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Résumé

Doctorat

Fusion de capteurs par réseaux de neurones profonds pour la détection d’objets
3D dans I'’environnement des véhicules autonomes

par Nguyen Anh Minh MAI

L’objectif principal de cette thése est de détecter des objets 3D dans des scenes routiéres
en présence de conditions climatiques défavorables comme le brouillard, avec un
nombre d’objets multiple. Un écart de performance entre les méthodes basées sur le
LiDAR et celles sur les caméras ou la fusion est observé. Les méthodes basées sur la
fusion caméra+LiDAR doivent gérer simultanément plusieurs sources de données.
Nous examinons en détail les techniques avancées de la littérature sur la détection
d’objets 3D pour les véhicules autonomes. Nous proposons ensuite une nouvelle ap-
proche basée sur la fusion pour la détection de ces objets. Un premier probléme est
de savoir comment fusionner efficacement des images et des données sous forme
de nuages de points dans une architecture unique qui sera capable d’apprendre
des représentations de haut niveau a partir d’'un réseau de neurones profond et
d’améliorer les capacités de détection. Une deuxiéme question est de savoir com-
ment les conditions météorologiques défavorables affectent les capteurs et les per-
formances du modele de détection, et quelles données doivent étre utilisées dans le
modeéle en fonction de ces conditions défavorables ? Cela a abouti a I'introduction
d’une nouvelle technique de détection d’objets 3D appelée SLS-Fusion (Sparse Li-
DAR and Stereo Fusion), qui utilise une caméra stéréo et un LiDAR pour prédire
une carte de profondeurs. Cette derniere est ensuite convertie en pseudo nuage de
points a des fins de traitements. Afin d’obtenir des boites englobantes 3D, le pseudo
nuage de points peut étre utilisé avec n'importe quelle méthode actuelle de détection
d’objets basée sur le LIDAR. Notre architecture peut améliorer a la fois 1'estimation
de la profondeur et la précision de la détection d’objets 3D. Les résultats expérimen-
taux sur des ensembles de données publiques (KITTI) montrent que ’approche pro-
posée surpasse 1’état de I’art actuel. La détection d’objets 3D par temps de brouillard
a aussi été traité. Un jeu de données artificiel a été crée (fogification de la base KITTI)
avec des distances de visibilité variables (Base Multifog KITTT est la résultante allant
de 10m a 80m de visibilité). Comme pour KITTI, 7481 images d’apprentissage et 7518
images de test ont été utilisées. Les meilleurs résultats obtenus sont ceux qui utilisent
des données d’apprentissage avec du brouillard quand on cherche a détecter des ob-
stacles en présence de brouillard. Nous avons également analysé d’autres aspects :
I'apport des deux types de capteurs aussi bien par temps favorable que par temps de
brouillard, lorsqu’ils sont fusionnés et lorsqu’ils sont utilisés séparément. Le résultat
principal est que 'utilisation du LiDAR par temps de brouillard conduit & une per-
formance de détection d’objets assez mauvaise (surtout avec un LiDAR 4 nappes).
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Les résultats basés sur la caméra stéréo sont prometteurs par temps de brouillard,
quel que soit le niveau de visibilité. Dans une étude d’ablation, la contribution
d’une caméra stéréo et de différentes versions de LiDAR (4 a 64 nappes) aux per-
formances du modéle SLS-Fusion dans la détection d’obstacles 3D est analysée. Les
meilleurs résultats obtenus sont ceux issus de la fusion caméra+LiDAR. Les résultats
quantitatifs ont montré que les performances de détection chutent raisonnablement
lorsqu’on diminue le nombre de nappes des LiDAR dans le processus de fusion avec
la caméra. Ces résultats ouvrent de nouvelles directions de recherche pour la détec-
tion d’objets 3D pour la conduite autonome en combinant des images de caméra
stéréo avec des nuages de points LiDAR. De plus, nous générons et introduisons
dans cette these le jeu de données Multifog KITTI, une nouvelle base de données sur
les conditions de brouillard qui contient a la fois des images et des nuages de points.
Cette base pourra étre utile a la communauté des chercheurs du domaine a des fins

de comparaison.

Mots clés : véhicule autonome, apprentissage profond, détection d’objets 3D, fusion
de capteurs, nuage de points, conditions météorologiques défavorables.
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Abstract

Doctor of Philosophy

Sensor fusion with deep neural networks for 3D object detection for
autonomous vehicles

by Nguyen Anh Minh MAI

This thesis deals with 3D object detection for autonomous driving, using various
data sources. The main objective is to detect 3D objects in driving scenes. There are
a number of factors that challenge this task, including the variability of conditions
as well as the number of objects, lighting, and weather factors. A performance gap
exists between methods based on LiDAR and those based on cameras or fusion. In
contrast to camera-based methods, which are troubled by the lack of depth infor-
mation, fusion-based methods have the problem of multiple data sources (such as
camera, RADAR, and LiDAR). To address these challenges, we review and evaluate
the most prominent state-of-the-art techniques to assess the current state of 3D object
detection in autonomous vehicles. We then propose a new fusion based approach
for 3D object detection. Two key questions have been addressed. The first concern is
how efficiently fuse images and point cloud data in a single architecture that will be
able to learn high-level representatives from the deep neural networks and result in
improved detection abilities. A second question is how adverse weather conditions
affect sensors, how does it affect the performance of the detection model, as well as
what data should be used in the model based on these adverse conditions? This re-
sulted in the introduction of a new 3D object detection technique called SLS-Fusion
(Sparse LiDAR and Stereo Fusion), which uses a stereo camera and LiDAR to predict
a depth map. This depth map is then converted into a pseudo point cloud by using
camera-LiDAR extrinsic parameters. Finally, this pseudo point cloud can be used
with any current state-of-the-art LIDAR-based object detection method to obtain 3D
bounding boxes. Our architecture can improve both depth estimation and 3D ob-
ject detection accuracy. Experimental results on public datasets (KITTI) show that
the proposed approach outperforms the current state-of-the-art. We also conducted
research on the problem of detection in foggy weather conditions. To do this, we
have created a foggy dataset called Multifog KITTI. This dataset is augmented on
the KITTI dataset. Like KITTI, It includes 7,481 frames for training and 7,518 frames
for testing with fog intensity (from 20 m to 80 m visibility) applied. In these condi-
tions, the model’s performance drop, however shows a marked improvement when
training with additional foggy data. We have also analyzed several aspects: the con-
tribution of the two types of sensors both in favorable weather and in foggy weather
conditions, when they are fused and when they are used separately. The main result
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is that using LiDAR in foggy weather leads to a slightly bad object detection perfor-
mance (even worse when the LiDAR is a 4-beam laser sensor). On the other hand,
results based on stereo camera are promising in foggy weather, regardless of the
level of visibility. In an ablation study, the contribution of a stereo camera and dif-
ferent versions of LiDAR (4 to 64 beams) to the performance of the SLS-fusion model
in detecting 3D obstacles is analyzed. Based on our ablation analysis and the differ-
ent measurements used to evaluate our detection algorithms, we have shown that
sensors should always be unseparated for better performance. Quantitative results
have shown that detection performance drops reasonably with each component dis-
abled (stereo camera or LiDAR) or by modifying the number of LiDAR beams.

These findings open new research directions for 3D object detection for autonomous
driving by combining stereo camera images with LiDAR point clouds. Additionally,
we generate and introduce in this thesis the Multifog KITTI dataset, a new foggy
weather conditions dataset that contains both images and point clouds.

Keywords: autonomous vehicle, deep learning, 3D object detection, sensor fusion,
point cloud, adverse weather conditions.
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Chapter overview:

Self-driving cars rely on automated tasks that a human driver would typically per-
form, such as detecting surrounding objects, avoiding lanes, and recognizing traffic
signs. Among these tasks, 3D object detection is the most crucial for safe and efficient
self-driving. However, there is limited research on the best methods for fusing sen-
sors, such as cameras and LiDAR, to detect and localize objects effectively, especially
in adverse weather conditions where these sensors may be significantly impacted.
This research aims to design and analyze deep learning-based methods that fuse
sensors in the same model for 3D object detection in self-driving cars. As the field of
knowledge is continuously evolving and expanding, the proposed methods will be

updated and improved to address new challenges and emerging technologies.

1.1 Motivation and Context

There is currently a growing trend towards integrating automation into various ap-
plications to reduce costs, alleviate human workload, and improve efficiency. Some
examples of these applications are shown in Figure 1.1, including face recognition
[1], people counting [2], liver segmentation [3], 3D object detection [4], and sensor
fusion [5]. Unlike humans, who perceive the world through their senses of sight,
hearing, smell, and touch, industrial applications collect data using sensors such as
cameras, RADAR (Radio Detection and Ranging), Kinect, LIDAR (Light Detection
and Ranging), and IMU (Inertial Measurement Unit). The gathered data is then pro-
cessed by complex algorithms.
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FIGURE 1.1: Some relevant applications of object detection. (a) face mask detec-
tion [1, Fig. 6]; (b) people counting in retail [2, Fig. 3]; (c) liver lesion detection [3,
Fig. 1]; (d) autonomous driving [4, Fig. 5].
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In the context of autonomous vehicles, the ability to perceive the environment in
which the vehicle is moving is crucial, as there is no human driver present. Ensur-
ing the safety of the vehicle as it travels from point A to point B is a top priority.
To monitor the environment, autonomous vehicles typically use a combination of

sensors, including cameras and LiDAR.

Before discussing the specific contributions of this PhD thesis, let’s provide an
overview of autonomous vehicles. In the context of autonomous vehicles, perceiv-
ing the environment in which the vehicle is operating is crucial, as there is no human
driver present to respond to unexpected situations. Ensuring the safety of the vehi-
cle as it travels from point A to point B is a top priority. To monitor the environment,
autonomous vehicles typically use a combination of sensors, including cameras and
LiDAR.

Before discussing the specific contributions of this PhD thesis, let us provide an
overview of autonomous vehicles.

What is an autonomous vehicle?

An autonomous vehicle is a car equipped with an automatic control system that
enables it to drive without human intervention in real-world traffic conditions. In
simpler terms, an autonomous vehicle is able to sense its environment and operate
without human input. Automation refers to the use of mechanical, pneumatic, hy-
draulic, or electric systems to perform tasks that would normally be carried out by
humans.

To achieve this understanding, an autonomous vehicle must have a precise under-
standing of its environment. This is accomplished through the use of sensors, highly
accurate and constantly updated maps, communication systems, and artificial intel-
ligence. Each of these components plays a crucial role in the operation of the au-
tonomous vehicle. Sensors such as cameras, radars, and LiDAR provide a detailed
view of the vehicle’s surroundings. Communication systems allow for the exchange
of information about the environment and other vehicles or individuals encountered
during the journey. Artificial intelligence collects and analyzes all of this informa-
tion, enabling the vehicle to make decisions and take actions similar to those of a
human driver. Each of these components is crucial for the vehicle to be able to oper-
ate safely and effectively in its environment.

Autonomous vehicles are safer than traditional vehicles. The primary goal of au-
tonomous vehicles is to provide passengers with a higher level of safety than if there
were a human driver. Sensors and electronics can react faster than human drivers,
allowing for quicker reaction times. In addition, technology can eliminate certain
human-specific factors that may affect safety, such as drowsiness or distraction. As
sensors and electronics become more advanced, they will provide a more compre-
hensive view of the environment and allow for even faster and more accurate re-
sponses, further improving safety on the roads.
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A brief history of autonomous vehicles: It is useful to provide a chronological
overview of the history of automation in the automotive manufacturing industry.
While automation has been present in our lives for many years, it may not always
be immediately apparent. This thesis will focus specifically on the automation of
land vehicles, including autonomous driving technology. The history of automation
in public transportation began with the introduction of People Moovers, small trains
running on rails, at the New York World’s Fair in 1964 (as shown in Figure 1.2). These
vehicles were significant because they were one of the first examples of automated
transportation available to the general public. A few years later, the Paris Metro
Line 1 and the London Victoria Line revolutionized transportation with automated
metros, with sensors on the rails regulating their speeds and trajectories. However,
in the early days, these metros always had a driver present who could take control
in case of emergencies. The first driverless automated metro was inaugurated in
Kobe, Japan in 1981, which reduced labor costs and increased efficiency. This prac-
tice quickly spread to other cities such as Lille in 1983 and Paris (Orlyval) in 1991.
As of 2016, cities around the world have nearly 55 automated metro lines, with some
regions leading in the adoption of automation.

I

FIGURE 1.2: People Moovers in New York in 1964.

The car case. Now let us look at the cars themselves. The very first self-driving car
was presented in 1921 in the United States. However, this vehicle cannot be consid-
ered the first autonomous car, but rather the first remote-controlled car. Indeed, a
truck, located at the rear of the car, controlled the entire vehicle, from its speed to
its trajectory through the steering wheel. We were able to start really talking about
vehicle automation in the 1939s, with the appearance of the automatic transmission,
cruise control, and braking assistance.
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In 1977, Japanese researchers piloted an autonomous vehicle on a suitable circuit
using trajectory tracking with lane recognition technology. It was operating at a
maximum speed of 30 km/h. A few years later, in 1984, the Mercedes-Benz group
managed to circulate an automatic van, called Vamors, with a speed of 100 km/h
without traffic, thanks to the use of camera sensor. The experiment was carried out
under the supervision of Ernest Dickmanns at the University of the Bundeswehr in
Munich.

In 1987, the automobile industry took a major turn thanks to the establishment of
the European Commission of the European program Prometheus, (Program for Eu-
ropean Traffic of Highest Efficiency and Unprecedented Safety). The aim of this
program is to develop concepts and solutions capable of making road traffic safer,
more efficient, more cost-effective and less polluting. This program lasted until 1995
and made it possible to learn more about the vehicle’s range and to define multiple

telematics applications supported by the intelligent vehicle concept.

All of these discoveries were remarkable at the time, but technology, went through
one of its biggest turning points in the 2000s with the arrival of the widely used
navigation system and the most famous, GPS (Global Positioning System).
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FIGURE 1.3: Autonomous vehicle market [6].

Autonomous vehicles have been put into tests or even commercial uses with varying
degrees of automation in big tech companies such as Waymo, Uber, Lyft and Tesla, as
shown in Figure 1.3. Several projects in recent years are shown in Figure 1.4. How-
ever, these cars have not yet reached the level of performance in all circumstances

and all weather conditions.
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FIGURE 1.4: On-road autonomous driving companies projected deployments [7].

The different automation levels of an autonomous vehicle. We often talk about
autonomous vehicles in their entirety, but different levels of autonomy exist. These
different levels of autonomy were determined by the organization SAE International
in 2021 committee [8], as shown in Figure 1.5. Level 0 is currently the best known,
which is the traditional vehicle. The human, the driver, is solely responsible and
alone performs all the maneuvers intended for driving the vehicle. From level 1, the
responsibility is shared between the driver and the system.

Level 1 is represented by driver assistance. The latter is responsible for the vehicle
and its driving while having driving aids, such as ABS, anti-lock wheel system, ESP,
electronic trajectory corrector or even cruise control. In summary, the driver takes
care of steering the vehicle, accelerating, braking, monitoring the road and is ready
to intervene in the event of a problem. The system then assists the driver using the
aids mentioned above.



1.1. Motivation and Context 7

SAE J3016™ LEVELS OF DRIVING AUTOMATION™

INTERNATIONAL. Learn more here: sae.org/standards/content/j3016_202104

SAE SAE SAE SAE SAE
LEVELO"§ LEVEL1" | LEVEL 2" § LEVEL 3" j] LEVEL 4"

SAE

LEVEL 5"

You are driving whenever these driver support features You are not driving when these automated driving
are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in
What does the you are not steering “the driver’s seat”
human in the
driver’s seat

You must constantly supervise these support features; When the feature These automated driving features
you must steer, brake or accelerate as needed to requests, will not require you to take
maintain safety you must drive over driving

have to do?

These are driver support features These are automated driving features

These features These features These features These features can drive the vehicle This feature
are limited provide provide under limited conditions and will can drive the
to providing steering N not operate unless all required vehicle under
warnings and OR brake/ AND brake/ conditions are met all conditions
momentary acceleration acceleration
assistance support to support to
the driver the driver

What do these
features do?

*automatic «lane centering *lane centering « traffic jam «local driverless *same as
emergency OR ) chauffeur taxi level 4,
braking . _ _ ) « pedals/ but feature
Example . «adaptive cruise |l *adaptive cruise (e can drive
Features | [MSHURISHS control control at the steering everywhere

wheel may or
may not be
installed

warning

same time inall

conditions

«lane departure
warning

FIGURE 1.5: The five levels of driving automation. The visual chart was taken
from SAE International in 2021 committee [8].

Level 2 takes over the driving aids of level 1 by adding an assistance to control the
steering, but also the brake and the accelerator by the system. Indeed, the latter is
able to redirect the trajectory of the driver and can also help to move from one line
to another once the driver has activated the indicator. The latter therefore only has
to manage the steering wheel, without any action on the pedals. In summary, the
system takes care of accelerating, braking and steering the vehicle, the driver must
monitor the road and regain control of the vehicle if necessary. Level 2 is the maxi-
mum level authorized to date by European legislation to drive on the road network.

As for level 2, level 3 takes up all the aids and rules of the previous level by adding
certain specificities. The driver has the possibility of delegating total driving to the
vehicle in certain situations, when traffic is dense or on the motorway for example.
However, the driver must always remain attentive to his surroundings and be able
to regain control of the vehicle at any time. In summary, the driver should only take
control of the car in the event of a problem, while the system takes care of the pedals,
steering, and road surveillance in other cases. This level is more commonly referred
to as “Eyes off — Hands off”, which means that the driver does not have to use their
eyes or hands all the time.
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Once level 4 has been reached, there is already a high degree of autonomy. Indeed,
the driver can indulge in other activities such as reading a book or watching a film,
leaving full control of his vehicle to move from point A to point B. Driving tests
of this level of autonomy will first be tested on the highway in order to be better
understood by, moreover, mild weather. In short, the driver does nothing and the

system looks after everything (mind off).

Finally, the last level, level 5 represents the total autonomy of the vehicle (human
off). The driver is non-existent, the human will be a passenger and can engage in any
other activity, and the vehicle will circulate completely autonomously on the entire
road network and in any weather. It is even very likely that the level 5 autonomous
vehicles will be able to do without a steering wheel and pedals.

Autonomous vehicle sensors. To fully understand what a self-driving vehicle is, it
is important to perform a technical analysis to understand how it actually works.
Various elements of technology are brought into play here.

For an autonomous vehicle to be able to circulate completely safely, it is necessary
to provide it with elements of technology that guide it. In order to recognize the
environment, the vehicle is equipped with various sensors. These sensors collect
and generate data in bulk. These useful data and perception algorithms will make it
possible to determine how dangerous a situation is, for example, the presence of an

obstacle.

. Long-Range Radar
. Short-/Medium-Range Radar Erivitonment Envimn,‘nent
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Mapping

FIGURE 1.6: Autonomous vehicle sensors [9, Fig. 3].

So, the first category covered here is hardware. In general, the technological equip-

ment will make it possible to send all the necessary information, whether it concerns
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the vehicle itself, its environment, or even the other actors present in the vehicle. This
will allow anticipating any possible risks that may be present, the vehicle will there-
fore be able to act accordingly and maintain the highest possible level of safety. To
make all this possible, various sensors come into play, as shown in Figure 1.6, such
as stereo cameras, infrared cameras, RADAR, SONAR, LiDAR, electronic stability
controls or even GPS, speedometers and odometers.

In the framework of this research, and for the hardware part of the system to de-
velop, we will focus mainly on cameras and LiDAR because these are the most com-
monly used sensors with regard to autonomous vehicles. From the literature, we can
see that the combination of fusion-based 3D object detection has been extensively
investigated due to its significance for many real-world applications. These choices
and justifications are coming from a deep analysis of the state-of-the-art (SOTA) (see
Chapter 2).

The stereo camera represents the driver’s eyes on a human scale. This camera is
made up of several lenses that allow the vehicle to represent its environment in the
smallest details, and therefore to know how and where to move. With two sensors,
it is possible to constitute a 3D environment in front of the vehicle to detect possi-
ble obstacles and predict their distance from the car. The LiDAR will complete the
vision and the information provided by the camera, by adding notions of size and
distance to the different objects that make up the environment. Figure 1.7 provides

a representation of data output from camera and LiDAR sensors.

FIGURE 1.7: Example of camera and LiDAR data.
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Hardware (hardware components) is not the only thing being investigated. It is
also important to consider the software (algorithm). Input from the sensors is then
used as input to the algorithm, which takes any necessary action, such as predicting,
accelerating, and turning.

Environmental awareness is crucial to the development of software. This allows the
vehicle to identify the entities surrounding it, analyze them, and decide whether
there is a risk to the vehicle. As closely as possible, these sensors, and software, will

reproduce human actions without intervention.

1.2 Problem Statement and Scope of Study

In recent years, 3D object detection has gained increasing attention in both academia
and industry due to its numerous applications in fields such as autonomous driv-
ing. Accurate detection and localization of objects are crucial for the perception of
self-driving cars. With the advancement of deep learning and convolutional neural
networks (CNNs), the 2D object detection technique has made significant progress
in efficient network architectures. However, determining the distance from the ego-
vehicle to objects is the most challenging aspect of 3D object detection. Expensive
technology, such as LiDAR, can provide precise and accurate depth information,
leading to a performance gap between LiDAR-based methods and camera-based
methods. Although many authors have investigated how to fuse LiDAR with RGB
cameras, limited studies have explored fusing LiDAR and stereo in a deep neural
network for 3D object detection. In this thesis, we propose a new approach to fuse
data from a stereo camera and 4-beam LiDAR via a neural network for depth esti-
mation, achieving better dense depth maps and improving 3D object detection per-
formance. This approach is also classified as a low-cost sensors-based method since
4-beam LiDAR is cheaper than the well-known 64-beam LiDAR.

Several factors can affect the perception ability of self-driving cars, potentially caus-
ing serious consequences for other road users. Environmental influences can distort
the data collected from these sensors, affecting the awareness of self-driving cars.
While sensors perform well in controlled lighting or indoor environments, outdoor
applications face numerous challenges, particularly in extreme lighting conditions
such as sunburns, low light, and nighttime conditions. Self-driving cars also face
significant challenges under adverse weather conditions such as fog, rain, and snow,
severely affecting both the camera and LiDAR. Therefore, this work focuses on 3D
object detection with camera and LiDAR sensors operating in foggy weather condi-
tions.

This thesis includes the following objectives:

¢ To identify the current state of deep learning-based approaches for 3D object
detection, including the most commonly used deep architectures for learning



1.3. Main Contributions 11

3D object features. We will discuss their advantages and limitations and how
they can address 3D object detection challenges for autonomous vehicles.

To investigate and propose new 3D deep learning architectures for 3D object
detection based on stereo camera and LiDAR. The proposed approach should
be able to detect objects and ensure high accuracy.

To collect or produce a dataset for evaluating our proposed 3D object detection
approach under adverse weather conditions such as fog.

To investigate and propose improvements for 3D object detection for self-
driving cars in foggy weather conditions.

To analyze the role of each sensor in the model.

The following research questions will guide the study:

1.3

How can we effectively fuse image and point cloud into a single model?
How are cameras and LiDAR affected by fog?
Regarding the affected sensors, how does the model’s performance change?

Which data is worth using in the model?

Main Contributions

With the research objectives mentioned above, our contributions in this thesis can be

summarized as follows:

We propose a novel deep learning-based architecture called Sparse LiDAR and
Stereo Fusion (SLS-Fusion) for 3D object detection. This network takes both
stereo camera and LiDAR inputs.

We introduce a novel dataset called Multifog KITTI, which includes both stereo

images and point cloud data. This dataset is augmented for foggy scenes based
on the KITTI dataset.

We analyze the contribution of each sensor, camera, and LiDAR to the pro-
posed SLS-Fusion model under favorable and foggy weather conditions.

We conduct experiments on the KITTI dataset and demonstrate that SLS-
Fusion outperforms low-cost-based car detection methods.

We perform experiments on the Multifog KITTI dataset, propose improve-
ments, and demonstrate that SLS-Fusion can achieve better performance in
foggy scenes.

We analyze different combinations of cameras and LiDAR types to demon-
strate the trade-off between cost and performance of 3D object detection for

autonomous vehicles.
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1.4 Thesis Outline

In this chapter, we provide the context for this study, including the identification of
research objectives and questions, and the argument for the value of this research.
The remaining chapters in this thesis are outlined as follows:

Chapter 2 presents a review of the state-of-the-art in object detection for autonomous
vehicles, considering both favorable and foggy weather conditions. The chapter
discusses the methods found in the literature, including the combination of sensors
and processing algorithms used. This discussion helped inform our choices for our

proposed system.

Chapter 3 describes the dataset used in this thesis and the process of augmenting the
original KITTI dataset with fog to produce the Multifog KITTI dataset. As our objec-
tive is to develop algorithms for detecting 3D objects in foggy weather conditions,
this chapter provides important context for our proposed approach.

Chapter 4 presents our proposed approach, SLS-Fusion, which uses a neural net-
work to fuse data from a 4-beam LiDAR and a stereo camera for depth estimation,
to improve 3D object detection performance. This approach is also classified as a
low-cost sensors-based method, as 4-beam LiDAR is less expensive than the more
commonly used 64-beam LiDAR.

Chapter 5 analyzes the effects of fog on our model’s performance, based on experi-
ments conducted on the Multifog KITTI dataset presented in Chapter 3. This chapter

also proposes methods for improving model performance under foggy conditions.

Chapter 6 provides an ablation study that examines the roles of cameras and Li-
DAR in our object detection model. We test different combinations of cameras and
several types of LIDAR with varying numbers of beams (e.g., 4 beams, 8 beams, 16
beams, 64 beams) to analyze the complementarity between these two sensor types.
Additionally, a brief economic analysis is carried out.

Chapter 7 concludes the thesis by reviewing the results and highlighting the main
findings, lessons learned, and short-term perspectives for future research.
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Chapter overview: Object detection is a crucial element of computer vision that en-
ables us to detect and classify objects in digital images. In recent years, there has
been a surge of interest in 3D object detection for autonomous driving. Detecting
and localizing objects in 3D space is more challenging than in 2D. Additionally, ad-
verse weather conditions pose a significant challenge for self-driving cars. Sensor
installation is an essential aspect of collecting necessary meteorological data, which
is then included in the object detection model. This chapter offers a comprehen-
sive review of 2D object detection and the current state-of-the-art (SOTA) of deep
learning-based 3D object detection for self-driving cars in Section 2.3. We classify
the methods according to the type of input data they take as input to the model:
camera-based, LiDAR-based, and fusion-based 3D object detection. Finally, we pro-

vide some observations and conclusions in Section 2.5.

2.1 Introduction

The automation of driving is based on many aspects, such as perception, position-
ing, scenario analysis, decision-making, command control. The subject of this thesis

is about the perception part only. More specifically, it aims at taking into account
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data fusion in order to improve detection levels, especially in degraded weather
conditions. The data come from perception sensors on board of vehicles. LiDARs,
radars and cameras are commonly used. We will focus in the framework of the thesis
on the joint use of cameras and LiDARs, because these are the sensors that best allow
the detection of vulnerable road users and that these are the sensors most impacted
by degraded weather conditions. It is therefore on this combination of sensors that
our contribution can be relevant. A SOTA on 2D detection methods will be pre-
sented in the Section 2.2. Then in Section 2.3, more recent methods of detection and
localization methods (3D detection) will be presented. Finally, in Section 2.4 we will
focus on the problem of degraded weather conditions, and we will show that these
are still too little addressed in the literature.

2.2 Traditional-based and Deep Learning-based 2D Object
Detection Methods

A 2D object detector produces, for each object of interest in an image, a 2D bound-
ing box and a class label. In two dimensions, the bounding box is defined by
an axis-aligned rectangle, which should be as small as possible while still con-
taining all parts of the associated object in the image, as shown in FIGURE 2.1.
There are many ways to encode a bounding box. For example, in the PASCAL
Visual Object Classes (VOC) Challenge [10], a 2D bounding box is parameterized
as (X, Y, Xpr, Yor), Where (x4, yy) represents the pixels in the top-left corner and
(xpr, Ypr) represents the bottom-right corner of the object in the image. On the other
hand, in the challenging COCO benchmark [11], it is encoded as (x,y, w, h), where
(x,y) represents the pixels in the top-left corner and (w, ) represents the size of the

object in the image.

FIGURE 2.1: Ground truth annotated 2D bounding box from a scene in KITTI
dataset [12]. The red bounding box corresponds to the car object class.
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Over the past 20 years, there has been a significant evolution in object detection tech-
nologies. In the past, researchers used classical methods for detecting objects [13, 14]
before deep learning became widely known. Due to this, 2D object detection can be
divided into two categories: traditional-based and deep learning-based methods.

Traditional-based methods usually use hand-crafted features serving for object
recognition/ detection. For this reason, these methods often get stuck in complex
scenarios. In the domain of face detection, by using sliding windows Viola and
Jones [13] looks at all possible positions and scales in an image to determine if any
location contains a human face. Haar-like features are extracted and then fed into
the classifier to determine if it is a face or not. Dalal and Triggs [14] solve the pedes-
trian detection problem by adopting the Histogram of Oriented Gradients (HOG)
descriptor to extract features and then using a linear SVM to determine if it is a
person. In this thesis, our works are not based on this family of methods because
these methods are now overtaken by the methods based on deep learning which are
presented below.

In contrast to the traditional-based method, recent deep learning-based architectures
[15-26] leverage GPU power and massive amounts of data to learn and then extract
these learned feature representations which is usually optimized for a particular
task, leading to a significant improvement in the model performance. However, it
requires a large number of annotated images (for supervised learning) and GPU in-
frastructure, which is expensive. Deep learning-based object detection methods can
generally be classified into two main categories: two-stage object detectors [21-26]
where a region proposal network (RPN) first predicts the proposed objects called the
region of interests (Rol) and these ROIs are refined later to obtain the final bounding
boxes, and one-stage object detectors [15-20, 27] in which the objects are predicted
directly from the image. Girshick et al. [21] proposed R-CNN to investigate how to
apply Convolutional Neural Network (CNN) from classification to object detection
problem. As shown in Figure 2.2, this method employs selective search proposed by
Uijlings et al. [28] to find about 2000 region proposals: category-independent regions
for each input image, leading to an extremely slow detection speed. Each region is
affinely warped into a fixed input size that can be fed into a CNN to extract useful
features from these regions. Support Vector Machine (SVM) is then used for each
category to classify each region.
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R-CNN: Regions with CNN features

warped region

\ :
A [ivmonitor o

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

FIGURE 2.2: Architecture of R-CNN method proposed by Girshick et al. [21,
Fig. 1].

Girshick [23] proposed Fast R-CNN which simplifies the R-CNN architecture while
improving the performance and accelerating training/ inference time. Its architec-
ture is shown in Figure 2.3. Computation sharing between regions speeds up train-
ing. The procedure results in end-to-end training with the ability to fine-tune all
layers. It extracts a feature map from an image of any size. For each region, a ROI
pooling layer pulls a set length feature from the feature map (suggested by selective
search [28]). Each feature is fed through a sequence of Fully Connected (FC) layers,
which branch into two output layers: one for softmax probability (classification) and
the other one for the four bounding box regressor parameters. Despite the fact that
Girshick [23] successfully integrates the benefits of the work of Girshick et al. [21]
and He et al. [22], its detection speed is still restricted by proposal detection.

Outputs: beX
I Deep softmax regressor
|ConvNet — .
B Rol FC
. pooling
Conv X Rol feature
feature map VeCtOr For each Rol

FIGURE 2.3: Architecture of Fast R-CNN method proposed by Girshick [23,
Fig. 1].
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Region proposal became a real-time detection bottleneck (Uijlings et al. [28] takes
almost the same time as detection). Shortly after the work of Girshick [23] and Ren
et al. [24] proposed the Faster R-CNN detector in 2015, shown in Figure 2.4. It is
the first end-to-end deep learning object detector, as well as the first deep learning
object detector that works in near-real time. The RPN has been trained to handle
region proposals. Fast R-CNN slightly improves average accuracy (mAP) compared
to R-CNN. It significantly improves training (8.75 hours and 84 hours) and detection
time of R-CNN. Even though Faster R-CNN overcomes the speed bottleneck of Fast
R-CNN, there is still computation redundancy at the detection stage.

classifier

propoy
Region Proposal Network %

conv layers

y
T 77—

FIGURE 2.4: Architecture of Faster R-CNN method proposed by Ren et al. [24,
Fig. 2].

To localize the object within the image, all the prior object detection techniques used
regions detectors before classification (two-stage detectors). With YOLO proposed
by [15], the network no longer examines the entire image. Rather, it examines por-
tions of it that have a high likelihood of holding the object. Object detection is then
treated as an end-to-end regression problem. In YOLO method, a single CNN pre-
dicts multiple bounding boxes and class probabilities for those boxes. It also predicts
all bounding boxes for an image across all classes at the same time. It generates a
S x S grid from the input image. If an object’s center falls inside a grid cell, that
grid cell is in charge of detecting that object. For each grid cell, B bounding boxes,
the corresponding confidence score, and C class probabilities are predicted. These
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confidence scores represent the model confidence that the box includes an object, as
well as how accurate it estimates the box it predicted is.

Bounding boxes + confidence

‘.!“q_‘

| P—— )

S x S grid on input ] Final detections

Class probability map

FIGURE 2.5: Architecture of YOLO method proposed by Redmon et al. [15, Fig. 2].

In YOLO [15], each grid cell only predicts one object, as shown in Figure 2.5. As
a result, the method significant weakness is that it fails when the center of multi-
ple objects falls into the same cell. The problem was solved using anchor boxes in
[16, 17, 24] and YOLO variants [18, 19, 27].Instead of directly regressing a bound-
ing box, these methods predict off-sets from a pre-determined set of boxes, called
anchor boxes, with particular height-width ratios. These anchor boxes is predefined
by clustering bounding boxes on ground truth labels. Instead of directly predicting
bounding boxes, regressing the offset to anchor boxes allows the network to learn
easier. However, it makes the model highly dependent on the training dataset be-
cause it uses a k-means clustering to find the optimal size of anchor boxes. Besides,
anchor-based methods often increase the number of false positive predictions. So
it is normally equipped during inference step with a post-processing step, which is
Non-Maximum Suppression (NMS) to retain only one box for each object. More-
over, rather than treating the same regardless of how large or small the object is,
later methods [16-19] have a multiscale design which helps the model to make bet-
ter predictions when objects of different sizes appear in the image. Using anchors
includes a lot of hyperparameters, such as the number of anchors and anchor size,
all of which have an impact on the end outcome, even if the changes are minor.
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Thanks to the explosion of deep learning, 2D object detection is an extensive and
very attractive research topic in the field of computer vision. However, the previ-
ously discussed 2D object detectors can be difficult to adapt to detect 3D objects.
Only 2D bounding boxes can be displayed, and depth information is not presented,

which is crucial for safe driving.

2.3 3D Object Detection Methods

In the autonomous driving field, 3D object detection is more relevant than 2D object
detection since it provides more spatial information, such as location, direction, and
size, as shown in FIGURE 2.6. According to Qi et al. [29], a 3D bounding box is
encoded as a set of seven parameters (x,y,z,h,w,1,6), including the coordinate of
the object center (x,y,z), the size of the object (height, width, and length) and its
heading angle (6). Besides the development of deep learning, hardware technology
has also made strides, with the appearance of LiDAR in autonomous driving (The
2005 DARPA Grand Challenge [30]) next to cameras and RADAR. It makes this task
more developed and competitive through its impressive results by using point cloud
data.

This thesis focuses on the fusion of camera and LiDAR. Based on these sensors, 3D
object detection has typically approached in the following three directions: camera-
based (including monocular or binocular) (presented in Section 2.3.1), LIDAR-based
(presented in Section 2.3.2) and fusion-based (presented in Section 2.3.3).

2.3.1 Camera-based 3D Object Detection Methods

3D object detection based on a 2D image is a challenging task. This task is often
subdivided into: monocular-based and binocular-based methods. Although the im-
age provides rich shape and texture details, it lacks depth information, which is
critical for estimating the size and location of objects (depth information from the
stereo camera is not accurate enough). This information is the mainstay of 3D ob-
ject detection for autonomous driving. So instead, camera-based methods usually
try to detect objects by adding inductive biases into their model such as the 2D/
3D constraints as well as predict keypoints/ shapes of objects on image to form 3D
bounding boxes. More modernly, by first predicting the depth map and then us-
ing this predicted depth information, the 2D image space is converted to 3D points
space to take advantage of the efficiency of LIDAR-based methods.

Keypoints/ Shapes-based methods — [31-36]

In 2017, Chabot et al. [31] presented Deep MANTA, one of the first works on monoc-
ular 3D object detection. Its architecture is shown in Figure 2.7. It recognizes 2D
keypoints and uses 2D/ 3D matching to find the best position. The procedure is
divided into two steps. The method firstly uses a cascaded RCNN architecture to
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(b)

FIGURE 2.6: Ground truth annotated 3D bounding box from a scene in KITTI
dataset [12] respectively showed on (a) the RGB image (camera); (b) point cloud
(LiDAR). The red bounding box corresponds to the car object class.

detect and refine 2D bounding boxes, corresponding classification, 2D keypoints (36
vehicle part pixels coordinates including visible, occluded and self-occluded parts),
and template similarity. This data is then passed to a second stage, which uses the
predicted template similarity to pick the best matching 3D CAD model in the 3D
CAD vehicle dataset (103 CAD models with a weakly annotated process for 36 key-
points) in order to recover the 3D location and orientation. For 3D localization, a 3D
bounding box is deemed correct if the distance between its center and the center of
the ground truth bounding box is less than 1 meter.
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FIGURE 2.7: Architecture of Deep MANTA method proposed by Chabot et al.
[31, Fig. 2].

The 2D /3D matching is time-consuming. As a result, reducing the complex quantity
of points while keeping competitive performance is worth considering. Barabanau
et al. [36] greatly reduces this by using only 5 CAD models and 14 keypoints. Fig-
ure 2.8 shows (a) 36 keypoints and (b) 14 keypoints defined from Deep MANTA [31]
and MonoGRNet 2 [36].

(a) 36 keypoints (b) 14 keypoints

FIGURE 2.8: 3D keypoints defined from (a) Deep MANTA proposed by Chabot
et al. [31, Fig. 4(a, b)]; (b) MonoGRNet 2 proposed by Barabanau et al. [36, Fig. 3].

RTM3D method proposed by Li et al. [33] presented a novel approach for detecting
scale-invariant keypoints in point-wise space called the Keypoint Feature Pyramid
Network (KFPN). Its architecture is shown in Figure 2.9. The method detection head
is inspired by Duan et al. [37]. The method predicts 2D projection keypoints of all 8
cuboid vertices and cuboid center. It also directly regresses the 3D dimension, ori-
entation, distance, and 2D size of objects. As the predicted keypoints are relatively
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noisy, rather than directly forming a cuboid with them, these values are used as ini-
tial estimates for optimization using perspective projection geometric constraints to
create a 3D bounding box.

Keypoint Detection Geometric Constraint

|
A
\

|

FIGURE 2.9: Architecture of RTM3D method proposed by Li et al. [33, Fig. 1].

2D/ 3D consistency constraints-based methods — [38—41]

Mousavian et al. [38] proposed a simple monocular image-based architecture. A
SOTA of 2D object detector is employed in this approach to generate 2D region pro-
posals, from which related 3D proposals are calculated, and then the local point
cloud of dynamic objects is reconstructed. Each region proposal that meets a spe-
cific level of confidence is input into a CNN, which generates estimates for the cor-
responding 3D bounding box dimensions (h, w, ) and heading angle 6. For the head-
ing estimation, a novel classification-regression hybrid is used, in which the angle
is divided into discrete bins and residuals for each angle bin center are regressed.
The center coordinates (x,y,z) are calculated using the estimated dimensions and
heading angle, as well as the constraint that a projected 3D bounding box should
fit closely into the corresponding 2D bounding box. An optimization-based method
can then be used to estimate the entire 3D bounding box.
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FIGURE 2.10: Architecture of MonoPSR method proposed by Ku, Pon, and
Waslander [41, Fig. 2].

Pseudo point cloud-based methods — These methods typically have data conversion
from 2D to 3D by using extrinsic calibration information between the camera and
LiDAR.

In MLF method presented by Xu and Chen [42], a depth map is first predicted from
monocular RGB and concatenated as RGB-D to form a tensor of six channels (RGB
image, Z-depth, height, distance), and then it is utilized to regress the 3D bounding
boxes. This is one of the first papers to suggest that the estimated depth information
be raised to a 3D point cloud. The term “Point Cloud”, as seen in Figure 2.11, is
converted from the estimated depth but is only used to visualize the detection re-
sults. An interesting paper titled Pseudo-LiDAR presented by Wang et al. [43] was
inspired by this article, based on this idea of this data representation transformation.
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Rol

7 Objectness
q Classifier g ax Pooling
‘ L D L 2D Box Proposals
Monocular ‘ Regressor
Image (RGB) Conv Layers FC Layers

Concatenation

Multlclass Classifier
2D Box Regressor

Q_E 3D Dimension Regressor

3D Orientation Regressor

Concatenation

! Front View Rol
Feature Maps Mean Pooling ‘:

1
; i
; i
| ! Poi
| oint Cloud |
! j Degth (XVZ Map) |
i ! J

"""""""""" FC Layer
Sub-net for Disparity Prediction

Sconw Stream

—-} 3D Location Regressor

Spe stream

FIGURE 2.11: Architecture of MLF method proposed by Xu and Chen [42, Fig. 1].
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Wang et al. [43] pioneered a pseudo-LiDAR approach for camera-based object de-
tection. Its architecture is shown in Figure 2.12. It emphasizes the inefficiency of
current camera-based object detection methods. This method try to bridge the gap
between camera-based and LiDAR-based methods by representing the data as point
clouds. It estimates the depth map from an RGB image using a depth estimation
neural network. It then converts the predicted depth map into a pseudo 3D point
cloud by projecting all pixels with depth information into LiDAR coordinates. And
finally, they can process the pseudo point cloud as real point cloud to leverage of
the efficiency of LiDAR-based object detection methods. This paper employs AVOD
[44] and F-PointNet [29] for its 3D object detection part. The ability to reconstruct
3D point clouds (normally collected from expensive LiDAR) from less expensive
monocular or stereo cameras is a valuable feature of this approach. It can take ad-
vantage of point cloud representations such as distance invariance, no ambiguity,
and occluded objects. However, pseudo point clouds have some limitations com-
pared to real point clouds. For example, although it has a much higher resolution
than a LiDAR point cloud, its quality is determined by the depth estimation algo-
rithm and it is computationally more expensive to process.

Stereo/Mono images  Depth estimation Depth map Pseudo LiDAR 3D object detection  Predicted 3D boxes

) -
- ’»ma - P
T

FIGURE 2.12: Architecture of Pseudo-LiDAR method proposed by Wang et al.
[43, Fig. 2I.

As demonstrated in Figure 2.13, Weng and Kitani [45] presented an end-to-end
pseudo-LiDAR training routine. Pseudo-LiDAR [43] and this work have a similar
concept. However, instead of training two separate networks (depth estimation and
object detection as in [43], Weng and Kitani [45] designed the architecture in an end-
to-end training fashion to better train the 3D detection task. The major issue with
pseudo point clouds is noise such as depth errors, long tails in the 3D point cloud
reprojected from the predicted depth map caused by fuzzy boundaries, as shown in
Figure 2.13 (a). To attack this issue, Weng and Kitani [45] used the consistency of 2D
and 3D bounding boxes and instance masks to improve the accuracy of the depth

map.

Based on the work of Pseudo-LiDAR [43], the same authors proposed Pseudo-
LiDAR++ [46] which suggests stereo depth estimation neural network, called SDN.
In this network, it proposed a Depth Cost Volume to directly predict the depth map
instead of predicting the disparity map (Disparity Cost Volume) as proposed by
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FIGURE 2.13: Architecture of Pseudo-LiDAR end-to-end method proposed by

Weng and Kitani [45, Fig. 2, 4].

Chang and Chen [47] and this helps to boost the predicted depth map accuracy.

In addition, to improve the accuracy of the predicted depth map, it proposes a

depth correction phase by using a simulated 4-beam LiDAR to regularize the pre-

dicted depth map and since then the pseudo point cloud looks more real (see Fig-

ure 2.14). This belongs to the family of pseudo-LiDAR methods so we we mention it

as camera-based method. However, it can also be classified in fusion-based methods

2.3.3 because it uses stereo camera as main and LiDAR as an option.
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FIGURE 2.14: Architecture of Pseudo-LiDAR++ method proposed by [46, Fig. 5].

AMS3D proposed by Ma et al. [48] improves on the concept of Pseudo-LiDAR by

combining pseudo point cloud with RGB image information.

Its architecture is

shown in Figure 2.15. As a simple concatenation (x,y,z,1,g,b) is not effective, the
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paper proposed an attention-based method for guiding message transmission be-
tween spatial and RGB features. The RGB fusion module is also effective for real
point cloud. The method also proposed a simple point cloud segmentation design
based on Qi et al. [29] work to improve the long-tail problem existing in pseudo

point cloud.
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FIGURE 2.15: Architecture of AM3D method proposed by Ma et al. [48, Fig. 2].

Pseudo point cloud depends on the quality of the predicted depth map, which is
normally inaccuracies and has blurry edges leading to edge bleeding. Wang et al.
[49] proposed to train a depth estimation neural network in two separate parts: fore-
ground and background. It focuses more on the foreground part by giving it a larger
weight during training time. By the way it can focus on extracting information from

the focused objects. Its architecture is shown in Figure 2.16.
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FIGURE 2.16: Architecture of ForeSeE method proposed by Wang et al. [49, Fig. 4].

Concluding this section, we see that image-based object detection is a traditional re-
search area for a long time and moreover, cameras are cheap and provide a lot of
texture information about objects based on color, edges, etc. However, the image
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lacks depth information, which is extremely important for 3D tasks. Even when we
use a stereo camera it still doesn’t leave a sufficiently accurate depth map. From
here, the research is gradually pushing to a sensor such as LiDAR that brings bet-
ter information accuracy to better match the required task. This will therefore be

presented in the following section.

2.3.2 LiDAR-based 3D Object Detection Methods

The point cloud reconstructs the scene in three dimensions and contains a wealth
of information about geometry, shape, and size. As a result, relevant features that
improve detection performance can be extracted. However, due to their nature and
ability to process, point clouds encounter major obstacles such as sparse objects es-
pecially at a distance, difficulty in glass surfaces, lack of color information.The most
effective deep learning approaches for object detection require data to be organized
in a structured tensor (e.g., images, videos), which is not the case for point clouds.
Due to the irregular, unstructured, and unordered nature of point clouds [50], they
are often handled in one of three ways: projecting point clouds to generate a regular
pseudo image, subsampling point cloud cells called voxels, or encoding raw point
clouds with sequence of multi-layer perceptron (MLP) proposed in [51, 52]. Existing
research has looked into the following three ways depending on the representation
of the point cloud: view-based, voxel-based, point-based, and hybrid point-voxel-
based detection.

View-based detection — Methods in this category project a point cloud onto a 2D
image space to obtain a regular structure as an initial stage. Generally, CNN is then
used to take advantage of this information. The most common types of projection
are bird’s eye view (BEV) [53], front view (FV) [53], range view (RV) [54, 55], and
spherical view (SV) [56].

Among these view-based methods, methods are most often converted to BEV form
[57-60] as it can preserve depth, maintain object size consistency over range which
is a very important information of the 3D point cloud. BirdNet proposed by Beltran
et al. [58] firstly projects point cloud into BEV. This paper detected 2D objects on BEV
based on the work of Ren et al. [24]. And then it proposed some post-processing step
to generate 3D bounding boxes. Its architecture is shown in Figure 2.17.
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On another hand, several methods projects point cloud into range view (RV) im-

age [54, 55]. To obtain a range view image, point cloud is roughly projected and
discretized into a 2D point map. VeloFCN is the first study based on range image
detection proposed by [54], which projects point clouds to 2D and uses 2D convo-
lutions to densely forecast 3D bounding boxes. LaserNet [55] proposed a real-time

probabilistic LIDAR that models aleatoric uncertainty. Its architecture is shown in

Figure 2.18. As you can see from the RV view, point cloud is dense and is a na-
tive representation of LIDAR. Alternatively, if projected to 3D space or BEV, sparse

representation occurs and more computation.
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FIGURE 2.18: Architecture of LaserNet method proposed by Meyer et al. [55,

Fig. 2].

Voxel-based methods — Methods in this category voxelize a point cloud into 3D
grids (normally called voxels) as an initial stage.
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In 2017, Vote3deep, a LiDAR-based detector, was presented by Engelcke et al. [61].
LiDAR point clouds are discretized into a sparse 3D grid using a hand-crafted fea-
ture vector calculated from the statistics of each cell based on the points within that
cell. In order to process the discretized point cloud quickly, this sparse grid can be
applied with sparse 3D convolutions, which limits filtering to the grid cells that do
not contain empty arrays. Items are detected using a sliding-window search with a
fixed-size window with N different orientations. On each window, a CNN performs
binary classification, anticipating whether an object is included or not.

A similar approach was described in [62] for the detection of vehicles. LIDAR point
clouds are discretized into three-dimensional grids and then processed through a
fully convolutional network using 3D convolutions. In essence, this network con-
sists of a 3D RPN that produces object confidence scores along with 3D bounding
box residuals. This model outperforms the Vote3deep method [61].

In 2019, LiDAR points are divided into voxels that are evenly spaced, and they are
grouped by the voxel they belong to. The proposed Voxel Feature Encoding (VFE)
layer is then applied to each non-empty voxel point, resulting in a fixed-size voxel-
wise feature vector. It is essentially a tiny PointNet [51]. It produces a sparse 4D
array, which corresponds to a 3D grid in which only some voxels have learned fea-
ture vectors. A series of 3D convolutional layers are applied to the 4D array, which
is used to create a 3D feature map. This feature map is passed into an RPN, which
produces 3D anchor box residuals and object confidence scores.
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FIGURE 2.19: Architecture of VoxelNet method proposed by Zhou and Tuzel [63,
Fig. 2].

Figure 2.19 shows the architecture architecture of VoxelNet [63]. In this work, Zhou
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and Tuzel [63] completely removes the hand-crafted feature engineering for 3D point
clouds such as BEV and proposed an end-to-end single stage 3D object detection. By
encoding voxel feature encoding (VFE), VoxelNet divides a point cloud into evenly
spaced 3D voxels, which are then transformed into unified feature representations.
This encodes the point cloud as a descriptive volumetric representation, which then
generates detections via a RPN.

Point-based methods — These methods usually deal with the raw point cloud di-
rectly [64-72] instead of converting the point cloud to a regular structure.

PointNet, a pioneering study on deep learning-based architectures for consuming
point cloud raw data for classification and semantic segmentation, was introduced
by Qi et al. [51]. PointNet, a pioneering study on deep learning-based architectures
for consuming point cloud raw data for classification and semantic segmentation,
was introduced by Qi et al. [51]. They point out that as the point cloud is unordered,
the architecture should be permutation-invariant for all points. The PointNet, as
shown in Figure 2.20, receives a point cloud P with n number of points as input
and generates classification scores for k classes. The bottom branch handles segmen-
tation and generates point-wise classification scores for m classes. The input point
cloud is first passed through a spatial transformation network called T-net to gener-
ate an affine transformation matrix. The affine transformation matrix is used to align
the features from different point cloud data so that the model is invariant to feature
space variance from different point clouds. A shared Multi-layer perceptron (MLP)
with ReLU activation and batch normalization is then used to extract point-wise fea-
tures from the input. Note that both the T-net and MLP operations operate on one
point independent of all others making the operation agnostic to point ordering.
After two spatial transformation networks and two MLPs, 1024-dimensional fea-
tures are extracted for each point (1 x1024). The point-wise features are aggregated
together using a max pooling operation to create a global feature of size 1x 1024 rep-
resenting the whole point cloud. Similar to the T-net and MLP operations, the global
max pooling operation is also invariant to the order of the input points. This layer is
simple to use, effective and produces reliable results when dealing with outliers and
missing data. Finally, the global feature vector is passed through a fully connected
network to predict classification scores for k predefined classes, as shown in the top
branch of Figure 2.20. For tasks that need local structure information like part seg-
mentation (in the bottom branch), local and global feature vectors are concatenated
together, resulting in a vector size (nx1088). This allows the prediction of the point-
wise classification score for m predefined classes while considering both local and
global information at the same time.
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FIGURE 2.20: Architecture of PointNet method proposed by Qi et al. [51, Fig. 2].

PointNet++, proposed by Qi et al. [52], is a multi-stage and hierarchical extension of
PointNet [51]. They point out that the original PointNet does not capture local fea-
tures because the features of each point are extracted and aggregated directly into
the global signature. It is more generalizable to unseen cases when local patterns
can be abstracted along the hierarchy. Thus, PointNet++ applies the PointNet archi-
tecture to a hierarchical partitioning of the input data. Its architecture is shown in
Figure 2.21. Using the distance metric of the underlying space, the set of points is di-
vided into overlapping local regions. Using PointNet, each local region is processed
to extract local features. The farthest point sampling (FPS) is used to partition the
data. Input data and the underlying Euclidean space determine the receptive field.
Another key feature is its ability to combine features from multiple scales to address
the issue of varying sampling densities, resulting in improved robustness and detail
capture.
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Shi et al. [67] proposed the part-aware and aggregation 3D object detection neural
network. Its architecture is shown in Figure 2.22. The framework consists of two
stages: part-awareness and part-aggregation. By first learning from free-of-charge
supervisions derived from 3D ground-truth boxes, the part-aware stage predicts
coarse 3D proposals and precise intra-object part locations simultaneously. They
have developed a new Rol-aware point cloud pooling module that groups predicted
intra-object part locations within the same proposals, creating an effective way to en-
code features within 3D proposals. After the part-aggregation stage, the box location
is refined based on the pooled part locations.
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Yang et al. [69] proposed a two-stage 3D object detection. Its architecture is shown in
Figure 2.23. Initially, spherical anchors are seeded onto raw point clouds to generate
accurate proposals using a bottom-up proposal generation network. By eliminating
computation from prior works, this technique achieves a higher recall rate. To gen-
erate proposal features, PointsPool is applied by transforming interior point features
from sparse expressions into compact representations, which saves even more com-
putation. During the second stage of the prediction process, they implemented an
intersection-over-union branch to improve localization accuracy.

Here, we can see the power of LiDAR data. Although it does not give the color
information like the image, it outputs the point cloud by an accurate distance mea-
surement (laser). LiDAR-based methods show a very high performance compared
to camera-based methods, espectially in terms of depth information. However, there
are still limitations such as obscure information about object category. For example,
in some cases, it is difficult to distinguish whether it is a car or a bush based on
point cloud data alone while this can be handled more easily looking at the image
data. This is why methods based on data fusion have been developed presenting the
advantages of LIDAR and the camera.

2.3.3 Multimodal Fusion-based 3D Object Detection Methods

LiDAR and camera sensor fusion is one of the major concerns in this thesis. In the
literature, there are three main fusion methods: early fusion-based [29, 44, 53, 73-78]
where the raw data is fused in data-level or feature-level to form a tensor data of nu-
merous channels; late fusion-based [79] where the fusion takes place in the decision-
level; and deep fusion-based [74, 80-83] where the fusion is carefully constructed to

combine the advantages of both early and late fusion systems.
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In 2018, Qi et al. [29] presented the Frustum-PointNet architecture. As shown in Fig-
ure 2.24 , the method is composed of three phases: 3D frustum proposal, 3D instance
segmentation, and 3D bounding box estimation. The first phase of this procedure is
to produce 2D region proposals. By extruding the matching 2D region proposal un-
der 3D projection, a 3D frustum proposal is generated, which contains all points in
the LiDAR point cloud that lie inside the 2D region. The instance segmentation stage
feeds the frustum proposal point cloud to the PointNet segmentation network [51],
which classifies each point and determines if it is linked with the discovered item.
In the last stage, all positively classified points are loaded into a new PointNet that
estimates 3D bounding box parameters. The network regresses residuals relative
to the segmented point cloud centroid for the bounding box center estimation. A
classification regression hybrid is used to calculate bounding box size and heading
angle, as inspired by Mousavian et al. [38].
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FIGURE 2.24: Architecture of Frustum-PointNet method proposed by Qi et al.
[29, Fig. 2].

In 2017, MV3D [53] introduced an architecture utilizing both monocular image and
LiDAR information. Its architecture is shown in Figure 2.25. The LiDAR point cloud
is projected onto both a 2D top-view and a 2D front-view, from which feature maps
are extracted using separate CNNs. In the feature extraction stage, a feature map
is also extracted from the monocular image. The LiDAR top-view feature map is
passed to an RPN to output proposal 3D bounding boxes. Each of these 3D pro-
posals is projected onto the feature maps of all three views, and a fixed-size feature
vector is extracted for each view by using pooling. The three feature vectors are
then fused in a region-based fusion network, which finally outputs class scores and
regresses 3D bounding box residuals. The feature vectors are fused by combining
the three vectors by element-wise mean, feeding the combined vector through three
separate fully-connected layers, and then once again combining the resulting vectors
by element-wise mean.
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A quite similar approach, also utilizing the PointNet architecture [51], was inde-
pendently presented by Xu, Anguelov, and Jain [73]. In this work, the image-and-
LiDAR architecture PointFusion was introduced in Figure 2.26. Just as in Frustum-
PointNet [29], a SOTA 2D object detector is used to extract 2D region proposals
(ResNet) which are extruded to the corresponding frustum point cloud. Each frus-
tum is fed to a PointNet, extracting both point-wise feature vectors and a global
LiDAR feature vector. Each 2D image region is also fed to a CNN that extracts an
image feature vector. For each point in the frustum, its point-wise feature vector is
concatenated with both the global LiDAR feature vector and the image feature vec-
tor. This concatenated vector is finally fed to a shared MLP, outputting 8 x 3 values
for each point. The output corresponds to predicted (x, y, z) offsets relative to the
point for each of the eight 3D bounding box corners. The points in the frustum are
thus used as dense spatial anchors. The MLP also outputs a confidence score for
each point, and in inference the bounding box corresponding to the highest-scoring
point is chosen as the final prediction.
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Another fusion architecture named AVOD [44] was introduced in 2018. Its architec-
ture is shown in Figure 2.27. The LiDAR point cloud is projected onto a 2D top-view,
from which a feature map is extracted by a CNN. A second CNN is used to extract a
feature map also from the input monocular image. The two feature maps are shared
by two subnetworks: an RPN and a second stage detection network. The architec-
ture is thus similar to that in [53], the key difference being that AVOD uses both
image and LiDAR features also in the RPN. The reported 3D detection performance
is a slight improvement compared to [53] and is comparable to that of [63] for cars,
but somewhat lower for pedestrians and cyclists. They also found that utilizing both
image and LiDAR features in the RPN, as compared to only using LiDAR features,
has virtually no effect on the performance for cars, but a significant positive effect

for pedestrians and cyclists.
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In general, fusion-based methods are still difficult to effectively combine the two
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data sources. The SOTA methods for 3D object detection are still based on LiDAR
only. However, even if the results of fusion are not good, it is still necessary to study
it, especially when either or both sensors are affected by the environment, such as
in foggy weather conditions. So in the next section, we will briefly introduce some

methods to improve the model in extreme weather conditions.

For a more complete survey on recent developments in object detection for self-
driving cars, the reader is referred to [84-87].

2.4 Object Detection Methods in Foggy Weather Conditions

Self-driving cars are initially operated and tested in sunny locations during the day.
However, to build a level 5 self-driving car, the vehicle must be able to move in all
circumstances or all weather conditions. While many studies as mentioned in Sec-
tion2.2and 2.3 have been proposed and achieved with certain successes in favorable
weather conditions, the perception in adverse weather conditions is still limited and
there are still many challenges to be solved. Rain, snow, and fog may all obstruct
a self-driving car vision, just as they can affect human drivers. We focus on foggy
weather conditions in this thesis, as this phenomenon is common and has a major
impact on artificial vision systems [88-92].

Concerning artificial vision under foggy conditions, there is a substantial corpus of
research on fog detection [93-96]. The classification of scenes into fog and fog-free
conditions has also been addressed by Pavlic, Rigoll, and Ilic [97]. However, the
works that take into account fog in 2D or 3D object detection methods are still lim-
ited. Previous studies have demonstrated how performance drops in foggy scenes
for segmentation [98-102], 2D object detection [83, 98, 102] and depth estimation
[102] tasks.

The lack of work for object detection applied to the autonomous vehicle taking into
consideration fog comes from the fact that it is difficult to obtain datasets with fog.
In the general case, the availability of huge, labeled datasets has contributed signifi-
cantly to the advancement of computer vision in recent years [103, 104]. On the other
hand, it is inefficient to collect and annotate such dataset for each new problem (e.g.,
fog, rain). For this, two approaches are currently being explored:

¢ A small-scale fog chamber prototype created by Colomb et al. [105] can pro-
duce steady sight levels and uniform fog to evaluate the reactions of drivers or

algorithms under degraded conditions.

* The addition of digitally simulated degraded weather conditions on images
initially acquired in clear weather Tarel et al. [106] created synthetic fog and
segments hazy photos into free-space and vertical objects. In [83], numerous
sensor inputs are combined to improve car detection in fog.
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Learning synthetic data is gaining popularity because this method is generally effi-
cient. There are some noteworthy examples. To train dense optical flow regression
networks, Dosovitskiy et al. [107] used visualizations of a floating chair. In order
to learn an end-to-end text identification system, Gupta, Vedaldi, and Zisserman
[108] imposed text onto natural photos. Vazquez et al. [109] used virtual data to
train pedestrian detectors. Using video game engines, methods [110-112] created
images with dense semantic annotations, which are then combined with real data to
improve the semantic segmentation performance of recent CNN architectures. Ac-
cording to Johnson-Roberson et al. [113], training CNN models on synthetic images
is more effective than training them on vast, real-world datasets such as Cityscapes
for vehicle recognition.

With these two foggy data collection solutions, some studies on 3D object detection
have shown that the performance can be improved in three ways: by learning with
synthetic data [98-100, 102], dehazing/ defogging [98] or using late-based fusion
[83,101].

In this thesis, we propose to use synthetic data in order to optimize the learning
phase and to obtain better results in fog conditions. For a more complete survey on
recent developments autonomous driving in adverse weather conditions, the reader
is referred to [114].

2.5 Conclusion

In this chapter, we saw how deep learning-based algorithms have demonstrated out-
standing performance and significant potential in analyzing and detecting objects in
three dimensions in recent years. Our goal in doing this SOTA and analysis is to
gain a better understanding of deep learning models used in detecting 3D objects
for autonomous vehicles. Based on more than 100 linked publications, a detailed
evaluation of several deep learning architectures and their applications in 2D and
3D object detection has been mentioned. By comparing several deep learning tech-
niques for object detection, we can find the best SOTA deep architecture. LiDAR-
based methods are found to achieve outstanding performance. Meanwhile, Pseudo-
LiDAR opens up new avenues for camera-based, where Pseudo-LiDAR++ is the
best solution in terms of accuracy for camera-based methods. Fusion-based meth-
ods are still far from over all because of the difficulty of combining two disparate
data sources. Furthermore, the properties of the most prominent deep learning ar-
chitectures for 3D object detection were examined in order to identify current trends
and open difficulties for future research in this field. We have therefore used these
elements to guide the new architecture that we present in Chapters 4. In addition,
we also briefly introduced the effects of weather, especially fog, on the vision-based
models. Our work on object detection in foggy weather conditions is presented in
Chapter 5.
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Besides the well-designed architectures, another indispensable and extremely im-
portant part of deep learning-based solutions is the dataset. In the next chapter,
we introduce the existing datasets for self-driving cars and the datasets used in this
thesis for both the favorable and foggy weather conditions datasets.
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Chapter overview: This chapter provides an overview of the datasets used in this
thesis. We begin by analyzing and exploring the existing datasets for autonomous
driving. The KITTI dataset was selected as the primary dataset for this thesis due
to its widespread use in research and collection under favorable weather conditions.
To reduce costs, we extracted 4-beam point clouds from the original 64-beam LiDAR
(KITTI dataset) for our experiments. We also discuss the limited availability of ex-
isting datasets for adverse weather conditions and introduce our proposed Multifog
KITTI dataset, which is an augmentation of the KITTI dataset with foggy weather

conditions, for use in our experiments.

3.1 State-of-the-art of Datasets for Autonomous Driving

The availability of large-scale datasets is critical for data-driven deep learning-based

algorithms to succeed. Several existing datasets for autonomous driving scenarios
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have been released [12, 103, 115-141] and are summarized in Table 3.1. Among
these datasets, KITTI [12], Citysapes [103], Ford [120], Waymo [126], and nuScenes
[123] are the most widely utilized and contribute significantly to the advancement

of the perception in general and object detection for autonomous driving in partic-

ular. KITTI, Cityscapes and Ford are acquired under favourable weather conditions

whereas Waymo and nuScenes contain all kind of weather conditions. The major

details regarding these benchmarks, including dataset size, variety, and extra data,

are shown below.

TABLE 3.1: Autonomous driving datasets. C and L denote camera and LiDAR,
respectively. Size of the dataset is shown non-uniformly in terms of units (e.g.,
hours, kms, frames) as it is not easy to collect information.

Datasets iensois Size Release date Citation
KITTI [12] v v 6h 2012 9403
Cityscapes [103] v’ 25k frames 2016 7729
nuScenes [123] v v 242 km 2019 1684
Oxford RobotCar [124] v v 1000km 2016 1007
Mapillary [134] v’ 1.6M 2021 819
Waymo open perception v 10.83h 2019 816
[126]

BDDV [142] v’ 10k h 2016 758
GTSDB [132] v’ N/A 2012 703
BDD100K [131] v’ 1k h 2020 624
SEMANTIC3D [128] v’ N/A 2016 507
H3D [121] v~ 27.7k frames 2019 406
Ford [120] v v 100 GB 2011 334
STC [115] v’ 14k 2011 220
Paris Lille 3D [127] v’ 1.9 km 2018 179
ApolloScape [125] vV 100h 2018 166
TorontoCity [130] v Vv 8439 km 2016 162
A2d2 [143] v v 12k frames 2020 159
KAIST [116] v Vv 191k km 2017 149
Lyft Level5 perception[122] s 25h 2019 132
TerraMobilita [129] v’ N/A 2014 119
LiVi-Set [119] v v 100km 2018 100
ApolloCar3D [117] v’ 5.2k frames 2019 94
A*3D [138] v v 55h 2019 60
EU Long-term [136] v v 63.4 km 2021 43
BLVD [118] v v 120k frames 2019 32
RELLIS-3D [139] v v 6k frames 2021 32
HUAWEI ONCE [141] v v 114h 2021 29

Continued on next page
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Table 3.1 — Continued from previous page

Sensors . L
Datasets c L Size Release date Citation
Brno Urban [137] vV 375.7 km 2020 18
PandaSet [135] v Vv 0.23h 2020 11
Cirrus [140] v’ v 6.2k frames 2021 5

In the Chapter 4, we present our deep learning-based 3D object detection algorithm
taking a stereo camera and 4-beam LiDAR (low-cost sensors) as inputs. Our method
involves training on Scene Flow dataset [144] and finetuning on KITTI dataset [12]
for depth estimation and 3D object detection on the KITTI dataset for 3D object de-
tection as follows Wang et al. [43] and You et al. [46]. Then, comparing our method
to other methods in the literature is straightforward. Furthermore, KITTI dataset
is quite well-prepared: clean (no corrupted data), preprocessed (data in a format
suitable for training implementations), annotated/ labeling available, and also well
done in calibration, synchronizing camera and LIDAR. In the next section, we in-
troduce the details of the Scene Flow dataset and KITTI dataset as well as how to
generate a 4-beam point cloud for our experiments from 64-beam point cloud.

3.2 Favorable Weather Conditions Datasets

3.2.1 Scene Flow Dataset Overview

Our proposed architecture in the next chapter is based on the Pseudo-LiDAR
pipeline [43] in which the training procedure contains two parts: depth prediction
and 3D object detection. The corresponding dataset for each part is introduced as fol-
lows. The Scene Flow dataset [144], a large-scale synthetic dataset, is used first for
training our depth estimation part. The dataset contains over 39,000 stereo frames
with, 960x 540 for training including dense ground truth for optical flow, disparity,
and disparity change, as well as segmented objects, and 4,370 images for testing. It
is rendered from synthetic sequences.

The Scene Flow dataset (including with RGB images for FlyingThings3D, Monkaa,
and Driving) is used here as a pre-trained dataset for our algorithm. Figure 3.1

shows examples of Scene Flow dataset.

3.2.2 KITTI Dataset Overview

We present the main dataset for this thesis, the KITTI dataset [12]. This dataset is
used for both fine-tuning the depth estimation part and for training the 3D object
detection part of our algorithm. To avoid confusion, from now it is referred to as
Clear KITTI dataset.
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FIGURE 3.1: Examples from the Scene Flow dataset [144, Fig. 7]. This figure il-
lustrates the diversity of this dataset. From left to right are the left color synthetic
image and the corresponding disparity map, respectively.

The KITTI Vision Benchmark Suite offers an excellent set of datasets for automotive
applications such as car and pedestrian recognition [64, 145]. These datasets include
optical flow, stereo vision, visual odometry, SLAM, and object detection. KITTI ob-
ject detection dataset is one of the most common dataset for driving scenes collected
in the daytime and under favorable weather conditions. This dataset contains 7,481
training samples and 7,518 testing samples for both images (with a resolution of 1242
x 375) and point cloud. Like most other studies [53, 146], the training dataset is di-
vided into a training part (3,712 samples) and a validation part (3,769 samples). In
addition to the easy-to-use dataset formats, Geiger, Lenz, and Urtasun [12] provided
a vast amount of information on every labeled object and provided high-quality im-
ages. They used the annotation files to apply a filter based on distance, car type, and

orientation to retrieve a total of 1500 rear-view car images.

As shown in Figure 3.2 (a), the camera and the LiDAR utilize two distinct coordi-
nate systems (red for the camera and blue for the LiDAR). The directions (X, Y, Z)
are set as (rightward, downward, forward) and (forward, leftward, upward) from
the camera and LiDAR, respectively. All ground-truth data is delivered in camera
coordinates, but it is not difficult to convert from camera to LiDAR coordinates and
vice versa by using the calibration information. As can be seen in Figure 3.2 (b), the
sensors (red) are positioned with respect to the vehicle body according to their di-
mensions. The measurements are carried out according to the road surface and the

height above the ground is indicated in green. The blue indicates transformations
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(a) KITTI recording platform (b) KITTI sensor setup

FIGURE 3.2: KITTI vehicle setup [147, Fig. 1, 3]. (a) fully equipped vehicle (Volk-
swagen Passat B6); (b) setup bird’s eye view (BEV).

among the sensors.

An example from KITTI dataset is shown in Figure 3.3. Figure 3.3 (a) is the RGB
image of size 1242 x375. Figure 3.3 (b) shows the point cloud corresponding to the
RGB image presented in Figure 3.3 (a). Points and objects that are not in range of the
front camera are filtered out following the BEV range (side range of [-40 m, 40 m] and
forward range of [0 m, 70.4 m]), as shown in Figure 3.3 (c). We only focus on objects
that appear in the image (left camera). As a result, it is necessary to perform filtering
on the point cloud to keep those in the camera’s field of view. Figure 3.4 shows some
examples of KITTI dataset, including the left color image and the corresponding
point cloud from 64-beam LiDAR after filtering.

Once the data filtering is finished, we also prepare data for the depth estimation
phase. For this, it is imperative to have a dense point cloud, unlike the classic point
cloud of the 64-beam LiDAR. We use the accumulation of the 11 frames point clouds
in order to obtain more density depth map as represented by Wang et al. [49]. 11
frames point cloud means that KITTI dataset keeps +5 frames for each current point
cloud. Figure 3.5 shows the 64-beam LiDAR in Figure 3.5 (a) and the accumulation
of 11 frames 64-beam LiDAR in Figure 3.5 (b). As we can see the accumulation of
11 frames 64-beam LiDAR gives more points, therefore, we can have a denser depth
map. We use it as the ground truth of our depth estimation phase.

The KITTI object detection benchmark has also delivered label files in text file for-
mat. Each line in a label file describes a single ground-truth object that contains
the information listed in Table 3.2. KITTI divides the world into eight categories:
car, van, truck, pedestrian, person sitting, cyclist, tram, and misc. Our experiments

concentrate only on the Car data category.
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(c) KITTI point cloud after filtering

FIGURE 3.3: KITTI dataset example. (a), (b) and (c) show the left color image, the
point cloud from 64-beam LiDAR and the filtered point cloud. Ground truth 3D
bounding box objects are shown in red in the LiDAR coordinate system.

TABLE 3.2: KITTI ground truth annotations for object detection.

Attribute Values Description

type 1 Describes the type of object: ‘Car’, "Van’, "Truck’, 'Pedes-
trian’, "Person_sitting’, 'Cyclist’, "Tram’, "Misc” or "Dont-
Care’.

Continued on next page
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Table 3.2 — Continued from previous page

Attribute Values Description

truncated 1 Float from 0 (non-truncated) to 1 (truncated), where trun-
cated refers to the object leaving image boundaries.

occluded 1 Integer (0, 1, 2, 3) indicating occlusion state: 0 = fully visi-
ble, 1 = partly occluded 2 = largely occluded, 3 = unknown.

alpha 1 Observation angle of object, ranging [—7t, 7t|.

bbox 4 2D bounding box of object in the image (0-based index):
contains left, top, right, bottom pixel coordinates.

dimensions 3 3D object dimensions: height, width, length (in meters).

location 3 3D object location x, y, z in camera coordinates (in meters).

rotation_y 1 Rotation r, around Y — axis in camera coordinates [—7t, 77].

score 1 Only for results: Float, indicating confidence in detection,

needed for p/r curves, higher is better.

The difficulty of detecting objects varies depending on the situation. Some items,

such as occluded objects, long-range objects, and so on, are more difficult to detect.

The farther away an object is from the vehicle, the smaller it appears in the RGB

image and the fewer points it reflects back into the point cloud. As shown in Ta-
ble 3.3, the KITTI object detection benchmark has three difficulty levels to evaluate
the object detection system. The object size in the image, occlusion, and truncation

distinguish these three levels (Easy, Moderate and Hard).

TABLE 3.3: KITTI 3D object detection benchmark’s object attribute parameters
for the three difficulty levels. Difficulty of an object is defined by its object size,

occlusion ratio, truncation ratio.

Easy Moderate Hard

min. 2D bbox height 40 pixels 25 pixels 25 pixels

max. occlusion level fully visible partly occluded difficult to see

max. truncation

15% 30% 50%

Figure 3.6 shows examples of how KITTI defines the difficulty for each object. Easy,

Moderate and Hard objects are shown in yellow, blue and pink 3D bounding boxes,

respectively.
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FIGURE 3.4: Examples from the KITTI dataset. This figure shows some examples
from KITTI dataset including the left color image, point cloud and ground truth
bounding boxes (red) in LiDAR coordinate.

FIGURE 3.6: Example of the difficulty level of the objects in the KITTI dataset
corresponding to the definition in Table 3.3. Easy, Moderate and Hard objects are
shown in yellow, blue and pink 3D bounding boxes.
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(a) 64-beam point cloud (b) Depth map ground truth

FIGURE 3.5: Comparison between sparse LIDAR and depth map ground truth.
(a) 64-beam LiDAR (sparse); (b) depth map ground truth (dense): accumulation of
11 frames 64-beam LiDAR.

KITTI provides a C++ program that can be used to calculate 3D AP (AP;p) and BEV
AP (APgey) for any frame from the training set for each difficulty level. This is used
to evaluate the performance of our models.

3.2.3 Downsampling 64-beam Point Cloud

This thesis focuses on low-cost sensor technologies. Our method uses a 4-beam Li-
DAR point cloud, which is much cheaper than 64-beam LiDAR. For simplicity and
fair comparison, we generated a 4-beam point cloud from the original 64-beam point
cloud (64-beam Velodyne) taken from the KITTI dataset instead of using real data
from 4-beam LiDAR sensors (like SCALA). This extracted point cloud is inspired by
You et al. [46]. Given a point cloud as a set of 3D points {P;|i = 1, ...,n}, where each
point P; is a vector of its (x, y, z) coordinate, they firstly compute the elevation angle
8; to the LiDAR sensor for each point (x;,y;,z;) of the point cloud in one scene (in
LiDAR coordinate system ((x, y, z) corresponding (front, left, up), and (0, 0, 0) is the
location of the LiDAR sensor)) as follows:

VA -
\/ X7+ Y7+ 27

By grouping the points according to their elevation angles, the point cloud is sliced

0; = arccos

into different lines by step 0.4° starting from —23.6° (close to the Velodyne 64-
beam LiDAR specifications). A 4-beam LiDAR consists of points whose elevation
angles are between four intervals [—2.4°, —2.0°] U [-1.6°, —1.2°] U [-0.8°, —0.4°] U
[0.0°,0.4°] corresponding to each beam. The choice of 4-beam LiDAR SCALA was
made based on its specifications so that each consecutive line had an interval of 0.8°.
Figure 3.7 depicts the 64-beam and extracted 4-beam LiDAR point cloud.
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”
4
(a) 64-beam point cloud (b) 4-beam point cloud

(c) 64-beam point cloud in BEV (d) 4-beam point cloud in BEV

FIGURE 3.7: Visualization of 64-beam LiDAR and the extracted 4-beam LIDAR.

(a) and (c) show point cloud colored according to RGB image and point cloud in

BEYV, respectively, based on point cloud from 64-beam LiDAR. (b) and (d) show the

same thing but for point cloud from the extracted 4-beam LiDAR. The point clouds
(a), (b) are colored according to RGB image.

Finally, we have the dataset consisting of images and 64-beam LiDAR point cloud,
as well as a 4-beam point cloud extracted for our experiments. This dataset was col-
lected under favorable weather conditions. To simulate adverse weather conditions,
we generate a foggy weather conditions dataset, called Multifog KITTI, which is
augmented on KITTI dataset. Detailed information about this dataset can be found
in the following section.

3.3 Fog Augmented KITTI — Multifog KITTI Dataset

3.3.1 Adverse Weather Conditions Datasets

Most common existing datasets have been collected under favorable conditions such
as KITTI [12], Cityscape [103], or in different lighting conditions such as BDD100K
[131], Waymo [126], NuScenes [123]. In recent years, attention has been drawn to
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how self-driving cars perceive in adverse weather conditions, since such conditions
negatively impact camera and LiDAR sensing quality, resulting in lower perfor-
mance. Consequently, some datasets have been collected in fog (including Foggy
Driving [98], Foggy Zurich [99], SeeingThroughFog [83], nuScenes [123], BDD100k
[131], Oxford [124, 148], [88], [149]), rain [149, 150] or snow [149, 151, 152] conditions.

Most common foggy weather conditions datasets are summarized in Table 3.4.

TABLE 3.4: Foggy weather conditions datasets for autonomous driving. C and L
denote camera and LiDAR, respectively. Size of the dataset is shown non-uniformly
in terms of units (e.g., hours, kms, frames) as it is not easy to collect information.

Sensors .
Datasets Size Release date  Citation
C L
Foggy Cityscapes-DBF [103, 153] v’ N/A 2016 7776
Foggy Cityscapes [98] v’ 20.5k frames 2018 473
Foggy Driving [98] v’ 101 frames 2018 473
Foggy Zurich [99] v’ 3.8k frames 2018 107
DENSE [83] v v 13.5k frames 2020 99
Weather augmented [154] v’ 748042995 frames 2019 63
ACDC [155] v’ N/A 2021 52
Foggy Synscapes [100] v’ 498 2019 32
Cerema database [88] v’ 62k frames 2016 10

Data gathered in such conditions is not easy. Additionally, it has some problems
such as the absence of a labeled object detection dataset under adverse weather con-
ditions as well as the difficulty of controlling fog density (it cannot control all fog
levels, or it is difficult to collect all fog levels). Synthetic datasets, on the other hand,
are increasingly similar to real data, and we can avoid these problems by using them.
Synthetic datasets can be divided into two categories: physics-based such as Foggy
Cityscapes [98], Foggy Cityscapes [99], Rain augmented [100, 154] and generative
adversarial network-based (GAN-based) such as [154].

Despite the usefulness of these datasets above, KITTI dataset [12] is commonly used
in the literature, and it is easy to work on. We decide to use this dataset as a base
dataset for further fog rendering on it. While most synthetic datasets focus only
on images [98-100, 154], our work aims to take into account fog for both image and
point cloud starting from a favorable weather dataset [12]. We use the physics-based
procedure proposed by Bijelic et al. [83] for generating the Multifog KITTI dataset to
retain physical properties like real fog. We represent how generating this dataset as
follows.
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3.3.2 Fog Rendering
3.3.2.1 Fog Definition

Before we explain how the fog is rendered, it is important to understand what fog
is. The fog is physically characterized from a microscopic point of view (distribution
of the size of the drops) and from a macroscopic point of view (visibility through
a thickness of fog). Only this second aspect is important for the study of images
acquired from cameras and LiDAR of the road context. Indeed, with the use of
a standard camera and LiDAR, the majority of the acquired wavelengths are part
of the visible domain and near infrared domain. However, for wavelengths in the
visible range/ NIR, the type of fog (size of the drops) has little impact on perception
[156].

3.3.2.2 Camera through Fog

The physical quantity that characterizes fog is meteorological optical range (MOR),
which is expressed in meters. In a road context, this size is characterized from the
contrast. Based on the law of Koschmieder [157] in 1924, Sakaridis, Dai, and Van
Gool [98] formulated the equation to obtain an observed foggy image I foggy(u, v) at
pixel (u,v) as follows:

Ifoggy(ulv) = (1, 0) L gear (1, 0) + (1 — t(u,0))L, (3.2)

where I ., (4,v) denotes a latent clear image, L is the atmospheric light which is
assumed to be globally constant (generally valid only for daytime images), and in

case of a homogeneous medium, the transmission coefficient is:

t(u,v) = exp(—pD(u,v)), (3.3)

where p is the fog density (or attenuation) coefficient, and D(u,v) is the scene
depth at pixel (u,v). Fog thickness is controlled by fog density coefficient B. Using
Koschmieder’s law [157], visibility V' can be described by the equation presented in
[158, pp. [-9.4]:

Cr= exp(_lBV)l (3.4)
()
In CT
V=-— , 3.5
; (35)
or,
p= ) (36)

where C7 is the contrast threshold. Ct = 0.05 is considered to be the minimum
recognizable contrast for humans by Prokes [159]. From equations (3.3) and (3.6),
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we can also express f(u,v) as a dependency on visibility V and the depth map D as
follows:

t(u,v) = exp(ln(CT)‘l/)(u'U)). (3.7)

3.3.2.3 LiDAR through Fog

Bijelic et al. [83] assumes that beam divergence is not affected by fog. In this model,
a returned pulse echo is always registered as long as the received laser intensity
is larger than the effective noise floor. However, severe back-scatter from fog may
lead to direct back-scatter from points within the scattering fog volume, which is
quantified by the transmissivity #(u,v). Then, the emitted laser beam intensity can
be modeled using the following equation presented as follows:

Lfoggy(1t,v) = t(u, 0) Letear (1, 0), (3.8)

where Lo (1, 0) and Ly,gqy, (1, v) are the intensity of the light pulses emitted from
LiDAR and the received signal intensity, respectively.

Equation (3.8) assumes that the fog has no effect on the beam divergence. As long
as the received laser intensity is greater than the effective noise floor, a returned
pulse echo is always recorded in this model. Severe fog backscatter, on the other
hand, might result in direct backscatter from points within the scattering fog vol-
ume, which is measured by the transmissivity f(u, v) from Equation (3.2). Modern
scanning LiDAR systems implement adaptive laser gain g to increase the signal for

a given noise floor, as shown in [160], resulting in the maximum distance:

1 n
dpgy = —=In{ ——— ], 3.9
2,5 n <Lcleur + g> ( )

where n is the detectable noise floor. With the sum of the reciprocal of the received
laser intensity from Equation (3.8) and gain, the detectable distance drops logarith-
mically as shown in Equation (3.9). As a result, in fog, LIDAR measurements suffer
not only from peak intensity loss but also from back-scattering, which causes a peak-
shift inside the fog volume, obliterating all information on the target scene point. To
mimic fog-distorted LiDAR observations, the algorithm is proposed by Bijelic et al.
[83]. The proposed algorithm is based on Equations (3.8) and (3.9), as well as addi-
tional fog chamber results that validate the hyperparameters used. Note that beam
divergence in fog has been ignored, and we assume that the LIDAR depth measur-
ing process is accurately described by a constant additive gain ¢ and noise-floor n.
They also assume that the detected object intensities drop exponentially according
to the attenuation model in Equation (3.8).
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Fog can be added to images and LiDAR data using the method we presented. As
a result of applying this method to KITTI dataset, we are able to generate Multifog
KITTI dataset.

3.3.3 Multifog KITTI dataset

The proposed Multifog KITTI dataset is generated by using the equations given
above for different visibility levels from 20 to 80 meters (corresponding to heavy
fog — medium fog range). As the depth map D is required in Equation (3.7) to cal-
culate the transmission coefficient t(u,v) and then If,4q, (1, v) in Equation (3.2) and
Lfogqy(1,v) in Equation (3.8) for each frame, the algorithm proposed by Park et al.
[161] is employed to generate the predicted depth map D corresponding to each im-
age on the left side I; and the same for the right image I,. This method takes an RGB
image and a sparse depth image as input and results in an image where the value
of each pixel is the depth information. The default configuration proposed by Bijelic
et al. [83] is used, with ¢ = 0.35 and n = 0.05 for the Velodyne HDL64 S2 LiDAR
used in the KITTI dataset.
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FIGURE 3.8: Distribution of MOR of different parts in the Multifog KITTI
dataset [162, Fig. 4] (a) for training set with mean y = 50.0 and ¢ = 17.5; (b) for
validation set with mean y = 50.1 and ¢ = 17.3.

Figure 3.8 shows the number of samples for each visibility level for the training and
validation sets of the Multifog KITTI dataset. The distribution of fog visibility is
uniform between 20 m and 80 m. This dataset is used similarly to the Clear KITTI
dataset for both depth estimation and 3D object detection parts. The proposed Mul-
tifog KITTI dataset contains 7,481 training samples and 7,518 testing samples for
stereo images, 64-beam LiDAR, and 4-beam LiDAR.

Figures 3.9, 3.10 show examples of the favorable weather conditions dataset (KITTI)
including the left color image, the point cloud from 64-beam LiDAR, the extracted
4-beam point cloud based on 64-beam LiDAR and the corresponding one in foggy
weather conditions. Figure 3.11 shows examples of our proposed Multifog KITTI
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dataset. For each frame, it shows the left color on top, the 64-beam point cloud in
the middle and the 4-beam point cloud at the end and the corresponding visibility
V. In Figures 3.10 (b) and 3.11 (c), we see that the fog is not covered well in the sky,
and it is not like reality. This is explained by the way that fog generation is based
on depth information, where sky depth in this case is predicted to be 0 instead of
infinity. Therefore, fog quality is highly dependent on the depth map where 64-
beam LiDAR is very accurate, but sparse and the predicted depth map is dense but
less accurate.

(c) 64-beam point cloud (d) Foggy augmented on 64-beam point cloud

L5 Sy %

(e) 4-beam point cloud (f) Foggy augmented on 4-beam point cloud

FIGURE 3.9: From KITTI to Multifog KITTI dataset — example 1. An example of

KITTI dataset includes the left color image, the 64-beam point cloud, the extracted

4-beam point cloud and the corresponding one with the foggy augmentation (visi-
bility V =59 m). The point cloud is colored according to RGB image.

3.4 Conclusion

In this chapter, we introduced the datasets that we use for our object detection ex-
periments in next chapters. The main dataset we work with is KITTI dataset. This
dataset includes images and point cloud from 64-beam LiDAR. Besides, we wanted
to experiment on low-cost sensors, so we extracted the 4-beam point cloud based on
64-beam LiDAR data. In the next chapter, we will introduce our 3D object detection
method, and its experiments on this dataset. Besides, further, we want to perform
experiments not only in favorable weather conditions, but also in extreme weather
conditions, specifically here foggy weather conditions. Therefore, we have created a
dataset, called Multifog KITTI, including both images and LiDAR, which are heavily
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(c) 64-beam point cloud (d) Fo augmented on 64-beam point cloud
P g8y aug p
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e) 4-beam point cloud f) Fo augmented on 4-beam point cloud
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FIGURE 3.10: From KITTI to Multifog KITTI dataset — example 2. An example of

KITTI dataset includes the left color image, the 64-beam point cloud, the extracted

4-beam point cloud and the corresponding one with the foggy augmentation (visi-
bility V' =45 m). The point cloud is colored according to RGB image.

distorted in foggy weather conditions. This dataset will be used in experiments in
Chapter 5.
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(a) Visibility V =45m (b) Visibility V =43 m

| R

(e) Visibility V = 65 m (f) Visibility V = 30 m

FIGURE 3.11: Examples from our proposed Multifog KITTI dataset. This figure

shows some examples from our proposed Multifog KITTI dataset including the left

color image, 64-beam point cloud and extracted 4-beam point cloud with foggy
augmentation based on the KITTI dataset. Each example has its own visibility V.
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Chapter overview: Detecting objects in 3D and determining their distance from the
ego-vehicle is a complex task in 2D and 3D object detection. Many studies have
highlighted the performance gap between camera-based and LiDAR-based 3D ob-
ject detection methods due to the latter’s high cost but ability to offer accurate and
precise depth information. Despite the extensive research on fusing a single RGB
camera and LiDAR, no study has investigated the fusion of stereo cameras and
LiDAR in a deep neural network for 3D object detection. To improve depth esti-
mation and enhance the performance of 3D object detection, we introduce a novel

method called SLS-Fusion, which fuses data from a stereo camera and a low-cost
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4-beam LiDAR through a neural network. Since the 4-beam LiDAR is less expensive
than the commonly used 64-beam LiDAR, this approach is categorized as a low-cost
sensors-based method. The evaluation on the KITTI benchmark demonstrates that
our proposed method significantly improves depth estimation performance com-
pared to the baseline method. Furthermore, it advances the state-of-the-art in low-
cost sensors-based methods when applied to 3D object detection.

4.1 Introduction

In this chapter, we mainly describe the proposed fusion-based 3D object detection
method. We present SLS-Fusion architecture [163], a novel approach fusing LIDAR
and stereo camera together in a deep neural network with the final objective of
3D object detection. Based on DeepLiDAR [164] as our backbone network and the
pseudo-LiDAR pipeline [43], we present SLS-Fusion architecture [163] which ex-
plores several novel ideas to improve 3D object detection performance. The first
part of our method, SLS-Fusion depth estimation network, estimates the depth maps
from a stereo camera and the projected LIDAR depth maps. This step aims to enrich
the feature maps and thus leads to get a better predicted depth map. Then in the
second part, the predicted depth map is converted into a pseudo point cloud by
using the calibration information between the LiDAR and the camera. In order to
improve the pseudo point cloud accuracy, the point cloud is corrected by the real
4-beam point cloud. The last part of SLS-Fusion architecture is LiDAR-based 3D
object detection. From the obtained pseudo point cloud, we can apply any LiDAR-
based 3D object detection method. In this work, we use PointRCNN [64] for the 3D
object detection task. We evaluate our method on the KITTI dataset, a 3D object de-
tection benchmark. Our results show that SLS-Fusion has superior performance to
state-of-the-art methods that fuse stereo camera and low-cost 4-beam LiDAR.

4.2 Contribution

Accurately detecting obstacles in their surroundings is key to safe driving of an
autonomous vehicle. The current top-performance methods in 3D object detection
[64, 66, 165] are mainly based on LiDAR technology. Alternatively, systems based
only on camera sensors also received much attention because of their low cost and
wide range of use [31, 43, 46, 166-169]. Even though much research has focused on
camera-based methods, the gap in performance between monocular or stereo-based
methods and LiDAR-based methods is still significant, meriting more research.

The work reported here aims at designing a 3D object detection architecture from
low-cost sensors because we are interested in the practical applications of using
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them in self-driving vehicles like an autonomous bus. In recent years, a new inter-
esting and promising branch of research proposed by You et al. [46], namely Pseudo-
LiDAR, generates the pseudo point cloud based on the estimated depth map from
images using the pinhole camera model. Then, they can be treated as a LIDAR signal
input for any LiDAR-based 3D object detector. This method has shown a significant
improvement in performance compared to previous camera-based object detection
methods with this simple data conversion to leverage the performance of the state-
of-the-art LIDAR-based method.

Real LiDAR sensors can provide depth information with high accuracy in the form
of 3D points. However, these point clouds are sparse compared to continuous sur-
faces in 3D. Hence, point density is normally uneven, and it causes difficulties in
detecting obstacles. Furthermore, in denser point clouds obtained by the Pseudo-
LiDAR pipeline [43], distant or small objects such as pedestrians and cyclists, for
which LiDAR sensors usually generate fewer points, can get more points and so be
more easily detected and localized if the predicted depth map from monocular or
stereo-based method is good enough. Finally, another advantage of Pseudo-LiDAR
is that it can combine the state of the art of depth estimation and of 3D object de-
tection. Therefore, the performance for 3D object detection of this kind of methods
based on this idea strongly depends on the estimated depth map.

Instead of using expensive 64 laser beams which cost about $75000, You et al. [46]
simulate the 125 times cheaper 4-beam LiDAR Scala by sparsifying the original 64-
beam signals and use these points to correct their estimated depth map, obtained by
the Stereo Depth Net (SDN) neural network [46], by applying a graph-based depth
correction (GDC).

Starting from this work, a neural network is proposed here that takes 4-beam LiDAR
and stereo images as input. The new method estimates a dense depth map and then
uses it for the 3D object detection task. Unlike You et al. [46], taking stereo images to
estimate the depth map and then integrating the 4-beam LiDAR as a post-processing
step to correct the estimated depth map, this approach fuses the 4-beam LiDAR with

stereo images into a deep neural network to obtain a more accurate depth map.
To summarize, the main contributions of this chapter are as follows:

¢ A Sparse LiDAR and Stereo Fusion network (SLS-Fusion) is proposed, which
is the first method fusing LiDAR and stereo together in a deep neural network
to focus on 3D object detection for autonomous vehicles.

* By integrating the GDC proposed by You et al. [46] with the proposed SLS-
Fusion, experimental results on the validation KITTI object detection dataset
demonstrate that the proposed approach can produce very accurate depth
maps thanks to LIDAR-Stereo fusion. This outperforms all previous low-cost
based methods for 3D object detection task.
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4.3 Proposed Architecture

The main idea behind the SLS-Fusion architecture is to take into account both the
image and the point cloud as inputs to obtain feature-richness in the depth estima-
tion neural network. This leads to better depth map predictions. Figure 4.1 shows

the overview of the proposed 3D object detection architecture.
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FIGURE 4.1: Overview of the SLS-Fusion architecture. It takes both the image and
the point cloud as input and outputs 3D bounding boxes.

SLS-Fusion is structured to utilize the advantage of both stereo image and point
cloud, those containing complementary information for 3D object detection. On the
one hand, 2D image with high resolution provides reliable objectness information.
On the other hand, point cloud provides exact spatial information of the objects. We
design our model based on these characteristics.

44 Method

4.4.1 Sparse Projected LIDAR Depth Map

We would like to process data in 2D, additional information from LiDAR can be
gathered by projecting point cloud onto the left and the right coordinate systems, as
shown in Figure 4.2, to construct a sparse depth map representation using the cor-
responding LiDAR range value (z). The sparsity depends on the number of LiDAR
beams that map to pixels. Sparse depth maps are convenient and accurate range
data as compared to predicted depth map from a camera or a stereo camera.
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FIGURE 4.2: LiDAR point cloud preprocessing. The point cloud is projected in

both left and right camera coordinates. This will generate the right projected Li-

DAR depth map and the left projected LiDAR depth map to be taken as inputs for
our model.

4.4.2 Depth Map Estimation

To enrich the representation of a normal stereo matching network, a decision has
been taken to join the geometry information from the LiDAR point cloud. However,
instead of directly using a 3D point cloud from LiDAR, like in [170], the 4-beam
LiDAR point cloud is projected to both left and right image coordinates using the
calibration parameters to obtain the two sparse 4-beam LiDAR depth maps corre-

sponding to stereo images.

Left Image

Left projected LiDAR depth map
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FIGURE 4.3: Depth estimation part of SLS-Fusion architecture [163, Fig. 2]. The
left and right input stereo images, I; and I;, are fed to two weight-sharing pipelines
consisting of ResNet blocks to encode features shown on the top flow (the same
way for the left and right projected 4-beam LiDAR images, S; and S, on the bottom
flow). In the decoding phase, each LiDAR and image pair are fused, (S;, I;) and (S;,
I;) and corresponding feature tensors are obtained, left feature and right feature,
for each LiDAR-image input pair. Then left and right feature tensors go through a
Disparity Cost Volume (DiCV) and then a Depth Cost Volume (DeCV) to directly
learn the depth.
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Our depth estimation part is shown in Figure 4.3. The proposed method uses as in-
put stereo images and projected LiDAR depth maps. However, we use a late fusion
approach, presented as follows, instead of using a simple early fusion paradigm by
concating stereo image and the corresponding sparse projection LiDAR depth map
as.

Encoder-decoder feature extraction — Figures 4.4 and 4.5 show the left (or right)
branch, including left (right) image and left (right) projected LIDAR depth map, and
its corresponding diagram showing the sequence of Resnet blocks.
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FIGURE 4.4: Feature extraction of SLS-Fusion architecture.

FIGURE 4.5: Sequence of Resnet blocks from SLS-Fusion model represented for a
left image and left projected LIDAR branch in feature extraction part of our method.
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Disparity Cost Volume — A pair of left-right images I; and I, taken from two cam-
eras with a horizontal offset (i.e., baseline), are inputted into a disparity estimation
algorithm. Without losing generality, we suppose that the method creates a dispar-
ity map d that records the horizontal disparity to I, for each pixel and uses the left
image, I}, as reference (u,v). I;(u,v) and I,(u,v + d(u,v)) should ideally depict the
same 3D space. Therefore, using the following transformations, we can extract the
depth map D(u, v) corresponding to pixel (1, v) as follows:

_ _fub
D(u/ U) - d(u, ’U), (41)
where f,, and b are the horizontal focal length of the left camera and the horizontal
offset (baseline) of the stereo camera, respectively.

Building a 4D disparity cost volume C;, in which C4(u, v,4d, :) is a feature tensor that
captures the pixel difference between I; (1, v) and I, (u, v +d(u,v)), is a frequent step
in the disparity estimation process. Then, using the cost volume Cj, it calculates the
disparity d(u, v) for each pixel (u,v). Calculating a 3D cost volume is as follows:

Calu,0,d) = || (1, 0) — L (1, v + d(1,0))| |2, (4.2)

and selecting d(u, v) as an argument for C;(u, v, d) is a simple algorithm. Later meth-
ods [43, 46, 47] create C; using more reliable features and do structured prediction
on D.

Similar to You et al. [46] and Chang and Chen [47], we start by extracting deep fea-
ture maps, left feature F; and right feature F,, from I; and I,, respectively. But the
difference is that our model extracts more information from LiDAR instead of just
using the stereo camera. From here it is expected that the strong properties of LIDAR
can be useful and increase the results of the model. It then constructs T,;(u,v,d) by
concatenating features of F;(u,v) and F.(u,v + d), followed by layers of 3D convo-
lutions. The resulting 3D tensor Tj is then used to calculate the pixel disparity using
the weighted combination shown below, with the feature channel size ending up
being one:

d(u,v) =) _softmax(—T;(u,v,d)) x d, (4.3)
d

where softmax is applied along T; third dimension. To reduce the disparity error,
Chang and Chen [47] proposed a method can be trained from beginning to end, in-
cluding the image feature extractor and 3D convolution kernels and try to optimize
this loss:
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L(dd)= Y. |d(uv)—d(u0), (4.4)

(u,veA)

where L(d,d) is the smooth L1 loss, d is the ground truth disparity map, and A
contains pixels with valid ground truths.

Depth Cost Volume — You et al. [46] pointed out that learning disparity firstly in-
stead of directly learning depth information leads to a suboptimal problem. It may
cause a large depth error even if the disparity error is very small. The 3D convolu-
tions within the 4D disparity cost volume, where the same kernels are applied for the
whole cost volume, are a significant source of mistakes. This is really troublesome
because it implies that a convolution effect is uniform throughout. Equation (4.1)
shows that depth D is inversely proportional to disparity d:

1
D « 7 (4.5)
Consequently,
aD &~ ad
d? (4.6)
o« D?od.

Equation (4.6) shows that the depth error dD increases quadratically with the dis-
parity error od.

Similar to You et al. [46], we use the depth cost volume Cp, in which Cp (1, v, z) will
encode features describing how likely the depth of the pixel (u,v) is z. This insight
and the fundamental tenet of the convolutions that all neighborhoods can be oper-
ated upon in the same way are taken into consideration. The next 3D convolutions
will thus operate on the grid of depth rather than disparity, having a similar im-
pact on nearby depths regardless of where they are. In order to estimate the pixel
depth D(u,v) similarly to Equation (4.3), the generated 3D tensor Tp is employed as
follows:

D(u,v) =) _softmax (—Tp(u,v,z)) X z. 4.7)

4.4.3 Depth Correction

Our predicted depth map provides a denser information than 64-beam LiDAR.
However, it cannot be as accurate as the real point cloud from LiDAR. Because of
the discrete nature of pixels, it has restrictions. The disparity, which is the difference
in the horizontal coordinate between matching pixels, is generally quantized at the
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level of individual pixels, whereas the depth is continuous. While high-resolution
images can reduce quantization error, the computational cost grows as the resolution

increases, so GPU can be overworked in autonomous vehicles.

You et al. [46] attempted to remedy this bias using a low-cost LiDAR that takes pre-
cise depth measurements with extremely sparse but accurate beams (e.g., 4-beam).
They presented a graph-based depth correction (GDC) algorithm that successfully
blends sparse accurate LIDAR observations with dense stereo depth that has gener-
ated object forms. The rectified depth map should theoretically contain the follow-
ing characteristics: locally, item forms acquired by nearby 3D points, back-projected
from the input depth map as provided in Equation (4.10), should be preserved. Glob-
ally, landmark pixels associated with LiDAR points should have the precise depths.

Predicted depth map

Left projected LIDAR depth map

v
Corrected depth map

Reinforcing T

Y

FIGURE 4.6: Depth correction part.

The depth correction flow is shown in Figure 4.6. The design process of GDC in-
volves learning the depth relationship among neighbors, and then constraining the
changes in depth based on the relationship. Following GDC, we take as input the
projected depth map from LiDAR (L) and predicted depth map (PL) obtained by our
depth estimation neural network. First, we characterize the local shapes by the di-
rected K-nearest neighbor (KNN) graph in the pseudo point cloud (using accelerated
KD-trees [171]) that connects each 3D point to its KNNs with appropriate weights.
Here, we match the projection LIDAR depth map to corresponding predicted depth
map pixel. Assuming that ground truth LIDAR depth map for the first n points, but
no ground truth for the remaining m points, without sacrificing generality. The pre-
dicted depth estimations are expressed as D € R"*™ and the LiDAR depth ground
truth as DL € R™.

The KNN graph in 3D is constructed by ignoring the LIDAR information on the first
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n points and using only the predicted depth in D. Let N; denote the set of K neigh-
bors of the i" point. Let W € R"*)* (") denote the weight matrix, where Wj;
denotes the edge-weight between points i and j. Weights are used to reconstruct any
point’s depth from its neighbors’s depths in Nj;. The following constrained quadratic

optimization problem can be used to solve for these weights:

W = argminy, ||D — WD||§, st. Wl =1land W;; = 0if j  N;. (4.8)

1 € R"™™ denotes the all-ones vector. It is infinitely possible solutions that satisfy
D = WD when they use a k > 3 and the points are positioned generally, the L2 norm

is used as a solution.

They denote the corrected depth values as D' € R"*", with D' = [D;; Dp;] and
D; € R" and Dp; € R™, where D) are the depth values of points with LiDAR
ground-truth and Z},; otherwise. For the n points with LIDAR measurements we
update the depth to the (ground truth) values D; = DL. We then solve for Djp,
given DL and the weighted KNN graph encoded in W. Concretely, we update the
remaining depths D), such that the depth of any point i can still be reconstructed
with high fidelity as a weighted sum of its KNN's depths using the learned weights
W;ie. if pointi: 1 < i < nis moved to its new depth DL;, then its neighbors in
N; must also be corrected such that DL; ~ Z]-e N; Wi]-D;. Further, the neighbors of the
neighbors must be corrected and the depth of the few n points propagates across the
entire graph. The final D’ ca be obtained by optimizing;

D' = argminy, ||D' — WD'|[5. (4.9)

4.4.4 Corrected Depth Map Conversion into Corrected Pseudo Point
Cloud

Once the predicted depth map D is obtained, with D(u,v) being the depth corre-
sponding to each image pixel (u,v), a pseudo point cloud can be generated by using
the pinhole camera model. It is illustrated in Figure 4.7.
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FIGURE 4.7: Depth map to pseudo point cloud transformation. The predicted

depth map D is converted into pseudo point cloud. Depth map image represents

the depth value for each pixel. Objects that are far away are brighter, and objects

that are near are darker. For the pseudo point cloud, the points are colored by RGB
image for visualization only.

Given the estimated depth map D and camera intrinsic matrix, deriving the 3D lo-
cation (X, Y;, Z.) in the camera coordinate system for each pixel (u,v) is simply

as:

(depth) Z, = D(u,v), (4.10a)
(width) X, = U= CJ;‘> XZe (1= C”)fx D(u,0) (4.10b)
(height) Y, = *~ Cf”) XZe _(0=c) fx D(,2), (4.10¢)

where ¢, and ¢, is the pixel location corresponding to the projection of the camera
center (principal point); f,, and f, are the focal length in pixel widths and the focal
length in pixel heights. Then this point is transformed into (Xj, Y;, Z;) in the LiDAR
coordinate system (the real world coordinate system). Given the camera extrinsic

matrix:

R t
C= [0 1], 4.11)

where R and t are respectively the rotation matrix and translation vector, the rela-
tionship between (X, Y, Z;) and (X}, Y}, Z;) is as follows:

XC Xl
Y, Y,
‘l=cl|, (4.12)
Zc Zl
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and then the corresponding pseudo point in the LiDAR coordinate system can be
obtained by computing;:

X X,
Y Y,

l=c1] ‘). (4.13)
Zl Zc

1 1

To make the pseudo point cloud more similar to real LIDAR signals, following Wang
et al. [43] and Yang, Luo, and Urtasun [172], reflectance is set to 1 for each point and
points higher than 3 m above the ground are removed. Afterwards, LiDAR-based
3D object detector can be applied to this pseudo point cloud.

4.4.5 3D Object Detection on Pseudo Point Cloud

Figure 4.8 shows the final part of the proposed architecture, which is LiDAR-based
3D object detection.

Corrected pseudo point cloud
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Predicted 3D bounding boxes

FIGURE 4.8: 3D object detection part of SLS-Fusion architecture. The corrected
pseudo point cloud can be used directly as the real point cloud. We can apply any
LiDAR-based method to it.

The purpose of this part as well as the conversion of data from the predicted depth
map to pseudo point cloud is to take advantage of the efficiency of the LIDAR-based
3D object detection methods, which often outperform other methods. A LiDAR-
based 3D object detection method can be applied as an add-on part to the predicted

pseudo point cloud.

4.5 Experiment Settings

4.5.1 Metrics

To evaluate our approach, we evaluate both the depth estimation part and the final
result of 3D object detection.
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We first evaluate the depth estimation part on the KITTI object detection dataset.
The evaluation calculates four metrics: the root mean squared error (RMSE in mm),
the mean absolute error (MAE in mm), the root mean squared error of the inverse
depth (iRMSE in km~!) and the mean absolute error of the inverse depth (iMAE in
km™!). Following the KITTI depth completion benchmark, the root mean squared
error (RMSE) is used as the main metric. These metrics are defined as follows:

RMSE — 1 Y. (D(u,0) — D(u,0))?, (4.14)
n (u,v)€A
MAE = L Y |D(u,v) — D(u,v)]|, (4.15)
n
(u,0)€A
1 1 1\
iRMSE = , | — — = , (4.16)
J " <u§eA (Dw) DW))
1 1 1
MAE = — - = , 417
n Z‘ D(u,v) D(u,v) (4.17)

(u,v)€A

where D(u,v) is taken from the accumulated 11 frames of the 64-beam LiDAR point
cloud presented in Section 3.2.2 and used as the ground truth depth map, A contains
pixels with ground truths and 7 is the number of valid pixels in A. A comparison
is made in experiments with the Stereo Depth Network (SDN), which is the depth
network of Pseudo-LiDAR++ [46] to test the advantage of LiDAR features in the

deep neural network.

For the evaluation of object detection, we report the average precision (AP) with
an intersection over union (IoU) thresholds at 0.5 and 0.7, as per normal practice.
With B and b denoting the area of predicted and ground truth 3D bounding boxes,

respectively, IoU is defined as follows:

BNb

IoU = - 7.
oY = BUD

(4.18)

We denote 3D AP and bird’s eye view (BEV) AP of the object detection as APsp and
APgey, respectively. AP is calculated according to the formula below:

. TP
Precision = TP+ ED’ (4.19)
TP
1 .
AP = I Y Precision (Recall;) (4.21)

Recall;



72 Chapter 4. Sensor Fusion for 3D Object Detection

where TP, FP, FN are the numbers of true positives, false positives and false nega-
tives, respectively, determined based on a given threshold IoU described above.

Objects in the KITTI dataset are divided into three levels of difficulty: Easy, Mod-
erate and Hard, depending on their 2D bounding box sizes, occlusion, and trunca-
tion extent following the KITTI definitions. Similar to Li, Ku, and Waslander [169],
experiments are compared to six recent stereo-based detectors: TLNet [167], Stereo-
RCNN [166], DSGN [168], CG-Stereo (with PointRCNN) [169], Pseudo-LiDAR (with
PointRCNN) [43], the baseline method Pseudo-LiDAR++ (with PointRCNN) [46]
and also the original LiDAR-based detector PointRCNN [64]. But unlike Li, Ku, and
Waslander [169], we do not compare with the result of OC-Stereo [173] which used
the AVOD [44] detector while the proposed method uses the PointRCNN [64] detec-
tor. Here, CG-Stereo (with PointRCNN) means the result from an experiment where
CG-Stereo uses PointRCNN in their experiment and the same for other cases.

4.5.2 Dataset

We conduct our experiments in the KITTI dataset as introduced in Chapter 3.2, the
3D object detection benchmark. It provides synchronized 2D images and 3D LiDAR
point cloud with annotations for car, pedestrian, and cyclist class. We focus on the
car class because it contains the most training examples and is the main ingredient
that appears on the streets. We use the KITTI object detection dataset for training
both depth estimation and 3D object detection parts of our method.

4.5.3 Training and Inference

Firstly, we learn our depth estimation part to directly minimize the depth error:

L(D,D)= Y smoothy (D(u,v) — D(u,0)), (4.22)
(u,v)€A

where L(D, D) is the smooth L1 loss, D(u, v) is the ground truth depth map, and A
contains pixels with valid ground truths.

For faster convergence, full depth maps from Scene Flow dataset [144] are firstly
used for training. Here the LIDAR input is set as zeros because this synthetic dataset
is designed exclusively for RGB stereo and no LiDAR scans are provided. Then fine-
tuning is done on the 3,712 training samples of the KITTI dataset for 100 epochs,
with batch size 4 and the learning rate set to 0.001. The Adam optimizer was used
to optimize the depth estimation network.

For 3D object detection, PointRCNN [64] is applied, which is a LIDAR-based method
with a high performance and used by many other methods as a baseline. As it was
designed to take into account a sparse point cloud, the dense point cloud is sub-
sampled to 64-beam LiDAR. Then, the released implementation of PointRCNN is
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used directly, and its guidelines followed to train it on the training set of the KITTI
object detection (KOD) dataset [49] only for the “Car” class because car is one of the
main objects and occupies the largest percentage in the KITTI dataset which causes
the unbalance between “Car” and other classes.

Both trainings run on 2 NVIDIA GeForce GTX 1080 Ti GPUs with 11G memory.

4.6 Experiment Results

This section firstly presents an evaluation of the depth estimation accuracy of the
SLS-Fusion network. The results are shown in Table 4.1. The results show that the
proposed network outperforms the baseline Pseudo-LiDAR++ [46] by a large mar-
gin over all metrics evaluated on pixels with a valid depth ground truth in the range
[1 m, 80 m] on the KOD dataset [49]. They support the idea that adding LiDAR in
the stereo network can boost the accuracy of the predicted depth map.

RMSE MAE iRMSE iMAE

(mm) (mm) (km') (km™)
baselinex [46] 1506.92 443.81 5.59 1.90
ours* 845.21 307.36 2.72 1.28

Method

TABLE 4.1: Evaluation of the depth estimation part of our method compared to

our baseline. The results show the mean error (shown in different metrics) for a

pixel from all the test images of KOD dataset [49]. RMSE (red) is the main metric
to rank methods.
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Method Input Easy Moderate Hard
TLNet [167] S 62.46 / 59.51 4599 /43.71 4192/ 37.99
Stereo-RCNN [166] S 87.13 /85.84 74.11 /66.28 5893 /57.24
Pseudo-LiDAR [43] S 88.4 / 88.0 76.6 / 73.7 69.0 / 67.8
DSGN [168] S - - -
CG-Stereo [169] S 97.04 / 90.58 88.58/ 87.01 80.34/ 79.76
baselinex [46] S 89.8 / 89.7 83.8 / 78.6 77.5 / 75.1
ours S 90.13 / 89.9 83.89 /78.81 78.03 /76.14
baselinex*x [46] S+L4  90.3 /90.3 87.7 / 86.9 84.6/ 84.2
ours** S+L4 93.16 / 93.02 88.81/86.19 83.35/ 84.02
PointRCNN [64] L64 97.3 /973 89.9 / 89.8 89.4 / 89.3

(@) IoU=05
Method Input Easy Moderate Hard
TLNet [167] S 29.22 /18.15 21.88 /1426 18.83/13.72
Stereo-RCNN [166] S 68.50 / 54.11 48.30 / 36.69 41.47 / 31.07
Pseudo-LiDAR [43] S 734 /623 56.0 / 44.9 52.7 / 41.6
DSGN [168] S 8324 /732 6391 /5427 57.83/47.71
CG-Stereo [169] S 8731 /7617 68.69 /57.82 65.80 / 54.63
baselinex [46] S 82.0 /679 64.0 / 50.1 57.3 / 45.3
ours S 82.38 / 68.08 65.42 / 50.81 57.81 / 46.07
baselinex*x [46] S+L4 88.2 /751 76.9 / 63.8 734 /574
ourss*s S+L4 87.51/76.67 76.88 /6390 73.55/56.78
PointRCNN [64] L.64 90.2 / 89.2 87.9 /789 855 /779

(b) IoU = 0.7

TABLE 4.2: Evaluation of the 3D object detection part of our method compared
to SOTA. APpry/ APsp results on the KITTI validation set for “Car” category with
IoU at 0.5 and 0.7 and on three levels of difficulty: Easy, Moderate and Hard. (a) and
(b) correspond to results with IoU of 0.5 and IoU of 0.7. The results are evaluated
using the original KITTI metrics. All methods are ranked based on the moderately
difficult AP3p results (red). S, L4 and L64 respectively denote stereo, simulated 4-
beam LiDAR and 64-beam LiDAR inputs. Baselinex, baselinexx, ours* and ourss:x
respectively are Pseudo-LiDAR++ (stereo), Pseudo-LiDAR++ (stereo + 4-beam Li-
DAR), the proposed method SLS-Fusion (stereo) and SLS-Fusion (stereo + 4-beam
LiDAR).

Following the promising results from the predicted map, results for 3D object de-
tection task are reported in Table 4.2, showing two results (one for IoU of 0.5 and
another one for IoU of 0.7) for the proposed approach. Oursx is the base proposed
model, while oursxx includes the GDC proposed in [46]. Pseudo-LiDAR++ is taken
as a baseline and in the same way, baselinex and baselinex* denote respectively
Pseudo-LiDAR++ (S) and Pseudo-LiDAR++ (S+L4). The proposed approach is also
compared with six other outstanding methods: Pseudo-LiDAR [43], TLNet [167],



4.6. Experiment Results 75

Stereo-RCNN [166], DSGN [168], CG-Stereo [169] which are based on low-cost sen-
sors and the original 3D object detector PointRCNN [64] which uses 64-beam Li-
DAR. Firstly, comparing ours* with the baselinex, the proposed method outper-
forms the baseline over all indicators, thereby showing the effect of 4-beam LiDAR in
the proposed stereo matching model. Secondly, oursx* outperforms the baselinexx
and other stereo-based methods on some indicators. The proposed method gets the
best result (63.90%) on 3D AP with IoU of 0.7 which is the main indicator to rank all
methods on KITTI. Lastly, compared to the original detector PointRCNN [64] which
used 64-beam LiDAR as input, ours* and ours+x* have inferior performance, which
is expected, but it helps to get closer to the method trained on real LiDAR.

The good results achieved by CG-Stereo [169] on 0.5 IoU (Easy and Moderate) could
be explained by the method used. In fact, this latter splits the scene into foreground/
background and applies for each part independent depth estimation. This leads to
easier detection of Easy objects in the foreground. However, we notice that our
method is more stable because it achieves better results on hard objects.

Figure 4.9 shows some detection results obtained by the proposed approach on data
from the KITTI validation dataset.
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FIGURE 4.9: Qualitative Comparison. We illustrate the results of SLS-Fusion with

different input point clouds on a KITTI validation scene. They are visualized in a

frontal-view image as well as a BEV point map. Ground-truth and predicted boxes
are in red and green, respectively.

4.7 Conclusion

In this chapter, we have introduced the SLS-Fusion network, a novel depth predic-
tion framework taking 4-beam LiDAR and stereo images as input which is low-cost
sensors in the autonomous driving domain, for 3D object detection. Our architec-
ture can take advantage of features from both images and point cloud by using an
encoder-decoder network and then optimize the depth estimation loss via a Depth
Cost Volume. The experiments here are performed on the KITTI dataset, where
data is collected under conditions unaffected by bad weather. Experimental results
demonstrate that this model by fusing a stereo camera and 4-beam LiDAR can im-
prove both depth estimation and 3D object detection accuracy. Experiments under

extreme weather conditions will be presented in the next chapter.
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Chapter overview: The objective of this chapter is to evaluate a fusion solution that
uses cameras and LiDAR (4-beam and 64-beam) for 3D object detection in foggy
weather conditions. Unlike the previous chapter, where we did not take into ac-
count the effect of weather, this chapter analyzes and evaluates the impact of fog on
the sensors and their ability to identify the environment. As part of this analysis, we
also examine the contribution of each sensor to the results because the SLS-Fusion
model fuses data from both input sensors through deep fusion, and we need to un-
derstand how well each one contributes. Firstly, it should be noted that the perfor-
mance of 3D object detection is significantly reduced when the data is trained on
fog-free conditions and evaluated on foggy data. This highlights the importance of
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selecting appropriate training datasets. For instance, when evaluating Moderate ob-
jects in foggy weather conditions, the performance of 3D object detection is reduced
by 42.67% if trained on the KITTI dataset without fog. However, by using a specific
training strategy that includes both datasets with and without fog (i.e., training on
the KITTT and the Multifog KITTI), the results are significantly improved by 26.72%.
Moreover, the detection still performs well on the original dataset (Clear KITTI) with
only an 8.23% drop compared to training and testing on the Clear KITTI dataset.
In summary, fog can cause significant challenges for 3D object detection in driving
scenes. By training with an augmented dataset, we can significantly improve the
performance of the proposed 3D object detection algorithm for self-driving cars in
foggy weather conditions.

5.1 Introduction

In the previous chapter, we conducted an analysis for the detection of 3D objects by
simultaneously involving cameras and LiDAR. These tests were carried out under
normal weather conditions. In this chapter, it is a question of carrying out the same
analysis, but on data tainted with fog. The main objective is to verify the behavior

of our model when the data contains fog.

(a) Original sample (b) Foggy sample

FIGURE 5.1: Example of image distortion and the corresponding point cloud in
the proposed Multifog KITTI dataset [162, 174, Fig. 1] Note that the color of each
point in the point cloud is the color of the corresponding pixel in the image (for
visualization only). (a) shows the original sample from the KITTI dataset [12] with
the image above and the point cloud below collected by Velodyne HDL64 S2 LiDAR
[12]. (b) shows the image and the point cloud simulated in foggy conditions with
visibility V equal to 52 m from the proposed dataset. Arising from receiving back-
scattered light from water drops, fog makes the image have lower contrast and
causes incorrect point measurements in the point cloud.

Many factors can affect the perception ability of self-driving cars sensors, thereby
potentially causing serious consequences on the lives of other road users. While
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applications using these sensors do quite well in controlled lighting or indoor en-
vironments unaffected by weather, outdoor applications face many problems. For
example, applications that use a camera to perceive the environment often fail in ex-
treme lighting conditions such as sunburns, low light, or nighttime conditions. Sig-
nificant challenges arise in self-driving cars under adverse weather conditions such
as fog, rain, or snow, in which both the camera and LiDAR are severely affected Mai
et al. [175], as shown in Figure 5.1. In particular, fog is a common phenomenon and
hinders self-driving cars and even drivers. Therefore, the purpose of this chapter is
to analyze the effects of fog on the detection of objects in driving scenes and then to

propose methods for improvement.

In reality, it is not always easy to obtain data containing fog. This is all the more im-
portant depending on the place of experimentation. There are countries where there
is never fog. It is therefore not easy to have complete datasets in foggy weather
conditions. A solution to overcome this drawback is to generate synthetic data con-
taining fog. It involves applying a number of basic treatments to the original data to
taint it with fog. In terms of processing tasks, we test our 3D object detector based
on stereo camera and LiDAR (SLS-Fusion) presented in the previous chapter to see
how it is affected by foggy weather conditions. We propose to train it using both
the original dataset and the augmented dataset to improve performance in foggy
weather conditions while keeping good performance under normal conditions.

5.2 Contribution

Methods that produce the best results are mostly based on deep learning architec-
tures by training a model with large amounts of data associated with labeling (su-
pervised learning). While labeling and collecting data in good conditions such as
daytime or sunny weather takes time, it takes even more time and effort in extreme
weather. Thus, there is an imbalance in the amount of data recorded in extreme
weather conditions compared to those in normal conditions [88, 123, 124, 131, 148].
In addition, there may be an imbalance in different levels of fog, rain, or snow when
collecting data. Most of the data is only collected during a given time and place, so
the data will not be able to fully cover all situations, and therefore using a model
trained with a limited range of data may make mistakes. So, in addition to real data,
the creation of synthetic data which can be simulated under many controlled pa-
rameters is equally important. Chapter 3 introduced a physics-based fog data on a
well-known dataset collected in the daytime and mild sunlight conditions to provide
improvements under foggy conditions.

Some studies also identify failures and how to fix them in extreme weather condi-
tions [83, 98, 100-102]. However, most of them only experiment on images and not
on both images and point cloud [83]. To improve the performance of the percep-
tion algorithms, several studies suggest to dehaze fog, rain, or snow on images [98,
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176, 177] and more recently for point cloud [178]. Others pointed out how the com-
bination of LiDAR and cameras also affects performance [83, 101]. Other studies
proposed to increase the amount of data during the training phase [98-100, 102].

This work extends our work [163] presented in Chapter 3, a 3D object detector for
self-driving cars in normal weather conditions, to run in foggy conditions. We point
out that the late-fusion-based architecture can perform well with a justifiable train-

ing strategy in foggy weather conditions. The main contributions are:

e Firstly, we propose a new public dataset augmenting the KITTI dataset [12] for
both images and point cloud through different visibility ranges (in fog) from
20 to 80 meters to be as close as possible to a realistic foggy environment.

¢ Secondly, we show that the data collected from the camera and LiDAR is sig-
nificantly distorted under foggy scenes. It directly affects the performance of
self-driving cars 3D object detection algorithm, as confirmed through our ex-
periments.

¢ Finally, extending from our initial work [163] (described in the previous chap-
ter) on the original dataset [12] (good weather condition dataset), we propose a
specific training strategy which uses both normal and foggy weather datasets
as training datasets. Experiments show that the model can run better in foggy
weather conditions while keeping performance close to that obtained in nor-
mal weather conditions.

Additionally, since the data from the two input sensors are fused in the early stages
of the SLS-Fusion model, we also analyze the contribution of each sensor to the
model. For this:

¢ We divide and adapt the SLS-Fusion neural network [163] to take into account
the stereo camera or LiDAR separately. This leads to two different neural sub-

networks.

¢ We study the performance of each neural subnetwok in foggy weather condi-
tions in comparison with SLS-Fusion.

¢ We then analyze the performance of the 3D object detection models (for the
stereo camera and LiDAR) according to six levels of fog applied to the KITTI
dataset.

5.3 Impact of Fog on Camera and LiDAR

Fog is the phenomenon of water vapor condensing in tiny cloud-like particles that
appear on and near the ground instead of in the sky. The Earth’s moisture slowly
evaporates, and when it does, it moves up, cools, and condenses to form fog. Fog
can be seen as a form of low clouds.
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Physically, fog causes dispersion. Before entering the camera sensor, light is dis-
persed by the suspended water droplets. Two main outcomes result from this scat-
tering phenomenon. Both a signal floor of scattered light and the attenuation of
the chief ray before it enters the sensor are present. These effects, reduce contrast,
as shown in Figure 5.3, the intensity range is filled with intensity values (a single
value for a gray-level image for each pixel) that decrease with the intensity of the
fog (clear, 80, 50, 20 m). Therefore, the contrast of the image is inversely propor-
tional to fog density, and it may cause driving difficulties for both human drivers

and sensor-based autonomous systems or driving aids.

Meanwhile, even point clouds are more affected because real object points are not
recognized, but instead are water mist droplets. Figure 5.2 shows that more and
more distant point clouds are deformed proportional to the density of the fog. In
the case of the visibility V' =20 m, we cannot recognize the shape of the object in the
point cloud, but we can still see some cars in the fog image. It gives us the feeling
that LIDAR is much more affected than the camera in foggy weather condition. From
here, we will show how it affects the object detection of self-driving cars through

experiments in the following section.

Point clouds

Image

FIGURE 5.2: Visualization of image and point cloud corresponding to different
levels of visibility [162, Fig. 2(a)]l. From left to right, image, and point cloud are
shown for “Clear” sample (original sample) and augmented foggy samples (64
beams) through different levels of visibility. The point cloud is shown in bird’s eye
view (BEV) representation. As visibility decreases, the contrast of the image and
the range of the point cloud also decrease significantly. 64-beam LiDAR is used
here to more clearly see the effect of fog (visualization purpose), but the 4-beam
LiDAR is used in the experiment (Section 5.5).
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FIGURE 5.3: Histogram of images with different levels of visibility [162,

Fig. 2(b)]. This figure shows the pixel intensity distribution of images in Figure 5.2

corresponding to different levels of visibility. Images are converted to gray scale
images here for simplicity.

Figures 5.4 and 5.5 provide illustrations of the effect of fog when applied to the
original images. The visibility distances selected in these figures are 20 m, 50 m and
80 m. We can visually note that at a distance of 20 m, we can no longer distinguish
certain objects, including cars. Figure 5.4 relate to vehicle objects while Figure 5.5
relates to the distinction of pedestrians. In the case of pedestrians in Figure 5.5, the
initial image also contains two wheels, with a lot of shadows. In this case, visibility

of 20 m provides degraded images that are difficult to interpret.

The purpose of the study in this section is to show that our algorithms are sensi-
tive enough to detect things at these distances, even if 20 m is a very close distance
between an autonomous vehicle and an obstacle. We present that in the sections

below.
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(a) Original image (b) Augmented foggy image (V = 80 m)
(c) Augmented foggy image (V = 50 m) (d) Augmented foggy image (V =20 m)

FIGURE 5.4: Images with different visibility levels — example 1. 5.4 (a) show the

original sample from the KITTI dataset. 5.4 (b), 5.4 (c) and 5.4 (d) shows the aug-

mented foggy images with visibility V equal to 80 m (8 = 0.0375), 50 m (8 = 0.0599)

and 20 m (B = 0.1498) respectively. B is the fog density (or attenuation) coefficient
corresponding to the visibility V.

4

(c) Augmented foggy image (V = 50 m) (d) Augmented foggy image (V =20 m)

FIGURE 5.5: Images with different visibility levels — example 2. The visibility
distances are the same as in Figure 5.4.

5.4 Implementation Methodology

The proposed method in Chapter 4, SLS-Fusion [163], involves three main steps:
depth estimation, data conversion, and LiDAR-based 3D object detection. In our
experiments, we try to analyze the contribution of each sensor (camera or LiDAR)

for the 3D object detection task. Thus, the two sensors are considered separately.
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Left Image

Weight Sharing

FIGURE 5.6: SLS-Fusion feature extraction part. It takes both images and point
cloud as input.

Figure 5.6 shows the encoder-decoder network that takes both images and point

cloud in the same model to extract feature information.

5.4.1 Modified SLS-Fusion Taking Stereo Camera as Input

Figure 5.7 shows the network representative for the stereo camera only. We start
from the global representation in Figure 5.6. In this global representation, we indeed
have two inputs to set up our neural network: one for the LiDAR and one for the
stereo camera. As it can be seen in Figure 5.7, the neural network is changed to take
into account only a stereo camera as input. The last step, obstacle detection, remains
the same whether the depth map obtained from LiDAR or the depth map obtained

from the stereo camera is used.

Left Image

Weight Sharing

FIGURE 5.7: Modified feature extraction part of the SLS-Fusion algorithm to
adapt it for taking only the stereo camera as input.
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5.4.2 Modified SLS-Fusion Taking LiDAR as Input

As can be seen in Figure 5.7, the LIDAR has been eliminated. Thus, the output depth
map is based on the point cloud as input. Here, to build a model that takes LIDAR
as input, we do the same thing as above, but instead of removing the point cloud
branch we remove the image branch. Figure 5.8 shows the model that uses LiDAR

only. In this case, the input data is the LIDAR and the output depth map is based on
Left projected LiDAR depth map

the LiDAR only.
iy - Ne -( T
Right projected LIDAR depth map eight Sharngﬂ ﬁ B 16x

FIGURE 5.8: Modified feature extraction part of the SLS-Fusion algorithm to
adapt it for taking only the LiDAR as input.

5.5 Experiment Settings

5.5.1 Metrics

The same metrics presented in the previous chapter are used here to evaluate object
detection algorithms. The Average Precision (AP) for both 3D and BEV is reported
as AP;p and APggy, respectively, with thresholds of 0.5 and 0.7 for the intersection
over union (IoU). The objects are classified into three difficulty levels, Easy, Moderate
and Hard, depending on the size of the 2D bounding box, the occlusion, and the
degree of truncation of the object appearing in the RGB image according to Geiger,
Lenz, and Urtasun [12]. The experiments are performed using the KITTI [12] and
the Multifog KITTI [162] datasets presented in Chapter 3. The original 3D object
detection model SLS-Fusion [163] and its modified versions presented in Section 5.4

are used for all experiments.

5.5.2 Datasets

In order to overcome the difficulty of detecting objects in the presence of fog, we
are pushed to use stereo camera and LiDAR at the same time. We need to use the
two sensors. We will therefore bring the LiDAR and the stereo camera together
first. Thereafter, as said previously, we will consider the two sensors separately to

evaluate their respective contributions.
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To enable the operation of the SLS-Fusion system, the synthetic Scene Flow dataset
[144] is first used to train the neural network model for depth estimation, as in the
previous chapter. After depth prediction, the KITTI dataset [12] is used to train
the 3D object detection part of the SLS-Fusion method. On the other hand, there
are few datasets recorded in extreme weather conditions. To address this problem,
we decided to create a dataset, derived from the KITTI dataset, augmented with
foggy weather conditions. To do this, we use a physics-based fog simulator [83] that
converts normal weather data from the KITTI dataset to foggy weather data (this
modified dataset is then called Multifog KITTI) as described in Chapter 3. In this
dataset, the level of fog is characterised according to a visibility distance expressed
in meters. Based on the results of the simulated foggy system, we divide foggy
weather into six conditions or levels, according to visibility V' (level 1, really dense
fog: 20-29 m, level 2: 30-39 m, level 3: 40-49 m, level 4: 50-59 m, level 5: 60-69 m, and
level 6, medium fog: 70-79 m).

The detection results of the SLS-Fusion method were obtained by training with the
Multifog KITTI dataset [162]. The performance of the 3D object detector can be ana-
lyzed by comparing the 3D predictor results with the annotated KITTI data results.
However, after creating the new dataset by using the fog simulator, we found that
many labeled objects (ground truths) that were visible without fog became invisible
in the fog, resulting in incorrect ground truths. For this reason, the ground truths
were filtered. The bounding boxes, which have a greater distance to the sensor than
the meteorological visibility, are removed and not taken into account in the eval-
uation. When we manually review the LiDAR and camera data, we see that this

method does remove objects that are completely invisible.

5.5.3 Training and Inference

It has been shown that the combination of LiIDAR and camera does not outperform
the results of models using only LiDAR in normal weather conditions (without fog).
On the other hand, LiDAR and camera data are strongly affected by noise in foggy
weather. In this case, we do not know what is the best choice: to continue to fuse
the two sensors or to use them separately. That is the question we want to answer
here. We perform the following experiments: we test the SLS-Fusion model with
only camera or LiDAR inputs to see how each sensor contributes to the performance
of the model when the data is affected by fog. To analyze the contribution of each
sensor, we first compare the results on the KITTI dataset with those on the Multifog
KITTI dataset. Knowing that the LiDAR gives poor results in foggy weather, we try
to see if a LIDAR with more laser beams (64 instead of 4) would give better results
in those adverse conditions.

The visibility interval (corresponding to fog density) can be retrieved. For each level
of visibility V' (level 1 (dense fog) to level 6 (medium fog)), object detection perfor-
mance is considered. This can then determine up to what visibility range the models
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can provide acceptable performance.

5.6 Experiment Results

As shown in Tables 5.1, 5.2, 5.3, 5.4 and 5.5, the results of different tests using the
SLS-Fusion method are given for IoU of 0.5 and 0.7. In each cell of these tables,
a pair of numbers A/B corresponds to the results obtained with the APpgy/AP3p
metrics on the KITTI or Multifog KITTI datasets. APggy is average precision for BEV
and AP;p is average precision for 3D object detection. Below, we describe the result
APsp as the primary metric because it better reflects how well the bounding boxes
are predicted for the 3D object detection task.

In Table 5.1, the experiments are divided into two parts. The upper part consists of
experiments Idx 1.1, 1.2, 1.3 and 1.4 on the KITTI dataset. In contrast, the experi-
ments in the lower part Idx 2.1, 2.2, 2.3, 2.4 and 2.5 were performed on the Multifog
KITTI dataset.

The upper part Idx 1.1 reports the experiment described in Chapter 4). It is a test of
the SLS-Fusion model, with a stereo camera and a 4-beam LiDAR fused (S+L4) as
inputs experimented on the KITTI dataset. In the next two experiments, we present
the results in the same way, but 1.2 only takes a 4-beam LiDAR as input (L4) and 1.3
only takes a stereo camera as input (S).

In this part which concerns using the KITTI dataset without fog, one notices, as
expected, that the fusion of the stereo camera and LiDAR provides good results:
93.02% for Easy and IoU of 0.5. In this configuration, a stereo camera provides better
results than a 4-beam LiDAR (89.39% versus 78.16%). Separating the two sensors
results in lower performance. This prompts us to consider the two sensors jointly.
On the other hand, if we consider the 64 beam LiDAR (Idx 1.4), the results are better
(97.3% for Easy objects and an IoU of 0.5). Nonetheless, the 64-beam LiDAR price is
very high compared to that of cameras and 4-beam LiDAR.

In the second part of Table 5.1, we calculated the same indicators as before, but with
data with fog (Multifog KITTI). Performance when fusing a stereo camera and a 4-
beam LiDAR (S+L4) remains high (90.15%) for Easy objects, which demonstrates the
viability of using both sensors at the same time. The performance of the 4-beam Li-
DAR alone (L4) decreases sharply (13.43%), which seems to show that the 4-beam
LiDAR is not useful in fog, and it is the stereo camera (S) that has the highest con-
tribution, as its performance remains very high (89.36%). The combination of stereo
camera and 64-beam LiDAR provides good results (89.26% for Easy objects) and for
most of the types of objects, but the stereo camera still plays the most important role.
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0.5 IoU
Idx  Method Dataset ~ Input
Easy Moderate Hard

1.1  SLS-Fusion Clear S+L4 93.16/93.02 88.81/86.19 83.35/84.02
1.2 SLS-Fusion Clear L4 84.02/ 78.16 7298/ 68.92 66.34/ 63.92
1.3  SLS-Fusion Clear S 89.50/ 89.39 78.54/77.46 75.19/ 69.77
14 PointRCNN Clear L64 97.3/ 97.3 89.9/ 89.8 89.4/ 89.3
21 SLS-Fusion Multifog  S+L4 90.27/90.15 79.17/78.01 76.12/70.21
22 SLS-Fusion Multifog L4 1544/ 13.43 10.63/ 9.58 9.75/ 9.65
2.3 SLS-Fusion Multifog S 89.52/ 89.36 78.75/77.71 75.63/ 69.90
24 SLS-Fusion Multifog L6e4  81.61/77.31 56.89/53.87 49.83/ 47.80
2.5 SLS-Fusion Multifog S+L64 89.42/89.26 78.79/77.82 75.92/74.58

TABLE 5.1: 3D object detection results (IoU of 0.5) with different inputs and
datasets. APpry/ AP;p results on the Clear KITTI (Clear) and the Multifog KITTI
(Multifog) datasets for the category “Car” with IoU of 0.5 and on three levels of dif-
ficulty: Easy, Moderate, and Hard. S, L4, L64 denote the stereo camera, the 4-beam

LiDAR, and the 64-beam LiDAR, respectively.

0.7 IoU
Idx Method Dataset  Input
Easy Moderate Hard

1.1 SLS-Fusion Clear S+L4 87.51/76.67 76.88/63.90 73.55/56.78
1.2 SLS-Fusion Clear L4 56.72/ 38.82 49.25/32.02 44.14/ 29.75
1.3 SLS-Fusion Clear S 82.21/ 66.54 62.18/ 47.18 56.41/ 43.07
1.4 PointRCNN Clear Lo4 90.2/ 89.2 87.9/78.9 85.5/77.9
21 SLS-Fusion Multifog  S+L4 83.42/69.57 62.79/48.19 56.84/ 44.85
22  SLS-Fusion  Multifog L4 10.87/ 9.09 9.09/ 9.09 9.09/ 9.09
23 SLS-Fusion  Multifog S 82.41/ 70.52 62.59/ 48.27 57.11/45.75
24 SLS-Fusion  Multifog Le4  58.35/42.57 38.80/29.27 34.63/ 25.25
25 SLS-Fusion Multifog S+L64 82.85/71.49 62.33/48.39 57.10/ 45.78

TABLE 5.2: 3D object detection results (IoU of 0.7) with different inputs and
datasets. APpry/ AP;p results on the KITTI dataset for the category “Car” with
IoU of 0.7 and on three levels of difficulty: Easy, Moderate, and Hard. S, L4, L64 de-

note the stereo camera, the 4-beam LiDAR, and the 64-beam LiDAR, respectively.

In order to describe the results in more details, we propose to further illustrate our
point. For this, we use illustrations of 3D objects and additional result tables. Fig-
ure 5.9 presents some illustrative results of car detection, showing 3D predicted
bounding boxes. It is consistent with the results reported above that training on
Clear and Multifog gives better results. It shows the 3D bounding boxes on both
image and point cloud, and contains four parts: Figure 5.9 (a) gives an example re-
sulting from training on the Clear KITTI and evaluating on the Clear KITTI; Fig-
ure 5.9 (¢) training on the Clear+Multifog KITTI and evaluating on the Clear KITTI;
Figure 5.9 (b) training on the Clear KITTI and evaluating on the Multifog KITTI;
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Figure 5.9 (d) training on the Clear+Multifog KITTI and evaluating on the Multifog
KITTI. Figure 5.9 (a) shows that the model detects all objects in the context when
trained on Clear and evaluated on Clear. When augmenting training on Multifog
KITTI in Figure 5.9 (c), the model can still detect all objects, even though the number
of false detections is higher. In Figure 5.9 (b), we see that the model cannot detect all
objects and misses a distant object when the image data, and especially the LiDAR,
are greatly distorted in the foggy environment. In Figure 5.9 (d), still in the foggy
environment, but the model is trained on Multifog KITTI, we see that the model can
recognize all the objects again despite the increased number of false positives.

(a) Training: Clear; evaluation: Clear (b) Training: Clear+Multifog; evaluation: Clear

(c) Training: Clear; evaluation: Multifog (d) Training: Clear+Multifog; evaluation:
Visibility V =45 m Multifog
Visibility V =45 m

FIGURE 5.9: Qualitative Comparison — example 1. Qualitative results of our SLS-

Fusion method for 3D object detection on the Clear KITTI dataset and the proposed

dataset (the Multifog KITTI). 3D bounding boxes in red and in green denote the

ground truth and the prediction for objects in the scene, respectively. Note that the
point cloud is shown in BEV representation.
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Tables 5.3, 5.4 and 5.5 show results on APgry and APsp according to the visibility
distances (from level 1 to level 6). In this configuration, we consider 3D detection
performance by combining a stereo camera and a 64-beam LiDAR (in Table 5.3) an-
alyzed by visibility distance. For the Easy category (IoU of 0.5), the combination of
the two sensors (S+L64) leads to an AP greater than 82.52%. On the other hand, for
the Moderate category (with an IoU of 0.7), visibility distance plays a role, and we
have an AP gain of about 7.4% (difference between 46.71% at level 1 and 54.10% at
level 6).

If we now look at the sensors separately and depending on the visibility distance, we
see the following. For the 64-beam LiDAR (Table 5.4), objects classified as Easy (with
an IoU of 0.5) are detected at 71.11% for visibility level of 20 m (level 1), up to 84.95%
for level 6. On the other hand, if we consider Moderate objects (with an IoU of 0.7)
we see that at low visibility level 1, the AP is 17.24%. Conversely, the AP at level 6
is 35.19%. We see that the results are better when the visibility is better. However,
the two results are bad given the safety requirements of autonomous vehicles. All
this shows that in the presence of fog, the use of a LiDAR alone does not provide
satisfactory results.

Table 5.5 provides the results for the stereo camera taken into account alone, in foggy
weather and as a function of the visibility distance. For Easy objects (IoU of 0.5) we
notice that the AP does not vary much depending on visibility (maximum 96.17%
of AP). If we consider Moderate objects (with an IoU of 0.7) we can note that the
AP varies according to the visibility distance, ranging from 46.70% to 54.09%. If we
compare the results to those of a 64-beam LiDAR, we can clearly see the superiority
of the stereo camera. Therefore, in foggy weather, LIDAR alone is not suitable.

0.5 IoU 0.7 IoU
Easy Moderate Hard Easy Moderate Hard

88.95/ 88.68 75.29/ 69.78 69.59/ 68.15 77.05/64.99 57.15/46.71 54.83/ 44.05
96.42/96.16 7898/ 78.31 7596/ 74.65 86.36/ 7549 63.58/ 52.68 57.76/ 46.22
89.24/89.03 78.15/77.27 76.45/7437 83.91/71.51 62.69/47.98 57.19/45.49
84.30/ 82.52 59.41/57.83 5455/50.24 62.08/47.80 40.77/30.85 35.60/27.24
89.85/89.75 83.31/77.86 76.68/74.60 85.88/7476 62.98/52.52 56.85/46.52
89.68/ 89.46 78.88/77.94 7693/7485 85.70/7479 64.95/54.10 5828/ 48.12

N Ul = W IN -

TABLE 5.3: Detailed results for each fog density using the stereo camera and
the 64-beam LiDAR. The SLS-Fusion algorithm is applied to the Multifog KITTI
dataset.

In Figures 5.11 5.10, we show detection results using our SLS-Fusion method, taking
the stereo camera and 4-beam LiDAR as input on four randomly chosen scenes in
the Clear KITTI and Multifog KITTI datasets. Specifically, we show the predicted 3D
bounding box results of the frontal-view images and the BEV point cloud. We have
the corresponding pairs of pictures in Clear KITTI and Multifog KITTI as follows:
(5.10(a), 5.10 (b)), (5.10(c), 5.10(d)), (5.11 (a), 5.11 (b)), (5.11(c), 5.11 (d)). We can see
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0.5 IoU

0.7 IoU

Easy

Moderate

Hard

Easy

Moderate

Hard

Nl WO DN -

73.64/ 71.11
85.46/ 77.42
83.38/ 78.72
89.88/ 89.78
83.47/ 82.84
86.24/ 84.95

48.72/ 45.54
57.86/ 53.62
57.60/ 54.59
84.50/ 79.39
58.26/ 57.17
59.87/ 58.01

4473/ 40.27
50.05/ 47.06
50.38/ 48.69
78.54/ 77.13
50.44/ 49.29
56.14/ 51.38

43.84/ 26.12
57.04/ 41.07
56.03/ 43.49
84.27/ 72.15
66.79/ 54.62
65.77/ 51.37

27.55/ 17.24
37.90/ 28.04
38.18/ 29.29
64.99/ 54.63
4225/ 34.84
41.95/ 35.19

26.30/ 16.94
33.82/ 24.76
32.00/ 25.71
57.48/ 47.27
36.83/ 30.28
39.42/ 30.89

TABLE 5.4: Detailed results for each fog density using only the 64-beam LiDAR.
The SLS-Fusion algorithm is applied to the Multifog KITTI dataset. It takes 64-

beam LiDAR as input in this case.

v 0.5 IoU 0.7 IoU
Easy Moderate Hard Easy Moderate Hard

1 89.02/8877 75.19/69.56 69.41/68.10 77.02/64.85 57.11/46.70 54.82/ 44.03
2 96.47/96.17 7897/7829 7591/74.66 86.31/7545 63.57/52.66 57.75/ 46.20
3 89.25/89.05 78.14/77.25 76.44/7433 83.88/71.50 62.66/47.97 57.20/ 45.50
4 84.33/8255 59.40/57.81 54.53/5020 62.07/47.79 40.75/30.84 35.60/ 27.23
5 89.86/89.77 83.30/77.85 76.65/7459 85.86/7475 62.97/5250 56.83/ 46.50
6 89.70/89.47 78.85/77.92 7692/7484 85.68/7477 64.93/54.09 5826/ 48.10
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TABLE 5.5: Detailed results for each fog density using only the stereo camera.
The SLS-Fusion algorithm is applied to the Multifog KITTI dataset.

that the model predicts well under favourable weather conditions (Clear KITTI).
However, the model encountered difficulty in foggy weather conditions (Multifog
KITTI). In particular, in addition to recognizing easy objects, it often predicts more
false positive objects as well as missing distant objects (false negative objects). This
can be explained by the fact that distant objects are much more affected by foggy
weather conditions.

5.7 Discussion and Conclusion

In this chapter, the main objective was to analyze the effect of fog on the SLS-Fusion
method for 3D object detection. To do this, a novel synthetic dataset was created
for foggy driving scenes. It is called the Multifog KITTI dataset as described in
Chapter 3. This dataset was generated from the original dataset, the KITTI dataset,
by applying fog at different levels of visibility (20 to 80 m). This dataset covers the
left and right images, 4-beam LiDAR data and 64-beam LiDAR data, although the
foggy 64 beams data are yet to be exploited. We have also tested the capabilities of
3D obstacle detection using two types of sensors: two versions of LiDAR (4-beam
and 64-beam) and a stereo camera. Based on object detection performance, we have
analyzed several aspects: the contribution of the two types of sensors (camera and
LiDAR) both in normal weather and in foggy weather conditions, when they are
combined and when they are used separately. The main result is that using LiDAR in
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(b) Training: Clear+Multifog KITTT; evaluation:
Multifog KITTL visibility V =21 m

(c) Training: Clear KITTIL evaluation: Clear KITTI  (d) Training: Clear+Multifog KITTIL; evaluation:
Multifog KITTIL visibility V = 37 m

FIGURE 5.10: Qualitative Comparison — example 2. Qualitative results of our SLS-

Fusion method for 3D object detection on the Clear KITTI dataset and the proposed

dataset (the Multifog KITTI). 3D bounding boxes in red and in green denote the

ground truth and the prediction for objects in the scene, respectively. Note that the
point cloud is shown in BEV representation.

foggy weather leads to a slightly worse obstacle detection performance (even worse
when the LiDAR is a 4-beam laser sensor). On the other hand, results based on stereo
camera are promising in foggy weather conditions, regardless of level of visibility.
And finally, the original fusion of the stereo camera and the LiDAR still gives slightly
better results in foggy weather conditions than the camera-only model, but almost
negligible.

The results in Tables 5.1, 5.2, 5.3, 5.4 and 5.5 contain a lot of information that needs to
be interpreted in detail. As a reminder, the results of this study are obtained on real
LiDAR and camera data, initially acquired in clear weather, to which fog has been
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K

-
p— il
[ = e e
(a) Training: Clear; evaluation: Clear KITTI (b) Training: Clear+Multifog KITTT; evaluation:
Multifog KITTI

Visibility V =59 m

—

(c) Training: Clear KITTT; evaluation: Clear KITTI ~ (d) Training: Clear+Multifog KITTT; evaluation:
Multifog KITTI
Visibility V = 67 m

FIGURE 5.11: Qualitative Comparison — example 3. Qualitative results of our SLS-

Fusion method for 3D object detection on the Clear KITTI dataset and the proposed

dataset (the Multifog KITTI). 3D bounding boxes in red and in green denote the

ground truth and the prediction for objects in the scene, respectively. Note that the
point cloud is shown in BEV representation.

added. The model used is a simple model, which considers only the macroscopic
attenuation phenomenon. This model has been calibrated on tests performed in a
controlled environment on standard sensors. However, this model has two limita-
tions. (i) First, it should be verified that it is valid for the sensors used in the KITTI
dataset, because, depending on the sensor (brand, type, internal settings), the im-
pact of fog can be more or less strong. In the case of the LiDAR, the threshold effects
when passing from the raw signals to the point cloud can have a strong impact on
the model we use. For the camera, the exposure setting is not considered here, and
may once again have an impact not modeled here. (ii) The model used here does



96 Chapter 5. Sensor Fusion for 3D Object Detection in Foggy Weather Conditions

not consider the microscopic phenomena of light diffusion. Thus, the halo effects for
the camera and the backscattering effects for a LIDAR sensor are not simulated here.
These different elements are known limitations of the model and clearly explained.
They can have an impact on the results, so the results presented here should not be
taken as categorical, but as initial results, allowing to compare sensors, and to find
data fusion solutions adapted to the autonomous vehicle.

For future work, two options can be considered to circumvent the limitations of the
model used here. The first would be to perform acquisitions on a real site, under real
adverse weather conditions. The second, more promising option, would be to use
more complex 3D models that implement microscopic scattering phenomena and
simulate the complete path of light from objects to the sensor and the sensor itself.



97

Chapter 6

Analysis of the Role of Each Sensor
in the 3D Object Detection Task:
Ablation Study

Contents
6.1 Introduction . . . . . . .. . @ i i i i i i i i it ittt 98
6.2 Characteristics of the Neural Network Architecture Used . . . .. 99

6.3 Assessment of the Different Network Architectures Implemented 101

6.3.1 Metrics . . . . . . e e e 103
6.3.2 AblationResults . ... ... ... ... ... ... ..., 104
6.4 Conclusion . . ... .. ..ttt e e e 109

Chapter overview: In the previous chapter, we evaluated SLS-Fusion using the
KITTI data set, which utilized the improved work of PoinRCNN for predicting the
3D bounding boxes of detected objects. The results showed that SLS-fusion out-
performed most advanced methods, particularly the Pseudo-LiDAR++, as shown in
Table 4.2 in Chapter 4. However, when compared to the original PointRCNN detec-
tor that used expensive 64-beam LiDAR, the performance of SLS-fusion was lower.
It is expected that the 64-beam LiDAR without fusion with stereo cameras is supe-
rior because high-resolution LiDAR sensors can provide precise depth information.
However, these LiDAR sensors are very expensive, with a 64-beam model costing
approximately 75k dollars (USD). As the number of LiDAR beams increases, thus
increasing the amount of point clouds generated, the cost of the LiDAR sensor also
increases (1k dollars to 75k dollars). In this chapter, we aim to find a compromise
between the quality of the LiDAR used and the 3D object detection performance
obtained. The optimized solution is to find the cheapest LIDAR model (minimum
beam number) used or not used in the SLS-fusion model that corresponds to an
acceptable accuracy error achieved by the 3D object detector (PointRCNN in our
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case). Furthermore, in this chapter, we analyze how the stereo and LiDAR sen-
sors contribute to the performance of the SLS-fusion model for 3D object detection,
depending on the number of LiDAR beams used. As explained in Section 5.4 of
Chapter 5 and shown in Figure 6.1, we divide the decoder of the SLS-fusion model
into independent decoder networks to separate the component parts of the network
that represent LIDAR and stereo camera architectures. The decoder inside the SLS-
fusion model is the only component responsible for fusing features between LiDAR
and stereo sensors. One of the best-known techniques employed for this purpose is
called “ablation study” [179].

Stereo component
network
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Left/Right — Encoder
l] { |
@ i
——
Decoder fusion / decoder :C Corrected
separation process ||| decoder =" D%ZSE)S( — Depth map
Ne—)
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LefuRight N ||
LIDAR Projection i
point cloud 14> LiDAR |:> Encoder pseudo
depth maps / : point cloud
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Y

LiDAR component ﬁPointRCNN
network

Encoder-decoder
Feature fusion
extractor

3D Objects

FIGURE 6.1: Overall structure of SLS-Fusion neural network.

6.1 Introduction

Given a pair of images from a stereo camera and point clouds from a LiDAR as
inputs to detect 3D objects, SLS-fusion based deep learning approach have shown
high performance in this domain. The analysis of this performance is depending on
the contribution of the neural network component of each sensor (LiDAR or stereo)
and of the type of LiDAR selected to the overall architecture of the system. In this
work, LiDAR sensors compared to their number of beams are grouped into three
main types: low cost LIDARs (4 or 8 beams), medium cost LiDARs (16 beams) and
high cost LIDARs (32 or 64 beams). This kind of study, particularly in artificial in-
telligence, is known as an ablation study [179, 180]. An ablation study is when we
remove certain components from a system to understand how the other components
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of the system perform. This characterizes the impact of every action on the overall
performance and capacity of the system.

In fact, the study of the structure of neural networks has become best practice for
machine learning research, as they provide an overview of the relative contribution
of individual architectures and components to model performance. It consists of
several trials such as removing a layer from our neural network, removing a regu-
larizer, removing or replacing a component from our model architecture, optimizer
retraining the network, and then observing how that affect the performance of the
model. However, as machine learning architectures become deeper and deeper and
the size of the training data is increasing [181], there is an explosion in the num-
ber of different architectural combinations that must be assessed to understand their

relative performance.

6.2 Characteristics of the Neural Network Architecture Used

Stereo Encoder

Stereo
images

Dense
depth map

Sparse
depth map|

ResNet block
for stereo

images input depth input

<2\
=\

ResNet block [ |6
for sparse ©

FIGURE 6.2: Presentation of the SLS-Fusion encoder-decoder architecture.

In our case, we will use this technique of analysis to identify the influence of each
sensor to the overall system of our proposed neural network, taking into account
the type of selected LiDAR (low, medium, or high cost) and the average precision
of both LiDAR and stereo components of the model architecture in detecting 3D



Chapter 6. Analysis of the Role of Each Sensor in the 3D Object Detection Task:

100
Ablation Study

objects. Finally, we will try to interpret the results by analyzing what happen inside
the neural network.

LiDAR and cameras are sensors which are widely seen in almost all autonomous
vehicles. The main important advantage of a LiDAR is that it provides extremely
accurate depth values, however, their output is always sparse and low resolution.
The camera, in contrast with LiDAR, is normally a passive sensor that provides high
resolution outputs, but they give, after a certain processing, low to medium preci-
sion depth values. So, the combination of the outputs of LIDAR and cameras helps
to overcome their individual limits. However, how LiDAR and the camera can be
fused?

In this work, we have proposed a new strategy based neural network to fuse data
of stereo images and projected LiDAR point clouds. The main component of our
proposed neural network SLS-Fusion, used to fuse or separate LiDAR and stereo
camera feature (for an ablation study), is the encoder decoder component (see Fig-
ures 6.1 and 6.2). It is the main part of SLS-fusion network that aims to enrich the
feature maps and thus leads to get better predicted depth maps from the stereo cam-
era and the projected LiDAR images. To understand all of this, we will explain how
encoder-decoder component work and how it will help to improve the precision of
the system when we use low, medium, or high cost LiDAR.

As shown in Figure 6.2, both stereo camera and LiDAR encoders are composed of a
series of residual blocks of neural networks ResNet followed by step-down convolu-
tion to reduce the feature resolution of the input. ResNet is a pile of residual neural
network blocks, and each residual block is a stack of layers placed in such a way that
the output of one layer is taken and added to another deeper layer within the block,
as shown in Figure 6.3. The main advantage of ResNet is it prevent the accuracy to
saturate and then degrades rapidly during training of deeper neural networks (net-
works with more than 20 layers). This advantage helps us to choose a network as
deep as we need for our problem. This is what we need in our case to extract as
much as possible detailed features of sparse LIDAR data and high resolution stereo
images. This process has considerably assisted the decoder network to properly fuse
the extracted features.

The network of the decoder consists of adding the functions of both LiDAR and
stereo encoders, then up projecting the result to progressively increase the resolu-
tion of the features and to generate a dense depth map as a decoder output. Because
the sparse input of LiDAR is heavily linked to the depth decoder output, features
related to the LiDAR sensor should contribute more to the decoder than features re-
lated to the stereo sensor. However, as the add operation promotes the features on
both sides [182], the decoder is encouraged to learn more features related to stereo
images in order to keep consistent with the features related to the sparse depth from
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LiDAR. In this way, whatever the type and associated resolution of the selected Li-
DAR (low, medium, or high cost types), the decoder network will correctly learn
merged features. Consequently, the proposed SLS-fusion always outperforms all
types of LiDAR sensors in the 3D object detection, as shown in the next section.

Layers

*

Residual Neural Network blocks

FIGURE 6.3: Resnet block architecture.

6.3 Assessment of the Different Network Architectures Im-

plemented

In this section, the results obtained with each component of the SLS-Fusion model
(Stereo camera, LiDAR 4 to 64 beams) are presented in order to understand the im-
pact of each component on the ultimate detection performance of 3D objects and
show how changes results. To do this, we perform a complete ablation study by
disabling each component as previously explained, or by changing the number of
LiDAR model component beams. As shown in Figure 6.4, the impact of increasing
the number of LiDAR beams will increase the amount of point clouds that represent
the environment around the autonomous car. Consequently, the LiDAR contribu-
tion to the performance of the object detection model will be enhanced. However,
as shown in Table 6.1, increasing the number of beams from 4 to 64 beams will sig-
nificantly increase the cost of the LiDAR sensor (from one thousand dollars to one
hundred thousand dollars). An optimized solution consists in selecting the num-
ber of corresponding LiDAR beams that provides us with an expected performance
value. For a more complete survey on the tested LiDARs in the market, the reader is
referred to [9].
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Model Channels Range HFoV/ RES VFoV/ RES Cost
(vertical) (m) (degree) (degree) %)
VLS-128 [183] 128 300 360°/ 0.2°@10Hz +15°t0 -25°/ 0.11° 100k
AT128 [184] 128 200 120°/0.1° 25.4°/ 0.2° NA
Pandar128 [185] 128 200 360°/ 0.1°@10Hz +15°to -25°/ 0.125° NA
HDL-64E S2, S3 [186] 64 120 360°/ 0.17°@10Hz +2.0°to -24.9°/ 0.4° 75k
Pandar64 [187] 64 200 360°/ 0.2°@10Hz +15°to -25°/ 0.167° 30k
HDL-32E [188] 32 100 360°/ 0.2°@10Hz  +10.67°to -30.67°/ 1.33° 30k
RS-LiDAR-32 [189] 32 200 360°/ 0.1° +15°to -25°/ 0.33° 16,8k
VLP-16 [190] 16 100 360°/ 0.2°@10Hz +15°/ 2° 8k
HSS8 [191] 8 100 120°/ 0.18° 6.66°/ 0.36° 4k
Scala [192] 4 200 145°/ 0.25° 3.2°/0.8° 0.6k

TABLE 6.1: Comparison of some LiDAR sensors. Channels shows the number of

laser beams of the LiDAR sensor vertically. Range indicates the maximum distance

that a LiDAR can detect objects. HFoV/ RES and VFoV/ RES decode horizontal

and vertical field of view and angular resolution, respectively. There are a number
of LiIDARs whose resolution depends on the frequency.

(c) 8-beam point cloud (d) 4-beam point cloud

FIGURE 6.4: LiDAR point clouds representing the environment around the au-
tonomous vehicles. The point cloud is colored according to RGB image.
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6.3.1 Metrics

To better understand the detection process and the results achieved by our study,
detection assessment measurements are used to quantify the performance of our
proposed detection algorithm in various situations. Among the popular measures
for reporting results, there are basic concepts and evaluation criteria used for object
detection [193] as follows:

Confidence level: As outlined in Chapter 4, the output of an object detector is char-
acterized by a 3D boundary box, a class, and a confidence level. The confidence
level may be taken into account in the precision and recall calculations by consid-
ering as positive detections only those which have confidence above the confidence
threshold T.

Intersection over union: As the aim of our work is to develop an automated object
detection method, the evaluation metric used measures the degree to which the de-
tected boundary boxes are close to the ground-truth boundary boxes. This measure-
ment, called intersection over union (IoU), is performed by assessing the amount of
overlap between the predicted boundary box and the ground truth boundary box
divided by the area of union between them. A perfect match happens when IoU=1
and, if both limit boxes fail to intercept, IoU=0. A correct detection is considered
when the IoU is above a defined IoU threshold. IoU values are usually expressed in
percentages, and the most used IoU threshold values are 50% and 70%.

Basic measures: The concept of True Positive, True Negative, False Positive and
False Negative, is rather standard and often used in the detection theory. In our
work, we use these measures to calculate some evaluation measures such as preci-
sion and recall as follows:

¢ True positive (TP): A ground-truth bounding box correctly detected; Detection
with IoU greater than or equal to a IoU threshold

* False positive (FP): A nonexistent object incorrectly detected or a detection of
an existing object incorrectly placed; Detection with IoU less than IoU thresh-
old

¢ False negative (FN): An undetected ground-truth bounding box.

¢ True Negative (TN): Not used. All possible bounding boxes correctly not de-
tected (so unlimited possible boxes not detected within an image). For this

reason, it is not used by the measures.

Consider a detector that assumes that each rectangular area of the image can hold
a target object. So if there is an object to detect, the detector will correctly find it
through one of the many predicted boxes. This is not an effective way of detecting
objects, since many false predictions are made. On the other hand, a detector that
never generates a bounding box, will never detect an error. These extreme examples



Chapter 6. Analysis of the Role of Each Sensor in the 3D Object Detection Task:
Ablation Study

104

highlight two important concepts, called precision and recall, which are explained
in more detail below:

¢ Precision: is the capacity of a model to only identify relevant objects. It is the
percentage of correct positive predictions divided by all detected bounding

boxes, and is given by:
TP

P . . _
recision 7TP TP

(6.1)

¢ Recall: is the capacity of a model to find all relevant ground-truth bounding
boxes. It is the percentage of correct positive predictions divided by all given
ground truths and is given by:

TP

Recall - m

(6.2)

Precision-Recall curve: The Precision-Recall curve, used by PASCAL VOC chal-
lenge [10], is a good way to evaluate the performance of an object detector as the
confidence is changed by plotting a curve for each detected object. To make things
clearer, we provide an example to better understand how the Prevision-Recall curve
is plotted. Consider the detections as seen in Figure 6.5, there are 6 images with 11
ground truth objects represented by the green bounding boxes and 21 red bounding
boxes. Each red bounding box must have a confidence level greater than 50% to be
considered as a detected object and is identified by a letter (B1, B2,...,B21).

Table 6.2 shows the bounding boxes with their corresponding confidences. The last
column identifies the detections as TP or FP. In this example a TP is considered if
IoU threshold is equal to 20%, otherwise it is a FP. By looking at the images above,
we can roughly tell if the detections are TP or FP.

In some images there is more than one detection overlapping a ground truth (in im-
ages 2, 3,4, 5, 6). In those cases, the predicted box with the highest IOU is considered
TP (in image 2: B5 is TP while B4 is FP because IOU between B5 and the ground truth
is greater than the IOU between B4 and the ground truth).

The Precision — Recall curve is plotted by calculating the precision and recall values
of the accumulated TP or FP detections. For this, first we need to order the detections
by their confidences, then we calculate the precision and recall for each accumulated
detection as shown in Table 6.3 (Note that for recall computation, the denominator

term is constant at 11 since GT boxes are constant irrespective of detections).

6.3.2 Ablation Results

This part concerns of using precision-recall curves to better understand the effect
and the role of each component of SLS-Fusion on the entire model performance. It
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FIGURE 6.5: Example to explain how the Prevision-Recall curve is plotted. Red
bounding boxes are detected objects, green bounding boxes are ground truth ob-
jects.

corresponds to stereo component, LIDAR component, including changing the num-
ber of LIDAR beams from 4 to 64. To do this evaluation, we use KITTI evalua-
tion benchmark of 3D bounding boxes or 2D bounding boxes in BEV to compute
precision-recall curves for detection as explained in the previous section. The BEV
for autonomous vehicles is a vision monitoring system that is used for better eval-
uation of obstacle detection. This system normally includes between four and six
fisheye cameras mounted around the car to provide right, left and front views of the

car’s surroundings.

Figure 6.7 shows the Precision-Recall (P-R) curves obtained by taking into account
respectively stereo cameras, 4-beam LiDAR, 8-beam LiDAR, 16-beam LiDAR and
64-beam LiDAR. As shown in this figure, an object detector is considered good if its
precision stays high as recall increases, which means that only relevant objects are
detected (0 false positives = high precision) when finding all ground truth objects
(0 false negatives = high recall). On the other hand, a poor object detector needs to
increase the number of detected objects (increasing false positives = lower precision)
in order to retrieve all ground truth objects (high recall). That is why the Precision —
Recall curve usually starts with high precision values, decreasing as recall increases.
Finally, detection results are divided into three levels of difficulty (Easy, Moderate
or Hard) mainly depending on the dimension of the bounding box and the level of
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Images Det. Conf. TP/ FP

Imagel Bl 81% FP
Imagel B2 71% TP
Imagel B3 77% FP
Image2 B4 67% FP
Image2 B5 70% TP
Image2 B6  87% FP
Image3 B7  55% TP
Image3 B8  65% FP
Image3 B9 75% FP
Image3 B10 85% TP
Image3 Bll 54% FP
Image4 B12 57% FP
Image4 B13 77% FP
Image4 Bl4 59% FP
Image4 B15 51% FpP
Image5 Bl6 61% FP
Image5 B17 71% TP
Image5 B18 91% TP
Image5 B19 81% FP
Image6 B20 88% TP
Image6 B21 91% FP

TABLE 6.2: True and False positive detected bounding boxes with their corre-
sponding confidences. Det. and Conf. denote detection and confidence, respec-
tively.

occlusion of the detected objects, especially for cars.

All these curves give the shape we are looking for. At points with lower recall,
the precision is correspondingly high, and at very high recall, the precision begins
to drop sharply. Consider, the minimal recall score corresponds to the point when
the P-R curve starts to drop sharply. The best detector is then the detector who
can achieve a high precision score (higher than 0.8) while the minimal recall score, is
closest to 1. What can also see, based on this idea, the P-R curves obtained for 2D ob-
jects in BEV are always better than those obtained for 3D objects. This is due that the
level of inaccuracy in detecting bounding boxes in 3D dimensions is always greater
than in two dimensions. However, detecting the surrounding cars in BEV projection
view reduces the precision on estimating the distance of detected objects (cars) from
the autonomous vehicle. One also notices, as expected, P-R curves for stereo camera
shows better results than 4-beam LiDAR (minimal recall 0.5 versus minimal recall
0.3 in Hard level of difficulty). However, fusing the two sensors (stereo camera +
4-beam LiDAR) improve detection performance (minimal recall is 0.57 on Hard dif-
ficulty). On the other hand, when the number of beams of LiDAR passes from low
cost 4-beam LiDAR to high-cost 64-beam LiDAR, the detector provides the best P-R
curves (minimal recall is 0.7 in Hard difficulty level).
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Images Det. Conf. TP FP Accum. TP Accum.FP Precision Recall
Image5 B18 91% 1 0 1 0 1 0.09

Image6 B21 91% 0 1 1 1 0.5 0.09

Image6 B20 88% 1 0 2 1 0.666 0.181
Image2 B6 87% 0 1 2 2 0.5 0.181
Image3 B10 85% 1 0 3 2 0.6 0.272
Image1l Bl 81% 0 1 3 3 0.5 0.272
Image5 B19 81% 0 1 3 4 0.428 0.272
Image1l B3 77% 0 1 3 5 0.375 0.272
Image4 B13 77% 0 1 3 6 0.333 0.272
Image3 B9 75% 0 1 3 7 0.3 0.272
Imagel B2 71% 1 0 4 7 0.363 0.363
Image5 B17 71% 1 0 5 7 0.416 0.454
Image2 B5 70% 1 0 6 7 0.461 0.545
Image2 B4 67% 0 1 6 8 0.428 0.545
Image3 B8 65% 0 1 6 9 0.4 0.545
Image5 Bl6 61% 0 1 6 10 0.375 0.545
Image4 Bl14 59% 0 1 6 11 0.353 0.545
Image4 B12 57% 0 1 6 12 0.333 0.545
Image3 B7 55% 1 0 7 12 0.368 0.636
Image3 Bl11 54% 0 1 7 13 0.35 0.636
Image4 B15 51% 0 1 7 14 0.333 0.636

Precision

TABLE 6.3: Precision and recall for each accumulated detection bounding box
ordered by their confidence measures. Det., Conf. and Acumm. denote detection,
confidence and accumulated, respectively.
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FIGURE 6.7: Precision-Recall (P-R) curves.
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Table 6.4 is divided into two separate parts and contains the 3D obstacle detection
performance results for IOU of 0.7. In each cell of this table, a pair of numbers A/B
corresponds to the results obtained with the AP,/ AP;p metrics as explained in
the experimental part of Chapter 5. On the left side of the table, we consider the
stereo and the different LiDARs taken separately. We note that when the sensors
are taken separately, the stereo provides the following results: 82%, 65% and 57% if
we go from Easy to Hard. If we consider the LiDARs taken separately, we can see
without surprise that it is the 64-beam that provides the best results: 87%, 75% and
69% if we go from Easy to Hard. If we consider the progression of the detection as
a function of the number of layers, we observe an almost linear progression from 4
to 64 beams. As we seek to improve detection, we merged stereo with the different
types of LIDARs. The results appear in the right part of Table 6.4.

In the fusion, we note that the detection performance is improved (when using a
stereo camera alone) regardless of the combination of stereo camera with LiDAR.
However, the fusion results are not significantly improved when passing from one
number of layers to another (4 to 64 beams). This is because that the performance
results of our model are only related to the KITTI datasets. So, to better analyze the
contribution of each component, particularly when changing the number of beams,
we need to test the proposed detection model with different datasets than KITTL. In
any case, the best solution is always obtained by fusing both sensors. This proves,
that each component of SLS-fusion architecture effectively contributes to the final
performance of the model, and we cannot eliminate these components of the neural
network architecture in all possible cases: low cost, medium cost or high cost LIDAR

Sensors.
Easy Moderate Hard Easy Moderate Hard
S 82.38/ 68.08 65.42/50.81 57.81/46.07 S 82.38/ 68.08  65.42/50.81 57.81/ 46.07
* L4 56.72/38.82 49.25/32.02 44.14/29.75 S+L4 87.51/76.67 76.88/63.90 73.55/56.78
§ L8 84.55/ 68.75 65.68/50.39 58.78/45.75 S+L8 87.52/76.67 7696/ 63.99  73.63/ 56.95
5 Lle 85.15/70.01 6870/5255 60.13/4749 S+L16 87.74/76.88 76.98/ 6410 73.91/57.05
9p

Le4 87.83/7544 75.75/60.84 69.07/5595 S+L64 88.06/77.44 77.18/ 64.84 7433/ 57.25

TABLE 6.4: Evaluation of the 3D object detection part of our method for different
input sensors. This result is obtained with IoU equal to 0.7.

6.4 Conclusion

In this chapter, we have analyzed in an ablation study, the contribution of a stereo
camera and different versions of LiDAR (4 to 64 beams) to the performance of the
SLS-fusion model in detecting 3D obstacles. Based on our ablation analysis and the
different measurements used to evaluate our detection algorithms, we have proved
that sensors are always unseparated for better performance. Quantitative results
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have shown that detection performance drops reasonably with each component dis-
abled (stereo camera or LiDAR) or by modifying the number of LiDAR beams, and
the full model works best. In conclusion, SLS-fusion is an effective obstacle detection
solution for low and high cost LIDARs when combined with a stereo camera and the
optimal solution is achieved with the most economical 4-beam LiDAR component.
However, to better generalize the model and to find the optimal solution between
the performance of detecting obstacles and the price of the LIDAR component, we
need to test our model in many different datasets and environments.
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Conclusion and Future Directions
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Chapter overview: In this chapter, the primary focus is to summarize and discuss
the major findings of this thesis, which involves linking together the various tasks
executed and the results achieved. Additionally, the limitations of the proposed ap-
proaches are discussed, and future research directions are recommended to conclude
this thesis.

7.1 Discussion

The objective of this thesis was to investigate the capability of detecting obstacles
for autonomous vehicles using existing methods from the literature (as discussed in
Chapter 2). We tested the best combination of sensors to detect obstacles in both
favorable and foggy weather conditions, and found that a combination of stereo
camera and LiDAR sensors yielded the best results. To test this, we used a well-
known KITTI dataset that includes images and point cloud data, and tested LIiDAR
with a varying number of beams (from 4 to 64). We also tested the ability to detect
and recognize objects in foggy conditions, which can be challenging to obtain data
for. To address this, we carried out a foggy augmentation procedure on the original
KITTI dataset and proposed a novel foggy dataset, called Multifog KITTI dataset,
with a fog intensity ranging from a visibility of 20 m to 80 m.

In Chapter 4, we introduced SLS-Fusion, a novel depth prediction framework for
3D object detection that takes low-cost sensors - 4-beam LiDAR and stereo images
- as inputs in the autonomous driving domain. Few studies have fused stereo cam-
eras and LiDAR in a deep neural network for the specific task of 3D object detection,
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so our proposed depth estimation neural network is a novel approach. It takes ad-
vantage of features from both images and point clouds by using an encoder-decoder
network and optimizing the depth loss through a Depth Cost Volume for driving
scenes. The predicted depth map (in 2D space) is then converted into a pseudo
point cloud (in 3D space) using extrinsic calibration information between the cam-
era and LiDAR. This pseudo point cloud can then be fed into LiDAR-based methods
(such as PointRCNN) for object detection, just as a real point cloud would be. Ex-
perimental results on the KITTI dataset showed that this model can improve both
depth estimation and 3D object detection accuracy.

In Chapter 5, we evaluated the performance of our 3D object detection algorithms
using two types of sensors: a stereo camera and two versions of LiDAR (4-beam and
64-beam). The developed algorithms were evaluated on the KITTI dataset as well
as an additional dataset with simulated fog (Multifog KITTI). We analyzed the con-
tribution of these two types of sensors to object detection performance under both
favorable and foggy weather conditions, both when they were fused and when they
were used separately. The main finding was that using LiDAR in foggy weather re-
sulted in slightly worse object detection performance, particularly when the LiDAR
was a 4-beam laser sensor. In contrast, the results based on the stereo camera were

promising in foggy weather conditions, regardless of the level of visibility.

Our research aimed not only to detect obstacles effectively but also to find a cost-
effective sensor fusion solution for autonomous vehicle manufacturers. We found
that a combination of cameras and LiDAR can be effective, but not in all configura-
tions. While the camera can be dominant when paired with the correct version of
LiDAR, LiDAR is significantly affected by foggy weather conditions. Therefore, in
Chapter 6, we sought to identify the best combination of stereo camera and LiDAR
sensors by testing LIDAR with 4, 8, 16, and 64 beams, to find a balance between good
3D obstacle detection and a reasonable system cost.

It’s important to remember that the results of this study are based on camera and
real LIDAR data that were originally acquired in good weather conditions, to which
simulated fog was added. The model used in this study is a simple model that only
considers the macroscopic attenuation phenomenon, and it has been calibrated on

tests conducted in a controlled environment using standard sensors.

7.2 Limitations

The proposed methods have demonstrated efficiency in terms of performance; how-
ever, some limitations still exist that require further research to be addressed:

¢ Although pseudo point clouds have a higher density, in this thesis, we used
PointRCNN, which converts pseudo point clouds to 64-beam point clouds,

thus negating the benefit of using pseudo point clouds.
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* It is necessary to confirm the validity of the methods for the sensors used in
the KITTI dataset, as the impact of fog can vary depending on the sensor’s
brand, type, and internal settings. For example, the threshold effects when
converting raw signals to point clouds with LiDAR sensors can significantly
impact the model we are using. The camera’s exposure setting is not taken
into consideration in the current model and may also impact the results.

¢ The model does not account for microscopic light diffusion phenomena, such
as halo effects for cameras and backscattering effects for LIDAR sensors. These
limitations are explicitly mentioned and can affect the results. Therefore, the
presented results should be considered initial findings useful for comparing
sensors and finding data fusion solutions for autonomous vehicles, rather than

definitive conclusions.

¢ The realism of the simulated fog depends on the quality of the depth map
information. Inaccurate depth maps will result in unrealistic fog.

7.3 Perspectives

Our future work will focus on expanding the evaluation and refinement of our pro-
posed method beyond KITTI dataset. We plan to train and test our method on other
datasets, which will provide a more comprehensive assessment of its performance.
We also aim to evaluate our method for other classes such as pedestrians and cy-
clists, to improve its generalization ability.

To improve the performance of our model in foggy weather conditions, we plan to
explore several potential options. One option is to incorporate active sensing for
fusion, which can improve the accuracy of depth maps in adverse weather condi-
tions. Another option is to use multi-modal data augmentation to simulate different
weather and lighting conditions to train our model. Additionally, we plan to inves-
tigate adaptive fusion for dynamic environments, which includes online learning
for fusion, adaptive sampling for fusion, and dynamic fusion architectures. These
directions could be interesting areas of study for future research.
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Appendix A

Datasets

Al. Multifog dataset

This is Multifog KITTI dataset presented in Chapter 3. This dataset contains a train-
ing part (7,481 frames) and a testing part (7,518 frames) for image RGB left (cam 2)
(.png, 4.3 GB), image RGB right (cam 3) (.png, 4.1 GB), 64-beam LiDAR Velodyne
(.bin, 10.7 GB), 4-beam LiDAR Velodyne (.bin, 98 MB), file annotation for each frame
visibility (.txt, 20 m to 80 m visibility level).

Link to download: https://maiminh1996.github.io/publications /multifogkitti.html
A2. Sparse LIDAR KITTI datasets

This is a dataset created based on the KITTI dataset that we use in this thesis under
favorable weather conditions. This dataset contains a training part (7,481 frames)
and a testing part (7,518 frames) for 4-beam, 8-beam, 16-beam and 32-beam LiDAR
point cloud (.bin).

Link to download:
https:/ /maiminh1996.github.io/publications/sparse_lidar_kitti_datasets.html


https://maiminh1996.github.io/publications/multifogkitti.html
https://maiminh1996.github.io/publications/sparse_lidar_kitti_datasets.html
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Appendix B

Version francgaise résumée

Chapitre 1
Introduction

Aujourd’hui, la tendance générale est a I’automatisation des systéemes pour réduire
les cotits et améliorer la sécurité. En général, dans les systémes développés, il y a une
partie matérielle (capteurs de détection, de surveillance, etc) et une partie logicielle
(traitement des données avec des techniques avancées d’intelligence artificielle). Les
applications industrielles utilisent des capteurs tels que des caméras, RADAR (Ra-
dio Detection and Ranging), Kinect, LIDAR (Light Detection and Ranging), IMU (
Unité de mesure inertielle) pour collecter des données avant d’étre traitées par des
algorithmes complexes. La recherche dans cette these se concentre principalement
sur les voitures autonomes, ol les caméras et le LIDAR jouent un role essentiel dans
la perception de I'environnement autour de la voiture. Les caméras et autres cap-
teurs sont souvent intégrées sur le véhicule a sa conception.

Dans notre cas, pour les véhicules autonomes, du fait de 1’absence de conducteur,
la fonction de perception de I'environnement dans lequel évolue le véhicule est trés
importante. Ainsi, le véhicule autonome doit se rendre d’un point A a un point B
en toute sécurité. La surveillance de I’environnement se fait a I'aide d’une série de

capteurs, dont la vidéo et le LIDAR sont les plus couramment utilisés.

La perception de I’environnement devant les véhicules autonomes est trés impor-
tante, car le contexte sécuritaire est trés élevé. Dans cette recherche, nous avons
choisi de développer un systeme de détection d’obstacles basé sur une caméra
stéréoscopique et un LiDAR. Dans la littérature, il est montré que la combinaison
des deux conduit a de bons résultats de détection d’obstacles (voir chapitre 2 : état
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de I'art). De plus, ces dernieres années, la détection d’objets 3D a été exploitée large-
ment dans l'industrie et dans le milieu académique, et en particulier ses diverses
applications dans de nombreux domaines tels que la conduite autonome justement.
Avecl'avancement de I'apprentissage approfondi et des réseaux de neurones convo-
lutifs (CNN), les techniques de détection d’objets 3D ont réalisé des progres remar-
quables grace a des architectures de réseaux de neurones trés avancés.

Par conséquent, ce travail se concentre sur la détection d’objets 3D avec caméra
et capteurs LiDAR. Une dimension supplémentaire abordée dans cette these est la
possibilité de détection des obstacles 3D dans des conditions météorologiques avec
présence de brouillard.

Le travail de these est organisé de la maniére suivante :

Dans le chapitre 2, un état de I’art est réalisé et concerne la possibilité de détecter
des obstacles en 3D devant des véhicules autonomes. La discussion porte sur le
choix des méthodes de la littérature concernant a la fois la combinaison de capteurs
a utiliser et les algorithmes de traitement a appliquer. Pour chaque solution trouvée,

la discussion est menée, ce qui nous a aidés a faire nos choix pour notre systéme.

Le chapitre 3 est consacré a la description du jeu de données KITTI que nous avons
utilisé pour nos développements. En effet, I’absence de données réelles contenant
le brouillard nous conduit a utiliser des bases de données académiques, contenant
des vérités terrain. Grace a ces jeux de données, il est également possible de com-
parer, avec I'état de 1’art, nos algorithmes et architectures en termes de performances
de détection d’obstacles. Comme notre objectif principal est de développer des
algorithmes de détection d’objets 3D dans des conditions de brouillard, le proces-
sus d’application du brouillard sur les données KITTI est également décrit dans ce
chapitre.

Le chapitre 4 présente SLS-Fusion, une nouvelle approche pour fusionner les don-
nées d'un LiDAR a 4 nappes et d'une caméra stéréo via un réseau de neurones
pour 'estimation de la profondeur afin d’obtenir de meilleures cartes de profondeur
denses et d’améliorer ainsi les performances de détection d’objets 3D. Etant donné
que le LiDAR a 4 nappes est moins cher que le LiDAR a 64 nappes bien connu, cette
approche est également classée comme une méthode basée sur des capteurs a faible
cotit. Dans ce chapitre, nous trouverons la description de l’architecture du réseau
SLS-Fusion, sa mise en ceuvre et la maniere de prendre en compte simultanément
les données vidéo et les données LiDAR. Une évaluation avec des métriques spé-
cifiques est effectuée sur le jeu de données KITTI sans brouillard dans un premier
temps.

Dans le chapitre 5, nous analysons les effets du brouillard sur la détection d’objets
dans les scénes pour ensuite proposer des méthodes d’amélioration. La collecte et le
traitement de données dans des conditions météorologiques défavorables sont sou-
vent plus difficiles que des données dans de bonnes conditions météorologiques.
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Par conséquent, un jeu de données synthétique qui simule de mauvaises conditions
météorologiques est un bon choix pour valider une méthode, car il est plus sim-
ple et plus économique, avant de travailler avec un jeu de données réel. Dans ce
chapitre, nous appliquons du brouillard sur le jeu de données public KITTI (expliqué
au chapitre 3) pour générer ce que nous appelons le jeu de données Multifog KITTI
pour les images et les nuages de points. En termes de taches de traitement, nous
testons notre précédent détecteur d’objets 3D basé sur LiDAR et caméra, nommé
Sparse LiDAR Stereo Fusion Network (SLS-Fusion), pour voir comment il est affecté
par des conditions météorologiques en présence de brouillard.

Dans le chapitre 6, une étude d’ablation est menée pour évaluer les roles respectifs de
la caméra et du LiDAR pour la détection d’obstacles. Ainsi différentes combinaisons
de caméra et plusieurs types de LIDAR (4 nappes, 8 nappes. . ..64 nappes) sont testés
pour bien analyser les complémentarités entre les deux types de capteurs. Une tres

courte analyse économique est également réalisée.

Enfin au chapitre 7, un bref rappel de tous les résultats obtenus est mentionné. Les
enseignements tirés de ce travail sont décrits et des perspectives a court terme pro-

posées.
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Chapitre 2
Détection d’objets 3D : I’état de
’art

La détection d’objets est I'une des principales composantes de la vision par ordina-
teur. Elle a pour but de détecter et de classer des objets dans des images. Elle permet
proposer de nombreuses applications directement liées a la vie : détection d’objets
dans l'industrie, comptage de piétons, conduite autonome, détection d’anomalies,
détection de visages, etc. La détection d’objets est plus difficile lorsqu’il faut re-
connaitre des objets et les localiser dans un espace 3D. En particulier, la détection
d’objets 3D appliquée a la conduite autonome est un sujet en pleine expansion.

L’automatisation de la conduite repose sur de nombreux aspects, tels que la percep-
tion, le positionnement, I’analyse de scénarios, la prise de décision, le contrdle com-
mande... Le sujet de cette these porte uniquement sur la partie perception. Plus
précisément, elle vise a utiliser de la fusion de données des capteurs du véhicule
afin d’améliorer les niveaux de détection des véhicules voisins, notamment dans des
conditions météorologiques dégradées. Les LIDARs, radars et caméras sont couram-
ment utilisés a bord des véhicules. La these se limite a 1'utilisation conjointe des
caméras et des LiDARs, car ce sont les capteurs qui permettent le mieux la détection
des usagers vulnérables de la route et que ce sont les capteurs les plus impactés par
les conditions météorologiques dégradées. C’est donc sur cette combinaison de cap-
teurs que notre contribution peut étre pertinente. Avant de proposer une nouvelle
méthode, il est important de présenter 'état de 1’art sur les méthodes de détection
2D et 3D.

Un détecteur d’objets 2D produit, pour chaque objet d’intérét dans une image, une
boite englobante 2D et une classe pour 'objet détecté. Au cours des 20 derniéres
années, les technologies de détection d’objets ont connu une évolution importante.
Dans le passé, les chercheurs utilisaient des méthodes classiques pour détecter les
objets avant que I"apprentissage profond ne soit développé. Pour cette raison, la dé-
tection d’objets 2D se divise en deux catégories : le traitement d’images traditionnel
et les méthodes basées sur I'apprentissage profond. Les méthodes traditionnelles
utilisent généralement des caractéristiques (features) créées a la main pour la recon-
naissance et la détection des objets. Pour cette raison, ces méthodes se retrouvent
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souvent limitées dans des scénarios complexes (ex : occlusions). Contrairement aux
méthodes traditionnelles, les récentes méthodes basées sur 1’apprentissage profond
tirent parti de la puissance de calcul des cartes graphiques et d'une grande quantité
de données pour apprendre puis extraire de bonnes caractéristiques dans 'image.
Cela permet d’améliorer considérablement les performances de 1’algorithme de dé-
tection 2D. Cependant, les détecteurs d’objets 2D sont difficilement adaptables pour
détecter des objets en 3D. En effet, I'information de profondeur n’est pas présente,
ce qui est crucial pour une application de conduite.

Dans le domaine de la conduite autonome, la détection d’objets 3D est primor-
diale, car elle fournit I’ensemble des informations nécessaires a la décision, telles
que I'emplacement, la direction et la taille. Cette these se concentre uniquement
sur l'utilisation de caméra et de LiDAR. Sur la base de ces capteurs, la détection
d’objets 3D a généralement été abordée de trois facons dans la littérature : caméra
uniquement (monoculaire ou stéréoscopique), LIDAR uniquement et fusion caméra-
LiDAR.

La détection d’objets par caméra est un domaine de recherche de longue date. En
effet, les caméras sont peu cheres et fournissent beaucoup d’informations sur les ob-
jets : texture, couleur, bords, etc. Cependant, I'image manque d’informations sur
la profondeur, ce qui est extrémement important pour la détection 3D. Méme avec
l'utilisation d"une caméra stéréoscopique, la carte de profondeur n’est pas suffisam-
ment précise. A cause de cela, la recherche s’est progressivement ré-orientée vers
le capteur LiDAR, qui apporte une meilleure précision concernant '’estimation des
distances.

Le LiDAR permet de reconstruire un nuage de points 3D de la scéne. Ce nuage de
point contient une multitude d’informations sur la géométrie, la forme et la taille.
Cela permet d’extraire des caractéristiques pertinentes qui améliorent les perfor-
mances de détection. Cependant, le LIDAR possede de nombreuses limites : dé-
tection d’objets isolés difficile, surtout a longue distance, surfaces vitrées invisibles,
manque d’informations sur les couleurs. De plus, les approches d’apprentissage
profond les plus efficaces pour la détection d’objets nécessitent que les données
soient ordonnées et structurées (comme dans une image), ce qui n’est pas le cas des
nuages de points. En raison de leur nature irréguliere, les nuages de points sont sou-
vent traités de I'une des trois maniéres suivantes : projection du nuage sur un plan
pour générer une pseudo-image réguliere (view-based), échantillonnage des points
dans des cellules appelées voxels (voxel-based), ou ré-encodage du nuage de points
brut (point-based).

Comme la premiere partie de 1’état de ’art le montre, la caméra et le LIDAR présen-
tent tous les deux des avantages et des limites. Ils sont cependant trés complémen-
taires. De nouvelles méthodes consistent donc a fusionner des données issues des
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LiDARs et des caméras. C’est d’ailleurs le sujet principal de la these. Dans la littéra-
ture, il existe trois principales méthodes de fusion :

* la fusion précoce (early), ot les données brutes sont fusionnées des le départ

pour former des tenseurs de données a nombreux canaux,

¢ la fusion tardive (late), o1 la fusion a lieu au niveau de la décision, apres avoir
traitées les données brutes issues des deux capteurs de maniére indépendante,

¢ et la fusion profonde (deep), ou1 la fusion est soigneusement construite pour
combiner les avantages des systemes de fusion précoce et tardive.

Pour éviter tout probleme lié aux conditions météorologiques, les voitures au-
tonomes sont initialement utilisées et testées dans des endroits ensoleillés pendant la
journée. Cependant, pour pouvoir commercialiser une voiture a conduite autonome
de niveau 5, le véhicule doit étre capable de se déplacer en toutes circonstances, y
compris dans différentes conditions météorologiques. Les méthodes présentées ob-
tiennent de bons résultats dans des conditions météorologiques favorables. Cepen-
dant, la perception dans des conditions météorologiques défavorables est encore
limitée et il reste de nombreux défis a résoudre. La pluie, la neige et le brouillard
peuvent tous perturber la vision des capteurs, tout comme ils peuvent affecter les
conducteurs humains. Nous nous concentrerons sur les conditions de brouillard
dans cette these car elles ont un grand impact sur les systémes de vision artificielle.
Concernant les travaux sur la vision artificielle et le brouillard, il existe un beaucoup
de travaux de recherche sur la détection et la classification du brouillard. Cepen-
dant, il n"y a pas beaucoup de travaux sur la prise en compte du brouillard dans des
méthodes de détection d’objets 2D ou 3D. Pourtant, quelques travaux de recherches
antérieurs ont démontré que la performance diminue avec le brouillard pour dif-
férentes applications comme la segmentation, la détection d’objets 2D ou encore
I'estimation de la profondeur. L’absence de la prise en compte du brouillard dans les
travaux sur la détection d’objets appliquée au véhicule autonome vient du fait qu’il
est difficile d’obtenir des jeux de données avec du brouillard. Dans le cas général,
la disponibilité d’énormes ensembles de données étiquetées a contribué de maniere
significative a I’avancement de la vision par ordinateur au cours des derniéres an-
nées. En revanche, acquérir et annoter un tel ensemble de données pour chaque
nouveau probleme (par exemple, le brouillard) serait trop consommateur de temps.
Pour répondre a cela, deux approches sont actuellement explorées :

¢ Le Cerema propose la plateforme PAVIN Brouillard et Pluie [194], qui permet
de reproduire différents niveaux de brouillard et de pluie, dans un environ-
nement parfaitement contr6lé et reproductible. Les dimensions de l’enceinte
permettent de reproduire des sceénes routiéres pour les tests de LIDARs et de

caméras embarquées.

* L'ajout de conditions météorologiques dégradées simulées numériquement
sur des images initialement acquises par temps clair [83, 98].
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Dans ce chapitre, nous avons vu comment les algorithmes basés sur 1’apprentissage
profond ont montré des performances exceptionnelles pour la détection d’objets 3D
ces dernieres années. Notre objectif en réalisant cet état de I’art est de mieux com-
prendre les modeles d’apprentissage profond utilisés dans la détection d’objets 3D
des véhicules autonomes. Sur la base de plus de 100 publications, avec des évalua-
tions détaillées de plusieurs architectures, utilisant des LIDARs et/ ou des caméra,
nous pouvons identifier les meilleures architectures pour cette tache.

On constate que les méthodes basées sur le LIDAR obtiennent les meilleures per-
formances exceptionnelles [64, 195]. Parallelement, la méthode Pseudo-LiDAR [43]
ouvre de nouvelles voies pour les méthodes basées sur les caméras, tandis que la
méthode Pseudo-LiDAR++ [46] est obtenue une précision au meilleur niveau de
l'état de I’art. Les méthodes basées sur la fusion n’ont pas encore donné de meilleurs
résultats car elles utilisent plus de données qu'’il est difficile d utiliser conjointement
tant elles sont différentes.

Nous avons donc utilisé ces éléments pour guider la nouvelle architecture que nous
présentons dans le chapitre 4. Afin d’exécuter des algorithmes d’apprentissage pro-
fond, il est nécessaire de disposer de grandes bases de données, avec ou sans brouil-
lard. Le jeu de données que nous utiliserons dans cet article sera présenté dans le
chapitre suivant.
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Chapitre 3
Jeu de données utilisé

Cette section présente les bases de données qui seront utilisées tout au long de cette
these. Avant cela, la premiere étape consiste a explorer et a analyser les bases de
données disponibles publiquement. En effet, il est important d"utiliser des bases de
données académiques, qui permettront de se comparer aux autres méthodes de la

littérature de fagon impartiale.

Les bases de données recherchées doivent répondre aux criteres suivants : ap-
pliquées a la détection d’objet 3D pour le véhicule autonome ; comprenant des
images de caméra stéréoscopique et de LiDAR avec au minimum quatre nappes ;
idéalement avec des conditions météorologiques défavorables. En effet, 1’objectif
de la these est de proposer une méthode basée sur des capteurs bas cofits, qui
serait capable de fonctionner par temps clair tout aussi bien qu’en conditions

météorologiques défavorables (comme le brouillard par exemple).

L’état de l'art réalisé montre que la plupart des bases de données contiennent
uniquement des données acquises en conditions météorologiques favorables. Seuls
quelques bases de données comme Waymo [126] ou nuScenes [123] possedent des
images acquises dans toutes sortes de conditions météorologiques. Leur incon-
vénient est que les conditions météorologiques ne sont alors pas définies précisé-
ment (ex : intensité du brouillard ou de la pluie). Il sera donc nécessaire de faire
appel a une base de données de la littérature sans conditions météorologiques défa-
vorables, avant de simuler par-dessus des conditions de brouillard.

La méthode de détection d’objet 3D proposée dans la suite de la these comporte des
étapes successives dont I'estimation de la profondeur sur les images stéréo puis la
fusion de données du LiDAR et de la caméra stéréo. Pour I'étape d’estimation de
profondeur de la caméra stéréo, un premier apprentissage est effectué sur la base
de données Scene Flow [144]. Cette base de données présente l'intérét d'une grande
base de données pour faire le premier apprentissage.

La seconde phase de I'algorithme proposé consiste a fusionner les données issues de
la caméra stéréoscopique avec le LIDAR, puis a détecter les objets en 3D. Pour cela,
la base de données KITTI [12] a été choisie. En effet, cette base de données présente
de nombreux avantages :
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¢ elle est trés largement utilisée ce qui permettra une comparaison de notre
méthode a la littérature aisée ;

¢ elle est collectée dans des conditions météorologiques favorables uniquement,
ce qui permettra d’étre serein lors de 1’ajout de brouillard simulé numérique-
ment sur les images ;

¢ elle contient des données acquises par un LiDAR et une caméra stéréoscopique
¢ elle est appliquée a la détection 3D pour le véhicule intelligent ;

¢ elle contient des données de bonne qualité (filtrées, synchronisées, label-
lisées...)

Afin d’utiliser la base de données KITTI, plusieurs pré-traitements ont dii étre effec-

tués :

¢ D’abord, les labels ont été filtrés pour ne garder que les objets qui entrent dans
les champs de caméra du LiDAR et de la caméra stéréoscopique a la fois. En
effet, le champ de vision de la stéréo caméra est moins large que celui du Li-
DAR.

¢ Afin de permettre l'estimation de la profondeur dans notre algorithme, une
carte de profondeur dense doit étre obtenue comme vérité terrain. Pour obtenir
ce nuage de point dense, les nuages de points de 11 images successives ont été

accumulés.

* Au lieu d’utiliser le cotiteux LiDAR 64 nappes, nous avons extrait un nuage
de points 4 nappes du LiDAR 64 nappes original de la base de données KITTI.
Cela permet de simuler un LiDAR bas cofit.

De plus, la méthode proposée dans le cadre de cette thése doit étre robuste face
au brouillard. Nous avons ainsi proposé une augmentation de la base de données
KITTIL, en simulant du brouillard sur chaque image de la base de données pour la
caméra stéréoscopique et le LIDAR. Pour cela, nous avons rappelé la méthode de
simulation de brouillard employée. Cette méthode est adaptée a des images issues
de la caméra stéréoscopique mais aussi pour les données issues du LiDAR. La figure

B.1 présente un exemple de données obtenues.

Pour conclure, aprés avoir présenté un état de 1’art sur les bases de données, nous
avons décidé d’utiliser la base de données KITTI qui est la plus répandue dans le
domaine de la détection d’objet 3D appliquée au véhicule intelligent. Nous avons
ensuite ajouté du brouillard sur cette base de données. Nous disposons donc de
deux bases dans la cadre de la these « Clear KITTI » et « Multifog KITTI». Ces bases,
nous permettrons d’abord de développer notre méthode de détection d’objet 3D par
fusion caméra stéréoscopique / LiDAR bas cofit, avant de renforcer cette méthode
dans le cas ot il y a présence de brouillard.
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s 2

(e) Nuage de points a 64 nappes (f) Brouillard augmenté (4 nappes)

FIGURE B.1: Exemple de KITTI a notre jeu de données Multifog KITTI proposé.

Un exemple de jeu de données KITTI comprend l'image couleur de gauche, le nu-

age de points a 64 nappes, le nuage de points a 4 nappes extrait et celui correspon-
dant avec I'augmentation brumeuse (visibilité V' = 45 m).
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Chapitre 4
Fusion de capteurs pour la
détection d’objects 3D

La perception de I’environnement d"un véhicule autonome passe par la reconnais-
sance des objets et par leur localisation tridimensionnelle précise, notamment en
termes de distance par rapport au véhicule. Des études précédentes ont montré que
les performances des approches reposant sur des LiDAR sont supérieures a celles
qui utilisent des caméras, notamment grace a la précision de l'information de pro-
fondeur apportée par ces capteurs. Mais leur inconvénient réside dans le cotit qui
s’avere beaucoup plus élevé que celui des caméras.

Ce chapitre décrit I'approche que nous proposons et qui repose sur l'idée initiale de
fusionner les informations provenant d'un couple stéréoscopique de caméras avec
celles provenant d’'un LiDAR a bas cotit. Plus précisément, il s’agit de remplacer
l'utilisation d"un LiDAR a 64 nappes par un LiDAR a 4 nappes associé a un couple
de caméras. Nous proposons l'architecture SLS-Fusion dont les grandes étapes sont
décrites par la figure B.2.
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FIGURE B.2: Vue d’ensemble schématisée de la méthode proposée SLS-Fusion

pour la détection d’objets 3D. Elle prend en entrée les images provenant des

caméras ainsi que le nuage de points provenant du LiDAR a 4 nappes et délivre
en sortie les boites englobantes 3D des objets détectés.
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La premiére étape de la méthode SLS-Fusion consiste a estimer une carte de pro-
fondeur a partir des deux images provenant des caméras et des projections sur les
deux images du nuage de points provenant du LiDAR. Les projections du nuage
de points sur chacune des deux images sont effectuées grace aux données de cali-
brage des capteurs. Ces projections constituent deux cartes éparses de profondeurs
qui sont associées aux deux images provenant des caméras. Une carte de profondeur
dense est obtenue grace a une réseau de neurones inspiré de celui proposé dans [170]
mais utilisant une fusion tardive. Il s’agit d'une architecture de type encodeur-
décodeur. La partie encodage repose sur deux flux partageant leurs poids consti-
tués de blocs de type ResNet, 'un traitant les images provenant des caméras, ’autre
traitant les deux projections provenant du LiDAR. Dans la partie décodage, les don-
nées provenant de la caméra gauche et celle provenant de la projection sur I'image
gauche sont fusionnées pour en extraire les caractéristiques. La méme opération
est effectuée pour les données provenant de la droite. Ces caractéristiques gauches
et droites sont ensuite utilisées pour constituer un volume des cofits des disparités
(DiCV), qui est ensuite transformé en un volume des cofits des profondeurs (DeCV),
comme proposé dans [46], qui permet de prédire une carte de profondeur.

Dans un second temps, la carte dense de profondeur obtenue est corrigée en utilisant
de nouveau le nuage épars de points provenant du LiDAR. En effet, la précision de
la profondeur de ces points permet de compenser celle de la carte de profondeur
initiale qui souffre de I'imprécision des disparités estimées en pixels. Pour effectuer
cette correction, nous avons utilisé la méthode GDC décrite dans [46]. Cette ap-
proche repose sur 1'utilisation d’un graphe représentant les K plus proches voisins
de chaque point 3D et dont la détermination des poids revient a résoudre un prob-
leme d’optimisation quadratique sous contrainte. La correction des profondeurs est
également réalisée en résolvant un autre probléme d’optimisation quadratique sous
contrainte. La carte des profondeurs corrigées est ensuite transformée en un pseudo-
nuage de points grace aux données de calibrage des capteurs.

Enfin, une méthode de détection d’objets 3D congue pour étre appliquée a un nuage
de point provenant d'un LiDAR est appliquée au pseudo-nuage de points. Nous
avons utilisé pour cela la méthode PointRCNN proposée dans [64].

Nous avons évalué les performances de I'approche proposée a la fois sur 'estimation
de la profondeur et sur la détection des objets 3D. Le jeu de données que nous
avons utilisé pour ’ensemble des évaluations est KITTI et les objets détectés étaient
les voitures car, étant trés largement majoritaires dans KITTI, ce sont les objets
habituellement utilisés dans les évaluations. Concernant l'estimation de la pro-
fondeur, les évaluations ont montré 1’apport du LiDAR par rapport a 1'utilisation
des caméras. De méme, les résultats obtenus pour la détection des objets sont satis-
faisant. La méthode proposée a été comparée a huit méthodes existantes qui utilisent
des capteurs a bas cofit ainsi qu’a la méthode PointRCNN [64] qui utilise le nuage de
points issu d'un LiDAR a 64 nappes. La méthode SLS-Fusion s’avere un peu moins
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performante que PointRCNN utilisant 64 nappes, mais elle obtient les meilleurs ré-
sultats sur plusieurs indicateurs par rapport aux autres méthodes reposant sur des

capteurs a bas cotit (stéréo caméra seule ou stéréo caméra associée a un LiDAR a 4
nappes).

Ces résultats ont été obtenus sur des données acquises par temps clair. Nous avons
souhaité prendre en compte des conditions météorologiques beaucoup moins favor-
ables, comme le brouillard : c’est 1’objet du chapitre suivant.
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Chapitre 5

Fusion de capteurs pour la
détection d’objets 3D dans des
conditions de brouillard

L’objectif de ce chapitre est d’évaluer une solution de fusion de caméras et LIiDAR (4
et 64 nappes) pour la détection d’objets 3D par temps de brouillard. Dans le précé-
dent chapitre, nous ne nous sommes pas souciés de l'effet de la météo et avions
détecté les objets dans la base KITTI sans que celle-ci ne subisse l'influence du brouil-
lard. Dans ce chapitre, nous analysons et évaluons I'impact de la météo (en partic-
ulier le brouillard) sur les capteurs et la capacité d’identifier les objets présents dans
la scéne sur la base de ces capteurs.

En réalité, il n’est pas toujours facile d’obtenir des données contenant du brouillard.
C’est d’autant plus important selon le lieu d’expérimentation. Il y a des pays otriln’y
a jamais brouillard. Il n’est donc pas facile d’avoir des ensembles de données com-
plets dans des conditions météorologiques brumeuses. Une solution pour pallier
cet inconvénient est de générer des données synthétiques contenant du brouillard.
Ca implique d’appliquer un certain nombre de traitements de base aux données
d’origine pour les entacher de brouillard (la procédure que nous avons suivie figure
dans le chapitre 3). En termes de taches de traitement, nous testons notre détecteur
d’objets 3D basé sur LiDAR et caméra, nommé Spare LiDAR Stereo Fusion Network
(SLS-Fusion), pour voir comment il est affecté par des conditions météorologiques
avec brouillard. Nous proposons de faire des apprentissages en utilisant a la fois
I’ensemble des données d’origine et I'ensemble de données fogifiées pour améliorer
les performances par temps de brouillard tout en gardant de bonnes performances

dans des conditions normales.

Dans l’analyse, nous cherchons a évaluer donc la contribution des deux types de
capteurs dans notre modele SLS-Fusion. Dans le modele, les données des deux
capteurs d’entrée sont fusionnées a un stade précoce et nous ne savons pas dans
quelle mesure chaque capteur contribue aux résultats. Il convient tout d’abord de
noter que les performances de la détection d’objets 3D sont considérablement ré-
duites si l’on évalue sur les données avec brouillard avec une phase d’apprentissage
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sur les données sans brouillard. Cela montre I'importance d"une bonne sélection
des ensembles de données d’apprentissage. Ainsi, les performances de détection
d’objets 3D sont réduites de 42,67% si le traitement se fait sur une base avec du
brouillard alors que I'apprentissage se fait sur une base sans brouillard. En utilisant
une stratégie spécifique d’apprentissage qui consiste a prendre en compte les don-
nées contenant du brouillard et les données sans brouillard (apprentissage conjoint
sur le KITTT et le Multifog KITTI), les résultats sont significativement améliorés de
26,72% et la détection reste performante assez bien sur le jeu de données d’origine
(le jeu de données Clear KITTI) avec une baisse de seulement 8,23% par rapport au
cas de 'apprentissage sur le Clear KITTI et du test sur le Clear KITTIL. En résumé, le
brouillard provoque souvent 1’échec de la détection 3D.

Dans cette partie qui concerne 1'utilisation du jeu de données KITTI sans brouillard,
on remarque, comme prévu, que la fusion de la caméra stéréo et du LiDAR donne
de bons résultats : 93,02% pour les objets Easy et pour un IOU de 0,5. Dans cette con-
figuration, une caméra stéréo donne de meilleurs résultats qu'un LiDAR 4 nappes
(89,39% contre 78,16%). Séparer les deux capteurs entraine une baisse des perfor-
mances. Ceci nous amene a considérer les deux capteurs conjointement. D’autre
part, si 'on considere le LIDAR 64 nappes, les résultats sont meilleurs (97.3% pour
les objets Easy et un IOU de 0.5). Néanmoins, le prix du LiDAR 64 nappes est tres
élevé par rapport a celui des caméras et des LiDAR 4 nappes. Par la suite, nous
avons calculé les mémes indicateurs que précédemment, mais sur des données avec
brouillard (Multifog KITTI). La performance de la fusion d"une caméra stéréo et d'un
LiDAR a 4 nappes reste élevé (90,15%) pour les objets Easy, ce qui démontre la via-
bilité de I'utilisation de deux capteurs en méme temps. Les performances du LiDAR
4 nappes seul diminuent fortement (13,43%), ce qui semble montrer que le LiDAR 4
nappes n’est pas utile dans le brouillard, et c’est la caméra stéréo qui a la contribu-
tion la plus élevée, car ses performances restent tres élevées (89,36%). La combinai-
son d"une caméra stéréo et d'un LiDAR a 64 nappes donne de bons résultats (89,26%
pour les objets Easy) et pour la plupart des types d’objets, mais la caméra stéréo tient
toujours le role le plus important.

Le résultat principal a retenir est que l'utilisation du LiDAR par temps de brouillard
entraine une performance de détection d’obstacles légeérement dégradée (surtout sir
le le LiDAR est un capteur laser a 4 nappes). D’autre part, les résultats basés sur une
caméra stéréo sont prometteurs par temps de brouillard, quel que soit le niveau de
visibilité. Et enfin, la fusion originale de la caméra stéréo et du LiDAR améliore un

peu les résultats qu’avec la camera seule.

Pour les travaux futurs, deux options peuvent étre envisagées pour contourner les
limites du modele utilisé ici. La premieére consisterait a réaliser des acquisitions sur
site réel, sous conditions météorologiques défavorables. La deuxiéme option, plus

prometteuse, serait d’utiliser des modéles 3D plus complexes mettant en ceuvre des
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phénomenes de diffusion microscopique et simulant le trajet complet de la lumiére

des objets vers le capteur et le capteur lui-méme.

(c) Image de brouillard augmentée, (V = 50 m) (d) Image de brouillard augmentée, (V =20 m)

FIGURE B.3: Exemple d’images avec différents niveaux de visibilité. (a) montre
I’échantillon original de I'ensemble de données KITTI [12]. (b), (c), (d) montre les
images brumeuses augmentées avec une visibilité V égale a 80 m (8 = 0.0375), 50 m
(B =0.0599) et 20 m (B = 0.1498) respectivement.  est le coefficient de densité (ou
d’atténuation) du brouillard correspondant a la visibilité V.
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Chapitre 6

Analyse du r6le de chaque
détecteur (LiDAR, caméra) dans la
détection d’objets 3D : étude
d’ablation.

La détection d’objets 3D par fusion LiDAR et stéréo a toujours été un défi pour les
chercheurs dans le domaine. Comme présenté aux chapitres 4 et 5, ce travail of-
fre une méthode de fusion pour les caméras LiDAR et stéréo basée sur un réseau
de neurones profond (SLS-fusion) pour la détection d’objets 3D. Tout d’abord, un
décodeur-encodeur basé sur le réseau ResNet est congu pour extraire et fusionner
les fonctionnalités gauche / droite des images de la caméra stéréo et la carte de pro-
fondeurs LIDAR projetée. Par la suite, le réseau de décodeurs construit une carte de
profondeur a gauche et & droite pour obtenir une profondeur finale corrigée. Une
fois la carte de profondeurs dense attendue obtenue, un nuage de pseudo-points est
généré a I'aide de caméras étalonnées. Enfin, une méthode LiDAR de détection des
objets 3D (PointRCNN) est appliquée au pseudo-nuage de points prédit (voir Figure
B.4).

De plus, le SLS-Fusion, qui utilise les travaux de raffinement de PoinRCNN pour
obtenir des prédictions de boites 3D, a été testé sur les données publiques KITTL
L’expérimention exploitant KITTI et un LiDAR a 4 nappes a faible cotit montre que
la fusion SLS proposée surpasse les méthodes les plus avancées, en particulier le
Pseudo-LiDAR++ présenté dans le chapitre 4. Toutefois, comparativement au dé-
tecteur PointRCNN d’origine qui utilisait LIDAR & 64 nappes, SLS-fusion perfor-
mance est plus faible.

La supériorité du LiDAR a 64 nappes, utilisé sans fusion avec des caméras stéréo, est
évidente car les capteurs LiDAR haute résolution peuvent fournir des informations
de profondeur tres précises. Les capteurs LiDAR tres précis peuvent étre extréme-
ment coliteux : un modele a 64 nappes peut cotiter environ 75000 dollars (USD).
Dans ce cas, plus le nombre de nappes est élevé, augmentant ainsi la quantité de nu-
ages ponctuels générés, plus le cotit du capteur LiDAR est élevé (1000 dollars a 75000
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FIGURE B.4: Structure globale du réseau de neurones SLS-Fusion.

dollars). La solution optimale consiste a trouver un compromis entre un LiDAR pas

trop coliteux et pouvant fournir des résultats de détection acceptables.

Dans ce chapitre et en fonction du nombre de nappes de LiDAR exploitées, nous
avons essayé d’analyser comment les capteurs stéréo et LIDAR contribuent a la per-
formance du modele de SLS-Fusion sur la détection d’objets 3D. Comme le montre
la figure B.4, pour séparer les composants du réseau SLS-Fusion qui représentent les
architectures LiDAR et stéréo, il suffit de diviser le décodeur du modele en réseaux
de décodeurs indépendants. Le décodeur a l'intérieur du modele SLS-fusion est le
seul composant responsable de la fusion des fonctions entre les capteurs LiDAR et
stéréo. L'une des techniques les plus connues utilisées a cette fin est appelée « étude
d’ablation ».

Sur la base de notre analyse d’ablation et des différentes mesures utilisées pour éval-
uer nos algorithmes de détection, nous avons prouvé que les capteurs doivent étre
non séparés pour une meilleure performance. Les résultats quantitatifs ont mon-
tré que les performances de détection diminuent raisonnablement avec chaque com-
posant désactivé (stéréo ou LiDAR) ou en modifiant le nombre de nappes de LiDAR.
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Chapitre 7
Conclusion

L’objectif de ce travail de thése a consisté a analyser la possibilité de détecter au-
tomatiquement des obstacles devant des véhicules autonomes. Pour cela, nous nous
sommes inspirés des systémes existants dans la littérature pour réaliser une telle
fonction. La meilleure de combinaison de capteurs pour détecter des obstacles est

basée sur la combinaison de la stéréo caméra et du LiDAR.

La combinaison des deux capteurs de détection a été testée sur un jeu de données de
la littérature : KITTI qui est une base trés connue et qui contient un certain nombre
de scénarios d’obstacles avec les bonnes annotations. Ainsi, la combinaison stéréo
caméra + LiDAR a été testée avec des LIDARs dont le nombre de nappes variait de

4 a 64 nappes.

Une autre dimension supplémentaire qui a été testée est la possibilité de détecter et
reconnaitre des objets par temps de brouillard. Comme il n’est pas souvent facile
d’avoir des données par temps de brouillard, une procédure de fogification de la
base de données KITTI a été réalisé. Ainsi une intensité de brouillard (allant d"une
visibilité de 20 m jusqu’a 80 m) a été appliquée sur la base KITTI. Logiciellement, il a
fallu aussi concevoir un réseau de neurones qui tienne compte a la fois des données
vidéo et des données LiDAR et y compris par temps de brouillard.

Dans cette recherche, nous avons cherché aussi, outre une bonne détection
d’obstacles, une combinaison de capteurs qui ne soit pas trop onéreuse pour les con-
structeurs de véhicules autonomes. Nous savons que la combinaison stéréo caméra
et LIDAR est bonne, mais pas dans toutes les configurations. La stéréo caméra est
prépondérante mais lorsqu’elle est accompagnée de la bonne information de LiDAR.
Ainsi, on constate que le LIDAR 4 nappes étatit inutile par temps de brouillard. Le
travail mené dans le chapitre 6 a consisté a analyser quelle est la meilleure combinai-
son vidéo et LIDAR. Ainsi les LIDARs 4, 8, 16 et 64 nappes ont été testés. L'objectif
est de trouver un compromis entre une bonne détection d’obstacle 3D avec un cofit

du systéme raisonnable.
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