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Je tiens à exprimer ma plus profonde gratitude à Olivier Simonin, car sa
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Abstract

A particle resolved numerical simulation tool, based on the tensorial viscous
penalty method, that allows the resolution of the fluid-flow around the moving
particles was used to investigate both mono and bi-disperse fluid-particle flow
in a Couette configuration, aiming to study the flow, as well as to test, improve
and develop macroscopic models, notably leveraging the level of detail contained
in the resolved simulations.

A hybrid Eulerian-Lagrangian statistical approach to extract the statistics
of the fluid-particle flow is described. The fluid phase is taken into account by a
characteristic phase operator that notably allows for the derivation fluid-particle
interfacial transport terms. The particles are described by a probability density
function, and via the Liouville’s formalism, continuum transport equations of
the particle phase such as the particle fluctuating kinetic energy are derived. The
trailblazing aspect of such methodology is that long duration contacts between
particles are allowed. A methodology for the calculation of particle and fluid
statistics, as well as the calculation of the coupling terms, are described. In
addition, an original method for decomposing the particle-particle interaction
terms into source and flux terms are presented.

Mono disperse cases were studied and the effects of the inertia and particle
volume fraction were investigated. Several particle and fluid statistics, such as
the mean velocity and fluctuating kinetic energy are given and analyzed with
respect to the flow physics. Viscous dissipation as well as its spatial and tem-
poral scales are compared to the other relevant scales. Particle kinetic stress as
well as the third and fourth order particle velocity fluctuation correlations, are
analyzed and tested against available modeling. Relevant transport equations
of both the particle and the fluid phase are presented in the form of budgets,
highlighting local physical mechanisms, such as production, destruction, as well
as fluid-particle and particle-particle interactions. Fluid force modeling both
for an single and for an ensemble of particles is revisited. A correlation analysis
is performed to inquiry into the mean transverse force in the particle flow. In
addition, a Stochastic Langevin approach is used to model fluid force veloc-
ity fluctuation correlations, this formalism is tested against our data providing
interesting modeling insights.

Bi-dispersion is achieved with lighter and heavier particles with the same
diameter. An equivalent Stokes number for the bi-disperse flows are derived
and analyzed in the frame of our data. Particle-particle interaction terms are
separated into the global contribution of the heavier and the lighter phase, in the
fluctuating kinetic energy budget, then those terms are further separated into
source and flux terms. Next, an extension for the mean bi-disperse restitution
coefficient is presented and then used to test against the momentum collisional
flux and kinetic stress source terms, yielding interesting results.

Keywords: particle resolved simulation, fluid-particle flow, Couette, fluid-
particle interaction, particle-particle interaction, particle kinetic stress, model-
ing, bi-disperse, Stokes number, budget analysis, stochastic, Langevin, drag-law,
fluid force velocity correlation modeling, collisional modeling, source and flux
terms, kinetic theory of granular flow.
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Introduction

Fluid-Particle flows occurs in many environmental and industrial applica-
tions. Pollutant dispersion, volcano eruptions and dust storms are examples of
those flows, such cases are illustrated in Figure 1. Gas-solid reactors (see Fig-
ure 2) such as the fluidized beds, are widely used in the industry because of their
excellent mixing properties, which is favorable to promote chemical reactions.

(a) (b)

(c)

Figure 1: Manifestations of fluid-particle flow (a) Pollutant dispersion. (b) Vol-
cano Eruption. (c) Dust Storm.

Fluidized beds are found, for example, in the petrochemical sector, for the
production of olefins or oil cracking [53]. In this type of application, the cata-
lyst particles are suspended into the flow to form a fluidized bed which improves
the exchanges between the phases, the temperature control, and therefore op-
timizes chemical reactions. The nuclear sector also uses fluidized beds for fuel
development or reactor core materials, such as for uranium fluorination [124] or
zirconium production.
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Figure 2: Schematics of an industrial fluidized bed gas-solid reactor

Numerical simulation of fluidized beds has found a great interest in recent
years for several reasons. Primarily due to the economic and technological im-
portance and also because it is particularly difficult to perform local measure-
ments in fluid-particle flows. Numerical simulation allows for the possibility to
analyze local physical mechanisms, such as inter-particle and fluid-particle in-
teractions. The study and investigation of such phenomena is essential for the
scientific progress in the field and consequently to the advancement of industrial
reactors.

The numerical simulation of fluidized beds is complex due to the multi-scale
phenomena that takes place inside the reactor, such as: turbulent dispersion
of the particles, particle-particle interactions, wall-interactions, heat-transfer,
mass-transfer, chemical reactions, etc. Until very recently, two approaches co-
existed for the numerical simulation of fluidized beds: the Euler-Euler (or more
generally the n-Euler) approach [103], also called the multi-fluid approach, and
the Euler-Lagrange approach [116]. In these approaches, the fluid flow is mod-
eled by a RANS (Reynolds Averaged Numerical Simulation) or LES (Large Eddy
Simulation) approach [20, 77]. With respect to the n-Euler approach, the partic-
ulate flow is considered as a continuous phase, whereas for the Euler-Lagrange
approach, particle trajectories are tracked and calculated based on the solution
of the flow field, which may or may not be coupled to the particle equation of
motion.

An example of the numerical simulation of a gas-solid solid fluidized bed
reactor using n-Euler methodology is shown at the Figure 3, (adapted from
[73]), it can be seen that the solution is continuous even in the maximum zoom,
depicted at the right hand side of the figure, where the mesh grid is visible.
This is suitable to industrial purposes, where generally average quantities and
transfer rates are used to design or numerically evaluate the performance of
a reactor at a reasonable CPU cost. In contrast, particle tracking methods,
offer more details with respect to the particle trajectories, with the downside of
being capable of handling a lower amount of particles, generally several orders
of magnitude lower than a real reactor, often due to memory limitations.
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Figure 3: Example of a gas-solid reactor simulation using n-Euler methodology,
depicting the continuous solution. Adapted from [73].

In order to improve and test the validity of the models present in n-Euler
simulations, data related to local fluid and particle flow, specially at the particle
scale, with sufficient time and spacial resolution is needed.

A possibility to acquire data, is with experiments. Several methods are
available to for that purpose [19, 108, 110], such as the techniques based on
electric and electromagnetic properties [128] , fiber-optics [43], acoustics [97],
single point lasers [107], particle image velocimetry (PIV) [23], radioactive trac-
ers [72] and etc. Besides, despite the advancement in measurement techniques
however, fluid-particle flow velocity measurements are still challenging [31].

Another possibility to access such data with enough spatial and temporal
resolution for statistical purposes, is to perform numerical simulations capable
of resolving the fluid flow around the moving particles. In fact, until recently,
the computational cost to perform such computations was prohibitive, and the
numerical simulation of fluid-particle flow was restricted to n-Euler and Euler-
Lagrange techniques. With the progress in computational power, and with CPU
resources increasingly available, particle resolved simulations became possible.

Body-fitted approach [48, 49], lattice-Boltzmann method (LBM) [55, 56, 57]
and fictitious-domain method [17, 21] are examples of particle resolved methods.
A succinct discussion about those methods are given in the chapter 1.

Particularly within the category of the fictitious-domains, a method based on
the penalization of the viscous stress tensor is used to solve the fluid flow around
finite-sized moving particles [121]. In this method, Navier-Stokes is solved on
the whole domain, and fluid like-behavior is obtained where the penalization
is not applied, whereas particle-like characteristics, such as rigid body motion,
are obtained where the penalization is applied. On the Figure 4 is shown an
example of the detail level of the solution around the particles, obtained using
the viscous penalty method.
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Figure 4: Example of resolved fluid flow around the particles using the tensorial
viscous penalty method.

With respect to previous work using this code, we may cite the numerical
simulation of particles in isotropic turbulence [13]. Drag force, as well as ther-
mal analysis of an array of motionless spheres [113, 114]. In addition to that,
an experiment realized by [23] was numerically simulated by [78], and several
statistics were compared against the experimental results. In fact, this code is
capable of performing numerical experiments with great precision.

As a result of the high level of detail in particle resolved simulations, a high
CPU cost is also needed, and for that reason, usually only small configurations
are numerically simulated. Besides, due to the great level of precision, this type
of simulation is sometimes referred to as a micro-scale simulation. This is in
contrast with n-Euler simulations that are referred as macro-scale simulations.

One might argue that emergent properties occurring in macro-scale are in
fact, the result of all the micro-scale interactions. The particle pressure for
instance, which is an emergent local property of the particles, is the result of
local inter-particle interactions. As a matter of fact, macro-scale simulations,
often rely on the modeling of those emergent properties, which can indeed be
achieved through the analysis of the micro-scale interactions.

Within the scope of this thesis, we aim to investigate the micro-scale simula-
tions in a Couette (shear-flow) configuration, using the tensorial viscous penalty
method based code, in order to test, develop and improve macro-scale models,
which are particularly useful either for the scientific progress itself and for in-
dustrial applications as well. The study in this manuscript is divided into mono
and bi-disperse configurations. Snapshots of those cases are depicted on the Fig-
ure 5, on the left a mono-disperse configuration and on the right a bi-disperse
configuration.

This manuscript is organized into four main chapters. In the first one, nu-
merical aspects of the code, as well as the description of the cases are presented.
In the second one, detailed computation of the statistics for both the fluid and
the particle phase are delved into. In chapter three, mono-disperse cases are
explored and in chapter four, bi-disperse cases are investigated.

First of all, in chapter 1, a brief discussion about the available numerical
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(a) mono-disperse (b) bi-disperse

Figure 5: Snapshot of mono and bi-disperse fluid-particle flow in a Couette
configuration.

methods to perform particle resolved simulations of fluid-particle flows, as well
as a more detailed discussion of the tensorial viscous penalty method, are pre-
sented. Also, it is described how the code deals with near range repulsive forces
between the particles. In addition to that, both numerical and physical pa-
rameters related to the numerical simulations such as the domain size, number
of particles, fluid and particle densities, are given. Finally, details about the
procedures to run the simulations are discussed.

On chapter 2, details about how statistics are computed both for the fluid
and the particles are described. Statistics of the fluid phase are based upon a
characteristic phase operator, which particularly allows for the derivation of the
exchange terms associated to the fluid-particle interface occurring in the fluid
transport equations. For the particles, we describe a formalism based upon
the transport equation of a fine-grained probability density function related
to the particles. Moments of that equations are derived, yielding transport
equations such as the mean particle velocity and particle fluctuating kinetic
energy. Besides, the procedure for the computation of the fluid-particle exchange
terms is discussed as well as the link between the two previously presented
formalisms. Additionally, an original decomposition of the so-called collision
term, or the particle-particle interaction term, present in the particle transport
equations, into source and flux like terms, which can be associated with different
physical mechanisms.

With respect to chapter 3, the influence of several parameters on particle
statistics are investigated on the mono-disperse cases. Particle inertia for in-
stance, characterized through the Stokes number, was linked to an observed
macroscopic transition. Also, other parameters such as the mean fluid and par-
ticle velocities, as well as the velocity fluctuation correlations of second, third
and fourth order are analyzed and related to the physical phenomena. Moreover,
scales based on the fluid viscous dissipation are analyzed as a means to investi-
gate the results. Available modeling is also tested against the data and used to
comprehend the behavior of the simulation. In addition to that, macroscopic
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transport equations, such as the mean-velocity equation, particle and fluid fluc-
tuating kinetic energy equation, are computed from our particle resolved simu-
lation and presented in the form of a budget, indeed highlighting local physics
related to fluid-particle and inter-particle interactions, as well as the so-called
kinetic terms, such as the diffusive or production terms. Fluid-particle force is
discussed both for a single and an ensemble of particles. Moreover, a stochastic
anisotropic impulse model based on the Langevin equation is investigated, and
used to model force velocity fluctuation correlations, yielding interesting results.

The bi-dispersion of the cases presented in chapter 4 are achieved by chang-
ing the particle density, resulting in a group of lighter and heavier particles.
Also, an equivalent bi-disperse Stokes number is derived, which permits to eval-
uate the overall particle mixture inertia. In this chapter, we mainly focus on the
particle-particle phenomena. With that in mind, budget analysis of the particle
fluctuating kinetic energy of both species are shown with the particle-particle
interaction term decomposed into a contribution due to the lighter particles and
another due to the heavier ones, which shines a light into the global mechanisms
of transfer from one particle species to the other. Furthermore, still related to
that, those terms are decomposed into the source and flux terms, which can
more precisely measure different effects related to the collision, such as dissipa-
tion, redistribution and production of fluctuating kinetic energy. Moreover, a
comparison of the resultant source and flux terms against available models is
performed. Related to that, an extension of the average restitution coefficient
taking into account the bi-dispersion is presented.

The pioneer aspect of this work, aside from the physical and mathematical
developments and inquiries, is that resolved simulations are used to quantita-
tively test and develop fluid-particle and particle-particle models in the frame
of the kinetic theory of granular flow, as well as to better comprehend both
microscopic and macroscopic phenomena related to the fluid-particle flow.
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1.1 Resolved methods for fluid particle flow
In this section we discuss about the available methods to resolve the fluid

flow around moderately dense fluid-particle flows. Specifically, we are interested
in the case where the fluid is incompressible ( ∇·uf = 0 ) and obeys the Newton
viscous law, which is governed by the Navier-Stokes equations.

ρf

(
∂uf,i

∂t
+ uf,j

∂uf,i

∂xj

)
= − ∂pf

∂xi
− µf

∂2uf,i

∂xj
2 + ρSi (1.1)

where ρf, uf, pf, and S, stand respectively for the density, velocity, pressure
and a body force. In the next sections we succinctly discuss about available
numerical methods used for the mentioned purpose.

1.1.1 Body-fitted approach
The body-fitted approach is based on the mesh grids that only exists in the

fluid domain. An example of such mesh grid is depicted by Figure 1.1.
When the particles inclusions do not move, than mesh generation is only

created once. If the objects are free to move inside the flow field, then an
adaptive mesh has to be used [8], that is: the grid should take into account
the movement of the objects and the solution should be also be projected onto
the new mesh. Which can be very computational intensive, and consequently a
time-consuming task. A problem with such procedure is that the quality of the
solution is relatively sensitive to numerical set up of the parameters [9].

Figure 1.1: Example of a body-fitted, non-structured mesh [65].

The approaches in which the mesh follows the particles in a Lagrangian
manner are called Arbitrary Lagrangian Eulerian (ALE). This approach has
been used to study some configurations, such as the Poiseuille flow of solid-
liquid particles [48] and sedimentation of spheres [49]. Further studies include
the simulation of 2D rigid particles in a viscous incompressible fluid in a bi-
periodic domain [65] and finally the analysis of the apparent viscosity in a 2D
configuration was analyzed using this technique [60].
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1.1.2 Lattice Boltzmann Method
The Lattice Boltzmann method (LBM) is a weakly compressible flow solver

based on the kinetic theory of gases and the evolution of a molecular distribu-
tion function on a lattice. The propagation of information among the lattices
involves a collision stage, where the related distribution function relaxes towards
the equilibrium in a given time-scale [66]. In other words, from simple and local
update rules based on molecule interactions, continuum flow quantities can be
obtained. The simplicity of implementation and the versatility of its formula-
tion has caused this methods to have a rapid expansion in usage among the
researchers [2].

Numerical simulation of fluid-particle flows with LBM can be achieved by
representing the particle boundaries as walls, over which molecular collisions (in
the frame of LBM) take place. The global resulting force applied by the fluid
onto the particle can then be calculated. This is then used to transport the
particles in a Lagrangian manner.

Several studies using LBM can be found in the literature, such as the first
investigations made by [55, 56, 57] and the simulation of ordered and random
arrays of flow past spheres studies [45],[46]. The drag, lift and moment coef-
ficients of differently shaped fixed single particles have been calculated in the
work of [47]. An inspection of the LBM method for DNS of solid-liquid suspen-
sions were done by [30]. More recently we note the work of [88] where a coupled
discrete element method is used to simulate fluid-particle flows. Also, numerical
simulation of particles in a channel has been studied by [33].

1.1.3 Fictitious Domain Methods
Fictitious domain methods provide a resolved simulation of particles freely

suspended in a flow while avoiding the challenges of body-fitted approaches.
In this method, a fixed computational mesh is specified for the whole domain,
including the volume occupied by the particles, the methods are set so that the
(fictitious) fluid defined inside each particle location mathematically responds
with particle like-behavior. In some methods, forces are applied to the body sur-
face (immersed boundary methods) or applied throughout the particle volume
(immersed body methods) to achieve particle motion behavior [21, 22, 28, 66].

One of the pioneer studies using the immersed boundary method were [81,
82], in which cardiac dynamics and the related blood flow are studied. The
distinguishing feature of that method is that the entire simulation was carried
out on a Cartesian grid, which did not conform to the geometry of the heart,
and a novel procedure was performed for imposing the effect of the immersed
boundary on the flow. [69]. In addition, we can cite the work of [61, 62], [63]
and [117, 118, 119] .

Another way to apply rigid body motion to a fictions domain is the tensorial
viscous penalty method [17, 121, 123] in which the stress tensor is penalized to
impose solid behavior inside the particle volume. This method is the one used
in this thesis, and it is going to be further detailed in the next section.
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1.2 Tensorial Viscous Penalty Method
The Tensorial Viscous Penalty Method, is based on the separation of the

fluid stresses into four different contributions, which was first proposed by [17].
First, we write the fluid stress tensor, assuming Newtonian behavior, as follows:

σf,ij = −pδij + λ∇ · ufδij + 2µDij (1.2)

Where λ and µ are respectively the compression and shearing viscosities.
The deformation rate stands for Dij = 1

2

(
∂uf,i

∂xj
+ ∂uf,j

∂xi

)
. The velocity gradient

can be decomposed into a symmetric (Dij) and a anti-symmetric part (Aij).

∂uf,i

∂xj
= 1

2

(
∂uf,i

∂xj
+ ∂uf,j

∂xi

)
︸ ︷︷ ︸

Dij

+ 1
2

(
∂uf,i

∂xj
− ∂uf,j

∂xi

)
︸ ︷︷ ︸

Aij

(1.3)

Combining Eq. (1.3) with Eq. (1.2), we obtain:

σf,ij = −pδij + λ∇ · ufδij + 2µ

(
∂uf,i

∂xj
− Aij

)
(1.4)

Which can thus be turned into the following form in Cartesian coordinates:

σf =

−p + λ∇ · uf 0 0
0 −p + λ∇ · uf 0
0 0 −p + λ∇ · uf

+ κ


∂uf,x

∂x 0 0
0 ∂uf,y

∂y 0
0 0 ∂uf,z

∂z


︸ ︷︷ ︸

Λ

+ ζ

 0 ∂uf,x

∂y
∂uf,x

∂z
∂uf,y

∂x 0 ∂uf,y

∂z
∂uf,z

∂x
∂uf,z

∂y 0


︸ ︷︷ ︸

Θ

−η

 0 ∂uf,x

∂y − ∂uf,y

∂x
∂uf,x

∂z − ∂uf,z

∂x
∂uf,y

∂x − ∂uf,x

∂y 0 ∂uf,y

∂z − ∂uf,z

∂y
∂uf,z

∂x − ∂uf,x

∂z
∂uf,z

∂y − ∂uf,y

∂z 0


︸ ︷︷ ︸

Γ

(1.5)

Comparing Eq. (1.5) with Eq. (1.4), we note that the following equalities
must held: 2µ = κ = ζ = 2η in order to describe the so called Newtonian fluid
behavior. Analyzing the terms of Eq. (1.5), we can identify:

• κ stands for the elongation viscosity

• ζ stands for the tearing viscosity

• η stands for the rotation viscosity
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Also, λ can be seen as a dilation viscosity. Considering that, the decompo-
sition of the stress tensor can then be written with the four main contributions
as follows:

σf,ij = (−p + λ∇ · uf) δij + κΛij + ζΘij − ηΓij (1.6)

The main advantage to write the stress tensor in this particular form is that
it eases the implementation of the penalization method. Actually, the stresses
can be independently imposed when acting on the different viscosities. [86].

In order to impose solid or fluid behavior, each mesh grid must be identified
as such (fluid or particle). A color function, is used to accomplish this task.
Figure 1.2 illustrates the color function. In this case, we note that the fluid
domain is characterized by C = 0, whereas C = 1 is used to identify the
particles. As a matter of fact, solid behavior is obtained when η ≫ 1, κ = 2η
and ζ = 2η.

Figure 1.2: Color function C. C = 1 for the particles and C = 0 for the fluid
[121]

This method, although formally equivalent to the previous viscous penalty
methods in a continuous point of view [125], in a discrete manner the approaches
are different [13]. Indeed, a more accurate description of fluid-solid interface is
obtained when the method described in this section is used [121].

Concluding, the key point of the method, is that it permits to solve Navier
Stokes in the whole domain, including particle and fluid location, in fact, particle-
like behavior with rigid body motion occurs only where the penalized is ap-
plied. One can clearly see in Eq. (1.2), that when the viscosity tends to infinity
(µ → ∞), than the absolute values of Dij should vanish, so the stress tensor
can assume a finite value. Thus explaining why rigid body motion is achieved
when locally penalizing the viscosity, as |Dij | = 0 is characteristic of rigid body
motion. Naturally, where the penalization is not applied, fluid-like behavior
occurs.

1.2.1 Augmented Lagrangian Method
In order to solve the velocity-pressure coupling in with the tensorial vis-

cous penalty method presented in the last section, the Augmented Lagrangian
method is used. This method was first introduced by [37], and it consists in
solving an optimization problem with an Uzawa algorithm [120]. The adapted
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form of the algorithm [86], which takes into account the tensorial decomposition
described in the last section, is schematically described below:

Initial guess:(
u∗,0

f , p∗,0, LG2
∗,0, LG3

∗,0, LG4
∗,0
)

=
(

un
f , pn, LG2

n, LG3
n, LG4

n
)

While |∇ · u∗,k
f | > ϵ ; cycling over k (1.7)

Solve the system for: u∗,k
f

ρ

(
f(u∗,k

f ,un
f ,un−1

f )
∆t + u∗,k−1

f · ∇u∗,k
f

)
= ρS

+∇
(

r∇ · u∗,k
f

)
− ∇ ·

[
κΛ
(

u∗,k
f

)
+ ζΘ

(
u∗,k

f

)
+ ηΓ

(
u∗,k

f

)]
−∇p∗,k−1 + ∇ ·

[
LG2

∗,k−1 + LG3
∗,k−1 + LG4

∗,k−1
]

Augmented Lagrangian iteration:
p∗,k = p∗,k−1 − r∇ · u∗,k

LG2
k = LG2

k−1 − κΛ
(
u∗,k

)
LG3

k = LG3
k−1 − ζΘ

(
u∗,k

)
LG4

k = LG4
k−1 − ηΓ

(
u∗,k

)
Solution:(

un+1
f , pn+1, LG2

n+1, LG3
n+1, LG4

n+1
)

=
(

u∗,k
f , p∗,k, LG2

∗,k, LG3
∗,k, LG4

∗,k
)

Where
(

u∗,k
f , p∗,k

)
are the velocity and pressure fields to be solved, and k is

an Augmented Lagrangian iterative index, and n is the index representing the
time, so (un

f , pn) is the obtained solution at the time index n, and ϵ is a numerical
threshold controlling the constraint. In the same way,

(
LG2

∗,k, LG3
∗,k, LG4

∗,k
)

are the tensorial viscous stresses, related to each viscosity to be solved.
The field S relates to the body forces, which may contain gravity and local

repulsion forces due to particle interaction, which are further detailed in the
section 1.3. In the standard Augmented Lagrangian Method, a fixed parameter
r is used. As shown by [122], if the value of r is locally adapted, than the system
of equations should be locally correctly solved. On the other hand, if the value
of r is too high, than it act as a penalty term, inducing the numerical solution
to satisfy only the divergence free (∇ · uf = 0) condition. When dealing with
multimaterial simulations, such as fluid-particle simulation, local properties,
such as density or viscosity, may vary depending on whether it is the particle or
a fluid mesh. Thus a single value of r parameter is not suitable for multimaterial
flows simulation.

A solution to this problem was proposed by [122], where the value of r =
r(M, t) locally depends on the space position M and the time t. This method is
called Adaptative Augmented Lagrangian. Within this methodology, the value
of r(M, t) is insured to be two or three orders of magnitude higher than the
most important term in the conservation equation. Thus insuring the solution
quality for all the phases.
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1.2.2 Mesh Grid
The spatial discretization scheme of the mesh grid is shown by Figure 1.3

below. In the center of the volume element, a pressure node is present. Velocity
nodes are found in the faces and viscosity nodes are found at the corners.

pressure

velocity

viscosity

Figure 1.3: Mesh Grid

1.2.3 Particle Transport
The Lagrangian particle transport is accomplished by:

x̃n+ 1
2p = xn

p + ∆t

2 un
p

ũn+ 1
2p = 3

2un
p − 1

2un−1
p

The estimated positions and velocities are then used to calculate the inter-
action forces between the particles, that in fact, depend on the relative velocity
and position of each pair of particles. The calculation of forces is detailed in
the section 1.3. Then, the calculated forces are projected as body forces into
the system of (1.7), specifically at the term S, where each concerned particles is
located. When the solution of the Augmented Lagrangian Method is achieved,
that is:

(
un+1, pn+1), the velocity of the particles are interpolated to obtain a

unique rigid body motion velocity un+1
p for each particle.

The actual particle velocity at the time index n + 1/2 is calculated, to com-
pute the particle position at the time n + 1.

un+ 1
2p =

un+1
p + un

p

2 (1.8)

xn+1
p = xn

p + un+ 1
2p ∆t (1.9)

Knowing the center of mass position of all the particles (xn+1
p ), the color

function can be actualized and the related values of density, viscosity and etc,
can be projected into the mesh grid, more details at [121].

In other IBM methods, the particle velocity is deduced from the resulting
force after the integration of the stresses into the particle boundary. The prob-
lem, is that due to the steep gradient of properties in the vicinity zone of the
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particle boundary, the quality of the solution may be undermined in these zones,
and so, it turns out that the resulting calculated force may not be very accu-
rate, and as a consequence the particle velocity may not be accurate as well.
This may threat the overall fluid-particle dynamics. Higher order spatial inter-
polation methods may be used to enhance the quality of the integration, but
this can be specially difficult when dealing with dense flows, where particles are
very close to each other. Also, such interpolation methods may be very CPU
intensive.

As opposed those other IBM methods, in the method used in this thesis,
the velocity of the particles is directly computed from the solution of Eq. (1.7).
Thus being free of the constraints of using the fluid solution in the particle
boundary. Which is a great advantage of the method used in this thesis.

1.2.4 Code Optimization
Investigating the performance of the code for the cases in this thesis, specially

when dealing with large simulations, it has been noticed that its performance
could be significantly improved. For instance, for the case M6, (described by
the Table 1.2 and further studied in Chapter 3), the so called wall-time, which is
the time to complete one time step by the code was about 35.5s. From that, 8s
was used to solve Navier Stokes by the Lagrangian Augmented Method and the
rest to perform other tasks, such as the velocity interpolation and convection of
the particles. Those other tasks consuming about 27s.

Further analyzing the code, we profiled the most CPU intensive parts of the
code for those other tasks. We note that 20s were used to perform the particle
velocity interpolation and 7s to for the particle projection in the mesh.

Messaging Optimization

After a comprehensive scrutiny of the code into the velocity interpolation
part, it was noticed that the enormous amount of time into this part was due to
the colossal volume of message exchange among the processors. More precisely,
in a particular piece of code, the operation ”MPISUM” (function to perform a
sum in parallel mode) were called a number of times Ncalls that was proportional
to the number of particles and processors, so:

Ncalls α Nparticles Nprocessors N3
d (1.10)

where Nd is the dimension of the problem (3 for 3D). Thus, this problem
only appeared when performing large simulations with a lot of particles and
simulations with high parallelism, which were the case of all the simulations of
this thesis.

Inquiring the code structure, it was noticed that it was possible to reduce all
of the parallel operations into a single one (due to the linearity of the operation),
thus requiring only one message to be sent. After the modification, the time
needed to conclude this task was greatly improved, without any change in the
accuracy.
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Connectivity Mesh

The lack of performance in the projection of the particles was due to the
fact that the code was designed in a non-structured way, but in reality only
structured Cartesian meshes were used in the thesis.

In order to solve this problem a matrix linking non-structured points to a
structured grid was implemented. Thus permitting to easily perform operations
in a structured way. Greatly enhancing the code performance.

Global Improvement

With the previous optimization’s, the total wall-time to perform a time step
passed from 35.5s to 8.5s. The time needed to solve Navier-Stokes was unaltered,
since the solver was untouched. The other tasks however, evolved from 27.5s
to 0.5s per time-step iteration. From that gain, 89% was due to the messaging
optimization improvement.

This boost in the code performance allowed the simulation of otherwise non-
viable simulations in this thesis. In reality, the simulations performed in this
thesis were very costly and were in fact only possible due to those improvements.
It is also clear that the bigger the simulation, the higher the performance gain,
thus benefiting future users of the code.

1.3 Inter-particle Interaction
In this section, it is shown how inter-particle interaction is handled within

the code. First a dry collision model is detailed and then a lubrication model is
presented as well.

The time scale involved into the collision duration is generally several orders
of magnitude smaller than the other scales of the flow field, such as the hy-
drodynamic scale for example. Consequently, it is impractical to constraint the
time-step to collision related time scales. To tackle the problem, the collision
force is applied during several hydrodynamic based time-steps in a way that the
correct amount of momentum is transferred during the interaction between the
particles.

1.3.1 Soft-sphere model
The soft-sphere model, consisting in a mechanical system with a spring and

a dashpot, where the particles are allowed to overlap, is the one used to account
for particle-interactions. Figure 1.4 shows the scheme of the model. Particle
a with mass ma and radius ra, and position xa collides with the particle b,
with the properties: mb, rb and xb. Also, δn is the normal overlap between the
particles, and dηn/dt is the normal relative velocity between the particles.

The equation of motion for the particle a is given as follows:

ma
d2xa

dt2 = Fb→a =
(

−knδn − η
dδn

dt

)
nab (1.11)

where nab = (xb − xa)/|xb − xa|. One can also note that the following
relation, involving the normal overlap, reads:
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δn

ra
rb

Fb→a Fa→b

ma mb

ηn

kn

nab

Figure 1.4: Spring dashpot scheme for the particle-particle collision modeling.

δn = max (0, ra + rb − |xa − xb|) (1.12)

A similar equation of motion for the particle b can be easily developed,
observing the fact that Fa→b = −Fb→a. One can easily find that the values
of kn and ηn should be the following:

kn = mef
π2 + ln2(ed)

(Nc∆t)2 (1.13)

η = −2 mef ln(ed)
Nc∆t

(1.14)

where mef = (mbma)/(mb + ma) and ed is the dry collision coefficient, and
should be comprised between 0 and 1. Zero corresponding for total inelastic
collision and one for a collision without energy loss.

The numerical value of ed is previously defined in our simulations. The
choice of Nc depends onto two factors: first, if Nc is too small than, the applied
force could not be correctly integrated in time, due to a coarse discretization of
the force in time. If Nc is too big, than the overlap between the particles may
be too big. One can easily show that for the case of perfectly elastic collisions
(ed = 1), the maximum overlap is:

δn,max = ur0Nc∆t

π
(1.15)

where ur0 = dδn/dt is the normal relative velocity at the instant of the im-
pact. Thus the maximal overlap is directly proportional to Nc. Considering
that the time step is given by a CFL number: ∆t

∆x Uf = 0.3, and that the hy-
drodynamic reference velocity is at the order of magnitude of the initial relative
velocity Uf ≈ ur0, and assuming that dp/∆x = 12 than, we found that:
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δn,max

dp
≈ 0.008Nc (1.16)

It has been demonstrated that Nc ranging from 5 to 10 is the optimal value
for the collision duration [13]. And thus the value of Nc = 8 is the one retained
in our simulations, which gives an estimation of δn,max/dp ≈ 0.06, which is a
reasonable amount of overlap in the simulation.

1.3.2 Lubrication correction
A combined soft-sphere model with an additional sub-grid force, to take

into account the non-resolved hydrodynamic interaction at a near distance were
proposed by [15]. The idea behind the model is to add a body force to the
particles interacting at a given near distance, so that the force that the particles
undergo is exact.

The main advantage of the use of those combined models is that they do not
restrict the numerical simulations to extremely small time steps and mesh sizes.
As explained before, the soft-sphere model allow the use time-steps constrained
by hydrodynamic time-related scales, and not by extremely small collision re-
lated time scales. Analogously, the sub-grid force is added so the mesh size is
not restrictively small to capture the correct force emerging from the complex
interactions at a very near distance. One should take into account that those
simulations are already very costly in CPU hours. In that sense, strongly di-
minishing the time-step or the mesh size would totally make the simulations
unfeasible.

In order to take into account this non-resolved force in the code used in
this thesis [14] has proposed a model that is described along the following lines.
Basically, a force given by Eq. (1.17), is activated in selected zones, to account
for the sub-grid correction.

FL = −6πµf
dp

2 un [λ (ε) − λ (εal)] (1.17)

Where un = dδn/dt is the relative velocity, and ε = 2|d|/dp is the dimension-
less distance between them. And depending on whether the collision take place
between two particles, then Eq. (1.18) should be used, further if the collision is
with the wall than, Eq. (1.19) is the suitable one.

λpp (ε) = 1
4ε

− 9
40 log (ε) − 3

112εlog (ε) + 0.995 + (ε) (1.18)

λpw (ε) = 1
ε

− 1
5 log (ε) − 1

21εlog (ε) + 0.971 + (ε) (1.19)

Figure 1.5 shows how both the sub-grid model and the dry collision model
are activated together.

The lubrication force, is activated at ϵal and varies continually as a function
of ϵ until it reaches the value ϵ1. From ϵ1 to ϵ = 0 the lubrication force remains
with the calculated value of ϵ1. After overlap, that is: from ϵ = 0 to ϵ2, the dry
collision model, explained at the last section, takes place and varies continually,
while lubrication force still maintains the computed value at ϵ1. From ϵ2 and
further, only the dry collision model is used. More details can be found at [14].
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Figure 1.5: Scheme of the force activation for the model proposed by [14].
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1.4 Mono and Bi-disperse Couette configuration
1.4.1 Mono-disperse

Monodiperse fluid-particle numerical simulations have been performed in 3D
Couette configuration in order to investigate fluid-particle and particle-particle
interactions. Figure 1.6 gives a schematic of the simulation case. The compu-
tation domain is a box of length Hx = H, Hy = H and Hz = H/2. In the
stream-wise direction (x-direction) and span-wise (z-direction) periodic bound-
ary conditions are applied. In the y-direction (wall-normal direction) two mov-
ing walls with no-slip boundary conditions for the fluid phase take place. For
the particles, free-slip wall boundary condition is imposed.

Vw

Vw

H

H/2

H

moving wall

periodicity
x

y

z

Figure 1.6: Schematic view of the simulation case: Couette configuration.

Six mono-dispersed cases have been performed. Table 1.1 gives the fluid,
particle and domain size properties and Table 1.2 gives the simulation parame-
ters of the investigated cases. The parameters, Vw and Np are respectively the
wall velocity and the total number of particles inside the domain. The bulk
Stokes number Stp,b, which characterizes particle inertia with respect to the
viscous forces, is defined as follows:

Stp,b = τp
2Vw

H
(1.20)

Where the particle response time is τp = ρpd2
p/18µf. For all the mono-

disperse cases, the value is τp = 0.526s. The bulk particle volume fraction
is given by αp,b = (Npπd3

p/6)/HxHyHz. The particle diameter to mesh size
ratio is dp/∆x = 12, with ∆x = ∆y = ∆z, and the time step is based on the
Courant–Friedrichs–Lewy number of CFL = 0.3.

The effects of particle inertia and particle volume fraction are respectively
analyzed by investigating the two sets of bulk Stokes number, Stp,b = {15, 30}
and the three sets of particle bulk volume fraction αp,b = {5%, 15%, 30%}.
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Table 1.1: Fluid and particle material properties

particle diameter dp 6 mm
particle density ρp 1000 kg/m3

fluid density ρf 10 kg/m3

fluid viscosity µf 3.8 mPa.s
domain dimension Hx = Hy = 2Hz = 20dp 12 cm

Table 1.2: Physical parameters of the mono-disperse simulations

CASE Vw [ m
s ] Np Stp,b αp,b

M1 1.71 382 15 5%
M2 1.71 1146 15 15%
M3 1.71 2292 15 30%
M4 3.42 382 30 5%
M5 3.42 1146 30 15%
M6 3.42 2292 30 30%

1.4.2 Bi-disperse
Five cases have been performed in order to investigate bi-disperse fluid-

particle behavior at the 3D Couette case. Table 1.3 gives the fluid, particle and
domain size properties and Table 1.4 gives the simulation parameters of all the
cases. The particle diameter to mesh size ratio is dp/∆x = 8 (where dp = dq and
∆x = ∆y = ∆z) and the time step is based on the Courant–Friedrichs–Lewy
number of CFL = 0.3.

Table 1.3: Fluid and particle material properties

particle diameter dp = dq 6 mm
p-particle density ρp 1000 kg/m3

q-particle density ρq 2000 kg/m3

fluid density ρf 10 kg/m3

fluid viscosity µf 3.8 mPa.s
domain dimension Hx = Hy = 2Hz = 20dp 12 cm

Table 1.4: Physical parameters of the bi-disperse simulations

CASE Vw [ m
s ] Np Nq Stp,b Stq,b αp,b αq,b

B0 0.85 256 256 7.5 15 3.3% 3.3%
B1 1.71 381 76 15 30 5% 1%
B2 1.71 256 256 15 30 3.3% 3.3%
B3 1.71 76 381 15 30 1% 5%
B4 3.42 256 256 30 60 3.3% 3.3%

Using the values of Table 1.3, it can be calculated that: τp = 0.526s and
τq = 1.05s. The values of Stp,b and Stq,b given by Table 1.4 are respectively
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the bulk Stokes number of the p-particles and q-particles, calculated as if they
were alone in the domain. It is shown in the chapter 4, how to calculate an
equivalent bulk bi-disperse Stokes number (St∗

b) taking into account the mixture
of particles. In fact, cases B0 to B4 are organized from the least to highest
inertial case. This is further discussed in the bi-disperse chapter.

1.5 Simulation procedure
The procedures for the numerical simulations are as follows. At the initial

time step (t = 0 s), the particles are uniformly and randomly distributed inside
the domain without overlapping.

In this manuscript, it is focused on the steady-state particle statistics. And
due to that, it is important to establish when the steady-state is in fact reached.
For that purpose, the temporal evolution of the total kinetic energy of the
particles and the bulk collision frequency are measured. In fact, when the total
kinetic energy of the particles reaches a plateau and the collision frequency is
constant, statistical convergence is assumed for the purposes of this manuscript.
In fact, a posteriori tests showed that this is the case.

The temporal evolution of the total kinetic energy of the two classes of
particles, for the case B3 is given by Figure 1.7. It can be seen that near the
end of the simulation, a constant value of the kinetic energy is established.
Clearly, the more simulation time, the better are the statistics, however, one
should bear in mind that the simulation cost is very high, and as such, a good
compromise between simulation cost and duration should be achieved. The
simulation times used in our simulations provided enough statistical realization
data for the purposes of this manuscript.
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Figure 1.7: Temporal evolution of the total kinetic energy of the particles for
the case B3.

Another important parameter to verify the steadiness of the particle flow,
is the bulk collision frequency, it can be measured by taking the derivative of
the cumulative number of contacts K inside the domain. Every time a particle
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begins an interaction with another one, two contacts are formed, and conse-
quently summed to K. The relationship between the collision frequency fc and
the cumulative number is the following one:

fc = 1
2

dK

dt
(1.21)

The temporal evolution of K, for the case B3, is shown by Figure 1.8. We
note a small transient time in the beginning of the simulation, followed by a
linear evolution of K. A linear fit of the data near the end of the time is shown
by a red dashed line.
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Figure 1.8: Temporal evolution of the cumulative number of contacts K for the
case B3. The red dashed line is a linear fit near the end of the simulation time.
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Chapter 2

Hybrid Eulerian-Lagrangian
statistical approach
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2.1 Introduction
In this section we present a hybrid statistical approach to analyze both the

fluid and particle phases [71, 130]. First we present general statistical prop-
erties related to the averaging process, and the notion of ensemble average of
a random variable is introduced. After that, the Eulerian formalism used to
obtain averaged equations of the fluid phase taking into account the interfacial
transfers, based on the so-called phase-operator, is shown.

The particle phase is described by a fine-grained probability density function,
and based on the Liouville’s formalism we originally show an approach that nat-
urally allows for particle interactions with any arbitrary duration, in this manner
the Bolztmann assumption of instantaneous collisions are not needed. In addi-
tion to that, we show the related transport equations of macroscopic variables
such as mean particle velocity and particle fluctuating kinetic energy. Next, we
show how to compute the fluid-particle transfers in both the Eulerian fluid frame
and the particle Lagrangian frame, and also the relationship between them. Fi-
nally, at the end of this chapter, we give an original method for computing the
source and flux terms of the particle-particle collisions contribution.

2.2 Average properties
The formulation of average quantities is related to the definition of the av-

erage operator ⟨·⟩, which must satisfy some properties. Those conditions are
usually referred as the Reynolds axioms [84]. Considering the random variables
H and G , the properties can be written as:

⟨H + G ⟩ = ⟨H ⟩ + ⟨G ⟩ (2.1)
⟨aH ⟩ = a ⟨H ⟩ , if a = cte (2.2)

⟨a⟩ = a , if a = cte (2.3)
⟨⟨H ⟩ G ⟩ = ⟨H ⟩ ⟨G ⟩ (2.4)〈

∂H

∂t

〉
= ∂ ⟨H ⟩

∂t
(2.5)〈

∂H

∂xj

〉
= ∂ ⟨H ⟩

∂xj
(2.6)

Also, it is common to separate into the mean and the fluctuation in the
following manner: H = ⟨H ⟩ + H ′, with H ′ being the fluctuation. Using the
relationships (2.1) and (2.4) in such a decomposition, it directly follows that the
average of a fluctuating quantity is null: ⟨H ′⟩ = 0.

A very useful average in fluid mechanics is the so-called ensemble average,
which is defined as follows:

⟨H ⟩ = lim
Nr→∞

Nr∑
r=1

H (r) (2.7)

Where Nr is the number of identical macroscopic realizations which obey
the same statistical laws, but correspond to different local instantaneous values
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of the random values. In this case H (r) corresponds to the value of the ran-
dom variable of the realization r. In practice the sum presented by Eq. (2.7),
under certain conditions, can be expressed in an equivalent integral form [70],
with spatial averages given by Eq. (2.8) used in homogeneous configurations
and temporal integrals in the form of Eq. (2.9) used in statistically stationary
systems.

⟨H ⟩ = lim
V →∞

1
V

∫
V

H dx (2.8)

⟨H ⟩ = lim
∆t→∞

1
∆t

∫ t+∆t

t

H dτ (2.9)

In ergodic systems [84], both of those averages should yield the same results,
and can be indistinguishably used. Under that circumstance, a spatio-temporal
average, can be used. Such an average is given by Eq. (2.10).

⟨H ⟩ = lim
V →∞

lim
∆t→∞

1
V

1
∆t

∫ t+∆t

t

∫
V

H dxdτ (2.10)

In the following of this chapter more details related to the averages for the
fluid and the particle phase are given.
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2.3 Fluid-phase Eulerian averaging
2.3.1 Single phase equations

The transport equations in terms of single phase fluid flow, related to the
conservation of mass and momentum are respectively given by Eqs. (2.11) and
(2.19).

∂ρf

∂t
+ ∂ (ρfuf,j)

∂xj
= 0 (2.11)

∂ (ρfuf,i)
∂t

+ ∂ (ρfuf,iuf,j)
∂xj

= ∂σf,ij

∂xj
+ ρfgi (2.12)

Where σf,ij = −pfδij + τf,ij is the stress tensor, pf is the fluid pressure,
δij is the Kronecker delta, and τf,ij accounts for the viscous part of the tensor.
Besides, in the case of a Newtonian fluid, it is given by τf,ij = 2µfDij+λf

∂uf,m

∂xm
δij ,

with µf and λf being the dynamic viscosity coefficients, and the deformation
tensor is given by Dij = 1

2

(
∂uf,i

∂xj
+ ∂uf,j

∂xi

)
. In addition, gi, is the acceleration of

gravity, which is not present in our simulations.

2.3.2 Multi-phase flow formalism
In this section we establish local and instantaneous equations for the fluid

phase, with constant density ρf, taking into account the interfacial transfers
with other phases. In order to derive such equations, [51], [50] and [29], a
characteristic phase operator χf is used, which is defined as follows:

χf(M, t) =
{

1, if M is inside the fluid phase at the time t
0, otherwise (2.13)

Where M is an arbitrary point in space. This function is a 3D generalization
of the Heaviside function, and in the sense of distributions, this function has
the following properties:

∂χf

∂t
+ wj

∂χf

∂xj
= 0 (2.14)

∂χf

∂xj
= np,jδfp (2.15)

Where w is the local propagation velocity of the interface, np is the unit
vector normal to the fluid-particle interface δfp and pointing outward the par-
ticle phase, as depicted by Figure 2.1, and δfp is the Dirac’s delta distribution
associated to the fluid particle interface.
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.

np

up

Solid Particle

Fluid

Figure 2.1: Normal unity vector np at a given arbitrary point at the fluid-
particle interface.

In order to obtain a local and instantaneous equation for the mass conserva-
tion for the fluid phase that takes into account inter-facial transfers, the single
phase equation for mass conservation, Eq. (2.11), is multiplied by the phase
operator χf, and combined with the properties of the phase operator, given by
Eqs. (2.14) & (2.15), which yields:

∂ (ρfχf)
∂t

+ ∂ (ρfuf,jχf)
∂xj

= ρf (uf,j − wj) np,jδfp (2.16)

In our case, since there is no mass transfer, the term on the right-hand side
of the equation above is null, and thus the fluid velocity at the fluid-particle
interface coincide with the propagation velocity of the interface.

Averaged fluid mass balance

Applying the ensemble average on Eq. (2.16), gives:

∂ (αfρf)
∂t

+ ∂ (αfρfUf,j)
∂xj

= 0 (2.17)

Where αf = ⟨χf⟩ is the fluid volume fraction. Additionally, we define the
phase average, consistent with our case with constant fluid density, as the ratio
of the ensemble averages in the following manner:

⟨·⟩f = ⟨ · χf⟩
⟨χf⟩

(2.18)

With this definition, the mean fluid velocity, present in Eq. (2.17), is given
by: Uf,i = ⟨uf,i⟩f

Averaged fluid momentum balance

Following a similar procedure, the averaged fluid equation of the mean fluid
velocity, taking into account interfacial transfers, is given as:
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∂ (αfρfUf,i)
∂t

+ ∂ (αfρfUf,iUf,j)
∂xj

= −∂ (αfPf)
∂xi

+ ∂

∂xj

(
αf ⟨τf,ij⟩f − αfρfRf,ij

)
+αfρfgi + Ip→f,i (2.19)

Where Pf = ⟨pf⟩f is the mean pressure, Rf,ij =
〈
u′

f,iu
′
f,j
〉

f is the Reynolds
stress tensor. Also, the term due to the interfacial momentum transfer is:

Ip→f,i = − ⟨σf,ijnp,jδfp⟩ + ⟨ρfuf,i (uf,j − wf,j) np,jδfp⟩ (2.20)

The second term on the right-hand side becomes null without mass transfer.
Regarding the right-hand side of the averaged mean fluid velocity balance, it
can be respectively found a term due to the mean pressure gradient, a term
resulting from the competition between the viscous stresses and the Reynolds
stresses, one term due to the body forces in the fluid and finally a term due to
the exchange of momentum via interaction with the particle interfaces.

Averaged fluid fluctuating kinetic energy balance

The averaged transport equation for the fluid fluctuating kinetic energy
kf = Rf,ii/2 is obtained in a similar manner, averaging the instantaneous
kinetic energy equation and subtracting from the mean kinetic energy equation,
which gives the equation below:

∂ (αfρfkf)
∂t

+ ∂ (αfρfkfUf,j)
∂xj

= −αfρfRf,ij
∂Uf,i

∂xj
− αf

〈
τ ′

f,ij
∂u′

f,i

∂xj

〉
f

− ∂

∂xj

[αfρf

2 Sf,iij + αf
〈
p′

fu
′
f,j
〉
f − αf

〈
τ ′

f,iju′
f,i
〉
f

]
+Πkf

p→f (2.21)

On the right-hand side of the equation, the first term is related to the pro-
duction of fluctuating kinetic energy associated to the mean shear of the fluid
velocity, which is a term related to the transfer of mean to the fluctuating mo-
tion. The second term is the dissipation of kf due to internal fluid friction. Next,
on the second line, three diffusive terms are found, the first one is related to
the triple fluid velocity correlation, which represents the transport of fluctuant
kinetic energy by the velocity fluctuation, the second to the correlation between
the pressure and the velocity fluctuations, and finally a term related to viscous
diffusion. The last term is related to the exchange due to the interaction with
the particles, and it is given by:

Πkf
p→f = −

〈
σf,iju′

f,inp,jδfp
〉

+
〈

1
2ρfu

′
f,iu

′
f,j (uf,j − wj) np,jδfp

〉
(2.22)

Similarly to the other interfacial terms, only the first term on the right-hand
side of the equation above is non-null in our simulations.
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2.4 Particle-phase Lagrangian averaging
2.4.1 Probability density function approach

The strong analogy between the thermal motion of molecules and the random
motion of particles in turbulent two-phase flow has led several authors to use
the kinetic theory approach to describe the particle statistics and and derive
continuum equations for the dispersed phase [16], [71], [87], [129] and [102].

As already stated at the beginning of the chapter, generally in the kinetic
theory, the Boltzmann assumption of instantaneous collision is used. In this
section, we nonetheless describe an approach based on the Liouville’s formalism
that allows for particle-particle interaction with any arbitrary duration, and
could be extended to other interaction types such as electromagnetic ones.

Let fp (cp, x, t) be a one particle probability density function, related to
an ensemble of particles with the same mass mp and diameter dp, such that
the expression given by the Eq. (2.23) represents the probable mean number
of particles whose particle center xp(t) ∈ [x, x + δx[ and particle translational
velocity up(t) ∈ [cp, cp + δcp[.

fp (cp, x, t) δcpδx (2.23)

The function fp, obeying the properties described above [87], can be written
as:

fp (cp, x, t) = lim
Nr→∞

1
Nr

Nr∑
r=1

N(r)
p∑

n=1
δ
(

cp − u(n,r)
p (t)

)
δ
(

x − x(n,r)
p (t)

) (2.24)

Where Nr is the number of realization of the particulate flow and, N
(r)
p is

the number of particles related to each realization. Also, u
(n,r)
p (t), x

(n,r)
p (t) are

respectively the translational velocity and center position of a particle n, at a
time t, of the realization r. From the definition, it follows that the particle
number density np, or the number of particles per unit volume, can be found
by integrating fp over the velocity space, reads:

np(x, t) =
∫

fp (cp, x, t) dcp (2.25)

In the case of a mixture of two particle species differing by its mass, one
probability density function can be attributed to each particle species. With fp
for the particles of mass mp and fq for the ones with mass mq. In the following,
we describe the equations for the p-particles associated with the probability
density function fp. The same equations for the q-particles can be obtained in
a similar fashion.
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Let H be a function attached to each particle, we denote the conditional
average according to the instantaneous particle properties with the following
notation:

⟨H |cp, x, t⟩ = ⟨H (up, xp; t) |up(t) = cp, xp(t) = x⟩ (2.26)

Which by definition [105]:

⟨H |cp, x, t⟩ fp (cp, x, t) = (2.27)

lim
Nr→∞

1
Nr

Nr∑
r=1

N(r)
p∑

n=1
H (r) (cp, x, t) δ

(
cp − u(n,r)

p (t)
)

δ
(

x − x(n,r)
p (t)

)
Using the definitions given above, the mean value of H is given as follows:

np ⟨H ⟩ (x, t) =
∫

⟨H |cp, x, t⟩ fp (cp, x, t) dcp (2.28)

Related to the p-particles, the most used statistical variables in this thesis
are given below:

Up,i = ⟨up,i⟩ (2.29)
Rp,ij =

〈
u′

p,iu
′
p,j

〉
(2.30)

Sp,ijk =
〈
u′

p,iu
′
p,ju′

p,k

〉
(2.31)

Qp,ijkl =
〈
u′

p,iu
′
p,ju′

p,ku′
p,l

〉
(2.32)

Where u′
p,i = up,i − ⟨up,i⟩, is the particle velocity fluctuation. The physical

meaning of such variables are discussed throughout the next chapters. Another
important variable is the particle fluctuating kinetic energy, and it is defined as
the trace of the particle kinetic stress tensor, divided by two:

q2
p = Rp,ii

2 (2.33)

The transport equation of fp is known as the Liouville equation, and can be
written in its most general form [87, 129] as:

∂fp

∂t
+ ∂

∂xi
[cp,ifp] + ∂

∂cp,i

[〈
dup,i

dt
|cp, x, t

〉
fp

]
= 0 (2.34)

Substantially, the particle acceleration is a result of the effect of all the
various forces acting on the particle as written in Eq. (2.35). The first term
on the right-hand side is the force due to the interaction with the fluid phase.
The second and third terms are respectively associated with the total repulsive
force due to the ensemble of p-particles and q-particles. Finally, the fourth term
represents exterior forces acting through distance, such as gravity or electrical
forces, which are not present in our study.
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mp
dup

dt
= Ff→p +

∑
p’ ̸=p

Fp’→p +
∑

q
Fq→p + FB→p (2.35)

Substituting Eq.(2.35) into Eq.(2.34), and rearranging the terms related to
the particle-particle interaction, and body forces on the right-hand side of the
equality, a common version of this equation can be found, where the effect of
the particle-particle interactions are written simply in the form ∂fp

∂t |coll.

∂fp

∂t
+ ∂

∂xi
[cp,ifp] + ∂

∂cp,i

[〈
Ff→p,i

mp
| cp

〉
fp

]
+ ∂

∂cp,i

[〈
FB→p,i

mp
| cp

〉
fp

]

= − ∂

∂cp,i

〈∑
p’ ̸=p

Fp’→p,i

mp
| cp

〉
fp

− ∂

∂cp,i

[〈∑
q

Fq→p,i

mp
| cp

〉
fp

]
︸ ︷︷ ︸

∂fp
∂t |coll

(2.36)

In the frame of our bi-disperse simulations, see section 1.4.2, we consider
each class of particle having their own probability density transport equation.
In this way, Eq. (2.34), is written for the class of particles p, and the same
equation, but with the index q, is to be referred to the transport equation of
the class of particles q. Note that there is a coupling between both transport
equations due to the interaction forces from one class of particles to the other.

2.4.2 Moment equations
Assuming that H is a function of the particle translational velocity, and

considering an ensemble of p-particles with the same given mass mp, the trans-
port equation, Eq. (2.34), can then be multiplied by H and integrated though
the velocity space, [18], to yield:

∂

∂t
(npmp ⟨H ⟩) + ∂

∂xj
(npmp ⟨H ⟩ Up,j) = − ∂

∂xj

(
npmp

〈
u′

p,jH
〉)

+np

〈
mp

dup,j

dt

∂H

∂up,j

〉
(2.37)

Particle number density equation

Substituting H = 1, the transport equation of the p-particle number density
np is written:

∂

∂t
(npmp) + ∂

∂xi
(npmpUp,i) = 0 (2.38)

Particle mean velocity equation

The transport equation of the mean p-particle velocity, can be obtained by
substituting H = up,i, which in combination with Eq. (2.35) and Eq. (2.38), is
written:
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npmp

(
∂Up,i

∂t
+ Up,j

∂Up,i

∂xj

)
= −∂ (npmpRp,ij)

∂xj
+ np ⟨Ff→p,i⟩ + np ⟨FB→p,i⟩

+Cp→p(mpup,i) + Cq→p(mpup,i) (2.39)

Where, in accordance with Eq. (2.35), there are two particle-particle terms,
one due to the interaction p-particles and another due to the q-particles Cp→p(mpup,i) =
np ⟨Fp′→p,i⟩, and Cq→p(mpup,i) = np ⟨Fq→p,i⟩. Related to the fluid-particle in-
teraction term, we denote np ⟨Ff→p,i⟩ = If→p,i. The terms on the right-hand
side of the Eq. (2.39) respectively represent: a kinetic momentum transport term
by velocity fluctuation, a fluid-particle interaction term, a body-force term and
the last two terms are the particle-particle interaction terms.

Particle kinetic stress equation

Substituting H = up,iup,j , and combining with Eq. (2.38), Eq. (2.39) and
Eq. (2.35), the transport equation of the particle kinetic stress, is written:

npmp

(
∂Rp,ij

∂t
+ Up,k

∂Rp,ij

∂xk

)
= −∂ (npmpSp,ijk)

∂xk

−npmp

[
Rp,ik

∂Up,j

∂xk
− Rp,jk

∂Up,i

∂xk

]
+np

〈
Ff→p,k

[
δk,iu

′
p,j + δk,ju′

p,i

]〉
+Cp→p(mpu′

p,iu
′
p,j) + Cq→p(mpu′

p,iu
′
p,j)

+np
〈
FB→p,k

[
δk,iu

′
p,j + δk,ju′

p,i

]〉
(2.40)

Where Cp→p(mpu′
p,iu

′
p,j) = np

〈
Fp′→p,k

[
δk,iu

′
p,j + δk,ju′

p,i

]〉
, and analo-

gously Cq→p(mpu′
p,iu

′
p,j) = np

〈
Fq→p,k

[
δk,iu

′
p,j + δk,ju′

p,i

]〉
. On the right-hand

side of the equation above, it can be respectively found at each line: a kinetic
transport term by the velocity fluctuation, a production term by the mean
particle velocity shear, a fluid-particle interaction term, two particle-particle
interaction terms and a body force related term.

Particle fluctuating kinetic energy equation

The transport equation of the particle fluctuating kinetic energy can be
obtained by taking the trace of the particle kinetic stress equation:

npmp

(
∂q2

p

∂t
+ Up,j

∂q2
p

∂xj

)
= −1

2
∂ (npmpSp,iij)

∂xj
− npmpRp,ij

∂Up,i

∂xj

+np
〈
Ff→p,iu

′
p,i

〉
+ Cp→p(

mpu′
p,iu

′
p,i

2 ) + Cq→p(
mpu′

p,iu
′
p,i

2 ) + np
〈
FB→p,iu

′
p,i

〉
(2.41)

The terms on the right-hand side of this equation are similar to those of
the particle kinetic stress equation, since only a contraction of the indexes was
performed. Also, we denote the term fluid-particle np

〈
Ff→p,iu

′
p,i

〉
= Πq2

p
f→p.
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2.5 Computation of the statistics
2.5.1 Particle statistics

In order to compute the statistics, first the domain is divided into slices such
as the one depicted by Figure 2.2, due to the homogeneity in the xz plane in
our simulation, which is caused by the infinite domain in this plane due to the
periodic boundary conditions both in stream-wise and span-wise directions. The
slices are defined in such a way that the coordinate in the wall-normal direction
of the j-th slice is yj , and the thickness of each slice is ∆H. Considering
that, any particle whose center of mass obeys the following relationship yp ∈
[yj − ∆H/2, yj + ∆H/2] is considered inside the j-th slice.

x

y

z

Figure 2.2: Division of the computational domain into slices.

Furthermore, taking into consideration that the flow is statistically converged
in the time range t ∈ [ti, tf ]. A spatio-temporal cumulative function of a variable
H is defined in the following manner:

CUMUL[ H ] =
∑

yp∈[yj−∆H/2,yj+∆H/2]
t∈[ti,tf ]

H (2.42)

This is in fact a cumulative sum whose particle centers are inside the slice
for all the realizations associated with the statistically converged time-steps.
Note that we assumed a ergodic hypothesis, which in practice is related to the
fact that both the spatial and temporal statistics produce the same result. The
average value of H , which is a function only of the slice coordinate, is calculated
as follows:

< H > = CUMUL[ H ]
CUMUL[ 1 ] (2.43)

All of the fluctuating statistics can be easily calculated using non-fluctuating
statistics. For instance, the average of the velocity fluctuation product can be
written as:
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< u′
p,iu

′
p,j > = < up,iup,j > − < up,i >< up,j > (2.44)

The particle number density, np, or the mean number of particle centers in
a given volume (slice volume in our case), is calculated as follows:

np = CUMUL[ 1 ]
NtHxHz∆H

(2.45)

Where Nt is the number of time-steps between ti and tf . And Hx and Hz

are respectively the domain length and depth, given by Table 1.1.
The choice of the slice thickness is based upon the following arguments:

In order to have a good converged statistical value, one has to have enough
statistical events, nonetheless our resolved simulations are very expensive in
CPU cost, and thus the number of statistical events are limited. In that sense,
the larger the size of the slice, the greater the number of statistical events. On
the other hand, to posses good spatial resolution in the wall normal direction,
that is, to be able to capture the gradients in the y-direction the resolution
should be small, and consequently the slice size should be small. For our cases,
we have found that ten to thirty divisions presented approximately the same
results.

2.5.2 Fluid statistics
To perform fluid statistics a similar procedure is used, the only difference

however is that the cumulation of a fluid variable φ is performed at a given
wall-normal coordinate, that coincides with the available position of the velocity
solution on the mesh grid, reads:

CUMULf[ φ ] =
∑

yf=ymesh
t∈[ti,tf ]

φ (2.46)

In fact, the function on the left-hand side of Eq. (2.46), only depends on
that coordinate.

In order to perform phase averages in the fluid flow zone, the phase operator,
which can be expressed by means of the color function, as: χf = 1 − C, is used
to compute the phase-average of a fluid variable φ, as follows:

< φ >f = CUMULf[ φχf ]
CUMULf[ χf ] (2.47)

This formula is related to the definition given by Eq. (2.18). Details on the
computation of the interfacial terms of equations (2.19) and (2.21) are given in
the next section.
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2.6 Computation of fluid-particle exchange terms
2.6.1 Fluid to Particle transfer

From the results of our resolved simulations, it is possible to compute the
individual acceleration, for each particle, at all time. Also, all forces related to
particle-particle interactions are also known in all time-steps, see section 1.3. In
our case no body forces are present. With that information, using Eq. (2.35),
the fluid force applied at each particle at all time-steps can be computed as
follows:

Ff→p = mp
dup

dt
−
∑
p’ ̸=p

Fp’→p −
∑

q
Fq→p (2.48)

The fluid force applied to the particle could also be obtained by the integra-
tion of the fluid stress tensor in the whole surface of the particle whose center
belongs to the averaging volume. Note that, in such an integration, while the
surface of the particle may be slightly outside the averaging volume, the center
on the other hand, must be contained within the averaging volume. This is due
to the fact that even tough the forces are applied in the surface of the particle,
the resulting force is in fact applied in the center mass of the particle, which is
where all the other transported variables by the particle are defined.

Obtaining the fluid force by Eq. (2.48) is however much more convenient,
since it avoids the need for numerical interpolation schemes near the surface of
the particle to compute the surface integral.

With these data from the fluid force for all particles, at all time-steps, the
computation of the transfer terms are then performed using Eq. 2.43. Related
to the mean particle velocity and fluctuating kinetic energy equation, the trans-
fer of momentum from the fluid to particles and the source term of particle
fluctuating kinetic energy were denoted in the text as follows:

If→p,i = np ⟨Ff→p,i⟩ (2.49)

Πq2
p

f→p = np
〈
Ff→p,iu

′
p,i

〉
(2.50)

2.6.2 Particle to Fluid transfer
According to the section 2.3.2, the interfacial momentum transfer to the

fluid phase, for our case, is given by the expression Ip→f,i = − ⟨σijnp,jδfp⟩.
This average is directly related to the interfaces present in the fluid phase, and
not necessarily to the whole surface of a given particle. This is depicted in
Figure 2.3, which indicates in thicker lines the surfaces upon with the average
in question is performed.
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Figure 2.3: Particles inside control volume used for averaging. Thicker lines
inside the control volume represent surfaces to be taken into account for the
interfacial transfer terms related to the control volume delimited by ∆y.

The averaged momentum interfacial term can be calculated as:

⟨σijnp,jδfp⟩ = 1
Nt

Nt∑
r=1

 Np∑
n=1

∫
S

(n,r)
in

σf,ijnp,jdS

 (2.51)

Where Nt is the number of simulation time-steps used in the averaging and
S

(n,r)
in is the surface inside the associated control volume of the n-th particle,

for a given realization r, related to a simulation time-step. From Eq. (2.51), it
can be seen that, in the limiting case where all the particles are always inside
the averaging control volume, or in other words, the particle surfaces are never
outside the control volume, corresponding to the case of homogeneous flow, then
the equality rigorously holds true:

Ip→f,i = −If→p,i (2.52)

In slightly inhomogeneous flow, where the interfaces are roughly evenly dis-
tributed inside the control volume, in average the equality given by Eq. (2.52) is
approximately true, since the surface integration from one particle may be com-
pensated by another particle in the control volume. For instance, in Figure 2.3,
the integration of surface related to particle p5 is approximately compensated by
the surface of particle p4. Over several realizations, the results approximately
balances out.

On the most general case, the effect of partially included particles in the
control volume must be taken into account by the a correction term, which is
represented by the second term on the right-hand side of the equation below,
more details on [130].

Ip→f,i = −If→p,i + ∂θpf,ij

∂xj
(2.53)

With respect to the interfacial term associated with the fluid fluctuating
kinetic energy Πkf

p→f = −
〈
σiju′

f,inp,jδfp
〉
, the fluid fluctuating velocity in the

38



surface of the particle intervenes in the average, which can be written as a
function of the center of mass, translational velocity of the particle up, and its
rotation vector ωp, reads:

u′
f(xfp(t), t) = up(t) + ωp(t) × (xfp(t) − xp(t))︸ ︷︷ ︸

uf

−U f(xfp(t), t) (2.54)

Where (xfp − xp) is the vector pointing from the origin of the particle cen-
ter, xp, to a given point, xfp, in its surface. Using Eq. (2.54), the average〈
σf,iju′

f,inp,jδfp
〉

can then be written as:

〈
σf,iju′

f,inp,jδfp
〉

=
〈
σf,iju′

p,inp,jδfp
〉

+ (Up,i − Uf,i) ⟨σf,ijnp,jδfp⟩ (2.55)
+ ⟨σf,ijεiklωp,k (xfp,l − xp,l) np,jδfp⟩

Where εikl is the Levi-Civita tensor, used to the write the cross product
within the frame of the Einstein index notation. With respect to the first term
on the right-hand side, analogously to the term in Eq. (2.53), can be written as:

−
〈
σf,iju′

p,inp,jδfp
〉

= −Πq2
p

p→f + ∂θpf,i

∂xi
(2.56)

The last term of Eq. (2.55) is related to the rate of energy transfer to the
particle rotation due to the fluid interaction. To verify so, first consider the
torque applied by the fluid on a given particle, with surface Sp:

Tf→p,i =
∫

Sp

εijk (xfp,j − xp,j) σf,klnp,ldS (2.57)

And a source term, from the perspective of the particles, related to particle
rotation is: Υf→p = np ⟨Tp→f,iωp,i⟩. Similarly to Eq. (2.53) & Eq. (2.56), it can
be shown that:

− ⟨σf,ijεiklωp,k (xfp,l − xp,l) np,jδfp⟩ = −Υf→p + ∂Ξpf,i

∂xi
(2.58)

Finally, combining the equation above, the expression for the source term,
due to interfacial transfer, of the fluid fluctuating kinetic energy as follows:

Πkf
p→f = −Πq2

p
p→f + ∂θpf,i

∂xj
+ (Up,i − Uf,i)

(
−If→p,i + ∂θpf,ij

∂xj

)
−Υf→p + ∂Ξpf,i

∂xi
(2.59)

The first two terms on the right-hand side are related to the direct transfer of
fluctuating motion from one phase to the other, the third is related to fluctuating
motion produced by the mean relative motion between the phases and finally
the last one is due to the rate of energy transfer involved in the rotation. This
formula is an extension of the formula given by [106] to the case of finite-sized
particles.
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2.7 Decomposition of the collision term
In this section an original method for decomposing the particle-particle in-

teraction terms into source and flux terms is presented. Also, again, contrarily
to the kinetic theory of granular flow, we do not assume instantaneous colli-
sions, in fact, the method allows for contacts of long duration. Besides, it is a
general formulation that only assumes force interactions between the particles.
This formulation however has a correspondence with the kinetic theory formu-
lation of the collision term decomposition into a source and a collision flux term
[26], which is theoretically based upon the limited development of the so-called
collision integral in a Taylor series [18]. The modeling aspects of it are further
explored in section 4.4.

Notably in this section, the mathematical formalism related to the decom-
position of the particle-particle interaction term associated to the particle mean
velocity equation and those related to second order physics, particle kinetic
stress and particle fluctuating kinetic energy are presented. Furthermore, two
different methods for computing the terms are discussed.

The first one is more intuitive because it clearly separates the contributions of
source and flux terms respectively in relation to internal and external particle-
particle forces, while the second one is more consistent with respect to the
uniqueness of flux terms.

2.7.1 Internal and external force separation
Consider a given control volume V , associated to j-th slice in the form of

Figure 2.2, centered in the yj coordinate and with thickness ∆y, where two dif-
ferent species of particles, p and q, interact with each other throughout collision
forces, see Figure 2.4. We denote Ωp and Ωq respectively as the ensemble of
p-particles and q-particles whose center or mass are inside V . In addition ∂Ωp
and ∂Ωq are respectively defined as the ensemble of p-particles and q-particles
such as that their center of mass are outside V and are interacting with some
particle inside V . We denote also, ∂Ω+

p as the ensemble of ∂Ωp that are in the
top of V , and ∂Ω−

p the ones from ∂Ωp that are below V. A similar definition
can be made for the q-particles as well.

yj − ∆y
2

yj +
∆y
2

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

V p ∈ Ωp

q ∈ Ωq

p ∈ ∂Ω−
p q ∈ ∂Ω−

q

p ∈ ∂Ω+
p

q ∈ ∂Ω+
q

Figure 2.4: Particles interacting in a given slice domain V .
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First order

The total force per unit volume, acting on the ensemble of p-particles inside
V due to the q-particles, reads:

Cq→p (mpup,i) = np ⟨Fq→p,i⟩ = 1
V

∑
q∈Ωq∪∂Ωq

p∈Ωp

Fq→p,i (2.60)

The sum presented on the right-hand side of Eq. (2.60), may be separated
into two contributions, one due to the internal forces, and another one due to
the external forces :

1
V

∑
q∈Ωq∪∂Ωq

p∈Ωp

Fq→p,i = 1
V

∑
q∈Ωq
p∈Ωp

Fq→p,i

︸ ︷︷ ︸
internal forces

+ 1
V

∑
q∈∂Ωq
p∈Ωp

Fq→p,i

︸ ︷︷ ︸
external forces

(2.61)

The first term on the right-hand side of Eq. (2.61), representing the internal
interacting forces, is denoted as:

χqp,i = 1
V

∑
q∈Ωq
p∈Ωp

Fq→p,i (2.62)

It directly follows from the definition above that χqp,i +χpq,i = 0. Note that
in the particular case of the transfer from the same particle species to itself, it
gives χpp,i = 0 or χqq,i = 0, as expected.

We denote the total force per unit area, acting on interior particles from
exterior particles, crossing the boundary in the upper part of the domain as
θ+

qp,iy and in the lower part of the domain as θ−
qp,iy. They can be respectively

written by Eq. (2.63) & Eq. (2.64).

θ+
qp,iy

(
yj + ∆y

2

)
= 1

A

∑
q∈∂Ω+

q
p∈Ωp

Fq→p,i (2.63)

θ−
qp,iy

(
yj − ∆y

2

)
= − 1

A

∑
q∈∂Ω−

q
p∈Ωp

Fq→p,i (2.64)

It can be shown that contribution due to the exterior forces in Eq. (2.61),
can be written as function of Eq. (2.63) & Eq. (2.64) as follows.

1
V

∑
q∈∂Ωq
p∈Ωp

Fq→p,i = A

V

[
θ+

qp,iy

(
yj + ∆y

2

)
− θ−

qp,iy

(
yj − ∆y

2

)]
(2.65)

41



Combining Eq. (2.60) & Eq. 2.61 & (2.62) & Eq. (2.65), and noting that
V = A∆y, we obtain:

Cq→p (mpup,i) = np ⟨Fq→p,i⟩ = χqp,i + ∆θqp,iy

∆y
(2.66)

In the equation above, it is assumed that the ratio of the upper minus the
bottom fluxes to the domain thickness can be assigned to the gradient of a
tensor θqp,iy. A discussion about the uniqueness of such a tensor is given in the
end of this section and in section 2.7.2 as well.

Second order

In order to make the decomposition of collision terms present in the transport
equation of the particle kinetic stress, Eq. (2.40) and particle fluctuating kinetic
energy, Eq. (2.41), into source and flux related terms. We first consider the
identity below:

np
〈
Fq→p,iu

′
p,j

〉
= np ⟨Fq→p,iup,j⟩ − np ⟨Fq→p,i⟩ ⟨up,j⟩ (2.67)

The second term on the right-hand side of the equation above, can be directly
computed from Eq. (2.66). With respect to the first term on the right-hand side,
with the purpose of getting source and flux related terms. We separate it into
internal and external contributions as well:

np ⟨Fq→p,iup,j⟩ = 1
V

∑
q∈Ωq∪∂Ωq

p∈Ωp

Fq→p,iup,j (2.68)

= 1
V

∑
q∈Ωq
p∈Ωp

Fq→p,iup,j

︸ ︷︷ ︸
internal forces

+ 1
V

∑
q∈∂Ωq
p∈Ωp

Fq→p,iup,j

︸ ︷︷ ︸
external forces

The first term of Eq. (2.68) is defined as the second order hat source term:

χ̂qp,ij = 1
V

∑
q∈Ωq
p∈Ωp

Fq→p,iup,j (2.69)

A force applied to a given object multiplied to the velocity of such object can
be linked to a power transfer. In the equation above the terms are associated to
the rate of change of total particle energy due to internal particle interactions.

Moreover, similarly to the definitions of Eq. 2.63 and Eq. 2.64, we denote
the terms θ̂+

qp,ijy and θ̂−
qp,ijy, as the terms associated to the power transfer from

exterior forces, respectively from the upper part and the lower part, that are
applied to internal particles as:
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θ̂+
qp,ijy

(
yj + ∆y

2

)
= 1

A

∑
q∈∂Ω+

q
p∈Ωp

Fq→p,iup,j (2.70)

θ̂−
qp,ijy

(
yj − ∆y

2

)
= − 1

A

∑
q∈∂Ω−

q
p∈Ωp

Fq→p,iup,j (2.71)

Similarly to Eq. 2.65, the last term of Eq. 2.68, associated to the external
forces, can written as function of the two terms defined above as:

1
V

∑
q∈∂Ωq
p∈Ωp

Fq→p,iup,j =
θ+

qp,ijy

(
yj + ∆y

2

)
− θ−

qp,ijy

(
yj − ∆y

2

)
∆y

(2.72)

Combining Eq. (2.72), (2.69) and (2.68), and assuming the expression above
can be written as a gradient of a tensor, leads to:

np ⟨Fq→p,iup,j⟩ = χ̂qp,ij + ∆θ̂qp,ijy

∆y
(2.73)

In order to derive the transport terms related to force velocity fluctuation
correlations, we define the following variables based on hat variables:

χqp,ij = χ̂qp,ij + χ̂qp,ji − Up,iχqp,j − Up,jχqp,i (2.74)

θqp,ijy = θ̂qp,ijy + θ̂qp,jiy − Up,iθqp,jy − Up,jθqp,iy (2.75)

Note for instance that, in the particular case of the contracted term of the
interaction of the p-species with itself, then χpp,ii = 2χ̂pp,ii, or twice the internal
rate of energy dissipation through inelastic collisions.

Substituting Eq. (2.74), (2.75), (2.73) and (2.66) into (2.67) we obtain:

Cq→p
(
mpu′

p,iu
′
p,j

)
= np

〈
Fq→p,iu

′
p,j

〉
+ np

〈
Fq→p,ju′

p,i

〉
(2.76)

= χqp,ij︸ ︷︷ ︸
source

+ ∆θqp,ijy

∆y︸ ︷︷ ︸
transport

+ θqp,iy
∆Up,j

∆y
+ θqp,jy

∆Up,i

∆y︸ ︷︷ ︸
production

In this manner the particle-particle interaction term, present in the transport
equation of the particle kinetic stress is decomposed in three main groups. Two
related to collision fluxes and one source term. Generally, those fluxes related
terms are more relevant when the particle flow is denser, which is the case of
our moderately dense simulations.
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The source term, is related to local dynamics, such as energy transfer from
one direction to another through particle-interaction or, as already mentioned,
to the energy dissipation due to inelastic collisions. The last identified group
in Eq. (2.76), is the production of particle kinetic stress due to particle-particle
interactions. Note that while the kinetic production is associated to the prod-
uct of the particle kinetic stress and the mean particle velocity gradient, the
production by collision is the product of the collision flux times the mean ve-
locity gradient. According to the kinetic theory of granular flows, collisional
flux becomes more important than kinetic stress for dense particle flows : the
transport of momentum by particle interaction is dominant compared to that
by fluctuating velocity. Consequently, collisional production also becomes more
important than the one by kinetic stress for dense particle flows.

Discussion about the flux definition

Within the frame of continuous media assumption, such as continuous fluid
mechanics or even solid mechanics, the definitions of source and flux terms,
related to forces, are generally pretty straightforward. This is due to the fact
that several variables can be assigned to a given point in space, such as stress
tensor, velocity and etc. With that in mind, its trivial to, for instance, uniquely
assign a force (stress-tensor) to a surface and multiply it by a velocity if needed.

In our case however, since the particle sizes are comparable to the character-
istic size of the domain, as depicted by Figure 2.4, in order for particle-particle
interaction force to cross a given surface, the particles should be at different sides
of that given surface. In that manner, even though the force can be assigned to
a given surface, the positions and velocities of those particles are most likely as-
signed to other instantaneous positions. And from that peculiarity stems some
issues regarding the definitions of the fluxes just previously presented.

Concerning the flux of force per unit area given by Eq. 2.63 and Eq. 2.64,
there are two outcomes. The first, when we look into the flux related to a
given particle species with itself, such as p with itself, from the action-reaction
principle it results that: θ+

pp,iy

(
yj + ∆y

2

)
= −θ−

pp,iy

(
yj + ∆y

2

)
and from that

equivalence a unique flux tensor can then be easily defined in a surface. The
second outcome is related to the interaction of different particle species. In
such case we have that θ+

qp,iy

(
yj + ∆y

2

)
̸= −θ−

qp,iy

(
yj + ∆y

2

)
. The unequal

sign in this case is related to the fact that in the left-hand-side the expression
accounts for q-particles applying force to p-particles ”from above” whereas in
the right-hand-side it is the opposite. A possible equality in this case is when
the indexes are inverted θ+

qp,iy

(
yj + ∆y

2

)
= −θ−

pq,iy

(
yj + ∆y

2

)
.

Related to the power transfer term from exterior forces, no obvious relation-
ships can be directly established between θ̂+

qp,ijy and θ̂−
qp,ijy, which is ultimately

linked to the fact that this term is mathematically constructed to be a force
from a particle q, coming from one side times the velocity of particle p, on
the other side, this specific constraint makes impractical to establish a precise
relationship between the terms.

In order to solve the issues discusses in this section, we propose an alternative
separation of the force terms which finally lead to a unique definition of the fluxes
that solves the problems discussed so-far. The method is further detailed in the
next section.
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2.7.2 Alternative method for the separation
Having in mind the problems related to the definition of the flux terms

exposed in the end of last section, here we propose an alternative method that
solves the exposed problems by cleverly separating the force terms in a way
that, despite the finite-size of the particles, results in well-defined and unique
flux terms definitions.

Moreover, the form of the terms presented in this alternative approach, are
equivalent to the form of the collision terms in the frame of the kinetic theory
for a mixture of two species of particles, which was given by [26], and also found
in [35].

First of all, the total force per unit volume acting on the ensemble of p-
particles inside V due to q-particles, see Eq. 2.60, are instead separated as
follows:

1
V

∑
q∈Ωq∪∂Ωq

p∈Ωp

Fq→p,i = 1
2

 1
V

∑
q∈Ωq∪∂Ωq

p∈Ωp

Fq→p,i + 1
V

∑
q∈Ωq

p∈Ωp∪∂Ωp

Fq→p,i


︸ ︷︷ ︸

source related

+ 1
2

 1
V

∑
q∈Ωq
p∈Ωp

Fq→p,i − 1
V

∑
q∈Ωq

p∈∂Ωp

Fq→p,i


︸ ︷︷ ︸

flux related

(2.77)

First order

The source term, related to the momentum equation is alternatively defined
as the first term on the right-hand side of Eq. 2.77. This term represents the
sum of the forces acting on all particles belonging to an interacting pair of which
one or the other (or both) belong to the control volume.

χqp,i = 1
2

 1
V

∑
q∈Ωq∪∂Ωq

p∈Ωp

Fq→p,i + 1
V

∑
q∈Ωq

p∈Ωp∪∂Ωp

Fq→p,i

 (2.78)

Regarding the flux related to the momentum ’crossing’ the surfaces in the
upper and lower boundaries, are alternatively defined as:
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θ+
qp,iy

(
yj + ∆y

2

)
= 1

2

 1
A

∑
q∈∂Ω+

q
p∈Ωp

Fq→p,i − 1
A

∑
q∈Ωq

p∈∂Ω+
p

Fq→p,i

 (2.79)

θ−
qp,iy

(
y − ∆y

2

)
= −1

2

 1
A

∑
q∈∂Ω−

q
p∈Ωp

Fq→p,i − 1
A

∑
q∈Ωq

p∈∂Ω−
p

Fq→p,i

 (2.80)

Note however in this case that since the fluxes are defined in a symmetrical
way due to the sum of two terms in the right-hand-side, it can be easily shown
that the following relationship holds true:

θqp,iy

(
y + ∆y

2

)
= θ+

qp,iy

(
y + ∆y

2

)
= −θ−

qp,iy

(
y + ∆y

2

)
(2.81)

With those definitions, the following relationship can be rigorously written.

1
2

 1
V

∑
q∈∂Ωq
p∈Ωp

Fq→p,i − 1
V

∑
q∈Ωq

p∈∂Ωp

Fq→p,i

 = ∆θqp,iy

∆y
(2.82)

Using the alternative definitions of χqp,i and θqp,ij , given in this section,
Eq. (2.66) holds true as well.

Second order

Similarly for second order relationships, the alternative definition for source
hat term is:

χ̂qp,ij = 1
2

 1
V

∑
q∈Ωq∪∂Ωq

p∈Ωp

Fq→p,iup,j + 1
V

∑
q∈Ωq

p∈Ωp∪∂Ωp

Fq→p,iup,j

 (2.83)

And for the alternative collision flux definition is written as follows:

θ̂+
qp,ijy

(
y + ∆y

2

)
= 1

2

 1
A

∑
q∈∂Ω+

q
p∈Ωp

Fq→p,iup,j − 1
A

∑
q∈Ωq

p∈∂Ω+
p

Fq→p,iup,j

 (2.84)

θ̂−
qp,ijy

(
y − ∆y

2

)
= −1

2

 1
A

∑
q∈∂Ω−

q
p∈Ωp

Fq→p,iup,j − 1
A

∑
q∈Ωq

p∈∂Ω−
p

Fq→p,iup,j

 (2.85)
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Using such definition, the collision flux θ̂qp,ijy is also now uniquely defined
in a given surface, reads:

θ̂+
qp,ijy

(
y + ∆y

2

)
= −θ̂−

qp,ijy

(
y + ∆y

2

)
= θ̂qp,ijy

(
y + ∆y

2

)
(2.86)

Which permits to directly associate it with a function gradient, as follows:

∆θ̂qp,ijy

∆y
= 1

2

 1
V

∑
q∈∂Ωq
p∈Ωp

Fq→p,iup,j − 1
V

∑
q∈Ωq

p∈∂Ωp

Fq→p,iup,j

 (2.87)

It can be shown that using the definitions presented so far, Eq. (2.73) is
verified. And since it is the case, Eq. (2.74), (2.75) and (2.76) remain consistent
as well.

Numerical comparison between the methods

Concerning the difference from both methods of decomposition. A posteriori
results have shown that they lead to very close results, but are not identical,
especially concerning the second-order collisional fluxes.

This is probably related to the fact that the complementary symmetrical re-
sults added in this alternative method are very close, in average, to the unilateral
results from the ”internal versus external” method.
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3.1 Introduction
In this chapter, six cases of mono-disperse fluid-particle flows are deeply

investigated. Material properties and numerical parameters of the simulations
are given in the section 1.4.1.

First, we show the macroscopic behavior of the particles, and notably the
transition observed related to the bulk Stokes number. We show important
parameters of the particle laden flow such as the particle number density, mean
velocities and fluctuating kinetic energies.

An investigation of the fluid phase and higher order moments such as the
Reynolds stresses, and the viscous dissipation effects in the domain are analyzed.
We study the scales of the pseudo turbulence in our cases, and its consequences
on the macroscopic behavior of the fluid-particle flow. Additionally we show a
budget of the fluid fluctuating kinetic energy, which depicts local phenomena
related to the transport of that variable.

The separate terms of the transport equation governing the velocity corre-
lations, given in section 2.4, such as mean particle velocity, fluctuating kinetic
energy and kinetic stress tensor, are extracted from the simulations and pre-
sented as a budget of the corresponding equation.

Fluid force modeling both for a single and for an ensemble of particles is
revisited. A correlation analysis is performed to inquiry into the mean transverse
force in the particle flow. In addition, a Stochastic Langevin approach is used
to model fluid force velocity fluctuation correlations. This formalism is tested
against our data providing interesting modeling insights.

3.2 Macroscopic behavior
From Table 1.2, we note that the cases are divided into two classes of bulk

Stokes number. Cases M1 to M3, have their bulk Stokes number equal to 15,
and the cases M4 to M6, have their bulk Stokes number equal to 30. Since, the
bulk Stokes number is a measure of the particle inertia, we may classify the first
group as the one with the smallest inertia, and the other one with relatively
higher inertia. It actually has a huge implication into the macroscopic behavior
of the fluid-particle flow. This is seen by Figure 3.1 and 3.2, where instantaneous
snapshots of the mono-disperse cases, at the converged steady-state, are shown.

Interestingly, cases with the smaller inertia show an accumulation of the par-
ticles near the centre of the domain. Whereas the group with higher inertia tend
to accumulate more towards the wall. Thus exhibiting a transition depending
on the bulk Stokes number. Therefore, we assume that there must be a range
of bulk Stokes number where the transition must lie.

15 < Stb,transition < 30 (3.1)

A similar transition is also observed for the bi-disperse simulations in chap-
ter 4 where an appropriate definition of the Stokes number for bi-disperse cases
yields transitional values contained in the same range as shown above.
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(a) M1 (b) M2 (c) M3

(d) M4 (e) M5 (f) M6

Figure 3.1: Front view of instantaneous snapshots of the particles. The contours
represent the magnitude of the fluid velocity. Cases M1 to M3 correspond to
Stb = 15 and cases M4 to M6 to Stb = 30.

(a) M1 (b) M2 (c) M3

(d) M4 (e) M5 (f) M6

Figure 3.2: 3D view of instantaneous snapshots of the particles. The contours
represent the magnitude of the fluid velocity. Cases M1 to M3 correspond to
Stb = 15 and cases M4 to M6 to Stb = 30.
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3.2.1 Particle number density
The particle number density, np, defined by Eq. (2.45) is a way of character-

izing the accumulation of particles seen in the snapshots presented before. The
values of np for all the mono-disperse cases are shown by Figure 3.3. The values
are normalized by np,b, which is the ratio of the total number of particles in the
domain to the total domain volume to the the total domain volume.

For the cases with lower inertia, M1 to M3, the particle number density
profiles on Figure 3.3(a) shows that the maximum particle density number is
located at the centre of the domain. Whereas the for the cases M4 to M6, a min-
imum is observed at the centre. Interestingly, all of the cases on Figure. 3.3(b)
approximately follow the same curve.

−1 −0.5 0 0.5 1

0

1

2

3

2y/H

n
p
/n

p
,b

M1 M2 M3

(a)

−1 −0.5 0 0.5 1
0.5

1

1.5

2

2y/H

n
p
/n

p
,b

M4 M5 M6

(b)

Figure 3.3: Particle number density.

Another commonly used variable is the particle volume fraction. It can be
calculated as follows:

αp = npπd3
p/6 (3.2)

Figure 3.4 shows the values of αp for all the cases. We see that the cases
can reach dense particle packing, up to 37% for the case M3 on the Fig. 3.4(a).
And up to 48%, at Figure 3.4(b), near the walls for the case M6.

The complete change in macroscopic behavior from the cases with Stb = 15
to Stb = 30 where the profiles of np, change from concave to convex, is
investigated in the following sections. Specially in section 3.5 where terms of
the transport equations, given at the section 2.4 are measured, giving insights
in local physics.
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Figure 3.4: Particle volume fraction.

3.2.2 Fluid and particle mean velocities
Instantaneous snapshots of the flow field are given by Figure 3.5. Similar to

contour plots, ten discrete shades/colors are used for better visualization. We
note that the flow is relatively more ordered for cases M1 to M3 compared to
M4 to M6.

(a) M1 (b) M2 (c) M3

(d) M4 (e) M5 (f) M6

Figure 3.5: Instantaneous stream-wise fluid velocity.
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Mean particle and fluid velocity in the stream-wise direction calculated ac-
cording to the procedures described in the section 2.5 for the cases M1 to M3
are shown by Figure 3.6. We note that mean particle and fluid velocities are
very close. It can be seen that the particle velocity does not attain, in average,
more than sixty percent of the wall velocity. Also, we note that the stream-wise
velocity is almost linear near the centre of the domain coinciding with the region
of maximum particle volume fraction as depicted by Figure 3.4(a).

Regarding the cases M4 to M6, the values are given by Figure 3.7. All
those three cases show an approximately linear mean velocity gradient across
the whole domain. Fluid and particle mean velocities are very close as well.
Also, all three cases seem to fall into the same normalized velocity profile. The
only difference being the deviation near the wall for the case M6.

The other components of mean velocity in the wall-normal and span-wise
directions, not shown, are null both for the fluid and the particles.
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Figure 3.6: Fluid and particle stream-wise velocity for the cases M1, M2 and
M3 for (a) all domain (b) zoom on the core of the flow.
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Figure 3.7: Fluid and particle stream-wise velocity for the cases M4, M5 and
M6.

Based on the macroscopic relative velocity V r = Up − U f, the particle
Reynolds number Rep = |V r|dp/νf can be evaluated. The values for all the
cases are given by Figure 3.8 where we can observe that the particle Reynolds
number are relatively small for all the cases.
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Figure 3.8: Particle Reynolds number.
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3.2.3 Fluid and particle fluctuating kinetic energies
Cases M1 to M6 were previously numerically simulated without particles,

and yielded no fluid fluctuating motion. As pointed out by [64], the planar
Couette flow is linearly stable for all the single phase Reynolds numbers [89].
In mono-disperse cases the main cause of the fluid fluctuating motion is the
interaction with the particles. This is further detailed and explored in sec-
tion 3.3 notably in the budget of the transport equation of the fluid fluctuating
kinetic energy, where it will be shown that the dominant effect producing fluid
fluctuating kinetic energy is the interaction with the particles. Moreover, the
characteristic length and time-scales of such fluctuations are investigated as well.

As opposed to pure single phase turbulence, the fluctuating motion of the
fluid in our case is called pseudo-turbulence [68], because it is due feed-back
loop between both phases.

Figure 3.9 shows the magnitude of the particle fluctuating kinetic energy q2
p

alongside to the fluid fluctuating kinetic energy kf, in a logarithmic scale, for
visualization sake. On the left hand side, from top to bottom, cases M1 to M3
are shown, and on the right hand side, also from top to bottom, cases M4 to M6.
The cases with smaller inertia show a minimum on the centre of the domain,
whereas the cases with higher inertia a maximum is found at the centre.

Interestingly, comparing Figures 3.9 and 3.3, it can be seen that the regions
of maximum velocity variance locally coexists with the regions of minimum
particle number density and vice-versa. This phenomenon is similar to what [4]
have observed and it will be further detailed in section 3.5.

Regarding the regions near the walls for the cases with lower inertia M1 to M3
we note that augmenting the particle volume fraction tend to bring both values
closer with the values closer in the limiting case of higher αp at Figure 3.9(e).
This is probably related to the fact that higher particle volume fraction tends to
exert more influence on the fluid motion thus equalizing more its values. Near
the centre, a non-trivial relationship is observed.

With respect to the cases with high inertia, a larger gap between particle
and fluid velocity variance is observed specially near the centre of the domain.

The ratio of the fluctuating kinetic energies, q2
p/kf , for all the mono-disperse

cases are given as a function of the particle volume fraction by Figure 3.10. The
values are taken at the centre of the core flow. We note that the fluctuating
kinetic energy of the particles are larger than that of the fluid for all the cases.
That is different from the gravity driven flows in [23], [78] and [3], where the
fluid fluctuations are larger than those of the particles.

This is due to the fact that the mechanisms of fluctuating motion creation are
different in both cases. Generally, in gravity driven flows as the particles falls, a
considerable amount of mean slip occurs between the phases, and substantially
the difference in mean motion creates large scale fluctuations that retroactively
entrain the particle agitation.

In our configuration, the fluid fluctuations are mainly created by the inter-
action with the fluctuating motion of the particles that are produced by the
mean particle velocity shear, analysis of the transport equations both for the
fluid and for the particles in the section 3.5. Besides, as will be explained in
section 3.3.4, for our cases, the scales of the fluid fluctuation are much smaller
than the particle diameter, hence not directly entraining the particle fluctuating
motion due to the scale separation.
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Figure 3.9: Comparison of the particle fluctuating kinetic energy and the fluid
fluctuating kinetic energy, for the cases (a) M1, (b) M4, (c) M2, (d) M5, (e) M3
and (f) M6.
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Figure 3.10: Particle and fluid fluctuating kinetic energy with respect to the
particle volume fraction for the cases of low inertia (a) and high inertia (b).
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3.3 Fluid statistics and higher order moments
In this section we analyze relevant fluid statistics. Details on the computa-

tion of the statistical variables are given in the section 2.5.2.

3.3.1 Pressure
Mean fluid pressure Pf for all the cases are shown by Figure 3.11. In the

figure, the mean value is superposed with a fitting curve on the centre of the
core flow. The pressure is fitted by a polynomial of second order. Similar curves
are found for the other cases. The data shows that the fluid pressure is higher
in the regions of larger particle volume fraction.

This procedure of interpolation is performed for all the cases, and the quadratic
coefficient of the interpolation for all the cases are given in Table 3.1. As ex-
pected negative coefficients are found for the cases with low inertia and the
opposite for the other cases. Indicating a negative slope of the pressure gradi-
ent for the cases M1 to M3 and a positive one for cases M4 to M6.

For the cases with small inertia, the gradients show an inverse relationship
with the particle volume fraction meaning that higher volume fractions give
smaller gradients. On another hand, the opposite is found for the cases with
higher inertia where higher volume fractions actually have larger gradients.

Table 3.1: Quadratic fit coefficient: ax2.

Case M1 M2 M3 M4 M5 M6

a -27.1 -15.1 -7.5 65.1 92.2 97.2

It will be shown in section 3.6 that the magnitude of the forces generated by
those gradients in the particles are negligible when comparing other dominant
forces in the particle-laden flow.

∣∣∣∣ 1
ρp

∂Pf

∂y

∣∣∣∣ ≪
∣∣∣∣〈Ff→p,y

mp

〉∣∣∣∣ (3.3)
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Figure 3.11: Fluid pressure with a quadratic fit for the cases (a) M1, (b) M4,
(c) M2, (d) M5, (e) M3 and (e) M6.
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3.3.2 Reynolds stresses
The Reynolds stress defined as the tensor Rf,ij =

〈
u′

f,iu
′
f,j
〉

is a perti-
nent statistical variable related to fluid fluctuating motion. In fact, diagonal
components are related to the variance or fluctuating motion in the principal
direction while off-diagonal components are related to the shear. According
to [84], those stresses play a crucial role in the equations for the mean fluid
velocity field. In fact, those terms appear as apparent stresses in the momen-
tum balance of the mean fluid velocity. Pope, also states that while viscous
stresses ultimately come from momentum transfer at the molecular level, the
Reynolds stresses stems from the momentum transfer by the fluctuating velocity
field. The Reynolds stresses also appear in the transport equation of the fluid
fluctuant kinetic energy, see section 2.3.

Diagonal components of the Reynolds stress tensor are given by Figure 3.12.
For sake of comparison and visualization, the figures are given in a semi-log
scale with the same limits. For all the cases, we note that Rf,xx is the larger
one among the diagonal components while the the other directions are closer
together and smaller. Analogously to the results by Figure 3.9, a convex shape
is found for the cases with smaller inertia and a concave shape for the cases
with higher inertia.

A way of measuring the difference between the diagonal components is the
Reynolds stress anisotropy tensor given by Eq. (3.4). The closer this components
are to zero, the closer the system is to an isotropic state.

af,ij = Rf,ij
2
3 kf

− δij (3.4)

Values of the anisotropy tensor af,xx, are given in Table 3.2. Values are
given on the centre of the core flow. We note that the values of the cases with
small inertia augment little with the particle volume fraction, and are close
to one, meaning that the diagonal Reynolds stress related to the stream-wise
direction is approximately one hundred percent larger than the average diagonal
components, thus meaning a huge anisotropy for those cases.

Concerning the cases with high inertia the anisotropy coefficient shown in
Table 3.2. We observe that the values are smaller in comparison and diminish
with the augmentation of the particle volume fraction.

Table 3.2: Anisotropy of the Reynolds Stress at the centre of the domain.

Case M1 M2 M3 M4 M5 M6

af,xx 1.04 1.06 1.10 0.77 0.54 0.33
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Figure 3.12: Fluid Reynolds stresses Rf,ij .
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Regarding the shear kinetic stresses, the only non-null, non diagonal term,
is the component Rf,xy. In fact, this is related to the fact that the only rele-
vant mean shear is the one in the stream-wise direction across the wall normal
direction ∂Uf,x/∂y. From Figure 3.13, we note that the shear kinetic stresses
in the centre of the core flow increases with the particle volume fraction for a
given bulk Stokes number.
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Figure 3.13: Shear kinetic stress Rf,xy for the cases.

3.3.3 Viscous dissipation
In the transport equation of the average fluid kinetic energy and fluid fluctu-

ating kinetic energy, the dissipation terms are important terms to characterize
the dissipation rate of fluid energy due to internal fluid friction. For a Newtonian
fluid, the dissipation of the average fluid kinetic energy ϵM and the fluctuating
kinetic energy ϵ are given by:

ϵM =
〈

νf

(
∂uf,i

∂xj
+ ∂uf,j

∂xi

)
∂uf,i

∂xj

〉
f

(3.5)

ϵ =
〈

νf

(
∂u′

f,i

∂xj
+

∂u′
f,j

∂xi

)
∂u′

f,i

∂xj

〉
f

(3.6)
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The values for both the dissipation of the mean fluid kinetic energy and
the fluid fluctuating kinetic energy are given by Figure 3.14. The values are
multiplied by H2/(V 2

wνf) for normalization sake.
With respect to both ϵM and ϵ, for the cases with high inertia, we observe

a direct relationship of the particle volume fraction and the dissipation at the
centre on the core flow that is the higher the particle concentration the larger is
the viscous dissipation in that zone. For the cases with low inertia a non linear
relationship is observed with the particle volume fraction, with a minimum of
dissipation for M2 in the centre.
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Figure 3.14: Viscous dissipation of the (a) average fluid kinetic energy and
(b) fluctuating kinetic energy.

Instantaneous snapshots of the viscous dissipation of the fluid kinetic energy,
with a logarithmic scaling are given by Figure 3.15. For values refer to the graphs
on Figure 3.14(a). Figures on the top are related to the cases accumulating
near the centre, and on the bottom related to particles more near the walls (see
Figure 3.1). It can be seen that the accumulation of particles near the centre
for cases M1 to M3 creates a zone of small viscous dissipation inside the particle
”cocoon”. For the cases M4 to M6, we note a more even distribution of the
viscous dissipation across the plane.

For those cases with higher inertia particles are able to give enough energy in
a given rate to the fluid to sustain fluid dissipation and agitation of both phases,
thus having a more active behavior, creating an ignited state, whereas for the
cases with lower inertia, particles do not attain the required energy state levels,
and are more likely to be shut down by the fluid. In fact, by being quenched by
the fluid they do have enough collisions and consequently do not create enough
particle pressure to repel each other, causing them to collapse near the centre,
this is further explored in section 3.5.
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(a) (b) (c)

(d) (e) (f)

Figure 3.15: Snapshot of the instantaneous viscous dissipation in logarithm
scale. Red color represents maximum dissipation and blue color minimum dis-
sipation. (a) M1, (b) M2, (c) M3, (d) M4, (e) M5 and (f) M6.

3.3.4 Scales of the pseudo-turbulence
From the viscous dissipation of the fluctuant kinetic energy ϵ and fluid fluc-

tuant kinetic energy kf it is possible to establish a characteristic length: lkf and
time scale: τkf , of the pseudo-turbulence, as follows:

lkf = k
3/2
f
ϵ

(3.7)

τkf = kf

ϵ
(3.8)

First of all, Figure 3.16(a) compares the characteristic length scale of the
pseudo-turbulence to the diameter of the particles. We note that for all the
cases the particle diameter is much larger than the characteristic length scale
of the fluid fluctuations and this is more pronounced for the cases with higher
inertia.

Another parameter of interest is to quantify the relationship of the char-
acteristic length scale of the fluctuations to the length scale of the interstices
between the particles. Eq. (3.9) gives an estimation for the interstice length
scale, reads:

linter = dp

(
π

6
1 − αp

αp

)1/3
(3.9)
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Figure 3.16(b) shows that the value of the ratio linter/lkf is relatively large
for all the cases indicating that the pseudo-turbulent length scales are confined
between the particles.

−1 −0.5 0 0.5 1
100

101

102

103

104

2y/H

d
p
/l

k
f

M1 M2 M3
M4 M5 M6

(a)

−1 −0.5 0 0.5 1
100

101

102

103

104

2y/H

l i
n
te
r
/l

k
f

M1 M2 M3
M4 M5 M6

(b)

Figure 3.16: Comparison of the characteristic length scales of the pseudo-
turbulence to the (a) particle diameter and (b) characteristic interstice length
scale between the particles.

With respect to the characteristic time-scale given by Eq. (3.8) it can be
compared to the particle response time, τp. In this thesis, we characterize the
Stokes number as the particle response time with respect to the shear response
time. However it is also possible to characterize the particle response time to the
characteristic time-scale of the fluid fluctuations by the ratio τp/τkf . The values
for the cases are depicted by Figure 3.17. We note that the particle response
time is indeed much larger than the time-scales of the pseudo-turbulence.

The data clearly indicates that the length scales of the pseudo-turbulence
are very small and are confined between the particles in their interstices, with a
time-scale much smaller than the particle response time. Indicating that there
is probably not an strong inverse coupling from the fluid to the particles with
respect to the fluctuating motion. In essence, as the fluid passes through the
particles a fast and small wake is created in the interstices. Since both the time
and length scales are not comparable to that of the particles, fluid fluctuation
cannot directly affect the fluctuating motion of the particles. In fact, given the
scales of the pseudo-turbulence it is possible that those fluctuations may only
affect the particles through the modification of the boundary layer close to the
particles.
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Figure 3.17: Comparison of the characteristic time-scale of the pseudo-
turbulence to the particle response time.
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3.4 Particle statistics and higher order moments
In this section, steady-state statistics from the mono-disperse case are an-

alyzed. The procedure for calculating those statistics are detailed in the sec-
tion 2.5. Results are normalized using constant values related to the Couette
configuration, such as the wall-velocity Vw, the bulk particle number density
np,b, and the bulk Stokes number Stp,b. Those values are given in Table 1.2.

3.4.1 Local Stokes
The bulk Stokes number, Stb, previously defined by Eq. (1.20) is based on

constant parameters defined before the numerical simulation, and as such do not
actually depend on simulation results. However, this non-dimensional number,
has proven to be a relevant characteristic number to predict the threshold of
the macroscopic transition observed for the mono-disperse cases, and also for
the bi-disperse cases in the Chapter 4.

In our simulations, we observe gradients of several variables across the do-
main. Considering that it is also interesting to investigate the actual local Stokes
number. Comparing the particle response time to the local characteristic time-
scale of the shear. To do so, we estimate its value by means of the following
formula:

Stp =
ρpd2

p

18µf

∂Up,x

∂y
(3.10)

Figure 3.18 shows the local Stokes normalized by the bulk Stokes number.
Thus giving an idea of the deviation of the local Stokes number from the bulk
one. Inspecting the cases M1 to M3, see Figure 3.18(a), we verify that their local
Stokes number in the central region of the domain are much smaller than their
bulk Stokes number. The case M2 for example exhibits a central local value of
about Stp ≈ 0.8. For the cases M4 to M6, see Figure 3.18(b), it shows a local
Stokes number value relatively closer to the bulk one. The case M4 for instance
shows a value of Stp ≈ 24 in the central region. Under those circumstances, it
can be seen that the difference in particle inertia is actually much greater than
the simple difference from bulk Stokes numbers. Regarding the cases M2 and
M4, that are equally charged in particles, αp,b = 15%, local Stokes number is
about thirty times bigger at the centre for the case M4.
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Figure 3.18: Local Stokes normalized by the bulk Stokes number. (a) Smaller
inertia, cases M1 to M3. (b) Higher inertia, cases M4 to M6.

3.4.2 Quenched and Ignited states
The transition between the quenched and ignited state in a simple-shear

fluid-particle flow have been originally investigated by [115] and later by [79,
93]. According to Tsao and Koch, two qualitatively different steady states are
possible: an ignited state, where the variance of the particle velocity is very
large, and a quenched state, where most of the particles follows the local mean
fluid velocity.

Further, it is stated that most of the collisions in the quenched state are
shear induced, meaning that particles are mostly dragged by the mean fluid
flow and the particle velocity difference due to the shear may cause them to
collide whereas for the ignited state, particles typically fly from one collision to
another with little perturbation by the fluid.

In the study of Tsao and Koch a linear gradient of fluid velocity is set in a
viscous fluid, and the presence of particles do not affect the fluid flow. Only
particles are affected by the pre-established simple shear which is not the case
in our resolved simulations where particles affect the fluid, and vice-versa in a
very complex manner.

Even though the conditions are not exactly the same, both the study of Tsao
and Koch and our simulations are in accordance with the fact that the Stokes
number is the dominant factor controlling the transition, with cases M1 to M3
classified as quenched and M4 to M6 as ignited.

Regarding the transition, Tsao and Koch argue that increasing the Stokes
number or the particle volume fraction. The particle agitation in the quenched
state would grow toward a point where it might transition to the ignited state.
With that in mind, if the shear induced variance is greater than an unstable value
of particle agitation, than the imposed shear would cause enough fluctuations
to take the system towards the ignited state. Related to that, and after some
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analysis, the authors put forward the fact that the transition may be estimated
with: St3αp ∼ O(1). This latter estimation indicates that the Stokes number
influence grows quicker than the particle volume fraction. That is indeed what
our data suggest, that is, in our parameter range, the particle volume fraction
do not seem to have an impact on the transition possibly because the Stokes
number effect is much more dominant.

With a collision oriented point of view, continuing the work of Tsao and
Koch, [79] established a non dimensional number T ∗

p , characterizing the impor-
tance of shear induced and variance induced collisions, see Eq.(3.11). With the
quenched state located in the limit where T ∗

p ≪ 1, that is, when the collisions by
the mean shear effect are dominant. The ignited state represented by T ∗

p ≫ 1,
which is when the agitation is the main mechanism causing collisions.

T ∗
p = 2

3q2
p/

(
dp

2
∂Up,x

∂y

)2
(3.11)

Figure 3.19 shows local values of the non-dimensional number T ∗
p for the

mono-disperse cases. We note that none of our cases lies into the definitions
given above, that is, neither of them can be classified in a category where clearly
T ∗

p is very small or much greater than one. One reason for that is that possibly
the cases are too close to the transition.
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Figure 3.19: Dimensionless number T ∗
p comparing agitation and the mean shear

for: (a) cases M1 to M3. (b) cases M4 to M6.
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3.4.3 Particle kinetic stress tensor
The particle kinetic stress or velocity correlation tensor Rp,ij =

〈
u′

p,iu
′
p,j

〉
introduced at the section 2.4 is a symmetric second order tensor with the particle
velocity fluctuation correlations in its components.

In our configuration, it is expected to have particle velocity variance in
all of the three principal directions, thus implying in non-zero diagonal terms.
Moreover, since the configuration has periodic boundaries in the stream-wise
(x)-direction and span-wise (z)- direction, we also expect the only non-zero
shear component to be in the xy plane. Indeed this is what we observe for all
the cases.

With respect to the cases M4 to M6, Figure 3.20 shows the values of all
six components of the particle kinetic stress tensor. For all the cases, Rp,xx

is larger than Rp,yy and Rp,zz. These two components are found nearly equal
in all investigated cases. As explained in details in section 3.5, the particle
velocity fluctuation is produced in the stream-wise direction, and then part of
that fluctuating energy is redistributed through the same physical mechanism
to the wall normal and span-wise directions, thus explaining higher values of
Rp,xx.
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Figure 3.20: Particle kinetic stress for (a) M4; (b) M5; (c) M6.
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Particle-particle interactions are responsible for this mechanism of fluctuat-
ing energy transfer from one direction to the others. As a consequence, particle
kinetic stress tensor approaches a more isotropic state as this mechanism of
redistribution is stronger. This is actually know as the isotropization effect [4]
and it is expected to be more important in collision driven flows. The anisotopy
tensor, ap,ij , is a way of measuring the degree of deviation from an isotropic
state of particle kinetic stress tensor and it is defined as follows:

ap,ij = Rp,ij
2
3 q2

p
− δij (3.12)

The value of the diagonal term Rp,xx of the anisotropy tensor is shown by
Figure 3.21. The degree of anisotropy diminishes from case M4 to M6. Which
corresponds to an augmentation of total particle volume fraction in the Couette
configuration, thus augmenting the interaction among the particles causing the
inter-particle redistribution mechanism to be more efficient [59].
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Figure 3.21: First diagonal anisotropy component: ap,xx.

With respect to the cases M1 to M3, a huge variation on the order of mag-
nitude of the diagonal terms of the particle kinetic stresses values occurs across
the domain. For that reason Figure 3.22 uses a logarithmic scale. Similarly to
fore-mentioned cases, stream-wise direction shows the highest fluctuating mo-
tion and in the other orthogonal directions smaller values are observed. Also,
Rp,zz is slightly lower than Rp,zz in the centre region.

Shear kinetic stresses for the case M2, in the center region of the domain,
are given by Figure 3.23(a). As expected, with the only non-zero value being
the Rp,xy, which is the case for all our Couette cases. The negative sign of this
particle kinetic shear stress is in fact due to the sign of the velocity gradient.
The values of Rp,xy for the cases M1, M2 and M3 are given by Figure 3.23(b).
Note that the values in this latter figure are multiplied by minus one as indicated
in vertical axis label for visualization sake in log scale.
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Figure 3.22: Particle kinetic stress for (a) M1; (b) M2; (c) M3.
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Figure 3.23: Particle shear kinetic stresses. (a) all components in the centre,
for the case M2. (b) −Rp,xy for the cases M1, M2 and M3.

In the frame of the kinetic theory of particulate flow, the particle kinetic
stress tensor can be modeled using the Boussinesq approximation with an eddy-
viscosity closure model, written as follows:

Rp,ij = 2
3q2

pδij − νkin
p

(
∂Up,i

∂xj
+ ∂Up,j

∂xi
− 2

3q2
pδij

∂Up,m

∂xm

)
(3.13)

Where νkin
p is the particle kinetic viscosity depending on the fluctuating ki-

netic energy and time-scales related to the fluid-particle interaction and particle-
particle interactions. It can be directly calculated by Eq. (3.13) through the
substitution of the shear kinetic stress Rp,xy. The values of the kinetic viscosity
are given by Figure 3.24. Related to the magnitude, we observe that they are
larger for the cases with higher inertia. Also, we note a clear inverse relationship
with the volume fraction. With the largest kinetic viscosity being the one with
the smallest volume fraction.

The kinetic viscosity in the regime dominated by the transport of momentum
by the particle fluctuating velocity may be given as the product of a character-
istic length scale, or mixing-length, and of the fluctuant velocity intensity.

νkin
p = lν

√
2
3q2

p (3.14)

Where lν represents the mean free path in the frame of kinetic theory of
rapid granular flows. In the fluid-particle flow, the interaction with the fluid
may reduce this length scale by friction or, in contrast, increase it due to the
transport by large scales of the fluid turbulent motion.
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Figure 3.24: Kinetic viscosity for the mono disperse cases.

The values of lν , in the center of the core flow, are given by Figure 3.25, we
note that this characteristic kinetic mixing length is larger for the cases of high
inertia. According to [95], we can define a Knudsen number as the ratio of this
length scale with the channel width H. The values of this parameter coincide
with the data shown by Figure 3.25. We note that the order of magnitude of
the kinetic viscosity based Knudsen number, is about ∼ 10−4. Since this value
is small, it indicates that our cases are close to a local equilibrium.
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Figure 3.25: Non dimensional mixing length or Knudsen number.
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Following [103], the kinetic viscosity can be modeled by the expression below:

νkin
p =

[
νt

fp +
τF

fp

2
2
3q2

p (1 + αpg0Φc)
](

1 +
τF

fp

2
σc

τ c
p

)−1

(3.15)

Where τF
fp and τ c

p are respectively the time-scales related to fluid-particle
interactions and collisions. In addition, νt

fp represents the particle momentum
transport by the fluid turbulence, and σc and Φc are parameters depending
on the elastic normal restitution coefficient ec. Note however that in the limit
where τ c

p << τF
fp , then Eq. (3.15) asymptotically gives as proportional to the

collision time scale and the particle agitation:

νkin
p = τ c

p
2
3q2

p
(1 + αpg0Φc)

σc
(3.16)

With the factor multiplying the right-hand side of the q2
p, being generally in

the order of magnitude of one or slightly larger.
The time-scale related to collisions, as given by the kinetic theory [18], is

given by Eq. 3.17.

τ c
p =

[
g0npπd2

p

√
16
3

2q2
p

π

]−1

(3.17)

Under the assumptions of the derivation of Eq. (3.16), a comparison of the
time-scale formed by τν

p = νkin
p / 2

3 q2
p and τ c

p given by Eq. (3.17) is performed,
and shown by Figure 3.26, the values are given in centre of the domain to avoid
wall-effect phenomena interference.

With respect to the cases with the small bulk Stokes number, at Figure 3.26(a),
interestingly, it can be seen that for both cases M2 and M3, the time-scales are
very close, that is τν

p ∼ τ c
p, which seems to indicate that the collisions proba-

bly have a dominant effect. The smallest time-scale is the one controlling the
particle flow and in this case the collision time-scale is possibly the smallest
one. For the case M1, the gap between the values is bigger which might in-
dicate that for this case another phenomena is taking place, such as a more
pronounced fluid effect for example, which would invalidate the assumptions
under which Eq. (3.16) is derived, thus explaining the gap, since the formula
would no longer be applicable. The effect of the factor depending on αp, g0, σc

and Φc, on Eq. (3.16), could not explain the gap since it would only augment it
even more.

With respect to the cases with the larger bulk Stokes number, at Fig-
ure 3.26(b), we observe that for the case with the higher volume fraction, case
M6, both time-scales are close to one another, whereas for the cases M5 and
M4, the difference is more accentuated, being more distant for the case with the
smallest particle volume fraction, which again may be an indication of a greater
effect of the fluid in lower volume fractions and a dominant effect of the collision
in the case with the higher volume fraction.
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Analyzing the change from case M6 to M5, the diminution of the particle
volume fraction may possibly have caused a more predominant growth in influ-
ence of the fluid in comparison with that of the collisions in case M5 relative
to M6. Which might probably have directly led case M5 to a state where the
assumption of τ c

p << τF
fp is no longer valid. For the cases with small inertia this

”transition” may possibly have been delayed to a lower volume fraction, being
between case M2 and M1.
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Figure 3.26: Kinetic viscosity time-scale and kinetic theory collision time-scale.

3.4.4 Third-order correlation
The particle third order correlation tensor Sp,ijk =

〈
u′

p,iu
′
p,ju′

p,k

〉
, intro-

duced at the section 2.4, is a tensor with rank three of the velocity fluctuations.
This third order correlation tensor appears in the transport equation of the par-
ticle kinetic stress tensor components and represents the kinetic transport by
the particle velocity fluctuation [94, 99].

The triple correlation gradient term in the kinetic stress transport equation
is a diffusive term which represents the transport of the second-order velocity
correlations by the particle velocity fluctuation. The contraction of this tensor,
is the transport term of the particle kinetic energy. In the configuration studied
here, the term in any Rp,ij equation is written ∂(npSp,ijk)

∂y and represents the
transport of the kinetic stress Rp,ij across the domain.

All of the non null triple correlations are shown by Figure 3.27 for the cases
M4 to M6. It can be seen that they are anti-symmetric with respect to the
centre of the domain, which is mainly due to the boundary conditions of the
configuration. Values obtained for the cases M1 to M3 are shown by Figure 3.28.
For sake of visualization, the data are presented close to the centre, which
coincides to highest concentration of particles for those cases. Also note that all
of the triple correlations containing an odd moment of z-velocity components
are null, thus not shown.

We observe that the sign of the correlations change with the bulk Stokes
number transition. For instance, the triple correlation Sp,xxx is positive in the
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upper part of the domain for the cases M4 to M6, and negative for the cases
M1 to M3. In fact, this inverse relationship related to the sign, occurs for all
our non-null triple correlations.

The variation of the sign from the lower part to the upper part of the domain
or more precisely the slope of the triple correlation times the particle number
density is particularly important because it is directly associated to the diffusive
term of Eq. (2.40).
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Figure 3.27: Triple correlation for the cases (a) M4, (b) M5 and (c) M6.
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Figure 3.28: Triple correlation for the cases (a) M1, (b) M2 and (c) M3.

In the framework of Grad’s approach, based on the third-order expansion of
the distribution function as Hermite polynomials, the thirteen-moment model
is derived from the full twenty-moment model, by assuming Eq. (3.18), which
gives the triple correlation tensor Sp,ijk as a function of its contracted forms
Sp,ijj . For more details refer to [40].

Sp,ijk = 1
5 (Sp,innδjk + Sp,jnnδki + Sp,knnδij) (3.18)

In order to test this approximation, an a priori test of the model equation
is carried out for the correlations Sp,xxx, Sp,xyy and Sp,xzz. The formula for
the first one is given by Eq. (3.19). With respect to the second and third
ones, even though they are different, they both share the same formula for the
approximation, which is given by Eq. (3.20). The comparison for the cases is
presented in Figure 3.29. Absolute values are plotted with the purpose of fitting
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them on a logarithmic scale. An overall agreement is observed for the correlation
Sp,xxx, and a slightly overestimation for the other ones, which are: Sp,xyy and
Sp,xzz.

Sp,xxx = 3
5 (Sp,xxx + Sp,xyy + Sp,xzz) (3.19)

Sp,xyy = 1
5 (Sp,xxx + Sp,xyy + Sp,xzz) = Sp,xzz (3.20)
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Figure 3.29: Third-order correlation comparison with the thirteen moment Grad
approximation. Additional symbols for Sp,xzz, on the figures (c) and (d), are as
follows: M1 ( ); M2 ( ); M3 ( ); M4 ( ); M5 ( ); M6 ( ).
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In the framework of the modeling and simulation of particle kinetic stress
using second-order moment transport equations a gradient approximation has
been derived for the triple velocity correlation by [44, 99, 101]. The proposed
modeling approach was developed in the frame of the kinetic theory of particu-
late flows and inspired by the work of [27, 42]. The gradient model reads:

Sp,ijk = −Kkin
in

∂Rp,jk

∂xn
− Kkin

jn

∂Rp,ki

∂xn
− Kkin

kn

∂Rp,ij

∂xn
(3.21)

Where Kkin
ij is the dispersion tensor. Under the assumption that the fluid-

particle correlation is null meaning that the particles are not dragged by the
fluctuation motion of the fluid. Then the dispersion tensor can be given as
proportional to the kinetic stress tensor and to a characteristic time with this
latter being dependent on the drag and the collisions effects, see [103].

The first validation of this modeling with results from Lagrangian simulation
of particles in a turbulent vertical channel can be found in [94, 95]. In our
configuration, mostly due to the boundary layers, the relevant coefficients are
Kkin

xy and Kkin
yy . As a matter of fact, those can be directly computed by means

of Eqs. (3.22) and (3.23), reads:

Sp,xxx = −3Kkin
xy

∂Rp,xx

∂y
(3.22)

Sp,yyy = −3Kkin
yy

∂Rp,yy

∂y
(3.23)

Calculated values of Kkin
xy and Kkin

yy are respectively given by Figure 3.30.

0.3 0.4 0.5 0.6
10−5

10−4

10−3

10−2

10−1

2y/H

−
K

k
in

x
y
/(
V
w
H
)

M1 M2 M3 M4 M5 M6

(a)

0.3 0.4 0.5 0.6
10−5

10−4

10−3

10−2

10−1

2y/H

K
k
in

y
y
/(
V
w
H
)

(b)

Figure 3.30: Relevant components of the dispersion tensor, related to the triple
correlation gradient model.

In order to verify whether the gradient approximation is consistent, then the
use of those latter computed coefficients should predict correct values of other
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arbitrary triple correlation depending on those components of the dispersion
tensor. To test this assumption, we predict the values of the following triple
correlations: Sp,yxx, Sp,xyy, Sp,yzz and Sp,xzz. The formulas related to those
correlations are given by Eqs. 3.24 to 3.27. using the components of the disper-
sion tensor computed with Eqs. (3.22) and (3.23) and shown by Figure 3.30.

Sp,yxx = −2Kkin
xy

∂Rp,xy

∂y
− Kkin

yy

∂Rp,xx

∂y
(3.24)

Sp,xyy = −Kkin
xy

∂Rp,yy

∂y
− 2Kkin

yy

∂Rp,xy

∂y
(3.25)

Sp,yzz = −Kkin
yy

∂Rp,zz

∂y
(3.26)

Sp,xzz = −Kkin
xy

∂Rp,zz

∂y
(3.27)

The predictions for all the cases are given by Figure 3.31 and 3.32. Since
both the values given by the model and the results of the DNS agree for all four
different triple correlations, indicating that the gradient model looks satisfac-
tory. The fact that both the kinetic viscous mixing length, and the diffusion
mixing length, discussed latter on this section, are small is an indication that
the cases are close to a local equilibrium, and [95] has shown that when this is
the case, then the gradient model is likely to work.
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Figure 3.31: Consistency of the prediction of the third-order correlations by
using the gradient model.
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Figure 3.32: Consistency of the prediction of the third-order correlations by
using the gradient model. Legends are the same as Figure 3.31.

With respect to the order of magnitude of the normalized dispersion tensor
components, given by Figure 3.30, we note that they range between 10−2 to
10−4. Also we note that Kkin

xy is negative and Kkin
yy positive. The first one is

plotted with a minus sign in order to fit it onto a log scale. Absolute values of
Kkin

xy seem to be slightly lower than Kkin
yy . Regarding the tendency, similarly to

the kinetic viscosity, values for the most inertial cases are systematic larger in
comparison with those with smaller inertia. In addition, an inverse relationship
between the particle volume fraction and the dispersion tensor components is
also found. Indeed, the cases with small volume fraction values are the ones
with the largest dispersion tensor components for a given bulk Stokes number

Following [95, 103], in the case of a fluid-particle flow without the turbu-
lence effect, the dispersion tensor may be written as function of the particle
kinetic stress and a characteristic dispersion time-scale which results from the
competition of the drag and collisions in the particle flow, reads:

Kkin
ij =

[
Rpf,ij

τ t
fp

σq
+ 5

9τF
fpRp,ij (1 + αpg0Ψc)

](
1 + 5

9τF
fp

ξc

τ c
p

)−1
(3.28)

Where σq and Ψc are adjustable constant parameters of the model. Similarly
to the kinetic viscosity, the equation above in the limit where τ c

p << τF
fp , gives:

Kkin
ij = τ c

pRp,ij
(1 + αpg0Ψc)

ξc
(3.29)

The values of the diffusion time-scale τK
p , calculated through the equation

above by substituting the dispersion tensor and the corresponding particle ki-
netic stress component, are given by Figure 3.33. We also observe that the
values do not show a clear dependence on the volume fraction for the cases with
small inertia, similarly to what has been shown for the viscosity time-scale by
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Figure 3.26(a). In addition, the values for the cases with small inertia are big-
ger than those with high inertia. With respect to the order of magnitude, we
observe that they are approximately ∼ 101 times bigger than the kinetic viscous
time-scale.
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Figure 3.33: Diffusion characteristic time-scale.

A useful non-dimensional number related to both νkin
p and Kkin

ij is the
Schmidt number. It is defined as the ratio of the kinetic viscosity to the disper-
sion tensor. It characterizes the relative importance of both the kinetic viscous
and kinetic diffusion phenomena. For our cases, Sc varies from 0.1 to 1. Mean-
ing that the transport of particle agitation is more efficient than the momentum
transport.

Related to the diffusion time-scale, a Knudsen number based on the cor-
responding mixing length scale can be calculated as τK

p

√
2
3 q2

p/H, the order of
magnitude of this non-dimensional length is larger than that of the kinetic vis-
cosity but it remains well below one. This has a direct implication for the
gradient model as already discussed in this section.
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3.4.5 Fourth-order correlation
The particle fourth-order correlation, Qp,mnij =

〈
u′

p,mu′
p,nu′

p,iu
′
p,j

〉
, is in-

troduced in section 2.4. Some authors proposed formulas for those correlations,
notably [40] and [95, 101]. With the second one being the formula linking fourth
order moments, to second order moments for an anisotropic Gaussian distribu-
tion. Their formulas, are respectively given by Eq. 3.30 and 3.31.

QGrad
p,mnij = 2

3q2
p[Rp,ijδmn + Rp,imδjn + Rp,inδjm (3.30)

+Rp,jmδin + Rp,jnδim + Rp,mnδij ]

−4
9
[
q2

p
]2 [δijδmn + δimδjn + δinδjm]

QGauss
p,mnij = Rp,ijRp,mn + Rp,imRp,jn + Rp,inRp,jm (3.31)

A comparison of several components of the fourth-order correlation against
both the formulas presented above is given by Figure 3.34. Figure 3.34(a) shows
that the Gaussian approximation gives satisfactory results whereas the Grad’s
approximation is only good for two out of the five correlations shown. This is
in agreement of what has been found by [11], related to the better accuracy of
the Gaussian approximation.
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Figure 3.34: Comparison of formulas for the approximation of the fourth-order
correlation for the case M6. (a) Gauss (b) Grad.

A comparison of the fourth order correlation with the gaussian formula is
given by Figure 3.35 for all the cases. For those cases only positive values are
shown, in order to fit in a semi-log scale. A satisfactory agreement is found for
all the cases.

The good results of the fourth-order correlation comparison in junction with
the results shown in the last section for the gradient model for the triple cor-
relation are in agreement with the fact that both the Knudsen number based
on the mixing length scale of kinetic transport of momentum (viscosity) and
velocity variance (diffusivity) are very small.
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Figure 3.35: Comparison of the fourth-order correlations with the Gaussian
approximation for the cases (a) M1, (b) M2, (c) M3, (d) M4, (e) M5 and (e) M6.
For the symbols refer to Figure. 3.34(a).
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3.5 Budget analysis
In this section, the terms for the fluid and particle transport equations, re-

spectively given in sections 2.3 and 2.4, are directly measured from our resolved
simulations. The results are presented in the form of budget highlighting local
physical phenomenon. For the fluid, we show the budget of the fluid fluctuat-
ing kinetic energy and for the particles we show first and second order budgets
which are respectively related to the forces and the particle kinetic stresses, or
fluctuating kinetic energy of the particles.

3.5.1 Mean particle velocity budget
The transport equation of the mean particle velocity, given by Eq. (2.39),

is rewritten for our mono-disperse cases on Eq. (3.32). It is composed of three
main terms: a diffusive term, called D, which is separated into D1 and D2; a
fluid interaction term, called F ; and a particle-particle interaction term, called
Cpp. The first one, D, is related to an effective force which is due to gradients
in the particle kinetic stresses and particle number density, the second F , is
simply due to the action of the fluid flow into the particles, also called the drag.
Finally, the third term, is due to an average transfer of linear momentum to the
particles due to particle-particle interaction.

∂Up,i

∂t
=

D︷ ︸︸ ︷
−∂Rp,iy

∂y︸ ︷︷ ︸
D1

−Rp,iy

np

∂np

∂y︸ ︷︷ ︸
D2

+
〈

Ff→p,i

mp

〉
︸ ︷︷ ︸

F

+
〈

Fp′→p,i

mp

〉
︸ ︷︷ ︸

Cpp

(3.32)

The mean velocity budgets in the stream-wise and wall-normal directions
for all the cases are given by Figures 3.36 to 3.39. The values are normalized
by H/V 2

w . Besides, for sake of simplicity, the general names for the terms cited
above are used in the legends, such as: D1, D2, F and Cpp. The budgets on the
span-wise direction are not shown, since the particle laden flow is homogeneous
in this direction.

Regarding the stream-wise velocity budgets for the cases M1 to M3, on
Figure 3.36, the budgets are shown in the center of the core flow, for better
visualization. With respect to the fluid, we observe that it drags the particles
forward into the stream-wise direction, since it is positive on the upper part of
the domain, and negative on the lower part. Also we observe that this effect is
largely diminished in the zones of higher particle volume fraction. In addition,
we note that a negative slope related to the particle-particle interaction term,
which is due to the gradient of the collisional flux explained on the section 2.7.
This force goes in the opposite direction as the mean fluid force, it is greatly
diminished in the zones of higher volume fraction. Related to the diffusive forces
we note that D1 has the sign of the fluid term and D2 to the particle-particle
term. The budget says that the fluid is dragging the particles forward, and the
collision flux gradient through particle-particle interaction, and the diffusive
terms are balancing it.

Still on the stream-wise direction, a different scenario is found for the cases
with higher inertia, on the Figure 3.37. Contrary to the other cases, the fluid
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term is the dominant ones for the cases with high inertia. In fact, the particle-
particle interaction term and the diffusive terms are the most important ones.
Regarding the particle-particle interaction term, we note that it has a positive
slope, meaning that it is a mechanism pushing forward the particles in the
stream-wise direction. It is also interesting to note that as the particle volume
fraction augments, this term became more dominant, which can be seen by
comparing Figures 3.37, which makes sense, since the collision flux tends to
be larger in the cases with larger volume fraction. The fact that the slope of
the particle-particle term is positive for the cases with higher inertia and the
inverse for the cases with low inertia, is among other reasons related to the fact
that the collision flux depend on the particle number density, and since their
shape change from cases with low and high inertia (see Figure 3.3), notably
from concave to convex, the gradient of the collision flux, which is responsible
for the this particle-particle term, as a consequence, change as well (A deeper
investigation and validation of the collision term separation is given on the next
chapter for the bi-solid cases). Similarly, it is found that the diffusive term
D2 have the same sign of the particle-particle term, whereas D1 the opposite.
Fundamentally, there is a balance between the particle-particle interaction term
and the diffusive terms.

The budgets for the mean wall-normal velocity are also shown at the centre
of the core flow for the cases with low inertia, see Figure 3.38. Particularly for
the case M1, we note that the fluid term is pushing the particles towards the
centre. In contrast, for the cases M2 and M3 this force seems very small in the
core flow. A deeper analysis of this force is given in the section 3.6, where it is
shown that the pressure gradient is not responsible for this force, and it is more
compatible with a lift force. The particle-particle interaction term acts to expel
the particles outwards the centre of the core flow. The fore-mentioned terms
are then balanced by the diffusive terms.

With respect to the cases of high inertia, still on the wall-normal direction,
the budgets are given by Figure 3.39. Similarly to the low-inertia cases, the
fluid term is also pushing the particles towards the centre of the core-flow. In
addition, the particle-particle term also have a mean effect of pushing particles
outwards the centre. Analogously to the budget in the stream-wise direction for
the same cases, the diffusive terms are very dominant in the budget.
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Figure 3.36: Budget analysis of the particle momentum in the stream-wise di-
rection for the cases M1 (a), M2 (b) and M3 (c). All terms are dimensionless
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Figure 3.37: Budget analysis of the particle momentum in the stream-wise di-
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Figure 3.38: Budget analysis of the particle momentum in the wall-normal di-
rection for the cases M1 (a), M2 (b) and M3 (c). All terms are dimensionless
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Figure 3.39: Budget analysis of the particle momentum in the wall-normal di-
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3.5.2 Fluid fluctuating kinetic energy budget
Assuming a null particle velocity in wall-normal and span-wise direction,

and non-null gradients only with respect to the wall-normal direction, the fluid
fluctuating kinetic energy transport equation, Eq. (2.21), can be rewritten as:

αfρf
∂kf

∂t
= − ∂

∂y

[
αf
〈
p′u′

f,y
〉
f

]
− ρf

2
∂

∂y
[αfSf,iiy]

+αfρf

[
νf

(
∂2kf

∂y2 + ∂2Rf,yy

∂y2

)
+ νf

αf

∂αf

∂y

(
∂kf

∂y
+ ∂Rf,yy

∂y

)]

−αfρfRf,ij
∂Uf,i

∂xj
− αfρfϵ + Πkf

f→p (3.33)

On the right-hand side of the equation above we found three diffusive terms:
one due to pressure effects, one due to turbulent transport, and another due
to viscous effects. Additionally, the fourth term is the production by the mean
fluid shear velocity, the fifth is the viscous dissipation of the fluctuating kinetic
energy due to internal friction, which is discussed on the sections 3.3.4 and 3.3.3.
Finally, the last term is the term related to the interfacial exchange due to the
presence of particles in the fluid phase, and from section 2.6.2 it is rewritten are
as:

Πkf
p→f = −Πq2

p
f→p + ∂θpf,i

∂xj︸ ︷︷ ︸
due to particle variance

+ (Up,i − Uf,i)
(

−If→p,i + ∂θpf,ij

∂xj

)
︸ ︷︷ ︸

due to mean slip

−Υf→p + ∂Ξpf,i

∂xi︸ ︷︷ ︸
due to rotation

(3.34)

As indicated by the brackets in the equation above, three main mechanisms
can be found in the exchange term above, and depending on the sign they can
act as a source or a sink effect. The first group, due to particle variance, is
directly related to the creation or destruction of fluid variance by means of the
interaction with the particle velocity variance. Or, in other words, how the
fluctuating kinetic energy of the particles affects the fluctuating kinetic energy
of the fluid phase. As already explained in section 2.6.2, the second term is due
to inhomogeneous flow effects. The second mechanisms is due to the mean slip
between the phase, and it is linked to the transfer of mean motion between the
phases to the fluid variance. Finally, the third one is related to the transfer of
fluid fluctuating kinetic energy to the particle rotation.

The mean-slip mechanism is particularly important in gravity driven flows,
such as in [3]. The description by which the fluid variance are generated by
this mechanism has been discussed in section 3.2.3. In the case of our resolved
simulations, we will show in the next paragraphs that it is not a relevant mech-
anism.

Neglecting the gradient terms due to the inhomogeneous flow, and comparing
the effect due to the particle variance to the mean slip mechanism on the right-
hand side of Eq. (3.34), we found that the dominant mechanism by far in our
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case is the production of fluid variance by the interaction with the particle
variance. For that reason, we neglect the mean-slip term. In that sense, in our
case the term Πkf

p→f may approximately assume the following form:

Πkf
p→f ≃ −Πq2

p
f→p − Υf→p (3.35)

Both terms can be computed from Lagrangian statistics using the method-
ology given in the section 2.7. Nonetheless, rotation data was not available for
the computation of this term.

The budgets of the fluid fluctuating kinetic energy, kf, according to the
transport Eq. (3.33), and with the exchange term computed by Πkf

p→f ≃ −Πq2
p

f→p,
for the cases M1, M2 and M3 are given by Figure 3.40. In those figures, all
the transport terms with the exception of the diffusive term due to the pressure
velocity fluctuations are given.

The results show that the diffusive terms, and the production by the mean
fluid shear velocity are negligible. The budget basically consists in an balance
by the production of fluid velocity variance by the interaction with the particles,
and a destruction by the fluid viscous dissipation. Note that while the interfacial
exchange term is computed in the particle grid, the others are on the fluid
grid. Besides, the fact that the budgets are nearly closed, indicate that the
approximation for Πkf

f→p is likely adequate for the analyzed cases.
From the analysis of the scales of the fluid fluctuating motion in the sec-

tion 3.3.4, it is known that the fluid fluctuating scales are smaller than both the
particle size and the characteristic length on the intersticial volume between the
particles. Those results indicate that the fluctuations in the fluid flow probably
stem from small wakes generated by the passage of the fluid past the particles.

The budgets for the cases with high inertia are given by Figure 3.41, accord-
ing to Eq. (3.33), and similarly, the interfacial term is computed as: Πkf

p→f ≃

−Πq2
p

f→p. The budgets also show that the dominant terms are the viscous dissipa-
tion and the inter-phase exchange term. The budgets are nevertheless positive,
which is probably related to the fact that the rotation term −Υf→p, in Eq. (3.35)
is missing to balance it, this would indicate that energy is being drawn from the
fluid to rotate the particles, and thus would be a negative contribution in the
term due to the particles, and would possibly balance the budget.
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Figure 3.40: Fluid fluctuating kinetic energy budget for the cases M1 (a), M2 (b)
and M3 (c). All terms are dimensionless by dividing with H/V 3
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Figure 3.41: Fluid fluctuating kinetic energy budget for the cases M4 (a), M5 (b)
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3.5.3 Particle fluctuating kinetic energy budget
The transport equation of the particle fluctuating kinetic energy can be

obtained from the particle kinetic stress equation, and it was given by Eq. (2.41).
For our configuration with the mono-disperse cases, can be written as follows:

∂q2
p

∂t
= − 1

2np

∂ (npSp,iiy)
∂y︸ ︷︷ ︸

D

−Rp,xy
∂Up,x

∂y︸ ︷︷ ︸
P

+
〈

Ff→p,i

mp
u′

p,i

〉
︸ ︷︷ ︸

F

+
〈

Fp′→p,i

mp
u′

p,i

〉
︸ ︷︷ ︸

Cpp

(3.36)

Note that the budget is composed of four main terms: terms: a diffusive, D,
a production term by the mean shear, P , a particle-fluid term, F , and finally
an inter-particle collision term, Cpp. The separation of the terms in the budget
is an important tool to understant local physical phenomena related to the
production, transport or dissipation of the particle variance.

First, we show the budgets of q2
p for the cases with high inertia on the

Figure 3.42. It is interesting to note that the main mechanisms of particle
fluctuating kinetic energy creation are the production by the mean shear and
the particle-particle interaction term. The later, is in fact related to the third
term on the right-hand side of Eq. (2.76), which is directly proportional to the
collision flux and the mean shear as well. Note that as the particle volume
fraction augments, from Figure 3.42(a) to Figure 3.42(c), the production due
to the particle-particle interaction becomes more dominant. This results from
the fact that the collision flux on the case with higher volume fraction becomes
more important.

We observe that the main mechanism of particle fluctuating energy dissi-
pation is the friction with the fluid-phase, as observed in all the budgets. In
addition, we note that diffusive term is slightly negative at the centre of the core
flow and slightly positive near the wall, indicating a diffusive transport from the
centre towards the walls. The order of magnitude of the diffusive term however
is very small, with a almost negligible effect on the budgets. Also, the sum of
the terms is near zero, demonstrating that the budget is closed.

With respect to the cases of small inertia, the budgets are given on the
Figure 3.43. Similarly to the cases with high inertia, both the production by the
mean shear and the particle-particle interaction are the main effects of creation
of particle fluctuating kinetic energy. The levels of production however are
much smaller. Note that while the order of magnitude of the non-dimensional
budgets for the high inertia is 10−3, the budgets for the low inertia are in the
order of about 10−4 ∼ 10−5. This is one of the main reasons related to the
macroscopic transition observed from cases with low to high inertia. In fact,
there is a competition between the action of the fluid pushing the particles to
the center, and the agitation of the particles that counterbalances this effect.
The cases with small inertia are not able to produce enough particle fluctuating
kinetic energy and for that reason there is a collapse of the particles near the
center of the core flow.

Moreover, this is precisely the reason why the Stokes number, defined in
relation to the characteristic time-scale of the mean-shear, is a pertinent non-
dimensional number characterizing the transition. Indeed, both the kinetic pro-
duction and the collisional production are proportional to the mean shear. With
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higher Stokes numbers relating to higher productions of particle fluctuating ki-
netic energy and the inverse for the lower Stokes numbers.
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Figure 3.42: Particle fluctuating kinetic energy budget: q2
p, for the cases M4 (a),

M5 (b) and M6 (c). All terms are dimensionless by dividing with H/V 3
w .
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Figure 3.43: Particle fluctuating kinetic energy budget: q2
p, for the cases M1 (a),

M2 (b) and M3 (c). All terms are dimensionless by dividing with H/V 3
w .
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3.5.4 Particle kinetic stress budget
Diagonal components of the Particle kinetic stresses

The transport equation of the particle kinetic stress, for the mono-disperse
cases are given by Eq. (2.40). Analogously to the transport equation of q2

p in
the last subsection, four main terms are found on the budget.

∂Rp,ij

∂t
= − 1

np

∂ (npSp,ijy)
∂y︸ ︷︷ ︸

D

−Rp,iy
∂Up,j

∂y
− Rp,jy

∂Up,i

∂y︸ ︷︷ ︸
P

+
〈

Ff→p,i

mp
u′

p,j

〉
+
〈

Ff→p,j

mp
u′

p,i

〉
︸ ︷︷ ︸

F

+
〈

Fp′→p,i

mp
u′

p,j

〉
+
〈

Fp′→p,j

mp
u′

p,i

〉
︸ ︷︷ ︸

Cpp

In the previous subsection, the balance of q2
p revealed local physics related to

the production and dissipation of the total fluctuating energy of the particles.
In this subsection, we analyze the budgets of the diagonal terms of the particle
kinetic stress tensor, which can elucidate the mechanisms of fluctuating energy
creation and destruction in each particular direction, as well as the fluctuating
energy transfer from one direction to another. First, we analyze the budgets for
the cases with high inertia and then for all the cases with small inertia.

To begin, the budgets of the case M4 are given by Figure 3.44. Regarding
the production term, we show that the only direction under which there is a
production of variance by the mean shear, P , is on the stream-wise direction,
see Figure 3.44(a). This is due to the fact that the only non null gradient of
mean velocity ∂Up,x/∂y is on that direction.

With respect to the particle-particle interaction term, Cpp, we note that it
is negative for the budget of particle kinetic stress tensor Rp,xx and positive for
the other two Rp,yy and Rp,zz. This indicates that globally, there is transfer of
particle fluctuating kinetic energy from the stream-wise direction to the other
directions, that is, wall-normal and span-wise directions. In fact the collision
term is a result of the sum of the effects shown in Eq. (2.76). In the stream-wise
direction, probably the dominant effect is the one related to the redistribution
term, being dominantly negative due to the drain of fluctuating energy by the
other directions. This drainage in the stream-wise is then redistributed to the
other orthogonal directions, via the same redistribution collisional effect, with
this being then the only production mechanisms in those directions. This re-
distribution mechanisms has also been observed by [4], and may be called an
isotropization effect, since it brings the diagonal terms of the particle kinetic
stresses closer to an isotropic state.

Analogously to the budget of the particle fluctuating kinetic energy, a slightly
negative diffusive term, D, in the centre of the core flow, is indicating a transport
of the particles from the centre towards the walls. The fluid term, F , is negative
in all the budgets, indicating dissipation through fluid friction of the other
production mechanisms.
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The budgets show that the fluctuating kinetic energy is mainly created in
the stream-wise direction via the mean shear production mechanism and then
redistributed to the other direction via particle-particle interactions, and a those
effects are counterbalanced by the fluid friction.
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Figure 3.44: Budgets of the diagonal terms of the particle kinetic stress tensor
for the case M4. Rp,xx (a), Rp,yy (b) and Rp,zz (c).
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Remaining on the group with relatively higher inertia, the other denser cases,
M5 and M6, have similar budgets for the diagonal particle kinetic stresses.
They are respectively shown by Figure 3.45 and 3.46. The only difference is
on the budgets of Rp,xx, where the collision term, Cpp, exhibits positive values
near the wall for the case M5, see Figure 3.45(a), and in the whole domain for
the case M6, see Figure 3.46(a). This is related to the fact that the collision
production, precisely the third term in Eq. (2.76), becomes more dominant than
the redistribution component in the zones of higher particle volume fraction,
which is the case in the cited zones.
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Figure 3.45: Budgets of the diagonal terms of the particle kinetic stress tensor
for the case M5. Rp,xx (a), Rp,yy (b) and Rp,zz (c).
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Figure 3.46: Budgets of the diagonal terms of the particle kinetic stress tensor
for the case M6. Rp,xx (a), Rp,yy (b) and Rp,zz (c).
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With respect to the cases M1, M2 and M3, similarly to the q2
p budget, the

figures are shown in the centre of the core flow. The budgets for the case M1,
are given by Figure 3.47. Similarly to the other cases discussed before in the
text, the production by the mean shear is, as expected, only present in the
budget related to the stream-wise direction. Also, the fluid term is negative for
all the components, due to the dissipation via fluid friction. The diffusive term,
although very small, is slightly positive near the center of the core flow which is
the opposite of the cases with higher inertia, indicating that there is a diffusive
transport of particle kinetic stress towards the center of the core flow. Besides
a similar redistribution mechanism to the wall-normal and span-wise direction
via the particle-particle interactions is observed as well.
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Figure 3.47: Budgets of the diagonal terms of the particle kinetic stress tensor
for the case M1. Rp,xx (a), Rp,yy (b) and Rp,zz (c).
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Regarding the cases M2 and M3, the graphs for those budgets are respec-
tively depicted by Figure 3.48 and 3.49. A similar behavior, particle-particle
interaction terms are more dominant with respect to the others, for the same
reasons as explained for the cases with high inertia.
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Figure 3.48: Budgets of the diagonal terms of the particle kinetic stress tensor
for the case M2. Rp,xx (a), Rp,yy (b) and Rp,zz (c).
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Figure 3.49: Budgets of the diagonal terms of the particle kinetic stress tensor
for the case M3. Rp,xx (a), Rp,yy (b) and Rp,zz (c).
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Particle shear kinetic stress budget

The transport equations for the particle shear kinetic stresses for our mono-
disperse cases are also given by Eq. (3.37). In our cases, the only non zero
particle kinetic shear stress, is the component: Rp,xy.

The budgets of Rp,xy, for the cases M4, M5 and M6 are given by Figure 3.50.
On the contrary to the other presented budgets, since Rp,xy is negative the pro-
ductions terms are negative on this budget and positive terms are the destruction
terms. Essentially, while production terms are simply the mechanisms leading
to the creation of the shear kinetic stresses, the destruction terms can be also
perceived as terms that favors the homogenization of the particle flow, since
they are pushing the system back, to a state without shear stresses.

We note that the production by the mean shear is the main cause of particle
kinetic shear stress creation. Furthermore, in all the cases, the fluid term, is
the one mainly stopping the creation of that shear stress through the action of
friction. Besides, we note that the diffusive term, has an homogenization effect
near the centre for all the cases. Regarding the term due to particle-particle
interaction, we note that it mostly brings the system closer to the homogeneous
state in the center of the core flow, and some production is observed near the
walls for the cases M5 and M6, which is due to the fact that the collision flux
is much larger in these zones due to the higher particle volume fraction in these
zones. Related to that, we will further discuss in the next chapter the fact that
some terms in decomposition of the partile-particle term, see Eq. (2.76), bring
the system closer to an isotropic state, whereas others do not.

With respect to the cases of low inertia, the budgets are shown by Fig-
ure 3.51. Similarly to the previous cases, the fluid term is the main physical
mechanism of shear kinetic stress destruction through friction. Regarding the
production of shear kinetic stress on the other hand, there is a transition be-
tween a mean shear production dominated regime in case M1, to a production
by inter-particle interaction in case M3. This is simply due to the fact that
the collision flux becomes dominant against the kinetic production by the mean
shear, similarly to what happens in other budgets, where there is a competition
between these two production terms.
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Figure 3.50: Particle shear kinetic stress budget: Rp,xy, for the case (a) M4,
(b) M5 and (c) M6.
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Figure 3.51: Particle shear kinetic stress budget: Rp,xy, for the case (a) M1,
(b) M2 and (c) M3.
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3.6 Fluid-Particle interaction modeling
The force on a particle immersed in a viscous fluid can be calculated by

means of the integration of the viscous stress tensor σf,ij , at the surface of the
particle Sp, with a unity vector np,j pointing outwards the surface, as follows:

Ff→p,i =
∫

Sp

σf,ijnp,jdS (3.37)

In order to compute such integral, the numerical simulation need to be re-
solved enough. In some types of fluid-particle simulation approaches however,
the characteristic mesh size is not resolved enough or even larger than the parti-
cle diameter, and for that reason, there is a need for modeling of that force. This
is the case in the point-particle approach simulations [52], where the particle
diameter is smaller than the characteristic mesh size. We can also cite the case
of DEM/CFD approach [74], where the mesh is generally two to three times
the size of the particle diameter. In the next sections we discuss the ways of
modeling this force.

3.6.1 Instantaneous fluid force on an isolated particle
Several authors investigated the derivation of an analytic expression for the

force. One of the first studies, was performed by Stokes, who derived an expres-
sion for the drag past a sphere in a creeping flow [109]. Next, particle motion in
a fluid were also investigated by [6, 12, 76], and later studied by [24] and [75],
followed by [67] and [39], who compiled the latest developments at the time and
performed a derivation of the equation of motion of particles, at small Reynolds
numbers in non-homogeneous flow.

For the derivation, the authors consider an undisturbed fluid flow field ŭf,
and the solution of the fluid flow due to the perturbation of a single particle with
center position xp, moving with velocity up. With that in mind, the authors
derive an equation for the fluid force F f→p on a particle in non-homogeneous
flow, relating the undisturbed fluid flow field and the Lagrangian variables of the
particle. The authors also define vr = up − ŭf, as being the relative velocity of
the particle to the undisturbed flow field. So provided that the particle Reynolds
number Rep = ρpdp|vr|/µf is small and under the condition that the particle
size is smaller than the fluid scales. The derived equation writes as:

F f→p = − mp

ρp

(
−∇p + ∇ · σf

)
︸ ︷︷ ︸
undisturbed contribution

− 18µf

ρpd2
p

mpvr︸ ︷︷ ︸
drag force

− 1
2mf

dvr

dt︸ ︷︷ ︸
added mass force

− 9
√

ρfµf

π

mp

ρpdp

(∫ t

0

dvr

dt

(t − t∗)dt∗

)
︸ ︷︷ ︸

history force

(3.38)

Where mf is the added fluid mass, for a sphere it may be calculated as
mf = ρfπd3

p/12. Regarding the terms in Eq. (3.38), the first term is associated
with the undisturbed fluid flow contribution, whereas the other three terms are
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due to the particle perturbation in the fluid flow. The first term can also be
linked with buoyancy effects. The drag term is due to the fluid friction caused
by relative motion between the fluid and the particle. The third term relates
to added mass effects and finally the last term is related to the history of the
particle motion, also known as Basset force.

Considering a spherical particle, with mass mass is mp = ρpπd3
p/6, in the

limit where the particle density ρp is much larger than the fluid density ρf, it
can be shown that the only relevant term in Eq. (3.38) is the drag term:

F f→p = −3µfπdpvr (3.39)

This force is generally used as normalization factor when dealing with fluid
forces in particles. Since it coincides with the solution obtained by Stokes, it
is also sometimes called by his name. Besides, for a sphere, the resistant force
contrary to the direction of the relative velocity can be referred with the drag
coefficient CD, as follows:

CD = |F f→p · nr|
πd2

pρf|vr|2/8 (3.40)

Where nr = vr/|vr| is the direction of the relative velocity. For a sphere,
it can be easily shown that, within the conditions of validity of Eq. (3.39), the
drag coefficient becomes CSt

D = 24/Rep.
Figure 3.52, adapted from [25], depicts the experimental results for the drag

coefficient of a spherical particle as function of the Reynolds number. The
symbols are the experimental values. Note that, the straight line correspond-
ing to the drag coefficient in the limiting case of the Stokes solution is a good
approximation only for small Reynolds numbers. The red dashed curve corre-
sponds to the fit correlation established by [96]. This approximation is valid for
Rep < 103. The regime that follows, at the blue dotted line, corresponds to a
plateau of approximately CD ∼ 0.44, and it is called the Newton regime. Near
the end, follows a substantial drop in the drag coefficient near Rep ∼ 105.
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Figure 3.52: Drag coefficient for a spherical particle as function of the particle
Reynolds number. Adapted from [25].

It is also known that spinning balls moving in a viscous fluid experience
a transverse force. In sports such as soccer and tennis, this force usually is
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associated with curved trajectories of the ball. This lift force is denoted Magnus
force due to the experimental observations of that force in rotating cylinders
made by Magnus [5]. In very large particle Reynolds number, the lift force is
due to flow separation whereas in the range of low Reynolds numbers, the lift
is mainly generated by the pressure difference on opposite sides of the spinning
particle [131]. For the latter case, this force has been theoretically calculated
by [90], as follows:

F Magnus
L =

πd3
pρf

8 ωp × vr (3.41)

For a freely rotating particle, [92] pointed out that the particle angular
velocity can be approximated by half of the local mean fluid shear velocity.
Moreover, Saffman showed that for a sphere in a linear unbounded shear flow,
in the limit of small Reynolds numbers, in addition to the Magnus lift that is
related to particle rotation, another term related to the fact that the particle is
immersed in a fluid shear takes place, which in the first order writes [54, 126]:

F Saff
L = −1.61ρfd

2
pvr sign (γ̇)

√
|γ̇| νf (3.42)

Where γ̇ is the gradient of mean fluid velocity, or mean fluid shear. The
function sign is equal to sign of the function argument, thus being either one or
minus one. For a particle moving in the x-direction, with a shear augmenting
in the y direction, if vr is negative, then the force is in y direction, whereas if
the vr is positive, then force is in the opposite direction.

Similarly to the drag coefficient, the lift force can also be put in terms of a lift
coefficient CL which is defined as the lift force divided by πd2

pρf|vr|2/8. The lift
coefficient is generally expressed as a function of the particle Reynolds number,
a non-dimensional shear number Sr = γ̇dp/ |vr|, and a dimensionless distance
to the wall in confined situations. A recent review on the lift coefficients can be
found in [98].

3.6.2 Mean fluid-particle force on an ensemble of particles
The assumptions under which the equations of last section were derived rely

on the definition of an undisturbed fluid flow field and the presence of an isolated
particle. In fact [67] stated that the particle should be far isolated from other
particles and other disturbances, such as the wall, in order to be in the exact
frame under which Eq. (3.38) was derived. Otherwise the equation is no-longer
valid. In addition to that, the definition of the relative velocity itself is closely
tied to the assumption of an undisturbed fluid flow.

In the case where there are an ensemble of particles in a relatively close
distance to one another, the notion of an undisturbed flow field is not clear, since
several particles are perturbing the flow field simultaneously. In our simulations,
the volume fraction ranges from about 2% to 47%, see Figure 3.4, hence the
average distances between particles in such volume fractions range from about
one to two diameters away from each other.
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Fixed array of particles

In order to access and study the drag in the frame of an ensemble of particles,
direct numerical simulations of a fluid flow past a fixed array of spheres have
been performed, see for example [7, 111] and [114]. With such simulations, it is
possible to analyze the mean force and its dependence notably as a function of
the particle Reynolds number, often based on the macroscopic relative velocity,
and the local particle volume fraction. Using dimensional analysis, the average
force in an isotropic and statically homogeneous distribution of particles can be
written in a general manner as follows:

⟨F f→p⟩ = −3πµfdpαfV rF̃ ∗
f→p

(
ñr, αf, Rep, ∇P̃f, Stp

)
(3.43)

Where F̃ ∗
f→p is a non-dimensional force function, V r = Up − U f is the

mean macroscopic relative velocity, ñr = V r/|V r| is the unity vector aligned
with V r. The Reynolds number based on the average relative velocity is
Rep = |V r|dpρf/µf, the non-dimensional pressure gradient is written as
∇P̃f = ∇Pf/

[
µf|V r|/d2

p
]

and finally the Stokes number based on the average
relative velocity is Stp = |V r|dpρp/µf.

Supposing that the gradient contribution could be linearly separated from
the general form of Eq. (3.43), we can write:

⟨F f→p⟩ = −3πµfdpαfV rF ∗
f→p (αf, Rep, Stp) −

πd3
p

6
∇Pf

ρf
(3.44)

In the case where the ensemble of particles are dense, randomly distributed
through space, and weakly agitated by the pseudo-turbulence generated by the
wake past the particles, with relatively high inertia, there is a link between
the average forces measured in an array of randomly fixed particles and the
non-dimensional force function as follows:

F ∗
f→p|| (αf, Rep) = −1

3πµfdpαf|V r|

[
⟨F f→p⟩ +

πd3
p

6
∇Pf

ρf

]
· nr (3.45)

Note that F ∗
f→p|| is used to denote the part of non-dimensional force function

that is related to the force parallel to the mean macroscopic velocity, and since
the particles do not move on the fixed array, the Stokes number do not play a role
in this limiting case. Correlations extracted from direct numerical simulations
of fixed array of particles can be found in [7, 111]. Additionally, based on
experimental results correlations, the following authors [32, 127] also proposed
correlations. The formulas associated with those authors are summarized in the
Table 3.3:

114



Table 3.3: Non-dimensional force as a function of αf and Re∗
p = αfRep.

Author Normalized drag law ( F ∗
f→p|| )

Wen & Yu F ∗
f→p|| =

(
1 + 0.15Re∗

p
0.687

)
α−3.65

f

Ergun F ∗
f→p|| = 150

18
1 − αf

α2
f

+ 7
4

1
18

Re∗
p

α2
f

Beetstra et al. F ∗
f→p|| = 10 (1 − αf)

α2
f

+ α2
f
(
1 + 1.5

√
1 − αf

)
+

0.413Re∗
p

24α2
f

[
α−1

f + 3 (1 − αf) αf + 8.4Re∗
p

−0.343

1 + 103(1−αf)Re∗
p

−0.5−2(1−αf)

]

Tenneti et al. F ∗
f→p|| = Fisolα

−3
f + F1 + F2

Fisol =
(

1 + 0.15Re∗
p

0.687
)

F1 = 5.81 (1 − αf)
α3

f
+ 0.48(1 − αf)

1
3

α4
f

F2 = (1 − αf)3
Re∗

p

[
0.95 + 0.61 (1 − αf)3

α2
f

]
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Moving Particles

Direct numerical simulations of the fluid flow around moving particles have
also been performed to analyze the mean fluid-particle forces. We may cite for
instance [91] who investigated the role of the Stokes number on the drag. In
addition, [78] analyzed a fluidized bed and evaluated the validity of a fludization
law, which indirectly relates to the fluid friction. A study of fludized bed is also
present in [34]. An analysis in the framework of suspension stresses in a Couette
flow can also be found in [85].

A question arising in the framework of moving particles, is whether the
particle Reynolds number should be based on the mean macroscopic relative
velocity V r, which was already given in Figure 3.8, or the average of vr =
up − U f, which is the instantaneous relative velocity of the particle to the
mean macroscopic fluid flow. In fact, the average of the latter can be evaluated
through the expression below:

⟨|vr|⟩ =
√

⟨vr · vr⟩ =
√

V r · V r + 2q2
p (3.46)

The advantage of this form is that it contains the particle fluctuating ki-
netic energy in addition to the mean macroscopic flow difference. The values
of the particle Reynolds number are given by Figure 3.53. We note that the
computation of the Reynolds number in this manner is greater than the other
evaluation.
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Figure 3.53: Particle Reynolds number calculated as Rep = ⟨|vr|⟩ dp/νf.

In order to have an idea of the non-dimensional force function, see Table 3.3,
with the local parameters of the Couette cases, we give the values of F ∗

f→p||, for
the cases M2 and M5 on Figure 3.54. Figures on the left are computed with the
particle Reynolds number based on the V r and figures on the right, based on
⟨|vr|⟩. We note that for the case M2, the values almost did not changed from
left to right, whereas for the case M5 a slightly augmentation is observed when
the particle agitation is taken into account on the expression. Similar results
are observed for the other cases.
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Figure 3.54: Sensitivity of the non-dimensional force functions. Figures (a) and
(b) correspond to M2; and (c) and (d) to M5. Figures on the left are computed
with Re∗

p = αf|V r|dp/νf; whereas those on the right: Re∗
p = αf ⟨|vr|⟩ dp/νf.
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Mean transverse force in the Couette cases

In our mono-disperse Couette cases, we observe a transverse force, in the
wall-normal direction, that points towards the centre of the core flow. This force
is more predominant in the budgets of the cases of high inertia, see Figure 3.39.
And is only relevant in the budget of the case M1, for the cases of low inertia,
as it is notably observed in Figure 3.38(a).

To begin with the analysis, the mean transverse force for those cases is
compared with the force that would be generated due to the pressure gradient.
It can be found that this force is negligible because it is some orders of magnitude
smaller than the mean transverse force, hence, the pressure gradient does not
explain the data:

∣∣∣∣ 1
ρp

∂Pf

∂y

∣∣∣∣ ≪
∣∣∣∣〈Ff→p,y

mp

〉∣∣∣∣ (3.47)

Another possible candidates for the mean transverse would be either a Mag-
nus and a Saffman lift force. The expressions related to those effects, for an
isolated particle, are respectively given by Eq. (3.41) and (3.42). In our case,
there is, an ensemble of particles influencing each other, so it is likely that the
neighboring particles would have an influence on those formulas. Even though
this influence exists, it is possible that formulas taking into account those effects
would still be proportional to the same variables, such as the relative velocity
for example. In fact, considering that the particle angular velocity proportional
to the mean fluid shear, the Magnus lift would be proportional to Vr,x∂Uf,x/∂y,
and the Saffman lift would be proportional to Vr,x

√
∂Uf,x/∂y.

In order to test the relevance of these parameters, we perform a correlation
analysis of the mean transverse force against those variables as well as other
relevant parameters such as the particle volume fraction gradient. To do so, the
Pearson correlation coefficient is used. The correlation is such that, when the
norm of the correlation is close to one, the two data-sets are highly correlated
and when it is close to zero it is not correlated. Table 3.4 gives the correlation
values of the mean transverse force with the variables shown in the first row,
for each Couette case. The correlation is computed with the data in the center
of the core flow: −0.6 < 2y/H < 0.6, to avoid wall effects. Correlations with
the norm larger than 0.9, are shown with bold text.

With respect to the cases with small inertia, we note that only the case
M1, which is in fact the only one that shows a relevant transverse force in the
budget of wall normal velocity, is highly correlated to relative velocity, as well
as the relative velocity and the product of it to either the mean fluid shear or its
square root. Moreover, regarding the cases with high inertia, interestingly, we
note that the results are highly correlated to the gradient of the volume fraction.

The results seem to indicate that transverse force observed for the case M1
has a different physical origin than the one on the cases M4, M5 and M6. It
is probably related to the mean relative velocity, whereas for the cases of high
inertia, the gradient of particle volume fraction, which may possibly cause the
flow field to be altered in such a way that it produces a equivalent lift force.
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Table 3.4: Correlation coefficient between the given variable and the mean trans-
verse force ⟨Ff→p,y⟩ for the mono-disperse cases.

Case ∂αp
∂y αp Vr,x |Vr,x|2 Vr,x

∂Uf,x

∂y Vr,x

√
∂Uf,x

∂y
∂Uf,y

∂y

M1 0.60 0.12 0.95 -0.33 0.98 0.97 -0.06
M2 -0.58 -0.37 -0.02 0.35 0.10 0.05 0.36
M3 -0.62 0.65 -0.66 0.59 -0.63 -0.66 -0.63
M4 -0.94 -0.10 -0.39 -0.35 -0.36 -0.38 0.01
M5 -0.91 -0.07 -0.37 0.54 -0.39 -0.38 -0.05
M6 -0.95 0.06 -0.84 -0.30 -0.83 -0.84 -0.05

Since the results showed a high correlation with both the Saffman and Mag-
nus lift, we give on Figure 3.55, a comparison of the mean transverse force
against the lift formulas given by Eqs. (3.41) and (3.42), using the relative
macroscopic velocity V r and the particle angular velocity as: |ωp| = |γ̇/2|.
In addition, the force due to the pressure gradient is shown as well. We note
that even tough the order of magnitude of the Saffman force is correct, it has
nonetheless an opposite sign.

−0.4 −0.2 0 0.2 0.4

−4

−2

0

2

4

·10−4

2y/H

〈F
f→

p
,y
〉

m
p

( H
/
V

2 w

)

DNS
due to Pressure gradient
Magnus
Saffman

Figure 3.55: Transverse force comparison for the case M1.

Regarding the cases of high inertia, due to the high correlation with the
gradient of particle volume fraction, we evaluated a simple coefficient of propor-
tionality relying the data in the following form Cα =

〈
Ff→p,y

mp

〉
/

∂αp
∂y .

We observed that this coefficient is approximately constant for a given case
among those with high inertia. The mean values of Cα are given in Table 3.5.
Both the cases M5 and M6 have approximately the same coefficient whereas the
case M4 is the larger one.

Table 3.5: Coefficient Cα.

Case M4 M5 M6
Cα/V 2

w −1.3 10−2 −4.3 10−3 −4.3 10−3
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A comparison of the mean transverse force with the predictions of the other
forces, alongside the fitted model associated with a constant coefficient of pro-
portionality, is given by Figure 3.56. It can be observed that the force due to
the pressure gradient is very small. Also, the other lift expressions are negligible
as well. It is interesting to note that a constant coefficient of proportionality is
enough to give the good tendency of the data which seem to be an indication
that indeed the phenomena behind the transverse force for the cases of high
inertia comes from the alteration of the fluid flow due to the gradient of particle
volume fraction.
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Figure 3.56: Transverse force comparison for the case (a) M4, (b) M5 and
(c) M6.

In the presented analysis, we do not particularly relied on available lift co-
efficient expressions due to the fact that in our case the relative velocity is very
small which makes difficult to access the dimensionless shear number needed in
the formulas.
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3.6.3 Fluid force and particle velocity fluctuation correla-
tion

In order to describe the change in the linear momentum of a given particle,
due the instantaneous impulse of the fluid force, a Langevin equation can be
used [38, 112]. The equation writes as follows:

mpdup,i = Ff→p,idt = ⟨Ff→p,i⟩(x, t) dt − AF,imu′
p,mdt + mpB∗

F,imdWm (3.48)

The first term on the right-hand side of Eq. (3.48) represents the impulse
related to the mean force, the second term is associated with the velocity fluc-
tuations, with AF,ij being the linear fluid-particle force tensor and finally the
third term is a stochastic term linked to a Wiener process increment dW , with
B∗

ij being the dispersion fluid-particle force tensor, or simply drift tensor. Equa-
tion above is similar to the one presented by Garzo et al., the only difference
being that in our case, the mean force is directly given by the mean force field
expression.

In terms of probability distribution function equations, Eq. (3.48) is formally
equivalent to the relationship below [58, 83]:

⟨Ff→p,i|up(t) = cp, xp(t) = x⟩ fp (cp, x, t) = ⟨Ff→p,i⟩(x, t) fp (cp, x, t)
−AF,im [cp,m − Up,m] fp (cp, x, t)

−BF,im
∂fp (cp, x, t)

∂cp,m
(3.49)

With BF,ij = mpB∗
F,imB∗

F,jm/2. Assuming that the linear force tensor and
the related dispersion force tensor are only functions of the spatial coordinate
and time: AF,ij = AF,ij(x, t) and BF,ij = BF,ij(x, t), and using the relationship
given by Eq. (2.28), an integration of both sides of Eq. (3.49) over the velocity
space, yields the trivial relationship given by Eq. (3.50). Note that the integra-
tion of the second and third terms of the right-hand side of Eq. 3.49 over the
velocity space are null.

np ⟨Ff→p,i⟩ = np ⟨Ff→p,i⟩ (3.50)

Analogously, multiplying Eq. (3.49) by [cp,j − Up,j ] and integrating over the
velocity space, a relationship involving the correlation between the fluid force
and the velocity fluctuation can be obtained as follows:

np
〈
Ff→p,iu

′
p,j

〉
= −npAF,imRp,mj + npBF,ij (3.51)

Using a similar procedure, but multiplying Eq. (3.49) by the second order
velocity fluctuation [cp,j − Up,j ] [cp,k − Up,k], the correlation between the fluid
force and the double velocity fluctuation, after integration, gives:

np
〈
Ff→p,iu

′
p,ju′

p,k

〉
= np ⟨Ff→p,i⟩ Rp,jk − npAF,imSp,mjk (3.52)
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Simonin’s 1991 approach

In this section we present a model proposed by [100], which can be framed
as a particular case of the model discussed in the previous subsection. In such
model the instantaneous force that a particle undergoes is assumed to be in the
same direction of the relative velocity. It can be written as follows:

F f→p = −3πµfdpαfF
∗
f→p|| (αf, Rep) vr (3.53)

Where vr is the relative velocity of the particle with respect to that of
the fluid, and the particle Reynolds number is used in this formula is the one
shown by Figure 3.53. In our simulations, as discussed in the section 3.3.4, the
fluctuating scales of the fluid flow are confined between the particles and, in
some sense, the particles sees an integrated fluid velocity. We can thus neglect
the fluid fluctuations, for that reason we consider the relative velocity as being
the relative velocity of the particles to the average fluid macroscopic velocity:
vr = up − U f. Since this relative velocity can be decomposed as vr = V r + u′

p,
it can be readily seen that the fluctuating part of force is written as:

F ′
f→p = −3πµfdpαfF

∗
f→p|| (αf, Rep) u′

p (3.54)

It follows from the equation above that the linear force tensor is given by
the expression below, and the drift component is null.

AF,ij = 3πµfdpαfF
∗
f→p|| (αf, Rep) δij (3.55)

The force velocity fluctuation correlation can then be written as:

〈
Ff→p,iu

′
p,j

〉
= −3πµfdpαfF

∗
f→p|| (αf, Rep) δimRp,mj (3.56)

Tests with the data have shown that F ∗
f→p|| = 1 seem to be enough to model

the cases with low inertia, whereas the Tenneti et al. correlation, using the
average of the Reynolds number that takes into account the particle fluctuating
kinetic energy, is the one that approaches most the data, we thus use those
correlations in the following comparisons.

All the non-null components of
〈
Ff→p,iu

′
p,j

〉
are compared to the right-hand

side of Eq. (3.56) for the cases M1, M2 and M3, in Figure 3.57. The results
are given in the centre of the core flow for sake of visualization. We note
that the model seem to be in accordance with the order of magnitude of the
simulation data for all three cases. Regarding the case M1, Figure 3.57(a),
the component with indexes xx agrees well with the results. We note that
even though the model predicts the same values for the components xy and
yx, the results for those components are different

〈
Ff→p,xu′

p,y

〉
̸=
〈
Ff→p,yu′

p,x

〉
,

in fact, only the component xy agrees with the model, whereas the other one
is much smaller. Components yy and zz are relatively smaller in magnitude.
Similar results are found for the case M2. Finally for the case M3, we note that
the difference between components xy and yx are not significant as the other
cases. In addition, still on the case M3, we note that the predictions using this
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analysis tend to overestimate the component xx and underestimate the other
components.

A similar comparison for the cases with higher inertia, M4, M5 an M6, using
the non-dimensional force function proposed by Tenneti et al. with the Reynolds
computed with the, is shown by Figure 3.58. We note that all the predictions
underestimate the results from the simulations. A posteriori analysis of the data
have shown that even if the non-dimensional force function is multiplied by a
given value to match one of the force velocity fluctuation component, the other
components do not actually match with the same value, indicating that either
a drift component is missing or the tensor AF,ij should be anisotropic. Those
two options are investigated further in the following sections.
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Figure 3.57: Comparison of the model, using F ∗
f→p|| = 1, for the cases (a) M1,

(b) M2 and (c) M3.
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Figure 3.58: Comparison of the model, using the non-dimensional force function
given by Tenneti et al. for the cases (a) M4, (b) M5 and (c) M6.
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Non-null linear force and dispersion coefficients

In the previous section, we evaluated a model, which corresponds to a par-
ticular case of Eq. 3.51 where the linear force tensor is known, and the drift
coefficient is null. In this section, we suppose that both AF,ij = AF δij and
BF,ij = BF δij are isotropic and non-null, which is explored as a first approxi-
mation in [38], and we evaluate whether such a model would work with our data
set, without making any pre-assumption on the value of the parameters.

Within the framework of the discussed condition, the force velocity fluctua-
tion correlation would be described by

np
〈
Ff→p,iu

′
p,j

〉
= −npAF Rp,ij − npBF δij (3.57)

In order to test such a model, first we take the traceless version of the
equation above, reads:

̂〈
Ff→p,iu′

p,j

〉
= −AF R̂p,ij (3.58)

Where ̂〈
Ff→p,iu′

p,j

〉
=
〈
Ff→p,iu

′
p,j

〉
−
〈
Ff→p,mu′

p,m

〉
δij/3 is the traceless

correlation between the force and the velocity fluctuation and, similarly, the
traceless particle kinetic stress R̂p,ij = Rp,ij − Rp,mmδij/3. The values of AF ,
computed through Eq. (3.58) for all the non-null index combinations for the
cases M2 and M5 are shown by Figure 3.59, we observe that all the values do
not fall into a single curve, indicating that such an isotropic coefficient is not
enough to describe our results. Similar results are obtained for the other cases
as well.
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Figure 3.59: Sensibility of the linear force coefficient for the case (a) M2 and
(b) M5.

Besides, the differences in the values of AF when evaluated with different
index combinations, a problem arising with such a model is that, as seen on the
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previous subsection, in some cases
〈
Ff→p,xu′

p,y

〉
is different from

〈
Ff→p,yu′

p,x

〉
,

which imply that the matrix on the left-hand side of the equation above is not
symmetric. All the terms on the right-hand side of the equation above, are
symmetric, since Rp,ij is symmetric. For that reason, both sides of the equation
would never be completely satisfied regardless of the values of the coefficients.

Anisotropic linear force tensor and a null drift coefficient

Analogously to the last section, we presuppose a version of the model, and
evaluate the implication of such hypothesis. In this section we assume an
anisotropic linear force tensor AF,ij , and a null drift or dispersion coefficient.
Within this frame, the equation for the force velocity correlation, see Eq. (3.51),
gives:

〈
Ff→p,iu

′
p,j

〉
= −AF,ikRp,kj (3.59)

In order to test the consistency of the model, the linear force tensor AF,ik

can be isolated in the equation above, by multiplying the equation both sides to
right by the inverse of the particle kinetic stress matrix R−1

p,nj . The expression
for the linear force tensors then, reads:

AF,ij = −
〈
Ff→p,iu

′
p,n

〉
R−1

p,nj (3.60)

With AF,ij computed in this manner, then, a comparison with third order
results is performed to verify the consistency of the model. For that purpose
Eq. (3.52) is used. In fact, noticing that:

〈
F ′

f→p,iu
′
p,ju′

p,k

〉
=
〈

Ff→p,iu
′
p,ju′

p,k

〉
−

⟨Ff→p,i⟩ Rp,jk, the relationship to be tested with the previously calculated linear
force tensor, reads:

〈
F ′

f→p,iu
′
p,ju′

p,k

〉
= −AF,imSp,mjk (3.61)

All non-null components of the linear force tensor, calculated by Eq. (3.60),
for the cases of low and high inertia are respectively shown by Figures 3.60 and
3.61. We note that for all the cases, the component AF,xy is negative, whereas
all the diagonal components are positive. The term AF,yx on the other hand is
either positive or negative depending on the case and coordinate in the domain.
All the other extra-diagonal components are null. It can be observed a very
similar shape for all the terms for the cases of high inertia.

The comparisons for the third order fluid force velocity correlations, using the
linear force tensor previously shown, precisely calculated through the Eq. (3.61),
are given for the cases with low and high inertia, respectively by Figures 3.62
and 3.63.

Regarding the results for the cases of low inertia, they are given in a log
scale for sake of visualization, also only a part of the domain is shown, since
near the centre of the domain the values are closer to zero. We compare the
absolute values of some of the relevant triple force velocity correlations. It can
be observed a good agreement between the tendency of the data and the model,
and similar results can be found for the other non-null components as well.
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With respect to the cases of high inertia, all the non-null triple force ve-
locity correlations are shown. We note a good overall agreement for all the
components. This seem to indicate that a Langevin equation, in the form of
Eq. (3.49), containing a second rank anisotropic linear force tensor and a null
drift coefficient is enough to correctly describe the force velocity correlations in
the Couette domain. Which opens the question on how to model such a tensor.
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Figure 3.60: Coefficient AF,ij for the cases (a) M1 (b) M2 and (c) M3.
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Figure 3.61: Coefficient AF,ij for the cases (a) M4 (b) M5 and (c) M6.
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Figure 3.62: Comparison of the third order results, using the linear force tensor
computed from second order statistics for the cases (a) M1 (b) M2 and (c) M3.
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Figure 3.63: Comparison of the third order results, using the linear force tensor
computed from second order statistics for the cases (a) M4 (b) M5 and (c) M6.
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4.1 Introduction
In this chapter, bi-disperse fluid-particle numerical simulations in a Couette

configuration are investigated. Bi-dispersion is achieved by changing the density
of the particles, consequently producing sets of heavier and lighter particles with
the same diameter. The physical and numerical description of the cases are
provided in the section 1.4.2.

An appropriate definition for the Stokes number taking into account the bi-
dispersion is presented, and the influence of this factor on the statistics of the
bi-disperse cases, such as the particle number density and particle fluctuating
kinetic energy are investigated. In addition to that, the transport equations of
both particle phases are shown in the form of a budget, similarly to what has
been presented in the mono-disperse chapter. The difference being the terms
taking into account the transfer due one class of particle to another. Showing
for instance, transfer of random kinetic energy from the heavier to the lighter
particle phase.

Next, we focus on the particle-particle interaction terms of the budget. The
collision terms presented in the previous cited budgets are decomposed into
collision flux and redistribution related tensors, using the procedure presented
in the section 2.7, unveiling interesting mechanisms related to inter-particle
interaction. Modeling of the collision flux and redistribution tensor for the
bi-disperse particle flow is presented and next tested against the data of our
resolved simulations.

4.2 Macroscopic behavior and statistics
In the mono-disperse cases, it was observed that a macroscopic transition

takes place depending on the bulk Stokes number. For low bulk Stokes number,
particles accumulate near the center of the domain, whereas for higher Stokes
number particles accumulates more towards the walls. That motivated us to
inquiry the macroscopic behavior of a mixture of both particles that would
alone have that low bulk Stokes number with another class of particles that
would instead have the bigger bulk Stokes number. This is performed in the
cases B1, B2 and B3, see Table 1.4, which are characterized by a mixture of
particles with Stb = 15 and 30, corresponding respectively to the low and
high Stokes numbers of the mono-disperse cases. In addition to that, in order
to further deepen our analysis, we studied a mixture of particles with very
low bulk Stokes number, case B0, and another one with very high bulk Stokes
number, case B4. Regarding B0, we have Stb = 7.5 and 15 and for B4, we
have Stb = 30 and 60.

A frontal snapshot of those simulations at steady-state are given by Fig-
ure 4.1, with the heavier particles in brown and the lighter particles in white.
Also, a view on perspective is given by Figure 4.2.
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(a) B0 (b) B1

(c) B2 (d) B3 (e) B4

Figure 4.1: Snapshot of the bi-disperse cases, frontal view. Heavier particles are
brown and lighter particles are white.

(a) B0 (b) B1

(c) B2 (d) B3 (e) B4

Figure 4.2: Snapshot of the bi-disperse cases in perspective. Heavier particles
are brown and lighter particles are white.
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4.2.1 Bi-disperse Stokes number
The bulk Stokes number for the mono-disperse cases was defined by Eq. (1.20),

as the a global measure of the ratio of the particle inertia to the viscous effects
in the domain. This non-dimensional number, turned out to be a good indica-
tor into predicting the macroscopic transition occurring for the mono-disperse
cases, being an import tool for analyzing the fluid-particle flow in the Couette
configuration.

To analyze the bi-disperse cases however, one has to consider mixture effects.
To do so, an equivalent bi-disperse Stokes number St∗ is defined as the ratio of
the inertial to the hydrodynamic effects in the mixture, in the following form:

St∗ =

(
npmp

U2

L + nqmq
U2

L

)
(

npmpU
τp

+ nqmqU
τq

) (4.1)

Where U , L, τp and τq are respectively the characteristic velocity, charac-
teristic length scale and characteristic fluid-particle drag scale of the particles of
type p and q. An equivalent bi-disperse fluid particle characteristic relaxation
time-scale τ∗ can be defined as follows:

npmp + nqmq

τ∗ = npmp

τp
+ nqmq

τq
(4.2)

Substituting Eq. (4.2) into Eq. (4.1), we obtain the general expression for
the bi-disperse Stokes number:

St∗ = τ∗ U

L
(4.3)

Specifically in our bi-disperse simulations, where both particle species share
the same diameter, the equivalent bulk bi-disperse fluid particle characteristic
time-scale, can be written as follows: τ∗ = ρ∗d2

p/18µf , where ρ∗ is the equivalent
bi-disperse specific mass, is: ρ∗ = (npρp + nqρq)/(np + nq). Also, considering
the fact that the particles share the same velocity gradient, the ratio U/L in
Eq. (4.3), can be replaced by the mean particle stream-wise velocity gradient.
The resulting formula, for the local bi-disperse Stokes number, reads:

St∗ =
ρ∗d2

p

18µf

∂Up,x

∂y
(4.4)

A global, or bulk version of the bi-disperse Stokes number, can be computed
using the wall velocity, domain dimension and bulk values of particle number
density, similarly to what to the calculation of the bulk Stokes number for the
mono-disperse cases. In that manner, the bulk bi-disperse Stokes can be written
as: St∗

b = ρ∗
bd2

p
18µf

2Vw

H , with ρ∗
b, being the bulk bi-disperse specific mass, calculated

notably using the bulk particle number density.
Computed values of the St∗

b are given in Table 4.1. The cases are actually
enumerated in increasing order of bulk bi-disperse Stokes number. It can be
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noticed in Figure 4.1, that the St∗
b have an influence on the macroscopic behavior

of the fluid-particle flow, since the particles on the cases B0 and B1 are located
near the centre whereas the opposite seems to happens for the cases B2 to B4.

This is in fact, similar to what happens for the mono-disperse cases, where a
macroscopic transition happens when the value of bulk Stokes number changes
from 15 to 30, indicating that the transition must lie within that range. For the
bi-disperse cases, using this appropriate definition presented in this section, the
transition seem to happen from the case B1 to B2, hence within the following
range: 17.5 < St∗

b < 22.5. Interestingly being consistent to what has been
previously observed for the mono-dispersed cases.

Table 4.1: Equivalent bi-disperse bulk Stokes number

CASE B0 B1 B2 B3 B4

St∗
b 11.2 17.5 22.5 27.5 45.0

Local values of the bi-disperse Stokes number are given by Figure 4.3. The
influence of this value in the statistics is studied in this chapter.
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Figure 4.3: Local equivalent bi-disperse Stokes number.
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4.2.2 Particle number density
The particle number density for all the bi-disperse cases is given by Fig-

ure 4.4. Values are normalized using the bulk particle number density np,b. Nor-
malized values for the q-species are approximately the same. Hence np/np,b ≃
nq/nq,b. Concerning the graph, clearly as the bulk bi-disperse Stokes number
augments, the shape of the curve gradually changes from a concave shape to a
convex one. In other words, the second derivative of the particle number density
with respect to the wall normal direction augments from case B0 to B4, in the
centre of the domain.

This evidence on the bulk Stokes number impact on the transition, further
corroborates the hypothesis that the Stokes number in fact controls the observed
transition. Further pointing out the fact that the formula given by Eq. (4.4) is
in reality the relevant non-dimensional number in this study.
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Figure 4.4: Particle number density.

Values of the particle volume fraction for both particle species, αp and αq,
can be calculated by multiplying the particle number density by the volume
of a single particle. Computed values for the bi-disperse cases are shown by
Figure 4.5. Cases B0, B2 and B4, shown by Figure 4.5(a,c,e), have the same
number of particles in p and q species therefore the graphs of αp and αp are
close to one another. The case B1 and B3, have a different number of particles
of p and q species, see Figure. 4.5(b,d).

The bi-disperse cases are indeed dense, reaching up to approximately 15%
of total particle volume fraction in centre for the case B0, which is the sum of
the αp and αq. Even in the region with lesser particles, in centre of case B4, the
sum of particle volume fraction is about 4.8% which is also considered dense.
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Figure 4.5: Particle volume fraction.
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4.2.3 Fluid and particle mean velocities
The mean particle and fluid stream-wise velocity for all the bi-disperse cases

are given by Figure 4.7. We observe that the mean velocity of both particle
species are very close to one another. The mean fluid velocity is very close to
the mean particle velocity as well. The only exception being the case with the
smaller inertia, B0, in which, a slightly mean slip between the phases is observed,
with the fluid velocity being larger that of particles in absolute values.

Furthermore, analogously to the mono-disperse cases, as the particle inertia
augments the profiles of mean velocity change from a ”S”-shape curve towards
a straight line in the graph. Also, similarly to the mono-disperse cases, mean
velocities in the wall normal and span-wise direction are null.

The fore-mentioned influence of the bi-disperse Stokes number on the shape
of the mean velocity can be clearly seen on the profiles given by Figure 4.6 for
the centre of the core flow. In such a region of interest, the slope of the mean
particle velocity seem to have a direct relationship with the particle inertia, or
the bi-disperse Stokes number.
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Figure 4.6: Mean particle velocity in the centre of the core flow.
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Figure 4.7: Mean fluid and particle velocity for the case (a) B0, (b) B1, (c) B2,
(d) B3 and (d) B4.
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4.2.4 Particle fluctuating kinetic energies
Particle fluctuating kinetic energy is given by Figure 4.8. A clear augmenta-

tion of the normalized fluctuating kinetic energy is observed in the centre with
the augmentation of the bi-disperse Stokes number. As opposed to the particle
number density, values for both particle species are not always equal. A com-
parison of the fluctuating kinetic energies of both particle species, for all the
bi-disperse cases, are shown by Figure 4.9.
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Figure 4.8: Fluctuating kinetic energy of the particles.

A major dissimilarity related to the fluctuating kinetic energy of the particles
is found for the case of high Stokes, B4. In fact, the fluctuating kinetic energy
for the lighter phase, or p-species, is found to be larger in these regions, that is
q2

p > q2
q. A similar effect happens in some types of plasma systems, where the

temperature, or the fluctuating kinetic energy of the electrons, are found to be
higher than those of the ions, which is the case in [41].

This effect in our case is related to the relationship between the collision
time scale: τ∗

coll ∝ 1/
√

q2
p + q2

q, and the relaxation time scale: τ∗. The latter
was presented in the section 4.2.1 and the former can be found in [35].

For the case B4, since the values of q2
p + q2

q are relatively high, the collision
time scale is relatively smaller, and also its ratio to the relaxation time scale.
This means that particles transfer fluctuating kinetic energy faster through col-
lisions relatively to the relaxation time, and since collisions between heavier and
lighter particle, tend to transfer more momentum to the lighter particles, com-
bined with the fact that at higher Stokes numbers, collision are more powerful,
this contributes to a higher fluctuating kinetic energy for the phase p, or the
lighter particles, in this case. One also might argue that this effect is a result
of the solution of the transport equations of particle fluctuating kinetic energy
of both species where the factors explained above are already implicitly taken
into account.
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Figure 4.9: Comparison of the particle fluctuating kinetic energy of the p and
q species.
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4.2.5 Particle kinetic stress
The diagonal components of the particle kinetic stresses of both the lighter

and heavier particles, respectively p and q species, are given by Figure 4.11.
First of all, we observe that the kinetic stresses for the lighter particles are very
close to that of the heavier particles, with the exception of the of the case B4,
corresponding to the case with the higher inertia, where the kinetic stresses for
the p-particles, are higher than that of the q-particles. Which is due to the
same reasons as exposed in the previous section.

It is interesting to observe that as the bulk bi-disperse augments, the shape
of the kinetic stresses change from a convex to a more concave shape, similarly
to what has been observed for the mono-disperse cases with the increase of the
particle inertia.

With respect to shear kinetic stresses, analogously to the mono-disperse
cases, the only non-null extra-diagonal component is the one related to the xy
indexes. Since all the values for this component are negative, they are given by
Figure 4.10 multiplied by minus one for sake of visualizing it into a log scale. In
the centre of the core flow, we note that the module of the shear kinetic stress
directly augments with the bi-disperse Stokes number for both the lighter and
heavier particle species.
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Figure 4.10: Particle shear kinetic stress for (a) p-particles and (b) q-particles.
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Figure 4.11: Diagonal components of the particle kinetic stresses for the lighter
and heaver particles for the cases (a) B0, (b) B1, (c) B2, (d) B3 and (e) B4.
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4.3 Particle fluctuating kinetic energy budget
4.3.1 Transport equation budget

In this section, similarly to analysis presented in the section 3.5.3 for the
mono-disperse case, the budgets of the particle fluctuating kinetic energy, for
both the lighter and heavier particle species are presented. The budget is based
on Eq. (2.41), and for the specific case of our configuration can be written for
the p-particles as follows:

∂q2
p

∂t
= − 1

2np

∂ (npSp,iiy)
∂y︸ ︷︷ ︸

D

−Rp,xy
∂Up,x

∂y︸ ︷︷ ︸
P

+
〈

Ff→p,i

mp
u′

p,i

〉
︸ ︷︷ ︸

F

+
〈

Fp′→p,i

mp
u′

p,i

〉
︸ ︷︷ ︸

Cpp

+
〈

Fq→p,i

mp
u′

p,i

〉
︸ ︷︷ ︸

Cqp

(4.5)

Analogously to the transport equation for the mono-disperse a diffusive, D, a
production term due to the velocity gradient, P, and a fluid term, F, are found.
In addition, two particle-particle interaction terms intervene in the budget: one
due to the interaction with the lighter particles, Cpp, and another one due to
the heavier particles Cqp. They are respectively equal to Cp→p

(
mpu′

p,iu′
p,i

2

)
/np

and Cq→p

(
mpu′

p,iu′
p,i

2

)
/np. The first one in reality accounts for the interaction

of the phase p with itself and the second one may be considered as a coupling
term between the particle species, or the one that accounts for the inter-species
transfer. The transport equation for the fluctuating kinetic energy of the q-
species is analogous and contains the following particle-particle interaction terms
Cpq and Cqq.

The budgets for q2
p and q2

q, for the cases with higher inertia, B2, B3 and
B4 are similar and are respectively given by Figures 4.12, 4.13 and 4.14. The
cases with low inertia have a very poor signal to noise ratio. For that reason
we mainly focus on the budgets of the cases with high inertia. Regarding those
cases, we observe that for both particle species, the principal mechanism of fluc-
tuating kinetic energy creation is the production by the mean velocity gradient
P . Also, as expected, the fluid term is negative due to the fluid-friction, being
the dominant mechanism of fluctuating energy destruction.

Regarding the particle-particle interaction terms, an interesting behavior is
found. We observe that for all the presented cases, while the Cqp is positive in
the lighter particles budget, the term Cpq is negative in the budget of the heavier
particles. This consistently indicates on the budget of the lighter particles that
fluctuating kinetic energy is transferred through interaction with the heavier
particles. Also, it indicates that fluctuating kinetic energy is destroyed on the
budget of the heavier particles via interaction with the lighter particles. This is a
clear quantitative indication of the transfer of energy from the heavier particles
to the lighter particles via particle-particle interaction. In addition, we observe
that both Cpp and Cqq are small compared to the other terms.

A decomposition of the collision term into production and source related
terms are further investigated in the next section.
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Figure 4.12: Particle fluctuating kinetic energy budget for the case B2. All
terms are normalized by H/V w2.
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Figure 4.13: Particle fluctuating kinetic energy budget for the case B3. All
terms are normalized by H/V w2.

145



−0.4 −0.2 0 0.2 0.4
−15

−10

−5

0

5

10
·10−3

2y/H

D P F Cpp Cqp

(a) q2
p budget

−0.4 −0.2 0 0.2 0.4
−8

−6

−4

−2

0

2

4

6

8
·10−3

2y/H

D P F Cpq Cqq

(b) q2
q budget

Figure 4.14: Particle fluctuating kinetic energy budget for the case B4. All
terms are normalized by H/V w2.
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4.3.2 Particle-Particle interaction term decomposition
The particle-particle interaction terms present in the budgets of the previous

section can be further decomposed according to Eq. (2.76), in fact, contracting
the indexes, the resulting equation presents as follows:

Cq→p
(
mpu′

p,iu
′
p,i

)︸ ︷︷ ︸
2np⟨Fq→p,iu′

p,j⟩

= χqp,ii︸ ︷︷ ︸
source term

+ ∆θqp,iiy

∆y︸ ︷︷ ︸
collision transport

+ 2θqp,xy
∆Up,x

∆y︸ ︷︷ ︸
collision production

(4.6)

The decomposition of the term on the left-hand side of the equation above,
associated to the particle-particle interaction term of the particle fluctuating
kinetic energy equation, into the terms of the right-hand side are given by
Figures 4.15 to 4.20. It is interesting to note that, even tough the total particle-
particle interaction term may seem to have an arbitrary sign, a precise pattern
related to the signs of the decomposed terms is found for the shown cases. They
are summarized in Table 4.2.

Table 4.2: Sign of the decomposed terms

term source transport production
p → p - + +
p → q - + +
q → p + + +
q → q - + +

Both the collision production and the collision transport terms are positive,
while the source term is either negative or positive depending on the specific
term. In fact, both the source terms related to the interaction of p with itself
and q with itself are negative, which is related to the dissipation of fluctuating
kinetic energy through collisions. With respect to the inter-species terms, or
coupling terms, we consistently observe that while the source term linked to
p → q is negative, the q → p is positive, which indicates that the heavier
particles transfer energy to the lighter particles through the source term.

In dilute cases, the collision fluxes tend to be negligible in comparison with
the source terms, and the opposite is true as well. This is precisely what hap-
pens in the fluctuating kinetic energy budgets as the particle volume fraction
augments. As the cases are more dense, the collision fluxes augments and
consequently the mechanisms that produce fluctuating kinetic energy through
particle-particle interactions, the proportion to the dissipation mechanisms mas-
sive overloads it, see Figure 3.42, thus the positive terms in the mono-disperse
budgets.

In the bi-disperse cases, as shown in the previous section, the sign of the
particle-particle interaction is in fact the result of the proportions of the precisely
defined source and flux terms.

147



−0.4 −0.2 0 0.2 0.4
−2

−1

0

1

2

2y/H

source transport production

(a)

−0.4 −0.2 0 0.2 0.4
−2

−1

0

1

2

2y/H

source transport production

(b)

Figure 4.15: Decomposition of the collision terms present in the q2
p transport

equation, into: source, transport and production for the case B2.
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Figure 4.16: Decomposition of the collision terms present in the q2
q transport

equation, into: source, transport and production for the case B2.
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Figure 4.17: Decomposition of the collision terms present in the q2
p transport

equation, into: source, transport and production for the case B3.
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Figure 4.18: Decomposition of the collision terms present in the q2
q transport

equation, into: source, transport and production for the case B3.
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Figure 4.19: Decomposition of the collision terms present in the q2
p transport

equation, into: source, transport and production for the case B4.
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Figure 4.20: Decomposition of the collision terms present in the q2
q transport

equation, into: source, transport and production for the case B4.
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4.3.3 Kinetic versus collisional terms
From the particle fluctuating kinetic energy equation, Eq. (4.5), and the

decomposition of the particle-particle interaction term, Eq. (2.76), it can be
seen that there are two mechanisms of fluctuating kinetic energy production, a
purely kinetic P k

qp, and one to the particle-particle interaction: P c
qp . The ratio

of the collisional to the kinetic production, is: P c
qp/P k

qp = −θqp,xy/npmpRp,xy.
Normally this ratio tend to zero for very dilute cases, and increase as the

particle volume fraction increases. In our bi-disperse cases, the total particle
volume fraction does not greatly vary from one case to another. What actually
varies is the overall inertia, that augments from case B0 to B4. The ratios of the
collisional to the kinetic production are given by Figure 4.21, we note a tendency
of diminution of the collisional production with respect to the kinetic one as the
particle inertia augments, indicating that the purely kinetic production grows
faster with the particle inertia in comparison with the collisional one.
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Figure 4.21: Collisional to Kinetic production ratio.
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4.4 Particle-Particle interaction modeling
4.4.1 Kinetic theory based collision modeling

In the previous section, the global particle-particle interaction terms were
decomposed into flux and source like terms according to the formalism presented
in section 2.7. In this section we present a kinetic theory modeling approach,
that can be associated to such decomposition formalism.

In the framework of the kinetic theory, the expected rate of change of a
given transported variable can be equated in the form a integral over the ve-
locity space, see [18]. This collision integral can be expanded through a Taylor
series, into source and flux like terms, see [26]. Notably [10] explored this decom-
position for the mono-disperse case, and then [35] extended the methodology
for the bi-disperse case. The equations derived by Fede and Simonin. are given
in the Apendix A. Specifically, the collision flux is given by Eq. (A.1), and the
source, or redistribution term, by Eq (A.2).

Although the formalism shown in section 2.7 is not constrained by any hy-
pothesis of the kinetic theory approach still its methodology can be applied in
our case.

Restitution Coefficient

The equations presented in Apendix A require a value for the collision resti-
tution coefficient. In our simulations, even though the dry collision restitution
coefficient is set to one, due to lubrication effects, the effective restitution coeffi-
cient is in reality different for each interaction, notably depending on the impact
conditions.

A formula for the average restitution coefficient ⟨e⟩ that takes into account
the lubrication effect in a mono-disperse flow has been proposed by [1], and it
is given by Eq. (4.7). The formula depends on the values of Tβ and Vβ , which
are respectively given by Eq. (4.8) and Eq. (4.9). Where β is an experimental
parameter, and the authors suggest to use the following value: β = 35.

⟨e⟩ = 2e0

∫ ∞

0
ue−u2

e
−1/
(

2T
1/2
β

u
)
du (4.7)

Tβ = 2
3q2

p/V 2
β (4.8)

Vβ = β

4
dp

τp
(4.9)

The solution to the average restitution coefficient, using e0 = 1, as a function
of the parameter Tβ is plotted on Figure 4.22. We note that as the value of Tβ

tends to zero, so the value of the average restitution coefficient tends to zero as
well. At the opposite when Tβ is very large, then ⟨e⟩ tends to e0. The authors
propose the following approximation for ⟨e⟩ when Tβ ≫ 1, reads:

⟨e⟩ ≃ e0

(
1 − 1

2

√
π

Tβ

)
(4.10)
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That approximation, is showed in a red dashed line in Figure 4.22 as well.
We note that this formula present a very good approximation for values of
Tβ > 103.
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Figure 4.22: Solid line: numerical solution of the mean restitution coefficient,
given by Eq. (4.7) which takes into account the lubrication effect for e0 = 1.
Dashed line: approximate formula for Tβ ≫ 1.

In order to account for the bi-dispersion, the bi-disperse relaxation time,
τ∗, is used at Eq. (4.9). In addition to that, the fluctuating kinetic energy
is pondered by the product of the particle number density times the particle
density, in the formula of Tβ , thus yielding the following variables for the collision
pair pq:

T ∗
β,pq = 2

3
1

V ∗
β

2

(
npρpq2

p + nqρqq2
q

npρp + nqρq

)
(4.11)

V ∗
β = β

4 dp/τ∗
p (4.12)

Substituting the variable T ∗
β,pq on Eq. (4.7), would then yield the effective

restitution coefficient related to the collision pair pq: ⟨epq⟩. Which is used to
compute the collision fluxes and restitution terms presented in the next sections.
The other restitution coefficients related to the other collision pairs can be easily
found in an analogous manner.
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For our simulated cases, we obtain values of T ∗
β in the order of magnitude

of ∼ 100. Indicating that the approximation formula given by Eq. (4.10) cannot
be used. Hence, the integral of Eq. (4.7) is numerically solved.

Computed values of the mean restitution coefficient for all the cases are
given by Figure 4.23. We note that as the overall particle inertia, or bi-disperse
Stokes number, of the cases augment the computed mean restitution coefficient
augment as well. Furthermore, we observe that the order of magnitude of the
coefficients < epp >, < eqq > and < epq > are close to one another. Those values
are going to be used in the next sections withing the frame of the comparison
of our resolved data with available models.
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Figure 4.23: Mean restitution coefficient computed for all the cases: (a) < epp >,
(b) < eqq > and (c) < epq >.
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4.4.2 Momentum collision flux term
A sensibility test for the collision flux model, given in Appendix A, is per-

formed by varying the restitution coefficient and the parameter g0 also discussed
in the Appendix A. Specifically for the bi-disperse case, the parameter g0 can be
computed by Eq. (A.9), yielding g0 = gpq

0 . The sensibility test, for a component
of the collision flux, of the case B2, is presented by Figure. 4.24.

The proposed formula for the restitution coefficient given in the last section,
as well as two other constant restitution coefficients are tested. In addition to
that, the parameter gpq

0 is either computed through the formula or set to one.
For this specific case, we note that the parameter pair (g0, e) = (1, 1), seems

to have a good agreement compared with the data. If the value of the resti-
tution coefficient is set to one and gpq

0 is used, the model overestimate the
results. Maintaining however g0 equals to one and computing the average resti-
tution coefficient either through the formula or setting it to 0.5, the model
underestimates the collision flux. Interestingly, when both parameters are used,
(g0, e) = (gpq

0 , < e >), then the curve seem to fall into tendency of the results
from the our simulations. Even tough in this case both the simple combination
(g0, e) = (1, 1) and (g0, e) = (gpq

0 , < e >) give comparable good results, in other
cases, the latter combination is the one that best fits our data, and for that
reason it is the retained one.
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Figure 4.24: Collision flux measured in DNS for the case B2 and the model
prediction for several radial distribution function and restitution coefficient.

Using the retained parameters, all the components of the other cases are
compared. In Figure 4.25, 4.26 and 4.27 are respectively given the terms of the
collision flux tensor for the cases B2, B3 and B4, corresponding to the cases
with relatively higher inertia. We note that there is an overall agreement with
the results.

Regarding the other cases, B0 and B1, the comparison are respectively given
by Figures 4.28 and 4.29. For those cases however, we note that the model seem
to underestimate the value of the collision flux in the stream-wise direction,
while maintaining a good prediction of the other components related to other
components of the tensor.
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Higher Stokes
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Figure 4.25: Comparison of the collision flux with the available model for the
case B2. The symbols are: DNS (xy) ( ); DNS (yy) ( ); DNS (zy) ( );
model (xy) ( ); model (xy) ( ); model (xy) ( ).
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Figure 4.26: Comparison of the collision flux with the available model for the
case B3. The symbols are: DNS (xy) ( ); DNS (yy) ( ); DNS (zy) ( );
model (xy) ( ); model (xy) ( ); model (xy) ( ).
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Figure 4.27: Comparison of the collision flux with the available model for the
case B4. The symbols are: DNS (xy) ( ); DNS (yy) ( ); DNS (zy) ( );
model (xy) ( ); model (xy) ( ); model (xy) ( ).
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Lower Stokes
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Figure 4.28: Comparison of the collision flux with the available model for the
case B0. The symbols are: DNS (xy) ( ); DNS (yy) ( ); DNS (zy) ( );
model (xy) ( ); model (xy) ( ); model (xy) ( ).

159



−1 −0.5 0 0.5 1
−60

−40

−20

0

20

40

60

80

100
·10−2

2y/H

(H
3
/
V

2 w
)
θ p

p
,i
y
/
m

p

(a)

−1 −0.5 0 0.5 1
−15

−10

−5

0

5

10

15
·10−2

2y/H

(H
3
/
V

2 w
)
θ q

p
,i
y
/m

p

(b)

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

8

10
·10−2

2y/H

(H
3
/V

2 w
)
θ p

q
,i
y
/
m

q

(c)

−1 −0.5 0 0.5 1
−2

−1

0

1

2
·10−2

2y/H

(H
3
/V

2 w
)
θ q

q
,i
y
/m

q

(d)

Figure 4.29: Comparison of the collision flux with the available model for the
case B1. The symbols are: DNS (xy) ( ); DNS (yy) ( ); DNS (zy) ( );
model (xy) ( ); model (xy) ( ); model (xy) ( ).
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4.4.3 Kinetic stress source term
Using the same parameters for the average restitution coefficient and g0

parameter (see Figure 4.23 and 4.24), the kinetic stress source term for the cases
B2, B3 and B4 are compared with our results, using Eq. (A.2), in Figures 4.30,
4.31 and 4.32. We observe that the model predicts the good order of magnitude
of the results. As opposed to the results for the momentum collision flux, the
results for the kinetic source term seem to need more significative statistical
events to properly converge.
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Figure 4.30: Comparison of the source term with the available model for the case
B2. The symbols are: DNS (xx) ( ); DNS (yy) ( ); DNS (zz) ( ); DNS (zy) ( );
model (xx) ( ); model (yy) ( ); model (zz) ( ); model (xy) ( ).

For all the cases, we observe that the kinetic stress source term associated
with the stream-wise variance is negative while the other two related to the
orthogonal directions are positive. This is the isotropization effect through
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the source term, where variance is taken from the stream-wise direction and
redistributed to the wall-normal and span-wise directions. A similar effect have
been observed in the mono-dispersed cases in [11].
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Figure 4.31: Comparison of the source term with the available model for the case
B3. The symbols are: DNS (xx) ( ); DNS (yy) ( ); DNS (zz) ( ); DNS (zy) ( );
model (xx) ( ); model (yy) ( ); model (zz) ( ); model (xy) ( ).

Since there is almost no-slip between the lighter and heavier phases, the
results related to the momentum source term are unusable. The results are close
to zero, and therefore a comparison of zero equals to zero yields no significant
value, for that reason only the kinetic stress source term is analyzed.
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Figure 4.32: Comparison of the source term with the available model for the case
B4. The symbols are: DNS (xx) ( ); DNS (yy) ( ); DNS (zz) ( ); DNS (zy) ( );
model (xx) ( ); model (yy) ( ); model (zz) ( ); model (xy) ( ).
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4.4.4 Kinetic stress collision flux term
We have also, measured the kinetic stress collision flux for the cases B2,

B3 and B4. They are given by Figures 4.33, 4.34 and 4.35. Similarly to the
momentum collision flux shown in section 4.4.2, the kinetic stress collision flux
coverges quicker than the source terms with results having a high signal to noise
ratio.

For the cases B2 and B3, we observe that the only non-null kinetic stress
collision fluxes are those related to the stream-wise variance and the principal
shear kinetic stress, that is θxxy and θxyy, with a positive slope for the first and
negative one for the second.
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Figure 4.33: Comparison of the kinetic stress collision flux with the available
model for the case B2. The symbols are: DNS (xxy) ( ); DNS (yyy) ( );
DNS (zzy) ( ); DNS (xyy) ( ).
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Figure 4.34: Comparison of the kinetic stress collision flux with the available
model for the case B3. The symbols are: DNS (xxy) ( ); DNS (yyy) ( );
DNS (zzy) ( ); DNS (xyy) ( ).

Similar results are found for the case B4 as well with the exception that in
this case a slightly negative slope for the kinetic stress collision flux related to
the wall-normal direction is found.
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Figure 4.35: Comparison of the kinetic stress collision flux with the available
model for the case B4. The symbols are: DNS (xxy) ( ); DNS (yyy) ( );
DNS (zzy) ( ); DNS (xyy) ( ). model (xy) ( ); model (xy) ( );
model (xy) ( ).
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Conclusion and
Perspectives

Concluding remarks
A particle resolved numerical simulation tool, based on the tensorial viscous

penalty method, that allows the resolution of the fluid-flow around the moving
particles was used to investigate both mono and bi-disperse fluid-particle flow in
a Couette configuration. The aim is to comprehend, test, improve and develop
macroscopic models in the frame of the kinetic theory of granular flow, notably
leveraging the level of detail contained in the resolved simulations.

Related to the code, an optimization of the parallelism was performed, which
greatly improved the performance of the code, allowing for the cases investigated
in this thesis to be computed with much less computational cost.

A hybrid Eulerian-Lagrangian statistical approach was introduced, consist-
ing in two different formalisms, one associated to Eulerian averaging for the fluid
phase and another Lagrangian averaging for the particle phase. The first one is
based upon the characteristic phase operator, and with that, transport equations
for the fluid taking into account the exchanges occurring in the fluid-particle
interfaces are obtained, and associated with it, average transport equations such
as the fluid fluctuating kinetic energy transport equations are derived.

The Lagrangian averaging for the particles, is primarily based upon a fine-
grained probability density function and the Liouville’s formalism. Transport
of equation of average particle quantities such as the mean particle velocity and
particle kinetic stress equations were derived. An original aspect about such
equations is that they allow for the precise separation of the particle-particle and
fluid-particle interaction terms. Also, no assumption of instantaneous collisions
are presupposed, indeed, long duration contacts are allowed. As a matter of fact,
the formalism presented in this thesis could be easily applied to electric fields,
or other types of forces as well. A link between the two statistical formalism’s
is explored with a discussion about the exchange terms, occurring at the fluid-
particle interfaces. It is also shown how such terms can be extracted from our
numerical simulations.

We also show an original decomposition of the particle-particle interaction
terms into source and flux terms. Such a decomposition allows for the bet-
ter comprehension of the physical mechanisms playing a role in the transport
equations, clearly separating production, dissipation and inter-particle-species
transfer of energy, or more precisely in our case, how particles generate fluc-
tuating kinetic energy as they collide or how they transfer variance of velocity
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from a direction to another. Moreover, with such a separation one can perceive
the fact that the collisional flux related terms become more important as the
particle volume fraction augments, while source related terms are dominant in
very dilute flow, thus clearly separating the mechanisms associated to the di-
lute and dense particle flows. Further, a link with such a decomposition and a
decomposition linked to the kinetic theory of granular flow was also discussed
during the analysis.

Six mono-disperse cases in moderately dense regimes were investigated, with
the particle volume fraction varying from 5% to 30% and the bulk Stokes num-
ber, which is a non-dimensional number that characterizes the particle inertia in
a given fluid environment, ranging from 15 to 30. We observe that a macroscopic
transition occurs in that range, with the particles accumulating more near the
centre for low bulk Stokes numbers, and the opposite, with particles accumulat-
ing more near the walls for the higher Stokes number. This transition was latter
explained in the thesis by the action of two opposite physical mechanisms, in
fact, on one hand, the fluid pushes the particles to the centre of the core flow
and on the other hand, particle pressure, associated with particle variance and
collisions between the particles, expels the particles from the centre. In order
for the particle flow win the fluid action pushing it toward the centre, it has
to produce enough fluctuating kinetic energy, and since the mechanisms of pro-
duction are proportional to the gradient of mean particle velocity, the Stokes
number is thus the good parameter to characterize such a transition, indeed, it
is directly proportional to particle velocity gradient and inversely proportional
to the fluid-particle response time, which is associated to the fluid-particle force.

As a first analysis, macroscopic parameters such as the local particle num-
ber density, particle volume fraction and mean fluid and particle velocities were
extracted from resolved simulations. As a result from the fore-mentioned transi-
tion, the shape of the volume fraction profiles change from concave to convex as
the Stokes number augments. Also, we observe that both the particles and the
fluid have approximately the same mean velocity, hence with a very small mean
slip between the phases. Based on such slip, the particle Reynolds number is
found to be ranging between 10−3 ∼ 100, thus relatively small.

In addition, particle and fluid fluctuating kinetic energies are measured, and
similarly, due to the transition, the shape of such curves change, but this time,
from convex to concave. As a matter of fact, a inverse relationship is found
between the particle number density and the particle fluctuating kinetic energy,
which has its explanation roots into the so-called particle pressure effect, where
regions of higher variance are accompanied by regions of lower particle number
density. This can be easily demonstrated as result of the transport equations.
Additionally, we also found that the fluctuating kinetic energy of the fluid phase
is systematically smaller than that of the particles. This was latter explained in
the thesis to be related to the fact that the particles actually pilot the flow and
not the other way around, which is different from gravity driven flows, where
fluid fluctuations drive the particle fluctuations.

Statistics of the fluid flow are investigated, such as pressure, Reynolds stresses
and viscous dissipation are given. Related to the diagonal terms of the Reynolds
stresses, we observe that for all the cases the component associated to the
stream-wise direction are systematically larger than the other ones, which is
related to the fact that the mechanisms of variance productions are primarily
linked to this direction. Concerning the Reynolds shear stresses we observe that
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the only non-null term is the one related to the shearing plane.
Further, both the viscous dissipation associated to the transport equation of

the mean kinetic energy and that of the fluctuating kinetic energy are measured
from our resolved simulations, and, as expected, the order of magnitude of the
dissipation is larger for the cases with high Stokes number, as those cases are
more energetic. Based upon those values, spatial and temporal scales associated
to the fluid fluctuating kinetic energy are evaluated and compared to other
relevant scales. With respect to the spatial scales, they are compared to the
particle diameter and the average interstice length between the particles, this
showed that those scales are in fact confined between the particles. Also, a
similar analysis with temporal scales showed that those scales are smaller than
the particle response time. This bespeaks to the fact that the fluid fluctuations
are probably wakes, confined between the particles, generated as the fluid passes
through. Such analysis is also backed up by the budget analysis of the fluid
fluctuating kinetic energy, which shows that mainly fluid variance is created by
the particles.

With respect to the particle statistics, we first evaluate the local Stokes
based on the local mean velocity gradient and compare it to the bulk Stokes
number. For the cases with bulk Stokes number equal 15, or the cases with
smaller inertia, the local Stokes number in the center of the core flow is found
to be much smaller, being close to 1, whereas for the cases with bulk Stokes
number equal to 30, values of about 25 are found in the center of the core flow.
This occurs due to the fact that the mean velocity gradient for the cases of small
inertia are greatly diminished in the center of the core flow.

Particle velocity fluctuations such as the particle kinetic stress, third and
fourth order correlations are shown and analyzed in the context of the fluid-
particle flow. The overall profiles of particle kinetic stresses are very similar to
those of the Reynolds shear stresses, with the velocity variance related to the
stream-wise being the larger one among the principal directions, and the shear
stress related to the applied shear being the only non-null one. The fact that the
particle kinetic stress is similar to the Reynolds stress is thoroughly explained
latter by the analysis of the budgets of the transport equations.

Still related to the particle kinetic stress, we also studied the anisotropy co-
efficient and an inverse relationship with the particle volume fraction is found,
which is associated with the fact that more particles promote more particle-
particle interactions and consequently more the mechanisms of energy redis-
tribution, or isotropization, through collisions. The Boussinesq approximation
with a standard eddy-viscosity-like, or kinetic viscosity closure, in this case, is
investigated. Related to such viscosity, a direct relationship with the particle in-
ertia and and an inverse relationship with the particle volume fraction is found.
Further, a Knudsen number related to such viscosity is computed and it is found
to be very small, in the order of magnitude of 10−4, showing that the cases are
in fact close to a local equilibrium. We also examined the predicted values of the
kinetic viscosity against available modeling in order to comprehend the trend of
the data.

Regarding the third order correlations, we tested the consistency of the so-
called Grad approximation and the gradient model. In such inquiry, we calculate
whether such equations predict the correct correlation given the data of other
correlations. And indeed, those correlations were consistent with the data.
Another Knudsen number, based on the gradient model coefficient is computed,
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and again, it also indicated a system close to the equilibrium. With respect to
the forth order correlations, we tested the Grad and Gaussian approximation,
and we found that the Gaussian approach is more consistent with out data
set. The fact that the models of third and fourth order correlations are nicely
consistent with the models is related to the fact that the systems are close to a
equilibrium, which were indicated by the Knudsen numbers.

The budgets of the transport equations related to the fluid-particle flow were
computed from our resolved simulations and investigated to understand local
physics of the fluid-particle flow. In the mean wall-normal particle velocity
budget for instance we noticed that the fluid pushes the particles towards the
centre of the core flow. In the budget of the fluid fluctuating kinetic energy we
noted that nearly all the production of it comes from the interaction with the
particles. This in conjunction with analysis of the its scales, as already stated,
indicates that fluid variance comes mainly through the direct interaction with
the particles and, as the fluid passes through it, it creates wakes that remain
confined in between the interstices of the particles.

In the budget of the particle fluctuating kinetic energy, we observed that
the fluid only destructs particle variance through fluid friction, in that sense,
consistent with the previously discussed budget since in both of them there
is an indication of energy transfer from the particles to the fluid. We also
noticed that the main mechanisms of particle variance creation are due to the
production terms, which can be traced to the gradient of mean particle velocity.
One due to the kinetic production, and another due to collisional production.
With respect to the global particle-particle interaction term, we clearly observe
a direct relationship of it with the particle volume fraction, which is due to the
fact that the collisional flux terms becomes more dominant as the particle flow
becomes denser.

Related to the particle kinetic stresses, we note that the production terms
only occur in the stream-wise direction, hence the larger values of particle kinetic
stress in that direction. In the other orthogonal directions, velocity variance
is only generated through redistribution through particle-particle interactions.
This, in conjunction with the previous analysis, also explains why the Reynolds
stresses are larger in the stream-wise direction as well, which is ultimately re-
lated to the fact that variance in the fluid comes from the particles, and the
particles, generate more in this direction. Concerning the shear-stresses, the
only non-null production occurs in the xy plane, which is the only-non null one.

The instantaneous fluid force in a isolated particle and the mean force of in
the frame of an ensemble of spheres is discussed. We discussed the available
modeling and the relationship with the data obtained with simulations of the
flow past a fixed array of particles. After a discussion and a original analysis
of the force-velocity fluctuation is performed using a stochastic Langevin-type
impulse model.

Related to the mean transverse force, a correlation analysis is performed to
verify with which variables the mean force most correlates with, to investigate
the origin of such force. For the cases with small inertia, only the one with the
smaller volume fraction highly correlates with variables related to traditional
lift expressions, such as the Saffman lift. Even tough such force predicts the
correct order of magnitude it does not however predict the right sign. We also
compared it with other candidates, such as the force due to pressure gradient
and a Magnus-type force and none of them seem to be appropriate in this case.
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Regarding the cases with high inertia, on the other hand, a high correlation is
observed with the gradient of particle volume fraction, indicating that possibly
a phenomenon related to that is taking place. Associated with such high cor-
relation, we computed a linear coefficient and plotted against the data, which
gave a good fit with just a linear coefficient. Again, such a force is compared
against other candidates, and all of them were much smaller than the order of
magnitude of the data.

Based on a stochastic formulation of the particle impulse due to the en-
vironing fluid, with a Langevin-type equation, we derived expressions for the
force velocity fluctuations correlations which are to be used in the transport
equations of first, second and third order. Such expressions are dependent on a
linear force tensor and a dispersion tensor. We then framed this set of equations
in a particular case corresponding to the modeling approach used by Simonin
(which was originally developed for dilute flows) and tested against our data
(consisting in moderately dense flows), which finally, nonetheless, gave a good
prediction of the order of magnitude of the data, as well as good insights into
the modeling aspects of the drag. Within this analysis we noted however that
more degrees of freedom would be needed to accurately describe the results,
with that in mind, we then assumed other versions of such a model and then
verified whether such a form would be consistent.

Still related to that, first we assumed a version of such model with two non-
null coefficients, one linear force coefficient and another dispersion coefficient.
The results showed that such a model was not able to reproduced the data.
After that we tested whether a version of such model with a fully anisotropic
linear force tensor and a null dispersion coefficient would consistently reproduce
the data. The results showed that indeed such a form is compatible with our
particle-resolved simulation data (And the fact that this model works, may be
related to the fact that the anisotropic linear force tensor captures the effects
of neighboring particles in our moderately dense flow). This opens the question
into how to model such a tensor.

Next on the last chapter, five bi-disperse simulations are then analyzed. A
method for computing the equivalent bi-disperse Stokes number is derived and
then analyzed in the frame of our data, which indeed seemed to be coherent, in
fact, most of the statistics either grow or decrease according to the augmenta-
tion of this parameter. The values of the mean velocity for all the phases are
very close to one another, hence with a negligible slip between all the phases.
Analogously to the mono-disperse cases the particle fluctuating kinetic energy
is larger than the fluid fluctuating kinetic energy, regarding the difference be-
tween the fluctuating kinetic energy of the lighter versus the heavier phase, we
observed that they are very close for all the cases, with the exception of the
most inertial case, which was explained by the relationship of time-scales in this
case.

The budget of the fluctuating kinetic energy is then presented with the
particle-particle interaction term separated into one due to the effect of the
lighter phase and another due to the heavier phase, clearly showing the cou-
pling effect between the phases. Next, these global particle-particle interaction
terms are separated into the source and flux related terms. This analysis showed
that even though the global particle-particle interaction terms may assume any
arbitrary value, those separated terms had a clear sign related to a physical
mechanism, for instance, the collisional production is, as expected, always pos-
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itive, whereas the source term assume negative or positive values depending
on whether the there is a transfer from on particle phase to the other, with re-
spect to the dissipation through particle-particle interactions. We also compared
the effects of kinetic versus collisional production, which, within our parame-
ter range, as the inertia augments, the ratio of the collisional to the kinetic
production shrinks.

An extension of the mean restitution coefficient for the bi-disperse case is
presented and then computed for all the cases. Such values are then used to com-
pare the momentum collisional flux and the kinetic stress source term, yielding
interesting results.

One could say that, the avant-garde aspect of this thesis work, is to pro-
vide a comprehensive methodology for the analysis of fluid-solid flows through
particle-resolved simulations, including suitable statistical procedures based on
a powerful formalism in which the high level of microscopic detail contained in
the simulations are leveraged to provide useful macroscopic statistics. Further-
more, fluid-particle and particle-particle interactions are exhaustively analyzed
providing interesting mathematical modeling insights that ultimately deepen
the comprehension of the fluid-particle flow physics.

Perspectives
With the accomplishment of this thesis work, some questions that would

deserve the attention of a future study appeared. In this section, we aim to cite
and describe some of those ideas that would certainly contribute to a progress
in the field.

As a first perspective, it would be interesting to study the effects of particle
rotation in the Couette configuration. This could be done by the computation of
the mean angular velocity and its fluctuating correlations, such as the fluctuating
kinetic energy associated to the rotation. And that, followed by an investigation
of the budgets of the transport equations of those variables. Which would serve
to characterize the transfers between particle rotation and translation, and the
possible implications of that in the fluid-particle flow.

Pseudo-turbulence could be further studied to test whether its values could
be predicted by modeling. As a first step in this direction, a correlation analysis
of the Reynolds stresses as well as the fluctuating kinetic energy with other
variables could be performed to check with which parameter those pseudo-
turbulence related variables are correlated most. Additionally, it could be tested
against available models in the literature as well.

Regarding the transfer of momentum from the fluid to the particles. It would
be interesting to further investigate the role of the local micro-structure, or more
precisely, how the local organization of an ensemble of neighboring particles
affects the fluid force applied to a given particle. Indeed, what motivates this
investigation is the strong correlation between the mean transverse force and
the gradient of particle volume fraction in our configuration. The work in this
direction could be tackled at two possible fronts: the first, to look qualitatively
at the fluid flow around the particle to examine more in detail why this happens,
and the second, to verify whether it is possible to derive through first-principles,
a lift coefficient that would take into account such effect.
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Related to force-velocity fluctuation correlations, it has been demonstrated
that for our Couette configuration, an anisotropic force tensor stemming form
an Stochastic based approach is enough to model the data extracted from our
resolved simulations. It would be useful to further inspect into the possibilities
of modeling such a tensor.

Another beneficial perspective would be to perform the numerical integra-
tion of Eq. (2.51). With those results, then the divergence term present in
Eq. 2.53, could be further studied. In a similar fashion, the other divergence
terms associated to other coupling terms, such as the one associated to the
fluctuating kinetic energy could be also studied by using a similar procedure.
Such computations would make possible to further dive into the analysis of the
budgets of the fluid transport equations.

With respect to particle-particle interactions, it would be interesting to de-
rive a formula for the bi-disperse kinetic stress flux term, using the same ap-
proach as the one for the derivation of the formulas in the Appendix A, and
compare it with the data extracted from our resolved simulations, given in the
form of graphs in this thesis. Additionally, the study of the decomposition of
the particle-particle interaction terms into source and flux terms could be also
performed for the mono-disperse cases as well.

With enough high performance computation resources available, it would be
helpful to perform more ”simulations points”, broadening the range of particle
volume fractions and Stokes numbers. This would permit to further extend
the range of validity of the models shown in this manuscript, as well as to
deepen the comprehension of the involved phenomena. Indeed, increasing the
number of particle volume fraction ”simulation points”, with very dilute and
super dense cases, would for instance permit to further inquire into the influence
of neighboring particles and the role of particle-particle interactions versus fluid-
particle interactions in those different limiting cases.

Furthermore, increasing the range of particle inertia, would allow for the
investigation of possible new mechanisms occurring at either very high of very
low Stokes numbers, as well as to better characterize the competing mechanisms,
described in this thesis, related to the transition. Besides, with respect to bi-
disperse cases, other combinations of cases could be tested as well, including for
instance other combinations of particle density ratio, and other combinations of
particle volume fractions as well.

Moreover, the same methodology of analysis used in this thesis could be
used for other configurations, such as a channel flow or gravity driven flow.
This could provide other useful insights into the fluid-particle flow dynamics.

Performing a benchmark test against other comparable codes to see whether
similar results could be obtained, would be of value as well. Additionally, it
would be interesting to try engineer a experimental apparatus, within the same
range of Stokes numbers and particle volume fractions to further study the flow.

Finally, last but not least, the authors of this study firmly believe that the
results of this thesis could be used to provide content for scientific communica-
tions, such as articles in journals, or presentations in international conferences.
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Appendix A

Bi-disperse source and flux
terms formulas

In this appendix, we give the formulas for the bi-disperse collision flux.
The collision flux for mono-disperse particle laden-flow have been investigated
by [10], and then extended to the bi-dispersed case by [35, 36]. Eq. (A.1) is
the formula of the collision flux for the bi-disperse case, derived by the former
author:

−θpq,ij

mq
= +Mqp

1
12νc

pqLpq
1 + ec

2 δij (A.1)
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1
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pqd2
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)
The formula for the bi-disperse redistribution tensor, or source term, is given

by the Eq. (A.2):
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Where the values of Dp,ij , Mpq, Mqp, Lpq, νc
pq and R̂p,ij are respectively

given by the following set of equations:
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(A.7)

R̂p,ij = Rp,ij − Tpδij (A.8)

For more details on the derivation of that equation, see the original docu-
ment [35]. Concerning the value of g0, which comes from the molecular chaos
assumption [18], for bi-disperse particle flow, we use the formula proposed by
[80]. It is given by the set of equations below:
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αm = αp + αq (A.12)
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Particle-resolved numerical simulations of the gas–solid heat transfer in arrays
of random motionless particles. Acta Mechanica, 230(2):541–567.

[115] Tsao, H.-K. & Koch, D. L. (1995). Simple shear flows of dilute gas–solid
suspensions. Journal of Fluid Mechanics, 296:211–245.

[116] Tsuji, Y., Kawaguchi, T., & Tanaka, T. (1993). Discrete particle simula-
tion of two-dimensional fluidized bed. Powder technology, 77(1):79–87.

[117] Uhlmann, M. (2005a). An immersed boundary method with direct forcing
for the simulation of particulate flows. Journal of Computational Physics,
209(2):448–476.

184



[118] Uhlmann, M. (2005b). An improved fluid-solid coupling method for dns
of particulate flow on a fixed mesh. In: Proc. 11th Workshop Two-Phase Flow
Predictions, Merseburg, Germany.

[119] Uhlmann, M. (2006). Experience with dns of particulate flow using a vari-
ant of the immersed boundary method. In: ECCOMAS CFD 2006: Proceed-
ings of the European Conference on Computational Fluid Dynamics, Egmond
aan Zee, The Netherlands, September 5-8, 2006. Delft University of Technol-
ogy; European Community on Computational Methods in Applied Sciences
(ECCOMAS).

[120] Uzawa, H. (1958). Iterative methods for concave programming. Studies
in linear and nonlinear programming, 6:154–165.
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