N
N

N

HAL

open science

A framework for semi-automated design and
implementation of blockchain applications

Nicolas Six

» To cite this version:

Nicolas Six. A framework for semi-automated design and implementation of blockchain applications.
Databases [cs.DB]. Université Panthéon-Sorbonne - Paris I, 2023. English. NNT: 2023PA01E008 .

tel-04186778

HAL Id: tel-04186778
https://theses.hal.science/tel-04186778
Submitted on 24 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-04186778
https://hal.archives-ouvertes.fr

!
H

UNIVERSITE PARIS 1

PANTHEON SORBONNE

A Framework for Semi-automated Design
and Implementation of Blockchain
Applications

Nicolas SIX

Centre de Recherche en Informatique (EA 1445)
Université Paris 1 Panthéon-Sorbonne, France

These de doctorat présentée pour I'obtention du grade de Docteur en Informatique de
I’Université Paris 1 Panthéon-Sorbonne
Soutenue publiqguement a Paris, le 16 Mai 2023, en présence du jury composé de:

Mr. Said Assar
Professeur des universités

Institut Mines-Télécom Business School Président

Mme. Rébecca Deneckere
Maitre de conférences, HDR

Université Paris 1 Panthéon-Sorbonne Examinatrice

Mr. Raimundas Matulevicius

. o University of Tartu Rapporteur
Professeur des universités

Mr. Marinos Themistocleous

. . University of Nicosia Rapporteur
Professeur des universités

Mr. Camille Salinesi
Professeur des universités

Université Paris 1 Panthéon-Sorbonne Directeur de thése

Mr. Nicolas Herbaut
Maitre de conférences

Université Paris 1 Panthéon-Sorbonne Co-encadrant de thése


https://www.pantheonsorbonne.fr/en




Résumé en Francais

Contexte - La blockchain se distingue des technologies conventionnelles par ses caractéris-
tigues uniques, telles que la décentralisation, I'immuabilité ou la résilience. Toutefois, mal-
gré l'intérét croissant que suscite la technologie blockchain dans les milieux universitaires
et industriels, I'adoption a grande échelle de la blockchain se heurte encore a des obstacles
majeurs.

Probléme - Les technologies blockchain s'accompagnent de plusieurs inconvénients, tels
gu’un faible débit de transactions a la seconde, des problémes de confidentialité des don-
nées et une rigidité des applications due a I'immutabilité des smart-contracts (contrats
intelligents) une fois déployés. Si ces inconvénients ne sont pas considérés, les applica-
tions blockchain peuvent ne pas correspondre aux exigences initiales, entrainer des co(ts
d’exploitation et de maintenance élevés, ainsi que des problémes de sécurité et de con-
fidentialité. Ces problémes entravent l'intégration de la technologie blockchain dans les
architectures et systémes existants ou nouveaux.

Resultats - Cette thése propose un cadre semi-automatisé de bout en bout nommé Harmon-
ica pour la conception et la mise en ceuvre d’applications blockchain. Cette thése présente
trois contributions originales. Premiérement, une base de connaissances pour soutenir le
processus de recommandation. Pour constituer le cceur de la base de connaissances, une
revue systématique de la littérature a été réalisée pour identifier, extraire, puis normaliser
les patterns (patrons) logiciels existants basés sur la blockchain. La base de connaissances
est stockée sous la forme d’une ontologie qui contient les attributs et les relations des pat-
terns de logiciels basés sur les blockchains et des blockchains identifiées. Deuxiémement,
un processus de décision automatisé pour recommander une technologie blockchain et des
patterns basés sur la blockchain dans un contexte donné. Compte tenu d'un ensemble
d’exigences, le processus de décision est capable de produire un classement d’'un ensemble
de technologies blockchain et des patterns basés sur la blockchain afin d’aider I'utilisateur
a concevoir son application. Troisiemement, un outil capable de réutiliser les recommanda-
tions pour générer une application blockchain fonctionnelle et compléte. Ces parties sont
toutes deux liées a la mise en ceuvre et au déploiement de I'application blockchain : un en-
semble de contrats intelligents est généré et complété par des patterns logiciels basés sur la
blockchain, et des scripts de déploiement sont proposés pour soutenir le déploiement des
contrats intelligents sur la blockchain cible.

Méthode - La construction de ce framework et de ses artefacts a été rendue possible
en suivant la méthode Design Science Research (DSR) pour les systéemes d’information de



Wieringa et al. Selon cette approche, le framework est constitué d'une base de connais-
sances et de deux artefacts de code. Chaque amélioration de la base de connaissances per-
met d’améliorer les artefacts de code, et vice-versa.

Conclusion - La combinaison des artefacts produits forme une boite a outils qui facilite le pro-
cessus de création d’applications basées sur la blockchain, de leur conception a leur mise en
ceuvre. Les outils proposés peuvent étre utilisés indépendamment les uns des autres pour
soutenir une activité spécifique du cycle de développement logiciel basés sur la blockchain,
ou ensemble car ils profitent chacun des résultats de I'autre. Chaque partie du framework a
été validée indépendamment a I'aide d'études de cas et de sondages auprés des utilisateurs
afin de s’assurer qu’elles soutiennent correctement les différentes étapes du développement
logiciel, de la conception a la mise en ceuvre.



Abstract

Context - Blockchain differs from conventional technologies through its unique characteris-
tics, such as decentralization, immutability, or resiliency. However, in spite of the growing
interest in blockchain technology from academia and industry, there are still major obstacles
to wide blockchain adoption.

Problem - Blockchain qualities come with several drawbacks, such as a low transaction out-
put, data privacy concerns, and application inflexibility due to smart contract immutability
once deployed. Failing to handle these drawbacks might lead to blockchain applications mis-
aligned with initial requirements, high operation costs, high maintenance costs, as well as
threats to security and privacy. These issues hinder the integration of blockchain technology
into existing or new architectures and systems by practitioners.

Results - This thesis proposes a semi-automated end-to-end framework named Harmonica
for the design and implementation of blockchain applications. This thesis presents three
original contributions. First, a knowledge base to support the recommendation process. To
constitute the core of the knowledge base, a systematic literature review was performed to
identify, extract, then standardize existing blockchain-based software patterns. The knowl-
edge base is stored as an ontology, that contains the attributes and relations of identi-
fied blockchain-based software patterns and blockchains. Second, an automated decision
process to recommend a blockchain technology and blockchain-based patterns in a given
context. Given a set of requirements, the decision process is able to output a ranking of
blockchain technologies to help the user in the selection of an adequate technology. Third,
a tool capable of reusing the recommendations to generate a functioning and complete
blockchain application. These parts are both related to the implementation and deploy-
ment of the blockchain application: a set of smart contracts is generated and augmented
with selected blockchain-based software patterns, and deployment scripts are proposed to
support the deployment of smart contracts on the target blockchain.

Method - The construction of this framework and its artifacts has been made possible by
following the Design Science Research (DSR) method for information systems from Wieringa
et al. Following this approach, the framework is constituted of a knowledge base and two
code artifacts. Each refinement on the knowledge base helps to refine the code artifacts,
and vice-versa.

Conclusion - The combination of produced artifacts form a toolkit that facilitates the pro-
cess of creating blockchain-based applications, from their design to their implementation.



Vi

The proposed tools can be used independantly from each other to support a specific activ-
ity of blockchain-based software development, or together as they each profit from each
other’s output. Each part of the framework has been validated independently using case
studies and user surveys to ensure they adequately support the different steps of software
development, from conception to implementation.



Vii

Remerciements

Au travers de ces quelques paragraphes, j'aimerais remercier toutes les personnes qui ont
pu me soutenir, m'épauler, et contribuer de prés ou de loin, a terminer cette thése. Tout
d’abord, je souhaiterais chaleureusement remercier mes encadrants, Camille Salinesi et
Nicolas Herbaut. C’est grace a votre accompagnement, vos conseils, votre expérience et
votre support, que j’ai pu venir a bout de cette épreuve. Aupres de vous, j'ai pu apprendre
beaucoup de choses, et j'ai été ravi de partager ce bout de chemin avec vous.

Jaimerais également remercier Raimundas Matulevicius ainsi que Marinos Themistocleous
pour leur temps consacré a la relecture de ce manuscript de thése. Vos précieux conseils
et vos retours m’auront permis d’améliorer grandement ce manuscrit de thése pour qu'il
devienne ce gqu’il est aujourd’hui. Aussi, je souhaiterais remercier Rébecca Deneckere ainsi
gue Said Assar d’avoir accepté d’étre respectivement examinatrice et président du jury pour
ma défense de thése.

Un grand merci a tous les membres du CRI (Centre de Recherche en Informatique), pour
I'aide que vous avez pu m’apporter durant ces années mais également les bons moments
passés ensemble au laboratoire. Je pense a tous les professeurs et au personnel admin-
istratif que j'ai pu rencontrer, toujours a I'écoute et de bonne humeur ! Je pense égale-
ment 3 tous les doctorants (Camilo, Claudia, David, Eddy, Ramona, et Tasnim) mais aussi
ceux qui sont maintenant docteurs (Housseim, Fabrice, Floriane, Angela, Luisa, Sabrine, Ali,
et Asmaa). Que l'on ait partagé quelques discussions autour d’un café, quelques réunions
pour rédiger un article, ou plus encore, je garderais en mémoire tout ces bons souvenirs, et
j'espére que I'on se recroisera dans le futur !

Je souhaite également remercier I'Ecole Doctorale de Management Panthéon-Sorbonne
(EDMPS) pour avoir financé ma thése a travers mon contrat doctoral, ce qui m'a permis
de réaliser sereinement cette these.

Enfin, je n’ai pas oublié ma famille et mes amis ! Un grand merci & mes parents, Michael et
Isabelle, mes grands-parents, Chantal et Bernard, mes fréres, Thomas et Théo, mais aussi
Lucas, Xavier, Alexandre, Terry, et toutes celles et ceux qui font partie de ma vie aujourd’hui.
Sans vous, je ne serais probablement pas la ou j'en suis aujourd’hui.






Contents

Remerciements
List of Figures
List of Tables

Introduction en Francais
0.1 ContextedelaRecherche . . . . .. .. ... ... ... .. ... .. ...
0.2 ObjectifsdelaRecherche . . . . . . . ... ... . . .. . . . ... . ...
0.3 Contributions de la Thése et Publications . . . ... ... ... ......
0.4 OrganisationdelaThése . . . . . . . .. . . . . . .. ...

1 Introduction
11 ResearchContext . . . . . . ... . .. . . .. ... ... .. ...,
1.2 Research Aimand Objectives . . . . . . . . ... .. ... .........
1.3 Thesis Contribution and Publications . . . . . . .. ... ... .......
1.4 ThesisOrganization . . . . . . . . . . . . e

2 Background

21 Definitions . . . . . . .. e e e e
211 BlockchainTechnology . . . .. ... ... ... ... .......

21.2 SoftwarePatterns. . . . . . ... ... ... o

2.2 Issues in Blockchain-based Application Development . . . . ... .. ...
2.21 ReviewProcess . . . . . . . . . ..

2.2.2 Developmentissuesin the design and implementation of blockchain
applications . . . . . . .. ...
Blockchain-specificChallenges . . . . . . . ... .. ... .....

Application SecurityIssues . . . . . . . ... . Lo ...

Cost and Performance Considerations . . . . . . ... ... ....
Development Environment Challenges . . . . . . . ... ... ...

Ethereum ecosystem limitations . . . . . . .. ... ... ... ..

2.2.3 Discussion. . . . . .. e e e e e

2.2.4 ThreatstoValidity . .. ... ... ... ... . .. .. . . ...,

2.3 Conclusion. . . . . . . . e e e

3 Overview of the Method and Contribution

vii

Xiii

XV

XXVi

O N DA oo

13
14
14
17
18
19



31 ResearchMethod . . . . .. ... ... .. ... ... .. ... ... ...
3.1.1  Design Science Research Introduction . . . . . ... ... .....

3.1.2 ResearchQuestions . . . . . . . . . . . . o o v i i

3.2 Framework Overview . . . . . . . . . . . e e e e
3.21 KnowledgeBase . ... ... . ... . ... .

3.2.2 BLADE - BLockchain Automated DEcision process . . . . . ... ..
Blockchain Technology Recommendation . . . . ... .. ... ..
Blockchain-based Patterns Recommendation . . . ... ... ...
Blockchain-based Patterns Selection . . . . . .. ... ... ....

3.2.3 BANCO - Blockchain ApplicatioN Configurator . . . . . ... .. ..

3.2.4 Framework Mapping to Design Science Research . . . . . ... ..

3.3 RunningExample . . . . .. . . . . . ... e
3.3.1  Description . . . . ... e e e e

3.3.2 Requirements and Technical Considerations . . . . . ... ... ..

3.4 Conclusion. . . . . . . . . e e e e e

Recommendation Engine for the Selection of an Adequate Blockchain Technology 53

4.1 Introduction to Multi-Criteria Decision-Making . . . . . ... .. .. ...
4.2 DecisionProcessModel . . . . . . . ... .. e
4.2 Inputs . . . . e e e e e e e e e e e e e e
4.2.2 DecisionProcess . . . . . . . . ...
4.3 Implementation . . . . . ... e
4.3.1 Tool Architecture and Implementation . . . . . ... ... ... ..
4.3.2 ScoreGeneration . . . . . . .. ... ...
4.3.3 Dependency Model GenerationEngine . . . . ... ... .....
4.4 RunningExample . . . . . . ... e
4.4.1 BLADE Requirements and Preferences . . . . . . ... ... ....
4.4.2 Results . . . . .. . . e
4.5 Validation . . . . . . ... e
4.51 Big-BoxScenario . . . ... .. ... . e
4.5.2 Big-BoxClientRequirements . . . . . . ... ... ... ......
4.5.3 Results . . . . .. . ... e
4.5.4 Recommended Solution Validation. . . . .. ... .........
4.6 DISCUSSION . . . v v i e e e e e e e e e e e e e e e e e e e
4.7 Threatstovalidity . .. ... ... ... . ... .. ... . ...
4.8 RelatedWorks . . . . . . . . ...
4.9 Conclusionand FutureWorks . . . . . . .. ... .. .. ... ...,

Collecting Blockchain-based Software Patterns from the Literature

5.1 ReviewProcess . . . . . . . . . . .. e e e e
5.1.1 Review Planning . . . . . . . . . . . . . . ... . . e
5.1.2 ReviewExecution . . . . ... ... ... ... o e
5.1.3 Taxonomy Construction. . . . . ... .. ... ... ... .. ...



5.2

5.3
5.4
5.5

xi

514 Results . . . . . . ... 86
DiscuSSION . . . . . . . e e e e e e e e e e e 87
5.21 CoreResearchQuestions . . . . . . . . . . o v v v v v i v .. 88
5.2.2 Additional Research Questions . . . . . . .. . . .. ... ..... 101
ThreatstoValidity . . . . . . . . . . . . . . o 109
Related Works . . . . . . . . . . . e e 110
Conclusionand FutureWorks . . . . . . . . . . . .. .. ... ... ... 110

Recommendation Engine for the Selection of Adequate Blockchain-based Software

Patterns 113
6.1 Ontology Construction . . . . . . .. ... .. . . ... . . . ... ... 115
6.11  ConstructionMethod . . . . . . .. ... ... ... ... ... 15
6.1.2 Initiation . . ... 116
6.1.3 Reuse and Re-engineering of Non-Ontological Resources . . . . . . 17
6.2 Blockchain-based Software PatternOntology . . . . ... ... ... ... 118
6.21 OntologyOverview . . . . . . . . . i i i it e 118
6.2.2 Ontology QueryingTool . . . ... ... ... . .. .. . . .... 122
6.3 RunningExample . . . . . . . . e 124
6.3.1 Recommendation Engine Answers . . . . ... ... ... ..... 124
6.3.2 Results . . ... ... ... e 124
6.4 Validation . . . . . . .. .. 126
6.441 Ontology Validity . . . . ... ... .. . ... . .. .. . . .... 127
6.4.2 OntologyRelevancy . . . . . . . ... . . .. . . ... . . ..., 127
6.4.3 ResultsandAnalysis . . .. ... ... ... .. ... ... ..., 129
6.5 ThreatstoValidity . . . . ... ... ... .. .. .. . 130
6.6 RelatedWorks . . . . . . . . . . e 131
67 Conclusionand FutureWork . . . . .. ... ... ... ... . ...... 132

Generating a Blockchain-Based Application Reusing Previous Recommendations 135

71

7.2

7.3
7.4

Feature ModelDesign . . . . . . . . . . . . . . . ... e 137
7.1 ConstructionMethod . . . . . . ... .. ... ... .. .. ... . 137
71.2  SmartContractsFeature . . . . ... ... .. ... ... ... 138
71.3 FeatureStorage . . . . . . . . ... o 140
7.4 FrontendFeature . . . . . . .. .. ... ... .. ... .. ... 141
BANCO construction . . . . . . . . . . . .. . ... o 142
7.21  Product Configuration . . . ... ... ... .. ... ....... 143
7.2.2 ProductGeneration. . .. .. ... ... ... .. .. . ... ... 144
7.2.3 ProductDeployment . .. ... ... ... . ... . .. ..., 146
RunningExample . . . . . . . . . e 148
Validation . . . . . . . . . ... e 151
7.4  Experiment . . . . . ... 151
7.4.2  Spare Part Study Comparison . . . . .. .. .. ... . ... ... 152

7.4.3 Dairy Products Study Comparison . . . . ... ... ........ 156



xii

7.5 Discussion . . . . . .. e e e e e e e e 159
7.5.1 Research Sub-Questions . . . . . . . . . . .. ... ... .. 159
7.5.2 Lessonslearned . . . ... ... ... ... ... ... ... 161
7.5.3 ResearchChallenges . . ... ... ... ... ... . ....... 162
7.6 RelatedWorks . . . . . . . . . ... e 163
7.6.1  Smart Contract Code Generation . . . . . ... ... ........ 163
7.6.2  Blockchain and Model-Driven Engineering . . . . . . .. ... ... 163
7.6.3  Blockchain and Software ProductLines . . ... ... ....... 164
7.6.4 Comparison with the SPL Approach . . . . . .. ... ... .... 164
77 Conclusion. . . . . . . .. e e e e 165
Conclusion and Perspectives 167
8.1 Novel Contribution . . . .. ... ... .. ... ... .. ... ... ... 167
8.2 Limitations . . . . . .. .. e 170
8.3 FutureWorks . . . . . . . . e e e e e 171

References 179



xiii

List of Figures

1.1

21

2.2
2.3
2.4
2.5
2.6

341

3.2
3.3
3.4

4.1

4.2
4.3
4.4
4.5

51

5.2
5.3
5.4

6.1

6.2
6.3
6.4
6.5

6.6
67
6.8
6.9

Organisationdelathése. . . . . . . . . . . . . . . ... . . . . ... ... XXiX
Thesis organization. . . . . . . . . . . . .. ... e 10
Review processscheme. . . . . . . . .. .. .. ... ... .. ... 21
Blockchain-specific challengesmap. . . . . . .. ... ... ... ..... 23
Application security issuesmap. . . . . . . ... 24
Cost and performance considerationsmap. . . . . ... .. ... ..... 26
Development environment challengesmap. . . . . . .. ... ... .... 27
Development environment challengesmap. . . . . . ... ... ... ... 29
Design Science Research framework from Wieringa. . . . . . . .. ... .. 37
Thesis organization in light of research questions. . . . . .. ... ... .. 40
Harmonica framework overview. . . . . . . .. .. ... .. ... ..... 41
Framework elements with regards to the DSR method. . . . . ... .. .. 45
Recommendation engine overview. . . . . .. .. ... ... .. ..., 57
Criteriaprocessingphase. . . . . . . . . . . . . . . e 60
Screenshot of requirements selection interface in BLADE. . . . . . ... .. 63
Performance test infrastructure typology. . . . . . ... ... .. ... .. 72
Ethereum-PoA performance tests boxplot. . . .. ... ... .. ..... 74
Review processscheme. . . . . . . . . . . . . ... . . e 83
Empirical-to-conceptual taxonomy development method. . . . . . . . . .. 85
Quality assessment answers distribution (labels detailed in Subsection 5.1.1) 87
Design patterntaxonomy. . . . . . . . . . ... e 88
NeOn framework workflow. . . . . . . .. .. ... ... .. ........ 15
Blockchain-based software pattern ontology with an exemplified section. . 118
Oracle pattern ontology example. . . . . . . . . ... ... ... ..... 120
Example of relations between Patterns and Design problems. . . . . . . .. 121
Example of question associated to the Architectural design organization sub-

class. . . . e e e e e 121
Pattern scoring based on patterns/problem categories. . . . . .. ... .. 123
Panel Usecase Score Sfi ........................... 129
Average precisionatcutoff-k. . . . . ... ... oo oL, 130

Averagerecallatcutoff-k. . . . . . . . ... . o L 130



Xiv

71

7.2
7.3
7-4
7.5
7.6
77

Focused view of the SmartContractFM . . . . . . . . ... ... ... ... 139
Focused view of the Storage FM. . . . . . . . . . . . . .. ... . ..... 140
Frontend featuremodel. . . . . . . . .. .. ... .. ... ... ... 142
Overview of BANCO. . . . . . . . . . e e e e e e e 143
Smart contract architecture. . . . .. ... .. .. o L L. 146
Roleformexample. . . . . . . . . . . .. e 147

Gas cost of executing several times the reference implementations and gen-
eratedproducts. . . . . . . ... e e 155



XV

List of Tables

241
2.2

341
3.2

4.1
4.2
4.3
4.4
4.5
4.6
47

5.1

5.2
5.3
5.4
5.5
5.6
57

6.1
6.2
6.3

7.
7.2
7.3
7.4
7.5

7.6

Inclusion and exclusioncriteria. . . . . . . .. ... ... ... . .. ... 20
Literature review corpusof papers. . . . . . . . . . . oo 21
Casestudyuserstories. . . . . . . . . . .. e 49
Case study functional requirements. . . . . . . . ... ... ... .. ... 50

Chosen alternatives and attributes (Adv.: Advanced, H.F.: Hyperledger Fabric). 58

Ranking scale associating labels and preferencevalues. . . . . .. ... .. 60
Carasau bread application requirements and preferences. . . . . . ... .. 65
Decision process executionresults. . . . . . . .. ... . ..o ... 66
Requirements for the Big Box referencestudy. . . . . . ... ... ... .. 69
Submitted requirements and preferences. . . . . . . .. ... .. ... 70
Decision process executionresults. . . . . . . ... ... .. o ... 71
Inclusion and exclusioncriteria. . . . . . . . ... . ... ... .. ..., 82
On/off-chain interaction patterns. . . . . . .. ... ... ... ...... 91
On-chain patterns - domain-based patterns. . . . . ... ... .. ..... 93
On-chain patterns - smart contracts patterns (management and security). . 95
On-chain patterns - smart contracts patterns (efficiency and access-control). 97
On-chain patterns - data management patterns. . . . . . . ... ... ... 99
Existing software patterns reused by blockchain-based software patterns. . 103
Ontology competency questions. . . . . . . . . . . . . . .. .. ... ... 116
Relevant design problems for the Carasau bread application. . . . . . . .. 125
Panel Description. . . . . . . . . . e 128

Blockchain traceability research used to design and test the feature model. 138

Smart contracts and frontend feature constraints. . . . . . ... ... ... 140
Storage feature constraints. . . . . . . . .. 141
Signification of configuration XML file attributes. . . . . . ... ... ... 148
Spare parts study functional requirements (SR: satisfied in reference paper,

SP: satisfied ina generated product). . . . . . . .. ... ... .. .. .. 153
Dairy products study functional requirements (SR: satisfied in reference pa-

per, SP: satisfied in the generated product). . . . .. .. ... ....... 158

Issues met by practitioners in the design of blockchain-based applications,
for each literaturereview paper. . . . . . .. ... o o . 175






XVii

Acronyms

AHP Analytical Hierarchy Process

BANCO Blockchain ApplicatioN Configurator
BLADE BLockchain Automated DEcision process
BOSE Blockchain-Oriented Software Engineering
BPMN Business Process Model and Notation
CML Contract Modeling Language

CQ Competency Question

DLT Distributed Ledger Technology

DSR Design Science Research

ELECTRE ELimination Et Choix Traduisant la REalité
ERC Ethereum Request for Comment

EVM Ethereum Virtual Machine

FLR Focused Literature Review

GDPR General Data Protection Regulation
HACCP Hazard Analysis and Critical Control Point

Harmonica BlockcHain fRaMewOrk for the desigN and Implementation of deCentralized
Application

IPFS InterPlanetary File System

MCDM Multi-Criteria Decision Making

MDE Model-Driven Engineering

NeOn Network of Ontologies

NFR Non-Functional Requirement

ORSD Ontology Requirement Specification Document
PoS Proof-of-Stake

PoW Proof-of-Work



XViii

QQ Quality Question

RO Research Objective

SCME Single-Case Mechanism Experiment

SLR Systematic Literature Review

SPL Software Product Line

SPLE Software Product Line Engineering

SWRL Semantic Web Rule Language

TBCG Template-Based Code Generation

TOPSIS Technique for Order Preference by Similarity to the Ideal Solution
UML Unified Modeling Language

UTAUT Unified Theory of Acceptance and Use of Technology



XiX

Introduction en Francais

0.1 Contexte de la Recherche

La technologie blockchain (chaine de blocs) est un registre distribué constitué de blocs,
soutenu par un réseau de pairs possédant chacun une copie. Chaque nceud suit le méme
protocole et utilise un algorithme de consensus pour que sa copie reste cohérente avec les
autres. Les utilisateurs peuvent interagir avec les noeuds pour ajouter de nouvelles trans-
actions a la blockchain, mais la modification et suppression de celles-ci sont théorique-
ment impossibles. Alors que la premiére génération de technologie blockchains se concen-
trait uniquement sur les transactions de cryptomonnaie entre utilisateurs, comme Bitcoin
(Nakamoto, 2008), certaines d’entre elles prennent désormais en charge les smart contracts
(contrats intelligents), comme Ethereum (Buterin et al., 2013). Un smart contract est un pro-
gramme décentralisé qui peut étre exécuté sur la blockchain, par I'intermédiaire de noeuds.
Les utilisateurs peuvent déployer des smart contracts et interagir avec eux au moyen de
transactions.

La blockchain est entierement décentralisée par nature, aucune tierce partie n'étant en
charge du réseau. Les données des blockchains sont également immuables et infalsifiables,
car personne ne peut modifier un bloc aprés sa création et son ajout a une blockchain. Grace
a ces propriétés, les applications basées sur la blockchain peuvent étre fiables, car personne
ne peut altérer I'exécution correcte d’'un smart contractCela n’est valable que si le smart
contract est bien concu pour éviter les failles d’exécution et les problémes de sécurité. Il
est également possible de retracer I'historique des changements d’état d’une blockchain.
Ainsi, les changements d’état des smart contracts peuvent également étre rejoués pour une
tracabilité compléte des applications décentralisées (dApps).

Ces derniéres années, les technologies blockchain se sont rapidement développées, passant
de technologies de niche utilisées par quelques personnes a des solutions prometteuses
pour de nombreux secteurs. Selon Gartner, la valeur commerciale créée par les technologies
blockchain pourrait atteindre 3,1 billions de dollars en 2030. Cette croissance est due a ses
propriétés uniques qui permettent de concevoir des architectures et des systémes logiciels
innovants (Zeadally and Abdo, 2019). Tout d'abord, grace a la prise en charge native des
cryptomonnaies, la technologie blockchain permet de créer de nouveaux cas d'utilisation
dans le domaine financier qu'il était difficile d’exploiter a I'aide des technologies existantes.
Par exemple, I'échange de devises par I'intermédiaire des banques pouvant étre un proces-
sus colteux pour un utilisateur, les ‘faiseurs de marchés automatisés” (Automated Market
Makers) basés sur technologie blockchain permettent I'échange d’une cryptomonnaie a une



XX

autre sans aucun intermédiaire en utilisant des pools de liquidité de cryptocurrencies et un
smart contract pour effectuer le swap (Pourpouneh, Nielsen, and Ross, 2020). En ce qui con-
cerne le secteur de I'assurance, la blockchain peut étre utilisée pour automatiser le proces-
sus de demande d’'indemnisation en cas d’accident. Alors qu’un tel processus peut prendre
de nombreux jours ou semaines avec les systémes d’assurance traditionnels (Oham et al.,
2018), il peut étre automatisé a 'aide de smart contracts.

Les technologies blockchain ont également de nombreuses applications dans des domaines
non financiers, en raison de leur capacité a fonctionner sans tiers et a garantir un niveau de
confiance élevé via I'utilisation d’applications décentralisées. Par exemple, la blockchain
peut étre un support a l'exécution d'un processus business inter organisationnel, afin
d’enregistrer les actions et les données des organisations, ou permettre I'exécution com-
pléte du processus directement sur la blockchain (Di Ciccio et al., 2019; Herbaut and Negru,
2017; Udokwu et al., 2021). Dans ce contexte, les participants peuvent faire confiance aux
informations stockées sur la blockchain, les opérations effectuées dans les smart contracts
ne pouvant étre altérées. Cette couche d’automatisation décentralisée et de confiance est
également utilisée dans d’autres applications, telles que les réseaux intelligents (Agung and
Handayani, 2020), la blockchain pouvant faciliter I'établissement d’un marché d'échange
d’énergie entre les utilisateurs (smart grid), ou les applications liées au secteur de la santé
pour le partage des dossiers médicaux.

Les cas d'utilisation de la blockchain étant de plus en plus pris en compte, de nombreuses
entreprises commencent a s'intéresser a la blockchain et a créer de nouvelles applications.
Selon I'étude 2020 Global Blockchain Survey de Deloitte, 55% des 1488 entreprises inter-
rogées dans le monde considérent la blockchain comme I'une de leurs cing principales pri-
orités stratégiques (Deloitte, 2020).

Malgré I'intérét croissant des entreprises pour la blockchain, I'adoption de cette technologie
n'est pas encore généralisée. Dans un article de Prewett et coll., les problémes d’adoption
liés aux technologies blockchain sont mentionnés (Prewett, Prescott, and Phillips, 2020).
D'un point de vue juridique, I'absence de cadre réglementaire est préoccupante. La crois-
sance des blockchains a été exponentielle au cours des dernieres années, dépassant le
développement des réglementations. Malheureusement, ce probléme a déja été exploité
par des acteurs malveillants dans le cadre de différentes escroqueries. L'absence de régle-
mentation est également source d'incertitude lors de la conception d’une application basée
sur la blockchain. Par exemple, certaines applications utilisent des smart contracts pour
encoder des données juridiquement contraignantes, telles que des signatures ou des obli-
gations contractuelles entre deux ou plusieurs parties. Comme le mentionnent Gilcrest et
coll., certaines juridictions reconnaissent déja les smart contracts comme des contrats a part
entiére, mais il n’y a pas encore de reconnaissance généralisée (Gilcrest and Carvalho, 2018).
Une autre limitation existante est liée au stockage des données sur la blockchain. En effet,
les applications basées sur la blockchain peuvent ne pas étre conformes aux réglementa-
tions existantes. Par exemple, le stockage des données sur la blockchain pourrait étre en



XXi

conflit avec le Reglement Général sur la Protection des Données (RGPD), car il est impossi-
ble dans la plupart des cas pour un utilisateur de faire valoir son droit a la suppression des
données de par leur immutabilité (Humbeeck, 2019).

D'un point de vue organisationnel, 'adoption de la blockchain est entravée par un manque
de connaissances ou de compétences en matiére de blockchain chez les praticiens’, mais
aussi chez les parties prenantes et les utilisateurs (Prewett, Prescott, and Phillips, 2020).
Comme le mentionnent Rupino et coll., I'adoption massive des technologies blockchain
nécessite des personnes et des développeurs formés a la blockchain (Cunha, Soja, and
Themistocleous, 2021a). Cette éducation passe par I'éducation et la formation des individus,
I'obtention de certifications et la sensibilisation a I'écosystéme. Les personnes et les organi-
sations devront également prendre garde a respecter les réglementations existantes lors de
la création de nouvelles applications. Enfin, les nouvelles applications devront étre simples
a utiliser et centrées sur I'utilisateur. D’un point de vue technique, ils devront également
faciliter I'interopérabilité et se conformer aux normes existantes. Cela facilite I'adoption de
la blockchain d’un point de vue utilisateur ainsi que I'interopérabilité entre les applications,
ce qui permet de créer un écosystéme d’applications composables. Cependant, il existe une
pénurie de personnes connaissant en profondeur les technologies blockchain, en particulier
dans les profils techniques. En raison de la nouveauté de la technologie, il peut étre diffi-
cile de trouver des talents dans ce domaine. La gouvernance des applications blockchain
peut également constituer une menace pour l'adoption. Par exemple, les entreprises in-
téressées et motivées par un objectif commun peuvent former un consortium pour gérer et
administrer un réseau blockchain. Dans ce contexte, ils devront faire face a de nombreuses
questions, telles que : qui peut ajouter des données a la blockchain ? Qui peut inclure de
nouveaux participants dans le consortium ? Ou les nceuds seront-ils hébergés (sur site, ser-
vices cloud, etc.) ?

Les problémes techniques constituent le troisieme type de problémes pouvant survenir lors
de 'adoption blockchain. En effet, les praticiens peuvent étre confrontés a de nombreux
problémes et questions techniques tout au long du processus d’ingénierie logicielle, de la
conception au déploiement en production. Cela est notamment d( aux difficultés inhérentes
au cycle de développement logiciel, qui sont encore plus grandes lorsqu’on utilise une tech-
nologie telle que la blockchain. Ces questions techniques seront au centre des préoccupa-
tions de cette these de doctorat.

Au cours de la phase de conception du logiciel, les architectes logiciels sont confrontés a de
nombreux choix, tels que la sélection d’'une blockchain adaptée a leurs besoins (Xu, Weber,
and Staples, 2019). Cette tache est loin d’étre simple, car il existe de nombreuses technolo-
gies de blockchain dont les spécifications et les objectifs different (Belotti et al., 2019). Dans
certains cas, 'utilisation d’'une technologie blockchain peut s’avérer inutile, voire incompat-
ible avec I'application a créer. En effet, la décision d’utiliser une technologie blockchain n’est

'Dans cette thése, un praticien peut étre un ingénieur, un développeur, ou toute autre profession en lien
a la création d'applications blockchain.



XXii

pas une tache triviale : les entreprises peuvent surestimer les avantages de I'utilisation d'une
blockchain par rapport aux besoins réels pour un domaine spécifique (Ribalta et al., 2021).

En ce qui concerne la mise en ceuvre des logiciels, les développeurs doivent s’attaquer a
des problémes de programmation qui différent de I'ingénierie logicielle traditionnelle. Par
exemple, alors que les services hors blockchain peuvent facilement requéter des données a
d’autres services, les smart contracts sur la blockchain doivent s’appuyer sur un systéme
d’événements pour requéter des données a l'extérieur de la blockchain (ce que I'on ap-
pelle des oracles). Un autre exemple est I'immuabilité des smart contracts de la blockchain
une fois qu'ils sont déployés sur la blockchain (Khan et al., 2021). Ce n'est pas le cas de
I'ingénierie logicielle traditionnelle, ot une mise a jour peut étre livrée sur un logiciel exis-
tant. Le développement d’une application basée sur une blockchain sans expertise préalable
de la technologie peut également conduire a la production de code inefficient ou méme
a des vulnérabilités critiques. Ce probléme est d’autant plus exacerbé que les smart con-
tracts peuvent détenir et manipuler des montants substantiels de cryptomonnaies ou servir
de stockage de données de confiance. Pour citer un exemple, une vulnérabilité dans un
smart contract de The DAO, une organisation autonome décentralisée sur le réseau prin-
cipal Ethereum?, a conduit 3 une perte d’un montant de $50M USD en éthers a I'époque
(Mehar et al., 2019). La scalabilité peut également étre un probléme pour de nombreuses
applications : comme le mentionnent Rupino et al, le passage a I'échelle d'une application
blockchain peut entrainer des co(ts élevés et des problémes de latence (Cunha, Soja, and
Themistocleous, 2021a). Parallélement, I'interopérabilité peut également étre mentionnée
: il peut étre difficile de concevoir des applications composables. Il est de plus en plus néces-
saire que les blockchain interagissent entre elles (Cunha, Soja, and Themistocleous, 2021a),
et bien qu’il existe des initiatives pour résoudre ce probléme (par exemple Polkadot3, Cos-
mos?, etc.), I'interopérabilité reste un défi pour les développeurs.

Les patterns (patrons) logiciels sont généralement une solution dans la boite a outils des
développeurs de logiciels pour les aider dans leur travail de développement d’applications
robustes et efficaces. Un pattern peut étre considéré comme une solution possible a un
probléme récurrent dans un contexte donné (Alexander, 1977). L'utilisation de patterns axés
sur la blockchain pourrait étre une solution pour les développeurs d'applications blockchain
afin de les guider dans les problémes spécifiques liés a la mise en ceuvre d’une application
basée sur la blockchain. Toutefois, le développement de logiciels basés sur la blockchain
étant un domaine relativement jeune, seuls quelques patterns ont été proposés par les
praticiens et les chercheurs. En effet, pour formaliser une solution dans un pattern, il faut
souvent I'avoir déja appliquée avec succés dans plusieurs autres projets. Un autre probléme
lié a I'utilisation de patterns basés sur les blockchains est la difficulté pour les développeurs
de découvrir ces patterns et d'évaluer leur pertinence. Les patterns sont dispersés dans la
littérature académique ou les référentiels techniques et peuvent étre difficiles a comprendre
sans une expérience préalable des technologies blockchain.

2Le réseau principal Ethereum est la version publique la plus connue de la blockchain Ethereum
Shttps://polkadot .network/
4https://cosmos.network/


https://polkadot.network/
https://cosmos.network/

XXiii

Enfin, le lancement d'une application de blockchain en production peut également étre une
tache fastidieuse. Selon les besoins, il peut étre nécessaire de mettre en place un réseau
privé blockchain ou un nceud public de blockchain, ce qui nécessite des connaissances pour
le configurer. Parallélement, un script de déploiement ou un framework est souvent utilisé
pour déployer les smart contracts sur la blockchain (par exemple, le framework Truffle?), qui
nécessite un fichier de configuration pour fonctionner.

L'utilisation de la technologie blockchain a un impact sur toutes les étapes du processus de
développement du logiciel. Malgré son potentiel, I'adoption blockchain est encore partielle-
ment entravée par des questions ouvertes complexes.

0.2 Objectifs de la Recherche

Pour guider cette recherche, plusieurs objectifs de recherche ont été définis. Ils ont été défi-
nis dans le contexte de la méthode Design Science Research (DSR), qui consiste a itérer sur
deux activités : concevoir un artefact qui améliore quelque chose pour les parties prenantes
et étudier empiriquement la performance d’un artefact dans un contexte (Wieringa, 2014).
Cette méthode est présentée en détail au Chapitre 3.

Tout d’abord, l'objectif principal de recherche de cette thése peut étre défini comme suit
(en suivant le modéle de rédaction proposé par Wieringa et coll. (Wieringa, 2014)):

Améliorer le processus d’ingénierie logicielle pour la création d’applications basées sur la
blockchain par la conception d’un framework semi-automatique composé de deux outils et
d’une base de connaissances qui assiste le praticien dans ses taches de conception et de
mise en ceuvre d'applications basées sur la blockchain afin de faciliter la création
d’applications basées sur la blockchain et de réduire les colts liés a leur développement.

Ici, le praticien est la principale partie prenante de ce framework et comprend toutes les
personnes impliquées dans la conception et la mise en osuvre d'applications basées sur
la blockchain (par exemple, I'ingénieur logiciel, le développeur logiciel, I'architecte logiciel,
etc.). Le framework proposé comme solution tente d’aborder les questions susmentionnées,
dans le contexte des solutions déja existantes. Ces questions et solutions sont identifiées et
décrites plus en détail au Chapitre 2.

Cet objectif principal de recherche peut étre décomposé en plusieurs sous-objectifs de
recherche :

RO1 - Concevoir un outil d'aide pour guider le praticien dans la sélection des technologies de
blockchain.

La sélection d’une technologie blockchain est probablement le premier choix technique que
les praticiens doivent faire lors de la conception d'une application blockchain. Ce choix a un
impact considérable sur le logiciel final. Par exemple, le choix entre une blockchain publique

Shttps://trufflesuite.com/


https://trufflesuite.com/

XXiv

ou privée. La premiére permet une plus grande transparence des données et une décentral-
isation accrue grace a un acces public au réseau blockchain, tandis que la seconde peut étre
plus adaptée lorsque les participants doivent étre préapprouvés avant toute participation
et que les données doivent rester confidentielles. Dans ce contexte, les questions suivantes
peuvent étre envisagées : comment traduire les besoins des utilisateurs en connaissances
exploitables pour la sélection d’'une technologie blockchain ? Quelles sont les caractéris-
tigues qui décrivent suffisamment les technologies blockchain pour permettre des compara-
isons précises entre elles ? Quels outils et algorithmes peuvent étre utilisés pour formuler
une recommandation sur la base des données fournies par I'utilisateur et de la connaissance
blockchain ? Enfin, comment valider la pertinence de la recommandation formulée par un
tel outil ?

RO2 - Collecter et classer les patterns logiciels basés sur la blockchain dans la littérature
existante.

La réutilisation des artefacts logiciels existants est une pratique courante dans le domaine
du génie logiciel. Par exemple, les développeurs ont I'habitude de copier du code a partir
de sources en ligne (par exemple Stack Overflow®). Cette pratique est appelée "clone-and-

own .

Une autre pratique courante est I'utilisation de patterns logiciels dans la conception et la
mise en ceuvre d'applications blockchain. Les patterns logiciels sont un atout majeur pour
aider les praticiens a concevoir des applications robustes, efficaces et slres. Cependant,
il est encore difficile d'utiliser ces actifs dans la conception d’une application blockchain,
car les patterns sont encore dispersés et exprimés dans des formats non standard. Méme
identifiés, les patterns peuvent encore étre difficiles a appliquer, car ils nécessitent, dans la
plupart des cas, des connaissances en matiére de technologie blockchain. Cet objectif de
recherche souléve le défi suivant. Premiérement, comment collecter les patterns dans les
différentes sources existantes ? Ensuite, comment uniformiser et classer les patterns pour
constituer une collection suffisamment compléte et utilisable par les praticiens ?

RO3 - Concevoir une ontologie de patterns basée sur les blockchains avec des outils adéquats
pour la sélection de patterns basés sur les blockchain.

Rassembler les patterns dans une collection structurée est la premiére étape pour faciliter
leur réutilisation par les praticiens. Cependant, il peut étre difficile pour les non-experts
d'utiliser la collection, méme siles patterns y sont classés. Le but de cet objectif de recherche
est de transformer cette collection pour en faire une ontologie. Cette approche présente
de multiples avantages. Premiérement, il permet la création de nouvelles connaissances
par inférence a l'aide de concepts ontologiques et d’un ensemble de régles. Par exemple,
de nouvelles relations entre les patterns peuvent étre identifiées a partir des relations exis-
tantes. Ensuite, l'ontologie peut étre réutilisée pour étre exposée aux utilisateurs non avertis
via une plateforme web. Il permet aux praticiens d'explorer facilement les patterns stockés
dans l'ontologie ainsi que leurs relations. Enfin, la plateforme web peut étre en mesure de

Shttps://stackoverflow.com/


https://stackoverflow.com/

XXV

réutiliser l'ontologie pour effectuer de la recommandation de patterns. Au lieu d’exposer
simplement des patterns aux praticiens, la plateforme peut également étre en mesure de
recommander des patterns en fonction des exigences de I'utilisateur et des connaissances
contenues dans l'ontologie.

RO4 - Concevoir un configurateur et un générateur d'application blockchain qui réutilise les
morceaux de code et les décisions de conception existantes.

Le cycle de développement logiciel aboutit souvent a la création de plusieurs artefacts : des
fichiers de code qui peuvent étre compilés ou interprétés puis déployés, et des fichiers de
configuration pour mettre en place l'infrastructure hébergeant I'application. Cela ne fait
pas exception pour la blockchain. Par conséquent, I'automatisation de la génération de ces
fichiers pourrait faciliter le développement et le déploiement d’une application blockchain.

La génération de code a partir de modéles existants est un défi actuel de la recherche. Dif-
férents modeéles ont été utilisés pour modéliser puis générer des applications blockchain,
tels que les réseaux de Petri (Zupan et al., 2020) ou les Business Process Model and No-
tation (BPMN). (Lopez-Pintado et al., 2019). La génération de code a partir de modeles
garantit également que le code obtenu ne divergera pas des modéles sous-jacents. Par rap-
port au développement logiciel manuel, la génération de code a partir de modéles améliore
également la qualité du code, la portabilité, et la maintenabilité (Hutchinson, Whittle, and
Rouncefield, 2014). Cependant, la complétude du code généré dépend souvent de la com-
plétude du modéle lui-méme.

Outre l'ingénierie dirigée par les modéles, une autre approche existante pour la généra-
tion de code est celle des lignes de produits logiciels (en anglais : Software Product Lines,
SPLs) (Pohl, Béckle, and Van Der Linden, 2005). Le principe fondamental des lignes de pro-
duits logiciels réside dans la réutilisation des exigences, des modéles, du code et de com-
posants existants créés a cette fin. Pour définir les combinaisons possibles, un modele de
variabilité est créé. Il indique les combinaisons possibles, les dépendances éventuelles en-
tre fonctionnalités, et les conflits entre deux ou plusieurs artefacts de code. Contrairement
a l'ingénierie dirigée par les modeéles, I'approche basée sur les lignes de produits logiciels
permet de générer des applications complétes a partir de composants disponibles et préts
a I'emploi, mais elle est limitée a la bibliothéque de composants déja créés. L'utilisation
d’'une approche ligne de produits entraine également des colts supplémentaires, car elle
nécessite la création du modéle de variabilité et des composants avant de générer toute
application.

Dans le contexte de la création d’applications blockchain, cela souléve de nombreuses ques-
tions. Quelle est la méthode la plus adaptée a cet objectif ? En choisissant une approche
basée sur I'ingénierie dirigée par les modéles, quels modéles peuvent étre utilisés, indépen-
damment ou ensemble, pour dériver des bouts de code ? En ce qui concerne I'approche
basée sur les lignes de produits logiciels, quels sont les composants nécessaires pour créer
des applications de blockchain pour un domaine d’application spécifique ?



XXVi

Dans cette thése, ces objectifs de recherche ont d’abord été exprimés sous forme de ques-
tions de recherche technique (design question) ou de connaissance (knowledge question)
(Chapitre 3). Les design questions consistent a répondre a des problémes de conception,
tandis que les knowledge questions consistent a améliorer I'état de I'art des connaissances
(Wieringa, 2014). Chaque question a ensuite fait I'objet d’un chapitre spécifique, selon les
méthodes proposées par Wieringa, afin d'y répondre.

0.3 Contributions de la Thése et Publications

Tout au long de cette thése, quatre contributions constituant les différentes parties du
framework sont apportées :

(i) Une base de connaissances de 114 patterns logiciels uniques basés sur la blockchain, or-
ganisée sous la forme d’une ontologie. Ces patterns ont d’abord été collectés dans la littéra-
ture, en effectuant une revue de littérature systématique suivant les lignes directrices de
Kitchenham et coll. (Kitchenham and Charters, 2007). L'objectif principal était d’identifier
et de décrire les patterns logiciels basés sur la blockchain existants dans la littérature. Une
taxonomie a également été élaborée de maniére empirique en vue de sa réutilisation dans
I'ontologie pour classer les patterns dans des catégories complétes, a I'aide de descriptions
de modeles. Un autre objectif de la revue de littérature systématique était d’identifier les
lacunes dans I'état de I'art de la recherche sur les patterns blockchain. Il a été constaté que
la majorité des études identifiées proposaient des design patterns exclusivement pour So-
lidity”, un langage de programmation de I'écosystéme Ethereum. D’autres recherches sont
nécessaires pour cibler d’'autres technologies de blockchain ainsi que des patterns architec-
turaux ou des idiomes.

(i) Un outil d’aide a la décision pour la sélection d’'une technologie blockchain adéquate,
faisant partie de BLockchain Automated DEcision process (BLADE). Pour obtenir une recom-
mandation, l'utilisateur doit spécifier ses exigences non fonctionnelles (en anglais: Non-
Functional Requirements, NFRs) sur la plateforme. Les NFRs sont spécifiés comme (1) un
niveau de préférence utilisé pour pondérer les exigences dans I'objectif de planifier leur
mise en ceuvre (2) un booléen indiquant si I'exigence est obligatoire, et (3) une valeur seuil a
satisfaire. Un algorithme d’aide a la décision multicritére, intitulé Technique for Order Prefer-
ence by Similarity to the Ideal Solution (TOPSIS), traite ensuite ces données afin de générer
la recommandation. Pour faciliter la soumission de NFR, des indications sur les exigences
potentiellement conflictuelles sont présentées a I'utilisateur au moment de la sélection. Un
modéle de dépendance est utilisé pour calculer les exigences conflictuelles pour chaque
sélection effectuée sur la plateforme.

(iii) Une bibliotheque et un systéme de recommandation au sein de BLADE pour la sélection

7https://docs.soliditylang.org/en/latest/



XXVii

de patterns logiciels adéquats basés sur la blockchain, en s’appuyant sur la base de con-
naissances susmentionnée. Grace a cette bibliothéque, I'utilisateur peut récupérer les pat-
terns disponibles et les filtrer en fonction de différents paramétres (par exemple, technolo-
gie blockchain, type, domaine, etc.). Tout résultat de la phase de recommandation d’une
blockchain dans BLADE guide davantage I'utilisateur en indiquant uniquement les patterns
compatibles avec la blockchain sélectionnée lors de la recherche de patterns. Alors que la
bibliothéque ne permet qu'une sélection manuelle des patterns, le systéme de recomman-
dation propose automatiquement une collection de patterns compatibles aux besoins de
['utilisateur. En répondant a une série de questions, I'utilisateur peut obtenir un ensemble
de patterns blockchain recommandés qui répondent a ses besoins. Ces questions ont été
formulées de maniére a rattacher chaque réponse a I'une des catégories de la taxonomie,
chacune d’entre elles regroupant plusieurs patterns.

(iv) Une ligne de produits logiciels nommée Blockchain ApplicatioN Configurator (BANCO)
pour la configuration et la génération d’un produit blockchain. Tout d’abord, un modéle de
fonctionnalités (features) a été concu pour modéliser les features essentielles d’'un domaine
choisi, a savoir la tracabilité a la chaine, sur la base de la littérature existante. Ensuite, un
configurateur a été mis en place pour permettre a un utilisateur de sélectionner les features
gu’il désire. Ce configurateur gere également les conflits éventuels entre les features lors de
la sélection a I'aide d’un moteur de contraintes. Enfin, un générateur est capable d'ingérer
la configuration produite afin de générer des applications blockchain prétes a I'emploi. Ce
générateur est basé sur la génération de code par templates, en assemblant des templates
de fonctions et de smart contracts sur la base de la configuration définie précédemment.

Ces différentes contributions ont également été publiées, dans les publications suivantes
évaluées par des pairs :

1. (Six, Herbaut, and Salinesi, 2021b) Six, N., Herbaut, N., & Salinesi, C. "Harmonica: A
Framework for Semi-automated Design and Implementation of blockchain Applica-
tions." INSIGHT 24.4 (2021): 25-27.

2. (Six, Herbaut, and Salinesi, 2020) Six, N., Herbaut, N., & Salinesi, C. (2020). Quelle
blockchain choisir? Un outil d’aide a la décision pour guider le choix de technologie
blockchain. In INFORSID 2020 (pp. 135-150).

3. (Six, 2021) Six, N.. "Decision process for blockchain architectures based on require-
ments." CAISE Doctoral Consortium (2021).

4. (Six, Herbaut, and Salinesi, 2021a) Six, N., Herbaut, N., & Salinesi, C. (2020) BLADE: Un
outil d’aide a la décision automatique pour guider le choix de technologie blockchain.
Revue ouverte d’ingénierie des systémes d’information 2.1 (2021).

5. (Six, Herbaut, and Salinesi, 2022) Six, N., Herbaut, N., & Salinesi, C. (2022). Blockchain
software patterns for the design of decentralized applications: A systematic literature
review. blockchain: Research and Applications.



XXViii

6. Six, N., Correa-Restrepo C., Herbaut, N., & Salinesi, C. (2022). An ontology for soft-
ware patterns: application to blockchain-based software development Accepted for
publication at EDOC’22 - Forum.

7. (Six et al., 2022) Six, N., Herbaut, N., Lopez-Herrejon, R. E., & Salinesi, C. (2022). Using
Software Product Lines to Create Blockchain Products: Application to Supply Chain
Traceability. In 26th ACM International Systems and Software Product Lines Confer-
ence.

Dans cette liste, la publication n®1 a été réutilisée pour la rédaction du Chapitre 3, les publi-
cations n®2, 3 et 4 pour le Chapitre 4, la publication n°5 pour le Chapitre 5, la publication n°6
pour le Chapitre 6, et la publication n°7 pour le Chapitre 7. Parallélement, deux contributions
ont été apportées dans le domaine des technologies blockchain. La premiére propose un
pattern blockchain permettant de créer des processus business pour I'exécution de contrats
légaux basés sur des smart contracts blockchain, tandis que le second propose une applica-
tion de la blockchain comme une place de marché permettant I'échange et I'entrainement
de modéles d’intelligence artificielle.

e (Six et al., 2020) Six, N., Negri-Ribalta C., Herbaut, N., & Salinesi, C. "A blockchain-
based pattern for confidential and pseudo-anonymous contract enforcement." 2020
IEEE 19th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). IEEE, 2020.

e (Six, Perrichon-Chrétien, and Herbaut, 2021) Six, N., Perrichon-Chrétien, A., &
Herbaut, N. "SAlaaS: A blockchain-based solution for secure artificial intelligence as-
a-Service." The International Conference on Deep Learning, Big Data and blockchain.
Springer, Cham, 2021.

0.4 Organisation de la Thése

Cette thése s’articule autour de la méthode Design Science Research, qui est une approche
de recherche visant a créer, valider et diffuser des solutions innovantes a des problémes
pratiques. Elle fait notamment la distinction entre les artefacts et les connaissances. Selon
I'approche DSR, un artefact est le résultat de la résolution d'un probléme de conception,
alors que la connaissance est le résultat de la réponse a des questions de connaissance
(Wieringa, 2014). Cette méthode est présentée plus en détail dans le Chapitre 3.

Le framework proposé dans cette these peut étre divisé selon I'approche DSR. Il est composé
de deux outils : BLADE, le moteur de recommandation blockchain, et BANCO, le configura-
teur et générateur d’applications blockchain. BLADE est divisé en deux parties : le systéeme
de recommandation technologique basé sur les blockchains et le systéme de recommanda-
tion de patterns logiciels basé sur les blockchains. Ensemble, BLADE et BANCO forment un
ensemble de trois artefacts. Paralléelement, une base de connaissances a été construite pour
soutenir le processus de recommandation de BLADE. Ces connaissances ont également été
obtenues en suivant I'approche DSR.



Ainsi, l'organisation de la thése peut étre illustrée (Figure 1).

Chapitre 1
Introduction

e N
Chapitre 2
Contexte et revue de littérature
N\ \L J
" A
Chapitre 3
Méthode de recherche, questions de recherche,

apergu du framework, exemple référent

f A

Chapitre 4
BLADE - Outil de recommandation de technologie

blockchain

. J

e \L ~
Chapitre 5

BLADE - Base de connaissances de patterns
logiciels blockchain

N\ J

e \L N
Chapitre 6

BLADE - Outil de recommandation de patterns
logiciels blockchain

- J

e \L N
Chapitre 7

BANCO - Configurateur et générateur d'applications
blockchain

- J

Chapitre 8
Conclusion

Figure 1: Organisation de la thése.

XXiX

Tout d’abord, le Chapitre 2 présente le contexte des technologies blockchain et des patterns
logiciels. Parallélement, une analyse de la littérature y est effectuée pour découvrir les prob-
Iémes existants lors de la conception et de la mise en ceuvre d’applications de blockchain.
Le résultat de cette analyse documentaire oriente directement la conception du cadre pro-
posé dans cette thése. Ensuite, le Chapitre 3 présente la contribution envisagée ainsi que
la méthode de recherche, a savoir DSR. Dans ce chapitre, le lecteur peut apprendre ce qui
est construit pour répondre aux questions mentionnées dans I'analyse documentaire, mais
aussi comment cela est construit. Parallélement, un exemple concret est décrit, a savoir une
étude de cas tirée de la littérature sur la création d’'une application de tracabilité blockchain



XXX

(Cocco et al., 2021). Dans chaque chapitre présentant un artefact, une section est consacrée
a l'illustration de I'artefact en utilisant I'exemple en cours comme cas pratique.

Aprés les préliminaires, les Chapitres 4, 5, 6, 7 présentent la construction des différents
artefacts et de la base de connaissances. Chaque chapitre présente individuellement une
contribution (soit un artefact, soit la base de connaissances). En fin de compte, les artefacts
et la base de connaissances qui en résultent constituent le cadre envisagé.

Le Chapitre 4 présente la premiére partie de BLADE, qui permet de recommander une tech-
nologie blockchain en fonction des exigences non fonctionnelles. Ensuite, le Chapitre 5
décrit le processus de collecte systématique des patterns blockchain dans la littérature, ainsi
que le résultat, a savoir une collection de modéles basés sur les blockchains. Le Chapitre 6
réutilise ce résultat pour former une ontologie de patterns blockchain. Il présente égale-
ment la deuxiéme partie de BLADE, qui facilite la sélection des patterns adéquats pour le
praticien, par le biais d’'une interface web et d’'un systéme de recommandation. Le Chapitre
7 présente BANCO, un outil permettant de configurer puis de générer une application de
blockchain fonctionnelle, basée sur I'ingénierie des lignes de produits logiciels.

Enfin, le Chapitre 8 conclut la thése et aborde les travaux futurs. Chaque chapitre commence
par une série de points résumant son contenu. Ces points rappellent I'objectif de chaque
chapitre et leurs contributions respectives.



Chapter 1

Introduction

1.1 Research Context

A blockchain technology is a distributed ledger constituted of blocks, supported by a net-
work of peers each owning a copy. Every node follows the same protocol and uses a con-
sensus algorithm to keep its copy consistent with others. Users can interact with nodes
to append transactions, but their modification and deletion are theoretically impossible.
While the first generation of blockchains was only focusing on cryptocurrency transactions
between users, such as Bitcoin (Nakamoto, 2008), some of them now support smart con-
tracts, such as Ethereum (Buterin et al., 2013). A smart contract is a decentralized program
that can be executed on-chain, through nodes. Users can deploy and interact with smart
contracts using transactions.

Blockchain is fully decentralized by nature, where no third party is in charge of the network.
Blockchain data are also immutable and tamper-proof, as nobody can alter a block after
its creation and addition, to a blockchain. Thanks to these properties, blockchain-based
applications can be trusted, as nobody can tamper with the correct execution of a smart
contract’. Also, it is possible to retrace the state change history of a blockchain. Thus, smart
contract state changes can also be replayed for the complete traceability of decentralized
applications (dApps).

In recent years, blockchain has been growing rapidly from a niche technology used by a few
people as a promising solution for many sectors. According to Gartner, the business value
created by blockchain technologies might reach $3.1 trillion (ConsenSys, 2019). This growth
is due to its unique properties that empower the design of innovative software architec-
tures and systems (Zeadally and Abdo, 2019). First, due to the native support of cryptocur-
rencies, blockchain enables the creation or the improvement of use cases in the financial
domain that was difficult to leverage using existing technologies. For example, currency
exchange through banks can be an expensive process for a consumer, Automated Market
Makers (AMM) allow the swap from one cryptocurrency to another without any interme-
diate using liquidity pools of cryptocurrencies and a smart contract to perform the swap

This is only valid if the smart contract is well designed to prevent execution flaws and security issues.



2 Chapter 1. Introduction

(Pourpouneh, Nielsen, and Ross, 2020). Regarding insurance, blockchain can be used to au-
tomate the claiming process in case of an accident. While such a process takes many days
or weeks with traditional insurance systems (Oham et al., 2018), it can be automated using
smart contracts.

Blockchain also has many applications in nonfinancial domains, due to its capacity to oper-
ate without any third party and enable trust with the usage of decentralized applications.
For instance, blockchain can be the platform in an inter-organizational business process,
to monitor organizations’ actions and data, or to allow the business process execution di-
rectly on-chain (Di Ciccio et al., 2019; Herbaut and Negru, 2017; Udokwu et al., 2021). In this
context, participants can trust the information stored by the blockchain, and operations
performed in smart contracts cannot be tampered with. This layer of decentralized automa-
tion and trust is also used in other applications, such as smart grids (Agung and Handayani,
2020), as blockchain can connect thousands of individuals to enable a market for energy
exchange between users, or healthcare for medical records sharing.

As blockchain use cases are increasingly considered, many companies start to show interest
in blockchain and start building new applications. According to Deloitte’s 2020 Global block-
chain Survey, 55% of the 1488 surveyed companies across the world considers blockchain as
one of their top-five strategic priorities (Deloitte, 2020).

But despite the growing interest from companies towards blockchain, there is no
widespread adoption of the technology yet. In an article by Prewett et al., adoption issues
related to blockchain technologies are mentioned (Prewett, Prescott, and Phillips, 2020).
From a legal standpoint, a concerning aspect is the lack of a regulatory framework. Block-
chain growth has been exponential in the last few years, outpacing the development of
regulations. Unfortunately, this issue has been exploited by malicious actors in different
scams (Zetzsche et al., 2017). The lack of regulation also brings uncertainty when design-
ing a blockchain application. For instance, some applications use smart contracts to encode
legally binding data, such as signatures or smart contract obligations between two or more
parties. As mentioned by Gilcrest et al., some jurisdictions already recognize these bindings,
but there is still no wide recognition (Gilcrest and Carvalho, 2018). Another example of un-
certainty is the trust associated with on-chain data. Blockchain applications might also not
comply with existing regulations. For example, storing data on the blockchain might conflict
with General Data Protection Regulation (GDPR), as it is impossible in most cases for a user
to enforce his right to data deletion (Humbeeck, 2019).

From an organizational perspective, the adoption of blockchain is hindered by a lack of block-
chain knowledge or skills among practitioners but also stakeholders and users (Prewett,
Prescott, and Phillips, 2020). As mentioned by Rupino et al., the mass adoption of block-
chain technologies requires blockchain-educated people and developers (Cunha, Soja, and
Themistocleous, 2021a). This education goes through personal education and training, ob-
taining certifications, and gaining awareness of the ecosystem. People and organizations
will also have to innovate by creating new applications while complying with existing reg-
ulations. Finally, new applications will have to be simple to use and user-centered. From



1.1. Research Context 3

a technical standpoint, they will also have to facilitate operability and comply with existing
standards. This facilitates the onboarding of new users to blockchain applications, and the
interoperability between applications, leading to a composable ecosystem of applications.
However, there is a shortage of people with knowledge of blockchain technology, partic-
ularly in technical profiles (Ben, 2022). Due to the novelty of the technology, it might be
difficult to find talents in this space. The governance of blockchain applications can also be
a threat to adoption. For instance, companies interested in a common goal might form a
consortium to run and administrate a blockchain network. In this context, they will have to
face many questions, such as: who can add data into the blockchain? Who can include new
participants in the consortium? Where will the nodes be hosted (e.g. on-premise, cloud
service, ...)?

Technical issues are the third type of issue that can occur in blockchain adoption. Indeed,
practitioners might face many technical issues and questions along the software engineer-
ing process, from the design to deployment in production. This is notably due to the inher-
ent difficulties of the software development process, which are even greater when using a
nascent technology such as blockchain. These technical issues will be the focus of concern
for this Ph.D. thesis.

During the software design phase, software architects face many choices, such as the selec-
tion of an adequate blockchain for their needs (Xu, Weber, and Staples, 2019). This task is
far from being straightforward, as many blockchain technologies exist with different speci-
fications and purposes (Belotti et al., 2019). In some cases, using a blockchain technology
might be unnecessary or even incompatible with the application to build. Indeed, deciding
about using a blockchain technology is not a trivial task: companies might exaggerate the
advantages of using blockchain, compared to the actual needs of a specific domain (Ribalta
et al., 2021).

Regarding software implementation, developers have to tackle programming paradigms
that differ from traditional software engineering. For instance, where off-chain services can
easily query data to other services, on-chain smart-contract may have to rely on events tore-
quest data from outside the blockchain (so-called oracles (Xu et al., 2018)). Another example
is the immutability of blockchain smart contracts once deployed on-chain (Khan et al., 2021).
This is not the case for traditional software engineering where an update can be shipped on
existing software. Developing a blockchain-based application without prior expertise in the
technology might lead to inefficient code or even critical vulnerabilities. This issue is exacer-
bated as smart contracts may hold and manipulate substantial amounts of cryptocurrencies
or act as trusted data storage. To mention an example, a common smart contract vulnera-
bility of The DAO, a decentralized autonomous organization on the Ethereum mainnet?, has
led to a loss of $50M USD worth in Ethers at that time (Mehar et al., 2019). Scalability may
also be an issue for many applications: as mentioned by Rupino et al., the scalability of appli-
cations results in high fees and latency problems (Cunha, Soja, and Themistocleous, 2021a).
Along that, interoperability can also be mentioned: it may be difficult to design composable

2The Ethereum mainnet is the most-known public version of the Ethereum blockchain.



4 Chapter 1. Introduction

applications. There is an increased need for blockchains to interact with each other (Cunha,
Soja, and Themistocleous, 2021a), and although initiatives exist to address this issue (e.g.
Polkadot3, Cosmos?, etc.), interoperability remains a challenge for developers.

Software patterns are usually one solution in the toolbox of software developers to help
them in their work of developing robust and efficient applications. A pattern can be viewed
as a possible solution for a recurring problem in a given context (Alexander, 1977). The usage
of blockchain-oriented patterns could be a solution for blockchain developers to guide them
in the specific issues of implementing a blockchain-based application. However, as block-
chain-based software development is a relatively young field, only a few patterns were pro-
posed by practitioners and researchers. Indeed, formalizing a solution into a pattern often
requires having already applied the solution successfully in several projects. Another issuein
using blockchain-based patterns is the difficulty for developers to find patterns and evaluate
their suitability. Patterns are scattered across academic literature or technical repositories
and can be hard to understand without prior experience with blockchain technologies.

Finally, launching a blockchain application in production might also be a tedious task. De-
pending on the requirements, a private blockchain network or a public blockchain node
might have to be set up, requiring knowledge to configure it. Ready-to-use solutions can be
used instead, but lead to a vendor lock-in (Lu et al., 2019). Along that, a deployment script or
a framework is often used to deploy the smart-contracts on-chain (e.g. Truffle framework?),
that requires a configuration file to work.

All of the different steps within the software development process are impacted when using
blockchain technology. Despite its potential, blockchain adoption is still partly hindered by
complex open issues.

1.2 Research Aim and Objectives

To guide this research, a research aim and subsequent Research Objectives (ROs) were de-
fined. They have been defined in the context of the Design Science Research (DSR) method,
that consists in iterating over two activities: designing an artifact that improves something
for stakeholders and empirically investigating the performance of an artifact in a context
(Wieringa, 2014). This method is introduced in detail in Chapter 3.

First, the research aim of this thesis can be defined as follows, using Wieringa$ design science
research aim template:

Improve the software engineering process for creating blockchain-based applications by
designing a semi-automated framework composed of two assisting tools and a knowledge
base that assists the practitioner along the tasks of designing and implementing

Shttps://polkadot .network/
4https://cosmos.network/
Shttps://trufflesuite.com/


https://polkadot.network/
https://cosmos.network/
https://trufflesuite.com/

1.2. Research Aim and Objectives 5

blockchain-based applications so that the creation of blockchain-based applications is
made easier, and reduces development costs.

In this research aim, the practitioner is the main stakeholder of this framework and includes
all people involved in the design and implementation of blockchain-based applications (e.g.
software engineer, software developer, software architect, etc.). The framework proposed
as a solution in this research aim attempts to address the aforementioned issues, in the
context of already existing solutions. These issues and solutions are further identified and
described in Chapter 2 Systematic Literature Review (SLR).

As this research aim defines the broad objective of this research, it can be further broken
down into multiple ROs:

RO1 - Design an assisting tool to guide the practitioner in the selection of blockchain tech-
nologies.

The selection of a blockchain technology is probably the first technical blockchain-related
choice practitioners have to make. This choice deeply impacts the final software. For in-
stance, the choice between a public or a private blockchain. The former allows greater trans-
parency of data and decentralization through open access to the blockchain network, the
latter can be more suited when participants should be approved prior to any participation
and data should be kept confidential. In this context, the following questions can be consid-
ered: how to translate the user requirements into actionable knowledge for the selection
of a blockchain platform? What features can describe blockchain enough to make accurate
comparisons with other blockchain technologies? What tools and algorithms can be lever-
aged to make a recommendation based on user inputs and blockchain knowledge? And
finally, how can the relevance of the recommendation made by such a tool be validated?

RO2 - Gather and classify existing blockchain-based software patterns in the literature.

Reusing existing software artifacts is a common practice in software engineering. For in-
stance, developers are used to copying code from online sources (e.g. Stack Overflow®).
This practice is called "clone-and-own".

Another common practice is the usage of software patterns in the design and implementa-
tion of blockchain applications. Software patterns are a great asset to assist practitioners
to design robust, efficient, and secure applications. However, it is still difficult to use these
assets in the design of a blockchain application, as patterns are still scattered and expressed
in non-standard formats. Even identified, patterns can still be difficult to apply as it requires
knowledge in blockchain technology in most cases. This research objective raises the fol-
lowing challenge. First, how to collect existing patterns across existing sources? Then, how
to uniformize and classify patterns to form a collection that is complete and usable enough
to be used by practitioners?

RO3 - Design a blockchain-based pattern ontology with adequate tooling for the selection of
blockchain-based patterns.

Shttps://stackoverflow.com/


https://stackoverflow.com/

6 Chapter 1. Introduction

Gathering patterns into a structured collection is the first step to ease their reuse among
practitioners. Yet, it may be difficult for non-experts to use the collection, even if the pat-
terns are classified. The goal of this research objective is to refine such collection into an
ontology. This approach has multiple advantages. First, it allows the creation of new knowl-
edge through inference using ontology concepts and a set of rules. For instance, new rela-
tions between patterns may be identified using the existing ones. Then, the ontology can
be reused to be exposed by a web platform. It allows practitioners to easily explore the pat-
terns stored within the ontology as well as their relations. Finally, the web platform may be
able to reuse the ontology to compute pattern recommendations. Instead of only exposing
patterns to the practitioners, the platform may be able to recommend patterns depending
on the user requirements and knowledge contained in the ontology.

RO4 - Design a blockchain application configurator and generator that reuses existing code
stubs and design decisions.

Software development process often results in the creation of multiple artifacts: code files
that can be compiled or interpreted and then deployed, and configuration files to set up the
infrastructure receiving the application or the deployment pipeline. There is no exception for
blockchain. Therefore, automating the generation of those files could ease the development
and deployment of a blockchain application.

Generating code from existing models is an open research challenge. Different models were
used to model then generate blockchain applications, such as Petri nets (Zupan et al., 2020)
or Business Process Model and Notation (BPMN) (Lopez-Pintado et al., 2019). Generating
code from models also ensures that the resulting code will not diverge from the underly-
ing models. It also enhances the code quality compared to manual development, portabil-
ity as the language target can be changed, and maintainability (Hutchinson, Whittle, and
Rouncefield, 2014). However, the completeness of generated code often depends on the
completeness of the model itself.

Besides Model-Driven Engineering (MDE), another existing approach for the generation of
code is Software Product Line (SPL) engineering (Pohl, Béckle, and Van Der Linden, 2005).
The main principle of SPL engineering stands in the reuse of existing requirements, mod-
els, code, and components created for this purpose. Taking code and components as an
example, an application can be assembled by merging multiple core assets. To define the
possible combinations, a variability model is also defined. It indicates what combinations are
possible, possible dependencies, and conflicts between two or more code artifacts. On the
opposite of MDE, SPL can generate complete applications from on-the-shelf components
but is tied to the components library already created. There is also an overhead cost of us-
ing an SPL approach, as it requires creating the variability model and the components prior
to generating any application.

In the context of generating blockchain applications, it raises many questions. Which
method is the most suitable for this goal? Choosing an MDE approach, which models can be
used, independently or together, to derive code stubs? Regarding the SPL approach, what
components are required to build blockchain applications for a specific application domain?



1.3. Thesis Contribution and Publications 7

In this thesis, these research objectives were first expressed as technical or knowledge re-
search questions (Chapter 3). The former consists of addressing a design problem while the
latter consists in asking for knowledge about the world without calling for an improvement
(Wieringa, 2014). Then, each question was answered in a dedicated chapter, following the
methods proposed by Wieringa to either answer technical or knowledge research questions.

1.3 Thesis Contribution and Publications

Throughout this thesis, four contributions constituting the different framework parts are
made:

(i) A knowledge base of 114 unique blockchain-based software patterns, organized as an
ontology. These patterns have been first collected throughout the literature, by performing
a SLR following Kitchenham et al. guidelines (Kitchenham and Charters, 2007). The main
objective was to identify and describe the existing blockchain-based software patterns in
the literature. Ataxonomy has also been constructed empirically for its reuse in the ontology
to classify the patterns into comprehensive categories, using pattern descriptions. Another
objective of the SLR was to identify gaps in the state-of-the-art of blockchain-based patterns
research. It has been found that the majority of identified studies were proposing design
patterns, exclusively for Solidity’, a programming language from the Ethereum ecosystem.
More research is needed to target other blockchain technologies as well as architectural
patterns or idioms.

(ii) A decision-making tool for the selection of an adequate blockchain technology, part of
BLockchain Automated DEcision process (BLADE). To get a recommendation, a user has to
specify Non-Functional Requirement (NFR) on the platform. NFRs are specified as (1) a pref-
erence level used to weight requirements in the goal to plan their implementation, (2) a
boolean indicating if the requirement is mandatory, and (3) a threshold value to satisfy. A
multi-criteria decision support algorithm process the inputs to generate the recommenda-
tion, named TOPSIS. To facilitate the submission of NFR, some guidance of potentially con-
flicting requirements is presented to the user at selection time. A dependency model is
leveraged to compute conflicting requirements for each selection made on the platform.

(iii) Alibrary and recommender within BLADE for the selection of adequate blockchain-based
software patterns, leveraging the aforementioned knowledge base. Using the library, a user
can fetch the available blockchain-based patterns and filter on different parameters (e.g.
blockchain, pattern type, ...). Any output from the blockchain selection phase in BLADE fur-
ther guides the user by only indicating compatible patterns with the selected blockchain
when fetching patterns. Where the library only allows a manual selection of patterns, the

https://docs.soliditylang.org/en/latest/



8 Chapter 1. Introduction

recommender automatically proposes a collection of compatible patterns to fulfill user re-
quirements. By answering a set of questions, a user can get a set of blockchain-based pat-
terns recommended fitting its requirements. These questions have been formulated in or-
der to map the answer to one of the taxonomy categories, as each of them groups several
patterns.

(iv) A software product line named BANCO for the configuration and the generation of a
blockchain product. First, a feature model has been designed to model core features of a
chosen domain, that is on-chain traceability, based on the existing literature. Then, a config-
urator has been implemented to support the feature selection phase. The configurator also
handles possible conflicts between features during the selection using a constraint engine.
Finally, a generator is able to ingest such configurations to generate on-the-shelf blockchain
products. This generator is based on template code generation and performs by assembling
templates of functions and smart contracts based on the previously defined configuration.

These contributions have also been published, or in the process of being published in the
following peer-reviewed publications:

1. (Six, Herbaut, and Salinesi, 2021b) Six, N., Herbaut, N., & Salinesi, C. "Harmonica: A
Framework for Semi-automated Design and Implementation of blockchain Applica-
tions." INSIGHT 24.4 (2021): 25-27.

2. (Six, Herbaut, and Salinesi, 2020) Six, N., Herbaut, N., & Salinesi, C. (2020). Quelle
blockchain choisir? Un outil d’aide a la décision pour guider le choix de technologie
blockchain. In INFORSID 2020 (pp. 135-150).

3. (Six, 2021) Six, N.. "Decision process for blockchain architectures based on require-
ments." CAISE Doctoral Consortium (2021).

4. (Six, Herbaut, and Salinesi, 2021a) Six, N., Herbaut, N., & Salinesi, C. (2020) BLADE: Un
outil d'aide a la décision automatique pour guider le choix de technologie blockchain.
Revue ouverte d’ingénierie des systémes d’information 2.1 (2021).

5. (Six, Herbaut, and Salinesi, 2022) Six, N., Herbaut, N., & Salinesi, C. (2022). Blockchain
software patterns for the design of decentralized applications: A systematic literature
review. blockchain: Research and Applications.

6. Six, N., Correa-Restrepo C., Herbaut, N., & Salinesi, C. (2022). An ontology for soft-
ware patterns: application to blockchain-based software development Accepted for
publication at EDOC’22 - Forum.

7. (Six et al., 2022) Six, N., Herbaut, N., Lopez-Herrejon, R. E., & Salinesi, C. (2022). Using
Software Product Lines to Create blockchain Products: Application to Supply Chain
Traceability. In 26th ACM International Systems and Software Product Lines Confer-
ence.

In this list, publication n°1 was reused in the writing of Chapter 3, the publication n°2, 3
and 4 in Chapter 4, the publication n°s5 in Chapter 5, the publication n°6 in Chapter 6, and



1.4. Thesis Organization 9

the publication n°7 in Chapter 7. In parallel, two contributions were made in the domain
of blockchain technologies. The former proposes a blockchain-based design pattern that
enables the creation of business processes for legal contract execution based on blockchain
smart contracts, whereas the latter proposes an approach for collaborative Al using block-
chain as a marketplace.

e (Six et al., 2020) Six, N., Negri-Ribalta C., Herbaut, N., & Salinesi, C. "A blockchain-
based pattern for confidential and pseudo-anonymous contract enforcement." 2020
IEEE 19th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). IEEE, 2020.

e (Six, Perrichon-Chrétien, and Herbaut, 2021) Six, N., Perrichon-Chrétien, A., &
Herbaut, N. "SAlaaS: A blockchain-based solution for secure artificial intelligence as-
a-Service." The International Conference on Deep Learning, Big Data and blockchain.
Springer, Cham, 2021.

1.4 Thesis Organization

This thesis is organized around the Design Science Research method, that is a research ap-
proach that aims to create, validate, and disseminate innovative solutions to practical prob-
lems through the development and application of design principles and methods. It notably
makes the division between artifacts and knowledge. Using the DSR approach, an artifact
is the result of addressing a design problem, where knowledge is the result of answering
knowledge questions (Wieringa, 2014) This method is further introduced in Chapter 3.

The framework proposed in this thesis can be divided following the DSR approach. It is com-
posed of two tools: BLADE, the blockchain recommendation engine, and BANCO, the block-
chain application configurator and generator. BLADE is further divided into two parts: the
blockchain technology recommender, and the blockchain-based software patterns recom-
mender. Together, BLADE and BANCO form a set of three artifacts. Along that, a knowledge
base was built to support the recommendation process of BLADE. This knowledge was also
obtained following the DSR approach.

As such, the organization of the thesis can be illustrated (Figure 1.1).

First, preliminary content is given in Chapter 2 and 3. In Chapter 2 background on block-
chain technologies and software patterns is introduced. Along with that, a literature review
is carried out to discover existing issues when designing and implementing blockchain ap-
plications. The result of this literature review directly guides the design of the framework
proposed in this thesis. Then, Chapter 3 introduces the contribution envisioned as well as
the research method, that is DSR. In this chapter, the reader can learn what is built to ad-
dress the issues mentioned in the literature review, but also how it is built. Along that, a
running example is described, that is a case study from the literature on building a block-
chain traceability application (Cocco et al., 2021). In each chapter presenting an artifact, a
section is dedicated to illustrating the artifact using the running example as a practical case.



10 Chapter 1. Introduction

BANCO - Blockchain application configurator
and generator

" A
Chapter 1
Introduction

- $ J
o N
Chapter 2 n
Background and literature review g
' o
P ] =i
L ~ E
' Chapter 3 O
Research method, research questions, framework DL_
: overview, running example !
AN J '
e N E
Chapter 4 ;
' | BLADE - Blockchain technology recommendation '
I engine ;
AN J c .
: J{ o
' — !
e N\ O
' Chapter 5 o
' BLADE - Blockchain-based software patterns 0
E knowledge base cC
AN J Q.
: I o
e N 2
' Chapter 6 o
BLADE - Blockchain-based software patterns GBJ '
' recommendation engine o '
AN J '
: I g
s N E
Chapter 7 :

L $ J
e A
Chapter 8
Conclusion
N\ J

Figure 1.1: Thesis organization.

Following the preliminaries, Chapter 4, 5, 6, 7 introduce the construction of the different
artifacts and the knowledge base. Each chapter individually introduces one contribution
(either an artifact or the knowledge base). In the end, the resulting artifacts and the knowl-
edge base sum up as the envisioned framework.

Chapter 4 introduces the first part of BLADE, that allows the recommendation of a block-
chain technology depending on non-functional requirements. Then, Chapter 5 describes
the process of systematically collecting blockchain-based patterns across the literature, as
well as the result, that is a collection of blockchain-based patterns. Chapter 6 reuses this
result to form an ontology of blockchain-based software patterns. It also introduces the
second part of BLADE, that facilitates the selection of adequate patterns for the practitioner,
throughout a web interface and a recommendation system. Chapter 7 introduces BANCO,



1.4. Thesis Organization 1

a tool to configure and then generate a working blockchain application, based on software
product line engineering.

Finally, Chapter 8 concludes the thesis and discusses future works. Along with their content,
each chapter begins with a series of bullet points that summarized its content. These bullet
points act as reminders of the purpose of each chapter and their respective contributions.






13

Chapter 2

Background

— Key takeaways \

e A background on blockchain technologies and software patterns is given.

e A focused literature review is presented, that identifies and classifies existing is-
sues met by practitioners during the design and implementation of blockchain
applications.

e Main issues that were identified help in defining the goals of the framework pre-
sented in this thesis, and allow formulating an answer to the knowledge research
question RQ1.

From the exponential growth of blockchain, many developers shifted from traditional soft-
ware engineering to Blockchain-Oriented Software Engineering (Porru et al., 2017). As they
shift, they have to learn a broad range of new concepts, such as distributed systems, cryptog-
raphy, but also smart contract development and languages (e.g. Solidity), as well as specific
blockchain technologies (e.g. Ethereum). This overwhelming amount of knowledge may be
difficult to grasp, while the lack of knowledge in the design and implementation of block-
chain applications may have severe consequences, such as performance issues, exponential
costs, and security threats.

Chapter 1 states that the research aim of this thesis is to improve the software engineering
process for creating blockchain-based applications. Yet, it is difficult to propose a solution
without knowing precisely what are the issues that might be met by developers along with
this process. Although many practitioners and researchers may have some insights on such
issues through practice and feedback, it is necessary to gather these issues to understand
possible improvements.

This chapter starts with an extensive background on blockchain technologies as well as soft-
ware patterns. This material will notably be useful for the reader to understand the following
chapters. Then, a literature review is carried out to explore the existing literature on design-
ing and implementing blockchain applications. The goal of this literature review is to answer



14 Chapter 2. Background

the first research question (RQ1) of this thesis, that is stated as follows: What are the existing
issues faced by developers in the design and implementation of blockchain-based applica-
tions?

The chapter is organized as follows: Section 2.1 introduces background and definitions on
blockchain technologies and software patterns, then Section 2.2 presents the literature re-
view: its protocol, its results, and a discussion of potential solutions in light of identified
issues. Finally, Section 2.3 concludes the paper.

2.1 Definitions

2.1.1 Blockchain Technology

The first implementation of blockchain technology has been proposed in 2008 when Satoshi
Nakamoto released a whitepaper on Bitcoin, a decentralized cryptocurrency (Nakamoto,
2008). He combined several existing technologies, such as asymmetric encryption (Sim-
mons, 1979), Merkle tree structures (Merkle, 1989), consensus methods (Mingxiao et al.,
2017), and Hashcash, a cryptographic algorithm where computing the proof is difficult and
verifying it is a simple task (Back et al., 2002). This combination has defined the foundation
of blockchain technologies.

According to Belotti et al., a possible definition of blockchain can be given as follows (Defi-
nition 1):

Definition 1 A blockchain is an immutable read-only data structure, where new entries
(blocks) get appended onto the end of the ledger by linkage to the previous block’s hash
identifier (Belotti et al., 2019).

Usually, blocks contain a record of transactions (Definition 2). Their type depends on the
blockchain usage: for Bitcoin, transactions represent an exchange of cryptocurrency be-
tween users.

Definition 2 Transactions are individual and indivisible operations that involve the exchange
or transfer of digital assets. The latter can be information, goods, services, funds or a set of
rules which can trigger another transaction (Belotti et al., 2019).

The blockchain as a data structure is maintained by a network of peers. Each member of
the network owns a copy of the blockchain. They communicate using the same protocol to
maintain their copy up to date. To do that, each blockchain protocol comes with its consen-
sus algorithm (Definition 3):

Definition 3 A consensus algorithm is a protocol or set of rules that allow a collection of
machines to work as a coherent group that can survive the failures of some of its members
(Ongaro and Ousterhout, 2014).

As the different nodes of the blockchain network have to synchronize to maintain consis-
tency on their copy of the blockchain, they use a consensus algorithm for coordination. In



2.1. Definitions 15

public blockchains, these algorithms are also responsible for avoiding node misbehaving
such as double spending attacks (Chohan, 2021). To mention a few of them, the Proof-of-
Work algorithm is based on a mathematical challenge that nodes have to solve for appending
a block to the blockchain (Gervais et al., 2016). If so, they can share the block with others
and start searching for a solution for the next block. Using the Proof-of-Stake algorithm, par-
ticipants have to put collateral at stake to be entitled to create and share blocks'. The size
of the collateral determines the share of the blocks it has the right to create (Saleh, 2021).
Misbehaving nodes are punished by taking out their stakes. Another notable algorithm is
the Practical Byzantine Fault-Tolerant (PBFT) algorithm, that tolerates Byzantine faults (e.g.,
dysfunctional or malicious nodes) in the network (Sukhwani et al., 2017). A leader, once
elected, is responsible for broadcasting new transactions from clients to backup nodes that
verify the transaction, execute the required operations, and then propagate the transac-
tion. If enough backup nodes agree on the same result, the transaction is appended to the
blockchain.

For the first two consensus algorithms, participants have to put at stake something with real-
world value: either computing power or cryptocurrencies. However, for the third one, there
is nothing at stake: the only solution for a secure network is to know the participants and ex-
clude them in case of misbehavior. Depending on the consensus algorithm used, blockchain
networks can either allow anybody to join and participate or require approval from others
to join, called respectively public and private blockchains. Selecting the right blockchain for
a given context is a tough choice. Public blockchains are more decentralized than private
ones in general, as anybody can join and participate. However, their consensus algorithms
are less efficient than private blockchains ones as there is no implicit trust in network par-
ticipants, thus they have to prevent participants from misbehaving. On the contrary, private
blockchains are more efficient but often controlled by a group of organizations. For exam-
ple, Bitcoin can only process 6 transactions per second using a Proof-of-Work algorithm,
whereas Hyperledger Fabric with PBFT can process hundreds of transactions per second.

Blockchain can be used to transact cryptocurrencies, but also leverage decentralized appli-
cations, throughout the usage of smart contracts. The concept of smart contract has been
proposed by Wang et al. as the following (4):

Definition 4 Smart contracts are self-executing contracts with the terms of the agreement
between interested parties. The contracts are written in the form of program codes that exist
across a distributed, decentralized blockchain network. Smart contracts allow transactions
to be conducted between anonymous or untrusted parties without the need for a central
authority (Wang et al., 2018).

Following this definition, blockchain technologies are good candidates to support the exe-
cution of smart contracts. Indeed, it is impossible to alter the result of executed functions,
unless a vulnerability or a design flaw exists, or if the blockchain network itself is compro-
mised. As such, the first proposal of blockchain smart contracts traced back to 2015 with
Ethereum (Buterin et al., 2013), and generalized to many blockchains since then. In the

"The term minting is often employed in the context of PoS-based blockchains for this operation.



16 Chapter 2. Background

remaining chapters, the term blockchain smart contracts will be summarized as smart con-
tracts.

Executing a smart contract function follows the same process as adding a transaction into
the blockchain: the function is performed by the requested node, and the result is shared
with the other nodes that will also verify the correctness of the function execution. When
building decentralized applications, the off-chain part can be differentiated from the on-
chain part. The on-chain part is usually constituted by smart contracts, and the off-chain
part is composed of components that are not part of the network but might interact with it.
This distinction is important as it constitutes a separation between patterns in the taxonomy
presented in Section 5.2.1.

Through its specific behavior, blockchain technology has many interesting properties (Wust
and Gervais, 2018):

e Decentralization - no one is in charge of the whole network. By extension, smart
contract-based apps are also decentralized, as no third party is responsible for exe-
cuting its functions and returning the result to others.

e Transparency - every network participant can dive into the content of the blockchain,
either transactions or smart contracts data.

e Tamper-proofing and immutability - it is impossible to modify the content of a block
after its addition. It would be detected by others because the hash of the block would
change and mismatch the block hash already stored in the next block.

However, blockchain qualities can also be liabilities, depending on the context:

e Data leakage risk - the transparency and immutability of a blockchain can put personal
or confidential data at risk. Even if encrypted, it is unsure that data is safe, because of
potential advances in data decryption or key leakage.

e Immutability threats - immutability of blockchain also implies the impossibility to re-
verse transactions, even if they are harmful. As an example, a vulnerability exploited
in TheDAO smart contract has led to a loss of 12 million $USD in Ether, the network
cryptocurrency (David, 2016).

e Performance issues - poor performance of some blockchains may also be a burden
when low latency or high throughput are expected. Performance issues are mostly
due to bottlenecks related to peer-to-peer mechanisms within the blockchain network
(e.g. consensus, peer discovery, etc.) (Fan et al., 2020).

Thus, any company that wants to use blockchains in their applications should carefully assess
the implications, as this is not always the best solution (Wust and Gervais, 2018). Software
patterns can help to lower the impact of blockchain liabilities on the final design, to guide the
design of blockchain applications through repeatable solutions, or to ensure that blockchain
qualities are kept intact in the final design. However, there is still a lack of a wide structured
collection of software patterns for blockchain. Chapter 5 and 6 will notably address several



2.1. Definitions 17

research questions aiming towards this goal. A background on software patterns is also
given in the next subsection.

2.1.2 Software Patterns

In the software engineering field, patterns are strong assets for engineers and architects to
design robust and well-designed applications. The principle of patterns was first proposed by
Christopher Alexander in the construction field, as he proposed to document architecture
designs in a way that documentation can be reused for other buildings (Alexander et al.,
1979). A definition of patterns was given in Alexander’s book, commonly reused later by
other researchers, that is the following (5):

Definition 5 Each pattern describes a problem that occurs over and over again in our en-
vironment, and then describes the core of the solution to that problem, in such a way that
you can use this solution a million times over, without ever doing it the same way twice
(Alexander, 1977).

In the software engineering field, patterns appeared later in 1987 when Cunningham et
al. decided to apply the pattern approach to guide developers using Smalltalk, an object-
oriented language (Beck, 1987). Later on, 4 researchers (commonly called the GoF - Gang
of Four) released a book that defines a collection of design patterns for the development of
object-oriented applications (Gamma et al., 1995). Since then, many researchers have pro-
posed software patterns for many use cases, such as microservices (Taibi, Lenarduzzi, and
Pahl, 2018) and Internet-of-Things (IoT) (Qanbari et al., 2016).

Patterns can be grouped into three categories: architectural patterns, design patterns, and
idioms:

e Architectural patterns - define, at the highest level of abstraction, the general struc-
ture of the application (elements, connections).

e Design patterns - define a way to organize modules, classes, or components to solve
a problem.

e |dioms - solutions to language-related problems at the code level.

Using patterns in an application brings many advantages. First, as existing patterns are often
extensively tested and applied by others, they can be reused in a new design as the best so-
lution possible for a given case. They also define a common language among developers, as
software patterns are defined with a meaningful name. However, their application should
not always be systematic: applying the wrong pattern to a certain design can be more harm-
ful than helpful. They might also increase the complexity of software. As an example, the
Proxy pattern, that helps to control the access to an object is unnecessary if the object in
guestion is not sensitive and only accessed by one other object.



18 Chapter 2. Background

To be easily reused, software patterns are often expressed using a pattern template. The
two most commonly used pattern templates are the form proposed by the GoF (GoF pat-
tern format), and the Alexandrian form, by Christopher Alexander (Tesanovic, 2005). In both
approaches, a pattern is described by an expressive Name, the Context it is applicable to,
and a recurring Problem. The Alexandrian form is also constituted by the following: the So-
lution to describe the pattern, the Forces where the pattern has an impact on, Examples of
application, the Resulting context, a Rationale on deep or complex aspects of the patterns,
Related pattern and Known uses. The GoF format contains other types of information: an
optional Classification of the pattern among others, a Known as field in case the pattern
also exists with different names, the Motivation to introduce an example of scenario the
pattern can address, Applicability to describe situations where the pattern can be applied,
Participants (eg. classes and objects) and the Collaboration that links them to carry out their
responsibilities, the Structure of the pattern, the Consequences of using it on the software,
an Implementation part to describe code samples and key technical aspects to consider,
Known uses and Related pattern. The process of writing patterns from existing knowledge
is also a subject of research in the pattern community. For example, Meszaros et al. propose
a pattern language for pattern writing, thus using patterns to address commonly occurring
problems when writing patterns (Meszaros and Doble, 1997). Harrison presents advice for
shepherding, a method used in the pattern community to improve the quality of patterns
by having an experienced pattern writer review patterns from others (Harrison, 1999). The
patterns format as well as the methodologies to write patterns are very useful to construct
patterns in a comprehensive and informative way, as it can be difficult to formalize a pattern
even with expertise in the domain associated with the pattern to write.

2.2 Issues in Blockchain-based Application Development

As the previous section introduces some definitions and background on blockchain tech-
nologies, this section aims to explore existing issues encountered by practitioners when cre-
ating blockchain-based applications. The section notably explores the issues related to the
design and implementation of blockchain-based applications, as this is the core of this the-
sis. Therefore, this section states the first knowledge question in the context of the Design
Science Research (DSR) method followed in this thesis (Chapter 3), that stands as follows:
What are the existing issues faced by developers in the design and implementation of block-
chain-based applications?

To identify the issues, a Focused Literature Review (FLR)? is performed on secondary re-
search literature. The goal is to collect and classify these issues, in order to identify the
biggest threats to developing blockchain applications by practitioners. Then, possible solu-
tions are discussed regarding the main issues identified during the review according to the
existing literature.

2Also known as targeted systematic review.



2.2. Issues in Blockchain-based Application Development 19

2.2.1 Review Process

To carry this FLR, the Systematic Literature Review (SLR) guidelines from Kitchenham et al.
are reused (Kitchenham and Charters, 2007).

The main difference between systematic and focused literature reviews emanates from the
sample of collected papers. Whereas systematic literature reviews aim to collect all pub-
lished research relevant to the research question that guides the review, focused literature
reviews aim to only collect key research relevant to the question. Therefore, this focused
literature review follows Kitchenham et al. guidelines, but the query employed to get papers
from chosen academic libraries is designed to only search for terms in titles. As a result, the
query has better precision but also has a lower recall than queries that search for terms in
all of the articles. This decision has been taken as this work aims to identify major common
issues, and not to collect all existing issues.

Review Planning

The first step of this FLR is planning the review. In this step, the context of the literature re-
view is defined: research question(s), search query, literature database(s), and inclusion/ex-
clusion criteria.

This work is guided by the following research question: What are the existing issues faced
by developers in the design and implementation of blockchain-based applications?

To extract relevant studies to this question, the Scopus library has been used. Indeed, Sco-
pus aggregates studies from multiple other sources, such as IEEE Xplore, ACM Digital Library,
and Springer thus aggregates the majority of existing studies in computer science and infor-
mation systems. Next, a search query has been designed to retrieve papers from Scopus. As
mentioned before, the query search terms were only looked into article titles, to improve
precision. This query has been empirically designed using the main terminology of software
engineering and blockchain, as well as the terminology often used in secondary research
titles. The resulting query can be written as follows:

(blockchain OR dapp* OR decentralized application* OR smart contract™) AND
(software OR engineer™ OR development OR design) AND (challenge™ OR issue*
OR review)

To guide the addition of studies into the set of retained papers for the literature review,
inclusion and exclusion criteria have been defined. They provide guidelines to include or
exclude papers during the literature review, first during the filtering phase (based on title
and abstract), then during the reading phase. Table 2.1 provides the chosen inclusion and
exclusion criteria.

Finally, a Quality Question (QQ) (Kitchenham and Charters, 2007) has been defined: Are
development issues clearly identified and described in the article? This question acts as an



20 Chapter 2. Background

Inclusion criteria Exclusion criteria

e Presents one or more issues related to | e The paper does not introduce any issues.
the design and implementation of block- | ® The paper introduces issues, but related
chain-based applications. to the blockchain technology itself.

e The paper is not secondary research.

e The paper is dedicated to a specific do-
main (e.g. loT, supply-chain, etc.).

e Full text is not accessible.

e The paper is not written in English or
French.

e The paper has not been peer-reviewed.

Table 2.1: Inclusion and exclusion criteria.

additional filter during the reading phase of the literature review: if an article that was ini-
tially retained for reading does not present understandable and clear issues, it was discarded
from the final set of papers that constitutes the corpus of the literature review.

Review Execution

Figure 2.1 shows a graphical overview of the review protocol employed. At first, 65 papers
were retrieved from Scopus using the aforementioned query. Then, 50 papers were dis-
carded from their title or abstract, as they were not suggesting the presence of any issue
for the development of blockchain applications. The remaining 15 articles were read, from
which 9 were excluded from the corpus as they were not introducing any issue, or potential
issues were not explained clearly (QQ1).

Finally, 6 articles were added from backward snowballing. Backward snowballing consists of
analyzing references in the papers read during the literature review, to identify new relevant
papers. Of these articles, two were already in the corpus of papers. The other four were
discarded as they were not presenting any issues. As a result, 6 papers were kept to form
the final corpus of papers, used to extract issues. These papers are listed in Table 2.2.

The first article from Ayman et al. carries a review of two developer social media (Stack
Exchange and Medium) to identify the main discussion topics but also technological chal-
lenges met by developers, with a focus on tools and security (Ayman et al., 2020). To carry
out this study, 30 761 questions on smart contracts, 38 152 answers, and 73 608 comments
were collected from Stack Exchange, as well as 4 045 medium articles. In the second ar-
ticle from Worley et al., strengths and weaknesses are reviewed, then design patterns are
introduced to tackle existing issues (Worley and Skjellum, 2018). The third article from Bosu
et al. proposes a survey among developers that aims to understand the motivations, chal-
lenges, and needs of blockchain software developers and analyze the differences between
blockchain and non-blockchain software development (Bosu et al., 2019). There were 145



2.2. Issues in Blockchain

-based Application Development

Retrieved records

(n=65)

Excluding papers
by title and abstract
(n=15)

Excluding papers
during reading
phase (n=6)

Removed: 9 ] [ Removed: 50 ]

Excluding papers

Adding papers from during reading

snowballing (n=12)

phase (n=6)

Added: 6 6 selected papers

Figure 2.1: Review process scheme.

Table 2.2: Literature review corpus of papers.

21

Ref.

Paper Title

N? of
issues

(Ayman et al., 2020) Smart contract development from the

perspective of developers: Topics and issues
discussed on social media

2

(Worley and Skjellum,

2018) Opportunities, challenges, and future
extensions for smart-contract design patterns

(Bosu et al., 2019) Understanding the Motivations, Challenges

and Needs of Blockchain Software Developers:
A Survey

1"

(Zou et al., 2019)

Smart Contract Development: Challenges and
Opportunities

29

(Lokshina and Lanting,

2021) | Revisiting State-of-the-Art Applications of the
Blockchain Technology: Analysis of Unresolved
Issues and Potential Development

(Kannengiesser et al., 2021) Challenges and Common Solutions in Smart

Contract Development

29

respondents to the survey, with various backgrounds and levels of experience in the block-
chain field. Another survey was carried out in the fourth paper article from Zou et al. among
20 developers to identify differences between smart contract development and traditional
software development, as well as existing challenges in smart contract development (Zou et
al., 2019). Lokshina et al. propose in the fifth paper a literature review on the state-of-the-art



22 Chapter 2. Background

of blockchain applications, but also outstanding issues and potential solutions (Lokshina and
Lanting, 2021). Finally, KannengieRBer et al. have identified 29 challenges and 60 solutions to
smart contract development, as well as 20 design patterns from two literature reviews and
expert interviews (Kannengiesser et al., 2021).

From these papers, 78 issues were extracted. For the sake of clarity, the full list of issues
in the paper is given in Appendix 8.3. In this collection, an issue is described by two fields:
a short name, and a 2-to-4 lines description. Some of the issues were related to a specific
set of blockchain technologies: this information was also collected during the literature re-
view. Also, potential solutions to these issues were also collected, if described in the articles
mentioning the issues.

As this structure is sufficient to understand the issues described in the articles, it may be dif-
ficult to reason on multiple issues at once. Yet, some issues are strongly related: for instance,
7 of them are directly linked to the Solidity language. Also, as issues were extracted from
multiple papers, the raw collection contains duplicates, or issues that are sub-issues of oth-
ers. Thus, the next step in the review execution was to clear duplicates, then classify issues
into multiple categories that help understand the major issues for blockchain developers. In
this goal, five categories were created:

1. Cost and performance considerations
2. Application security issues

3. Environment and tooling challenges
4. Blockchain-specific challenges

5. Ethereum ecosystem limitations

These categories emanate from the keywords used in descriptions of issues, and the re-
currence of specific groups of issues. For instance, many issues were directly targeting the
Ethereum ecosystem: a dedicated category was created to classify them. Then, each issue
was systematically compared with others to remove duplicates:

o If the issue is identical to another, the two issues were fused into a single one.

o If the issue is a sub-issue of another, the other issue was transformed into a sub-
category, and the issue was classified under this category.

As a result, 21 issues were removed: 8 were transformed into sub-categories, and 13 were
fused with others. From this filtering, 57 unique issues remain. These issues are described
in detail and discussed in the following subsection?®.

3Bote that issues are written in italic font.



2.2. Issues in Blockchain-based Application Development 23

2.2.2 Development issues in the design and implementation of
blockchain applications

Blockchain-specific Challenges

The first category of issues is "Blockchain-specific challenges" (Figure 2.2). It regroups 7 dif-
ferent issues, 3 being in a subcategory named "Immutability", and 3 others in the "Technical
Soundness" subcategory.

Blockchain-specific]
challenges J

v . v . v
Immutability Technical soundness [ Other ]
immutability immutability PP discoverability

existing ones behavior

Data

immutability Encapsulation

Figure 2.2: Blockchain-specific challenges map.

Immutability is, at the same time, an opportunity and a threat for blockchain-based ap-
plications. Immutability makes data accessible and manageable by different entities that
do not trust each other (Belotti et al., 2019). But immutability comes with several threats.
First, Code immutability: once a smart contract is deployed on-chain, it is impossible to
delete them afterward. This is a threat, as if a code flaw or vulnerability is discovered in a
smart contract, it cannot be repaired natively and can be exploited indefinitely (Worley and
Skjellum, 2018). Then, another immutability threat is Transaction immutability: unlike tra-
ditional software development, the user cannot recover any loss while making transactions
on blockchain-based systems using smart contracts (Zou et al., 2019). Data immutability
is the third immutability threat, as smart contracts may control and manage sensitive digi-
tal assets (Zou et al., 2019). Also, the immutability of data may breach data confidentiality,
as they are visible on-chain by others (Kannengiesser et al., 2021). Thus, developers must
be very careful when implementing blockchain-based applications and think about poten-
tial safeguards to prevent any issue with native immutability (e.g. smart contract upgrade
mechanisms, checks, extensive testing, etc.).

The second subcategory, "Technical soundness”, describes issues that are met by develop-
ers when handling the technical capabilities and limitations of a smart contract’s execution
environment (Kannengiesser et al., 2021). Developers may have to Interoperate dApps with



24 Chapter 2. Background

existing ones. According to Lokshina et al., the literature advises that the number of block-
chain-based applications grows rapidly, creating many heterogeneous solutions (Lokshina
and Lanting, 2021). This causes interoperability issues, as many of them have different non-
standardized interfaces. Encapsulation is a similar issue, that concerns the interoperabil-
ity of smart contracts with external systems. Indeed, smart contracts execute in an envi-
ronment that is totally determined by the world state of the blockchain and the messages
passed to the contract by its caller (Worley and Skjellum, 2018). They have to rely on oracles
(Muhlberger et al., 2020) to request external data or move the execution of computation
externally (Kannengiesser et al., 2021). Developers may have to carefully design interactions
with other smart contracts and external systems if needed. The deterministic environment
of blockchain also makes difficult the usage of functions that have a Non-deterministic be-
havior (Kannengiesser et al., 2021). For instance, randomness is difficult to achieve natively
in blockchain, and may also require the usage of external services (e.g. oracles) to provide
randomness to smart contracts.

The development of blockchain applications also faces other challenges. One of them is
Code discoverability: it addresses the difficulty of finding deployed smart contracts on a
distributed ledger (Kannengiesser et al., 2021). Indeed, smart contracts are often stored in
blockchains in a compressed format (e.g. bytecode), referenced by addresses that are hard
to read (e.g. hexadecimal public addresses).

Application Security Issues

The second category of issues is "Application security issues" (Figure 2.3). It regroups 11
different issues, 7 being in a subcategory named "Avoiding smart contract vulnerabilities".

[Application security
l issues

Y Y
Avoiding smart contract vulnerabilities Other
e N ™
Transagtlon Execution Undefined Arithmetic Semantics T
ordering - : - Code visibility
restriction behavior behavior soundness
dependance
. /. J
e N ™
Cr 0ss-ace ount Error handling Concurrency Conforml.ty to Pseudonymity
interactions expectations
. /. J

Figure 2.3: Application security issues map.

This first subcategory includes issues that directly underline potential vulnerabilities that
may occur in smart contracts. These issues should be addressed carefully by developers dur-
ing the implementation of blockchain applications. The first one is Execution restriction. By




2.2. Issues in Blockchain-based Application Development 25

default, smart contracts functions may be executed by anybody on the blockchain network.
This may lead to the undesired executability of functions by malicious entities to exploit
smart contracts (Kannengiesser et al., 2021). Similarly, the Error handling issue underlines
the importance of handling errors well to avoid any exploit. Next, Undefined behavior and
Arithmetic behavior respectively introduce the issues arising when functions rely on under-
specified operations or arithmetic operations. Without some knowledge of these operations
functioning, a developer may introduce vulnerabilities such as overflows, underflows, or un-
defined behavior that results in asset loss or denial of service (Kannengiesser et al., 2021).
The Transaction ordering dependance issue is another example of undefined behavior: as
sometimes smart contracts rely on a specific transaction order to perform, poorly designed
smart contracts may be threatened by malicious users trying to send a set of transactions in
a modified order to exploit this flaw. Finally, the Cross-account interactions issue shows po-
tential risks of calling a smart contract by its account: unavailable smart contract, function
not found, or unintended function call (Kannengiesser et al., 2021). These interactions must
be carefully designed by developers to avoid any flaws that may arise from them.

Along this category of issues, 4 additional issues may threaten the security of the applica-
tion to design. The Code visibility issue emanates from blockchain transparency: the code of
smart contracts deployed on-chain is visible by anybody, thus it may be reverse-engineered
to design an attack and execute it (Zou et al., 2019), or challenge companies that want to
keep their process logic confidential (Kannengiesser et al., 2021). Pseudonimity also causes
challenges related to accountability and liability as actual entities interacting with blockchain
smart contracts remain unknown (Kannengiesser et al., 2021). Finally, it may be difficult for
developers to create smart contracts that are both free from logical errors and flaws (Seman-
tic soundness issue) but also complies with initial requirements (Conformity to expectations
issue).

Cost and Performance Considerations

The third category of issues is "Cost and performance considerations" (Figure 2.4). It re-
groups 9 different issues, 4 being in a subcategory named "Cost of use".

In this category, some issues may cause a higher cost of use, as it may cost money to deploy
or interact with on-chain smart contracts. Among these issues, Data storage may be the
most important: the way data is stored in a blockchain application matters a lot to the appli-
cation efficiency. An adequate balance should be established between data stored on-chain
that benefits blockchain qualities, and data stored off-chain to save storage costs. Data type
complexity also has a great impact on the application efficiency: selecting appropriate data
types may affect the cost of storage and execution of smart contracts (Kannengiesser et al.,
2021). Finally, logic also has an impact on the application cost of use. Therefore, Under-
optimized code may be an issue, as a function that performs poorly may cost more than
optimized functions. [terations through data structures is also an issue regarding the cost
of use: developers may have to implement code in order to minimize iterations on data



26 Chapter 2. Background

Cost and
performance
considerations

A 4 - A 4
Cost of use Other
e N [ ~
Under- High pace . Handle latency
Data storage optimized code development Scalability in architecture
. J J
N R
Data type Iteration through Resource Required
complexity data structures management interactions
. AN J

Figure 2.4: Cost and performance considerations map.

structures to guarantee returning data from a data structure in O(1) (Kannengiesser et al.,
2021).

Along with that, other issues may impact the cost and the performance of blockchain ap-
plications to be designed and implemented. The High pace development of the blockchain
field threatens blockchain projects, as they may be at risk of losing their market capitalization
(Bosu et al., 2019). Developers must move fast and adjust their applications to meet new
requirements. Scalability is also an area of concern for developers: the peculiar functioning
of blockchain-based applications coupled with the aforementioned high pace development
makes challenging the creation of scalable applications. Other aspects of blockchain appli-
cations have an important role in cost and performance: the issue Handle latency in archi-
tecture underlines this by stating that blockchain-based applications may face latency when
relying on blockchain smart contracts. Resource management also threatens the efficiency
of blockchain applications, as they may rely on providing a specific resource to guarantee
smart contract termination, such as gas for an Ethereum-based application (Kannengiesser
et al., 2021). As transactions may be expensive, the Required Interactions states that devel-
opers may have to reduce as possible interactions with smart contract, for instance using
the factory design pattern (Kannengiesser et al., 2021).

Development Environment Challenges

The fourth category of issues is "Development environment challenges" (Figure 2.5). It re-
groups 15 different issues, 2 being in a subcategory named "Code reviews", 4 in "Lack of
guiding knowledge" and 3 in "Tooling issues".

Two code review issues have been identified for blockchain-based application development.
The first one is Longer code reviews: developers may need more time to carry code reviews
in blockchain-based application development (Bosu et al., 2019). They may also need more



2.2. Issues in Blockchain-based Application Development 27

e N N A

. Blockchain
Steep learning Complex usage and

curve environment .
selection
. NS NS J

fProgramming\ a N ( h

language Readability Ease of code
concept reuse

\_ compliance ) \_ ) )

T

Other

[ Development ]

l environment

challenges
e " N\ e ‘r N\ e ‘r N\
Lack of guiding knowledge Code reviews Tooling issues
@ ) ( Lack of best ) ( )
Lack of up-to- . Low awareness
practices for Longer code -
date o . of existing Lack of tools
. writing safe reviews :
documentations d tooling
N J \ code J N J
4 N e
Lack of Lack of .
X Lack of . Flaws in
standardized community )
reference code compilers
knowledge support
. J J N

Figure 2.5: Development environment challenges map.

time to find competent people to review their code. This issue is mentioned as being the
Lack of community support (Bosu et al., 2019).

Another main issue in the developer environment is tooling. First, developers may have Low
awareness of existing tooling. Ayman et al. have highlighted that only a few posts on the
Ethereum StackExchange or Medium discuss or ask questions about existing tooling, such
as security tools (Ayman et al., 2020). Then, developers may face the Lack of tools, that
is both mature and reliable, to assist them in the development of blockchain applications
(Bosu et al., 2019). For instance, testing tools, blockchain dedicated IDEs, and additional de-
velopment extensions (Zou et al., 2019). Also, compilers, that are key components in block-
chain-based application development, may still be immature and contain security bugs. This
is underlined by the Flaws in compiler issue (Zou et al., 2019).

Regarding knowledge, developers may find it difficult to find guiding knowledge for develop-
ing blockchain-based applications. Several articles in the literature review corpus mention
different gaps: the Lack of best practices for writing safe code, the Lack of reference code,
the Lack of standardized knowledge, and the Lack of up-to-date documentations (Bosu et al.,
2019; Zou et al., 2019).



28 Chapter 2. Background

Other issues related to the development environment of blockchain-based applications can
be mentioned. Developers may face a Steep learning curve, or a Complex environment when
trying to grasp knowledge on developing blockchain-based applications (Bosu et al., 2019).
Indeed, developers have to ramp up on many domains, such as cryptography, networking,
distributed systems, and specific protocols. Once they have the required knowledge on
these aspects, they have to tackle the peculiar environment of a blockchain application (e.g.
special components such as oracles, on-chain/off-chain distinction, etc.). Another challenge
met by developers is Blockchain usage and selection (Bosu et al., 2019). Using blockchain
in an application is not always relevant: for instance, it may be pointless to use blockchain
when there is no need to store data in a decentralized way. If it is relevant, the developer
then has to pick the adequate technology regarding its requirements. This may be an issue
regarding the rising amount of available technologies, that all have specific characteristics.
Regarding coding aspects, developers may struggle with the Programming language con-
cept compliance issue. According to Kannengiel3er et al., programming language concept
compliance is the degree to which a programming language conforms to established con-
cepts and the use of terms in related programming languages (Kannengiesser et al., 2021).
For instance, the usage of the keyword "protected" may have different significations in smart
contract programming languages and established programming languages (e.g. Java, C++,
etc.). Along that, developers may face code Readability issues, but also difficulties in code
reuse (Ease of code reuse). Nonetheless, these issues are also present in traditional software
development.

Ethereum ecosystem limitations

The fifth and final category is named "Ethereum Ecosystem Limitations" (Figure 2.6). It
gathers 15 different issues, 7 of them in the "Solidity" subcategory, 4 of them being in the
"Ethereum Virtual Machine (EVM)" subcategory, and 4 of them in the "Gas issues" sub-
category. This category was created to address the prevalence of Ethereum-related issues
compared to others.

The first subcategory classifies issues that emanate from Solidity*, the most-used program-
ming language to implement Ethereum smart contracts. As Solidity was released in 2015, the
language is still young compared to traditional programming languages such as Java or C++,
that cumulate decade of existence. Thus, developers may have to tackle many issues when
using this language. Zou et al. underline several of them, met by the developers that partic-
ipated in their survey (Zou et al., 2019). First, Solidity both Lack of standards and rules and
Lack of general purpose libraries. For the former, although standards exist in the Ethereum
ecosystem (so-called Ethereum Request for Comment or ERC), some developers were high-
lighting their usage scarcity. The latter addresses the need for general-purpose libraries that
were extensively tested and applied in applications. As for the EVM, Solidity also struggles
with a Lack of support for error reporting and logging. Indeed, Solidity does not support
basic error printing, making it difficult for developers to debug their applications (Zou et al.,

4https://docs.soliditylang.org/


https://docs.soliditylang.org/

2.2. Issues in Blockchain-based Application Development

Lack of general
purpose

Lack of support
for error logging

Lack of
standards and

Lack of data

29

safety checks

libraries and reporting rules

Inconvenient
way to call
external
functions

Constained
number of local
variables

Lack of support
for memory
management

1

Solidity issues
A

Ethereum
ecosystem
limitations

Y . Y
EVM issues

v v

e N N e N [ N

Transaction - -
failure due to Limited support Limited stack

insufficient gas for debugging size
N\ AN J - AN
( N\ ( Tradeoff ) 4 - h
No gas Inefficiency of
Lo between gas o
estimation tool S of traditional bytecode
optimisation and

\at code IeveIJ  code reliability ) L languages AN execution )

Gas issues

High gas cost

e N
Lack of support

Figure 2.6: Development environment challenges map.

2019). Regarding security, Solidity also Lack of data safety checks® (e.g. overflow/under-
flow), and has an Inconvenient way of to call external functions. For the latter, they have
to use a low-level operation, thus prone to errors and vulnerabilities. Finally, Solidity has a
Lack of support for memory management, making difficult memory optimization, and has
a Constrained number of local variables (i.e. contextual variables) that requires additional
efforts from the developer (Zou et al., 2019).

The EVM is the component used by nodes to execute smart contracts when a transaction is
sent from a user. Developers may face different issues when executing their code using EVM.
They may find a Limited support for debugging when trying to identify the source of an error
using the EVM debugger (Zou et al., 2019). Error messages may also not be very detailed,
making difficult error logging. EVM is also limited regarding programming languages: there
is a Lack of support of traditional languages that can be compiled and then executed by
the EVM. Indeed, two programming languages are mainly used by developers to implement

5Note that this issue was valid at the time of the study, but many type checks have recently been added
in the latest versions of Solidity.



30 Chapter 2. Background

Ethereum smart contracts, that are Solidity and Vyper®. Although their syntax are close to
existing languages (resp. Javascript and Python), they are still new languages purely created
for developing smart contracts. EVM also suffers from a Limited stack size, and Inefficiency
in bytecode execution, notably as the EVM is single-threaded.

Lastly, 4 other issues related to gas were collected. In Ethereum, gas is a metric used to
quantify the cost of performing low-level operations, so-called opcodes (Marchesi et al.,
2020). When developers deploy smart contracts, or users interact with them in order to
change the blockchain state, they have to pay Ether, that is the network cryptocurrency. On
the Ethereum mainnet, as Ether has a cost, it may be expensive to operate smart contracts.
Thus, developers may suffer from High gas cost (Zou et al., 2019), depending on the type of
operation performed by their smart contracts, but also the level of optimization reached by
the developer. This causes another issue, that is the Tradeoff between gas optimization and
code readability. Many developers have reported that it may be tricky to optimize gas with-
out hurting code readability. As gas is used as a resource to run smart contracts, it has to be
provided when executing a function that will modify the blockchain state. Sometimes, this
execution may run short on gas, as not enough was provided by the user beforehand. This
causes the issue of Transaction failure due to insufficient amount of gas: developers should
implement measures to ensure enough gas is provided, and if not, gracefully handle the
transaction failure. Finally, there is No gas estimation tool at code level. Where developers
often desire to write and optimize source code rather than bytecode as it is more intuitive,
no tool exists to provide such information (Zou et al., 2019).

2.2.3 Discussion

As seen in the last section, many issues hinder the development of blockchain-based appli-
cations. In this section, these issues will be discussed in light of the driving research question
(RQ1), but also potential solutions in the literature. Two major groups can be distinguished
from these issues: the lack of knowledge from developers, and the lack of tooling suites.

The first group would regroup any issue related to designing/implementing parts of block-
chain applications. As underlined in the previous section, developing blockchain applica-
tions requires to tackle with blockchain strengths but also weaknesses (e.g. security, ef-
ficiency, immutability, scalability, etc.). Even with deep knowledge of traditional software
engineering, developers may find challenging the design and implementation of blockchain
applications, as they have to be aware of potential security threats, but also of how to de-
sign components that are unique to blockchain applications (e.g. oracles). On top of that,
they have to perform these tasks while trying to minimize the impact of potential blockchain
weaknesses on applications. For instance, although blockchain may help save costs by re-
moving friction and third parties, these savings may be nullified by performance issues or
exploited vulnerabilities.

Shttps://vyper.readthedocs.io/


https://vyper.readthedocs.io/

2.2. Issues in Blockchain-based Application Development 31

One common solution in traditional software engineering to guide developers in these as-
pects is the usage of software patterns (Section 5). This solution was mentioned by most of
the articles composing this literature review. As an example, Worley et al. introduce several
blockchain design patterns for the design of specific blockchain components, such as ora-
cles (Worley and Skjellum, 2018). Using design patterns, developers have clear guidelines
on how to design or implement specific components, in a defined context and for a given
problem. Another advantage of a design pattern is the potential applicability to any design
or implementation issue: collections may be created to address any specific category of is-
sue. For instance, such collections already exist in the literature, such as security blockchain
design patterns (Wohrer and Zdun, 2018), or specific blockchain feature design patterns (Xu
et al., 2018). Yet, blockchain software patterns are still in their premises: patterns are scat-
tered across academic literature or technical sources, thus developers first have to be aware
of pattern sources to reuse them. Also, developers that lack blockchain knowledge may find
it difficult to assess the applicability and then apply software patterns, even if the informa-
tion is given in a structured pattern format (Jalil and Noah, 2007). Going further with design
reuse using software patterns, code reuse is also another solution to address the lack of
knowledge. Instead of manually creating new features, it may be more interesting to reuse
existing ones. Potential benefits of code reuse are productivity increase, improvement of
software quality, and better software reliability (Feitosa et al., 2020). In the blockchain field,
code reuse is already applied in many cases. For instance, Chen et al. collected and analyzed
146 452 open-source smart contracts to study code reuse in the Ethereum ecosystem and
identified that 91,11% of these contracts reuse a set of 20 subcontracts (i.e. code samples)
(Chen et al., 2021).

During the literature review, another related solution has also been identified, that is the
creation of guidelines, best practices, frameworks, or guides (Bosu et al., 2019). Compared
to design patterns that address specific aspects in the design or implementation of block-
chain applications, this would help guide the developers across the different steps and parts
to implement at the same time. For instance, frameworks already exist to guide the cre-
ation of domain-specific blockchain applications, such as insurance (Raikwar et al., 2018),
development (Cunha, Soja, and Themistocleous, 2021b), or supply chain (Reddy et al., 2021).
Nonetheless, developers may also benefit from domain-agnostic frameworks that focus on
the different phases of software engineering.

The second group of issues found in this literature review is the lack of tools and tooling
suites in the blockchain field. Although a developer has extensive knowledge of blockchain
technology and blockchain application development, it may still be tedious to design and
implement applications without any external help. Some tasks, such as finding security is-
sues, implementing specific blockchain features, testing the application, or optimizing the
code, may be automated by tools, as it may still be tedious and error-prone to do these tasks
manually. This aspect is an open research field, as many researchers propose different tools
to address these issues (Vacca et al., 2021). However, as identified by Ayman et al., only a
few developers are aware of existing tools (Ayman et al., 2020).



32 Chapter 2. Background

Another range of solutions that address both the lack of knowledge and the need for tools
is code generation. Indeed, code generation both allow to reuse of existing assets, such
as design patterns but also other types of assets such as models (Sebastian, Gallud, and
Tesoriero, 2020) or code fragments (i.e. templates) (Syriani, Luhunu, and Sahraoui, 2018).
This approach has already been explored in the blockchain field. Different models may be
used to generate smart contracts, such as BPMN files (Lu et al., 2020), Petri nets (Zupan
et al., 2020), or Unified Modeling Language (UML) diagrams (Jurgelaitis, Butkiené, et al.,
2022).

2.2.4 Threats to Validity

Internal threat to validity: as mentioned before, this literature review was not carried
out systematically. Some relevant articles may not be present in the final corpus of papers.
However, it is important to note that the goal of this study was not to collect all existing
issues, but rather to identify the most important ones. This means that the potential impact
of this threat s likely to be limited. Additionally, while the analytic process was carried out by
a single researcher, the quality question introduced in the review process helped to exclude
studies where the identified issues were too vague. This has made the task of collecting
issues easier, thus limiting the risk that two researchers would identify different issues or
merge non-identical issues.

External threat to validity: one potential external threat to the validity of this literature
review is the relatively small sample size of only 6 articles. While these articles are all drawn
from secondary research, which means they have already summarized other sources of
knowledge, the limited number of articles included in the review may still raise concerns
about the generalizability of the findings. However, it is important to note that the results of
this literature review are likely to encompass a broader range of knowledge than the small
number of articles might initially suggest.

Construction threats to validity: the research query used to collect papers can be men-
tioned. It has been designed based on titles from the existing secondary literature but also
blockchain articles. Yet, articles do not directly mention their belonging to secondary litera-
ture but provide clues such as indicating that, for instance, an article is a review of a specific
domain. Efforts have been made to design a query capable of getting most of the secondary
research, such as including in the research query the terms "challenge" or "issue".

Conclusion threats to validity: as only a few issues were found in different articles, it may
be difficult to conclude on the main issues that are met by developers directly based on the
subset of issues that were identified during the literature review. To tackle that, 5 categories
of issues and subsequent subcategories were created to represent these major issues, where
issues within these categories can be considered as instances of these main issues.



2.3. Conclusion 33

2.3 Conclusion

In this chapter, an extended introduction to blockchain technologies and software patterns
was given to give the reader the necessary background for the rest of the thesis. Then, a
literature review was carried out to explore existing issues met by developers in the design
and implementation of blockchain applications. As a result, 6 papers were chosen to form
the literature review corpus, and 57 unique issues were identified and then classified into 5
categories and 9 subcategories.

As a result, the answer to RQ1 is that five classes of issues threaten developers when de-
signing and implementing blockchain applications. First, they may find it difficult to tackle
with specificities of blockchain applications, such as immutability or decentralization. Then,
they have to be very careful with the security of the application to create, to prevent secu-
rity flaws and vulnerabilities. This also includes potential threats to data confidentiality and
privacy. Developers also have to assess the efficiency of their application, as it may be very
expensive to deploy and execute non-optimized smart contracts. The lack of tools to assist
the developer, as well as the complex development environment also hinders developers in
the creation of blockchain applications. Finally, some limitations may also exist depending
on the chosen blockchain technology. This is notably the case for Ethereum, as issues were
identified with its main language (Solidity) but also its virtual machine, used by nodes to
execute smart contracts.

To tackle these issues, potential solutions were also discussed. Software patterns are prob-
ably one of the most efficient resources for developers to tackle the difficulty of addressing
complex design/implementation blockchain issues (e.g. developing specific features, avoid-
ing vulnerabilities, etc.). Yet, as blockchain is still relatively recent as a technology, some
challenges remain, such as creating extensively tested patterns for the pain points of de-
signing or implementing blockchain applications, gathering them into reusable collections,
and facilitating their reuse. Guidance throughout frameworks, guidelines or best practices
guides was also identified as a promising solution. The lack of assistance during the creation
of blockchain applications may also be solved by creating tools to assist the developer on
specific aspects, such as security, testing, code generation, or optimization.

Identifying the different classes of issues, as well as the issues themselves and potential so-
lutions, opens to the creation of approaches that address classes of issues as a whole instead
of focusing on specific aspects. In this thesis, such an approach is proposed as a framework
named BlockcHain fRaMewOrk for the desigN and Implementation of deCentralized Appli-
cation (Harmonica) that is made up of tools designed to address the major pain points and
issues identified. This framework will be introduced in the next chapter.






35

Chapter 3

Overview of the Method and Contribution

— Key takeaways .

e The Design Science Research method is introduced and research questions of the
thesis are stated in line with DSR types of questions.

e An overview of the Harmonica framework is presented. Each part of the frame-
work, that contains 3 artifacts and a knowledge base, is presented individually,
but also with regards to the DSR method.

e Arunning example, that is a case study of a blockchain traceability application, is
introduced. It is reused throughout the thesis to illustrate the different contribu-
tions.

In the last chapter, a literature review was carried out to identify issues met by practition-
ers in the design and implementation of blockchain applications. The literature review no-
tably highlights the need for developers for guidance throughout these phases, notably with
knowledge and tools.

In light of these results, this thesis aims to propose a framework envisioned to provide this
guidance, notably in the design and implementation phases of software engineering. First,
by guiding developers in the design of their application, by suggesting the blockchain tech-
nology and blockchain-based software patterns to use from requirements. Then, by facili-
tating the implementation of the application throughout code generation.

In this chapter, an overview of this framework is given. This overview synthesizes the differ-
ent concepts and elements of the framework, through the prism of Design Science Research,
the chosen research method to carry the different research works of this thesis. DSR con-
sists in iterating over two activities: designing an artifact that improves something for stake-
holders and empirically investigating the performance of an artifact in a context (Wieringa,
2014).



36 Chapter 3. Overview of the Method and Contribution

In the context of this method, an presentation of the driving elements of this thesis is given.
These elements are the chosen research questions derived from the literature review (Chap-
ter 2), and the proposed framework to answer them, that is the Harmonica framework.
Then, an overview of the framework and each of its artifacts is given. The goal of this
overview is not to deep dive into the inners of each artifact, but rather to help the reader un-
derstand their role within the framework. To further guide the reader in this thesis, arunning
exampleis also introduced in order to exemplify the usage of the framework throughout the
next chapters.

The finality of this chapter is giving a contextualized overview of the Harmonica framework,
giving a big picture for the reader to navigate into the following chapters (Chapter 4, 5, 6, and
7), while understanding the different contributions, how they are addressed with regards
to the DSR method, and how they assemble into a framework that addresses formulated
research objectives.

This chapter is articulated as follows. First, Section 3.1 introduces the DSR method chosen to
carry the thesis research work, then Section 3.2 introduces the framework within the DSR
context. Section 3.3 presents the running example that is used to illustrate the framework
throughout the thesis, and Section 3.4 concludes the chapter.

3.1 Research Method

3.1.1 Design Science Research Introduction

Whereas research is the process of collecting, analyzing, and interpreting data to understand
a phenomenon, the research process is systematic in that defining the objective, managing
the data, and communicating the findings occur within established frameworks and in ac-
cordance with existing guidelines (Williams et al., 2007). To carry out this research process,
it is often required to use a research method. As this thesis makes no exception, the de-
sign science research method was used to carry out this research work. More specifically,
this research reuses the framework from Wieringa (Wieringa, 2014). Therefore, part of the
content in this subsection originates from this book.

Figure 3.1 shows an overview of the aforementioned framework. At its core, design science
is about studying an artifact in context. An artifact is something created by people for prac-
tical purposes. It can take multiple forms: algorithms, methods, notations, techniques, and
frameworks.

The artifact is studied in a twofold context: the social context, and the knowledge context.
The social context is about the stakeholders, such as users, operators, maintainers, or spon-
sors (that provide the research budget). DSR is used to build artifacts that aim to address
their goals, with regard to the provided budget. The knowledge context materializes all of
the existing knowledge that can serve the design or the investigation of the artifacts: ex-
isting theories, specifications of known designs, lessons learned, facts, etc. This knowledge
emanates from different sources, such as literature (scientific, technical, professional), or



3.1. Research Method 37

communication with others. During the design science research process, new knowledge
may be produced and added to this knowledge context.

/ Design science \

New knowledge
. or designs
Design
Creating new < —
Goals and . Existing knowledge
artifacts ) v
budgets or designs
Social context 4 Know]edge cgpte).(t
Project stakeholders | (e.g..deS|gn spe0|f|cat|oqs,
< - practical knowledge, design
J DgS|gn v science, ...)
artifacts . Existing answers A
Investigation to knowledge questions
Answering knowledge [«
questions
New answers to

\ / knowledge questions

Figure 3.1: Design Science Research framework from Wieringa.

Two main activities drive the DSR: artifact design, and artifact investigation. Artifact design
consists in designing one or more artifacts to improve a problem context. The framework
proposed by Wieringa represents this activity using a 3-step process, named design cycle
(Wieringa, 2014). This process is composed of three steps:

1. Problem investigation: consists of identifying the problem context: stakeholders, phe-
nomena, causes, effects.

2. Treatment design: in this step, the requirements to address identified problems are
defined, available treatments (i.e. solutions) are explored, and new ones may be de-
signed.

3. Treatment validation: produced artifacts are evaluated to assess whether they satisfy
requirements. The artifact may be also tested to evaluate if it may be applied in other
contexts or possible design trade-offs.

These steps are guided by a design problem. Each design problem should clearly identify
the context, the artifact to build, the requirements, and the stakeholder goals. If desired,
design problems can also be stated as questions. In this case, design problems become
technical research questions. They keep the same elements as design problems but finish
with a question mark.

Artifact investigation is about answering knowledge questions about artifacts in context.
For instance, knowledge questions on the problem to be solved, or on the artifact to design.
Answering these knowledge questions may be required to address the research problems
and produce the desired artifacts. These knowledge questions may be addressed using the
empirical cycle, that is notably composed of a 5-step process, as well as a checklist of issues
that drives these steps. The different steps can be summarized as follows:

1. Research problem analysis: define the research problem to be solved.



38 Chapter 3. Overview of the Method and Contribution

2. Research and inference design: design the research setup required to solve the re-
search problem.

3. Validation: consists of defining how the results from the research are going to be val-
idated.

4. Research execution: perform the research according to the defined research design
and validation, and take note of the unfolding of the research.

5. Data analysis: analyze the data gathered during the research execution.

Although these activities form a sound research process, the empirical cycle is not meant to
be inflexible: researchers may jump from one item to another, or go back to a previous step
to improve something. Also, other methods in the literature can be used to answer research
guestions, even in the context of using the DSR method.

The DSR approach was applied in the context of this Ph.D. thesis. To address the research
aim formulated in Chapter 1, 5 research objectives were stated, that has led to 3 technical re-
search questions and 2 knowledge questions. Each question was treated by reusing the two
different processes from Wieringa et al. to either address knowledge questions or technical
research questions. In the end, the artifacts and the knowledge resulting from answering
these questions lead to the framework itself, that addresses the initial research aim. These
questions are introduced in the next subchapter.

3.1.2 Research Questions

In Chapter 1, research objectives were stated to introduce the different research works to
carry out. This section refines these objectives into proper research questions, in light of
discovered issues in the design and implementation of blockchain applications (Chapter 2).
From these objectives, 5 research questions can be defined (RQ1-5), further divided into
technical research questions and knowledge questions in the context of the DSR method:

e RQ1: What are the existing issues faced by developers in the design and implementa-
tion of blockchain-based applications?

e RQ2: How to design a blockchain technology recommendation platform that simplifies
the completion of this task for non-experts so that practitioners can choose adequate
blockchain recommendations during the design phase of blockchain application de-
velopment?

e RQ3: How to discover then classify software patterns in a blockchain application?

e RQ4: How to design a blockchain-based software patterns recommendation platform
that simplifies the completion of this task for non-experts so that practitioners can
choose adequate patterns during the design phase of blockchain application develop-
ment?



3.1. Research Method 39

e RQ5: How to design a blockchain application generation platform that reduces the cost
and difficulty of implementing blockchain applications as practitioners can configure
then generate blockchain applications?

First, two knowledge questions are derived from the research objectives (RQ1, RQ3). They
are needed to address technical research questions, as knowledge is lacking to answer them.

RQ1 was the driving question of Chapter Systematic Literature Review. Even if existing issues
were mentioned a lot in academic literature, it was needed to collect them in a systematic
way, then classify them to identify the most important issues the framework has to address.
As a result, it highlights the main challenges faced by developers when designing or imple-
menting applications and discusses existing solutions in the literature that addresses them.
Also, existing concepts in these solutions may be reused in the framework.

Regarding RQ3, it is also needed to gather and classify existing blockchain-based software
patterns from the literature in an extensive collection. There was no occurrence of such
collection in the literature prior to this thesis, while reusing existing blockchain-based soft-
ware patterns may tackle many design issues identified while answering RQ1. Therefore, this
research question is answered in another Systematic Literature Review in Chapter 5.

The other three questions are formulated as technical research questions (RQ2, RQ4, RQ5).
Compared to knowledge questions, addressing technical research questions consists in cre-
ating a new or improved artifact. In this thesis, each technical research question has led to
the design of one artifact.

With RQ2, the answer to the question is materialized with an artifact capable of assisting
practitioners when they face the choice of a blockchain technology for their project. This
task is being often cumbersome for non-experts, the driving requirement is to simplify it,
notably by hiding the complex decision process behind an easy-to-use interface when re-
quirements can be submitted. This technical research question is addressed in Chapter 4.
Following the selection of a blockchain technology, the artifact to build in the context of RQ4
is about selecting blockchain-based software patterns with regards to practitioner’s require-
ments. As for RQ4, this task must also be simplified: throughout the platform, practitioners
shall be able to explore the existing blockchain-based software patterns, then obtain rec-
ommendations on the best patterns to use for given requirements. Finally, throughout RQ5,
the goal is to create an artifact for the generation of blockchain applications, directly reusing
existing design decisions. Although each artifact that emanates from these research ques-
tions can perform independently, they form together the core of the Harmonica framework,
introduced in the next subsection.

As a result, the organization of the thesis throughout answering these research questions
can be illustrated as shown in Figure 3.2.

This figure notably shows that one research question (RQ1) was already answered in the
Systematic Literature Review of Chapter 2. The reason is that the knowledge collected across
the literature review, as well as the answer to this research question, was necessary to design
the framework proposed to address the research aim of this thesis. As such, Chapter 2



40 Chapter 3. Overview of the Method and Contribution

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7
Knowledge Overview Technical Knowledge Technical Technical
. - research . research research
question Defining RQ2, ; question : .
. question . question question
Answering RQ3, RQ4 and . Answering i i
RQA RQ5 from RQ1 Answering RQ3 Answering Answering
RQ2 RQ4 RQ5
A

(A

__________________________________________

Answering a knowledge question

Answering a technical research question

Stating research questions and overview

RQ1 « RQ2

"Answering RQ2 requires
to answer RQ1"

Figure 3.2: Thesis organization in light of research questions.

addresses RQ1, then Chapter 3 gives an overview of envisioned contribution in light of the
DSR method. Then, Chapters 4, 5, 6, and 7 respectively addresses RQ2, 3, 4 and 5.

3.2 Framework Overview

BlockcHain fRaMewOrk for the desigN and Implementation of deCentralized Application
(Harmonica) is a semi-automated framework to assist the practitioner in the development
process of a blockchain-based application, from its design to its implementation. As Figure
3.3 shows the framework is composed of two tools, BLockchain Automated DEcision process
(BLADE) and Blockchain ApplicatioN Configurator (BANCO). BLADE is a recommendation en-
gine of a blockchain technology and associated blockchain-based patterns. BANCO is a tool
to generate parts of the blockchain application to build. This toolkit relies on a knowledge
base, composed of three parts: (i) blockchain technologies, (ii) software patterns, and (iii)
core assets (e.g. code samples, configuration files, etc.).

As shown in Figure 3.3, a practitioner (e.g. software engineer, software architect, etc.) can
query BLADE to obtain the recommendation of a blockchain technology and blockchain-
based software patterns (Step 1). If the practitioner also needs the generation of a product,
the generated recommendations can be forwarded to BANCO for reuse (Step 2). Then, the
user can configure the product with the help of the recommendations, and generate the



3.2. Framework Overview 4

product (Step 3). BANCO can also be used as a standalone tool, but it will not benefit from
BLADE recommendations. Indeed, both tools can be used independently, but it is also pos-
sible to use them in conjunction to refine produced recommendations and artifacts.

" Tooling suite Knowledge base
(1) Request and receive ] ]
recommendations [ Blockchains I
>» BLADE LR SEEEE
A [ Software patterns ]
(2) Forward reco-
mmendations (if any) p— oo :
> [ Features ] [ cc;::g:ts J
Practitoner o i | BANCO |l€--.i.._. :
< BANCO : - - = :
(3) Request and receive : Configuration | Implementation| :
a product files of patterns

Figure 3.3: Harmonica framework overview.

Subsection 3.2.1 introduces the knowledge base of patterns and blockchain technologies.
Then, Subsection 3.2.2 describes BLADE, the recommendation engine, and Subsection 3.2.3
presents BANCO, the tool in charge of generating parts of the blockchain application to build.
Finally, Subsection 3.2.4 establishes the mapping between the framework itself and its ele-
ments to the elements described by the DSR method.

3.2.1 Knowledge Base

The first part of this framework is the knowledge base. As the recommendation process and
the generation of code are knowledge-intensive activities, a knowledge base that supports
the functioning of the framework’s tools was created. The knowledge base is formalized
and stored as an ontology. The knowledge base is constituted of two different parts. The
first one contains 6 different blockchain technologies, described by 14 different attributes.
These blockchains attributes have been collected throughout the construction of BLADE, the
recommender tool. More details on its construction are given in Chapter 7.

The second part contains a collection of 120 unique blockchain-based patterns. This knowl-
edge has been gathered by performing a SLR, that is a protocol to answer one or several
research questions by systematically collecting and then reading research works. To carry
the SLR, the Kitchenham et al. guidelines on completing a SLR in software engineering have
been used (Kitchenham and Charters, 2007). In the blockchain-based software pattern on-
tology, the central element is the Proposal class. A proposal is a pattern introduced within
a source (e.g. academic paper, technical report, ...). Throughout the SLR, 160 different pro-
posals have been identified. As multiple proposals from different sources could express the
same pattern, a class has been created for each identified pattern to regroup proposals.
Thus, one pattern is linked to one or more proposal individuals.



42 Chapter 3. Overview of the Method and Contribution

Every proposal is described by a name, a context, a problem, and a solution. This format
has been chosen as it has been identified in the SLR process that most papers do not fol-
low a standard pattern format, such as the GoF format or the Alexandrian form (Gamma
et al., 1995; Alexander, 1977). Proposals are also classified into comprehensive categories to
facilitate their filtering and reuse: programming language, blockchain technology, and do-
main. In addition, they have been further classified using a taxonomy built during the SLR,
composed of 4 main categories and 15 subcategories. Finally, every proposal can be linked
to others through a series of relations: Require, Benefits from, Variant of, Related to, and
Created from. ldentifying the links between software patterns facilitates their appliance in
other systems as it identifies potential conflicts with other patterns. It also improves the
precision of software patterns recommender systems, as selecting a pattern might indicate
to the recommender that other related patterns should be recommended too. Full details
on the ontology structure and content are given in Chapter 6.

The resulting knowledge base supports the toolkit proposed in Harmonica: BLADE, the rec-
ommendation engine, and BANCO, the code generator. The knowledge base can also be
leveraged as such by practitioners in other systems or tools.

3.2.2 BLADE - BLockchain Automated DEcision process

BLADE is a decision-making tool for guiding the selection of adequate blockchain technology
and of blockchain-based software patterns. BLADE notably assists the design phase of soft-
ware development, as it helps design the architecture of the application and its blockchain
parts. BLADE also supports the implementation phase by guiding the user, that is a practi-
tioner (e.g. software engineer/architect) into a collection of blockchain-based patterns for
its application. The process of selecting blockchain-based patterns gives the user solutions
to recurring problems that can be applied during the implementation phase.

The recommendation process of BLADE can be divided into three different parts: (i) Block-
chain technology recommendation, (ii) Blockchain-based pattern recommendation, and (iii)
Blockchain-based pattern selection.

Blockchain Technology Recommendation

The blockchain recommendation is based on 14 predefined blockchain-related NFRNon-
Functional Requirements. These NFRNon-Functional Requirements are mapped within
BLADE to specific blockchain attributes. For instance, a requirement for smart contracts
might leads to only selecting the blockchains supporting Turing-complete smart contracts
in the knowledge base. This requirement is mandatory to build the running example block-
chain traceability application specified in Chapter 2.

BLADE users can express their preferences towards any NFR. The expression of preferences
is under different labels: Indifferent, Slighly desirable, Desirable,Highly desirable, and Ex-
tremely desirable. These labels form a 5-point Likert scale, often used during surveys to let
users express their feelings towards a question (Allen and Seaman, 2007). Requirements are



3.2. Framework Overview 43

expressed in a different way: the user can express a minimal, maximal, or specific value ex-
pected on the recommended blockchain. If a blockchain does not satisfy the requirement,
it will be discarded from recommendations independently from its score.

The computation of the recommendation is made possible through the usage of the TOP-
SIS multi-criteria decision-making algorithm. TOPSIS is able, from a matrix of alternatives
and weights, to generate a score between 0 and 1 for each alternative. The score repre-
sents the geometric distance between an alternative and the ideal solution, composed of
the best scores of each criterion. Starting from the aforementioned inputs, TOPSIS returns a
list of blockchain technologies, ordered by score. The user is then free to pick a technology,
knowing the adequacy of each technology to its requirements.

By leveraging BLADE, any user can get a recommendation of a suitable blockchain technol-
ogy for a given case. This recommendation can be used as such, or be forwarded into the
next framework tool to improve further recommendation. More details on the construction
of BLADE are given in Chapter 4.

Blockchain-based Patterns Recommendation

Besides recommending a blockchain technology, BLADE was designed to guide the selection
of blockchain-based patterns. A recommendation process has been implemented for this
purpose. The user begins by answering a collection of questions on the application to build.
Each question expresses a design problem’ related to a taxonomy category, as presented in
Section 3.2.1. The user can answer using three different options: Yes, No, and | don’t know.
Thus, answering positively to a question means that the practitioner wants to address the
underlying design problem, solved by the patterns classified inside the related category. For
instance, the question "l want to store and manage on-chain data in any format (encrypted
or clear)" addresses the design problem of storing data on the blockchain. Taking back the
running example described in Chapter 2, the user has to answer Yes: traceability data are
expected to be stored on-chain. Consequently, patterns that facilitate the storage of on-
chain data might be recommended.

As the taxonomy forms a tree of categories, and each question is indirectly linked to a taxon-
omy category, the set of questions also forms a tree. Thus, when the user answers positively
to a question, related subquestions might be asked. By extension, these subquestions cover
parts of the design problem addressed by the initial question. Blockchain-based software
patterns are classified under different subcategories of the taxonomy, that can be seen as
tree leaves. To recommend a set of patterns to the user, a score is computed for each pat-
tern based on the answers given beforehand. The result is then ordered and displayed to
the user through a web platform for selection.

'The terminology "design problem" used in the context of BLADE must not be confused with the one that
emanates from the DSR method.



44 Chapter 3. Overview of the Method and Contribution

Blockchain-based Patterns Selection

To complete the recommendations given on blockchain-based software patterns before-
hand, BLADE allows the user to freely explore and then select blockchain-based patterns.
On the web platform, the 120 identified pattern classes are displayed as clickable cards. The
practitioner can then click a specific pattern to display every proposal linked to it. If the
pattern corresponds to its needs, he can then decide to save it into his selection of pat-
terns, already composed of several patterns selected during the recommendation phase.
To guide the practitioner, patterns can be filtered on different aspects: Blockchain, Domain
(e.g. supply-chain patterns), and Language (e.g. Solidity patterns). He can also filter the pat-
terns by selecting a specific category of patterns, defined in the pattern taxonomy. Finally,
the tool can leverage the blockchain recommendations made by BLADE to automatically fil-
ter patterns based on the chosen blockchain. BLADE further helps the practitioner in the
design phase but also the implementation phase by (i) making accessible the knowledge
on blockchain-based software patterns and (ii) allowing the practitioner to get suitable rec-
ommendations on the patterns to use. The construction of this tool is further described in
Chapter 6.

3.2.3 BANCO - Blockchain ApplicatioN Configurator

The last part of this framework is BANCO, a web platform based on Software Product Line En-
gineering (SPLE) to configure and then generate ready-to-use blockchain applications. The
main idea behind SPLE relies on the systematic reuse of code and other software artifacts
such as design decisions (e.g. software patterns, models), requirements, and tests. Reusable
artifacts are created during the domain engineering phase, then reused during the applica-
tion engineering phase to compose software products. The family of software products that
can be created from a Software Product Line (SPL) have common features (i.e. commonal-
ity) but also specific features that differentiate them (i.e. variability). These features are
often expressed using a feature model, that describes all of the possible features and their
constraints. This reuse allows the creation of software-intensive systems (so-called software
products) at lower costs, in a shorter time, and with higher quality (Pohl, Béckle, and Van
Der Linden, 2005). Reusing existing blockchain artifacts also eases the burden of non-block-
chain expert practitioners by providing reusable elements on the shelf.

For the first iteration of BANCO, a feature model of blockchain-based (on-chain) traceabil-
ity applications has been designed. The features composing this feature model have been
identified based on a panel of existing studies on the topic. As such, the feature model ex-
presses the different features that can usually be found in on-chain traceability applications.
Nonetheless, BANCO can support other feature models.

In complement of the SPL approach, BANCO automates the application engineering phase
with a configurator and a code generator (Krueger, 2009). The configuration is performed
by a practitioner using a web platform, that embeds an interface to select desired features.
The feature model is reused in the configuration phase of BANCO to guide the user in the



3.2. Framework Overview 45

possible choices when composing the application. It also prevents the user from selecting
two or more conflicting features, thus avoiding the creation of an incorrect configuration.

Once the configuration is complete, a generator is able to create working blockchain prod-
ucts, using a set of templates. These templates are written in Solidity, a language to develop
Ethereum smart contracts. Each feature expressed in the feature model corresponds to one
or more code blocks within the templates. The code is then generated using a subtractive ap-
proach: non-selected features are discarded, and selected features are assembled together
to form a suite of smart contracts that fits the configuration. A web application is also gen-
erated to set up and deploy the smart contracts, then interact with them. The construction
of the feature model and the web platform as well as their validation is further described in
Chapter 7.

3.2.4 Framework Mapping to Design Science Research

As the framework contains many elements, each of them is linked to a specific technical re-
search question or a knowledge question, that emanates from the application of the DSR
method. Figure 3.4 highlights the link between the framework’s elements and research
questions.

Harmonica framework
4 BLADE N BANCO I
RQ4
—— : Blockchain-based RQS o
Blockchain Blockchain application
software patterns .
technology configurator and
explorer and
recommender generator
recommender
NG AN /
\V4
[ K S bl
Blockchain-based software patterns RS e & e
ontology .
question
Knowledge base

research question

<

"requires"

Artifact from a technical

Figure 3.4: Framework elements with regards to the DSR method.

The first tool of the framework, BLADE, is made of two artifacts: the blockchain technol-
ogy recommender, and the blockchain-based software pattern explorer and recommender.



46 Chapter 3. Overview of the Method and Contribution

These artifacts are designed and implemented when respectively addressing the technical
research questions RQ2 and RQ4. The second tool of the framework, BANCO, is an artifact
by itself and is designed and implemented throughout the technical research question RQ3.
Finally, the knowledge contained within the blockchain-based software patterns ontology
emanates from answering the knowledge question RQ2.

As a result, the framework is both the composition of these artifacts and knowledge and
an artifact by itself that addresses the research aim stated in Chapter 1, that is assisting the
practitioner in the design and the implementation of blockchain applications.

3.3 Running Example

In the following chapters of this thesis, the construction of the artifacts composing the
framework is presented. Although a big picture of the framework is given in this chapter,
it may be difficult to understand how each tool may be used in practice by developers to
design, then implement blockchain applications.

Therefore, this chapter introduces a running example to further guide the reader through-
out the different contributions of this thesis. This running example is drawn from a case
study of blockchain-based traceability of traditional Italian bread (Carasau bread) (Cocco
et al., 2021). In each of the following chapters, the running example serves to illustrate
how a blockchain application can be built using the Harmonica framework from its design
to its implementation. In Chapter 5, the selection of a suitable blockchain is performed
using BLADE, according to the running example requirements. Then, adequate patterns are
recommended in Chapter 7 to ease the design of the running example application. Finally,
the running example is implemented in Chapter 8 using BANCO to generate it.

3.3.1 Description

The Carasau bread is a traditional Italian bread from Sardinia, Italia. By being a regional
product, the different participants of the bread supply-chain must follow a defined produc-
tion protocol. First, the bread and its ingredients must be produced in Sardinia in specific
conditions. To guarantee the quality of the product, the bread must be produced with a
mechanical and physical process, from re-milled semolina of durum wheat and sea salt.
The bread must also comply with strict hygienic-sanitary conditions, to guarantee product
safety for the final consumer. In this case study, the Hazard Analysis and Critical Control
Point (HACCP) system is used to define a systematic framework to identify and analyze the
different hazards (e.g., biological, chemical, etc.) that can impact food safety (Cocco et al.,
2021).

The Carasau bread production begins with the durum wheat production. To ensure that the
produced wheat does not contain any toxin or chemical residue, the grain suppliers must first



3.3. Running Example 47

transfer appropriate documentation to discard these threats. If necessary, the milling indus-
try can also run its own grain analysis upstream, to complement the documentation. How-
ever, the milling industry has to perform these tests downstream for every batch of wheat
produced and periodically test the drinking water used in the production of the wheat. Once
the wheat is produced, the bakery industry is able to produce the bread, that will be sold by
retailers afterward. In complement to the measures already taken during production, safety
measures are also taken during the transportation and storage of the products. The temper-
ature and the humidity of the storage place and the transportation vehicle must stay within
a defined range to avoid product deterioration. Thus, these metrics are often monitored
to react accordingly if one of them crosses the threshold. The storage, bagging, and trans-
portation of the products (wheat, bread, etc.) must also be done in healthy environments
to avoid contamination or degradation of the products.

The blockchain technology is a good candidate to improve the traceability process and en-
sure full compliance to HACCP and the typical Carasau bread production process. Blockchain
data transparency and immutability ensure that the audit trail of operations throughout the
supply chain can be retraced for verification purposes. Data transparency also helps in en-
abling trust between the consumer and the producer, as the former can verify the prove-
nance of its product and the fabrication steps. Finally, the decentralization of the traceability
process forces all of the third parties to work together, instead of having one third party in
charge of the traceability application.

3.3.2 Requirements and Technical Considerations

To guide the design and the implementation of the traceability application, its requirements
have been extracted from the user stories described in the case study paper, then refined
using technical choices made by the authors in the description of their solution. These re-
quirements have been specified following the guidelines from Pohl (Pohl, Bockle, and Van
Der Linden, 2005).

Eight stakeholders are involved in the traceability application:

e Authority - the administrator of the system and supervisory body, represented by a
specific regional Sardinian body.

e Seed producer - provides the seeds of durum wheat;

e Farmer - responsible for the seeding and harvesting of grains.

¢ Milling industry - produces the re-milled semolina of durum wheat.
e Bakery industry - produces the Carasau bread.

e Distributor - responsible for moving the output of the farmer from the farmer’s site to
the milling industry, the output of the milling industry from the milling industry’s site
to the bakery, and the output of the bakery from the bakery'’s site to the retailer.

e Retailer - receives then resells the Carasau bread.



48 Chapter 3. Overview of the Method and Contribution

e Consumer - final actor of the supply-chain and consumer of the Carasau bread.

Each user has a specific interest in the system to build. Where supply-chain participants
will be interested in storing traceability data on their production, purchases, or sales, the
consumer will be interested in the provenance of the bought bread. In the chosen case
study, these interests have been individualized as user stories (Cocco et al., 2021). Table 3.1
lists the different user stories formalized by the case study.

The resulting functional requirements of the application are listed in Table 3.2, and divided
into 5 different categories:

1. Traceability document storage - each supply-chain participant has the duty to store
traceability-related documents to comply with HACCP.

2. Ownership transfer - these requirements specify the possible ownership transfers in
the system between supply-chain participants.

3. loT data record - to monitor the environment of the different supply-chain products,
these requirements specify the participants that will record these data and the con-
cerned places.

4. Traceability checking - these requirements specify who can access the traceability data
and in which conditions.

5. Participants management - it should be possible for the authority (that administrates
the system) to add new participants and grant or revoke read/write accesses.

In parallel, additional technical considerations coming from the case study were collected.
Indeed, knowing the different technical choices made by the authors will help the com-
parison between the author’s solution and the solution created from using Harmonica in
Chapter 4, 6, and 7.

Regarding the blockchain used, the authors are mentioning Ethereum without specifying a
specific consensus algorithm. As they also mention the willingness to save gas costs and to
allow supply-chain transparency for the final consumer, it is assumed that the blockchain
network used is the Ethereum mainnet.

Software patterns are also used in the design and implementation of the application. The
Oracle pattern is mentioned, that is a component designed to push fresh data on the block-
chain, as smart contracts cannot query data from outside the blockchain (Xu et al., 2018).
The pattern collection for smart contract gas efficiency is also mentioned (Marchesi et al.,
2020). Each operation performed on an Ethereum smart contract has an associated gas cost,
that should be paid by the user in Ether. Therefore, these patterns are highly beneficial as
they introduce good practices to save gas during the deployment or the execution of a smart
contract, thus saving costs.

A final technical consideration is the usage of InterPlanetary File System (IPFS). IPFS is a
decentralized peer-to-peer network for storing and sharing data?. In this case study, IPFS is

’https://ipfs.io/


https://ipfs.io/

3.3. Running Example

Table 3.1: Case study user stories.

49

Stakeholder

User story

Seed
producer

The seed producer stores technical information of his product (seeds),
and data on their sale.

Farmer

The farmer stores data on the purchases of raw materials (seed),
amount and technical information of the harvested grain, but also for
example data on irrigation, fertilizing, and the sales of the harvested
grain.

Farmer

The farmer transfers the ownership of his product, the durum wheat,
to the distributor in order to deliver the product to the milling industry,
and stores technical documentation on the products transferred.

Milling
industry

The milling industry system stores details about the received amount
of product (incoming grain/durum wheat batches) from distributors,
and data concerning its production of flour (outgoing re-milled semoli-
na/flour batches). The system of this industry also records informa-
tion about hygienic-sanitary conditions in which it works, and about
the temperature and humidity in its storage rooms.

Milling
industry

The milling industry transfers the ownership of its product, the flour, to
the distributor in order to deliver it to the bakery.

Bakery

The bakery system stores details about the received amount of prod-
uct (incoming re-milled semolina batches) from distributors, and data
concerning its production of bread (outgoing bread batches). In addi-
tion, as the milling industry system does, it records information about
hygienic-sanitary conditions in which it works, and about the tempera-
ture and humidity in its storage rooms.

Bakery

The bakery system transfers the ownership of its outgoing batches, the
Carasau bread, to the distributor in order to deliver them to the retailer
for the sale.

Distributor

The distributor records information about hygienic-sanitary conditions
of the means he works with, and about temperature and humidity in
the means used.

Consumer

The consumer via a user-friendly app can retrieve data on the bought
bread and can trace and verify each step along the supply chain.

All
participants

All actors/systems record information to make available to other actors
in the chain by using pdf and jpeg files. So at precise and predefined
time intervals, data coming from sensors and optical cameras are auto-
matically elaborated in order to obtain the files idoneous.

Authority

Authority manages and controls the reading and writing accesses in the
system by the different actors and devices, and performs inspections
to verify the conformity of the products and the work of each actor
in the chain. The inspections can be performed by viewing the data
documents stored by the nodes of the chain.




50 Chapter 3. Overview of the Method and Contribution
Table 3.2: Case study functional requirements.
Req. ID | Requirement description

R.1.1 The system shall allow a seed producer to store technical information on
seeds.

R.1.2 | The system shall allow a seed producer to store seed sales data.

R.1.3 | The system shall allow a farmer to store seed purchase data.

R.1.4 | The system shall allow a farmer to store crop cultivation data.

R.1.5 | The system shall allow a farmer to store the technical documentation of
produced durum wheat batches.

R.1.6 | The system shall allow a milling industry to store details on received durum
wheat and grain batches.

R.1.7 | The system shall allow a milling industry to store wheat production data.

R.1.8 | The system shall allow a milling industry to transfer the ownership of
wheat batches to the distributor.

R.1.9 | The system shall allow a bakery to store details on received floor batches.

R.1.10 | The system shall allow a bakery to store bread production data.

R.1.11 | The system shall allow a milling industry, distributor, or bakery to store
hygienic-sanitary working conditions data.

R.2.1 | The system shall allow a distributor to transfer the ownership of grains and
durum wheat batches to the milling industry.

R.2.2 | The system shall allow a distributor to transfer the ownership of flour
batches to the bakery.

R.2.3 | The system shall allow a distributor to transfer the ownership of Carasau
bread batches to the retailer.

R.2.4 | The system shall allow a farmer to transfer the ownership of durum wheat
and grains batches to the distributor.

R.3.1 | The system shall record in real-time the temperature and humidity of
transportation vehicles.

R.3.2 | The system shall record in real-time the temperature and humidity of stor-
age rooms.

R.4.1 | The system shall allow a consumer to retrace the different steps in the
production of Carasau bread.

R.4.2 | The system shall allow an authority to view the documents stored by
supply-chain participants for inspection purposes.

R.5.1 The system shall allow an authority to add a new participant into the
supply-chain participant’s group.

R.5.2 | The system shall allow an authority to grant read/white access to parts of

the system to a participant.




3.4. Conclusion 51

used to store large files, as it would be a very expensive operation on-chain. Storing a file
on IPFS returns a hash that is stored on-chain and can be used later to retrieve the file.

3.4 Conclusion

Although Chapter 1 states the research aim and objectives, it may be difficult to understand
how precisely these objectives are addressed, and what is built as a result. This chapter
presents different elements to introduce how research is carried out through this thesis,
and what artifacts and knowledge are created to address the research aim.

First, an introduction to the Design Science Research method is given. The driving research
guestions of this thesis are then defined, reusing the distinction between technical research
guestions and knowledge questions proposed by the DSR method. Then, an overview of the
envisioned solution is given. This overview helps the reader understand the different parts
of the framework, giving a big picture of the aspects of the design and implementation of
blockchain applications that are eased by the framework. It also introduces a mapping be-
tween defined technical research questions and knowledge questions, and the framework’s
elements. Throughout this mapping, the reader can understand how the different parts of
the framework are built, through the different research questions.

Finally, a running example is introduced in-depth. This running example, that is a case study
on blockchain-based traceability of traditional italian bread (Cocco et al., 2021), is used as a
reference to introduce in the different chapters how the framework can be used in practice
to ease the design and implementation of blockchain applications.

Where the goal of Chapter 2 was to give a general background on blockchain, software pat-
terns, and issues that threatens the developer in the design and implementation of block-
chain applications, Chapter 3 introduces the research questions, the research method, and
an overview of the contribution. From these chapters, it is expected that the reader has all
the necessary material to understand the different contributions within the next chapters.






583

Chapter 4

Recommendation Engine for the Selection
of an Adequate Blockchain Technology

— Key takeaways \

e An introduction to Multi-Criteria Decision Making methods is given.

e A conceptualization of the recommendation process is presented, that defines
how requirements are submitted and processed to generate blockchain technol-
ogy recommendations.

e A platform that implements this recommendation process was created. It allows
the practitioner to obtain blockchain technology recommendations from require-
ments.

e This platform is the first part of BLADE, and the first artifact of the framework
with regards to the DSR approach. It addresses the technical research question
RQ2.

In the design phase of the software development lifecycle, the requirements specified by
the user are mapped to a sound architecture to further guide the development during im-
plementation. This architecture is defined by components, and their interfaces and behav-
iors are often expressed in models to facilitate the comprehension of the components by
developers and stakeholders. When developing a blockchain-based application, software
developers have to face the selection of a blockchain technology. Answering this question
is far from being straightforward. Many blockchains have already been released from the
inception of the field in 2008 with Bitcoin, all of them having various attributes and char-
acteristics. For instance, the first major distinction lies in the access-control aspect of a
blockchain network: should everybody be entitled to join and participate in the blockchain
network (i.e. public blockchains), or only a set of predefined peers (i.e. private blockchains)?
It might be tempting for a software architect to select a private blockchain, to contain data



54 Chapter 4. Blockchain Technology Recommendation Engine

confidentiality among network participants and benefit from better performances, but such
blockchain suffers from centralization.

This chapter addresses this issue throughout the following technical research question
(RQ2): How to design a blockchain technology recommendation platform that simplifies the
completion of this task for non-experts so that practitioners can choose adequate blockchain
recommendations during the design phase of blockchain application development?

Also, two requirements for this can be derivated from this technical research question:

1. The platform must ease the task of blockchain technology selection for non-expert
users.

2. The platform must recommend blockchain technologies that satisfy the user require-
ments.

Satisfying these requirements will imply a positive outcome for the stakeholders (i.e. the
practitioners) goals, that motivate this research work.

To address this technical research question, a blockchain technology recommendation tool
is proposed. This recommendation tool constitutes the first part of BLADE, a platform that
aims to allow practitioners to obtain recommendations on blockchain technologies, then
blockchain-based software patterns. In this chapter, the terms "BLADE", "platform", and
"recommendation tool" are used interchangeably.

The platform is able to produce recommendations on the blockchain to use based on 14
different NFRs. By using the platform, practitioners will be assisted in the choice of a block-
chain technology, as executing the recommendation engine will result in a blockchain that
satisfies their needs.

The rest of this chapter is organized as follows. Section 4.1 introduces some background
in decision-making methods. Section 4.2 presents the recommendation engine model, in-
cluding its inputs, outputs, and internal logic. The implementation of the recommendation
engine is described in detail in Section 4.3. The running example introduced in Chapter
2 is then reused in Section 4.4 to illustrate the functioning of the web platform. Section
4.5 reports a validation of this contribution with regards to DSR, that was performed using
a Single-Case Mechanism Experiment (Wieringa, 2014), then Section 4.7 discusses existing
threats to validity of the artifact construction. Section 4.8 presents and discussed related
works, and Section 4.9 concludes the chapter by introducing future works on the specific
topic.

4.1 Introduction to Multi-Criteria Decision-Making

Making decisions is an everyday problem: we all have to face many decisions on a daily
basis. Where the majority of them are small and unimportant, we might have to face harder
decisions with possible consequences and drawbacks, notably at work. For instance, such a
decision could be "should we invest more money to modernize our information system?",



4.1. Introduction to Multi-Criteria Decision-Making 55

or "should we buy this software for our company?". In this context, failing to find the right
decision might lead to huge losses.

According to Harris et al., "Decision-making is the study of identifying and choosing alterna-
tives based on the values and preferences of the decision maker. Making a decision implies
that there are alternative choices to be considered, and in such a case we want not only to
identify as many of these alternatives as possible but to choose the one that best fits with
our goals, objectives, desires, values, and so on" (Harris, 1998).

This introduction will notably focus on MCDM. MCDM is one of the most known branch of
decision-making methods, that concentrates on decision problems with discrete decision
spaces (Triantaphyllou, 2000). A MCDM problem can be expressed as follows (Triantaphyl-
lou, 2000):

Definition 6 Let A = A, fori = 1, 2,3, ..., n be a (finite) set of decision alternatives
and G = g; forj =1,2,3, .., ma(finite) set of goals according to which the desirability
of an action is judged. Determine the optimal alternative A* with the highest degree of
desirability with respect to all relevant goals gj

To solve such a problem, an MCDM method have to be selected. However, there is no single
method to solve all problems. Thus, the first step to solve an MCDM problem is to identify a
suitable MCDM method from the ones available in the literature. Nevertheless, the selection
of amethod is also a decision problem in itself. Thus, many approaches have been proposed
in the literature to decide on the best MCDM method to use (Kornyshova and Salinesi, 2007).

Many MCDM methods have been proposed in the literature, such as TOPSIS (Lai, Liu, and
Hwang, 1994), Analytical Hierarchy Process (AHP) (Saaty, 1990), and ELimination Et Choix
Traduisant la REalité (ELECTRE) (Figueira et al., 2013). In this introduction, TOPSIS will be
described in-depth as it is used in this chapter.

TOPSIS

Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) is an algorithm
that allows to rank alternatives that each have attributes of different types and scales, from
a weighting matrix given as input (Lai, Liu, and Hwang, 1994). The main assumption of the
TOPSIS algorithm is that the most relevant alternative a,, for a given choice set should be
as close as possible to the positive ideal solution A™ and as far away as possible from the
negative ideal solution A~. Several steps are required for the execution of the TOPSIS algo-
rithm:

Matrix construction - Let m a collection of alternatives a. Each alternative a is defined by n
attributes c. Those alternatives can be grouped in a matrix X = {x;;j} for {i e N |1 <i <
m}and {j € N |1 <j <n}, x;; representing the attribute c; of the alternative a;.

Matrix normalization and weight application - Normalize criteria that have different scales
and units with each other. It is necessary to be able to make an accurate comparison. At this
step, weights from user preferences w;j are also applied.



56 Chapter 4. Blockchain Technology Recommendation Engine

xi]'

?)Z']' = 1”1']' * a)] = * (d] (4.1)

m 2
i= 1 ij

Calculating ideal positive and negative solutions then measuring the distance with each al-
ternative - By selecting the best and worst performance of each criterion in the normalized
and weighted decision matrix, the ideal positive and negative solutions (resp. A™ and A™)
can be computed to measure the distance of each alternative with those two solutions (resp.
St and S7).

ForA™ = (o], ..., v;“), (4.2) ForA™ = (v, ..., v]._), (4.4)
m m

Sit £ Y (vij—vj*t)? (4.3) Si— & Z v — v~ (4.5)
j=1 -1

Calculating relative distance C; with the ideal solution - This last step attributes a score to
each alternative, that represents its distance from the ideal solution. Ordering the results
creates a ranking allowing the selection of the best alternative among given alternatives and
user preferences.

Si—
Ci=g7 T Si-

4.2 Decision Process Model

This section presents the decision process contained in the recommendation engine to de-
termine adequate blockchains to use based on requirements. Figure 4.1 gives an overview
of the recommendation engine. First, the practitioner has to provide requirements to the
recommendation engine (Subsection 4.2.1). The recommendation engine also relies on a
knowledge base to compute the recommendations, composed of 6 blockchain technolo-
gies and described by a collection of 14 attributes. The blockchain recommendation is then
processed by forwarding the inputs to the decision process (Subsection 4.2.2).

4.21 Inputs

The accuracy of a multi-criteria decision support algorithm depends mostly on the input
data. This subsection presents the blockchain alternatives and their attributes chosen to
constitute the knowledge base, and the requirements that can be submitted by the user to
compute recommendations.



4.2. Decision Process Model 57

- 6 blockchains
Knowledge | - 14 attributes

base

Blockchain E

technology \!7
recommendations
A
N Recommendation | - Decision process (TOPSIS)

> engine - Constraint solver
Requirements  \_

Practitioner

Figure 4.1: Recommendation engine overview.

Alternatives and attributes

To feed the decision support process, a knowledge base has been built, containing a set of
blockchain alternatives a,, and their respective attributes c,,. Table 4.1 presents this set of
these alternatives and attributes.

A set of six blockchain technologies have been considered to form the collection of alterna-
tives used by the recommendation engine. In this set, three alternatives in this collection
are public blockchain:

e Bitcoin (PoW: Proof-of-Work) (Introduced in Chapter 2).
e Ethereum (PoS: Proof-of-Stake) (Introduced in Chapter 2).

e Tezos (PoS: Proof-of-Stake), an open-source, self-upgradeable and energy-efficient
blockchain technology.

In this context, selecting one of these technologies involves using the public main blockchain
network associated with these technologies (e.g. using the Ethereum mainnet, in opposition
to a self-deployed private network). They have been chosen as they were, at the time of this
work, among the leading blockchain technologies in terms of capitalization (CoinMarketCap,
2020).

The three other blockchain technologies are private:

e Hyperledger Fabric (Raft), the most-known Distributed Ledger Technology (DLT) of the
Hyperledger project?.

e Corda (Practical Byzantine Fault Tolerance), an open-source blockchain project for
business carried by R33.

"https://tezos.foundation/
’https://www.hyperledger.org/use/distributed-ledgers
Shttps://www.corda.net/


https://tezos.foundation/
https://www.hyperledger.org/use/distributed-ledgers
https://www.corda.net/

58 Chapter 4. Blockchain Technology Recommendation Engine

Bitcoin | Ethereum | Ethereum | H.F. Corda | Tezos
Consensus | o \v | pos PoA Raft | PBFT | PoS
algorithm
Public | Yes Yes No No No Yes
Permissionned | No No No Yes Yes No
Native encryption | No No No Yes Yes No
Throughput (tx/s) | 3,8 15 F100 F1000 | 1000 | 30
Latency (s) | 3600 180 F10 <1 <1 60
Energy efficient | No Yes Yes Yes Yes Yes
Byzantine o o o o o o
fault-tolerant 50% 50% 33% 0% 33% 33%
Turing-complete No Yes Yes Yes Yes Yes
smart contracts
Cryptocurrencies | Yes Yes Yes No No Yes
Storage element | Basic Adv. Adv. Adv. Adv. Adv.
Computing No Adv. Adv. Adv. Adv. Adv.
element
Asset management | oo | adv. Adv. Adv. | Adv. | Adv.
element
Software connector | No Adv. Adv. Adv. Adv. Adv.
. . . Very Very Very
Learning curve | Low Medium Medium high high high

Table 4.1: Chosen alternatives and attributes (Adv.: Advanced, H.F.:
Hyperledger Fabric).

e Ethereum, using the PoA (Proof-of-Authority) algorithm that gives the right to create
blocks only to a specified subset of participants.

They are among the most-used technologies in companies (Polge, Robert, and Le Traon,
2021). Additionally, this specific subset has been chosen as it contains blockchain technolo-
gies that are very different from each other. As this subset is sufficient in the proposition of
BLADE, it may be extended by including other blockchain technologies in future works.

Regarding the attributes, a set of criteria was chosen, categorized by the different macro-
characteristics*:

¢ Functional suitability - Smart contracts, Cryptocurrencies, Storage, Computational el-
ement, Software connector, Asset management

Performance efficiency - Throughput, Latency, Energy efficiency

Security - Access management, Permission management, Native encryption

Reliability - Byzantine-fault tolerance

Usability - Learning curve

4Here, the term macro-characteristic refers to the 7 categories of software quality (Security, Reliability, .
...) under which the software quality attributes are introduced



4.2. Decision Process Model 59

These macro-characteristics relate to software quality proposed by the ISO 25010, a stan-
dard defining the different quality attributes to be considered in order to guarantee the qual-
ity of a system or software during its implementation (Haoues et al., 2017). The attributes
were chosen for their relevance when selecting a blockchain, but also for the possibility to
assign them a numeric value that can be reused by the decision engine. Therefore, these
attributes are not only specific to blockchain technology, they apply to the whole system
quality.

The values given to each attribute of each blockchain technology in the knowledge base
come from different sources: studies (Belotti et al., 2019), white papers (Brown et al., 2016;
Nakamoto, 2008; Wood et al., 2014), technical documentation, and scientific literature
(Androulaki et al., 2018). Some of these values are fuzzy (marked by the symbol F), be-
cause they are subject to variations in the topology and configuration of the blockchain net-
work as well as in the technical characteristics of the nodes that make it up (CPU, RAM...).
Their value is therefore built from known attributes, such as the supported consensus al-
gorithm (a Byzantine fault-tolerant algorithm like Bitcoin’s PoW algorithm will have a lower
transaction throughput than a fault-tolerant algorithm like Raft used by Hyperledger Fab-
ric).Nevertheless, these values can be fixed when the blockchain parameters are known.

This knowledge base will also change over time. The values of the attributes of the differ-
ent blockchains chosen can be modified (update of one of the elements of a blockchain).
As these variations can have an impact on the choice of the best alternative by BLADE, it
will be necessary to evaluate the knowledge base’s recentness in order to determine if the
recommendation is relevant at a given time.

Requirements and preferences

In order to obtain a blockchain recommendation that meets the user’s expectations, the
decision process within the recommendation engine has to take into account a collection of
criteria. Each criterion of this collection corresponds to a specific attribute of the knowledge
base. In BLADE, an interface is provided to express requirements as numerical or litteral
values that are forwarded as criteria for the decision process. For instance, the requirement
"The blockchain network shall be public" can be given to BLADE as a single litteral value
("Public").

To further refine the decision process, the importance of requirements is also taken into
account. This importance can be expressed in two ways: the mandatoriness of a require-
ment, and its preference level. The mandatoriness can be expressed by marking a criterion
as Required or Unwanted. When making a decision, an alternative whose attribute does
not meet either of these two requirements would be automatically disqualified from the
possible alternatives, regardless of its score obtained by running the multi-criteria decision
support algorithm.



60 Chapter 4. Blockchain Technology Recommendation Engine

The user can also indicate a preference level for a specific criterion ¢;;, by means of a rating
scale taking the form of a sequence of labels, each label is linked to a numerical value (de-
fined in Table 4.2). The choice of a label thus makes it possible to obtain a preference value
px for each of the ¢, criteria. In order to obtain the weights of each criterion w;, so that the
sum of these weights is equal to 1, each preference p,, for a criterion is divided by the sum
of the preferences.

Label Preference value p,
Extremely desirable 4
Greatly desirable 3
Desirable 2
Slightly desirable 1
Indifferent o

Table 4.2: Ranking scale associating labels and preference values.

4.2.2 Decision Process

The decision process is constituted of two parts: the processing of criteria and the decision-
making algorithm. For each criterion modified by the user, recommendations are computed
in real-time. Thus, the user can visualize the impact of one criterion on the recommendation
results.

Criterion filtering

An overview of criteria processing is given in Figure 4.2.

Remaining
alternatives?

)

Criterion marked
as "Required" or
"Unwanted"

Remove non-
compatible
alternatives

Remove
criterion from
alternative
matrix
———

Analyze criterion

P

Are all criteria
analyzed?

Criterion empty

Loop for each
criterion in the
matrix

No

Figure 4.2: Criteria processing phase.

In this first phase, criteria and alternatives are retrieved by the recommendation engine.
The alternatives are expressed as a 14-by-6 matrix, each column representing a blockchain
technology and each line a specific attribute. Each criterion is analyzed for filtering purposes.



4.3. Implementation 61

A first filtering is performed on the attributes: if a criterion is left unspecified by the user, it
is possible to remove the corresponding attribute from the matrix. Indeed, this will have no
impact on the final result, as it would be interpreted by the decision engine as a weight of
0.

The second filtering is performed on the alternatives: if a criterion marked as Required or
Unwanted is not met by an alternative, the latter is automatically disqualified for the recom-
mendation, regardless of the score it might have received using the decision algorithm that
follows. For a criterion that is not a boolean, the user also has to specify an extremum value.
As an example, if a certain number of transactions per second is required, alternatives that
do not meet the threshold value will be disqualified. However, if no alternative remains after
the selection of a criterion, an error message is displayed, as the user requirement cannot
be satisfied by any blockchain technology in the knowledge base. This filtering phase results
in a shortened alternative matrix, that facilitates the computation of recommendations by
the decision process.

Decision process

The second phase consists of the decision process between the remaining alternatives. The
decision engine relies on TOPSIS to compute the recommendations, a decision-making algo-
rithm presented in Section 4.1. The choice of this algorithm was guided by a study presenting
state-of-the-art of studies concerning the choice of a multicriteria decision support method
(Kornyshova and Salinesi, 2007). The authors propose a decision framework including dif-
ferent properties to focus on when choosing a multicriteria decision support method.

The researcher has chosen the TOPSIS method for the decision process, in particular as it
supports the multi-criteria analysis of numerous and varied attributes (it is the case when
comparing two blockchains) while being simple to implement and precise in the decision. It
also allows taking into account user-defined weights, which is required given the operating
mode of the recommendation engine. This is for example not the case of the Condorcet
method, or Borda (Zwicker, 2016), where only the attributes would have played a role in the
selection of the best alternative. Also, another potential candidate for this tool is Analytical
Hierarchy Process (Podvezko et al., 2009). Possessing a large number of similarities with
TOPSIS, the latter method was nonetheless selected for its greater ease of entering weights.
Indeed, AHP requires comparing the attributes of two to two to express the importance that
one attribute has compared to another for the user.

4.3 Implementation

This section details the implementation of the recommendation engine, in a tool deployed
online® and available as open-source on GitHub®. In this subsection, the implementation of
each part is presented: (1) the knowledge base, (2) the API containing the different solvers

Shttps://recommender.blade-blockchain.eu/
Shttps://github.com/nicoSix/blade-project



62 Chapter 4. Blockchain Technology Recommendation Engine

composing BLADE, and (3) the web platform allowing the easy input of requirements. The
solvers are also presented in more detail in their respective subsections.

4.3.1 Tool Architecture and Implementation

To implement this tool, a 3-tier architectural model is applied, based on the separation be-
tween client, server, and data (Bass, Clements, and Kazman, 2003). Here, the data layer will
is the knowledge base. Only accessible by requesting the server, it contains the blockchain
technology alternatives and their respective attributes. For this purpose, three collections
were created:

1. The first one contains the set of alternatives stored as documents. Each alternative is
defined by its name and its consensus algorithm as these two attributes are sufficient
to identify a blockchain among the existing ones. The alternatives also contain another
document that defines the 14 attributes used in the decision support.

2. A second collection contains all the attributes available for decision. An attribute is
defined by its label (e.g. latency), its cost (a variable taking the value o or 1 and al-
lowing the solver to know whether to maximize or minimize the goal), and its type
(e.g. numeric, boolean, ...). The use of such a structure makes it easier to maintain
the knowledge base over time. Indeed, the alternatives introduced in the knowledge
base should conform to the existing model to be added.

3. Finally, a third collection allows storing literal values and their numerical equivalence.
Indeed, some attributes of the alternatives can be given a literal value (e.g. Very low,
Medium, ...) instead of a numerical value. These literal values are stored in the knowl-
edge base, and associated with a numerical value. This also makes it easier to update
the knowledge base, by allowing the numerical value of an attribute expressed as a
literal value to be changed for all alternatives at once.

The server part is an APl (Application Programming Interface), developed in Python and us-
ing the Flask framework’. The main advantage of dividing the application into layers, and
thus by the independence of the server towards the client, is the possibility of reusing the
APl in other applications. Therefore, the API can be integrated into future works, presented
in Section 4.9. This API allows inbound requests to compute the scores based on inputs,
that is the decision process, and another solver allowing the identification of exclusion de-
pendencies while selecting requirements on client-side (introduced in Subsection 4.3.2 and
Subsection 4.3.3).

Finally, the client is a web platform written in Javascript and based on the React frame-
work®. This framework facilitates the design and implementation of single-paged applica-
tions through the definition of components and their associated states. It has been chosen
for its compatibility with the 3-tier layer approach, and its capacity to propose a reactive and

"https://flask.palletsprojects.com/en/1.1.x/
8https://fr.reactjs.org/



4.3. Implementation 63

efficient platform for users to submit their requirements. Figure 4.3 shows a screenshot of
the interface proposed to the user for the selection of requirements and preferences.

Requirement selection

Please select your requirements Delow.

Security

(Click to display

Performance efficiency

(Click to display

Reliability

(Click to display

Functional suitability

(Click to displa:

Usability

(Click to displa!

Figure 4.3: Screenshot of requirements selection interface in BLADE.

The selection is made in the left panel, entitled Requirement selection. As presented in the
Subsection 4.2.1, the attributes are grouped by software quality macro-characteristics from
the ISO 25010 standard. The user can unfold the different panels corresponding to these
macro-characteristics to display the selection menus for each of the available attributes. The
user can then enter her level of preference if the attribute is marked as Required, as well as
the desired value. The results are displayed in real-time, in the right panel of the interface. A
table is displayed, containing the alternatives classified by score. A history of user selections
is also displayed, to summarize the attributes taken into account in the recommendations
made by the tool. It also allows the user to remove preferences and requirements to alter
the recommendations, if necessary.

4.3.2 Score Generation

With a file containing the user’s requirements and preferences as input, the score gener-
ation engine is responsible for calculating a score for each of the alternatives using their
characteristics defined in the knowledge base. When a decision has to be made by the de-
cision support process, a request is made via the API to the server, which transmits it to the
engine. As the scores are transmitted in JSON format, it will be responsible for changing the
format of the data structure into the format expected by the tool. Then, the engine is in
charge of calculating the score of each of the alternatives and disqualifying those that do
not meet the input requirements as defined in detail in Section 4.2. The latter returns the
results to the server, which in turn returns the results to the client. This allows the updating
of the table containing the scores for each of the alternatives in the tool.



64 Chapter 4. Blockchain Technology Recommendation Engine

4.3.3 Dependency Model Generation Engine

When making a decision, the user might enter conflicting requirements. On the platform,
a requirement is conflicting with another when the selection of both requirements disqual-
ifies all alternatives in the decision process. Allowing the user to enter conflicting require-
ments is not something that is desirable, as the purpose of this tool is to provide decision
support from the selection of requirements to the display of results. In order to overcome
this problem, an engine has been implemented on the server-side, allowing the generation
of a dependency model for the application. Here, a dependency is said to be exclusionary,
i.e. the model indicates, when selecting a requirement, the ones that are directly in conflict
(thus to prevent obtaining at least one valid alternative if both are selected).

From the knowledge base, the engine is in charge of retrieving all the attributes available
for the alternatives and generating the corresponding pairs. For each existing attribute, the
engine will retrieve all the values it can take, by iterating over the available alternatives.
It will then create pairs from all these values so that for a given attribute value, there is a
number of pairs equal to the number of existing values. Then, a backtracking algorithm is
responsible for applying two constraints to the pairs: (1) a pair cannot contain two identical
attributes with the same value, (2) none of the alternatives contained in the knowledge base
must be able to satisfy both requirements formulated in the pair.

Formally expressed, supposing an alternative in a set of alternatives a € A, C,, an engine
constraint (r,, ) a value pair, the following constraints are posed (Eq. 4.6):

C, satisfied < Pa € A, (r5,13) € a,
L (4.6)

C, satisfied < r, # 1p.
Failure to satisfy one of the constraints automatically results in the removal of a pair from

the initial list of pairs. At the end of the execution of the algorithm, the result is a set of pairs
representing all of the conflicting requirements.

This dependency model is stored in the database and then reused at each requirement se-
lection by the user. Indeed, when selecting a requirement, the client will go through this
dependency model and automatically grey out the different values in the form correspond-
ing to incompatible choices (because they make it impossible to choose at least one alter-
native). An indication of conflicting values will also be given to the user so that he can adapt
his requirements if necessary.

4.4 Running Example

In this section, the running example given in Chapter 2 is reused to illustrate how BLADE can
be applied to a real-life example. First, the requirements introduced in the running example



4.4. Running Example 65

will be reused to determine the values for the different attributes to fill on the web platform.
Then, the recommendations will be computed based on these attributes and discussed.

4.4.1 BLADE Requirements and Preferences

Table 4.3 lists the different values entered in BLADE w.r.t. the requirements and the context
given in the running example. For the Security macro-characteristic, the permissionned at-
tribute has been required to be set to No. Indeed, it is mentioned in the running example
study that the application should rely on a permissionless blockchain, since the main goal is
to render all information around the production of the Carasau bread completely transpar-
ent, without possible tampering from privileged parties. Regarding the Performance macro-
characteristic, the preference towards throughput and latency has been set to Desirable.
Although there is no explicit mention of a performance need by the running example study,
it is appreciable that for two equivalent blockchain technologies, the most-efficient one is
picked to support the future scalability of the system. Finally, the Functionnality aspect en-
globes three defined attributes. As the Carasau bread application should support the inges-
tion of 1oT data, the creation of records, and other complex features, smart contracts are
required elements in the application. Thus, its attribute in BLADE has been set to Required
and Yes. The storage element attribute has been required and set to Advanced, as the main
purpose of the application is to store data about the production of Carasau bread or refer-
ence to external data stored in IPFS. The asset management element attribute has also been
required and set to Basic, as the requirements mention the transfer of asset property from
one participant to another.

Attributes | Requirements | Required value | Preferences
Public | None Indifferent
Permissionned | Required No Extremely desirable
Native encryption | None Indifferent
Throughput (tx/s) | None Desirable
Latency (s) | None Desirable
Energy efficiency | None Indifferent
Byzantine None Indifferent
fault tolerance
Smart contracts | Required Yes Extremely desirable
Cryptocurrencies | None Indifferent
Storage element | Required Advanced Extremely desirable
Computational element | None Indifferent
Asset management | Required Basic Extremely desirable
Software connector | None Indifferent
Learning curve | None Indifferent

Table 4.3: Carasau bread application requirements and preferences.



66 Chapter 4. Blockchain Technology Recommendation Engine

4.4.2 Results

Figure 4.4 shows the results after the execution of the decision process.

Alternative Score (rounded)
Ethereum, PoA 1

Tezos, PoS 0.476
Ethereum, PoS o

Corda, PBFT Disqualified
Hyperledger Fabric, Raft Disqualified
Bitcoin, PoW Disqualified

Table 4.4: Decision process execution results.

The execution of the decision engine has lead to the disqualification of three blockchains
(Hyperledger Fabric, Corda, and Bitcoin). Hyperledger Fabric and Corda both are permis-
sioned engine, thus not compatible with the need of a permissionless blockchain. Regarding
Bitcoin, it has also been discarded as it does not support Turing-complete smart contracts. As
a result, three blockchains (with their consensus algorithm) remain: Tezos(PoS), Ethereum
(PoS), and Ethereum (PoA). Ethereum with the Proof-of-Authority algorithm has been ranked
the highest by the recommender. This recommendation concords with the running example
study, as Ethereum was also the choice made by the authors.

4.5 Validation

In this section, the third step of addressing a technical research question is carried, that is
artifact validation. This step consists in assessing that it contributes to the stakeholder’s
goals in a problem context, by predicting the effects of the treatment on this context if it is
implemented (Wieringa, 2014). In this first artifact, the goal is the selection of a blockchain
technology based on requirements. Two requirements drive this artifact: it should ease the
selection of a blockchain technology for non-experts, and produce adequate recommenda-
tions.

The first requirement is difficult to validate, as it is hard to assess the "easiness" of select-
ing a blockchain technology. Yet, the usage of the platform to obtain recommendations
for the running example and this section has led to two different arguments for validat-
ing this requirement. First, the task of reusing existing requirements to fill BLADE’s inputs
was straightforward in both cases. Without this platform, it may have been harder to find
what requirements have a role in the selection of blockchain technologies. Then, the task
of selecting a blockchain technology was also easier, as it did not require fetching existing
technologies manually to find the most adequate ones. About ten minutes were enough to
select BLADE inputs from requirements and obtain recommendations.

For the second requirement, the adequateness of recommendations can be assessed more
easily. In order to test and validate the approach in this regard, a Single-Case Mechanism



4.5. Validation 67

Experiment (SCME) will be carried out. A SCME is a useful approach for validation research,
as it exposes the design to a controlled stimuli and analyze in detail the result (Wieringa,
2014). For instance, such an experiment may be carried out by implementing a prototype
from the design, building a model of its intended context, and feeding its test scenarios to
observe its responses.

In this section, a SCME is carried following the aforementioned example by using an existing
study as the context (Longo et al., 2019). Throughout this paper, this study will be called a
"reference study". This study proposes to introduce a blockchain system to a supply chainin
order to enable data sharing between different actors. First, BLADE is used to obtain a block-
chain technology recommendation, that is compared to the decision taken by the authors of
the reference study. Then, a benchmark is performed to assess that the performance of the
chosen blockchain matches the requirements of the blockchain-based supply chain system
to build. These two steps aim to validate that (1) BLADE proposes a blockchain technology
in adequation with the one employed by the reference study researchers and (2) that the
chosen blockchain technology fulfills the performance requirements of the reference study.

4.5.1 Big-Box Scenario

The supply chain that was modeled in this work consists of a network of Big-Box chain re-
tailers, as well as three wholesalers that supply their stores. Because the Big-Box retailers
are grouped together in the same organization, the study considers that there is real-time,
transparent, and reliable data sharing among the stores. However, the retailers are still com-
peting with each other, as they operate in the same geographic area and all offer the same
product lines. Customers arrive at the store and select products and their respective quan-
tities. If the store’s stock is sufficient to satisfy the demand, the product is reserved in the
quantity requested; if not, a partial reservation is offered; the unfulfilled demand is used
to calculate replenishments. The inventory is taken before the opening of the stores; if an
order is needed then the retailer can choose one of the wholesalers to supply, taking into
account the supply time, the current demand, and the instantaneous quantity available for
the desired products. If the quantity of a product held by a wholesaler is not sufficient for
all retailers, then it is shared equally.

In this context, sharing the aggregate demand of different retailers among wholesalers could
make it easier to predict the stock to be built up to meet retailers’ demands. However, the
actors in this system remain competing with each other and therefore do not trust each
other. Thus, the study proposes the implementation of a blockchain allowing the recording
of data related to the supply chain (notably market demand) in the form of a hash value, as
well as the different third parties having access to this data (if they are authorized by the
blockchain, they can directly make a request to obtain this data from the third party who
recorded it). The storage of this value allows to attest to the veracity of the data transmitted
between third parties, they can now trust each other.



68 Chapter 4. Blockchain Technology Recommendation Engine

4.5.2 Big-Box Client Requirements

In order to be able to select a blockchain using the recommendation engine, the quality at-
tributes, as well as the requirements and preferences for these attributes (Subsection 4.2.1),
need to be identified. For this purpose, a textual requirements table is drawn up from the
content of the reference study, together with a summary of the actors and systems pre-
sented in or derived from the reference study. These requirements have been formulated
following Pohl’s guidelines (Pohl, Bockle, and Van Der Linden, 2005). This is then used to
partially determine the preferences and requirements that the user would have chosen as
inputs for BLADE.

Functional Requirements

First and foremost, the textual requirements of the blockchain system to be designed have
to be extracted. In these requirements, 6 different actors are introduced:

e BigBox: the company driving the retail network and the blockchain project.

e Wholesaler: buys goods from manufacturers (unspecified) and resells them to BigBox
retailers.

e Retailer: manages one or more shops within the BigBox company network.

e Consortium: a group of wholesalers and retailers enabling the use and ensuring the
proper functioning of the blockchain.

e Consortium member: a wholesaler or retailer with the right to register data on the
blockchain and vote for the acceptance of new members.

e Candidate: a wholesaler or retailer who has applied to join the consortium.

These actors will interact with the system, that contains two main parts: (1) the blockchain,
a network composed of nodes, which stores the smart-contract necessary for the proper
functioning of the application proposed by the reference study, and (2) the "off-chain" ap-
plication to build, allowing the different actors to interact with the blockchain and store
stock information.

Once these actors and systems are defined, it is possible to analyze the different require-
ments for the reference study. Table 4.5 details these requirements by category and displays
the dependencies between them. These functional requirements will guide the elicitation
of the NFRs, used by BLADE during the decision process.

BLADE requirements and preferences

From the textual requirements, it is possible to formalize the preferences and requirements
that are submitted to BLADE. This section summarizes each of the BLADE macro-characte-
ristics and makes explicit the choices made in them with respect to the textual requirements
(Table 4.6).



4.5. Validation

69

Category

Requirement

Linked to

Consortium
member
management

11

1.2

1.3

While an application for addition to the
consortium is in progress, the off-chain
application shall register on the blockchain the
vote of a consortium member for this session if
this member has not yet voted and if he is
authenticated via his private key.

The blockchain should only accept applications
from wholesalers and retailers affiliated with the
BigBox company.

When an absolute majority of votes in favor of
accepting the candidate is obtained, the
blockchain shall add the accepted candidate to
the list of consortium members.

[1.1]

Data
publication

241

2.2

2.3

When a retailer member of the consortium
requests it, the off-chain application shall write in
the blockchain the metadata associated with the
state of the stock at time T, if the data has been
recorded in database beforehand.

When a retailer member of the consortium
requests it, the off-chain application shall record
in its database the data associated with the state
of the stock at the moment T.

Each day, the off-chain application shall publish
metadata about the inventory information of each
retailer in the network.

[2.2]

Data retrieval

3.1

3.2

When requested by a consortium member, the
off-chain application shall retrieve from the
blockchain the metadata associated with the
status of an inventory for a retailer at a given date.
When a retailer member of the consortium
requests it, the off-chain application shall retrieve
the data associated with the state of a stock for a
retailer at a given date, using the metadata
retrieved beforehand.

[3.1]

Blockchain
properties

4.1

4.2

If less than 1/3 of the nodes comprising the
blockchain are faulty, the blockchain shall be able
to process at least 20 simultaneous transactions
without a performance loss of more than 5%.
The blockchain shall support the execution of
"Turing-complete" smart contracts.

[1.1] [1.3]
[2.1] [2.3]

Table 4.5: Requirements for the Big Box reference study.



70 Chapter 4. Blockchain Technology Recommendation Engine

Attributes | Requirements | Required value | Preferences
Public | None Indifferent
Permissionned | None Indifferent
Native encryption | None Indifferent
Throughput (tx/s) | None Indifferent
Latency (s) | None Weakly desirable
Energy efficiency | None Extremely desirable
fault If;/lz;r;trl]:z Required >33,33% Desirable
Smart contracts | Required Yes Indifferent
Cryptocurrencies | None Indifferent
Storage element | Required Advanced Indifferent
Computational element | None Indifferent
Asset management | None Indifferent
Software connector | None Indifferent
Learning curve | None Desirable

Table 4.6: Submitted requirements and preferences.

Security - As the data stored in the blockchain is simply metadata that does not contain
personal information, it is not considered sensitive, nor is the identity of third parties masked
by their address. It is therefore possible to use a public blockchain (which is the initial choice
of the study), without data encryption. As permissions are managed at the level of the smart
contract, it is not necessary to have a blockchain that supports permissions management.
By deduction, since these properties are not important in this context, they are all marked
as Indifferent in the input table.

Performance efficiency - The blockchain system does not need to be capable of handling a
high volume of transactions per second (differentiated from the number of transactions per
second that can be submitted as input) and low latency. Nevertheless, since a low latency
can be beneficial to the user experience, it has been set to Slighly desirable. As for energy
efficiency, this is a particularly interesting property from a cost reduction perspective, one of
the reference study goals. Using public blockchains with heavyweight consensus algorithms
(such as PoW) is very energy intensive. Therefore, the preference Greatly desirable for this
property.

Fiability - Since actors do not trust each other, it is essential to have a Byzantine fault toler-
ance percentage, that indicates the system is able to function properly for a certain number
of nodes that may behave adversely. A percentage of at least 33.3% has been chosen, that
guarantees the good continuity of the blockchain network for a number of faulty nodes
f+1l< % n being the number of total nodes constituting the network.

Functional suitability - To meet the objectives of the defined topic, the blockchain should
be able to take the form of a storage element to hold the retailers’ data as well as support
the administration of it, de facto through smart contracts. These two attributes are there-
fore defined as Advanced as well as Required respectively. The other functionalities are not



4.5. Validation 71

required, thus they are marked as Indifferent.

Usability - Finally, the last chosen attribute is the learning curve: in a context where block-
chain should enable to save costs associated with the supply chain operation, as well as
support a low-complexity application, using a technology whose mechanics are easy to learn
can be an advantage. It has been marked as Desirable.

The compilation of selected values leads to Table 4.6, entered as input later to execute the
decision process. These values also allow satisfying the constraints defined in the Subsection
4.3.3, thus making their submission into BLADE possible.

4.5.3 Results

Running the automated process eliminates the Bitcoin alternative, as it does not support
smart contracts, as well as the Hyperledger Fabric alternative, as it does not tolerate even-
tual Byzantine faults. It results in two matrices, one containing the weights and the other
the possible alternatives (resp. Ethereum-PoS, Ethereum-PoA, Corda and Tezos). Knowing
that a weight of o for a given attribute makes it insignificant in the calculation of the score
of each alternative, it is possible to simplify these matrices for the values defined in eq. 4.7
and eq. 4.8.

0.25

0.75 180 10 1 60
W=1os (4.7) 1 1 1 1

' A= (4.8)

05 05 033 033 033

04 04 08 08

This is followed by the execution of the decision support algorithm, that proposes the fol-
lowing results (Table 4.7). The decision algorithm considers the Ethereum-PoA alternative
as the most suitable alternative in the given selection. Indeed, its score is the closest to 1
(positive ideal solution) of the four alternatives.

Alternative Score (rounded)
Ethereum, PoA 0.709
Corda, PBFT 0.549
Ethereum, PoS 0.451
Tezos, PoS 0.431
Hyperledger Fabric, Raft Disqualified
Bitcoin, PoW Disqualified

Table 4.7: Decision process execution results.



72 Chapter 4. Blockchain Technology Recommendation Engine

4.5.4 Recommended Solution Validation

The previous subsection showed, according to BLADE, that the most suitable solution for
the problem at hand is Ethereum-PoA. To confirm the relevance of the solution, this sub-
section aims at evaluating the robustness and the performance of an Ethereum PoA-based
network through a tool allowing to test of its performance, developed in this sense. This
tool, accessible in open-source?, allows the semi-automatic execution of benchmarks on an
Ethereum blockchain deployed for this purpose. In order to perform this performance test,
the tool uses machines from the Grid’5000 network, a flexible, large-scale testbed that can
be configured at will to support large-scale experiments. Also, the machines are dedicated
to the task for which they are allocated, not shared with other processes. Using Grid’5000
therefore allows easy reproducibility of the experiment proposed in this subsection.

For the performance test, a smart contract for Ethereum was also implemented. When
deployed on the blockchain, it enables the operations defined in the blockchain scenario
(saving hashed data, administration of third parties authorized to use the application). The
tool is then used to set up the performance test infrastructure, represented by Figure 4.4.

Local . Grid'5000

N (1,3) (

Local machine . Leader server

A

Ethereum network

Figure 4.4: Performance test infrastructure typology.

Three different machines can be described:

e Local machine: it is used to start the benchmarking tool, that allocates the machines
for the experiment and then retrieves and compiles test results.

e Main server: set up by the tool, this server starts Ethereum PoA nodes by using the
parameters provided by the tool, then executes the benchmarking test.

e Ethereum node: these nodes compose the blockchain network and are listening for
transactions coming from the main server.

?https://github.com/harmonica-project/sc-archi-gen



4.5. Validation 73

The execution sequence of a benchmark is as follows: the tool requests the allocation of
machines for the execution of benchmarks on the Grid’s000 network (1). Once the ma-
chines are obtained, it sends the configuration of the desired blockchain network to the
main server. This configuration contains, among other things, the inter-block interval, the
size of the blocks produced, information about the machines that act as nodes, the type of
benchmark (in this case, sending transactions to a single smart contract), and the number of
transactions sent per second to the blockchain. The main server initializes the machines as
defined by the configuration (2), using Salt’, a tool that allows to quickly configure several
clients from a server. It then waits for the signal from the local machine to start the bench-
mark (3). The main server starts the benchmark (4), and sends to the blockchain network
a large number of transactions every second, this number being defined in the configura-
tion. These transactions are sent to each node in a fair way: each of them receives the same
number of transactions each second, the sum of them being the volume of transactions per
second expected for the benchmark. Finally, once the benchmark is completed, the local
machine receives the results of the benchmark (5). It can also remain permanently con-
nected to the main server to see in real-time the state of the nodes during the benchmark.

For this performance test, the Ethereum-PoA network is formed of 9 different nodes. Each
node is equipped with an Intel Xeon Gold 5220 processor (18 cores), 96 GiB of RAM, two
SSDs of 480GB and 960GB respectively, and 2x25 Gbps bandwidth. The server that drives
the experiment by sending transactions has the same technical characteristics. Each of the
nodes uses the Ethereum client Geth, configured with the Clique™ PoA algorithm, a block
generation interval left at the default value of 5 seconds, and an unbounded block size. The
performance test is performed in multiple benchmarks, with each benchmark able to send
a different volume of transactions per second to the nodes’ inputs. This number is between
380 and 470, with an interval of 10 per measurement point. For each measurement point,
10 benchmarks are executed. The expected value for a benchmark is the ratio of the number
of transactions that have been acknowledged to the total number of incoming transactions.
It is measured after the execution of a benchmark, which lasts 215 seconds: 200 seconds
with sending transactions, then 15 seconds of pause to allow the acknowledgment of the
last sent transactions.

Figure 4.5 presents the results of this experiment, through a box plot, that consists of 10
boxes for each input transaction volume per second applied as input to the benchmark tool.
In this figure, a box represents a series of 10 benchmarks of the same input transaction
volume per second applied as input. The red bar represents the median value of this series.

These results show that the blockchain network can support a load of 380 transactions per
second. Such an infrastructure is thus amply capable of supporting a load of 20 transactions
per day (for each of the providers) as well as a few one-off administration transactions for
the consortium. The choice of Ethereum-PoA is therefore relevant for the given use case
from a performance point of view.

Ohttps://www.saltstack.com/
"https://github.com/ethereum/EIPs/issues/225



74 Chapter 4. Blockchain Technology Recommendation Engine

100 — =

Finalized transactions (%)
=

20

|0 /O 400 410 420 430 440 450 460 470
Input transaction volume (tx/s)

Figure 4.5: Ethereum-PoA performance tests box plot.

This figure also shows a low standard deviation for the lowest values of transactions per
second applied as input, but also for the highest values. On the contrary, the series for the
benchmarks performed on the values of 430 to 460 transactions per second show a high
standard deviation. This can be explained by the capacity of the nodes to hold this load.
Indeed, in this range, nodes reach their limit and can quickly go down, unlike the other
values where nodes will/will not necessarily go down.

4.6 Discussion

The prediction obtained, that is to use Ethereum PoA, is adequate for several reasons. In-
deed, all the functionalities that are considered necessary for the good implementation of
the chosen case of study are present, while allowing to guarantee an optimal cost of it (low
learning difficulty and energy saving). However, some limitations of the decision process
have to be taken into account when using the tool.

First, the method remains sensitive to weight variations. If a higher weight for the trans-
action rate had been chosen, a different output result could have been obtained. Sensitiv-
ity studies can be used to establish ranges, indicating how much weights can vary without
affecting the final result. There are also methods, such as entropy-based weighting, that
can be used to limit the impact of criteria with high entropy by decreasing their weighting
(Huang, 2008). Also, the possibility of rank reversal when using TOPSIS must be considered
(Garcia-Cascales and Lamata, 2012). This is because, although TOPSIS is suited to the tool’s
goals of easily adding new alternatives and making decisions from attributes of different



4.7. Threats to validity 75

units and scales, adding new alternatives can result in a significant change in the rank of
each alternative after the decision process is run.

Second, the rating scale chosen for the expression of preferences can lead to a bias depend-
ing on the perception of the differences between the different values proposed by the user.
Other weighting systems could be considered, such as AHP. Also, the attributes of the al-
ternatives in the knowledge base being static (for example, the number of transactions per
second not taking into account the resources of the machine), can lead to uncertainty in the
reliability of the results. Further work is needed to propose different values for the attributes
depending on the context of the decision.

For the second experiment implementing a performance test of the Ethereum-PoA block-
chain, the blockchain was no longer able to process 100% of incoming transactions at 400
transactions per second or more in this experimental context. Monitoring the execution on
each of the nodes shows that this inability appears when the CPU of the nodes is no longer
able to support the load of transactions received by the Geth client. It is however possible
to decrease the inter-block interval in order to increase performance, but a value that is too
low could degrade the quality of the network (difficulty in reaching a consensus between
authoritative nodes) and increase the required disk space (each block having at least one
non-zero size header). Therefore, the default value was kept, but studying the impact of a
decrease on stability could be beneficial.

4.7 Threats to validity

Internal threat to validity: changesin the ecosystem can be mentioned. The field of block-
chain technology is constantly evolving, with numerous new technologies being introduced
on an annual basis. Thus, the current state of the art frequently shifts as a result. This may af-
fect the accuracy of recommendations given by the platform, as the recommendations may
be accurate but outdated. To tackle this issue, future works may consist in finding methods
for quick and accurate updates of the knowledge base. Nevertheless, the core of this con-
tribution is the design that allows blockchain technology recommendations, given that the
knowledge base is up-to-date.

External threat to validity: the platform allows the recommendation between 6 block-
chain technologies, using 14 different requirements in this goal. These 6 blockchains were
selected as they were, at the time of this work, among the leading blockchain either in terms
of capitalization (for public blockchains) or among the most-used blockchains in companies
(for private blockchains). Although this sample does not represent the full state-of-the-art
of blockchain technologies, it was designed to constitute a representative panel of tech-
nologies to illustrate the blockchain recommendation engine. Yet, more technologies may
be considered in future works.



76 Chapter 4. Blockchain Technology Recommendation Engine

Construction threats to validity: an implementation of the recommendation engine was
carried out, embedded in a web platform. This implementation is subject may be subject to
a divergence between the design and its concrete implementation. Yet, code reviews and
tests have been carried out to ensure that the platform implementation conforms to the
design.

Conclusion threats to validity: the difficulty to conclude on the satisfaction of formulated
requirements can be mentioned. Easiness is notably difficult to assess for its vagueness. As a
first qualitative analysis was carried out among the researchers that designed the platform,
a survey may be carried out among practitioners to evaluate the usability of the platform
through qualitative methods such as Unified Theory of Acceptance and Use of Technology
(UTAUT) (Venkatesh et al., 2003) in future works. Also, as the core of the contribution is the
decision process, the platform may be refined to improve usability following user feedback.

4.8 Related Works

This work is in line with work done to facilitate the adoption of blockchain through decision
support between different types of blockchains, or the decision between using a blockchain
or not in a given context.

Waust et al. list the main properties of blockchain (Transparency, integrity, trust ...) and pro-
pose a model for deciding whether or not to adopt blockchain based on the answer to cer-
tain questions (such as "Are there multiple third parties involved?" or "Are they trusted?")
related to the given reference study (Wust and Gervais, 2018). They then apply their model
to several example use cases. Although there is a study of the blockchain parameters to
define the decision model questions, the result is of a very high level of abstraction (public
blockchain, private blockchain, permissioned or no blockchain). Therefore, it does not allow
to decide on one specific blockchain technology to be used. In another study from Koens et
al., a literature review is performed on studies related to decision models for blockchain in
order to build a new model from them (Koens and Poll, 2018). The results of this model are
a bit more accurate than the previous one, but still do not give a single recommendation.
Labazova et al. also present a literature review work, using a DSR (Design Science Research)
approach to build a new model (Labazova, 2019). This model has multiple decision levels and
takes into account blockchain properties, allowing a user to make a choice with increased
output accuracy compared to previous studies.

Moreover, the study shows the dependencies between some parameters (e.g., confiden-
tiality and transparency). However, the input parameters are mostly specific to blockchain
and condition the use of the model by an expert. Another interesting study presents a third
decision support approach by proposing a complete detailing of blockchain fundamentals in
the first part of their study, as well as a decision model introducing opposing criteria (such
as performance/costs), but also a series of questions to refine the choice, such as "When to
use blockchain?", "What to use?", or "How to use this blockchain?" (Belotti et al., 2019). All



4.9. Conclusion and Future Works 77

of these studies help guide decision-making for a given blockchain project but do not allow
for more detail (blockchain parameters) due to the limitations of the decision models. The
lack of automation and manual resolution of the questions do not allow for a large number
of input requirements.

Some studies have been conducted to address this issue. As an example, Tang et al. pro-
pose to use a multi-criteria decision support method called TOPSIS, that is the same as the
one used in this work, to determine the best available public blockchain solution based on
a set of input criteria (Tang, Shi, and Dong, 2019). The approach is interesting in this context
but does not allow for other (private, permissioned) blockchains to be considered. More-
over, the blockchain technical criteria are grouped under the criteria "basic technology"”,
"applicability” and "transaction per second", the first one being quantified via experts, the
recommendations given as a result may therefore lack precision from the point of view of
the company wishing to start its project.

In a study from Farshidi et al., a decision-making system for blockchain technologies is imple-
mented, based on previous work for other technologies (Farshidi et al., 2020). A survey was
conducted with experts to determine the most relevant selection criteria, then a knowledge
base containing the values of these selected attributes for a large set of blockchains (ob-
tained with white papers, studies, performance tests, etc.) is built to give recommendations
via an inference engine. The proposed tool allows to give blockchain technology recom-
mendations, but this work aims to go further by proposing a specifically blockchain oriented
contribution (taking into account specific business processes and architectural models) that
is more accessible for non-experts in blockchain, through a model that links blockchain at-
tributes and software quality. This way, the user can capture more common requirements
than those specific to blockchain technology.

4.9 Conclusion and Future Works

In this chapter, a tool named BLADE is presented as an answer to the problem of assisting
the practitioner in the selection of a blockchain technology. BLADE provides a recommen-
dation on the blockchain to use given a set of user requirements and preferences. For this
purpose, a relevant panel of blockchains, as well as criteria related to the quality of a sys-
tem (1SO 25010 standard), were selected to create a knowledge base, then a list of terms
allowing a user to submit his preferences and requirements regarding the criteria chosen
for the decision was chosen. The recommendation engine is then presented in detail, from
the submission of entries in it to the recommendation through TOPSIS. An implementation
of BLADE including this recommendation engine is presented. It allows the easy input of
requirements through a web platform. Finally, the decision process is validated through a
supply chain management reference study and shown that BLADE is able to recommend
a blockchain aligned with the user’s needs. An implementation of the tool and a link to a
working demo is available on GitHub™.

2https://github.com/harmonica-project/BLADE



78 Chapter 4. Blockchain Technology Recommendation Engine

The recommendation of a blockchain technology using BLADE is the first artifact of the Har-
monica framework, proposed in this thesis. This is an important step in the creation of a
blockchain application: the selection of a blockchain technology has a huge impact on the
final design. In Chapter 6, the second part of BLADE is introduced, to further guide the prac-
titioner in the design of a blockchain application by proposing software patterns that are
compatible with the blockchain recommended by this artifact.



79

Chapter 5

Collecting Blockchain-based Software
Patterns from the Literature

— Key takeaways .

e A literature review is carried out to identify existing blockchain-based software
patterns in the literature, build a taxonomy, and classify them. This knowledge
will be part of the knowledge base of the framework and serve the different DSR
artifacts.

¢ Along with collecting these patterns, further research questions are studied to
identify research gaps in the blockchain-based software pattern field, links be-
tween these patterns and traditional design patterns, and the most important
patterns.

e The creation of this collection of patterns allows formulating an answer to the
knowledge question RQ3.

In the previous chapter, the selection of a blockchain technology has been addressed. As the
blockchain technology used is the ground of the architecture to build, a second phase in the
design of a blockchain application is the selection of complementary blockchain patterns.
However, identifying these patterns and ordering them to form a usable collection is not
a straightforward task. Many patterns have been proposed in the academic literature, yet
there is no systematic literature study to collect and classify them.

This chapter addresses the discovery and classification of patterns throughout the second re-
search question of this thesis (RQ3): How to discover then reuse software patterns in a block-
chain application? In this goal, a systematic literature review (SLR) is performed to address
6 sub-research questions that answer the main question aforementioned. First, a corpus of
publications about blockchain-based software patterns is identified. Then, the knowledge
about identified patterns is extracted using a generic pattern format that allows to store it
in a uniform way collected patterns. A taxonomy has also been built using this knowledge
to classify this state-of-the-art of existing patterns into comprehensive categories.



80 Chapter 5. Collecting Blockchain-based Software Patterns

This chapter is organized as the following. First, Section 5.1 describes the SLR in-depth, from
the description of the SLR process to the obtained results. The method to build the taxonomy
is also discussed in this Then, Section 5.2 discusses obtained results and addresses every
sub-research question presented in the previous section. It notably introduces the identified
patterns w.r.t. their respective taxonomy category. Finally, Section 5.5 concludes the chapter.

5.1 Review Process

As it is important to follow a robust methodology to perform a high-quality literature review,
this work follows Kitchenham et al. guidelines to conduct a Systematic Literature Review
(SLR) (Kitchenham and Charters, 2007). This task was divided into three main stages as
follows:

1. Planning: during this phase, the research questions, as well as the goals of the SLR,
are elicited. Also, the literature databases that will serve for the retrieval of papers
are selected, and inclusion/exclusion criteria are given.

2. Conducting: the SLR is conducted, following the plan designed during the planning
phase. Studies are extracted then filtered, and the remaining papers are read. An an-
alytic framework is used to extract the necessary data to answer the research ques-
tions.

3. Reporting: results of the SLR are factually given, as well as a quality assessment of the
extracted studies. Then, they are discussed in their own section.

5.1.1 Review Planning

The first step in planning the systematic literature review is the formalization of sound re-
search questions. Those questions have to be designed considering that the answers should
address the research goals of this work. The main purpose of this work is the design of a
comprehensive and uniform collection of blockchain software patterns extracted from the
existing literature. However, collecting the patterns in bulk is not enough to allow their
reusability and usability; thus a classification scheme have to be proposed. To further refine
the quality of extracted patterns, consider the context of those patterns can also be con-
sidered: their relation with existing non-blockchain patterns, such as the ones in Gamma
et al. design pattern book (Gamma et al., 1995), or their links with specific technologies
or domains. Indeed, several patterns that cannot be separated from their domain or their
technology have been found. As an example, the Limit modifiers pattern is directly bound
to the modifier keyword in the Solidity language, thus non-applicable to blockchains that do
not support it. These aspects should be addressed in the research questions. Finally, the
results of the systematic literature review can be used to highlight several research gaps in
the blockchain software pattern literature for further exploration.



5.1. Review Process 81

From the different considerations of this work, six research questions were formulated and
addressed during the SLR. The first three of them actively contribute to the construction of
the blockchain-based software patterns knowledge base:

e RQ3.1: What taxonomy can be built from existing literature on blockchain-based pat-
terns?

e RQ3.2: What are the existing blockchain-based patterns and their different cate-
gories?

e RQ3.3: What are the applications of the literature patterns?

Along with these questions, three additional questions were stated that aim to explore other
relevant aspects of blockchain-based software patterns:

¢ RQ3.4: Are some of the patterns equivalent to existing software patterns?

e RQ3.5: What are the most frequently mentioned patterns and their variants across
the patterns identified?

e RQ3.6: What are the current gaps in research on blockchain-based patterns?

To avoid any confusion between the core material of the thesis and additional considera-
tions on blockchain-based software patterns, the first set of research questions is labeled
"Core research questions", and the second set is "Additional research questions". In order
to extract relevant studies, three library databases have been selected: IEEE Xplore, ACM
Digital Library, and Scopus. These databases have been chosen as they cover the majority
of peer-reviewed research in information systems. Snowballing from selected papers is also
considered as a data source, as it might help to include other relevant papers. To query the
databases of papers, a search query has to be designed. The words composing the query
have been chosen using the Quasi-Gold Standard (QGS) technique (Zhang, Babar, and Tell,
2011). The QGS method consists in selecting a set of studies that should appear in the results
of the query, then designing the query around the terms employed in those papers. Thus, 5
studies have been selected to compose this corpus of studies (Xu et al., 2018; Bartoletti and
Pompianu, 2017; Wohrer and Zdun, 2018; Wohrer and Zdun, 2018; Liu et al., 2020). From
that, the following query has been constituted:

(blockchain OR blockchain-based OR "smart contract*") AND ("idiom™*" OR ("ar-
chitectural pattern®" OR "design pattern*" OR "blockchain pattern*" OR "block-
chain-based pattern*"))

In this chapter, the query is written in a literal format with wildcards (*). During the literature
review, the syntax of this query was modified for each chosen library database, to conform
with the different search engines. Nevertheless, it was assessed that the same query was
executed for each database, independently of their different syntaxes. The SLR only includes
the studies that have those terms in their title, abstract, or keywords, to improve the pre-
cision of the query. To prepare for the filtering phase of the SLR, inclusion, and exclusion
criteria have been defined. They provide systematic guidelines to include or exclude papers



82 Chapter 5. Collecting Blockchain-based Software Patterns

during the filtering phase, where papers are selected for further reading. Table 5.1 provides
the chosen inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

e Presents one or more blockchain-based | ¢ The paper is described as presenting

software patterns. blockchain-based patterns from other
e Presents a collection of blockchain- accepted studies.
based software patterns. e The paper lies outside the software engi-

neering and blockchain domains.

Full text is not accessible.

The paper is a duplicate of another.
The paper is not written in English.

The paper has not been peer-reviewed.

Table 5.1: Inclusion and exclusion criteria.

Two inclusion criteria were defined. A paper is considered for the literature review if it ei-
ther introduces a collection of blockchain-based software patterns or standalone patterns.
Regarding the exclusion criteria, papers were discarded if they introduce patterns where
their description lies in other papers, as it would lead to the creation of duplicates. Also,
they were discarded if they were duplicates of other studies. In the case of a short paper
being extended to a long paper, the long paper was kept and the short paper was marked
as duplicate. Some papers were also discarded as they present patterns that are unrelated
either to blockchain technologies, or software engineering. Also, papers were discarded if
they were not accessible, not peer-reviewed, or written in a non-English language.

Finally, a set of questions, named Quality Questions (QQs), have been prepared to assess
the quality of the extracted patterns:

e QQ1: Does the paper clearly present the pattern solutions, problems, and contexts?
e QQ2: Does the paper reference existing solutions using explicit patterns?

e QQ3: Does the paper use a standard pattern presentation form, such as GoF or Alexan-
drian templates (Tesanovic, 2005), described in Subsection 2.1.2?

For each question, an answer can be given among the following options: "Yes", "Partially",
and "No". Knowing the answer to a paper can help to assess the quality of the patterns
introduced in it, whereas knowing the answer to all the papers assesses the quality of the
collection derived from this literature study. To guarantee the quality of the extracted pat-
terns, papers were kept only where the answer to the first question is at least "Partially".
Indeed, it is difficult to extract a clear pattern where there is no description of the solution
and the problem it addresses in a specific context.



5.1. Review Process 83

5.1.2 Review Execution

Figure 5.1 gives a graphical overview of the review protocol, where for each step the number
of remaining or excluded papers is displayed. At first, 98 papers have been retrieved using
the query over the three selected databases. As Scopus indexes papers from many other
libraries, 17 duplicates were found and removed. Then, papers have been filtered on their
title, abstract, and keywords based on the inclusion/exclusion criteria defined in the review
planning (5.1.1). After filtering, 32 papers were kept from this initial filtering, from which 18
additional papers were filtered out during the reading phase, for several reasons. First, some
of them were not fitting the inclusion/exclusion criteria, as they were not presenting any
design patterns in their studies. Also, the presentation of software patterns in several papers
was not clear enough for data extraction (QQ1). Lastly, some papers were excluded as they
were merely presenting patterns without proposing any enhancement. During the reading
phase, papers that were mentioned by others to introduce blockchain-based patterns were
added to the corpus of papers.

Retrieved records
(n=98)

Excluding papers
by title and abstract
(n=32)

Excluding papers
during reading
phase (n=14)

Removing
duplicates (n=81)

Removed: 18 ] [ Removed: 49 ] [ Removed: 17

Excluding papers Excluding papers

Adding papers from by title and abstract during reading

snowballing (n=66)

(n=38) phase (n=20)

Added: 52 [ Removed: 28 20 selected papers

Figure 5.1: Review process scheme.

In addition, backward and forward snowballing was done for each paper to complete the
corpus of studies. Regularly performed during systematic literature reviews, backward and
forward snowballing respectively aims to analyze the citations of selected papers and other
papers that cited selected papers to find new relevant papers. This has led to the addition
of 52 papers from snowballing, where 46 of them were filtered out. The result is the ad-
dition of 6 new studies into the final corpus, that were exclusively found during backward



84 Chapter 5. Collecting Blockchain-based Software Patterns

snowballing. Forward snowballing hasn't yielded any new study into the corpus. Note that,
contrary to forward snowballing and regular inclusion of papers through performed queries,
non-peer-reviewed papers were not excluded during backward snowballing. This decision
has been made as they can be considered relevant, as selected papers citing them were
peer-reviewed themselves.

5.1.3 Taxonomy Construction

In parallel with the review process, the taxonomy was built using newly acquired knowl-
edge. To achieve such a task, a taxonomy development methodology was used (Nickerson,
Varshney, and Muntermann, 2013). The methodology proposed by Nickerson et al. first de-
scribes what a taxonomy is and the associated problems for taxonomy development. Then,
it gives a method for taxonomy development that satisfies the problems mentioned before,
adaptable for many contexts.

According to Nickerson et al. (Nickerson, Varshney, and Muntermann, 2013), a possible def-
inition of a taxonomy is the following (7):

Definition 7 A taxonomy is a set of dimensions each consisting of mutually exclusive and
collectively exhaustive characteristics such as each object under consideration has one and
only one characteristic for each dimension.

An important attribute, as stated by the definition, is that no object can have two different
characteristics in a dimension. Also, a taxonomy is not meant to be perfect and can change
over time, but they have to fulfill qualitative attributes to be usable:

e Conciseness - too many dimensions can lead to difficulties in applying the taxonomy.

e Robustness - containing enough clear dimensions and characteristics to differenti-
ate objects contained inside, and comprehensive, that is the capability to classify all
known objects within the domain.

e Extensibility - to adapt to the needs and enable the inclusion of new objects, and
explanatory to provide information on the nature of the objects under study.

These qualities are particularly important for the construction of the taxonomy: the concise-
ness and the robustness of the taxonomy will help the reader to navigate in the different cat-
egories available to pick relevant patterns (i.e., the knowledge domain), and the extensibility
will allow the taxonomy to grow over future studies on blockchain patterns.

In Nickerson et al., two methods for taxonomy construction are presented: empirical-to-
conceptual, and conceptual-to-empirical. For this work, the first one was used, as existing
content on patterns is empirically reused. An overview of this method is given in Figure 5.2,
as presented by Nickerson et al. (Nickerson, Varshney, and Muntermann, 2013).

The first step of the taxonomy construction is to define meta-characteristics. This gives a
basis for identifying the other characteristics of the taxonomy. In this taxonomy, the two
meta-characteristic "On-chain pattern" and "On/off-chain interaction pattern" have been



5.1. Review Process 85

|

[ (1) Determine meta-characteristics ]

Y
[ (2) Determine ending conditions ]

A
>

Y
(3) Identify new subsets of objects

\ 4

(4) Identify common characteristics and group objects

Y

(5) Group characteristics into dimensions to
create/revise the taxonomy

Ending
conditions
met?

Figure 5.2: Empirical-to-conceptual taxonomy development method.

chosen. As this work focuses on design aspects, | found it relevant to order patterns depend-
ing on their position regarding the blockchain: in the blockchain (smart contracts, transac-
tion data), or out of the blockchain (services that interact with the blockchain, wallets, ...).
Then, as building a taxonomy is an iterative process, ending conditions have to be deter-
mined. Indeed, as indicated earlier, a taxonomy is never perfect; thus the process stops
when the taxonomy is "good enough" (i.e. when all the qualities of a well-built taxonomy
are present).

Additional ending conditions can also be added. For instance, | chose to examine all objects
of a representative sample of objects. As the patterns are the cornerstone of this work, it
is important to examine all of them to construct an accurate taxonomy. Therefore, this tax-
onomy construction is empirical-to-conceptual rather than the opposite: from the patterns,
categories are drafted and then refined to return an accurate taxonomy. If categories are
significantly unbalanced (e.g. 50 patterns in one category, 2 in another one), or one pattern
cannot be classified into a single category, another iteration on the taxonomy is performed
to create new subcategories or rename existing categories.

The next three steps are the construction of the taxonomy itself. As they are incremental,



86 Chapter 5. Collecting Blockchain-based Software Patterns

they have to be repeated until ending conditions are met. To begin, the identification of
a subset of objects should be done. In this case, the subset is constituted of all the iden-
tified patterns. The next step is identifying common characteristics and group objects. To
do that, a Natural Language-based algorithm was designed to ingest all the pattern descrip-
tions, lemmatize them, and identify a recurrent suite of words (n-grams). For bigrams, the
most recurrent combination of words was "Smart contract(s)" (54 times), "Data storage" (11
times), "Proxy contract" (6 times), and "Factory object" (6 times). Other interesting combi-
nations were found: "Outside blockchain" (5 times), "Restrict execution" (3 times), and "Crit-
ical operation" (3 times). From those combinations and others, three assumptions can be
made: (1) smart contract is a crucial topic in blockchain-based patterns, (2) many traditional
software design patterns were found in pattern summaries. Thus links might exist between
the existing knowledge of software patterns and newly designed patterns, (3) some impor-
tant design aspects are recurrent in pattern summaries. Existing collection names were also
exploited to generate categories. For example, (Marchesi et al., 2020) proposes patterns ex-
clusively dedicated to smart contract gas efficiency. Such a collection gives hints of potential
types of categories.

Using these assumptions and the researcher’s personal knowledge, a first taxonomy has
been built empirically. Several categories were created from the aforementioned subset
of concepts, such as "smart contract patterns”. Then, each pattern collected during the
literature review was assigned a category by a researcher, based on the pattern title, context,
and problem. In the end, the number of patterns in each category was analyzed, as well as
the list of patterns where it was challenging to assign them to a single category. This may
highlight the lack of balance between categories, as too many patterns may be present in
a single category, or categories that overlap themselves. As this was the case for the first
taxonomy, two other iterations were performed to construct the version of the taxonomy
introduced in this chapter. During the literature review, it was also found that the majority
of the patterns identified are design patterns, thus the taxonomy has been recentered from
all software patterns to design patterns. The final version of this taxonomy is presented in
the Subsection 5.2.1 associated with the RQ1.

5.1.4 Results

This section factually presents the results of the systematic literature study. More details
are given when discussing each research question in Section 5.2.

The final corpus of papers is composed of 20 studies, out of which 6 were added through
reference snowballing. Within the corpus, 19 papers propose design patterns, whereas only
one proposes architectural patterns. No study that introduced idioms was found. However,
some of the patterns found were more related to idioms than design patterns and catego-
rized as such. From these 20 studies, 160 patterns were found, including duplicates. At first,
patterns that were said to come from other studies were also added but filtered out after-
ward to ensure no pattern is missing from the extracting phase. After duplicate removal,
114 unique patterns have been found: 104 of them have been classified as design patterns,



5.2. Discussion 87

3 of them as architectural patterns, and 14 as idioms. As the links between patterns across
papers were collected during the SLR, they have been used to filter a large number of du-
plicates. Then, pattern names and summaries/solutions were used to filter out additional
patterns. Precautions have been taken when removing patterns using those fields: close
patterns that diverge on tiny aspects were kept as separate patterns.

Regarding the quality assessment performed on accepted papers, Figure 5.3 shows the dis-

tribution of the answers to each question.

:0 ‘
0 I
Partially Yes

MNo Partially Yes

oo

o

I

=]

No

Partially Yes

No

0al Qa2 003

Figure 5.3: Quality assessment answers distribution (labels detailed in
Subsection 5.1.1)

For the first quality question QQ1, 8 papers out of 20 introduce patterns that are easily un-
derstandable and detailed, whereas 12 papers might lack details in the pattern detailing. The
second quality question QQ2 shows that 4 papers do not mention any example of implemen-
tation, 7 references one example on average per pattern, and 9 studies reference more than
2 implementation examples. Finally, the third quality question QQ3 indicates that 8 papers
are using a pattern format to describe their patterns, 6 papers are using a form but lack
important sections usually found in pattern formats, and 6 studies do not use any format.

5.2 Discussion

In this section, each research question is addressed using the results collected throughout
the completion of the systematic literature review. For each question, a set of data tailored
to answer the research question has been collected. The synthesis of these results allows
to formulate a detailed answer to each research question and discuss them. As mentioned
in Subsection 5.1.1, these research questions are divided into two sets, that are the core
content of the thesis and additional considerations.



88 Chapter 5. Collecting Blockchain-based Software Patterns

5.2.1 Core Research Questions
RQ3.1: What taxonomy can be built from existing literature on blockchain-based patterns?

A taxonomy of blockchain-based patterns is presented to classify the design patterns in
comprehensive categories that help to decide on what patterns to use for a specific aspect
of blockchain-based application development. This taxonomy has been built using Nicker-
son’s methodology (Nickerson, Varshney, and Muntermann, 2013), and its construction is
detailed in Subsection 5.1.3. The patterns collected during the systematic literature review
were reused as a knowledge source to build the categories of the taxonomy. They were re-
grouped into categories based on their commonalities: for instance, the different types of
oracles identified (2018; 2018; 2020; 2018; 2020) form the Oracle patterns subcategory.

Figure 5.4 shows a graphical representation of the proposed design pattern taxonomy.

Wallet and keys
pattern

(n=3)

pattern
(n=7)

[ Off-chain storage

Transactions pattern
(n=1)

Data exchange
pattern (n=7)

Onl/off-chain
interaction pattern

(n=18)

EE— S
Big data pattern Contract access
(n=1) ¢ Design pattern > control_%attem
taxonomy (n=9)
— (n=104)
Contract efficiency
BPM F_)attern ¢ l N pattern
(n=3) D (n=15)
Domain-based q Smart-contract ~—
o On-chain pattern o
O ’()n=21 ) (n=86) ’()n=47) —
Decentralized identity J/ Contract security
pattern 1€ > pattern
(n=5) v (n=11)
Data management
Multi-domain feature pait%n Contract
pattern [€<— (n=18) —» management pattern
(n=12) (n=12)
v v v

Encryption pattern

(n=2) (n=11)

Storage pattern (n=5)] Migration pattern ]

Figure 5.4: Design pattern taxonomy.

The taxonomy consists of 2 main categories (i.e. meta-characteristics), "On-chain pattern"
and "On/off-chain interaction pattern", and 15 different categories. Intermediate categories
were also created to group categories together in the "On-chain pattern" meta-category:
"Smart contract pattern”, "Data management pattern”, and "Domain-based pattern".

The "On/off-chain interaction pattern" category aims to regroup design patterns constituted
of off-chain elements that interact with a blockchain. This is key for the development of
decentralized applications, as proposed design patterns might help bridge off-chain systems
and software with on-chain data or smart contracts.

This category is composed of four subcategories. The first one, the "Data exchange pattern"
subcategory, groups patterns that enable communication between on-chain smart contracts



5.2. Discussion 89

and off-chain components. Indeed, blockchain cannot request data from outside, thus re-
quiring an external service (i.e. Oracle) to push fresh data inside smart contracts.

The "Data management pattern" subcategory is comprised of design patterns that leverage
off-chain data but use blockchain to guarantee tamper-proofing or trustability of those data.
For instance, hashing a dataset, then storing the hash on-chain to attest later the integrity
of the dataset.

The "Wallet and keys pattern" subcategory tackles the management of wallets and keys in
the context of a decentralized application. Finally, the "Transactions pattern" subcategory
deals with the transaction aspects between off-chain components and the blockchain, such
as transaction confirmation or block inclusion.

In the "Domain-based pattern" intermediate category, on-chain patterns that deal with do-
main features are regrouped. Note that this category is meant to be extended with the ad-
vances in blockchain-based patterns for specific domains. Therefore, three domain-specific
categories were created from the knowledge of existing domain-based patterns: the "Busi-
ness Process Management (BPM) pattern" subcategory concerns on-chain business process
management (e.g., on-chain activities, ...), the "Big data pattern" subcategory proposes ap-
plications of blockchain for big data, and the "Decentralized identity pattern" subcategory
leverage blockchain to create and manage decentralized identities. A fourth subcategory,
"Multi-domain feature pattern”, contains features that do not belong to a single domain
but rather can be used by multiple domains.

The "Smart contract pattern" intermediate category classifies patterns that concern smart
contract implementation and management. As ensuring the security of smart contracts is
primordial, the "Contract security pattern" subcategory regroups smart contract patterns
that deal with security issues such as reentrancy attacks, overflow attacks, or flawed behav-
ior of smart contracts.

The "Contract efficiency pattern” subcategory essentially deals with patterns that reduce
the price of leveraging smart contracts, especially on public blockchains. It also contains
patterns on other efficiency aspects such as data refreshing, a difficult task with smart con-
tracts as they cannot perform requests on other smart contracts by themselves.

The "Contract access control pattern" subcategory regroups patterns for permission and au-
thorization management for the execution of smart contract functions. Finally, the "Contract
management pattern" subcategory helps with designing the organization of smart contracts
together. For example, having a proxy smart contract that relays the function calls to other
contracts.

The last intermediate category, "Data management pattern" deals with patterns for efficient
on-chain data management. It is different from the "Data management pattern" subcate-
gory of the "On/off-chain interaction pattern" subcategory as it only concerns data on-chain,
located in smart contracts or directly in transactions. The "Migration pattern" subcategory



90 Chapter 5. Collecting Blockchain-based Software Patterns

groups patterns that help with migrating data from one blockchain to another. Under "En-
cryption pattern" are classified patterns for on-chain data encryption, and "Storage pattern"
regroups patterns that deal with on-chain data storage.

Through the systematic literature review, the taxonomy has been applied to classify pat-
terns with success, as the researcher was able to classify every pattern in a single category.
However, it is meant to be extensible; thus categories might be changed depending on the
evolution of the state of the art in blockchain-based patterns notably with the appearance
of new architectural patterns or idioms, not present in this taxonomy due to their scarcity.

This taxonomy is important for the adequate usage of patterns identified in the systematic
literature review. For example, a user willing to implement smart contract security mea-
sures in his application to protect it against threats or vulnerabilities will be tempted to
search in the "Contract security pattern" subcategory instead of directly searching in the
corpus of patterns. They are also complementary: as each category covers a specific aspect
of the design of a blockchain-based application, they can be combined depending on the
user requirements. For instance, "Contract security" patterns can be used along the "Con-
tract efficiency" patterns to improve at the same time the cost efficiency and the security of
designed smart contracts. However, possible conflicts between individual patterns are left
outside the scope of this chapter, as this information is not present in retrieved papers.

RQ3.2: What are the existing blockchain-based patterns and their different categories?

The systematic literature review yielded 160 descriptions of blockchain-based software pat-
terns, from which 116 unique patterns were identified. These patterns have then been clas-
sified using the taxonomy into 15 different categories. This subsection will introduce these
different categories along with a short description of their respective patterns. The focus
will notably be made on patterns observed in multiple studies. The complete description of
each pattern, its category, and its links with others are available on GitHub".

On/off-chain Interaction Patterns

This first category regroups all of the patterns with their components both on and off-chain.
Itis divided into four subcategories. Table 5.2 lists all the patterns contained in this category.

Thttps://github.com/harmonica-project/blockchain-patterns-collection



5.2. Discussion 91

On/off-chain interaction patterns

Subcategory Patterns
Data exchange | e Ticker tape (Worley and Skjellum, 2018)
pattern e Oracle (Rajasekar et al., 2020; Xu et al., 2018; Wohrer and Zdun,

2018; Bartoletti and Pompianu, 2017)

e Reverse Oracle (Rajasekar et al., 2020; Xu et al., 2018; Worley and
Skjellum, 2018)

e Pull-based inbound oracle (Mihlberger et al., 2020)

e Push-based inbound oracle (Muhlberger et al., 2020)

e Pull-based outbound oracle (Mihlberger et al., 2020)

e Push-based outbound oracle (Muhlberger et al., 2020)

Data e State Channel (Rajasekar et al., 2020; Xu et al., 2018)
management | e (Off-chain) Contract Registry (Rajasekar et al., 2020)
pattern e Legal and smart contract pair (Xu et al., 2018)

e Off-chain data storage (Miiller, Ostern, and Rosemann, 2020; Ra-
jasekar et al., 2020; Xu et al., 2018; Liu et al., 2020; Lemieux, 2017;
Eberhardt and Tai, 2017)

e Confidential and pseudo-anonymous contract enforcement (Six et
al., 2020)

e Off-chain Signatures (Eberhardt and Tai, 2017)

¢ Delegated Computation (Eberhardt and Tai, 2017)

Wallet and e Master & Sub Key (Liu et al., 2020)

keys pattern | e Hot & Cold Wallet Storage (Liu et al., 2020)

e Key Sharding (Liu et al., 2020)

Transactions | e X-confirmation (Xu et al., 2018)
patterns

Table 5.2: On/off-chain interaction patterns.

The first subcategory is named "Data exchange pattern", to group patterns that enable com-
munication between on-chain smart contracts and off-chain components. This subcategory
contains 7 patterns. The most frequent pattern is the Oracle pattern, introduced or men-
tioned by 5 different papers (Rajasekar et al., 2020; Xu et al., 2018; Wohrer and Zdun, 2018;
Bartoletti and Pompianu, 2017; Worley and Skjellum, 2018). As blockchain cannot request
the external world to retrieve up-to-date information, components named oracles have
been designed to listen for blockchain requests or statuses that indicate some information
is needed, then send a transaction to the blockchain to inject them.

Its opposite has also been proposed: the Reverse oracle pattern is applied when off-chain
components need blockchain data to work, so they listen for specific state changes and react
accordingly (Worley and Skjellum, 2018; Xu et al., 2018; Rajasekar et al., 2020; Marchesi
et al., 2020). Another study proposed more detailed variants of those patterns, as they



92 Chapter 5. Collecting Blockchain-based Software Patterns

differentiate the data flow direction (as the Oracle and Reverse Oracle), as well as if data are
pushed out of the data source or pulled from an active component.

The second subcategory groups 7 patterns that manage and store data off-chain while using
blockchain as an additional layer of trust. A commonly proposed pattern under many names
is the Off-chain data storage pattern (Miiller, Ostern, and Rosemann, 2020; Rajasekar et al.,
2020; Xu et al., 2018; Liu et al., 2020; Lemieux, 2017; Eberhardt and Tai, 2017). It consists
of storing large amounts of data off-chain, then producing a hash of the data and saving
it on-chain. Therefore, it is far cheaper to leverage while having the possibility to check
the integrity of stored data using the hash on-chain. This pattern is presented in detail in a
dedicated part of Subsection 5.2.2.

The same concept has been applied to variants. For example, the State channel pattern
involves letting two or more users perform micro-transactions off-chain and regularly storing
a hash on-chain to prove the existence of such transactions later on. Other studies propose
the binding between an off-chain legal contract and an on-chain smart contract, to ensure
sensitive data are kept off-chain while only important signatures and states are stored on-
chain (Six et al., 2020; Xu et al., 2018).

Finally, the third and fourth subcategories are respectively "Wallet and keys pattern" and
"Transaction pattern”. They only contain three and one patterns respectively: Key shard-
ing, Hot & Cold wallet storage, and Master & Sub keys patterns (Xu et al., 2018; Liu et al.,
2020) for healthy management of blockchain wallets and keys, as well as the X-confirmation
pattern (Xu et al., 2018). The latter consists in waiting for a predefined number of blocks to
ensure that the transaction added is probabilistically immutable. Although there are only a
few patterns in those categories, they have been added as they might contain more patterns
later in future studies.

On-chain patterns - domain-based Patterns

The "Domain-based pattern" intermediate category is part of the "On-chain pattern”, and
contains patterns that propose a feature to address a domain-based problem, either for a
specific domain or applicable to many. A list of all the patterns contained in this category is
presented in Table 5.3.



5.2. Discussion 93

On-chain patterns - domain-based patterns

Subcategory Patterns
BPM pattern e Blockchain BP Engine (Miiller, Ostern, and Rosemann,
2020)
e Smart Contract Activities (Mdller, Ostern, and Rosemann,
2020)
e Decentralize business process (Miiller, Ostern, and Rose-
mann, 2020)
Decentralized identity | e Identifier Registry (Liu et al., 2020)
pattern e Multiple Registration (Liu et al., 2020)

e Bound with Social Media (Liu et al., 2020)

e Dual Resolution (Liu et al., 2020)

e Delegate List (Liu et al., 2020)

Big data pattern e Blockchain Security Pattern for Big Data Ecosystems

(Moreno et al., 2019)

Multi-domain feature | e Blockchain-based reputation system (Miiller, Ostern, and
pattern Rosemann, 2020)

e Blocklist (Worley and Skjellum, 2018)

¢ Vote (Worley and Skjellum, 2018)

e Announcement (Worley and Skjellum, 2018)

e Bulletin Board (Worley and Skjellum, 2018)

e Randomness (Bartoletti and Pompianu, 2017)

e Poll (Bartoletti and Pompianu, 2017)

e Selective Content Generation (Liu et al., 2020)

e Time-Constrained Access (Liu et al., 2020)

e One-Off Access (Liu et al., 2020)

¢ Digital Record (Lemieux, 2017)

e State machine (W6hrer and Zdun, 2018)

Table 5.3: On-chain patterns - domain-based patterns.

For BPM, 3 patterns have been identified, all proposed by Miiller et al. (Mdiller, Ostern, and
Rosemann, 2020): the Blockchain BP Engine pattern, that enables collaborative business
processes by storing and executing a business process through a smart contract, the Smart
contract activities pattern where business logic activities are stored in a single smart con-
tract for execution, and the Decentralize business process pattern that uses blockchain as a
software connector for collaborative business process execution.

Regarding decentralized identity patterns, 5 design patterns have been extracted (Liu et al.,
2020). The first one, Identifier registry pattern, proposes the usage of smart contracts to es-
tablish a mapping between a DID (Decentralized Identifier), a unique identifier for a human
within a domain, and the location of off-chain storage attributes. Here, the DID is managed



94 Chapter 5. Collecting Blockchain-based Software Patterns

using a private key used to prove the ownership of an identifier. If the key is lost, the Dele-
gates list pattern can be used to retrieve this ownership. To protect user privacy, multiple
identifiers can be created using the Multiple identifiers pattern. An identifier can also be
mapped to a social media account through the Blockchain & Social Media Account Pair pat-
tern, to improve the trustworthiness of both social media accounts and identifiers. Finally,
the Dual resolution pattern helps to use a DID to enable communication with another entity
through its own DID.

One pattern has been identified for the "Big data pattern" category: the Blockchain Security
Pattern for Big Data Ecosystems pattern leverages blockchain to register operations per-
formed on a data store (Moreno et al., 2019).

The "Multi-domain feature pattern" subcategory groups 12 patterns that propose on-chain
features to address problems found in multiple domains. For example, the Poll and the Vote
patterns (Bartoletti and Pompianu, 2017; Worley and Skjellum, 2018) can be used to take
collaborative decisions on-chain, the Time-constrained access or the One-Off Access patterns
(Liu et al., 2020) let users give access to off-chain resources from an on-chain authorization
smart contract, and the Randomness pattern (Bartoletti and Pompianu, 2017) can be used
to generate random numbers on-chain, a difficult task.

On-chain patterns - smart contract patterns

The second intermediate category of "On-chain patterns” is the "Smart contract pattern”.
In a decentralized application, smart contracts are often the most important pieces. Many
sensitive operations can be performed on them, such as storing and transferring cryptocur-
rencies. Therefore, maximal security in smart contract operations is paramount, and well-
designed access control functions should be implemented to support it. Managing them
is also difficult, as a smart contract code is immutable once deployed. Thus, the on-chain
smart contract architecture has to be adequately designed to tackle the inflexibility of smart
contracts and ensure they fill their initial goals while being easily upgradeable if needed. Fi-
nally, they often have to be efficient, as for public blockchains developers and users have to
pay for deploying and executing smart contract functions. Each of those topics is important
for the development of smart contracts and has its own subcategory, presented below.

Table 5.4 and 5.5 respectively introduce design patterns related to the management and the
security of smart contracts, and design patterns related to the efficiency and access control
of smart contracts.



5.2. Discussion 95

On-chain patterns - smart contracts patterns

Subcategory Patterns
Contract management | e Migration (Worley and Skjellum, 2018)
pattern ¢ Inter-family communication (Owens et al., 2019)

e Data Contract (Rajasekar et al., 2020; Xu et al., 2018; March-
esi et al., 2020; Wohrer and Zdun, 2018)

e Factory Contract (Rajasekar et al., 2020; Xu et al., 2018;
Zhang et al., 2018; Zhang et al., 2017; Liu et al., 2018)

e Proxy Contract (Rajasekar et al., 2020; Wohrer and Zdun,
2018; Zhang et al., 2017; Liu et al., 2018; Marchesi et al.,
2020; Zhang et al., 2018)

e Flyweight (Rajasekar et al., 2020; Zhang et al., 2018; Zhang
et al., 2017)

e Satellite (Wo6hrer and Zdun, 2018)

e Contract Registry (Xu et al., 2018; Wohrer and Zdun, 2018)

e Contract Composer (Liu et al., 2018)

e Contract Decorator (Liu et al., 2018)

e Contract Mediator (Liu et al., 2018)

e Contract Observer (Liu et al., 2018)

Contract security e Fork check (Bartoletti and Pompianu, 2017)
pattern e Emergency Stop (Rajasekar et al., 2020; Wohrer and Zdun,
2018)

e Mutex (Rajasekar et al., 2020; Wohrer and Zdun, 2018)

e Contract Balance Limit (Rajasekar et al., 2020; Wohrer and
Zdun, 2018)

e Automatic Deprecation (Wohrer and Zdun, 2018)

e Speed Bump (Wohrer and Zdun, 2018)

e Rate Limit (Wohrer and Zdun, 2018)

e Check Effect Interaction (Rajasekar et al., 2020; Wohrer and
Zdun, 2018)

e Time Constraint (Bartoletti and Pompianu, 2017)

e Termination (Bartoletti and Pompianu, 2017)

e Math (Bartoletti and Pompianu, 2017)

Table 5.4: On-chain patterns - smart contracts patterns (management and
security).

The first subcategory "Contract management pattern" is about properly organizing and man-
aging the lifecycle of smart contracts in the decentralized application architecture. This sub-
category contains 12 different patterns. Some of them address the separation of concerns,
between the dApp entry point, features, and data. The most frequently mentioned pattern
is the Proxy pattern (Rajasekar et al., 2020; Marchesi et al., 2020; Wohrer and Zdun, 2018;
Zhang et al., 2017; Liu et al., 2018; Zhang et al., 2018). Usually implemented in traditional



96 Chapter 5. Collecting Blockchain-based Software Patterns

software engineering to wrap an object only accessible by it, this pattern is used in block-
chain to wrap a smart contract (the object) into another one (the proxy). A full description
of this pattern is given in a dedicated part of Subsection 5.2.2. Another pattern for sepa-
ration of concerns is the Data contract that decouples data from functions in two separate
contracts (Rajasekar et al., 2020; Xu et al., 2018; Wohrer and Zdun, 2018). The Flyweight
pattern is similar in functioning but consists in storing data used by multiple contracts in
one place (Rajasekar et al., 2020; Zhang et al., 2017; Zhang et al., 2018). Finally, a mention-
able pattern is the Satellite that can be used to decouple features that are more likely to
change from features that will not change over time (W&hrer and Zdun, 2018).

The second subcategory, "Contract security pattern", is filled with 11 patterns. Most of them
target Solidity-based contracts. Solidity is a programming language for smart contracts de-
ployed on Ethereum blockchain networks. One usage of such patterns is the restriction of
access to smart contracts functions when it is needed. To cite a few of them, the Termina-
tion pattern consists in locking the contract to prevent any further function call (Bartoletti
and Pompianu, 2017). It is also possible to use the Emergency Stop pattern to simply halt its
functioning until reactivated. This can be used for instance to protect the contract against
the abusive withdrawal of funds (Rajasekar et al., 2020; Wohrer and Zdun, 2018). The Speed
bump (Wohrer and Zdun, 2018), Rate Limit (Wohrer and Zdun, 2018), and Time constraint
(Bartoletti and Pompianu, 2017) patterns are used to implement time limitations when exe-
cuting smart contract functions. Some other patterns aim to protect the correct execution of
a function. The Check-Effects-Interaction pattern (Wohrer and Zdun, 2018) guarantees safe
execution of the function by first, checking the satisfaction of preconditions, then applying
the modifications on the contract, and finally applying modifications on other external con-
tracts, if needed. Also, some other interesting patterns are the Mutex pattern (Rajasekar
et al., 2020; Wohrer and Zdun, 2018) that protects the access to a used resource, or the
Contract Balance Limit pattern (Rajasekar et al., 2020; Wohrer and Zdun, 2018) to ensure
that the smart contract does not hold too many funds, to mitigate the risk of losing all the
funds if compromised.



5.2. Discussion 97

On-chain patterns - smart contracts patterns

Subcategory Patterns
Contract efficiency ¢ Incentive Execution (Rajasekar et al., 2020; Xu et al., 2018)
pattern e Tight Variable Packing (Rajasekar et al., 2020)

e Limit storage (Marchesi et al., 2020)

e Minimize on-chain data (Marchesi et al., 2020)

e Limit external calls (Marchesi et al., 2020)

e Fewer functions (Marchesi et al., 2020)

e Use libraries (Marchesi et al., 2020)

e Short constant strings (Marchesi et al., 2020)

e Limit modifiers (Marchesi et al., 2020)

¢ Avoid redundant operations (Marchesi et al., 2020)
e Write values (Marchesi et al., 2020)

e Pull payment (Wo6hrer and Zdun, 2018)

e Publisher-Subscriber (Zhang et al., 2017; Zhang et al., 2018)
e Challenge Response (Eberhardt and Tai, 2017)

e Low Contract Footprint (Eberhardt and Tai, 2017)
Contract access-control | e Judge (Worley and Skjellum, 2018)

pattern e Embedded Permission (Worley and Skjellum, 2018; Ra-
jasekar et al., 2020; Xu et al., 2018; Bartoletti and Pompianu,
2017)

¢ Dynamic Binding (Rajasekar et al., 2020)

e Multiple authorization (Xu et al., 2018; Liu et al., 2018)

e Off-chain secret enabled dynamic authentication (Xu et al.,
2018)

e Access Restriction (Wo6hrer and Zdun, 2018)

e Ownership (Wohrer and Zdun, 2018)

e Hash Secret (Liu et al., 2018)

Table 5.5: On-chain patterns - smart contracts patterns (efficiency and
access-control).

The third subcategory, "Contract efficiency pattern”, contains 15 patterns. It mainly targets
Ethereum smart contracts. Indeed, a user has to pay a defined amount of Ether, the native
cryptocurrency of Ethereum, to deploy and interact with a contract on a public Ethereum
network. The more the function stores data or perform complex operations, the more it
will cost the user. Design patterns in this section help to reduce the fees associated with
the deployment, storage, or execution of smart contract functions. For on-chain storage
reduction, many patterns have been proposed (Marchesi et al., 2020): the Limit storage or
Minimize storage data patterns in general, or Fewer functions and Limit modifiers to reduce
function overhead and code size. The Short constant string pattern can also be used to limit
on-chain storage by limiting the size of strings to prevent a high consumption of storage
size. Tight variable packing pattern, as proposed by Rajasekar et al. (Rajasekar et al., 2020),



98 Chapter 5. Collecting Blockchain-based Software Patterns

can also be a solution to reduce storage size by storing data in the smallest unit possible
(e.g., Uint8 instead of default Uint256 to store a number below 256). At computation, the
Avoid redundant operations and the Low contract footprint patterns can help reduce the
complexity of operations, thus saving costs (Rajasekar et al., 2020; Eberhardt and Tai, 2017).
This taxonomy also places in the Contract efficiency pattern subcategory patterns that help
to keep on-chain data accurate. For example, the Incentive execution pattern (Rajasekar
et al., 2020; Xu et al., 2018) refunds or rewards users that call a specific function to update
contract data, as no update can be done by the contract itself without external intervention.

The last subcategory is the "Contract access control pattern" and concerns the permission
management of contracts. This category is constituted of 9 patterns. The most important
one is the Embedded permission pattern (also called Access Control or Authorization), men-
tioned by 4 papers (Mavridou and Laszka, 2018; Bartoletti and Pompianu, 2017; Rajasekar
et al., 2020; Xu et al., 2018), that consists of encoding permission in a smart contract for
sensitive functions. Only authorized addresses will be able to call those functions. One vari-
ant is the Owner pattern (Woéhrer and Zdun, 2018), that defines a contract owner as the
solely entitled person to execute specific functions. Authorization to execute a function can
also require multiple signatures at the same time. A pattern named Multiple Authorization
(Xu et al., 2018; Liu et al., 2020; Liu et al., 2018) consists in defining a set of addresses in
the contract, where a fraction of them is required to execute a function. Another notewor-
thy pattern is the Judge pattern (Worley and Skjellum, 2018), that lets users vote to elect a
trusted third party. The winner is given the authorization to update the smart contract with
fresh information, as an Oracle could do.

On-chain patterns - Data management pattern

The last intermediate category of "On-chain patterns”, "Data management pattern", pro-
poses patterns related to the storage, migration, and encryption of on-chain data. The com-
plete list of patterns contained in this category is given in Table 5.6.



5.2. Discussion 99

On-chain patterns - data management patterns

Subcategory Patterns

Storage pattern e Transparent Event Log (Mdller, Ostern, and Rosemann,
2020)

e Key-value store (Worley and Skjellum, 2018)

e Address mapping (Worley and Skjellum, 2018)

e Event log (Marchesi et al., 2020)

e Tokenisation (Xu et al., 2018; Bartoletti and Pompianu, 2017;
Lemieux, 2017; Worley and Skjellum, 2018)

Migration pattern e Token burning (Bandara, Xu, and Weber, 2020)

e Snapshotting (Bandara, Xu, and Weber, 2020)

e State Aggregation (Bandara, Xu, and Weber, 2020)

e Node Sync (Bandara, Xu, and Weber, 2020)

e Establish Genesis (Bandara, Xu, and Weber, 2020)

e Hard Fork (Bandara, Xu, and Weber, 2020)

e State Initialization (Bandara, Xu, and Weber, 2020)

e Exchange Transfer (Bandara, Xu, and Weber, 2020)

e Transaction Replay (Bandara, Xu, and Weber, 2020)

e Virtual Machine Emulation (Bandara, Xu, and Weber, 2020)

e Smart Contract Translation (Bandara, Xu, and Weber, 2020)

Encryption pattern e Commit and Reveal (Rajasekar et al., 2020; Wohrer and
Zdun, 2018)
e On-chain encryption (Xu et al., 2018)

Table 5.6: On-chain patterns - data management patterns.

Regarding the "Storage pattern" subcategory, 5 have been identified. The most-proposed
one is the Tokenization pattern (Worley and Skjellum, 2018; Bartoletti and Pompianu, 2017;
Xu et al., 2018; Lemieux, 2017). Through this design pattern, real-life or complex assets can
be encapsulated into a token and exchanged on-chain. A dedicated part of Subsection 5.2.2
gives a detailed presentation of this pattern. Other forms of data storage can be mentioned:
the Key-value store pattern to organize data into a resizable store, accessible with keys, or
the Address mapping pattern where mapping is established between an address and its
associated data (Worley and Skjellum, 2018). Finally, some patterns propose to store logs
of data into event logs, either in a native blockchain event log (proposed by some block-
chains, such as Ethereum) (Marchesi et al., 2020) or in a smart contract (Miiller, Ostern,
and Rosemann, 2020).

Two patterns have been added to the "Encryption pattern" subcategory. Despite the lack of
patterns for this subcategory, it still has been added as many patterns will probably be added
to this subcategory in the future, following the advances in on-chain encryption strategies
such as homomorphic encryption (Liang et al., 2020) or zero-knowledge proofs (Yang and



100 Chapter 5. Collecting Blockchain-based Software Patterns

Li, 2020). The On-chain encryption pattern (Xu et al., 2018) helps in protecting sensitive on-
chain data through symmetric encryption. Data can then be stored on-chain and be non-
readable by anybody who does not have the encryption key. The main drawback of this
pattern is the key leakage threat because data will remain on-chain forever, even in case of a
leak. The Commit and Reveal pattern works differently: some values are kept secret during
the commit phase and revealed when needed (Rajasekar et al., 2020; Wéhrer and Zdun,
2018). It is possible to attest that the revealed value was the same as the one committed
in secret. Through this pattern, it is possible to commit some data without revealing its
content.

In the last subcategory, "Migration pattern”, 11 design patterns for data migration are in-
cluded. All of those patterns were found in a paper that proposes a pattern collection for
data migration (Bandara, Xu, and Weber, 2020). To mention a few of them, the Snapshotting
pattern consists in saving a copy of states, smart contracts, and transactions on the source
blockchain to transfer them to the target blockchain later. This operation can be done using
the State initialization or the Establish genesis patterns to respectively transfer states from
source to target blockchain or set states in the first block of target blockchain (i.e., genesis
block). Besides existing data, the code of useful smart contracts may also be changed to fit
the target blockchain; this can be done using the Smart contract translation pattern.

Architectural Patterns and Idioms

To conclude this question, other patterns that do not belong to the design pattern taxonomy
are introduced. This sample of patterns contains 14 idioms (Rajasekar et al., 2020; March-
esi et al., 2020). They all concern Solidity, a smart contract programming language for the
Ethereum blockchain, and address smart contract efficiency. As presented before, users
have to pay for smart contract function execution on a public blockchain. Proposed idioms
help to reduce execution fees in various ways: for example, Packing variables or Packing
booleans patterns can be used to reduce variable required storage with a smart ordering
of variables in the code, as background variables are grouped by the compiler in 32-bytes
slots. More efficient structures can be selected to save space, thus costs, using Uint* vs
Uint256 and Mapping vs Array patterns. Ether can also be returned to the user when using
the Freeing storage pattern, that consists in deleting unused variables or smart contracts.

Additionally, 3 architectural patterns were identified by Wessling et al. (Wessling and Gruhn,
2018).

The Self-generated transactions pattern lets the responsibility to the user of creating and
signing transactions for interacting with blockchain smart contracts. It ensures maximal se-
curity, as they keep control of their keys at all times and can verify the code to ensure correct
behavior, but it leads to poor user experience and expertise is required. To facilitate this task,
they can use a browser wallet (e.g., Metamask?) to generate and sign transactions.

2https://metamask.io/



5.2. Discussion 101

The Self-Confirmed Transactions pattern is a tradeoff between security and usability as the
website is in charge of generating transactions and the user is given the choice of signing
them or not, using a browser wallet.

The Delegated Transactions pattern offers the most convenient experience for users, as
the website handles all the blockchain-related operations. However, trust in the website
is mandatory, as they have full control of keys and wallets.

RQ3.3: What are the applications of identified patterns?

Looking at the domain applications, 7 papers out of 20 targeted a specific domain, such
as healthcare, big data, decentralized identity, record management, financial services, and
BPM. The proximity between some of the patterns and their application domain is the rea-
son they have been classified in the Domain-based pattern subsection of the taxonomy. Also,
specific patterns for BPM have been proposed (Miiller, Ostern, and Rosemann, 2020). They
might be applied in other solutions, but their main purpose is bound to business process
management. In other cases, some patterns are presented as a domain-agnostic solution
coupled with implementation details in a specific application domain. For instance, Zhang
et al. propose an adaptation of GoF patterns to serve healthcare solutions, using blockchain
(Zzhang et al., 2017).

From a technological standpoint, 6 of the 20 selected papers propose patterns for specific
blockchain technology. Of those papers, 5 are focusing on Ethereum, and more specifically
Solidity smart contracts. Indeed, a growing interest is shown by academics and businesses
for Ethereum since its release in 2016, as its mainnet is currently the most-adopted public
blockchain network for smart contract development. In this context, software patterns sup-
port many aspects of Solidity-based smart contracts. As seen before, found patterns mainly
address the efficiency and the security of smart contracts, two major aspects to consider
when developing Solidity-based decentralized applications. Another paper introduced a pat-
tern for the Hyperledger ecosystem, more specifically for Sawtooth, a modular blockchain
technologyS. Looking at patterns themselves, over the 160 non-unique patterns retrieved,
28 of them were not mentioning the usage of smart contracts, 79 of them mentions the
usage of smart contracts without any precision on used technology in the pattern Solution,
and 53 patterns are proposed in the context of using a specific technology (e.g., Ethereum).
However, some of the patterns might be proposed in a more generic form, thus allowing
its application to other technologies. This might be the ground for future research in this
domain.

5.2.2 Additional Research Questions
RQ3.4: Are some of the patterns equivalent to existing software patterns?

Since the first collection of design patterns released by the GoF (Gamma et al., 1995), many
patterns have been proposed that can be applied in many contexts. As dApps have many

Shttps://www.hyperledger.org/use/distributed-ledgers



102 Chapter 5. Collecting Blockchain-based Software Patterns

similarities with traditional applications, one aspect this work investigates is the links be-
tween existing software patterns and proposed blockchain-based patterns, either through
the creation of variants or the direct usage of existing patterns in blockchain applications.

Table 5.7 introduces the list of all identified software patterns. It has been found that 22 ex-
tracted patterns mention references to existing software patterns, where 16 of them directly
arise from the GoF design pattern collection. A possible explanation is that smart contracts
have many similarities with objects, thus many GoF design patterns can be applied to them.
For example, the Factory pattern is used to create instances of smart contracts from a fac-
tory contract, as it can be used in OOP (Object-Oriented Programming) to create objects
from one.

On top of that, using GoF patterns with smart contracts can help to tackle their lack of flex-
ibility, a difficult aspect to manage in decentralized application development. To illustrate,
where the Proxy pattern is a good practice for protecting the access of sensitive objects in
Object-oriented Programming, it is even stronger with smart contracts. As detailed in Sub-
section 5.2.2, the Proxy contract pattern can relay a function call to another smart contract.
As the proxy contract allows changing the relay target, this mechanism allows to upgrade
an existing smart contract by simply redeploying a new version, then updating the proxy
contract relay target. Where the logic behind the proxy changed, the interface remains un-
changed.



5.2. Discussion 103

Existing pattern \ Mentionned in
GoF patterns
Proxy e Proxy Contract (Rajasekar et al., 2020)

e (Off-chain) Contract Registry (Rajasekar et al., 2020)
e Proxy (Zhang et al., 2017)

e Proxy (Zhang et al., 2018)

Factory e Factory Contract (Rajasekar et al., 2020)

e Abstract Factory (Zhang et al., 2017)

e Abstract Factory (Zhang et al., 2018)

Flyweight ¢ Flyweight (Rajasekar et al., 2020)

e Flyweight (Zhang et al., 2017)

e Flyweight (Zhang et al., 2018)

Chain of responsibility | ¢ Checks-Effect-Interactions (Rajasekar et al., 2020)
e Dynamic Binding (Rajasekar et al., 2020)

Observer e Reverse verifier (Rajasekar et al., 2020)
Facade e Embedded permission (Rajasekar et al., 2020)
Memento e Emergency Stop (Rajasekar et al., 2020)
Composite ¢ Incentive Execution (Rajasekar et al., 2020)
Other patterns

Publisher-subscriber e Publisher-subscriber (Zhang et al., 2017)
e Publisher-subscriber (Zhang et al., 2018)

Mutex e Mutex (Rajasekar et al., 2020)
Snapshot ¢ Snapshotting (Rajasekar et al., 2020)
Layered design e Data Segregation (Wohrer and Zdun, 2018)

Table 5.7: Existing software patterns reused by blockchain-based software
patterns.

RQ3.5: What are the most frequently mentioned patterns and their variants across the
patterns identified?

In this subsection, four patterns are introduced in detail, using the Alexandrian form, a
pattern format described in the subsection 2.1.2. Exploiting the taxonomy, the researcher
only selected the most representative patterns in every subcategory (On/off-chain interac-
tion patterns, Data management patterns, Domain-based patterns, and Smart contract pat-
terns), based on the number of references in the corpus of papers. Whenever possible, the
formalization synthesizes each using the description of the mentioned academic work. Each
pattern was completed by the researcher’s own analysis of the pattern, whenever specific
information required by the pattern format was found missing.

Off-chain Data Storage pattern

The Off-chain data storage pattern consists in storing a hash of off-chain data in a smart
contract, to be able to verify the off-chain data integrity later. This pattern belongs to the



104 Chapter 5. Collecting Blockchain-based Software Patterns

"On/off-chain interaction pattern" category and has been found 6 times in the corpus of
papers.

Context - As the blockchain is replicated among nodes, some applications might consider
storing data within the blockchain, ensuring their integrity (Rajasekar et al., 2020; Xu et al.,
2018).

Problem - Allowing users to store on-chain data without any limit of storage could hamper
the network’s functioning. Therefore, many blockchain networks enforce a block size limit to
tackle the size growth issue of blockchain over time. Even if the size limit suits the needs of
the user, storing data on-chain is prohibitively expensive. Thus, how can the user store data
on-chain while taking advantage of blockchain immutability and integrity (Xu et al., 2018)?

Forces - Using this pattern implies balance forces. The first one is cost, as storing data on-
chain is expensive and even more if using a smart contract to keep the possibility to per-
form operations on them directly on-chain. Then, scalability, because storing large files on
a blockchain is difficult as they are replicated across all nodes (Xu et al., 2018). Finally, the
immutability level has to be considered: storing a hash on-chain does not offer the same
protection as storing the file itself. Indeed, it can still be modified or deleted off-chain.

Solution - Store the data off-chain, then calculate a hash of those data. Store the result
on-chain in a smart contract, possibly associated with metadata (e.g., resource location,
description, ...) (Rajasekar et al., 2020; Eberhardt and Tai, 2017). As hashing data is a one-
way function, data confidentiality is preserved, and users can check the integrity of their
data using the immutable hash stored on-chain (Xu et al., 2018).

Example - A company that wants to store proof that a legal contract is signed can hash the
contract after its signature and store the result on-chain. Thus, if another company denies
the authenticity of a contract, it is possible to prove the existence of the document as well
as its metadata (e.g., signature time).

Resulting context - Data are kept off-chain, and stay confidential, but their integrity can still
be accessed using the on-chain hash. It is inexpensive to store the hash on-chain compared
to the file itself, considering the size of such a file is large. However, the file is still vulnerable
to deletion or tampering, as the hash itself cannot help retrieve a lost file or deleted content.
Adequate measures should be taken to preserve off-chain data.

Related patterns - According to Liu et al., this pattern is directly related to the Low contract
footprint pattern in (Eberhardt and Tai, 2017), as the latter propose to minimize the number
and size of on-chain transactions to save costs, notably with optimizing write operations (Liu
et al., 2020). As the Off-chain data storage pattern only stores a hash on-chain, this cost is
kept low.

Known uses - The Government of Estonia’s e-health solution utilizes blockchain as a "fin-
gerprint" registry to ensure the integrity of e-health records (Lemieux, 2017). Factom?, a

4https://www.factom.com/



5.2. Discussion 105

blockchain for building records systems, implements this pattern by systematically hashing
files sent to the blockchain. Only the hash is kept on-chain after the operation.

State Machine pattern

The State machine pattern proposes to manage smart contract state transitions through
state machines, to break the problem of state changes into simple state transitions. It be-
longs to the "Domain-based pattern" intermediate category. As each of the patterns in-
cluded in this category has only been found one time in selected papers, the researcher
decided to select the State machine pattern for a thorough introduction as this pattern can
be used in many different scenarios, including basic implementations of smart contracts.

Context - When leveraging smart contracts, state changes are often performed. Depending
on the purpose of the smart contract, many state changes might occur during its lifecycle.

Problem - A smart contract might be difficult to design if many state changes occur, as com-
plex logic may have to be implemented.

Forces - Some forces are bound to the usage of this pattern: the complexity of the smart con-
tract to design and its efficiency, as depending on the implementation of the state changes
part, the contract might be efficient or cumbersome to use.

Solution - Apply a state machine to model and represent different contract stages and their
transitions in the smart contract (Wohrer and Zdun, 2018).

Example - A company that wants to leverage a business process on-chain with multiple steps
that might trigger automatic operations might be tempted to use the State machine pattern
in order to model and perform the state changes within the contract.

Resulting context - The state machine breaks complex problems into simple states and state
transitions (Wohrer and Zdun, 2018), resulting in a more efficient smart contract.

Related patterns - In the Confidential and pseudo-anonymous contract enforcement pattern
(Six et al., 2020), a state machine can be employed in the smart contract used by the pattern
to handle state changes of the associated legal contract on-chain.

Known uses - The DutchMachine smart contract implements a state machine for handling
auctions (Wohrer and Zdun, 2018).

Tokenization pattern

The third presented pattern is the Tokenization pattern. Classified in the "Data management
pattern" intermediate category and mentioned 4 times, this pattern consists in representing
an asset by a token, to facilitate its exchange on blockchain networks.

Context - Through a blockchain network, it is possible to send transactions and interact with
smart contracts without any third party as an intermediate. Such a network enables the



106 Chapter 5. Collecting Blockchain-based Software Patterns

exchange of value directly between one user to another, notably with the exchange of native
cryptocurrency.

Problem - Native fungible blockchain tokens (e.g., Bitcoin, Ether) often serve as the native
cryptocurrency of the associated blockchain network. In some cases, they can also be used
as token support to track assets, but their capabilities are limited. Indeed, extending the
concept of value exchange for other types of assets (e.g., other currencies, art, houses, ...)
is not a straightforward process due to the dissimilarity between those assets.

Forces - Some forces are bound to this pattern: authority, as it should be ensured that the on-
chain asset is the authoritative source of the correlated asset (Xu et al., 2018), and liquidity,
as blockchain can enable a frictionless exchange of value.

Solution - Model many types of assets on blockchain using tokens. Two types of tokens
can be differentiated: fungible tokens that are indistinguishable from each other, and non-
fungible tokens (NFTs), representing a unique asset with its own properties. Smart contracts
can thus be used as a data structure to handle the tokens and associated operations (transfer,
deletion, ...) (Xu et al., 2018), but also enhance their capabilities.

To illustrate, Ethereum proposes two different standards to create fungible and non-fungible
tokens using smart contracts, that are respectively ERC20 and ERC721 tokens (Di Angelo and
Salzer, 2020). Using these standards simplifies the usage of tokens, as on-chain applications
and users can rely on standard interfaces to interact with all of the smart contracts that im-
plement tokens for their usage. Other standards exist in the Ethereum ecosystem to improve
their usability in different contexts. For instance, the ERC1155 can also be mentioned as it
allows the usage of both fungible and non-fungible tokens (ERC20 and ERC721) in the same
smart contract. ERC998-based tokens go even further by regrouping multiple tokens under
a single token (commonly called a basket). This simplifies their exchange between users and
enables other use cases (e.g. a service proposing users to invest in a specific basket of tokens
all at once). A variant, the ERC3664, allows the combination of multiple NFTs into a single
one. This composability of NFTs is notably useful in the gaming industry (e.g. a set of items
merged into a better one).

Where tokens can be used to represent different types of assets, they can also be used for
other purposes. One of the most popular uses in this context is token governance: depend-
ing on the amount of owned tokens, users could vote on important decisions. For instance,
by owning governance tokens that represent a share of an on-chain fund, users could vote
about the usage of those funds, such as their investment in other protocols. Another simi-
lar concept is staking, notably for Proof-of-Stake blockchains: by locking a defined amount
of their tokens at stake, users could be entitled by the consensus algorithm to create new
blocks.

Example - A real estate company can use non-fungible tokens to represent the ownership
of houses directly into the blockchain. Ownership of a house can then be directly exchanged
on-chain, and a complete history of transactions can be retraced for a house.



5.2. Discussion 107

Resulting context - Assets are tokenized on-chain and can be easily sent between users.
Using smart contracts, many features can be implemented along with the tokens, such as
royalties, sales, or burns (i.e., destroying tokens).

Related patterns - The Address mapping pattern can be used as a complement to map block-
chain accounts (e.g., public addresses) with owned tokens. The Poll pattern might use the
Token pattern to materialize votes as tokens and keep track of them.

Known uses - The Tokenization pattern has already been applied in a tremendous num-
ber of domains. For instance, stablecoins (e.g., Tether®), consist in emitting fungible tokens
on-chain that keep the same value as an underlying asset (e.g., US Dollar) using different
strategies. This enables many other use cases relying on the usage of fiat currencies, such
as frictionless currency swaps. Another use case is the usage of NFTs in art. Many artists
have digitalized their art as NFTs to sell it on on-chain marketplaces, such as OpenSea®.

Proxy contract pattern

The fourth and last presented pattern is the Proxy contract pattern. It belongs to the "Smart
contract pattern” intermediate category and appeared 6 times in found patterns.

Context - In a blockchain, data becomes immutable after addition. This concept is also ap-
plied to smart contracts, that cannot be modified after their deployment on-chain (Marchesi
et al., 2020).

Problem - If a smart contract has to be changed (e.g. for upgrades, bug correction, ...), the
developer has to deploy another version of the contract and manually change the other
contracts that reference the old contract (Marchesi et al., 2020). In the best case, this is a
cumbersome task, and it might even not be possible in certain cases.

Forces - The problem requires balancing the following forces: first, immutability, as deployed
smart contracts are designed to be immutable, and upgradeable, as proposing features to
allow upgradeability enhances designed smart contracts.

Solution - Using a proxy contract, a user can query the latest version of a target contract.
The proxy contract will relay the request to the target contract (Wéhrer and Zdun, 2018). By
replacing the reference of the target contract with a new one, it is possible to easily upgrade
parts of the decentralized application (Marchesi et al., 2020).

Example - A user can request a proxy contract as the bridge for a decentralized application,
such as the latest version of a decentralized cryptocurrency exchange.

Resulting context - Proxy contracts can be used to easily access the latest version of a con-
tract, without requiring storing the latest contract addresses off-chain. Reference updates
can easily be performed by requesting the proxy contract with the latest contract address.

Shttps://tether.to/
Shttps://opensea.io/



108 Chapter 5. Collecting Blockchain-based Software Patterns

Related patterns - The Data contract pattern can be implemented along the Proxy contract
pattern as the proxy will allow updating the logic used to access the data contract with-
out updating the data contract itself. The Contract registry pattern is related to the Proxy
contract pattern, as the contract registry has a reference to all the latest versions of the
contracts, whereas the proxy only references one contract.

Known uses - A security company named OpenZeppelin proposes a generic implementa-
tion of the Proxy contract pattern for Solidity-based smart contracts (OpenZeppelin, 2019).
Uniswap, a decentralized exchange on Ethereum, uses proxy contracts to forward user trans-
actions to the exchange smart contract’.

RQ3.6: What are the current gaps in research on blockchain-based patterns?

Regarding current gaps in research on blockchain-based patterns, the lack of non-design pat-
terns can be mentioned. Among the 114 patterns retrieved, only 3 of them are architectural
patterns and 14 of them are idioms. Although design patterns are a very compelling solution
for the design of robust and efficient applications, exploring new forms of blockchain archi-
tectures, then formalizing them as architectural patterns could benefit a lot to blockchain
dApp design. Taking back the examples mentioned in Subsection 5.2.1, Mavridou et al. show
the strong impact on software quality using architectural patterns (Mavridou and Laszka,
2018). On one side, applying the Self-Generated Transactions pattern means letting the task
of signing transactions to users on the client side, thus ensuring no one aside from the client
has access to the keys. On the other side, using the Delegated Transactions pattern lets full
control of the funds to the application. This can be convenient for users without knowledge
of using a blockchain wallet but adds a potentially vulnerable third party into the balance.
Such research could be conducted by exploring the existing literature or applications to find
innovative ways of organizing decentralized application components. For example, Tonelli et
al. propose a microservices system where smart contracts are services themselves (Tonelli
et al., 2019). As the Microservices architectural pattern already exists, adapting it for block-
chain could lead to a new way of designing a loosely coupled smart contract system with its
own advantages and liabilities.

Regarding the idioms, and the other smart contract patterns found, all of them deal with
Solidity, except one (Hyperledger Sawtooth). Although Ethereum is the most used public
blockchain for decentralized applications as of today, other languages could have been con-
sidered. Rust, a high-level compiled language, is used for smart contract development by
many blockchain technologies, such as ink! from Polkadot®, or Rust for Solana?. Formaliz-
ing new idioms and patterns in this context could help improve code quality and security. In
addition, existing patterns in Solidity could also be translated for other blockchains. As an
example, the Freeing storage idiom could also be applied to other public blockchains where
freeing the storage refunds a defined amount of money (Marchesi et al., 2020).

7https://etherscan.io/address/oxo9cabecieadicoba254bogefb3ee13841712be14
8https://github.com/paritytech/ink
?https://github.com/solana-labs/solana



5.3. Threats to Validity 109

5.3 Threats to Validity

Internal threats to validity: in this literature review, the Kitchenham et al. methodology
has been applied to systematically conduct the study, from the selection of papers to the
collection of data (Kitchenham and Charters, 2007). Several steps in this method consisted
of filtering papers based on title and abstract, or quality (assessed by QQs). This phase is
subject to researchers’ bias, as the process of discarding papers based on these pieces of in-
formation is subjective. To tackle this threat, multiple researchers performed this filtering,
and disagreements were discussed, then settled. Also, the query applied to retrieve papers
can be mentioned. The terms in the query were only searched in titles, abstracts, and key-
words to improve the precision of the request, yet some papers might have been missed.
To overcome this, backward and forward snowballing has been used to retrieve papers that
cited or have cited studies found while performing the systematic literature review.

External threats to validity: as this SLR focuses on academic literature, blockchain-based
software patterns may have been missed from other grey literature sources, such as blog
posts or technical articles. Nevertheless, this threat is limited, as many papers identified
during the literature review as containing papers was citing sources from the grey literature.
Yet, future works may consist in carrying a multivocal literature review that includes grey
literature (Garousi, Felderer, and Mantyl3, 2019).

Construction threats to validity: the exclusion criteria can be mentioned. Although only
studies that contain patterns were included in the final corpus of papers, there were no
exclusion criteria for patterns that are correctly formulated but lack prior application in dif-
ferent contexts. Indeed, one requirement to adapt a solution into a pattern is that the so-
lution should have extensively been tried and tested. Nevertheless, from the data collected
throughout the literature review (e.g. number of citations, application examples for each
pattern, etc.) a degree of reliability for each pattern can be computed.

Conclusion threats to validity: the collection, categorization, and grouping of patterns
may lead to errors, as this is a manual process. Yet, collected patterns from one researcher
were double-checked by others, and the resulting collection was also reviewed during a
meeting to identify errors. In parallel, great attention has been paid to not merging patterns
that are not strictly identical, to avoid missing variants of patterns that serve in different
contexts.

The resulting taxonomy was also subject to bias. For instance, even if different methods
were used to generate category names, the final decision is up to the taxonomy builders.
Selecting the high-level dimensions (meta-characteristics) is also a subjective task that has a
high impact on the construction of the taxonomy. To limit such bias, the methodology from
Nickerson et al. was applied (Nickerson, Varshney, and Muntermann, 2013). Also, identified
patterns were easily classified into the final version of the taxonomy, hence, the produced
version of the taxonomy satisfies the goals initially described before its construction.



110 Chapter 5. Collecting Blockchain-based Software Patterns

5.4 Related Works

Using a systematic literature review to collect patterns is a strategy that has already been
used in other fields. For instance, Juziuk et al. have gathered 206 design patterns on multi-
agent systems (MAS) from the literature (Juziuk, Weyns, and Holvoet, 2014). Authors have
also identified the links between found patterns and proposed classification to group pat-
terns under different categories and subcategories. The study also mentions several re-
search gaps in the literature for MAS, such as the lack of standardization when describing
a pattern despite the existence of several pattern formats, the lack of links between pat-
terns that do not belong to the same category, and the lack of mentioned applications of
presented patterns. This chapter also shares the same conclusions.

In another literature review, 44 architectural patterns are extracted from a corpus of 8 pa-
pers about microservices (Osses, Marquez, and Astudillo, 2018). A taxonomy is also provided
to classify the different patterns. It has been found that identified patterns are mostly bound
to five quality attributes: scalability, flexibility, testability, performance, and elasticity.

Washizaki et al. have also performed a systematic literature review of loT software pat-
terns and have collected 143 architecture and design patterns from a corpus of 32 papers
(Washizaki et al., 2020). They have also identified that 57% of all found patterns are non-
loT patterns, thus meaning loT systems are designed through a conventional architecture
perspective, something that has also been identified in this work through the "On/off-chain
interaction pattern" category as well as GoF-based design patterns. This chapter follows the
same path as others by proposing a taxonomy and a collection of patterns. To the best of the
researcher’s knowledge, this is the first attempt in the blockchain-based pattern literature
to propose such work.

5.5 Conclusion and Future Works

Ensuring the high quality and efficiency of newly built decentralized applications is a chal-
lenge of uttermost importance for the future of blockchain. Software patterns are a promis-
ing solution to address this challenge, as they ensure commonly occurring problems in a
given context are addressed with extensively tested solutions. In this chapter, a systematic
literature review is performed on the available blockchain pattern literature to identify ex-
isting software patterns and classify them into a comprehensive taxonomy.

During this systematic literature review, 20 studies were selected out of which 160 patterns
were extracted. After duplicate removal, 114 unique patterns were found and regrouped in
a taxonomy. The taxonomy consists of 4 main categories and 15 subcategories and has been
built using a construction taxonomy methodology (Nickerson, Varshney, and Muntermann,
2013). This chapter also discusses the links between blockchain-based software patterns,
but also their relation with existing software patterns such as the GoF design pattern collec-
tion. One finding is that many patterns from this collection are translated into blockchain
patterns, such as the Proxy or Factory pattern. Application domains of patterns have also



5.5. Conclusion and Future Works 1M1

been discussed: among the corpus of papers, 3 papers directly linked to domain-based pat-
terns were found, respectively healthcare (Zhang et al., 2018), collaborative business pro-
cesses (Muiller, Ostern, and Rosemann, 2020), and decentralized identity (Liu et al., 2020).
Finally, research gaps are addressed, by enlighting the scarcity of architectural patterns and
idioms for the design of blockchain-based architectures, and the concentration of patterns
on one blockchain protocol (Ethereum).

This chapter, in conjunction with Chapter 6, aims to propose a comprehensive and reusable
knowledge base of blockchain-based software patterns. In this chapter, the knowledge has
been extracted in a semi-structured format, using a systematic method. In Chapter 6, this
knowledge is reused to build an ontology of blockchain-based software patterns. Finally,
this work also contributes to the state of the art of blockchain-based patterns, through a
taxonomy that will help to classify newly created patterns in comprehensive categories, a
systematic literature review to map and describe the existing literature on blockchain-based
patterns within the taxonomy, and highlight research gaps that could be addressed in further
studies.






113

Chapter 6

Recommendation Engine for the Selection
of Adequate Blockchain-based Software
Patterns

— Key takeaways .

e An ontology of blockchain-based software patterns is designed, reusing the pat-
tern collection created in the last chapter.

e Aplatformis created to allow the practitioner to explore the ontology of patterns,
then obtain recommendations on blockchain-based software patterns.

e This platform is the second part of BLADE, and the second artifact of the frame-
work with regards to the DSR approach. It addresses the technical research ques-
tion RQ4.

The previous chapter contributed to forming a collection of blockchain-based software pat-
terns, classified into comprehensive categories. However, their usage in recommendation
tools to assist the design of a blockchain application is still a challenge. Although these pat-
terns have been stored in a public GitHub repository, they are still stored in a plain Excel
file. Thus, it requires finding adequate support to store these patterns in order to ease their
reuse. Ontologies are a good candidate to address this issue. By defining a set of ideas and
categories that reflect the subject, an ontology can show the qualities of a subject area and
how they are related. Here, the subject area is both the organization of software patterns
and the blockchain-based software patterns themselves.

This chapter addresses the reuse of patterns throughout the following technical research
guestion (RQ4): How to design a blockchain-based software patterns recommendation plat-
form that simplifies the completion of this task for non-experts so that practitioners can
choose adequate patterns during the design phase of blockchain application development?



114 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

As in Chapter 4, two requirements for this can be derivated from this technical research
question:

1. The platform must ease the task of blockchain-based software pattern selection for
non-expert users.

2. The platform must recommend blockchain-based software patterns that satisfy the
user requirements.

Satisfying these requirements will imply a positive outcome for stakeholders (i.e. practition-
ers) goals, that motivate this research work.

First, an ontology’, named blockchain-based software patterns ontology, is proposed. It is
composed of two distinct subspaces:

1. Blockchain-based patterns subspace: a set of classes and individuals related to
blockchain-based patterns.

2. Pattern proposal subspace: a subspace for organizing the knowledge related to soft-
ware patterns with regard to the academic literature.

In this goal, the Network of Ontologies (NeOn) method is used to guide the construction of
these two subspaces (Suarez-Figueroa, Gdmez-Pérez, and Fernandez-Lopez, 2012). NeOn
eases the reuse of existing non-ontological knowledge, that is the collection of patterns,
and eases the reusability of the ontology in a network of other related ontologies. Then,
a web platform is proposed to navigate into the ontology of patterns but also to perform
recommendations based on a questionnaire presented to the user. By answering several
design questions, the recommender is able to output a sample of adequate patterns that
suits the needs of the user. This web platform is the second part of BLADE and reuses the
blockchain recommendations to output results related to the chosen blockchain technology.

This chapter is organized as the following. Section 6.1 introduces the NeOn method used to
build the ontology from the knowledge acquired in Chapter 5. It also introduces the compe-
tency questions, that lead to the design of the ontology. Section 6.2 describes the resulting
ontology, as well as a web platform built to query the ontology and leverage its content
without deep knowledge in the field. The running example introduced in Chapter 2 is then
reused in Section 4.4 to illustrate the functioning of the web platform. The validity of the
artifact (i.e. the ontology and the platform) to answer the technical research question RQ4
is assessed in Section 6.4, then the possible threats to validity are discussed in Section 6.5.
Some related works are discussed in Section 6.6, then Section 6.7 concludes the chapter and
introduces envisioned future works.

For the sake of conciseness, the terms "the ontology" and "the blockchain-based software patterns on-
tology" may be used interchangeably.



6.1. Ontology Construction 115

6.1 Ontology Construction

The first research work introduced in this chapter is the construction of the ontology. Build-
ing an ontology is not a straightforward task, notably as this work has to reuse existing non-
ontological resources, that are the collection of blockchain-based software patterns and the
related taxonomy of patterns. To carry out this work, a method for ontology construction
has been chosen, that is NeOn (Suarez-Figueroa, Gomez-Pérez, and Fernandez-Lépez, 2012).
This method is introduced in the following subsection.

6.1.1 Construction Method

For the construction of the ontology, the NeOn method has been chosen due to its inher-
ent flexibility and focus on the reuse of both ontological and non-ontological resources in a
structured manner (Suarez-Figueroa, Gomez-Pérez, and Fernandez-Lépez, 2012). The goal
of this method is not to replace the DSR method used in the context of the thesis, but rather
complement it: NeOn was used during the treatment design step of the design cycle used
to address technical research questions.

NeOn does not force strict guidelines that must be followed sequentially upon the ontology
design: a set of scenarios is given and the designer is free to select, and if needed, adapt
any scenario that suits their needs. In this work, two of the scenarios envisaged within
NeOn have been chosen. The first scenario mainly concerns ontology construction from the
ground up, to produce a new, standalone, ontology. The principal motivation for this choice
is the absence of literature on existing ontologies covering blockchain-based patterns. There
is also the inability of existing software pattern ontologies to adequately capture the results
of the literature review upon which the pattern proposal subspace is based, hence the need
to produce a new ontology to also cover this domain of interest. The second addresses the
specific aspects of reusing non-ontological resources in the construction of ontologies. This
is key since the blockchain-based software pattern ontology will be primarily based on the
reuse of previous results obtained through a systematic literature review (Six, Herbaut, and
Salinesi, 2022). The NeOn methodology proposes a set of closely related life cycle mod-
els linked to the different scenarios it incorporates. The six-phase waterfall life cycle has
been chosen (Suarez-Figueroa, Gomez-Pérez, and Fernandez-Lépez, 2012), given the need
to reuse non-ontological resources (Figure 6.1).

SN NS NS N N

Re-engineering

Initiation Reuse : - - Maintenance
. Non-ontological Design Implementation

quir . . urce refactoring to model design implementation

specification identification ontologies ontology

Figure 6.1: NeOn framework workflow.



116 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

6.1.2 Initiation

In the initiation phase, one important step in the construction of an ontology is the speci-
fication of requirements through an Ontology Requirement Specification Document (ORSD)
(Suarez-Figueroa, Gomez-Pérez, and Fernandez-Lopez, 2012) that serves as an agreement
on which requirements the ontology should cover, its scope, implementation language, in-
tended uses and end users. The ORSD facilitates the reuse of existing knowledge-aware re-
sources in the creation of new ontologies (Suarez-Figueroa, Gomez-Pérez, and Fernandez-
Lépez, 2012). Competency Questions (CQs) is a way to introduce the functional require-
ments of an ontology; their coverage, ideally in a generalizable manner, allows one to con-
sider the ontology functionally complete. The CQs are not formulated as functional require-
ments, but rather as questions that can be translated to requirements afterward (e.g. for
CQa4, the ontology shall allow the user to retrieve the possible relations between two pat-
terns). For the sake of brevity, only the CQs are detailed in this chapter, listed in Table 6.1.
However, more information about the ontology’s purpose can be found in the introduction
or in the full ORSD, available on GitHub?.

Table 6.1: Ontology competency questions.

can What are the classes of patterns in the blockchain area and how can they be
differentiated and characterized?
What are the different propositions of patterns in the academic literature and
CQ2 . .
how can their acceptance by others be quantified?
cQ3 How can the concept of pattern from their possible descriptions in different
sources be differentiated?
cQa What are the types of relations or constraints that can connect two patterns
together?
What are the different problems bound to the design and implementation of
CQs . e o
blockchain applications:

These competency questions define the two main purposes of the ontology. The first pur-
pose is the definition of a sound structure to store software patterns, especially patterns
proposed in the academic literature (CQ3). As these patterns might not have been applied
enough in real use cases, one objective is to quantify the acceptance by others (CQ2) of a
proposed pattern in a study. One possible solution to this problem is the usage of paper cita-
tions, described in Section 6.2.1. The relations between these patterns are also an important
topic, as patterns are often used together to address larger-scale problems (CQ4).

The second purpose is the storage of blockchain-based software patterns, taking their speci-
ficities into account. It notably includes their classification into comprehensive categories
(CQ1) to guide the reader in the space of blockchain-based software patterns, as well as the
problems they address (CQ5).

2https://github.com/harmonica-project/blockchain-patterns—ontology


https://github.com/harmonica-project/blockchain-patterns-ontology

6.1. Ontology Construction 117

The process outlined by Suarez et al. was followed to validate the requirements specifica-
tion, within the larger framework of the NeOn methodology (Suarez-Figueroa, Gomez-Pérez,
and Fernandez-Lopez, 2012). Since the ontology was to be built with extensibility in mind,
should new requirements arise, the queries that correspond to the competency questions
act as a test suite that ensures the ontology remains conformant as it evolves.

6.1.3 Reuse and Re-engineering of Non-Ontological Resources

The construction of the blockchain-based software pattern ontology formalizes the knowl-
edge gained from a previous systematic literature review. The ontology incorporates knowl-
edge from two different non-ontological resources that can both be found on GitHub?3:

1. A collection of 160 patterns that were identified during the literature review (Chapter
5) within 20 different papers; out of which 114 unique patterns have been derived.

2. A taxonomy, that emerges from the categorization of the results in the literature re-
view, and is comprised of 4 main categories and 14 subcategories.

More details are given in the introduction of the ontology conceptual model in the results
presented in Section 6.2.

Each of the collected patterns is described by a set of attributes, e.g., a Name, a Context
and Problem, and a Solution. The citations count for each paper that proposes one or more
patterns have also been collected. Thus, the reliability of a pattern can be assessed more
easily: a pattern proposed in a paper cited multiple times can be considered, to some extent,
to be more trustable than a pattern from a non-cited study. More rationale on the usage of
these citations to assess pattern reliability is given in Subsection 6.2.2.

The domain, programming language, implementation examples, and blockchain technology
associated with the pattern are also collected if available. Indeed, some patterns may be pro-
posed by paper for a specific programming language (the Solidity smart contract language?),
or in the context of a specific domain (e.g., patterns to enable decentralized identity on
blockchain). Also, different types of relations between patterns were identified throughout
the study: Created from, Variant of, Requires, Benefits from, and Related to. As the appli-
cation of a specific pattern might require considering other patterns, its relations to others
should be made explicit. Further details about these relations are given in Subsection 6.2.1.
Patterns are classified in one of three categories depending on their general purpose: Archi-
tectural patterns that regroup patterns impacting the general structure of the application
(elements, connections); Design patterns that are a way to organize modules, classes, or
components to solve a problem; and Idioms, solutions to a programming language-related
problems.

Shttps://github.com/harmonica-project/blockchain-patterns-collection
4https://docs.soliditylang.org/



118 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

6.2 Blockchain-based Software Pattern Ontology

The application of the NeOn method resulted in a blockchain-based software pattern ontol-
ogy, and a querying tool that can be used to leverage the ontology through different ways
of retrieving and then selecting blockchain-based patterns.

6.2.1 Ontology Overview

The primary result of the NeOn blockchain-based software pattern ontology construction
process is depicted in the conceptual model®> shown in Figure 6.2. This ontology proposes
an approach based on the existing literature (Chapter 5) to store, classify, and link block-
chain-based software patterns but also to infer new knowledge using inference rules, such
as new relations between patterns. As the figure shows, the driving idea of the ontology is:
(a) the explicit distinctions between patterns, variants, and pattern proposals, (b) proposals
and their relations with others, and (c) design problems outside the scope of patterns.

Blockchain-based Software Patterns Ontology

/ Pattern Proposal subspace \ Blockchain Pattern
/ subspace - an example
<Design <Pattern
<Language>
problem> category>
linkedTo
1 V1 '

S— e N s N
<Blockchain> {[<——— Proposal 1.1 Variant Ownership
pattern
(. J - . \ J
1 “* \
—_— P L < _ . Enable smart Contract
1 1 contract access access-control
Identifier Paper <Domain> control patterns

e S S

Taxonomy subclasses folded
for clarity
Regroups a hierarchy of
subclasses

<class> application

[Desugn pattern Design patternsJ

'
'
'
'
'
1

1

'

’
’
R

Figure 6.2: Blockchain-based software pattern ontology with an exemplified
section.

Using ontologies as a support to store gathered knowledge about patterns also enables the
usage of inference engines to find new relations between entities. This aspect is described
along with the ontology content in this subsection. Using an ontology also allows connecting
it with other ontologies. Although it is beyond the scope of this work, it is possible to connect
patterns with blockchain technologies expressed in other blockchain ontologies.

5For the sake of clarity, some subclasses of the ontology are hidden.



6.2. Blockchain-based Software Pattern Ontology 19

The central element of this model is the Proposal class. A proposal is a pattern introduced
within an academic paper. In the current form of the pattern proposal subspace, all sources
of patterns are academic papers, thus this class is not implemented yet. Nonetheless, a
class named Source will merge other types of sources such as technical documentation (e.g.,
OpenZeppelin proxy pattern: OpenZeppelin, n.d.) in the future. This improves the extensi-
bility of the model, as patterns might be proposed in many different sources.

Each paper is linked to a Identifier, which can take the form of a DOI (Digital Object Identifier)
or an ArXiv ID. For each paper present in the pattern proposal subspace, its citations have
been included as identifiers individuals and linked to the paper using a references object
relation. This system allows inferring the citations of a specific paper, then makes pattern
recommendations where the number of citations of a paper is taken into account to evaluate
the score of a specific proposal (and by extension, a specific pattern). More rationale on
pattern recommendation is given in Subsection 6.2.2.

In this model, a proposal is linked to a variant. A variant inherits from a specific Pattern
and represents one of its possible forms. Indeed, variants are used to express the variability
of a pattern: two variants of a pattern might be close enough to address the same problem
and solution, but may vary in some aspects (e.g., implementation).

Figure 6.3 shows an example of this concept. In this example, purple arrowed plain lines
represent the relation between classes and instances, blue arrowed plain lines the class
inheritances, and dashed arrowed lines the relations between a variant and a proposal. The
Oracle pattern proposed by Xu et al. (Xu et al., 2018) is an individual instance of Proposal and
attached to the Oracle variant, an individual of the Variant and Oracle class. The distinction
between proposals and resulting patterns is important as in some cases multiple papers
proposed the same pattern using different words, templates, and for different domains or
blockchains. As such, a Proposal inherits from a specific blockchain, domain, or language®

In this conceptual model, a Proposal is described by a Context and Problem, that gives a
rationale for the purpose of the pattern and addressed problems, and a Solution field to in-
troduces the different elements composing the pattern solution. This structure for pattern
description is derived from the two main pattern formats (GoF pattern format and Alexan-
drian form, TeSanovic, 2005), usually used by researchers and practitioners to express soft-
ware patterns. Because of the lack of standardization across the literature on the description
of patterns, only the context, problem, and solution have been kept to describe a pattern in
this pattern proposal subspace.

Proposals can also be linked together, using 5 different relation types that were identified
from the systematic literature review:

e Created from - when a pattern directly takes its sources in another.

e Variant of - when a pattern is a variant of another.

SFor the sake of clarity, subclasses of blockchain system, domains, and language (e.g., respectively
Ethereum, 10T, or Solidity) are hidden in the provided conceptual model.



120 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

* @ Proposal
NN
_— / \\\A T~
/////A ///) \\\ B \[An\\*\
_— / N\ R
* ¢ 'Oracle ‘ ‘+ # 'Oracle (Data ’ * @ 'Oracle * ¢ 'Oracle (Xu,
(Rajasekar, 202... Provider) (Wohr... (Bartoletti, 20... 2018)'

// \

K v

S A

X
# Oracle N
\\
.

’/
/
/
Ve \
R ~
- # Vote L o\
' o —g
Data exchange ~ Oracle @ variant
pattern
N + # Judge e
A\ o g
\ ///
. P ~

~

* @ 'Ticker Tape' ]

Figure 6.3: Oracle pattern ontology example.

e Requires - when a pattern has to use another to perform well once implemented.
e Benefits from - when a pattern might use another to perform well once implemented.

e Related to - to identify a weak relation between a pattern and another (e.g., “see
also”).

By using inference, it is possible to translate these relations from proposals to variants, cre-
ating new knowledge about possible relations between patterns. Semantic Web Rule Lan-
guage (SWRL) rules have been written for the inference engine to generate such relations. As
an example, the following rule translates a benefitsFrom object relation from two proposals
to their corresponding variant (Equation 6.1).

Y (p1,p2) € Pand (v1,v) €V,
p1 benefitsFrom py - py hasVariant vy - pp hasVariant vy (6.1)
—> ©v1 benefitsFrom vy

The subclasses of the Pattern class emanate from the reused taxonomy for blockchain-based
patterns, built in its related systematic literature review (Chapter 5). For instance, the Oracle
variant from Xu et al. (Xu et al., 2018) is linked to the Oracle pattern class, that inherits
from the Data exchange pattern, then On-chain pattern, Design pattern, and finally Pattern.



6.2. Blockchain-based Software Pattern Ontology 121

Although this hierarchy exists in the blockchain-based software pattern ontology, it is not
shown in Figure 6.2 for clarity.

To further refine this part of the ontology, each Pattern addresses a specific Design problem.
By extension, each subclass of Pattern addresses a design Design problem subclass. Figure
6.4 illustrates this aspect with the classes that directly inherit from Pattern. The orange
dashed line represents a addressProblem relation between a Pattern and a Design problem.

‘ * @ owl:Thing ’
{ Problem ’ { Pattern ’\/ A
+ . / + 'Desi
'Design pattern esngn'
application’ pattern

/7 %k

‘ 'Architectural

'Architectural }

design organiza... pattern’
'Language idiom * o 1diom }
application’

Figure 6.4: Example of relations between Patterns and Design problems.

Also, each problem has been assigned an associated literal question, notably used for rec-
ommendations (Figure 6.5).

Annotations
rdfs:label [language: en]

Architectural design organization

problemDescription [language: en]

| want to use a commonly recurring architectural style in my application

Figure 6.5: Example of question associated to the Architectural design
organization subclass.

These questions have been designed along the construction of the design problem taxon-
omy to give a literal sentence of the problem. The question is presented as an affirmation
(here, a user story sentence), that can be answered by yes or no. For instance, the question



122 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

associated with the Smart contract usage design problem, solved by the Smart contract pat-
terns is “l want to execute part of my application on-chain”. Such an affirmation can be thus
presented as a question to the user and answered positively or negatively, to guide pattern
recommendations.

6.2.2 Ontology Querying Tool

In parallel with the ontology, a tool was designed to leverage it without having to use specific
tools such as Protégé’. Using this tool facilitates access to ontology content for non-experts,
but querying the ontology directly through SPARQL® queries is also a possibility. This tool has
two main features: the explorer and the recommender, described in the following sections.

Explorer

The first one is the explorer feature, which allows diving into ontology knowledge through
the presentation of all available patterns in a grid. The purpose of this section is to link the
solution domain (the list of patterns) to the problem domain (user requirements and goals).
Indeed, any user reading available pattern descriptions might find some that suit their goals.
The application shows each pattern’s name but also the number of linked proposals. By
clicking on the pattern card, the user can consult the context, problem, and solution for each
pattern variant and proposal. She also has access to a list of linked patterns following the
same notation as defined in the pattern proposal subspace. The tool allows filtering patterns
out, using the proposal’s respective domains, blockchains, and languages. For instance, a
user can select Ethereum as the desired blockchain and filter out every non-corresponding
pattern.

Recommender

The second part of the tool is the recommender feature. Contrary to the explorer feature,
any user can leverage the recommender to navigate from the problem domain (a set of
questions asked by the user) to the solution domain (a set of patterns matching given an-
swers). To personalize pattern recommendations, the user answers a set of questions linked
to design problems, as presented in Subsection 6.2.1. An illustrative scheme of this process
is shown in Figure 6.6.

Questions are organized in a tree structure, traversed by a conditional depth-first algorithm.
The questionnaire starts with a high-level question (e.g., “I want to use design patterns in
my application”) Depending on the user’s answers, each node of the tree is assigned a score:
1 for “Yes”, -1 for “No” and o for “‘l don’t know”, children of nodes with the negative score
being skipped. The tool generates the recommendation once the questionnaire is filled up.
Patterns constitute the leaf node of the tree. To compute the score S, for each pattern, the

"https://protege.stanford.edu/
8https://www.w3.org/TR/sparglll-overview/


https://protege.stanford.edu/
https://www.w3.org/TR/sparql11-overview/

6.2. Blockchain-based Software Pattern Ontology 123

tool sums the score of every parent node and then normalizes the score using the length of
the branch, accounting for branch length differences.

Next, three different algorithms were used to compute pattern rankings based on the scores
Sq: NoCitationsAndQS,WeightedCitationAndQSandUnWeightedCitatio—
nAndQS.NoCitationsAndQsS simply orders the patterns based on their score, while the
other two also take into account an inferred number of citations. For each pattern, this num-
ber of citations is computed by summing the number of citations of all papers that proposes
the pattern. As an example, if a pattern is proposed by two papers that respectively have
50 and 150 citations, the pattern is given a number of citations of 200. In UnWeight—
edCitationAndQs, the rank is obtained by multiplying S, with the ratio between the
number of citations of a pattern and the number of citations of the most-cited pattern. For
WeightedCitationAndQs, instead of using the number of citations directly, its loga-
rithm is used. The rationale for this is the extreme ranking skewness in favor of highly cited
patterns in UnWeightedCitationAndQs.

Note that both UnWeightedCitationAndQS and WeightedCitationAndQS
might discriminate negatively against newly proposed patterns that do not have many ci-
tations yet.

The user can select one of the three algorithms. When NoCitationsAndQsS outputs
a ranking only impacted by the answers, WeightedCitationAndQS and UnWeight—
edCitationAndQSs also take into account citations, which serves as an indicator of the

addresses h )

Pattern —){ Problem ’ i Questions '
e Zﬁ N e N St i R
. "Yes" "l want to use commonly used design :
. Design pattern ! . '
Design patterns S €--------- - constructs and features in my '
application 1 : T '
' application )
N\ J N ? J el
~ ZP N e A P .
Build on-chain "Yes' "| ttol blockchain i :
On-chain patterns i on €t : "l'wantto leverage .oc:' chaininmy
application 1 ' application '
\ ? J N ? J N !
4 A Yes e .
Smart-contract +| Smart-contract * "I want to use smart-contracts in the
patterns "1 usage 1 i design of my blockchain application"
_ ZP Y, L ZP Y, ettt ‘
—\ —\ " K P ettt v
( ( Enable smart- ;:(?Wnt + "l want to enable access control and :

Conttraft act:tcess- contract access €25 permissions measures when

control patterns ' r ing my smart-contr. " :
L ) /Ownership\ {_ control @/ ....requesting my smart-contracts” /

pattern
0.75

Figure 6.6: Pattern scoring based on patterns/problem categories.



124 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

pattern adoption in the literature. Also, UnWeightedCitationAndQsS tends to rec-
ommend highly cited patterns, that may be considered as more recognized by other re-
searchers, whereas NoCitationsAndQs provides a ranking closer to the questionnaire’s
answers, to the risk of having newly proposed patterns that lack prior reuse. Weighted-
CitationAndQS is compromising between the two others, as it reduces the impact of
citations without discarding them. In conclusion, the decision of using one algorithm in-
stead of another is up to the user, depending on its goals: either using recognized patterns
or newly proposed patterns that don’t have this recognition yet. Nonetheless, the ranking
differences between all of those algorithms are evaluated in Section 6.4.

6.3 Running Example

As in Chapter 4, the running example given in Chapter 2 is reused to guide to illustrate the
usage of the blockchain-based software patterns recommendation part of BLADE. First, the
running example requirements will be reused to answer the design questions given by the
recommendation engine and needed to compute the recommendations. Then, the patterns
returned at the top of the ranking will be discussed to see if they are applicable to the run-
ning example application, and to what degree.

6.3.1 Recommendation Engine Answers

To get a set of recommended patterns, the user has to answer a series of questions about
design problems. In this goal, a statement about a design problem is displayed, and the user
has to answer "Yes", "l don't know", or "No". By answering the question, the user can specify
if a design problem affects the construction of its application. Table 6.2 lists the questions
where the given answer was "Yes". In this list, some design problems are preeminent. First,
the On/off-chain data exchange design problem: it notably englobes the impossibility of
smart contracts to query external off-chain data by themselves. One common answer to this
design problem is the Oracle design pattern, that pushes external data into smart contracts
when needed. Then, the Smart contract efficiency and Smart contract security are two major
design problems for the design of the Carasau bread traceability application. As mentioned
in the running example paper, deploying and executing smart contracts can involve high
costs, as it modifies the state of the blockchain. Also, the security of smart contracts is
paramount as they might hold valuable assets. Thus, these two design problems should
be addressed carefully. Finally, the Enable smart contract access control design problem is
important in this context, as the access to the Carasau bread traceability application should
be restricted to involved participants (e.g. baker, milling company, etc.).

6.3.2 Results

After answering the questions from the recommender engine, a set of recommended pat-
terns has been returned. On the first page of the recommender results, 18 pattern proposals



6.3. Running Example

125

Design problem

Statement

Design pattern

I want to use commonly used design constructs and features

application in my application

Build on-chain | want to leverage blockchain in my application
application

Interacting with | want to enable communication between my application and
blockchain a blockchain

Domain-oriented
application design

I want my blockchain application to handle features that serve
the purpose of a specific domain

Manage on-chain

| want to store and manage on-chain data in any format (en-

data crypted or clear)
Smart contract | want to use smart-contracts in the design of my blockchain
usage application

Multi-domain
feature application

| want to reuse multi-domain on-chain features in my block-
chain application

On-chain storage

| want to use the best practices to store on-chain data in my
blockchain application

Enable smart contract
access control

| want to enable access control and permissions measures
when requesting my smart-contracts

Smart contract
efficiency

| want to improve the efficiency of my blockchain applica-
tion by optimizing the costs of deploying and executing smart-
contracts

Smart contract
security

| want to improve the security of my smart contract against
vulnerabilities and abuses

Blockchain-enhanced
off-chain storage

| want to store data off-chain while taking profit from block-
chain capabilities to trace and attest off-chain data

On/off-chain
data exchange

| want to push up-to-date data on-chain or pull data and events
from on-chain smart-contracts

Table 6.2: Relevant design problems for the Carasau bread application.




126 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

are displayed. In this list, some patterns are extremely relevant for the Carasau bread trace-
ability application. For instance, the Authorization pattern proposal, ranked 4th, ensures
that only allowed participants can fire restricted functions of a smart contract. This fea-
ture is mentioned as mandatory by the authors of the running example study: for instance,
the milling company is the sole participant that can store floor production data on-chain.
The Oracle pattern proposal, ranked in 9th position, is also very relevant. Indeed, the ap-
plication includes the usage of loT devices to submit production data on-chain, thus these
devices act as oracles ingesting external data into the blockchain. Some security patterns
are also very applicable to the Carasau bread traceability application, such as the Check-
Effects-Interaction pattern proposal (12th) that consists in following a recommended func-
tional code order to prevent reentrancy attacks?, or the Emergency stop pattern proposal
(14th) to freeze the execution of smart contracts in case of exceptional events. Finally, the To-
kenization pattern proposal (3rd) can be mentioned: as the supply chain participants might
transfer the property of real-world assets (e.g. floor, bread), tokenizing these assets is very
relevant to allow more liquid and traceable exchange of assets between participants.

6.4 Validation

In this section, the artifact (that is the ontology, but also the platform as a whole) is validated
to show that it allows answering to RQ4. This phase of artifact validation is two-fold. At first,
the validity of the ontology is shown using both the ORSD mentioned above and the more
general ontology evaluation methods outlined in the work of Raad and Cruz (Raad and Cruz,
2015).

Then, it is shown that this ontology, although valid, is also relevant to bring an answer to
the RQ4 as its usage throughout the platform addresses the two requirements formulated
at the beginning of the chapter. Summarized, these requirements are artifact usability and
accuracy. For the former, it is expected that practitioners, including non-experts, are able to
use the platform to explore the existing patterns and find adequate ones. The latter concerns
the recommendation system: it is expected that patterns recommended by the platform are
in adequation with the user requirements.

In this goal, these two aspects were evaluated separately in this section. For the usability as-
pect, a survey has been conducted with experts to assess the capability of using the explorer
to understand the pattern proposals, and by extension to assess the relevancy of knowledge
within the blockchain-based software pattern ontology. Within DSR, this survey is a form of
expert opinion (Wieringa, 2014). From a given problem context, experts have to understand
the artifact and use it to address the problem. Although the problem is artificial, it helps
predict how the artifact, that is the platform, would be used to solve real-world problems.

? A reentrancy attack consists in using external smart contracts to maliciously re-execute a vulnerable func-
tion (for instance, multiple Ether transfers instead of one) using recursive calls.



6.4. Validation 127

For the accuracy aspect, a protocol has been designed to evaluate the recommendations
produced by the recommender. Indeed, if the recommendation system is able to suggest ad-
equate patterns, it illustrates the capability of using the ontology to find adequate patterns
for specific requirements. Several papers were chosen from the literature, and each of them
presents a blockchain application. Then, requirements were extracted for each application.
Finally, the recommender was used for each paper following extracted requirements and the
precision/recall of retrieved papers was assessed (Croft, Metzler, and Strohman, 2010). This
is a form of Single-Case Mechanism Experiment (SCME), a DSR validation method already
used in Chapter 4.

6.4.1 Ontology Validity

The first method of validation draws from both the ORSD mentioned above and the more
general ontology evaluation methods outlined in the work of Raad and Cruz (Raad and Cruz,
2015). In particular, their task-based approach was followed, linking the evaluation of the
ontology and the tool itself. The ability of the ontology to cover its requirements is demon-
strated by, on the one hand, using SPARQL queries inisolation to answer the CQs, and, on the
other, by showing its ability to be used as the central knowledge representation mechanism
of the tool, through the validation methods to be covered below.

Some of the main evaluation criteria mentioned by Raad and Cruz are briefly touched
(Raad and Cruz, 2015): accuracy, completeness, clarity, and conciseness, though difficult
to demonstrate in an absolute sense, are nevertheless covered by the fact that the ontology
has been constructed on the basis of an extensive literature review of the field, where care
has been taken to isolate only the most relevant aspects; adaptability is a consequence of
the use of the NeOn methodology and the use of SHACL shapes for automated verification
of the ontology and the inferences made thereof, rendering the addition of new patterns
to the ontology straightforward; computational efficiency is ensured by the compactness
of the ontology and the avoidance of recomputing rule-based inferences for every query
through pre-compilation of the inferred ontology triples; and, finally, consistency is ensured
through the use of the Pellet OWL Reasoner and the aforementioned SHACL shapes for every
main class in the knowledge base.

6.4.2 Ontology Relevancy
Usability

To validate the usability of the artifact, the researcher has surveyed a panel of 7 experts from
different backgrounds (academia, industry) and positions (engineers, manager) as shown in
Table 6.3.

A custom scenario has been designed on a blockchain use case. This scenario was short
enough (2 standard pages) to ensure participants had the time to assimilate it in the survey
within the allocated 30" timeframe. Organizers proposed 5 patterns Pﬁl (0 < j < 5)for
each expert 1, the objective was to assess if the expert was able to find and understand the



128 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

Table 6.3: Panel Description.

ID Role Blockchain experience (in | Software design experi-
years) ence (in years)

E1 Lead tech 4 5+

E2 Ph.D. student 4 1

E3 Software engineer 4 5

E4 Blockchain engineer 4 5

E5 Ph.D. student 2 2

E6 Software engineer 1 2

E7 Ph.D. student 2 5+

patterns well enough to decide if they were applicable to the given scenario. This applica-
bility of pattern j was rated by each participant # from o (non-applicable) to 4 (must-have)
Rn(Pﬁl). Then, the survey organizers performed the same exercise. As they worked on
the construction of the knowledge base and the ontology, they know in detail the patterns
presented in the tool and their related papers R(P{ﬂ).

Finally, participants’ answers were compared to the organizers’ own responses and a nor-
malized score for each participant was calculated S,,!, the average absolute difference be-
tween his score and the organizer’s score.

Accuracy

The second validation step aims at evaluating the performance of the various recommender
engines, especially those including citation metrics in the ontology. In this goal, the precision
and the recall of the recommender engine at cutoff k were evaluated (Croft, Metzler, and
Strohman, 2010). This method allows computing the precision and the recall regarding the
k" first items recommended by the engine, instead of all of the recommendations.

To compute these values, the following protocol was undertaken:

e Select a paper p from the literature (n=13), which propose a blockchain-based appli-
cation

e From this paper, an expert manually extracts the requirements R, and the emerging
patterns fp, from the pattern list, which represents the golden standard of patterns
for p

e Answer the questions of the recommender tool using only the requirements R, and
retrieve a set of Ip recommended patterns, their position, and their score Sp,i,i € Ip.

e Compute the precision at cutoff k, that is the ratio between the number of found
emerging patterns in the recommended patterns fp € I, and the cutoff number k.

e Compute therecall at cutoff k, that is the ratio between the number of found emerging
patterns in the recommended patterns fp € I at cutoff k and the total number of
found emerging patterns 1.



6.4. Validation 129

w

o
(=R IENGNURG RANG N

score

o

E1 E2 E3 E4 E5 E6 E7 ALL
Pattern Exploitation Score

Figure 6.7: Panel Usecase Score SnH"

6.4.3 Results and Analysis

Usability - Figure 6.7 shows the descriptive statistics for the score for each panel partic-
ipant. The mean values for all the questions range from 2.75 to 3.75 with an average of
3.25/4, which indicates that the participants have successfully navigated the solution space
and provided adequate options on the relevance of the proposed pattern. Strong prior
blockchain experience is not necessarily a good predictor for successfully judging patterns,
since the most experienced participant has the lowest score. The most junior profiles hav-
ing a score of 3, have used the tool effectively despite their lack of proficiency in blockchain
application design.

The expert panel results show positive mean scores for all metrics. Thus, the usability of
the platform (and by extension the ontology) can be considered satisfactory, despite having
room for improvements, essentially in its perceived added value. The small sample size,
should also prompt further large-scale surveys, including a pre-flight questionnaire to better
quantify prior blockchain background for the respondents, and question its impact on the
tool usability.

Accuracy - Figure 6.8 and 6.9 respectively show the precision and the recall at cutoff k for
the three recommender systems considered. To interpret the results, it is required to select
an adequate k w.r.t. the usage of the recommendation system. As the web platform displays
the first 18 patterns on the first page when executing the recommendation system, a value
of k = 18 has been chosen. Nonetheless, the selection of a suitable k is a difficult issue,
discussed in Section 6.5.

Regarding the precision, the three algorithms are producing similar results except for a cutoff
of k < 20, where the inclusion of citations increases the precision. For a cutoff of k = 18,
the precision is 0.2, meaning that on average 20% of the first 18 recommended are relevant
for the considered paper. Regarding the recall, the curves are similar for the three different
algorithms, with a small advantage to the NoCitationsAndQS algorithm. For a cutoff of k =
18, on average 57% of the identified relevant patterns in the papers fp are recommended.
This number goes up to 80% for a cutoff of k = 40. By extension, it indicates that the
majority of the most suitable patterns are ranked at the top by the recommender system.



130 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

1o precision at cutoff-k 1o recall at cutoff-k
’ —— WeightedCitationsAndQS l
UnweightedCitationsAndQS
—— NoCitationsAndQS
0.8 1 0.8 -
0.6 0.6
0.4 0.4 1
0.2 -A\ 0.21 / . . .
—— WeightedCitationsAndQS
D UnweightedCitationsAndQS
= —— NoCitationsAndQS
0.0 T T T T 0.0 T T T T
20 40 60 80 20 40 60 80
Figure 6.8: Average Figure 6.9: Average recall
precision at cutoff-k. at cutoff-k.

6.5 Threats to Validity

Internal threat to validity: some aspects on the method used to validate H2 can be men-
tioned. Indeed, the selection of adequate patterns for a given paper has been carried by
two researchers in 13 papers. Although these researchers are experts in blockchain tech-
nologies and decentralized applications, it still leaves some space for subjectivity. Several
measures have been taken to limit the impact on the results: restricting the selection to
the most important patterns, and comparing the results between the two researchers to
evaluate possible discrepancies.

The method used to build the ontology can also be a threat to validity. Ontologies, by their
very nature, have a degree of subjectivity; nevertheless, by using a structured methodol-
ogy (NeOn), and building upon a peer-review literature review, this risk is mitigated, in con-
junction with the formal specification of the ontology requirements and with the validation
methodology outlined above.

Finally, the selection and retrieval of pattern proposals from the literature, that constitutes
the core of the ontology, is also subject to be a threat to validity. However, it is mitigated
by the strict method followed to perform the literature review (SLR). More details about
possible threats and mitigations are given in another study (Six, Herbaut, and Salinesi, 2022).

External threat to validity: the main threat is the generalizability of the ontology. Even if
the main purpose of the ontology was its reusability in a tool, careful attention has been
made to maximize the ontology reusability. Part of the blockchain-based software pat-
tern ontology is inspired by the Design Pattern Intent ontology (Kampffmeyer and Zschaler,
2007), to bind design patterns (by extension, software patterns) with blockchain design
problems. Patterns are also expressed using a shortened pattern format, similar to the GoF
pattern format or the Alexandrian form (TeSanovic, 2005). Future works will refine those



6.6. Related Works 131

patterns to fully comply with one of those two formats. Finally, the ontology has been de-
signed with extensibility in mind. For example, the blockchain class can easily be a connec-
tion point between this ontology and other blockchain-related ontologies, such as (De Kruijff
and Weigand, 2017), a blockchain domain ontology.

Construction threats to validity: the tool built to leverage the ontology can be mentioned.
This tool eases the usage of the ontology by non-experts but forces users to indirectly lever-
age the ontology, as intended by the tool. Nevertheless, the tool was built with regard to
the validation of Hy and H;. Where the Explorer helps to navigate freely in the ontology by
displaying all patterns and links, the Recommender allows fetching across design problems
and their related questions to generate a recommendation.

Conclusion threats to validity: the difficulty to conclude on the recommendation engine
accuracy w.r.t. adequate cutoffs k can be mentioned, as its selection mainly depends on the
user behavior. Indeed, some users might only read the first 5 patterns, whereas others might
fetch all of the recommendations. In the web platform, the first page of the recommender
results displays 18 patterns; thus this number might be a good candidate for k. Nonetheless,
this number might change depending on the usage of the recommendation engine and the
ontology in the future.

6.6 Related Works

The literature shows that the idea of using ontologies to describe software patterns has al-
ready been explored. Kampffmeyer and Zschaler propose an ontology (Kampffmeyer and
Zschaler, 2007) derived from GoF (Gang-of-Four) design patterns (Gamma et al., 1995)'
Each pattern is linked to a set of design problems it solves, along with a tool to help practi-
tioners select patterns without having to write semantic queries. However, their ontology
does not bring out any dependency link between the patterns themselves. The contribution
reuses the concept of problem ontology and extends it, as shown in Section 6.2.

Another ontology for software patterns is proposed by Girardi and Lindoso (Girardi and Lin-
doso, 2006). This ontology encompasses not only design patterns but also architectural
patterns and idioms. A pattern is described using different attributes (such as Problem, Con-
text, Solution, etc.), and can be linked to other patterns through a pattern system and specific
relations (e.g., require, use).

Henninger and Ashokkumar propose a similar metamodel for software patterns (Henninger
and Ashokkumar, 2006). Some differences can be mentioned, such as the possibility to spec-
ify that two patterns conflict with each other and cannot be applied at the same time, or
the seeAlso relationship to indicate other patterns related to a specific pattern. In addition,
Pavlic et al. propose a design pattern repository taking the form of an ontology (Pavlic, Her-
icko, and Podgorelec, 2008). The contribution enlights tedious knowledge management and

°The authors of this book, Gamma et al., are often referred to as the Gang-of-Four.



132 Chapter 6. Blockchain-based Software Patterns Recommendation Engine

sharing with traditional pattern collections and argues for a structured ontology format. The
proposed ontology groups patterns into pattern containers, where one pattern can belong
to many containers. Patterns can also be linked to a set of questions and answers, elicited
from expert knowledge, through an answer relevance attribute. It indicates how relevant a
pattern is in addressing a specific question. The contribution follows a similar path to that
taken by the blockchain-based software pattern ontology by structuring a set of patterns of
a specific domain, in this case, blockchain-based patterns.

Some ontologies have been proposed for modeling the blockchain domain, such as that pro-
posed by De Kruijff and Weigand (De Kruijff and Weigand, 2017), that of Ugarte-Rojas and
Chullo-Llave (Hector and Boris, 2020), and that of Glaser (Glaser, 2017) that models the tech-
nology itself and its components. Another work by Seebacher and Maleshkova (Seebacher
and Maleshkova, 2018) focuses on modeling the characteristics of blockchains within cor-
porate networks and their use.

The ontology proposed in this chapter complements the state-of-the-art of existing ontolo-
gies on blockchain technologies. This may allow connecting the blockchain-based software
patterns ontology to these other ontologies in future works. For instance, the aforemen-
tioned ontology that contains blockchain components (Glaser, 2017) may be mapped to the
Blockchain class in the blockchain-based software patterns ontology. The blockchain-based
software patterns ontology also contributes to the state-of-the-art of software patterns on-
tologies, by extending existing ontologies to support new concepts such as blockchain-based
software patterns, the pattern/variant/proposal distinction, and citations.

6.7 Conclusion and Future Work

This chapter proposes a blockchain-based software pattern ontology to store, classify, and
reason about blockchain-based patterns. The ontology has been built over previous results
obtained by performing a systematic literature review of the state-of-the-art of blockchain-
based patterns. It is composed of proposals that are patterns formalized in the context of an
academic paper. These patterns have been stored in the blockchain-based software pattern
ontology. They were created out of 160 proposals found in the literature, showing that about
a quarter of patterns in literature are redundant. Also, those patterns have been classified
using a taxonomy reused from the systematic literature review mentioned above. This ontol-
ogy is leveraged in the second part of BLADE: practitioners can explore the ontology and its
collection of patterns, but also use a recommender to get adequate patterns fulfilling their
needs. This tool is also meant to be extendable following ontology evolution and support
future works. The ontology can also be leveraged as standalone, using SPARQL queries.

The ability of the artifact to answer RQ4 while also satisfying the two requirements (usability
and accuracy) has been validated in two separate parts. During the first part, a survey was
conducted among 7 practitioners in the blockchain software engineering field. Participants
were asked to rate the applicability of a list of patterns for a specific scenario, both proposed



6.7. Conclusion and Future Work 133

in the context of the survey. Results showed that participants were able to successfully per-
form this task using the tool. In the second part, the recommendation system was evaluated
by manually picking suitable patterns for given use cases, then using the recommender sys-
tem to assess the ranking of manually picked patterns compared to the others. As a result,
the majority of manually picked patterns are ranked at the top by the recommender system.

The web platform and the ontology presented in this chapter constitute the second part
of BLADE, the recommendation engine for the design of blockchain applications. It further
extends the recommendation of a blockchain platform by adding relevant blockchain-based
software patterns to it. Using BLADE, the practitioner is guided into complex aspects of the
design of a blockchain application. In the next chapter, the last artifact of the framework,
BANCO, is introduced. Positioned next after BLADE in the framework, BANCO is able to
produce a blockchain-based application based on BLADE's recommendations.






135

Chapter 7

Generating a Blockchain-Based Application
Reusing Previous Recommendations

— Key takeaways \

e A feature model was designed to represent the variability between products of
the same family, that are blockchain-based traceability products (i.e. applica-
tions).

e Aplatform was designed to allow the practitioner to configure its desired product,
reuse the feature model, then generate it using template-based code generation.

e BANCO is the third artifact of the framework with regards to the DSR approach.
It addresses the technical research question RQ5.

As solutions to ease the design of a blockchain application was investigated in Chapter 4,
5 and 6 through the design of BLADE, this chapter addresses the implementation phase of
the software engineering process. This is a tedious task in the blockchain field, where there
is a lack of blockchain education among practitioners (Cunha, Soja, and Themistocleous,
2021a). They might struggle with the complexity of designing specific blockchain features,
such as tokens or oracles. Reusing existing code is one solution to solve this issue (so-called
"clone-and-own") and is a common practice in the blockchain field (Chen et al., 2021). Some
of these solutions have even been formalized as design patterns to ease their reuse. For
instance, as smart contracts cannot query data from outside the blockchain, developers
have to apply the Oracle pattern (Xu et al., 2018). An oracle includes two components: a
smart contract capable of emitting an event when new data is required, and an off-chain
service listening to these events to inject fresh data when needed.

This reuse of existing code is a first step in addressing the difficulties of implementing a
blockchain application, but it could be further systematized throughout code generation. In
this chapter, the following technical research question mentioned is addressed (RQ5): How
to design a blockchain application generation platform that reduces the cost and difficulty



136 Chapter 7. Generating a Blockchain-Based Application

of implementing blockchain applications as practitioners can configure then generate block-
chain applications?

From this research question, it is notably expected that is a reduction of blockchain applica-
tion development costs when using SPLs compared to traditional software engineering.

To tackle this question, multiple approaches can be envisioned, such as Model-Driven En-
gineering (MDE) and Software Product Line Engineering (SPLE). MDE encompasses several
aspects of software engineering assisted with models, such as domain-specific modeling
languages and transformation engines and generators (Schmidt, 2006). Several approaches
for blockchain software engineering based on MDE have already been proposed in the liter-
ature, such as reusing BPMNs (Lopez-Pintado et al., 2019) or Petri Nets (Zupan et al., 2020).
Yet, one MDE approach for software blockchain engineering remains unexplored: the com-
bination of SPLE and blockchain. A comparison between using Software Product Lines (SPLs)
and other methods to generate blockchain applications is given in Subsection 7.6.4.

SPLE is based on the reuse of various software artifacts (e.g., requirements, models, code,
and tests) designed for this purpose, to create (software) products that have common ele-
ments (Pohl, Bockle, and Van Der Linden, 2005). By leveraging a SPL approach, developers
could easily configure and generate blockchain applications based on efficient and exten-
sively tested components and patterns. As a result, new research sub-questions should be
investigated to assess the relevancy of applying SPLs to blockchain:

e RQ5.1- Is SPLE applicable to the blockchain field?

e RQ5.2 - Do blockchain applications created following a standard software develop-
ment engineering differs from applications derivated from a software product line?

To address these questions, a software product line for blockchain applications has been
created from scratch. It results in a web platform that allows the configuration and the gen-
eration of a blockchain product. The generation is performed by assembling code templates
(e.g., smart contracts), based on the configuration given by the user. A feature model guides
the configuration process, by describing existing features and their constraints with others.
This feature model has been designed by extracting features found in studies of a specific
domain, that is blockchain-based traceability. The capacity to generalize the approach was
evaluated by reproducing existing blockchain-based traceability applications using exclu-
sively the web platform. Also, the source code of the web platform and the templates is
available on Github'

The chapter is organized as follows: Section 7.6 discusses related works on applying software
product lines for nascent technologies. Section 7.1 and 7.2 introduce the platform, first by de-
scribing the construction of the feature model and then its usage through the web platform.
The running example introduced in Chapter 2 is then reused in Section 4.4 to illustrate the
functioning of the web platform. The ability of the artifact to constitute an answer to RQ5 is
validated in Section 7.4, and Section 7.5 discusses those results along with lessons learned

Thttps://github.com/harmonica-project/BANCO


https://github.com/harmonica-project/BANCO

7.1. Feature Model Design 137

in the implementation of the software product line as well as possible research challenges.
Finally, Section 7.7 concludes the chapter.

7.1 Feature Model Design

The first step in the software product line engineering process is the domain analysis (Czar-
necki and Ulrich, 2000), where the result is often a feature model. A feature model is a
widely adopted notation to describe allowed variability between products of the same fam-
ily, and feature dependencies (Schobbens et al., 2007). The main advantage of using a fea-
ture model is the increased ease of reusing existing features, as it models accurate cartog-
raphy of them that can be shared between stakeholders.

7.1.1 Construction Method

The feature model has been created using the standard feature model and FeaturelDE, an
open-source framework 2. It is composed of different notation elements (Thiim et al., 2014).
It allows the definition of concrete/abstract features, that can be optional or mandatory. It
also supports and- and xor- decomposition of features, to either select multiple subfeatures
(but at least one) among a given set linked to a feature, or select only one subfeature in
the selection. Finally, feature models include constraints between features, preventing for
instance the selection of two conflicting features. The standard feature model has been
chosen as it satisfies the researcher’s needs for the construction of an on-chain traceability
feature model.

The construction of a feature model requires extensive knowledge of its associated domain.
In this study, this knowledge has been extracted from 5 different works that propose on-
chain traceability solutions, called foundational set, shown in Table 7.1 (Baralla et al., 2021;
Wei, 2020; Caro et al., 2018; Figorilli et al., 2018; Kuhn et al., 2021).

These papers were selected as they propose blockchain-based traceability applications for
various domains, and as the features composing the application were easily identifiable to
be extracted and then included in a feature model. Also, each of these papers proposes a
concrete implementation of the Ethereum blockchain. Indeed, the Solidity language was
chosen to implement the templates and reused to generate the blockchain products.

From these papers, the features that were at least present twice (2-of-5) were considered
for the feature model. Other features were discarded, as they were too specific to the pro-
posed application. The remaining collection of features was then generalized to suit any do-
main implementing a blockchain-based traceability application. For instance, the identified
featuresWoodBatchTraceabilityand SparePartsTraceability were merged
and generalized as Asset Tracking. In some cases, they have been refined manually by
adding subfeatures (e.g., adding CRUD methods to manage application participants). This
results in a feature model, presented in the following subsections. Note that this feature

’https://featureide.github.io/


https://featureide.github.io/

138 Chapter 7. Generating a Blockchain-Based Application

Table 7.1: Blockchain traceability research used to design and test the feature

model.
Ref. Authors Traced item NP of Part of
features
(Baralla et al., 2021) | Baralla et al. Food 12
(Caro et al., 2018) Caro et al. Food 14 Foundational
(Figorilli et al., 2018) | Figorilli et al. Wood 15 st
(Kuhn et al., 2021) Kuhn et al. Man.ufactured 12
items
(Wei, 2020) Wei et al. Goods 3
(Hasan et al., 2020) | Hasan et al. Spare parts N/A Test set
(Casino et al., 2021) | Casino et al. Food N/A

model is not meant to be a complete representation of existing on-chain traceability fea-
tures, but provide the most salient features of an on-chain traceability solution. A complete
analysis through a systematic literature review is left for future work.

The resulting feature model is composed of 53 different features, distributed across three
different main features:

e SmartContracts feature - gathers all features included in smart contracts. The
selection of the subfeatures of SmartContracts represents the configuration of
the on-chain part of the application.

e Storage feature - regroups the features that address how and where traceability
data is stored.

e Frontend feature - represents the off-chain part of the application.

Each of these features represents a specific aspect of a blockchain application. They are
described along with their subfeatures in detail in the following subsections.

7.1.2 Smart Contracts Feature

The first feature of the model is the SmartCont racts feature (Figure 7.1%). It represents
the on-chain part of the traceability application, composed of a collection of smart contract
instances. This part of the feature model also involves three different constraints, expressed
in Table 7.2.

This feature is divided into two subfeatures: the management of participants, and the trace-
ability methods used. The Participants feature distinguish two important aspects: in-
dividuals, that will interact with the traceability smart contracts and are identified by a public
address, and roles, that can be assigned to individuals. Using roles is optional in the model,

SFor the sake of readability, CRUD methods are folded. For each feature in the figures introducing the
feature model, a label with a number indicates the number of related CRUD subfeatures.



7.1. Feature Model Design 139

OnChainTraceabilityApp

SmartContracts | | Storage | | Frontend

TrackingMethod Participants

Indivm.s

StateMachine | AssetTracking RecordRegistration

s

TokenizedAssets DataStructAssets | Createlndividual IndividualType Deletelndividual

el

Oracle | | Human | Service

' ™
Abstract Feature A Alternative Group & Mandatory

Concrete Feature /A Or Group & Optional

Figure 7.1: Focused view of the SmartContract FM

as access control can be done using only public addresses (e.g., only a given set of individ-
uals can add records in a given record collection). However, they can be useful to regroup
individuals based on their role in the process (e.g., in a supply chain, identify the suppliers,
carriers, and buyers). Besides roles, individuals can be classified through types: they can
either be human, service, or oracle (from the Oracle pattern (Xu et al., 2018)).

Three traceability methods can be selected in conjunction or standalone in the model.

The StateMachine subfeature allows tracking state changes on-chain. A state machine
is defined by a set of state variables and commands, that transform its state (Schneider,
1990). For each transition, it is possible to define a set of individuals and roles that are
entitled to trigger the transition between two states. The current implementation behind
the StateMachine subfeature only allows the creation of linear state machines. The term
linear is used here to qualify state machines where each state has only one preceding and
one following state, and where it is impossible to make a transition more than one time in
a specific state. Nonetheless, it will be improved in future works by handling all of the state
machine features (e.g., multiple transitions from one state, etc.).

AssetTracking consists of storing data on real-world assets, such as a batch of products.
Each asset has a set of owners and a set of entitled individuals and roles that can modify it.
A state machine can be attached to an asset: for instance, a batch can be stored, shipped,
or delivered. Assets can either simply be stored as a simple data structure, or as tokens (as
proposed by Kuhn et al. (Kuhn et al., 2021)). Storing assets as tokens allow their transfer
between individuals. For instance, a batch can be sent from the supplier to the carrier. To-
kenization is a common blockchain-based design pattern (Xu et al., 2018), standardized for



140 Chapter 7. Generating a Blockchain-Based Application

Table 7.2: Smart contracts and frontend feature constraints.

Range Operator Target
DeletelndividualByRole Implies Roles
IndividualsSetup If and only if CreatelndividualAtSetup
RolesSetup If and only if CreateRoleAtSetup

many blockchains such as the ERC721 standard for Ethereum?.

Finally, RecordCollections allows bulk storage of records in arrays. These records are
stored as described inthe St orage feature. As with others, a collection has a set of entitled
individuals and roles that can append new records.

7.1.3 Feature Storage

OnChainTraceabilityApp

SmartContracts | | Storage | | Frontend

StorageType StorageEmplacement

RecordHistory | ContractsMetadata AssetsData StateData Oﬁmain
/\
EventsEmission DataContracts

Figure 7.2: Focused view of the Storage FM.

The second feature of this model is St orage (Figure 7.2), divided into two aspects.

For the first aspect, data can be stored in multiple formats. In some applications, it is a suite
of timestamped records. These records can either be data on a specific event that occurred
in the traceability process or regularly pushed traceability data (e.g., real-time temperature).
The feature model further refines the subfeature RecordHistory in two subfeatures:
StructuredRecords and HashedRecords. Where the first one can contain any type
of data, the second one is a timestamped hash of a St ructuredRecord. These records
can be used when it is not desirable to store data on-chain for confidentiality reasons or
storage limitations. In this case, each structured record is stored off-chain in a database, then
hashed and stored on-chain as it. This storage strategy is acommon blockchain-based design
pattern named Off-chain data storage Pattern (Xu et al., 2018). Traceability data can also be
stored as objects representing Asset sDat a, or as a set of states and the transition history
between them when using a StateMachine. These dependencies between storage type

4“https://eips.ethereum.org/EIPS/eip-721


https://eips.ethereum.org/EIPS/eip-721

7.1. Feature Model Design 141

Table 7.3: Storage feature constraints.

Range Operator Target
RecordRegistration If and only if RecordHistory
RecordHistory If and only if RecordsCollectionSetup
AssetTracking If and only if AssetsData
AssetsData If and only if AssetsSetup

StateMachine If and only if StateMachineData
StateMachineData If and only if StateMachineSetup

and traceability methods imply a set of constraints (Table 7.3). Indeed, the selection of a
specific traceability method should automatically select the related storage type and setup
form feature. Finally, a mandatory feature named ContractMetadata is in charge of
storing the address of every smart contract deployed for a traceability process. This feature
includes the usage of the Factory Pattern (Xu et al., 2018), as the factory deploys and keeps
track of existing contract instances.

Regarding the storage emplacement, data can either be stored on-chain or off-chain. On-
chain data is stored in smart contracts following the Data Contract Pattern, that separates
data storage from logic contracts (e.g., controllers) (Xu et al., 2018). Events can also be emit-
ted when something occurs (e.g., storing a new record, firing a transition, etc.). Traceability
data can also be stored off-chain, in databases. The Database feature is mandatory in
the feature model, as smart contract metadata have to be at least stored off-chain to allow
retrieving the address of existing contracts. However, traceability data can either be stored
off-chain, on-chain, or both.

7.1.4 Frontend Feature

The last feature is Frontend (Figure 7.3). The frontend application can be used to set up
the traceability process through the DeploymentVview feature.

Indeed, individuals, roles, and traceability assets/states/collections are not defined statically
in the code but dynamically as parameters passed when instantiating the smart contracts.
Thus, the user has to specify these data in order to set up the traceability process.

The ParticipantSetup helps to define individuals and roles that will be granted the
right to create, modify or own traceability items. For instance, the supplier of a spare part
manufactory shall be able to create spare parts in the traceability contract to represent his
real-life assets. Where the setup of individuals is mandatory (the application must have at
least one administrator), the setup of roles before deployment can be optional, as they can
be created later.

For the TraceabilitySetup, three subfeatures can be selected: RecordsCollec-
tionsSetup,AssetSetup,and StateMachineSetup. Theyrespectively implement
forms to define the collections of records, the assets, and the state machines. Each form also



142 Chapter 7. Generating a Blockchain-Based Application
OnChainTraceabilityApp

SmartContracts | Storage | | Frontend

DeploymentView | ManagementView

TraceabilitySetup BlockchainNetwork ParticipantsSetup
m /\?
IndividualsSetup | | RolesSetup

RecordsCollectionsSetup AssetSetup | StateMachineSetup

Figure 7.3: Frontend feature model.

allows binding participants to traceability items, and roles if the corresponding subfeature
has been selected.

One feature that is BlockchainNetwork, specifies the targeted network: in this model,
either the Ethereum testnet (for testing purposes, free to use) or mainnet (in production).
Users can then interact with deployed smart contracts through the application to leverage
the aforementioned features.

7.2 BANCO construction

A feature model usually guides the selection of features by the user when composing prod-
ucts. However, this task is burdensome when performed manually. In this work, a web plat-
form under the name of Blockchain ApplicatioN Configurator (BANCO) has been built, using
the concept of SPL configurator to tackle this issue. A SPL configurator is a class of technol-
ogy that enables software mass customization, based on automated product instantiation
rather than manual application engineering (Krueger, 2009). A configurator is able to reuse
existing core assets (e.g. software artifacts) to allow the composition of software products.
It leverages a variability model, that expresses features commonalities, and variability, to
guide the user in the range of possible combinations.

According to Krueger, this automation has several advantages:

e Reuse - all software exists within a consolidated collection of core assets, thus it is
possible to refactor existing software artifacts for reuse purposes.

e Scalability - as the development is focused on core assets (domain engineering) rather
than application engineering, the organizational structure behind is more efficient.

e Upgradability - it is possible to re-instantiate existing products when a core asset is
changed.



7.2. BANCO construction 143

Using a configurator, there is very little overhead to adding a new product to a product
line, as the developers simply have to focus on missing core assets rather than developing a
complete application (Krueger, 2009).

Figure 7.4 shows an overview of the BANCO configurator. The process of configuration is the
following:

1. Practitioners (e.g. software engineers/architects) can use the web platform exposed
by BANCO to configure the product, according to their needs.

2. The configurator then verifies the configuration provided to assess its completeness
and its validity>.

3. The product is created by the generator, reusing the configuration created by the user.

Also, two types of assets are provided to the configurator: core assets, that are the common
and varying software assets such as requirements, code, tests, and design decisions, and
the feature model defined in Section 7.1. The following subsections respectively discuss the
construction of the configurator and the generator.

Feature Core
model assets

N v
(1) Configure (3) Generate

product Product product
. Generator
configurator
Practitioner (2) Validate U
configuration

Figure 7.4: Overview of BANCO.

7.2.1 Product Configuration

The configurator is the first part of BANCO. In this work, the SPL configurator is implemented
as a web platform. This platform displays a configuration panel and a feature model visual-
izer that were adapted from Kuiter et al. work (Kuiter et al., 2018). The configuration panel
displays a tree of features, generated using as input the on-chain traceability feature model.
Some of the features are already pre-selected, as the feature model contains mandatory
features. For the rest, the user can either select the inclusion or the exclusion of a feature
by selecting the corresponding box. Each selection will trigger the constraint engine, which

5Completeness and validity are defined in Subsection 7.2.1.



144 Chapter 7. Generating a Blockchain-Based Application

will automatically include or exclude features based on the constraints formulated along the
feature model.

The configuration also has two different states: its validity and its completeness. The first
one indicates if a configuration is valid, i.e., if constraints are satisfied. As the configurator
prevents selecting two conflictual features, the user cannot make a selection that results
in an invalid configuration. The second one indicates if the configuration is complete, i.e.,
all the features are either selected or deselected. Therefore, the user can rely on these
indicators to know if the configuration step is complete or not.

The feature model visualizer helps the user visualize the on-chain traceability domain and its
available features. This visualizer also guides the user during the configuration by changing
the color of selected or deselected features respectively in green or red. It allows to quickly
visualize the impact of selecting one feature on others, and the features that remain to be
selected.

7.2.2 Product Generation

From a valid and complete product configuration, the web platform is capable of generating
a working product. A generator has been implemented to perform this operation, based on
Template-Based Code Generation (TBCG). TBCG is a technique from the model-driven engi-
neering field that consists of generating code based on templates. A template is constituted
of static text with embedded dynamic portions that are evaluated by a template engine to
output functioning code (Jérges, 2013). Such evaluation also requires providing data in order
to fill the dynamic portions of the text.

In this work, the task of evaluating templates is performed by Mustache, a logic-less web
template system®. Mustache is capable of evaluating any provided text input that contains a
series of tags (i.e., dynamic portions), providing it with a suitable JSON object to compute the
tags. This template system handles features such as optional code blocks, text completion,
and loops. It is also possible to modify the default opening and closing tags of Mustache to
adapt them to the language used in the templates.

From the configuration made by the user on the web platform, a JSON object is generated
containing all of its choices. This object will be ingested by Mustache to process the tem-
plates. For the on-chain part, the smart contract templates are written in Solidity’, a lan-
guage to implement Ethereum smart contracts. The default Mustache tag has been modified
from the default notation ({{ }}) to the block comment symbols used in Solidity (/* */), to al-
low writing Mustache instructions in Solidity comments. This allows for developing and test-
ing smart contract templates without raising any errors because of Mustache notation. The
approach taken to develop the templates is based on subtractive code generation: all of the
features are included in the templates, and Mustache removes or modifies them according
to the configuration. For instance, the following code block (Listing 7.1) will be conditionally

Shttps://mustache.github.io/
"https://docs.soliditylang.org/en/v0.8.13/


https://mustache.github.io/
https://docs.soliditylang.org/en/v0.8.13/

7.2. BANCO construction 145

rendered in the final product only if the feature AddRoleDynamically has been selected by
the user.

/* #AddRoleDynamically =/

function addRoleToParticipant (

address _participant,
string memory _roleName

public

1

2

3

4

5 )
6

7 verifyRolePermission (_roleName)
8

9

participantsContract.addRoleToParticipant (_participant, _roleName)
7

10 }
11 /x /AddRoleDynamically =/

Listing 7.1: Solidity template code sample

Figure 7.5 describes the chosen architecture for the on-chain part of the application. At first,
the user deploys a single factory contract (1). A factory contract, designed following the
Factory pattern (Xu et al., 2018), is in charge of creating other contract instances at instan-
tiation (e.g., participant contracts) (2). The factory contract also acts as a contract registry,
as it stores the addresses of created contracts. Once this deployment is completed, the
user can interact with controllers (3). Each on-chain feature (e.g., participant management,
state machine, etc.) is implemented as a pair of two contracts: a data contract in charge of
holding data collections and getters/setters to manipulate them, and a controller contract to
interact with data contracts. These controllers also enforce specific conditions to modify the
data (e.g., verifying asset ownership before updating it). The separation between logic and
data is a common blockchain design pattern that also increases upgradeability: controllers
can be changed without having to migrate the data from one contract to another (Xu et al.,
2018). Otherwise, this operation would be very expensive in terms of storage and costs and
tedious to perform.

The different features defined in the feature model can be traced to this architecture. One
controller/data smart contract pair is in charge of participants and roles, whereas three con-
trollers/data contract smart pairs are responsible for the different traceability methods de-
fined in the feature model. As the user can select one to three different traceability meth-
ods, it is possible that some of these contracts are not present in the final product. However,
the participant data/controller smart contract pair will always be present, although the role
features might not depend on the configuration.

For the off-chain part, a web application has been developed, where pages are conditionally
included in the final product depending on the configuration. For instance, if the user does
not select the Roles feature, the web page to configure or to allocate roles to users will
not be included in the generated application.



146 Chapter 7. Generating a Blockchain-Based Application

(2) Create e . Y R
} contracts

Factory contract >
[ i ) 7

pmmm T maa

(1) Deploy
factory

] il 1
contract ' Records controller ! ! Records

//?' contract ! data contract
(3)Interacts| TTTTTTTTTTTTTTTTTT C e ’

State machine
controller contract

[

......................................

Cc
7]
(0]
-
/%
—
>
=== --\
)]
—
2)._
(0]
8 3
S5 Q
= O
Q =
[T =]
—~
Q.
Q
=4
Q

Legend Participants controller Participants data

jm s contract contract
+ Optional | | Mandatory K /

Figure 7.5: Smart contract architecture.

7.2.3 Product Deployment

The web application generated by BANCO acts as the frontend of the blockchain traceability
application. However, the smart contracts have to also be deployed on the target block-
chain (here, Ethereum), as they act as the backend of the application. In this goal, the user
can leverage the deployment view, issued from the DeploymentView feature, to deploy
the application providing a set of parameters. These parameters are provided using several
forms, that correspond to the various aspects of the blockchain traceability application.

For instance, the available roles in the blockchain traceability application can be specified
using the role setup panel (issued from the RoleSetup feature). Figure 7.6 shows a filled
role form. Two roles are defined in the application: the supplier, and the supervisor. In this
example, the supervisor is an admin of the blockchain traceability application, thus capable
of creating new individuals and roles in the application. Also, the supervisor is in charge of
suppliers: any supervisor can attach or remove the supplier role to an individual.

At deployment, the values filled in the form are translated to contract parameters. Figure
7.2 shows the result of this translation for the role form. These values are then passed as
parameters to the constructor of the role smart contracts. In this way, roles are dynamically
created at deployment instead of being directly written in the code. This allows SPL-issued
products to be more flexible with regard to possible use-cases of a blockchain traceability
application.



7.2. BANCO construction

Role setup

+ ADD

New role n°1

Name

Supplier

X New role n°2

Name

Supervisor

Managed Roles

Managed Roles

v Supplier

[J Admin

Admin

< PREVIOUS SUBMIT

147

Figure 7.6: Role form example.

1 A

2 "roles": [

3 {

4 "name": "Supplier",
5 "isAdmin": false,

6 "managedRoles": []
7 b

8 {

9 "name": "Supervisor",
10 "isAdmin": true,

11 "managedRoles": [
12 "Supplier"

13 ]

14 }

15 ]

16

17 }

Listing 7.2: Participants contract parameters example.



148 Chapter 7. Generating a Blockchain-Based Application

7.3 Running Example

As in Chapter 4 and 6, the running example given in Chapter 2 is reused to guide to illustrate
the usage of BANCO, the configurator and code generator introduced in this chapter. There-
fore, this section presents the configuration of the product corresponding to the Carasau
bread traceability application.

Listing 7.3 displays the entire configuration of the product corresponding to the Carasau
bread traceability application in an XML format. For each feature, it is indicated if the feature
is selected or unselected by two attributes: manual, and automatic. The presence of one
attribute or another depends if the selection was made by the user or automatically done
due to existing constraints (Table 7.4).

Table 7.4: Signification of configuration XML file attributes.

Selected Unselected
Manual The user manually selected the The user manually unselected the
feature feature
Automatic The feature was automatically The feature was automatically
selected due to constraints unselected due to constraints

The most important part of the configuration is the tracking method. In the running exam-
ple study, there is a need to track batches from one node (e.g. supply-chain participant) to
another. Also, some documents and information might be recorded by participants or loT
sensors. Thus, two of the three tracking features have been selected: AssetTracking and
RecordRegistration. As the AssetTracking feature requires additional configuration to spec-
ify how assets are tracked, the DataStructAssets subfeature has been selected. It allows
to store additional information regarding an asset, as they are stored as a Solidity struct.
Nonetheless, tokenized assets could also be used in the future.

Regarding participants, the Roles feature has been selected, as well as the capability to ad-
d/remove participants and roles at any moment. Indeed, the requirements specify the need
for an authority shall be able to manage supply-chain participants, from their access to the
application to their rights towards existing assets. The IndividualType feature has also been
selected, as well as its subfeatures Human and Oracle. As loT sensors might be used to push
information on-chain, the distinction is important.

For the storage configuration, most of the options have been prefilled as they are con-
strained in their selection depending on the chosen tracking methods. As the RecordHis-
tory feature requires the selection of subfeatures (e.g. what type of records are stored), the
HashRecords subfeature has been chosen along with the StructuredRecords. Indeed, both
records are important: where the former allows storing hashes of data stored on IPFS, as
specified in the running example study, the latter allows storing detailed records directly in
the smart contract state. The EventsEmission feature has also been selected, as they are re-
quired to inform participants about updates in the traceability process. They are also used
in the study’s proposed application.



7.3. Running Example 149

As for the storage configuration, the frontend features were automatically preselected using
defined constraints with other features. The only unselected feature left is the Blockchain-
Network feature. As it defines the blockchain network used by the generated product, it is
a mandatory feature that leads to two choices (subfeatures): EthereumMainnet to directly
deploy the product in production, and EthereumTestnet for testing purposes. For this run-
ning example, EthereumMainnet has been selected, yet this decision does not have a great
impact on the final product.



150 Chapter 7. Generating a Blockchain-Based Application

1 <?xml version="1.0" encoding="UTF—8" standalone="no"?>

2 <configuration>

3 <feature automatic="selected" name="OnChainTraceabilityApp"/>

4 <feature automatic="selected" name="SmartContracts"/>

5 <feature automatic="selected" name="TrackingMethod"/>

6 <feature automatic="unselected" name="StateMachine"/>

7 <feature automatic="selected" manual="selected" name="AssetTracking"/>
8 <feature automatic="unselected" name="TokenizedAssets"/>

9 <feature manual="selected" name="DataStructAssets"/>

(e}

1 <feature automatic="selected" manual="selected" name="RecordRegistration"/>
" <feature automatic="selected" name="Participants"/>

12 <feature automatic="selected" name="Individuals"/>

13 <feature automatic="selected" name="Createlndividual"/>

14 <feature automatic="selected" name="CreatelndividualAtSetup"/>
15 <feature manual="unselected" name="CreatelndividualDynamically"/>
16 <feature automatic="selected" name="IndividualType"/>

17 <feature manual="selected" name="Oracle"/>

18 <feature manual="selected" name="Human"/>

19 <feature manual="unselected" name="Service"/>

20 <feature automatic="selected" name="Deletelndividual"/>

21 <feature manual="unselected" name="DeletelndividualBylIndividual"/>
22 <feature manual="selected" name="DeletelndividualByRole"/>

23 <feature automatic="selected" name="Roles"/>

24 <feature automatic="selected" name="CreateRoleAtSetup"/>

25 <feature manual="selected" name="RemoveRole"/>

26 <feature automatic="selected" manual="selected" name="AddRole"/>
27 <feature manual="selected" name="AddRoleAtSetup"/>

28 <feature manual="selected" name="AddRoleDynamically"/>

29 <feature automatic="selected" name="Storage"/>

30 <feature automatic="selected" name="StorageType"/>

31 <feature automatic="selected" name="RecordHistory"/>

32 <feature automatic="selected" name="StructuredRecords"/>

33 <feature manual="selected" name="HashRecords"/>

34 <feature automatic="selected" name="ContractsMetadata"/>

35 <feature automatic="selected" name="AssetsData"/>

36 <feature automatic="unselected" name="StateData"/>

37 <feature automatic="selected" name="StorageEmplacement"/>

38 <feature automatic="selected" name="OffChain"/>

39 <feature automatic="selected" name="Database"/>

40 <feature automatic="selected" name="OnChain"/>

11 <feature manual="selected" name="EventsEmission"/>

42 <feature automatic="selected" name="DataContracts"/>

43 <feature automatic="selected" name="Frontend"/>

44 <feature automatic="selected" name="DeploymentView"/>

45 <feature automatic="selected" name="TraceabilitySetup"/>

46 <feature automatic="selected" name="RecordsCollectionsSetup"/>
47 <feature automatic="selected" name="AssetSetup"/>

48 <feature manual="unselected" name="StateMachineSetup"/>

49 <feature automatic="selected" name="BlockchainNetwork"/>

50 <feature manual="selected" name="EthereumMainnet"/>

51 <feature automatic="unselected" name="EthereumTestnet"/>

52 <feature automatic="selected" name="ParticipantsSetup"/>

53 <feature automatic="selected" name="IndividualsSetup"/>

54 <feature automatic="selected" name="RolesSetup"/>

55 <feature automatic="selected" name="ManagementView"/>

56 </configuration>

Listing 7.3: Fulfilled configuration of the Carasau bread traceability
application in FeaturelDE.



7.4. Validation 151

7.4 Validation

This research work is driven by the main motivations of using software products compared
to traditional software engineering, that stands as follows (Pohl, Béckle, and Van Der Linden,
2005):

e Reduction of development costs.
e Reduction of the time needed to create an application.
e |ncreased code quality.

In the end, these aspects can be summarized as a reduced cost of creating new applications.
It is also expected that SPLs may assist non-blockchain experts in the design and implement
blockchain applications, thus reducing the difficulty of creating new blockchain applications.
This section aims to validate that the artifact proposed to address the technical research
guestion satisfies both the reduction of costs and the decreased difficulty when developing
blockchain applications.

7.4.1 Experiment

To assess that the SPL induces the reduction of cost and simplifies the creation of blockchain-
based applications, an experiment has been designed for this purpose. It takes the form
of Single-Case Mechanism Experiment (SCME), a DSR validation method already used in
Chapter 4 and 6. In this experiment, a comparison is made between using SPLs or traditional
software engineering to create blockchain-based applications. The goal is to show that SPL
induces fewer development costs, but also less operational costs.

The experiment was carried out as follows. First, a sample of two studies has been chosen,
called the Test Set in Table 7.1. This selection has been performed following two criteria: (1)
the source code is available online and (2) the functional requirements of the application
proposed in the study can be easily identified and extracted.

Then, for each study, the following steps have been conducted:

e Requirements extraction - extract main functional requirements® formulated by the
authors for their on-chain traceability application.

e Feature selection - configure and generate a product using the web platform from
these requirements.

e Requirements satisfaction - assess the satisfaction of formulated requirements to-
wards the produced blockchain application.

e Performance assessment - compare the operating cost of deploying the on-chain part
of the product and the implementation proposed by the authors.

8For the sake of brevity, the subset extracted was restricted to functional requirements that involve writ-
ing/modifying data.



152 Chapter 7. Generating a Blockchain-Based Application

During the feature selection step, the configuration of a product is guided by the formulated
functional requirements. However, some features are left to be configured at the end, as
selecting/deselecting these features does not have any impact on the satisfaction of these
requirements. To arbitrate on these features, the source code of the reference paper im-
plementation has been used to extend these requirements. As an example, although the
first reference paper does not require the usage of events, the proposed implementation
is using events in all of the functions. Thus, the Event s feature has been selected in this
configuration, following this information. Finally, if the reference implementation along the
requirements does not allow finishing the configuration, the features left to be configured
are automatically deselected. Indeed, as implementing additional features increases the
operation cost, this measure allows for saving gas.

Regarding the performance assessment step, the operating cost will be measured in gas,
a unit that represents the cost of performing an operation on an EVM-compatible? block-
chain. It is computed by summing all the low-level operations performed during the oper-
ation (so-called opcodes). As the templates of the software product line have been written
using Solidity, this metric is very relevant to assess and compare the performance of block-
chain applications. However, other metrics might be considered for other technologies. This
aspect is discussed in Subsection 7.5.1.

The cost reduction of developing blockchain applications involved by using the proposed
software product line will be considered satisfying if the two following conditions are
matched:

e The products generated from the web platform sufficiently match the requirements
formulated by the authors of reproduced applications.

e The gas cost for the deployment and the execution of the generated smart contracts
is satisfactory compared to the reference paper’s implementations.

A graph compiles these costs for each reference implementation and generated products
(Figure 7.7).

7.4.2 Spare Part Study Comparison

9The EVM (Ethereum Virtual Machine) is used by nodes to execute smart contracts.



153

7.4. Validation

SOA ON Jayjoue 03 diysiaumo lJed aleds ayj Jajsued) 03 a|qe 3q |jeys juedpiped Auy | €11y | J9jsueld)
SOA ON "A1jus 1ied aueds e 9jeaud 0] 9|qe 9 ||eys (4ain1dejnueln Juswdinb3 [euidlQ) INJO UV | TL'LY | Med aueds
SOA SOA ‘Jed aJeds pajsonbal e uo) JopJo aseydind e Juqgns 03 a|ge 3q ||eys Ja3uidua syl | LY
SOA SOA ‘AJojuanul 8y} wouy Jied aieds e 3sanbau 03 9jqe a9 [|eys Joauidua a3yl | oL'Ly
J19pJo aseyaund
JapJio
SOA SOA | panoudde ayj Ag payidads jued aieds ay3 aseydind 03 a|qe 3q |jeys Jo3euew aseydind ayl | 61y SeUsIN
SOA SOA "J19pJo aseydind e snoudde 03 9|qe 3q ||eys Jo3euew aul|ayl | 81y H>Ind
SOA SOA "Jed aJeds pajsanbal e uoj JopJo aseydind e Juwqgns 03 9|ge 3q ||eys Jaauidua syl | L1y
‘Jied
Ajje1nied | saA | 2Jeds pajsanbau ayy Jo Alljige|ieAe ay) wayuod 03 9|ge 9 ||eys Ja3euew jusawaindoidayl | 91y
SOA SOA ‘}Jed aleds pajsanbal e 1oy uoijeionb aseydund e 329|3s 03 3|qe o ||eys Jaauidua a3yl | Sy
uoljeionb
1ued aJeds :
aseydind
SOA SOA | paisanbau e a0y suoljejonb aseyaund pwigns 03 9|ge 3q |jeys J98euew jusawaindoud syl | LY
‘AJojuaAul 9y} wouy 3uissiw si 3sanbau ay3 ul Jied aseds
SOA SOA | paisanbau ayy Ji 3sanbau aseydund e snoudde 03 a|ge o [|eys J93euew uswaindoid syl | €1y sonba.
SOA SOA "1sanbaJ aseydund e apoudde 01 s|ge 39 ||eys 493euew aul| 3yl | LY Mmm N
SOA SOA "1sonbau aseyound e Jwgns 03 s|qe 9q ||eys Joauidua ayl | L1y tnd
ds s juswalinbay al Aio893e)

*(3onpoud pajesauas e ul paysiies :ds 4aded aouatagal Ul paysiies 1ys) sjuawalinbal jeuonnouny Apnis syied aleds S/ a|qeL




154 Chapter 7. Generating a Blockchain-Based Application

The first study chosen for the validation discusses a blockchain-based traceability system
for spare parts purchasing in manufacturing (Hasan et al., 2020). The main motivation for
this study is the lack of spare parts tracing and tracking solutions, especially when they are
employed in sensible domains, such as aeronautics. From this study, a set of 13 functional
requirements have been identified and classified (Table 7.5). Then, a configuration has been
created based on these requirements, and the corresponding product has been generated
and deployed to assess its performance.

Feature Selection

In this configuration, two traceability features have been selected. The first feature is As—
setTracking, asspare part representations should be created by an OEM (Original Equip-
ment Manufacturer) for ownership traceability purposes. As there is no need for modeling
tokenized assets, the St ructuredAsset s subfeature is used. Then, the second chosen
feature is StateMachine, as it is required to trace the current state of purchasing new
spare parts. Regarding the Part icipants feature, only individuals have been included in
the configuration. Indeed, there is no need to create groups of individuals (e.g., roles) in this
scenario. The configuration does not include individual types either, as there are no oracle
or external services specified.

For storage concerns, the spare parts study does not specify any off-chain storage, however,
events are emitted along the process of refilling spare parts. Thus, the Event sEmission
feature has been included. Also, the StateData and the Asset sDat a storage type sub-
features have also been included, due to the specified constraints between features.

Requirements Satisfaction

After the generation of a product based on this configuration, the satisfaction of require-
ments can then be assessed (Table 7.5). As a result, 12 of the 13 specific requirements are
marked as satisfied. Indeed, the generated product is able to support these requirements
by leveraging a state machine to track the state of spare parts refilling, and the ownership of
spare parts through assets. However, one requirement has been marked as partially filled.
The requirement Ré is difficult to satisfy with the current implementation of the product,
as it requires establishing a communication system between the OEM and the procurement
manager to ask for spare part availability.

As only the on-chain part of both applications (i.e., smart contracts) is evaluated, R.1.4 and
R.1.12 have been marked as satisfied. These requirements demand storing some documents
on IPFS (Inter-Planetary File System), a decentralized storage system (Benet, 2014), then
storing the document reference (so-called tag) in the smart contract. Both the spare part
study implementation and the generated product can do that, however, they do not propose
a frontend feature to store a document on IPFS for the moment.

Note that requirements R.1.12 and R.1.13 have been marked as unsatisfactory in the spare
part study implementation. Indeed, only one hardcoded spare part has been found in the



7.4. Validation 155

= Spare parts paper = Productn®l == Dairy products paper = Product n®2

1,00E+8

7,50E+7

5,00E+7

Gas cost

2,50E+7

Number of executions

Figure 7.7: Gas cost of executing several times the reference implementations
and generated products.

spare part study implementation code, and no function allows the transfer of a spare part
from one participant to another.

Performance Assessment

To evaluate the performance ratio between the smart contract proposed in the spare part
study and the generated product, a test scenario for spare part refilling has been designed,
from the request to the purchase. This scenario covers the functional requirements specified
in Table 7.5. Figure 7.7 compiles the differences from 1 to 8 executions.

The process to compute these metrics is the following. At first, the cost of deploying the
smart contracts is assessed. This cost is separated from others as usually it is paid only one
time by the user, at deployment. However, this is not the case for the spare part study
architecture. Then, each function was executed, both in the smart contract proposed in
the spare part study and the generated product. For the latter, the scenario involved the
creation of an on-chain state machine using the same states as the spare part study, then
transitioning from one state to another providing the same parameters as the first spare
part study.

The cost of deploying the generated product is up to 10 431 963 gas, whereas the smart
contract proposed in the spare part study costs 1 513 078 gas to be deployed. However, the
generated product allows the creation of a new traceability process using already deployed
contracts, where the smart contract proposed in the spare part study has to be redeployed to
be used when starting a new traceability process. Thus, the deployment of smart contracts



156 Chapter 7. Generating a Blockchain-Based Application

is not a one-time cost in the spare part study and has to be paid for each traceability process
created. Also, the implementation cost of the generated product includes features for asset
management, specified in the spare part study. However, these features are missing from
the spare part study implementation. Regarding the cost of executing the scenario once
the deployment is performed, the spare part study cumulates a gas cost of 329 840, where
the generated product adds up to 2 248 064 gas. Note that two features specified in the
requirements are missing from the spare part study implementation, thus the cost of the
generated product for the 11 first requirements can be adjusted to 1 970 268 gas.

Figure 7.7 diSPLays a tendency of the execution cost of both spare parts study implemen-
tation and generated product. To extend these results, the cost of executing the scenario
a high number of times was also computed. As a result, the cost of executing 100 times
the scenario is 1.85 * 108 gas for the spare parts study implementation, and 2.35 * 108 gas
for the generated product. For the spare part study implementation, the cost is obtained
by summing 100 times the deployment and the function execution cost. In the generated
product, the cost is obtained by summing 100 times the function execution cost and then
adding the deployment cost. This difference in calculation method is explained as the smart
contracts from the generated product do not have to be redeployed in order to create a new
process. More rationale on identified cost differences between these two implementations
is given in Section 7.5.

7.4.3 Dairy Products Study Comparison

For the second chosen study, a blockchain-based food supply chain traceability for dairy
products is introduced (Casino et al., 2021). As safety is a critical aspect of food supply
chains, blockchain and smart contracts can be used to build a secure and trustworthy ar-
chitecture for food supply chain traceability. In their work, Casino et al. propose such ar-
chitecture through a concrete use case for the traceability of dairy products. In this work,
eleven functional requirements have been identified and classified (Table 7.6). From these
requirements, a configuration has been made on the web platform, and the corresponding
product has been generated for its performance evaluation.

Feature Selection

This case study both involves the tracking of asset ownership, records, and state changes
in a process. The three different tracking methods have been selected to address these
requirements: AssetTracking, RecordsHistory, and StateMachine. Also, as
there is no need for modeling tokenized assets, the St ructuredAsset s subfeature is
used.

For the Participants main feature, the paper describes the need to define two roles.
The first one is the Stakeholders role: stakeholders are involved in the milk transformation
process. The second one is the Administrators role. Members of this role group are em-
ployees from the dairy company and oversee the blockchain traceability application. They



7.4. Validation 157

are able to perform administration operations, such as adding new stakeholders. The pres-
ence of roles in this application justifies the selection of the Role feature. According to
the dairy products study, it is also possible to create new stakeholders or delete them at
any moment. This involves the following features and their subfeatures: CreateIndi-
vidual, DeleteIndividual, and AddRole. However, IndividualTypes have
not been added to the configuration, as there is no explicitly mentioned oracles or services.

Regarding the St orage feature, the study does not mention the emission of events. As this
is an expensive feature in terms of gas cost, Event Emission has been excluded from the
configuration. The other storage subfeatures, notably the ones related to the traceability
data, were automatically selected.

Requirements Satisfaction

Once the configuration step was finished, the satisfaction of extracted requirements was
assessed (Table 7.6). As a result, 8 out of 11 requirements have been marked as satisfied, 2
requirements marked as partially satisfied, and one requirement marked as unsatisfied. In
the proposed software product line, an asset can only be weakly attached to a process (here,
state machine instances), using the additional data field to reference the instance. Thus,
the requirements R8 and R9 have also both been marked as partially satisfied. Regarding
requirement 7, it is not satisfied as it demands a feature to stale an ongoing process, an
aspect not handled by the generated product. Also, as only smart contracts are evaluated,
the requirement R5 is satisfied. Indeed, as in the first study, it is possible to attach an IPFS
tag to an asset in the generated product, in order to link it to a document. However, this
requires uploading the document beforehand, a feature not handled by the web platform
at the moment.



-

.2

Lm

2

S

Q

<

BS

9]

(%]

S

<

S

m SOA SOA "J9P|OYaXeIs MaU e 93eaud 0} d|ge 3 ||eys Jojeisiuiwpe uy | L1y | juswadeuew

<3 SOA SOA "JI9p|oyels e d|gesip 01 9|ge 3 ||eys Jojesisiuiwpe uy | oL’y | Japjoyxels

% Alleied | SSA | "pauMO JI S$9204d uoljewlojSues] Yjiw e 0} 3onpoJd e yul| 03 3|qe 3 ||eys Jopjoydyeisy | 6°1Y

M Ajjeilied | saA '$S920.d UOIjew.0jsuel} y|Iw e 03 Jonpoud e yul| 0} 9|ge 3q ||eys Jojelisiulwpe uy | g1y | jJuswaldeuew

£ ON S9A | 'S$2204d UOIjRWIOSUELY Y|IW B 3|gesIp 0} 3|ge 3] ||eYS J9P|0ydyels e 4o Jojedjsiujwpe uy | L1y ssa204d

m "$S9D uoljewJojsuey

S SOA S9A | -04d UOIIBULIOJSUBI] X |ILU MBU B 9}edJd 0} 3|ge 3] [|BYS JOP|0Ydels e 40 Jojejsiuiwpe uy | 9°1yY AN

© “1onpoud

~ SOA SOA | B 0} 359} |ea1WwaYd e Yoelle pue 9}eaJd 0} 3|ge 3 [|eys Jop|oyaxels e 4o Jojedjsiuiwpe uy | Sy

m. "1onpoud usaAI3 e 1o p10d3l

m SOA S9A | uol3ed0| J0 ainjesadwal Mau e ysnd 03 d|ge 3q ||eys J9p|oyaxels e Jo Jojedisiuiwpe uy | Ly UsWaSeUeL
SOA SOA "PauMOo Ji 3onpoJd e Jo Japjoyaxels ay} a8ueyd 03 d|ge 2 ||eys Japjoyaxeisy | €1y } SADO.
SOA SOA "1onpoud e Jo Japjoydyels ay3 adueyd o0} d|ge 3q ||eys Jojelisiuiupe uy | z'L'y Pnpoid
SOA SOA "1onpoud e 91ea4d 0} 3|qe 3] [|eYysS J9P|0Yde3s e 40 Jojelisiuiwpe uy | L'LY
ds usS juswalinbay ail A1o3aje)

‘(3onpoud pajessusagd ayj ul paysiies :ds “aded aduauagal Ul paysiies 1Ys) syuswadinbad jeuoizpuny Apnis syonpoud Alleq 9L 9|qel

158




7.5. Discussion 159

Performance Assessment

The cost of deploying the smart contracts is assessed, then each function was executed,
both in the smart contract proposed in the first reference paper and the generated product.
Figure 7.7 compiles the differences from 1 to 8 executions.

The cost of deploying the generated product is up to 15 400 174 gas, whereas the smart
contract proposed in the dairy products study costs 6 748 484 gas to be deployed. As in the
first paper, this is not a one-time cost for the dairy products study implementation: smart
contracts have to be redeployed for each legal agreement signed between stakeholders and
the dairy company in charge of the application. For the functions-related costs, the dairy
products study implementation sums up a gas cost of 1044 928, and the generated product
a gas cost of 2 004 322.

As in the spare parts study comparison, the cost of executing a high number of times the
scenario was also computed. The cost of executing 100 times this scenario is 7.79 * 108 gas
for the dairy products study implementation, and 2.17 x 10® gas for the generated product.
As explained in the first paper, the implementation cost has been added only one time to the
generated product gas cost sum, whereas it has been added 100 times for the dairy products
study implementation.

7.5 Discussion

7.5.1 Research Sub-Questions

In the previous section, it was assessed that the artifact proposed in this chapter, that is
the SPL, is able to constitute an answer to the technical research question RQ5. This section
further discusses the results obtained during the experiment, in light of formulated research
sub-questions related to this chapter (Section 7). In particular, the ability to generalize the
usage of SPLs in various application domains of blockchain technology is discussed, as well
as potential divergences between traditional software engineering and SPLE.

RQs5.1: Is SPLE applicable to the blockchain field?

To address the first research sub-question, the satisfaction rate of requirements between
the generated products and the reference papers implementations is assessed. Indeed, if
it is possible to replicate most of the existing blockchain-based traceability applications by
only using the web platform, the software product line approach is relevant. It has been
shown that the web platform was able to produce blockchain applications that satisfy most
of the requirements expressed by the studies that were used as references. Yet, some of the
requirements were not fully satisfied. One reason is the genericity of the products that can
be generated by the web platform. Indeed, the product line architecture and the templates
have been designed to be very flexible rather than implementing specific domain-oriented
features. An illustration of this flexibility is the management of roles: rather than using data



160 Chapter 7. Generating a Blockchain-Based Application

structures tailored after the possible roles in a traceability application, a generic data struc-
ture named Role is implemented. Also, domain-specific features might be missing from the
generated product. This has been faced during the artifact validation (Section 7.4), where
some requirements need to verify a specific condition or execute a defined operation before
changing the state of the traceability process. Nevertheless, the design of the product line
architecture facilitates the integration of new domain-oriented features. In this case, the
generated product is solid ground to start implementing more complex features on it.

RQs5.2: Do blockchain applications created following a standard software development
engineering differs from applications derivated from a software product line?

The second research sub-question consists in evaluating if differences between applications
generated from a software product line or implemented using a traditional software engi-
neering approach exist. For these applications, the gas cost of deploying and then executing
100 times a defined scenario has been measured. Then, the divergence of design and code
between these applications has been studied to explain the measured gas costs. For the
spare parts study, the generated product was 27% more expensive to deploy and execute
100 times, and for the dairy products study, 72% less expensive. This difference is mainly due
to two architectural aspects: the redeployment of smart contracts when willing to relaunch
a new traceability process, and the deployment of numerous contracts to facilitate contract
upgradeability. Indeed, redeploying a contract requires reallocating a large amount of stor-
age to initialize state variables and store the source code, an expensive operation. The prod-
ucts generated by the web platform are designed to avoid this issue: a new state machine
(by extension, a traceability process) can be created with a dedicated function rather than
another deployment. The separation of concerns between data and logic also addresses this
issue, as a new controller can be deployed to upgrade some features in generated products,
rather than redeploying everything. However, this approach has a drawback: the logic re-
quired for the separation of concerns and easier upgradeability requires the deployment of
bigger smart contracts. This results in a more expensive deployment for generated products.

The implementation of the different features of the generated products and reference study
implementations also differs. For the latter, many hardcoded values were found, in particu-
lar for the definition of participants and roles. This leads to decreased gas costs, as there is
no additional feature for dynamic management of them (e.g., getters and setters functions).
On the opposite, the generated products derivated from the software product line are very
flexible and foster maintainability and upgradeability. Consequently, the flexibility of this
approach increases the operating costs of the application. Nevertheless, the high gas costs
observed during the software product line validation might be reduced in future works by
implementing features to reduce the code and needed storage size, to the detriment of up-
gradeability. Also, the deployment of smart contracts and the execution of functions is free
on private blockchains networks, such as Proof-of-Authority-based Ethereum networks. In
this context, it is not necessary to optimize the application in order to decrease its gas costs.



7.5. Discussion 161

It should also be noted that although the gas cost is an accurate metric to describe Ethereum-
based smart contracts performance, it is not systematically generalizable to any blockchain
technology. Indeed, there is no gas cost at all on other non-EVM-based blockchains, such as
Hyperledger Fabric. Other metrics might be considered to assess the performance of block-
chain applications in future works, using these technologies. For instance, the resource us-
age of an application (e.g., CPU, RAM, storage size, etc.) could be monitored. The cost of
executing the features themselves could also vary depending on the blockchain used. As an
example, a feature for data confidentiality requires implementing a function to encrypt data
on Ethereum-based blockchains. On Hyperledger Fabric, this is unnecessary as it is possi-
ble to restrict the read access of a contract to a defined set of participants, using channels
(Androulaki et al., 2018).

7.5.2 Lessons Learned

The main advantage identified during the completion of the study was the time saved com-
pared to manually developing traceability applications. Indeed, after the identification of
desired requirements in these works, the configuration and the generation of blockchain
applications can be done in minutes. Also, the quality of generated products benefits from
the integration of good practices, design patterns, and standards in core assets. However,
the main drawback to this approach is the time overhead needed and the difficulty to set
up the software product line (feature analysis, feature model development, template devel-
opment). For the latter, blockchain experts are still needed to design and implement core
assets in the domain engineering phase. Nevertheless, a working SPL can easily be used by
non-experts during the application engineering phase.

These lessons learned are in line with the advantage of SPL in general: reduced time-to-
market, reduced costs, and enhanced product quality. However, using SPLs is a decision
that should be carefully assessed by a company willing to follow this approach, as it implies
significant costs and risks for the company (Rincén, Mazo, and Salinesi, 2018). It requires
spending more time upfront to design core assets during the domain engineering phase.
Thus, this approach might not be tailored for a company aiming to develop a single block-
chain application. On the contrary, large companies willing to propose wide ranges of block-
chain-based applications might benefit from the usage of SPLs.

The templating engine used in this contribution was enough to illustrate the capability of
generating blockchain products from configurations. However, a domain engineer may feel
limited by the templating engine when implementing many templates for large-scale soft-
ware product lines. The implementation of the different features within templates might
also be tedious, as it has to take into account all the possible combinations of features and
possible nestings.

Nonetheless, this issue can be mitigated in the blockchain field by different means. First,
smart contracts can be designed in a way that the resulting architecture is a set of loosely
coupled smart contracts. This approach eases the addition of new features to the software
product line. Such architecture is notably introduced by Tonelli et al. (Tonelli et al., 2019),



162 Chapter 7. Generating a Blockchain-Based Application

as they implement a microservice-based system with blockchain smart contracts. Conse-
quently, the architecture proposed in this work was designed with modularity as a main
concern. Second, many design patterns, standards, and commonly reused code blocks al-
ready exist. As identified by Chen et al., 26% of Ethereum smart contracts code blocks are
from reused sources, notably ERC20-related contracts (Chen et al., 2021). Indeed, ERC20™° is
a standard for the creation of fungible tokens on Ethereum. This existing code can be easily
bundled into a feature, reusable in many software product lines.

7.5.3 Research Challenges

Using software product lines to create blockchain applications raises new research chal-
lenges to address. In this work, the Solidity language has been chosen to develop smart
contracts. However, a wider range of languages exist to develop smart contracts for one or
other blockchain technologies (e.g., Solidity, Go, Rust, etc.). Future feature models of block-
chain products could contain a feature for the selection of a specific smart contract language.
This feature could yield software product lines that are able to produce the same application
for multiple blockchain technologies. It would allow developers to focus on the application
to build rather than the blockchain target behind and its technical specificities. Still, there
is an issue with the implementation of such features: the programming model might dif-
fer between different blockchains. For instance, Ethereum is account-based, whereas other
blockchains such as Bitcoin, rely on a UXTO (unspent transaction output) model (Brinjes
and Gabbay, 2020). A consequence of these different programming paradigms could be the
impossibility to design some features with specific blockchain technologies.

Also, this chapter proposes a domain-oriented feature model (on-chain traceability), yet an-
other type of feature model could be created around existing blockchain features. The re-
sulting SPL could allow the creation of generic blockchain applications, that provide a solid
ground for developers to start implementing the domain features above. However, a devel-
oper willing to use this SPL would still partially face the issue of writing blockchain-related
code. Nonetheless, the most difficult aspects of blockchain software engineering could be
handled by the SPL itself, while the developer could focus on designing and implementing
domain-oriented code. For instance, a generic blockchain SPL could contain an Oracle
feature. If selected by the developer during the configuration, the oracle would be included
in the generated product with an adequate interface that eases its reuse.

The evolution of software product lines, when core assets (e.g., templates, feature models)
evolve over time to address newer requirements or changes in the technology used (Mar-
ques et al., 2019), is also a challenge for blockchain software product lines. This issue is very
relevant to blockchain: due to the novelty of the field, many existing standards, patterns,
and commonly reused code blocks might change in the future, impacting existing features.
Future research on blockchain-based software product lines should consider this issue and
include mechanisms to handle the evolution of blockchain core assets.

©https://ethereum.org/en/developers/docs/standards/tokens/erc-20


https://ethereum.org/en/developers/docs/standards/tokens/erc-20

7.6. Related Works 163

7.6 Related Works

The application of SPLs to blockchain technologies remains unexplored in the existing liter-
ature. However, several works in the literature have already been proposed to assist prac-
titioners in designing, generating, and deploying blockchain-based solutions, starting from
low-level code generation tools to MDE approaches and proposals that take blockchain vari-
ability into account.

7.6.1  Smart Contract Code Generation

The most recent blockchain solution supports general-purpose programming languages,
such as JVM-based languages Java/Kotlin for Corda (Hearn and Brown, 2016), or Go, Node.js,
and Java for Hyperledger Fabric (Androulaki et al., 2018). Yet, the vast majority of the litera-
ture presenting blockchain-based solutions still rely on Ethereum and its Ethereum-specific
languages (Solidity, Viper) to demonstrate the feasibility of their proposal. For this reason,
several papers focus on helping developers write smart contracts with Ethereum.

Wohrer and Zdun proposed a Contract Modeling Language (CML) to simplify the writing
of smart contracts (Wohrer and Zdun, 2020). CML defines contract-specific concepts such
as Party, Asset, or Event, and decorators to indicate the usage of blockchain-based design
patterns in specific functions. A parser is also proposed to convert a CML file into Solidity
code. However, this approach requires developers to become proficient in CML in addition to
Solidity, which is not an easy undertaking. Indeed, only learning CML might limit developers
in the development of smart contracts, as they would be restricted to CML existing elements.

Other approaches in the literature focus on reusing existing models to generate code. For
instance, Zupan et al. propose a framework to generate smart contracts based on Petri
nets (Zupan et al., 2020). These Petri nets model places that are linked by transitions that
can be crossed under specific conditions. The generation of code is made through their
translation engine, which is able to convert Petri nets into Solidity smart contracts. Lopez-
Pintado et al. use BPMN to generate a suite of Solidity smart contracts, able to run the
corresponding business process on the blockchain with a solution called Caterpilar(Lopez-
Pintado et al., 2019). Generated smart contracts are used to start business process instances,
manage business process activities, and handle the business process workflow. Choudhury
et al. use a different model for smart contract generation composed of an ontology with
classes linked together, and constraints expressed as a set of rules (Choudhury et al., 2018).

7.6.2 Blockchain and Model-Driven Engineering

Smart-contract code generation is useful to address supported use cases where all the pro-
cessed data happens to be on the blockchain. However, these approaches fall short when
dealing with the integration of other domain-specific components into the blockchain so-
lution at different architectural levels. Several authors propose relying on Model-Driven



164 Chapter 7. Generating a Blockchain-Based Application

Engineering to help grasp the complexity integrating of blockchain-based solutions within
the Information Systems,

Lu et al. propose a tool called Lorikeet that extends the BPMN modeling capabilities already
proposed in Caterpillar with the support of asset registry management and interconnects
them (Lu et al., 2020). Both Business Process modeling and Asset Registry modeling are used
to generate smart contracts making the developers more productive, the operators able to
monitor the execution of generated smart contracts, and the domain experts capable of un-
derstanding how their ideas are represented in the system. De Sousa and Burnay present
MDE4BBIS, a framework to incorporate MDE in the development of blockchain-based IS
(Sousa and Burnay, 2021). They demonstrate their solution to support cross-organizational
business processes. Goérski and Bednarski propose new UML stereotypes in a UML profile
for distributed ledger deployment and incorporated their solution in a modeling tool to au-
tomate the deployment to Corda (Gorski and Bednarski, 2020).

7.6.3 Blockchain and Software Product Lines

Finally, a few proposals have been made to use software product lines for blockchain. Kim et
al. present a feature model to allow organizations to build their own blockchain platform by
selecting its features (e.g., smart contract language, consensus algorithm, etc.) (Kim et al.,
2018). They present a feature model for blockchain platforms allowing the selection of the
desired features, without however supporting feature binding or code generation. Liaskos et
al. introduce a meta-model for the derivation of specialized blockchain network simulators,
emphasizing the importance of SPLE and MDE (Liaskos, Anand, and Alimohammadi, 2020).

7.6.4 Comparison with the SPL Approach

The aforementioned MDE-based methods allow the partial or full generation of blockchain
applications. However, several differences with the SPL approach can be underlined.

1. These methods can be applied to a wide range of use cases, yet their genericity often
requires writing additional domain-oriented code. As such, non-experts might strug-
gle with the modification of the produced applications to fit their needs.

2. The SPL approach provides a clear separation between the implementation of
reusable artifacts (domain engineering) and the actual reuse in new products (appli-
cation engineering), as well as methods and guidelines to handle SPL evolution (Mar-
ques et al., 2019). These aspects are important to maintain the generation of relevant
blockchain applications, knowing the rapid pace of development in the blockchain
field.

3. Compared to existing approaches, the usage of a feature model to define the variabil-
ity of generated applications allows a fine-grained and clear selection of features by
the developer.



7.7. Conclusion 165

These differences led to the usage of SPLE for BANCO, as the main purpose of the Harmonica
framework is to assist non-expert practitioners in the design and implementation of block-
chain applications.

7.7 Conclusion

As the development of blockchain applications is still tedious and error-prone, the usage of
a software product line can help in the systematic reuse of existing code, good practices, and
standards (e.g., Ethereum ERCs) to build robust and efficient applications. This chapter de-
notes the relevance of leveraging software product lines for the design and implementation
of blockchain-based applications with an exemplified approach. First, a feature model for
on-chain traceability applications is introduced, built by extracting features from 5 different
works in this field. Along that, a web platform is proposed to allow the configuration of an
on-chain application based on this feature model. The web platform also includes a code
generator that reuses this configuration to feed a templating engine that produces a work-
ing blockchain application, without any coding. By specifying its desired features, the user
is capable of generating an application for on-chain traceability that suits its needs. Also,
the produced code is designed to be highly modular, thus easing the addition of new fea-
tures, either through adding extra features in the feature model or manually. This approach
is validated by using the web platform to recreate existing on-chain traceability applications
proposed in the literature. In particular, it was assessed that using SPLs implies the reduc-
tion of costs, whether development or operational costs. It was also shown that it is easier
for non-experts to create a blockchain application using a SPL rather than implementing
everything from scratch. Many research challenges still have to be addressed, such as the
management of the software product line evolution considering the rapid pace of block-
chain development. Yet, this work paves the way for blockchain-backed solutions created
with the software product line method.

This chapter is also the final part of the current version of the Harmonica framework, BANCO
being its third artifact. BANCO proposes a method and a tool to semi-automate the im-
plementation of a blockchain application, using the recommendations produced by BLADE
(Chapter 4 and 6).






167

Chapter 8

Conclusion and Perspectives

Many issues and challenges may be faced by developers when designing and implementing
blockchain applications (Chapter 2). First, developers may struggle with security issues that
threaten their applications. For instance, they may introduce by mistake vulnerabilities in
their smart contracts or neglect aspects such as data privacy. This may induce important
consequences: for instance, smart contracts may hold high amounts of cryptocurrencies.
Then, they may face blockchain-specific challenges. As an example, using a blockchain in
an application involves dealing with data immutability or interoperability with other appli-
cations. Additionally, developers may have to consider cost and performance issues, as it
may be very expensive to deploy and interact with smart contracts. Finally, some issues
were identified related to the development environment when implementing blockchain
applications, such as the lack of assisting tools, or the lack of guidelines.

The main goal of this thesis was to address these different classes of issues faced by de-
velopers. As such, the research aim of the thesis is to improve the software engineering
process for creating blockchain-based applications, by designing a semi-automated frame-
work composed of two assisting tools and a knowledge base that assists the practitioner
along the tasks of designing and implementing blockchain-based applications to make the
creation of blockchain-based applications easier, and reduces development cost (Chapter
1). By reusing existing concepts such as recommendation systems, software product lines,
or design patterns, Harmonica aims to propose a solution to assist the practitioner in the
design and implementation of blockchain-based applications.

The chapter is organized as follows. First, the thesis novel contributions are recapitulated in
Section 8.1. The limitations related to the different artifacts as well as the framework as a
whole are discussed in Section 8.2. Finally, future works are introduced in Section 8.3.

8.1 Novel Contribution

The driving idea of the thesis was to develop a framework, named Harmonica, to assist the
practitioner in the design and the implementation of blockchain-based applications. The
framework is constituted of two tools: BLADE, a recommender of blockchain technologies
and patterns for a given set of requirements and preferences, and BANCO, a configurator



168 Chapter 8. Conclusion and Perspectives

and a generator of blockchain applications (Chapter 3). These tools can either be used as
standalone by practitioners depending on their needs or used as a suite to navigate from
the design to the implementation of an application. To support the execution of these tools,
the framework also includes an ontological knowledge base of blockchain-based software
patterns was also proposed.

To build this framework and its tools, 3 design artifacts were created:

e A web platform for blockchain technology recommendation in a given context. In or-
der to compute an adequate ranking, the practitioner has to express their preferences
and requirements towards 14 different blockchain attributes, that covers the different
aspects of software quality defined by the 15025010 standard. Where the require-
ments are used to discriminate blockchain if they dissatisfy one, preferences are used
to attribute a weight for each of the 14 different attributes. A multi-criteria decision-
making method, named TOPSIS, is then able to compute a matrix containing all of
the blockchain attributes and the weights defined by the user preferences to output
a ranking of blockchain technologies (Chapter 4).

¢ An ontology-based web platform for the selection of blockchain-based software pat-
terns. The driving idea of ontology lies in the distinction between the concept of pat-
tern and the patterns proposed (so-called proposals) in academic papers. Indeed,
many papers might propose the same pattern or closely related variants using differ-
ent wordings and descriptions. This ontology also extensively reuses the knowledge
gathered in the aforementioned systematic literature review and extends it, notably
with the inference of relations between patterns from the relations between propos-
als. The web platform reuses this ontology by exposing the patterns as a catalog, but
also by implementing a recommendation system of patterns using the ontology con-
cepts and knowledge (Chapter 6).

e A SPL-based web platform for the configuration and the generation of a blockchain
application. To guide the configuration, a feature model has been created to model
possible combinations of features for a chosen domain, that is on-chain traceability.
The feature model also describes constraints between one or more patterns, to pre-
vent invalid configurations. The practitioner is then able to configure a blockchain
application using the web platform w.r.t. the feature model. The generator is then
able to ingest the configuration to create on-the-shelf blockchain products that can
be used as-is (Chapter 7).

These artifacts were created in the context of the Design Science Research (DSR) method,
where the creation of these artifacts was driven by three technical research questions. In
this context, each design artifact constitutes an answer to its associated technical research
question as long as it satisfies the stated requirements. As a result, it was assessed that the
framework can successfully assist the user in the selection of a blockchain technology (RQ2),
recommend a set of blockchain-based software patterns for given requirements (RQ4), and
generate on-the-shelf blockchain applications based on previous recommendations, design
decisions, and an adequate product configuration (RQ5).



8.1. Novel Contribution 169

Along with the construction of these artifacts, this thesis has also proposed several contri-
butions to the state of the art of blockchain technologies:

e A focused literature review of the state of the art of issues met by developers when
designing or implementing blockchain applications. In total, 67 studies were queried
and then filtered to create a corpus of 6 papers. It has led to the identification of 57
unique issues, that were classified into 5 categories and 9 sub-categories.

e A systematic literature review of the state of the art of blockchain-based software
patterns. In total, 98 studies were retrieved, from which 20 studies have been kept
for reading. The completion of this review has led to the construction of the block-
chain-based software pattern collection aforementioned, but also resulted in action-
able knowledge in this field (Chapter 5):

A collection of 114 unique blockchain-based software patterns. Each pattern is
described in a simplified pattern format, derived from the GoF or Alexandrian
pattern format, to address the lack of uniformity in the description of patterns
in each paper.

- Ataxonomy for blockchain-based design patterns constituted of 20 different cat-
egories and distributed over 3 layers of classification. It has been proposed to
classify these patterns, empirically created from the patterns extracted during
the systematic literature review.

- Anoverview of key blockchain-based software patterns that are often present in
existing blockchain applications.

- Therelations between existing software patterns and blockchain-based software
patterns were identified, showing the applicability of some existing software pat-
terns to the blockchain field.

- The application domains of identified blockchain-based software patterns, high-
lighting the current domain agnosticism of blockchain-based software patterns.

- Research gaps in blockchain-based software patterns, such as the lack of block-
chain technology support and the lack of architectural patterns/idioms propos-
als.

e Anillustration of the applicability of software product lines to blockchain applications,
with the end-to-end construction of a blockchain software product line (BANCO). This
applicability was carefully evaluated by assessing that blockchain products benefit
from the same advantages as other software product lines (cost reduction, reduced
time-to-market, and enhanced quality). Also, several research challenges and lessons
learned were identified to further guide future researchers on this topic (Chapter 7).

These contributions were created by answering two knowledge questions, in the context of
the DSR method. Knowledge questions are different from technical research questions as
they do not aim to produce new artifacts, but the knowledge that will serve the artifacts



170 Chapter 8. Conclusion and Perspectives

or contribute to the research context. In this thesis, the issues related to the design and
implementation of blockchain-based applications met by developers have been identified
(RQ1), and a collection of blockchain-based patterns has been constituted from the existing
state-of-the-art (RQ3).

The different artifacts that were proposed in this thesis fill multiple research gaps in state-
of-the-art of blockchain application development. First, the holistic approach taken to build
the framework can be mentioned. Many approaches, tools, methods, and solutions exist
in the literature to tackle multiple design and implementation issues met by practitioners,
as mentioned in the different related works sections in Chapter 4, 5, 6, and 7. Yet, these
solutions were often addressing specific aspects of the design and implementation of block-
chain applications, instead of assisting the practitioner with these steps. The Harmonica
framework proposes a different approach, composed of 3 artifacts that may be used in or-
der to address the major issues when they occur during the creation of blockchain-based
applications.

This contribution also adapts existing approaches in software engineering to blockchain
technologies. Three approaches can be mentioned: the usage of software patterns, SPLs,
and ontologies. The concept of software pattern is a well-known solution to formalize ex-
isting knowledge on recurring problems and solutions. Although this solution was already
proposed multiple times in the literature for blockchain technologies, throughout pattern
collections or applications (Chapter 5 and 6), this thesis has led to the creation of a large pat-
tern collection that aggregates existing literature, and a novel way of structuring this knowl-
edge that is the blockchain-based software pattern ontology. Regarding SPL, this thesis was
among the first to investigate the application of SPLE to blockchain technologies (Chapter 7).
Although many approaches were already explored in the Model-Driven Engineering (MDE)
field (e.g. BPMN and Petri Nets code generation), this thesis adapts an existing approach,
that is SPL and configurators, as a new way to generate blockchain applications.

8.2 Limitations

However, multiple limitations were identified in the completion of this work. The upgrade-
ability of the framework knowledge is the first limitation of this work. Indeed, the knowledge
base of the framework might become more and more obsolete over time, regarding the
rapid pace of evolution in the blockchain field. For instance, the description of blockchain
technologies using multiple attributes may become outdated. For instance, the mainnet
of the Ethereum blockchain changed its consensus algorithm from Proof-of-Work (PoW) to
Proof-of-Stake (PoS) during the completion of this thesis. Also, blockchain technologies that
quickly gained traction from users may be absent from the knowledge base, as they were
not added yet. This limitation also affects the recommendation of blockchain-based soft-
ware patterns, as developer practices may evolve fast and new patterns may be identified,
or existing patterns may be adapted to new blockchains. Finally, the templates that were



8.3. Future Works 171

implemented to serve the generation process of BANCO may also be threatened by obso-
lescence: for instance, programming languages and libraries may evolve, modifying their
syntax.

Another limitation of the framework is its applicability to only two phases of the software
engineering process: design and implementation. In order to achieve the construction of the
Harmonica framework within the thesis timeframe, this focus was needed. Although these
steps might be the most tedious to handle as a non-expert, including all phases of software
engineering in the framework (requirements elicitation, deployment, maintenance) would
be highly beneficial to assist the practitioner in all the steps of creating blockchain-based ap-
plications. Yet, efforts have been made to allow composability between the framework and
future works in the field. Indeed, every tool within the framework takes a specific input and
produces a specific output. This allows designing new tools for other software engineering
process phases that produce outputs reusable by the Harmonica framework tools, or that
reuse outputs from the Harmonica framework tools. Thus, the framework can evolve along
with the research works in this field, but also with the evolution in blockchain application
development.

The validity of the framework can also be discussed. Although every artifact as well as the
knowledge that supports their execution were validated independently using the methods
suggested by Wieringa (Wieringa, 2014), there was no validation of the framework as a
whole. Nevertheless, as each research question formulated to address the research aim
was answered and produced artifacts were validated, the framework can be considered
valid. Yet, future works may evaluate the usability of the framework by practitioners, to
further demonstrate that it constitutes a solution to the formulated research aim but also
identify if using every tool in conjunction yields additional benefits. For instance, methods
such as Unified Theory of Acceptance and Use of Technology (UTAUT) may be applied to sur-
vey a large panel of developers on the framework usability (Venkatesh et al., 2003). Finally,
although each part of the framework is able to reuse the results from the previous one,
the coupling could be improved. For instance, the recommendations of blockchain-based
software patterns in BLADE should impact the configuration of the blockchain product in
BANCO.

8.3 Future Works

The different research works carried out in this thesis pave the way for future works. In this
section, these possible future works for each artifact as well as the framework are intro-
duced.

BLADE - Blockchain Technology Recommendation

Regarding BLADE, its produced blockchain technology recommendations might be improved
through different research works. First, by adding more attributes and alternatives into the



172 Chapter 8. Conclusion and Perspectives

knowledge base to better consider the state of the art of blockchain technologies. By adding
more attributes, the precision of recommendations would increase, as the recommendation
engine has more parameters to rank the blockchain technologies. In parallel, adding more
blockchain technologies would offer more options for the practitioner to design its applica-
tion. It would require finding new methods to both automate the collection of blockchain
data, but also ensure that these data remain up-to-date. Although this work was outside of
the scope of BLADE, it may be an interesting future work to scale up the approach.

Then, another type of input may also be considered to further refine the recommendations
made by the system (system architecture topology, infrastructure, business processes, etc.).
For instance, this information could be used to run a customized performance test (such as
the one presented in the Subsection 4.5.4) for each user before even running the decision
algorithm, the goal being to set the values of the varying criteria (transaction throughput,
latency ...) extremely precisely. Another way to improve is the use of approaches based on
fuzzy logic or Bayesian models that would allow taking into account the subjective aspect of
the decision criteria.

One of the most important challenges that will also have to be addressed in the future will
be the updating of the knowledge base. As mentioned earlier, the precision of BLADE is
bonded to the correctness of the knowledge base: outdated knowledge would yield out-
dated recommendations. Indeed, the result provided by BLADE will be relevant if the at-
tributes remain up to date, through the evolution of the different blockchains proposed,
the addition of attributes used in the tool, and the benchmarks carried out which will allow
refining certain values of the knowledge base. To address this issue, close collaboration with
companies as well as blockchain experts and architects might be envisioned.

BLADE - Blockchain-based Software Patterns Recommendation

Multiple future works are envisioned to improve the collection of patterns and ontology.
Regarding the collection of patterns, research work could be carried out on the translation
of GoF patterns that have not been translated yet as blockchain-based patterns. During the
systematic literature review (Chapter 5), it has also been found that while some patterns are
described in a very generic form, some variants propose specific forms of patterns based on
them, such as the Oracle pattern that can be derived into 4 different variants (Mihlberger et
al., 2020). Further research in creating architectural patterns and idioms for various block-
chain protocols could benefit the development of robust blockchain-based applications.

Some extensions could also be envisioned for the ontology, in the software pattern domain.
Although the pattern proposal subspace is introduced within the scope of blockchain pat-
terns, it could be generalized to all software patterns, such as Internet-of-Things (loT) or
microservices. Finally, existing software patterns in the ontology might be extended to in-
clude a formal description using existing pattern formats.



8.3. Future Works 173

BANCO

Regarding BANCO, the tool currently supports only one domain, that is on-chain traceability,
but also one blockchain technology (Ethereum). More domains and blockchain technologies
might be added in the future to extend their applicability in other fields. Another envisioned
extension of BANCO could be the support of domain-agnostic configuration. Rather than
selecting domain-related features (for instance, record management for on-chain traceabil-
ity), blockchain-based features might be designed and then coupled together to generate a
robust ground of a blockchain application, where domain-specific features might be added
later. This would improve the versatility of BANCO, allowing its usage in many domains rather
than specific ones.

Harmonica Framework

To conclude with future works, more phases of the software engineering process might be
considered in Harmonica, to further ease the development of blockchain-based applications
without prior extensive knowledge. This notably includes the requirements specifications,
where blockchain-specific requirements might emerge, but also the deployment and main-
tenance phases, that require the practitioner to have extensive knowledge in upgradeability
methods of blockchain applications.

As mentioned before, the coupling of the different parts of the framework may be improved.
Future works will target better reuse of existing tool outputs to improve others, such as
reusing the requirements provided to BLADE for blockchain technology recommendations
in the existing or upcoming tools.

While Harmonica still has room for improvement, this work opens the way for future im-
provements in the guidance of practitioners in the creation of blockchain applications, thus
greatly contributing to the adoption of the technology in many sectors.






Appendix A

175

In this appendix, the full table of issues met by practitioners in the design of blockchain-
based applications, for each paper from the literature review in Chapter 2, is given.

Table 1: Issues met by practitioners in the design of blockchain-based
applications, for each literature review paper.

Ref.

Issue

(Ayman et al., 2020)

¢ Avoiding smart contract vulnerabilities
e Low awarness of existing tooling

(Worley and Skjellum, 2018)

e Code immutability
e Chain-boundedness
e Cost of use

(Bosu et al., 2019)

e Cost of defects

e Steep learning curve

e Complex environment
e Data immutability

¢ Technological complexity
¢ High pace development
e Scalability

e Application security

e Code reviews

e Lack of documentation
e Lack of tools

(Zou et al., 2019)

¢ Handling sensitive data

e Irreversible transactions

e Code unmodifiable

e Public code access

e Flaws in compiler

e Lack of best practices for writing safe code

e Lack of tools and techniques to verify code correctness
e Longer code reviews

e Lack of powerful debuggers

e Non-informative error messages

e Solidity lack of general purpose library

e Solidity lack of support for error logging and reporting

Continued on next page




176

Chapter 8. Conclusion and Perspectives

Table 1 - Continued from previous page

Ref.

Issue

e Solidity lack of standards and rules

e Solidity lack of data safety checks

e Solidity inconvenient way to call external functions
e Solidity lack of support for memory management

e Solidity constrained number of local variables

e EVM limited support for debugging

e EVM lack of support of traditional language

e EVM inefficiency of bytecode execution

e EVM limited stack size

¢ High gas cost

e Transaction failure due to insufficient amount of gas
¢ No gas estimation tool at code level

¢ Tradeoff between gas optimisation and code reliability
e Lack of reference code

e Lack of standardized knowledge

e Lack of up-to-date documentations

e Lack of community support

(Lokshina and Lanting, 2021)

e Blockchain usage and selection

e Handle latency in architecture

e Interoperate dApps with already existing ones
e Transactional privacy

(Kannengiesser et al., 2021)

e Code Visibility

e Data Visibility

e Pseudonimity

e Randomness

¢ Transaction Ordering Dependance
e Code Discoverability

e Code Updatability

e Execution Restriction

e Resource Management

e Undefined Behavior

e Arithmetic Behavior

e Concurrency

¢ Non-deterministic Behavior

e Conformity to Expectations

e Cross Account Interactions

e Encapsulation

e Error Handling

e Programming Language Concept Compliance
e lteration Through Data Structures

Continued on next page




8.3. Future Works 177

Table 1 - Continued from previous page

Ref. Issue

e Data Storage

¢ Data Type Complexity

e Under-optimized code

e Required Interactions

e Readability

e Ease of Code reuse

e Appropriate Data Type use

e Semantics Soundness

e Technical Soundness

e Smart Contract APl Conformity







179

References

Agung, Anak Agung Gde and Rini Handayani (2020). “Blockchain for smart grid”. In: Journal
of King Saud University-Computer and Information Sciences.

Alexander, Christopher (1977). A pattern language: towns, buildings, construction. Oxford
university press.

Alexander, Christopher et al. (1979). The timeless way of building. Vol. 1. New york: Oxford
university press.

Allen, | Elaine and Christopher A Seaman (2007). “Likert scales and data analyses”. In: Quality
progress 40.7, pp. 64-65.

Androulaki, Elli et al. (2018). “Hyperledger fabric: a distributed operating system for permis-
sioned blockchains”. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1-15.

Ayman, Afiya et al. (2020). “Smart contract development from the perspective of develop-
ers: Topics and issues discussed on social media”. In: International Conference on Financial
Cryptography and Data Security. Springer, pp. 405-422.

Back, Adam et al. (2002). Hashcash-a denial of service counter-measure.

Bandara, HMN Dilum, Xiwei Xu, and Ingo Weber (2020). “Patterns for blockchain data mi-
gration”. In: Proceedings of the European Conference on Pattern Languages of Programs
2020, pp. 1-19.

Baralla, Gavina et al. (2021). “Ensuring transparency and traceability of food local products:
A blockchain application to a Smart Tourism Region”. In: Concurrency and Computation:
Practice and Experience 33.1, €5857.

Bartoletti, Massimo and Livio Pompianu (2017). “An empirical analysis of smart contracts:
platforms, applications, and design patterns”. In: International conference on financial
cryptography and data security. Springer, pp. 494-509.

Bass, Len, Paul Clements, and Rick Kazman (2003). Software architecture in practice.
Addison-Wesley Professional.

Beck, Kent (1987). “Using Pattern Languages for Object-Oriented Programs”. In: Proceedings
of OOPSLA (Object-Oriented Programming, Systems, Languages & Applications). url: htt
p://c2.com/doc/oopsla87.html.

Belotti, Marianna et al. (2019). “A vademecum on blockchain technologies: When, which,
and how”. In: IEEE Communications Surveys & Tutorials 21.4, pp. 3796-3838.

Ben, Strack (2022). There’s a Shortage of Tech (And Female) Crypto Talent: Report. ht tps
://blockworks.co/news/theres—-a-shortage-of-tech-and-female-
crypto—talent—-report. [Accessed 20-Dec-2022].

Benet, Juan (2014). IPFS - Content Addressed, Versioned, P2P File System. eprint: arxXiv:1
407 .3561.


http://c2.com/doc/oopsla87.html
http://c2.com/doc/oopsla87.html
https://blockworks.co/news/theres-a-shortage-of-tech-and-female-crypto-talent-report
https://blockworks.co/news/theres-a-shortage-of-tech-and-female-crypto-talent-report
https://blockworks.co/news/theres-a-shortage-of-tech-and-female-crypto-talent-report
arXiv:1407.3561
arXiv:1407.3561

180 References

Bosu, Amiangshu et al. (2019). “Understanding the motivations, challenges and needs of
blockchain software developers: A survey”. In: Empirical Software Engineering 24.4,
pp. 2636-2673.

Brown, Richard Gendal et al. (2016). “Corda: an introduction”. In: R3 CEV, August 1, pp. 1-15.

Briinjes, Lars and Murdoch J Gabbay (2020). “UTxO-vs account-based smart contract block-
chain programming paradigms”. In: International Symposium on Leveraging Applications
of Formal Methods. Springer, pp. 73-88.

Buterin, Vitalik et al. (2013). “Ethereum white paper”. In: GitHub repository 1, pp. 22-23.

Caro, Miguel Pincheira et al. (2018). “Blockchain-based traceability in Agri-Food supply chain
management: A practical implementation”. In: 2018 loT Vertical and Topical Summit on
Agriculture-Tuscany (IOT Tuscany). |EEE, pp. 1-4.

Casino, Fran et al. (2021). “Blockchain-based food supply chain traceability: a case study in
the dairy sector”. In: International Journal of Production Research 59.19, pp. 5758-5770.

Chen, Xiangping et al. (2021). “Understanding code reuse in smart contracts”. In: 2021 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, pp. 470-479.

Chohan, Usman W (2021). “The double spending problem and cryptocurrencies”. In: Avail-
able at SSRN 3090174.

Choudhury, Olivia et al. (2018). “Auto-generation of smart contracts from domain-specific
ontologies and semantic rules”. In: 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). |EEE,
pp. 963-970.

Cocco, Luisanna et al. (2021). “A blockchain-based traceability system in agri-food SME: Case
study of a traditional bakery”. In: IEEE Access 9, pp. 62899-62915.

CoinMarketCap (2020). Historical Snapshot - 02 February 2020 - CoinMarketCap. ht tps :
//coinmarketcap.com/historical/20200202/.[Accessed 20-Dec-2022].
ConsenSys (2019). Gartner: Blockchain Will Deliver $3.1 Trillion Dollars in Value by 2030.
https://media.consensys.net/gartner-blockchain-will-deliver
-3-1-trillion—-dollars—in-value-by-2030-d32b79c4c560. [Accessed

20-Dec-2022].

Croft, W Bruce, Donald Metzler, and Trevor Strohman (2010). Search engines: Information
retrieval in practice. Vol. 520. Addison-Wesley Reading, pp. 308-322.

Cunha, Paulo Rupino da, Piotr Soja, and Marinos Themistocleous (2021a). “Blockchain for
development: a guiding framework”. In: Information Technology for Development 27.3,
pp. 417-438.doi: 10.1080/02681102.2021.1935453. eprint: https://doi.o
rg/10.1080/02681102.2021.1935453.url: https://doi.org/10.1080
/02681102.2021.1935453.

Cunha, Paulo Rupino da, Piotr Soja, and Marinos Themistocleous (2021b). Blockchain for
development: a guiding framework.

Czarnecki, Krzysztof and Eisenecker Ulrich (2000). Generative Programming: Methods,
Tools, and Applications. Reading, MA, USA: Addison-Wesley, p. 864. isbn: 0201309777.


https://coinmarketcap.com/historical/20200202/
https://coinmarketcap.com/historical/20200202/
https://media.consensys.net/gartner-blockchain-will-deliver-3-1-trillion-dollars-in-value-by-2030-d32b79c4c560
https://media.consensys.net/gartner-blockchain-will-deliver-3-1-trillion-dollars-in-value-by-2030-d32b79c4c560
https://doi.org/10.1080/02681102.2021.1935453
https://doi.org/10.1080/02681102.2021.1935453
https://doi.org/10.1080/02681102.2021.1935453
https://doi.org/10.1080/02681102.2021.1935453
https://doi.org/10.1080/02681102.2021.1935453

References 181

David, Siegel (2016). CoinDesk: Bitcoin, Ethereum, Crypto News and Price Data. https: //w
ww . coindesk .com/understanding-dao—-hack—- journalists. [Accessed
20-Dec-2022].

De Kruijff, Joost and Hans Weigand (2017). “Understanding the blockchain using enterprise
ontology”. In: International Conference on Advanced Information Systems Engineering.
Springer, pp. 29-43.

Deloitte (2020). Deloitte’s 2020 Global Blockchain Survey. https://www2 .deloitte
.com/content/dam/Deloitte/tw/Documents/financial-services/2
020-global-blockchain-survey.pdf. [Accessed 20-Dec-2022].

Di Angelo, Monika and Gernot Salzer (2020). “Tokens, types, and standards: identification
and utilization in Ethereum”. In: 2020 IEEE International Conference on Decentralized Ap-
plications and Infrastructures (DAPPS). IEEE, pp. 1-10.

Di Ciccio, Claudio et al. (2019). “Blockchain support for collaborative business processes”. In:
Informatik Spektrum 42.3, pp. 182-190.

Eberhardt, Jacob and Stefan Tai (2017). “On or off the blockchain? Insights on off-chaining
computation and data”. In: European Conference on Service-Oriented and Cloud Comput-
ing. Springer, pp. 3-15.

Fan, Caixiang et al. (2020). “Performance evaluation of blockchain systems: A systematic
survey”. In: IEEE Access 8, pp. 126927-126950.

Farshidi, S. et al. (2020). “Decision Support for blockchain Platform Selection: Three Industry
Case Studies”. In: IEEE Transactions on Engineering Management, pp. 1-20. issn: 1558-
0040.doi: 10.1109/TEM.2019.2956897.

Feitosa, Daniel et al. (2020). “Code reuse in practice: Benefiting or harming technical debt”.
In: Journal of Systems and Software 167, p. 110618.

Figorilli, Simone et al. (2018). “A blockchain implementation prototype for the electronic
open source traceability of wood along the whole supply chain”. In: Sensors 18.9, p. 3133.

Figueira, José Rui et al. (2013). “An overview of ELECTRE methods and their recent exten-
sions”. In: Journal of Multi-Criteria Decision Analysis 20.1-2, pp. 61-85.

Gamma, Erich et al. (1995). Elements of reusable object-oriented software. Vol. 99. Addison-
Wesley Reading, Massachusetts.

Garcia-Cascales, M Socorro and M Teresa Lamata (2012). “On rank reversal and TOPSIS
method”. In: Mathematical and Computer Modelling 56.5-6, pp. 123-132.

Garousi, Vahid, Michael Felderer, and Mika V Mantyla (2019). “Guidelines for including grey
literature and conducting multivocal literature reviews in software engineering”. In: In-
formation and Software Technology 106, pp. 101-121.

Gervais, Arthur et al. (2016). “On the security and performance of proof of work
blockchains”. In: Proceedings of the 2016 ACM SIGSAC conference on computer and com-
munications security, pp. 3-16.

Gilcrest, Jack and Arthur Carvalho (2018). “Smart contracts: Legal considerations”. In: 2018
IEEE International Conference on Big Data (Big Data). IEEE, pp. 3277-3281.

Girardi, Rosario and Alisson Neres Lindoso (2006). “An ontology-based knowledge base for
the representation and reuse of software patterns”. In: ACM SIGSOFT Software Engineer-
ing Notes 31.1, pp. 1-6.


https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://www2.deloitte.com/content/dam/Deloitte/tw/Documents/financial-services/2020-global-blockchain-survey.pdf
https://www2.deloitte.com/content/dam/Deloitte/tw/Documents/financial-services/2020-global-blockchain-survey.pdf
https://www2.deloitte.com/content/dam/Deloitte/tw/Documents/financial-services/2020-global-blockchain-survey.pdf
https://doi.org/10.1109/TEM.2019.2956897

182 References

Glaser, Florian (2017). “Pervasive Decentralisation of Digital Infrastructures: A Framework
for Blockchain enabled System and Use Case Analysis”. In: Proceedings of the 50th Hawaii
International Conference on System Sciences (2017). Hawaii International Conference on
System Sciences. doi: 10.24251/hicss.2017.186.url: https://doi.org/10
.24251/hicss.2017.186.

Gorski, Tomasz and Jakub Bednarski (2020). “Applying Model-Driven Engineering to Dis-
tributed Ledger Deployment”. In: IEEE Access 8, pp. 118245-118261. doi: 10 . 1109/ a
ccess.2020.3005519.url: https://doi.org/10.1109%2Faccess.2020
.30055109.

Haoues, Mariem et al. (2017). “A guideline for software architecture selection based on ISO
25010 quality related characteristics”. In: International Journal of System Assurance Engi-
neering and Management 8.2, pp. 886-909.

Harris, Robert (1998). Introduction to Decision Making, Part 1. http : / /www . virtua
lsalt .com/introduction-to—-decision—-making-part—1/. [Accessed
21-Dec-2022].

Harrison, Neil B (1999). “The language of shepherding”. In: Pattern languages of program
design 5, pp. 507-530.

Hasan, Haya R. et al. (2020). “Blockchain-Based Solution for the Traceability of Spare Parts
in Manufacturing”. In: IEEE Access 8, pp. 100308-100322. doi: 10.1109/access .20
20.2998159.url: https://doi.org/10.1109/access.2020.2998159.

Hearn, Mike and Richard Gendal Brown (2016). “Corda: A distributed ledger”. In: Corda Tech-
nical White Paper 2016.

Hector, Ugarte-Rojas and Chullo-Llave Boris (2020). BLONDIE: blockchain Ontology with Dy-
namic Extensibility. eprint: arXivpreprintarXiv:2008.09518.

Henninger, Scott and Padmapriya Ashokkumar (2006). “An ontology-based metamodel for
software patterns”. In: CSE Technical reports, p. 55.

Herbaut, Nicolas and Daniel Negru (2017). “A model for collaborative blockchain-based video
delivery relying on advanced network services chains”. In: IEEE Communications Maga-
zine 55.9, pp. 70-76.

Huang, Jingwen (2008). “Combining entropy weight and TOPSIS method for information sys-
tem selection”. In: 2008 IEEE Conference on Cybernetics and Intelligent Systems, pp. 1281-
1284.

Humbeeck, Andries Van (2019). “The blockchain-GDPR paradox”. In: Journal of Data Protec-
tion and Privacy.

Hutchinson, John, Jon Whittle, and Mark Rouncefield (2014). “Model-driven engineering
practices in industry: Social, organizational and managerial factors that lead to success
or failure”. In: Science of Computer Programming 89, pp. 144-161.

Jalil, Masita Abdul and Shahrul Azman Mohd Noah (2007). “The difficulties of using de-
sign patterns among novices: An exploratory study”. In: 2007 International Conference
on Computational Science and its Applications (ICCSA 2007). IEEE, pp. 97-103.

Jorges, Sven (2013). Construction and evolution of code generators: A model-driven and
service-oriented approach. Vol. 7747. Springer, pp. 29-31.


https://doi.org/10.24251/hicss.2017.186
https://doi.org/10.24251/hicss.2017.186
https://doi.org/10.24251/hicss.2017.186
https://doi.org/10.1109/access.2020.3005519
https://doi.org/10.1109/access.2020.3005519
https://doi.org/10.1109%2Faccess.2020.3005519
https://doi.org/10.1109%2Faccess.2020.3005519
http://www.virtualsalt.com/introduction-to-decision-making-part-1/
http://www.virtualsalt.com/introduction-to-decision-making-part-1/
https://doi.org/10.1109/access.2020.2998159
https://doi.org/10.1109/access.2020.2998159
https://doi.org/10.1109/access.2020.2998159
arXiv preprint arXiv:2008.09518

References 183

Jurgelaitis, Mantas, Rita Butkiené, et al. (2022). “Solidity Code Generation From UML State
Machines in Model-Driven Smart Contract Development”. In: IEEE Access 10, pp. 33465-
33481.

Juziuk, Joanna, Danny Weyns, and Tom Holvoet (2014). “Design patterns for multi-agent sys-
tems: A systematic literature review”. In: Agent-Oriented Software Engineering. Springer,
pp. 79-99.

Kampffmeyer, Holger and Steffen Zschaler (2007). “Finding the pattern you need: The de-
sign pattern intent ontology”. In: International Conference on Model Driven Engineering
Languages and Systems. Springer, pp. 211-225.

Kannengiesser, Niclas et al. (2021). “Challenges and common solutions in smart contract
development”. In: IEEE Transactions on Software Engineering.

Khan, Shafaq Naheed et al. (2021). “Blockchain smart contracts: Applications, challenges,
and future trends”. In: Peer-to-peer Networking and Applications 14.5, pp. 2901-2925.
Kim, Suntae et al. (2018). “A Feature based Content Analysis of blockchain Platforms”. In:
2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE.
doi: 10.1109/icufn.2018.8436843.url: https://doi.org/10.1109%2F1

cufn.2018.8436843.

Kitchenham, B. and S Charters (2007). Guidelines for performing Systematic Literature Re-
views in Software Engineering.

Koens, Tommy and Erik Poll (2018). “What blockchain alternative do you need?” In: Data
Privacy Management, Cryptocurrencies and blockchain Technology. Springer, pp. 113-129.

Kornyshova, Elena and Camille Salinesi (2007). “MCDM techniques selection approaches:
state of the art”. In: 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria
Decision-Making, pp. 22-29.

Krueger, Charles W (2009). “New methods behind a new generation of software product line
successes”. In: Applied software product line engineering. Auerbach Publications, pp. 61-
82.

Kuhn, Marlene et al. (2021). “Blockchain-based application for the traceability of complex
assembly structures”. In: Journal of Manufacturing Systems 59, pp. 617-630.

Kuiter, Elias et al. (2018). “Getting rid of clone-and-own: moving to a software product line for
temperature monitoring”. In: Proceedings of the 22nd International Systems and Software
Product Line Conference-Volume 1, pp. 179-189.

Labazova, Olga (Dec. 2019). “Towards a Framework for Evaluation of blockchain Implemen-
tations”. In: ICIS 2019 Proceedings, pp. 1-10.

Lai, Young-Jou, Ting-Yun Liu, and Ching-Lai Hwang (1994). “Topsis for MODM". In: European
journal of operational research 76.3, pp. 486-500.

Lemieux, Victoria L (2017). “A typology of blockchain recordkeeping solutions and some re-
flections on their implications for the future of archival preservation”. In: 2017 IEEE Inter-
national Conference on Big Data (Big Data). IEEE, pp. 2271-2278.

Liang, Wei et al. (2020). “Circuit copyright blockchain: Blockchain-based homomorphic en-
cryption for IP circuit protection”. In: IEEE Transactions on Emerging Topics in Computing.

Liaskos, Sotirios, Tarun Anand, and Nahid Alimohammadi (2020). “Architecting blockchain
network simulators: a model-driven perspective”. In: 2020 IEEE International Conference


https://doi.org/10.1109/icufn.2018.8436843
https://doi.org/10.1109%2Ficufn.2018.8436843
https://doi.org/10.1109%2Ficufn.2018.8436843

184 References

on blockchain and Cryptocurrency (ICBC). IEEE. doi: 10.1109/1icbc48266.2020.91
69413.url: https://doi.org/10.1109%2Ficbcd48266.2020.9169413.

Liu, Yue et al. (2018). “Applying design patterns in smart contracts”. In: International Con-
ference on Blockchain. Springer, pp. 92-106.

Liu, Yue et al. (2020). “Design patterns for blockchain-based self-sovereign identity”. In: Pro-
ceedings of the European Conference on Pattern Languages of Programs 2020, pp. 1-14.

Lokshina, 1zabella V and Cees JM Lanting (2021). “Revisiting state-of-the-art applications of
the blockchain technology: analysis of unresolved issues and potential development”.
In: Developments in Information & Knowledge Management for Business Applications.
Springer, pp. 403-439.

Longo, Francesco et al. (2019). “Blockchain-enabled supply chain: An experimental study”.
In: Computers & Industrial Engineering 136, pp. 57-69.

Lu, Qinghua et al. (2019). “uBaaS: A unified blockchain as a service platform”. In: Future
Generation Computer Systems 101, pp. 564-575.

Lu, Qinghua et al. (2020). “Integrated model-driven engineering of blockchain applications
for business processes and asset management”. In: Software: Practice and Experience
51.5, pp. 1059-1079. doi: 10.1002/spe.2931.url: https://doi.org/10.1002
%2Fspe.2931.

Lopez-Pintado, Orlenys et al. (2019). “Caterpillar: a business process execution engine on
the Ethereum blockchain”. In: Software: Practice and Experience 49.7, pp. 1162-1193. doi:
10.1002/spe.2702.url: https://doi.org/10.1002%2Fspe.2702.

Marchesi, Lodovica et al. (2020). “Design patterns for gas optimization in ethereum”. In:
2020 IEEE International Workshop on blockchain Oriented Software Engineering (IW-
BOSE). IEEE, pp. 9-15.

Marques, Maira et al. (2019). “Software product line evolution: A systematic literature re-
view". In: Information and Software Technology 105, pp. 190-208.

Mavridou, Anastasia and Aron Laszka (2018). “Designing secure ethereum smart contracts:
A finite state machine based approach”. In: International Conference on Financial Cryp-
tography and Data Security. Springer, pp. 523-540.

Mehar, Muhammad Izhar et al. (2019). “Understanding a revolutionary and flawed grand
experiment in blockchain: the DAO attack”. In: Journal of Cases on Information Technology
(JCIT) 21.1, pp. 19-32.

Merkle, Ralph C (1989). “A certified digital signature”. In: Conference on the Theory and
Application of Cryptology. Springer, pp. 218-238.

Meszaros, Doble J and Jim Doble (1997). “G. A pattern language for pattern writing”. In:
Proceedings of International Conference on Pattern languages of program design (1997).
Vol. 131, p. 164.

Mingxiao, Du et al. (2017). “A review on consensus algorithm of blockchain”. In: 2017 IEEE
international conference on systems, man, and cybernetics (SMC). |EEE, pp. 2567-2572.
Moreno, Julio et al. (2019). “BlockBD: a security pattern to incorporate blockchain in big data
ecosystems”. In: Proceedings of the 24th European Conference on Pattern Languages of

Programs, pp. 1-8.


https://doi.org/10.1109/icbc48266.2020.9169413
https://doi.org/10.1109/icbc48266.2020.9169413
https://doi.org/10.1109%2Ficbc48266.2020.9169413
https://doi.org/10.1002/spe.2931
https://doi.org/10.1002%2Fspe.2931
https://doi.org/10.1002%2Fspe.2931
https://doi.org/10.1002/spe.2702
https://doi.org/10.1002%2Fspe.2702

References 185

Mihlberger, Roman et al. (2020). “Foundational oracle patterns: Connecting blockchain
to the off-chain world”. In: International Conference on Business Process Management.
Springer, pp. 35-51.

Miiller, Marcel, Nadine Ostern, and Michael Rosemann (2020). “Silver bullet for all trust
issues? Blockchain-based trust patterns for collaborative business processes”. In: Interna-
tional Conference on Business Process Management. Springer, pp. 3-18.

Nakamoto, Satoshi (2008). Bitcoin: A peer-to-peer electronic cash system.

Nickerson, Robert C, Upkar Varshney, and Jan Muntermann (2013). “A method for taxonomy
development and its application in information systems”. In: European Journal of Infor-
mation Systems 22.3, pp. 336-359.

Oham, Chuka et al. (2018). “B-fica: blockchain based framework for auto-insurance claim
and adjudication”. In: 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp. 1171-1180.

Ongaro, Diego and John Ousterhout (2014). “In Search of an Understandable Consensus
Algorithm”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual Tech-
nical Conference. USENIX ATC'14. Philadelphia, PA: USENIX Association, 305-320. isbn:
9781931971102.

OpenZeppelin (n.d.). Proxy Upgrade Pattern - OpenZeppelin Docs. https://docs . ope
nzeppelin.com/upgrades—plugins/1.x/proxies.[Accessed 20-Dec-2022].

- (2019). Proxy Patterns - OpenZeppelin blog. https://blog.openzeppelin. com
/proxy-patterns/.[Accessed 20-Dec-2022].

Osses, Felipe, Gaston Marquez, and Hernan Astudillo (2018). “An exploratory study of aca-
demic architectural tactics and patterns in microservices: A systematic literature review”.
In: Avances en Ingenieria de Software a Nivel Iberoamericano, CIbSE 2018.

Owens, Luke et al. (2019). “Inter-family communication in hyperledger sawtooth and its ap-
plication to a crypto-asset framework”. In: International Conference on Distributed Com-
puting and Internet Technology. Springer, pp. 389-401.

Pavlic, Luka, Marjan Hericko, and Vili Podgorelec (2008). “Improving design pattern adoption
with ontology-based design pattern repository”. In: ITI 2008-30th International Confer-
ence on Information Technology Interfaces. IEEE, pp. 649-654.

Podvezko, Valentinas et al. (2009). “Application of AHP technique”. In: Journal of Business
Economics and Management 2, pp. 181-189.

Pohl, Klaus, Glinter Bockle, and Frank Van Der Linden (2005). Software product line engi-
neering: foundations, principles, and techniques. Vol. 1. Springer.

Polge, Julien, Jérémy Robert, and Yves Le Traon (2021). “Permissioned blockchain frame-
works in the industry: A comparison”. In: Ict Express 7.2, pp. 229-233.

Porru, Simone et al. (2017). “Blockchain-oriented software engineering: challenges and new
directions”. In: 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C). IEEE, pp. 169-171.

Pourpouneh, Mohsen, Kurt Nielsen, and Omri Ross (2020). Automated Market Makers. Tech.
rep. IFRO Working Paper.


https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://blog.openzeppelin.com/proxy-patterns/
https://blog.openzeppelin.com/proxy-patterns/

186 References

Prewett, Kyleen W, Gregory L Prescott, and Kirk Phillips (2020). “Blockchain adoption is in-
evitable—Barriers and risks remain”. In: Journal of Corporate Accounting & Finance 31.2,
pp. 21-28.

Qanbari, Soheil et al. (2016). “loT design patterns: computational constructs to design, build
and engineer edge applications”. In: 2016 IEEE First International Conference on Internet-
of-Things Design and Implementation (loTDI). |EEE, pp. 277-282.

Raad, Joe and Christophe Cruz (2015). “A survey on ontology evaluation methods”. In: Pro-
ceedings of the International Conference on Knowledge Engineering and Ontology Devel-
opment, part of the 7th International Joint Conference on Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management.

Raikwar, Mayank et al. (2018). “A blockchain framework for insurance processes”. In: 2018
oth IFIP International Conference on New Technologies, Mobility and Security (NTMS).
IEEE, pp. 1-4.

Rajasekar, Vijay et al. (2020). “Emerging Design Patterns for blockchain Applications.” In:
ICSOFT, pp. 242-249.

Reddy, Kotha Raj Kumar et al. (2021). “Developing a blockchain framework for the auto-
motive supply chain: A systematic review”. In: Computers & Industrial Engineering 157,
p. 107334.

Ribalta, Claudia Negri et al. (2021). “Blockchain Mirage or Silver Bullet? A Requirements-
driven Comparative Analysis of Business and Developers’ Perceptions in the Accountancy
Domain.” In: Journal of Wireless Mobile Networks, Ubiquitous Computing, and Depend-
able Applications (JoWUA) 12.1, pp. 85-110.

Rincon, Luisa, Raul Mazo, and Camille Salinesi (2018). “APPLIES: A framework for evaluAting
organization’s motivation and preparation for adopting product lines”. In: 2018 12th In-
ternational Conference on Research Challenges in Information Science (RCIS). IEEE, pp. 1-
12.

Saaty, Thomas L (1990). “How to make a decision: the analytic hierarchy process”. In: Euro-
pean journal of operational research 48.1, pp. 9-26.

Saleh, Fahad (2021). “Blockchain without waste: Proof-of-stake”. In: The Review of financial
studies 34.3, pp. 1156-1190.

Schmidt, Douglas C (2006). “Model-driven engineering”. In: Computer-IEEE Computer
Society- 39.2, p. 25.

Schneider, Fred B (1990). “Implementing fault-tolerant services using the state machine ap-
proach: A tutorial”. In: ACM Computing Surveys (CSUR) 22.4, pp. 299-319.

Schobbens, Pierre-Yves et al. (2007). “Generic semantics of feature diagrams”. In: Computer
networks 51.2, pp. 456-479.

Sebastian, Gabriel, Jose A Gallud, and Ricardo Tesoriero (2020). “Code generation using
model driven architecture: A systematic mapping study”. In: Journal of Computer Lan-
guages 56, p. 100935.

Seebacher, Stefan and Maria Maleshkova (2018). “A model-driven approach for the descrip-
tion of blockchain business networks”. In: Proceedings of the 51st Hawaii International
Conference on System Sciences.



References 187

Simmons, Gustavus J (1979). “Symmetric and asymmetric encryption”. In: ACM Computing
Surveys (CSUR) 11.4, pp. 305-330.

Six, Nicolas (2021). “Decision process for blockchain architectures based on requirements”.
In: CAISE (Doctoral Consortium), pp. 53-61.

Six, Nicolas, Nicolas Herbaut, and Camille Salinesi (2020). “Quelle blockchain choisir? Un
outil d’aide a la décision pour guider le choix de technologie Blockchain”. In: INFORSID
2020, pp. 135-150.

- (2021a). “BLADE: Un outil d’aide a la décision automatique pour guider le choix de tech-
nologie Blockchain”. In: Revue ouverte d’ingénierie des systemes d’information 2.1.

- (2021b). “Harmonica: A Framework for Semi-automated Design and Implementation of
blockchain Applications”. In: INSIGHT 24.4, pp. 25-27.

- (2022). “Blockchain software patterns for the design of decentralized applications: A sys-
tematic literature review”. In: Blockchain: Research and Applications, p. 100061.

Six, Nicolas, Andrea Perrichon-Chrétien, and Nicolas Herbaut (2021). “SAlaaS: A Blockchain-
based solution for secure artificial intelligence as-a-Service”. In: The International Confer-
ence on Deep Learning, Big Data and Blockchain. Springer, pp. 67-74.

Six, Nicolas et al. (2020). “A blockchain-based pattern for confidential and pseudo-
anonymous contract enforcement”. In: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). IEEE, pp. 1965-1970.

Six, Nicolas et al. (2022). “Using Software Product Lines to Create blockchain Products: Ap-
plication to Supply Chain Traceability”. In: 26th ACM International Systems and Software
Product Lines Conference.

Sousa, Victor Amaral de and Corentin Burnay (2021). “MDE4BBIS: A Framework to Incor-
porate Model-Driven Engineering in the Development of Blockchain-Based Information
Systems”. In: 2021 Third International Conference on blockchain Computing and Applica-
tions (BCCA). IEEE. doi: 10.1109/bccab53669.2021.9657015. url: https://do
1.0rg/10.1109%2Fbccab3669.2021.9657015.

Suarez-Figueroa, Mari Carmen, Asuncion Gomez-Pérez, and Mariano Fernandez-Lépez
(2012). “The NeOn methodology for ontology engineering”. In: Ontology engineering in a
networked world. Springer, pp. 9-34.

Sukhwani, Harish et al. (2017). “Performance modeling of PBFT consensus process for per-
missioned blockchain network (hyperledger fabric)”. In: 2017 IEEE 36th Symposium on
Reliable Distributed Systems (SRDS). |EEE, pp. 253-255.

Syriani, Eugene, Lechanceux Luhunu, and Houari Sahraoui (2018). “Systematic mapping
study of template-based code generation”. In: Computer Languages, Systems & Struc-
tures 52, pp. 43-62.

Taibi, Davide, Valentina Lenarduzzi, and Claus Pahl (2018). “Architectural Patterns for Mi-
croservices: A Systematic Mapping Study.” In: CLOSER, pp. 221-232.

Tang, Huimin, Yong Shi, and Peiwu Dong (2019). “Public blockchain evaluation using entropy
and TOPSIS”. In: Expert Systems with Applications 117, pp. 204-210. issn: 09574174. doi:
10.1016/7j.eswa.2018.09.048.

Tesanovic, Aleksandra (2005). “What is a pattern”. In: Dr. ing. course DT8100 (prev.
78901/45942/DIF8901) Object-oriented Systems.


https://doi.org/10.1109/bcca53669.2021.9657015
https://doi.org/10.1109%2Fbcca53669.2021.9657015
https://doi.org/10.1109%2Fbcca53669.2021.9657015
https://doi.org/10.1016/j.eswa.2018.09.048

188 References

Thim, Thomas et al. (2014). “FeaturelDE: An extensible framework for feature-oriented soft-
ware development”. In: Science of Computer Programming 79, pp. 70-85.

Tonelli, Roberto et al. (2019). “Implementing a microservices system with blockchain smart
contracts”. In: 2019 IEEE International Workshop on blockchain Oriented Software Engi-
neering (IWBOSE). IEEE, pp. 22-31.

Triantaphyllou, Evangelos (2000). “Multi-criteria decision making methods”. In: Multi-
criteria decision making methods: A comparative study. Springer, pp. 5-21.

Udokwu, Chibuzor et al. (2021). “Implementation and evaluation of the DAOM framework
and support tool for designing blockchain decentralized applications”. In: International
Journal of Information Technology 13.6, pp. 2245-2263.

Vacca, Anna et al. (2021). “A systematic literature review of blockchain and smart contract
development: Techniques, tools, and open challenges”. In: Journal of Systems and Soft-
ware 174, p. 110891.

Venkatesh, Viswanath et al. (2003). “User acceptance of information technology: Toward a
unified view". In: MIS quarterly, pp. 425-478.

Wang, Shuai et al. (2018). “An Overview of Smart Contract: Architecture, Applications, and
Future Trends”. In: 2018 IEEE Intelligent Vehicles Symposium (1V), pp. 108-113. doi: 10 . 1
109/1vVs.2018.8500488.

Washizaki, Hironori et al. (2020). “Landscape of architecture and design patterns for iot sys-
tems”. In: IEEE Internet of Things Journal 7.10, pp. 10091-10101.

Wei, Yihang (2020). “Blockchain-based Data Traceability Platform Architecture for Supply
Chain Management”. In: 2020 IEEE 6th Intl Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing,(HPSC)
and IEEE Intl Conference on Intelligent Data and Security (IDS). IEEE, pp. 77-85.

Wessling, Florian and Volker Gruhn (2018). “Engineering software architectures of
blockchain-oriented applications”. In: 2018 IEEE International Conference on Software Ar-
chitecture Companion (ICSA-C). IEEE, pp. 45-46.

Wieringa, Roel J (2014). Design science methodology for information systems and software
engineering. Springer.

Williams, Carrie et al. (2007). “Research methods”. In: Journal of Business & Economics Re-
search (JBER) 5.3.

Woéhrer, Maximilian and Uwe Zdun (2018). “Design patterns for smart contracts in the
ethereum ecosystem”. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). |EEE, pp. 1513-
1520.

Wohrer, Maximilian and Uwe Zdun (2018). “Smart contracts: security patterns in the
ethereum ecosystem and solidity”. In: 2018 International Workshop on blockchain Ori-
ented Software Engineering (IWBOSE). |EEE, pp. 2-8.

Wohrer, Maximilian and Uwe Zdun (2020). “Domain Specific Language for Smart Contract
Development”. In: 2020 IEEE International Conference on blockchain and Cryptocurrency
(ICBC). IEEE. doi: 10.1109/1icbc48266.2020.9169399.url: https://doi.or
g/10.1109%2Ficbc48266.2020.9169399.


https://doi.org/10.1109/IVS.2018.8500488
https://doi.org/10.1109/IVS.2018.8500488
https://doi.org/10.1109/icbc48266.2020.9169399
https://doi.org/10.1109%2Ficbc48266.2020.9169399
https://doi.org/10.1109%2Ficbc48266.2020.9169399

References 189

Wood, Gavin et al. (2014). “Ethereum: A secure decentralised generalised transaction
ledger”. In: Ethereum project yellow paper, pp. 1-32.

Worley, Carl R and Anthony Skjellum (2018). “Opportunities, Challenges, and Future Exten-
sions for Smart-Contract Design Patterns”. In: International Conference on Business Infor-
mation Systems. Springer, pp. 264-276.

Wust, Karl and Arthur Gervais (2018). “Do you need a blockchain?” In: Proceedings - 2018
Crypto Valley Conference on blockchain Technology, CVCBT 2018, pp. 45-54. doi: 10.11
09/CVCBT.2018.00011.

Xu, Xiwei, Ingo Weber, and Mark Staples (2019). Architecture for blockchain applications.
Springer.

Xu, Xiwei et al. (2018). “A pattern collection for blockchain-based applications”. In: Proceed-
ings of the 23rd European Conference on Pattern Languages of Programs, pp. 1-20.

Yang, Xiaohui and Wenjie Li (2020). “A zero-knowledge-proof-based digital identity manage-
ment scheme in blockchain”. In: Computers & Security 99, p. 102050.

Zeadally, Sherali and Jacques Bou Abdo (2019). “Blockchain: Trends and future opportuni-
ties”. In: Internet Technology Letters 2.6, e130.

Zetzsche, Dirk A et al. (2017). “The ICO Gold Rush: It's a scam, it’s a bubble, it’s a super
challenge for regulators”. In: University of Luxembourg Law Working Paper 11, pp. 17-83.

Zhang, He, Muhammad Ali Babar, and Paolo Tell (2011). “Identifying relevant studies in soft-
ware engineering”. In: Information and Software Technology 53.6, pp. 625-637.

Zhang, Peng et al. (2017). Applying software patterns to address interoperability in
blockchain-based healthcare apps. eprint: arXivpreprintarXiv:1706.03700.
Zhang, Peng et al. (2018). “Blockchain technology use cases in healthcare”. In: Advances in

computers. Vol. 1. Elsevier, pp. 1-41.

Zou, Weigin et al. (2019). “Smart contract development: Challenges and opportunities”. In:
IEEE Transactions on Software Engineering 47.10, pp. 2084-2106.

Zupan, Nejc et al. (2020). “Secure smart contract generation based on petri nets”. In:
Blockchain Technology for Industry 4.0. Springer, pp. 73-98.

Zwicker, William S (2016). Introduction to the Theory of Voting.


https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
arXiv preprint arXiv:1706.03700

	Remerciements
	List of Figures
	List of Tables
	Introduction en Français
	Contexte de la Recherche
	Objectifs de la Recherche
	Contributions de la Thèse et Publications
	Organisation de la Thèse

	Introduction
	Research Context
	Research Aim and Objectives
	Thesis Contribution and Publications
	Thesis Organization

	Background
	Definitions
	Blockchain Technology
	Software Patterns

	Issues in Blockchain-based Application Development
	Review Process
	Development issues in the design and implementation of blockchain applications
	Blockchain-specific Challenges
	Application Security Issues
	Cost and Performance Considerations
	Development Environment Challenges
	Ethereum ecosystem limitations

	Discussion
	Threats to Validity

	Conclusion

	Overview of the Method and Contribution
	Research Method
	Design Science Research Introduction
	Research Questions

	Framework Overview
	Knowledge Base
	BLADE - BLockchain Automated DEcision process
	Blockchain Technology Recommendation
	Blockchain-based Patterns Recommendation
	Blockchain-based Patterns Selection

	BANCO - Blockchain ApplicatioN Configurator
	Framework Mapping to Design Science Research

	Running Example
	Description
	Requirements and Technical Considerations

	Conclusion

	Recommendation Engine for the Selection of an Adequate Blockchain Technology
	Introduction to Multi-Criteria Decision-Making
	Decision Process Model
	Inputs
	Decision Process

	Implementation
	Tool Architecture and Implementation
	Score Generation
	Dependency Model Generation Engine

	Running Example
	BLADE Requirements and Preferences
	Results

	Validation
	Big-Box Scenario
	Big-Box Client Requirements
	Results
	Recommended Solution Validation

	Discussion
	Threats to validity 
	Related Works 
	Conclusion and Future Works 

	Collecting Blockchain-based Software Patterns from the Literature
	Review Process
	Review Planning
	Review Execution
	Taxonomy Construction
	Results

	Discussion
	Core Research Questions
	Additional Research Questions

	Threats to Validity
	Related Works
	Conclusion and Future Works

	Recommendation Engine for the Selection of Adequate Blockchain-based Software Patterns
	Ontology Construction
	Construction Method
	Initiation
	Reuse and Re-engineering of Non-Ontological Resources

	Blockchain-based Software Pattern Ontology 
	Ontology Overview
	Ontology Querying Tool 

	Running Example
	Recommendation Engine Answers
	Results

	Validation
	Ontology Validity
	Ontology Relevancy
	Results and Analysis

	Threats to Validity
	Related Works
	Conclusion and Future Work

	Generating a Blockchain-Based Application Reusing Previous Recommendations
	Feature Model Design
	Construction Method
	Smart Contracts Feature
	Feature Storage
	Frontend Feature

	BANCO construction
	Product Configuration
	Product Generation
	Product Deployment

	Running Example
	Validation
	Experiment
	Spare Part Study Comparison
	Dairy Products Study Comparison

	Discussion
	Research Sub-Questions
	Lessons Learned
	Research Challenges

	Related Works 
	Smart Contract Code Generation
	Blockchain and Model-Driven Engineering
	Blockchain and Software Product Lines
	Comparison with the SPL Approach

	Conclusion

	Conclusion and Perspectives
	Novel Contribution
	Limitations
	Future Works

	References

