, . . .Bk−1] ≤ J (θk)−
M1

(k + 1)1/2+δ ‖∇J (θk)‖2 + M2
(k + 1)1+2δ . (4.19)

– Applying Robbins-Siegmund convergence theorem (Robbins and Siegmund, 1971) for
martingales to (4.19), using the fact that

∑+∞
k=0

1
(k+1)1+2δ <∞, we obtain almost surely

that (J (θk))k∈N converges and

+∞∑
k=0

1
(k + 1)1/2+δ ‖∇J (θk)‖2 < +∞, (4.20)

Since
∑+∞
k=0

1
(k+1)1/2+δ = +∞, we deduce that ∇J (θk) converges to zero almost surely,

using the local Lipschitz continuity of the gradient (from twice differentiability) and
an argument of Alber et al. (1998), see Lemma 4.6. The rate follows from considering
expectations on both sides of (4.19).

4.5 Application to deep learning

We finally evaluate the performance of Step-Tuned SGD for training DNNs. We consider six
different problems presented next and fully-specified in Table 4.1. The results for Problems
(a) to (d) are first presented here while the results for Problems (e) and (f) are discussed
at the end of this section. We compare Step-Tuned SGD with SGD, RMSprop, ADAM and
our previously-introduced method INNA. The methodology is detailed below.

4.5.1 Settings of the experiments

We specify the two types of DL experiments that we will perform.

Details on the comparative experiments.

115

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

– We consider image classification problems on CIFAR-10 and CIFAR-100 (Krizhevsky,
2009) and the training of an auto-encoder on MNIST (LeCun et al., 2010).

– The networks are slightly modified versions of Lenet (LeCun et al., 1998), ResNet-20
(He et al., 2016), Network-in-Network (M. Lin et al., 2014) and the auto-encoder of
G. E. Hinton and Salakhutdinov (2006).

– As specified in Table 4.1 of the Supplementary, we used either smooth (ELU, SiLU) or
nonsmooth (ReLU) activation functions (although our theoretical analysis only applies
to smooth activation functions).

– For image classification tasks, the dissimilarity measure is the cross-entropy, and for
the auto-encoder, it is the mean-squared error. In each problem we also add a `2-
regularization parameter (a.k.a. weight decay) of the form λ

2‖θ‖
2
2.

– For each algorithm, we selected the learning rate parameter α (or γ0 for INNA and
SGD) from the set {10−4, . . . , 100}. The value is selected as the one yielding the
minimum training loss after 10% of the total number of epochs. For example, if
we intend to train the network during 100 epochs, the grid-search is carried on the
first 10 epochs. For Step-Tuned SGD, the parameter ν was selected with the same
criterion from the set {1, 2, 5} and for ADAM the momentum parameter was chosen
in {0.1, 0.5, 0.9, 0.99}. All other parameters of the algorithms are left to their default
values even INNA for which we keep the default value (α, β) = (0.5, 0.1).

– Decay-schedule: To meet the conditions of Theorem 4.2 the step-size decay schedule
of SGD and Step-Tuned SGD takes the form 1/q1/2+δ where q is the current epoch
index and δ = 0.001. It slightly differs from what is given in Algorithm 3 as we apply
the decay at each epoch instead of each iteration. This slower schedule still satisfies
the convergence conditions of Theorem 4.2.3 To ease the comparison we used the same
step-size decay schedule for INNA (although slower decays are possible as explained
in Section 2.4.2). RMSprop and ADAM rely on their own adaptive procedure and are
usually used without a step-size decay schedule.

– The experiments were run on a Nvidia GTX 1080 TI GPU, with an Intel Xeon 2640
V4 CPU. The code was written in python 3.6.9 and pytorch 1.4 (Paszke et al., 2019).

Remark 4.4. The settings for these experiments slightly differs from those of Chapter 2.
We test the algorithms on more problems, use additional types of DNNs, etc. This is mainly

3An alternative common practice consists in manually decaying the step-size at pre-defined epochs. This
technique, although efficient in practice to achieve state-of-the-art results, makes the comparison of
algorithms harder, hence we stick to a usual Robbins-Monro type of decay.

116

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

because two years passed between the experiments of each chapter. During this period, we
gained access to additional computational resources allowing us to consider more DL prob-
lems, with in particular the classification of CIFAR-10 and CIFAR-100 with ResNets which
became the most popular benchmark problem. We added a weight-decay regularization as it
is now a standard practice. We also switched DL libraries, from keras and tensorflow to
pytorch.

Second experiment: mini-batch sub-sampling. Step-Tuned SGD departs from the
usual process of using a new mini-batch after each gradient update. Indeed, we use each
mini-batch twice in order to properly approximate curvature information, but also to main-
tain a computing time similar to standard algorithms. We performed additional experiments
to understand the consequences of using the same mini-batch twice, and in particular make
sure that this is not the source of the observed advantage of Step-Tuned SGD. In these
experiments all the methods are used with the mini-batch sub-sampling procedure of Step-
Tuned SGD detailed in Algorithm 3 (each mini-batch being used to perform two consecutive
gradient steps). The other settings remain the same as for the comparative experiments.

4.5.2 Results

We describe the results for the two types of experiments, the comparative one to assess the
quality of Step-Tuned SGD against concurrent optimization algorithms, and the other one
to study the effect of changing the way mini-batches are used.

Comparison with standard methods. The results for Problems (a) to (d) are displayed
on Figure 4.4. For each problem we display the evolution of the values of the loss function
and of the test accuracy during the training phase. We observe a recurrent behavior: during
early training Step-Tuned SGD has performances similar to other methods, then there is
a sudden drop of the loss (combined with an improvement in terms of test accuracy which
we discuss below). As a result, Step-Tuned SGD achieves the best training performance
among all algorithms on Problems (a) and (b) and at least outperforms SGD in five of the
six problems considered (result for Problems (e) and (f) are displayed on Figure 4.6). The
sudden drop observed is in accordance with our preliminary observations in Figure 4.3. We
note that a similar drop and improved results are reported for SGD and ADAM when used
with a manually enforced reduction of the learning rate, see e.g., He et al. (2016). Our
experiments show however that Step-Tuned SGD behaves similarly but automatically: the

117

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

Table 4.1: Settings of the six different deep learning experiments.

Problem (a) Problem (b) Problem (c)

Type Classification Classification Classification

Dataset CIFAR-10 CIFAR-100 CIFAR-10

Network ResNet-20
(Residual)

ResNet-20
(Residual)

Network-in-Network
(Nested)

BatchNorm Yes Yes Yes

Batch-size 128 128 128

Activation functions ReLU ReLU ELU

Dissimilarity measure Cross-entropy Cross-entropy Cross-entropy

Regularization λ = 10−4 λ = 10−4 λ = 10−4

Grid-search 50 epochs 50 epochs 30 epochs

Stop-criterion 500 epochs 500 epochs 300 epochs

Problem (d) Problem (e) Problem (f)

Type Auto-encoder Classification Classification

Dataset MNIST CIFAR-10 CIFAR-10

Network Auto-Encoder
(Dense)

LeNet
(Convolutional)

LeNet
(Convolutional)

BatchNorm No No Yes

Batch-size 128 128 128

Activation functions SiLU ELU ELU

Dissimilarity measure Mean square Cross-entropy Cross-entropy

Regularization λ = 10−4 λ = 10−4 λ = 10−4

Grid-search 50 epochs 30 epochs 30 epochs

Stop-criterion 500 epochs 300 epochs 300 epochs

118

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

Problem (a): training error

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

10−2

10−1

100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (b): training error

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

2× 100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (c): training error

0 2 4 6 8 10
number of backpropagations ×104

10−1

100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (d): training error

0 5 10 15 20
number of backpropagations ×104

10−1

6× 10−2

2× 10−1

3× 10−1

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (a): test accuracy

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (b): test accuracy

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

ac
cu

ra
cy

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (c): test accuracy

0 2 4 6 8 10
number of backpropagations ×104

0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (d): test error

0 5 10 15 20
number of backpropagations ×104

10−1

6× 10−2

2× 10−1

3× 10−1

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Figure 4.4: Classification of CIFAR-10 and CIFAR-100 with ResNet-20 (left and middle-left
respectively), CIFAR-10 with NiN (middle-right) and training of an auto-encoder on MNIST
(right). This corresponds to Problems (a) to (d) specified in Table 4.1. Continuous lines:
average values from 3 random initializations. Limits of shadow area: best and worst runs
(in training loss). For fair comparison values are plotted against the number of gradient
estimates computed (using back-propagation).

drop down is caused by the automatic fine-tuning that the algorithm is designed to achieve
and not by a user-defined reduction of the step-size.

We remark that in Problem (d), ADAM and RMSprop are notably better than SGD and
Step-Tuned SGD. This may be explained by their vector step-sizes since auto-encoders are
often ill-conditioned, making methods with scalar step-sizes less efficient. To conclude on
these comparative experiments, in most cases Step-Tuned SGD represents a significant im-
provement compared to SGD. It also seems to be a good alternative to adaptive methods like
RMSprop or ADAM especially on residual networks. Note also that while some stochastic
second-order methods perform well mostly when combined with large mini-batches, hence
with less-noisy gradients (see for example the experiments of Martens and Grosse (2015)),
we obtain satisfactory performances with mini-batches of standard sizes.

In addition to efficient training performances (in terms of loss function values), Step-
Tuned SGD generalizes well (as measured by test accuracy). For example Figure 4.4 shows
a correlation between test accuracy and training loss. Conditions or explanations for when
this happens are not fully understood to this day. Yet, SGD is often said to behave well

119

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

Problem (a): training error

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

10−2

10−1

100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (b): training error

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

2× 100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (c): training error

0 2 4 6 8 10 12
number of backpropagations ×104

10−1

100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Problem (d): training error

0 5 10 15 20
number of backpropagations ×104

10−1

6× 10−2

2× 10−1

3× 10−1

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Figure 4.5: Experiment where each algorithms receives the same mini-batch for two consec-
utive iterations as in Algorithm 3. This allows comparing algorithms with respect to the
number of data processed. The problems and the framework are the same as in Figure 4.4.

with respect to this matter (Wilson et al., 2017) and hence it is satisfactory to observe that
Step-Tuned SGD seems to inherit this property.

Effect of the mini-batch sub-sampling of Step-Tuned SGD. The results are pre-
sented on Figure 4.5. We observe that using each mini-batch twice usually reduces the
performance of SGD, INNA, ADAM and RMSprop except on Problem (c) where it benefits
the latter two in terms of training error. Thus, on these problems, changing the way of using
mini-batches is not the reason for the success of our method. On the contrary, it seems that
our goal which was to obtain a fine-tuned step-size specifically for each iteration is clearly
achieved, but processing data more slowly, like Step-Tuned SGD does, can sometime impact
the performances of the algorithm.

Arguably these results show that the need for using each mini-batch twice appears to be
the main downside of Step-Tuned SGD. Thus, in problems where mini-batches may be very
different we should expect other methods to be more efficient as they process data twice
faster. We actually remark that our method achieves its best results on networks where
batch normalization (BatchNorm)—a technique that aims to normalize the inputs of neural
networks (Ioffe and Szegedy, 2015)—is used. Figure 4.6 corroborates these observations:
BatchNorm has a positive effect on Step-Tuned SGD.

Remark 4.5 (On additional experimental results for INNA). Let us take the opportunity
to use these experiments to make additional comments on the numerical performances of
INNA. Here we used (α, β) = (0.5, 0.1) that we previously proposed as default values. We
can see on Figure 4.4 and Figure 4.6 that INNA performs quite well: it is always among
the three best algorithms in terms of training performances except for Problem (e). On this

120

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

Without BatchNorm (Problem
(e)): training error

0 2 4 6 8 10 12
number of backpropagations ×104

100

7× 10−1

8× 10−1

9× 10−1

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

With BatchNorm (Problem (f)):
training error

0 2 4 6 8 10 12
number of backpropagations ×104

7× 10−1

8× 10−1

9× 10−1

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Without BatchNorm (Problem
(e)): test accuracy

0 2 4 6 8 10 12
number of backpropagations ×104

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ac
cu

ra
cy

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

With BatchNorm (Problem (f)):
test accuracy

0 2 4 6 8 10 12
number of backpropagations ×104

0.68

0.70

0.72

0.74

0.76

ac
cu

ra
cy

Step-Tuned SGD
RMSprop
SGD
Adam
INNA

Figure 4.6: Classification of CIFAR-10 with LeNet with and without batch normalization,
corresponding to Problems (e) and (f) specified in Table 4.1. These experiments illustrate
how batch normalization has a positive effect on Step-Tuned SGD.

problems, which is quite different from the others, it seems that tuning (α, β) is necessary
to obtain more satisfactory results. It is worth noticing that INNA seems to achieve very
good generalization scores (on all problems except Problem (d)). In particular, it generalizes
better than any other method even when it is not the best algorithm in terms of training (see
for example Problems (b) and (f)). These are empirical observations which may have many
causes. Yet, this very promising behavior may come from the damping properties illustrated
on Figure 2.1 or the ability to escape strict saddle points proved in the previous chapter.

4.6 Conclusion

We presented a new method to tune SGD’s step-sizes for stochastic non-convex optimization
within a first-order computational framework. In addition to the new algorithm, we also pre-
sented a generic strategy (Section 4.3.1 and 4.3.3) on how to use empirical and geometrical

121

Chapter 4 Second-order Step-size Tuning of SGD for Non-convex Optimization

considerations to address the major difficulty of preserving favorable behaviors of determin-
istic algorithms while dealing with mini-batches. In particular, we tackled the problem of
adapting the step-sizes to the local landscape of non-convex loss functions with noisy gradi-
ent estimations. For a computational cost similar to SGD, Step-tuned SGD uses a step-size
changing every two iterations unlike other stochastic methods à la Barzilai-Borwein. We
proved asymptotic convergence results and convergence rates for our algorithm.

While our method does not alleviate hyper-parameter pre-tuning, it shows how an efficient
automatic fine-tuning of a simple scalar step-size can improve the training of DNNs. Step-
Tuned SGD processes data more slowly than other methods but by doing so manages to
fine-tune step-sizes, leading to faster training in some DL problems with a typical sudden
drop of the error rate at medium stages, especially on ResNets.

122

Appendices to Chapter 4

4.7 Details on the synthetic experiments

We detail the non-convex regression problem that we presented in Figure 4.2 and 4.3. Given
a matrix A ∈ RN×P and a vector b ∈ RN , denote An the n-th row of A. The problem consists
in minimizing a loss function of the form,

θ ∈ RP 7→ J (θ) = 1
N

N∑
n

φ(ATnθ − bn), (4.21)

where the non-convexity comes from the function t ∈ R 7→ φ(t) = t2/(1 + t2). For more
details on the initialization of A and b we refer to Carmon et al. (2017) where this problem
is initially proposed. In the experiments of Figure 4.3, the mini-batch approximation was
made by selecting a subset of the lines of A, which amounts to computing only a few terms
of the full sum in (4.21). We used N = 500, P = 30 and mini-batches of size 50.

In the deterministic setting we ran each algorithm during 250 iterations and selected the
hyper-parameters of each algorithm such that they achieve |J (θ) − J ?| < 10−1 as fast
as possible. In the mini-batch experiments we ran each algorithm during 250 epochs and
selected the hyper-parameters that yielded the smallest value of J (θ) after 50 epochs.

4.8 Proof of the theoretical results

We state a lemma that we will use to prove Theorem 4.2.

4.8.1 Preliminary lemma

The result is the following.

Lemma 4.6 (Alber et al. (1998, Proposition 2)). Let (uk)k∈N and (vk)k∈N two non-negative
real sequences. Assume that

∑+∞
k=0 ukvk < +∞, and

∑+∞
k=0 vk = +∞. If there exists a

123

Appendices to Chapter 4

constant C > 0 such that ∀k ∈ N, |uk+1 − uk| ≤ Cvk, then uk −−−−→
k→+∞

0.

4.8.2 Proof of the main theorem

We can now prove Theorem 4.2.

Proof of Theorem 4.2. We first clarify the random process induced by the mini-batch sub-
sampling. Algorithm 3 takes a sequence of mini-batches as input. This sequence is repre-
sented by the random variables (Bk)k∈N as described in Section 4.3.2. Each of these random
variables is independent of the others. In particular, for k ∈ N>0, Bk is independent of the
previous mini-batches B0, . . . ,Bk−1. For convenience, we will denote Bk = {B0, . . . ,Bk}, the
mini-batches up to iteration k. Due to the randomness of the mini-batches, the algorithm
is a random process as well. As such, the current iterate θk is a random variable with a
deterministic dependence on Bk−1 and is independent of Bk. However, θk+ 1

2
and Bk are not

independent. Similarly, we constructed γk such that it is a random variable with a deter-
ministic dependence on Bk−1, which is independent of Bk. This dependency structure will
be crucial to derive and bound conditional expectations. Finally, we highlight the following
important identity, for any k ≥ 1,

E [∇JBk(θk)|Bk−1] = ∇J (θk). (4.22)

Indeed, the iterate θk is a deterministic function of Bk−1, so taking the expectation over Bk,
which is independent of Bk−1, we recover the full gradient of J since the distribution of Bk
is the same as that of A in Section 4.3.2. Notice in addition that a similar identity does not
hold for θk+ 1

2
(as it depends on Bk).

We now provide estimates that will be used extensively in the rest of the proof. Recall
that the gradient of the loss function ∇J is locally Lipschitz continuous since J is twice
continuously differentiable. By assumption, there exists a compact convex set K ⊂ RP , such
that with probability 1, the sequence of iterates (θk)k∈ 1

2N
belongs to K. Therefore, by local

Lipschitz continuity, the restriction of ∇J to K is Lipschitz continuous on K. Similarly,
each ∇Jn is also Lipschitz continuous on K. We denote by LK > 0 a Lipschitz constant
common to each ∇Jn, for n = 1, . . . , N . Notice that the Lipschitz continuity is preserved
by averaging, in other words,

∀B ⊆ {1, . . . , N} , ∀ψ1, ψ2 ∈ K, ‖∇JB(ψ1)−∇JB(ψ2)‖ ≤ LK‖ψ1 − ψ2‖. (4.23)

124

Appendices to Chapter 4

In addition, using the continuity of the ∇Jn’s, there exists a constant C2 > 0, such that,

∀B ⊆ {1, . . . , N} , ∀ψ ∈ K, ‖∇JB(ψ)‖ ≤ C2. (4.24)

Finally, for a differentiable function g : RP → R with L∇g-Lipschitz continuous gradient,
we recall the descent lemma (see for example Bertsekas (1999, Proposition A.24) or Equa-
tion 1.25). For any θ ∈ RP and any d ∈ RP ,

g(θ + d) ≤ g(θ) + 〈∇g(θ), d〉+ L∇g
2 ‖d‖

2. (4.25)

In our case since we only have the LK-Lipschitz continuity of ∇J on K which is convex, we
have a similar bound for ∇J on K: for any θ ∈ K and any d ∈ RP such that θ + d ∈ K,

J (θ + d) ≤ J (θ) + 〈∇J (θ), d〉+ LK
2 ‖d‖

2. (4.26)

Let θ0 ∈ RP and let (θk)k∈ 1
2N

a sequence generated by Algorithm 3 initialized at θ0. By
assumption this sequence belongs to K almost surely. To simplify, for all k ∈ N we denote
ηk = αγk(k+ 1)−(1/2+δ) the step-size. Fix an iteration k ∈ N, we can use (4.26) with θ = θk

and d = −ηk∇JBk(θk), almost surely (with respect to the boundedness assumption),

J (θk+ 1
2
) ≤ J (θk)− ηk〈∇J (θk),∇JBk(θk)〉+ η2

k

2 LK‖∇JBk(θk)‖2. (4.27)

Similarly with θ = θk+ 1
2
and d = −ηk∇JBk(θk+ 1

2
), almost surely,

J (θk+1) ≤ J (θk+ 1
2
)− ηk〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉+ η2

k

2 LK‖∇JBk(θk+ 1
2
)‖2. (4.28)

We combine (4.27) and (4.28), almost surely,

J (θk+1) ≤ J (θk)− ηk
(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)

+ η2
k

2 LK
(
‖∇JBk(θk)‖2 + ‖∇JBk(θk+ 1

2
)‖2
)
.

(4.29)

Using the boundedness assumption and (4.24), almost surely,

‖∇JBk(θk)‖2 ≤ C2 and ‖∇JBk(θk+ 1
2
)‖2 ≤ C2. (4.30)

125

Appendices to Chapter 4

So almost surely,

J (θk+1) ≤ J (θk)− ηk
(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)

+ η2
kLKC2.

(4.31)

Then, we take the conditional expectation of (4.31) over Bk conditionally on Bk−1 (the
mini-batches used up to iteration k − 1), we have,

E [J (θk+1)|Bk−1] ≤ E [J (θk)|Bk−1] + E
[
η2
kLKC2

∣∣∣Bk−1

]
− E

[
ηk
(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)∣∣∣Bk−1

]
.

(4.32)

As explained at the beginning of the proof, θk is a deterministic function of Bk−1, thus using
(4.22), E [J (θk)|Bk−1] = J (θk). Similarly, by construction ηk is independent of the current
mini-batch Bk, it is a deterministic function of Bk−1. Hence, (4.32) reads,

E [J (θk+1)|Bk−1] ≤J (θk) + η2
kLKC2 − ηk〈∇J (θk),E [∇JBk(θk)|Bk−1]〉

− ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
.

(4.33)

Then, we use the fact that E [∇JBk(θk)|Bk−1] = ∇J (θk). Overall, we obtain,

E [J (θk+1)|Bk−1] ≤J (θk) + η2
kLKC2 − ηk‖∇J (θk)‖2

− ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
.

(4.34)

We will now bound the last term of (4.34). First we write,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉

= −〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)−∇JBk(θk)〉 − 〈∇J (θk+ 1

2
),∇JBk(θk)〉.

(4.35)

Using the Cauchy-Schwarz inequality, as well as (4.23) and (4.24), almost surely,

|〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)−∇JBk(θk)〉| ≤ ‖∇J (θk+ 1

2
)‖‖∇JBk(θk+ 1

2
)−∇JBk(θk)‖

≤ ‖∇J (θk+ 1
2
)‖LK‖θk+ 1

2
− θk‖

≤ ‖∇J (θk+ 1
2
)‖LK‖ − ηk∇JBk(θk)‖

≤ LKC
2
2ηk.

(4.36)

126

Appendices to Chapter 4

Hence,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉 ≤ LKC

2
2ηk − 〈∇J (θk+ 1

2
),∇JBk(θk)〉. (4.37)

We perform similar computations on the last term of (4.37), almost surely

− 〈∇J (θk+ 1
2
),∇JBk(θk)〉

= −〈∇J (θk+ 1
2
)−∇J (θk),∇JBk(θk)〉 − 〈∇J (θk),∇JBk(θk)〉

≤ ‖∇J (θk+ 1
2
)−∇J (θk)‖‖∇JBk(θk)‖ − 〈∇J (θk),∇JBk(θk)〉

≤ LKC2‖θk+ 1
2
− θk‖ − 〈∇J (θk),∇JBk(θk)〉

≤ LKC
2
2ηk − 〈∇J (θk),∇JBk(θk)〉.

(4.38)

Finally by combining (4.35), (4.37) and (4.38), we obtain almost surely,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉 ≤ 2LKC

2
2ηk − 〈∇J (θk),∇JBk(θk)〉. (4.39)

Going back to the last term of (4.34), taking the conditional expectation of (4.39), we have
almost surely,

−ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
≤ 2LKC

2
2η

2
k − ηkE [〈∇J (θk),∇JBk(θk)〉|Bk−1]

≤ 2LKC
2
2η

2
k − ηk〈∇J (θk),E [∇JBk(θk)|Bk−1]〉 = 2LKC

2
2η

2
k − ηk‖∇J (θk)‖2.

(4.40)

In the end we obtain, for an arbitrary iteration k ∈ N, almost surely,

E [J (θk+1)|Bk−1] ≤J (θk)− 2ηk‖∇J (θk)‖2 + η2
kLK(C2 + 2C2

2). (4.41)

To simplify we assume that M̃ > ν (otherwise set M̃ = max(M̃, ν)). We use the fact that,
ηk ∈ [αm̃

(k+1)1/2+δ ,
αM̃

(k+1)1/2+δ], to obtain almost surely,

E [J (θk+1)|Bk−1] ≤J (θk)− 2 αm̃

(k + 1)1/2+δ ‖∇J (θk)‖2 + α2M̃2

(k + 1)1+2δLK(C2 + 2C2
2). (4.42)

Since by assumption, the last term is summable, we can now use the Robbins-Siegmund con-
vergence theorem (Robbins and Siegmund, 1971) to obtain that, almost surely, (J (θk))k∈N

127

Appendices to Chapter 4

converges and,
+∞∑
k=0

1
(k + 1)1/2+δ ‖∇J (θk)‖2 < +∞. (4.43)

Since
∑+∞
k=0

1
(k+1)1/2+δ = +∞, this implies at least that almost surely,

lim inf
k→∞

‖∇J (θk)‖2 = 0. (4.44)

To prove that in addition lim
k→∞

‖∇J (θk)‖2 = 0, we will use Lemma 4.6 with uk = ‖∇J (θk)‖2

and vk = 1
(k+1)1/2+δ . So we need to prove that there exists C3 > 0 such that |uk+1 − uk| ≤

C3vk. To do so, we use the LK-Lipschitz continuity of the gradients on K, triangle inequalities
and (4.24). It holds, almost surely, for all k ∈ N,∣∣∣‖∇J (θk+1)‖2 − ‖∇J (θk)‖2

∣∣∣
= (‖∇J (θk+1)‖+ ‖∇J (θk)‖) × | ‖ ∇J (θk+1)‖ − ‖∇J (θk) ‖ |

≤2C2 |‖∇J (θk+1)‖ − ‖∇J (θk)‖|

≤2C2‖∇J (θk+1)−∇J (θk)‖

≤2C2LK‖θk+1 − θk‖

≤2C2LK
∥∥∥−ηk∇JBk(θk)− ηk∇JBk(θk+ 1

2
)
∥∥∥

≤2C2LK
αM̃

(k + 1)1/2+δ ‖∇JBk(θk) +∇JBk(θk+ 1
2
)‖

≤4C2
2LK

αM̃

(k + 1)1/2+δ .

(4.45)

So taking C3 = 4C2
2LKαM̃ , by Lemma 4.6, almost surely, limk→+∞ ‖∇J (θk)‖2 = 0. This

concludes the part of the proof on almost sure convergence.

Regarding the rate, consider the expectation of (4.42) (with respect to the random vari-
ables (Bk)k∈N). The tower property of the conditional expectation gives

EBk−1
[E[J (θk+1)|Bk−1]] = E [J (θk+1)] ,

so we obtain, for all k ∈ N,

2 αm̃

(k + 1)1/2+δE
[
‖∇J (θk)‖2

]
≤E [J (θk)]− E [J (θk+1)] + α2M̃2

(k + 1)1+2δLK(C2 + 2C2
2).

(4.46)

128

Appendices to Chapter 4

Then for K ≥ 1, we sum from 0 to K − 1,

K−1∑
k=0

2 αm̃

(k + 1)1/2+δE
[
‖∇J (θk)‖2

]

≤
K−1∑
k=0

E [J (θk)]−
K−1∑
k=0

E [J (θk+1)] +
K−1∑
k=0

α2M̃2

(k + 1)1+2δLK(C2 + 2C2
2)

= J (θ0)− E [J (θK)] +
K−1∑
k=0

α2M̃2

(k + 1)1+2δLK(C2 + 2C2
2)

≤ J (θ0)− inf
ψ∈RP

J (ψ) +
K−1∑
k=0

α2M̃2

(k + 1)1+2δLK(C2 + 2C2
2),

(4.47)

The right-hand side is finite, so there exists a constant C4 > 0 such that for any K ∈ N, it
holds,

C4 ≥
K∑
k=0

1
(k + 1)1/2+δE

[
‖∇J (θk)‖2

]
≥ min

k∈{1,...,K}
E
[
‖∇J (θk)‖2

] K∑
k=0

1
(k + 1)1/2+δ

≥ (K + 1)1/2−δ min
k∈{1,...,K}

E
[
‖∇J (θk)‖2

]
, (4.48)

and we obtain the rate.

4.8.3 Proof of the corollary

Before proving the corollary we recall the following result.

Lemma 4.7. Let g : RP → R a Lipschitz continuous and differentiable function. Then ∇g
is uniformly bounded on RP .

We can now prove the corollary.

Proof of Corollary 4.3. The proof is very similar to the one of Theorem 4.2. Using the
Lipschitz continuity of ∇J , the descent lemma (4.27) holds surely on RP . Furthermore,
since for all n ∈ {1, . . . , N}, each Jn is Lipschitz continuous, so is J . Furthermore, from
Lemma 4.7, globally Lipschitz continuous functions have uniformly bounded gradients. This
is enough to obtain (4.42). It also holds that for all k ∈ N, E [‖∇JBk(θk)‖] is uniformly
bounded. Overall these arguments allow to follow the lines of the proof of Theorem 4.2 and
the same conclusions follow by repeating the same arguments.

129

Appendices to Chapter 4

4.9 Description of auxiliary algorithms

We precise the heuristic algorithms used in Figure 4.3 and discussed in Section 4.3.3. Note
that the step-size in Algorithm 6 corresponds to Expected-GV but is written differently to
avoid storing an additional gradient estimate.

Algorithm 4 Stochastic-GV SGD
1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0, 1/2)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw independent random mini-batches (Bk)k∈N
5: θ1 = θ0 − αγ0∇JB0(θ0)
6: for k = 1, . . . do
7: ∆θk = θk − θk−1
8: ∆gnaive

k = ∇JBk(θk)−∇JBk−1(θk−1)
9: if 〈∆gnaive

k ,∆θBk〉 > 0 then
10: γk = ‖∆θk‖2

〈∆gnaive
k

,∆θk〉
11: else
12: γk = ν
13: end if
14: γk = min(max(γk, m̃), M̃)
15: θk+1 = θk − α

(k+1)1/2+δ γk∇JBk(θk)
16: end for

130

Appendices to Chapter 4

Algorithm 5 Exact-GV SGD
1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0, 1/2)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw independent random mini-batches (Bk)k∈N
5: θ1 = θ0 − αγ0∇JB0(θ0)
6: for k = 1, . . . do
7: ∆θk = θk − θk−1
8: Gk = ∇J (θk)−∇J (θk−1)
9: if 〈Gk,∆θBk〉 > 0 then

10: γk = ‖∆θk‖2

〈Gk,∆θk〉
11: else
12: γk = ν
13: end if
14: γk = min(max(γk, m̃), M̃)
15: θk+1 = θk − α

(k+1)1/2+δ γk∇JBk(θk)
16: end for

Algorithm 6 Expected-GV SGD
1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0, 1/2)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw independent random mini-batches (Bk)k∈N
5: Let A the random subset defined in Section 4.3.2
6: θ1 = θ0 − αγ0∇JB0(θ0)
7: for k = 1, . . . do
8: ∆θk = θk − θk−1
9: Gk = − α

(k−1)1/2+δ γk−1E [CJA(θk−1)]
10: if 〈Gk,∆θBk〉 > 0 then
11: γk = ‖∆θk‖2

〈Gk,∆θk〉
12: else
13: γk = ν
14: end if
15: γk = min(max(γk, m̃), M̃)
16: θk+1 = θk − α

(k+1)1/2+δ γk∇JBk(θk)
17: end for

131

Conclusion

Closing discussion

The primary goal of this thesis was to leverage second-order information in order to design
efficient algorithms for training DNNs. We had two major practical challenges to address:
overcoming the computational cost of second-order information and adapting deterministic
methods to mini-batch sub-sampling while preserving their performances. We followed two
different approaches in Chapter 2 and Chapter 4, and designed two algorithms.

– We built INNA from a second-order ODE rewritten into an equivalent first-order
system where the Hessian is implicit. This solved both problems at the same time: it
allowed building a second-order algorithm for no additional computational cost, but it
also allowed avoiding the discretization of second-order derivatives of J which makes
the algorithm more robust to mini-batch sub-sampling.

– Step-Tuned SGD takes inspiration from a variational model rather than an ODE. Un-
like INNA, a discretization of second-order derivatives was necessary to maintain an
affordable computational cost. A straightforward discretization does not mix well with
mini-batch sub-sampling. Thus, we rather used empirical and theoretical considera-
tions to find a surrogate variational quantity which takes the form of an expectation.
As such, the discretization of this surrogate quantity is more robust to mini-batch
sub-sampling which helps to preserve the behavior of deterministic BB methods in a
mini-batch setting.

As a result, we can answer positively to the first two questions raised in Section 1.4.2:
we provided two new practical methods for training DNNs, both benefiting from second-
order information for a computational cost similar to the algorithms classically used to
train DNNs. In addition, our algorithms are motivated from a geometrical point of view,
while having simple update rules (this is true in particular for INNA). Second-order in-
formation does benefit our algorithms in practice despite non-smoothness and mini-batch
sub-sampling. This is evidenced by higher training speeds and better generalization perfor-

133

Conclusion

mances compared to standard methods on several DL benchmark problems.

As for our third question on theoretical guarantees, we analyzed our algorithms in a
framework that we tried to keep as close as possible to the reality of DNN training. To
achieve this, we combined existing techniques and overcame new challenges.

– We proved the convergence of INNA in a very general non-smooth stochastic frame-
work. To do so, we followed the ODE technique, but we showed that the mini-batch
sub-sampling of non-smooth functions brings new difficulties. We thus introduced a
new operator D and provided calculus results for D in order to prove convergence. In
a smooth deterministic framework we also proved that INNA is likely to avoid spurious
critical points.

– Regarding Step-Tuned SGD, we restrained the analysis to smooth loss functions but
used no global Lipschitz continuity assumptions. The proofs are based on a classical
descent lemma, yet, Step-Tuned SGD is harder to analyze than SGD with this tech-
nique. We had to carefully design our algorithm so that convergence may hold and
use several tricks to prove the convergence.

Overall, we proved the almost-sure convergence of the algorithms in DL and derived rates
of convergence which is difficult in general for non-convex functions. These theoretical
guarantees support the fact that our algorithms can be used to train DNNs and help us to
get a better understanding of the behavior of these methods.

Perspectives and future work

While we carried out extensive theoretical analyses of our algorithms, we present some
possible improvements and ideas to investigate in the future.

– The convergence results of both algorithms rely on the same assumption: the almost-
sure boundedness of the iterates. Since this assumption is hard to ensure in practice,
we could consider a variant of each algorithm where we project the iterates on an
arbitrarily large compact subset of RP . However, proving the convergence in this case
would be non-straightforward, in particular for INNA since the results of Benaïm et
al. (2005) do not apply directly. We believe that the ODE technique can be adapted
to this setting but this remains to be done. Note that these concerns are mostly
theoretical. Indeed, since INNA and Step-Tuned SGD seem to provide satisfactory
results in numerical experiments, practitioners are unlikely to add a projection but
will rather use them in their present form.

134

Conclusion

– Similarly, we proved the almost-sure convergence of INNA to D-critical points for
non-smooth tame functions. Actually, we believe that INNA is likely to converge to
Clarke critical points in practice. The work of Bolte and Pauwels (2020a) shows that
SGD almost surely avoids D-critical points, we could prove similar results for INNA.
Again, this is mostly a theoretical matter, since in practice we observe that INNA
provides “valuable” results for the parameter θ.

Finally, although INNA and Step-Tuned SGD benefit from promising numerical and the-
oretical results, they are far from being as used as ADAM and SGD to this day. This is not
surprising since our algorithms are recent, yet, one may wonder whether this will change
in the near future. Since they are famous and provided by default in DL libraries, ADAM
and SGD will probably remain the first methods that practitioners try when training a
DNN. However, Step-Tuned SGD may be helpful in situations where choosing manually
an efficient step-size decay is difficult. Indeed, it seems to automatically find an efficient
decay as evidenced by the “drop down” effect observed in numerical experiments. INNA
is a versatile algorithm with good generalization performances. Its flexibility comes from
its hyper-parameters α and β which require being tuned for some problems. This task will
probably be eased by the improvement of computational resources and in particular, the
increasing possibilities of performing parallel computations. This will favor INNA which
might become a suitable choice for DNNs that are hard to train with standard methods, in
particular due to its ability to reduce parasitic oscillations.

135

Appendix A

Résumé Détaillé de la Thèse en Français

Mise en contexte

Deep Learning

Un principe fondateur du machine learning (ou apprentissage machine) consiste à supposer
qu’une réalité (biologique, physique, etc.) peut s’exprimer à travers une relation de la forme,

y = ftruth(x),

où x ∈ RM et y ∈ RD sont respectivement appelées variables d’entrée et de sortie, et où
M et D sont des entiers naturels non nuls. La fonction ftruth, parfois appelée «fonction
vérité terrain» est inconnue et potentiellement très complexe et donc extrêmement difficile
à déterminer. En machine learning, on cherche alors plutôt à trouver un modèle qui soit une
bonne approximation de ftruth. Les réseaux de neurones sont une classe de ces modèles, ils
sont représentés par une fonction f paramétrée par un vecteur θ ∈ RP (où P ∈ N?). Étant
donné x et un choix de paramètre θ, un réseau de neurones produit une variable de sortie
ŷ via la relation,

ŷ = f(x, θ).

L’objectif est de choisir le paramètre θ de manière à ce que ŷ soit «le plus proche possible»
de la vérité y.

Afin de déterminer ce paramètre, on a recours à une procédure appelée «l’entraînement»
du réseau de neurones. Celle-ci se fait en utilisant une collection de N ∈ N? données:
(xn, yn){1,...,N} liées pour tout n ∈ {1, . . . , N} par la relation yn = ftruth(xn) (cette relation
peut éventuellement contenir un terme supplémentaire de perturbation). On cherche alors
à minimiser les erreurs de prédiction du réseau f sur ces données. Cela revient à trouver
θ ∈ RP qui minimise une fonction de la forme,

J (θ) =
N∑
n=1

`(yn, f(xn, θ)),

137

Appendix A Résumé Détaillé de la Thèse en Français

où ` est une mesure de dissimilarité (typiquement, ` : (y, ŷ) ∈ RD ×RD 7→ ‖ŷ−y‖2) et J est
appelée «fonction de perte». D’autres problématiques sont liées à la minimisation de cette
fonction, par exemple la question de la généralisation (la prédiction sur des données non
utilisées pour l’entraînement). Le deep learning (ou apprentissage profond) désigne le fait
d’entraîner et d’utiliser des réseaux de neurones et tout ce qui y est lié.

Optimisation en grande dimension

L’entraînement d’un réseaux de neurones se formule donc comme un problème d’optimisation
non contraint:

min
θ∈RP

J (θ).

En raison de la structure du réseau f , la fonction J est en général non-convexe et parfois
non-differentiable. Le problème ci-dessus est donc posé dans un cadre très général, le rendant
difficile à résoudre. En effet, dans un cadre non-convexe et non-lisse, de nombreux problèmes
se posent tel que l’existence de minimiseurs locaux qui ne soient pas globaux, de points selles,
de singularités, etc. De plus, le jeu de donné d’entraînement et le vecteur de paramètres
du réseau sont généralement très grands, il en résulte un cout de calcul de J très élevé,
rendant coûteuse la recherche numérique de solution.
Supposons pour le moment que J soit différentiable, la méthode numérique la plus clas-

sique pour résoudre ce genre de problème est la descente de gradient. Pour une initialisation
θ0 ∈ RP , cet algorithme consiste en le processus itératif suivant, pour tout k ∈ N,

θk+1 = θk − γ∇J (θk),

où ∇J désigne le gradient de J et γ > 0 est appelé «longueur de pas». Cet algorithme
se formule de manière assez simple et requiert simplement l’évaluation du gradient de la
fonction de perte. Pour cela on utilise la méthode de backpropagtion (ou rétropropagation)
qui est une manière optimisée de calculer des gradients en deep learning. Bien que cela
rende l’évaluation du gradient raisonnable, le cout de calcul (et donc le temps d’exécution)
de la descente de gradient reste important car de nombreuses itérations sont en général
nécessaires pour obtenir des résultats satisfaisants.
Ainsi, une approche alternative s’avère plus efficace en pratique: le sous-échantillonnage

par mini-lots. Cette technique consiste à remplacer∇J (θk) dans la descente de gradient, par
une approximation calculée sur un sous-ensemble du jeu de données d’entraînement. Plus
précisément, on choisit Bk ⊂ {1, . . . , N} et on calcule ∇JBk(θk) =

∑
n∈Bk `(yn, f(xn, θ)).

L’algorithme obtenu est du type descente gradient stochastique (SGD), dont les itérations
k ∈ N sont,

θk+1 = θk − γk∇JBk(θk),

où (γk)k∈N est une suite de longueurs de pas. Cet algorithme, bien qu’ancien (Robbins
and Monro, 1951) reste encore aujourd’hui l’outil de base pour entraîner des réseaux de
neurones.

138

Appendix A Résumé Détaillé de la Thèse en Français

Motivations et problématiques

L’objectif principal de cette thèse est justement de proposer de nouveaux algorithmes pour
l’entraînement de réseaux de neurones. En particulier nous voulons aller plus loin que les
méthodes du premier ordre (telles que SGD) et construire des algorithmes exploitant de
l’information de second ordre (des dérivées secondes de J). Une telle approche présente de
nombreux avantages. Les méthodes d’ordre deux peuvent s’avérer plus rapides sur certains
problèmes et plus robustes à un mauvais conditionnement (en particulier la méthode de
Newton). L’information d’ordre deux permet aussi de déterminer le signe de la courbure
locale de J et ainsi éviter plus efficacement les maximums et les points selles. Elle peut
enfin aider à choisir la suite de longueurs de pas (γk)k∈N.

Malgré les avantages indéniables d’une telle approche, celle-ci implique de relever plusieurs
défis de taille. Premièrement, et comme dit précédemment, la fonction de perte J est
parfois non-differentiable (elle l’est en revanche presque partout), ce qui limite l’utilité des
dérivées d’ordre deux, quand celles-ci sont bien définies. Ensuite, l’information du second
ordre peut s’avérer très coûteuse à calculer, et perdre tout bénéfice lorsque combinée au
sous-échantillonnage par mini-lots. En résumé, voici les trois principales problématiques
auxquelles nous nous intéressons.

– Peut-on construire des algorithmes exploitant efficacement l’information de second-
ordre en dépit de toutes les limites techniques et théoriques du deep learning ?

– Pour ces algorithmes, est-ce que l’information de second-ordre profite réellement à
l’entraînement malgré le sous-échantillonnage par mini-lots ?

– Quelles garanties et quelles vitesses de convergence pouvons-nous obtenir pour ces
algorithmes dans un cadre théorique où la convergence peut sembler incertaine ?

Nous résumons maintenant le contenu des trois chapitres qui tentent de répondre à ces
questions.

Résumé du Chapitre 2

Le point de se départ de ce chapitre est l’équation différentielle suivante, introduite par
Alvarez et al. (2002),

θ̈(t)︸︷︷︸
Inertie

+ α θ̇(t)︸ ︷︷ ︸
Frottement visqueux

+β∇2J (θ(t))θ̇(t)︸ ︷︷ ︸
Effet Newtonien

+∇J (θ(t))︸ ︷︷ ︸
Gravité

= 0, pour tout t ∈ [0,+∞),

où, θ est une fonction différentiable du temps (appelée solution ou trajectoire) et θ̇ et θ̈
désignent ses dérivées premières et secondes, enfin α ≥ 0 et β > 0 sont des hyper-paramètres.
Cette équation différentielle, appelée DIN pour «Dynamical Inertial Newton», modélise un
mélange entre les méthodes de type gradient accéléré et de celles de type Newton. Elle
peut également s’interpréter du point de vue des lois de la mécanique, comme détaillé dans
l’équation ci-dessus.

139

Appendix A Résumé Détaillé de la Thèse en Français

En approximant les solutions de DIN par un processus de discrétisation, on peut construire
des algorithmes d’optimisation afin de minimiser J . Cependant, DIN dans la forme ci-dessus
n’est pas adapté aux fonctions non-différentiables rencontrées en deep learning. Une partie
du chapitre est dédiée à trouver une formulation plus adaptée. Nous obtenons celle-ci en
reformulant DIN sous forme d’un système du premier ordre. Nous l’adaptons ensuite au
sous-échantillonnage par mini-lots et mettons en évidence que ce sous-échantillonnage pose
problème pour des fonctions non-lisses. Nous introduisons alors un nouvel opérateur D
(à valeur ensembliste) étendant les notions de gradients et sous gradients usuelles et non
adaptées au deep learning.
Nous obtenons un nouvel algorithme que nous appelons INNA et dont une itération k ∈ N

prend la forme suivante,
vk ∈ DJBk(θk)
θk+1 = θk + γk

(
(1
β − α)θk − 1

βψk − βvk
)

ψk+1 = ψk + γk
(
(1
β − α)θk − 1

βψk
) ,

où α ≥ 0, β > 0 et (γk)k∈N sont des hyper-paramètres de l’algorithme et ∀k ∈ N, Bk ⊂
{1, . . . , N}. À l’aide des résultats de Benaïm et al. (2005), nous établissons un lien entre
les comportements asymptotiques d’INNA et des solutions de DIN et prouvons ainsi la
convergence presque sûre d’INNA vers les points critiques de J . Enfin nous entraînons des
réseaux de neurones avec INNA et obtenons des résultats numériques très prometteurs.

Résumé du Chapitre 3

Le chapitre 3 poursuit l’analyse asymptotique de INNA et de DIN commencée dans le
chapitre 2. Alors que l’on a précédemment montré la convergence de INNA vers des points
critiques de J , on étudie maintenant la nature (minimums, points selles, maximums) des
points critiques trouvés en pratique, cette question est importante afin de minimiser J .
INNA est un mélange de la méthode du gradient accéléré—connue pour éviter les points
selles stricts et les maximums (Lee et al., 2016; O’Neill and S. J. Wright, 2019)—et la
méthode de Newton—qui elle converge vers tout type de points critiques. Pour des fonc-
tions différentiables et pour l’algorithme utilisé sans sous-échantillonnage par mini-lots, nous
montrons qu’INNA a tendance à éviter les points selles strictes et les maximums quel que
soit le choix des hyper-paramètres dès lors que α > 0. Ces résultats sont obtenus en util-
isant le théorème de la variété stable. Nous apportons également un éclairage nouveau
sur DIN et INNA grâce au théorème d’Hartman-Grobman et nous illustrons les résultats
numériquement.

140

Appendix A Résumé Détaillé de la Thèse en Français

Résumé du Chapitre 4

Ce dernier chapitre est indépendant des deux précédents. Dans celui-ci nous considérons
exclusivement des réseaux de neurones pour lesquels la fonction de perte J est deux fois
différentiable. Notre objectif est de construire une procédure automatique afin d’adapter la
suite (γk)k∈N de longueurs de pas de SGD à la courbure de la fonction J . Notre approche se
base sur le modèle variationnel suivant. Si l’on souhaite mettre à jour le paramètre θ ∈ RP
en se déplaçant dans la direction d ∈ RP alors la longueur de pas γ > 0 optimale (à l’ordre
deux) est celle qui minimise le modèle suivant:

qd(γ) = J (θ) + γ〈∇J (θ), d〉+ γ2

2 〈∇
2J (θ)d, d〉.

Ainsi, si l’on considère d = −∇J (θ) comme dans la descente de gradient, et si J est
localement convexe dans cette direction, ce modèle suggère le choix de longueur pas suivant,

γ = ‖∇J (θ)‖2

〈∇2J (θ)∇J (θ),∇J (θ)〉 .

À l’inverse quand J est localement concave, on choisit d’ignorer ce modèle et de prendre
une longueur de pas plutôt grande. Ce choix de longueur de pas proposé par Alvarez and
Cabot (2004) étant trop coûteux à calculer, on a recours à une procédure de discrétisation.
À chaque itération k ∈ N?, le pas proposé est finalement le suivant,

γk =

‖θk−θk−1‖2

〈θk−θk−1,∇J (θk)−∇J (θk−1)〉 if 〈∆θk,∆gk〉 > 0
ν sinon

,

où ν > 0 est un hyper-paramètre à choisir. Cette longueur de pas est de type Barzilai-
Borwein (Barzilai and Borwein, 1988).

Elle nécessite de faire des calculs exacts de gradients, elle est donc adaptée à la descente
de gradient mais pas à SGD. Dans la suite du chapitre nous utilisons des considérations
empiriques et théoriques afin de construire une adaptation de ce choix de longueur de pas qui
soit appropriée à SGD et dont les performances soient bonnes malgré le sous-échantillonnage
par mini-lots. On obtient finalement un nouvel algorithme, appelé Step-Tuned SGD. Celui-ci
est une modification simple et peu coûteuse de SGD qui s’avère très efficace dans certaines
de nos expériences d’entraînement de réseaux de neurones, en particulier sur les réseaux
résiduels et ceux utilisant la fonctionnalité de «BatchNorm».
En nous basant sur un «lemme de descente», nous montrons la convergence presque sûre

de Step-Tuned SGD vers les points critiques de J et explicitons une vitesse de convergence.

141

Bibliography

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.
Irving, M. Isard, et al. (2016). “Tensorflow: A system for large-scale machine learning.” In:
Proceedings of the USENIX Symposium on Operating Systems Design and Implementation
OSDI, pp. 265–283 (cit. on pp. 2, 21, 64).

Adil, S. (2018). Opérateurs monotones aléatoires et application à l’optimisation stochastique.
PhD Thesis, Paris Saclay (cit. on p. 37).

Agarwal, N., B. Bullins, X. Chen, E. Hazan, K. Singh, C. Zhang, and Y. Zhang (2019). “Effi-
cient full-matrix adaptive regularization.” In: Proceedings of the International Conference
on Machine Learning (ICML), pp. 102–110 (cit. on p. 30).

Alber, Y. I., A. N. Iusem, and M. V. Solodov (1998). “On the projected subgradient method
for nonsmooth convex optimization in a Hilbert space.” In: Mathematical Programming
81.1, pp. 23–35 (cit. on pp. 115, 123).

Alvarez, F. and A. Cabot (2004). “Steepest descent with curvature dynamical system.” In:
Journal of Optimization Theory and Applications 120.2, pp. 247–273 (cit. on pp. 32, 102,
141).

Alvarez, F., H. Attouch, J. Bolte, and P. Redont (2002). “A second-order gradient-like
dissipative dynamical system with Hessian-driven damping: Application to optimization
and mechanics.” In: Journal de Mathématiques Pures et Appliquées 81.8, pp. 747–779
(cit. on pp. 31, 37, 39, 42, 60, 61, 70, 73, 74, 139).

Alvarez, F. and J. M. Pérez (1998). “A dynamical system associated with Newton’s method
for parametric approximations of convex minimization problems.” In:Applied Mathematics
and Optimization 38, pp. 193–217 (cit. on p. 61).

Amari, S.-I. (1998). “Natural gradient works efficiently in learning.” In: Neural Computation
10.2, pp. 251–276 (cit. on p. 30).

Armijo, L. (1966). “Minimization of functions having Lipschitz continuous first partial
derivatives.” In: Pacific Journal of Mathematics 16.1, pp. 1–3 (cit. on pp. 24, 103).

Asi, H. and J. C. Duchi (2019). “The importance of better models in stochastic optimiza-
tion.” In: Proceedings of the National Academy of Sciences 116.46, pp. 22924–22930 (cit.
on p. 30).

Attouch, H., J. Bolte, P. Redont, and A. Soubeyran (2010). “Proximal alternating min-
imization and projection methods for nonconvex problems: An approach based on the
Kurdyka-Łojasiewicz inequality.” In: Mathematics of Operations Research 35.2, pp. 438–
457 (cit. on p. 40).

143

Bibliography

Attouch, H., Z. Chbani, J. Fadili, and H. Riahi (2020). “First-order optimization algorithms
via inertial systems with Hessian driven damping.” In: Mathematical Programming (cit.
on pp. 62, 70, 82).

Attouch, H., Z. Chbani, J. Fadili, and H. Riahi (2021). “Convergence of iterates for
first-order optimization algorithms with inertia and Hessian driven damping.” In: arXiv
preprint:2107.05943 (cit. on pp. 70, 82).

Attouch, H., J. Peypouquet, and P. Redont (2016). “Fast convex optimization via inertial
dynamics with Hessian driven damping.” In: Journal of Differential Equations 261.10,
pp. 5734–5783 (cit. on p. 70).

Attouch, H., J. Peypouquet, and P. Redont (2014). “A dynamical approach to an inertial
forward-backward algorithm for convex minimization.” In: SIAM Journal on Optimization
24.1, pp. 232–256 (cit. on p. 70).

Attouch, H. and P. Redont (2001). “The second-order in time continuous Newton method.”
In: Approximation, Optimization and Mathematical Economics. Springer, pp. 25–36 (cit.
on p. 37).

Aubin, J.-P. and A. Cellina (2012). Differential inclusions: Set-valued maps and viability
theory. Springer (cit. on p. 43).

Babaie-Kafaki, S. and M. Fatemi (2013). “A modified two-point stepsize gradient algorithm
for unconstrained minimization.” In: Optimization Methods and Software 28.5, pp. 1040–
1050 (cit. on p. 103).

Barakat, A. and P. Bianchi (2021). “Convergence and dynamical behavior of the ADAM
algorithm for nonconvex stochastic optimization.” In: SIAM Journal on Optimization
31.1, pp. 244–274 (cit. on p. 37).

Barzilai, J. and J. M. Borwein (1988). “Two-point step size gradient methods.” In: IMA
Journal of Numerical Analysis 8.1, pp. 141–148 (cit. on pp. 32, 102, 141).

Benaïm, M. (1999). “Dynamics of stochastic approximation algorithms.” In: Séminaire de
Probabilités XXXIII. Springer, pp. 1–68 (cit. on p. 36).

Benaïm, M., J. Hofbauer, and S. Sorin (2005). “Stochastic approximations and differential
inclusions.” In: SIAM Journal on Control and Optimization 44.1, pp. 328–348 (cit. on
pp. 32, 36, 47–50, 53, 134, 140).

Bengio, Y. (2012). “Practical recommendations for gradient-based training of deep archi-
tectures.” In: Neural networks: Tricks of the Trade. Springer, pp. 437–478 (cit. on p. 11).

Bengio, Y., Y. LeCun, et al. (2007). “Scaling learning algorithms towards AI.” In: Large-scale
Kernel Machines 34.5, pp. 1–41 (cit. on p. 2).

Berahas, A. S., R. Bollapragada, and J. Nocedal (2020). “An investigation of Newton-sketch
and subsampled Newton methods.” In: Optimization Methods and Software 35.4, pp. 661–
680 (cit. on p. 24).

Bertsekas, D. P. (1999). Nonlinear programming, second edition. Athena Scientific (cit. on
pp. 18, 26, 125).

Bianchi, P., W. Hachem, and S. Schechtman (2020). “Convergence of constant step stochas-
tic gradient descent for non-smooth non-convex functions.” In: arXiv preprint:2005.08513
(cit. on p. 48).

144

Bibliography

Biglari, F. and M. Solimanpur (2013). “Scaling on the spectral gradient method.” In: Journal
of Optimization Theory and Applications 158, pp. 626–635 (cit. on pp. 103, 105).

Bolte, J., A. Daniilidis, and A. Lewis (2007a). “The Łojasiewicz inequality for nonsmooth
subanalytic functions with applications to subgradient dynamical systems.” In: SIAM
Journal on Optimization 17.4, pp. 1205–1223 (cit. on p. 60).

Bolte, J., A. Daniilidis, A. Lewis, and M. Shiota (2007b). “Clarke subgradients of stratifiable
functions.” In: SIAM Journal on Optimization 18.2, pp. 556–572 (cit. on pp. 49, 50, 54).

Bolte, J., A. Daniilidis, O. Ley, and L. Mazet (2010). “Characterizations of Łojasiewicz in-
equalities: Subgradient flows, talweg, convexity.” In: Transactions of the American Math-
ematical Society 362.6, pp. 3319–3363 (cit. on p. 54).

Bolte, J. and E. Pauwels (2020a). “A mathematical model for automatic differentiation in
machine learning.” In: Advances in Neural Information Processing Systems (NIPS) (cit.
on pp. 48, 135).

Bolte, J. and E. Pauwels (2020b). “Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning.” In: Mathematical Programming, pp. 1–33
(cit. on p. 45).

Bolte, J., S. Sabach, and M. Teboulle (2014). “Proximal alternating linearized minimiza-
tion for nonconvex and nonsmooth problems.” In: Mathematical Programming 146.1-2,
pp. 459–494 (cit. on p. 54).

Borkar, V. S. (2009). Stochastic approximation: A dynamical systems viewpoint. Springer
(cit. on p. 36).

Bottou, L. and O. Bousquet (2008). “The tradeoffs of large scale learning.” In: Advances in
Neural Information Processing Systems (NIPS), pp. 161–168 (cit. on pp. 2, 23).

Bottou, L., F. E. Curtis, and J. Nocedal (2018). “Optimization methods for large-scale
machine learning.” In: SIAM Review 60.2, pp. 223–311 (cit. on pp. 2, 26).

Boyer, C. and A. Godichon-Baggioni (2020). “On the asymptotic rate of convergence
of stochastic Newton algorithms and their weighted averaged versions.” In: arXiv
preprint:2011.09706 (cit. on p. 27).

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei (2020). “Language models are few-shot learners.” In: Advances in Neural
Information Processing Systems (NIPS). Vol. 33 (cit. on pp. 2, 19).

Broyden, C. G. (1967). “Quasi-Newton methods and their application to function minimi-
sation.” In: Mathematics of Computation 21.99, pp. 368–381 (cit. on p. 28).

Byrd, R. H., G. M. Chin, W. Neveitt, and J. Nocedal (2011). “On the use of stochastic
Hessian information in optimization methods for machine learning.” In: SIAM Journal on
Optimization 21.3, pp. 977–995 (cit. on p. 27).

Byrd, R. H., S. L. Hansen, J. Nocedal, and Y. Singer (2016). “A stochastic quasi-Newton
method for large-scale optimization.” In: SIAM Journal on Optimization 26.2, pp. 1008–
1031 (cit. on p. 28).

145

Bibliography

Carmon, Y., J. C. Duchi, O. Hinder, and A. Sidford (2017). “Convex until proven guilty:
Dimension-free acceleration of gradient descent on non-convex functions.” In: Proceedings
of the International Conference on Machine Learning (ICML), pp. 654–663 (cit. on pp. 31,
106, 123).

Castera, C. (2021). “Inertial Newton algorithms avoiding strict saddle points.” In: preprint
arXiv:2111.04596 (cit. on pp. 33, 69).

Castera, C., J. Bolte, C. Févotte, and E. Pauwels (2019a). “An inertial Newton algorithm for
deep learning.” In: NeurIPS Workshop: Beyond First-order methods in Machine Learning
(cit. on p. 33).

Castera, C., J. Bolte, C. Févotte, and E. Pauwels (2021a). “An inertial Newton algorithm
for deep learning.” In: Journal of Machine Learning Research 22.134, pp. 1–31 (cit. on
pp. 33, 35).

Castera, C., J. Bolte, C. Févotte, and E. Pauwels (2021b). “Second-order step-size tuning
of SGD for non-convex optimization.” In: Neural Processing Letters, To appear (cit. on
pp. 33, 101).

Castera, C., J. Bolte, C. Févotte, and E. Pauwels (2019b). “An Inertial Newton Algorithm
for Deep Learning.” In: arXiv preprint:1905.12278v1 (cit. on p. 45).

Castera, C. (2019). INNA for Deep Learning. https://github.com/camcastera/Inna-
for-DeepLearning (cit. on p. 64).

Chen, L. and H. Luo (2019). “First order optimization methods based on Hessian-driven
Nesterov accelerated gradient flow.” In: arXiv preprint:1912.09276 (cit. on p. 70).

Chollet, F. (2015). Keras. https://github.com/fchollet/keras (cit. on p. 64).
Choromanska, A., M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun (2015). “The loss sur-
faces of multilayer networks.” In: Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 192–204 (cit. on p. 15).

Clarke, F. H. (1990). Optimization and nonsmooth analysis. SIAM (cit. on pp. 17, 36, 42,
45).

Coste, M. (2000). An introduction to o-minimal geometry. Istituti Editoriali e Poligrafici
Internazionali Pisa (cit. on pp. 40, 41).

Curtis, F. E. and W. Guo (2016). “Handling nonpositive curvature in a limited memory
steepest descent method.” In: IMA Journal of Numerical Analysis 36.2, pp. 717–742 (cit.
on p. 103).

Cybenko, G. (1989). “Approximation by superpositions of a sigmoidal function.” In: Math-
ematics of Control, Signals and Systems 2.4, pp. 303–314 (cit. on p. 9).

Dai, Y., J. Yuan, and Y.-X. Yuan (2002). “Modified two-point stepsize gradient methods
for unconstrained optimization.” In: Computational Optimization and Applications 22.1
(cit. on pp. 103, 105).

Daniilidis, A. and D. Drusvyatskiy (2020). “Pathological subgradient dynamics.” In: SIAM
Journal on Optimization 30.2, pp. 1327–1338 (cit. on p. 16).

Dauphin, Y. N., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio (2014).
“Identifying and attacking the saddle point problem in high-dimensional non-convex op-

146

https://github.com/camcastera/Inna-for-DeepLearning
https://github.com/camcastera/Inna-for-DeepLearning
https://github.com/fchollet/keras

Bibliography

timization.” In: Advances in Neural Information Processing Systems (NIPS). Vol. 27 (cit.
on pp. 15, 70).

Davis, D., D. Drusvyatskiy, S. Kakade, and J. D. Lee (2020). “Stochastic subgradient
method converges on tame functions.” In: Foundations of Computational Mathematics
20.1, pp. 119–154 (cit. on pp. 3, 16, 37, 40, 48, 49).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). “Imagenet: A large-
scale hierarchical image database.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 248–255 (cit. on pp. 2, 17, 19).

van den Dries, L. (1998). Tame topology and o-minimal structures. Cambridge University
Press (cit. on pp. 40, 50).

Duchi, J. C. and F. Ruan (2018). “Stochastic methods for composite and weakly convex
optimization problems.” In: SIAM Journal on Optimization 28.4, pp. 3229–3259 (cit. on
p. 48).

Duchi, J., E. Hazan, and Y. Singer (2011). “Adaptive subgradient methods for online
learning and stochastic optimization.” In: Journal of Machine Learning Research 12.7,
pp. 2121–2159 (cit. on pp. 2, 29, 64).

Dudar, V., G. Chierchia, E. Chouzenoux, J.-C. Pesquet, and V. Semenov (2017). “A two-
stage subspace trust region approach for deep neural network training.” In: European
Signal Processing Conference (EUSIPCO), pp. 291–295 (cit. on p. 31).

Fukushima, K. and S. Miyake (1982). “Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition.” In: Competition and Cooperation in Neural
Nets. Springer, pp. 267–285 (cit. on p. 6).

Ghadimi, S. and G. Lan (2013). “Stochastic first-and zeroth-order methods for nonconvex
stochastic programming.” In: SIAM Journal on Optimization 23.4, pp. 2341–2368 (cit. on
p. 3).

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. MIT Press (cit. on pp. 9,
20).

Goudou, X. and J. Munier (2009). “The gradient and heavy ball with friction dynamical
systems: The quasiconvex case.” In: Mathematical Programming 116.1, pp. 173–191 (cit.
on pp. 70, 71).

Grobman, D. M. (1959). “Homeomorphism of systems of differential equations.” In: Doklady
Akademii Nauk SSSR 128.5, pp. 880–881 (cit. on p. 71).

Haragus, M. and G. Iooss (2010). Local bifurcations, center manifolds, and normal forms
in infinite-dimensional dynamical systems. Springer Science & Business Media (cit. on
p. 75).

Hartman, P. (1960). “A lemma in the theory of structural stability of differential equations.”
In: Proceedings of the American Mathematical Society 11.4, pp. 610–620 (cit. on p. 71).

Hastie, T., R. Tibshirani, and J. Friedman (2009). The elements of statistical learning: Data
mining, inference, and prediction. Springer Science & Business Media (cit. on pp. 3, 10).

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual learning for image recognition.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778 (cit. on pp. 6, 7, 116, 117).

147

Bibliography

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Psychology
Press (cit. on pp. 2, 6).

Heinonen, J. (2005). Lectures on Lipschitz analysis. University of Jyväskylä (cit. on p. 16).
Hinton, G. E., S. Osindero, and Y.-W. Teh (2006). “A fast learning algorithm for deep belief
nets.” In: Neural Computation 18.7, pp. 1527–1554 (cit. on p. 2).

Hinton, G. E. and R. R. Salakhutdinov (2006). “Reducing the dimensionality of data with
neural networks.” In: Science 313.5786, pp. 504–507 (cit. on pp. 10, 116).

Hornik, K., M. Stinchcombe, and H. White (1989). “Multilayer feedforward networks are
universal approximators.” In: Neural Networks 2.5, pp. 359–366 (cit. on p. 9).

Ioffe, S. and C. Szegedy (2015). “Batch normalization: Accelerating deep network training
by reducing internal covariate shift.” In: Proceedings of the International Conference on
Machine Learning (ICML), pp. 448–456 (cit. on p. 120).

Johnson, R. and T. Zhang (2013). “Accelerating stochastic gradient descent using predic-
tive variance reduction.” In: Advances in Neural Information Processing Systems (NIPS),
pp. 315–323 (cit. on p. 103).

Kelley, A. (1966). “The stable, center-stable, center, center-unstable, unstable manifolds.”
In: Journal of Differential Equations (cit. on p. 71).

Kingma, D. P. and J. Ba (2015). “Adam: A method for stochastic optimization.” In: Proceed-
ings of the International Conference on Learning Representations (ICLR) (cit. on pp. 30,
64, 110).

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech. rep.
Canadian Institute for Advanced Research (cit. on pp. 63, 116).

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “Imagenet classification with deep
convolutional neural networks.” In: Advances in Neural Information Processing Systems
(NIPS) 25, pp. 1097–1105 (cit. on pp. 2, 17).

Krogh, A. and J. A. Hertz (1992). “A simple weight decay can improve generalization.” In:
Advances in Neural Information Processing Systems (NIPS), pp. 950–957 (cit. on p. 11).

Kurdyka, K. (1998). “On gradients of functions definable in o-minimal structures.” In: An-
nales de l’Institut Fourier. Vol. 48, pp. 769–783 (cit. on p. 50).

Kushner, H. and G. G. Yin (2003). Stochastic approximation and recursive algorithms and
applications. Springer (cit. on p. 36).

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel (1989). “Backpropagation applied to handwritten zip Code recognition.” In: Neural
Computation 1.4, pp. 541–551 (cit. on pp. 2, 6, 17).

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learning applied to
document recognition.” In: Proceedings of the IEEE 86.11, pp. 2278–2324 (cit. on pp. 63,
116).

LeCun, Y., C. Cortes, and C. Burges (2010). “MNIST handwritten digit database.” In: ATT
Labs (cit. on p. 116).

Lee, J. D., M. Simchowitz, M. I. Jordan, and B. Recht (2016). “Gradient descent only
converges to minimizers.” In: Conference on Learning Theory (COLT), pp. 1246–1257
(cit. on pp. 32, 70, 71, 85, 92, 140).

148

Bibliography

Lemaréchal, C. (2012). “Cauchy and the gradient method.” In: Doc Math Extra 251.254,
p. 10 (cit. on p. 18).

Leshno, M., V. Y. Lin, A. Pinkus, and S. Schocken (1993). “Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function.” In: Neural Net-
works 6.6, pp. 861–867 (cit. on p. 9).

Li, X. and F. Orabona (2019). “On the convergence of stochastic gradient descent with adap-
tive stepsizes.” In: Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 983–992 (cit. on pp. 3, 103, 114).

Liang, J., Y. Xu, C. Bao, Y. Quan, and H. Ji (2019). “Barzilai–Borwein-based adaptive
learning rate for deep learning.” In: Pattern Recognition Letters 128, pp. 197–203 (cit. on
pp. 31, 103, 106, 110).

Lin, M., Q. Chen, and S. Yan (2014). “Network In Network.” In: Proceedings of the Inter-
national Conference on Learning Representations (ICLR) (cit. on pp. 64, 116).

Ljung, L. (1977). “Analysis of recursive stochastic algorithms.” In: IEEE Transactions on
Automatic Control 22.4, pp. 551–575 (cit. on p. 36).

Loshchilov, I. and F. Hutter (2019). “Decoupled weight decay regularization.” In: Proceedings
of the International Conference on Learning Representations (ICLR) (cit. on p. 31).

Marcus, M., B. Santorini, and M. A. Marcinkiewicz (1993). “Building a large annotated
corpus of English: The Penn Treebank.” In: Computational Linguistics 19.2, pp. 313–330
(cit. on p. 19).

Mark, C. (2017). Neural network. https://github.com/battlesnake/neural (cit. on
p. 5).

Martens, J. (2010). “Deep learning via Hessian-free optimization.” In: Proceedings of the
International Conference on Machine Learning (ICML), pp. 735–742 (cit. on p. 27).

Martens, J. and R. Grosse (2015). “Optimizing neural networks with Kronecker-factored ap-
proximate curvature.” In: Proceedings of the International Conference on Machine Learn-
ing (ICML), pp. 2408–2417 (cit. on pp. 31, 119).

Martens, J., I. Sutskever, and K. Swersky (2012). “Estimating the Hessian by back-
propagating curvature.” In: Proceedings of the International Conference on Machine
Learning (ICML) (cit. on p. 28).

McCulloch, W. S. and W. Pitts (1943). “A logical calculus of the ideas immanent in nervous
activity.” In: The Bulletin of Mathematical Biophysics 5.4, pp. 115–133 (cit. on p. 17).

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). “Efficient estimation of word repre-
sentations in vector space.” In: arXiv preprint:1301.3781 (cit. on p. 2).

Mizutani, E. and S. E. Dreyfus (2008). “Second-order stagewise backpropagation for
Hessian-matrix analyses and investigation of negative curvature.” In: Neural Networks
21, pp. 193–203 (cit. on p. 31).

Moulines, E. and F. R. Bach (2011). “Non-asymptotic analysis of stochastic approximation
algorithms for machine learning.” In: Advances in Neural Information Processing Systems
(NIPS), pp. 451–459 (cit. on p. 3).

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course. Springer
Science & Business Media (cit. on pp. 14, 17).

149

https://github.com/battlesnake/neural

Bibliography

Nesterov, Y. (1983). “A method for unconstrained convex minimization problem with the
rate of convergence O(1/k2).” In: Doklady an USSR. Vol. 269, pp. 543–547 (cit. on pp. 29,
83).

Nocedal, J. and S. Wright (2006). Numerical optimization. Springer Science & Business
Media (cit. on pp. 25, 71).

O’Neill, M. and S. J. Wright (2019). “Behavior of accelerated gradient methods near critical
points of nonconvex functions.” In: Mathematical Programming 176.1, pp. 403–427 (cit. on
pp. 32, 70, 71, 85, 140).

Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips (2008).
“GPU computing.” In: Proceedings of the IEEE 96.5, pp. 879–899 (cit. on p. 19).

Palmer, K. J. (1973). “A generalization of Hartman’s linearization theorem.” In: Journal of
Mathematical Analysis and Applications 41.3, pp. 753–758 (cit. on p. 83).

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, et al. (2019). “Pytorch: An imperative style, high-performance
deep learning library.” In: Advances in Neural Information Processing Systems (NIPS),
pp. 8026–8037 (cit. on pp. 2, 21, 116).

Pearlmutter, B. A. (1994). “Fast exact multiplication by the Hessian.” In: Neural Compu-
tation 6.1, pp. 147–160 (cit. on p. 28).

Perko, L. (2013). Differential equations and dynamical systems. Springer Science & Business
Media (cit. on pp. 75, 80).

Pliss, V. A. (1964). “A reduction principle in the theory of stability of motion.” In: Izvestiya
Akademii Nauk SSSR. Seriya Matematicheskaya 28 (cit. on p. 71).

Polyak, B. T. (1964). “Some methods of speeding up the convergence of iteration methods.”
In: USSR Computational Mathematics and Mathematical Physics 4.5, pp. 1–17 (cit. on
p. 28).

Raydan, M. (1997). “The Barzilai and Borwein gradient method for the large scale uncon-
strained minimization problem.” In: SIAM Journal on Optimization 7.1, pp. 26–33 (cit. on
pp. 102, 105).

Reddi, S. J., S. Kale, and S. Kumar (2018). “On the convergence of Adam and beyond.” In:
Proceedings of the International Conference on Learning Representations (ICLR) (cit. on
p. 31).

Rios-Zertuche, R. (2020). “Examples of pathological dynamics of the subgradient method
for Lipschitz path-differentiable functions.” In: arXiv preprint:2007.11699 (cit. on p. 16).

Robbins, H. and S. Monro (1951). “A stochastic approximation method.” In: The Annals of
Mathematical Statistics 22.1, pp. 400–407 (cit. on pp. 2, 23, 24, 138).

Robbins, H. and D. Siegmund (1971). “A convergence theorem for non negative almost
supermartingales and some applications.” In: Optimizing Methods in Statistics. Elsevier,
pp. 233–257 (cit. on pp. 115, 127).

Robles-Kelly, A. and A. Nazari (2019). “Incorporating the Barzilai-Borwein adaptive step
size into subgradient methods for deep network training.” In: Digital Image Computing:
Techniques and Applications (DICTA), pp. 1–6 (cit. on p. 103).

Rockafellar, R. T. (1996). Convex analysis. Princeton University Press (cit. on p. 17).

150

Bibliography

Rosenblatt, F. (1958). “The perceptron: A probabilistic model for information storage and
organization in the brain.” In: Psychological Review 65.6, p. 386 (cit. on pp. 2, 4, 17).

Rossum, G. (1995). Python reference manual. CWI (cit. on p. 2).
Rumelhart, D. E. and G. E. Hinton (1986). “Learning representations by back-propagating
errors.” In: Nature 323.9, pp. 533–536 (cit. on pp. 2, 17, 20).

Schraudolph, N. N., J. Yu, and S. Günter (2007). “A stochastic quasi-Newton method for
online convex optimization.” In: Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS) (cit. on pp. 28, 109).

Shi, B., S. S. Du, M. I. Jordan, and W. J. Su (2021). “Understanding the acceleration
phenomenon via high-resolution differential equations.” In: Mathematical Programming
(cit. on p. 70).

Shiota, M. (2012). Geometry of subanalytic and semialgebraic sets. Springer Science & Busi-
ness Media (cit. on p. 40).

Shub, M. (2013). Global stability of dynamical systems. Springer Science & Business Media
(cit. on p. 85).

Su, W., S. Boyd, and E. Candes (2014). “A differential equation for modeling Nesterov’s
accelerated gradient method: Theory and insights.” In: Advances in Neural Information
Processing Systems (NIPS), pp. 2510–2518 (cit. on pp. 62, 83).

Sutskever, I., J. Martens, G. Dahl, and G. Hinton (2013). “On the importance of initializa-
tion and momentum in deep learning.” In: Proceedings of the International Conference on
Machine Learning (ICML), pp. 1139–1147 (cit. on p. 29).

Tan, C., S. Ma, Y.-H. Dai, and Y. Qian (2016). “Barzilai-Borwein step size for stochas-
tic gradient descent.” In: Advances in Neural Information Processing Systems (NIPS),
pp. 685–693 (cit. on pp. 31, 103, 106, 110).

Tieleman, T. and G. Hinton (2012). “RMSprop: Divide the gradient by a running average
of its recent magnitude.” In: COURSERA: Neural networks for machine learning 4.2,
pp. 26–31 (cit. on p. 29).

Wilson, A. C., R. Roelofs, M. Stern, N. Srebro, and B. Recht (2017). “The marginal value
of adaptive gradient methods in machine learning.” In: Advances in Neural Information
Processing Systems (NIPS), pp. 4148–4158 (cit. on p. 120).

Xiao, Y., Q. Wang, and D. Wang (2010). “Notes on the Dai–Yuan–Yuan modified spec-
tral gradient method.” In: Journal of Computational and Applied Mathematics 234.10,
pp. 2986–2992 (cit. on pp. 103, 105).

Xu, P., F. Roosta, and M. W. Mahoney (2020). “Second-order optimization for non-convex
machine learning: An empirical study.” In: Proceedings of the SIAM International Con-
ference on Data Mining (SDM20). SIAM, pp. 199–207 (cit. on p. 24).

Zeiler, M. D. (2012). “Adadelta: An adaptive learning rate method.” In: arXiv
preprint:1212.5701 (cit. on p. 31).

Zhang, M., J. Lucas, J. Ba, and G. E. Hinton (2019). “Lookahead optimizer: k steps forward,
1 step back.” In: Advances in Neural Information Processing Systems (NIPS). Vol. 32 (cit.
on p. 31).

151

Bibliography

Zhuang, J., T. Tang, Y. Ding, S. C. Tatikonda, N. Dvornek, X. Papademetris, and J. Duncan
(2020). “AdaBelief optimizer: Adapting stepsizes by the belief in observed gradients.” In:
Advances in Neural Information Processing Systems (NIPS) 33 (cit. on pp. 31, 103).

152

	Remerciements
	Abstract
	Contents
	Notations and Acronyms
	Chapter 1. Introduction : Challenges in Optimizationfor Training Neural Networks
	1.1 Deep learning: prerequisites
	1.1.1 General supervised learning
	1.1.2 Neural networks: concept
	1.1.3 Some popular architectures and activation functions
	1.1.4 Supervised deep learning

	1.2 Properties of the minimization problem
	1.2.1 Basic definitions and assumptions
	1.2.2 Non-convex optimization
	1.2.3 Non-smooth optimization

	1.3 Large-scale optimization framework
	1.3.1 Gradient descent
	1.3.2 The high computational cost of deep learning
	1.3.3 Differentiation of smooth DL loss functions
	1.3.4 Mini-batch sub-sampling and stochastic algorithms

	1.4 Using second-order information for training DNNs
	1.4.1 Motivations
	1.4.2 Precise problem statement
	1.4.3 Overview of existing methods

	1.5 Organization of the manuscript
	List of Publications

	Chapter 2. INNA : An Inertial Newton Algorithm forDeep Learning
	2.1 Introduction
	2.2 A functional framework for non-smooth non-convexoptimization
	2.2.1 Locally Lipschitz continuous neural network and loss function
	2.2.2 Neural networks are tame functions

	2.3 From DIN to INNA: an inertial Newton algorithm
	2.3.1 Handling non-smoothness and non-convexity
	2.3.2 Discretization of the differential inclusion
	2.3.3 INNA and a new notion of steady states

	2.4 Convergence results for INNA
	2.4.1 Main result: accumulation points of INNA are critical
	2.4.2 Comments on the results of Theorem 2.1
	2.4.3 Preliminary variational results
	2.4.4 Proof of convergence for INNA

	2.5 Towards convergence rates for INNA
	2.5.1 The non-smooth Kurdyka-Łojasiewicz property for the Clarkesubdifferential
	2.5.2 A general asymptotic rate
	2.5.3 Application to INNA

	2.6 Experiments
	2.6.1 Understanding the role of the hyper-parameters of INNA
	2.6.2 Training a DNN with INNA

	2.7 Conclusion

	Chapter 3. Escape of Strict Saddle Points and Asymptotic Behavior of INNA
	3.1 Introduction
	3.2 Preliminary discussions and definitions
	3.3 Continuous case: asymptotic behavior of the solutions ofDIN
	3.3.1 DIN is likely to avoid strict saddle points
	3.3.2 Behavior of the solutions of DIN around stationary points

	3.4 Discrete case: INNA almost surely avoids saddle points
	3.4.1 INNA generically avoids strict saddles
	3.4.2 Stable manifold theorem for discrete processes
	3.4.3 Proof of Theorem 3.9
	3.4.4 Numerical Illustration

	3.5 Conclusion
	3.6 Permutation matrices
	3.7 Proof of Theorem 3.12

	Chapter 4. Second-order Step-size Tuning of SGD for Non-convex Optimization
	4.1 Introduction
	4.2 Literature related to this chapter
	4.3 Design of the algorithm
	4.3.1 Deterministic full-batch algorithm
	4.3.2 Stochastic mini-batch algorithm
	4.3.3 Heuristic construction of Step-Tuned SGD

	4.4 Theoretical results
	4.5 Application to deep learning
	4.5.1 Settings of the experiments
	4.5.2 Results

	4.6 Conclusion
	4.7 Details on the synthetic experiments
	4.8 Proof of the theoretical results
	4.8.1 Preliminary lemma
	4.8.2 Proof of the main theorem
	4.8.3 Proof of the corollary

	4.9 Description of auxiliary algorithms

	Conclusion
	Appendix A. Résumé Détaillé de la Thèse en Français
	Bibliography

