Summary

The design of complex systems involves several design models supporting different analysis techniques for validation and verification purposes. These activities lead to the definition of heterogeneous modelling languages and analysis techniques. In this setting, meeting certification standards becomes a key issue in system engineering. Reducing heterogeneity due to the presence of different modelling languages can be addressed by providing an integrated framework in which involved modelling languages and techniques are formalised.

In such a framework, checking global requirements fulfilment on heterogeneous models of a complex critical system becomes possible in many cases.

The work presented in this thesis addresses the problem of integrated verification of system design models in the context of transportation systems, in particular railway systems.

It has been achieved in context of the B-PERFect project of RATP (Parisian Public Transport

Operator and Maintainer) aiming at applying formal verification using the PERF approach on the integrated safety-critical models of embedded software related to railway domain expressed in a single unifying modelling language: High Level Languge (HLL). We also discuss integrated verification at the system level. The proposed method for verification of safety-critical software is a bottom-up approach, starting from the source code to the high-level specification. This work addresses the particular case of the B method. It presents a certified translation of B formal models to HLL models. The proposed approach uses Isabelle/HOL as a unified logical framework to describe the formal semantics and to formalise the transformation relation between both modelling languages. The developed Isabelle/HOL models are proved in order to guarantee the correctness of our translation process. Moreover, we have also 4 used weak-bisimulation relation to check semantic preservation after transformations.

In this thesis, we also present the implementation of the defined transformation syntactic rules as the B2HLL tool. Moreover, we show the model animation process we set up to validate the B2HLL translator tool with respect to the formalised transformation rules we defined in Isabelle/HOL. This approach helps us to validate definitions, lemmas and theorems of our formalised specifications.

We have used the B2HLL tool to translate multiple B models, and we also show that when models are translated into this unified modelling language, HLL, it becomes possible to handle verification of properties expressed across different models.

Resume

Dans le contexte du développement des systèmes critiques industriels qui traduisent des exigences de sécurité et de sûreté de première importance, car elles impliquent des vies humaines, un processus de développement de haute qualité doit être mis en place. Ces systèmes ne cessent de se complexifier et sont contrôlés par des programmes logiciels. Afin d'éviter les aléas de l'erreur humaine lors de la conception d'un système, il faut s'assurer que le système vérifie les propriétés de sécurité nécessaires. Une solution pour aider à garantir la sécurité d'un système est d'utiliser les méthodes formelles.

La conception de systèmes complexes comprend plusieurs techniques de validation et de vérification. Ces activités conduisent à la définition de langages de modélisation hétérogènes et de techniques d'analyse. Dans ce contexte, le respect des normes de certification devient un enjeu clé de l'ingénierie des systèmes. La réduction de l'hétérogénéité due à la présence de différents langages de modélisation peut être abordée en fournissant un cadre intégré dans lequel les langages et les techniques de modélisation impliqués sont formalisés. Dans un tel cadre, la vérification du respect des exigences globales sur des modèles hétérogènes d'un système critique complexe devient possible dans de nombreux cas.

Les travaux présentés dans cette thèse abordent le problème de la vérification intégrée des modèles de conception des systèmes dans le contexte des systèmes de transport, en particulier des systèmes ferroviaires. Il a été réalisé dans le cadre du projet B-PERFect de la RATP visant à appliquer une vérification formelle en utilisant l'approche PERF sur des modèles critiques de logiciels embarqués du domaine ferroviaire exprimés dans un seul langage de modélisation : High Level Languge (HLL). Nous discutons également de la vérification intégrée au niveau du système. La méthode proposée pour la vérification des 6 logiciels critiques est une approche ascendante, qui va du code source à la spécification de haut niveau. Dans cette thèse, nous présentons également l'implémentation des règles syntaxiques de transformation dans le prototype d'outil B2HLL. De plus, nous montrons le processus d'animation de modèle que nous avons mis en place pour valider l'outil de traduction B2HLL par rapport aux règles de transformation que nous avons définies, formalisées dans Isabelle/HOL. Cette approche nous aide à valider les définitions, les lemmes et les théorèmes de cette formalisation.

Nous avons utilisé l'outil B2HLL pour traduire plusieurs modèles B, et nous montrons également que lorsque les modèles sont traduits dans ce langage de modélisation unifié, HLL, il devient possible de gérer la vérification des propriétés exprimées à travers différents modèles.
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Introduction

Nowadays, it is well known that the development of complex industrial systems involves both hardware and software, and such complex systems require high-quality development processes. In fact, such systems need to set up robust testing and verification protocols when working with critical applications such as transportation, aviation, medical, etc. Such systems are said to be critical. The critical adjective denotes that a system malfunction can have dramatic consequences for people, significant material damage, significant economic losses, or serious environmental consequences. Formal methods have been widely accepted and used in rigorous development process for verification and validation of safety critical systems.

In the development of a complex system, several stakeholders are involved in a single task or multiple tasks associated with different development processes of the system to be developed. Each of these development processes involves multiple development activities and models that are shared among all stakeholders. A consequence of the involvement of many 16 CHAPTER 1. INTRODUCTION stakeholders in such developments is heterogeneity. Indeed, each stakeholder can set up a number of modelling techniques, programming languages, design processes, validation and verification procedures, etc. Each stakeholder is responsible for delivering the components (hardware or software) he is in charge of. Then, the main issue remains in the global verification and validation, of the whole complex system. To solve this issue, one solution consists in imposing a standardised approach based on shared processes and languages. This thesis topic is relevant to the larger context of railway safety, specifically the use of formal methods to evaluate and verify safety requirements in the context of safety critical systems. For safety critical systems, this validation and verification process is part of the design process. More specifically, we are concerned with the validation and verification of systems developed by various stakeholders using their own modelling languages and development processes. Our work addresses handling of heterogeneity in large industrial systems developments. As automated systems become more complex, evaluating their structural and behavioural properties becomes increasingly difficult.

Industrial Context

The research presented in this thesis was conducted in collaboration with IRIT (Institut de Recherche en Informatique de Toulouse) and RATP (Régie Autonome des Transports Parisiens). RATP operates one of the most complex urban multi-modal public transportation networks in the world. In the Parisian region, its network includes 16 metro lines, 2 RER (inter-city trains) lines, 7 tramway lines and more than 300 bus lines; transporting an average of 10 Million passengers each day. RATP has built, throughout the years, a rich expertise not only in operating transportation networks but also in the engineering of railway transportation systems. This expertise made RATP one of the world pioneers in metro automation and one of the experts in automating existing lines.

Growing transportation capacity demand coupled with continued advances in computer technology accelerate the obsolescence of existing systems. These factors, added to the improvement and modernisation desires, have led RATP to upgrade its network by adopting integrated and upgradeable solutions, through partially or fully automated transportation systems. RATP deals with CBTC (communication based train control) and interlocking systems. The coexistence of these different systems brings additional difficulties, particularly related to the safety assessment of the railway system and depending on the automation 1.2. INDUSTRIAL CONTEXT level of this system. One major concern of RATP is to ensure the safety of any deployed system on the network during all the project phases. In order to guarantee a better and more extensive safety analysis of the railway software systems, RATP's engineering department relies on rigorous verification methodologies based on formal methods.

PERF. RATP has been involved for several years in applying formal verification techniques

to assess safety of railway systems that gave rise to a formal verification methodology named PERF (Proof Executed over a Retro Engineered Formal Model) [START_REF] Benaissa | The perf approach for formal verification[END_REF], designed to be applicable to any software system independently of their development processes and languages. The approach allows to develop and analyse all the product component models translated in a single shared PERF pivot modelling language equipped with efficient formal verification procedures. This pivot language, HLL [START_REF] Ordioni | HLL v.2.7 Modelling Language Specification[END_REF], is a synchronous data-flow language, close to Lustre [START_REF] Halbwachs | The synchronous data flow programming language LUSTRE[END_REF], allowing to specify both system behaviour and safety properties together. T his translation shall be sound, i.e. semantic preserving. Once models translation is achieved, then the obtained shared models can be used for (integrated) verification and validation purposes. By taking the source code of the developed software as the verification target, it ensures a complete language-agnostic and non-interference with the supplier of the software that drastically reduces any bias. Moreover, maintaining multiple validation techniques in different domains may be expensive in particular when automated assistance is not available. Today, at RATP, more than 50% of safety-critical software for CBTC control/command systems is developed using B method. Historically, RATP supported the development of the B method among railway manufacturers in the 1990s with the METEOR project. Techniques based on formal proof and refinement using the B method, defined by J.-R. Abrial [START_REF]The B-book: assigning programs to meanings[END_REF] have shown their great potential for improving the quality of the software produced and the associated development processes. The B method is based on set theory and proposes incremental development from specification to code, enabling the production of correct by construction software.

PERF and B. Some of the RATP suppliers use the B method for formal design and verification of their critical software. Despite the use of formal methods, vendors cannot incorporate all the safety requirements that the software must meet into their model due to technical and time constraints and to the difficulty to express system requirements. Therefore, when this method is actually implemented in industrial projects, it is rarely CHAPTER 1. INTRODUCTION possible to demonstrate compliance with all the safety requirements for the software.

As a result of several years of experience with this method, the observation that bugs can easily be introduced when translating the informal software specification (document set) into the formal specification in B has been made. It is the starting point of B models.

While the B method ensures that the implementation is correct with respect to the software specification, it does not guarantee that the algorithms (encoded behaviour) themselves are correct with respect to the system-level requirements.

Therefore, analysing the system and proving the key properties that ensure the correct and safe functioning of this system is crucial when developing or extending the algorithms of CBTC systems.

Consequently, the RATP methodology for checking the conformance and completeness of the formal specification of B software against informal documents is manual. It is based either on analysis of documentation produced by the manufacturer (who is responsible for delivering the system and software) or on critical reading of code to evaluate the software developed in B. Currently, this software cannot be evaluated using the PERF method and the PERF workshop because there is no way to translate the B source code to the target language of the PERF workshop.

Therefore, in order to improve evaluation methods (manual verification quickly reaches its limits when dealing with complex models), to bring the analysis of B software to the same level as the analysis of other critical software at RATP, and to unify validation techniques for critical software, a theoretical and practical study of the feasibility of developing a B to HLL translator was carried out as part of this thesis.

Objectives of the thesis

In this thesis, we focus on the correct by construction B method [START_REF]The B-book: assigning programs to meanings[END_REF] to develop software systems by refining a high level specification and to guarantee the correctness of the given safety system requirements.

RATP collects a set of heterogeneous models, seen as black-boxes, that are validated by each stakeholder. A rigorous standard procedure for black box verification and validation for heterogeneous models collected from different stakeholders is set up. In this process, stakeholders receive a set of requirements and produce software components satisfying these requirements, modelled and verified using their own techniques. We demonstrate that a 1.3. OBJECTIVES OF THE THESIS robust approach is given by systematic modelling techniques to enable verification and validation activities. In other words, all the stakeholders still proceed with the design of system models using their own modelling and verification techniques, and each produced model is translated into the HLL modelling language in the PERF integrated verification framework. The B method [START_REF]The B-book: assigning programs to meanings[END_REF] is one of these modelling and verification techniques. At this level, the question of preserving and aligning the semantics of the different modelling languages arises. The answer to this question can be provided by means of a formalised certification procedure to ensure that the semantics of the source model, expressed in B, is preserved by the target model expressed in HLL. For this purpose, a proof assistant can be used. We have chosen to use the Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-order Logic[END_REF] proof assistant tool.

To investigate the applicability of PERF on software systems developed using the B method [START_REF]The B-book: assigning programs to meanings[END_REF], the B-PERFect project was initiated by RATP. The concept behind the B-PERFect initiative is not to substitute formal verification process of B, but to propose an additional method to be used for an unbiased internal safety assessment. Here, the objective is to enrich PERF in the handling of B models. In addition to the classical safety assessment entailed by B, the B-PERFect framework offers the ability to check additional properties on B models integrated with the other models produced by other stakeholders. This process does not question the proof process of B. However, it may eventually reveal possible flaws in the initially stated safety requirements. The proposed method for the verification of safety-critical software is a bottom-up approach from the source code to the high-level specification.

Following the defined process, the B models are automatically translated into HLL models. Since this approach is based on a model transformation tool, semantic preservation and thus translator's certification are key and vital issues. An approach using a proof assistant is set up for this purpose.

In summary, in this thesis we focus on :

• Extending the PERF approach so that it can take into account the B language, which is widely used in the development of railway systems. To this end, the interpretation in HLL of the concepts inherent in B language, such as preconditions, postconditions, invariants, data structures, substitutions, etc., is of central importance.

• Ensuring the semantic adequacy of the interpretation of the B-models in HLL. Formalised arguments will be provided here to show the preservation of the interpretation CHAPTER 1. INTRODUCTION of these various constructions and their compositions. The results of this work are used to certify and/or qualify the developed tools.

• Develop a prototype that transforms the concepts and constructs of the B language to the HLL language, based on the transformation rules that emerge from the work done to reach the first objective.

The ultimate goals of this thesis are to demonstrate clearly the benefits of an integration verification environment, PERF, and to bridge the gap between the system specification and low level implementations.

Contributions

This work motivates and presents a translation from B language to HLL to verify safety properties of critical software independent of its construction. This work allows to extend the PERF approach and shows transformation from imperative to synchronous modelling languages.

This work is composed of the following steps:

• Definition of transformation rules. In order to create a translation proposal, the main elements of the two languages are identified. Rules for the translation of B concepts and constructs into HLL are defined in [START_REF] Halchin | B-perfect -applying the PERF approach to B based system developments[END_REF]. The defined transformation handles the IMPLEMENTATION level of the B language, corresponding to the proven imperative programs, with terminating loops (existing variants), and refers (with SEES and IMPORTS clauses) to other programs defined in externally defined B models.

• Certification of the translation. In order to preserve the formal developments, the transformation process must be correct and consistent. This phase of generating HLL models from B models is critical because a faulty translator may produce a non-conforming program, ruining the formal verification cycle and the whole approach.

For this reason, a study was conducted to ensure the semantic adequacy of the HLL interpretation of B models, [START_REF] Halchin | Certified Embedding of B Models in an Integrated Verification Framework (regular paper)[END_REF]. We have built a certified transformation of B models implementation to HLL models for verification purposes. The defined certification process first expresses the semantics of both B and HLL models together with the defined transformation in a single setting and second proves that the semantics is preserved by transformation. Isabelle/HOL is used to support this certification process.

THESIS OUTLINE
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• Development of a B2HLL translator prototype. This study of the transformation of the B language to the HLL language led to the development and production of a translator prototype. This prototype contains the translation rules we defined. The definition of a methodology to certify and/or qualify the tool produced was carried out by means of model animation [START_REF] Halchin | Validation of Formal Models Transformation through Animation[END_REF][START_REF] Halchin | Handling B models in the PERF integrated verification framework: Formalised and certified embedding[END_REF]. This approach is exemplified on a case study. This thesis contributions are:

• providing a complete description of the transformation process from B implementations, corresponding to the programming level, to HLL models • addressing the formalisation, in Isabelle/HOL, of the semantics of both B and HLL as state-transitions systems • formalising and proving, within Isabelle/HOL, the equivalence theorem based on a bi-simulation relationship

• showing the interest of formal model animation for validation purposes.

Thesis Outline

This section gives references to later parts of the manuscript that deal with specific topics.

The first part of the thesis, consisting of the second chapter, gives the general context of this work and presents the state-of-the-art on the subject. The second chapter describes the different methods and tools used to build the methodology we present. We introduce the context of safety-critical systems and give an overview of the application of formal methods for validation and verification of these systems. Furthermore, concepts of B and HLL modelling languages are presented. An overview of techniques for certifying a transformation is given.

The second part of this thesis deals with our contribution to the verification of safetycritical systems in a heterogeneous context. This part consists of four chapters. Chapter 3 describes our motivation for this project and presents our methodology for software safety verification and our proposal for supporting certification in this domain. Chapter 4 describes the transformation of a system developed using the B-method into HLL for the purpose of system verification. In Chapter 5, we propose a certification process for the translation principles mentioned in Chapter 4. The Isabelle/ HOL formalisation and proof of semantic CHAPTER 1. INTRODUCTION equivalence is presented. Chapter 6 deals with the implementation of this approach, the B2HLL tool. It proposes to apply and validate our approach on a case study. At last, the validation of the translator implementation is discussed using animation techniques. This thesis ends with a general conclusion that highlights the main contribution of our work and provides some research perspectives.

Publications related to the thesis

• Alexandra Halchin, Abderrahmane Feliachi, Neeraj Kumar Singh, Yamine Aït Ameur,and Julien Ordioni. B-perfect -applying the PERF approach to B based system developments. In RSSRail, pages 160-172, 2017. [START_REF] Halchin | B-perfect -applying the PERF approach to B based system developments[END_REF] • Alexandra Halchin, Yamine Ait Ameur, Neeraj Singh, Abderrahmane Feliachi, and Julien Ordioni. Certified Embedding of B Models in an Integrated Verification Framework (regular paper). In International Symposium on Theoretical Aspects of Software Engineering (TASE 2019), Guilin, Chine, 2019. [START_REF] Halchin | Certified Embedding of B Models in an Integrated Verification Framework (regular paper)[END_REF] • Alexandra Halchin, Neeraj Kumar Singh, Yamine Aït Ameur, Julien Ordioni, and Abderrahmane Feliachi. Validation of Formal Models Transformation through Animation.

In KMOTS Worskshop 2019. [START_REF] Halchin | Validation of Formal Models Transformation through Animation[END_REF] • Alexandra Halchin, Yamine Aït Ameur, Neeraj Kumar Singh, Julien Ordioni, and Abderrahmane Feliachi. Handling B models in the PERF integrated verification framework: Formalised and certified embedding.Sci. Comput. Program., 196:102477,2020. [START_REF] Halchin | Handling B models in the PERF integrated verification framework: Formalised and certified embedding[END_REF] Chapter 2 This chapter presents the required scientific background. This thesis focuses on using formal languages to verify complex systems that are both safety-critical and heterogeneous.

State of the Art

To accomplish this, we address the particular case of safety-critical systems developed in a state-based language and verify them using a synchronous data flow language. First, the definition of safety critical systems is given, followed by an overview of industry standards.

Second, formal methods used for safety verification are presented. Further, the background of formal methods used in our work and their industrial application is discussed. Finally, a review of the literature on scientific and technical related topics is presented.

CHAPTER 2. STATE OF THE ART

Safety Critical Systems

A system is an organised collection of elements (or subsystems) that are highly integrated to accomplish an overall goal [START_REF] Backlund | The definition of system[END_REF]. These elements include components (hardware, software, firmware), processes and other support elements. The system has various inputs, which go through certain processes to produce certain outputs, which together, accomplish the overall desired goal for the system. It's referred to as a safety critical system when any system failure or malfunction may have disastrous consequences.

Transport, nuclear, defence, finance and healthcare are major fields where safety critical systems are involved. The stakeholders of such systems are constantly looking for more cost-effective ways to cope with the massive increase in size and complexity, while still ensuring system safety. As a result, the safe behaviour of safety critical systems must be scrupulously validated. Efforts were made to mitigate risk, remove or reduce it so that acceptable levels of safety could be achieved.

In these fields, regulatory constraints must be respected in the development process of a system. Companies must receive approval from a relevant authority that the system they are developing is acceptably safe to operate in accordance with the applicable assurance standards such as CENELEC EN-50128 [START_REF]En 50128 standard: Railway applications -communication, signalling and processing systems -safety related electronic systems for signalling. Standard[END_REF] for railway or DO-178C [START_REF]Software considerations in airborne systems and equipment certification[END_REF] for avionics. The purpose of this industry standards is to reduce the number of risks that might be introduced in the development process, imposing constraints on how the system should be developed and verified according to the criticality of system application. All of these standards cover their subject's entire life cycle, from specification to end-of-life treatment [START_REF] Bowen | Safety-critical systems, formal methods and standards[END_REF]. The focus of this research, however, is on the verification phase of safety-critical systems.

The subject of our study focuses on the railway context. Railway systems generally aim to provide on-time, efficient and, above all, safe train services. A reliable command and control system is required to ensure that the train can safely travel. In general, the railway topology consists of a series of interconnected elements protected by signals that transmit information to the trains. The safety of a train is ensured by the fact that its path may only be established if it does not conflict with the occupation of another train.

The development of software for safety critical railway systems should enable confidence in the system; therefore, the software must be developed so that it is free from design flaws which could cause catastrophic failure [START_REF] Mcdermid | 7 -formal methods: use and relevance for the development of safety-critical systems[END_REF]. Although software does not cause loss of life directly, it can control some equipment that can cause serious injury, such as on-board train equipment. Therefore the development process must follow the set of norms and methods described by the CENELEC1 standard.

The CENELEC EN-50128 [START_REF]En 50128 standard: Railway applications -communication, signalling and processing systems -safety related electronic systems for signalling. Standard[END_REF] standard specifies a wide range of methods that can be used for the development of railway control and protection systems. It defines the degree of rigour in the development process based on Safety Integrity Levels (SILs), which are used to determine the system's acceptable failure rate. There are four SIL levels defined, with SIL4 being the most reliable and SIL1 being the least. The production method and safety life cycle management are among the quantitative and qualitative considerations that go into determining a SIL. In this context, it is necessary to demonstrate that the system meets its safety requirements, that the development process complies with the standards, and that the tools that contributed to the system design or its verification have been qualified in terms of their use and contribution to global safety. Without imposing a solution, EN50128 provides some guidelines on software development methodology and accepted techniques in relation to the established SIL. Indeed, despite CENELEC directives that strongly recommend the use of formal methods that are mathematical methods used to prove that a system meets the safety requirements, verification using a testing approach can be accepted. Software verification has traditionally been accomplished by two methods: reviewing and testing. However, testing approaches don't allow an exhaustive verification. Given the limitations of manual activities, we review in next Section some verification methods of safety critical systems based on formal methods.

According to [START_REF] Bjørner | Development of transportation systems[END_REF][START_REF] Ait-Ameur | Making explicit domain knowledge in formal system development[END_REF], the requirements and specification phases are the most error-prone phases in the development of safety critical systems. Therefore, it is critical to validate and verify safety-critical systems from the beginning of their development. While the use of formal methods and provers guarantees model consistency, determining whether the specification models the desired behaviour is more difficult. However, model completeness and quality remain critical issues that need to be addressed.

Methods for Safety Verification

The CENELEC standard highly recommends the use of formal methods to demonstrate that the system meets the safety requirements. Several formal methods and modelling techniques CHAPTER 2. STATE OF THE ART are listed in the standard, such as CSP 2 , CCS 3 , LOTOS 4 , Temporal Logic, VDM 5 , Z method 6 , B method and model checking. Formal proof is also highly recommended as a verification activity.

Various formal methods can be used to validate or verify the safety of safety-critical systems. These methods are generally based on set and type theories and predicate logic.

Formal methods are extensively discussed in the literature and several classifications have been proposed. A general classification of formal methods can be made based on their foundations and theoretical background. Here we recall some of these formal methods:

• Process algebras, describe the behaviour of concurrent processes based on the interaction between them using a set of algebraically defined operators. For example languages such us CSP [START_REF] Milner | Communication and Concurrency[END_REF], CCS [START_REF] Milner | A Calculus of Communicating Systems[END_REF] and LOTOS [START_REF] Van Eijk | Formal Description Technique Lotos: Results of the Esprit Sedos Project[END_REF].

• Logic-based methods, where logic is used to describe specification of system or program behaviour. For example, temporal logic [START_REF] Galton | Temporal Logics and Their Applications[END_REF].

• State-based methods, give an explicit definition of systems states and transitions that transform the state. Examples of such methods are Z [START_REF] Spivey | The Z Notation: A Reference Manual[END_REF], VDM [START_REF]The Vienna Development Method: The Meta-Language[END_REF], B method [START_REF]The B-book: assigning programs to meanings[END_REF] and Event-B [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF] • Higher-order logic based methods, their particularity is that they describe the system and the associated verification procedure in a uniform setting. Among these methods we can cite Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-order Logic[END_REF], Coq [START_REF] Bertot | Interactive theorem proving and program development[END_REF], PVS [START_REF] Owre | Pvs: A prototype verification system[END_REF].

These methods have been associated to several tools used to validate and verify formal models, ensuring that a design conforms to its specification. Formal verification provides methods and techniques to mathematically prove the correctness of a system, i.e. to prove that the model of the system satisfies the properties required by the user, such as Theorem Proving [START_REF] Edsger | Guarded commands, nondeterminacy and formal derivation of programs[END_REF][START_REF] Hoare | An axiomatic basis for computer programming[END_REF] and Model Checking [START_REF] Edmund M Clarke | Model checking[END_REF][START_REF] Baier | Principles of Model Checking (Representation and Mind Series)[END_REF]. 

Theorem Proving

Theorem proving relies on higher order logic and mathematical structures to construct specifications describing system's behaviour and a proof system to prove expressed properties. This method can be applicable to projects of any complexity. However, in order to perform verification, the user must have a high level of knowledge about logic notions and about the design being verified. The user must perform the proving in a systematic way by developing the formulas, feeding them into the tool, and analysing the results. For this kind of proving process a certain degree of automation is possible thanks to available automatic provers depending on the formalism used to model the system and to describe the properties [START_REF] Grimm | A survey on formal verification techniques for safety-critical systems-on-chip[END_REF].

The B method uses AtelierB tool based on automatic theorem proving.

Isabelle/HOL.

Isabelle is an automated theorem prover. This interactive higher order logic theorem prover is a generic proof assistant that can be instantiated with several logics like First-Order Logic (FOL), Zermelo-Fraenkel set theory (ZF) or Higher Order Logic (HOL). It relies on a core and small theorem prover namely Logic of Computable Functions LCF [START_REF] Michael | Edinburgh LCF[END_REF] developed on top of the ML language. Isabelle proofs are encoded in the structured proof language Isar [START_REF] Wenzel | Isar -a versatile environment for human readable formal proof documents[END_REF] providing human and machine understandable representation of proofs. In addition, Isabelle is also equipped with animation functionalities to run executable specifications in various functional languages. This proof assistant proved useful in formalising mathematical proofs for formal verification of computer systems and in proving of programming languages properties.

In the style of LCF [START_REF] Michael | Edinburgh LCF[END_REF], the Isabelle/HOL proof assistant is a generic interactive theorem prover obtained by instantiation of Isabelle with Higher-Order Logic (HOL) [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-order Logic[END_REF]. Isabelle/HOL can be seen as a specification and verification environment with the capability of modelling systems and proving logic based system properties. In general, when modelling systems and system properties in Isabelle/HOL, a modelling part and a proof part are defined.

The modelling part relies on functional programming languages (ML in the case of Isabelle/HOL). Basic type declaration is typedecl('t 1 , 't 2 , ...) T new , where 't i are possible type parameters and T new is a new defined type. Other type constructors are available: t i ×t j for product and t i ⇒ t j for function maps. Terms are formed using λ-calculus expressions.

Moreover, it also offers operators like condition (if b then e else e), let ( let x = e in a)

and case (case e of p ⇒ a|...) representing basic constructs in a functional programming languages and thus offering powerful modelling capabilities.
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The proof part deals with proof systems and proofs. For proofs, Isabelle combines functional programming languages such as HOL and the Isar language to manipulate generic proof procedures. Moreover, already proved theorems in Isabelle can be checked and can be used in the development of other proofs interactively (e.g. used as lemmas). In addition, proof (or inference) rules can be defined from proved theorems and used in a the development of a proof. Existing and user defined tactics can be described in Isabelle/HOL. Tactics are defined to reduce series of inference rules applications (e.g. using choice, loop) into a single proof or inference rule. In Isabelle/HOL, tactics may be written as ML statements combining proof rules or already existing tactics. Examples of tactics and proof rules are inference rules, already proved statements, induction statement, variables introduction, hypotheses removal, try of inference rules, loop on the application of inference rules, etc. In Isabelle/HOL, we can organise the already proved lemmas and theorems in modules called theories. There exists a large amount of theories with a collection of definitions, new data types constructs and recursive functions.

Model Checking.

Model checking [START_REF] Edmund M Clarke | Model checking[END_REF][START_REF] Merz | Model checking: A tutorial overview[END_REF] is a technique for verification and debugging, widely used in different fields. This technique allows to verify properties against a model of a system based on a process of exhaustive state space exploration. The safety properties represented by a boolean formulas are verified to see if they hold in every system trace. Properties such as deadlock freedom, invariants or safety, expressed as temporal logic formula, are checked to determine if they are satisfied by the system, otherwise a counterexample falsifying the property is shown [START_REF] Baier | Principles of Model Checking (Representation and Mind Series)[END_REF]. Counterexamples represent illegal paths of the system and allow bug correction, this feature can be seen as one of the main advantages of model checking.

Research on efficient algorithms and techniques allowed to optimise state space exploration and further to apply model checking in the verification of realistic industrial systems. It is the case for RATP systems. Indeed, state space explosion [START_REF] Clarke | Model Checking and the State Explosion Problem[END_REF] is a limitation of this technique because the state space increases drastically with the number of system variables.

Explicit state, BDD 7 , SAT 8 [START_REF] Amla | An analysis of sat-based model checking techniques in an industrial environment[END_REF][START_REF] Mukul | A survey of recent advances in SAT-based formal verification[END_REF], SMT 9 [START_REF] Sebastiani | Lazy satisability modulo theories[END_REF], and other technologies exist to explore system traces, each resulting in a distinct category of model-checkers. Examples of such 7 Boolean Decision Diagrams 8 Boolean Satisfiability problem 9 Satisfiability Modulo Theories model checkers are NuSMV2 [START_REF] Cimatti | Nusmv 2: An opensource tool for symbolic model checking[END_REF], nuXmv [START_REF] Cavada | The nuxmv symbolic model checker[END_REF], ProB [START_REF] Leuschel | Prob: A model checker for b[END_REF]. Model checking usual use cases are safety proof, system debugging and equivalence checking [START_REF] Clabaut | Industrial Grade Model Checking Use Cases, Constraints, Tools and Applications[END_REF]. Since the analyses are often automated and a posteriori, they can be integrated into existing production processes.

Formal methods for safety-critical system in railway industry

Despite all the variety of formal methods we have presented in the above Section, not all of them have reached a level of maturity and application in an industrial setting. The railway domain is one of the domains where formal methods have been used intensively for formal specification and verification activities, with numerous success stories documented in the literature [START_REF] Fantechi | Some trends in formal methods applications to railway signaling[END_REF]. Formal methods, such as the B method, are widely used in the French railway industry, and have been successfully applied to the verification of the safety-critical components of a metro system [START_REF] Behm | Météor: A Successful Application of B in a Large Project[END_REF]. Our research focuses on the process of applying formal methods to safety-critical systems in the railway industry, as well as how to respond to specific constraints such as independent safety assessments of heterogeneous systems.

Generally, formal methods can be applied in two distinct cases to ensure the safety of critical railway systems:

• to validate the specification of the system. The main advantage of this formalisation is that it allows for the elimination of ambiguities that natural language may introduce.

The behaviour of the systems described in the specification documents, as well as their safety properties, are modelled. Formalising safety requirements is primarily a manual engineering task that requires taking the general safety principles from technical documents and formalising them as precise requirements expressed in a logical programming language. Further, the specification is considered correct if it satisfies the required safety properties in all system states. As previously stated, formal specifications can be produced and further used for verification activities. This activity could also allow to identify the safety properties that the system must respect and provide them for global program correctness proof.

• to demonstrate the software's compliance with its specifications. This activity enables formally proving that the software complies with its safety requirements and, more broadly, its specifications, in other words, that the software does what it is supposed to do. Our research work is part of this category.
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Several success stories have been described in designing critical systems using a formal development approach with B method such as the control system of the driverless Meteor line 14 in Paris or the VAL shuttle for Roissy Charles de Gaulle airport [START_REF] Behm | Météor: A Successful Application of B in a Large Project[END_REF][START_REF] Badeau | Using B as a High Level Programming Language in an Industrial Project: Roissy VAL[END_REF][START_REF] Essamé | B in Large-Scale Projects: The Canarsie Line CBTC Experience[END_REF]. Since then, several railway system manufacturers have generalised the use of B as their solutions for building critical systems in a correct by construction manner.

Formal Methods at RATP

One of the RATP's guiding principles is to provide safe and reliable transportation service.

RATP has to constantly adapt its verification methods to the evolution of its systems and growing complexity. In addition, RATP projects involve several subcontractors that use different development methods and languages. The resulting heterogeneity enables RATP to master all subcontractors methods and languages and to manage a complex assessment process. In light of these circumstances, the RATP engineering department must answer the following question: How to ensure the safety of systems facing constraints such as complexity and heterogeneity? .

Over the years, RATP has used a variety of formal methods and techniques, successful stories of their application in large-scale projects have promoted their use and increased confidence in these techniques [START_REF] Bonvoisin | 25 years of formal methods at RATP[END_REF]. In order to deal with heterogeneity difficulty, a unified verification approach, offering an "ex post facto" proof, is applied to each supplied product regardless of the subcontractor's development language or method. At RATP formal verification is used not only to improve safety but also as a way to reduce the time and cost of safety assessment by eliminating the need for safety testing for example.

One of the first application of formal methods in an RATP project dates back to the late eighties, when the Z method revealed a number of safety critical bugs in the SACEM10 system (RER A), which had already passed the test campaign. SACEM is an automatic train protection system that regulates the speed of all trains on the line with the goal of increasing network traffic by 25%. A formal specification and verification process based on a posterori proof was used [START_REF] Chapront | Results of a safety software validation: Sacem[END_REF] allowing to put in evidence several anomalies before commissioning. The proof process was performed by software high-level experts without the use of any tools. This experience not only established the SACEM as a new safety standard (zero unsafe behaviors detected after 30 years of operation), but also demonstrated formal proof's potential advantages over test-based approaches [START_REF] Bonvoisin | 25 years of formal methods at RATP[END_REF]. This successful application of formal methods led RATP to require the use of formal methods for all its safety-critical software systems suppliers. As a consequence, the development of the first driverless metro line in Paris (Line 14) in 1998 was supported using the formal B method. The safety of the system was proven by construction which helped to get rid of some testing phases while guaranteeing a better coverage. These projects represent the roots of the development and use of the B method in the French railway industry and in general. In addition, RATP, Alstom, and SNCF launched a project to industrialise a tool to support the B method, which resulted in the Atelier B [START_REF] Clearsy | [END_REF] tool.

A posteriori formal proof

RATP cannot require anymore the use of formal methods because, according to the regulations, this would favour some suppliers over others. Despite the fact that the CENELEC standard strongly recommends the use of formal methods for the development of safetycritical software components, it does not prohibit the use of test-based processes. However, RATP continues to strongly advise all of its suppliers to use a formal development method.

RATP performs its own internal safety assessment of safety critical systems, independent of the development and verification processes carried out by system suppliers. According to RATP, using formal methods independent of the supplier usually reveals more bugs than simply verifying the supplier's testing campaign.

Since the early 2000s, RATP has collaborated with a different suppliers, employing a variety of development methods and languages. The resulting heterogeneity requires RATP's mastery of all supplier methods and languages, introducing a skill management challenge in the assessment process. The solution was to use a unified verification approach, referred to as a "ex post facto" proof, for the different projects, allowing formal verification to be applied regardless of the supplier's development language or method. This situation was the starting point of the PERF 11 methodology and its supporting workshop [START_REF] Benaissa | The perf approach for formal verification[END_REF]. RATP has thus developed and procured proof tools for its suppliers in order to encourage them to use formal methods. The technique has been used successfully on Thales, Ansaldo, and Alstom (ex-Areva TA) products, in charge of the Computer Based
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Interlocking Lines 1, 4, 8, 12, the wayside, and the on-board equipment of CBTC 12 Lines 3, 5, and 9 and Line 13 projects [START_REF] Bonvoisin | Utilisation de la méthode de preuve formelle perf de la ratp sur le projet peee[END_REF][START_REF] Feliachi | Formal verification of system-level safety properties on railway software[END_REF]. This a posteriori proof approach proved to be effective [START_REF] Mota | Safety demonstration for a rail signaling application in nominal and degraded modes using formal proof[END_REF][START_REF] Bonvoisin | Utilisation de la méthode de preuve formelle perf de la ratp sur le projet peee[END_REF]. PERF is now applied in every project, whenever it is possible, meaning essentially that the source language of the software is supported by the PERF workshop.

Several projects are still using the B method or language to develop safety-critical systems. This is unquestionably good news, but it complicates the independent assessment at RATP. Even though the formal verification performed by the B proof engines is reliable, the independent validation of the safety properties at RATP can only be accomplished through cross-reading. This technique, while time-consuming, may not be very effective as it is not exhaustive and cannot guarantee that there are no defects.

The object of this research, is to provide an independent alternative for the verification of the safety properties on systems developed using the B method. The PERF approach makes this verification non-intrusive and, if necessary, supports in the verification of the code generation process. It will also help, in the context of heterogeneous systems, to apply a unified verification across all system components.

PERF: an integration verification framework

The PERF method, along with its associated workshop, enables a posteriori safety assessment of critical software. In other words, formal proof is used in the ascending part of the V-cycle, after the design and development phase, to ensure that the software meets the expected safety properties. This verification technique can also be used when formal proof was not envisaged in the early stages of the system. It offers a framework for integrated model and program verification provided in different modelling and programming languages developed by different stakeholders. 3. an environment model to explore the behaviour of the software in it, described in HLL as constraints or assumptions. The RATP achieves this modelling step to express hypotheses about the environment in which the software evolves.

HLL [START_REF] Ordioni | HLL v.2.7 Modelling Language Specification[END_REF] serves as a pivot modelling language of PERF. It is a formal verification language close to synchronous data-flow language LUSTRE [START_REF] Halbwachs | The synchronous data flow programming language LUSTRE[END_REF], suitable to describe discrete-time sequential behaviours and to express temporal properties associated to this behaviours. The verification is then carried out on the model obtained as a result of the different transformations of source models on the one hand and the enrichment of the proof obligations by the safety engineers at RATP on the other hand.

The verification procedure associated to HLL is based on model checking and SATsolving. When these verification tools run, if counterexamples are revealed by the proof engine, the corresponding scenario is analysed to understand the safety risk associated with this property violation. A complete PERF-related tool chain (translators, counterexample analysers, SAT-based proof engines ) is available to perform such analysis.

A number of translators have been developed and integrated into PERF formal toolkit to support the different solutions of all RATP suppliers. Such translators provide a standardised description of the intended source code in the PERF's pivot language HLL. The primary role of the translators is to provide a semantic-preserving formalisation of the software to be verified in HLL. PERF is actually applied in every project where translators are available to identify the possible bugs. Currently, PERF supports the automatic transformation, into HLL models, of several programming and modelling languages, such as C, Ada or Scade.

RATP includes a wide variety of signalling systems from different manufacturers, and the application of PERF on safety validation of these systems has clearly shown the value of these approaches in terms of increased quality of safety assessment and reduced cost of this activity. The high heterogeneity of suppliers' modelling languages is transparent to the RATP safety team (due to the use of a single HLL language), allowing them to focus on the HLL modeling, the properties to be verified, and the environment (as mentioned above) for evaluating critical systems. Nonetheless, depending on the modelling languages chosen by the suppliers, RATP may need to develop and enrich its methodology to take into account potential new languages. B-PERFect. Currently, the B method is not supported by the PERF framework. Software systems developed using B are valid by correct by construction with respect to safety requirements. In order to harmonise the safety assessment methods at RATP, the B-PERFect project was initiated. Unlike top-down formal development techniques such as B method, there exist formal verification techniques that can be applied at the ascending phase, of the V-shaped development cycle, to asses the safety of critical software with respect to their high level specification. The PERF methodology with the HLL modelling language is one of such verification techniques.

Our research aims to integrate B models into the PERF framework and achieve additional guarantees regarding the encoding of invariant issued from the safety requirements. The idea behind the B-PERFect project is not to replace the formal verification process of B but to propose a verification alternative to be used for an internal independent safety assessment.

In our approach we integrate both top-down and bottom-up verification approaches.

B Method

The B method is a formal method that supports correct by construction verification approach allowing engineers to build software with high guarantees of confidence. This is possible
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because the verification is performed all along the development process through the use of refinement methodology and preservation of user-written invariants. It is based on first-order logic and set theory and handles a complete critical-software development process from specification to code [START_REF]The B-book: assigning programs to meanings[END_REF]. The B method has proven its feasibility for large scale industrial applications, particularly in railway domain [START_REF] Behm | Météor: A Successful Application of B in a Large Project[END_REF]. Major players in the railway domain, use the B method in the development of critical software applications.

Modelling. A B development process is layered. Each layer corresponds to an abstraction level and the refinement relationship provides a formal link between layers. Software specification is encoded in abstract components that represent the highest level of abstraction. The most concrete parts of a B model are the obtained implementations where only programming-like constructs are allowed [START_REF] Clearsy | [END_REF].

In B, models are represented as machines. The concept of machine is analogous to the concepts of module and object in traditional programming languages. A B specification includes several machines. A B machine contains a set of variables (which may be expressed in terms of integers, Booleans, sets, relations or functions, among others and representing the state), invariant properties with respect to that variables (a state invariant expressed using first-order predicate logic), instance of other machines, an initialisation clause and operations acting on the defined variables (the transformations of that variables are expressed using substitutions).

Generally, B project models represent a state transition system in which the initialisation clause sets the initial values of variables and the operation clause specifies how variables are modified from one state to another. A machine describes the dynamic parts (states and transitions) of a model and the static parts (constants, invariants, properties). The invariant describes the safety properties of the model and it is specified using predicate logic.

In Listing 2.1 we give a schematic description of a B machine. Briefly these clauses mean: • SETS defines the sets that are manipulated by the specification. In implementation, sets must be explicitly introduced.

• CONSTANTS defines all the constants that are used in the machine.

• PROPERTIES are logical expressions that are satisfied by the constants described previously.

• VARIABLES is the clause where all the state variables of the described model are declared. Refinements can add new variables to enrich the described system and the specification model from higher levels of abstraction.

• INVARIANT clause describes the properties of the attributes defined in the clause V ARIABLES, using first-order logic expressions. This clause describe various types of properties, such as typing, safety, and functional properties. The gluing invariant required by any refinement is an example of an invariant describing the link between abstract and concrete variables. The logical expressions described in this clause must hold after all state changes, the invariant must hold after initialisation, and state changes from operations must preserve the invariant.

• INITIALISATION clause allows to give initial values to the variables of the machine.

The initial value must satisfy the invariant.

• OPERATIONS clause defines all the procedures to specify the desired behaviour of a model. Each operation is described by a set of actions that modify the state defined in the V ARIBALES clause.

Proof model into a concrete model specified in a subset of the B language: the B language that can be automatically translated into executable code [START_REF] Tatibouët | Java Card Code Generation from B Specifications[END_REF][START_REF] Storey | A strategy for the production of verifiable code using the B Method[END_REF]. It starts with a high-level system-level specification and incrementally adds more concrete components of the system, such as software computations or physical variables. Typically, specifications are complex, so that global properties are distributed across different components. To arrive at an executable application, the set of data structures or non-deterministic elements of an abstract machine must be incrementally replaced by structures similar to those of programming languages, such as while loops. The implementation must be deterministic, contrary to abstract modules, parallel substitutions are not allowed, the type of the variables must be scalar, and they are written in a procedural style.

A key feature of the B method is that it explicitly distinguishes between language constructions needed for implementation and those only used for specification. Each kind of components has specific syntactic restrictions.

Composition. B language offers several structuring mechanisms that make it easier to modularise, compose components, decompose proofs and share the state. In addition to the previous features, there exist other operators to compose machines. The relations between machines are given by the following clauses: A whole description of all B clauses can be found in the B-Book [START_REF]The B-book: assigning programs to meanings[END_REF]. Significant work [START_REF] Potet | Composition and refinement in the b-method[END_REF][START_REF] Rouzaud | Interpreting the b-method in the refinement calculus[END_REF][START_REF] Matthews | Synthesising structure from flat specifications[END_REF][START_REF] Dimitrakos | Compositional structuring in the b-method: A logical viewpoint of the static context[END_REF][START_REF] Bontron | Automatic construction of validated b components from structured developments[END_REF] has been accomplished to explain B refinement and composition, these mechanisms that are applied to build structured specifications.
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Semantics and verification process

The dynamic part of a B machine (i.e. operations and initialisation) is described using the Generalised Substitutions Language (GSL), which allows mathematical notations to be used to describe the transformation of state. Thus, the transition from a state before the execution of an operation, defined by a before predicate to a state reached after the execution of the operation defined by an after predicate, can be expressed. Each action defines a predicate, the "Before After Predicate" (BAP), that relates pre and post states.

This predicate transformation is based on the weakest precondition calculus defined by Dijkstra [START_REF] Edsger | A Discipline of Programming[END_REF]. Indeed, the transformation of a predicate P into a predicate Q by the substitution S, noting Q = [S]P , is equivalent to calculating the weakest precondition that ensures that S terminates and that the assertion P is true after the termination of S, one then says that the substitution S establishes the predicate P. Two predicates define generalised substitutions: trm(S), which is the required condition for substitution S to • each invariant is preserved in a machine, it holds in observable states, states before and after operation calls.

• each operation simulates its corresponding abstract version. The proof activity concerning the refinement involves performing a set of static checks and proving that the refinement is a valid reformulation of the specification.

• each while loop is converging. States that each iteration of the loop decreases the variant and that the state changes preserve the global invariant.

B method has a proof system associated with it along with a set of proof rules on B constructs.

Tools. The success of B in the railway sector led to the creation and improvement of B method tools such as Atelier B [START_REF] Clearsy | [END_REF], the main tool for B-based development. Included in this integrated development environment are editors, a proof obligation generator, automated provers, and other tools such as BART [START_REF] Requet | Bart: A tool for automatic refinement[END_REF] an automatic refinement tool and code generators.

AtelierB needed to be tested and validated to be useful for the development of safety-critical applications, and initially these tasks were carried out under the overall supervision of RATP [START_REF] Thierry Lecomte | Applying a formal method in industry: A 15-year trajectory[END_REF].
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Another well-known B-method tool is ProB [START_REF] Leuschel | Prob: A model checker for b[END_REF][START_REF] Leuschel | Prob: An automated analysis toolset for the b method[END_REF], an animator, constraint solver, and model checker that lets you instantiate models and validate if the specification produces the desired behaviour.

Development process. In the context of critical software development, the B method is used to specify only those components that perform treatments that may affect human and hardware safety. The formal development cycle of a software is divided in the following steps.

• The production of a series of documents that specify what is expected of the software, known as specification documents.

• Formalisation in B of the specification's contents, i.e. the requirements to which the software answers. This allows to obtain the abstract B model. A balance must be found between directly encoding certain safety properties and modelling them in terms of typing invariants.

• Refinement of the abstract model all the way to implementation. The required information is added to obtain a concrete model that can be translated into a compilable language (C, Ada).

• The proof activity ensures that the concrete model respects the abstract model and that both establish the safety properties encoded as invariants.

• Since the natural language documents are the entry point of the process, coherence and completeness between these documents and the formalised abstract B model must be ensured. This verification activity is usually realised in the industrial context by cross-reading and testing.

Given the complexity of B models obtained in an industrial setting, manual checks and review of traceability tables are insufficient to validate and detect any mistakes in the development process. As a result, this verification, as well as the verification of the realised refinement between system specification and component or software requirements, must be automated.
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B and Industrial Projects

The development and use of the B method in an industrial context of railway systems was triggered by the application of formal methods in the development of the software of SACEM system deployed on RER A line in Paris for RATP [START_REF] Chapront | Results of a safety software validation: Sacem[END_REF]. Since then, several railway system manufacturers have generalised the use of B as their solutions for building critical systems in a correct by construction manner. In the context of RATP, the B method is used to develop the majority of the critical software.

Several success stories have been described in designing critical systems using a formal development approach with the B method, some detailed review are given in [START_REF] Butler | The first twenty-five years of industrial use of the b-method[END_REF][START_REF] Ničković | Formal methods: Theory becoming practice[END_REF][START_REF] Woodcock | Formal methods: Practice and experience[END_REF].

Further we present the most famous ones, such as the control system of the driverless Meteor line 14 in Paris or the VAL shuttle for the airport Roissy Charles de Gaulle [START_REF] Behm | Météor: A Successful Application of B in a Large Project[END_REF][START_REF] Badeau | Using B as a High Level Programming Language in an Industrial Project: Roissy VAL[END_REF][START_REF] Essamé | B in Large-Scale Projects: The Canarsie Line CBTC Experience[END_REF].

Railway software development. MÉTÉOR project, the well-known Paris Métro system on Line 14, was the first to use the B method for the development of safety-critical software for railway systems. It is the first Parisian driverless Métro system and the main goal was to reduce the time interval between trains while ensuring the safety of the system. The software for this system was completely developed and formally verified using B for safety critical parts such as train running and stopping, train door control, and platform doors, which account for one-third of the overall program [START_REF] Ničković | Formal methods: Theory becoming practice[END_REF]. In addition to obtaining a correct by construction code for the system, simulation was used to validate the functional software requirements, this resulted with no errors during the integration testing phase and global validation test. The development method and validation process permitted the omission of unit testing [START_REF] Behm | Météor: A Successful Application of B in a Large Project[END_REF][START_REF] Behm | Météor: An industrial success in formal development[END_REF]. The application of formal methods combined with a validation process that took into account all the activities required to obtain the conviction that the critical functions have been safely implemented resulted in a reliable system with no errors detected since it was put into operation in 1998.

Several derived systems were developed and deployed globally based on METEOR system.

The VAL system [START_REF] Badeau | Using B as a High Level Programming Language in an Industrial Project: Roissy VAL[END_REF], which is the shuttle train at Roissy Airport, is MÉTÉOR's technical predecessor, and has been in operation since 2007. New VALs are now operational in Taipei, Rennes, and Turin as a result of the completion of this project. The Canarsie CBTC system [START_REF] Essamé | B in Large-Scale Projects: The Canarsie Line CBTC Experience[END_REF], was deployed in New York on the Canarsie Line and, in comparison to Meteor, this system manages two different types of trains, equipped with CBTC systems and older ones that are not.
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Hardware application. The generation of code for hardware is another application of the B method. RATP demanded the implementation of a system to control the platform screen doors that can be installed in metro stations in order to protect passengers. In this project, Clearsy used the B method for specification and programming of doors controllers [START_REF] Boulanger | Formal Methods Applied to Industrial Complex Systems: Implementation of the B Method[END_REF]. This system is entirely independent of the train CBTC systems and it is used on the Paris Lines 1 and 13 as well as in São Paulo Metro.

Data Validation. The evaluation of the safety of a railway system is undeniably dependent on the correction of all configuration data and parameters used by the system. For each individual system deployment, the data parameters may be instantiated in different ways.

This need to ensure that assumptions about configuration data hold led to the development of a new use case for the B method. As a result, formal methods can be used in data validation.

At RATP, this is a critical activity because the data parameters are typically instantiated differently for each system deployment and must be verified. To accomplish this, RATP has developed OVADO [START_REF] Fredj | OVADOenhancing data validation for safety-critical railway systems[END_REF]70], a generic tool for formal validation of system and software data safety constraints. This tool is based on a B predicate evaluation engine. On many metro lines in Paris and worldwide, data validation with B was used [71,72,[START_REF] Leuschel | Prob: An automated analysis toolset for the b method[END_REF].

System Modelling. Following the success of the B method for Paris Line 14, another version of the B language, known as Event-B [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF], was developed, allowing for the formal modelling and specification of not only the software but also of the system. Although the B approach allows the formal development of software based on software requirements and prove that it is correct, the resulting system will fail if the encoded requirements are incorrect.

This results in the need for formal methods to be used during the design phase of system development.

Event-B has been used in the rail industry to validate system designs such as the New York Flushing Line [73], URBALIS 400 Zone Controller [74], RailGround interlocking, ETCS Hybrid Level 3 and Octys systems [75]. These projects, developed formal models of several CBTC systems in Event-B, and key system-level safety properties were specified and proved. Avoidance of train collisions, trains passing through unlocked switches (leading to derailments) and overspeed were among the safety properties addressed [START_REF] Butler | The first twenty-five years of industrial use of the b-method[END_REF]. This was done either for the development of a CBTC, as in the case of the New York system, or for the safety analysis of an existing CBTC, as in Octys sytem. The Octys formalisation for RATP made it possible to describe the properties that ensure the safety of the system and to fill the gap in the reasoning that provides complete arguments for safety.

HLL Language

Synchronous languages appeared as a solution for the modelling of reactive systems known to have high security needs. These languages are based on solid mathematical foundations, but in the same time they want to be simple from syntactic point of view. The languages must have the simplest formal model possible to make formal reasoning tractable [START_REF] Benveniste | The synchronous languages 12 years later[END_REF]. They were introduced to respond to specific domain of application needs. Furthermore, they allow to apply a formal approach from specification to implementation or even execution of a program [START_REF] Benveniste | The synchronous languages 12 years later[END_REF]. HLL [START_REF] Ordioni | HLL v.2.7 Modelling Language Specification[END_REF] is a formal declarative and synchronous data flow language.

Reactive systems are systems that require a highly regulated real-time response to their environment. To model the behaviour of reactive systems, synchronous approach simplifies the programming of real time notion, because they are based on the notion of logical time. The logical time is defined as a sequence of instants of equal length, each of them corresponding to the execution of a system reaction [START_REF] Forget | A Synchronous Language for Critical Embedded Systems with Multiple Real-Time Constraints[END_REF]. The idea behind this logical time is to model the calculations that happen during an instant and that are completed before the beginning of the next instant, ignoring the exact time when the calculations occur.

The most famous synchronous languages, successfully applied in several industries are:

• Synchronous languages based on equations such as LUSTRE [START_REF] Halbwachs | The synchronous data flow programming language LUSTRE[END_REF] or SIGNAL [START_REF] Benveniste | Synchronous programming with events and relations: the signal language and its semantics[END_REF]. HLL language [START_REF] Ordioni | HLL v.2.7 Modelling Language Specification[END_REF] is designed for systems formal verification and it was developed by Prover Technology13 in collaboration with RATP 14 . This language emerged for certification purposes for RATP, proposing the necessary features to enable formal verification of interlocking systems. It is a formal declarative and synchronous data flow language close to LUSTRE [START_REF] Halbwachs | The synchronous data flow programming language LUSTRE[END_REF] with a SSA 15 form. The declarative nature of the language eases the definition of formal behavioural models as well as safety properties definition using temporal logic. The verification of these properties is performed automatically, using model-checking techniques, induction and SAT solvers, using dedicated tools.

HLL is suitable for specifying the attended properties of the system, it allows to make a separation between these properties, the functional description of the system and the constraints on the environment of the system. The reasoning in HLL is done in logical time without taking into consideration the real time taken by computations. This language was created to be the target language to an a posteriori formal verification approach for several programming languages such as C, SCADE or ADA. The main industrial constraints that HLL was designed to address were: simple and clear language that was expressive enough to allow for easy translation from other languages.

Overview of the HLL language

HLL language has a well defined syntax and semantics presented in its language specification document [START_REF] Ordioni | HLL v.2.7 Modelling Language Specification[END_REF]. HLL models are defined in a propositional logic using as basic values infinite sequences or streams. The set of typed streams can be composed using either temporal or data operators.

An HLL model describes the relation between the outputs and the inputs of a system and behaves cyclically: at each instant, the streams are clock-dependent traces of the model execution. A system defined in HLL can be described by a set of state variables (the memory variables from one cycle to another), the initial state of these variables, and the transition relation between states, from the inputs of the system to the outputs, using stream definitions.

In HLL, the substitution principle applies, meaning that any occurrence of a variable in the model can be replaced by the expression that defines that variable. Assignment statements are equations. The notion of sequence is not available (declarative) and therefore the order of stream statements does not affect the semantics of the HLL model. The sections of a HLL model are:

• Namespaces offers a hierarchical organisation of HLL models and may contain any of the HLL sections. This is a mechanism to avoid naming conflicts between introduced streams or types with another part of the model. The name of a namespace should be unique. A namespace may include other namespaces.

• Types defines specific types by associating a type name and a type expression. This can be a simple alias for basic types such as boolean, integer or arrays. However the type name can introduce new types when it designates for instance a sort, a structure or an enumeration type. This feature allows to define specific types for the system under study based on its data structure.

• Constants represents a list of declared constants streams.

• Declarations represents streams declaration with a name and a type information associated.

• Definitions introduces flow definitions with their values. More precisely, in this section values are assigned to the system flows and the state transition of the system is set.

• Inputs defines the input flows of the model. These flows (streams) are used in expressions but they don't have a defined value. An input stream represents any sequence of values in its declared type. A new value is affected to the input variable at each time frame. Inputs are an important component of variables in HLL because they can model the real inputs of the system or they can be seen as a way of abstracting the behaviour of physical components such as sensor for example.

• Constraints introduces the contracts of the system, assumptions on systems environment or allows to reduce the domain definition of unbound inputs streams. These allows to eliminate the situations in which the system cannot arrive. On the other hand, over constraining the system could be problematic, since by removing states from exploration we might hide violations of safety properties. Last, if the constraints are contradictory, all the properties are valid because the system is inconsistent.

• Proof Obligations represents a set of properties related to streams for requirements verification purpose. They express safety properties as a boolean stream and they are analysed by the model checker to determine their validity.

• Outputs defines the output streams of the system.

Streams. An HLL stream is represented as a sequence of values, of equal length, one for each discrete time frame (see Table 2.1). For instance, the variable x stands for the infinite collection of values, one for each time frame, x 0 x 1 x 2 x 3 ... x n ..., where x n represents the value of the stream at time frame n. Similarly, for constants or numerals, 1 denotes the sequence of 1, 1, 1, ... . The value of a stream respects the stream type at each discrete time frame. Streams have integer or boolean values and are interpreted in the mathematical sense, without side effects.

Stream

Values or functions. HLL language proposes strict typing rules. The language is strongly typed and it relies on standard type inference techniques [START_REF] Pierce | Types and Programming Languages[END_REF]. The inference rules of the language are given in [START_REF] Ordioni | HLL v.2.7 Modelling Language Specification[END_REF]. Each flow has a single well-defined type and type errors may be produced at run-time. HLL language imposes a finite size for integer types because HLL models are based on bounded arithmetics.

x x 0 x 1 x 2 x 3 ... x n ... y y 0 y 1 y 2 y 3 ... y n ... x + y x 0 + y 0 , x 1 + y 1 , x 2 + y 2 , x 3 + y 3 , ... x n + y n c t, f , t, f , ... t if c then x else x + y x 0 , x 1 + y 1 , x 2 , x 3 + y 3 , ... x n
Operators. HLL models are defined by a set of typed flows or streams that can be composed using either temporal or data operators. The operators used in HLL are:

• Data operators, like arithmetic, logical, array operators or lambda expressions and if-then-else, are used to manipulate streams values. These operators are point-wise applied characterised by the property:

∀ n ∈ N. f (x, y) n = f (x n , y n ). For instance,
the sum of the two streams x and y has the following result:

x 0 + y 0 , x 1 + y 1 , x 2 + y 2 ,
x 3 + y 3 , ... x n + y n . In HLL, similar to LUSTRE, the if-then-else is a conditional operator and should not be mistaken for the instruction with the same name of imperative languages. This operator requires that both then and else branches to be defined and the condition decides the value of the current flow being the one of the branches.
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• Temporal operators that describe a relation from streams to streams, more precisely, clock-dependent expressions. The temporal operators, handling the time in HLL models, are next and previous operator (see Table 2.2). The next operator, written in HLL as X(x), allows to access the value of expression x at the time frame following the current one. More precisely, it returns a stream shifted one time frame. The previous operator, pre(x), allows to access the value of expression x at the time step preceding the current one. At the initial time frame, for a pre expression, the initial value must be given separately because it is not defined. For example, pre(x, init) where init is the value given for time step 0.

The semantic of temporal operators is given as follows:

-Previous operator without initialisation: for time frame 0 is pre(x) 0 = nil and for next time frames is

∀ n ∈ N * . pre(x) n = x n-1
-Previous operator with initial value: for time frame 0 is pre(x, v) 0 = v and for

next time frames is ∀ n ∈ N * . pre(x, v) n = x n-1 -Next operator: for each time frame n is ∀ n ∈ N. X(x) n = x n+1 Stream Values x x 0 x 1 x 2 x 3 ... x n ... X(x) x 1 x 2 x 3 x 4 ... x n+1 ... pre(x) nil x 0 x 1 x 2 ... x n-1 ... pre(x, init) init x 0 x 1 x 2 ... x n-1 ...

Table 2.2: HLL temporal operators

Besides temporal and data operators, HLL expressions can be defined using quantifications over finite domains. HLL provides the well known universal (∀, ALL) and existential (∃, SOME) quantifiers and as well other similar quantifiers on integers expressions such as computing the sum or the product, SU M or P ROD, of an expression for all the values of streams defined in the domain. For example, SU M x : [0, 2] (x + 1) is equal to

(0 + 1) + (1 + 1) + (2 + 1).
Types. The language features tuples, structures, arrays and functions. These constructions are streams composed of sub-streams and can be defined using a large set of operators. They represent mappings from values to values. Arrays of streams can be built and are considered as streams that may have different values at each time frame. The access to arrays elements is done in a classical manner and if the arrays index is a defined stream, the resulting value is a stream dependent on the value of the index at each time step. The index of the arrays shall be in the arrays bounds.

HLL functions are stateless, combinatorial, because their outputs at current time-frame are dependent only on the current value of inputs without any time operators. They can be defined using only scalar parameters and they support a single output. This can be seen as an ordered mapping between the values from the domain of the function (the input parameters) and the value from the range of the function (the output parameter). We can define a function such that for each time frame n ∈ N, x n = y n =⇒ f (x) n = f (y) n where x and y are two streams with the value at current time frame.

Stream Definition.

A stream variable is defined by assigning it a value. If the stream variable is undeclared, it becomes implicitly declared by its definition and type inference is done.

A stream variable can be defined using the following operators: I(x), to set the value of stream x at the first time step and X(x) to set the value of x stream for all other time steps. Furthermore, flows can also be defined in the form of a memory using pre operator (i.e. its value at the current cycle depends on its value at the previous cycle) or a definition using next operator (its definition depends on other flow variables values for its initial value definition and its next value definition). A flow variable can be defined with an expression of its type (HLL conditions: if then else or switch case, ...) or using a collection (function, array, ...).

HLL proposes several ways of stream equations writing:

• x := e meaning that ∀ n in N.x n = e n , x has the value of e at every time frame. streams are associated with a clock that defines the instants at which the current value of the stream is present. HLL is similar to LUSTRE but the writing style of properties is different due to the introduction of next operator. While in LUSTRE properties are expressed on the relation between the present and past (using the pre operator), in HLL properties are defined based on the evolution of flows in the future (using the next operator). This different way of writing the properties avoids the potential problems of non initialisation of flows, needed when using the pre operator. On the other hand, HLL is poor in modularity, we cannot define functions of flows similar to nodes in LUSTRE. In HLL, control structures such as clocks or hierarchical automata to describe sequential behaviours are not present.

Verification process

The correctness of properties is proved by using model checking. In general, in HLL models, the safety related properties are modelled as observers [START_REF] Halbwachs | Synchronous observers and the verification of reactive systems[END_REF]. Observers either provide a higher assurance level of software correctness when proved valid or a valuable counterexample to analyse it and to correct the design.

Verification Tools. HLL models can be verified using a complete tool chain developed by RATP around the PERF methodology, based on a proof engine that combines model checking and induction proof methods. The tool chain is based on the HLL language, which is used to describe a formal model of the system to be validated and the safety properties to be verified. An overview of the tool chain is given in Section 2.2.4. Due to regulatory constraints, the tools used at RATP for systems verification must meet additional requirements in their development process to be accepted for use in a CENELEC SIL 4 process. RATP has qualified its tools with respect to their usage and to their contribution to the global safety of their systems.

Several commercial tool sets are proposed for industrial verification and are used at RATP. Prover Technology 16 has developed the PSL model checker [START_REF] Mota | Safety demonstration for a rail signaling application in nominal and degraded modes using formal proof[END_REF] and the S3 [START_REF] Breton | S3: Proving the safety of critical systems[END_REF] toolset for formal verification has been developed by Systerel 17 .

Each tool uses a portfolio-based solver approach that supports both bounded model checking and k-induction to prove or falsify properties. For a falsified property, the counterexample is traced and generated, and debug tools are proposed for analysis. In addition to property proof and equivalence checking, these tools support static run-time error detection.

The development process of these tools makes them suitable to be used as verification tools according to the standard EN -50128:2011 [START_REF]En 50128 standard: Railway applications -communication, signalling and processing systems -safety related electronic systems for signalling. Standard[END_REF].

These tools are from the family of SAT model checkers, symbolic model checking based on satisfiability [START_REF] Mukul | A survey of recent advances in SAT-based formal verification[END_REF]. They implement their own SAT solver, but can also be used with other external SAT solvers. Some of the solvers implemented in these tools are:

• Bounded Model Ckecking (BMC) engine [START_REF] Biere | Symbolic model checking without bdds[END_REF][START_REF] Amla | An analysis of sat-based model checking techniques in an industrial environment[END_REF], it relies on a strategy to search whether a property is satisfied or not on fixed length traces. The exploration domain is fixed by a constant. It performs a standard iterative unrolling of the transition relation and outputs either a counterexample or a guarantee that there is no violating trace up to the given trace length. If a counterexample is found, the BMC engine guarantees to find it at minimum length.

• k-Induction engine performs the proof of properties over an infinite trace by performing the inductive step of k-Induction. k-Induction is a well-known technique for the verification of transition systems [START_REF] Brain | Safety verification and refutation by k-invariants and k-induction[END_REF][START_REF] Sheeran | Checking safety properties using induction and a sat-solver[END_REF]. For a proof of k-induction, the engine checks in two parts: base case and inductive case.

In the process of formal verification, a HLL model is flattened to a LLL model, a highly restricted boolean subset of HLL. The obtained LLL model is passed to the model checker tool for analysis. The model checker performs static verifications, such as checking the sanity of the model to determine if undefined behaviours have been introduced due to undefined array accesses, circular definitions, or the use of pre operator with undefined initial values. Proof of properties is then performed according to the chosen proof strategy: bounded model checking or induction.

Analysis. It must be shown that the properties are preserved at each cycle This can be done by induction to validate the proof. If the model checker cannot prove that the properties are inductive, it breaks down and generates a counterexample. There are two main reasons for this: either the properties are not sufficient to be inductive resulting in an indeterminate result, or the properties are not respected by the system. To separate these two cases more easily, the proof phase can be preceded by a bounded model checking to debug the model, which consists of directly showing that the property is true for a certain CHAPTER 2. STATE OF THE ART number of cycles. This proof is no longer based on induction and thus eliminates the second source of counterexamples.

The result of the proof may be valid, falsified, or indeterminate. A property is said to be valid if the analysis of that property leads to the conclusion that it is true in any reachable state. If, on the other hand, there exists a reachable state in which the property evaluates to false, then the property is falsified.

The verification engineer should use the analysis of the generated counterexample to either fix the system architecture or refine the propositions for the specific case of a false positive result. The indeterminate result may arise when the model checker cannot validate or falsify a property. In particular, this behaviour occurs when the property to be proved is either non-inductive or falsifiable, and the model checker requires longer traces than those analysed to achieve falsification and show the counterexample. A non-inductive property requires additional lemmas to be proved.

In the proof process, constraints on the system are assumptions for the proof because they reduce the state space. Only the states in which the constraints hold are considered, leading to a proof under the assumption that the constraints are always true.

HLL industrial projects

Like the B language, the HLL language and tools emerged from industry needs. The HLL language has already proven its usefulness in industry projects, presented later.

The HLL language and the formal verification methodology built around it, PERF, were first used for safety demonstration of PMI systems (computer based interlocking). This activity allowed to conclude that the formal verification could replace the classical safety testing review activity and further RATP applied it for safety assessment of different systems.

This was the beginning of independent safety assessment at RATP using HLL and PERF method.

RATP has been using HLL language and the PERF workshop in its verification process for more than 10 years. It has been successfully used for verification of systems such as CBI (Computer Based Interlocking), wayside and on-board equipment of CBTC (Communication Based Train Control) [START_REF] Bonvoisin | 25 years of formal methods at RATP[END_REF]. The industrial use cases around HLL and PERF applied at RATP are safety proof, system debugging and equivalence checking. Checking the soundness of a specification, proving SCADE programs at a low level, proving handwritten source code, proving relay schemes, and demonstrating the equivalence between ADA and SCADE
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programs or between C and SCADE programs are among the most popular activities already completed at RATP. Interlocking Systems Verification. Safety assessment of the interlocking software was realised by proving the safety properties, the absence of safety hazards generated by design anomalies in the software, such as non-collision and absence of derailments. The proof considered a HLL modelling of the environment for train behaviour and allowed the validation of CBI systems with about 70 routes and more [START_REF] Benaissa | The perf approach for formal verification[END_REF]. Table 2.3 provides an overview of the major CBI projects whose software was validated with HLL language at RATP. Different proof workshop were used for the verification activity and they support different input development methods such as Petri net [START_REF] Dennis | Petri Nets[END_REF] or relay based schema [START_REF] Naïm Aber | Rbs2hll -a formal modeling of relay-based interlocking[END_REF]. RATP to translate relay-based schemes into HLL models, more details can be found in [START_REF] Naïm Aber | Rbs2hll -a formal modeling of relay-based interlocking[END_REF]. In addition to using this approach for internal purposes, RATP has also applied it to external missions such as the independent safety assessment for the New York City metro system or the expertise for the RFF project [START_REF] Bonvoisin | Utilisation de la méthode de preuve formelle perf de la ratp sur le projet peee[END_REF].

CBTC Systems Verification. new use case for HLL, formal proof at the system level, emerged. This process entails a system validation to formally derive high-level safety requirements that must be met by subsystems and proved on software at the HLL level using model checking and abstraction techniques [START_REF] Feliachi | Formal verification of system-level safety properties on railway software[END_REF].

The application of PERF on safety validation of these systems has clearly shown the value of this approach in terms of improved quality of safety assessment.

Use of HLL.

In [START_REF] Clabaut | Industrial Grade Model Checking Use Cases, Constraints, Tools and Applications[END_REF], several use cases for HLL and model checking realised by Systerel are presented. First, the triplex sensor voter of aircraft systems is presented, which relies on three equivalent sensors to compute an output value. The aim of this case study is to investigate how floating-point arithmetic can be handled in HLL and the S3 model checker.

They propose a solution that involves building a library for floating-point arithmetic and integrating it into the S3 tool. They also describe in detail a use case from the railway domain for safety checking of CBIs. Similarly, in [START_REF] Petit-Doche | Formal Verification of Industrial Critical Software[END_REF], the authors reported an a posteriori approach to apply formal methods to already developed software by translating SCADE code into HLL models. This work is similar to the RATP verification method described above. HLL and model checking have been used by Prover Technology for a variety of use cases, including specification verification, interlocking systems safety verification and route visualisation 18 . In [START_REF] Walker | AUTOMATED VERIFICATION AND VALIDATION OF SIGNALING SYSTEMS IN PTC AND CBTC ENVIRONMENTS[END_REF], they provide an overview of the implementation of their solution on various projects. A formal verification approach using HLL was applied at Alstom on their 18 For more information on projects where Prover's solutions have been used, see: https://www.prover. com/references/ 2.5. STATE BASED SEMANTICS 55 interlocking systems using tools developed by Systerel and RATP [START_REF] Parillaud | Interlocking formal verification at alstom signalling[END_REF]. Another example of the use of HLL is the search for a set of tests, inputs, and oracles that can be used to satisfy a software's structural coverage criterion.

HLL, a formal verification standard. The ease of use of HLL, combined with formal verification tools capable of managing large industrial systems and producing certifiable results, may account for its popularity among railway manufacturers and operators. A community is emerging around this language with the aim of developing a formal verification standard from it.

State based semantics

In our approach, we are interested in the B method. The B method is a state-based method with explicit modelling of states by variables and manipulation of states by operations. It 

τ -→) * s 1 e - → s 2 ( τ -→) * s ′ .
The semantics of the B method can be represented by a state-based semantics modelled by LT S. For this purpose, states can be defined as a set of pairs that map each variable to its value. A function exists to retrieve the value of any variable state, l : V arN ame :→ V alues.

Substitutions associated to B operations represent transitions.

Strong and Weak Bi-simulation

It is possible to compare a LT S to another LT S. Relationships based on behavioural equivalences, such as simulation or bi-simulation [START_REF] Milner | A Calculus of Communicating Systems[END_REF], allow LT S with the same set of labels to be compared. Milner [START_REF] Milner | A Calculus of Communicating Systems[END_REF] was the first to define the concept of bi-simulation for process comparison, called observational equivalence. There are two types of observational equivalences based on the type of considered action (observable or internal), strong bisimulation that only considers observable actions and weak bi-simulation [START_REF] Milner | A Calculus of Communicating Systems[END_REF][START_REF] Milner | Communication and Concurrency[END_REF] that considers both observable and internal actions. We discuss these relationships in more detail further.

Simulation. Let S = ⟨S, S 0 , E, R⟩ and S ′ = ⟨S ′ , S ′ 0 , E, R ′ ⟩ be two labelled transition systems. A simulation is a binary relation ⪯ between states, ⪯ ⊆ S × S ′ , such that:

∀s1, s2 ∈ S, a ∈ E, s1 ′ ∈ S ′ . s1 ⪯ s1 ′ implies that if s1 a - → s2 ∈ R then ∃s2 ′ . s1 ′ a - → s2 ′ ∈ R ′ and s2 ⪯ s2 ′
A state s1 ′ simulates another state s1 if s1 ′ may match step by step the behaviour of s1.

Simulation is not a symmetric relation.

Bi-simulation.

Let S = ⟨S, S 0 , E, R⟩ and S ′ = ⟨S ′ , S ′ 0 , E, R ′ ⟩ be two labelled transition systems. We say that a relation between states in two LT S, noted

≃ ⊆ S × S ′ , is a bisimulation if s1 ≃ s1 ′ implies that if s1 a - → s2 ∈ R then ∃s2 ′ . s1 ′ a - → s2 ′ ∈ R ′ and s2 ≃ s2 ′ if s1 ′ a - → s2 ′ ∈ R ′ then ∃s2. s1 a - → s2 ∈ R and s2 ≃ s2 ′
Bi-simulation is a symmetric relation. s1 is bi-similar to s1 ′ implies that s1 ′ can do everything that s1 can do, and vice versa, at every step of the computation.

Weak Bi-simulation. Let S = ⟨S, S 0 , E, R⟩ and S ′ = ⟨S ′ , S ′ 0 , E, R ′ ⟩ be two labelled transition systems. We say that a relation ∼ = between states in two LT S, noted

∼ = ⊆ S × S ′ , 2.6. PREVIOUS WORK ON SEMANTIC FORMALISATION 57 is a weak bi-simulation if s1 ∼ = s1 ′ implies that if s1 a - → s2 ∈ R then ∃s2 ′ . s1 ′ a =⇒ s2 ′ ∈ R ′ and s2 ∼ = s2 ′ if s1 ′ a - → s2 ′ ∈ R ′ then ∃s2. s1 a =⇒ s2 ∈ R and s2 ∼ = s2 ′
s1 is weakly bi-similar to s1 ′ means that at every step of the computation, if we ignore the internal actions, s1 ′ can do all that s1 can do, and vice versa. We could, for example, demonstrate that a source LT S is transformed into a bi-similar target LT S. The semantic relationship between these two models is bi-simulation, which means that both systems can simulate each other from an observational point of view. To prove such a relation, the labelled transition systems corresponding to the semantics of the source and target models must be encoded.

Previous work on semantic formalisation

Embedding the abstract syntax, semantics, or type system of a language in a formal setting, can be used to reason about models written in that language as well as about the language itself.

State based languages.

The semantics of a state-based language is usually defined by a set of transition rules that record changes of the state of the program. The B language has been the subject of several formalisations using theorem provers with different goals, addressing some aspects of the language or the full B specification. A semantic embedding of B abstract substitutions and machines in Isabelle/HOL is given in [START_REF] Chartier | Formalisation of b in isabelle/hol[END_REF] of B with the purpose of producing a formally verified proof obligation generator. For example, the proof obligations for the composition relation INCLUDES have been formalised and checked. Note that a shallow embedding of B models is used in this work. An axiomatic semantics based on predicates transformations is defined. Similarly, in [START_REF] Paul Bodeveix | A formalization of the b-method in coq and pvs[END_REF] a formalisation approach of the B semantics in terms of state transition systems of B substitutions and refinement theory using COQ and PVS is carried out. A deep embedding of B language is given in [START_REF] Jaeger | Why would you trust b?[END_REF] using

Coq theorem prover to study the theory of B.

In [START_REF] Déharbe | Software component design with the b methoda formalization in isabelle/hol[END_REF], a formalisation of B semantics in Isabelle/HOL is presented as a labelled transition system. The focus is on the component composition relation in B, the formalisation of notions such as specification, refinement and composing components. Based on internal and CHAPTER 2. STATE OF THE ART observable states, a behavioural equivalence -simulation relation, is demonstrated between the LT S of B abstract machines and the LT S of refinement machines. This work serves as a foundation for a formal verification of the automatic refinement rules implemented in the BART tool [START_REF] Requet | Bart: A tool for automatic refinement[END_REF]. B generalised substitutions formalisation implemented in Isabelle/HOL is also realised in [START_REF] Dawson | Formalising generalised substitutions[END_REF].

Single State Assignment. In addition to state-based language semantics, synchronous language semantics using the single state assignment (SSA) form has been studied in detail in the context of modern compilers. HLL is a synchronous language with SSA form. In the SSA form, each variable in a program occurs only once on the left-hand side of an assignment. A program is usually converted to SSA form by replacing the assignments of a program variable with assignments to an intermediate version of that variable corresponding to each assignment.

Many conversion algorithms from an imperative language to SSA form rely on graph theory for verification. Indeed, control flow graphs (CFG) [START_REF] Aho | Compilers: Principles, Techniques, and Tools[END_REF] have been used to represent the semantics of SSA form. CFG of a program is a way to represent the control structure of imperative programs, where edges stand for possible transitions between nodes or blocks containing the instructions to be executed. When a variable can be assigned in both branches of a program block, such as in if statements or in the body of a loop, the ϕ operator is used to select the new variable value based on the program control flow. The ϕ nodes represent the introduction of new assignments to merge information from different control flow branches to restore the flow of values from renamed variables.

SSA was first used in imperative compilers as a data structure to reduce the complexity of data flow analysis algorithms. It can also be used as a target for functional languages [START_REF] Kelsey | A correspondence between continuation passing style and static single assignment form[END_REF].

The SSA form can be seen as a first step towards abstracting the semantics of imperative languages into a language of declarations; it is a way of unifying multiple program paradigms.

The semantics of an SSA program is specified as a function that maps identifiers to the semantics of their values in [START_REF] Pop | The SSA Representation Framework: Semantics, Analyses and GCC Implementation[END_REF]. Usually, the semantics of the SSA representation is presented together with the conversion algorithm. These algorithms focus on optimisation techniques and practical aspects to facilitate the implementation of a compiler [START_REF] Ottenstein | The program dependence web: A representation supporting control-, data-, and demand-driven interpretation of imperative languages[END_REF][START_REF] Cytron | Efficiently computing static single assignment form and the control dependence graph[END_REF].

The control flow graph of B substitutions from a B inplementation is presented in [START_REF] Behnia | Test criteria definition for b models[END_REF].
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Formal Verification of Model Transformations

Verification tools or compilers frequently deal with language transformations, and their correctness is critical. The correctness of the tools used to verify safety-critical systems is just as crucial as the correctness of the system itself. These tools typically use models or program transformations. Verifying the correctness of complex programs, such as translators, is challenging. When used in a verification process, the translator is also a program that can introduce errors during compilation by generating incorrect target code from a correct source program. As a result, system verification could be performed on an incorrect model.

Checking a translator involves ensuring that the translator does not generate incorrect target code from a correct source program. Formal verification and certification of translators in [START_REF] Maulik | Compiler verification: A bibliography[END_REF] for first order logic compilers. A biography on compilation of higher-order functional languages is given in [START_REF] Chlipala | A verified compiler for an impure functional language[END_REF].

A transformation means that, given a source model, an automatic process produces a target model that conforms to a transformation description [START_REF] Moussa Amrani | A tridimensional approach for studying the formal verification of model transformations[END_REF]. As a result, the primary requirement for a transformation to be considered to behave correctly is to produce a target model conform to the source model from a semantic point of view. To ensure this correctness many approaches exist, one of them is to relate the meaning between source and target models. This implies to realise an embedding of language properties to define a program's semantics. The explicit representation of a model's semantics can be realised for example using Labelled Transition Systems (LT S) [START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF], event structures [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF] or Petri nets [START_REF] Dennis | Petri Nets[END_REF].

Several notions are necessary for proving the correctness of a translator/compiler such as:

• Formal definition of source and target language semantics and properties.

• Formal specification of the translator, it could be a definition of the algorithm or the implementation itself. The translator is specified by the transformation relation between source and target language elements.

• Making manual or computer-assisted proofs in the proving environment. The verification can be performed using a proof assistant, such as Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-order Logic[END_REF], Coq [START_REF] Bertot | Interactive theorem proving and program development[END_REF] or automated theorem provers.

Many compiler verification strategies have emerged to ease the difficulty of verification processes. To review these techniques, we follow the classification proposed in [START_REF] Leroy | Formal certification of a compiler back-end or: Programming a compiler with a proof assistant[END_REF].

CHAPTER 2. STATE OF THE ART

Certified compilers.

A certified compiler is one that has been proven correct by computer assisted proof. This implies that the compiler conforms to its specifications and generates models that act in accordance with the source model. A certified compiler, in particular, requires two verification processes. The first step is to demonstrate that the translation specification is correct for all provided source models, i.e. the behaviour of target model matches with exact behaviour of the source model. The second stage is to demonstrate that the translator's algorithms are correctly implemented in accordance with their specifications.

The specification of the translator and its implementation are formally specified. Certified compilers are acquired using proof assistants to express the compilers correctness theorem and prove it using the logic of the assistant.

Many contributions investigated compiler certification for various language paradigms using different provers. The CompCert compiler [START_REF] Leroy | Formal verification of a realistic compiler[END_REF] is a formally certified compiler that generates assembly code from the C language using the Coq proof assistant [START_REF] Bertot | Interactive theorem proving and program development[END_REF]. The goal of CompCert is to produce optimised running programs that are free of miscompilation issues while preserving semantics. The generated target code is extracted directly from the theorem prover. The compiler has been decomposed into several elementary transformations whose correctness has been proven in Coq to facilitate verification. It translates in several sequential steps through a number of intermediate languages, as most optimising compilers do. Each intermediate language is associated with a semantics, and each compilation step is followed by a theorem stating that it introduces no new behaviours. A similar method is provided in [START_REF] Klein | A machine-checked model for a java-like language, virtual machine, and compiler[END_REF] for compiling Java-like programming languages with Isabelle/ HOL.

Other approaches, such as the Verifix [START_REF] Zimmermann | On the correctness of transformations in compiler back-ends[END_REF] and Vellvm [START_REF] Zhao | Formal verification of ssa-based optimizations for llvm[END_REF] projects, aim to build mathematically correct compilers. They develop techniques for mechanised formal semantics of languages and SSA form, compiler decomposition, and semantic equivalence of source and target programs. An approach for verified compositional compilers for multi-language software is presented in [START_REF] Ahmed | Verified compilers for a multi-language world[END_REF]. The formal verification of the compiler is provided using LUSTRE in [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF][START_REF] Biernacki | Clock-directed modular code generation from synchronous block diagrams[END_REF].

Certifying compilers.

Certifying compilers are about establishing and proving the link between two programs -source and target -rather than focusing on the correctness of the algorithm or the implementation of the translation. Proof-carrying code and translation validation are some of the techniques that have been proposed to automatically generate proofs for each run of the compiler.

Proof carrying code [START_REF] Necula | Proof-carrying code[END_REF] is a method that allows to guarantee that requirements such as type safety or absence of stack overflows are satisfied by a target program by generating a proof, called a certificate, alongside the code program that this code is correct with respect to its specification. When the code is used, the certificate is examined separately by an external verifier.

Translation validation method was first introduced in [START_REF] Pnueli | Translation validation[END_REF] to detect errors in compilers to avoid generating incorrect code when compiling synchronous languages. Translation validation requires proving that a particular execution of a compiler exhibits the desired behaviours, rather than showing that any compiler execution is correct. This approach is an a posteriori approach applied to target models already obtained. After compilation, the source and target models are passed to an independent tool called validator, which verifies the defined correctness properties at syntactic or semantic level, so that the result of execution is the same for the model and the code semantics. Depending on the result returned by the validator, the compilation is continued or aborted. However, the validation module must itself be certified. This approach has been used in the verification of various systems [START_REF] Necula | Translation validation for an optimizing compiler[END_REF][START_REF] Zuck | Voc: A translation validator for optimizing compilers[END_REF] and various validator techniques can be used, such as proving algorithms using proof assistants, abstract interpretation, or model verification. In [START_REF] Tristan | Formal verification of translation validators: A case study on instruction scheduling optimizations[END_REF] formal verification of the validator is realised by symbolic execution to show semantic equivalence, with proof formalised in Coq proof assistant.

Some of the advantages of translation validation include the fact that, unlike certified compilers, it is an approach independent of the code generator, making it less susceptible to modification when the code changes. Furthermore, it is easier to verify that the output has the expected properties than verifying the entire code generator. What appears to be a benefit can also be viewed as a disadvantage because this validation must be performed for each translation.

A transformation validation technique capturing the clock semantics in the models is shown in [START_REF] Van-Chan | Modular translation validation of a full-sized synchronous compiler using off-theshelf verification tools[END_REF]. There, a refinement relation between the source specification and the generated code is proved using SMT solvers. Program refinement is defined on inputs and outputs, stating that the behaviours of the target code include all the behaviours of the source code. A similar approach proving that binary code refines its C source using an SMT-based proof process is presented in [START_REF] Arthur | Translation validation for a verified os kernel[END_REF]. Synchronous versus sequential code validation based on the proof strategy is presented in [START_REF] Ryabtsev | Translation Validation: From Simulink to C[END_REF][START_REF] Pnueli | Translation validation: From signal to c[END_REF]. A refinement relation between synchronous transition systems is shown and it is applied to the non-optimizing CHAPTER 2. STATE OF THE ART compilation of SIGNAL to C.

Many contributions studied the correctness of compilers using formal validation and certification of translators or translation validation approach for various language paradigms using different provers. Both methods have their own advantages and disadvantages. Depending on the verification objective and the resources available, one or the other method may be chosen. We believe that combining the two methods can provide great results, such as providing a formal proof of the correctness of algorithms implemented in a compiler for all inputs and the use of translation validation to ensure that algorithms have been implemented

correctly at tool level.

The compiler is generally regarded as a black box and the semantic equivalence is defined through the analysis of proofs based on semantic relationships between source and target programs. [START_REF] Strecker | Formal verification of a java compiler in isabelle[END_REF] uses Isabelle/HOL to systematically confirm the transformation of Java program to Java byte code. In [START_REF] Nipkow | µJava: Embedding a programming language in a theorem prover[END_REF], the authors present a Isabelle/HOL formalisation of a subset of Java and its corresponding abstract machine to verify type related safety properties on the programming language. In [START_REF] Olaf | A certifying code generation phase[END_REF], an automated generation of correct translation of the program is defined. Source and target code semantic equivalence is demonstrated using a simulation-based proof.

The previous approaches rely on the formalisation of a relation guaranteeing semantic preservation. Refinement, simulation, bi-simulation certified compilation, correct by construction transformation, etc. are the relationships reviewed above. In our work, we adopted a methodology close to the above approaches which consists in checking semantic preservation and/or semantic equivalence using bi-simulation relationship defining an observational equivalence. This relation compares states of the two models at each execution steps.

Translators for SSA models

In order to prepare the state based translation to dataflow, the particular case of translation of SSA based semantics is considered. Below we review the techniques. Several works use translation validation technique combined with mechanised proofs to prove a compiler correctness when an SSA form is used. In [START_REF] Besnard | Automatic translation of c/c++ parallel code into synchronous formalism using an ssa intermediate form[END_REF], authors have presented a formal approach for translating source of imperative programming languages, such as C and C++, into synchronous language Signal [START_REF] Gamati | Designing Embedded Systems with the SIGNAL Programming Language: Synchronous, Reactive Specification[END_REF] similar approach to SSA formalisation is provided in [START_REF] Olaf | A Formal Correctness Proof for Code Generation from SSA Form in Isabelle/HOL[END_REF]. A transformation based on SSA register assignment from a functional to an imperative language is shown in [START_REF] Schneider | A linear first-order functional intermediate language for verified compilers[END_REF]. The transformation is validated via a bi-simulation relation proven in COQ.

B Translators

The use of the B method in the context of French railway industry is recognised and accepted as a strong safety proof. In safety-critical systems modelling, several techniques have been proposed to bridge the gap between natural language system specification and its implementation. In this setting, there are many modelling examples that are combined with B method for code generation.

Iliasov [START_REF] Iliasov | The safecap project on railway safety verification and capacity simulation[END_REF] describe the transformation from a Domain Specific Language for railways into Event-B formal modelling language. Their goal is to verify the safety of the railway systems using a multi-level modelling approach while ensuring an efficient exploitation of a railway network. [START_REF] Pengfei | Model based system engineering for safety of railway critical systems[END_REF] describes how railway systems can be designed, starting from requirements formalisation to system specification and safety requirements verification as hierarchical Coloured Petri nets, to final implementation by presenting the transformation from Coloured Petri net model to B language. The interaction between CSP-like system behaviour descriptions and abstract B machines is described in [START_REF] Schneider | Csp theorems for communicating b machines[END_REF][START_REF] Butler | csp2b: A practical approach to combining csp and b[END_REF] for reactive systems development. They study how these designs can be converted to B for analysis and refinement to code. Several works have been achieved on requirements formalisation combining graphical notations with formal one such as: the translation of UML diagrams into B specification [START_REF] Snook | Uml-b: Formal modeling and design aided by uml[END_REF][START_REF] Mammar | From a B formal specification to an executable code: application to the relational database domain[END_REF]. In [START_REF] Jeffrey | From sysml/kaos domain models to b system specifications[END_REF], B System specification is derived from the SysML/KAOS domain modelling language to fill the gap between system textual description and the formal specification for better readability of models and traceability.

Often, after the modelling and verification of B models, their transformation into executable code using different code generators is intended. This transformation is realised from CHAPTER 2. STATE OF THE ART a concrete representation of B models, the implementation level that must be deterministic.

From this level the translation into an imperative language is straightforward but many features of B language are missing. One such code generator is presented in [START_REF] Storey | A strategy for the production of verifiable code using the B Method[END_REF], it allows generation of provably correct Ada code. [START_REF] Bert | Adaptable Translator of B Specifications to Embedded C Programs[END_REF] shows an optimised transformation from B specifications to executable C code to meet hardware constraints. The general architecture of the transformation process is presented together with optimisation techniques. However, they do not address the formal certification of the transformation. Other code generators are integrated in AtelierB [START_REF] Clearsy | [END_REF] such us C4B that generates C code from implementation level subset of B. Moreover AtelierB also integrates Ada code generator.

In [START_REF] Tatibouët | Java Card Code Generation from B Specifications[END_REF], B implementations are used to generate Java code that can be embedded in smart cards. The architecture of the experimental open source platform, jBTools, supporting the code generation tool from B to Java is presented in [START_REF] Voisinet | Jbtools: An experimental platform for the formal b method[END_REF]. Another tool for B to Java code generation, BSmart [START_REF] Déharbe | Bsmart: A tool for the development of java card applications with the b method[END_REF], has been developed in the context of smart cards applications and provides automated support to handle communication and codification aspects particular to Java Card platform.

Bonichon et al. [START_REF] Bonichon | LLVM-Based Code Generation for B[END_REF] have developed a tool, b2llvm, for generating LLVM executable code from B models. Singh et al. [START_REF] Méry | Automatic Code Generation from Event-B Models[END_REF] proposed EB2ALL, a notable tool supported code generator, that generates source code in many programming languages such us Java, C, C++ and C# from verified Event-B specifications. Furst et al. [START_REF] Fürst | Code Generation for Event-B[END_REF] proposed a code generator to produce C code from Event-B models. In similar vein, [START_REF] Aljer | Bhdl: Circuit design in b[END_REF] described a method for generating VHDL source code from B specification.

In [START_REF] Ning Ge | Correct-by-construction specification to verified code[END_REF], authors proposed a set of translation rules for generating HLL models from Event-B models. In fact, the main objective of this work is to use an intermediate HLL representation to produce C code from the Event-B specification. They use equivalence proof to check the correctness of the code generation process. To our knowledge, the proposed translation approach from Event-B to HLL is not automated yet.

Another approach is to translate B models from higher abstraction levels. For example, a set of translation rules is presented in [START_REF] Mammar | From a B formal specification to an executable code: application to the relational database domain[END_REF] to generate Java/SQL code from B models for designing and analysing database systems. A tool B2Jml [START_REF] Cataño | Translating b machines to jml specifications[END_REF] is developed to generate JML (Java Modelling Language) specifications from B specifications for combining the use of formal methods with software development techniques. A similar approach is described in [START_REF] Rivera | Code generation for event-b[END_REF] for Event-B to Java code generation along with the generation of additional JML contracts for code verification.

The B2Program tool presented in [START_REF] Vu | A multi-target code generator for high-level b[END_REF] targets code generation from all abstraction levels of B. A template based approach that features various output languages, including Java, is shown as well as extension possibilities for other languages.

The previous approaches rely on generating code, namely from B models to various programming languages. To our knowledge, there is no work that addresses the certified transformation from B language to HLL dataflow language. Moreover, to the best of our knowledge, there is no work that addresses the verification and certification for heterogeneous systems that meets our stated objectives. Our work aims to provide an integrated verification framework for modelling and verifying heterogeneous systems under given requirements formalised as logic properties in a non-intrusive manner.

Conclusion

In this chapter, we have provided the scientific background for this thesis, which deals with the verification of complex systems. First, we defined safety critical systems and provided a general overview of formal methods that can aid in the verification of these systems, as our work consists in proposing an independent formal verification of safety critical systems for railways. Then, we presented two formal languages, B and HLL, as well as their verification processes and applications in the railway domain.

In the implementation of railway applications, the achievement of the highest possible guarantees is often a key factor. Our verification technique is based on the language transformation from a state-based to a dataflow language. We presented the concepts required to certify this transformation, taking into account the application domain of this research and its strong regulatory constraints. Finally, a literature review was conducted.

Such a transformation will serve as a link between critical tasks, bridging the gap between requirements review and their implementation on real systems.

Chapter 3 RATP launched the B-PERFect project to study the applicability of PERF on software systems developed using the B method. The goal of the B-PERFect project is not to replace B's formal verification process, but rather to provide a verification alternative for internal independent safety assessment. This chapter describes the motivation and the main goals of the B-PERFect project. We then describe our approach to software safety verification and give an overview of the overall certification process of the transformation. The subset of the B language that will serve as our starting point for this research is the introduced. Finally, we present a toy case study that exemplifies our approach.

B-PERFect

Introduction

In the railway domain, safety assurance is difficult to achieve due to the existing gap between the high-level system requirements expressed in natural language and the low-level software implementation. Indeed, requirements are usually expressed at a higher level, while software implementations manipulate concrete concepts not even mentioned in these requirements, 70 CHAPTER 3. B-PERFECT resulting a gap between abstract-level requirements and concrete implementations. Furthermore, gluing system-level safety requirements to the software components responsible for ensuring those safety requirements is a difficult task. In general, this glue is made explicit through a series of models that refine abstract-level specifications to produce concrete software components. The verification and validation of system safety requirements can be challenging in particular when the complexity of such systems results from features such as: high reliability and safety, multiple technologies used, large systems, and complexity of functionalities.

Several approaches have been proposed to bridge the gap between natural language system specification and its implementation when modelling complex safety critical systems.

Such approaches rely on a top-down verification of the system using various techniques in the field of requirements engineering and formal methods. These approaches are applicable in the design and development phases of a project [START_REF] Zave | Four dark corners of requirements engineering[END_REF]. In this setting, there are many modelling examples that are combined with B method for code generation.

These papers [START_REF] Pengfei | Model based system engineering for safety of railway critical systems[END_REF][START_REF] Iliasov | The safecap project on railway safety verification and capacity simulation[END_REF][START_REF] Schneider | Csp theorems for communicating b machines[END_REF][START_REF] Butler | csp2b: A practical approach to combining csp and b[END_REF][START_REF] Snook | Uml-b: Formal modeling and design aided by uml[END_REF][START_REF] Mammar | From a B formal specification to an executable code: application to the relational database domain[END_REF][START_REF] Jeffrey | From sysml/kaos domain models to b system specifications[END_REF] present various approaches that attempt to bridge the level at which one can realise verification between the specification and design of a system and code generation. Although it is really important to address system verification in the early stages of system design, if the system is not yet implemented, there is little guarantee that the system implementation will actually satisfy the properties specified in the design phase.

The main motivation for our work is to provide an independent alternative to establish that system implementations preserve the safety properties that have been defined at the design level.

In the railway domain, before putting into service a safety critical system, detailed verifications and validations are necessary. In order to maintain a high-level safety assurance of its systems, RATP designed a formal verification methodology named PERF [START_REF] Benaissa | The perf approach for formal verification[END_REF] to assess the safety level of railway systems and to deal with the heterogeneity features of its configurations. The aim of this approach is to realise an independent assessment that helps to double check the safety of the developed software in addition to the verification performed by the software supplier. PERF was designed to be applicable to any software system independently of their development process and languages. By taking the source code of the developed software as the target of the verification, it ensures a complete independence and non-interference with the software supplier which drastically reduces any possible bias.
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It also allows for applying formal verification techniques to the safety assessment activity, which is not always achieved by the software supplier in its safety verification.

Our research contributes to broadening the range of systems verified using the method PERF. It focuses on the integration of systems developed with the B-method [START_REF]The B-book: assigning programs to meanings[END_REF] in PERF.

In this research work, we answer the question of how safety evaluation can be realised in the context of heterogeneous systems. This chapter presents the proposed verification approach for systems modelled with the B-method and how they are integrated into the PERF toolkit.

B-PERFect Goals

Our concern is to validate and verify systems developed by different stakeholders using their own modelling languages and development processes, based on the requirements of the main contractor (here RATP). RATP collects a set of heterogeneous models seen as black boxes that are validated by each stakeholder. A rigorous standard black-box verification and validation process is established for heterogeneous models collected from different stakeholders. In this process, stakeholders receive a set of requirements and produce software components that satisfy those requirements, modelled and verified using their own, sometimes proprietary, verification techniques. In parallel with the verification activities performed by the stakeholders, the system integrator performs independent safety assessment activities using the PERF integrated verification framework. The B method [START_REF]The B-book: assigning programs to meanings[END_REF] is one of the modelling and verification techniques that stakeholders consider.

The B method supports the development of software components by refinement of high level specifications. At each refinement step, safety properties are expressed using invariants, and more and more concrete design decisions are introduced. The last refinement step reaches the level of software code. Each refinement step is associated with a set of proof obligations to be proved in order to ensure invariants preservation. It has been applied in several projects and has proven to be an effective approach for developing a complex system using refinements to move from high level system requirements to low level implementations [START_REF] Boulanger | Formal Methods Applied to Industrial Complex Systems: Implementation of the B Method[END_REF].

However, independent assessment of safety-critical systems developed using the B method in terms of informal requirements may be time consuming, and in some cases, intrusive. Indeed, the abstraction choices made to model the system in B could lead to error masking between different systems requirements and desirable properties.
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Detecting inconsistencies in invariants automatically is a difficult task. In fact, the B models are verified using the associated proof system. Proving invariants may thus fail because the proof is incomplete or the invariants are inconsistent. In general, model animation or model checkers may be used to find potential counter examples in the B models, making this approach intrusive, i.e. it needs to dive into and manipulate B models.

Although the formal verification performed by the B proof engines can be trusted, the validation of the safety properties can only be accomplished through tedious and inefficient code or specification review activities. Another method for assessing the consistency of the B models is to introduce additional lemmas or insert contradictory invariants, and thus by modifying the original models. Note that in our work, this approach is not applicable because such changes to the given model may jeopardise the safety assessment process.

Currently, some suppliers at RATP use the B method and thus formal proof as part of the design of their critical software. The practical implementation of this method in industry projects rarely proves that all software requirements are met. Even though the B method allows to bypass the unit and integration tests, it does not replace validation tests. However, the evaluation of these tests can be particularly costly for safety assessment teams. Inspections are carried out to ensure that the B models of a system are consistent with the requirements [START_REF] Badeau | Using B as a High Level Programming Language in an Industrial Project: Roissy VAL[END_REF]. It is well known that textual descriptions of requirements can be ambiguous and open to different interpretations, especially when dealing with complex systems. During inspections, traceability is established between B-models and their specification, and manual checks are performed to verify the implementation choices and to determine whether the system model implements its specification. This activity has shown its limitations, especially in the current context where systems are evolving and becoming more complex. The evaluation of validation tests combined with B-model inspections can be considered relatively inefficient compared to the benefits offered by the use of formal proofs, thanks to the formal modelling of safety requirements and the completeness of specification analysis through proofs.

Goals.

In order to propose an independent and automatic safety assessment approach of safety critical railway systems developed with B method, the B-PERFect project was initiated. We establish the following goals:

-Ensure that the requirements of the system specification are well met by using a method or a validation technique that is independent of the manufacturer.
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-From the perspective of system integrator, consider validating the requirements on the overall system integrating the different subsystems delivered by stakeholders and possibly designed with different modelling techniques.

-Propose a non intrusive verification methodology that does not require any changes to system's code.

-Increase the applicability of PERF methodology.

-Offer the capability to prove high level system properties on concrete software using an integrated verification environment.

-Using compositional verification, ensure that subcomponents of a system respect global safety invariants by decomposing the verification of a software system into different subparts.

The B-PERFect project supports the verification of systems developed using the Bmethod with respect to the safety properties expressed in HLL and addresses the above goals. The B models are transformed into HLL models according to the PERF approach, where the required safety requirements are considered to check the correctness of the system behaviour. The use of such an approach allows to introduce and prove additional system properties and to verify properties that are at a different level of abstraction. Furthermore, B models can be integrated with other models developed in a different language, allowing for integrated verification of safety properties in a single modelling language. This could be especially useful in heterogeneous systems.

The idea behind this is not to prove again the already proven properties on the collected B models, but to guarantee the correctness of new safety properties which could not be expressed on the isolated B model due to lack of its environment, i.e. when information on the environment where the programs run is missing. Indeed, configuration data representing the environment in which the system evolves can be formalised in HLL outside the B models.

As a result, the translated models are enriched with constraints or assumptions describing this environment. This allows to constrain the verification to realistic conditions and a better understanding of the environment model. Furthermore, this approach enables to check the conformity of the implementation choices and the encoding of the safety properties in B models.
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This process questions the B models without manipulating nor instrumenting them.

The resulting approach is qualified as non-intrusive and facilitates formal verification and validation of the integrated system components by external system designers.

Our framework

As mentioned previously, our aim is to deploy the PERF approach for B models. In the context of the integrated development of safety-critical software, a posteriori and nonintrusive verification by expressing high-level properties in an independent language such as HLL is achieved. To support this task for B software, we use B2HLL tool, which is a prototyping approach that transforms B into HLL. A crucial part in our approach is to show that the translation in HLL preserves the semantics of B. The following processus is set up for this purpose. Our approach is depicted in Fig. 3.1. Then, the equivalence theorem has to be checked for these two instances by discharging the associated proof obligations successfully. We use in Chapter 6 the animation approach, including proof steps to validate the formalised models. The associated proofs related to equivalence checking certify that functional representation in modelling languages satisfies the translator specification of the original model. [START_REF]The B-book: assigning programs to meanings[END_REF]. Finally, an export tool (lower part of Fig. 3.1) produces Isabelle/HOL models for the specific input B models and HLL models produced by B2HLL tool.

The developed framework enables to:

• Define a set of sound transformation rules from B language to HLL.

• Guarantee the semantic preservation of the transformation of B models to HLL that can be used for tool certification purpose.

• Develop a tool that implements the defined transformation from B to HLL.

Considered B language

Our target is the translation of models from the last level of refinement namely the implementation level. This is the final entry model that code generators can use, but it still requires a significant amount of manual work to translate all B concepts. To get closer to the target of the code generator, an automatic refinement can be applied. 

Toy Example

In this section, we present an example of a B model and its corresponding HLL code. This example will be used in the Chapter 4 to demonstrate how the transformation rules from B to HLL are applied.

B Development

The below implementation describes a simplified B machine that reads input values from an external machine and computes the minimum of two variables. This example contains two B to select an order of the execution using defined operations in the imported machine. In the example, firstly, the operation computeSum is called, it changes the state of the machine Utils_i as a side effect. The variable xx is initialised using the output of the operation readVar. This operation returns the value of a variable modified when computeSum is called.

= [N ame + ] ← N ame [(N ame + )] = < Subst > < Subst >::= N ame :=< Exp > | < Subst >; < Subst > | < If Subst > | WHILE < BExp > DO < Subst > INVARIANT < BExp > VARIANT < Exp > END | [N ame + ] ← N ame [(N ame + )] | CASE
Finally, the minimum of two variables is computed using the operation minimum. 3 i n t xx ; i n t yy ; i n t r r ; i n t xx_0 ; i n t yy_0 ; i n t rr_0 ; 
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Namespaces : U t i l s _ i _ 0 { // B : U t i l s _ i i m p l e m e n t a t i o n D e c l a r a t i o n s : i n t sum_0 ; i n t sum_1 ; D e f i n i t i o n s : sum_0 := 0 ; sum_1 := computeSum_0 : : sum ;

Namespaces : computeSum_0{ // F i r s t c a l l o f B : computeSum o p e r a t i o n D e c l a r a t i o n s : i n t sum_0 ; i n t i i _ 0 ; i n t i i _ 1 ; i n t i i _ 2 ; i n t sum ; D e f i n i t i o n s : sum_0 := U t i l s _ i _ 0 : : sum_0 ; i i _ 0 := 0 ; // While Loop -i t e r 0 i i _ 1 := i i _ 0 + 1 ; i n t aa_0 ; i n t bb_0 ; i n t r r ; i n t rr_0 ; i n t rr_1 ; i n t r r _ 2 ; 

sum_1:= sum_0 + i i _ 1 ; i i _ 2 := i f i i _ 0 < 2 then i i _

Conclusion

In this chapter we have presented the motivation and main goals of our work, the B-PERFect project. We investigate the applicability of PERF, an industrial toolset that allows formal verification of systems independent of their development process, on software developed in B. More precisely, we have outlined a certified process for integrating the B method into the PERF verification framework. This is extended in Chapters In this Chapter we describe the general transformation strategy allowing to obtain an equivalent HLL code from concrete formal models based on B language. The detailed transformation rules for static and dynamic B clauses are presented. Also, a set of transformation rules is given for syntactic constructs of B language that appear in B operations. Finally, the transformation of B projects is described.

Introduction

In the previous chapters, we discussed the importance of applying formal methods in the context of safety critical systems. We briefly described the overall approach proposed to CHAPTER 4. TRANSFORMATION OF B IMPLEMENTATION TO HLL CODE verify B models using the PERF methodology. Our goal is to translate B models at last level of refinement, namely the implementation level. In this chapter, we will to describe the transformation approach from B implementations level to HLL models.

To keep track of the original rational in the design of a railway system can be challenging because of the several refinement steps and implementation choices between: the system specification (produced by system experts) and the software implementation (performed by software engineers), more precisely the connection between physical actions and logical objects. Safety specifications can have different levels of refinement and not all requirements are encoded as invariants in the B model or explicitly considered in implementation.

Although the B method has proven its reliability, the assessment of high-level design is difficult to obtain and needs guidance from human expertise. Let us assume that a B model with the complete refinement process has been validated and proven to be correct. This raises the question of whether the B modelling is correct in terms of the high level natural language specifications. To be more precise, the goal of our work is to transform B models into a synchronous formal language, HLL, for additional verification purposes of B models. This approach does not question the B proof.

The work presented in this chapter inspired the rest of the thesis and represents the basis for the implementation of this transformation as the B2HLL tool published in [START_REF] Halchin | B-perfect -applying the PERF approach to B based system developments[END_REF]. This chapter will present how to obtain an HLL model from a B model. We define the general transformation scheme for a B project: implementations with their including clauses and the dependent machines obtained from IMPORTS and SEES clauses. The translation rules for the core language of B including expressions and instructions are described.

Transformation Principles. From B to HLL

The goal of this work is to obtain HLL modules which are behaviourally equivalent to B implementations. Due to the semantic mismatch, the transformation of B models to HLL models is not straightforward. On the B side, imperative style is used while data flow paradigm with single static assignment form (SSA) is used on the HLL side. This work concerns the transformation from different paradigms widely studied:

• imperative style to a declarative style with single state assignment form B models are finite state machines where the state represents a tuple of variables and their values, the transitions may update the state by modifying those values. A B model is considered correct if its state is valid with respect to the defined invariant. More precisely this means that the initialisation takes the component to a valid state and that no invalid state is reached out by applying the transitions from operations. This behaviour shall be preserved in HLL.

The link between B variables and HLL streams has been considered as crucial for semantics preservation of the transformation. In B, variables may evolve during the execution of operations whereas in HLL, they correspond to data streams and they can be evaluated during a cycle. On the HLL side, a specific data flow is defined to record the changes. B state variables become HLL data streams and a correspondence between a B variable and its corresponding stream in HLL is set up.

HLL is a single state assignment language, which means that a variable cannot have multiple values during a cycle. Since B variables can be affected multiple times in an operation, we must flatten the value changes of variables. Applying the proposed approach the following properties must be preserved: (i) all value changes of a variable shall be traced and (ii) generated code shall preserve the semantics of B language.

In B, a sequence represents an action which leads to the next action in a predetermined order. The instructions in B and HLL have the same sequencing delimitation, represented by semicolon but the meaning is not the same. In HLL, the order of instructions is insignificant, each variable can only be assigned once in a temporal cycle and all the variables are evaluated at the same time. Unlike B, HLL does not support loop structures. Therefore, a B loop should be flattened in the HLL model. In order to facilitate loop flattening, we extract from the B loop variant its maximum number of iterations.

We detail the defined rules of transformation from B to HLL. In the following, we assume that the source B models are correctly type-checked, visibility checks have been performed before translation, and all the proof obligations generated by AtelierB are proved. Source B language constructs represent the entry point of the translation. The translator is based on a set of translation rules to map between source and target languages constructs.

Notations

In this section, we define the notation used to write the transformation rules from B to HLL and the auxiliary defined functions to assist the transformation. First, we introduce the translation environment that stores the correspondences (mapping) between B variables and HLL flows. Then, we set out the definition of the defined transformation functions.

Mapping: Transformation Environment

Most transformation functions we defined are parameterised by a translation environment Mapping reflecting the link between B state variables and HLL data flows. In the following definitions, let us consider proj 1 and proj 2 the first and the second projection of the Cartesian Product.

For each state modification of a B variable x, a fresh HLL data flow is generated and a mapping is created in the tuple environment. Let M apping : V ar B → (Label HLL ×Label HLL ) be the function that maps B variables to pairs of HLL (read and write streams). We write M(x), where M ∈ M apping, to denote the pair (x 1 , x 2 ) of associated HLL streams. For example, the B variable x would be represented as x → (x 1 , x 2 ) ∈ M , where x 1 is the associated read stream, used in expressions or predicates translation and x 2 is the write stream used during statements translation. This environment is constructed at the initialisation of the translation of a B machine and updated by the translation functions.

We introduce the mapping composition operator (⊗) to compose two environments.

Given two translation environments M 1 and M 2 , it maps all B variables to the associated HLL tuple composed of the reading flow from M 1 and the writing flow from M 2 . Formally, ⊗ : M apping × M apping → M apping composition mappings is defined as if v ∈ V ar B , r HLL ∈ Label HLL and w HLL ∈ Label HLL are respectively a B variable and the corresponding 
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read and write HLL streams and if

v → (r HLL1 , w HLL1 ) ∈ M 1 and v → (r HLL2 , w HLL2 ) ∈ M 2 then v → (r HLL1 , w HLL2 ) ∈ M 1 ⊗ M 2 . M apping : V ar B → (Label HLL × Label HLL ) _ ⊗ _ : M apping × M apping → M apping M(v) = (r HLL , w HLL ) M 1 ⊗ M 2 = M3 such that ∀ v • v ∈ dom(M 1 ) ∧ v ∈ dom(M 2 ) M3[v → (proj 1 (M 1 (v)), proj 2 (M 2 (v)))] where M, M1, M2, M3 ∈ M apping

Transformation Functions

The source B language represents the transformation entry point. The translator is based on a set of transformation rules mapping source language constructs to target ones. Therefore the translator applies a transformation rule when matching an input construct to produce the corresponding one. We define a general transformation function T s (.) with a B model and a transformation environment M apping as input parameters that computes the corresponding HLL model and the updated environment M apping. Specific transformation functions are defined on the syntax construct.

Let model_B and model_HLL be the syntactic constructs of B and HLL modeling languages, respectively. Then, for each syntactic B construct Synt ∈ model_B, we define a transformation function T Synt , that associates a B construct (Synt) to its corresponding HLL construct as T Synt : model_B × M apping → model_HLL × M apping. This function takes into account the previously defined translation environment for variables and streams. They may be composed using the composition operator (•).

CHAPTER 4. TRANSFORMATION OF B IMPLEMENTATION TO HLL CODE

We define the following transformation functions.

• T component -to translate B components into HLL Namespaces This translation requires a couple of helper functions defined below. Some of them are borrowed from [START_REF] Cataño | Translating b machines to jml specifications[END_REF].

• GetType -for type inference when translating a B variable or constant to HLL. For example, GetT ype(x) = t gives B type t of variable x.
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• GetValue -to extract the valuation of a B constant or set. GetV alue(x) = N , extracts the value of the input parameter x.

• CreateFresh -to generate a fresh HLL stream label corresponding to a B variable.

CreateF resh(x, M) = x HLL produces a x HLL stream label for the variable x in environment M.

• GetIterations -to compute, from the B VARIANT, the number of iterations of a B loop substitution. GetIterations(whileInstr) = N , extracts from the V ARIAN T of the loop substitution whileInstr its number of iterations N .

• FindModified -to return a set of modified variables by B substitution. Given a block of B substitutions bl and the translation environment M, F indM odif ied(bl, M) =

V arsM od, returns the set of variables V arsM od updated in bl.

• NameHLL -N ameHLL(Idf B , M) = Idf HLL returns the HLL identifier Idf HLL corresponding to a B machine identifier or a B operation Idf B identifier in the environment M. The returned identifier is composed of the input B name and the instance associated with the component/operation in the translation environment.

Transformation of B Component

An IMPLEMENTATION B component corresponds to a state transition system. In B components, the state of a system is represented as variables, while in HLL it is specified 

Transformation of Static Clauses

In B language, data can be abstract such as sets, relations, cartesian products and it is used mostly in specifications and first level of refinements. Concrete data (enumerated types, booleans, bounded integer types, arrays on finite index interval) are those used in implementations because they can be easily transformed to programming languages types.

<DataDef>, representing the data of a B implementation, is composed of the SETS, CON-STANTS, PROPERTIES and VALUES. The transformation of <DataDef> is represented as follows: B invariants are introduced as a constraint predicate over the state space of a component.

T dataDef (< DataDef >) M = T cst (CONSTANTS N ame) M | T prop (PROPERTIES BExp) M | T set (SETS Set) M <StateDef>,
Typing invariants are modelled in HLL as Constraints predicates and the safety ones become HLL P roof Obligations. In HLL, such a predicate is expressed using Boolean as the type of the predicate variable, I HLL , as defined in the HLL P roof Obligations section. The difference between B invariants and HLL constraints is that for the former, verifications are carried out to check that no invalid state will ever be reached, as long as the operations are used as specified. On HLL side, Constraints clause, has the role to reduce the state space exploration only on valid states given by the predicates expressed on streams in this clause. This is useful to reduce the exploration space of properties to prove in the 

P

Transformation of constructs from B operations

This section is dedicated to define a set of rules that allows us to transform the operations of B models into HLL models. First, we present the transformation of expressions used in substitutions and then we describe the transformation rules for substitutions. The constructs presented in this chapter are the basic constructs that we identified for the purpose of certifying transformation from B to HLL. The syntactic categories associated with the B syntax, which will be used in B operations, are: identifiers (N ame), expressions (AExp), conditions (BExp) and substitutions (Subst).

Transformation of Variables

HLL is a single state assignment language, meaning that a variable cannot have multiple values in a single cycle. The translation environment M stores the corresponding HLL stream identifier for each B variable. Note that in a B operation, since variables may be updated several times, it is necessary to flatten and trace variable-value changes by introducing intermediate variables.

To handle the variable translation from different B clauses to HLL, we associate for each B variable varId a unique pair (r HLL , w HLL ), in the translation environment. Any use of varId without changing the value of varId is replaced by the use of its current reading value r HLL . The writing version of w HLL is used when clauses modifying the internal state of the machine are translated. The function T V accepts as input the identifier of a B variable and returns its corresponding HLL stream identifier in the M environment by merging the B variable name and its associated HLL label, the reading value w HLL as shown in Table 4.4. The corresponding identifier for the B variable varId in the M environment is the B identifier followed by the HLL label: varId_r HLL . Constants are translated using the same rule as variables except that their HLL label remains unchanged. In the proof process, specific lemmas are generated in B to ensure that the model is welldefined. Thus, it is checked that the variables in arithmetic expressions are of the same type and that, in the case of division, the denominator is different from zero. Behm et al. [START_REF] Behm | Well defined b[END_REF] had formalised the well-definedness of B-models. Since the target of our transformation is already proven B models, we are not interested in transforming the generated well-definiteness proof obligations.

B Construct HLL Construct

T V (varId) M . = Let proj 1 (M(varId)) = r HLL in ( varId_r HLL , M )
On the other hand, in HLL, arithmetic operations such as division by zero are considered undefined behaviour and are checked at the solver level. By proving this proof obligations, the HLL model can be statically validated against overflows, the use of uninitialised variables, and out of bound array accesses.

The transformation of B expressions is specialised for identifiers (N ame), arithmetic expressions (<AExp>) and Boolean expressions (<BExp>). The T E function takes a B expression as input and returns the corresponding HLL expression. Since these expressions are available in HLL, their translation is straightforward and defined as follows.
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T E (< Exp >) M = T V (N ame) M ; | T Aexp (<AExp>) M ; | T Bexp (<BExp>) M ;
The translation rules for B expressions can be found in Table 4.5. We introduce the function O that associates B operators (arithmetic or boolean) to the corresponding HLL operators. Translating B operators is straightforward because HLL provides the same operators as B [START_REF] Ning Ge | Correct-by-construction specification to verified code[END_REF]. By applying the T E function to each expression and the O function to the operator, binary expressions are translated. The translation environment is not modified by this transformation.

B Construct HLL Construct The control flow graph of B substitutions from an IMPLEMENTATION is shown in [START_REF] Behnia | Test criteria definition for b models[END_REF].

T E (expr1 op B expr2) M . = Let T E (expr1) M . = (expr1 HLL , M) and O(op B ) = op HLL and T E (expr2) M . = (expr2 HLL , M) in ( expr1 HLL op HLL expr2 HLL , M ) T E (op B expr1) M . = Let O(op B ) = op HLL and T E (expr1) M . = (expr1 HLL , M) in ( op HLL expr1 HLL , M )
i i _ 1 + 1 sum_1 -i i _ 1 i i _ 1 != sum_1
In contrast to this, we do not construct the control flow graph of B substitutions for their SSA form. We use the meaning of the CFG and we rely on a different theoretical foundation The T I function takes as input a subset of B substitutions that is sufficient to describe the transformation from B to HLL. The remaining substitutions from an implementation represent syntactic sugar and can be translated using the defined transformation rules.

For example, the local variable declaration that has the general form VAR nameList IN S END, where nameList represents a variable or a list of variables and S represents a substitution. This substitution is transformed in HLL as a variable declaration block followed by the transformation of the substitution S given by T I function.

Assignment Substitution

Assignment translation from B to HLL is similar to the translation of imperative programs to SSA style. By definition, in SSA form, it is required to represent a program by elementary operations such that there is exactly one assignment for each variable [START_REF] Cytron | Efficiently computing static single assignment form and the control dependence graph[END_REF]. Following [START_REF] Brandis | Single-pass generation of static singleassignment form for structured languages[END_REF],

the SSA style is obtained by indexing uniquely each assignment and replacing all occurrences of variables to match their assignment's new name.

The transformation from B to HLL assignments uses the T asg function and it is shown in Table 4 Example. Listings 4.17 and 4.18 show the translation of the while loop. Note that the translated HLL code only shows the first iteration of the while loop.

VAR i i IN i i := 0 ; WHILE i i < 2 DO i i := i i + 1 ; sum := sum + i i INVARIANT i i ∈ NAT ∧ i i ≤ 2 VARIANT 2 -i i END END
Listing 4.17: While Transformation: B Code // M: i i -> ( 0 , 0 ) , sum -> ( 0 , 0 ) , bb -> ( 0 , 0 ) D e f i n i t i o n s : i i _ 0 := 0 ; // While Loop -i t e r 0 i i _ 1 : The variant is a decreasing function which guarantees loop termination. As the maximum number of iterations of the loop is 2-ii, so the HLL translation process also repeats according to it. The fact that variables are defined in function of while condition and their previous values guarantees the correctness of the translation by value propagation even if all the iterations are not executed.

= i i _ 0 + 1 ; sum_1:= sum_0 + i i _ 1 ; i i _ 2 := i f i i _ 0 < 2 t

Operation Call Substitution

In this section, we present the translation of an operation call. Parameter passing is one of the crucial points for the preservation of semantics when translating programs [START_REF] Bert | Adaptable Translator of B Specifications to Embedded C Programs[END_REF].

Contrary to B, HLL does not support functions with non scalar types as it is used in common programming languages.

As we know, a B model is composed of an internal state, several essential properties (the INVARIANT clause), and the specification of system evolution (theOPERATIONS clause). The general form of an operation call is: x out ← op_name(y in ), calls the operation op_name with the effective parameters y in and assigns its result to x out . Several forms of declaring an operation are available, such as an operation without parameters. An operation is triggered if its precondition is satisfied by the caller and should preserve the invariant. In order to preserve the B semantics when transforming to HLL, the translation of B operation call is shown in Table 4.11 and follows these steps:

• The operation body substitution S is transformed into a corresponding block of equations in HLL, S HLL , by applying the transformation function T I (S) M .

• Extra assignments, inout HLL , are introduced to propagate the values of input and output variables (mapping effective parameters to formal ones represented by in and out variables). The types of the input parameters are synthesised from the precondition of the operation and for the output parameters from the substitution S.

• The preservation of the invariant I (of the called machine M ch1) by an operation is specified by an HLL invariant predicate over the resulting translation environment M HLL . In HLL, such a predicate is expressed using the Boolean as a type of the predicate variable obtained by applying the invariant transformation function T Inv .

The resulting translation environment M HLL is updated with the result of the operation call and the state changes after the execution of the substitution S.

Example. The call of the operation minimum in Main_i implementation triggers the translation of this operation into minimum_0 namespace.

Transformation of B Projects

The B language allows us to decompose the development of large applications into subcomponents. The structure of a B project consists of a tree of B modules, as shown in Implementations are the final refinement of a B module. They must be deterministic with executable substitutions and define concrete variables with implementable types. An implementation imports modules that define the operations invoked by the implementation.

Base machines are the machines that interface with the non-B parts of a project and whose implementations are not further developed in B. The transformation rules for the implementation component are explained in more detail below.

In a B project architecture, the starting point is the root machine of the project, the B-main module (Root machine in Figure 4.2). This module contains an entry operation that allows all operations of the B project (imported modules) to be invoked indirectly. presents the transformation of some composition primitives. Finally, the transformation of the B-main module is described in detail in Section 4.7.2.

Composition Primitives

In this section, we are mainly concerned with the translation of modules obtained by refinement and the sharing aspects of B composition clauses such as IMPORTS and SEES.

These primitives are described in detail [START_REF] Bontron | Automatic construction of validated b components from structured developments[END_REF]. Note that the proof obligations related to refinement must be discharged prior to translation. Because of the decomposition of properties through refinement, the translation of implementations requires information from abstract specifications (variables typing, constants definition or signature of an operation).

Therefore, we employ an enrichment mechanism [START_REF] Bontron | Automatic construction of validated b components from structured developments[END_REF][START_REF] Behnia | Test de modèles formels en B : cadre théorique et critères de couverture[END_REF][START_REF] Samuel Colin | Brillant: An open source and xml-based platform for rigourous software development[END_REF] to gather information from abstract data clauses such as SETS, CONSTANTS and PROPERTIES and translate the more concrete parts of the implementation to HLL.

In the case of shared states, the translation must preserve the initial reasoning about The transformation of an imported or seen component is given in Table 4.12. component. In this way we handle the case when a machine is imported several times but one of the instances is not named.

B Construct HLL Construct

Tstruct(IM P ORT S M ch

1 ) M . = Let N ameHLL(M ch 1 , M) = M ch HLL and Tcomponent(< StructureDef >< DataDef >< StateDef >< Init >) M . = (modelHLL, M ′ ) in (Namespaces: M ch HLL { modelHLL }, M') Tstruct(SEES M ch 1 ) M . = Component M ch 1 does not exist in the current transformation environment, M(M ch 1 ) = ∅ then: Let N ameHLL(M ch 1 , M) = M ch HLL and Tcomponent(< StructureDef >< DataDef >< StateDef >< Init >) M . = (modelHLL, M ′ ) in (Namespaces: M ch HLL { modelHLL }, M')
The SEES clause allows one component to access sets, variables, constants and operations found in another component. The use of this clause shall follow the following rule: variables must not be modified by the seeing components. A machine that is accessed by a SEES relation must be imported into the project at least once [START_REF] Behnia | Test de modèles formels en B : cadre théorique et critères de couverture[END_REF]. We translate B models proven to be correct by Atelier B, thus we do not repeat the verification concerning the visibility rules at the HLL level. When translating the SEES clause, a particular attention shall be given to read the data from the appropriate HLL instance of this machine. We are looking at the state of the machine that was created in the project hierarchy using IMPORTS. 

Main Machine

The root machine of the project (B-main module), which contains an entry operation, serves as the starting point in B projects' architecture. The role of this operation is to sequence the order of execution of operations in the project, and it is assumed to be called cyclically by an external process [START_REF] Badeau | Using B as a High Level Programming Language in an Industrial Project: Roissy VAL[END_REF].

The translation described in this section uses the most intuitive principle to generate synchronous dataflow code from an imperative program. The basic idea of the transformation specification given below is to translate the body of the B-main operation into HLL 110 CHAPTER 4. TRANSFORMATION OF B IMPLEMENTATION TO HLL CODE computations that are executed during an instant [START_REF] Zimmermann | Component reuse in b using acl2[END_REF]. Starting from the root module of a B project, all implementations of the transitively imported modules are translated into HLL. The HLL model is obtained by recomposing the called operations of each component, taking into account the order defined by the root component, and specifying which variables become input and output streams. B-project inlining is applied by combining all formal models into a single formal text. In this way, we obtain a global state space that merges all the singular states of the B implementations.

The translation rule for a B project, starting with the main module, is provided in table 4.13 and uses defined translation rules for each B clause. The HLL model is obtained from the B-main machine, which is the root of the importation tree and indirectly invokes all operations of all components by sequentially assembling the operations of each B component in the defined execution order. The transformation of this cyclic system is described as the translation of the substitution of IN IT IALISAT ION , followed by the transformation of the substitution of the OP ERAT ION S clause,which is applied repeatedly. The computations from one iteration are converted to HLL values in the current time frame, and these represent the initial value for computations in the next cycle.

Cycle precision is required when transforming B to HLL. Each iteration of the global loop (defined in the root machine) maps the system to a new state. When we observe the behaviour of the loop, we find that the final state of each iteration represents the initial state of the subsequent iteration. In HLL, we observe the evolution of the flows from one point in time to another. Given these two observations, we consider in the transformation that the evolution of flows is equivalent to state changes in B from one iteration to the next one.

We assume that the state of B variables at the end of an iteration represents the value of the HLL outputs in the current cycle and the initial state of the next execution. At the beginning, the transformation environment is empty, the state and the context of the main component with its importation tree are added. M' is the resulting translation environment updated consequently. The resulting HLL model represents the transformation of an entire B project.

B Construct HLL Construct

Tcomponent(IM P LEM EN T AT ION N ame

< StructureDef >< DataDef >< StateDef > < Init >< Ops > EN D)∅ . = Let N ameHLL(N ame, ∅) = N ame HLL and T dataDef (< DataDef >)∅ . = (dataHLL, M), T stateDef (< StateDef >) M . = (stateHLL, M 1 ), Tstruct(< StructureDef >) M 1 . = (structHLL, M 2 ), T init (< Init >) M 2 . = (initHLL, M 3 ), ∀v ∈ dom(M 3 ).{ v HLL := v init , vnext; where v init := M3(v)
and 

vnext := M4(v);} . = (cycleHLL, M3[v → v HLL ]), Tops(< Ops >) M 3 . = (

Conclusion

This chapter introduces the key concepts for translating from B implementation to HLL dataflow language. The semantic differences between the two languages under study are pointed out and a general translation scheme is proposed. We have described a translation process and a set of translation rules for each construct that requires special attention. We have shown that B implementations can be translated into HLL models through a series of syntactic transformations. This chapter presents a certified translation from B formal language to HLL. The proposed approach uses HOL as a unified logical framework to describe the formal semantics of B and HLL and to formalise the translation relation of both languages. The developed Isabelle/HOL models are proved in order to guarantee the correctness of our translation process. We present the weak-bisimulation relation to check the correctness of translation steps and the proof process. 113

Introduction

The critical industrial application context requires an assessment of the quality of the defined transformation. Since this approach relies on a translator tool, a key feature is semantic preservation and thus the certification of the translator. In this chapter, we address the problem of validating the translator by proving semantic equivalence between the source code and the target code. The certification of the defined transformation process consists in formally ensuring semantic preservation after translation, i.e. we demonstrate that the transformation of the B model into the HLL model preserves the original semantics of B models. More precisely, we present the correctness of the general transformation rules described in Chapter 4 by showing a behavioural equivalence between the B models and their automatically generated HLL models.

Principles of the Certification Process

Our approach is depicted in Fig. 5.1 and uses equivalence relationship based on a weak bisimulation relationship to relate B states and HLL flows. It is based on a deep embedding of the semantics of both modelling languages into the Isabelle/ HOL framework as a unified formal modelling framework that allows for meta-level logic reasoning.

First, both B and HLL modelling language semantics are modelled in Isabelle/HOL. Note that our semantics formalism takes into account only a subset of constructs from both languages required for the developed models. The certification process addresses the core language constructs from B language. Then, an equivalence relation between these models is formalised. It is based on a bi-simulation relation (upper part of Fig. 5.1). An equivalence theorem is stated and proved (by a structural induction) once for all. This is similar to the ideas presented in [START_REF] Pop | In and Out of SSA : a Denotational Specification[END_REF][START_REF] Olaf | A certifying code generation phase[END_REF]. The proof is a structural induction on the constructs of the B modelling language and on the transformation rules. Isabelle/HOL data-types and functions formalise the concepts of both B and HLL. We have formalised the operational semantics associated to the abstract syntax of each syntactic category of both languages as well as the semantic equivalence between them. Below we describe the different steps of this formalised certification process. fun m e a n i n g _ i n s t r u c t i o n : : " i n s t r u c t i o n ⇒ env ⇒ env " where " m e a n i n g _ i n s t r u c t i o n ( SKIP )
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σ = σ " | " m e a n i n g _ i n s t r u c t i o n ( Bl l i s t ) σ = ( c a s e l i s t o f [ ] ⇒ σ | e#l ⇒ m e a n i n g _ i n s t r u c t i o n ( Bl l ) ( m e a n i n g _ i n s t r u c t i o n e σ ) ) "
| " m e a n i n g _ i n s t r u c t i o n ( A s s i g n ( vn , Tval . Bool ) ( Bexp exp ) ) σ = σ ( ( vn , Tval . Bool ) := B ( meaning_b exp σ ) ) " | " m e a n i n g _ i n s t r u c t i o n ( A s s i g n ( vn , Tval . I n t ) ( Aexp exp ) ) σ = σ ( ( vn , Tval . I n t ) := I ( meaning_a exp σ ) " | " m e a n i n g _ i n s t r u c t i o n ( I f c b1 b2 ) σ = ( i f meaning_b c σ then m e a n i n g _ i n s t r u c t i o n b1 σ e l s e m e a n i n g _ i n s t r u c t i o n b2 σ ) " Listing 5.6: Semantics of B statements In Listing 5.6, sequential composition of instructions is inductively defined. The interpretation of e#l is given by the interpretation of instruction e in the given state followed by the interpretation of the rest of the list l. An assignment produces the state where a variable is updated. A conditional statement is denoted by condition evaluation in the current state followed by the interpretation of either if or else branch depending on the interpretation of the condition.

The case of loops

As mentioned in Section 4.6.3 the transformation tool translates a loop as the recursive function b_while_to_if with conditional (see Listing 5.7). In this Listing, we observe that the function is called a nb number of times corresponding to the original B VARIANT value, used in B to ensure termination of the loops. Therefore, it can be unfolded as a sequence of if then else statements in a block Bl. In other words, each loop can be seen as a sequence of unfolded if then else statements. The built-in fixpoint operator available in Isabelle/HOL is used to define the b_while_to_if recursive function. To translate the while loop of B language, we use the formalisation of if statement iteratively. We provide a theorem to show an equivalence between the defined function b_while_to_if and the predefined while semantics from Isabelle/HOL while combinator theory [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-order Logic[END_REF]. The theorem guarantees the correctness of the translation by satisfying the condition, which states that the number of unfoldings should be greater than the maximum value of the given variant. We provide a lemma to show the equivalence between the meaning of while unfold as we defined it and the while defined with lf p in While_Combinator theory [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-order Logic[END_REF].

HLL SEMANTICS

At this stage, all basic B constructs defined at the operation level in B are embedded in an Isabelle/HOL definition. All other constructs can be rewritten using these basic constructs. For example, the operation call statement, for example is not explicitly encoded in Isabelle/HOL because it can be viewed as a sequence of statements.

HLL Semantics

HLL is a declarative and synchronous language in SSA (Single State Assignment) form.

Several formal models of synchronous languages with single state assignment [START_REF] Schneider | Embedding imperative synchronous languages in interactive theorem provers[END_REF][START_REF] Yang | A comparative study of two formal semantics of the SIGNAL language[END_REF] have been proposed. We rely on these SSA based semantics to define HLL semantics. A HLL model can be defined as a collection of order independent flow (stream) assignments.

In our work, each stream is defined as a sequence of values. In Listing 5.8, each sequence is defined as a function mapping a natural number to a polymorphic datatype, 'a [START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF]. As we know that in the HLL language, each variable has a unique value and it has a unique definition while in the B language variables can be modified iteratively. HLL variable names are defined as (name×T val)×nat. Each variable is uniquely identified. Uniqueness indexing of variables ensures that once translated, no B model identifier is assigned twice in the obtained HLL model (i.e. single assignment property). • For the assignment statement, a fresh HLL identifier is created (using CreateFreshH-LLVariable function). This new identifier is defined with an incremented index value, if it already exists in the mapping or adds to the mapping M apping a new binding stream for the B variable if not.

• The transformation of sequence is straightforward and applies to a block (a list in the model) of instructions a#list in a initial mapping m. The transformation uses an inductive definition based on the structure of the list. The updated mapping is a parameter of this function.

• Processing the conditional if then else statement is more complex. The translation of if constructs is challenging because in B language this construction is a statement and in HLL it is an expression. The translation is performed in different steps, the condition and the statements of each branch are transformed. In the if expression of B, any variable can be modified in both branches, which may raise a conflict in the bindings and it can cause information loss. To resolve this conflict, we introduce a mapping composition that creates a new mapping used to transform the else branch. This mapping has as its read version of variables the one that originally exists in m, and as its write version the variables from m1. Since B variables values may be modified in each branch, we use the associated read and write streams associated to each variable. The write stream is the only modified stream in case of assignment and 5.5. CORRECTNESS OF THE TRANSFORMATION 125 the read stream is used for expression evaluation. At the end, a list of assignments for the modified variables is produced for each branch of the conditional.

• Since B loop statements have been turned to recursive if statements they fall in the previously defined processing of conditional statements. a s s i g n s = F i n i t e _ S e t . f o l d ( T_if_step_i m1 m2 i n s t c ' s t ) {} v a r s i n ( Bl ( [ c1 , c2 ]@( s e t _ t o _ l i s t a s s i g n s ) ) , s t ) ) " Listing 5.20: B to HLL Transformation Function in Isabelle/HOL

The equivalence relationship

At this stage, it is possible to define an equivalence relationship on states and flows. This relation, namely ∼ = is defined on state variables using an observational relation [START_REF] Sangiorgi | On the bisimulation proof method[END_REF] between states of a B model and corresponding HLL flows obtained after transformation. Listing 

Asserting correctness of transformation

In this section, we describe the main equivalence theorem and we show a strategy to prove that the transformation process maintains the semantic equivalence between the B and HLL representations by a structural induction.

theorem E q u i v a l e n c e :

1 . f i x e s codeB : : " b . i n s t r u c t i o n " and σ B : : " b . env " 2 . and codeHLL : : " h l l . i n s t r u c t i o n " and σ HLL : : " h l l . env " 3 . and n m : : mapping 4 . assumes * : " ( codeHLL , m) = T r a n s f o r m a t i o n codeB n " 5 . and # : " σ B ∼ =n σ HLL " 6 . and $ : " f i n i t e (dom n ) " Note that this theorem uses additional assumptions as follows.

• The initial mapping domain must be finite (Line 6).

• The B model must be well defined in the initial mapping i.e. type checking and all the variables are considered in the mapping (Line 7).

• To ensure the variables traceability in the mapping, the HLL variables should be associated to the B variables that have similar names (Line 8).

• To ensure the type safety of the produced HLL model, all the variables must be well-defined and the initial values should conform the required type (Line 9).

A B code is considered well_defined with respect to a mapping if the mapping contains all of the variables used in the B code. When doing the conversion from B code to HLL, we verify that we assign a value in conformance with the variable type. In B implementations, the variables are declared and typed in CONCRETE_VARIABLES and respectively INVARIANT clause. This is considered to be embedded somewhere else, and when a transformation is realised all of the program variables are already in the mapping. A mapping is well_defined if B identifiers are associated to the same identifiers in HLL. In this way the type correctness is preserved. A HLL state is well_defined if all state variables are associated to values that conform with their defined types. This is related to type safety of produced HLL code. The type safety theorem says that if the evaluation of HLL code obtained from a transformation starts in a well defined state, the resulting state is also well defined.

These assumptions are ensured thanks to defined lemmas. Indeed, different lemmas were proved to ensure that the transformation is achieved in a well defined mapping between states and flows.

Proving semantic preservation

The proof of the equivalence theorem of Listing 5.22 is performed using the Isabelle/HOL theorem prover. The construction of proofs is mechanical. The powerful tactics available in this prover allowed us to complete the whole proof of this theorem. Most of the proofs are interactive (semi-automatic), they are completed through user interaction with the theorem prover of Isabelle/HOL.

The classical implementation of Isabelle tactics consists of rewriting operations on data structure for representing proof goals. To facilitate proofs about typing, definition and theorems related to formalisation for both modelling languages, B and HLL, we use the built-in theorem prover of Isabelle/HOL, which can discharge any kinds of conjecture by collecting all the relevant theorems. During the checking process, the tactic application proves the specified properties that must be met. In case of failure of the proof, it means that the proof script is insufficient or there is an error in the model that does not satisfy the semantic condition.

A structural induction with case based reasoning (for each syntactic construct) has been set up. These cases have been decomposed into several lemmas which have been used for the proof of the main equivalence theorem. The identity and sequence construct proofs are quite straightforward. Establishing well_def ined_mapping, well_def ined_code, well_def ined mostly requires to use the defined lemmas to hold for transformations. The proof for assignment is a proof by case on the variables types. Here we must show that the value of an expression exp in the state σ B is equivalent to the HLL value σ HLL obtained from the transformation of this expression.

However, some complex transformation rules may require more elaborated proofs. For example, the semantic preservation proof for if conditional statement required more than 300 lines of proof script and uses 25 intermediate lemmas to complete the proof.

The proof was particularly complex because of the optimised translation of the branching composition statements, which produces assignments exclusively for the modified variables.

To simplify the proof, we introduced a slightly different but equivalent description of the if translation, which we call T ransf ormation_if ′ . This translation makes assignments for all variables, modified or not, which is not optimised but drastically simplifies the proof. It is proved that the new translation is semantically equivalent to the optimised translation. It is also proved that the correctness of the translation relation is preserved for if constructs.

The correctness proof for while constructs is given by the following theorem: for a B-code obtained by unfolding the while construct nb times, if there exists a k less than nb for which the while condition becomes false, then the translation of the while construct is correct. The proof of this theorem is almost straightforward by applying the Equivalence theorem.

In summary, the proof of the correctness of the transformation from B to HLL represents more than 5000 lines of proof scripts for discharging the proof obligations related to the transformation (i.e. mapping, existence of the variable in the mapping, type checking etc.) associated to the equivalence proofs (i.e. definition of semantic equivalence, variables updates, variables traceability etc.). In this work, our overall effort is 5-6 months (as a novice user)

for completing the Isabelle/HOL formalisation and proofs.

Validating semantic preservation

There are several ways to consider the verification of the proposed transformation rules by the B2HLL tool: human inspection of the generated tool, different testing techniques, run-time verification by simulation and animation, and correctness proof. In our approach we have combined human inspection with the testing and proof approach to verify the correctness of the B2HLL tool. B2HLL provides additional functions to facilitate the human inspection of HLL generated models through traceability of source and target models. The HLL models are annotated with information referring to the original B code. A testing strategy, combined with the animation capabilities offered by the Isabelle/HOL models animator, is implemented to check and validate the generated HLL models from the B models.

We perform model execution combined with formal proof to link the B2HLL tool with the certified translation rules as defined in Isabelle/HOL. A typical scenario for such an animation in Isabelle/HOL is

Step 1. Translate the B models to HLL models using the B2HLL tool It is the responsibility of the designer to discharge the verification condition in Isabelle/HOL using different tactics and to prove that the equivalence theorem holds.

Step 6. Inspect and analyse the final values of the B state variables and the obtained HLL streams.

The translator has been tested on several models. We first considered many representative examples of B implementation machines such as a room Booking system, Pixel moving on a screen. Then, complex machines with large state spaces, and many arithmetic and logic expressions issued from the railway domain as test cases. We validated, using the previously described validation scenario, B projects supplied by RATP with more then 100 B implementations and 50 basic machines (imported or seen machines). The current version of the B2HLL tool handles the implementation level of B models including imperative programming constructs corresponding to 5000 lines of B code. This approach allowed us to realise a first proven tool before its transfer. Indeed, industrialisation of B2HLL is ongoing at RATP targeting the translation of the entire B language based on our results. In order to automatise the entire verification chain, automatic export tools from B and HLL languages to Isabelle/HOL are under development. We have also provided proof of the correctness of the transformation rules implemented by the B2HLL tool.

To conclude this section, we mention that the interest of our approach is twofold. On the one hand, it offers an independent verification approach to B models that does not rely on B tools and, on the other hand, it supports an integrated verification framework with HLL in a single modelling language. In addition, the certification process summarised in this section asserts the correctness of the transformation in terms of semantic preservation. It may be used to check the correctness of specific transformations using the animation capabilities.

Conclusion

In this chapter we have presented a complete formal verification process of the transformation rules from B to HLL. The semantics of the two modelling languages B and HLL are expressed in Isabelle/ HOL and equivalence between the source and target modelling languages is checked. The correctness of the translation rules is proved in Isabelle/ HOL theorem prover.

An equivalence proof between B and HLL semantics based on a bi-simulation relation has been established. The formalisation and related proofs presented in this work can be easily extended to other transformations from state-based languages to HLL.

Chapter 6 To automate the approach, we proposed a translation from B to HLL language, implemented as the B2HLL tool. In this chapter, we present an architecture of the tool and give implementation details. Using this tool, we can apply a verification process to already developed models and check system safety properties on these models. The application of the proposed approach in an industrial context and how this tool articulates with the PERF toolkit is presented. Finally, we apply our tool to a case study and discuss the last step of the validation strategy of the B2HLL tool, the model animation.

B2HLL Tool

This section presents a general architecture of the prototype of the B2HLL tool, a translator for B formal models into HLL code, including technical challenges related to tool development.

This in order to prove, with the help of the PERF toolkit, properties not present in a B model, which are the subject of the RATP evaluation of critical software. This tool demonstrates the feasibility of converting B to HLL.

The B2HLL tool is developed in C++ language according to the previously defined and validated translation rules. The decision to use the C++ language is due to the fact that commercial tools and translators for the B method have been developed in the C language.

The tool considers a subset of the B language. It behaves like a compiler that applies a transformation rule when matching the text input to obtain HLL models, as shown in Figure checks are performed on the files received as input to decide whether they are valid with respect to the B language grammar. For this purpose, we have chosen a parser suitable for programming various transformations on trees/terms. More details about this phase can be found in 6.1.1.

• Preprocessing. After obtaining the data structure of the B-component, we annotate the previously generated AST with various information needed to translate it into HLL, such as the links between some syntactic objects, the type inference of the variables, and the definition of the visibility domain of the variables. We describe this phase in detail in 6.1.2.

• HLL Generation. In this step, the final HLL model for a B project is generated. The B2HLL tool requires as input a verified B model, more precisely, all generated POs must be proven to be correct. This is an important requirement of the tool, since generating code from an incorrect model can lead to undesirable behaviour. Furthermore, the model must contain finite loops, be type-checked, and satisfy the well-definedness rules. This checking can be done using the AtelierB tool. Compliance with this requirement is not checked by the B2HLL tool. The translation shall give a conservative HLL model, meaning that any falsifiable assertion of the original B model shall be falsifiable in the HLL model.

The input of the B2HLL tool are B implementations [START_REF]The B-book: assigning programs to meanings[END_REF][START_REF] Clearsy | [END_REF]. The B2HLL tool considers the following B constructions: variables (integers, booleans, arrays, enumerated sets), boolean and arithmetic expressions, substitutions (assignment, sequence, conditional, loop, operation call, local variable definition) and B composition clauses.

In practice, in a B project, there are abstract machines without associated refinement or implementation, to encapsulate specific types or statements which are not supported by B0. These machines are imported and used in B implementations. For our work, the translation of these machines is mandatory. Note that, the B2HLL tool does not support yet the transformation of B abstract concepts.

The tool has been tested on several case studies. First of all, examples of B projects known in the literature have been translated with the B2HLL tool (reservation system, pixel movement, etc.). This allowed us to fully translate B projects into HLL and later check properties on HLL models from this translation. HLL code generation was also tested on complex projects. The tool produced a valid HLL model, but comments were generated for the translation of B constructs, which are not implemented in the current version of the tool.

The objective of this prototype, developed with the help of two interns [START_REF] Anas | Development of a tool for the translation of b models to hll[END_REF]163], is not to propose a final solution but to serve to demonstrate the feasibility of the proposed solution. In order to apply the PERF method to validate critical software developed in B, it is necessary to develop an industrial version of the B2HLL tool. This tool will have to translate all the constructs of the B language, ensure the traceability of the variables between the B code and the obtained HLL code and guarantee the equivalence between the translation rules implemented in the tool and their formal definition.

The following sections describe the different steps of the translation process, from the moment the user selects a folder containing the B project to be translated and a root B machine, to the generation of the HLL models.

Parsing

In terms of tools and proof environments around the B method, a move towards open source for use in academia has been envisaged. Several tools have been developed that include 6.1. B2HLL TOOL 135 parsers for the B language. Table 6.1 summarises the existing tools that include the B parsing functionality.

Tool

Dev.Language ABTools Java/ANTLR JBTools Java BRILLANT Objective Caml BComp C Table 6.1: B Parsers

The BRILLANT platform [START_REF] Samuel Colin | Brillant: An open source and xml-based platform for rigourous software development[END_REF], an open-source environment that allows to manipulate B models from specification to code generation, includes a B parser developed in Objective

Caml. The parser outputs an XML representation for B formal specifications. The generated XML file is further used as input for other tools.

ABTools [START_REF] Boulanger | Abtools: another b tool[END_REF] is a development environment for the B method, an open source tool created to provide the possibility to study and test extensions of the B language. The tool was developed with ANother Tool for Language Recognition (ANTLR)1 compiler generator.

It is made up of several components such as lexical and syntax analyser, a decompiler, a type-checker and a PO generator. Based on their defined B grammar, the parser generates syntax trees and manages these trees using a ANTLR syntactic tree management. The generated AST can be further output in ASCII, Latex or XML format.

Having a similar motivation with the previous work, jBTools platform [START_REF] Voisinet | Jbtools: An experimental platform for the formal b method[END_REF] was designed to manage the B language. The tool was developed in Java and proposed a parser responsible for analysis and type-checking of B specifications. For each B file parsed, an XML file is generated and it is used for further processing to generate Java code. BSmart [START_REF] Déharbe | Bsmart: A tool for the development of java card applications with the b method[END_REF] tool uses the jBTools parser as front-end of its environment.

While working on my thesis work, I came across these B parsers that are no longer available. The given download links associated with these parsers do not support anymore or the given repositories are empty.

To develop our B2HLL tool, we use an existing B parser: BCompiler2 , an open source tool that provides complex parsing functions for syntactic and semantic analysis of B models.

In the following, we give a brief description of the functionalities of the BCompiler and how it interfaces with our tool.

CHAPTER 6. TRANSFORMATION AT WORK

BCompiler is a syntactic and semantic B analyser developed in C++ language. The tool analyses the source file of a B component and it generates a data structure for this component:

an annotated abstract syntax tree, called BeTree [START_REF] Clearsy | B Compiler General Conception[END_REF]. Syntax trees are managed and examined via BeTree managers.

The AST is the result of several analysis steps such as lexical, syntactic and semantic analysis. During these steps, a lexems flow is created and various cheques are implemented on the B machines, such as identifier resolution, type checking and visibility rule checking.

Furthermore, B0 verification can be realised where compliance with certain B0 rules for translation into C, C+, ADA is checked. The BCompiler also provides functionality for traversing trees and attaching information to tree nodes.

B2HLL tool uses BCompiler as a API to collect B machines concepts to be translated such as constants, variables, properties, invariants and operations, as well as all the necessary information (e.g. typing information). BCompiler parses B source machines and outputs abstract syntax trees represented as BeTrees. The implementation of the B2HLL tool is based on the BeTree representation to create its own data structure. All this information is stored in a C++ class structure.

First, the B2HLL tool loads BCompiler tool and calls the analysis methods of the last one. The tool processes every B component that could be used and outputs a forest of pre-processed BeTrees. Lexical and syntactic analysis are performed where every machine, refinement or implementation of the given source B project is transformed into a BeTree representation. Further the tree is annotated with typing information for each B component.

As a result, the B project given as input is parsed and the representation of B source models in the form of BeTrees is obtained.

Further, several classes are created to hold the information used to generate the HLL models. We choose to represent the information extracted from a B component by using BComponent class, as detailed further.

Before going further into the translation process we detail the class structure shown in Figure 6.3. The tool processes a given B source project with a root module as follows:

• Each B machine input file is represented as a BComponent class. The BComponent class allows to access the BeTree representation of the machine, as well as to consult the data structure of this machine. For each machine the data is filled in the pre-processing phase. We have chosen to implement our own data structure rather than extending the BeTree structure with translation modules because this makes our tool easier to maintain, and to evolve. Next we continue with further processing on the obtained BProject class structure.

B2HLL TOOL

Preprocessing

During preprocessing, the data structure created in the previous step is annotated with additional information useful for transformations for variable evolution, loop or module structuring. The translation environment is created and updated. Each B module (represented by the classes BModule and BComponent) is processed separately from the others, starting with the most abstract machine and progressing to the most concrete.

We create a data structure (BData) for each component to store information about that component. Figure 6 For a BComponent, we collect all elements of the machine to be translated, e.g. enumerated sets, constants with their values, variables, invariants, and operations, as well as all necessary information (such as the typing invariant) from the abstract machines.

Further in preprocessing, expressions are flattened to extract essential information for translation. Predicates and expressions in B may be complex and they may be nested in useless parentheses stored in recursive binary predicates, which further complicates parsing.

Moreover, there may be multiple typing predicates for the same symbol. All these technical challenges lead us to define rules to flatten predicates, and we separate them into 3 categories:

typing, valuation and property. To fill the information, we iterate over the list of predicates of a B clause, we separate the elements properties, type and value and store them in the corresponding field of the symbol under study. In our implementation, we consider the following operators: :, =, <:, <<: for extracting type information. For evaluation, we consider the following operators: :=, ::, : and =.

The processing of the clause PROPERTIES iterates over the conjunction predicate, and each conjunction is processed based on the type category (typing, valuation, property) defined earlier. For example, a conjunction containing the = operator is used to determine the value of a constant and to set the valuation for the corresponding symbol in the symbol table.

Each operation has a table of symbols that initially contains input and output parameters.

Local symbols of the operation are not added in this step. Input parameters are typed by analysing the precondition substitution of the operation or of its abstractions. As for typing output parameters, at this level of the process it is difficult to find their type because type deduction is needed. Once we have completed the type resolution and identified the required information for all symbols, we move on to the next step: code generation.

Code Generation

The final part of the process is HLL code generation. Since the two languages have different and the HLL variable declarations (attribute declarations). The placeholders are replaced by strings derived from the semantic metadata of the operation node. As a result, when the operation template is processed with the required placeholders, the HLL operation code is generated. Until these placeholders are replaced, the template only outlines the body of the operation.

For A template is instantiated when its placeholders are replaced by strings containing the corresponding information from the translation environment. For example, when instantiating a template of an operation, this means realising the mapping between formal and effective parameters. The main machine guides the instantiation of templates, since the translation process must follow the exact sequence of state changes of the B model. On this basis, the syntactic influence cone resulting from the main machine allows the instantiation of templates and generates the final HLL. The order of dependencies between the components is respected, e.g. the template of the main machine is instantiated first and the elaboration of the used components is achieved recursively.

During instantiation, the variable bindings are implemented in such a way that the correct dependency order is preserved between the state of the B variables and the produced 

Translation rules at code level

In Chapter 4, we have presented the main translation rules for B basic constructs. In Chapter 5, we have shown the certification process for this transformation. In full-scale projects, B implementations address more B constructions allowing for more complex data structures.

We consider that these complex constructs can be transformed into basic ones. Sets Translation A deferred set in HLL will be represented as an array of booleans. At implementation level, the deferred set in B shall be finite and with a specified cardinality.

If no cardinality is specified, a default size will be used (which is controlled by a tool configuration variable).

When translating a set two different elements are generated. First, we define a HLL type definition corresponding to the set. Second, we define a variable having the type of the set and containing all the elements of the set. This variable is a boolean array indexed by the integer range. The membership of the set is represented by the value true for the elements that belong to the set.

Predicates Translation. For propositional operators, the translation to HLL is as expected. HLL supports constructs of propositional logic such as : ∧, ∨, ¬. For quantifiers, i.e., ∀ and ∃, we need to extract the type of the bounded variable accordingly. These predicates are translated as HLL universal and existential quantified expressions.

Deployment at RATP: integration to the PERF project

The PERF methodology is developed at RATP for safety properties verification. It is an a posteriori proof based approach that can be applied to already developed software without modifying the existing software of the system (black-box verification). This approach has been applied to several RATP internal projects for CBTC and interlocking safety assessment and also to external missions [START_REF] Benaissa | The perf approach for formal verification[END_REF][START_REF] Bonvoisin | Utilisation de la méthode de preuve formelle perf de la ratp sur le projet peee[END_REF][START_REF] Feliachi | Formal verification of system-level safety properties on railway software[END_REF]. The PERF approach is proved to be efficient for software safety assessment as it can detect unsafe bugs during the validation phases. The B2HLL tool is integrated at the same level as the other translators from the PERF toolkit.

The primary task of the translators is to provide a semantics-preserving formalisation of the software under evaluation in HLL.

In the development of typical B industry projects, the safety-critical software part of a system is designed in B using as input the informal software specification documents.
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These documents describe, at the software level, the safety requirements and the design of the software. From these documents, the decomposition of the software into elementary functions and their sequencing can be derived. Since these documents contain pseudo-code in B, we can point out that the specification documents at the software level are very similar to their counterparts in B models. Validation of B models against their software requirements is not covered by formal proofs and is usually realised by cross-reading, inspections, and by testing [START_REF] Badeau | Using B as a High Level Programming Language in an Industrial Project: Roissy VAL[END_REF]. Although abstract B models and informal specifications are close, informal specifications can be error-prone and nothing prevents from transferring these errors to abstract B models. Moreover, formalisation errors can occur and a misunderstanding of the specification can lead to errors being introduced into B models.

In this work, we propose to support the safety evaluation of B models using the PERF method. Here, desired safety properties are proved on HLL models obtained from source B models. The PERF toolkit uses model checking techniques to prove the correctness of the safety properties extracted from the specification documents. The formalisation of the safety properties to be proved on B models is manual and is performed by a safety engineer.

It is his task to code the right level of properties, depending on the validation objectives.

Input documents for system or software specification verification include both functional and safety requirements [73]. Typically, functional requirements are considered safety requirements if they have an impact on safety. When proving the safety of the system, a safety analysis must be performed to obtain a collection of safety properties extracted from these safety requirements. Depending on the level of expression and the purpose of the verification, these requirements are coded directly as HLL properties or reformulated from related requirements after further analysis by safety engineers. Writing relevant properties can be viewed as writing relevant requirements. Then, these properties are formalised together with the system behaviour to evaluate the safety of the system. During verification, potential violation of the properties is detected.

During the system design process, high-level safety requirements are defined. They are further refined and transformed into subsystem requirements to finally obtain software or code level requirements. System or high-level safety requirements should describe what the system should do. At this level, the properties associated with the system requirements that ensure the safety of the system should be specified. Software or low-level requirements describe how the system's code should be implemented. System safety properties can hardly be verified directly on the software. At the system level, abstract notions are used , and more effort is required to model the environment and to map between system and software notions in order to realise formal verification. On the other hand, the difficulty at the software level is to find a property or set of properties that is strong enough to allow verification of the safety behaviour of the entire software programme without fully considering the behaviour of the model when formalising the property.

When it comes to verifying safety properties of large projects, one has to deal with the limitations of exhaustive verification tools or try to bridge the gap between high-level safety properties and software implementations. One of the limitations of model checkers is the explosion of the state space, since the size or complexity of a model has a direct impact on the exploration of states. To address this problem, some solutions have been proposed and implemented to reduce the size of the state space. There are also solutions to reduce the initial model by decomposition or abstraction.

One of these approaches to enable formal verification for complex industrial systems is to implement a decomposition of the proof based on software components and the scope of the property to be proved. High-level properties can be refined based on the functional decomposition of software. Moreover, software components are abstracted, i.e., the software components that are affected by these properties are identified, and the other parts are abstracted from the implementation. In this way, reasoning is facilitated and the existing limitations of tools are addressed [START_REF] Feliachi | Formal verification of system-level safety properties on railway software[END_REF].

Two use cases have been identified for the B-PERFect method: i) formal verification of equivalence of behaviours and ii) formal verification of safety properties at different levels, system and software. In the following, we describe different validation strategies and how the B2HLL tool together with the PERF method overcomes these challenges.

Non-intrusive component verification

Verification of B models against their informal software specification is realised manually through code review and testing. The B-PERFect method proposes an alternative to this manual process, a non-intrusive formal verification approach at the software component level for systems developed using the B-method.

To validate software components at code level, two approaches are applicable 1. by producing an equivalence proof between the design of the model (software specification including safety requirements at code level) and the code, Equivalence checking between software specification modelling and code guarantees that they are functionally equivalent. When applying this approach to software components developed in B, the B models are first translated into HLL using the B2HLL tool. Then, the software specification is modelled in HLL. Proof obligations are expressed at the HLL level.

They assert equivalence between the observable states in both models. Finally, the proof is realised using the toolkit PERF. Equivalence exists if both models produce the same outputs given the same inputs and guarantee that the design and code satisfy the same properties.

Usually, in this case, the correlation between these models is quite straightforward.

Moreover, the environment model required for verification is simplified or redundant. This verification technique allows validation of the code against the design requirements, but does not provide information about the correctness of this specification.

To ensure the safety of the software component, the second approach expresses and verifies safety properties at the code level. For this purpose, safety properties are extracted from the specification and formalised in HLL. These properties are inserted into the HLL model generated by the B2HLL tool. It is also verified that the HLL model satisfies all the safety requirements/properties. At the software level, the expression of these properties can be very close to the code. The challenge is to identify a property or set of properties that is sufficient to verify the safety of the model without fully considering the behaviour of the model.

Non-intrusive components integration verification

System level verification. The B-PERFect approach, in addition to the formal verification performed on each software component, can be applied to check the requirements for each sub-system translated model or global system requirements expressed in HLL at system level. The interest of integrating the models at HLL level is twofold. First, it allows to check global properties at system level using a non intrusive approach and second, it allows to have a shared model obtained for various modelling languages (all the models supplied by the stakeholders are translated to HLL models). Indeed, the source models are not modified.

They are integrated in a single modelling language.

The B method does not ensure the correctness of the algorithm implemented at code level with respect to system specifications. When speaking about safety assessment at system level for safety critical systems in railway, several works propose to perform a safety analysis using Event-B formalisation [73,75]. In [74], it is presented an approach that links Event-B system model with its implementation developed using B.

In [START_REF] Cofer | Do-333 certification case studies[END_REF], it is mentioned that the best level to extract formal properties for safety verification is the safety-related system requirements. System level safety properties can be obtained by performing a hazard analysis of the system. In the railway industry, system level safety properties can be expressed as follows: i). no collision between trains, ii) possibility of overspeeding, etc.

To prove the correctness of B software implementations with respect to system specifications, we propose the following approach. An important step of the process is to identify system safety properties from the input documents and formalise them in HLL. Then, the proof process described for component verification is performed.

Properties expressed in natural language at the system level can have different formalisation. Some properties can hardly be expressed directly with software terms. In fact, B software implementations manipulate concrete concepts that are not even mentioned in the high-level properties formulation. In this case, it is necessary to perform a decomposition of the property and to apply an additional effort to the environment modelling. The mapping between software variables and system-generic terms represented in the environment must be formalised in the HLL. This is usually done after the software model has been translated using the B2HLL tool. The verification is performed using the translated software model of the B implementations obtained using the B2HLL tool. As mentioned in [75], an important step in formalising safety properties is to justify the modelling decisions made and the hypotheses necessary to ensure the proof. The hypotheses must be stated directly or indirectly in the source documents.

Heterogeneous systems verification.

In railway systems, it is often possible for subsystems to be developed in different programming languages. For example, in CBTC systems this may be the case where different manufacturers are responsible for developing the train on-board equipment and the train zone controllers. Consider the case where one of these subsystems was developed using the B method and the other using SCADE. Our approach can be applied as follows: The implementation of each subsystem is translated into HLL using the corresponding translator. The properties are encoded in HLL as safety predicates or assumptions about interactions with the external environment. The environment must 6.3. CASE STUDY. TRAIN LOCALISATION IN A CBTC SYSTEM: THE TRPL FUNCTION 149 also be modelled. Some caution should be exercised since the correlation between these two implementations is not direct. Efforts should be made to express these integration properties and to analyse the problem of state space explosion by the model checker and reduce it, for example, by slicing or abstraction techniques. The methodology PERF using the B2HLL tool now allows to realise such an integration verification.

Our approach allows to validate safety at system level by integrating information from different components in a common environment and by building a bridge between system requirements and valid implementations. To reduce the complexity of the T RPL function, environmental assumptions are considered i.e. 1) a railway line is considered as a sequence (consecutive) of segments of equal length associated with an identifier 2) the train orientation is one way and remains the same for all segments that make up the configuration. Ideally, it is easier for system safety assessment to check the high level system requirements and to verify the safety properties at a high abstract system specification level instead of performing this verification at the implementation level. In general, this is not possible because either the system specification is too abstract to allow such safety requirements to be verified or the level of implementation is too detailed and makes the verification too complex. Compositional verification using assumptions is recommended.

checking formal specifications on a set of randomly generated test cases is presented in [START_REF] Berghofer | Random testing in isabelle/hol[END_REF].

Animation was considered for B and Event-B [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF] formal models in tools like: ProB [START_REF] Leuschel | Prob: A model checker for b[END_REF],

JetB [START_REF] Yang | JeB: Safe Simulation of Event-B Models in JavaScript[END_REF] or Brama [START_REF] Servat | BRAMA: A New Graphic Animation Tool for B Models[END_REF]. These tools use animation on early stages of the development process for specification validation. In the context of formal specification validation like [START_REF] Méry | Real-time animation for formal specification[END_REF], [START_REF] Hallerstede | Validation of formal models by refinement animation[END_REF] or [START_REF] Mashkoor | Validation of formal specifications through transformation and animation[END_REF] they focus on the correctness of the formal model with respect to the high level specification. We aim at validating formal models encoded in Isabelle/HOL with respect to their software implementations.

The approach proposed in this section is similar to [START_REF] Dutle | Software validation via model animation[END_REF] where an attempt to bridge the gap between code and formal specifications using model animation is presented. However, their focus is on test cases generation for numerical computations.

The previous Chapters 4 and 5, showed a complete transformation process together with a proof of equivalence. Theorem proving is a rigorous standard approach that can be used to prove model properties in form of lemmas and theorems by checking possible states of a system thanks to the availability of deferred sets and symbolic manipulation. In our work, we apply animation techniques provided by the Isabelle/HOL framework,

• to debug incorrect goal by pointing out inadequate formalisation, hypothesis inconsistencies;

• to execute our formal specification in order to monitor whether the output of the B2HLL tool corresponds to the formal specification.

We realised a model animation of the main equivalence theorem of section 5. in the initial states σ B and σ HLL and the mapping t between B variables and pairs of read and write HLL streams. We show that the state obtained after the execution of the B TRPL model is equivalent to the HLL state obtained after the execution of the generated HLL model, with respect to the mapping t defined in Listing 6.13 associating B variables to pairs of read and write HLL streams. The evaluation of expressions is achieved using term substitutions in the proof goal using the Isabelle's simplifier built-in term rewriting engine.

At this level, it becomes possible to observe step by step states evolutions (i.e. traces) after 6.5. SUMMARY 165 expanding the corresponding definitions.

At this level both HLL codes, Isabelle/HOL HLL code obtained by the T ransf ormation function (Listing 6.12) and HLL code obtained by the B2HLL tool (Listing 6.10), are described in Isabelle/HOL. Last, for validation purpose, when state variables are valued, the Isabelle/HOL animation tool shows that these two pieces of code give the same results.

Remark. One may ask why animation is performed at the HLL model level and not on the B models. Indeed, powerful animation tools like ProB [START_REF] Leuschel | Prob: A model checker for b[END_REF] or Brama [START_REF] Servat | BRAMA: A New Graphic Animation Tool for B Models[END_REF] This approach is applied to several case studies provided by RATP and the industrialisation of the tool is ongoing.

Summary

This chapter illustrates the use of the HLL language as a basis for safety properties verification in order to bridge the gap between the software specification, such as the formal development in B, and the verification techniques on system level. The development of the B2HLL tool and its use in the overall process was described. The proposed approach was exemplified on a case study and it has been integrated in the global PERF framework available at RATP.

Part III Conclusion

Chapter 7

Conclusion and perspectives

Conclusion

This thesis investigated the applicability of PERF, an industrial toolset that allows formal verification of systems independent of their development process, to software developed in B.

To this end, this thesis presented our approach to generate verifiable HLL code from a model described as B code. We focus on the core concepts to ensure semantics preservation when translating B implementations into the dataflow language HLL. The semantic differences between the two studied languages are pointed out and a general translation scheme is proposed. We describe a translation process and a set of translation principles for the constructs that require a particular attention.

Our concern is validation and verification of systems developed by different stakeholders using their own modelling languages and development processes. We have investigated blackbox validation and verification procedures. We have shown that formal modelling techniques provide a rigorous solution to enable integrated verification and validation activities.

A complete formal verification process for checking software and system level requirements on B models is shown. The approach consists of integrating B models, environment assumptions and constraints into a single modelling framework (HLL). In our work, a formal technique related to model transformation has been defined to verify and validate safety critical software developed using the B modelling language. The HLL language is used as a basis for safety property verification to bridge the gap between software specification, such as formal development in B, and system-level verification techniques. This work makes an important contribution to the integration of information from different components of the One of the most interesting results of our approach is the capability to animate the models on the formal Isabelle/ HOL modelling side. This capability provides a way to formally debug the models of the systems. It can also be used to check the correctness of transformations and to tune the transformation rules.

A tool B2HLL for automatic translation has been developed. The prototype developed allows machines written with the B language at the implementation level to be translated into HLL. This tool still needs to be further developed and improved with the help of new translation rules in order to be used in an industrial process.

Code generation for B is not a new concept, as there are already other tools that allow users to translate B models into different programming languages. The purpose of our tool is not to obtain executable code, but to propose a different approach for validating these models. On the other hand, our tool is validated and this gives the user another layer of confidence when it comes to safety verification of safety critical systems.

This work was carried out as part of an industrial project within RATP. The proposed approach was integrated with the global PERF framework available at RATP. The results obtained were so promising that the decision was taken to industrialise the proposed approach.

In fact, the developed approach is currently being integrated into the PERF tool suite used at the RATP company.

The results of this work could be of interest to both researchers and safety departments of industrial companies looking for a method to verify the safety, security and correctness properties of their system models.

In an industrial setting this work allows to

• increase confidence in the security of critical software

• reduce the cost of safety assessment by reducing the number of requirements to model and prove (due to the rise in abstraction).

Future Work

The work presented in this thesis can be extended in different ways. Extensions can be implemented at the transformation level, at the tool level, or at the general proof process level using the PERF methodology. We explain the proposed future work in the following.

• One of our objectives is to extend the verification process proposed in this thesis to higher abstraction levels of B developments (refinements). Such an extension offers the capability to perform formal verification at early stages of the development and avoid time and resource consuming verification at code level due to the potentially high number of state variables. In addition, cross models system requirements could be checked before code level is reached saving development resources. This implies formalising transformation rules for abstract constructions such as B abstract substitutions ANY,CHOICE, SELECT or relations operators. Indeed, abstract levels may contain non-deterministic actions which need to be adressed.

• We plan to implement a complete transformation process together with an equivalence proof to show the correctness of the transformations treated at the B abstract level. To this end, we expect to complete the defined semantics of B and HLL in Isabelle/HOL, to characterise the semantics of all abstract B constructions as well as those of all HLL constructions, and validate the transformation from B to HLL at this level.

• The B2HLL developed prototype allows machines written with the B language to be translated into HLL. This tool will need to evolve and to be improved with the help of other translation rules in order to be used in an industrial process.

• An important remaining issue in our work is the well known state space explosion problem, for model checking tools. Depending on the complexity of the B models, this work may require translation optimisations or the use of decomposition techniques to reduce the state space at the HLL level after translation from B. The proposed approach is to consider operations (functions and procedures) as black boxes abstracted by their before-after predicates.

By doing so, the system is modelled only on observable states and state changes are translated in HLL as BAP of B operations. This can be implemented at different B abstraction levels, e.g., implementation level or abstract machine level. The advantage here is that when checking a property in HLL that has implications for certain functions, the other functions can be abstracted by their BAP predicates and these predicates can be transformed into HLL instead of transforming the whole function. The main obstacle remains the formalisation of gluing invariants that glue abstract and concrete variables together.

We plan to work on a tool that extracts these BAP from the B operations to automate the process and thus add this option to the B2HLL tool.

• Currently, the encoding of B and HLL specific models into the Isabelle/ HOL environment is realised manually. We plan to develop a tool that transforms B and HLL models into the semantics defined in Isabelle/HOL, so that the process of animating models becomes fully automatic and so that a certificate can be generated directly confirming the correctness of the transformation from B to HLL for a specific model.

• B2HLL translates B loops as IF constructions into HLL. Since the transformation of these while loops must be bounded, we use the maximum number of iterations of the loop to unfold them. B2HLL cannot automatically optimise the number of iterations needed to terminate the loop. We plan to explore, using a constraint system, the approximate number of iterations for each loop. This could be further helpful because it reduces the number of states at the HLL level, making the model checker's tasks easier.

• Currently, the PERF methodology is used for safety assessments of safety-critical software. We plan to extend the software-level work done in this thesis for system-level verification. We propose to realise an abstraction of the system and validate it with formal proofs. Furthermore, the safety properties validated at the system level could be verified at the software level. Thus, a global safety proof from the system to the code can be realised.

• The feedback on the application of the PERF method shows that the validation time of the models is proportional to their sizes. Issues concerning the translator's performance and complexity should be addressed. In particular, reducing the state space, reducing time and memory consumption, and analysing multi-cycle execution traces need to be addressed. As HLL models are further fed into a model checker, optimizations need to be made to avoid limitations of these types of techniques.

• As a result of my study, further research could be to investigate a more complex system using B2HLL tool, involving safety critical railway system definition experts, HLL experts and proof experts. An interesting case study is to validate a complete CBTC system with on-board and trackside subsystems and verify the properties of the integration of these systems using the PERF methodology.

  Ce travail porte sur le cas particulier de la méthode B. Il présente une traduction certifiée des modèles formels B en modèles HLL. L'approche proposée utilise Isabelle/HOL comme cadre logique unifié pour décrire la sémantique formelle et formaliser la relation de transformation entre les deux langages de modélisation. Les modèles Isabelle/HOL développés sont prouvés afin de garantir la correction de la traduction, en vue d'une validation formelle. De plus, une relation de bisimulation faible a été utilisé pour démontrer l'équivalence sémantique entre le langage source B et le langage cible HLL.

Figure 2 .

 2 Figure 2.1 depicts a general workflow of the PERF methodology. Next we describe the PERF verification process. The following elements are PERF's inputs:
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 21 Figure 2.1: The PERF verification workflow

  LUSTRE and SIGNAL are two similar data-flow synchronous languages. A program is a set of equations defining system variables, structured in a hierarchical way, using nodes in LUSTRE or processus in SIGNAL. In both languages, a variable of a model denotes an infinite sequence of values called flow. Flows represent the communications between the components of the system. The notion of clock of a flow defines the moments when this flow has a value (is present) or not (is absent) and represents a mean to control the activation of different parts of the code. The main difference between them consists in the way the user can handle the clock notion. In LUSTRE the clock is integrated in the definition of flows. In SIGNAL, the clocks are explicit and can be manipulated independently of flows definition because clock variables can be declared. HLL language is close to LUSTRE.CHAPTER 2. STATE OF THE ART• Imperative synchronous languages such as ESTEREL[START_REF] Berry | The esterel synchronous programming language: design, semantics, implementation[END_REF] that suitable for describing the control flow of a system. A ESTEREL program is structured in modules using a traditional imperative syntax and consists of a set of threads communicating through signals. A signal emitted by a process is instantly transmitted to all processes which monitor this signal. The execution of threads is synchronised to a global clock and represents the execution of the imperative code that it contains. It can be immediate or it resumes from where it stopped previously, being paused. The flow of control advances in each thread until a pause or termination instruction is reached.
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 22 l a r a t i o n s : v D e f i n i t i o n s : S C o n s t r a i n t s : C P r o o f O b l i g a t i o n s The structure of a HLL development Structure of a HLL model. A HLL model is structured in several sections (see Listing 2.2). The order of the sections does not affect the semantics of the model and each section may occur several times.

•

  I(x) := e represents x 0 = e 0 , initial definition • X(x) := e represents ∀ n in N.x n+1 = e n , next definition • x := e, f represents syntactic sugar and denotes I(x) := e & X(x) := f , memory definition HLL vs Lustre. Compared to LUSTRE there are several differences: in HLL only one global clock is available, while in LUSTRE the base clock of a programme can be divided and CHAPTER 2. STATE OF THE ART
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 1 follows a state-based semantics formalised as a state transition system. Transition systems are useful for defining systems and their behaviour as well as for reasoning about their execution traces. A variety of properties can be checked on such systems. Transition System. A LT S (Labelled Transition System) is a 4-uplet ⟨S, S 0 , E, R⟩ , where S a set of states, S 0 ⊆ S a set of initial states, E a set of actions or labels and R ⊆ S × L × S is the transition relation. A transition (s, e, s ′ ) ∈ R, written s e -→ s ′ denotes a transition from the state s to s ′ after the occurrence of the action e. We assume that E includes a special action τ , τ ∈ E to represent an internal action. We introduce the following notation s( τ -→) * s ′ to denote the trace s = s 0 τ -→ ... τ -→ s n = s ′ . It represents the trace of zero or more internal actions from state s to s ′ . We write s e =⇒ s ′ to denote the trace s(
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 31 Figure 3.1: A formal framework of certified translator

3 .

 3 B and HLL models are checked to be equivalent. Both B and HLL specific models are defined as instances of the formal semantic models (Instance of relation on Fig. 3.1).

Figure 3 .

 3 Figure 3.2 presents the subset of the B language to be transformed to HLL. The definition of the syntax is adapted from [151]. Note that at implementation level, only a subset of B language can be used, the substitutions are concrete and the data must have implementable types. In the transformation function, we have defined the following syntactic categories: component, top-level clauses definition, expressions and substitutions. For the translation process, we consider that a B implementation < Component > has a simplified structure, in which < StructureDef > introduces B composition clauses and defines the B components associated with it, < DataDef > describes constants and properties, < StateDef > defines the state variables (state of the system), their types and invariants, < Init > introduces the initial values of the state variables, and < Ops > defines the set of operations that may modify state variables (transitions). < Subst > describes the forms of substitutions allowed in operations of an implementation component. Conditional statements like if and case may have different forms, e.g., with or without else branching. The statement block BEGIN <Subst> END is semantically equivalent to the substitution <Subst>. The identity substitution skip has no effect on the internal state of the B machine.

77 <

 77 Component >::=IMPLEMENTATION N ame < StructureDef >< DataDef >< StateDef > < Init >< Ops > END < StructureDef >::= IMPORTS N ame + | SEES N ame + < DataDef >::= SETS < Set > * | CONSTANTS N ame + | PROPERTIES < P red > | VALUES < V alues > < StateDef >::= CONCRETE_VARIABLES N ame + | INVARIANT < P red > < Init >::= INITIALISATION < Subst > < Ops >::= OPERATIONS < Operation > * < Operation >::
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 32 Figure 3.2: Considered B language subset. The superscript operators + and * denote respectively a comma-separated and semicolon list of elements of the annotated element.

CHAPTER 3 .

 3 B-PERFECT machines: Main_i defines the main program and Utils_i defines auxiliary operations. The Main_i implementation represents an entry point of the execution. Main is an operation

IMPLEMENTATION 2 D

 2 Main_i REFINES Main IMPORTS U t i l s CONCRETE_VARIABLES xx , yy , r r INVARIANT xx ∈ NAT ∧ yy ∈ NAT ∧ r r ∈ NAT INITIALISATION xx := 0 ; yy := 0 ; r r := 0 OPERATIONS Main = computeSum ; xx <--readVar ; r r <--minimum ( xx , yy ) END END Listing 3.1: Main Implementation IMPLEMENTATION U t i l s _ i REFINES U t i l s CONCRETE_VARIABLES sum INVARIANT sum ∈ NAT INITIALISATION sum := 0 OPERATIONS r r <--minimum ( aa , bb ) = IF aa ≥ bb THEN r r := bb ELSE r r := aa END; computeSum = VAR i i IN i i := 0 ;WHILE i i < 2 DO i i := i i + 1 ; sum := sum + i i ; INVARIANT i i ∈ NAT ∧ i i ≤ 2 VARIANT 2This section describes the HLL model that would result from translating the B example of Section 3.5 on listings 3.1 and 3.2. The produced HLL model contains two namespaces, one corresponding to the translation of the Main_i machine and another for the translation of the imported machine Utils_i. For each B operation, a corresponding HLL namespace section is created, such as "Main" which contains the translation of the B operation Main. 1 Namespaces : Main_i { // B : Main_i i m p l e m e n t a t i o n e c l a r a t i o n s :

4 D

 4 e f i n i t i o n s : xx_0 := 0 ; yy_0 := 0 ; rr_0 := 0 ; 5 xx := Main : : xx_1 ; // B : xx <--readVar ; 6 yy := Main : : yy_0 ; 7 r r := Main : : rr_1 ; // B : r r <--minimum ( xx , yy ) 8 Namespaces : Main{ // B : Main o p e r a t i o n 9 D e c l a r a t i o n s : i n t xx_0 ; i n t yy_0 ; i n t rr_0 ; 10 D e f i n i t i o n s : 11 xx_0 := Main_i : : xx_0 ; // Maps t h e i n i t i a l v a l u e s o f v a r i a b l e s 12 yy_0 := Main_i : : yy_0 ; 13 rr_0 := Main_i : : rr_0 ;

16 }}Listing 3 . 3 :

 1633 14 xx_1 := U t i l s _ i _ 0 : : readVar_0 : : r r ; // O p e r a t i o n c a l l 15 mm_1 := U t i l s _ i _ 0 : : minimum_0 : : r r ; // O p e r a t i o n c a l l HLL Translation of Main Machine HLL is SSA based (Single State Assignment), therefore a stream can only be assigned once in a model. As stated in[START_REF] Cytron | Efficiently computing static single assignment form and the control dependence graph[END_REF], when converting from a programming language to SSA form, assignments of a program variable are replaced by assignments to new versions of the variable. Thus, each B assignment is translated into an HLL assignment with a new version of the modified variable. The value of the original variable is replaced by the value of the last known version of that variable (similar to dataflow streams). Line 3 defines the variables used for the translation of the machine Main_i with their corresponding type. Line 4 and lines 8-16 represent the computation performed in INITIALISATION and OPERATIONS blocks of the B machine, respectively. In line 14, the output of the operation readVar is assigned to the local variable "xx<1>". Note that state variables are necessary to memorise the final values of variables after the execution of the operation Main (lines 5-7). As the operation call computeSum, does not modify the state of variables in the machine Main_i, its translation is not present in the Main namespace. Lines 21-35 represent the translation of the first call of computeSum.

  1 e l s e i i _ 0 ; sum_2 := i f i i _ 0 < 2 then sum_1 e l s e sum_0 ; // . . . Repeat t h e l o o p code with new i n d e x sum := sum_4 ; } readVar_0 { // F i r s t c a l l o f B : readVar o p e r a t i o n D e c l a r a t i o n s : i n t r r ; D e f i n i t i o n s : r r := U t i l s _ i _ 0 : : sum_1 ; } minimum_0{ // F i r s t c a l l o f B : minimum o p e r a t i o n D e c l a r a t i o n s :

D e f i

  n i t i o n s : aa_0 := Main_i : : Main : : xx_1 ; // Mapping o f i n p u t p a r a m e t e r s bb_0 := Main_i : : Main : : yy_0 ; rr_0 := bb_0 ; // IF b l o c k s u b s t i t u t i o n rr_1 := aa_0 ; // ELSE b l o c k s u b s t i t u t i o n rr_2 := i f aa_0 ≥ bb_0 then rr_0 e l s e rr_1 ; // IF b l o c k r r := rr_2 ; }} Listing 3.4: HLL Translation of Utils Machine

• sequential style to synchronous dataflow style 4 . 2 .

 42 TRANSFORMATION PRINCIPLES. FROM B TO HLL 85 When defining the translation rules, we focus on several specific technical problems: 1. variables to data streams transformation 2. sequential to SSA form transformation 3. variables tracing 4. semantic preserving transformation Particular attention must be paid to a number of concepts, such as evolution and updates of variables, loop behaviours or B operations with side-effects, when defining the translation principles.
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 41 Figure 4.1: Translation Environment Domain and Operations

  The following notation T Synt(S B ) M B . = (S HLL , M HLL ) is used in the rest of the Chapter to describe applications of the transformation function T Synt with initial and resulting environments M B and M HLL . T Synt : model_B × M apping → model_HLL × M apping T Synt (S B ) M B . = (S HLL , M HLL ) , where S B ∈ model_B , S HLL ∈ model_HLL , M B ∈ M apping and M HLL ∈ M apping This transformation is decomposed into a set of transformation functions corresponding to each B construct. All these transformation functions produce an update of the environment.

  with the declarations of flows. The execution of transitions is expressed in B by dynamic clauses, the same mechanism is represented in HLL by stream values that change over the time frames. In HLL, the transition relation can be represented by formulas in propositional logic. We recall the considered structure of an IM P LEM EN T AT ION B component in the translation process. < Component >::=< StructureDef >< DataDef >< StateDef >< Init >< Ops > where <StructureDef> introduces B composition clauses, <DataDef> describes constants and properties, <StateDef> defines the state variables (state of the system), their types and invariants, <Init> introduces the initial state variables values and <OPS> defines the set of operations that may modify state variables (transitions). All the clauses of a B implementation are translated using the transformation functions defined in Sections 4.4, 4.5, 4.6 and 4.7 . The starting point of the transformation is the implementation component. T component transformation function is applied on each machine inner structure (DataDef , StateDef , Init and Ops) in an initial environment M (M = ∅, when starting the transformation of the main machine) as follows.T component (Component B ) M . = (M odel HLL , M ′ )whereT component . = T ops • T init • T stateDef • T dataDefBy applying the T component transformation function, a HLL model is obtained, model HLL , and the resulting translation environment M' is constructed automatically based on the initial one M. M odel HLL is obtained by concatenating the resulting HLL code from specific transformation functions: T dataDef , T stateDef , T init , T ops . We propose to model B components as HLL Namespaces, as shown in Table 4.1, since both have a notion of scoping variables and structuring capabilities that lead to data encapsulation. Each B component encapsulates its own internal state with the possibility to share variables with other components. This is not the case with HLL. Therefore, the internal state of a B-machine is preserved by a variable versioning mechanism when the dynamic parts of the B-model are translated. The state of a B component is obtained by composing the transition relations of the individual statements inside the different operations body, including the operations accessed from other B components. This behaviour is achieved by successive substitutions. Let V ar B be a set of B typed variables defined in the component Component B and σ B denote the set of all states over V ar B . Let us define V ar HLL and σ HLL , the set of system variables and the system state for M odel HLL . V ar HLL contains the introduced variables due to the versioning mechanism. We expect that B and HLL states to be related by a refinement relation. In the transformation process, the declarative part of the B component initialises the translation environment M with the state and the context of this component Component B . The range of the translation environment M is a tuple of HLL variables V ar HLL over the domains of B variables V ar B . In fact, the mapping given by M allows to connect the value 4.4. TRANSFORMATION OF STATIC CLAUSES 91 of every B variable v ∈ V ar B in B state with HLL state represented by V ar HLL . M' is the translation environment M updated accordingly after the transformation of Component B . B Construct HLL Construct Tcomponent(IM P LEM EN T AT ION N ame Component B EN D) M . = Let Tcomponent(Component B ) M . = (M odelHLL, M ′ ) and N ameHLL(N ame, M) = N ame HLL in ( Namespaces: N ame HLL {ModelHLL} , M ′ )

  representing the state space of a B component, consists of VARIABLES and INVARIANTS clauses. The transformation of <StateDef> is represented as follows: T stateDef (< StateDef >) M = T var (CONCRETE_VARIABLES N ame) M ; | T inv (INVARIANTS BExp) M ; Table 4.2 presents each transformation function used for <DataDef> and <StateDef> B clauses and their sub-constructs. B Construct HLL Construct Tcst(CON ST AN T S c) M . = Let CreateF resh(c, M) = c HLL , GetType(c) = type and GetValue (c) = value in ( Constants: type c HLL := value; , M[c → c HLL ] ) Tprop(P ROP ERT IES R) M . = Let T P (R) M . = (R HLL , M) in ( Constraints: R HLL ; , M ) Tset(SET S A) M . = Let T S (A) M . = (A HLL , M) and GetType(A) = type in ( Types: type A HLL ; , M ) Tvar(CON CRET E_V ARIABLES x) M . = Let CreateF resh(x, M) = x HLL and GetType(x) = type in ( Declarations: type x HLL ; , M[x → x HLL ] ) T inv (IN V ARIAN T S I) M . = Let T P (I) M . = (I HLL , M) in ( Proof Obligations: I HLL ; , M ) Table 4.2: Rule: Static Clauses Transformation In the transformation process, the declarative part of a B component initialises the translation environment M for this component. B CONSTANTS are translated into HLL Constants. When translating a B constant, the type is inferred from the PROPERTIES clause using the GetType function. Each concrete constant of the B implementation must be valued in the VALUES clause. The valuation of a constant is extracted using the GetValue function. B PROPERTIES are translated as HLL Constraints. The predicate R that compose this clause is translated using the T P translation function. The SETS clause defines a list of deferred or enumerated sets. At implementation level, the deferred sets must be valued to a finite, non-empty set. The T Set function transforms a B set to HLL type definition. The concrete information related to a B set is gathered from the VALUES clause. We can observe that the VALUES clause doesn't have a standalone translation function. This is due to the fact that the valuations of constants or sets are used in the transformation of CONSTANTS and SETS clauses. The VARIABLES clause is modelled in HLL by the stream declaration section of the 4.5. TRANSFORMATION OF DYNAMIC CLAUSES 93 HLL namespace associated with the B machine. Variables type is inferred from the given invariant in the INVARIANT clause. The translation environment M is initialised with the set of B variable x and their corresponding HLL streams x HLL .
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 45944 Transformation of Dynamic ClausesIn B language, the dynamic parts of the components are modelled by substitutions, which allow the modification of the data space of a model. Substitutions are used in INITIALI-SATION and OPERATIONS clauses of a B machine. The proposed transformation of B TRANSFORMATION OF B IMPLEMENTATION TO HLL CODE substitutions is based on the understanding of the semantic differences between HLL and B. The general form of an operation is: out ← op_name(in) =S, where in and out can be variables or lists of variables representing the parameters of the operation op_name, and they are optional. The translation pattern for dynamic clauses of B machines is given in Table 4.3: • The INITIALISATION clause is translated in HLL as a Definitions section and sets the initial value for streams. • Each B operation from the clause OPERATIONS is transformed into the HLL Namespaces section. The name of the HLL namespace is specified by the N ameHLL function and represents the identifier of the operation with an appended suffix. The translation of the input and output parameters is implemented by declaring the variables within the operation namespace. The translation of the operation precondition specifies the type of the input parameters. The generalised B-substitutions from the operation body are translated using the function T I . More details are given in Section 4.6.3.B ConstructHLL ConstructT init (IN IT IALISAT ION v := E) M . = Let T V (v) M . = (v HLL , M) and T E (E) M . = (E HLL , M) in( Definitions: I(v HLL ) := E HLL ; , M ) Tops(OP ERAT ION S xout ← opN ame(y in ) = S ) M . = Let T I (S) M . = (S HLL , M ′ ) and N ame HLL (opN ame, M) = opN ame HLL in ( Namespaces: opN ame HLL { S HLL } , M' ) Table 4.3: Rule: Dynamic Clauses Transformation Example. Each initialisation and operation in Listing 4.5 is translated as shown in Listing 4.6. Inside the namespace associated to the translation of the corresponding machine, we define a new Namespaces section minimum_0 that will contain the translation of an operation. --minimum ( aa , bb ) = . . .
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  programming languages. The transformation rules for expression from IMPLEMENTATION substitution are described below. An arithmetic expression of B is a mathematical formula containing constants, variables, and operators. The supported arithmetic operators are: +, -, ×, ÷. In B, integer variables are bounded and must respect the predefined constant interval: M IN IN T..M AXIN T . Boolean expressions are evaluated in B as true or f alse and used in variable assignment,in if substitution condition or in while loop condition. Boolean operators are ∧, ∨, ¬. The expressivity of B in the implementations is restricted to avoid constructions that might overflow at run-time (for example: IF (xx + 1 <3)).
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 463984 Transformation of SubstitutionsIn B language, the dynamic parts of the components are modelled by substitutions, which allow to modify the data space of a model. Substitutions are used to describe INITIALISA-TION and OPERATIONS clauses of B machine. We show the transformation of substitutions that can be used in an IMPLEMENTATION component. These substitutions are similar to TRANSFORMATION OF B IMPLEMENTATION TO HLL CODE the statements of the classical procedural languages, and their proposed transformation is similar to the ones proposed in the literature for programming language statements to SSA form transformation.

  to express the transformation and to prove its correctness. The proposed transformation of B substitutions is based on the understanding of different semantics of HLL and B. For each type of substitution, we apply specific transformation rule described below. The B language is based on set-theoretic notations and it includes notations for expressing transitions over states of a model: generalised substitutions. The T I function takes the different syntactic constructs to write B operations body as input and returns the corresponding HLL code. The transformation of B substitutions is defined below. T I (< Subst >) M = T asg (x := E) M ; | T seq (<Subst>;<Subst>) M ; | T if (<IfSubst>) M ; | T while (WHILE P DO S INVARIANT I VARIANT V END) M ; | T op (nameOut ← opname(nameIn)) M ; | T case (CASE E OF EITHER E1 THEN S1 OR E2 THEN S2 ELSE S3 END) M ; | (skip) M ;

Let

  = b o o l ( i i + 1 > sum ) ; Listing 4.11: Assign Transformation: B B case alternatives are more complex in B then in HLL, therefore they are translated as IF statement. Scase = (IF E = E1 THEN S1 ELSIF E = E2 THEN S2 ELSE S3 END) in T if (Scase) MTable 4.9: Rule: Case Transformation Loop Substitution The general form of a loop construct in B is WHILE C DO S INVARIANT I VARIANT V END, where S is a substitution, C is a boolean expression, I is a loop invariant, and V is a variant to guarantee loop termination. In B, a while loop must end after a finite number of iterations. Unlike the B language, HLL does not support loop structures. Therefore, a B loop shall be flattened in the HLL model. We propose to translate a while loop as the IF substitution transformation shown in Table 4.10. In order to do so, the B VARIANTB Construct HLL Construct T while (WHILE P DO S INVARIANT I VARIANT V END) M . = Let GetIterations(V ) = N , S IF = S 0 ; ... ; S N where S i = IF P THEN S END, 0 ⩽ i ⩽ N T if (S IF ) M . = (while HLL , M HLL ) and T E (P ) M HLL . = (exit HLL , M HLL ) in ( Definitions: while HLL ; Proof Obligations: ¬ exit HLL ; , M HLL ) Table 4.10: Rule: While Transformation clause is exploited, using the GetIterations function, to get the number of iterations needed to exit the loop. Let N be the number of loop iterations and S IF the sequence of S 0 ; ...S N B substitutions where S i represents the execution of single loop iteration. We use the transformation function T if N times, if N is known as a constant, or define a recursive HLL IF statement producing the HLL code while HLL and the final translation environment M HLL . Thus when i is equal to the total number of iterations, the translation of S i produces the value of variables after the loop has run to completion. The loop body S and the condition P are translated using their syntactic translation functions. The exit HLL is the translation of the loop condition when loop is terminated. For each loop we add a proof obligation ensuring that the loop condition is false at the end of the loop. Variant and loop invariant are translated to HLL Proof Obligations clause. As the purpose of this 104 CHAPTER 4. TRANSFORMATION OF B IMPLEMENTATION TO HLL CODE translation is safety properties verification, the loop invariant translation is helpful to check intermediate states consistencies.

Listing 4 . 18 :

 418 While Transformation: HLL Code The variables ii and sum are translated as ii_2, sum_2 passing by intermediary values.
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 6 TRANSFORMATION OF CONSTRUCTS FROM B OPERATIONS105We assume that the called operation (respectively caller operation) belongs to some component M ch1 (respectively M ch2). An operation call has side-effects implicitly affecting the state of the called machine M ch1. As each B machine has it's own data space, therefore the translation of parameter passing can be challenging because it modifies the state of both M ch1 and M ch2 machines. If the translation process does not follow the precise order of changes in variables, the generated HLL model can be erroneous. When an operation call occurs, we always translate the implementation of this operation[START_REF] Bert | Adaptable Translator of B Specifications to Embedded C Programs[END_REF] (operation body fromIMPLEMENTATION component).An operation represents a reusable sequence of statements. Operation calls are inlined in HLL by instantiating the operation parameters and variables in the translation environment, after substituting the formal parameters by the actual ones. The inlining of the operation body is applied by combining the formal text of both operations from a syntactical point of view. To avoid naming conflicts of variables we encapsulate each B operation in a new HLL namespace section. This namespace has the same name as the original operation appended to an index, counting the different calls of the latter.

Figure 4 . 2 .

 42 Figure 4.2. At the lowest level of a B project, we find: implementations and base machines.

Figure 4 . 2 :

 42 Figure 4.2: B Model Architecture

  variable values. Dependent machines obtained from IMPORTS and SEES clauses must themselves be translated into HLL Namespaces. The transformation function T component applied on < Component > builds a single state by merging the states of dependent B components and delivers one global HLL model. The resulting HLL model contains the translation of an entire B module (a component with its importation chain) by composing the HLL models of each B component. Let Component B be a B component. If Component B is standalone, the translation function is applied on this component and then the domain of the translation environment M is the set of variables of the component V ar B . Otherwise, Component B has SEES or IM P ORT S primitives on machines M ch 1 , ..., M ch n . Before performing the transformation of the initialisation clause from Component B , we perform the transformation of the components M ch i for the following clauses: < StructureDef > , < DataDef >, < StateDef > and < Init >. T struct transformation function is applied transitively on all imported or seen components M ch i . The domain of the translation environment is composed of variables from Component B , M ch 1 , ..., M ch n , it is updated with the state space of these components.

  If a transformation for this component does not exist in the translation environment, we initialise it. Example. The clause IMPORTS generates the translation of the corresponding implementation of Utils component. In HLL, a new namespace Utils_i<0> is created and represents the translation of the first instance of this machine.

  The cyclic behaviour given by the execution of the B-main operation is modelled in HLL by adding a transition relation that shows the evolution of the flows during the time frames corresponding to the succession of cycles. To represent this behaviour, for all B state variables we introduce additional HLL streams definition such as v HLL := v init , v next . It means that v takes its initial value from stream v init and for next instants from stream v next . Stream v init is the initial value of the B variable v given by B IN IT IALISAT ION clause. Stream v next represents the state of the B variable at the end of the B main operation. The resulting stream v HLL is used further in system computations specified by B OP ERAT ION S clause.
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119 fun

 119 b_while_to_if : : " nat ⇒ bexp ⇒ i n s t r u c t i o n ⇒ i n s t r u c t i o n " where " b_while_to_if 0 _ _ = SKIP " | " b_while_to_if ( Suc nb ) c i = Bl [ I f c i SKIP , ( b_while_to_if nb c i ) ] " Listing 5.7: A recursive function encoding while loops

|

  " T_bexp ( ( b . Leq aexp1 aexp2 ) ) m = h l l . Leq ( T_aexp aexp1 m) ( T_aexp aexp2 m) " | " T_bexp ( ( b . Eq aexp1 aexp2 ) ) m = h l l . Eq ( T_aexp aexp1 m) ( T_aexp aexp2 m) " | " T_bexp ( ( b . Grthan aexp1 aexp2 ) ) m = h l l . Gt ( T_aexp aexp1 m) ( T_aexp aexp2 m) " | " T_bexp ( ( b . Neq aexp1 aexp2 ) ) m = h l l . Neq ( T_aexp aexp1 m) ( T_aexp aexp2 m) " | " T_bexp ( ( b . Greq aexp1 aexp2 ) ) m = h l l . Greq ( T_aexp aexp1 m) ( T_aexp aexp2 m) " | " T_bexp ( ( b . L e s s t h a n aexp1 aexp2 ) ) m = h l l . Lt ( T_aexp aexp1 m) ( T_aexp aexp2 m) " Listing 5.18: Transformation of B Boolean Expressions fun T_exp : : " b . exp ⇒ mapping ⇒ h l l . exp " where " T_exp ( b . Bexp exp ) = h l l . Bexp o ( T_bexp exp ) " | " T_exp ( b . Aexp exp ) = h l l . Aexp o ( T_aexp exp ) " Listing 5.19: Transformation of B Expressions Regarding B statements, the transformation function of Listing 5.20 T ransf ormation ∈ B.instruction → M apping → (HLL.instruction ×M apping) produces HLL code from B instructions and updates the mapping accordingly.

  fun T r a n s f o r m a t i o n : : " b . i n s t r u c t i o n ⇒ mapping ⇒ ( h l l . i n s t r u c t i o n × mapping ) " where " T r a n s f o r m a t i o n ( b . Bl [ ] ) m = ( h l l . Bl [ ] , m) " | " T r a n s f o r m a t i o n ( b . Bl ( a# l i s t ) ) m = ( comp ( T r a n s f o r m a t i o n a m) ( T r a n s f o r m a t i o n ( b . Bl l i s t ) ) ) " | " T r a n s f o r m a t i o n b . SKIP m = ( h l l . Bl [ ] , m) " | " T r a n s f o r m a t i o n ( b . A s s i g n vname exp ) m = ( l e t v = ( c r e a t e F r e s h H L L V a r i a b l e vname m) i n ( h l l . A s s i g n v ( T_exp exp m) , m( vname → ( v , v ) ) ) ) " | " T r a n s f o r m a t i o n ( b . I f bexp i n s t r u c t i o n 1 i n s t r u c t i o n 2 ) m = ( l e t ( * c ' =⇒ C o n d i t i o n t r a n s f o r m a t i o n * ) c ' = ( T_exp ( b . Bexp ( bexp ) ) m) ; ( * c1 =⇒ IF bl o c k t r a n s f o r m a t i o n and m1 =⇒ R e s u l t i n g mapping * ) ( c1 , m1) = T r a n s f o r m a t i o n i n s t r u c t i o n 1 m; ( * c2 =⇒ E l s e b l o c k t r a n s f o r m a t i o n and m2 =⇒ R e s u l t i n g mapping * )( c2 , m2) = T r a n s f o r m a t i o n i n s t r u c t i o n 2 (m ⊗ m1) ; ( * v a r s =⇒ M o d i f i e d v a r s i n one o f IF b r a n c h e s * ) v a r s = {v . v : (dom m) ∧ ( (m v ̸ = m1 v ) ∨ (m v ̸ = m2 v ) ) } ; i n s t = λ i v .( c a s e ( snd v ) o f Tval . Bool ⇒ ( h l l . Bexp o h l l . Bvar ) | Tval . I n t ⇒ h l l . Aexp o h l l . AVar ) ; ( * s t =⇒ F i n a l s t a t e a f t e r IF * ) s t = F i n i t e _ S e t . f o l d ( T_if_step_st ) m2 v a r s ; ( * L i s t o f a s s i g n s f o r m o d i f i e d v a r s * )

5 .

 5 [START_REF] Spivey | The Z Notation: A Reference Manual[END_REF] shows this relation in the case of integer and boolean types.
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 1265 meaning_equiv : : " b . env ⇒ mapping ⇒ h l l . env ⇒ b o o l " ( "_ ∼ = _ _" ) where " b ∼ =m h ≡ ∀ v ∈ (dom m) . c a s e v o f ( vname , Tval . Bool ) ⇒ ( ( b v ) ≜ b o o l ( ( h o ( f s t o ( t h e o m) ) ) v ) ) | ( vname , Tval . I n t ) ⇒ ( ( b v ) ≜ i n t ( ( h o ( f s t o ( t h e o m) ) ) v ) ) " Listing 5.21: State equivalence Relation (bi-simulation) CERTIFIED MODEL TRANSFORMATION OF B TO HLL The equivalence relation meaning_equiv between the B model and HLL model is given through variables mapping. The variables mapping allows to have same values for all variables of B model and the generated data-flow stream of HLL. We prove that a variable and a data-flow stream have the same value by ensuring that each stream value of the HLL model is equal to the value of the corresponding variable of the B model. This definition defines the basic property to check semantic preservation. It connects states to flows. A bi-simulation relationship is defined to relate B models to HLL models.

7 .

 7 and @ : " w e l l _ d e f i n e d codeB n " 8 . and ♣ : " w e l l _ d e f i n e d _ m a p p i n g n " 9 . and ~: " w e l l _ d e f i n e d _ s t a t e σ HLL " shows 1 0 . " ( b . m e a n i n g _ i n s t r u c t i o n codeB σ B ) ∼ = m ( h l l . m e a n i n g _ i n s t r u c t i o n codeHLL σ HLL ) " Listing 5.22: Main Equivalence Theorem-Establishing bi-Simulation All the ingredients to write the equivalence theorem are available. Listing 5.22 describes the global equivalence theorem defining the semantic preservation property. Informally, this theorem states the bi-simulation relation between two state transitions systems. Let • CodeB and codeHLL (lines 1 and 2) be a B code and its corresponding transformed HLL code (Line 4), and • σ B and σ HLL be two states for B and HLL respectively (lines 1 and 2) • such that σ B and σ HLL are equivalent by the ∼ = (of section 5.5.2) relation (line 5) then, 5.5. CORRECTNESS OF THE TRANSFORMATION 127 • the ∼ = equivalence relation holds on the semantic interpretation of the codeB and codeHLL in the states σ B and σ HLL (Line 10).

Step 2 .Step 3 .Step 4 .Step 5 .

 2345 Set the B state variables to initial values Run the Isabelle/HOL encoded B models using the Isabelle/HOL animator Run the HLL models, obtained using the B2HLL tool, with the same variables values of Step 2 assigned to HLL streams Run the animation of the Isabelle/HOL HLL models, obtained using the Isabel/HOL translation function, with the same variables values of Step 2 assigned to HLL streams.
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 6162 Figure 6.1: The PERF verification workflow

First, we

  create HLL templates for each B component. Using appropriate rules, we perform the conversion of AST nodes and generate the corresponding HLL code. At this point of the process, a purely static translation of the constructs is performed, without considering dynamic information such as the correspondence between B and HLL variables and the execution order of the B statements. This step allows us to generate an HLL translation template for each B model. Further, the translation starts with the main machine of the B project to be translated and follows the sequence of operation calls to generate an HLL model that reflects the state changes of the original B model. The previously generated templates are instantiated with dynamic information such as variable indices and effective operation parameters. For more details, see Section 6.1.1.

137 •

 137 A module is created with BModule class for each B specification. A module contains the list of all components for a given B specification, sorted from the most abstract to the most concrete one. For example, Main.mch, Main_r.ref and Main_i.imp are 3 components of the module Main. • A project is created with BProject class and it contains the list of all components and modules present in the B source project.

Figure 6 . 3 :

 63 Figure 6.3: Class diagram of the B2HLL information structure

141 Figure 6 . 5 :

 14165 Figure 6.5: Class diagram of template structure

6. 1 .

 1 B2HLL TOOL 143 HLL flows. To achieve this, we need to keep track of all the changing states of the variables during the translation process. The B2HLL tool keeps a table of symbols in the translation environment to hold the correspondences between B variables and HLL flows. This is implemented through the use of the class Mapping, which maps each B state variable or B operation parameter to the relevant version of the HLL identifier (function Mapping defined in Section 4.2). When the root machine Main calls an operation O of the machine M, the translation environment is initialised with the mapping between B variables and HLL flows obtained after translating the initialization clause of this machine. Moreover, based on the translation environment passed as a parameter, the placeholders from the template of the operation O are filled with information such as: the index of the operations, the effective parameters of the operations, the version of the global variables. The translation environment corresponding to the machine M is updated with the new version of the variables, based on all the state changes of the variables from the operation O. The state of the calling machine, Main, is also updated. In this way, the translation follows the state changes of the different machines.

6. 2 .

 2 DEPLOYMENT AT RATP: INTEGRATION TO THE PERF PROJECT 147 2. by defining and proving generic safety properties on the code model.

6. 3

 3 Case Study. Train localisation in a CBTC system: the TRPL function CBTC [167] is a complex system that uses two-way communication between on-board and wayside equipment to ensure a safe and high-performance service. It consists of various sub-systems which rely on the design, specification, configuration and development formalism used by each supplier. A CBTC system provides two main functions: 1) localisation (onboard), and 2) tracking of trains (wayside). Localisation computes the topological position of trains while tracking uses Localisation to construct train cartography across the entire network. We are concerned in this case study with Train Reference-Point Localisation T RPL function, a Localisation sub-function. The T RPL method determines the new train location p ′ according to a topology of n line segments, a travelled length approximation d and a train position p referring to a segment identifier, an abscissa and an orientation (see Figure 6.6).

  Trying to prove an incorrect proposition may lead to dead-ends or considerable time loss. Therefore, the idea of debugging proofs by testing the conjunctures is helpful. Model animation is a powerful technique to perform such tests. We have used a model animator, available in the Isabelle/HOL tool, to validate our transformation on several examples, they helped to identify the right formalisation of definitions, lemmas and theorems. Animation allows to observe the behaviour of formal models and to validate it through instantiating the given model. When using symbolic evaluation of input values in the developed formal models, counter examples can be identified and axiom witnesses can be provided for checking consistence.
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 53 byshowing first that the transformation of each syntactic category of B is transformed into the desired HLL code and second that the states of both languages are equivalent (bi-similar). CHAPTER 6. TRANSFORMATION AT WORK defined in section 6.3.3. The HLL code (G) and the mapping (m) are formally obtained by applying the transformation function (T ransf ormation) on the source B model (T rainP ositioning_f indLoc, shown in Listing 6.8). The interpretation of B and HLL models ( b.meaning_instruction and hll.meaning_instruction, respectively), are applied at initial states. The ∼ = equivalence relation holds according to the obtained mapping m thanks to the global equivalence theorem Equivalence. Secondly, we use model animation to show that the output HLL model computed by the B2HLL tool is equivalent to the source B model, with respect to the defined transformation rules. We show that the state of the obtained HLL model is equivalent to the original B state. Listing 6.14 defines the animation of the presented B and HLL TRPL models and the simulation of the defined equivalence relation we have proposed in Chapter 5. ( * R e s u l t i n g mapping o f t h e t r a n s f o r m a t i o n * ) d e f i n i t i o n " t = Map . empty ( . . . fi nd Lo c_ i_ ab s → ( findLoc_i_abs0 , f i n d L o c _i _ a b s 0 ) , f i n d L o c _ i _ s e g → ( f i n d L o c _ i _ s e g 0 , f i n d L o c _ i _ s e g 0 d L o c _ l _ s e g → ( f i n d L o c _ l _ s e g 2 0 , f i n d L o c _ l _ s e g 2 0 ) . . . ) " Listing 6.13: Mapping definition between B and HLL lemma " ( b . m e a n i n g_ i n s t r u c t i o n T r a i n P o s i t i o n i n g _ f i n d L o c σ B ) ∼ =t ( h l l . m e a n i n g _ i n s t r u c t i o n T r a i n P o s i t i o n i n g _ f i n d L o c _ H l l σ HLL ) " . . .apply ( s u b s t d e f _ f i n d L o c ) apply ( s u b s t b . m e a n i n g _ i n s t r u c t i o n . simps ) apply ( simp o n l y : b_while_to_if . simps )+ . . . apply ( s u b s t f i n d L o c _ c a l l _ H l l _ d e f ) apply ( s u b s t h l l . m e a n i n g _ i n s t r u c t i o n . simps ) apply ( s u b s t meaning_equiv_def ) apply ( simp ) done Listing 6.14: Equivalence between B and the HLL from B2HLL tool The ∼ = equivalence relation holds on the semantic interpretation of the T rainP ositioning_f indLoc (model B) and T rainP ositioning_f indLoc_Hll (model HLL)

169 system

 169 and an integrated verification process. Moreover, in our work, a formal framework has been proposed to guarantee the correctness of the translation from B models to HLL models. The correctness of the translation rules is proved in Isabelle/ HOL theorem prover. An equivalence proof between B and HLL semantics based on a bi-simulation relation was established. It guarantees that the translation rules implemented in the B2HLL tool are correct, i.e. semantics-preserving according to the defined equivalence relation. The formalisation and associated proofs presented in this work can be easily extended to other transformations of state-based languages to HLL.
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	VARIABLES x	/ * Variables * /
	INVARIANT Inv	/ * Variables s p e c i f i c a t i o n * /
	INITIALISATION I n i t	
	OPERATIONS Op1 ;	/ * L i s t of operations * /
	Op2 ;	
	. . .	
	Opn	
	END	
	Listing 2.1: Schematic description of a B machine
	name definition which should be unique in a B project. MACHINE are the upper level
	of software development, describing the formal specification of a system. They represent
	the higher level of abstraction. REFINEMENT machines are intermediate steps in the
	refinement of abstract concepts derived from machines. IMPLEMENTATIONS are
	the most concrete representation of machine-level algorithms. They may be converted
	into a program written in a given programming language once they have been proven.

Table 2 .

 2 

1: HLL stream expressions Streams are typed and can have the following scalar types: booleans, integers, sorts and enumerated. Based on these basic types, HLL proposes types such as arrays, structures

Table 2 .
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	Line System Dev. Method	Toolkit	Year	Usage
	8	PMI	PETRI Nets Prover Certifer	2011	Safety Demonstration
	12	PMI	PETRI Nets Prover Certifer 2011-2012 Safety Demonstration
	4	PMI	PETRI Nets Prover Certifer	2013	Safety Demonstration
	1	PMI	PETRI Nets Prover Certifer	2013	Safety Demonstration
	6	PHPI Relay schema PERF Toolkit	2018	Safety Demonstration
	8	PHPI Relay schema PERF Toolkit	2021	Safety Demonstration

3: Interlocking systems verification with HLL

Relay-based interlocking Systems Verification. Further, this formal process was used for safety demonstration of a new generation of relay-based interlocking systems at RATP, the PHPI system for Paris Metro lines 6 and 8. For this project, a tool was developed by

Table 2

 2 

	.4 shows the CBTC projects that have been

Table 2 . 4
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: CBTC systems verification with HLL Proof at system level. Because of the growing complexity of the railway systems that RATP must verify, engineers were forced to upgrade their verification methods, and a

  using an intermediate SSA language. Model-checking is used in this work to check the required properties. They attempt to show that the transformation in SSA form does not produce state explosion. Even if usually the transformation from imperative to SSA form passes from multiple assignments for a variable to single assignment of multiple temporary variables, this intermediate variables do not impact the state space. CompCertSSA[START_REF] Barthe | A formally verified ssa-based middle-end[END_REF] is a translation validator for SSA form construction algorithm that converts imperative variables to SSA variables. CertSSA translations maintain a close relationship between source and target variable names, which simplifies simulation relationship checking. Pop et al.[START_REF] Pop | In and Out of SSA : a Denotational Specification[END_REF] present non-standard denotational specification of the SSA form, including translation from imperative languages to SSA, and vice versa. A
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	3.6. CONCLUSION	81
	and Chapter 6 describes the implementation of the transformation rules in the B2HLL tool
	and the application of the tool to a case study. The B language subset under consideration
	is presented. Finally, we describe a case study used to illustrate the transformation rules
	presented in Chapter 4.	Chapter 4
	Transformation of B implementation
		to HLL Code
		4, 5, 6. Chapter 4, describes
	the transformation principles from B to HLL. Chapter 5 presents the certification approach
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Table 4 .

 4 1: Rule: Component Transformation Example. In Listing 4.1 and Listing 4.2, we can observe that the IMPLEMENTATION Utils_i is translated as equivalent to the Namespaces section in HLL with the same name adding the postfix of the current version of the Namespace in the transformation environment.

	IMPLEMENTATION U t i l s _ i	Namespaces : U t i l s _ i _ 0 {
	. . . //Body	. . . // Body
	END	}
	Listing 4.1: Component Transformation:	Listing 4.2: Component Transformation:
	B Code	HLL Code

  roof Obligations clause if the set of constraints is valid and consistent.

					C o n s t a n t s :
	SETS t _ s e t VALUES t _ s e t = 0 . . c s t _ s e t CONCRETE_VARIABLES xx INVARIANT xx ∈ NAT		i n t MAXINT := 2 1 4 7 4 8 3 6 4 7 ; Types : i n t [ 0 , c s t _ s e t _ 0 ] t _ s e t ; i n t [ 0 , MAXINT] NAT; D e c l a r a t i o n s :
	Listing	4.3:	Static	Clauses	NAT xx_0 ;
	Transformation: B Code		

Example. In Listing 4.4 we illustrate the translation of the declaration of B variables from Listing 4.3. For example, when we declare a B variable xx of type N AT , it becomes the first instance of the stream xx_0 in the HLL. The variable is typed according to its B type N AT . Note that at the implementation level B integers take values in the interval MININT..MAXINT. This behaviour is taken into account during type translation in HLL.

All generated HLL versions of the variable xx are declared in the same way.

Table 4 .

 4 

	4: Rule: Variable identifier to Stream identifier Transformation
	Example. In Listings 4.7 and 4.8, we exemplify the translation of B variable identifier. A
	B variable xx is translated as the HLL label corresponding to its version xx_1.

Table 4 . 5
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	i i + 1
	sum -i i
	i i != sum
	Listing 4.9: Expression Transformation:
	B Code

: Rule: Expressions Transformation Example. Listing 4.10 show the translation of some arithmetic and Boolean operators, present in Listing 4.9, borrowed from the case study detailed in Chapter 3. // M: i i -> ( 1 , 1 ) , sum -> ( 1 , 1 )

  .6. Every assignment of a B variable x generates a unique and fresh corresponding HLL identifier x_HLL using the CreateF resh function. This new identifier is defined with an incremented index value, if it already exists in the translation environment or adds to it a new binding stream for the B variable if not. All the B variables are translated in HLL stream variables with same types. As stated before, in order to trace the value changes of a variable it is required to store in the translation environment the correspondence between a

B variable and its HLL current version. The state variables are unfolded in order to observe all the intermediate variables occurring in state changes. Therefore, new state variables and new transitions may appear on the HLL state transitions system. After the assignment, the translation environment (M) is updated, x HLL is the current HLL label of x. B Construct HLL Construct Tasg(x := E) M . = Let CreateF resh(x, M) = x HLL and T E (E) M . = (E HLL , M) in ( x_x HLL := E HLL ; , M[x → x HLL ] )

Table 4 . 6
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: Rule: Assign Transformation Example. In Listing 4.12, we exemplify the translation of B assignments presented in Listing 4.11. For example, assignment of ii, generates a new HLL label ii_1, with 1 as a unique index for this variable. The subsequent use of ii are replaced by its current instance.

Table 4 .

 4 12: Rule: Structuring Transformation In B project, the clause IMPORTS allows creating new instances of the imported machines. Generally, a machine can be imported at most once in the project. However, it is 4.7. TRANSFORMATION OF B PROJECTS 109 possible to instantiate more then once a machine by naming the new instances. Thus the general outline is to associate each B instance of an imported machine with a new instance of the corresponding HLL namespace. At HLL model generation, a naming convention is used to avoid name clash, allowing to create a unique Namespace for each instance of a B

Table 4 .

 4 opsHLL, M 4 ) in 13: Rule: Main Machine Transformation Example. In the following example, we can observe that the IMPLEMENTATION Main_i_0 is translated to Namespaces clause with the same name in HLL. The clause IMPORTS generates a new namespace Utils_i_0, which is the first result of the translation of this machine.

	(Namespaces: N ame HLL {dataHLL; stateHLL;
	initHLL; cycleHLL; opsHLL;} structHLL , M 4 )
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  .4 depicts the structure in the form of classes. The occurrence of various entities such as variable names, constants, sets, and operation names is recorded CHAPTER 6. TRANSFORMATION AT WORK Type class that constructs and stores variable types in HLL. The translation of the types is also based on the type resolution provided by the BCompiler. Finally, the initial value of the symbol is stored. We find the data needed for a component by targeting the following B clauses: • the type and value of B constants and sets from PROPERTIES and VALUE clauses • the type of variables from INVARIANTS clause • the B model properties from INVARIANTS, PROPERTIES, or ASSERTIONS • the type of operations from LOCAL_OPERATIONS or OPERATIONS clause.The symbol table is further used to verify if a variable is declared, to decide the type of the variable or to determine the scope of a name. The symbol table is implemented as a 6.1. B2HLL TOOL 139 hash table, where the symbol itself is the key for the search and it returns the information about the symbol.

in a symbol table (class SymbolTable) that contains all symbols (class Symbol) of a component. The symbol table primarily contains local symbols, but it may also include symbol copies from abstract components. This is achieved by traversing the following B clauses :CONCRETE_VARIABLES, ABSTRACT_VARIABLES, CONCRETE_CONSTANTS, ABSTRACT_CONSTANTS, SETS, LOCAL_OPERATIONS and OPERATIONS. Figure 6.4: Class diagram of data structure A symbol in the symbol table syntactically represents a B symbol with its type and value.

For example, for a concrete integer variable aa, the class Symbol stores the name of the B variable, the symbol_type such as concrete constant, variable, enumeration, operation, etc. in our case it is a variable. The type of the variable is derived by analysing various static clauses like us : PROPERTIES, INVARIANTS or VALUES and the information required for HLL code generation. We have implemented a

  each leaf component of a B module, a template is produced. The translation rules implemented for template generation adhere to the concepts presented in Chapter 4.
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	machines and operations is as follows:
	foreach module M do
	if M is not yet translated then
	generateTemplate(M);
	end
	end
	Function generateTemplate:
	Translate B data;
	Define intermediate variables vars$<index>$ for each value change of vars ;
	Translate Initialisation ;
	foreach operation O in Operations do
	Generate a HLL Namespace : O$<index>$ ;
	Add additional code for state mapping between local and global variables;
	Translate the substitution body;
	end
	Algorithm 1: B Template Generation
	Template generation is implemented by a method, generateTemplate, which is the default
	handler. Based on the type of the node AST, it redirects the content to the concerned
	method, which translates it. The algorithmic representation of template generation for B

Instanciation. At this stage, we invoke the second component of the code generator that parses all the templates and connects them based on B level state changes to produce the final HLL model. In the preceding phase, during template creation, each machine is translated from a syntactic standpoint, without taking into account state changes caused, for example, by operation calls. To avoid instantiation of unused machines, a template is instantiated in the translation process for each new instance of a B machine or each new occurrence of an operation call.

  Types Translation. The built-in types in B, such as Z and BOOL, are fairly straightforward translated in HLL. Boolean values are represented as boolean variables in HLL and integers are implemented as HLL integers as long as the absence of over and underflow is guaranteed. To avoid overflow issues, the HLL tools provide extra checks, proof obligations are generated to catch undefined behaviours. Note that integers in HLL are finite and bounded while in B they are represented by the mathematical set. In practice, at implementation level, checks are done to verify that the values are within the range from
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	Functions are represented in HLL as arrays. The translation of arrays in B represents
	the creation of a type specific to the array definition and the declaration of a variable of this
	type. For example:	
	a r r 1 ∈ ( 0 . . 4 ) → INT	Types : ( i n t [ 0 , 4 ] -> i n t ) t y p e ; D e c l a r a t i o n s : t y p e arr1_0 ;
	MIN_INT to MAX_INT. This leads to a type definition in HLL. Other basic types such as
	enumerated sets are translated as enumerated type in HLL. Integer intervals become in HLL
	a sub-type of Integer. Range checks are realised to ensure that the value of variables are
	within the limits.	

  are available for B models. Animating HLL models offers a double interest. First, such animation makes it possible to observe intermediate states that are not accessible at the B models level without refactoring the B models themselves. Second, it offers the capability to animate B models integrated to other HLL models in the PERF framework. Finally, animation offers a technique for testing that semantic preservation holds.
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CHAPTER 4. TRANSFORMATION OF B IMPLEMENTATION TO HLL CODE xx //Variable c c //Constant Listing 4.7: Variable Transformation: B Code xx_1 // M: xx -> ( 1 , 1 ) c c -> ( 1 , 1 ) cc_1 Listing 4.8: Variable transformation: HLL Code

Transformation of Expressions

The language used in B expressions relies on predicate logic and set theory. At the implementation level, B expressions are classical arithmetic and Boolean expressions that occur in Code // M: i i -> ( 0 , 0 ) , r r -> ( 0 , 0 ) i i _ 1 := 0 ; // M: i i -> ( 1 , 1 ) , r r -> ( 0 , 0 ) rr_1 := ( i i _ 1 + 1 > sum_1 ) ; // M: i i -> ( 1 , 1 ) , r r -> ( 1 , 1 ) Listing 4.12: Assign Transformation: HLL Code 100 CHAPTER 4. TRANSFORMATION OF B IMPLEMENTATION TO HLL CODE

Part II

Contributions

Sequence Substitution

Sequence defines transformation rules for a sequence of instructions which can be decomposed inductively as translation of the first instruction followed by the translation of the remaining set of instructions. The instructions in B and HLL have the same sequencing delimitation, represented by semicolon. The transformation from B to HLL uses the T seq function as shown in Table 4.7. It uses an input environment and produces an output one. At each transformation step, the output environment of the previous transformation (M 1 ) is the input environment of the next one (continuation passing style). This process is repeated until a final translation environment is generated (M 2 ). 

Conditional Substitution

The translation of IF statements from B to HLL can be compared to the one of imperative programs with joined nodes to the SSA form. Each assignment to a variable must be unique.

Therefore, different branch values of a variable must be merged. In the literature, the conversion of control structures such as IF statement is realised by adding a different type of assignment, the so called ϕ -f unctions [START_REF] Cytron | Efficiently computing static single assignment form and the control dependence graph[END_REF][START_REF] Brandis | Single-pass generation of static singleassignment form for structured languages[END_REF]. This function contains the list of values of a variable that can be reached at the end of the IF via different branches. This comparison

TRANSFORMATION OF CONSTRUCTS FROM B OPERATIONS

should not be taken too literally because we do not propose a graph-based approach. We generate on the fly the merging nodes using a functional store approach [START_REF] Steensgaard | Sparse functional stores for imperative programs[END_REF] by accessing several independent variable state memories (translation environment M).

In HLL, IF conditional is an expression while it is a substitution in B. Conditional statement has several forms in B. In Table 4.8, we present the translation rules for various forms of the conditional substitution given by T if function. The translation is achieved in three steps. and s2 HLL block of instructions. The transformation of S2 block is realised using the composed transformation environment M ⊗ M1, where M is the initial transformation environment and M1 the environment obtained after S1 transformation.

• Second, using the FindModified function, the set of modified variables (V ) within the IF substitution blocks is computed.

• Last, the final assignments merging the IF branch values for all modified variables are produced. These assignments represent HLL IF expressions taking into account the condition evaluated initially and the results for both if and else branches substitutions translation. The variables evaluation is realised in different environments because we should preserve the initial state of the condition. The final block of assignments (s3 HLL ) is generated for modified variables only.

The final result of the translation is the block of HLL instructions composed of previous ones (s1 HLL , s2 HLL , s3 HLL ) and the translation environment M3.

In B, the else branch is optional and its absence is semantically equivalent to identity substitution. In HLL, the use of IF without else branch is not possible. So, during the 

Case Substitution

The Case substitution defines a choice in a block of substitutions depending on the value of an expression. If none of its branches is selected, the else branch is executed. The absence of the else branch is equivalent to identity substitution. We propose to rewrite the case statement to nested IF statements in the obvious way. This is specified in Table 4.9 and the T if transformation function is applied further to obtain the equivalent HLL code. Note that 
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and HLL streams is given by the mapping type. It is used below in the transformation functions.

B Semantics

We define a deep embedding where B models are manipulated as first class objects. We rely on the work of [START_REF] Badeau | Adaptabilité et validation de la traduction de B vers c. points de vue et résultats du projet BOM[END_REF]. The semantics of B models is described using a semantic function.

This function is defined on the structure of the B models. Each syntactic B construct is interpreted by this function.

B constructs in Isabelle/HOL

The syntax of the B language that we defined is based on Isabelle/HOL syntax. Instead of a specification language based on set theory as it is proposed by Abrial [START_REF]The B-book: assigning programs to meanings[END_REF], the syntax we defined in Isabelle/HOL notation is based on higher order logic and type theory. 

B Semantics in Isabelle

The semantics of B constructs is defined using primitive recursive functions encoded in Isabelle/HOL. Listings 5.5 and 5.6 -describe the formalisation of this semantic function. 

B SEMANTICS

HLL constructs in Isabelle/HOL

Similarly to B, specific data-types for arithmetic expressions aexp, boolean expressions bexp and statements instruction are defined.

Since, the HLL conditional is an expression, a particular attention is paid to the flows resulting from conditional expressions. It is processed as an expression construct in 

Stream composition in Isabelle/HOL

In HLL, we reason on a sequence of input using combinatorial logic. The output is the same, even if the input sequence is permuted. Like dataflow languages, the stream assignment is | " stream_comp ( I v1 ) ( I v2 ) = I ( λ i . i f i =0 then v1 0 e l s e v2 ( i -1) ) "

Listing 5.12: Flow composition

HLL Semantics in Isabelle/HOL

Like for B, the HLL semantics is given by semantic functions defined structurally on the corresponding syntactic constructs. The semantic rules for evaluating expressions are defined by the interpretation function meaning_exp ∈ exp → env → val. As for B, it is defined for arithmetic expressions with meaning_a and boolean expressions with meaning_b (see Listing 5.13, 5.14, 5.15). The semantics of the if expression in a state σ produces stream values resulting from the recursive evaluation of branch expression depending on the given condition.

fun meaning_exp : : " exp ⇒ env ⇒ v a l " where

Listing 5.13: Semantics of HLL Expressions fun meaning_a : : " aexp ⇒ env ⇒ i n t s t r e a m " where

CHAPTER 5. CERTIFIED MODEL TRANSFORMATION OF B TO HLL

| " meaning_a ( Times aexp1 aexp2 ) σ=(λ i . meaning_a aexp1 σ i * meaning_a aexp2 σ i ) " | " meaning_a ( Minus aexp1 aexp2 ) σ=(λ i . meaning_a aexp1 σ i -meaning_a aexp2 σ i ) " | " meaning_a ( Uminus aexp ) σ=(λ i . -meaning_a aexp σ i ) "

Listing 5.14: Semantics of HLL Arithmetical Expressions Two constructors are defined for assignment. The first one updates the state of a variable with the stream value obtained from the expression evaluation, and the second one updates the state variables with a composed stream (stream_comp function) resulting from the expression evaluation of v1 and v2.

Correctness of the Transformation

Once the B and HLL semantics are encoded in Isabelle/HOL, the specification of the B2HLL translation shall be defined in Isabelle/HOL. Following that, semantic preservation is defined by defining an equivalence relationship.

CORRECTNESS OF THE TRANSFORMATION

The Transformation Function

The transformation function from B to HLL has been defined on the syntactic constructs identified for both B and HLL in Listings 5.20, 5.19, 5.17, 5.18.

• First, we address the mapping of B state variables to HLL flows (streams) which require a specific process. Each B variable identifier is associated to a unique type compatible pair of read and write HLL identifiers using the M apping = Bvname → (Hllvname × Hllvname) function of Listing 5.1. The defined M apping for variables is exploited to retrieve the HLL stream corresponding to each B variable. The first identifier is used for expression evaluation and the second one for variables mapping updates. Most of the time, both elements can have same values but they can be different during the if condition transformation.

• B Expressions are transformed using T _exp ∈ Bexp → M apping → HLLexp .

The transformation is straightforward defined with the help of a set of functions. 

Unitary requirements

UnitReq1

The train reference point position p ′ shall be computed according to the given orientation.

UnitReq2

The distance between the current reference point position p and the next reference point position p ′ shall be equal to the travelled distance d.

UnitReq3

The train reference point position p shall not change when the new position goes beyond the known segments zone n.

Integration or system requirements

For current CBTC systems, trains permanently measure their exact position, speed and travel direction and transmit this information to the wayside devices. Such data, conforming to the configuration data (i.e. data representing the environment where the system evolves)

enables the measurement of the region potentially occupied by the train. This information is used in the verification of safety properties such as "The train is delocalised (i.e. its localisation cannot be used by other system functions) if the position is invalid (e.g. due to wrong or outdated sensing values)". To establish this safety property, it is required to guarantee that the train positions are valid ones. These positions are computed from the The system requirements on the T RPL function expresses that on each consecutive segment crossed by a train, the reference point position of this train is calculated. This function requires that the next segment is free. The following system requirement SystReq can be written.

SystReq

The We note that, such a system requirement cannot be verified on the standalone T RP L function. This requirement is a refinement of a system requirement resulted from the integration of other system functions and of the description of the system environment. This analysis is realised after the development of the system. In order to check this at B level we should modify the actual model and integrate the definition of the environment. This approach is not possible in the actual industrial context and implies to reprove the B code, a time consuming activity.

Formal models for the TRPL case study

In chapter 4, we have described the general transformation principles from B to HLL. Below, we show the B model corresponding to the case study of Section 6.3 and the obtained HLL model with B2HLL tool presented in 6.1.

A B model for TRPL

The B model associated to the TRPL is composed of several machines and refinements. All The preconditions ensure that the input parameters are type consistent and the new train reference point is correctly computed. The properties from the invariant clause shall always be maintained by the operation. To illustrate our approach, only the implementation level of the f indLoc procedure is presented. When the new position of a train remains in its bounds, the findLoc procedure changes the train reference point position based on a displacement i_dep, a previous segment i_seg and abscissa i_abs given as parameters.

The t_segment variable models the known zone of line segments. The invariant Inv1 describes that the segment identifier belongs to the type t_segment and it does not allow to go beyond the know zone of segments. The t_abscisse variable defines an interval of values representing the possible values of an abscissa on segment. Invariant Inv3 states implicitly that the abscissa shall not exceed the length of a segment.

This main machine describes the move of the current reference point for a train displacement given by odometry devices. In doLoc operation is refined this behaviour. The latter imports TrainPositioning machine and calls the operation findLoc passing as parameters the current block identifier, position on this block and the train displacement. The reference point will be updated accordingly to the displacement l_xDep, if its new value is in the known zone of blocks. As the operation findLoc modifies the state of the machine, the computation output is returned by readSegment and readAbscissa operations. A while loop ensures that the segment identifier is increased when the train displacement is greater than the length of a segment. The loop invariant states that the input parameters respect their typing properties and the new train reference point is correctly computed by preserving the model invariants. The operation findLoc is triggered by the main program that models the current TRPL updates for a train displacement given by odometry devices. The developed B model is successfully proved using Atelier B [START_REF] Clearsy | [END_REF] ensuring invariant preservation and thus fulfilling the unitary requirements.

A HLL model for TRPL

This section describes the HLL model that results from translating the B example given above according to the transformation principles defined in Chapter 4.
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Namespaces : " T r a i n P o s i t i o n i n g _ 0 " { . . .

// Context D e f i n i t i o n

Types : Each B assignment is translated as a HLL stream assignment with a new version of the modified variables.

System analysis

Up to now, all the properties established in B are also expressed as properties in the HLL model. One may ask what is the added value of such a transformation. The interest of integrating the models in the HLL framework is twofold. First, it allows to have a shared model obtained for various modelling languages (all the models supplied by the stakeholders are translated to HLL models) and second, it allows to check global properties at system level using a non intrusive approach. Indeed, the source models are not modified. They are integrated in a single modelling language. In addition to the formal verification performed on each source model using the source modelling verification procedure, it is possible to check the requirements for each translated model or global system requirements expressed in HLL at system level. In the case of supplied B models, they are integrated (composed) into the models already developed.

For example, the system requirement SystReq encoded in HLL (not expressed in the B model) as presented in Listing 6.6 requires that, when a train moves, the next segment associated to the new train position is either the same one or the consecutive one. The requirement does not allow trains to move forward to any segment. Only consecutive segment changes are allowed. When all this information is integrated the property holds.

Model Animation. The transformation at work

The last step of the formal verification and validation process we have set up when using the PERF framework is described in this section. The critical industrial application context requires an assessment of the quality of the defined transformation. We address the certification of the defined transformation process. The certification consists in formally guaranteeing semantic preservation after translation i.e. we prove that the transformation In the process of safety assessment, the validation of the translator is an important step.

In order to achieve this step, the execution of models has been considered as one mean to arrive at this end [START_REF] Hallerstede | Refinement-animation for event-b -towards a method of validation[END_REF][START_REF] Mashkoor | Transformation Heuristics for Formal Requirements Validation by Animation[END_REF]. Even though the B to HLL transformation is automatic, the model animation is still interactive, i.e step by step.

Application to the TRPL case study

We illustrate our model animation approach on the T RPL case study presented in Section 6.3 for the models defined in sections 6. 

MODEL ANIMATION. THE TRANSFORMATION AT WORK

The B loop (while) construct is transformed into a recursive conditional statement.

All the variables modified in the body of the loop from f indLoc operation become HLL assignements with stream value conditioned by the condition of the while (see variables l_x_2, l_seg_2 from Listing 6.5).

Conditional expressions are transformed in two steps. First the then and else branches are translated, and then the conditional expression is built. The condition of the HLL IF expression from Listing 6.9 is formalised as f indLoc_while_cond_Hll0 definition.

The f indLoc_locals_assign_Hll, f indLoc_while_ body_Hll0 and f indLoc_while_Hll0 encode respectively the initialisation of the loop, its body and the recursive condition to run the loop of Listing 6.9.

Validation scenarios. The validation of the translation rules implemented in the B2HLL tool can be achieved by a correct translator specification and implementation. During the formalisation, a significant amount of time is spent on debugging specifications and theorems.

Usually, inconsistencies are discovered during failed proof attempts. One solution is to validate by "running" the specifications using assigned values to state variables in order to conjecture and evaluate them.