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Leveraging Passenger Mutations to Guide Cancer Treatment and Prevention

Titre: Potentialité des mutations passengers pour le traitement et la prévention du cancer Résumé: Le cancer est caractérisé par une prolifération anarchique de cellules, orchestrée par une poignée de mutations. Parallèlement à ces mutations appelées driver s, des dizaines de milliers d'autres, appelées passengers , s'accumulent au cours de la progression du cancer. La recherche génétique en cancérologie s'est longtemps consacrée aux mutations drivers car celles-ci ont un impact majeur sur la trajectoire de progression du cancer et peuvent être exploitées pour certaines thérapies géniques ciblées. En revanche, les mutations passengers jouent individuellement un rôle mineur dans la croissance tumorale et leur analyse a été longtemps négligée. Cependant, deux caractéristiques des passengers les rendent particulièrement pertinentes en oncologie. D'une part, les passengers peuvent être présentées en grand nombre à la surface des cellules cancéreuses, rendant ainsi ces dernières plus 'visibles' pour le système immunitaire. D'autre part, les passengers s'accumulent de par l'effet de différents processus mutagéniques. Ces derniers laissant chacun des empreintes génétiques uniques, l'analyse des passengers peut permettre une meilleure caractérisation des mutagènes humains. Cette thèse étudie comment le paysage mutationnel du génome tumoral, majoritairement composé de passengers, peut être exploité pour le traitement et la prévention du cancer. Cette étude porte principalement sur deux caractéristiques des mutations : leur charge mutationnelle, autrement dit immunotherapy 1.5.2 Exploratory analysis of an immunotherapy-treated patient with high tumour mutational burden 1.5.3 Molecular imprints in colorectal cancer 2. Limited evidence of tumour mutational burden as a biomarker of response to immunotherapy 2.

Enfin, le troisième chapitre est consacré à l'analyse de signatures mutationnelles de tumeurs colorectales. Grâce à l'analyse de novo de 900 échantillons d'ADN, couplée à de nombreuses données sur le régime alimentaire, ce chapitre démontre l'existence d'une signature mutationnelle alkylante associée à une consommation élevée de viande rouge pré-diagnostic. Cette découverte lie pour la première fois une signature mutationnelle à une composante alimentaire, et peut présenter des enjeux majeurs pour la prévention du cancer.
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Abstract (in English)

Title : Leveraging Passenger Mutations to Guide Cancer Treatment and Prevention

Summary:

Cancer is characterized by the uncontrolled proliferation of cells, driven by a handful of genetic alterations. Alongside these 'driver' mutations, tens of thousands of other variants, called 'passenger' mutations, accumulate during cancer progression. Genomic oncology research has mostly focused on driver mutations as these have the most impact on tumour evolution and offer attractive opportunities for gene-targeted therapies. On the other hand, passenger mutations play individually minor roles in tumour growth and have been widely understudied.

However, two features of passenger mutations make them particularly relevant for cancer research. First, passenger mutations can be presented in large numbers at the cell surface, thus making tumor cells more 'visible' to the immune system. This feature has made the total number of mutations an attractive biomarker of response to immune-based therapies. Second, passengers are the products of the different mutagenic processes a tumor underwent. As each mutagenic process leaves a characteristic pattern of mutations, the analysis of passengers can therefore help better understand the underlying mechanisms of carcinogenesis.

This thesis investigates how the overall mutational landscapeoverwhelmingly represented by passenger mutations -can be leveraged to guide cancer treatment and prevention. In particular, I examine two features of mutations: their mutational load (meaning their total number) and their mutational signature (in other words their genetic localization patterns).

The first chapter examines the use of high mutational load as a biomarker of response to immunotherapy. Despite the recent Food and Drug Administration (FDA) approval of this biomarker, there is little evidence showing that higher mutational load predicts patient response to immunotherapy. As a result, using a mutational load threshold for clinical decisions regarding immunotherapy could skew access to treatment for patients who may benefit from it.

In the same vein, the second chapter examines the case of a patient whose colorectal cancer (CRC) did not respond to immunotherapy despite harboring a very high mutational load. This intrinsic resistance was examined through genomic, transcriptional, and pathologic characterizations of the patient's tumour and neighboring immune cells. The analysis suggests a two-pronged immune evasion that combines loss of antigen presentation with an immunosuppressive microenvironment, which could explain the lack of response to immunotherapy.

Last, the third chapter focuses on the mutational signatures of CRC tumours, rather than their overall mutational load. The project involved the de novo analysis of sequencing data from 900 CRC cases with extensive dietary information. This allowed the discovery of an alkylating mutational signature associated with high intakes of red meat before diagnosis. These results link for the first time a CRC mutational signature to a component of the diet, which has major implications in cancer prevention.
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List of abbreviations

Understanding the fundamentals of cancer initiation and progression is thus a global health priority.

The commonly accepted etiology of cancer is through DNA mutation(s) in a single normal founder cell, which prime(s) the cell to proliferate abnormally by interfering with the regulation of cell death and cell division. Although a recent analysis suggested that the majority of cancers are the consequence of 'bad luck' 2 , the most commonly accepted theory is that less than 10-30% of cancers are due to unavoidable intrinsic risk factors, such as random errors in DNA replication 3,4 .

In a minority of cases (~5-10%), cancer mutations are hereditary, due to germline genetic defects [START_REF] Anand | Cancer is a preventable disease that requires major lifestyle changes[END_REF] . For example, Lynch Syndrome is caused by inherited germline mutation(s) in the DNA mismatch repair machinery and accounts for 3% of all colorectal cancers 6 . However, in most cases (~70-90%) cancer arises from avoidable environmental and lifestyle factors ( Figure 1.1 ) [START_REF] Anand | Cancer is a preventable disease that requires major lifestyle changes[END_REF]7 . These carcinogens often act as direct mutagens by altering DNA.

Carcinogens agents include chemicals, such as the ones from tobacco smoking, which contributes to a third of all cancer deaths 8 in the USA. Dietary factors and obesity are also responsible for almost half of global cancer incidence [START_REF] Popkin | Understanding global nutrition dynamics as a step towards controlling cancer incidence[END_REF] . In addition, infectious diseases, radiation, autoimmune diseases, and physical agents contribute to the overall cancer death toll 5 . Although many of these carcinogens have been discovered and characterized 10 through epidemiological studies as well as animal [START_REF] Kemp | Animal Models of Chemical Carcinogenesis: Driving Breakthroughs in Cancer Research for 100 Years[END_REF] and cell line experiments [START_REF] Mortelmans | The Ames Salmonella/microsome mutagenicity assay[END_REF] , the mutagenic effects of most mutagens are yet to be observed directly in human tumors. In recent years, technologic and computational advances have enabled the detection of variants with increasing accuracy [START_REF] Koboldt | Best practices for variant calling in clinical sequencing[END_REF][START_REF] Xiao | Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing[END_REF] . A wide array of somatic variants can be called, including non-synonymous mutations (which can alter the amino-acid sequence of a protein), synonymous mutations (i.e. point mutations that do not alter the amino-acid sequence) and insertions/ deletions (which often lead to frameshifts). Larger chromosomal events can also be detected, such as copy number changes or translocations.

The lowering cost of whole-genome and whole-exome sequencing provided the means to create large cancer mutational databases such as TCGA (The Cancer Genome Atlas) and PCAWG (Pan-Cancer Analysis of Whole Genomes) [START_REF]Pan-cancer analysis of whole genomes[END_REF][START_REF] Weinstein | The Cancer Genome Atlas Pan-Cancer analysis project[END_REF] . These databases have in return enabled better characterization of artefacts and increased mutation calling accuracy. For instance, the filtering of recurrent technical artifacts has drastically improved thanks to the creation of Panel Of Normals [START_REF] Cibulskis | Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples[END_REF] and the modelling of a wide array of archival and sequencing-derived artefacts [START_REF] Costello | Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation[END_REF] .

Ultimately, these advances have allowed so far the characterization of around 50 millions somatic variants making up the mutational landscapes of the most common cancer types [START_REF]Pan-cancer analysis of whole genomes[END_REF][START_REF] Weinstein | The Cancer Genome Atlas Pan-Cancer analysis project[END_REF] .

Passenger mutations represent the majority of cancer mutations

Passenger versus driver mutations

Following variant calling, mutations can be classified into two categories according to their effect on overall cell fitness [START_REF] Stratton | The cancer genome[END_REF][START_REF] Kumar | Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences[END_REF] . Mutations that drive fast population growth by increasing cell fitness are called drivers . In addition to driver mutations, thousands of mutations with individually no role on tumour growth can accumulate alongside the drivers: these mutations are called passengers .

Passenger mutations have either neutral or weakly deleterious effects on tumour growth. They can accumulate in the tumoral genome despite negative selections due to two population genetics phenomenons, called Hill-Robertson interference processes: genetic hitchhiking and Muller's ratchet 23 , 24 . Genetic hitchhiking of passengers happens in association with a driver mutation undergoing a selective sweep. Muller's ratchet is the gradual fixation of passenger mutations in the absence of genetic recombination. Combined, these two evolutionary processes explain why potentially deleterious passenger mutations can survive in large numbers in the tumour's genetic pool. In large sequencing cohorts, the classification of mutations as either a driver or passenger is based on predictive computational methods [START_REF]Pan-cancer analysis of whole genomes[END_REF][START_REF] Bailey | Comprehensive Characterization of Cancer Driver Genes and Mutations[END_REF] . Briefly, mutations can be assigned a predictive score of molecular functional impact based on various features such as network centrality and inter/intra species conservation [START_REF] Fu | FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer[END_REF] . Another approach to detecting driver mutations is by modelling the probability that a base is mutated by chance. Mutations that occur at a higher frequency than expected are interpreted as selected for and subsequently classified as drivers [START_REF] Gundem | IntOGen: integration and data mining of multidimensional oncogenomic data[END_REF][START_REF] Lawrence | Mutational heterogeneity in cancer and the search for new cancer-associated genes[END_REF][START_REF] Dietlein | Identification of cancer driver genes based on nucleotide context[END_REF] . The in silico predictions of these approaches can then be experimentally validated.

Mutational landscape of cancers

The studies of driver and passenger mutations in large cancer consortia [START_REF]Pan-cancer analysis of whole genomes[END_REF][START_REF] Bailey | Comprehensive Characterization of Cancer Driver Genes and Mutations[END_REF] have found that passenger mutations represent the overwhelming majority of tumour mutations: it is estimated that among the tens of thousands of mutations present in a tumour, on average only 5 are drivers [START_REF]Pan-cancer analysis of whole genomes[END_REF][START_REF] Kumar | Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences[END_REF][START_REF] Vogelstein | The path to cancer-three strikes and you're out[END_REF] .

As drivers are critical for carcinogenesis, the goal of cancer sequencing studies has been historically and primarily to identify them [START_REF] Vogelstein | The path to cancer-three strikes and you're out[END_REF][START_REF] Hubbard | A census of human cancer genes[END_REF] . This not only enabled the development of Next Generation Sequencing (NGS) panel tests to prioritize specific therapies based on patients' mutations [START_REF] Thomas | High-throughput oncogene mutation profiling in human cancer[END_REF] but also opened novel avenues for gene-targeted therapies such as gene inhibitors [START_REF] Eroglu | Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy[END_REF][START_REF] Le | Newer-Generation EGFR Inhibitors in Lung Cancer: How Are They Best Used?[END_REF][START_REF] Hartmann | Tyrosine kinase inhibitors -a review on pharmacology, metabolism and side effects[END_REF] . For example, FDA-approved treatments for non-small cell lung cancer include various targeted therapies depending on the presence of specific mutations such as those in the KRAS , EGFR , ALK , ROS1 , BRAF , RET , MET , or NTRK genes 39 .

On the other hand, little attention has been given to passenger mutations as they have individually no role in tumour progression. However, due to their large number, they offer exciting avenues for novel mathematical and statistical approaches to understand cancer. Therefore, they are not strongly selected for and can be viewed as residual molecular fingerprints of the various mutagenic processes 40 that a tumour has undergone before sequencing.

Mutagenic processes include mutations resulting from normal cellular processes (called endogenous mutations) such as errors in replication, depurination, deamination, and damage by oxidative stress [START_REF] De Bont | Endogenous DNA damage in humans: a review of quantitative data[END_REF] . Conversely, exogenous mutations are due to environmental and lifestyle factors including exposure to ultraviolet light, smoking and diet 7 , as mentioned previously ( Section 1.1.1 ). Exogenous mutations are of particular interest as they are potentially modifiable factors that could be leveraged for cancer prevention in a larger subset of cancer patients. It is thought that 30% to 50% of cancers in the United States could be prevented by avoiding risk factors [START_REF] Islami | Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States[END_REF] .

Because they are molecular imprints of mutagenic processes, passenger mutations can consequently help better characterize the carcinogenic potency of a putative carcinogen. Notably, recent pioneering work on the concept of "mutational signatures" [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF][START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF] has enabled a greater understanding of the contribution of different mutational processes to the overall mutational landscape.

The concept of "mutational signature" relies on the observation that mutagenic processes do not affect all loci equally. For example ( Figure 1.4 ), ageing has a higher likelihood to cause a C>T mutation. Similarly, microsatellite instability (MSI) can have a T>C bias, and polymerase epsilon instability a C>A one. These mutagenic processes cumulatively shape the final mutational 

Computational deconvolution of mutagenic processes

Dimension reduction methods based on Non-negative Matrix Factorization (NMF) have enabled the deconvolution of mutagenic processes from mutation calls [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF] . NMF allows data signal separation and is an efficient method to identify distinct molecular patterns. Ideally, an NMF should be run only on passenger mutations as they are not by definition affected by selection (unlike drivers) and are thus molecular fingerprints representative of the operative molecular processes. In practice, an NMF is run on mutations regardless of their fitness advantage as passengers constitute the overwhelming majority of mutations (>99%) and the effect of drivers on NMF results is negligible. For comparison, the rate of false positives when calling variants is usually at least a few percent [START_REF] Bian | Comparing the performance of selected variant callers using synthetic data and genome segmentation[END_REF] ; hence, driver mutations' effect on NMF is often below noise level. Non-Negative Matrix Factorization method can be applied to the catalog matrix for a given rank (i.e. the number of mutagenic processes in the tumours). One of the resulting matrices contains the mutational signatures which are the characteristic combinations of mutations arising from each mutagenic process.

The other matrix contains the signature activities with the relative contributions of each mutagenic process for each tumour. (C) Example of a published mutational signature [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF] . SBS4 is a mutational signature associated with tobacco smoking.

Signature analyses have been previously performed on large

Whole-Genome Sequencing (WGS) and Whole-Exome Sequencing (WES) cohorts such as TCG and PCAWG and resulted in a compendium of mutational signatures in cancer [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF] . In addition to point mutation signatures, signatures of doublet base substitutions and indels [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF] have been characterized, as well as differential replication timing and strand asymmetry for various signatures [START_REF] Tomkova | Mutational signature distribution varies with DNA replication timing and strand asymmetry[END_REF] .

These mutational signatures were associated with a wide array of biological processes, such as rare cancer predisposition syndromes [START_REF] Grolleman | Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype[END_REF] , environmental agents 49 , microbiota [START_REF] Pleguezuelos-Manzano | Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli[END_REF] , chemotherapeutic drugs and even poor outcomes to specific therapies 51 . However, larger and more comprehensively annotated cancer-specific cohorts are needed to fully recapitulate cancer-specific mutagenic processes.

In addition to revealing active mutational processes, mutational signatures can also be leveraged to predict their potential induction of driver mutations [START_REF] Temko | The effects of mutational processes and selection on driver mutations across cancer types[END_REF][START_REF] Cannataro | Attribution of Cancer Origins to Endogenous, Exogenous, and Actionable Mutational Processes[END_REF] . Indeed, mutational signatures can be viewed as the probability of a mutation happening at a specific trinucleotide context. For instance, a smoking signature SBS 4 ( Figure 1.5C ) has a higher probability to target C[C>A]A mutations such as KRAS G12C. The estimation of how mutagenic processes contribute to driver events can inform prevention efforts, in particular for avoidable risk factors. Previous studies [START_REF] Cannataro | Attribution of Cancer Origins to Endogenous, Exogenous, and Actionable Mutational Processes[END_REF] have demonstrated that driver mutations in lung and skin cancers' can largely be attributed to actionable mutational processes, although the role of these processes in the cancer initiation itself is still debated [START_REF] Huber | The Mutagenic Impact of Environmental Exposures in Human Cells and Cancer: Imprints Through Time[END_REF] In the case of a cancer cell, a mutated protein can be aberrantly presented on the cell surface ( Figure 1.6 ) as part of the 'non-self' [START_REF] Jiang | Tumor neoantigens: from basic research to clinical applications[END_REF] . Because these neoantigens are new to the immune system, they can be recognized as 'foreign', in particular by killer T-cells, and trigger an anti-tumour response. This might partially explain why tumours often evade immunosurveillance by upregulating the expression of specific immune checkpoints (i.e. regulators of the immune system) [START_REF] Wei | Fundamental Mechanisms of Immune Checkpoint Blockade Therapy[END_REF] .

Immune-based therapies have shown clinical benefits for a wide array of malignancies ( Figure 1.7 ). In essence, these therapies prompt the immune system to trigger an antitumor response: for example, by blocking specific immune checkpoints and consequently unleashing an immune response against cells detected as 'foreign'.

Such treatments include inhibitors of the negative regulators of T-cells such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). These inhibitors can be used alone as front-line therapy, but are often more effective in combination 57 ( Figure 1.7 ).

However, although effective these therapies are encumbered by high variability in patients' response [START_REF] Postow | Immune Checkpoint Blockade in Cancer Therapy[END_REF][START_REF] Hodi | Improved survival with ipilimumab in patients with metastatic melanoma[END_REF][START_REF] Dang | Pembrolizumab for the treatment of PD-L1 positive advanced or metastatic non-small cell lung cancer[END_REF][START_REF] Ribas | Cancer immunotherapy using checkpoint blockade[END_REF] . 

Neoantigen theory

Neoantigens are immunologically active proteins presented at the cell surface, and are the main functional targets of immune checkpoint blockade therapies [START_REF] Riaz | The role of neoantigens in response to immune checkpoint blockade[END_REF] . Because the total Tumor Mutational Burden (TMB) is mainly composed of passengers, immune reactivity is mainly directed towards passengers-derived neoantigens [START_REF] Riaz | The role of neoantigens in response to immune checkpoint blockade[END_REF][START_REF] Matsushita | Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting[END_REF][START_REF] Heemskerk | The cancer antigenome[END_REF] . Consequently, it is widely thought that passenger load is proportional to the likelihood of an immunologically active neoantigen to be present and targeted by immune-based cancer therapies [START_REF] Hugo | Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma[END_REF][START_REF] Snyder | Genetic basis for clinical response to CTLA-4 blockade in melanoma[END_REF][START_REF] Van Allen | Genomic correlates of response to CTLA-4 blockade in metastatic melanoma[END_REF][START_REF] Rizvi | Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[END_REF][START_REF] Hellmann | Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer[END_REF] .

The United States Food and Drug Administration (FDA) approved in June 2020 the use of TMB as a biomarker of response to pembrolizumab, an immune checkpoint blockade therapy [START_REF]Highlights of prescribing information: KEYTRUDA[END_REF] . Pembrolizumab is a highly selective humanized antibody directed against PD-1. This is one of the first tissue-agnostic drug approvals for solid tumours, which allows all adult and pediatric patients with TMB> 10 mutations/Mb to undergo immunotherapy. This FDA approval led to the creation of assays to directly measure TMB [START_REF] Wu | Designing gene panels for tumor mutational burden estimation: the need to shift from 'correlation' to 'accuracy[END_REF] and optimized gene panels recapitulating TMB [START_REF] Fancello | Tumor mutational burden quantification from targeted gene panels: major advancements and challenges[END_REF] .

Thesis overview

The tumour mutational landscape consists of a few driver mutations alongside thousands of passenger mutations. The latter are viewed as collateral damage with no role in tumour growth and have been historically 

Through the analysis of passengers, this thesis explores what factors shape mutational patterns and how these patterns can in return inform therapy selection. (A) Lifestyle habits and the microbiome can be genotoxic and leave

an imprint on tumour DNA. In addition, the immune system shapes the mutational landscape by weeding out cells with too many mutations (a theory called "neoantigen theory"). (B) The overall mutational landscape, in addition to specific driver mutations, can be leveraged for therapy selection.

This dissertation focuses on two features of mutations: their total number (called 'mutational load' or 'mutational burden') and their genetic localization patterns (through mutational signature analysis). The projects developed in this thesis include: (i) a meta-analysis of high mutational load as a biomarker of response to immunotherapy 74 ; (ii) a case report of a patient's colorectal tumour who did not respond to immunotherapy despite having a very high mutational load [START_REF] Gurjao | Intrinsic Resistance to Immune Checkpoint Blockade in a Mismatch Repair-Deficient Colorectal Cancer[END_REF] ; and (iii) the mutational signature analyses of large colorectal cancer sequencing cohort [START_REF] Gurjao | Discovery and Features of an Alkylating Signature in Colorectal Cancer[END_REF] .

High tumour mutational burden as a biomarker of response to immunotherapy

The first chapter of this thesis challenges one of the central paradigms in cancer immunology: the notion that a high number of mutations -and the resulting neoantigens, recognized as 'foreign' by T-cells -elicits a better antitumour immune response. Several pioneering papers [START_REF] Hugo | Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma[END_REF][START_REF] Snyder | Genetic basis for clinical response to CTLA-4 blockade in melanoma[END_REF][START_REF] Van Allen | Genomic correlates of response to CTLA-4 blockade in metastatic melanoma[END_REF][START_REF] Rizvi | Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[END_REF][START_REF] Hellmann | Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer[END_REF] have suggested that tumours with a high load of mutations better respond to immunotherapy; these studies have been the basis of the FDA approval of TMB to prioritize patients who would most likely benefit from immunotherapy.

We revisit this claim by conducting a pan-cancer meta-analysis: we aggregate the largest available dataset of immunotherapy patients, reuniting more than 2,500 individuals, with available TMB data and clinical annotations.

To conduct this analysis, we not only leverage standard biomarker metrics (e.g.

Receiver Operating Curves analysis), but we also create a novel statistical framework to correct for multiple hypotheses when the tests were non-independent. Finally, we build a mathematical model of the neoantigen theory reproducing our observations of the association between TMB and treatment response. Overall, this first chapter further assesses the use of directly measuring passenger load in the clinic to predict immunotherapy response.

Exploratory analysis of an immunotherapy-treated patient with high tumour mutational burden

High TMB tumours, in particular those with DNA repair defects such as Microsatellite Instability (MSI), are FDA-approved for immunotherapy; yet not all patients respond. The second chapter of this thesis aims at refining our understanding of the link between TMB and immunotherapy response. To this end, we conduct an exploratory analysis of a patient who did not respond to immunotherapy despite having an MSI colorectal tumour.

To do so, we use whole-exome and bulk whole-transcriptome sequencing (RNA-Seq) to characterize the driver and passenger mutational landscape of the patient. In addition, we leverage cutting-edge technologies such as multiplex immunofluorescence and single-cell RNA-Sequencing to comprehensively profile not only the tumour genome but also the associated tumour-immune microenvironment. Ultimately, this chapter aims at uncovering the mechanisms of intrinsic resistance to immunotherapy and can help understand how to better integrate passenger load with driver mutations to predict treatment response.

Molecular imprints in colorectal cancer

Colorectal cancer (CRC) is currently the third most common cancer in the world. In the last decade, there has been a concerning trend of early-onset CRC: by 2040, it is predicted to become the leading cause of cancer death in individuals between 20 and 40 years old [START_REF] Rahib | Estimated Projection of US Cancer Incidence and Death to 2040[END_REF] . Although the reasons for this trend are unclear, diet, in particular red meat consumption, has been hypothesized to play a role. However, no mutagenic role of red meat has been observed in human colons yet.

The third chapter of this thesis presents the mutational signature analysis of a comprehensive CRC molecular profiling study: 900 tumours were sequenced from tissue biopsies collected over four decades. Along with molecular data, this study leveraged detailed information, collected every other year, on the lifestyle of CRC patients. This comprehensive cohort allows us to accurately estimate mutagenic processes in CRC and better understand how they are related to lifestyle factors.

Limited evidence of tumour mutational

burden as a biomarker of response to immunotherapy

Abstract

Cancer immunotherapy by immune checkpoint blockade (ICB) is effective for several cancer types 61 , however, its clinical use is encumbered by a high variability in patient response. Several studies have suggested that Tumour Mutational Burden (TMB) correlates with patient response to ICB treatments [START_REF] Hugo | Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma[END_REF][START_REF] Snyder | Genetic basis for clinical response to CTLA-4 blockade in melanoma[END_REF][START_REF] Van Allen | Genomic correlates of response to CTLA-4 blockade in metastatic melanoma[END_REF][START_REF] Rizvi | Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[END_REF][START_REF] Hellmann | Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer[END_REF] , likely due to immunogenic neoantigens generated by novel mutations accumulated during cancer progression [START_REF] Chan | Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic[END_REF] . Association of TMB and response to checkpoint inhibitors has become widespread in the oncoimmunology field, within and across cancer types [START_REF] Osipov | Tumor Mutational Burden, Toxicity, and Response of Immune Checkpoint Inhibitors Targeting PD(L)1, CTLA-4, and Combination: A Meta-regression Analysis[END_REF][START_REF] Chan | Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic[END_REF][START_REF] Cristescu | Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy[END_REF][START_REF] Samstein | Tumor mutational load predicts survival after immunotherapy across multiple cancer types[END_REF][START_REF] Yarchoan | Tumor Mutational Burden and Response Rate to PD-1 Inhibition[END_REF] 

Introduction

Immune checkpoint blockade (ICB) treatments such as anti-CTLA-4 and anti-PD1, which target regulatory pathways in T-lymphocytes to enhance anti-tumour immune responses, have already proven to elicit durable clinical responses for some patients [START_REF] Postow | Immune Checkpoint Blockade in Cancer Therapy[END_REF][START_REF] Hodi | Improved survival with ipilimumab in patients with metastatic melanoma[END_REF][START_REF] Dang | Pembrolizumab for the treatment of PD-L1 positive advanced or metastatic non-small cell lung cancer[END_REF][START_REF] Ribas | Cancer immunotherapy using checkpoint blockade[END_REF] . However, the genetic determinants of response to immunotherapy have yet to be found. Several studies [START_REF] Hugo | Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma[END_REF][START_REF] Snyder | Genetic basis for clinical response to CTLA-4 blockade in melanoma[END_REF][START_REF] Van Allen | Genomic correlates of response to CTLA-4 blockade in metastatic melanoma[END_REF][START_REF] Rizvi | Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[END_REF][START_REF] Hellmann | Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer[END_REF] suggested that Tumour Mutational Burden (TMB), computed as the total number of nonsynonymous somatic mutations, is correlated with response to immunotherapy in cancer. The underlying hypothesis posits that a fraction of nonsynonymous mutations become exposed as epitopes and constitute neoantigens, which can trigger an anticancer response by the immune system.

The association between high mutational burden and response to immunotherapy, within and across cancer types [START_REF] Osipov | Tumor Mutational Burden, Toxicity, and Response of Immune Checkpoint Inhibitors Targeting PD(L)1, CTLA-4, and Combination: A Meta-regression Analysis[END_REF][START_REF] Chan | Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic[END_REF][START_REF] Cristescu | Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy[END_REF][START_REF] Samstein | Tumor mutational load predicts survival after immunotherapy across multiple cancer types[END_REF][START_REF] Yarchoan | Tumor Mutational Burden and Response Rate to PD-1 Inhibition[END_REF] ( Figure 2.1A ), has been widely reported in the scientific literature and the media. As a result, TMB is currently discussed as the most clinically advanced biomarker of response to immune checkpoint blockade [START_REF] Sharma | Adaptive, and Acquired Resistance to Cancer Immunotherapy[END_REF][START_REF] Heeke | Tumor mutational burden assessment as a predictive biomarker for immunotherapy in lung cancer patients: getting ready for prime-time or not?[END_REF] , and the FDA approved the use of TMB to identify patients most likely to derive clinical benefit 71 . These studies also triggered a search for inexpensive assays to evaluate TMB directly [START_REF] Sicklick | Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study[END_REF] , as well as TMB-derived measures, such as neoantigens, neoepitopes, and mutation clonality [START_REF] Mcgranahan | Neoantigen quality, not quantity[END_REF] , which are all currently under investigation to further stratify patients most likely to respond to immunotherapy. Our analysis focuses on TMB itself, as this is the most widely used and only FDA-approved measure.

Results

Data aggregation

To evaluate the association of TMB with response to ICB across a broader range of cancer types, we aggregated and analyzed data for 882 immunotherapy patients with publicly available pre-treatment whole-exome sequencing data (referred below as CPI800+, Table 2.S1 and Material and Methods ). We included patient-level data from an aggregate of early seminal studies [START_REF] Miao | Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors[END_REF] as well as recent clear cell renal cell cancer [START_REF] Miao | Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma[END_REF][START_REF] Braun | Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma[END_REF] , non-small cell lung cancer [START_REF] Hellmann | Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer[END_REF] , bladder cancer 89 and melanoma [START_REF] Hugo | Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma[END_REF][START_REF] Liu | Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma[END_REF][START_REF] Riaz | Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab[END_REF] ICB-treated cohorts. For every dataset examined, we retrieved TMB levels and survival data (Progression-Free Survival (PFS) or Overall Survival (OS)) for each patient, and provided . Cohorts provided response classification for most patients.

We also leveraged a very recent meta-analysis of 1283 patients (termed CPI1000+) who underwent immunotherapy [START_REF] Litchfield | Meta-analysis of tumor and T cell intrinsic mechanisms of sensitization to checkpoint inhibition[END_REF] , have unified TMB (n=1083) and response definition, as well as survival measures for some patients (n=545 with OS data). Furthermore, we obtained gene panel data (MSK-IMPACT) for 1662 patients ( Table 2.S1 ) who underwent immunotherapy. To the best of our knowledge, together this dataset constitutes the largest pan-cancer aggregate of ICB-treated patients with sequencing and clinical data, which allow a robust unified statistical assessment of TMB as a predictor of ICB response First, we examined the difference in TMB between responders and non-responders. All datasets showed a considerable overlap in TMB between responders and non-responders, as well as a large range of TMB values for the same cancer type.

Consistent with published studies [START_REF] Hellmann | Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer[END_REF][START_REF] Miao | Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors[END_REF][START_REF] Miao | Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma[END_REF][START_REF] Liu | Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma[END_REF][START_REF] Wood | Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival[END_REF] , we find ( Figure 2.1A and Figure 2.S1 ) that only the melanoma datasets (mel1 and mel2) and non-small cell lung cancer datasets (lung1 and lung2) yield a significant difference in TMB between responders and nonresponders (p=8.3×10 -6 and p=7.7×10 -3 for lung1 and lung2, p=2.6×10 -2 and p=4.1×10 -2 for mel1 and mel2, Mann-Whitney U test). Two of the three other cancer types analyzed -clear cell Renal Cell Carcinoma (ccRCC) and Head and Neck Squamous Cell Carcinoma (HNSCC) -showed no trend or an unexpected inverse one between TMB and response, although the association was non-significant ( Figure 2.1A ). The lack of associations between TMB and response to ICB in these two cancers was previously observed [START_REF] Braun | Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma[END_REF][START_REF] Patel | Genomic correlates of response to immune checkpoint inhibitors in advanced head and neck squamous cell carcinoma[END_REF][START_REF] Motzer | Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial[END_REF] . An identical analysis in CPI1000+ revealed similar results: there is no association between TMB and response in HNSCC and ccRCC, as well as breast cancer. Of note, CPI1000+ comprises colorectal cancer (CRC) specimens, and more bladder cancers (n=250) than our CPI800+ aggregate. Both showed an association between TMB and response (p=0.044 and p=5.4×10 -7 , respectively) ( Figure 2.S1 ).

Next we examined (i) whether TMB can be used as a biomarker to predict response to ICB in cancers/cohorts with significant association, yet considerable overlap in TMB between responders and non-responders; (ii) whether the association between TMB and response is confounded by cancer subtypes, i.e. due to the different response rates of cancer subtypes with different TMB ranges, and (iii) a potential association between TMB and survival, rather than a binary response/no-response classification.

Measuring performance of TMB as a biomarker of response to immunotherapy

The key component for validating a biomarker is acceptable classification accuracy, i.e. the biomarker's capacity to correctly classify a patient's response [START_REF] Pepe | Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design[END_REF] . ROC curves analysis ( Figure 2.1B ) is a standard tool for measuring the quality of a predictor; it provides a comprehensive quantification of specificity and sensitivity over all possible cutoffs, with the Area Under the ROC Curve (AUC) being an aggregate measure of predictor performance (AUC=0.5 for a predictor performing as well as random). Our ROC-curve analysis shows the (i) lack of a clear TMB cutoff that could be used in the clinic;

(ii) poor performance of the TMB-based predictor of response to ICB, as evident from the low AUC in most datasets: mel1 and mel2 yielding of 0.62 and 0.59, and lung2 has an AUC of 0.68. Lung1, however, has the highest AUC of 0.85, which, as we show below, is still insufficient to select patients for ICB.

ROC curve analysis on CPI1000+ cohort, with unified TMB, also shows a similarly poor AUC of 0.6 ( Figure 2.S8 ).

Using a poor predictor for treatment decisions can lead to patient misclassification, i.e. patients who could benefit from the therapy would be deprived of it (responders below the TMB threshold), and patients who get the treatment but don't benefit from it (non-responders above the threshold). To ). We find that, on average across the non-small cell lung cancer and melanoma datasets, 62% of responders were below the treatment prioritization threshold and 19% of non-responders were above. While these misclassification rates vary across datasets, fractions of potential responders remain under the TMB threshold. Moreover, the poor predictive power of TMB indicates that current efforts of harmonizing TMB measures would not address the shortcoming TMB as a biomarker of response to ICB. Indeed, our ROC analysis shows that even the optimal cutoff (Youden index associated cutoff) for each dataset would result in approximately 25% of responders below the treatment prioritization threshold and thus discouraged from receiving a potentially efficacious and life-extending treatment ( Figure 2.1E ). As such, the main challenge in using TMB in the clinic does not reside in harmonizing the values but in inherently poor association between TMB and response to treatment.

Cancer subtypes can confound the association of TMB with clinical benefit

We hypothesized that different cancer subtypes, with distinct TMB ranges and response rates, confound the observed increase in TMB in patients with clinical response to ICB. Understanding different responses of cancer subtypes can be also important for unraveling underlying biology of response.

In particular, acral and mucosal melanomas are known to yield lower TMB and have a poorer prognosis [START_REF] Hayward | Whole-genome landscapes of major melanoma subtypes[END_REF] . Similarly, non-small cell lung tumours from smokers have higher TMB and published studies showed that ICB confers a survival advantage in smokers compared to never smokers [START_REF] Mark | Chronic Obstructive Pulmonary Disease Alters Immune Cell Composition and Immune Checkpoint Inhibitor Efficacy in Non-Small Cell Lung Cancer[END_REF] . Consistent with a previous study [START_REF] Liu | Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma[END_REF] , we find that stratifying melanoma patients based on their disease subtype removes the association observed between TMB and clinical benefit in mel1 and mel2 ( Figure 2.2B ), i.e. among patients of the same subtype there is no association between TMB and response.

However, stratifying non-small cell lung tumours based on the patient smoking status still showed a significantly higher TMB for responders versus non-responders, for smokers (current and former) (p=1.3×10 -4 and p=1.8×10 -2 for lung1 and lung2, Mann-Whitney U test)), but not among non-smokers. Other factors may contribute to a substantially better response of higher TMB in smoker patients. In particular, the presence of Chronic Obtrusive Pulmonary Disease (COPD) [START_REF] Wang | Impact of COPD on prognosis of lung cancer: from a perspective on disease heterogeneity[END_REF] could be a factor underlying the better response of high-TMB patients. While none of the ICB-treated cohort provided COPD status, several recent observations are consistent with the confounding role of COPD in response to high-TMB patients. First, COPD status is associated with increased survival after ICB [START_REF] Mark | Chronic Obstructive Pulmonary Disease Alters Immune Cell Composition and Immune Checkpoint Inhibitor Efficacy in Non-Small Cell Lung Cancer[END_REF]100 . Second, we find that TMB is significantly increased in COPD patients from TCGA ( Figure 2.S2 ). Third, the presence of EGFR mutation, that is infrequent in lung tumours of COPD patients 101,102 , has been reported to correlate with poor response to immunotherapy [START_REF] Miao | Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors[END_REF] .

Consistently, a large lung study that excluded patients with targetable EGFR mutation ( KEYNOTE-189 103 , n=293), observed no association of high TMB with survival and clinical response to ICB. Our analysis alongside results of KEYNOTE-189 suggest that COPD status can be a confounder that could explain higher TMB among patients that respond to ICB; this hypothesis and the underlying biology can be tested by future studies. Similarly, the recent KEYNOTE-177 104 showed no association of TMB with response to ICB in hypermutated (MSI positive) colorectal tumors, suggesting MSI status confounds the association between TMB and clinical benefit to ICB. Cancer subtypes with higher response rate constitute a rich ground for understanding the biology of ICB response.

TMB and response across cancer types

We also revisit a meta-analysis that reported a positive correlation between response rates and TMB across different cancer types [START_REF] Osipov | Tumor Mutational Burden, Toxicity, and Response of Immune Checkpoint Inhibitors Targeting PD(L)1, CTLA-4, and Combination: A Meta-regression Analysis[END_REF][START_REF] Yarchoan | Tumor Mutational Burden and Response Rate to PD-1 Inhibition[END_REF] . In that study, each cancer type is characterized by a median TMB and a median response rate; and splits melanoma and colorectal cancers -but not other cancers -into subtypes. We find that the correlation of the cancer-median TMB with the response rate reported in this study is driven solely by the TMB-response association of melanoma and colorectal cancers subtypes ( Figure 2.S3 ): when three points representing these cancers and their subtypes (melanoma, MSI+, MSI-) were removed, the correlation across all remaining cancer types becomes non-significant (p=0.10 for monotherapy, and p=0.21 for combination therapy). Thus, beyond subtypes with extreme differential response and a high response in melanoma, no association between TMB and response rate across different cancer types is present in available data.

Overall, the evidence of an association between TMB and response to ICB relies largely on data for two cancer types: melanoma and non-small cell lung cancer. However, melanoma is confounded by subtypes and lung cancer requires more data and COPD stratification to validate the use of TMB.

Crucially, an elevated TMB among responders does not imply the suitability of TMB for patient classification and treatment prioritization neither within nor across cancer types.

TMB association with survival post-immunotherapy

To evaluate the use of TMB for prioritizing patients, and to go beyond the binary response classification, we examined an association between TMB and survival time (OS or PFS). Since survival data is "censored" i.e. only lower bound on survival is known for some patients, standard correlation-based methods cannot be used to evaluate such association. Nevertheless, groups of patients can be compared in their survival. Hence we tested whether it is possible to find a TMB threshold that can separate patients into groups with significantly distinct survival. do not show a visible correlation or TMB cutoff that could differentiate longer and shorter surviving patients. Nevertheless, several studies established such TMB thresholds [START_REF] Snyder | Genetic basis for clinical response to CTLA-4 blockade in melanoma[END_REF][START_REF] Rizvi | Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[END_REF] and reported a seemingly statistically significant difference in survival between patients below and above the threshold. One caveat of this approach is that it suffers from inherent multiple hypothesis testing made when the TMB thresholds have been selected among numerous possible values. This inherent multiple hypothesis testing would require further correction of the p-values; a step that is missing in all of the studies. However, standard approaches (e.g., Bonferroni correction, FDR correction) for multiple hypotheses testing would be too stringent because the hypotheses generated by comparing survival in two groups at multiple TMB thresholds are not independent.

Hence, we used a randomization approach to address this limitation. This approach is similar to known multiple hypothesis testing methods 105,106 and earlier statistical studies that examined associations between dose and response in epidemiological studies 107 . We define the optimal TMB threshold as that which maximizes the difference in survival (i.e. minimizes the logrank p-value, a standard survival analysis test) between groups above and below the threshold. First, the optimal TMB threshold and its p-value (p real ) was found for the original data. Next, we randomly shuffled TMB among patients, while keeping survival and censored labels unchanged, and found the optimal TMB threshold and its p-value (p shuf ) for each randomized data. Finally, the p-value corrected for multiple hypotheses is derived by repeating the shuffling 1000 times and computing the fraction of shufflings where p shuf < p real ( Figure 2.3B) .

Applied to the melanoma and lung cancer datasets ( Figure 2.3C and Figure 2.3D ), we find that the majority (~60-70%) of randomly shuffled datasets produced p shuf below the standard 0.05 threshold, creating a seemingly significant TMB-survival association and emphasizing the need for multiple hypothesis correction. Overall, our correction for multiple hypothesis testing reveals the lack of a TMB threshold that can classify patients into groups with significantly different survival. In particular for lung cancer, for which we previously observed a significant association between TMB and clinical benefit, we obtain a corrected p-value of 0.06 among smokers for lung1 and 0.23 for lung2. Of note, lung1 cohort that has p-value is close to significance contains 50% more EGFR patients than lung2, further suggesting that the observed weak association might be due to confounding effects to EGFR mutation status and/ or COPD status (see above).

We also ran our analysis using OS (for datasets where both are available: mel1, mel2 and lung1) instead of PFS as an endpoint and showed similar results, suggesting that survival definitions do not drive the results of our analysis ( Figure 2.S5 ). A similar analysis for individual cancer types (bladder, melanoma and non-small cell lung cancer; Figure 2.S6 ) from CPI1000+ shows the lack of significant TMB threshold that can differentiate patients with significantly distinct survival rates.

We further obtained consistent results for 1662 patients of MSK-IMPACT cohort treated with ICB but genotyped with gene panels rather than whole-exome sequencing ( Figure 2.S6 ). Most of the 10 cancer types tested had a non-significant p-value including colorectal cancer (p=0.088) and melanoma (p=0.093) which have marginally significant p-values, and except for non-small cell lung cancer (p=0.034). This study did not provide additional information such as tumour location for melanoma, Microsatellite Instability (MSI) status for colorectal cancer, or COPD for non-small cell lung tumours, which can confound the association of TMB with response [START_REF] Liu | Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma[END_REF]108 .

Taken together, our analysis shows the lack of a single TMB threshold that establishes a high-TMB group with a significantly longer survival.

TMB and cancer immunogenicity

Neoantigen theory is widely used to argue that cancers with high TMB are more likely to elicit an immune response after ICB. Although our results

show the lack of such dependence, we demonstrate that the effect we observe can nevertheless be explained by a simple mathematical model of neoantigens and immunogenicity.

Our model ( Materials and Methods ) aims to explain (i) the lack of association between TMB and response; and (ii) the response by cancers with even very low TMB; (iii) the lack of detectable selection against neoantigens 109 .

In our model, each mutation has a probability P immunogenic to become immunogenic, i.e. to be expressed and presented as an epitope, to interact with the major histocompatibility complex, and to trigger an immune response ( Figure 2.4 ). To include possible limited sensitivity of the immune system, we further require that at least k crit such mutations are present to mount an immune response (for k crit =1, a single mutation that becomes immunogenic triggers a full response). The components of our model are illustrated in where, as we showed above, such increase of response with TMB is absent .

On the contrary, if single mutations are likely to be immunogenic P immunogenic >0.1, the probability of response saturates for TMB ≳ 10, making tumours respond to ICB irrespective of TMB, as we observed above . For P immunogenic in the range estimated in silico 110 (0 . 22 for weak binders to T cells , and 0.64 for strong binders ) and k crit ≃ 1-2, the probability of eliciting a response quickly approaches 1 for TMB≳10 and stays constant and independent of TMB. ( Materials and Methods). The model further suggests that for the regime consistent with the data ( P immunogenic =0.2-0.6; k crit ≃ 1-2 ) (i) >90% of tumours with as little as 10 non-synonymous mutations are immunogenic; (ii) when 90% of tumours are immunogenic they have on average as few as 2 immunogenic mutation. Such quick saturation of immunogenicity with TMB in our model suggests that further immunogenic mutations experience not negative selection (i.e. threshold epistasis), as was recently demonstrated [NatGenetics] These results are also consistent with recently observed immunodominance hierarchies of the T cell responses 111 : low TMB tumours can mount responses as robust as high TMB tumours since only a small subset of neoantigens are targeted by T cells.

Taken together, our model and analysis of the available data indicate that cancer with even very few mutations can be immunogenic, suggesting that patients with low TMB might also mount robust immune responses, as has been recently shown for pediatric patients with acute lymphoblastic leukaemia 111 .

Discussion

Tumour Mutational Burden, a measure of the total somatic nonsynonymous mutations in a tumour, recently became a popular biomarker of response to ICB, notably because of its relative simplicity to assess.

However, this paradigm is largely based on a series of early papers that examined response in melanoma and lung cancer that we show here to be potentially problematic statistically and further confounded by tumour subtype.

Several recent studies have also reported poor association of TMB with response for specific cancer types [cite:recent anti-TMB], and highlighted TMB and its expression/presentation-based derivatives as problematic for clinical cohort classification [START_REF] Wood | Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival[END_REF] . In particular for melanoma, recent analyses [START_REF] Liu | Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma[END_REF] and our results indicate that the site location can explain the observed association between TMB and response to ICB. For lung cancer, our analysis points to the possibility that co-occurrence with COPD may explain the association between TMB and response to ICB among smokers. Overall we demonstrate that while most cohorts and cancer types show the lack of association of TMB and response or survival, the remaining statistical signal in some cohorts can arise due to confounders such as clinical subtypes. Future studies can examine the underlying biology -including TMB and neoantigens-explaining the better responses to ICB in certain clinical and cancer subtypes.

Critically, even if responders show significantly but slightly elevated TMB, such associations do not imply the suitability of TMB as a biomarker of response. In particular, we show that no TMB cutoff can distinguish groups of patients with significantly different survival rates. Besides, we show that TMB has poor accuracy as a classifier of response, even in the best-case scenario (Youden optimal cutpoint). This result challenges a recent FDA approval of TMB for prioritizing patients for ICB. If implemented, such TMB-based clinical decision making would deprive many patients who can benefit from ICB from receiving a life-extending treatment.

A recent ICB clinical trial that used FDA-approved TMB threshold (KEYNOTE-158) 112 has focused on rare cancers, excluding melanoma and lung cancer. While claiming a higher response rate among high-TMB patients, the trial observed little, if any, difference in overall survival of high-TMB and other patients, putting in question the clinical use of TMB-based prioritization.

We also put forward a simple model that reconciles our findings with the neoantigen theory. Our model shows that if each mutation has a high chance of triggering an immune response, then only a few new mutations make a cancer immunogenic, consistent with the observed immunodominance when the immune response is mounted against only a few of the neoantigens. This result is also consistent with the observed lack of association between antigen density and T-cell presence previously reported 113 . Moreover, our model suggests that most cancers are immunogenic, arguing that failures of ICB likely arise due to factors independent of cancer immunogenicity. Quantitative measurements 114 and modelling of neo-antigenic effects can deepen our understanding of cancer development and response to immunotherapy.

Although attractive and scalable, TMB does not consider the effect of specific mutations (missense, frameshift etc), their presentation and clonality [START_REF] Mcgranahan | Neoantigen quality, not quantity[END_REF] , nor the state of the tumour, its microenvironment, and interactions with the immune system that can be integrated into potentially better predictors of response to ICB [START_REF] Gurjao | Intrinsic Resistance to Immune Checkpoint Blockade in a Mismatch Repair-Deficient Colorectal Cancer[END_REF]115 . For the biology of oncoimmunity, our analysis suggests that, contrary to the neoantigen theory, cancer immunogenicity does not increase with the growing load of neoantigens, and that clinical subtypes can underlie better response to ICB.

Altogether, our analysis indicates that low TMB should not be used to deprive otherwise eligible patients of immunotherapy treatment, and stimulates further research into other determinants of response to immunotherapy.

Material and Methods

Immunotherapy study population

CPI800+ was formed of eight independent WES cohorts (n=882, detailed in Table 2.S1 ). The TMB and clinical annotations were not modified from the original studies. Post ICB sequenced samples were excluded from our analysis. In addition, gene panel datasets (n=1662, detailed in Table 2.S1 ) were identified from cbioportal 116 .

TCGA data

Lung cancer TCGA data were also retrieved from cbioportal 116 , and additional clinical annotations were downloaded from The Cancer 3′ UTR Atlas 117 . COPD status was assessed based on the standard spirometric classification, i.e. post-bronchodilator ratio of forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) below 70%.

Statistical analysis

We used R version 3.6.2 to perform statistical analyses. Two-group comparisons were evaluated by a two-sided Mann-Whitney U test unless otherwise indicated. P < 0.05 was considered statistically significant.

Code availability

The R code and data used to reproduce the analysis and figures from the paper are available on GitHub https://github.com/mirnylab/TMB_analysis

Model of cancer immunogenicity

Response to ICB treatment requires that the cancer is immunogenic and that immunotherapy can mount the immune response to this immunogenic cancer: P response = P immune response * P therapy . The probability that immunotherapy works, given that the cancer is immunogenic, P therapy , depends on the specifics of treatment and other physiological variables, so we'll assume it to be constant. The probability of being immunogenic, P immune response , however, depends on the ability of mutations to trigger the immune response. Assume that every nonsynonymous mutation has the probability P immunogenic (noted below as p ) to be expressed and presented as an epitope, to interact with the major histocompatibility complex, and to trigger an immune response.

In the scenario of immunodominance, in which the immune response is mounted against only a few of the neopeptides, only k≤ k crit such mutations are sufficient to mount an immune response. Hence, the probability of being immunogenic is the probability of having at least k crit presented and immunogenic mutations out of TMB:

P immune response = p k (1-p) TMB-k C k TMB ≈1- Poisson(k,TMB*p), 𝑘 = 𝑘 𝑐𝑟𝑖𝑡 𝑇𝑀𝐵 ∑ 𝑘 = 0 𝑘 𝑐𝑟𝑖𝑡 -1 ∑
where p= P immunogenic .

In the case of k crit =1, even a single mutation, if immunogenic, can trigger a response yielding P immune response = 1-(1-p) Furthermore, our model also explains a puzzling observation that immunoediting, i.e. negative selection against immunogenic mutations, is inefficient, allowing tumours to accumulate a high TMB 109,118 . Indeed, once a cancer accumulates mutations making it immunogenic, additional mutations incur no additional selective disadvantage i.e. show "the epistasis of diminishing return", and hence accumulate as neutral or weakly damaging passenger mutations [119][120][121] Moreover, according to this argument, cancer would have to develop means to suppress the immune response early in its development, a prediction that can be tested in future studies of cancer clonal evolution.
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Introduction

Immune checkpoint inhibitors, such as programmed cell death 1 (PD-1, PDCD1 ) antibodies, have revolutionized cancer treatment by demonstrating long-lasting responses in patients with several types of malignancies 122 .

However, only a subset of patients experience benefit from these agents and complete response remains uncommon. In this context, tumor DNA mismatch repair deficiency (dMMR) and a high-level of microsatellite instability (MSI-H) have emerged as powerful genomic markers of response to immune checkpoint inhibitors across malignancies 123,124 , leading to the tissue-agnostic FDA-approval of the PD-1 antibody pembrolizumab in refractory dMMR/MSI-H solid malignancies and to the approval of PD-1 antibody nivolumab with or without the CTLA-4 antibody ipilimumab in dMMR/MSI-H colorectal cancer (CRC) after fluoropyrimidine, oxaliplatin and irinotecan-based chemotherapy.

The leading proposed reason for the immunogenicity of dMMR tumors is their high mutational and neoantigen burden [START_REF] Giannakis | Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma[END_REF] ; however, only 30-55% of patients with such cancers respond to immune checkpoint blockade with another 10-28% of patients remaining primarily refractory to immunotherapy 123-126 . To date, the molecular and microenvironmental features of dMMR/MSI-H tumors that are intrinsically resistant to immune-checkpoint blockade remain unknown.

Their characterization could provide insights for novel combination immunotherapies in this subset of tumors and also inform resistance, and strategies to overcome it, in additional genomic contexts.

Here, we describe a patient with metastatic dMMR CRC who was treated with pembrolizumab after combination chemotherapy. Despite having confirmed dMMR/MSI-H status and a high neoantigen load, her disease progressed on pembrolizumab. To analyze the basis of this intrinsic immune checkpoint inhibitor resistance, we performed bulk and single-cell characterization of her tumor and the associated immune microenvironment.

Materials and Methods

Patient study

The patient provided written consent to participate in research protocols for additional core biopsies and research testing. All biopsies and molecular testing were performed in accordance with protocols approved by the IRB at the Dana-Farber Cancer Institute.

Statistical analyses

We used R-3.4.4 to perform the statistical analyses. For two-group comparisons, significance was evaluated by the Mann-Whitney U test for non-normal distributions, and with a two-tailed student t test otherwise. P values of < 0.05 were considered statistically significant.

Bulk sequencing

DNA and RNA extractions from Formalin Fixed Paraffin Embedded (FFPE) sections and peripheral blood were carried out using standard methods 127 . Whole-exome sequencing (WES) was performed as detailed previously 128 on the pre-immunotherapy tumor and peripheral blood, with mean depth of coverage of 270× and 101×, respectively. For bulk whole-transcriptome sequencing (RNA-seq), we used the TCap (Transcriptome Capture) protocol ( genomics.broadinstitute.org/products/whole-transcriptome-sequencing ), which is optimal for low-input and degraded samples such as FFPE samples. Using this method, RNAseq was performed on the pre-treatment tumor with >22.000 genes and 99.4% exons detected.

Single-cell sequencing

The core biopsy was received in additive free M199 media (Thermofisher Scientific; #11150059). To generate a cell suspension for single-cell RNA-seq (scRNA-seq), the core was minced into smaller ~1-mm pieces, which were then dissociated by a combination of mechanical and enzymatic digestion with Accumax (Innovative Cell Technologies; #AM105) at room temperature for 10 minutes. Following dissociation, cells were strained through a 100 μm strainer, washed with ice cold PBS (Ca/Mg free) with 2% FCS and resuspended in 0.04% BSA (Thermofisher Scientific #AM2616) with PBS. From this suspension, two channels were loaded on 10x; one with 4000 cells and the other with 6000 cells. Libraries were prepared using established protocols. Droplet-based massively parallel scRNA-seq was performed using Chromium Single cell 3' Reagents Kits (v.1) according to the manufacturers protocols (10x Genomics). The generated scRNA-seq libraries were sequenced using 100 cycle Illumina HiSeq. After quality control, 595 resulting cells were used for further analyses.

Variant calling

Tumor somatic mutations were called from WES using standardized pipelines including MuTect for somatic SNV inference and Strelka for small insertion/deletions. We corrected for FFPE and oxoguanine artifacts, and used a panel of normal filter as previously described [START_REF] Miao | Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma[END_REF] .

Tumor purity and ploidy were inferred using ABSOLUTE, and cancer cell fraction (CCF) of mutations (i.e. the proportion of tumor cells with the mutation) estimated. Allelic copy number alterations were inferred using an adaptation of a circular binary segmentation 129 and corrected for tumor purity and ploidy. The mutations discussed were orthogonally validated by a next-generation CLIA-certified sequencing panel 130 . In order to study the mutational signatures in the tumor of the patient, we used DeconstructSig based on linear combination analysis of preexisting signatures. POLYSOLVER was used to detect the HLA type of the patient, which enabled neoantigen prediction using NetMHCpan as previously described 87 .

MLH1 methylation testing

DNA methylation patterns in the CpG island of the MLH1 promoter gene were determined by chemical (bisulfite) modification of unmethylated cytosines to uracil and subsequent PCR using primers specific for either methylated or the modified unmethylated DNA 131 . The PCR products were analyzed by capillary gel electrophoresis.

Gene expression analysis

For bulk RNA-seq analysis, STAR and RSEM was used for alignment and gene expression quantification, respectively. Immune cell subset deconvolution was performed using CIBERSORT to assess the relative and total abundance of 22 immune cell types. For single-cell analysis, gene expression counts were obtained by aligning reads to the GRCh38 genome using Cell Ranger analysis pipeline ( https://support.10xgenomics.com/single-cell-gene-expression/software/release -notes/2-1 ). The consensus molecular subtypes (CMS) 132 were called using "CMScaller" R package.

Immunohistochemistry and Multiplex Immunofluorescence

Tumor sections were deparaffinized and stained for Beta 

Results

Case history

Mutation, copy number, and neoantigen analyses

To investigate for mechanisms of intrinsic resistance to immune checkpoint blockade in this dMMR tumor, we performed preimmunotherapy tumor and matched normal WES, immunohistochemistry, and multiplex immunofluorescence pathologic analyses as well as bulk and single-cell RNA-seq ( Figure 3.1B ). WES revealed a high mutation load with a total of 1857 somatic single nucleotide variants (SNVs) and small indels ( Supplementary Table S1 ), a high neoantigen load and a quiet copy number landscape ( Supplementary Figure 3.S1A and 3.S1B ), as typical for dMMR/MSI-H CRC 135 . Mutational signature analysis demonstrated that the majority of mutations were stemming from a mutational signature associated with dMMR 43 ( Supplementary Fig. 3.S1C ).

WES also confirmed the presence of a BRAF c.1799T>A (p.V600E) mutation as well as mutations in RNF43 , a gene that is mutated in approximately 50% of MSI-H CRC 128 . To evaluate the possibility of an inherited cancer risk allele in this patient with a history of multiple tumors, germline coding variants in 14 established CRC risk genes as well as 40 cancer risk genes that are part of the DNA repair machinery ( Supplementary Table S2 ) were called and evaluated for pathogenicity as previously described 136 . Our assessment showed no known pathogenic or likely pathogenic germline mutations in neither the CRC risk gene set nor the DNA repair set. There was also no germline MLH1 promoter methylation. Thus, to the best of our current knowledge, the tumor appears to 

Gene expression and infiltrating immune cell deconvolution

To characterize the tumor's transcriptional state as well as the tumor immune microenvironment in this intrinsically resistant dMMR CRC, we performed bulk RNA-seq ( Supplementary Table S1 ) and compared the results Among the 12 CRCs that were MSI-H with an advanced stage, the tumor of the reported patient had the highest infiltration of both activated NK cells and M2 macrophages. We did not further stratify tumors by B2M status, as biallelic inactivation of B2M was not validated by immunohistochemistry in TCGA.

Tumor-immune microenvironment at a single-cell resolution

To orthogonally validate the above findings, we performed multiplex immunofluorescence to quantify T cells [CD3 + CD56(NCAM1) -] and NK cells 

Discussion

This patient with dMMR/MSI-H CRC was treated with pembrolizumab but exhibited primary resistance to immune checkpoint blockade with progression of her disease on restaging scans. Her tumor had a high neoantigen load, a mutational signature consistent with dMMR, BRAF and RNF43 mutations and other molecular features typical of dMMR tumors. On WES prior to initiation of pembrolizumab, we identified somatically acquired biallelic loss of B2M , a critical component of the antigen presentation machinery and MHC class I expression. The second hit in this locus was due to loss of heterozygosity, despite an expected overall low copy number alteration burden. This was consistent with work describing enrichment of inactivating antigen presentation machinery mutations in MSI-H primary CRCs 137 . We confirmed complete loss of B2M protein expression through immunohistochemistry. Loss of B2M has been previously implicated in acquired resistance in melanoma, lung cancer, and MSI-H CRC 124,138,139 and intrinsic resistance in melanoma 140 , but it has not been previously described as source of intrinsic resistance in dMMR tumors. This case suggests that MHC class I and B2M expression may need to be considered prior to initiation of PD-1 inhibition to identify patients with dMMR/MSI-H cancers who may not respond to therapy.

To further elucidate the tumor-immune microenvironment, we performed bulk and single-cell transcriptomic analysis. We found that this tumor had the highest inferred activated NK cell and M2 macrophage infiltration when compared to hundreds of CRC specimens from the TCGA with available bulk transcriptional data. We validated these findings through multiplex These findings suggest that NK cell-based immunotherapies, such as the transfer of "educated" NK cells to patients, could offer an attractive option for MSI-H tumors that are resistant to immune checkpoint inhibition due to lack of antigen presentation. Our findings also further support the development of immunotherapeutic strategies that aim to shift the balance between M2 and M1 macrophages 146,147 . More broadly, our results have implications for primary resistance to immune checkpoint blockade and novel immunotherapeutic approaches through modulation of the innate immune response in cancer patients. 
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Abstract

Several risk factors have been established for colorectal cancer, yet their direct mutagenic effects in patients' tumors remain to be elucidated. Here, we leveraged whole-exome sequencing data from 900 colorectal cancer cases that had occurred in three U.S.-wide prospective studies with extensive dietary and lifestyle information. We found an alkylating signature that was previously undescribed in colorectal cancer and then showed the existence of a similar mutational process in normal colonic crypts. This alkylating signature is associated with high intakes of processed and unprocessed red meat prior to diagnosis. In addition, this signature was more abundant in the distal colorectum, predicted to target cancer driver mutations KRAS p.G12D, KRAS p.G13D, and PIK3CA p.E545K, and associated with poor survival. Together, these results link for the first time a colorectal mutational signature to a component of diet and further implicate the role of red meat in colorectal cancer initiation and progression.

SIGNIFICANCE: Colorectal cancer has several lifestyle risk factors, but the underlying mutations for most have not been observed directly in tumors.

Analysis of 900 colorectal cancers with whole-exome sequencing and epidemiologic annotations revealed an alkylating mutational signature that was associated with red meat consumption and distal tumor location, as well as predicted to target KRAS p.G12D/p.G13D.

Introduction

Most tumor mutations are passengers that have little to no functional role in cancer. However, their positional context in the genome may reveal information about the underlying mutational processes [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF] . Snapshots of these processes, called mutational signatures, were originally deconvoluted using a nonnegative matrix factorization (NMF) approach 148 on a large collection of whole-genome sequencing and whole-exome sequencing (WES) data [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF] .

Mutational signatures may elucidate the roles of mutagens in cancer and inform prevention and treatment efforts. Several studies have been conducted to associate mutational signatures with cellular processes or exposures. These include rare cancer predisposition syndromes [START_REF] Grolleman | Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype[END_REF] , environmental agents [START_REF] Kucab | A Compendium of Mutational Signatures of Environmental Agents[END_REF] , and microbiota [START_REF] Pleguezuelos-Manzano | Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli[END_REF] . Such association studies have relied on either DNA-sequencing data sets or preclinical models, such as organoids. However, although many lifestyle-related factors have been linked to colorectal cancer 149 , larger and more comprehensive data sets are needed to enable the discovery of the associated signatures. Consequently, past efforts have not been able to capture the cumulative effect of putative mutagens, such as dietary components, over decades. In particular, red meat consumption has been consistently linked to the incidence of colorectal cancer [150][151][152] . The suggested mechanism is mutagenesis through alkylating damage induced by N-nitroso-compounds (NOC), which are metabolic products of blood heme iron or meat nitrites/ nitrates 153 . Nevertheless, this mutational damage is yet to be observed directly in patients' tumors.

Results

Active Mutational Signatures in Colorectal Tumors and normal

Colonic Crypts

To address this gap, we leveraged a database of incident colorectal cancer cases that had occurred in three U. Previous studies 150,151 showed a positive association between processed red meat and colorectal cancer incidence in the distal colon. Thus, we also investigated how the alkylating damage might differ by tumor location. We found that, compared with the proximal colon, the distal colorectal specimens 

Carcinogenicity of Alkylation Damage

Mutational processes increase the likelihood of specific driver mutations in certain trinucleotide contexts. 

Discussion

Our work demonstrated the presence of a novel alkylating mutational signature, which we deconvoluted directly from WES of colorectal tumors.

Interestingly, this signature is highly similar to SBS11, which was originally discovered in patients with prior exposure to temozolomide [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF] . Temozolomide is an alkylating agent used as a treatment of brain gliomas with MGMT promoter methylation [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF] and induces the same lesions as dietary NOCs and in the same proportions (80% of N7-methylguanine and N3-methylguanine, as well as 10% of O6-methylguanine 157,158 ). Previous attempts have shown the existence of alkylating lesions in normal colorectal mucosa, notably caused by NOCs 159 . The latter can be formed endogenously after nitrosylation of heme iron from blood 159,160 but have also been associated with red meat intake in a small cohort of participants 161 . However, these previous studies were based on limited data sets (small sample sizes and/or use of laboratory methylating agents) and lack comprehensive sequencing that would enable the discovery of the full mutational spectrum induced by red meat. Crucially, past efforts have focused on normal colorectal tissues and not examined colorectal cancer.

Our analysis reveals the existence of an alkylating signature in colorectal cancer, which is associated with high prediagnosis intake of processed and unprocessed red meat. Earlier work also hypothesized that the distal colon has increased DNA damage from exposure to dietary carcinogens, as a result of feces storage and water resorption in this portion of the large intestine 162 . This is believed to explain the association observed between distal cancer incidence and red meat consumption 151,152,162 . Consistently, we found an enrichment in tumors and normal crypts in the distal colon and rectum. In support of the International Agency for Research on Cancer (IARC) Monograph Working Group, which classified processed meat as carcinogenic 150 , our results provide molecular evidence of this dietary factor's mutagenic impact. In addition, our analyses further implicate unprocessed meat intake and suggest MGMT as a factor of susceptibility to red meat-induced damage. The existence of a similar alkylating signature in normal colorectal crypts also suggests that mutational changes due to such damage may start to occur early in the path of colorectal carcinogenesis. Our analysis predicted KRAS p.G12D, KRAS p.G13D, and PIK3CA p.E545K to be mainly targeted by the alkylating signature in non hypermutated colorectal cancers. We showed that there was indeed higher alkylating damage in tumors harboring these driver mutations. Independent epidemiologic analyses have also shown a positive association between high consumption of red meat products and KRAS p.G12D and KRAS p.G13D 163,164 .

Although the number of mutations due to alkylation damage was lower than other mutational processes, we showed that alkylation might have considerable carcinogenic potential by targeting driver mutations in KRAS and PIK3CA. We also demonstrated a significantly worse survival for patients with high levels of the alkylation signature contribution. The obtained average coverage was 85× in tumors and matched adjacent normal colon tissue (see Supplementary Table S5).

Dietary Variables

Ascertainment of diet was carried out as previously described 151 . To assess dietary intake in each cohort, food frequency questionnaires (FFQ)

were initially collected in 1980 for NHS and in 1986 for HPFS. For the NHS, a 61-item semi quantitative FFQ was used at baseline 167 , which was expanded to approximately 130 food and beverage items in 1984, 1986, and every 4 years thereafter. For the HPFS cohorts, baseline dietary intake was assessed using a 131-item FFQ that was also used for updates generally every 4 years subsequently 168 . In particular, unprocessed red meat consumption was evaluated based on forms on the intake of "beef or lamb as main dish," "pork as main dish," "hamburger," and "beef, pork, or lamb as a sandwich or mixed dish." Processed meat diets included "bacon"; "beef or pork hot dogs"; "salami, bologna, or other processed meat sandwiches"; and "other processed red meats such as sausage, kielbasa, etc." Consumption of red meat, chicken, poultry, and fish was evaluated in grams per day. For the remainder of our analysis, we considered the top decile of each variable to determine the "high-intake" patients and considered the rest as "low-intake" patients, because only the top-decile patients show a substantial difference in overall red meat intake ( Supplementary Figure 4.S13A and 4.S13B ). Data were based on the most recent prediagnosis reported intake for each patient. 

Nonnegative Matrix Factorization

Mutations were deconvoluted into separate signatures based on the number of mutations in each of 96 possible trinucleotide contexts.

Deconvolution was carried out with a standard NMF method based on Kullback-Leibler divergence using the "NMF" R package 177 . This method is particularly adapted for mutational signature analysis as recent studies demonstrated 178 . A critical parameter in NMF is the estimation of the rank (i.e., the number of expected mutational signatures). To determine this, we performed quality measures on a range of ranks (n = 2 to 10) for the 900 colorectal cancer exomes in the NHS/HPFS cohorts. This showed a sharp increase in the cophenetic (i.e., the stability of the NMF classes) and dispersion (i.e., the reproducibility of the class assignments) metrics after rank = 7. For this rank, we also observed that the residual sum of squares 

Code Availability Statement

All analysis scripts are available upon request. 
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Discussions

Recent technological advances have facilitated the fast sequencing of tumors at a low cost. Because driver mutations are at the root of carcinogenesis, their analysis has been the primary goal of sequencing studies.

However, the cancer genome can harbour more than a million somatic mutations, a majority of which are passengers with no role in cancer progression. Recent advances have highlighted the use of passenger mutations as molecular fingerprints of past exposure to mutagens, as well as potential targets for immunotherapy treatments.

This thesis aimed at further expanding the use of passenger mutations in informing cancer prevention and treatment. This chapter provides a discussion on the importance of the papers presented in this work, as well as a critical reflection on the results. The first chapter of this dissertation investigated the predictiveness of TMB across cancer types. We found that evidence of an association between TMB and response to immunotherapy relies largely on data for two cancer types -melanoma and non-small cell lung cancer -which are likely confounded by cancer subtypes.

Significance of the work

After multiple hypothesis testing, lacking in the original studies, we did not find any TMB cutoff that could distinguish a group with significantly increased survival. TMB is overall a very poor biomarker: even in the best-case scenario, 25% of responders fall below the treatment prioritization threshold and are thus discouraged from receiving a potentially efficacious and life-extending treatment.

Last, we put forward a mathematical model that expands the neoantigen theory and reconciles it with the clinical data. First, our model presents a simple mathematical underpinning of the neoantigen theory and is consistent with the lack of association observed between TMB and response/ survival after immunotherapy. Second, the model reproduces the effect of immunodominance hierarchies of T-cell responses observed in vivo 111 . Finally, it explains why immunoediting (i.e. negative selection against immunogenic mutations) is inefficient and allows tumours to accumulate a high TMB.

Overall, the results of the first chapter caution against using TMB in a clinical setting, as it could skew access to immunotherapy for patients who might benefit from it. Since the publication of these results, other cancer-specific studies have supported the lack of predictiveness of TMB 187-189 .

To further understand the genomic and immune underpinnings of response to immunotherapy in high TMB patients, the second part of this work examined the case of a tumour with extremely high TMB due to microsatellite instability (MSI-H).

This case report is the first comprehensive molecular description of intrinsic resistance to checkpoint inhibitors in MSI-H tumours and can further help therapy selection for cancer patients. We found that the patient's tumor Altogether, the second chapter refined our understanding of TMB in a clinical setting. In particular, the detection of mutations in the antigen-presenting pathway can further help identify patients that are the most likely to derive benefit from immunotherapy.

In conclusion, the first two chapters demonstrate the limits of using mutational load as-is for therapy selection. Nevertheless, our analysis suggests that the use of mutational load in the clinic can be informed by specific driver mutations (e.g. B2M loss, as presented in Chapter 2) to refine patients' therapy selection.

Mechanistic link between red meat and colorectal cancer

The landscape of passenger mutations is not shaped by selection.

Therefore, it constitutes a track record of the mutagenic processes the tumour underwent before their sequencing. The study of passenger mutations can help identify the molecular underpinnings of cancer development associated with lifestyle habits, which is the first step towards earlier detection, better therapies and improvement of patients' survival.

However, prior studies lacked comprehensive epidemiological annotations that would give insights into how lifestyle exposures impact tumour molecular features. Although several behaviours such as dietary habits have been labelled as carcinogenic, proof of their mutagenic effect has not been observed directly in patients' tumours.

The third chapter provided for the first time evidence of a novel mutational signature in CRC. Our study demonstrated that the signature is the biological consequence of DNA alkylation. In addition, we found this signature in normal colonic cells, which suggests that the alkylating signature is present early during cancer progression.

Furthermore, we showed that this signature is associated with high intakes of processed and unprocessed red meat, which have been hypothesized to yield alkylating damage. This is the first time an alkylating signature is linked to a component of the diet in CRC, and this further supports the carcinogenicity of red meat consumption.

Consistently, we observed that many of the known cancer features related to red meat intake are also faithfully reproduced by this alkylating signature, mainly a higher incidence in distal tumours and enrichment in KRAS p.G12D mutations.

Overall, the last chapter further supported the use of passenger mutations to confirm the carcinogenicity of putative mutagens and guide cancer prevention guidelines. Prior to this study, the presupposed DNA damage induced by red meat intake had never been observed directly in human tumors.

In addition, our mutational signature analysis exemplified how leveraging passengers can predict how mutagenic processes affect driver mutations and initiate cancer.

Limits and future directions

Here, we discuss the limits of focusing only on the passenger mutational landscape and potential future directions for the research projects covered in this dissertation . fidèlement reproduites par cette signature alkylante. En particulier, nous observons une plus forte abondance de la signature alkylante dans (i) les tumeurs colorectales distales (proches du rectum) (ii) les tumeurs présentant une mutation KRAS p.G12D.

Leveraging passengers for precision medicine

  leur nombre, et leur signature mutationnelle, c'est-à-dire leurs combinaisons uniques dans le génome tumoral. Le premier chapitre interroge l'utilisation clinique de la charge mutationnelle comme biomarqueur de réponse à l'immunothérapie. Malgré l'approbation récente par la Food and Drug Administration (FDA) de ce biomarqueur, les analyses de ce premier chapitre en montrent une utilité très limitée. Par conséquent, l'utilisation clinique de la charge mutationnelle pourrait biaiser l'accès aux traitements immunothérapiques pour certains patients qui pourraient en bénéficier. Dans le même ordre d'idée, le deuxième chapitre de cette thèse approfondit l'analyse de la charge mutationnelle en s'intéressant au cas d'un patient dont le cancer colorectal n'a pas répondu au traitement immunothérapique. L'analyse génomique, transcriptionnelle et pathologique de la tumeur et de son microenvironnement révèlent une évasion immunitaire à stratégie double. La perte de présentation d'antigènes d'une part, et le microenvironnement immunosuppresseur d'autre part, pourraient expliquer la résistance au traitement pour le cancer de ce patient.
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 1 Background on cancer genomics 1.1.1 Cancer is a disease of the genome Cancer is characterized by the uncontrolled proliferation of cells, which can spread to other parts of the body. The subsequent abnormal growths can invade key organs, impair their functions and are often the cause of cancer-related deaths. In 2020, cancer was the second leading cause of death with over 10.0 million deaths and an estimated 19.3 million new cancer cases 1 .

Figure 1 . 1 :

 11 Figure 1.1: Contribution of environmental and lifestyle factors to overall cancer death

  1.1.2 DNA sequencing and the characterization of the cancer genome Because of the genetic nature of cancer, oncology research has extensively focused on characterizing the mutational landscape of a wide array of cancer types. In recent years, the study of tumor mutations have stepped up thanks to the emergence of high-throughput sequencing. In particular, Next Generation Sequencing (NGS) of DNA has enabled the study of cancer cells at a single base resolution 13 . Briefly, DNA can be broken into short fragments that are amplified and then sequenced to produce "reads" of the genome. Bioinformatic techniques can then piece together the reads to recapitulate the original sequenced genome 14 . In oncology research, DNA is often sequenced from both normal and tumor tissues. Genetic variants present in both the normal and tumor tissues are called germline mutations and are often hereditary ( Figure 1.2A ). Genetic variants present in the tumor but not in the normal tissues are called somatic mutations ( Figure 1.2B ). These are central during cancer initiation and progression, and are the main focus of this thesis.

Figure 1 . 2 :

 12 Figure 1.2: Mutations in a matched colorectal tumor/ normal paired sampleEach read (in grey), is aligned to a reference genome (top sequence). Bases that do not match the reference genome (on top) are drawn on the read (A, C, G, or T). (A) Example of a C>T heterozygous germline mutation in the first exon of Methylguanine methyltransferase (MGMT). (B) Example of a C>Tsomatic mutation in KRAS, a well-characterized driver mutation.

Figure 1 . 3 :

 13 Figure 1.3: Driver and passenger mutations in cancer evolution Punctual driver mutations (in red) generate phenotypically different clone lineages (in blue) with an elevated fitness. Passenger mutations (in orange) accumulate and fixate during cancer progression but have individually no role on tumour growth.
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 3 Passenger mutations offer a window into mutagenic processes 1.3.1 Concept of mutational signature Passenger mutations do not provide a growth advantage to the tumour.

  spectrum ( Figure 1.4 , in orange) with different contributions. In addition to the substitution type, mutagenic processes can further present a bias in the trinucleotide context. For example, aging preferentially targets A[C>T]G compared to A[C>T]A 43 . Consequently, mutational signatures are often represented by the 96 possible mutation types (six substitution types and their immediate 5′ and 3′ trinucleotide context) ( Figure 1.5C ). Larger broader contexts (e.g. pentanucleotide and heptanucleotide context) have also been studied 44 although their comprehensive analysis is hindered by the exponential loss of statistical power.

Figure 1 . 4 :

 14 Figure 1.4: Concept of mutational signatures Throughout the genesis and progression of a tumour (vertical arrow), a variety of mutational processes can affect the tumoral genome. The final tumour mutational landscape is a cumulation of those processes.

  Figure 1.5C). The 'Signature Activity' matrix consists of the contribution of each mutagenic process for a given patient.
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 15 Figure 1.5: Workflow for mutational signature analysis (A) Variants are called for multiple tumour samples and are used to construct the catalog matrix. In the latter, each row corresponds to a sample and each column contains the mutation counts for a specific trinucleotide context. (B) A

  .
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 4 Passenger mutations can collectively trigger an immune response 1.4.1 Mutations can be presented at the cell surface As part of the normal metabolism, intracellular proteins can be ultimately fragmented into smaller peptides that are transported to the endoplasmic reticulum and presented on the cell surface as part of a complex with Major Histocompatibility Complex class I (MHC I) molecules 55 ( Figure 1.6 ). These antigens are part of the 'self' and do not trigger an immune response.

Figure 1 . 6 :

 16 Figure 1.6: Neoantigen theory Tumour mutations can be expressed and translated into proteins, which can then be degraded into smaller peptides. These peptides can form a complex with MHC class I molecules and be presented at the cell surface as 'neoantigens' that can bind to T-cell receptors and trigger an immune response.
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 17 Figure 1.7: Immunotherapy response rate for different cancers Objective response rate (RR, on the y-axis) for a range of cancers (on the x-axis) for both monotherapy (dark blue) and combination immunotherapy (light blue). Based on numbers from a previously published meta-analysis 62 . MSS: Microsatellite Stable. MSI: Microsatellite Instable

  largely understudied. Throughout this thesis, I explore the use of leveraging passengers in combination with driver mutations to further inform cancer therapy and prevention ( Figure 1.8 ).
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 18 Figure 1.8: Summarizing diagram of the objects of study

  , and has led to the development of commercial TMB-based biomarker platforms. Furthermore, patient prioritization for ICB based on individual TMB level was recently approved by the FDA 71 . Here we revisit the association of mutational burden with response to checkpoint inhibitors by aggregating the largest pan-cancer dataset with more than 2500 ICB-treated patients with sequencing data and clinical annotation. Surprisingly, we find little evidence that TMB is predictive of patient response to immunotherapy. Our analysis suggests that previously reported associations arise from a combination of confounding disease subtypes and incorrect statistical testing. We show that using a TMB threshold for clinical decisions regarding immunotherapy could skew access to treatment for patients who may benefit from these therapies. Finally, we present a simple mathematical model that extends the neoantigen theory, is consistent with the lack of association between TMB and response to ICB and highlights the role of immunodominance. Our analysis calls for caution in the use of TMB as a biomarker and emphasizes the necessity of continuing the search for other genetic and non-genetic determinants of response to immunotherapy.

  quantify the shortcomings of TMB-based selection of patients for treatment we computed the proportion of misclassified patients based on the recent FDA approval of 10 mutations/Mb threshold to select patients for ICB ( Figure 2.1C and Figure 2.1D

  Strikingly, plots of survival versus TMB ( Figure 2.3A and Figure 2.S4 )

Figure 2 .

 2 4A and further explained in Materials and Methods.

Figure 2 .

 2 Figure 2.4B shows the probability of eliciting a response ( P immune response ) as a function of TMB for a range of P immunogenic and k crit values. Our model has two regimes: If individual mutations are unlikely to be immunogenic ( P immunogenic <0.1, Figure 2.S8 ), the response rate increases gradually with TMB, as widely expected by the neoantigen theory, but inconsistent with clinical data
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 21 Figure 2.1: TMB association with clinical benefit from ICB across cancers (A) Association of TMB with response to ICB across five cancer types from CPI800+ (the largest cohorts of each cancer type are plotted here, the others are shown in Figure S1A). Only melanoma and non-small cell lung cancer have a significantly different TMB between responders and non-responders. ccRCC:
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 24 Figure 2.4: TMB and cancer immunogenicity (A) Our model of cancer immunogenicity coarse-grains several cellular processes into the probability that a mutation becomes immunogenic (P immunogenic ). If the number of immunogenic mutations reaches k crit , the cancer triggers an immune response (B) The probability of immune response P immune responce as a function of TMB for a range of k crit and P immunogenic . Rapid saturation of P immune responce . TMB requires low k crit and sufficiently high P immunogenic >0.1 (see Materials and Methods ).

( A )

 A Association of TMB with response to ICB across three cancer types from CPI800+. Only melanoma and non-small cell lung cancer have a significantly different TMB between responders and non-responders. (B) Association of TMB with response to ICB across seven cancer types from CPI1000+.Melanoma, non-small cell lung, bladder and colorectal cancer have a significantly different TMB between responders and non-responders.
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 2 Figure 2.S2: Chronic obtrusive pulmonary disease status and TMB Association of TMB with COPD in TCGA. Of the 83 patients with COPD data, 43 were diagnosed with COPD. Here we compare COPD patients (n=43) to the rest of the cohort (n=1101).
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 2 Figure 2.S3: Correlation between response rates and TMB across cancer types Median TMB in 19 cancer types of patients who underwent immunotherapy treatment (monotherapy or combination therapy). Pearson R correlation coefficient and p-value was calculated for all patients (in blue) and a subset of patients (red box and values) after removing melanoma and colorectal cancers.
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 2 Figure 2.S4: TMB association with progression-free survival post-immunotherapy (A) (B) Plots of progression-free survival and TMB for melanoma and lung cancer ICB cohorts labeled by cancer subtype, showing the lack of correlation or of an obvious TMB cutoff.
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 2 Figure 2.S5: TMB association with overall survival post-immunotherapy (A) Randomization analysis results in mel1 and mel2 and stratification by subtypes (p-values < 10 -10 not shown) (B) Randomization analysis results in lung1 and stratification by subtypes (p-values < 10 -10 not shown). When corrected for multiple hypotheses all cohorts fail to provide a statistically significant cutoff.

Figure 2 .

 2 Figure 2.S6: TMB association with overall survival post-immunotherapy Results of the randomization analysis in CPI1000+ (p-values < 10-10 not shown).When cancer types of CPI1000+ were combined, a nominally significant p-value (p=0.04) arises, likely due to cancer types with different TMB ranges showing significantly different survival rates to ICB.
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 22 Figure 2.S7: TMB association with overall survival post-immunotherapy Randomization analysis results in multiple cancer types with MSK-IMPACT targeted next-generation sequencing data (p-values < 10 -10 not shown)

Figure 2 .

 2 Figure 2.S9: Components of cancer immunogenicity (A) Probability of eliciting an immune response for a range of k crit values

  -2-Microglobulin (Polyclonal rabbit anti-human β 2 -microglobulin, Dako A007202-2) and MMR proteins (as described in133 ) with standard immunohistochemistry protocols.Staining for multispectral imaging analysis was performed on a BOND RX automated stainer (Leica Biosystems) utilizing 5-μm thick section of FFPE tissue. After deparaffinization, rehydration and antigen retrieval, slides were serially stained with primary antibodies to Cytokeratin (clone AE1/AE3, DAKO), CD3 (Polyclonal, DAKO A0452), CD56 (clone 123C3; DAKO), followed by incubation with an anti-rabbit polymeric horseradish peroxidase secondary IgG (Poly-HRP, BOND Polymer Refine Detection Kit, Leica Biosystems). Signal for antibody complexes was labeled and visualized by Opal Fluorophore Reagents (PerkinElmer). Image acquisition was performed using the Mantra multispectral imaging platform (Vectra 3.0, PerkinElmer, Hopkinton, MA). Representative intratumoral regions of interest were chosen by a gastrointestinal pathologist (J.N.), and 3-5 fields of view (FOVs) were acquired at 20x resolution as multispectral images. Cell identification was performed as previously described134 . In short, after image capture, the FOVs were spectrally unmixed and then analyzed using supervised machine learning algorithms within Inform 2.3 (PerkinElmer). Immune cell densities were then calculated based upon phenotyped cell counts and tissue areas.

A 78 -

 78 year-old woman with metastatic colon adenocarcinoma was admitted to the hospital with abdominal pain. CT imaging revealed a large heterogeneously enhancing paracolic mass ( Figure 3.1A ). The patient had a history of three metachronous early-stage colon adenocarcinomas: a stage II (pT3N0) descending colon primary, a stage I (pT1N0) ascending colon primary, and a stage III (pT3N1b) transverse colon primary. She previously underwent sequential left hemicolectomy, right hemicolectomy, and completion colectomy over a six-year period. Molecular testing of her stage III tumor showed a BRAF c.1799T>A (p.V600E) mutation and loss of MMR proteins MLH1 and PMS2 by immunohistochemistry. Following her completion colectomy, she received 12 cycles of adjuvant 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX). However, one year later she had disease recurrence in the upper abdominal mesentery and went on to receive 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with bevacizumab for metastatic CRC. She tolerated this poorly and was changed to FOLFOX and bevacizumab with subsequent progression of disease after several months of treatment. Biopsy of the recurrent tumor was recommended to confirm dMMR and MSI-H status. Ultrasound-guided abdominal mass biopsy was performed. Pathology revealed poorly differentiated adenocarcinoma with loss of nuclear MLH1 and PMS2 staining by immunohistochemistry, microsatellite instability in five of the five genomic markers tested and methylation of the MLH1 promoter. She was started on pembrolizumab (200 mg every 3 weeks) with restaging scans after 2 months interpreted as progression of disease. Given the possibility of pseudoprogression with immunotherapy, the patient was maintained on therapy, but another set of scans after 5 months of treatment showed clear disease progression ( Figure 3.1A ).

  be sporadic. The patient's tumor harbored a B2M frameshift deletion p.V47Afs*6 (CCF = 0.76) and had loss of heterozygosity (CCF = 0.97). The inactivation of B2M in this tumor is consistent with a clonal event in its evolution ( Figure 3.2A ). To validate B2M loss, we performed immunohistochemistry on the pre-immunotherapy tumor sample for B2M and confirmed complete loss of expression in the tumor cells ( Figure 3.2B and Figure 3.2C ). There were no biallelic inactivation events in other genes of the antigen presentation machinery/interferon-gamma pathway ( JAK1, JAK2, STAT1, STAT2, STAT3, CD274, PDCD1, PDCD1LG2, HLA-A, HLA-B, HLA-C, TAP1, TAP2, IFNGR1, IFNGR2 ).

  to transcriptional profiles of 594 TCGA CRCs that are publicly available on cBioPortal ( www.cbioportal.org/ , version: coadread_tcga_pan_can_atlas_2018). Subtyping efforts in CRC have showed the existence of four distinct groups, based on gene expression data 132 . As expected, RNA-seq-based CMS classification of this patient's tumor showed a CMS1 gene expression pattern that is typical of MSI-H tumors 132 . We also employed RNA-seq immune cell subset deconvolution and found that the patient's tumor had a high inferred immune infiltrate abundance compared to other CRCs from TCGA (within top 2%), as expected given MSI-H status, but also had a significantly higher infiltration with activated natural killer (NK) cells and M2 macrophages ( Figure 3.3A ). These results held true when we restricted the comparison to MSI-H (n = 73, Supplementary Figure 3.S2A ) or advanced (stage III and IV) tumors (n = 240, Supplementary Figure 3.S2B ).

[

  CD3 -CD56(NCAM1) + ] in the tumor microenvironment ( Figure3.3B ) and compared the results from this intrinsically resistant tumor to an dMMR/MSI-H tumor from another patient with metastatic CRC that responded to pembrolizumab. This was a 70-year-old woman who had been previously treated with surgery and FOLFOX/bevacizumab chemotherapy prior to receiving a PD-1 inhibitor (nivolumab) and showing response by imaging and tumor marker. We found that there was a higher number of intraepithelial NK cells within the center of the PD-1-resistant cancer (17.4 cells/mm 2 (± 5.6) in the resistant tumor and 1.4 cells/mm 2 (± 1.4) in the responding tumor, P value = 0.032, two-tailed student t test). There were no significant differences in T-cell infiltration. To further assess the presence of NK cells in this intrinsically resistant tumor, and in order to specifically interrogate the transcriptional activation state of these immune cells, we performed single-cell analysis of the pre-checkpoint inhibition specimen using scRNA-seq. Our results confirm the presence of activated NK cells in this tumor and high expression of activated NK cell markers including NKG7 , GZMB , GZMA , and GNLY ( Figure3.3C ).

  immunofluorescence against T and NK cell markers and demonstrated enrichment of NK cells in the intrinsically-resistant MSI-H tumor compared to one that responded to PD-1 inhibition. We also identified transcriptionally activated NK cells in this immune checkpoint-resistant tumor through single-cell RNA-seq analysis of the tumor and tumor-associated immune cells from the pre-immunotherapy biopsy specimen. NK cells can recognize and eliminate cells lacking MHC class I expression 141,142 , but are also continuously tuned by classical and non-classical MHC class I molecules, in addition to MHC I-independent mechanisms that instruct NK cells to acquire appropriate missing self-recognition capacity, a process termed NK cell "education" 143,144 . This could at least partially explain the lack of NK cell-mediated tumor control/elimination in a completely B2M-deficient tumor microenvironment, despite an otherwise activated NK cell phenotype. In addition, M2 macrophages have been shown to exert an immunosuppressive role, in particular by impairing NK cells degranulation during cancer progression 145 .
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 31 Figure 3.1: Patient disease and treatment course . A, The stage, treatments, and response of the patient's cancer are shown. Timepoint zero in the event timeline indicates the start of immunotherapy. CT

Figure 3 . 2 :

 32 Figure 3.2: Impairment of the antigen presentation machinery through biallelic loss of β2-microglobulin. A, Mutation analysis results. The left schematic shows the Integrated Genomics Viewer (IGV) panels of both tumor and normal tissue. Deleted regions are shown in red. The figure on the right shows the allele-specific copy-number profile: the y axis represents the copy number of the allele, and the x axis shows the genomic localization on chromosome 15. The left figure shows the frameshift deletion in exon 2 of B2M, whereas the right figure shows the LOH of a segment of 15q surrounding B2M. B, Hematoxylin and eosin staining of
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 333 Figure 3.3: NK cell infiltration in the tumor-immune microenvironment. A, Immune infiltrates deconvolution from RNA-seq data. The immune infiltrates abundances, as a total cell fraction, of the immune checkpoint-resistant tumor (red point) are compared with 594 other colorectal cancer tumors from TCGA. The immune infiltrates (x axis) were sorted by P values from left to right. The immune infiltrates for which the patient was in the top or bottom 5% are denoted with an asterisk. B, Multiplexed immunofluorescence imaging analysis of the tumor-immune microenvironment. Left panels, representative immunofluorescent expression of CD3 (white), CD56 (green), cytokeratin (purple), and DAPI (blue, marking nuclei). Right panels, results from image analysis, driven by machine learning, that identifies CD3 + CD56 -T cells (white dots) and CD3 -CD56 + NK cells (green dots) within tumor regions. C, Single-cell transcriptional analysis of the tumor. t Distributed Stochastic Neighbor Embedding (t-SNE) visualization (left) of the scRNA-seq data from 595 cells. The heatmap (right) shows significantly differentially expressed genes of interest between the nonepithelial cell clusters.
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 44 Figure 4.S3 ), namely POLE deficiency (c-POLEa/SBS10a, cossim = 0.95 and c-POLEb/SBS10b, cossim = 0.86), aging (c-Age/SBS1, cossim = 0.95), deficient mismatch repair (dMMR; c-dMMRa/ SBS15, cossim = 0.90 and c-dMMRb/SBS26, cossim = 0.90), and exposure to alkylating agents

  exhibited higher alkylating damage in tumors (P = 1.4 × 10-4 in NHS/HPFS and P = 1.9 × 10-8 in TCGA, Mann-Whitney U test) and normal crypts (P = 0.022, Mann-Whitney U test; Figure 4.3B ).
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 4142 Figure 4.1: De novo signature deconvolution in NHS/HPFS CRCs
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 44 Figure 4.4: Carcinogenic potency of alkylating damage

5. 1 . 1

 11 Refining the use of mutational load in the clinicTumour mutational burden is the second FDA-approved tissue-agnostic biomarker of response in solid tumors; it represents an important advancement in the field of oncology by further supporting the use of genomic testing to drive personalized medicine for cancer patients. However, more analyses are needed to refine the use of TMB for therapy selection.

  had a loss of Beta-2-Microglobulin (B2M) which is part of the Major Histocompatibility Complex class I (MHC I). Subsequently, the loss of B2M halted the presentation of tumor antigens at the cell surface. Thus, although the tumor presented a high TMB, the resulting neoantigens could not bind to T-cells and trigger an immune response ( Figure 1.6 ). However, cells with missing B2M are also expected to be selectively eliminated by Natural Killer (NK) cells 190 . Consistently, RNAseq and multiplex immunofluorescence experiments confirmed that the patient's tumor presented a high infiltration of NK cells. Yet, the presence of an immunosuppressive environment might explain the lack of active tumor killing.

  of TMB-derived predictors of response to immunotherapyThe poor predictiveness of TMB has stimulated the search for other determinants of immunotherapy response. This includes advanced fitness cost models 115 that predict patient survival, and TMB-derived measures based on mutation clonality. The latter is based on the observations that clonal mutations are more likely recognized by T-cells 191 . Recent advances also include machine learning models 189 incorporating TMB and predicting clinical response with higher sensitivity and specificity.5.1.1.2 Alternative treatments for tumors with high TMBAlthough passenger mutations have individually little to no role in cancer progression, they can collectively steer its trajectory 192 . To examine passenger mutations' role in light of cancer treatment, we solely focused on leveraging them to predict response to immunotherapy. However, other treatments can also leverage high mutational burden. Indeed, the accumulation of mutations is a hallmark of cancer progression. Consequently, cancer cells often manifest stress-related phenotypes caused by DNA damage, which can be exploited in the clinic193 . In particular, an excess of mutations can lead to proteotoxic stress caused by the accumulation of misfolded proteins. The unfolded protein response (UPR) is a signalling pathway that allows cells to cope with the accumulation of unfolded proteins through adaptive programs to reduce misfolded protein accumulation194 . Hence, inhibitors of UPR could potentially unleash the deleterious effect of accumulated passengers and be a potential alternative to immunotherapy in tumours with high TMB195,196 .5.1.2 Leveraging passengers for precision prevention5.1.2.1 All carcinogens are not direct mutagensAlthough our study exemplifies the identification of mutagenic lifestyle factors (here, red meat consumption) to potential carcinogenic effects, it is important to note that carcinogens are not all direct mutagens. An alternative model197,198 is that carcinogens affect selective constraint, which lead to the clonal expansion of pre-existing mutations. This is supported by recent 198 mice experiments of exposures to known human carcinogens which showed no associated mutational signature. (Human Immunodeficiency Virus) positive patients can present low T-cell counts and subsequently develop lymphomas associated with EBV (Epstein-Barr Virus) or KSV (Kaposi sarcoma-associated herpesvirus) infection 199 . Moreover, some mutational signatures are non-specific to biological processes. This is often the case when the biological process is an indirect mutagen. For example, chronic inflammation leads to indirect mutagenic damage by generating nitric oxide in affected tissues 200 . HBV (Hepatitis B Virus) and HCV (Hepatitis C Virus) are well-documented examples of inflammatory agents which can lead to hepatocellular carcinoma 201 .Thus, while mutational signature analysis is an invaluable tool to understand carcinogenesis and potential treatments, it might not provide the whole picture.5.1.2.2 Identification of inherited predispositionsAlthough there are general guidelines for red meat consumption, there are no tailored dietary recommendations based on inter-individual variability. In that sense, the identification of a novel alkylating signature associated with red meat consumption offers an exciting opportunity to identify patients that are most susceptible to dietary-induced alkylating damage.In particular, a specific polymorphism 202 ( rs16906252 ) present in 12% of the global population 203 , has been previously associated with an impairment of MGMT . MGMT is a central gene to alkylating damage repair. As our study showed an increase of alkylating damage in tumors with loss of MGMT, patients harboring this particular polymorphism might be particularly sensitized to dietary-induced alkylating damage. Le premier chapitre de cette thèse remet en question un paradigme central en onco-immunologie: la notion qu'un nombre élevé de mutations ainsi que les néo-antigènes qui en résultent (reconnus comme « corps étrangers » par les lymphocytes T) mènent à une meilleure réponse immunitaire antitumorale. Plusieurs articles ont ainsi suggéré que les tumeurs à forte charge mutationelle (c.-à-d. le nombre total de mutations) réagissent mieux à l'immunothérapie. Ces études ont été à la base de l'approbation par la FDA (Agence fédérale américaine des produits alimentaires et médicamenteux) de la charge mutationelle comme facteur pronostique de la réponse à l'immunothérapie. La charge mutationnelle tumorale est ainsi devenu le deuxième marqueur de réponse "tissu-agnostique" (c.-à-d. Ne dépendant pas du tissu cancéreux approuvé par la FDA pour les tumeurs solides. Ceci représente une avancée importante dans le domaine de l'oncologie, notamment pour la médecine dite de précision où la sélection de traitement thérapeutique est optimisée selon des caractéristiques propres au patient. Néanmoins, des analyses supplémentaires sont nécessaires pour affiner l'utilisation de la charge mutationelle pour les patients atteints du cancer. Nous re-examinons le paradigme de la charge mutationnelle en menant une méta-analyse de plus de 2500 patients cancéreux ayant reçu un traitement immunotherapeutique. Nous constatons que la preuve d'une association entre charge mutationelle et réponse à l'immunothérapie repose en grande partie sur les données de deux types de cancer -le mélanome et le cancer bronchique non à petites cellules. Ces deux types de cancer contiennent des sous-groupes pouvant confondre l'association entre charge mutationelle et réponse à l'immunothérapie. Pour ré-analyser l'association entre charge mutationelle et réponse à l'immunothérapie, nous utilisons en premier lieu des métriques standard de performances diagnostiques (par exemple, l'analyse de courbes ROC i.e. fonction d'efficacité du récepteur). De manière générale, nous observons que la charge mutationelle est un très mauvais biomarqueur: dans le meilleur des cas, 25 % des patients bénéficiant de l'immunothérapie sont en dessous du seuil de priorisation du traitement de la FDA. En d'autre termes, près de 25% des patients peuvent donc être potentiellement privés d'un traitement vital. De plus, notre analyse propose une correction statistique pour hypothèses multiples lorsque les tests ne sont pas indépendants. Après correction pour hypothèses multiples, absente des autres études en faveur de la charge mutationnelle comme facteur pronostique, nous ne trouvons aucun seuil de charge mutationelle pouvant être utile en clinique. Enfin, nous construisons un modèle mathématique de la théorie des néo-antigènes reflétant nos observations de l'association entre charge mutationelle et réponse au traitement immunotherapeutique. Notre modèle présente un fondement mathématique cohérent avec l'absence d'association observée entre la charge mutationelle et la survie après immunothérapie. De plus, le modèle est cohérent avec l'effet d'immunodominance des cellules T observées in vivo. Enfin, notre modèle explique pourquoi l'immunoédition (c'est-à-dire la sélection négative de mutations immunogènes) est inefficace et permet aux tumeurs d'avoir une charge mutationelle élevée. En résumé, ce chapitre démontre une utilité limitée de la charge mutationelle comme facteur pronostique de réponse au traitement immunothérapeutique.
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  TMB ≈1-exp(-TMB*p) . It is easy to see that for this case P immune response saturates at p*TMB~1. Thus to achieve approximately constant P immune response for TMB>10-20, one needs p>0.1 for k crit =1 . Achieving a similar effect for k crit >1 (i.e. P immune response that doesn't depend on TMB for TMB>10-20) requires even higher p>0.2. Moreover for k crit =1 , one can estimate the expected number of immunogenic mu 118 tations (p*TMB) present when 90% of cancers are immunogenic: 0.9= P immune response ≈1-exp(-TMB*p) , gives p*TMB=2.3. I.e.

irrespective of specific value of p, when 90% of cancers are immunogenic they carry only ~2 immunogenic mutations.

  S.-wide prospective cohort studies, namely the Nurses' Health Studies (NHS) I and II and the Health Professionals Follow-up Study (HPFS) 154 . Study participants (more than 230,000 women and 50,000 men) repeatedly provided data on diet, lifestyle, and other factors

without knowing their future colorectal cancer diagnosis, if any. We performed WES on matched primary untreated tumor-normal pairs in 900 patients with colorectal cancer with adequate tissue materials ( Figure 4.1A; Supplementary Table 4.S1 ). NMF signal separation revealed the existence of seven mutational processes (see Methods and

Figure 4.4D and Supplementary Table 4.S3 ).

  

	colorectal cancer recurrent drivers in non-MSI-high, non-POLE-mutated
	tumors. In particular, the alkylating signature appeared to be the dominant one
	that targets KRAS p.G13D (relative likelihood = 1) and KRAS p.G12D (relative
	likelihood = 0.91; Figure 4.4A ). This is due to p.G12D and p.G13D being in
	trinucleotide contexts (ACC>ATC and GCC>GTC, respectively) mainly targeted
	by the alkylating signature. PIK3CA p.E545K (TCA>TTA) is also predicted to be
	predominantly targeted by the alkylating signature (relative likelihood = 0.87).
	Supporting this, we showed that colorectal cancers having KRAS p.G12D,
	KRAS p.G13D, or PIK3CA p.E545K-mutant colorectal cancers were enriched
	with the alkylating signature compared with all other tumors ( Figure 4.4B , P =
	0.013, Mann-Whitney U test). Last, we examined patient survival across
	ordinal alkylating mutational signature quartiles and found that patients whose
	tumors have high alkylation damage (top quartile) had a worse colorectal
	cancer-specific survival (log-rank test Ptrend = 0.036; Figure 4.4C ;
	Supplementary Tables 4.S2 and 4.S3 ). Furthermore, higher alkylating
	signature contribution was associated with worse colorectal cancer-specific
	survival in both univariable and multivariable Cox proportional hazards
	regression analyses (Ptrend = 0.015 and Ptrend = 0.036, respectively,
	To find such driver mutations that associate
	with the alkylating signature, we devised a simple model ( Figure 4.4A ; see
	Methods ) that predicts the relative likelihood of mutational processes to target

  All analyses were carried out on the human genome build hg19. The pipeline employs the following tools: MuTect 19 , ContEst 170 , Strelka 171 , DeTiN 172 , AllelicCapSeg 173 , MAFPoNFilter 174 , RealignmentFilter, GATK 175 , and PicardTools. FFPE-specific artifacts are filtered similarly to previous publications[START_REF] Giannakis | Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma[END_REF]127 . Briefly, FFPE artifacts arise from formaldehyde deamination of cytosines resulting in C-to-T transition mutations, which presents itself as an ://dcc.icgc.org/releases/current/Projects/READ-US (as of March 2020). For consistency, only WES data sets were used. Altogether, we pooled 540 TCGA

	We have used the Cancer Genome Analysis (CGA) WES
	4.6.3 MGMT Promoter Methylation, MSI, and POLE Deficiency Status MGMT promoter methylation analysis in the NHS/HPFS cohorts was carried out using bisulfite conversion and real-time PCR as previously described 169 . MSI status was evaluated using 10 microsatellite markers (D2S123, D5S346, D17S250, BAT25, BAT26, BAT40, D18S55, D18S56, D18S67, and D18S487) as formerly detailed 154 . POLE deficiency was assessed by sequencing and manual Integrated Genome Viewer curation of POLE exonuclease domain mutations in hypermutated non-MSI-high tumors (>400 mutations). characterization pipeline patients with somatic mutation data, among whom 523 patients also had (https://github.com/broadinstitute/CGA_Production_Analysis_Pipeline) methylation data. We evaluated MGMT promoter methylation status using the developed at the Broad Institute of MIT and Harvard to call, filter, and annotate MGMT-STP27 prediction model 176 . In short, two probes (cg12434587 and cg12981137) were used to predict MGMT promoter methylation. An M value cutoff of 0.358, which empirically maximized the sum of sensitivity and specificity, was then used to discriminate MGMT promoter methylation status somatic mutations. 4.6.5 TCGA Data Analysis ( Supplementary Figure 4.S15 ).
	4.6.4 Somatic Variant Calling

"Orientation bias" (excess of C>T sites in F1R2 read pairs and an excess of G>A in F2R1 read pairs). In the pipeline we used, the "Orientation Bias Filter" tool 20 filters out FFPE-specific artifacts. To further filter spurious single-nucleotide variant calls, we used Burrows-Wheeler Aligner BWA-MEM (http://bio-bwa.sourceforge.net/) to realign sequenced reads associated with the mutations to a set of sequences derived from the human reference assembly. The Panel of Normal was created using normal samples with less than 1% of crosssample contamination (as evaluated by Contest 170 ) and less than 1% of tumor in normal (as outputted by DeTIN 172 ). We illustrate the variant calling pipeline in Supplementary Figure

4

.S14 . Clinical, methylation, and somatic mutation data from TCGA were downloaded from the Data Coordination Center (DCC) data portal at https://dcc.icgc.org/releases/current/Projects/COAD-US and https

  phenotype (high vs. low/negative 184 ), KRAS mutation (mutant vs. wild-type 185 ), BRAF mutation (mutant vs. wild-type 185 ), tumor differentiation

	(well to moderate vs. poor), disease stage (I/II vs. III/IV), microsatellite
	instability status (MSI-high vs. non-MSI-high 184 ), and long-interspersed
	nucleotide element 1 (LINE-1) methylation level (continuous 186 ). A backward
	elimination with a threshold P of 0.05 was used to select variables for the final
	models. Cases with missing data were assigned to the majority category of a
	given categorical covariate to limit the degrees of freedom, except for cases
	with missing LINE-1 methylation, for which we assigned a separate indicator
	variable. We confirmed that excluding the cases with missing information in any
	of the covariates did not substantially alter results.
	4.6.12 Data Availability
	WES data have been deposited in dbGAP (accession number
	phs000722). WES quality metrics and a subset of clinical annotations are
	included in this article. Additional clinical and epidemiology data from the
	NHS1, NHS2, and HPFS can be requested through the NHS/HPFS consortia.

(RSS) reached a lower plateau ( Supplementary Figure 4.S1 ). A similar rank survey on an independent cohort of 540 colorectal cancer exomes from the TCGA island methylator

. For instance, mutations in MYC proteins, which code for transcription factors, can activate the expression of pro-proliferative genes leading to cancer

.
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( Supplementary Figure 4.S4 ) revealed the same dispersion and cophenetic peaks at rank = 7 and a lower plateau RSS. For the rest of the analysis, we consequently used rank = 7. We confirmed the robustness of these seven signatures by running NMF with different variant allele frequency (VAF) cutoffs ( Supplementary Figure 4.S16 ). This demonstrates that the signature discovery is not affected by low VAF mutations, which are more likely to represent sequencing artifacts, such as those due to FFPE preservation.

SigProfiler was run on NHS/HPFS and TCGA colorectal cancer exomes as previously described [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF] .

Undersampling Simulations

To show that the difference in sample size between TCGA (n = 540) and NHS/HPFS (n = 900) can explain the presence of SBS30 instead of SBS11 in the former cohort, we (i) randomly sampled 540 patients of the 900 from NHS/HPFS; (ii) extracted seven signatures from the 540 patients and found their closest fit among SBS1 (aging signature), SBS10a and SBS10b (POLE signatures), SBS15 and SBS26 (dMMR signatures), and SBS11 and SBS30; and (iii) repeated steps (i) and (ii) a hundred times.

Crypt Mutational Signature Analysis

Mutational signatures from normal colonic crypts 156 were used in our analysis. These signatures were extracted from WGS data from 571 crypts from 42 individuals from the EGA 156 . Deconvolution was performed using a hierarchical Dirichlet process, which produces results similar to NMF 156 .

Analysis of Recurrent Hotspot Mutations

To compute the relative likelihood of mutational processes to target a specific hotspot, we (i) localized the trinucleotide context of the hotspot, (ii) extracted the signatures contribution for the specific trinucleotide context, and (iii) normalized the contribution of each signature, such that the sum became 1.

Recurrent hotspots were defined as specific point mutations occurring in at least 25 patients.

TCGA Germline Polymorphisms Analysis

TCGA genotyping data (Affymetrix SNP 6.0 array platform) were used to select germline variants from genes in the BER, FA, and TLS pathways extracted from the GSEA database (https://www.gsea-msigdb.org/gsea/msigdb/ 179,180 ). We imputed autosomal variants for TCGA samples using IMPUTE2 181 , with haplotypes of 1000

Genomes Phase 3 182 as the reference panel. We used the following criteria to select SNPs with the plink software 183 : (i) average imputation confidence score, also called INFO score, ≥0.4; (ii) minor allele frequency ≥5%; (iii) SNP missing rate <5% for best-guessed genotypes at posterior probability ≥0.9; and (iv)

Hardy-Weinberg equilibrium P value > 1 × 10-6. After imputation, 2,041 variants were included in our subsequent analysis. We tested for an additive effect (genotype 0,1,2 as a continuous variable) for each SNP and found no association with the alkylating signature [ Supplementary Figure 4.S7 and Supplementary Figure 4.S9 , FDR-adjusted P value (q value) less than 0.1 for all SNPs tested].

Statistical Analysis

We used R version 3.6. 1995 or before, 1996-2000, 2001-2005, and 2006-2014), family history of colorectal cancer (present vs. absent), current smoking status (never smoking, past smoking, 1-14 packyears, 15-24 pack-years, ≥25 pack-years), alcohol consumption (women: 0-<0.15, 0.15-<2.0, 2.0-<7.5, and ≥7.5 g/day; men: 0 to <1, 1-<6, 6-<15, and ≥15 g/day), tumor location (proximal colon vs. distal colon vs. rec-tum), CpG Ce troisième chapitre démontre ainsi pour la première fois qu'une empreinte mutation est liée à une composante de l'alimentation, ce qui confirme le rôle carcinogène de la consommation de viande rouge.

De plus, nous observons que de nombreuses caractéristiques cancéreuses connues liées à la consommation de viande rouge sont