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 1.9Experimental results of [Thorley, 1969]. The upper curve represents the investigated elastic material whilst the lower curve holds for the visco-elastic material. . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 Pulse and FSI-corrective wave speeds absolute deviation analysis for the models of [Korteweg, 1878, Skalak, 1956, Tijsseling, 2007]. . 1.11 Reynolds dependence of the deviation parameter k 3 . . . . . . . . . . 1.12 [Zielke, 1968]'s theoretical predictions compared to [Holmboe and Rouleau, 1967]'s experimental data. The following notation are used: H the hydraulic head line, a the pulse wave speed. . . . . . . 1.13 [START_REF] Wood | A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow[END_REF] boundary layer model for pressure waves energetic damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 Momentum balance on a cylinder element, [START_REF] Vardy | A characteristics model of transient friction in pipes[END_REF] 1.15 [START_REF] Vardy | A weighting function model of transient turbulent pipe friction[END_REF] discussion on the convolution kernel Reynoldsdependence according to the experimental work of [Artl, 1993]. . . . 1.16 Idealized velocity and viscosity distribution for the skin friction model of [START_REF] Vardy | Transient, turbulent, smooth pipe friction[END_REF] for the characterization of transient overpressure waves damping in pipes. Original chart of [START_REF] Abdeldayem | Analysis of Unsteady Friction Models Used in Engineering Software for Water Hammer Analysis: Implementation Case in WANDA[END_REF] 2.1 Frequency-response of an axially, discrete, impacted free hanging pipe, [Zhang et al., 1999]. . . . . . . . . . . . . . . . . . . . . . . . 45 2.2 Hydraulic looped network and its associated linear boundary condition system, [Kim, 2007]. . . . . . . . . . . . . . . . . . . . . . . . 46 2.3 Investigation of a complex network by the numerical inverse Laplace transform NILT procedure, [Zecchin, 2010, Zecchin et al., 2012] . . 46 3.1 Boundary layer model of a pulsatile incompressible flow in a circular tube, (R ω = 4 • 10 3 , τ = 1). . . . . . . . . . . . . . . . . . . . . . . . 108 3.2 Multi-time scale investigation of a damped oscillator (γ = 0.1). . . . 110 3.3 [Mei and Jing, 2016]'s leading and first order dimensionless pressure solution (continuous line) in comparison with the experimental pressure signature of [Holmboe and Rouleau, 1967] (dotted line). . . [START_REF] Adamkowski | Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation[END_REF] Drinking water, also referred to as the "new oil" or "blue gold", is part of the resources we undoubtedly have to protect. Scarce at the worldwide scale, the amount of drinking water is declining with climate change. According to the last Intergovernmental Panel on Climate Change (IPPC): "Risks in physical water availability and water-related hazards will continue to increase by the mid-to long-term in all assessed regions, with greater risk at higher global warming levels", [IPCC Working Group II, 2022]. The World Health Organization (WHO) also follows the IPCC's assessment that: "by 2025, half of the world's population will be living in water-stressed areas", [World Health Organization, 2022]. In human activity areas, drinking water supply is one underlying problem of the global water-stress. The river and aquifer systems are indeed climate-dependent as depicted in Figure 1. 4. With the resource's scarcity, the Water Distribution Networks (WDN) must unquestionably be operated under optimal and efficient conditions. However, the rude on-field reality brings out a striking contrast with the operative expectations. The Figure 1.2, extracted from the research work of [Che et al., 2021], depicts the WDN's efficiency of twenty world-wide reference cities. In France, the mean networks efficiency is close to 80% according to [START_REF] Eaufrance | Le service public d'information sur l'eau[END_REF] (the French public information service on water). Despite the evident facts, water distribution [Che et al., 2021] networks suppliers, being public or private, are struggling to improve the operative efficiency of networks. Among all, underground leakage plays a cornerstone role in the observed poor performance. Since WDN are mainly buried, the detection, repair and prevention of such leakage are complex and costly operations to carry out. The leaks and the replacement of the pipes thus yearly cost millions of euros to water suppliers. The Non-Revenue-Water (NRW) is an economic indicator reflecting the losses of income due to faults or disturbances in WDN, e.g. leakage, pipe's burst, water theft or bad connections. In an extensive study, [Liemberger 1.2. THE CONCEPT OF PRESSURE MANAGEMENT (PM) 3 and Wyatt, 2019] quantified the world-wide NRW value. Since the price of water may differ from location, the authors supposed a linear evolution of the water's price with respect to the Gross Domestic Product (GDP) as summed up in Figure 1.3. The leakage in WDN arises from poor pipe branch connections, structural Cost (NRW) i) Billio) USD/year [START_REF] Liemberger | Quantifying the global non-revenue water problem[END_REF] wears, pipe erosion, ground chemical aggression or poor pressure management, to cite a few. An overall aging of the pipes also reinforces and accelerates the development of leaks and bursts, further reducing the network's efficiency. Thus, "how current knowledge of water distribution networks could be improved in order to prevent, predict and detect faults that lead to a decrease in network performances ?"

The concept of Pressure Management (PM)

The concept of Pressure Management (PM), encompasses all operational techniques and technologies dedicated to the search of optimum WDN's management.

A poor pressure regulation is indeed known to cause leakages, reduce infrastructures lifetime, increase consumption and may lead to hazardous burst of pipes, [START_REF] Vicente | Pressure Management in Water Distribution Systems: Current Status, Proposals, and Future Trends[END_REF], Creaco et al., 2019]. Diminishing the pressure is usually considered useful to reduce leakage since: "background leakage is pressure dependent, thus, controlling the excess pressure at some tactical nodes in the network is worthwhile in reducing the water losses", [START_REF] Abu-Mahfouz | Real-Time Dynamic Hydraulic Model of Water Distribution Networks[END_REF]. From an operational viewpoint, WDN are sub-divided into Pressure Metered Area (PMA) or District Metered Area (DMA), the consequence of which increases the management of pressure flux across the distinct sectors. However, the selection of such supervised area is a strenuous task and results into a multi-parameters minimization problem, [START_REF] Laucelli | Optimal Design of District Metering Areas for the Reduction of Leakages[END_REF]. Once sectorized, the PM is operationally CHAPTER 1. INTRODUCTION carried-out via the use of a valves, usually pressure regulator valves, or hydraulic devices such as pumps. The DMA approach is depicted in Figure 1.4a. A more ad-(a) Metering hierarchy in WDN. Source [Farley, 2001] (b) Real time control (RTC) of WDN. Source [START_REF] Fontana | Real-Time Control of Pressure for Leakage Reduction in Water Distribution Network: Field Experiments[END_REF] vanced level of efficiency is achieved through the development of hydraulic network control loop or Real Time Control (RTC) devices. The RTC monitoring methods deal with the measurement of physical fields of interest (e.g. pressure, flow-rate, temperature) in a non-continuous manner over time intervals of the order of one to fifteen minutes, [START_REF] Creaco | Real time control of water distribution networks: A state-of-the-art review[END_REF]. These on-field monitoring techniques are now cost effective for water suppliers due to the decreasing cost of sensors along with the development of effective telemetry technologies such as the Supervisory Control And Data Acquisition, (SCADA). The RTC concept is sketched in Figure 1.4b. The on-field measurements are broadcast to a distant control room where data are analyzed automatically (e.g. using servo control), or manually (e.g. detection of anomaly), depending on the encountered configuration. A corrective order is then broadcasted back to the actuators scattered in the network. Such network monitoring, at the WDN's scale, is relevant for the dynamic management of the regulation valves, [START_REF] Campisano | Field-Oriented Methodology for Real-Time Pressure Control to Reduce Leakage in Water Distribution Networks[END_REF], Creaco and Walski, 2018, Fontana et al., 2018].

The DMA, while optimal in terms of pressure and flow-rate management, may have negative counterparts. The recent work of [START_REF] Armand | Impact of network sectorisation on water quality management[END_REF] indeed pointed out the possible negative impact of the network sectorization on the overall water quality (e.g. water age, particle accumulation mechanism or bio-film behavior).

The authors noticed, for the UK-based WDN investigated, an increase in water age and dead-end-like hydraulic behaviors resulting in a decreasing number of pipes with self-cleaning flow-rate. Even if PM is a robustness concept allowing to deal with large-scale slow operative issues occurring in WDN, it remains limited in scope. The reduction of background leakage is in fact allowed by PM, although leakages remain. Furthermore, PM does not significantly reduce the occurrence of new leakages or bursts. Finally, PM only protects from slow pressure trends, occurring at minute scale, whereas it is known that significant pressure variations happen at much lower time-scale, the impact of which can be more hazardous. Thus, new elements related to strategic management of WDN may hold from transient life. A transient event in a pipeline, also referred to as Water Hammer phenomena, is related to any overpressure (or underpressure) arising from sudden flow-rate perturbations. The overpressure generated propagates in the networks, giving rise to complex hydraulic interactions. As depicted in Figure 1.5, for a simple pipe connected to an iso-pressure reservoir upstream and to an instantaneous closure valve downstream, the phenomena can be simplified. Let us suppose an instantaneous downstream closure occurring at the time t = T c . If the pipe of length L is initially filled with a fluid having a pressure P i , denoting the shock wave speed c p , the following pressure trend is found:

• At t = T c , an overpressure arises in the system due to the valve closure.

• For t ∈ T c , T c + 2L Tc , the shock wave propagates up to the reservoir. Once reached, the wave is fully reflected and an under-pressure propagates backwards.

• At t = T c + 2L

Tc , the under-pressure hits the closed valve.

• For t ∈ T c + 2L Tc , T c + 4L Tc , the wave propagates once again up to the reservoir. The wave is then reflected and an overpressure propagates backwards.

The sudden overpressure shocks are detrimental to the network's durability. The under-pressure phases being the more critical ones. The pressure shocks are indeed sufficient to destroy a whole hydraulic plant, as depicted in Figure 1.6, and then represent a risk that the PM methods cannot handle. Even worst, the network regulation devices induce flow-rate perturbations that may generate detrimental shock waves. On the other hand from a more optimistic standpoint, the propagating overpressure shock waves embed crucial topographic information, useful for asset management (e.g. characterization of the pipe thickness by measuring the shock propagation speed). Furthermore, since a pipe burst generates a flow-rate disturbance, it is conceivable to record the associated overpressure/under-pressure flow in several network locations, by analogy with the RTC analysis, and thus intend to locate it, [Che et al., 2021]. These considerations are a topic of interest for this PhD.

Motivation of the study

This PhD is supported by the collaborative ANRT Grant CIFRE 2019/1453 cofunded by SETOM, dedicated society of Veolia Water for the public drinking water service of Toulouse Métropole operating under the brand Eau de Toulouse Métropole. Several objectives are targeted:

• Understand and develop the currently existing knowledge framework on hy-1.4. STATE OF THE ART 7 draulic transients.

• Develop a numeric operational tool for the prediction (e.g. infrastructure designing) of transient phenomena in WDN.

• Integrate the signals transmitted by high-frequency sensors deployed in the Toulouse Métropole WDN into a processing code able to localize (possibly approximately) the transient origin.

The Toulouse's WDN is interesting for the study of hydraulic transients for its topographical complexity and its length (≈ 1200 km). State of the art of hydraulic transients in pipe, along with their consequences in terms of the WDN asset management, is now discussed.

State of the art 1.4.1 Early contributions to the water hammer research

The problem of liquid hammer occurs in any system that requires the pressurized transport of fluids through pipes. The liquid hammer problematic emerges in the second industrial revolution, in the early 20 th century, with the development of steam machines. The research on the subject then began with an engineers viewpoint, motivated by devices to suppress/attenuate overpressure effects. The first noteworthy contribution can be credited to the Italian engineer, [Menabrea, 1858]. In his notes, L. Menabrea underlined the importance of physical parameters such as the fluid bulk modulus K f , and the pipe elasticity modulus or Young's modulus E, to describe the liquid hammer phenomena. Subsequently, [Michaud, 1878] presented a guideline for the design of protection devices for hydraulic plans. He focused on the sizing of safety valves or water hammer balloons. For the latter, he provided the following relationship to determine the useful volume of the balloon 1 2 mW 2 i = VP i log

P i + ∆P P i -(V e -V) P i , (1.1)
where m is the mass of fluid in the pipe, P i , ∆P and W i stand for the initial pressure, increase pressure amplitude and velocity condition, respectively, whilst V, V e hold for the compressed and initial balloon air volume, respectively. These protection devices are depicted in the Figure 1.7. The same year as [Michaud, 1878], [Korteweg, 1878] theoretically derived one of the first known expressions for the propagation speed of water hammer waves, c p . Relying on the work of [Résal, 1876] and by considering the pipe as a succession of concentric axially independent elastic rings, the author reached the following expression [Michaud, 1878] where ρ f , is the fluid density and α ≡ e R 0 , stands for the ratio of the pipe thickness e, by its inner radius R 0 . [Korteweg, 1878] thus pointed out the cornerstone role play by both, the ratio of the pipe elasticity modulus by the liquid's bulk modulus, i.e. E K f , and the α ratio, when describing the hydraulic transient pulse wave speed. The denominator of (1.2) being higher than one, it turns out that the overpressure wave speed has a lower value than the wave speed of sound in an unconstrained medium, c 0 . It is worthwhile to contrast the D.J. Korteweg's work with his contemporary [Résal, 1876]. By reorganizing (1.2), it leads to, [Tijsseling, 1993, Tijsseling andAnderson, 2012 The herein pulse wave speed structure is obviously reminiscent with the expression of the equivalent resistance in parallel electrical circuits. In other words, the [Korteweg, 1878]'s wave velocity can be analyzed as the equivalent wave speed of an unconstrained acoustic phenomenon c 0 , in parallel with an elastic response c p,Résal . An in-depth presentation of the above expressions can be found in the work of [START_REF] Tijsseling | On the speed of propagation of waves in elastic tubes[END_REF]. Few years after the D.J. Korteweg's work, [Joukowsky, 1904] focused on the mass equilibrium occurring during an hydraulic transient event, and yielded to an analytical expression of the maximal reachable overpressure ∆P , versus the corresponding velocity variation ∆W ∆P = ρ f c p ∆W. (1.6) This fundamental relationship permitted to increase the effectiveness and efficiency of the design criteria, thus enhancing the resilience of water plants. The derivation outlines of (1.6) Whilst the fluid density gradients are related to the pressure ones, through the thermodynamic compression law, [Lighthill, 2001] 1 (1.10) the pipe dilatation requires further investigations. If the solid is supposed to instantaneously respond to pressure solicitations, an equilibrium can be achieved between the hoop stress σ θθ , and the fluid pressure .11) The theory of elasticity then relates the relative strain of the pipe with its stress Finally, by combining (1.10) and (1.13) with (1.9), it yields to the following mass conservation equation .14) It turns out this relation reconcile both the [Korteweg, 1878]'s and [Joukowsky, 1904]'s works. Last but not least, it is worthwhile to highlight the major contributions of the Italian engineer [Allievi, 1913], who in the context of railway activities developed sizing methods for pipes transporting steam under pressure, or those of the French physicist [START_REF] Camichel | étude théorique et expérimentale des coups de bélier[END_REF], who carried out a large series of experimental measurements of water hammer.

c p,Korteweg = c 0 1 + 2K f αE , (1.2) c 2 0 = K f ρ f , ( 1.3) 
ρ f D t ρ f = 1 K f D t P,
σ θθ = 1 α P. ( 1 
dσ θθ = E R dR, ( 1 
1 ρ f D t P + c 2 0 1 + 2K f αE ≡c 2 p,Korteweg ∂ z W = 0. ( 1 
Although sufficient for many engineering applications, these theoretical outlines remain too limited in scope as they do not provide an in-depth comprehensive understanding of hydraulic transients. The relation (1.12) highlights the weaknesses of these early models. The solid rheology is highly simplified which results in a poor representation of shear and strain distribution in the pipe. Furthermore, the fluid is supposed inviscid and the long time dynamic of the pressure trend thereby remains unknown. The liquid-filled pipe problem is therefore a dual phenomena, at the border of two research frameworks being: (i) Fluid Structures Interactions (FSI) and, (ii) the fluid viscous dissipation in the pipe.

Water hammer, a dual phenomena

As mentioned earlier, water hammer involves different physical mechanisms. From the hydraulic standpoint and by analogy with the analysis of permanent flows in pipes, the liquid-filled pipe system is subjected to energy losses arising from viscous friction or wall shear stress. Furthermore, from a mechanical viewpoint, any pipe's degree of freedom is expected to interact with the fluid dynamics, then generating non-trivial couplings, [START_REF] Wiggert | Fluid transients and fluid-structure interaction in flexible liquid-filled piping[END_REF]. Interactions can have a plenty of origins depending on the regarded framework (e.g. cavitation, geometrical vibrations, column separation) and are classified by [Tijsseling and Lavooij, 1990] into three categories:

• Poisson's coupling refers to solid axial vibrations arising from radial ones. These interactions depend on the rheology used to describe the solid (breathing phenomena),

• Junction couplings emerge at pipe's connections, (e.g. dead-ends, elbows, tees),
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• Friction couplings refer to the shear stress couplings between the fluid and the solid, i.e. viscous friction coupling, and between the solid and the surrounding medium, e.g. dry Coulomb's friction if the pipe is buried.

According to [START_REF] Wiggert | Fluid transients and fluid-structure interaction in flexible liquid-filled piping[END_REF], the Poisson and Junction couplings have a meaningful impact upon the system dynamics, i.e. the resonance structure of the solutions, whilst the friction couplings traduce the slow pressure trend attenuation due to energetic losses.

Fluid and Structure Interactions (FSI) perspectives

The FSI approach embeds the couplings occurring in a liquid-filled pipe system. The pipe is hereby supposed homogeneous, elastic and isotropic having a density ρ s , a radial displacement ξ and an axial displacement ζ. This subsection aims to provide a review of notorious contributions dealing with FSI in liquid-filled pipes. In many cases, the acoustic hypothesis , i.e. neglecting fluid inertial contributions, is used for the fluid, [START_REF] Courant | Supersonic Flow and Shock Waves[END_REF], D'Souza and Oldenburger, 1969, Wylie et al., 1993, Ghidaoui et al., 2005].

One of the first major contribution to overpressure wave propagation studies in pipes taking into account FSI, can be attributed to [Lamb, 1898]. The author extends the work of [Korteweg, 1878] by taking into account the Poisson's coupling effect. Based on the second Newton's law for the solid equilibrium, and a radial dependent pressure wave for the fluid, his theory achieves as follows

ρ s e∂ 2 t ζ Axial inertia = αE 1 -ν 2 s ν s ∂ z ξ + R 0 ∂ 2 z ζ
Axial tension , (1.15)

ρ s e∂ 2 t ξ Radial inertia = - αE 1 -ν 2 s ξ R 0 + ν s ∂ z ζ Radial tension + P Dynamic loading
, (1.16)

∂ 2 t P = c 2 0 ∂ 2 z +
∂ r r (r∂ r ) P. (1.17) Under the plane-wave framework assumption, Lamb determines the radial pressure variation with Bessel function. Furthermore, ensuring the kinematic continuity conditions at the pipe's inner wall, he spells out a cubic (in c 2 ) dispersion relation for the wave speeds

c 2 -c 2 0 c 2 0   c 4 -1 + λ 2 4π 2 R 2 0 E ρ s (1 -ν 2 s ) c 2 + (1 -ν 2 s ) λ 2 4π 2 R 2 0 E ρ s (1 -ν 2 s ) 2  
Dispersion equation for P = 0 in (1.16)

- 2D α λ 2 c 2 4π 2 R 2 0 c 2 - E ρ s (1 -ν 2 s ) = 0, (1.18) CHAPTER 1. INTRODUCTION
with the density ratio D = ρ f ρ s , (1.19) λ being the wavelength. The cubic structure of the dispersion relation thus provides a set of three modes of propagation, being in increased order of frequency (decreasing order of wavelength) comparable to corrections upon the acoustic fluid wave speed (i.e. c 0 ), solid axial wave speed (i.e. c s = E/ρ s ) and dispersive solid radial wave speed (i.e. c s,r (λ) = λ 2πR 0 c s / 1 -ν 2 s ), respectively. Under the long wavelength hypothesis framework, i.e. λ ≫ R 0 , H. Lamb finds an important set of results. If the dynamic loading term is neglected in (1.16), i.e. P is set to zero, the author finds the expression of compressible axial wave speed in solid (Cf. terms between brackets in (1.18))

c 2 s = E ρ s
, (Hyp: P = 0). (1.20) Furthermore, if the solid instantaneously responds to the fluid dynamic load, i.e. neglecting time derivatives in (1.15)- (1.16), H. Lamb proves that his theory leads to [Korteweg, 1878]'s one (Cf. (1.2)) so that no proper FSI occurs then

c 2 p,Lamb ≡ c 2 p,Korteweg
, (Hyp:

∂ 2 t [ζ, ξ] = 0). (1.21) 
If one considers a highly deformable tube, i.e. K f ≫ E, Lamb's theory merges with the [Résal, 1876]'s one (Cf. (1.5)) c 2 p,Lamb ≡ c 2 p,Résal , and, c 2 s,Lamb =

E ρ s (1 -ν 2 s )
, (Hyp: K f ≫ E). (1.22) Finally, Taylor-expanding the dispersion relation (1.18) with respect to the radius per wavelength ratio, i.e. R 0 /λ, H. Lamb finds an analytical formulation for the fluid and axial solid wave speed corrections due to FSI .24) where the negative mode holds for the fluid pulse wave speed correction, whilst the positive mode stands for the axial solid wave speed correction one. [Skalak, 1954, Skalak, 1956] extends the brilliant contribution of [Lamb, 1898]. In a sterling paper, Skalak derives an in-depth analysis of the coupling mechanisms occurring between an elastic shell pipe and the liquid. He considers both rotatory radial inertia and the bending moment of the solid. The author shell model (hereby slightly re-organized) achieves as follows, [Flügge, 1960, Paidoussis, 2003] [Lamb, 1898] [Lamb, 1898]'s modified radial tension

c 2 ±,Lamb = 1 2   c 2 Lamb ± c4 Lamb - 4 (c 0 c s ) 2 1 + 2(1-ν 2 s )K f αE    , (1.23) c2 Lamb = c 2 s + c 2 0 1 + 2D α 1 + 2(1-ν 2 s )K f αE , ( 1 
ρ s e∂ 2 t ζ Axial inertia = αE 1 -ν 2 s ν s ∂ z ξ + R 0 ∂ 2 z ζ
= - αE 1 -ν 2 s 1 + α 2 12 ξ R 0 + ν s ∂ z ζ
- αe 2 E 12 (1 -ν 2 s ) ∂ 2 z R 0 ∂ 2 z ξ -∂ z ζ Bending + P Dynamic loading
. (1.26) The continuity conditions at the fluid solid interface were ensured and the author overcomes the system resolution by performing a conjugate Fourier (upon space) and Laplace (upon time) analysis. The in-depth investigations of the radial solid displacement field reveals a discrete infinite set of resonance frequencies governed by a transcendental equation. As H. Lamb, [Skalak, 1954, Skalak, 1956] then analyzes the solution in the infinite limit wavelength, i.e. when frequency goes to zero. In this limit, two propagating modes remain and: "a physical interpretation of this fact is that only these two lowest modes have finite phase velocities as the wave-length increases indefinitely. The two wave speeds, in the infinite wavelength framework, then converges in the [Lamb, 1898]'s one lim λ→∞ c 2 ±,Skalak ≡ c 2 ±,Lamb .

(1.27) R. Skalak is nevertheless the first to introduce the key notion of: "precursor wave" to describe the impact of the axial pipe dynamic upon the overall movement. Aware of using the shell approximation for practical analysis, [Skalak, 1954, Skalak, 1956] made drastic simplifications of his model. Whereas the effects of precursor wave still remain, this new model neglects the wave speed dispersion arising from radial inertia. R. Skalak thus achieved the derivation of one of the first known four-FSI equations to describe the liquid-filled pipe coupled dynamic [Lamb, 1898]'s axial tension (1.30) [Lamb, 1898]'s radial tension = P, (1.31) or otherwise considering the coupled wave form

1 K f ∂ t P + ∂ z W = - 2 R 0 ∂ t ξ, (1.28) ρ f ∂ t W + ∂ z P = 0, (1.29) ρ s e∂ 2 t ζ Axial inertia = αE 1 -ν 2 s ν s ∂ z ξ + R 0 ∂ 2 z ζ
αE 1 -ν 2 s ξ R 0 + ν s ∂ z ζ
∂ 2 t - c 2 p,Skalak 0 0 c 2 s ∂ 2 z - 0 2ν s ρ f c 2 p,Skalak νsc 2 s αE 0 ∂ z ∂ t P ∂ t ζ = 0, (1.32) CHAPTER 1. INTRODUCTION with c 2 p,Skalak = c 2 0 1 + 2K f (1-ν 2 s ) αE
. (1.33) Two years after, [Lin and Morgan, 1956] followed up [Skalak, 1954, Skalak, 1956]'s analysis by both: (i) integrating a transverse shear force contribution to the radial solid momentum conservation (1.26) and, (ii) considering the movement along the direction of revolution of the pipe. In the long wavelength assumption framework, they also carried out a frequency analysis upon both fluid and solid systems and converged in the results of [Lamb, 1898] and [Skalak, 1954, Skalak, 1956]. Although precursor waves has been theoretically accepted for a long time, it was experimentally confirmed by [Thorley, 1969] in 1969 only. Thorley conducted a series of water hammer experiments in elastic steel (aluminum alloyed) and viscoelastic (PE) pipes, and focused on the measurement of coupled wave propagation velocities. Whilst the predictive trend for the wave propagation speeds was inconclusive for visco-elastic materials, the order of magnitude for elastic solids was consistent. The author attributed these discrepancies to the temperature sensitivity of visco-elastic rheology as illustrated in Figure 1.9. [DeArmond and Rouleau, Figure 1.9: Experimental results of [Thorley, 1969]. The upper curve represents the investigated elastic material whilst the lower curve holds for the visco-elastic material.

1972] carried out a complete study extending the analysis of [Lin and Morgan, 1956] viscous fluid. The kinematic continuity conditions at the pipe's wall were spelled out and ensured, whilst the set of constitutive equations was analyzed un-
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der the scope of the plane wave framework. The authors then concluded that the: "'frequency dependence of the zeroth mode phase velocity is primarily a result of the tube constraint at high frequencies and viscosity at low frequencies." Finally, [START_REF] Dearmond | Wave Propagation in Viscous, Compressible Liquids Confined in Elastic Tubes[END_REF] were able to propose an order of magnitude of the transverse solid shear force q, versus the fluid wall shear-stress τ w q ≡ D α c 0 c s 2 τ w .

(1.34) [Williams, 1977] carried out experimental tests similar to those of [Thorley, 1969] on ABS, plasticized PVC and steel materials for flexible and rigid configurations, i.e. unstressed and axially stressed pipes. Despite the author encountered difficulties in discarding the effects of the junction coupling arising from his downstream solenoid valve, he clearly observed and identified the presence of precursor perturbations resulting from Poisson's coupling. [Williams, 1977] further noted: "that mechanical damping can be more important for water-hammer decay than viscous friction". This remark is meaningful when the radial inertia of the pipe is preponderant or when the rheology is inelastic, as is the case for visco-elastic materials. [Rubinow and[START_REF] Rubinow | [END_REF]Keller, 1978] delivered a complete work emphasizing the previous contributions from [Lamb, 1898] to [Bürmann, 1975]. The authors considered the rigid, elastic and visco-elastic behavior of a pipe together with the viscous, or inviscid, behavior of the fluid. Their pipe model furthermore accounts for the radial thickness influence. The authors derived a complete set of dispersion relations and studied the frequency dependence of the propagation wave speeds. [Kuiken, 1984a[START_REF] Kuiken | Wave propagation in a thin-walled liquidfilled initially-stressed tube[END_REF], Kuiken, 1984c] carried out an outstanding and complete work emphasizing rheology, thermal and fluid viscosity effects. The work of [Kuiken, 1984c] provides a comprehensive overview of the main models, assumptions and results of the early researches on hydraulic transients in pipes. For the solid, the momentum conservation equation are r-integrated yielding to an axial dependent problem, whilst the bending effects were neglected. [Tijsseling, 1993] work represents a breakthrough in the liquid-filled pipe research area. The author combined both the Navier-Stokes equations, averaged over the pipe's section, with the solid momentum conservation equations, also denoted Lamé-Clapeyron equations, [Thual, 1997]. In the long wavelength assumptions framework, the radial dependence of the physical fields were neglected, and [Tijsseling, 1993] derives a set of four-FSI hyperbolic equations

1 K f c 0 c p,T ij 2 + 4ν 2 s α(2+α)E 0 0 1 ∂t + 0 1 1 ρ f 0 ∂z P W = 2νs E ∂tσzz 0 - 0 2τw ρ f R 0 , (1.35) ∂t - 0 E 1 ρs 0 ∂z σzz ζ, = 2νs α(2 + α) ∂tP 0 + 0 2τw ρse(2+α) , (1.36) c 2 p,T ij = c 2 0 1 + 2K f αE 2(1-ν 2 s ) 2+α
+ α (1 + νs) . (1.37) By analogy with the work of [Lamb, 1898, Skalak, 1956, Lin and Morgan, 1956] a set of two coupled wave speeds can be spelled out from (1.35)- (1.36) and results
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as follows

c 2 ±,T ij = 1 2 c2 T ij ± c4 T ij -4c 2 s c 2 p,T ij , (1.38) c2 T ij = c 2 s + 1 + 4ν 2 s D α (2 + α) c 2 p,T ij .
(1.39)

A simplified derivation but neglecting the influence of transverse shear τ w , can also be found in [Tijsseling, 2007]. Further information on the development of liquidfilled pipe models during the 20 th century can also be gathered from the review of [Tijsseling, 1996]. The pulse wave speeds and the corresponding corrective coupled wave speeds, are depicted in Figure 1.10. The Skalak's pulse wave speed [Korteweg, 1878, Skalak, 1956, Tijsseling, 2007]. model converges, in the limit α tends to one, to the D. Korteweg's one, whilst as expected, the A.S. Tijsseling's model differs for thick tubes (Cf. Fig. 1.10a&1.10b).

In addition, for very thin pipes, the models strongly differ in the prediction of the coupled wave speeds as depicted in Figure 1.10d.
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Despite the hereby PhD is restricted to the analysis of four-FSI equations system, i.e. ignoring radial inertia and radial bending, it is important to point out that depending on the system's degree of freedom, several additional vibrations must be taken into account (e.g. torsion, bending etc.). The recent works of review of [Li et al., 2015, Ferras et al., 2018] provide insight into this modeling when all pipe's degree of freedom are considered. The four-FSI equations system (1.35)- (1.36) nevertheless requires a closure wall shear stress model, [Budny et al., 1991]. Some wall shear stress models emerged from the hydraulic analysis of viscous flow in pipes, ignoring FSI effects.

Hydraulic standpoint

The hydraulic approach for the water hammer analysis focuses on the energetic viscous losses, but ignores FSI effects. Precisely, only the instantaneous response of the radial solid deformation is considered, then recovering the framework provided in section 1.4.1, whilst Poisson's coupling is discarded. In such a limit, the set of four-FSI equations introduced in (1.35)- (1.36), simplifies into a set of two coupled hyperbolic equations upon both fluid pressure and velocity variables, [Chaudhry, 2014, Martins et al., 2017]

∂ t + 0 ρ f c 2 p 1 ρ f 0 ∂ z P W = - 2τ w ρ f R 0 0 1 . (1.40)
When a viscous fluid is considered, the above equation set is unclosed and a wall shear stress model is needed. A first intuitive modeling approach is to extend the steady-state framework provided by the Darcy-Weisbach's friction law (Cf. [Brown, 2002]), to the hydraulic transient one, [Tijsseling, 1993]. The use of the redesigned quasi-steady wall shear rate τ qst .41) through the Darcy-Weisbach coefficient f DW , is nevertheless questionable for transient investigations. Poor experimental agreement is sometimes found using this dissipation model [START_REF] Vardy | A characteristics model of transient friction in pipes[END_REF], Bergant et al., 2001, Adamkowski and Lewandowski, 2006].

τ qst (z, t) = ρ f f DW W (z, t)|W (z, t)| 8 , ( 1 
The model was then enriched to better predict the experimental attenuation. Several classes of model, [START_REF] Duan | State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management[END_REF] have been established: (i) instantaneous material acceleration-based (IMAB) models and, (ii) weighting function-based (WFB). Although conceptually different, these two approaches seek to account for the same physical observation, that the near-wall dynamics does not instantaneously respond to the core velocity variations. The energetic dissipation emerges from the time response delay between the central part of the flow and its boundary layer. Finally, these models are based on a decomposition of the total wall shear rate into a quasi-steady component, via the use of the Darcy-Weisbach model 1.41), and a transient one τ tr , [Ghidaoui et al., 2005] τ w = τ qst + τ tr .
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(1.42)

The τ tr component is then expected to fill the gaps between the model predictions and the experimental observations, when only a quasi-steady wall shear stress model is considered.

Instantaneous material acceleration-based (IMAB) model relies on semi-

empirical observations and assumes a linear variation of the transient wall shear stress τ tr , with respect to the mean flow acceleration ∂ t W . These models arise from the experimental work of [START_REF] Daily | Resistance Coefficients for Accelerated and Decelerated Flows Through Smooth Tubes and Orifices[END_REF]. The author analyzed the turbulence structure in a pressurized flow with or without orifices. [START_REF] Daily | Resistance Coefficients for Accelerated and Decelerated Flows Through Smooth Tubes and Orifices[END_REF] highlighted the time delay between the response of boundary lines with respect to the mean flow variations. He then proposed the following transient wall shear stress model .43) where k 3 account for the boundary response deviation. When re-injecting the above transient wall shear stress expression into the hyperbolic constitutive equation set (1.40), it turns out that no energetic damping arises, [START_REF] Vítkovský | Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines[END_REF]. Indeed, the time-derivatives of both (1.40) and (1.43) can be factorized so that no source term remains in the hyperbolic system r.h.s. However, the structure of the hyperbolic system, i.e. its eigenvalues and eigenvectors, are modified by k 3 . The wave speed is thus modified by the prefactor, 1 √ 1+k 3 . To account for energetic losses, the IMAB model was then latter completed by [Brunone et al., 1991, Bergant et al., 2001, Pezzinga, 2000]. The authors added a convective term to the transient shear stress (1.43) and found .44) where sgn(W ) informs on the accelerating or decelerating transient flow phase. This inertial contribution, similar to the Navier's inertial terms, creates a source term in the hyperbolic system (1.40). Consequently, the IMAB model intents to model both the attenuation and the phase shift of overpressure waves. Some authors, [START_REF] Vitkovsky | Advances in unsteady friction modelling in transient pipe flow[END_REF], Ramos et al., 2004, Storli and Nielsen, 2011], also developed a slightly distinct model by using a second semi-empirical parameter k 45) and then distinguished the phenomena of wave speed deviation from the damping one, [START_REF] Vítkovský | Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines[END_REF]. When the single coefficient model is used in (1.44), an approximation arising from theoretical arguments is used to estimate the Reynolds number dependence of k 3 , [START_REF] Vardy | Transient, turbulent, smooth pipe friction[END_REF]] .46)

τ tr = ρ f k 3 R 0 2 ∂ t W, ( 1 
τ tr (z, t) = ρ f k 3 R 0 2 (∂ t W + c p sgn(W ) |∂ z W |) , ( 1 
′ 3 τ tr (x, t) = ρ f R 0 2 k 3 ∂ t W + k ′ 3 c p sgn(W ) |∂ z W | (1.
k 3 = √ 0.00476 2 , if, Re ≤ 2000, ( 1 
k 3 = 1 2
7.41

Re log( 14.3 Re 0.05 )

, else, (1.47) where Re = W 0 R 0 /ν f is the Reynolds number, W 0 is a reference axial fluid velocity magnitude and ν f is the fluid kinematic viscosity. The k 3 Reynolds dependence is depicted in Figure 1.11. The review of [Ghidaoui et al., 2005] provides an excellent state-of-the-art of IMAB models. In addition to the use of semi-empirical models, some analytical developments relying on a weighting function-based approach, have also been carried out.

Weighting function-based (WFB) model seeks for an analytical description

of the viscous shear energetic losses. One of the first noteworthy contribution was given by [Holmboe and Rouleau, 1967]. In the low-Mach number acoustic framework, i.e. neglecting Navier's inertial terms and decomposing the fluid variables into steady and perturbed components, the authors performed a Laplace domain analysis of the fluid mass and momentum conservation equations. They achieved the derivation of a radial-Bessel-dependent solution for the axial fluid velocity. The transient wall shear stress was then derived, using the axial fluid velocity radial-dependence .48) This theoretical approach is also convergent with that of [Joukowsky, 1904] in the prediction of the maximum overpressure. Furthermore, the authors highlighted the relevance of a dimensionless parameter associated with the damping trend of the pressure waves .49) where ϵ = R 0 /L is the inner pipe's radius to its length ratio and Re p = R 0 c p /ν f is the pulse re-scaled Reynolds number. [Zielke, 1966, Zielke, 1968] delivered an indepth analysis of the hydraulic problem. The author addressed a fully developed laminar boundary layer problem and theoretically analyzed both the mass conservation equation and the diffusion equation, i.e. momentum conservation equation, governing the axial fluid velocity, the which is forced by the longitudinal pressure gradient

τ tr = ρ f ν f ∂ r W r=R 0 . ( 1 
δ 2 = ν f L c p R 2 0 ≡ 1 ϵRe p , ( 1 
∂ t P + ρ f c 2 p ∂ z W = 0, (1.50) ∂ t -ν f ∂ r r (r∂ r ) W = - 1 ρ f ∂ z P. (1.51)
The resolution of (1.51) was overcome in the Laplace domain, whilst performing an inverse Laplace transform (by the Cauchy's residue theorem) yielded to a convoluted expression of the wall shear stress .52) where Θ Zielke (t) is the convolution kernel provided by the following relations

τ w = 4ρ f ν f R 0 W τqst + 2ρ f ν f R 0 t 0 Θ Zielke (t -τ )∂ τ W dτ τtr , ( 1 
Θ Zielke = 5 i=0 m i ν f t R 2 0 i-1 2 , if, ν f t R 2 0 ≤ 0.02, (1.53) 
Θ Zielke = 4 i=0 e -n i ν f t R 2 0 , if, ν f t R 2 0 > 0.02, (1.54 
) 26.3744, 70.8493, 135.0198, 218.9216, 322, 5544] , (1.55) .56) and Γ is the Gamma function. The presence of the τ qst term in (1.52) arises form the fact that W. Zielke did not decompose his fluid velocity and pressure fields into steady and perturbed components as its classically done in the low Mach number acoustic framework. This point is highlighted here and will be discussed in more detail later in §3. It is noteworthy to point out that the W. Zielke's kernel is convoluted with the fluid mean acceleration. It then reflects that the underlying physical phenomena governing the energetic damping in the 1.4. STATE OF THE ART WFB models and in the IMAB ones is the same (Cf. (1.43)), and relies on the noninstantaneous response of the boundary layer with respect to the core acceleration.

n i = [
m i =   1 2 √ π , -1.25, 15 
16Γ 3 2 , 15 16 
, 135 256Γ 5 2 , - 45 64Γ (3)   , ( 1 
Whilst the IMAB assumes a direct linear relation between the wall shear stress and the mean acceleration using k 3 , the WFB embeds all the historic mean flow variations through a time convolution with Θ Zielke (t). The scaling of the W. Zielke convolution kernel is obtained regarding both the first term of (1.53) and by setting up the characteristic advective time scale τ c = L cp , thus leading to .57) with δ is introduced in (1.49). The convolution kernel scaling thereby merges with the conclusion of [Holmboe and Rouleau, 1967]. Finally, the author confronted his theory to the experimental data of [Holmboe and Rouleau, 1967] and a very close agreement was found as revealed in Figure 1.12. [START_REF] Wood | A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow[END_REF] extended Figure 1.12: [Zielke, 1968]'s theoretical predictions compared to [Holmboe and Rouleau, 1967]'s experimental data. The following notation are used: H the hydraulic head line, a the pulse wave speed.

Θ Zielke ≡ O 1 δ , ( 1 
the W. Zielke's work and supposed a near wall concentrated laminar boundary layer, or a skin friction model. The flow in the core area, or bulk region, was assumed inviscid. The Figure 1.13a provides a schematic representation of the [START_REF] Wood | A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow[END_REF]]'s model. During a transient event, the authors supposed that: "the fluid remains divided into a turbulent core and laminary boundary layer and that, the boundary-layer thickness remains constant." The boundary layer thickness, and hence its dynamic, are thus governed by the preexisting flow regime. The dimensionless steady boundary layer thickness δ st , follows from the equilibrium of steady state viscous terms with the initial the pressure gradient .58) (a) Laminar boundary layer concept, [START_REF] Wood | A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow[END_REF].

δ st = 4 f DW Re . ( 1 
(b) Axial velocity matching at the fluid boundary layer interface, [START_REF] Wood | A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow[END_REF].

Figure 1.13: [START_REF] Wood | A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow[END_REF] boundary layer model for pressure waves energetic damping.

Two approaches were finally presented to determine the attenuation of pressure waves. The first one focused on the resolution of the diffusion equation upon the axial velocity in the boundary layer. A velocity matching at the boundary layer interface is then performed to ensure kinematic continuity conditions (Cf. [START_REF] Vardy | A characteristics model of transient friction in pipes[END_REF] by ensuring the mass and momentum conservations in each rings, the authors derived a coupled hyperbolic system forced by the radial transfer terms. For
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turbulent flow regimes, a five-region model was adopted to model the shear rate. The authors found: "pleasantly surprising that Zielke's expression is so successful even through his assumed (laminar) initial velocity profile differs markedly from reality". [START_REF] Vardy | A weighting function model of transient turbulent pipe friction[END_REF] extended the laminar framework of [START_REF] Wood | A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow[END_REF] by taking into account the Reynolds-dependence of the flow in its convolution kernel. The flow was divided into two zones: (i) the acoustic zone (bulk) where the velocity fields are radially uniform and, (ii) the boundary layer (annulus) where viscous effects are concentrated. The dimensionless boundary layer thickness is once again set up to match with the preexisting flow conditions. The authors, relying on the experimental work of [Artl, 1993], highlighted the effects of the initial Reynolds number upon the convolution kernel structure as depicted in Figure 1.15. In the boundary layer, a diffusion equation was derived, Figure 1.15: [START_REF] Vardy | A weighting function model of transient turbulent pipe friction[END_REF] discussion on the convolution kernel Reynoldsdependence according to the experimental work of [Artl, 1993].

the which merges with both [Zielke, 1968, Wood andFunk, 1970] theories. The difficulty and elegance of [START_REF] Vardy | A weighting function model of transient turbulent pipe friction[END_REF]'s model lies in performing an asymptotic matching between the axial inner, i.e. in the skin friction, and outer, i.e. in the bulk, velocities at the boundary layer interface. The authors finally yielded to the derivation of a Reynolds-dependent (via the δ st parameter) transient wall shear stress kernel expression Θ [START_REF] Vardy | A weighting function model of transient turbulent pipe friction[END_REF]

) (t) ≈ 1 δ st k∈N * e -kπ δ st 2 ν f t R 2 0 ≡ O 1 δ st . (1.59)
The experimental contributions of [Laufer, 1953, Ohmi andUsui, 1976] on the turbulent kinematic viscosity distribution in pipes, permitted to [START_REF] Vardy | Transient, turbulent, smooth pipe friction[END_REF] to extend the previous framework of [START_REF] Vardy | A weighting function model of transient turbulent pipe friction[END_REF] by accounting for higher Reynolds numbers (Re ≫ 10 5 ). This new model, valid in a smooth pipe, is based on an idealized radial distribution of the turbulent kinematic viscosity in the boundary layer as shown in Figure 1.16a. The core viscosity ν c , per the wall CHAPTER 1. INTRODUCTION (a) Skin friction axial velocity distribution, [START_REF] Vardy | Transient, turbulent, smooth pipe friction[END_REF] (b) Idealized distribution of turbulent kinematic viscosity, [START_REF] Vardy | Transient, turbulent, smooth pipe friction[END_REF] Figure 1.16: Idealized velocity and viscosity distribution for the skin friction model of [START_REF] Vardy | Transient, turbulent, smooth pipe friction[END_REF].

viscosity ν w , ratio is introduced and used to characterize the turbulent kinematic distribution where u c is the uniform core velocity, U the mean flow velocity per section and b is the dimensional boundary layer thickness. In the limit σ Vardy et al. tends to unity, the dimensionless boundary layer thickness of [START_REF] Vardy | A weighting function model of transient turbulent pipe friction[END_REF], presented in (1.58), is recovered. A similar asymptotic analysis to the one of [START_REF] Vardy | A weighting function model of transient turbulent pipe friction[END_REF] was carried out and yielded to the derivation of a modified convolution kernel Under the hypothesis framework of constant acceleration transients, i.e. ∂ t W = cst in (1.52), the authors derived a straightforward relation between the semi-empirical deviation constant k 3 , and their inertial shear coefficient .64) This relation provides a brief explanation for the derivation of the system (1.46)- (1.47). They thus pointed out the Reynolds-dependence of the parameter k 3 . Additional elements on the relations between the [START_REF] Vardy | Transient, turbulent, smooth pipe friction[END_REF]'s model and the IMAB ones lie in the work of [Brunone et al., 1991]. Finally, it is important to mention that many expressions exist to model A * and B * , the which are derived from several approximations. [Vardy and Brown, 2003] [Vardy and Brown, 2004] in order to take into account the pipe's roughness.

ν c ν w ≡ σ Vardy et al. ≈ 0.173 (f DW Re)
Θ Vardy et al. ( 1995 
) (t) = A * e -B * ν f t R 2 0 ν f t R 2 0 , A * = 1 2 √ π , B * = 0.135Re
B * k 3 ≈ 1 2 √ B * . ( 1 
It is noteworthy here to discuss the assumptions used by [Vardy andBrown, 2003, Vardy andBrown, 2004] in the derivation of their models. The authors indeed supposed that the idealize turbulent eddy viscosity profile does not instantaneously respond to the mean flow variations. Quoting the authors: "The change in the effective viscosity occurs during the period when the shape of the velocity profile is changing, not during the earlier period when the velocity amplitude increases uniformly. That is, there is a phase lag between the step change in mean velocity and the resulting change in the effective viscosity." This assumption is known in the subject literature as the "frozen viscosity" model and was analyzed by [START_REF] Ghidaoui | Applicability of Quasisteady and Axisymmetric Turbulence Models in Water Hammer[END_REF], Ghidaoui et al., 2005]. The authors validated the "frozen viscosity" approach as long as the shear pulse diffusion through the viscous sub-layer time scale, i.e.

τ dif f,sublayer ≡ √ 2R 0 u⋆ with u 2 ⋆ = f DW W 2 0 8
the friction velocity, is smaller than the advective wave time scale, i.e. τ adv ≡ L cp . The condition of validity then follows .66) or otherwise, invoking the definition of δ and δ st in (1.49) and (1.58), respectively

4R 0 c p √ f DW LW 0 ≫ 1, ( 1 
δ 2 ≪ f DW δ st , (1.67)
It obviously follows from the condition (1.67), that it should not be expected close agreement between the [Vardy andBrown, 2003, Vardy andBrown, 2004] model predictions and the experimental data, for observation times upper than τ dif f,subayer . The relevance of the viscosity distribution, along with the relevance CHAPTER 1. INTRODUCTION of the "frozen viscosity" was also addressed by [START_REF] Vardy | Applicability of Frozen-Viscosity Models of Unsteady Wall Shear Stress[END_REF]. The authors focused on constant acceleration flows and concluded that: "no frozen-viscosity distribution performs well for large times after the commencement of an acceleration. However, even the simplest approximation (laminar) performs well for short durations" and that "very simple assumed distributions yield acceptable outcomes, provided only that the assumed value in the wall region is the molecular viscosity (or nearly so)." To confirm or refute some models, comparisons for the characterization of transient overpressure waves damping in pipes. Original chart of [START_REF] Abdeldayem | Analysis of Unsteady Friction Models Used in Engineering Software for Water Hammer Analysis: Implementation Case in WANDA[END_REF].

between theoretical/semi-empirical predictions and experimental data were carried out by [Bergant et al., 2001]. The authors found excellent agreement for all the model herein presented. Other experimental validation was accomplished by [Adamkowski andLewandowski, 2004, Adamkowski andLewandowski, 2006]. The authors performed a series of experiment in an elastic copper pipe of length L = 98m, inner radius R 0 = 8 • 10 -3 m and wall thickness e = 10 -3 m for a wide Reynolds number range, R e ∈ [1100, 15800]. Despite their conclusions merge those of [Bergant et al., 2001], they highlighted that WFB models: "have to be singled out. These models predict almost superbly the wave front shape and preserve the frequency. However, it is symptomatic that for higher Reynolds number (over approx. 10,000) the damping effect observed in the calculated courses is greater than in the experimental ones". An observation also shared recently by [Duan et al., 2017, Ferrari andVento, 2020]. An overview of all damping models can be gathered from the work of [START_REF] Abdeldayem | Analysis of Unsteady Friction Models Used in Engineering Software for Water Hammer Analysis: Implementation Case in WANDA[END_REF] from which Figure 1.17 is taken. The development of both unsteady wall shear stress and FSI models lead to a better understanding of the key mechanisms governing the transient life of liquidfilled pipe systems. If a sufficient accurate model is established, it is then thinkable to detect any fault in the network by a direct comparison between the numerical and/or theoretical predictions and the on-field observed dynamic. The following section thus aims to provide a brief overview on fault detection in water distribution networks WDN by pressure transient analysis. The forthcoming sections largely refer to the impressive reviews of [START_REF] Duan | State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management[END_REF], Che et al., 2021].

Standard signal processing methods

This short subsection brings out some insights of standard signal processing methods used for leak detection in (WND). Some additional elements on signal processing methods for pipe faults detection can be found in [Covas, 2003, Datta and Sarkar, 2016, Kousiopoulos et al., 2020]. In the following, it will be considered two recorded signals P 1 , P 2 of N samples each.

The Fourier transform F is used to provide the frequency signature of a time (or space) dependent signal. The signal is decomposed into a Fourier basis (e.g. cosine and sine basis) which allows the determination of the signal frequency properties such as its resonant frequencies. If P 1 represents the Fourier transform of the time dependent pressure signal P 1 , it follows the discrete Fourier transform

P 1 [k] = F N -1 n=0 P 1 [n]e -2iπkn
N , (1.68)

P 1 [n] = F -1 1 N N -1 k=0 P 1 [k]e 2iπkn N .
(1.69)

The wavelet transform consists, by analogy with Fourier transform, in decomposing the measured signal into a strategic function basis (also called mother wavelet). Following the statement of [START_REF] Ferrante | Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis[END_REF]: "wavelets are often compared to a microscope, for their ability to reveal particular aspects of the signal at different scales just by adjusting the focus. These adjustments are made by the introduction of both a scale χ, and a translation t r , parameters such that .70) with Φ the wavelet mother. In contrast to the Fourier transform which loses the time information by transforming it into frequency, the wavelet transform approach allows a time-frequency localization of the signal. Quoting [Daubechies, 1992], the wavelet transform: "is similar to music notation, for example, which tells the player which note (= frequency information) to play at any given moment.". The method is also well suited to detect the signal singularities (i.e. the presence of pressure wave rebounds), [START_REF] Ferrante | Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis[END_REF]. The knowledge of the wavelet transform map (i.e. for each (χ -t r ) couple) of both the intact and the altered systems then allows to distinguish the singular effect of an anomaly, the timearrival of which can be localized in time thought the use of translation parameter t r , [START_REF] Ferrante | Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis[END_REF], Avitia and Deniss, 2011, Bentoumi et al., 2017].

W T (χ, t r ) = 1 √ χ ∞ -∞ P 1 (t)Φ t -t r χ dt, ( 1 
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The cross correlation technique provides an estimation of the time reception delay between sensors, the delay being related to the fault location through the pressure wave speed. The normalized cross correlation follows

CC[n]

N -1

m=0 P 1 [m]P 2 [m -n] N -1 m=0 P 2 1 [m] N -1 m=0 P 2 2 [m] , with, n ∈ [-N, N ]. (1.71) Its maximum position argument n max , i.e. R[n max ] = max (R[n]
), is a direct measure of the time delay between the sensors according to the relation,

∆t = n max f N , (1.72)
where f N is the sampling frequency. The knowledge of the pulse propagation speed (here the simplest speed model of [Korteweg, 1878], Cf. 1.2) then makes it possible to determine the potential location of the fault. The recorded pressure signals used in the method are not proper water hammer ones but arise from leak induce-vibrations, the amplitude of which are small, sensitive to damping, and may be diluted into the WDN's surrounding noise. This methods thus appears to be noise-dependent and restricted to the DMA scope despite noise effects can be reduced by conducting the measurement by night and repeatedly over several days. Nevertheless, the daily repetitiveness implies some constancy of the hydraulic parameters in the DMA, which is rarely verified as pointed out by [START_REF] Marsili | Experimental analysis of the water consumption effect on the dynamic behaviour of a real pipe network[END_REF], Meniconi et al., 2022].

The cepstrum method is by definition the inverse Fourier transform of the logarithm of the signal Fourier transform

CP (t) = F -1 (log [F (P 1 (t))]) . (1.73)
The cepstrum is hence a time dependent function and is made up of the sharp signal discontinuity peaks. These peaks have temporal locations which can be converted on graph length via the knowledge of the pulse wave speed.

The impulse response function I corresponds to the output response of a linear system perturbed by an input Dirac function δ(t). For a linear time invariant system, any output signal may be expressed as a function of I and the input signal H as follows

P 1 (t) = ∞ -∞ I(t -τ )H(τ )dt. (1.74)
Depending on the input signature, e.g. periodic forcing, a strategic output indicating the location of the fault can be obtained.

The frequency response function is a extension of the impulse response method to the frequency domain analysis. The convolution theorem indeed achieves as follows

P 1 (t) = F I(f )H(f ).
(1.75)
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The signal processing is an allied tool for network fault detection as it will now be discussed.

Water distribution networks WDN fault detection

The decrease in operational performance of a hydraulic system is the result of several factors:

• Corrosion, mainly present in carbonaceous pipes (i.e. cast iron or steel pipes), locally degrades the surface properties and may lead, in the most severe cases, to local decreases in pipe thicknesses.

• Blockages, whether partial or total, locally obstruct the pipe. This type of disturbance can be found, for example, in a damaged valve that remains partially open.

• Deposits (e.g. limestone), unlike corrosion, add material to the inner wall of the pipe, increasing its thickness.

• Leakages

The hydraulic transients, as they propagate through the network, incorporate several topographic information, which informs on the network condition. The Figure 1.18, an original chart of [Che et al., 2021], illustrates the idea. There are many [Che et al., 2021].

techniques for detecting singularities in networks that do not require the study of hydraulic transients. Thus, passive acoustic or hydro-acoustic techniques have
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focused on the study of the noise emerging from the presence of an anomaly. A direct approach consists in analyzing the resulting noise emitted by the source via a sensor, [START_REF] Lockwood | Locating leaks from water supply pipes using the passive acoustic method[END_REF]. The fault is located at the maximum noise level. This kind of monitoring is commonly used by WDN's shareholders due to its low cost of implementation. Nevertheless, this method is limited to a single pipe analysis, is subjected to the surrounding noise, and is not automated. Another solution is to simultaneously record the noise emitted by a fault, at several locations, in the network. An operator can perform a cross-correlation and then observes the time delay between noise signal patterns, [Kousiopoulos et al., 2020, Bakhtawar and[START_REF] Bakhtawar | [END_REF]. This method has the advantages of being reliable, non-intrusive, and sufficiently automatic that an operator is not present full-time on the measurement sites. The impact of surrounding noise can also be reduced by carrying out measurements at night. However, these detection techniques may be less accurate for high density WDN and are subject, in terms of sensor positioning, to the available network access points (e.g. tap, fire hydrant, valve). Numerous steadystate-based detection techniques are reported in the review of [Liu andKleiner, 2013, Zaman et al., 2020]. Steady-state analyses methods are by definition local detection methods, at best on the scale of the hydraulic sector or the district metered area (DMA, Cf. section 1.2). Hydraulic transients, due to their greater amplitudes (≈ 10 5 P a) and their speed of transmission (10 2 m/s to 10 3 m/s), can therefore be considered to locate a rupture, a leak or a blockage. The search for faults by the means of hydraulic pressure transients can be summarized in two sub-groups, one taking into account of a specific characteristic of the signal (Local feature-based method), while the other integrates all the temporal or frequency information available (Global feature-based method), [Che et al., 2021]. The set of transient detection techniques are depicted, and classified, in Figure 1.19. All are subsequently described and discussed.

Local feature-based method

Detection by signal characterization, or local feature-based method, uses only part of all the measured information to find the potential location of a fault in the network. The strength of these techniques lies in their simplicity of implementation, although the selection of information makes them sensitive to noise, [Wang et al., 2021]. Furthermore, these methods require an idealized or benchmarked solution, i.e. without faults, to compare with the experimental signals. However, in real life WDN, it is unthinkable to obtain such a benchmark (even numerically) due to the network relative complexity. A simple cross section variation, a very common singularity, may indeed result in a eigenfrequency shift or a different signal signature, [Meniconi et al., 2012, Louati andGhidaoui, 2017]. Such method thus relies on our ability to model the non trivial behavior of WDN, [Meniconi et al., 2012, Riedelmeier et al., 2014, Malesińska et al., 2021]. Reflectometry / Reflection-based methods consist in observing the characteristic pressure reflection induced by the presence of a leak (or a blockage) during the first instance of a transient event. When the water hammer waves pass through a pipe's default, its signature will be perturbed. Namely, a leak will be characterized by the presence of a pressure drop whilst a blockage is expected to increase the pressure, [START_REF] Jönsson | Leak detection through hydraulic transient analysis[END_REF]. The method was experimentally investigated and validated on a drilled (PE) outfall pipe by [Brunone, 1999]. [START_REF] Taghvaei | Leak detection in pipelines using cepstrum analysis[END_REF] then successfully used the cepstrum method to locate leak
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on T-branched experimental setup. [START_REF] Lee | Leak location in pipelines using the impulse response function[END_REF] used the impulse response function method to locate leak in a single 37.53m long copper pipe. The authors focused on the measurement of the impulse function response I (Cf. (1.74)) by using a de-convolution procedure of the output by input signals ratio (Cf. (1.75)).

They reached an experimental expression of I and were able to distinguish the additional fault contributions. The authors furthermore pointed out the importance of the input signal bandwidth to avoid high frequency perturbations. Focusing on a single pipe, [Ferrante et al., 2009a] validated the relevance of the wavelet transform approach to analyze the reflections induced by a leak. The authors performed a multi-scale wavelet analysis, i.e. consider the product of wavelet function with distinct scaling parameters (Cf. (1.70)), to reduce the noise impact on the detection method and were able to point out the source location with a relative error of 1.4% (pipe's length of 352m). The authors previous contribution was remarkably extended in [Ferrante et al., 2009b]. The authors experimentally analyzed the pressure response of an Y-connected test pipe network in the presence of leaks using both a Lagrangian model approach and a wavelet transform analysis.

Both models show a close agreement to each other (a relative percentage error of less than 2.5%) and permit a fault localization. A realistic field test was hence carried out on the main trunk of the Lintrahen's (Scotland) water distribution network, which has exactly the same Y-shaped configuration. Using a cepstrum signal analysis process, [Shucksmith et al., 2012] conducted a series of experiments on the Bradford (Yorkshire, UK) water distribution network. Echo leakage location was studied over a large range of pipe materials and network connectivity. Although locations were found, the method showed relative sensitivity to ambient noise and is highly dependent on the value of the wave velocity. Irrelevant for a WDN full-scale analysis, this detection method is nevertheless effective when dealing with the district metered area DMA scales as performed by [Meniconi et al., 2015]. The authors carried out a similar analysis than [Ferrante et al., 2009b], i.e. wavelet analysis and Lagrangian approach, to examine one of the main supply line of the Milan's (Italy) water distribution network. Recently [START_REF] Nguyen | Least squares deconvolution for leak detection with a pseudo random binary sequence excitation[END_REF] extended the [START_REF] Lee | Leak location in pipelines using the impulse response function[END_REF]'s work by performing an additional least-square minimization procedure for noise reduction during the de-convolution procedure of the impulse function response method. Recently, [Meniconi et al., 2021] focused on the reflection method based deeds and misdeeds by running transient investigations in the Trento (Italy) transmission main trunk. The authors concluded on the relevance of the method to investigate long transmission trunk due to the method low intrusiveness and its cost efficiency but addressed several issues. First, the authors reminded: "how important is the knowledge of the transient response of the intact pipe system" since errors in the initial and boundary conditions, poor water consumption description or topological incertitude may have a massive impact on the expected WDN's transient response (Cf. [START_REF] Meniconi | On the role of Minor Branches, Energy Dissipation, and Small Defects in the Transient Response of Transmission Mains[END_REF]). Then, the authors suggested to improve the transient wave generation by taking care of its bandwidth: "the smaller the duration, the sharper the generated pressure wave and, then, the smaller the length of the pipe obscured by the maneuver, and the more
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precise the fault location", and its localization within the WDN: "the effectiveness of a pressure wave to detect a defect depends strongly on the number of the singularities it interacts with along its path. As a consequence, for a given transient generation point, a related length of the pipe can be explored viably".

Resonant frequency pattern methods use the spectrum information of the frequency response function (Cf. (1.75)) to detect the presence of a fault in a pipe. For a single pipe, [START_REF] Lee | Leak location using the pattern of the frequency response diagram in pipelines: a numerical study[END_REF] developed a robust method to locate multi-leaks. They highlighted that a leakage induces a sinusoidal oscillation of the resonant frequency peak amplitudes as depicted in Figure 1.20a. The amplitude (a) Frequency response function oscillation due to the presence of a leak in a single pipe, [START_REF] Lee | Leak location using the pattern of the frequency response diagram in pipelines: a numerical study[END_REF]. The continuous lines represents a leaky pipe spectrum whilst the dashed signal holds for an intact pipe frequency response.

(b) Frequency response function shift induces by visco-elastic rheology in a single intact pipe, [START_REF] Duan | System Response Function-Based Leak Detection in Viscoelastic Pipelines[END_REF].

Figure 1.20: Frequency response function phase and amplitude description with respect

to the pipe rheology and the presence of faults.
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of these oscillations are related to the leakage size whilst the phase is a function of its position. This approach, performed under the scope of a single elastic pipe, allows to find a leak without the need of an idealize reference case. [START_REF] Lee | Experimental verification of the frequency response method for pipeline leak detection[END_REF] thus experimentally confirmed the relevance of the method on a 37.53m long copper pipe. [START_REF] Lee | Discrete blockage detection in pipelines using the frequency response diagram[END_REF] transferred [START_REF] Lee | Leak location using the pattern of the frequency response diagram in pipelines: a numerical study[END_REF]'s approach to the study of discrete blockages, i.e. blockages of short length with respect to the pipe's one. [START_REF] Duan | Leak detection in complex series pipelines by using the system frequency response method[END_REF] further extended [START_REF] Lee | Leak location using the pattern of the frequency response diagram in pipelines: a numerical study[END_REF]'s framework by considering a complex system composed a heterogeneous diameter pipes branched in series. The authors successfully analyzed the leak-induced frequency response oscillation pattern for this non-trivial configuration. The authors hence concluded: "that internal junctions in complex series pipelines can modify the system resonant frequencies but has a small effect on the leak-induced information". [Duan et al., 2012a] focused on the detection of extended blockages, i.e. with length comparable to the pipe's length, detection in a set of N in-line branched pipes. The authors carried out an analytical derivation (using the Transfer Matrix Method (TMM), Cf. §2.1) of a transcendental equation that governs the resonant frequency behavior of the frequency response function

(2 N -1 )-1 j=0 [C j cos (λ j ω r )] = 0, (1.76) 
with .78) .79) and J k = 0 or 1 represents the number at k th binary position of k (e.g. for k = 5 then the binary expression is (0, 0, 1, 0, 1) and J k=5 = 0). [Duan et al., 2012a] pointed out that extended blockage may lead to frequency shift in the frequency response function. Through the definition of an optimization problem upon the transcendental equation (1.76) and the experimentally measured resonant frequencies, the extended blockage geometrical properties can be found. [START_REF] Duan | Extended Blockage Detection in Pipes Using the System Frequency Response: Analytical Analysis and Experimental Verification[END_REF] then experimentally confirmed the relevance of the previous developments for a set of three-pipes in-line. A first order approximation of the transcendental equation (1.76) was provided to simplify the model, i.e. by supposing a small variation of the blockage's impedance with respect to the initial system one. It was shown that this approximation leads to reduce the method accuracy (≈ 30% of relative error in estimating the blockage diameter) which supposes a non linear dependence variation to the frequency shift with respect to the impedance variations. [START_REF] Duan | System Response Function-Based Leak Detection in Viscoelastic Pipelines[END_REF] extended the frequency response method to the analysis of single

C j = (-1) N -1 i=1 J i Y 1 + (-1) J 1 Y 2 N -1 k=2 Y k (-1) J k-1 + (-1) J k Y k+1 , (1.77) Y j = - c p,j πgR 2 0,j 1 - iπgR 3 0,j ω , ( 1 
λ j = L 1 c p,1 + N k=2 (-1) J k L k c p,k , ( 1 
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visco-elastic pipes. The authors concluded that: "pipe-wall visco-elasticity effect has significant impact on amplitude damping and phase shift of the pressure wave trace, but little influence on leak-induced patterns of pressure head peaks in transient system frequency responses". The Figure 1.20b depicts the pressure response frequency shift induced by visco-elastic pipe rheology. [START_REF] Duan | Transient wave-blockage interaction and extended blockage detection in elastic water pipelines[END_REF] provided new theoretical elements to overcome the difficulties encountered in [START_REF] Duan | Extended Blockage Detection in Pipes Using the System Frequency Response: Analytical Analysis and Experimental Verification[END_REF] for the prediction of frequency shift induced by extended blockages. The authors considered a Reservoir-Pipe-anchored Valve system (RPV) of length L, with a radially small spread extended blockage of length L 2 . A schematic representation is provided in Figure 1.21. The authors carried out an analytical investigation of [START_REF] Duan | Transient wave-blockage interaction and extended blockage detection in elastic water pipelines[END_REF].

the hereby problem (by assuming a pulsating forcing term at the valve) and yielded to an theoretical expression for the pressure (for x > 0.5L 2 ) in the time domain

P (z, t) = P 0      e iω 0 (z-0.5L 2 ) cp + e 2iω 0 L 2 c p,2 -1
Frequency shifting term

B A e - iω 0 (z-0.5L 2 ) cp     
e -iω 0 t , (1.80) where

B A = 1- c p,2 R 2 2 cpR 2 0 1+ c p,2 R 2 2 cpR 2 0
is the amplitude modulation due to the blockage, (ω 0 , P 0 ) are the forcing pulsation and amplitude, respectively, (c p , c p,2 ) are the pulse wave speed of the pipe without and with fault, respectively, (R 0 , R 2 ) are the radius of the pipe without and with fault, respectively. To follow the authors' reasoning, in the limit L 2 tends to zeros (i.e. when the fault tends to be a spatial singularity), the frequency shifting term vanishes and only the amplitude modification remains. This is consistent with the previous work of [ [START_REF] Lee | Leak location using the pattern of the frequency response diagram in pipelines: a numerical study[END_REF], Duan et al., 2011].

On the other hand, the transcendental spectrum equation (1.76), also derived in [Duan et al., 2012a], was linearized by assuming small variations of the blockage pulse wave speed with respect to the intact configuration. [START_REF] Duan | Transient wave-blockage interaction and extended blockage detection in elastic water pipelines[END_REF] thus delivered an analytical explicit relation to describe the resonant frequency shift ∆ω rf .83) and where w rf,0 are the resonant frequencies without blockage, L is the total pipe's length and L j are the sub-pipe's lengths defined in Figure 1.21. [START_REF] Lee | Frequency domain analysis of pipe fluid transient behaviour[END_REF] carried out a complete study on the frequency response by integrating the impact of fault effects, friction and pipe wall visco-elasticity. [Duan and Lee, 2016] then extended the frequency response function pattern to the detection of dead-end side branch in networks. [START_REF] Louati | Eigenfrequency shift mechanism due to variation in the cross sectional area of a conduit[END_REF] carried out an extended energetic analysis of the resonant frequency shift induced by blockage. The authors defined a threshold value for the area of pipe obstruction allowing the problem to be treated either as local (less than 30% blockage) or extended (more than 30%). Furthermore, their modal energetic analysis concluded that a modification of a resonant mode total energy, by an increase or a decrease, results in a resonant frequency shift, in the negative of positive direction, respectively. An in-depth understanding of the eigenfrequency shift, i.e. positive negative or zero, in function of the blockage size and location was delivered by [START_REF] Louati | Eigenfrequency Shift Mechanism due to an Interior Blockage in a Pipe[END_REF].

∆ω rf = ϵ A 2 -ϵ A c p L sin 2L 1 ω rf,0 c p -sin 2L 3 ω rf,0 c p - ϵ A 2 -ϵ A sin 2L 2 ω rf,0 c p , (1.81) 36 CHAPTER 1. INTRODUCTION with ϵ A = A 0 -A 2 A 0 , (1.82) ϵ L = L 2 L , ( 1 
The authors pointed out that any blockage of length being multiple of a mode's half wavelength, will not produce frequency shift. A similar zero shift is furthermore observed if the blockage mid-length is located at a position of equal pressure and flow magnitudes. Finally, a maximum mode frequency shift is observed if the blockage mid-length is located at a pressure stagnation, i.e. at zero pressure harmonics' magnitudes, point. More recently, [START_REF] Pan | FRF-based transient wave analysis for the viscoelastic parameters identification and leak detection in water-filled plastic pipes[END_REF] dealt with the leak detection, using the frequency function method, in visco-elastic pipes. An experimental system consisting of a HDPE pipe of length 166.28m was used to validate both the visco-elastic parameters estimation and the leak location.

Energetic damping-based methods consist in analyzing the damping of the pressure Fourier modes. [START_REF] Wang | Leak Detection in Pipelines using the Damping of Fluid Transients[END_REF] introduced the method. The authors performed an acoustic, low-Mach number, analysis of the fluid mass and momentum conservation equations, (1.40), but added a source term being representative of the leak magnitude and position. The resulting wave equation was solved and a modal exponential damping trend was found, the latter depending on both the Darcy-Weisbach damping coefficient, i.e. O f DW LW 0 4cpR 0

, and the leak-damping factor component

R nL = C d A L A c p √ 2gH L0 sin 2 (nπx * L ) , (1.84)
where C d is the leak coefficient discharge, A L , A are the leak and pipe surfaces, respectively, H L0 is the steady-state hydraulic charge at the leak and x * L is the leak dimensionless position. Thus, the leak position is a function of the R nL damping coefficient and can be obtained by performing the ratio between the pressure harmonics. Once the leak location is determined, the leak size can be easily obtained according to (1.84). The herein method was then successfully confronted with an experimental setup consisting of a 37.2m copper pipe in the University of Adelaide (Australia). [START_REF] Wang | Detection and Location of a Partial Blockage in a Pipeline Using Damping of Fluid Transients[END_REF] then extended the method of [START_REF] Wang | Leak Detection in Pipelines using the Damping of Fluid Transients[END_REF] to investigate partial blockages in single pipes. It turned out that a similar derivation of the problem could be performed. The trigonometric sine of (1.84) being replaced by a cosine function whereas its prefactor became K b W 0 2cp , with K b the blockage head loss coefficient. The models of [START_REF] Wang | Leak Detection in Pipelines using the Damping of Fluid Transients[END_REF], Wang et al., 2005] nevertheless suggest a quasi-steady model of viscous shear rate despite experimental investigations reveal the need to account for unsteady damping, [Bergant et al., 2001, Adamkowski andLewandowski, 2006]. [START_REF] Nixon | Range of Validity of the Transient Damping Leakage Detection Method[END_REF]] addressed these interrogations stating that: "the quasi-steady and small amplitude assumptions do not limit the applicability of the method provided that the pipeline is simple and wall friction is correctly represented in the mathematical model used to estimate modal damping rates. That is, should a mathematical model be needed to generate the head trace data for the case without the leak, this model needs to incorporate unsteady friction so that the damping rates are correctly estimated". Furthermore, the method suffers from the non-uniqueness determination of the leak position due to the periodicity of the sine and cosine functions. The localization non-uniqueness was recently highlighted by both the numerical analysis of [START_REF] Brunone | Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak[END_REF] and the experimental contribution of [START_REF] Capponi | Time-domain Analysis of Laboratory Experiments on the Transient Pressure Damping in a Leaky Polymeric Pipe[END_REF].

Global feature-based method

Unlike the fault detection methods discussed up to now, the full waveform inversion methods, or the Inverse Transient Analysis (ITA), rely on all the signal characteristics to locate the fault. Such method is consequently more robust to environmental noises. The ITA, in the time of frequency domain, are based on the same framework. First a theoretical expression has to be derived, embedded free fitting parameters (e.g. leak location or blockage dimensions), to predict the pressure signatures at sensors locations. Then, the pressure signal is experimentally/on-field measured. Finally, an optimization problem is set up, the result of which provides the optimal value of the fault fitting parameters.

The ITA in time domain was firstly investigated by [START_REF] Liggett | Inverse Transient Analysis in Pipe Networks[END_REF]]. The author defined a merit function .85) the which have to be minimized. Here, h m denotes the measured hydraulic head whereas h c stands for the computed one. An optimization problem, i.e. minimization of the E-gradients or the Levenberg-Marquardt (LM) method, was then set up regarding both the identification of optimal Darcy-Weisbach friction factors and leakage locations. In order to apply such detection strategy, the leaks are nevertheless assumed to occur at network's nodes, the which is a strong assumption. [START_REF] Vítkovský | Leak Detection and Calibration Using Transients and Genetic Algorithms[END_REF]] used a genetic algorithm (GA) to reach an CHAPTER 1. INTRODUCTION optimal distribution of the leak discharges and quasi-steady Darcy-Weisbach friction factors whereas [START_REF] Kapelan | A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks[END_REF]] used an hybrid method combining GA and LM methods. [START_REF] Covas | Hydraulic Transients used for Leakage Detection in Water Distribution Systems[END_REF] pursued experimental investigation on a leaky test network at the Laboratory of Hydraulics of Civil Engineering of Lisbon (Portugal). The authors concluded on the relevance of the ITA method for known small networks but also pointed out numerous limitations to a large scale development: "(i) the accuracy of the transient simulator to reproducing the behaviour of the system, (ii) the uncertainty of collected data, (iii) measurements synchronization in respect to time and to datum level, (iv) the accuracy of the estimation of the main water hammer parameters, such wave speed, pipe roughness and closure manoeuvre that generated the transient". [START_REF] Stephens | The Detection of Pipeline Blockages Using Transients in the Field[END_REF] conducted on-field experimental investigation of the ITA, on the Willunga (South Adelaide, Australia), to locate blockage in pipeline. [START_REF] Vítkovský | Experimental Observation and Analysis of Inverse Transients for Pipeline Leak Detection[END_REF]] also conducted laboratory experiments in a copper pipe for the localization and sizing of single and multiple leaks. The works of [Covas andRamos, 2010, Soares et al., 2011] furthermore extended the existing framework by taking into account the pipe solid visco-elastic rheology in the optimization process. Numerous similar studies can then be found in [Al-Khomairi, 2008, Shamloo and Haghighi, 2009, Stephens et al., 2013, Zhang et al., 2018, Sarkamaryan et al., 2018]. Whereas the previous inverse transient analysis were performed in time domain, some authors focused on the extension of the method in the frequency domain.

E = z t (h m -h c ) 2 dxdt, ( 1 
The ITA in frequency domain consists in searching for a maximum correspondence between the numerical or theoretical signal predictions and the observed experimental one in the Fourier domain. The method was brilliantly presented by [Wang and Ghidaoui, 2018a]. In the frequency domain and for each of the selected frequencies, ω j with j ∈ [1, . . . , J] and J the number of samples, the authors reached an analytic expression (Cf. §2) of the transient head distribution hM j as a function of the non-leaky head distribution hNL j (ω j , z M ), the leak perturbation impedance G(ω j , z L , z M ), the characteristic leak size s L , and a white noise component .86) where the superscripts M, N L, L refer to the measurement location, the non-leak solution and the leak location, respectively. The leak perturbation impedance vector G is a know analytical, frequency-dependent, function. The leak location and size are obtained thought a matched-field processing method (here comparable 1.5. DISSERTATION PROCESS 39 to a maximum likelihood estimation method) then leading to ẑL = argmax .88) where the superscript H refers to the conjugate transpose. The method hereby proposed can furthermore be extended to deal with multiple leaks, [Wang and Ghidaoui, 2018b], due to the problem linearity. If several leakage are investigated, the leaks nevertheless have to be separated by a distance: "larger than minimum half-wavelength", in order to be correctly detected. The detection method was experimentally studied by [Wang et al., 2019] in an HDPE pipe of length 144m. Several leak positions were analyzed and located by the method. To account for visco-elastic solid rheology, the pulse wave speed expression (1.2) was slightly modified by the use of a complex creep function instead of the elastic Young modulus, [Suo and Wylie, 1990] (Cf. §4). More recently, [Keramat and Duan, 2021] brilliantly extended the [Wang and Ghidaoui, 2018a]'s frequency detection approach to account for both FSI couplings and proper visco-elastic effects. The five detection methods here introduced only represent a tiny fraction of the whole fault detection methods in water distribution networks. Out of the herein scope, it is nevertheless noteworthy to present the impressive work review of [START_REF] Datta | A review on different pipeline fault detection methods[END_REF], the Figure 1.22 of which is extracted.
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Dissertation process

The liquid-filled pipe problem, despite of being a long standing problem, still suffers from several lack of understandings. A large amount of research have indeed focused on either the development of unsteady wall shear stress models, or on the in-depth analysis of fluid and structure interactions FSI. It is nevertheless not known by the author, any tentative to reconcile both approaches. Not to mention the derivation of a consistent equation model for the liquid-filled pipe system, the theoretical framework for the resolution of existing models is also limited in scope. Whilst some analytical solutions of the four-FSI equations exist in the frequency domain, time-dependent solutions are scarce or non-existent. The lack of understanding is obviously detrimental to the accuracy of transient fault detection methods and reduce their effectiveness as it was highlighted by the subject literature.

The hereby research project thus aims to provide an in-depth understanding of the liquid-filled pipe problem by embedding Poisson's coupling, unsteady wall shear stress and visco-elastic wall behavior. This project is also dedicated to the development of numerical operational tools allowing both: (i) the predictive analysis of the propagation pressure waves in networks and, (ii) the detection of anomalies in WDN. The PhD is organized as follows: of [START_REF] Datta | A review on different pipeline fault detection methods[END_REF].

• A first chapter is dedicated to the presentation of the frequency Transfer Matrix Method (TMM). In a second time, a new time domain analytical approach is set up relying on both spectral and self adjoint operator theories.

• Then, a second chapter focuses on the asymptotic derivation of a consistent theoretical model, embedded both unsteady wall shear stress effects and FSI couplings, to describe the liquid-filled pipe dynamic in elastic thick pipes. The resolution of this new theoretical model is overcome relying on analytical development spelled out in the first chapter.

• Since the use of visco-elastic materials in water distribution networks is getting common, a third chapter is dedicated to the extension of pre-existing model to account for solid visco-elastic effects.

• A fourth chapter deals with the development of a numerical tool to model water hammer pressure waves in WDN. The pressure wave model is solved using the Method Of Characteristics (MOC) formalism and several unsteady wall shear stress damping models are analyzed and confronted to an on-field test case.

• Finally, a fifth chapter presents a new approach for the fault detection in water distribution networks by the use of time reversal of first event detection.

Chapter 2

Time-and frequency-dependent liquid filled pipe analysis. This chapter aims at providing a new analytical time-domain approach for the liquid-filled pipe problem resolution relying on both spectral and operators theory. This new approach reconciles known results obtained though frequency analysis, which are thereafter presented.

Frequency analysis and Transfer Matrix Method (TMM)

In the forthcoming, the Laplace transform of a causal function f (t), i.e. ∀t ≤ 0, f (t) = 0, is denoted f (s) and achieves as follows

f (s) = ∞ 0 f (t)e -st dt, (2.1)
with s ∈ C the Laplace variable. Theoretical methods have been developed to analytically describe the behavior of hyperbolic-governed systems. The transfer matrix method (TMM) is a frequency-based theoretical method which consists in deriving the transmission matrix associated with an acoustic system. Classically, a Laplace (or Fourier) transform is performed upon the set of equations which simplifies them into a set of space-dependent ODE. In the case of liquid-filled pipe system where the spacial gradient are simple derivative, the propagation operator then displays an exponential space-frequency dependence. A solution of the CHAPTER 2. ANALYSIS OF FOUR-FSI EQUATIONS SYSTEMS coupled ODE system is then searched into its diagonal basis. Finally, the application of axial boundary condition at the pipe's dead-ends constrains the overall dynamic and specify its resonant frequencies, also denoted spectrum. The method basic concept is hereafter provided following the work of [Zhang et al., 1999].

Let us consider the homogeneous, perturbed (i.e. with at rest initial condition) hyperbolic system

∂ t + C 2 ∂ Z P(Z, t) = 0. (2.2)
Performing a Laplace transform of (2.2) then yields

C 2 ∂ Z + s P(Z, s) = 0. (2.3)
A solution of this ODE is now searched in the diagonal basis of C 2 . Let us respectively set up (C 2 , Π) being the diagonal matrix of C 2 and its associated change of basis matrix. The P vector is denoted by P = Π -1 P, in the C 2 -diagonal basis. The (2.2) thus achieves as follows

∂ Z + sC -2 P(Z, s) = 0. (2.4)
Hence, a straightforward relation is established between the pipe's upstream condition and any downstream point following Pi (Z, s) = Ti (s)e -sC -2 i Pi (0, s), (2.5) whilst changing basis leads to Pi (Z, s) = Π ij Tj (s)e -sC -2 j Transfer matrix Pj (0, s), (2.6) where the Einstein's index notation have been used and Ti (s), is an unknown amplitude. Finally, when regarding (2.6) at Z = L, a linear system in Ti , emerges between the pipe's upstream and downstream conditions. Setting the axial boundary conditions thus constrains the solution and specifies both its spectrum and amplitudes.

The TMM is widely used in the liquid-filled pipe problem community for its efficiency and easy implementation. We only provide here some references using it to investigate FSI water-hammer problems. [Lesmez, 1989, Lesmez et al., 1990] carried-out an impressive study from analyzing the FSI occurring in a U-bend pipe configuration. The authors dealt with both Poisson and junction couplings. [Zhang et al., 1999] delivered a complete work and provided significant theoretical insights on TMM. The authors indeed theoretically analyzed the flexural and axial vibrations of a fluid-filled pipe induced by discrete impacts. For each configurations, they spelled out the frequency-dependent solutions along with their spectrum as depicted in Figure 2.1. [Li et al., 2002] then used the TMM to depict the behavior of a set of axially connected pipes in a row. The authors dealt with diameter heterogeneity and in-depth analyzed the harmonic response of their system, which Frequency-response of an axially, discrete, impacted free hanging pipe, [Zhang et al., 1999].

is similar to the experimental setup of [START_REF] Vardy | Water hammer in a closed tube[END_REF]. [Yang et al., 2004] investigated the FSI-response of a multi-spanned pipe along with the downstream inertial perturbations induced by the valve's movement in a reservoir-pipe-valve (RPV) system. By varying the Poisson's modulus values (ν s ∈ [0, 0.3]), the authors thus quantified the impact of the Poisson couplings upon both the overall dynamic and the resonant frequencies. [Kim, 2005] used the impedance method, which is similar to the TMM but with the distinction of defining explicitly the acoustic system impedance, to deal with leak location in single pipes. [Kim, 2007] transposes the impedance method to looped hydraulic networks and then generalized the concept as matrix impedance method. As TMM, the application of network nodes boundary conditions yields to a linear system dependent upon each pipe acoustic impedance Z i , and the node's degree, the resolution of which prescribes the system spectrum and amplitudes. The looped network along with its spectrum, i.e. linear boundary condition system, for the [Kim, 2007]'s analysis is depicted in Figure 2.2. The excellent contributions of [Zecchin, 2010, Zecchin et al., 2012] should be distinguished. The author considerably expands the matrix impedance method from combining it with graph theory. The authors then develop a Numerical Inverse Laplace Transform (NILT) procedure allowing a time-domain analysis of complex distribution networks, as depicted in Figure 2.3. In the last few years, the [Zecchin, 2010]'s NILT method was successfully used by [START_REF] Capponi | Experimental validation of the admittance matrix method on a Ysystem[END_REF] to investigate the transient behavior of an Y-pipe experimental setup. Others TMM or impedance matrix contributions can be found in [Liu and Li, 2011], whose analyzed the impact of pipe's elastic supports, [START_REF] Dai | Vibration analysis of three-dimensional pipes conveying fluid with consideration of steady combined force by transfer matrix method[END_REF] whose performed a multidimensional space frequency analysis or [Li et al., 2014] whose investigated the FSI-waves propagation in elbows. The latter also focused on the junction cou- system, [Kim, 2007].

(a) 51-pipes test network, [START_REF] Zecchin | Inverse Laplace Transform for Transient-State Fluid Line Network Simulation[END_REF] (b) Example of pressure signature for the NILT method, in dotted line, compared with the Method Of Characteristic (MOC) predictions, in continuous lines. form NILT procedure, [Zecchin, 2010, Zecchin et al., 2012] plings interaction emerging from pipe clamping. [Duan et al., 2012a, Duan et al., 2013] used TMM to derive a transcendental spectrum equation for a set of pipes axially connected in a row. Their theory was then experimentally validated. [Li et al., 2014] extended the method to a set a fourteen hyperbolic equations, each governing a FSI-induced vibration mode. Additional contributions can be found in the excellent review of [Li et al., 2015]. While the treatment in the frequency domain is trivial, performing a Laplace (or Fourier) transform inversion is usually challenging and stands as a limitation of the TMM. Despite their interest in parametric estimations, sensitivity analyses or numerical validations, few analytical time-dependent solutions exist in the literature.

As part of this research project, a set of basic FSI-configurations are hereafter investigated so as to detail their time-domain respective solutions. The spectrum of each configurations is derived, which provides the resonant frequencies of the system. First, we focus on performing the analytical Laplace inverse transform resulting from the TMM. Then, relying on operator theory, the TMM is revisited into a new time-domain framework for the resolution of liquid-filled pipe systems.

2.2 Fluid structure interactions analytical analysis for the liquid filled pipes problem: Proceedings to 14 th conference on pressure surge, BHR group

INTRODUCTION

Wave propagations in liquid-filled pipe systems has been investigated for a long time [1,3,4,7,8,11,16,17] as discussed in exhaustive and sagacious review papers [6,14,19]. Furthermore, it can also be applied to defect/leak localization [5,9,10] parameter identification and boundary condition de-convolution inside liquid-filled pipes. In this context, analytical solutions are helpful to deepen understanding and/or, more pragmatically, to provide reference test cases. We hereby considered the pressure-stress wave equation operator derived from the classical four FSI-equation system, [18]. By following the approach of [23] and for a large set of boundary conditions, we handled the resolution of the wave equation in the Laplace domain leading to a frequency-dependent solution. A general inverse Laplace formulation is thereafter managed invoking spectral arguments from [2] and resulting in a time-dependent solution. The theoretical analysis of this paper concludes by highlighting the modal convergence behavior of the proposed solutions.

THEORETICAL FRAMEWORK

In this section we mainly focus on the spectrum, the resonant frequencies of FSI solutions.

Dimensionless parameters

Let us consider a cylindrical tube having inner radius R 0 , wall thickness e, length L, so that parameter α can be defined as

α = e R 0 . (1) 
The tube is entirely filled with a fluid having density ρ f , bulk modulus K f . The elastic solid response is associated with Young's modulus E, Poisson's modulus ν s , and density ρ s . Reference [18] derived the classical pulse wave speed within the fluid, c p , distinct from the elastic pulse wave speed within the solid, c s

c 2 p = 1 ρ f 1 K f + 2 αE 2(1-ν 2 s ) 2+α + α(1 + ν s ) , c 2 s = E ρ s , (2) 
their respective ratio being

C s = c s c p . (3) 
In the forthcoming, the perturbed fluid pressure P * , and axial solid stress σ * , will be scaled on the [8]'s overpressure, i.e. O (ρ f c p W 0 ) with W 0 the flow perturbation amplitude imposed to the system, so that their dimensionless counterparts follow from

P = P * ρ f c p W 0 , and, σ = σ * ρ f c p W 0 . (4) 
The physical time t is furthermore regarded with respect to the fluid acoustic advective time scale, i.e. τ = t L c p , while the axial coordinate is rescaled with respect to the tube's length, i.e. Z = z/L. Finally, the dimensionless density ratio is introduced as

D = ρ f ρ s . ( 5 
)

Governing wave-vector equation

The derivation of the wave-vector equation governing the space-time distribution of the dimensionless perturbed pressure P and dimensionless axial stress σ has been provided in [2] so that it is not repeated here. It results in the following wave-operator acting on the pressure/stress 2D-vector:

∂ 2 τ -C 2 P ∂ 2 Z P = 0, (6) 
where

C 2 P = 1 2ν s D 2ν s α(2+α) 4ν 2 s D α(2+α) + C 2 s
, and, P = P σ .

The fluid pressure and the axial solid stress as well as their respective timederivatives will be assumed initially at rest so that

P(Z, 0) = 0 , ∂ τ P(Z, 0) = 0. (8) 
The vector homogeneous wave-equation resolution will be handled within the eigenvectors basis of C 2 P as in [23]. The eigenvalues of C 2 P , denoted c 2 ± > 0, associated with diagonalized matrix C 2 P correspond to the wave speed mode propagation. They are the solution of the following polynomial characteristic problem

c 4 ± -1 + C 2 s + 4ν 2 s D α(2 + α) c 2 ± + C 2 s = 0, (9) 
the solutions of which are

c 2 ± = 1 + C 2 s + 4ν 2 s D α(2+α) ± 1 + C 2 s + 4ν 2 s D α(2+α) 2 -4C 2 s 2 . ( 10 
)
The dimensionless wave-equation system (6) with initial condition (8) expressed in the eigenvector base finally reads

∂ 2 τ -C 2 P ∂ 2 Z P = 0 , with, P(Z, 0) = ∂ τ P(Z, 0) = 0, (11) 
where the change of basis relations

Π = 2ν s D c 2 --1 2ν s D c 2 + -1 1 1 , C 2 P = c 2 - 0 0 c 2 + ≡ ΠC 2 P Π -1
, and, P = Π -1 P, (12) have been used. The initially coupled pressure/stress wave propagation problem now looks decoupled into two distinct wave propagation modes associated with 2D-vector P. Nevertheless the coupling persists from the resulting coupled upstream and downstream boundary conditions associated with P. For the sake of simplification let us introduce four 2 × 2 matrices N , M, Q, R and Sδ(τ ) as a four-dimensional column vector corresponding to the perturbation with respect to the imposed steady-state (δ(τ ) being Dirac distribution). Boundary conditions can be formally written as a rectangular 8 × 4 linear system

N M 0 0 0 0 Q R •     P(0, τ ) ∂ Z P(0, τ ) P(1, τ ) ∂ Z P(1, τ )     = Sδ(τ ), (13) 
where Sδ(τ ) is a source term exciting the system. Specific sets of boundary conditions will hereafter be investigated and corresponding resolution using diagonalized vector wave-equation system (11), will be handled in the Laplace domain.

Laplace resolution of the FSI wave equation

Let us introduce L, the Laplace transform operator, s its Laplace variable and P the Laplace transform of P:

P(Z, s) = L (P(Z, t)) . ( 14 
)
The Laplace transform of ( 11) then leads to

s 2 -C 2 P ∂ 2 Z P = 0, (15) 
C 2 P being diagonal (Cf ( 12)). A solution can be found for the spatial ODE system leading to

P(Z, s) = E(Z, s) PD (s) + F(Z, s) PN (s), (16) 
with 2 × 2 diagonal matrices

E(Z, s) =   cos is c - Z 0 0 cos is c + Z   , F(Z, s) =   sin is c - Z 0 0 sin is c + Z   , (17) 
and PD (s), PN (s) 2D-vectors yet to be found. PD (s), PN (s) provide the modedependent amplitude of P(Z, s) respectively associated with the Dirichlet or the Neumann boundary condition imposed at location Z = 0. This is a transposition of the transfer matrix method [14,20,23,12], to the wave operator problem.

Combining the expression of ( 16) and ( 17) with the Laplace transform of the boundary condition system (13), leads to

PD PN (s) = B -1 (s)S, (18) 
with

B = N isMC -1 P QE(1) -isRC -1 P F(1) QF k (1) + isRC -1 P E(1) (19) 
In the following development, the inverse of ( 19) is needed to bring out the pole of P. By introducing the adjugate matrix of B, namely adj [B] one can formally see that

B -1 (s) = adj [B(s)] det B(s) , (20) 
Let us furthermore introduce the two matrices e 1 = 1 0 0 0 0 1 0 0 , and, e 2 = 0 0 1 0 0 0 0 1 ,

vector P(s, Z) can then be found using ( 16), (18) and (20) to reach

P(s, Z) = Φ(s, Z) det B(s) , ( 22 
) with Φ(s, Z) = [E(Z)e 1 + F(Z)e 2 ] (adj [B] S) . (23) 

Laplace inversion and time-dependent solution

The pole of ( 16) are investigated in order to perform the inverse Laplace transform using Cauchy's theorem. Regarding the structure of ( 16), it immediately appears that the poles are located within the expressions of PD (s) and PN (s) and, consequently using ( 18)-( 20), within the root of det B(s). The adjugate matrix, by definition, does not contribute to the pole set of PD (s) and PN (s). The condition det (B(s)) = 0 is similar to the spectrum condition derived in [2] and leads to

S P = {s ∈ C | det B(s) = 0}. ( 24 
)
The resulting transcendental equation for root s k is specific to each boundary condition set and has to be computed numerically. In the following, three configurations are considered for which, in each case, the root s k is purely imaginary, i.e.

s k = iλ k , with, λ k ∈ R. (25) 
It is interesting to mention that purely imaginary poles are found for the three specific considered configurations examined in section 3, without stating it is a general result. This remark goes along with the consideration obtained for the operator spectrum in [2]. The pole set of P(Z, s), S P , being found, Cauchy's residue theorem is used to derive a time-domain solution for vector wave problem (11), leading to

P(τ, Z) = R e   S P lim s→iλ k (s -iλ k ) Φ(s, Z) det (B(s)) e sτ   . ( 26 
)
and using the classical Taylor expansion of det B(s) at poles s k = iλ k ,

P(τ, Z) = R e   S P Φ(iλ k , Z) ∂ s det (B(iλ k )) e iλ k τ   . ( 27 
)
The previous expression completes the frequency-domain analysis for the timedomain solution of (11). A variety of spatial boundary conditions is then investigated. The associated spectrum will be described and analyzed in detail. Natural frequencies, f k , found from transcendental spectrum equation roots, s k , read

f k (Hz) = s k c p 2πiL = λ k c p 2πL , ( 28 
)
where L is the pipe's length introduced in §1.

SETS OF SPATIAL BOUNDARY CONDITIONS

Three sets of boundary conditions are analyzed: (i) the reservoir-pipe-anchored valve system (Cf Fig. 1a), (ii) the reservoir-pipe-free valve system (Cf Fig. 1b), (iii) pipe impacted by a rod (Cf Fig. 1c). 3.1 The reservoir-pipe-anchored valve system: : case (i)

In the following configuration (Cf Fig. 1a), the pipe is supposed perfectly anchored both upstream and downstream. One thereby supposes an homogeneous

Anchored and free valve systems (i) & (ii) (Cf Fig. 1a & 1b) Fluid (water) Solid (steel)

ρ f = 1000 kg • m 3 ρ s = 7900 kg • m -3 K f = 2.1 GP a E = 210 GP a ν s = 0.3 R 0 = 0.395 m e = 0.008 m L = 20 m (a)
Physical properties and configuration for case (i) & (ii)

Impacting rod system (iii) (Cf Fig. 1c) Fluid (water) Solid (steel) rod & sleeves (steel) Table 1: Identification of the parameters necessary for the study of the three configurations shown in Figure 1.

ρ f = 999 kg • m 3 ρ s = 7985 kg • m -3 M 0 = 1.312 kg K f = 2.14 GP a E = 168 GP a M L = 0.3258 kg ν s = 0.29 F rod = 9.4 kN R 0 = 0.02601 m V rod =
Neumann condition for the axial stress at Z = 0 & Z = 1. Furthermore the reservoir impedes any pressure fluctuation upstream which can be interpreted as an homogeneous Dirichlet condition for the pressure field. Finally, downstream, the instantaneous valve closure is modeled with a Dirac distribution δ(τ ) acting on the axial pressure spatial gradient. The four boundary conditions thereby read

P (0, τ ) = 0 , ∂ Z P (1, τ ) = δ(τ ), ∂ Z σ(0, τ ) = ∂ Z σ(1, τ ) = 0. ( 29 
)
Invoking the change-of-basis relationships (12) whilst introducing

β = c + c - c 2 --1 c 2 + -1 , (30) 
the boundary condition matrices (13) can then be determined:

N = 1 βc - c + 0 0 , M = 0 0 1 1 , Q = 0, R = N +M, S = c 2 --1 2ν s D     0 0 1 0     . ( 31 
)
The boundary condition matrices are useful to derive an expression for cornerstone matrix B. Invoking the definition of the latter in (19), one finds

B =          1 βc - c + 0 0 0 0 is c - is c + -is sin is c - c - -is βc - c + sin is c + c + is cos is c - c - is βc - c + cos is c + c + -is sin is c - c - -is sin is c + c + is cos is c - c - is cos is c + c +          . ( 32 
)
The determinant of B(s) can be easily found leading to

det (B(s)) = -is 3 c -β -c + c 3 + c - β sin is c - cos is c + -sin is c + cos is c - , (33) 
and,

∂ s det (B(s)) = 3 det (B(s)) s + s 3 c -β -c + c 2 + c - 2 c + β -c - c -β -c + cos is c - cos is c + -sin is c + sin is c - . (34) 
Let s k = iλ k , with λ k ∈ R, be a root of (33). The spectrum associated with the reservoir-pipe-anchored valve configuration arises from λ k transcendental equation

S P = λ k ∈ R, β sin λ k c - cos λ k c + = sin λ k c + cos λ k c - . (35) 
It remains to establish the expression of Φ(s, Z) in ( 23) to provide P in (27).

Since the determination of adj [B(s)] S can be tedious, the resolution is performed via symbolic computation (using Maple software) leading to

adj [B(s)] S = s 2 c 2 --1 2ν s D         β c 2 + cos is c - -cos is c + -1 c + c -cos is c - -cos is c + 1 c 2 + β sin is c - -sin is c + -1 c + c -β sin is c - -sin is c +         . ( 36 
)
At this stage, the solution of the vector wave equation ( 11) can be expressed in either frequency-domain, combining (33) and (36) in (22), or time-domain, combining (34) and (36) in (27). When evaluating in iλ k , the derivative of the determinant (34) turns out to be purely imaginary while the term adj [B(s)] S in (36) turns out to be real, as do matrix E(Z, s) and F(Z, s) in (17). In other words, when performing the inverse Laplace transform over P only the temporal sinus mode in (27) contributes. Figures 2 & 3 illustrate this solution and its spectrum

P(Z, τ ) = c 2 --1 λ k ∈S P sin λ k τ 2ν s c 2 + Dλ k   c -β-c + c 2 + c -   2 c + β-c - c -β-c + cos λ k c - cos λ k c + -sin λ k c + sin λ k c -       cos   λ k c -   -cos   λ k c +         β cos λ k Z c - - c + c - cos λ k Z c +     +   β sin   λ k c -   -sin   λ k c +         sin λ k Z c - - c + c - sin λ k Z c +         . ( 37 
)
3.2 The reservoir-pipe-free valve system : case (ii)

A second configuration is analyzed when the valve is free to move axially (Cf Fig. 1b). Upstream, the same conditions ( 29 As ν s varies, some eigenvalues come close to one-another, but a careful inspection shows no cross-over between the depicted eigenvalues. between pressure field analytical solution at valve location (continuous brown lines) with MOC solutions provided by [20] (dashed blue lines). Non-FSI solutions (i.e ν s = 0) are provided for illustration in black dotted lines. Insets provide a zoom for detailed check. (b) Comparison between [22]'s pressure prediction at valve eigenvalues obtained from transcendental equation (35) the pressure. Downstream, the static equilibrium of forces at the valve location combined with velocity continuity leads to

α(2 + α)σ(1, τ ) = P (1, τ ), (38) 
∂ Z P (1, τ ) + D∂ Z σ(1, τ ) = δ(τ ). ( 39 
)
Considering change of basis ( 12) whilst introducing parameters

κ ± = D + 2ν s D c 2 ± -1 , (40) 
γ = α(2 + α) -2ν s D c 2 + -1 α(2 + α) -2ν s D c 2 --1 , (41) 
the boundary condition matrices ( 13) can be found leading to

N = 1 βc - c + 0 0 , M = 0 0 1 1 , Q = 0 0 1 γ , R = κ - κ + 0 0 , S =    0 0 1 0    . ( 42 
)
Using definition (19), B can be found as

B =        1 βc - c + 0 0 0 0 is c - is c + -is κ - c -sin is c - -is κ + c + sin is c + is κ - c -cos is c - is κ + c + cos is c + cos is c - γ cos is c + sin is c - γ sin is c +        (43) Noticing that κ - γκ + = c + βc - , (44) 
the determinant of B(s) and its derivative with respect to s are

det B(s) = - 2s 2 βκ - c 2 + +s 2 κ + c 2 + β cos is c + cos is c - 1 + κ - κ + 2 + sin is c + sin is c - 1 + βκ - κ + 2 , (45) 
∂ s det B(s) = is 2 χ + sin is c - cos is c + + χ -cos is c - sin is c + + 2 det B(s) s , (46) 
with

χ ± = κ + c 2 + 1 c ± 1 + βκ - κ + 2 - β c ∓ 1 + κ - κ + 2 , (47) 
Let s = iλ k , with λ k ∈ R, be a root of (33). The spectrum associated with the reservoir-pipe-free valve configuration is governed by the following λ k transcendental equation,

β cos   λ k c +   cos   λ k c -     1 +   κ - κ +   2   +   1 +   βκ - κ +   2   sin   λ k c +   sin   λ k c -   = 2κ - κ + . ( 48 
)
Again the tedious determination of adj (B(s)) S is performed using symbolic computation and leads to As α varies, some eigenvalues come close to one-another, but a careful inspection shows no cross-over between the depicted eigenvalues. between pressure field analytical solution at valve location (continuous brown lines) with MOC solutions provided by [20] (dashed blue lines). Insets provide a zoom for detailed check. (b) Comparison between [23]'s pipe velocity spectrum at valve and eigenvalues obtained from transcendental equation ( 48)

adj [B(s)] S = -is         β c 2 + c -sin is c - -γc + sin is c + -1 c -c + c -sin is c - -γc + sin is c + -1 c 2 + βc -cos is c - -γc + cos is c + 1 c -c + βc -cos is c - -γc + cos is c +         . ( 49 
The solution of the vector wave equation ( 11) can once again be expressed in either frequency-domain, combining ( 45) and ( 49) in ( 22), or time-domain, combining ( 46) and ( 49) in (27). Figures 4 & 5 illustrate this solution and its spectrum

P(Z, τ ) = - λ k ∈S P c -sin λ k c - -γc + sin λ k c +   β cos λ k Z c - - c + c - cos λ k Z c +   λ k c 2 + χ + sin λ k c - cos λ k c + + χ -cos λ k c - sin λ k c + sin (λ k τ ) + λ k ∈S P βc -cos λ k c - -γc + cos λ k c +   sin λ k Z c - - c + c - sin λ k Z c +   λ k c 2 + χ + sin λ k c - cos λ k c + + χ -cos λ k c - sin λ k c + sin (λ k τ ) . ( 50 
)
3.3 The impact induced water hammer : case (iii)

In this third configuration, the over-pressure occurs from the impact of a steel rod on a closed liquid-filled pipe system. This ingenious experiment was designed by [21] to reveal intrinsic FSI coupling occurring in liquid-filled pipes while minimizing external disturbing contributions. This system has been analytically investigated in [12,13]. At the upstream pipe end, a steel rod impacts the pipe sleeve producing an over-stress which propagates within the fluid/solid system. While the impact time of the rod over the upstream sleeve is supposed negligible, one nevertheless considers the sleeve's inertia. The dynamic equilibrium of forces along with the velocity continuity at both pipe's upstream and downstream ends leads to

m 0 D∂ Z σ zz (0, τ ) = F r δ(τ ) + α(2 + α)σ zz (0, τ ) -P (0, τ ), ( 51 
)
D∂ Z σ zz (0, τ ) + ∂ Z P (0, τ ) = 0, (52) 
-m L D∂ Z σ zz (1, τ ) = α(2 + α)σ zz (1, τ ) -P (1, τ ), (53) 
D∂ Z σ zz (1, τ ) + ∂ Z P (1, τ ) = 0. ( 54 
)
where

m 0 L = M 0 L πρ f R 2 L , (55) 
F r = F rod πρ f c p V rod R 2 . ( 56 
)
Considering change of basis relations ( 12) and introducing parameters

η 0 L = m 0 L D α(2 + α) -2ν s D c 2 --1 , (57) 
F = F r α(2 + α) -2ν s D c 2 --1 , (58) 
the boundary conditions matrices ( 13) can be determined

N = - 0 0 1 γ , M = κ - κ + η 0 η 0 , Q = -N , R = κ - κ + η L η L , S =    0 F 0 0    . ( 59 
)
Cornerstone matrix B can now be evaluated using ( 19)

B =        0 0 is κ - c - is κ + c + -1 -γ isη 0 c - isη 0 c + -is κ -sin is c - c - -is κ + sin is c + c + is κ -cos is c - c - is κ + cos is c + c + B 41 (s) B 42 (s) B 43 (s) B 44 (s)        , (60) 
with

B 41 (s) = cos is c - - isη L c - sin is c - , B 42 (s) = γ cos is c + - isη L c + sin is c + , B 43 (s) = sin is c - + isη L c - cos is c - , B 44 (s) = γ sin is c + + isη L c + cos is c + . ( 61 
)
Hence introducing

ψ = β κ - κ + 2 , (62) 
the determinant of B(s) and its derivative follows

det B(s) = s 2 η 0 η L (κ --κ + ) 2 s 2 + c 2 -κ 2 + 1 + ψ 2 c 2 -c 2 + sin is c - sin is c + + is 3 κ + (κ --κ + ) (η 0 + η L ) c -c 2 + ψ cos is c + sin is c - -cos is c - sin is c + + 2s 2 ψκ 2 + c 2 + cos is c - cos is c + -1 (63) ∂ s det B(s) = 2 det B(s) s -s 3 cos   is c -   cos   is c +   κ + κ --κ + η 0 + η L c -c 2 +   ψ c - - 1 c +   + is 2 c -c 2 + cos   is c +   sin   is c -     ψκ + κ --κ + η 0 + η L -2κ + + η 0 η L κ --κ + 2 s 2 + c 2 -κ 2 + 1 + ψ 2 c -c +    + is 2 c 2 + cos   is c -   sin   is c +      η 0 η L κ --κ + 2 s 2 + c 2 -κ 2 + 1 + ψ 2 c 3 - -κ +   κ --κ + η 0 + η L c - + 2ψκ + c +      + s 3 sin   is c -   sin   is c +   κ --κ + c -c 2 +   2η 0 η L κ --κ + c - -κ + η 0 + η L   1 c - - ψ c +     (64) 
The spectrum associated with this configuration is found from (63) since it is As α varies, some eigenvalues come close to one-another, but a careful inspection shows no cross-over between the depicted eigenvalues.

the set of roots of: det B(s) = 0. Once again adj [B(s)] S is evaluated and reads

adj [B(s)] S = -s 2 F                        -isη L κ + κ --κ + sin is c + +c -κ 2 + ψ cos is c + cos is c - +c -κ 2 + sin is c - sin is c + -ψ c -c 2 + κ - κ + isη L κ + κ --κ + sin is c - +c -κ 2 + cos is c - cos is c + +c -κ 2 + sin is c - sin is c + ψ-1 c + c 2 - -isη L κ + κ --κ + sin is c + +c -κ 2 + ψ cos is c + sin is c - -c -κ 2 + sin is c + cos is c - c -c 2 + - κ - κ + -isη L κ + κ --κ + sin is c + +c -κ 2 + ψ cos is c + sin is c - -c -κ 2 + sin is c + cos is c - c 2 - c +                        . ( 65 
)
A parametric analysis is carried-out to investigate the shift of natural frequencies caused by the geometrical parameter α in Fig. 6b. The natural frequencies are then compared in Fig. 6a with the ones found by [23]. This brings out the importance of considering the sleeve masses in such systems. The fourth and eighth frequencies are considerably affected by the oscillations of the pipe's end masses.

Modal convergence analysis

The mode truncation convergence of our analytical solution is checked by evaluating the quadratic error

E E = 1 N Z N τ 1 0 τ =5 0 (P M tr (z, t) -P ref (z, t)) 2 dzdt, (66) 
where (N Z , N τ ) ≡ (1000, 5000) are the space and time numerical uniform grid point number whereas P ref (Z, τ ) is a reference solution with very-high mode truncation (2000 modes). For each configuration analyzed the analytical solution is truncated to M tr modes (with M tr ≪ 2000) and in each case a 1/M tr convergence is found in Fig. 7. 

CONCLUSION

The paper has presented analytical solutions for FSI wave propagation in liquidfilled pipes. By considering three sets of boundary conditions, the diagonalized pressure-stress wave equation has been analyzed by a frequency-domain Laplace transform approach. For all configurations investigated, a transcendental spectrum equation was described and detailed analysis was carried out with respect to constitutive parameters such as the Poisson modulus or the pipe's thickness radius ratio α. The determined natural frequencies were successfully compared with previous contributions found in the subject literature. For the pipe-reservoirvalve (free or not) system, a straightforward time dependent solution was derived and compared to numerical benchmarks. The solutions was found to be identical to those derived in [2]. For brevity, no time dependent solution was explicitly provided for the third configuration. This can nevertheless be accomplished by the use of the theoretical and calculus elements of this paper. We discussed and demonstrated the modal convergence of the time dependent solutions provided and highlighted the polynomial convergence behavior of the latter.

Spectral properties of Fluid Structure Inter-

action pressure/stress waves in liquid filled pipes: Article to Wave Motion

Introduction

Wave propagation in liquid-filled pipe systems have been investigated for a long time [1,2,3,4,5,6,7] to cite only a few, possibly seminal, contributors. The phenomenology is now well understood as fully discussed in exhaustive and sagacious review papers [8,9,10]. Fluid Structure Interaction (FSI) arising between pressure/stress propagation have been recognized as one major modeling pathway, leading to four coupled hyperbolic equations in the case of axi-symmetric compressive planar waves modes propagation [5,11,12,7,13]. The long wavelength approximation is a widely established and validated framework [3,14,15,7]. It permits to neglect secondary FSI effects associated with rotatory vibration modes or radial inertia (e.g. bending, twisting, etc.), the analysis of which needs a more complex set of equations. Considering an averaged formulation both in solid and fluid for mass and momentum conservation equations, [7] derive a set of four coupled hyperbolic equations highlighting the overriding role of the Poisson's coupling effects, namely the axial transmission of the radial stresses and strains via the Poisson's modulus, on the whole dynamic. In [16] two other major coupling mechanisms were spelled out: (i) the junction occurring at edge conditions and, (ii) the friction coupling resulting from viscous effects in boundary layers and/or pipe's supports. Whereas (i) is precisely analyzed in this study, on the contrary, (ii) is not considered. Pipe's support coupling effects has nevertheless been thoroughly analyzed in [6,17,18].

Recent and active motivations to analyze the FSI vibrations in pipes lies from the use of water-hammer waves in defect/leak detection and localization [19,20,21,22,23]. Since in common practice "localized" pipe anomaly, such as a leak and a discrete blockage leads to a modification of the Fourier peaks of the signal, a spectral-based diagnostic signal processing has been sough for [19,21,22,23]. In this context, the ability to obtain an explicit derivation of the traveling waves system spectral properties can pave the way to elaborate spectral diagnostic signal processing strategies among which the spectral sensitivity matrix is a central one [24,25]. As spectral sensitivity matrix is a time-consuming and noise-sensitive quantity, a purely numerical estimate of this quantity, e.g. based upon finite-difference estimate, is sometimes not precise enough or too demanding (in case of high-dimensionality of parameter space). This is why it is either interesting to lower the parameter space dimensions and/or to find analytical estimate of this spectral sensitivity matrix, as performed here. Many contributions relying on the Laplace/frequencydomain numerical resolution of the four-FSI equations using transfer matrix method (TMM) can be found [9,26,27,28,29,30,20]. Nevertheless, to our knowledge, no fully explicit time-domain solutions nor explicit spectrum have been previously obtained except in [31], which has ignored Poisson's coupling and therefore FSI. In the following, we thereby focus on developing a new analytical framework using operator's theory, for pressure/stress wave operator. We derive a straightforward real transcendental equation for the spectrum and successfully spelled out an orthogonal projection basis for the uncoupled diagonalized wave operator. The separation of variables technique is used to handle the derivation of a pressure-stress solution in time-domain (a Fourier transform may thereafter easily be managed, if required, to find the corresponding frequency domain solution). The paper is organized as follow. Section 2.1 describes the dimensionless constitutive four-FSI equations model, boundary conditions sets, parametric description, proper wave dimensional and dimensionless velocity propagation, and the resulting diagonalized 2-waves equations reminiscent of [28]'s solution strategy. Section 3 provides the theoretical framework defining the self-adjoint operator for the separable waves solutions decomposition. Section 4 illustrates the comparison between the obtained analytical solutions and previously published numerical or theoretical results for specific sets of boundary conditions. Section 5 then provides the spectrum sensitivity matrix for each boundary condition set.

Governing equations

Dimensionless constitutive model

Let us consider a cylindrical tube having inner radius R 0 , wall thickness e, and length L, which defines the following aspect and geometrical parameters

α = e R 0 , and, ϵ = R 0 L . ( 1 
)
The tube is supposed to be entirely filled with a fluid having density ρ f , bulk modulus K, perturbed pressure P * and velocity W * . Considering low-Mach waves, the fluid density is considered as constant and equal to the reference density ρ f as in [32,33]. The elastic solid response is associated with Young's modulus, E, Poisson's modulus ν s , perturbed axial stress, σ * , perturbed axial strain ζ * , and density ρ s supposed constant. [7] derived the classical pulse wave speed within the fluid, c p , distinct from the elastic pulse wave speed within the solid, c s , the ratio of which is denoted

C s c 2 p = K ρ f 1 + 2K αE 2(1-ν 2 s ) 2+α + α(1 + ν s ) , c 2 s = E ρ s , C s = c s c p . ( 2 
)
The coupled system is furthermore described through the dimensionless density ratio

D = ρ f ρ s , (3) 
so that the dimensionless four-FSI equations derived in [7] achieves as follows

∂ τ W = -∂ Z P, (4) 
∂ τ P + ∂ Z W = 2αν s ∂ Z ζ, (5) 
∂ τ ζ = D α ∂ Z σ, (6) 
∂ τ σ - αC 2 s D ∂ Z ζ = 2ν s α(2 + α) ∂ τ P. ( 7 
)
where W , P , ζ, σ are dimensionless quantities referring to the fluid longitudinal velocity, the fluid pressure, the longitudinal solid deformation velocity and the longitudinal stress, respectively. The physical time t is scaled on the advective fluid pulse one, i.e. τ ≡ cp L t, whilst the longitudinal coordinate z is scaled on the tube's length, i.e. z ≡ LZ. More details on the hereby dimensionless derivation is provided in Appendix B. ( 4)-( 7) represents a set of two coupled hyperbolic equations. While the first part ( 4)-( 5) is associated with the acoustic waves propagation in the fluid, the second part ( 6)-( 7) describes the propagation of axial compressible waves in the solid tube. Poisson's coupling is highlighted by the presence of the Poisson's modulus in both source terms of ( 5) and (7). It is noteworthy to point-out that ( 4)-( 7) are the leading order contributions regarding small parameter ϵ [34]. [3,35,14] in-depth analyzed the secondary FSI occurring in liquid-filled pipe systems, revealing their significant impact at very high-frequencies only, the cut-off of which f Kc , is known as the Korteweg's stop band, [36] 

f Kc = C s ϵ f 0 , with, f 0 = c p 2πL . (8) 
For f Kc > f > f 0 , the axial dynamics prevails over the radial one and despite simplifications ( 4)-( 7) is relevant to investigate several configurations [37,7,38,39]. This frequency cut-off f Kc nevertheless stands as a frequency limitation of the proposed analysis and will be thereafter discussed. Last but not least, it is known from [31,40] that viscous shear dissipation occurring at the fluid and solid interface may have a significant impact on the coupling dynamic. Even though of physical interest, this issue is herein discarded but in-depth analyzed in [41]. Considering the acoustic framework for the fluid whilst using the linearity of the FSI-governing equations, only the perturbed component of the physical field are investigated so that the initial conditions are

Y(Z, 0) = ∂ τ Y(Z, 0) = 0, (9) 
with Y(Z, τ ) a four column vector,

Y(Z, τ ) = P (Z, τ ), σ(Z, τ ), W (Z, τ ), ζ(Z, τ ) T , (10) 
where subscript T holds for the conjugate transpose.

Vectorial two-waves system of FSI four-equations

The four coupled hyperbolic ( 4)-( 7) are hereby re-organized to bring-up a d'Alembert operator upon the time-space dependent variable Y

∂ 2 τ -C 2 Y ∂ 2 Z Y(Z, τ ) = 0, (11) 
where,

C 2 P = 1 2ν s D 2νs α(2+α) 4ν 2 s D α(2+α) + C 2 s , C 2 W = 1 -2αν s -2νsD α 2 (2+α) 4ν 2 s D α(2+α) + C 2 s ( 12 
)
and

C 2 Y = C 2 P 0 0 C 2 W . ( 13 
)
Eigenvalues of the C 2 P and C 2 W matrices correspond to coupled vibrating modes wave speeds propagation. Both matrices have identical eigenvalues, c 2 ± , the solutions of the polynomial characteristic problem

c 4 ± -1 + C 2 s + 4ν 2 s D α(2 + α) c 2 ± + C 2 s = 0, (14) 
then achieves as follows

c 2 ± = 1 + C 2 s + 4ν 2 s D α(2+α) ± 1 + C 2 s + 4ν 2 s D α(2+α) 2 -4C 2 s 2 . ( 15 
)
(15) stands for the dimensionless version of coupled wave speed modes derived in [6,7,28]. The choice for denoting C 2 P and C 2 W matrices with a square as well as its eigenvalues c 2 ± , now becomes clear since c ± describes the wave speed of each propagating mode, each governed by their specific D'Alembert operator. Dimensionless wave speed, c -, has a value close to one, whilst c + is found close to C s . In Appendix E a systematic asymptotic analysis provides the Poisson coupling corrections to these quantities as ν s ≪ 1. The mode c -is thus associated with the fluid pulse mode while, c + is associated with the solid elastic one. Furthermore, it is noteworthy to point-out that the negative mode of ( 15) is always real in the Korteweg's frequency range since for real C 2 s parameter

1 -C 2 s 2 > - 4ν 2 s D α(2 + α) 4ν 2 s D α(2 + α) + 2 1 + C 2 s , (16) 
is always satisfied. This property nevertheless vanishes as f > f Kc , in which case the radial contributions leads to a dispersive waves, the propagating velocity of which can be complex [3,36]. The D'Alembert wave propagation operator is hereby regarded within the diagonal base of C 2 Y as classically performed in coupled hyperbolic systems [21,28,29]. The transition matrices Π Y of the diagonal base change can easily be deduced from

C 2 P and C 2 W eigenvectors Π Y = Π P 0 0 Π W , Π P = 2νsD c 2 --1 2νsD c 2 + -1 1 1 , Π W = 2ανs c 2 --1 2ανs c 2 + -1 1 1 , (17) 
such as the transition relations

C 2 Y = Π -1 Y C 2 Y Π Y = C 2 P 0 0 C 2 W , and, Y = Π -1 Y Y, (18) 
where

C 2 P = Π -1 P C 2 P Π P = c 2 - 0 0 c 2 + , and, C 2 W = Π -1 W C 2 W Π W = c 2 - 0 0 c 2 + . (19)
The dimensionless wave-equations system (11) and its initial conditions (9) expressed in the eigenvector base finally reads

∂ 2 τ -C 2 Y ∂ 2 Z Y = 0, (20) 
Y(Z, 0) = ∂ τ Y(Z, 0) = 0. (21) 
The operator (11) diagonalization has indeed simplified the mode propagation now described by two independent D'Alembert propagating waves but obviously not suppressed their coupling. The coupling is now recast in the resulting upstream and downstream boundary conditions. Boundary conditions for Y can be deduced from the mechanical boundary conditions associated with Y using change-basis relations (19). For the sake of notation simplification let us introduce four 4 × 4 matrices N , M, Q, R and S(τ ) a eight-dimensional column vector. Boundary conditions can formally be written as a rectangular 8 × 16 linear system

N M 0 0 0 0 Q R (8×16)     Y(0, τ ) ∂ Z Y(0, τ ) Y(1, τ ) ∂ Z Y(1, τ )     (16×1) = S (8×1) (τ ). ( 22 
)
Specifics set of boundary conditions are later on considered in section 4. The resolution of this vector waves equation is usually handled by Laplace transform, combined with usual transfer matrix method [28,9,29]. Some analytical difficulties are sometimes nevertheless encountered when performing the inverse Laplace transform. Thereafter a new analytical derivation for solution of ( 20), having initial conditions ( 21) and spatial boundary conditions (22), relying on variable separation, spectral analysis and self-adjoint operator theory is proposed.

Analytical framework

Self-adjoint operator theory

Let us define the operator H, acting on the square-integrable real four dimensional column vector field Ψ(Z),

∀Ψ(Z) ∈ L 4 (R) × L 4 (R), Ψ(Z) → HΨ(Z) = C 2 Y • ∂ 2 Z Ψ(Z), (23) 
with the homogeneous associated set of spatial boundary conditions,

N M 0 0 0 0 Q R (8×16)     Ψ(0) ∂ Z Ψ(0) Ψ(1) ∂ Z Ψ(1)     (16×1) = 0. ( 24 
)
Let us set up the general scalar product,

∀Ψ, Ψ ′ ∈ L 4 (R) × L 4 (R), ⟨Ψ ′ , Ψ⟩ = 4 j=1 η j 1 0 Ψ ′ j (Z)Ψ j (Z)dZ, (25) 
with j = 1, 2, 3, 4 referring to the j th components of vector η

≡ (η 1 , η 2 , η 3 , η 4 ) ∈ R 4
, a yet unknown real vector which is adapted to each specific problem. Invoking the definition of H in ( 23), the search for self-adjoint condition for operator H, equipped with scalar product (25), performing a double integration by parts leads to

⟨HΨ, Ψ ′ ⟩ = ⟨C 2 Y • ∂ 2 Z Ψ, Ψ ′ ⟩ = ⟨Ψ, C 2 Y • ∂ 2 Z Ψ ′ ⟩+ 4 j=1 η j c 2 j ∂ Z Ψ j (Z)Ψ ′ j (Z) -Ψ j (Z)∂ Z Ψ ′ j (Z) 1 0 , (26) 
where c 2 j are the

j th diagonal terms of C 2 Y . Self-adjoint property ⟨HΨ, Ψ ′ ⟩ = ⟨Ψ, HΨ ′ ⟩, is thus obtained from condition 4 j=1 η j c 2 j ∂ Z Ψ j (Z)Ψ ′ j (Z) -Ψ j (Z)∂ Z Ψ ′ j (Z) 1 0 = 0. (27) 
In the following, the scalar-product weight parameter η is adjusted with given boundary conditions set so as to ensure relation eq.( 27), and thus selfadjointness.

Eigenfunction base and spectrum condition

The self-adjoint operator H spectrum S P , is composed of real discrete eigenvalues having a related discrete orthogonal basis [42]. This property obviously remains for frequency up to the Korteweg's band stop. Denoting -λ 2 k the k th eigenvalue, then being real negative in accordance with the well known eigenvalues of the Laplacian , Φ k its related eigen-function, the eigenvalue problem reads

HΦ k (Z) = -λ 2 k Φ k (Z), (28) 
so that using (23), one gets

∂ 2 Z Φ k (Z) = -λ 2 k C -2 Y Φ k (Z), (29) 
where we have introduced notation

C -2 Y ≡ [C 2 Y ] -1 for the inverse of matrix C 2
Y defined in (18). The solution of ( 29) then achieves as follows

Φ k (Z) ∂ Z Φ k (Z) = T k (Z) Φ k (0) ∂ Z Φ k (0) (8×1) , (30) 
with

T k (Z) = ∂ Z T(Z) T(Z) ∂ 2 Z T(Z) ∂ Z T(Z) , T(Z) = T s (Z) 0 0 T s (Z) , (31) 
and

T s (Z, λ k ) = 1 λ k   c -sin λ k Z c - 0 0 c + sin λ k Z c +   . ( 32 
)
This formulation is a modal time-domain version of the popular transfer matrix method, (TMM), developed in the frequency domain for coupled hyperbolic problems in [9,21,22,26,27,28,29,30] but for the adaption to the need for a Laplacian operator of two boundary conditions to be specified. Combining ( 30) and ( 32) in boundary condition set (24) provides the following linear condition to be fulfilled by mode amplitudes

[Φ k (0), ∂ Z Φ k (0)] N M Q∂ Z T(1) + R∂ 2 Z T(1) QT(1) + R∂ Z T(1) Φ k (0) ∂ Z Φ k (0) = 0. (33) 
The trivial zero solution of ( 33) being irrelevant, the non-trivial solution necessitates a one-dimensional non-empty kernel of (33)'s matrix, i.e. a zero eigenvalue of the matrix acting on [Φ k (0), ∂ Z Φ k (0)] vector. This condition is equivalent to set a zero determinant of (33)'s matrix, i.e.

N M Q∂ Z T(1) + R∂ 2 Z T(1) QT(1) + R∂ Z T(1) = 0. (34) 
(34) is met for specific values of λ k , providing the spectrum S P of operator H. It leads to a transcendental equation for λ k specific to each boundary condition set, to be computed numerically, as done in section 4. The spectrum provides each resonant frequency of the system, which should lie in the frequency range given in (8), i.e.

λ k ∈ [-f Kc /f 0 , f Kc /f 0 ] . It remains to determine the modal-dependent amplitudes of Φ k (Z).
From ( 34) one can realize that the amplitude vector

[Φ k (0), ∂ Z Φ k (0)
] is defined up to any arbitrary multiplicative constant, as the kernel of ( 33)'s matrix is non-empty. Hence, among the eight amplitude parameters of eight-dimensional vector

[Φ k (0), ∂ Z Φ k (0)],
one can be kept to any arbitrary value, which is equivalent to chose a unitary eigenfunction Φ k (Z) such as

Φ k (Z) ∂ Z Φ k (Z) = 1 ∥ Φk (Z)∥ Φk (Z) ∂ Z Φk (Z) , (35) 
where Φk (Z) stands as the generator of the solution space associated with the linear system (33).

Solution for 2D-vector homogeneous wave equation

The solution of the two-waves equations ( 20) associated with the initial boundary conditions (21) are searched under decomposition

Y(Z, τ ) = Y h (Z, τ ) + Y p (Z, τ ), (36) 
where subscript h refers to homogeneous solution whilst subscript p refers to particular one associated with non-homogeneous boundary conditions. The latter is regarded as a separated variable time-space function. The Z behavior is furthermore decomposed into the first order polynomial

Y p (Z, τ ) = ZY 1 p (τ ) + Y 0 p (τ ). (37) 
Since the previous expression should ensures the boundary condition system spelled out in (22), it consequently results

N M Q Q + R (8×8) Y 0 p (τ ) Y 1 p (τ ) (8×1) = S (8×1) (τ ). ( 38 
)
The resolution of ( 38) then provides Y p . The homogeneous component, Y h , is hereby decomposed over the eigenvector base of the self-adjoint operator

H so that Y = Sp a k (τ )Φ k (Z) + Y p (Z, τ ), (39) 
or, using Φk (Z) in ( 35)

Y(Z, τ ) = Sp a k (τ ) Φk (Z) ∥ Φk (Z)∥ + Y p (Z, τ ), (40) 
where a k (τ ) is the k th mode time-dependent amplitude. Invoking the initial rest conditions (21), with definition of Φk (Z) in ( 35), leads to,

a k (0) = - ⟨Y p (Z, 0), Φk (Z)⟩ ∥ Φk (Z)∥ , and, ∂ τ a k (0) = - ⟨∂ τ Y p (Z, 0), Φk (Z)⟩ ∥ Φk (Z)∥ . (41) 
The proposed decomposition of Y(Z, τ ) in ( 40) must hereby satisfy the wave equation system (20). Regarding the definition of H in (23) with the spatial polynomial decomposition of Y p in (37) it achieves as follows

HY p = 0, (42) 
so that

∂ 2 τ -H S P a k (τ ) Φk (Z) ∥ Φk (Z)∥ = -∂ 2 τ Y p . ( 43 
)
Now projecting over Φk (Z) leads to,

∂ 2 τ + λ 2 k a k (τ ) = -∂ 2 τ ⟨Y p , Φk (Z)⟩ ∥ Φk (Z)∥ . ( 44 
)
This ordinary differential equation, having initial conditions (41), is solved leading to (Further details provided in Appendix C)

a k (τ ) = λ k τ 0 ⟨Y p , Φk (Z)⟩(t) ∥ Φk (Z)∥ sin (λ k (τ -t)) dt - ⟨Y p , Φk (Z)⟩ ∥ Φk (Z)∥ . (45) 
Finally, combining the (45) with the Y's definition in (40) results in

Y(Z, τ ) = S P λ k τ 0 ⟨Y p , Φk (Z)⟩(t) ∥ Φk (Z)∥ 2 sin (λ k (τ -t)) dt Φk (Z) - S P ⟨Y p , Φk (Z)⟩ ∥ Φk (Z)∥ 2 Φk (Z) + Y p (Z, τ ). ( 46 
)
In the following, ( 46) is used to cross-check/validate predictions of two wellknown configurations of liquid-filled pipes problem: (i) a constant pressure tank with a fixed instantaneous closing valve (Cf Fig. 1a), (ii) a constant pressure tank with a free instantaneous closing valve (Cf Fig. 1b). The related upstream and downstream boundary conditions are analyzed in depth in [32]. It is important to mention that, in the special case of boundary conditions having no pressure/velocity coupling, the previous general framework associated with four coupled waves equations boils down into two decoupled two-waves propagation, not only sharing the same spectrum, but also the same modes and amplitudes. In other words, in the absence of coupling between pressure and velocity in the boundary conditions, the four-waves equations set degenerates into a two-waves one. In the next section, we consider this simplified degenerate case for two classes of boundary conditions. Fluid (water) Solid (steel)

ρ f = 1000 kg • m 3 ρ s = 7900 kg • m -3 K = 2.1 GP a E = 210 GP a ν f = 9.493 • 10 -7 m 2 s -1 ν s = 0.3 R 0 = 0.395 m e = 0.008 m L = 20 m
Table 1: Physical and geometrical properties for the analysis of the reservoir-pipe-valve system (anchored and free). The parameter values are extracted from [27].

All comparisons and analysis are based upon the parameter set introduced in Table 1. The natural fluid-pulse frequency of both configurations is found equal to f 0 ≈ 8Hz, whereas the cutoff frequency is f Kc ≈ 2060Hz. The λ k should then lie in the range λ k ∈ [-247.6, 247.6] in order to fulfill the modeling assumptions (Cf. section 2.1).

Analytical solution

In the first configuration (Cf. Figure 1a), the pipe is supposed perfectly anchored, both upstream and downstream. Thus, no solid axial movement occurs at both pipe dead-ends which can be modeled as a Dirichlet-Dirichlet condition on the axial solid displacement acceleration. Furthermore, the reservoir does not impede any upstream pressure fluctuation which can be interpreted as an homogeneous Dirichlet condition for the pressure. Finally, an instantaneous valve closure downstream is modeled by a Dirac distribution, δ(τ ) (i.e. singular perturbation), acting on the axial fluid acceleration. The four boundary condition thereby achieves as follows

P (0, τ ) = 0 , ∂ τ W (1, τ ) = -δ(τ ), ∂ τ ζ(0, τ ) = ∂ τ ζ(1, τ ) = 0, (47) 
or otherwise regarding ( 4)&( 6)

P (0, τ ) = 0 , ∂ Z P (1, τ ) = δ(τ ), ∂ Z σ(0, τ ) = ∂ Z σ(1, τ ) = 0. ( 48 
)
The initial Dirichlet conditions upon both fluid and solid acceleration quantities thus turn into Neumann conditions for the fluid pressure and solid stress fields. Invoking base-change ( 17)-( 19), whilst introducing

β = c + c - c 2 --1 c 2 + -1 , (49) 
the matrices introduced in ( 22) describing boundary conditions in the diagonalized basis can be found explicitly

N = 1 βc - c + 0 0 , M = 0 0 1 1 , Q = 0, R = N + M, (50) 
and,

S(τ ) = c 2 --1 δ(τ ) 2ν s D (0, 0, 1, 0) T , (51) 
The determination of the scalar-product weight parameter η ≡ (η 1 , η 2 ), introduced in ( 27), is hereby overcame. Injecting boundary conditions (48) within self-adjointness one (27) for the couple of two 2D unknown column vectors

Ψ(Z), Ψ ′ (Z) = (ψ 1 (Z), ψ 2 (Z)) T , ψ ′ 1 (Z), ψ ′ 2 (Z) T , (52) 
yields

∂ Z Ψ 1 (0)Ψ ′ 1 (0) -Ψ 1 (0)∂ Z Ψ ′ 1 (0) η 1 + η 2 c 3 + βc 3 - = 0, (53) 
so that the relation between η 1 & η 2 can be found

η 2 = -η 1 β c - c + 3 . ( 54 
)
Scalar product (25) then results in

⟨Ψ, Ψ ′ ⟩ = η 1 1 0 Ψ 1 (z)Ψ ′ 1 (z) -β c - c + 3 Ψ 2 (z)Ψ ′ 2 (z) dz. ( 55 
)
The λ k are hence solutions of the formal relation (34). Using C 2 P in ( 19), boundary condition matrices (50) and T s (Z) in ( 32), leads to the explicit (and simplified) transcendental equation

β sin λ k c - cos λ k c + -sin λ k c + cos λ k c - = 0. (56) 
The particular component of P(Z, τ ), P p (Z, τ ), follows from the spatial polynomial decomposition (37) and the resolution of the linear system (38), whilst Φk (Z) determination is found combining transfer matrix formulation (30), linear boundary condition system (33) and the associated boundary condition matrices ( 50)

Φk (Z) =   cos λ k c -Z + tan λ k c -sin λ k c -Z -c + βc -cos λ k c + Z + tan λ k c + sin λ k c + Z   , (57) 
P p (Z, τ ) = δ(τ )Z det (Π P ) 1 -1 . ( 58 
)
Further details on the derivation are provided in Appendix D. The combination of Φk (Z) and P p (Z, τ ) vectors in ( 57)-( 58) fulfill the expression P(Z, τ ) in ( 46)

P(Z, τ ) -P p (Z, τ ) = S P ⟨Z 1 -1 , Φk (Z)⟩ det (Π P ) ∥ Φk (Z)∥ 2 Φk (Z) [λ k sin (λ k τ ) -δ(τ )] , (59) 
with,

∥ Φk (Z)∥ 2 = c + β cos 2 λ k c + -c -cos 2 λ k c - 2c + β cos 2 λ k c + cos 2 λ k c - , ( 60 
) ⟨Z 1 -1 , Φk (Z)⟩ = c 2 -cos λ k c + -cos λ k c - λ 2 k cos λ k c -cos λ k c + . ( 61 
)
4.1.2. ν s parametric analysis Since the Poisson coupling, relies on the Poisson modulus, it is relevant to investigate the ν s dependency of the previous analytical expressions. By performing an asymptotic analysis, without considering FSI effects, [31,43] found the spectrum associated with the pressure waves in the fluid. It is interesting to point out that the solution (59) converges toward the [31]'s leading-order one, as ν s → 0. The [31]'s leading-order solution is

λ k = π 1 + k 2 , ∀k ∈ N, (62) 
P (Z, τ ) = 2 ∞ k=0 (-1) k sin (λ k Z) sin (λ k τ ) λ k . (63) 
A more detailed derivation of this result is provided in Appendix E. The ν s dependence of both spectrum and pressure waves compared with no-FSI solutions (i.e ν s = 0 case) is further illustrated in Figure 2. Figure 2b shows that the spectrum of the first configuration can be interpreted as the union between the fluid vibration modes (continuous blue lines) and the pure elastic ones (red squared lines). The solid and fluid contributions to the spectrum are easily identified from the analysis of the no-FSI configuration, as theoretically detailed in Appendix E (Cf. (E.10)). In Figure 2a the (59) solution for ν s = 0 is confronted with the [31]'s leading order one and, for comparison with the ν s = 0.3 case, all other parameters being equals. One can observed that highfrequency pressure oscillations progressively growing in time are revealed by the FSI coupling. These high-frequency oscillations are nevertheless expected to be damped by the viscous fluid friction or some structural energetic losses. In the ν s → 0 limit, [31]'s pointed-out that fluid viscous friction exponentially damps each resonant mode. This feature remains when considering FSI, as analyzed in [41]. When dealing with time-scale of the order of the advective 1a). In (a), the [31]'s leading order solution is provided, in black dashed lines, as to point out the convergence of the models. In (b), as ν s vary, some eigenvalues come close one-another, but a careful inspection shows no cross-over between the depicted eigenvalues. pulse wave speed one, i.e. O (L/c p ), the energetic losses are shown [6,31] to have a negligible impact on the overall coupled dynamic.

Constant pressure tank with free instantaneous closing valve

A second configuration, depicted in Figure 1b, is hereby analyzed whereby the downstream valve is free to move axially. Hence, upstream, the same conditions as in (48) are applied, with homogeneous Neumann condition for the axial stress and homogeneous Dirichlet condition for the pressure field set as P (0, τ ) = 0 , and, ∂ Z σ(0, τ ) = 0.

(64) Downstream, the boundary condition strongly differs from the previous configuration from valve longitudinal motion. Since α(2+α) is equal to the ratio of solid surface (i.e. πeR 0 (2 + α)) to the fluid one (i.e. πR 2 0 ), the static equilibrium of forces at valve location, in the absence of valve's inertia, reduces to

α(2 + α)σ(1, τ ) = P (1, τ ). ( 65 
)
The axial solid and fluid acceleration matching at the valve further imposes

∂ τ W (1, τ ) -α∂ τ ζ(1, τ ) = -δ(τ ), (66) 
or otherwise regarding relations ( 4) & ( 6)

∂ Z P (1, τ ) + D∂ Z σ(1, τ ) = δ(τ ). ( 67 
)
The α constant in (66) arises from dimensionless arguments and can be obtained regarding the Appendix B. As the valve is now free to move, the downstream boundary condition slightly differs form the one provided in (47). Indeed, the acceleration perturbation is now applied to the relative acceleration of the fluid with respect to the tube motion, [32]. Considering change-basis ( 17)-( 18) and introducing parameters

κ ± = D + 2ν s D c 2 ± -1
, and,

βc -κ - c + κ + = 1 - 2νsD α(2+α)(c 2 + -1) 1 - 2νsD α(2+α)(c 2 --1) , (68) 
yields

N = 1 βc - c + 0 0 , M = 0 0 1 1 , Q = 0 0 1 βc -κ - c + κ + , R = κ -κ + 0 0 , (69) with the forcing term S(τ ) = δ(τ ) (0, 0, 1, 0) T (70) 
The non-trivial parametric relation ( 68) is established in Appendix F. The same footsteps are hereby applied to overcome the resolution of P(Z, τ ). The self-adjoint condition (27) leads to

η 1 + c + c - 3 η 2 β ∂ Z Ψ 1 (Z)Ψ ′ 1 (Z) -Ψ 1 (Z)∂ Z Ψ ′ 1 (Z) 1 0 = 0, (71) 
so that

η 2 = -η 1 β c - c + 3 . (72) 
Thereby, scalar product defined in (25) remains identical to (55). A combination boundary condition matrices (69), the spectrum condition (34) and transfer matrices ( 31)-( 32) expressions, leads to the following (simplified) transcendental equation

1 + κ - κ + 2 cos λ k c + cos λ k c - + 1 β 1 + βκ - κ + 2 sin λ k c + sin λ k c - = 2κ - κ + . (73) 
Finally, one can find Φk (Z) and P p (Z, τ ) vectors fields using boundary condition system (22) and boundary condition matrices (69), leading to (detailed derivation provided in Appendix G),

Φk (Z) =   cos λ k c -Z + ξ k sin λ k c -Z -c + βc -cos λ k c + Z + βξ k sin λ k c + Z   , (74) 
P p (Z, τ ) = δ(τ ) κ --κ + 1 -1 Z -γ 1 -c + βc - , (75) 
with,

ξ k = sin λ k c --κ + βκ -sin λ k c + cos λ k c --κ + κ -cos λ k c + , and, γ = κ -c -β -c + κ + c + (κ --κ + ) . ( 76 
)
Since, according to the scalar product ( 55) and ( 72)

∥ Φk (Z)∥ 2 = - c -+ c -β 2 ξ 2 k -c + β (ξ 2 k + 1) 2c + β + c -ξ k cos 2 λ k c + -cos 2 λ k c - λ k + c - β 2 ξ 2 k -1 β sin 2λ k c + -(ξ 2 k -1) sin 2λ k c - 4λ k , (77) 
and

⟨P p (Z, τ ), Φk (Z)⟩ = c -δ(τ ) κ --κ + F -- c -F + c + -γ [G + -G -] (78) 
F ± = cos λ k c± [c ± -θ ± λ k ξ k ] + sin λ k c± [λ k + c ± θ ± ξ k ] -c ± λ 2 k , (79) 
G ± = θ ± ξ k cos λ k c± -1 -sin λ k c± θ ± λ k , (80) 
θ -= 1, θ + = β, (81) 
the expression of P(Z, τ ) in (46) pursues

P(Z, τ ) -P p (Z, τ ) = c - S P F --c -F + c + -γ [G + -G -] (κ --κ + ) ∥ Φk (Z)∥

Comparisons and illustrations

We now discuss quantitative illustrations of the provided analytical solutions so as to demonstrate their matching with previously published numerical results. Since many previous contributions have considered Fourier representation of test cases, our theoretical predictions for the discrete spectrum associated with discrete frequency peaks are first analyzed. The spectrum formally given by general relation (34) and more specifically by explicit simple transcendent relations ( 56) and ( 73) are compared to the Fourier transform peaks in Figure 3. The determinant's zeros, λ k , are classically related to the natural frequencies accordingly to the following linear law, [28] 

f k = λ k f 0 , (83) 
where f k is the k th natural frequency expressed in Hz and f 0 is the natural acoustic fluid frequency introduced in (8). A perfect matching of the predicted peaks (dotted lines) with the numerical one can be observed in Figure 3 . More precisely, Figure 3a compares [44]'s results with our prediction for boundary conditions (i) (Cf Fig. 1a) whereas Figure 3b consider [28]'s prediction for boundary conditions (ii) (Cf Fig. 1b). These theoretical predictions are matched to numerical results without any adjusted parameters. More quantitative comparison between the numerical peaks and their theoretical predictions are provided in table 2 with excellent agreement.

Temporal predictions are also compared with MOC numerical results so as to test every details of the analytical solutions, i.e. not only the spectrum but also the eigenmodes and their amplitudes. Figure 4 provides this comparison with [27]'s MOC solutions for the set of parameters presented in Table 1. In each case a nearly perfect matching between the theoretical prediction and the numerical computation can be observed. Zoom are provided for highfrequency fidelity check. The resulting mismatch might be attributable to the inaccuracy of data collection from [27]. No parameter adjustment have been used. Comparison between [44]'s prediction at the valve location with eigenvalues obtained from transcendental equation ( 56). (b) comparison between [28]'s pressure prediction at the valve location with prediction from transcendental equation ( 73).

Sensitivity matrix evaluation

First boundary condition (i) (Cf Fig. 1a) Second boundary condition (ii) (Cf Fig. 1b) [44] (Hz) Theoretical (Hz) ∆ (%) [28] (Hz) Theoretical (Hz) ∆ (%) Comparison with 4-eq FSI solver (Z = 0.5) c ± E K , ν s , D, α is known so that any derivative ∂c ± ∂X (X being any structural parameter embedded in parameters E K , ν s , D in (3) and α) in ( 1) is possible to compute analytically. In order to simplify the algebraic expressions the squared wave speeds (15) derivatives are evaluated

∂c 2 ± ∂α = µ c 1 + α α (2 + α)   1 + ± 2ν 2 s -1 + 2ν s D + µ a (c 2 + + c 2 -) 2 -4C 2 s   , ( 84 
)
∂c 2 ± ∂ E K = D 2   1 ± µ a + 2ν s D -1 (c 2 + + c 2 -) 2 -4C 2 s   (85) ∂c 2 ± ∂ν s = 1 2   2D ± 4ν s (D 2 -µ c ) + 4D µa-1 2 -1 (c 2 + + c 2 -) 2 -4C 2 s   , ( 86 
)
∂c 2 ± ∂ E K = D 2   1 ± µ a + 2ν s D -1 (c 2 + + c 2 -) 2 -4C 2 s   , ( 87 
)
∂c 2 ± ∂D = 1 2D   µ a + 2ν s D ± (1 + µ a + 2ν s D) (µ a + 2ν s D) -2C 2 s (c 2 + + c 2 -) 2 -4C 2 s   ,( 88 
)
where

µ a = D 2 + E K + 4 α(2+α) and, µ c = -4D α(2+α) are defined in (E.2)-(E.4
). From ( 84)-( 88) the velocity derivatives can easily be deduced from

∂ X c ± = 1 2c ± ∂ X c 2 ± . (89) 

Sensitivity matrix for boundary condition (i)

From ( 56) it is possible to find an analytical expression of the sensitivity of the eigenvalues λ k with respect to the parameters set (ν s α, E/K, D). Using ( 49) one gets

∂β ∂X = ∂β ∂c - ∂c - ∂X + ∂β ∂c + ∂c + ∂X , ( 90 
)
∂β ∂c ± = ∓ β c ± c 2 ± + 1 c 2 ± -1 , (91) 
whilst from ( 56) one gets

∂λ k ∂X = -c -∂ X β tan λ k c - + λ k c - β∂ X c -- c - c + 2 ∂ X c + + tan λ k c - tan λ k c + ∂ X c --β c - c + 2 ∂ X c + β - c - c + + tan λ k c - tan λ k c + 1 -β c - c + . ( 92 
)
The spectrum sensitivity of the first configuration (Cf. Fig. 1a) is depicted in Figures 5a-5d, for the first five eigenmodes. The sensitivity analysis of the first configuration reveals an increased parametric dependence for higher modes. The higher the mode, the more sensitive it is to the dimensionless parameters variation. Furthermore, this analysis highlights a high sensitivity of the first five eigenmodes with respect to the density ratio D as depicted on Figure 5d, whilst the system is found weakly dependent on the E/K ratio, as illustrated in Figure 5c.

Sensitivity matrix for boundary condition (ii)

A similar footpath is hereby provided for the reservoir-pipe-free valve configuration. The spectrum transcendental equation derived in (73), which holds for the second configuration (Cf Fig. 1b), is found dependent upon a set of four dimensionless parameters namely c ± , β and The derivative of κ with respect to the dimensionless quantity X ≡ (ν s , α, E/K, D) thus achieves as follows

κ(c ± , ν s ) = κ - κ + ≡ c + βc - c 2 --(1 -2ν s ) c 2 + -(1 -2ν s ) . ( 93 
∂ X κ = c + c -β ∂ X κ r + κ r 1 c + ∂ X c + - 1 c - ∂ X c -- 1 β ∂ X β (94) κ r = c 2 --(1 -2ν s ) c 2 + -(1 -2ν s ) , ( 95 
)
∂ X κ r = 2 c 2 + -(1 -2ν s ) c -c + 1 c + ∂ X c -- κ r c - ∂ X c + + ∂ X ν s (1 -κ r ) , ( 96 
)
whereas from (73) one gets

∂ X λ k = - 2κ∂ X κ tan λ k c+ 1+(βκ) 2 βc- -1+κ 2 c+ + tan λ k c- 1+(βκ) 2 βc+ -1+κ 2 c- + tan λ k c+ tan λ k c- 1+(βκ) 2 β 2 ∂ X β -2κ [β∂ X κ + κ∂ X β] tan λ k c+ 1+(βκ) 2 βc- -1+κ 2 c+ + tan λ k c- 1+(βκ) 2 βc+ -1+κ 2 c- + 2 ∂ X κ cos λ k c-cos λ k c+ tan λ k c+ 1+(βκ) 2 βc- -1+κ 2 c+ + tan λ k c- 1+(βκ) 2 βc+ -1+κ 2 c- +λ k tan λ k c+ 1 c-∂ X c - 1+(βκ) 2 βc- -1 c+ ∂ X c + 1+κ 2 c+ + tan λ k c- 1 c+ ∂ X c + 1+(βκ) 2 βc+ -1 c-∂ X c - 1+κ 2 c- tan λ k c+ 1+(βκ) 2 βc- -1+κ 2 c+ + tan λ k c- 1+(βκ) 2 βc+ -1+κ 2 c- . ( 97 
)
The derivative of the five first eigenmodes is once again investigated and their related variations with respect to (ν s , α, E/K, D) are depicted in Figure 6a-6d. A very same sensitivity ordering is found for the second configuration.

The density ratio variations remain the most sensitive parameter whereas the E K ratio has little impact on the coupled dynamic. It is interesting to point-out that the higher eigenmodes are no longer the most sensitive in this second case, as illustrated in Figures 6a-6b. The boundary condition couplings, or junction couplings, occurring in the second configuration, then reshape the eigenmode structure and their sensitivity.

Conclusion

This contribution provide a theoretical framework for the analysis of analytical solutions for FSI pulsed waves propagation inside liquid-filled tubes. This framework leads to an explicit spectrum derivation and analytical eigenmode decomposition. It favorably compares with previously published results. The spectrum sensitivity matrix has been computed explicitly with respect to (dimensionless) parameter derivatives, as well as wave velocity derivatives. The provided solutions might be used in various contexts associated with signal processing interpretation, parameter identification or boundary condition de-convolution inside liquid-filled pipes. 

Φ k (Z) Eigenvector of H Φk (Z) Contracted form of Φ k Notations ⟨•⟩ Scalar product η 1 , η 2
Constant of the scalar product

• * Dimensional field • Laplace transform s Laplace variable t Dimensional time τ Dimensionless time β, κ ± , γ, ξ k Constants κ = κ - κ + Constant ratio
Appendix B. Dimensionless FSI four equations [7] provides a derivation of well-known four-FSI equations system. From averaged mass and momentum conservation equations within fluid and solid, [7] founds the coupled hyperbolic equations for longitudinal fluid velocity W * , pressure P * , longitudinal solid deformation velocity ζ * and longitudinal stress σ * ,

∂ t W * = - 1 ρ f ∂ z P * , (B.1) ∂ z W * + 1 ρ f c 2 p ∂ t P * = 2ν s ∂ z ζ * , (B.2) ∂ t ζ * = 1 ρ s ∂ z σ * , (B.3) ∂ t σ * -E∂ z ζ * = 2ν s α (2 + α) ∂ t P * , (B.4)
where subscript * refers to dimensional quantities. The velocity perturbation W * reference amplitude is set as W 0 , so that as W * = W 0 W . The pressure perturbation P * , is known from [1]'s theory to match the dynamic pulse overpressure so that P * = ρ f c p W 0 P . From stress continuity at the tube wall, the axial perturbed stress, σ * is prescribed having the same order of magnitude as P * , i.e. σ * = ρ f c p W 0 σ. The axial displacement field, ζ * , is set as ζ * = α M ϵ R 0 ζ in order to ensure both axial velocity matching at the tube's wall and the small strain and small displacement hypothesis framework. Furthermore, the physical time, t, is scaled on the advection time, t = L cp τ whilst axial longitudinal scale is set as z = LZ. Using these scaling within (B.1)-(B.4), leads to (7).

Appendix C. Resolution of the constitutive ODE in a k (τ ) Let us consider the ODE ∂ 2 τ + λ 2 k a k (τ ) = - ⟨∂ 2 τ Y p , Φk (Z)⟩ ∥ Φk ∥ , (C.1)
and its initial conditions

a k (0) = - ⟨Y p (Z, 0), Φk (Z)⟩ ∥ Φk ∥ , and, ∂ τ a k (0) = - ⟨∂ τ Y p (Z, 0), Φk (Z)⟩ ∥ Φk ∥ . (C.2)
A Laplace transform, hereby denoted L, approach is employed to solve (C.1). Introducing s, the conjugate variable of t and setting up hat notation for Laplace variables yields

s 2 + λ 2 k â(s) -sa k (0) -∂ τ a k (0) = -s 2 ⟨ Ŷp , Φk (Z)⟩ ∥ Φk ∥ + s⟨Y p (Z, 0), Φk (Z)⟩ + ⟨∂ τ Y p (Z, 0), Φk (Z)⟩ ∥ Φk ∥ . (C.3) Invoking (C.2) reads to âk (s) = λ 2 k ⟨ Ŷp , Φk (Z)⟩ (s 2 + λ 2 k ) ∥ Φk ∥ - ⟨ Ŷp , Φk (Z)⟩ ∥ Φk ∥ . (C.4) Since L (sin (λ k τ )) = λ k s 2 +λ 2 k
, the use of convolution theorem finally results in

a k (τ ) = λ k τ 0 ⟨Y p , Φk (Z)⟩(t) sin (λ k [τ -t]) dt ∥ Φk ∥ - ⟨Y p , Φk (Z)⟩ ∥ Φk ∥ . (C.5) Appendix D. Derivation of Φk (Z) in configuration (i)
Let us focus on the first configuration boundary matrices (50) along with the homogeneous system upon (Φ k (0), ∂ Z Φ k (0)) T in (33). Introducing the fourth unknown column vector

Φ k (0) ∂ Z Φ k (0) = ϕ - k , ϕ + k , ∂ Z ϕ - k , ∂ Z ϕ + k T (D.1) yields         1 βc - c + 0 0 0 0 1 c - 1 c + - λ k sin λ k c - c - - λ k βc -sin λ k c + c 2 + cos λ k c - c - βc -cos λ k c + c 2 + - λ k sin λ k c - c - - λ k sin λ k c + c + cos λ k c - c - cos λ k c + c +             ϕ - k ϕ + k ∂ Z ϕ - k ∂ Z ϕ + k     = 0. (D.2)
A non homogeneous solution of this linear system follows from re-organizing the last two lines of (D.2) and achieves in

  ϕ + k ∂ Z ϕ - k ∂ Z ϕ + k   = ϕ - k     -c - βc - λ k c -tan λ k c - -c + βc - λ k c + tan λ k c +     . (D.
3)

The use of (D.3) within the equations set ( 30)- (32) in case of a separate pressure-velocity boundary conditions (i.e. T ≡ T s such as transfer matrices order are divided by two) results in

Φ k (Z) = ϕ - k   cos λ k Z c - + tan λ k c -sin λ k Z c - -c + βc -cos λ k Z c + + tan λ k c + sin λ k Z c +   , (D.4)
so that the reduced eigenfunction form Φk (Z) in ( 35), follows

Φk (Z) =   cos λ k Z c - + tan λ k c -sin λ k Z c - -c + βc -cos λ k Z c + + tan λ k c + sin λ k Z c +   . (D.5)
Appendix E. ν s = 0 limit of the first configuration (Cf. Fig. 1a)

We hereby consider the ν s = 0 limit of our solution and compare it with the one of [31] (only its leading order).

Appendix E.1. Wave speed mode c ± for ν s ≪ 1 Using c 2 p , c 2 s and C 2 s definitions ( 2), one can find

C 2 s = µ a + µ b ν s + µ c ν 2 s , (E.1)
with

µ a = D 2 + E K + 4 α(2 + α) , (E.2) µ b = 2D, (E.3) µ c = - 4D α(2 + α) . (E.4)
Furthermore, accordingly to (15), the wave speed c ± reads

c 2 ± = 1 + µ a + ν s µ b ± (µ a -1) 1 + νsµ b µa-1 + ν 2 s (µ 2 b +4µc) (µa-1) 2 2
, (E.5) so that Taylor expanding (E.5) in the ν s ≪ 1 results in

c 2 + -c 2 - = (µ a -1) + µ b 2 ν s + O(ν 2 s ), (E.6) c + = √ µ a + 3µ b 8 √ mu a ν s + O(ν 2 s ), (E.7) c -= 1 + µ b 8 ν s + O(ν 2 s ). (E.8)
Appendix E.2. Spectrum of configuration (i) in the ν s = 0 limit Using β definition (49) and regarding (E.7)-(E.8) in the limit ν s → 0, the spectrum transcendental equation ( 56) reduces to,

cos (λ k ) sin λ k √ µ a = 0. (E.9)
The solution of which are [31]'s spectrum union pure elastic-wave eigenvalues,

λ k = π 1 2 + k ∪ {π √ µ a (1 + k)} . (E.10)
Appendix E.3. Pressure solution of configuration (i) in the ν s = 0 limit The pressure field for configuration (i) is obtained combining (59) with the change of basis ( 17)-( 19) and achieves in

P (Z, τ ) = c 2 + -1 (c 2 + -c 2 -) S P ⟨Z 1 -1 , Φk (Z)⟩ ∥ Φk (Z)∥ 2 Φk (Z) • e 1 λ k sin (λ k τ ) + c 2 --1 (c 2 + -c 2 -) S P ⟨Z 1 -1 , Φk (Z)⟩ ∥ Φk (Z)∥ 2 Φk (Z) • e 2 λ k sin (λ k τ ) . (E.11)
Using β in (49), Φk (Z) in ( 57), ∥ Φk (Z)∥ 2 in (60) and

⟨Z 1 -1 , Φk (Z)⟩ in (61) leads to c 2 ± -1 (c 2 + -c 2 -) ⟨Z 1 -1 , Φk (Z)⟩ ∥ Φk (Z)∥ 2 Φk (Z) • e1 2 = ± c 2 --1 (c 2 + -c 2 -) 2c 2 + cos λ k c + cos λ k c - cos λ k c + -cos λ k c - λ 2 k c 2 + c 2 - c 2 --1 c 2 + -1 cos 2 λ k c + -cos 2 λ k c - cos λ k c ∓ Z ± c 2 --1 (c 2 + -c 2 -) 2c 2 + cos λ k c ± cos λ k c + -cos λ k c - λ 2 k c 2 + c 2 - c 2 --1 c 2 + -1 cos 2 λ k c + -cos 2 λ k c - sin λ k c ∓ sin λ k c ∓ Z , (E.12)
where upper/lower symbols ± & ∓ are combined with upper e 1 ≡ 1 0 /lower e 2 ≡ 0 1 symbol e 1 2 . The ν s = 0 spectrum limit (E.10) is the union of two distinct subsets, the contribution of which in (E.11) is now discussed separately.

• Fluid spectrum contribution

When ν s = 0 the fluid spectrum is

λ kF = π 1 2 + k . Furthermore, when ν s ≪ 1, using (E.8), one finds cos 2 λ kF c - ∼ O (ν 2 s ) and c 2 + c 2 - c 2 --1 c 2 + -1 cos 2 λ kF c + ∼ O (ν s ).
The ν s ≪ 1, asymptotic behavior of (E.12) can be obtained using (E.6), (E.7) and (E.8) and results in

c 2 + -1 c 2 + -c 2 - ⟨Z 1 -1 , Φk (Z)⟩ ∥ Φk (Z)∥ 2 Φk (Z) • e 1 = (-1) k 2 sin (λ kF Z) λ 2 kF + O (ν s ) , (E.13) c 2 --1 c 2 + -c 2 - ⟨Z 1 -1 , Φk (Z)⟩ ∥ Φk (Z)∥ 2 Φk (Z) • e 2 = O (ν s ) . (E.14)
• Solid spectrum contribution

When ν s = 0 the solid spectrum is

λ kS = √ µ a π (1 + k).
In this case, (E.12)'s denominators do not cancel each other so that the ν s ≪ 1 behavior is trivial,

c 2 ± -1 (c 2 + -c 2 -) ⟨Z 1 -1 , Φk (Z)⟩ ∥ Φk (Z)∥ 2 Φk (Z) • e1 2 = O (ν s ) . (E.15)
Combining (E.8)-(E.15) in (E.11), finally leads to [31]'s leading order solution

lim νs→0 (P (Z, τ )) = 2 ∞ k=0 (-1) k sin (λ kF Z) sin (λ kF τ ) λ kF . (E.16) Appendix F. Analytical analysis of βc -κ - c + κ + Let us set up χ = 1 - 2νsD α(2+α)(c 2 + -1) 1 - 2νsD α(2+α)(c 2 --1)
, (F.1) so that invoking the definition of κ ± in (68), it leads to

κ - χκ + = 1 + 2νs c 2 --1 1 + 2νs c 2 + -1 1 - 2νsD α(2+α)(c 2 --1) 1 - 2νsD α(2+α)(c 2 + -1) . (F.2)
Reorganizing (F.2) then follows

κ - χκ + = c 2 + -1 c 2 --1 2 c 2 --1 + 2ν s c 2 + -1 + 2ν s c 2 --1 -2νsD α(2+α) c 2 + -1 -2νsD α(2+α) . (F.3)
Developing the term

c 2 ± -1 + 2ν s c 2 ± -1 - 2ν s D α(2 + α) = c 4 ± -c 2 ± 1 + 2ν s D α(2 + α) + 1 -2ν s + 1 + 2ν s D α(2 + α) -2ν s - 4ν 2 s D α(2 + α)
, (F.4) whilst using relation (14) for dimensionless wave speeds in (F.4) leads to

c 2 ± -1 + 2ν s • c 2 ± -1 - 2ν s D α(2 + α) = -c 2 ± -1 1 + 2ν s D α(2 + α) -2ν s -C 2 s - 4ν 2 s D α(2 + α)
, (F.5) so that using β definition ( 49) within (F.3) simplifies to

κ - χκ + = c 2 + -1 c 2 --1 = c + βc - . (F.6)
Finally, one finds

c -βκ - c + κ + = χ = 1 - 2νsD α(2+α)(c 2 + -1) 1 - 2νsD α(2+α)(c 2 --1)
.

(F.7)

Appendix G. Derivation of Φk (Z) for second configuration (Cf. Fig. 1b)

Let us focus on the second configuration boundary matrices (69) along with the homogeneous system upon (Φ k (0), ∂ Z Φ k (0)) T in (33). Using (D.1), it follows

       1 βc - c + 0 0 0 0 1 c - 1 c + - λ k κ -sin λ k c - c - - λ k κ + sin λ k c + c + κ -cos λ k c - κ + cos λ k c + cos λ k c - βc -κ - c + κ + cos λ k c + c -sin λ k c - λ k βc -κ -sin λ k c + κ +           ϕ - k ϕ + k ∂ Z ϕ - k ∂ Z ϕ + k    = 0. (G.1)
Using the first two lines simplifies to

-λ k c -sin λ k c --κ + βκ -sin λ k c + cos λ k c --κ + κ -cos λ k c + cos λ k c --κ - κ + cos λ k c + c - λ k sin λ k c --βκ - κ + sin λ k c + ϕ - k ∂ Z ϕ - k = 0, (G.2) and ϕ + k = - c + βc - ϕ - k , and, ∂ Z ϕ + k = - c + c - ∂ Z ϕ - k . (G.3)
Let us check out the following relation

sin λ k c --κ + βκ -sin λ k c + cos λ k c --κ + κ -cos λ k c + = - cos λ k c --κ - κ + cos λ k c + sin λ k c --βκ - κ + sin λ k c + . (G.4)
The (G.4) holds only if

sin 2 λ k c - - βκ - κ + + κ + βκ - sin λ k c - sin λ k c + + sin 2 λ k c + = -cos 2 λ k c - + κ - κ + + κ + κ - cos λ k c - cos λ k c + -cos 2 λ k c + , (G.5)
or otherwise

1 β 1 + κ -β κ + 2 sin λ k c - sin λ k c + + 1 + κ - κ + 2 cos λ k c - cos λ k c + = 2κ - κ + , (G.6) which is the transcendent spectrum (73) satisfied by λ k . Introducing ξ k ξ k = sin λ k c --κ + βκ -sin λ k c + cos λ k c --κ + κ -cos λ k c + , (G.7)
thus leads to

∂ Z ϕ - k = λ k ξ k c - ϕ - k . (G.8)
Finally, using the expression of

ϕ + k , ∂ Z ϕ + k , ∂ Z ϕ - k versus ϕ - k in (G.3)-(G.8
) and the equations set ( 30)- (32) in case of a separate pressure-velocity boundary conditions (i.e T ≡ T s such as transfer matrices order are divided by two) results in This chapter aims to reconcile the liquid-filled pipe hydraulic description of water-hammer, i.e. the wall shear stress viscous friction modeling at fluid-solid interface, with mechanical viewpoint, i.e. axial ν s -driven FSI interactions. For FSI couplings with the thin viscous boundary layer located at the fluid-pipe interface, a rigorous asymptotic-based theoretical framework is established. While the leading order reconciles known undamped four-FSI models, [Tijsseling, 2007], the first order viscous corrections informs on the damping trend, through in-depth description of the FSI shear couplings, and phase shift. A brief literature review is thereafter provided before the new low-Mach number and long-wavelength FSI framework is established in the hereby given article.

Φ k (Z) = ϕ - k     cos λ k c -Z -c + βc -cos λ k c + Z   + ξ k   sin λ k c -Z -c + c -sin λ k c + Z     , (G.9) so that the reduced form of Φ k (Z), Φk (Z) is consequently Φk (Z) =   cos λ k c -Z + ξ k sin λ k c - -c + βc -cos λ k c + Z + βξ k sin λ k Z c +   . (G.

Basic asymptotic concepts

This section is dedicated to the presentation of basics asymptotic method concepts such as: (i) asymptotic expansion, (ii) boundary layer matching theories and, (iii) multi-time scale analysis.

Asymptotic expansion

The basic asymptotic developments rely on an expansion, upon a strategic small parameter δ, of the physical fields of interest. Similar to a Taylor expansion, the regular expansion of any physical field f reads f = f (0) + δf (1) 

+ ∞ n=2 δ n f (n) . (3.1)
The first r.h.s term of (3.1) is denoted as leading order and describes the unperturbed response of the physical system (in our case, without viscous damping).

The first order, i.e. f (1) , and n-order n corrections, i.e. f (n) , then correct the leading-order dynamics. Asymptotic theories permit to simplify complex problems, from ordering the dominant physical phenomena (often allowing its linearization). Noteworthy the asymptotic sequence is not always regular as (3.1) but may involve several dimensionless small numbers, each of them embodying a distinct physical phenomena.

Boundary layer model

The asymptotic theory of boundary layer consists in dividing the near-wall flow in several regions described by a different physics. Here, we consider this concept from analyzing the velocity profile of an oscillating incompressible flow occurring in a circular, in-extensible, tube. This paragraph closely follows the derivation of [Leal, 2007]. In the complex plane and dimensionless form, the pulsatile Poiseuille problem is governed by (Cf. eq. (3-266) of [Leal, 2007])

∂ τ - ∂ R R (R∂ R ) W c = e iRωτ , ( 3.2) 
with dimensionless radial R, longitudinal length Z and time τ defined as

[r, t] = R 0 R, R 2 ν f τ , (3.3) W (r, t) = R [W c (R, τ )] , (3.4) 
where R stands for the real part contribution and

R ω = ωR 2 0 ν f ≫ 1, (3.5)
is the Womersley number, the reciprocal of which is the small parameter herein.

The complex axial velocity field W c , is searched as a separated function of R and τ , i.e. W c = H(R)e iRωτ , whilst the radial amplitude is expanded following the regular asymptotic sequence in the R ω ≫ 1 limit

H(R) = H 0 (R) + 1 R ω H 1 (R) + O R -2 ω , (3.6) 3.1. BASIC ASYMPTOTIC CONCEPTS 107 then yielding iR ω - ∂ R R (R∂ R ) H 0 + 1 R ω H 1 = 1. (3.7)
Combining (3.7) with (3.6) achieves as follows H 0 = 0 , and, H 1 = -i. (3.8) This solution nevertheless vanishes when

∂ R R (R∂ R ) ∼ O (R ω
) except for a small region close to the wall. This is where the boundary layer comes into play. A rescaled boundary layer variables and fields thus have to be defined, which accounts for the change of the radial gradient amplitude. Let us introduce the boundary layer coordinate y = √ R ω (1 -R), along with the radial amplitude in the boundary layer h(y) ≈ h 0 + 1 Rω h 1 . The constitutive equation (3.7) in the boundary layer then reads

R ω   i -∂ 2 y + 1 √ R ω ∂ y 1 -y √ R ω   h 0 + 1 R ω h 1 = 1, (3.9)
the solution of which is

h 0 = 0 , and, h 1 = -i + Ae i √ iy + Be -i √ iy , ( 3.10) 
with (A, B) being integration constants. Since at the not moving fluid-solid interface W c = 0, i.e. h(0) = 0, it yields .11) It now remains to match outer, i.e. (3.8), with inner, i.e. (3.11), at boundary layer. One simple rule for matching is here

h 1 = i -1 + e -i √ iy + A e i √ iy -e -i √ iy . ( 3 
lim R→0 H 1 = lim y→∞ h 1 , (3.12) which is satisfied for A = 0, since i √ i = √ 2 2 (1 + i).
Here the boundary layer matching is trivial but it sometimes needs the use of a the stretching variable technique [Hinch, 1991]. This method will be later on used in §3.3. Finally, a solution is found

W c (R, Z, τ ) = e iRωτ R ω    -i , outer region, -i 1 -e -i √ iRω(1-R)
, inner region, (3.13) which accounts for the boundary layer structure as depicted in Figure 3.1

Asymptotic multi-time scale concept

Whilst the boundary layer approach delineates space in distinct regions, the asymptotic multi-time method splits the physical time in several time regions. It assumes that the physical corrections to the leading order solution occurs in a different timescale. A fast time is associated to the leading order development whereas a slow time is set up on characteristic corrections time-scales, which informs on the system damping (in our case). The concept of multi-time scale is hereafter introduces regarding the response of a damped oscillator, a study-case investigated in [Hinch, 1991]. The oscillator position, θ(t), is governed by the time-dependent ODE

∂ 2 t -γ∂ t + 1 θ = 0, ∂ t θ(0) = 0 , and, θ(0) = 1, (3.14) 
with γ ≪ 1 a small parameter governing the long time damping effects imposed on the oscillator system. Here, an analytical solution is known for (3.14) (3.15) but its not always true. Let us then define the fast time scale τ = t and the slow time scale T = γτ such that

θ(t) = e -γt 2   cos   4 -γ 2 4 t   + γ 2 4 4 -γ 2 sin   4 -γ 2 4 t     ,
∂ t = ∂ τ + γ∂ T . (3.16)
Expanding the θ variable with respect to γ and taking into account the multi-time scale corrections reads (3.17) whilst ordering the γ-corrections yields

θ(τ ) = θ 0 (τ, T ) + γθ 1 (τ, T ) + O γ 2 ,
∂ 2 τ + 1 θ 0 = 0 , and, ∂ 2 τ + 1 θ 1 = -∂ τ [2∂ T -1] θ 0 . (3.18)
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Treating T as constant, the leading order only displays a fast time dependence and is governed by an harmonic oscillator θ 0 (τ, T ) = H 0 (T ) cos τ + ϕ 0 (T ) , with, H 0 (0) = 1 , and, ϕ 0 (0) = 0, (3.19) whilst θ 1 is solution of

∂ 2 τ + 1 θ 1 = 2∂ T H 0 (T ) -H 0 (T ) sin τ + ϕ 0 (T ) Resonant term +2H 0 (T ) cos τ + ϕ 0 (T ) Resonant term ∂ T ϕ 0 (T ) (3.20)
so that

θ 1 = H 1 (T ) cos τ + ϕ 1 (T ) + H 1 (T ) 2∂ T H 0 (T ) -H 0 (T ) τ 0 sin τ -τ ′ + ϕ 0 (T ) cos τ + ϕ 1 (T ) dτ ′ Resonant term + 2H 1 (T )∂ T ϕ 0 (T )H 0 (T ) τ 0 cos τ -τ ′ + ϕ 0 (T ) cos τ + ϕ 1 (T ) dτ ′ Resonant term (3.21)
The resonant terms display a quadratic form of the l.h.s operator kernel, i.e. (∂ 2 τ + 1). Their contributions in θ 1 , produce a linear divergence with respect to the fast time (accordingly to τ 0 cos 2 (τ ′ )dτ ′ ∼ τ ), which collapses the asymptotic expansion when τ ≡ O (γ -1 ). Then the long-time variable (H 0 (T ), ϕ 0 (T )) have to be set up in order to cancel out this fast-time divergences. This condition is known as the secularity condition and follows regarding (3.21) into 2∂ T H 0 (T ) -H 0 (T ) = 0 , and, ∂ T ϕ 0 = 0, (3.22) so that

H 0 (T ) = e -T 2
, and, ϕ 0 (T ) = 0.

(3.23)

The leading order expression (3.19) along with the analytical solution of (3.14) are depicted in Figure 3.2 so as to provide additional insights on the multi-time scale method.

Liquid-filled pipe asymptotic analyses

The analysis of pressure wave propagation in pipes is suitable to the use of asymptotic techniques from the presence of the thin near-wall boundary layer as now discussed from a dedicated literature review. One of the first asymptotic approaches can be attributed to [Walker and Phillips, 1977]. The authors indeed performed a very clever asymptotic analysis of the liquid-filled pipe problem, embedding both the radial and axial FSI dynamics. They carried out an asymptotic expansion of the physical fields upon the ratio of the tube inner radius to its length ϵ, assumed to be small. At leading order, they recovered the R-invariant four-FSI equations system of [Skalak, 1954, Skalak, 1956] (Cf. (1.28)- (1.31)). Up to order O (ϵ 2 ) corrections, they demonstrate the pipe radial inertia has very little effects on the overall dynamics. Considering time scale issues, if one chooses the advective time scale as the reference one, i.e. t = (c p /L)τ , then the pipe inertial phenomena is expected to develop upon the slow time scale T = ϵ 2 τ . This asymptotic framework is known in the literature framework as the long-wavelength assumption, i.e. λ ≫ R 0 with λ the signal wavelength, and allows to neglect inertial radial phenomena. For very short pipes, i.e. ϵ ∼ O (1), this framework nevertheless vanishes and radial effects have to be considered. Some asymptotic analysis have also been performed from the hydraulic viewpoint, with the search of a viscous fluid wall shear model. The contributions of [Vardy andBrown, 1995, Vardy andBrown, 2004], presented in §1.4.2, thus carried out asymptotic matching upon the fluid axial velocity between the outer acoustic zone and its inner viscous counterpart. These theories follow the matching techniques previously spelled out in §3.1.2, and yielded to the derivation of a convoluted, Reynolds-dependent, kernel to describe the fluid wall shear rate evolution. Nevertheless, these analyses neither consider multi time-scale approach nor tube motion (i.e. zero fluid wall speed assumption). [Corli et al., 2012] focused on the development of fluid hyperbolic equations (1.40), and carried-out an asymptotic expansion upon the re-scaled Mach number M = W 0 cp . They embedded a Darcy-Weisbach damping term (1.41) to their system. Similarly, a Mach asymptotic expansion was carried out by [START_REF] Yao | Analysis of water hammer attenuation in the Brunone model of unsteady friction[END_REF] with the distinction of using the IMAB damping model (Cf. §1.4.2). In recent years, the asymptotic [Walker and Phillips, 1977]'s framework was extended by [Kizilova, 2006[Kizilova, , Čanić et al., 2006a[Kizilova, , Čanić et al., 2006b] ] for the determination of an oscillating flow-rate and blood pressure responses in visco-elastic blood vessels. Both authors carried out an asymptotic analysis in ϵ for both the solid and the viscous, incompressible, fluid equations. They rigorously managed the fluid-solid interface continuity conditions and considered a three dimensional-based solid rheology. While the one-

LIQUID-FILLED PIPE ASYMPTOTIC ANALYSES

111 dimensional models [Tijsseling, 1993, Tijsseling, 2007] suffer from the need of a closure wall shear rate model (Cf. §1.4.2), the three-dimensional approach yields to a well-posed closed problem. Quoting [Čanić et al., 2006a]: "The one-dimensional model is obtained by averaging the three-dimensional compressible Navier-Stokes equations over the cross-section of the vessel. In this process of dimension reduction a typical question of "closure" needs to be resolved. More precisely, averaging over the cross-section of the vessel does not lead to a well-posed problem unless extra information is provided". Each of these analyses furthermore embed both FSI and fluid viscous effects, then making a first attempt to reconcile the hydraulic and mechanic viewpoint of the liquid-filled pipe subject, something which should be highlighted. Despite the evident elegance of the [Kizilova, 2006[Kizilova, , Čanić et al., 2006a[Kizilova, , Čanić et al., 2006b]'s approaches, the incompressible model used to model the fluid dynamics is not well suited to investigate overpressure waves propagation in liquid-filled pipe systems. Furthermore, [Čanić et al., 2006a] considered the pipe (or more precisely the vessels) as longitudinally tethered, then neglecting the Poisson's coupling effects. More recently, [Mei andJing, 2016, Mei andJing, 2018] brilliantly performed an asymptotic analysis of the fluid hyperbolic equations upon parameter δ (1.49). Analyzing up to first order corrections, the authors successfully predicted the overall pressure viscous damping trend and closely match to the [Holmboe and Rouleau, 1967]'s experimental pressure signatures as depicted in Figure 3.3. The key parameter δ, which stands as the dimensionless boundary [Mei and Jing, 2016]'s leading and first order dimensionless pressure solution (continuous line) in comparison with the experimental pressure signature of [Holmboe and Rouleau, 1967] (dotted line).

layer thickness, can hereafter be interpreted as the ratio of the fluid shock-wave advective time-scale by the diffusive viscous one following

δ 2 = L c p ν f R 2 0 . (3.24)
The δ parameter thus seems suited to perform both multi-time scale development and boundary layers modeling. Noteworthy, this parameter was explicitly spelled out by [Holmboe and Rouleau, 1967] when investigating the experimental viscous pressure damping trend and is shown to characterize the wall shear rate order of magnitude in [Zielke, 1968]'s theory (Cf. (1.52) and (1.57)). Some authors, [Wood andFunk, 1970, Vardy andBrown, 1995, Vardy andBrown, 112 CHAPTER 3. ASYMPTOTIC VIEWPOINT OF THE FSI-COUPLINGS 2004] have conducted asymptotic analysis upon the pre-existing steady-state boundary condition though the use of δ st , defined in (1.58). This distinction stems from a fundamental difference in physical interpretation. While δ st underlies a static distribution of the fluid pressure gradient, the δ parameter is set up to model the dynamical response of the fluid boundary layer to dynamic gradient pressure solicitations. The use of these models are nevertheless restricted to purely hydraulic analyses, i.e. in the limit ν s → 0, since the solid dynamics is not included. Hence it is interesting to reconcile the FSI asymptotic analyses (e.g. [Walker and Phillips, 1977]), with the hydraulic ones (e.g. [Mei andJing, 2016, Mei andJing, 2018]) to achieve in a more general FSI-consistent model. This is accomplished in the next section.

Low Mach number theory of pressure waves inside an elastic tube: Article to Mathematical Models and Methods in Applied Sciences

Introduction

Water-hammer pulsed pressure waves are a well-known, long-standing topic that arises in various practical contexts, such as hydraulic pipes. Examples include gas and petroleum transmission lines ( 34,39,35,23,21,3 ), blood vessels ( 36,47 ), fluidic system response ( 24,25 ), compressor dynamics and hydroelectric power generation, etc... Reviews of this topic are available from ( 52,51,44,45,13 ), the contents of which are not repeated here. Water-hammer waves are associated with the following three classes of coupling effects: (i) Poisson coupling, (ii) friction coupling, (iii) junction coupling.

Poisson coupling is related to the pipe's successive radial expansion-compression phases (also called pipe's breathing) induced by the fluid overpressure propagation in the solid. This not only generates hoop stress in the tube, but also axial deformation through Poisson's modulus ν s , thus producing elastic longitudinal compression waves or so-called precursor waves, which have been analyzed by ( 40,31,41,50,8 ) for thin-walled pipes and by ( 42,43 ) for thick-walled pipes. These contributions leads to the derivation of four fluid-structure-interactions (FSI) equations for hyperbolic coupled systems ( 45). Additional vibrating modes may occur depending on the considered tube's degree of freedom (e.g. rolling, yawing and swaying; ( 29,13 )), but these are not consider in this analysis. When, one considers, in addition to Poisson coupling the influence of junction couplings, i.e. couplings from dead-end tube connections, these four-(FSI) equations are most often solved numerically and more rarely in the frequency domain. The numerical methods are mainly based on the method of characteristics (MOC) in ( 53,16,22,10,17 ), whilst frequency domain analyses are performed using the transfer matrix method (TMM) framework ( 55,28,2 ), which displays Fourier peaks associated with the response of specific discrete modes. Time domain solutions of these four-(FSI) equations in simple configurations ( 27,4 ) display a discrete but infinite set of intrinsic vibrating modes that have distinct and specific wavelengths and frequencies (i.e. a discrete spectrum). On the contrary, when considering infinite, or semi-infinite tubes, then ignoring the junction coupling effects, the continuous propagation of modes with any wavelength and frequency arises (i.e. a continuum spectrum as in ( 14,38,24,25 )).

As with Poisson coupling, friction coupling occurs over the entire length of a pipe from boundary layer dissipation within the fluid. The transient response of boundary layer, i.e. the near-wall fluid velocity response to a transient solicitation, was studied by ( 56), who considered an axial momentum conservation equation that resulted in a history-dependent shear rate with a time-convolution with the longitudinal pressure gradient. ( 56) also provided an analytical approximation of the convolution kernel. Zielke's model exhibited excellent agreement with experiments by ( 5,1 ). This fluid friction influence was analyzed in greater depth within a boundary layer theory moving at wave-front speed by ( 32,33 ), who matched it with the outer fluid region. Furthermore, realizing that the time scale for viscous diffusion January 16, 2023 22:25 WSPC/PRE-PRINT
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within the boundary layer is comparable with the propagation time of the wave, ( 11,32,33 ) have proposed a two-time scale asymptotic expansion. This led to the deduction of a slow-time, mode-dependent exponentially amplitude decay of the pulse pressure wave. This approach accounts for the long-time damping of a liquid-filled pipe system. This overview of various contributions illustrates that although many studies have been performed on the topic, which have provided deep insights into this complex subject as well as reliable predictions compared with measurements, no global and rational theoretical framework exists for re-conciliating the various aspects of water-hammer wave propagation. This paper presents a systematic asymptotic analysis of classical water-hammer pulsed pressure waves for an elastic tube that exploits the following assumptions: (a) small displacements, (b) weak fluid compressibility, (c) long-wavelengths and (d) a thin viscous boundary layer. The novelty of this study lies into providing a comprehensive and exhaustive analysis of the various couplings established from first principles, using a dimensionless formulation associated with a complete set of dimensionless numbers. Some of them are small, and their relative smallness is clarified.

The aforementioned four assumptions (a-b-c and d) are associated with the following four dimensionless parameters: the tube aspect ratio ϵ, the tube thickness to radius ratio α, the pulse wave Mach number M and the inverse of the pulse wave-speed Reynolds number 1/Re p . From these, a useful dimensionless parameter δ = 1/ ϵRe p (which is also the square root of the convective to diffusive timescale as well as the dimensionless boundary layer thickness) is defined, the relative smallness of which is of special interest in our analysis (i.e. δ 2 ≫ M, δ ≫ ϵ 2 , δ ≫ αM, and 1 ≫ ϵ ≫ αM). As discussed in many studies (e.g. ( 50,25,43 )), the correction to the long-wavelength approximation is O(ϵ 2 ). During the course of the derivation this long-wavelength assumption will be seen to also imply negligible radial acceleration of the pipe breathing motion, as well as radially uniform longitudinal displacement inside the solid similar to a planar elastic wave propagation at leading-order. This leading-order planar elastic wave in the solid is coupled with the fluid pressure wave, leading to a set of two coupled propagating waves with two specific propagating velocities, equivalently described by the four aforementioned (FSI) equations. The solution to these leading-order propagating wave problems can be found analytically using an orthogonal base decomposition, as in the study of ( 4). It depends on the applied boundary conditions from the vibrating (FSI) up to some slowly varying (undefined at this order) amplitudes, which are specific for each mode. Conducting an evaluation of the corrections to these leading-order solutions while considering a two-time-scale asymptotic analysis leads to determining the amplitude decay, which depends on viscous effects that arise in boundary layers. Hence, the presented derivation is not only interesting for the asymptotic derivation of the four-(FSI) equations associated with fluid pressure/solid elastic wave coupled propagation. It also permits to determine how viscous effects damp this propagation, generalizing ( 32,33 ) from including (FSI) effects. Although applicable to general junction coupling conditions, the hereby derived (FSI) damping is explicitly provided for a specific set of boundary conditions and compared with experimental observations. The remainder of this paper is organized as follows. Section §2 describes the fundamental dimensionless equations in the three considered distinct regions, namely the fluid bulk, fluid boundary layer, and elastic solid. A consistency condition for small elastic deformation is found, which motivates a more systematic analysis of the asymptotic framework developed in §3. Through defining the various corrections associated with three small parameters, namely the dimensionless thickness of the viscous boundary layer, Mach number, and tube aspect ratio, a systematic asymptotic analysis is presented in §3 and coupled with a two-time scale one. Section §3 involves the derivation of coupled (FSI) leading-and first-order corrections associated with the small parameter of the dimensionless viscous boundary layer thickness, δ , as well as the resolution of their coupling using asymptotic matching. The analysis finally permits the establishment of the (FSI) wave model with two-coupled propagative equations with additional dissipative terms included as corrections. In §4 the (FSI) waves model is solved (both at leading-and firstorders) so as to find the secularity condition for the slow-time amplitude of the leading-order, thus providing the (FSI) wave system's attenuation. Finally §5 compares the proposed low-Mach theory with experimental measurements, considering longitudinal damping predictions in particular.

Fundamental equations

A pressure wave having typical velocity c p propagating on top of a non-zero steady flow, inside a fluid-filled elastic-walled tube is considered. Dimensional fields will be denoted with the superscript * .

Definitions overview and problem setting

We consider an initially circular tube of length L, inner radius R 0 , wall thickness e, density ρ s0 , Young's modulus E and Poisson's ratio ν s . The tube is supposed elastic and isothermal. It is filled with a Newtonian, weakly compressible, and isothermal fluid, having possibly varying density ρ * f , isentropic bulk modulus K f , kinematic viscosity ν f , dynamic viscosity µ f , volume viscosity λ f , and the viscosity ratio Γ = λ f /µ f ∼ O(1). The fluid is supposed initially flowing at the velocity W * st , under the steady-state pressure P * st , condition. The constant fluid reference density is denoted ρ f0 . The steady-state flow is taken unidirectional and gravity effects are neglected. The dimensionless tube thickness and aspect ratio are defined as

α = e R 0 , & ϵ = R 0 L ≪ 1. (2.1)
Thereafter, α is considered to be an order one quantity, but the thin-wall limit α ≪ 1 is sometimes discussed in comparison with thin-shell theory. A more precise condition for large α values will be discussed in section 3. In the following, inner region refers to the near-wall viscous boundary layer whereas outer region stands for the core inviscid flow one. The dimensionless thickness of the boundary layer is referred to as δ, being a central small parameter of the study. Capital letters refer to outer fields in the fluid core, while lowercase letters are associated with the inner boundary layer. The fluid-filled pipe system is axisymmetric and described by cylindrical radial/axial coordinates (r, z), having basis vectors (e r , e z ), and dimensionless counterparts (R = r/R 0 , Z = z/L). A dimensionless fast time τ = c p t/L, is build upon the wave speed advective time-scale L/c p . As the pressure waves propagate, the elastic tube deforms and solid material points are transported by solid displacement vector

ζ * (R 0 , z, t) (0, z) (R * i (z + ζ * (R 0 , z, t)) , z + ζ * (R 0 , z, t)) R * i (z, t) ξ * (R 0 , z, t) (R 0 , z) (b) 
ξ * (r, z, t) = ξ * (r, z, t)e r + ζ * (r, z, t)e z , (2.2) 
where (ξ * , ζ * ) are the radial and axial solid displacement components, respectively. We then define (n i , n o ) and (t i , t o ) as the unit normal and tangential vectors associated with the inner

R * i (z, t) = R 0 R i (Z, τ ) and outer, R * o (z, t) = R 0 R o (Z, τ
), tube radius. The tube inner radius depends on the displacement components as

R * i (z + ζ * (R 0 , z, t), t) = R 0 + ξ * (R 0 , z, t). (2.3)
All variables are depicted in Figure 1. The outer/inner fluid pressure P * f /p * f , axial velocity W * f /w * f , and radial velocity U * f /u * f , are splitted into steady, denoted with subscript st, and unsteady components (without subscript) following the classical acoustic approach, ( 30 )

P * f = P * (r, z, t) + P * st (r, z), p * f = p * (r, z, t) + p * st (r, z), (2.4 
)

W * f = W * (r, z, t) + W st (r, z), w * f = w * (r, z, t) + w * st (r, z), (2.5) 
U * f = U * (r, z, t), u * f = u * (r, z, t). (2.6)
As the steady-state is assumed unidirectional, the outer/inner radial velocity components U * f /u * f , are only unsteady. Finally, the fluid inner stress tensor, unsteady shear stress and unsteady wall shear rate are defined, following a Newtonian rheology, as

σ * f = σ * st + σ * , τ * f , τ * w σ * st = -P * st + λ f ∂zW * st I + µ f   0 • • • ∂rW * st • • • 0 • • • ∂rW * st • • • 0   , (2.7 
)

σ * = -p * + λ f ∂r r ru * + ∂zw * I + 2µ f    ∂ru * • • • ∂rw * +∂zu * 2 • • • u * r • • • ∂rw * +∂zu * 2 • • • ∂zw *    , (2.8) τ * f = -ρ f0 ν f ∂ r w * , & τ * w = τ * f (R * i , z, t) .
(2.9)

Dimensionless numbers set and hypothesis framework

When an unsteady fluid velocity perturbation of magnitude W 0 , is applied to a liquid-filled pipe system, an acoustic pressure pulse with velocity c p then propagate, the magnitude of which denoted ∆P 0 is given by ( 21)'s law

∆P 0 = ρ f0 c p W 0 .
(2.10)

The longitudinal wave speed propagation in the fluid, c p , and in the solid, c s , has been provided by ( 45,43 )

c 0 = K f ρ f0 , & c p = c 0 1 + 2K f αE 2(1-ν 2 s ) 2+α + α(1 + ν s ) , & c s = E ρ s0 , (2.11) 
where c 0 is the speed of sound of acoustic waves into an infinite fluid and α is the dimensionless tube thickness provided in (2.1). The ratios of these speeds are denoted

C = c 0 c p , & C s = c s c p .
(2.12)

Since the elastic-walled tube offers resistance to the fluid overpressure, two dimensionless numbers (similar to Cauchy's number) are introduced to compare the wave dynamic pressure, i.e. ρ f0 c 2 p , with the tube elastic resistance

C G = ρ f0 c 2 p G ≡ 2ρ f0 c 2 p (1 + ν s ) E , & C λs = ρ f0 c 2 p λ s ≡ C G (1 -2ν s ) 2ν s , (2.13) 
where are the solid shear modulus and the second Lamé-Clapeyron coefficient, respectively. The overpressure wave velocity c p , given in (2.11), is thus a corrective formulation of c 0 due to the tube elastic constraints. By introducing parameter

G = E 2(1 + ν s ) , & λ s = ν s E (1 + ν s )(1 -2ν s ) , ( 2 
χ = 2K f αEC 2 2(1 -ν 2 s ) 2 + α + α(1 + ν s ) ≡ 2ν s C λs + (1 + α) 2 C G α(2 + α) , (2.15) 
the pulse wave speed (2.11) becomes

c 2 p = c 2 0 1 + χC 2 , (2.16) 
where 1 + χC 2 is a corrective fluid pulse-wave speed factor. Regarding the definition of c p in (2.11), it is relevant to highlight that C 2 > 1 which follows from c p < c 0 ( 23,40,42,15 ). The (FSI) behavior is finally impacted by the fluid to solid density ratio, ( 45)

D = ρ f0 ρ s0 . (2.17) 
Finally, a set of dimensionless parameters associated with boundary layer thickness δ, Reynolds number Re, pulsed Reynolds number Re p and Mach number M is introduced yielding to

Re p = c p R 0 ν f ≫ 1, Re = W 0 R 0 ν f = MRe p , (2.18 
)

δ 2 = ν f L c p R 2 0 = 1 ϵRe p ≪ 1, M = W 0 c p ≪ 1. (2.19)
Low-Mach number ( 16,10 ), along with the long-wavelength, i.e. ϵ ≪ 1 ( 26,31,50,43 ), asymptotic analyses are simultaneously used in the forthcoming. The following asymptotic framework is assumed, for which boundary layer dissipation effects are dominant compare to compressible and radial solid inertial ones

δ 2 ≫ M > M C 2 , δ ≫ ϵ 2 , δ ≫ αM, 1 ≫ ϵ ≫ αM. (2.20)
The hereby asymptotic ordering is in depth discussed and justified in §3, the relevance of which will be shown to provide an asymptotic derivation for known four-(FSI) equations model ( 43). Hence parameter δ being the ratio of viscosity diffusion time-scale ν f /R 2 0 , to advection one L/c p , is the cornerstone small parameter of the proposed two-times-scale asymptotic analysis ( 20,32 ). In the inner region a rescaled radial coordinates y, scaling as O (1/δ), is set up

y = 1 -R δ , (2.21) 
to account for the influence of the radial gradient contributions in the boundary layer. The fluid and solid constitutive, dimensionless, equations are thereafter derived.

Dimensionless Navier-Stokes equations

The unsteady pressure component P * , is scaled upon ( 21)'s overpressure (2.10), whereas the unsteady fluid axial velocity is scaled on the steady-state one, i.e. W 0 .

In the radial direction, the unsteady fluid velocity is assumed ϵ smaller than the axial one, resulting from long-wavelength assumption, so that

P * st = ρ f0 W 2 0 P st (R, Z), W * st = W 0 W st (R, Z), (2.22 
)

P * = ρ f0 c p W 0 P (R, Z, τ ), p * = ρ f0 c p W 0 p(y, Z, τ ), (2.23 
)

W * = W 0 W (R, Z, τ ), w * = W 0 w(y, Z, τ ), (2.24 
)

U * = ϵW 0 U (R, Z, τ ), u * = ϵW 0 u(y, Z, τ ), (2.25) 
where unsteady outer/inner pressure and velocity field components are identically scaled to match at the boundary layer interface. Relevant at the fluid/solid interface, i.e. inside the boundary layer, the unsteady wall shear stress and wall shear rate responses, defined in (2.7)-(2.9), are scaled as follows

τ * f = - ρ f0 ν f W 0 δR 0 τ f (y, Z, τ ), τ f = ∂ y w(y, Z, τ ), (2.26) 
σ * = ρ f0 c p W 0 σ, σ * st = ρ f0 W 2 0 σ st , (2.27) 
σ st =   -P st + Γ (ϵδ) 2 M ∂ Z W st   I + ϵδ M   0 • • • -∂y W st • • • 0 • • • -∂y W st • • • ϵδ∂ Z W st   ,
(2.28)

σ = -p + Γ (ϵδ) 2 - ∂y [(1 -δy) u] δ (1 -δy) + ∂ Z w I + ϵδ    -2ϵ∂y u • • • -∂y w + ϵ 2 ∂ Z u • • • 2ϵδ u 1-δy • • • -∂y w + ϵ 2 ∂ Z u • • • 2ϵδ∂ Z w    , (2.29)
Using the fluid isentropic compression law, i.e.

∂ P * f ρ * f = ρ * f /K f , the fluid density is subjected to pressure variations following ρ * f (r, z, t) = ρ f0 e P * f (r,z,t) K f = ρ f0 e P * (r,z,t)+P * st (r,z) K f , (2.30) 
so that by introducing the dimensionless density ρ f = ρ * f /ρ f0 , and regarding the scalings provided in (2.22)-(2.25), it yields to

[1, ∇, ∂ τ ] ρ f = e M C 2 (P +MPst) 1, M C 2 ∇ (P + MP st ) , M C 2 ∂ τ P , (2.31) 
with ∇ the dimensionless Nabla operator, C 2 defines in (2.12) and M/C 2 ≪ 1.

Obviously, in the inner region (2.31) holds from replacing P by the inner pressure p. The Navier-Stokes equations, which follows from fluid mass and momentum conservations, yield

∂ t + W * f ∂ z + U * ∂ r ρ * f + ρ * f ∂ z W * f + 1 r ∂ r (r∂ r U * ) = 0, (2.32) ρ * f ∂ t + W * f ∂ z + U * ∂ r W * f = -∂ z P * f + ρ f0 ν f (1 + Γ) ∂ z ∂ z W * f + ∂ r r (rU * ) + ∂ r r (r∂ r ) + ∂ 2 z W * f , (2.33) 
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ρ * f ∂ t + W * f ∂ z + U * ∂ r U * = -∂ r P * f + ρ f0 ν f (1 + Γ) ∂ r ∂ z W * f + ∂ r r (rU * ) + ∂ r r (r∂ r ) - 1 r 2 + ∂ 2 z U * ,

Dimensionless steady-state fluid equations

At steady-state, the fluid unsteady components vanish in (2.32)-( 2.34), it thus yields

M C 2 W st ∂ Z P st + ∂ Z W st = 0, (2.35) Me ( M C ) 2 Pst W st ∂ Z W st = -M∂ Z P st +(ϵδ) 2 (2+Γ)∂ 2 Z W st +δ 2 ∂ R R (R∂ R ) W st , (2.36) M ϵ 2 ∂ R P st = (1 + Γ)δ 2 ∂ R ∂ Z W st , (2.37) 
Where (ϵRe) -1 = δ 2 /M have been used. 

∂ τ P + M ([W ∂ Z + U ∂ R ] (P + MP st ) + W st ∂ Z P ) + C 2 ∂ Z W + 1 R ∂ R (RU ) = 0, (2.38) e M C 2 (P +MPst) (∂ τ W + M ([W ∂ Z + U ∂ R ] (W + W st ) + W st ∂ Z W )) + Me ( M C ) 2 Pst e M C 2 P -1 W st ∂ Z W st = -∂ Z P + (ϵδ) 2 (1 + Γ)∂ Z ∂ Z W + 1 R ∂ R (RU ) + δ 2 ∂ R R R∂ R + ϵ 2 ∂ 2 Z W, (2.39) e M C 2 (P +MPst) (∂ τ + M [(W + W st ) ∂ Z + U ∂ R ]) U = - 1 ϵ 2 ∂ R P + δ 2 (1 + Γ)∂ R ∂ Z W + 1 R ∂ R (RU ) + δ 2 ∂ R R (R∂ R ) - 1 R 2 + ϵ 2 ∂ 2 Z U, ( 2 
∂ τ p+M w∂ Z - u δ ∂ y (p + MP st ) + W st ∂ Z p +C 2 ∂ Z w - 1 δ 1 1 -δy ∂ y ((1 -δy)u) = 0, (2.41) e M C 2 (p+MPst) ∂ τ w + M w∂ Z - u δ ∂ y (w + W st ) + W st ∂ Z w + Me ( M C ) 2 Pst e M C 2 p -1 W st ∂ Z W st = -∂ Z p + (ϵδ) 2 (1 + Γ)∂ Z ∂ Z w - 1 δ 1 1 -δy ∂ y ((1 -δy)u) + ∂ y 1 -δy ((1 -δy)∂ y ) + (ϵδ) 2 ∂ 2 Z w, (2.42) e M C 2 (p+MPst) ∂ τ + M (w + W st ) ∂ Z - u δ ∂ y u = 1 δϵ 2 ∂ y p -(1 + Γ)∂ y δ∂ Z w - 1 1 -δy ∂ y ((1 -δy)u) + ∂ y 1 -δy ((1 -δy)∂ y ) - δ 2 (1 -δy) 2 + (ϵδ) 2 ∂ 2 Z u. (2.43)
The fluid steady and unsteady constitutive dimensionless equations are now derived, the solid dynamic is then investigated.

The dimensionless Lamé-Clapeyron equations

From the linearity of the solid elastic rheology, only the unsteady responses of strains and stresses are considered (i.e. the pre-existing steady-state stress-strain does not influence the unsteady one). Furthermore, axial fluid velocity predominance produces a very similar order of magnitude hierarchy within the solid displacement field from kinematic boundary conditions. Consequently, the dimensional unsteady solid displacement vector, ξ * in (2.2), fulfills as in ( 6)

ξ * = ξ 0 ξe r + ξ 0 ϵ ζe z , (2.44) 
with ξ 0 the solid radial displacement order of magnitude. The stress σ * s , displacement ξ * , relationships is provided by Hooke's law From (2.45), the radial and axial deformations then scale as

σ * s ≡   σ * rr . . . σ * rz . . . σ * θθ . . . σ * rz . . . σ * zz   = λ s (∇ * • ξ * ) I + G ∇ * ξ * + ∇ * ξ * T , ( 2 
ξ 0 = αR 0 M. (2.47)
The solid displacement magnitudes must ensure the assumptions of small strains and displacements, i.e. ξ 0 ≪ e & ξ 0 /ϵ ≪ R 0 . The former condition is met in the considered low-Mach number framework, i.e. M ≪ 1, whereas the latter necessitates .48) At this stage, the as-yet unknown order of magnitude of the solid shear stresses, σ * rz remains. The latter follows from the axial component of the momentum conservation, or the solid Lamé-Clapeyron equation with deviatoric and diagonal components

ϵ ≫ αM. ( 2 
ρ s0 ∂ 2 t ξ * = (λ s + G) ∇ * (∇ * • ξ * ) + G∇ * 2 ξ * = ∇ * • σ * s . ( 2 
ϵ 2 C G α σ rz = ∂ R ζ + ϵ 2 ∂ Z ξ, (2.52) [σ rr , σ θθ , σ zz ] = α C λs ∂ R R (Rξ) + ∂ Z ζ [1, 1, 1] + 2α C G ∂ R ξ, ξ R , ∂ Z ζ . (2.53)
From (2.51) dimensionless Lamé-Clapeyron equations (2.49) read as follows 2.55) or using (2.52)-(2.53)

ϵ 2 α D ∂ 2 τ ξ -∂ Z σ rz = ∂ R R (Rσ rr ) - σ θθ R , (2.54) α D ∂ 2 τ ζ = ∂ Z σ zz + ∂ R R (Rσ rz ) , ( 
ϵ 2 ∂ 2 τ - D C G ∂ 2 Z ξ = D 2C λs + C G C G C λs ∂ R ∂ R R (Rξ) + D C G + C λs C G C λs ∂ R ∂ Z ζ, (2.56) ϵ 2 ∂ 2 τ -D 2C λs + C G C G C λs ∂ 2 Z ζ = D C G ∂ R R (R∂ R ζ) + ϵ 2 D C G + C λs C G C λs ∂ Z ∂ R R (Rξ) . (2.57)
Whilst fluid dynamics is governed by the boundary layer dimensionless parameter δ, the solid one is controlled by small parameter ϵ. Neglecting O(ϵ 2 ) terms leads to radially time-invariance fields, since a zero (2.54)'s RHS leads to a steady radial stress which is identical with the one found within an elastic tube subjected to a steady internal overpressure. Hence, up to order O ϵ 2 corrections the solid radial deformation quasi-steadily responds to the fluid pressure load, while the axial dynamics are free to propagate as a radially uniform planar wave ( 40,50,43 ). Furthermore, since the outer radial fluid pressure derivative in (2.40) displays a O ϵ -2 correction, the fluid pressure remains uniform per section within the longwavelength approximation.

Axial boundary conditions

To set up an axially enclose the problem, a specific set boundary conditions have to be prescribed at the tube's dead ends. The hereby analysis focus on the reservoirpipe-anchored valve configuration, a very standard study case in hydraulic and biological communities ( 43,32 ). These boundary conditions influence both the fluid and the solid dynamic as the problem involves (FSI) considerations. Upstream a homogeneous Dirichlet condition is assumed for unsteady pressure, then impeding any pressure fluctuation at this point, whereas downstream an unsteady fluid velocity variation, i.e. a time-dependent-Dirichlet condition, is imposed P Z=0 = 0 , and, W Z=1 = -H eav (τ ), (2.58) where H eav is the time-dependent Heaviside distribution. For the steady-state, the upstream and downstream pressure conditions are assumed known and constant.

On the other hand, the tube is supposed perfectly anchored at its dead ends, i.e. a homogeneous Dirichlet conditions upon the solid axial displacement field ζ, so that no motion occurs at these specific locations

ζ Z=0&1 = 0. (2.59)
The hereby boundary conditions will be clarified in the analysis forthcoming in §4.1.

Fluid matching and fluid-solid interface continuity conditions

The radial boundary conditions in the boundary layer and at the fluid-solid interface are now considered. No additional stress contributions at the external edges is supposed, so that dimensionless stresses and kinematic continuity conditions read

n i Mσ s,st Ri + σ s Ri n i = n i Mσ st y= 1-R i δ + σ y= 1-R i δ n i , (2.60) n o Mσ s,st Ro + σ s Ro n o = 0, (2.61 
) 

n i Mσ s,st Ri + σ s Ri t i = n i Mσ st y= 1-R i δ + σ y= 1-R i δ t i , (2.62) n o Mσ s,st Ro + σ s Ro t o = 0, ( 2 
u Ri = α∂ τ ξ Ri , (2.66) 
where σ s,st = σ * s,st /ρ f0 W 2 0 is the solid pre-stress tensor associated with the steadystate condition. The solid pre-existing stress tensor is not explicitly defined has it will not impact the solid unsteady dynamic due to the linearity of the solid constitutive equations (2.54)- (2.57) . On the other hand, the unsteady boundary layer inner fields, (p, w, u), are matched to outer ones (P, W, U ) using stretched coordinate 1),

η η = 1 -R δ γ = y δ γ-1 ∼ O(
(2.67) associated with stretching parameter 0 < γ < 1, ( 19), giving matching conditions

(P, W, U ) R=1-δ γ η = (p, w, u) y=δ γ-1 η . (2.68)
The asymptotic analysis of the constitutive fluid and solid equations is now carried out.

Asymptotic analysis

Boundary layer forcing terms and asymptotic framework

Considering the fluid shear stress (2.27), and expanding (2.42) yields to Energy losses in the (FSI) problem are thus related to two distinct phenomena: diffusion and inertia, which may, or may not, simultaneously contribute regarding their respective orders of magnitude. The presented low-Mach number asymptotic framework, i.e. neglecting inertial over viscous contributions, applies when

e M C 2 (p+MPst) ∂ τ w + M (w + W st ) ∂ Z w - u δ (τ f + ∂ y W st ) + w∂ Z W st +Me ( M C ) 2 Pst e M C 2 p -1 W st ∂ Z W st = -∂ Z p+(ϵδ) 2 (1+Γ)∂ Z ∂ Z w - 1 δ ∂ y u -δ u 1 -δy + ∂ 2 y w -δ τ f 1 -δy + (ϵδ) 2 ∂ 2 Z w. ( 3 
δ ≫ M δ ≫ M, (3.2) 
which is consistent with (2.20). The dimensionless numbers ordering spelled out in (2.20) is herein clarified regarding (2.48) and (3.18). The radial diffusion transport of viscous shear is thus the damping mechanism under focus. Further investigations could be conducted out to analyze the impact of distinct asymptotic regimes on the long-time dynamics. A high-Mach number case was asymptotically considered by ( 54) for a practical case of a hydroelectric power plant. Ignoring (FSI), the low-Mach boundary layer theory has been brilliantly investigated by ( 32,33 ).

Multiple time-scale approach

Next, the time variations of all considered fields are decomposed into fast-time associated with wave propagation and slow-time associated with the damping envelope as well as a phase-shift that arises from friction dissipation, ( 19). Let us note the slow-time scale T . Since the corrections of interest in the axial momentum conservation equation (3.1) are of order O (δ), this slow time-scale should scale as follows

T = δτ, so that ∂ t ≡ c p L (∂ τ + δ∂ T ) . (3.3)
In this multiple time-scale approach, all previous time-derivatives fulfill a chainrule correction given by ∂ τ + δ∂ T . For the framework being established, one must consider the coupling conditions between the solid and fluid given by stress and kinematic continuity at the fluid-solid interface within this asymptotic scheme.

Asymptotic sequence

In the herein δ-driven asymptotic framework, a regular asymptotic sequence for solid displacement components (ξ, ζ), inner/outer velocity fields (u, w) , (U, W ), inner/outer pressures [p, P ], fluid shear stresses [τ f , τ w ], and solid stress tensor components [σ rz , σ rr , σ θθ , σ zz ] is searched for 

[ξ, ζ] = [ξ, ζ] 0 + δ [ξ, ζ] 1 + O (X) , (3.4) [u, w, U, W ] = [u, w, U, W ] 0 + δ [u, w, U, W ] 1 + O (X) , (3.5) [p, P ] = [p, P ] 0 + δ [p, P ] 1 + O (X) , (3.6) [τ f , τ w ] = [τ f , τ w ] 0 + δ [τ f , τ w ] 1 + O (X) , (3.7) [σ rz , σ rr , σ θθ , σ zz ] = [σ rz , σ rr , σ θθ , σ zz ] 0 + δ [σ rz , σ rr , σ θθ , σ zz ] 1 + O (X) , (3.8) with X ≡ max δ 2 , M/δ,
∂ Z W 0 st = 0. (3.9)
On the other hand, ϵ 2 δ 2 /M = ϵ/R e ≪ 1 follows from the definition of δ, ϵ and M in (2.18)-( 2.19) so that using (2.35), the steady-state leading-order pressure field is found uniform per section

∂ R P 0 st = 0. (3.10)
Finally, the steady-state leading-order axial mass conservation equation (2.36) results in equalizing a R-dependent function to a Z-dependent one

M∂ Z P 0 st = δ 2 ∂ R R R∂ R W 0 st , (3.11) 
yielding to

W 0 st = M 4δ 2 ∂ Z P 0 st R 2 -1 = M 4δ ∂ Z P 0 st [δy -2] y, (3.12 
)

∂ y W 0 st = M 4δ ∂ Z P 0 st [δy -2] + M 4 ∂ Z P 0 st y, (3.13) 
where the no-slip condition have been used at the fluid/solid interface. The M prefactor in (3.13) is O(M/δ) and thus smaller than one according to (2.20). Then, there is a (small) one-way coupling of the unsteady fields from steady ones in the boundary layer (2.42), the order of which is O M 2 δ ≪ 1. Furthermore, (3.13) contributes as O (ϵ) ≪ 1 in the deviatoric part of the steady-state stress tensor (2.28).

Correction on the inner tube radius position, R * i

The fluid-solid interface position, which is characterized by R * i defined in (2.3), is expected to vary as the fluid overpressure wave propagates. Using solid displacement scalings (2.47), one finds .14) Taylor-expanding (3.14) leads to 

R i (Z + αMζ(1, Z, τ ), τ ) = 1 + αMξ(1, Z, τ ). ( 3 
R i (Z + αMζ(1, Z, τ ) = R i (Z, τ ) + αMζ(1, Z, τ )∂ Z R i (Z, τ ) + O (αM)
n i = n o = e r + O (αϵM) , t i = t o = e z + O (αϵM) .
(3.17)

Thus, in the considered low-Mach number asymptotic framework, the response of the inner and outer tube's radius to overpressure is irrelevant as long as 

δ ≫ αM ≫ αϵM. ( 3 
σ rr R=1+O(αM) = -p y=O( αM δ ) + O (αϵM) , (3.19) 
α (∂ τ + δ∂ T ) ξ R=1+O(αM) = u y=O( αM δ ) + O (αϵM) , (3.23) 
α (∂ τ + δ∂ T ) ζ R=1+O(αM) = w y=O( αM δ ) + O (αϵM) , (3.24) 
where [σ rr , σ rz ] are provided in (2.52)-(2.53), respectively. Thus, in the considerd asymptotic low-Mach framework, the unsteady fluid and solid components decouple each other. In the forthcoming, only the system unsteadiness response will be investigated.
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The leading-and first-orders kinematic and stress continuity conditions (2.60)-(2.66) thus finally simplify to

σ 0 rr R=1 = -p 0 y=0 , σ 1 rr R=1 = -p 1 y=0 , (3.25) 
σ 0 rr R=1+α = 0, σ 1 rr R=1+α = 0, (3.26)

σ 0 rz R=1 = 0, σ 1 rz R=1 = -τ 0 w y=0 , (3.27) 
σ 0 rz R=1+α = 0, σ 1 rz R=1+α = 0, (3.28)

α∂ τ ξ 0 R=1 = u 0 y=0 , α ∂ τ ξ 1 R=1 + ∂ T ξ 0 R=1 = u 1 y=0 , (3.29 
) 

α∂ τ ζ 0 R=1 = w 0 y=0 , α ∂ τ ζ 1 R=1 + ∂ T ζ 0 R=1 = w 1 y=0 . ( 3 
∂ R ∂ R R R ξ 0 + δξ 1 = - C G + C λs C G C λs ∂ R ∂ Z ζ 0 + δζ 1 , (3.31) 
∂ R ζ 0 + δζ 1 = 0, (3.32) σ 0 rz - σ 0 rz | R=1 R = 1 R R 1 R α D ∂ 2 τ ζ 0 -∂ Z σ 0 zz dr, (3.33 
)

σ 1 rz - σ 1 rz | R=1 R = 1 R R 1 R α D ∂ 2 τ ζ 1 + 2∂ T ∂τ ζ 0 -∂ Z σ 1 zz dr, (3.34) 
σ 0 zz + δσ 1 zz = α 2C λs + C G C G C λs ∂ Z ζ 0 + δζ 1 + α C λs ∂ R R R ξ 0 + δξ 1 . (3.35)
Equation (3.32) highlights the radial uniformity of solid axial displacement at leading-and first-orders. This uniformity along R follows from the long-wavelength assumptions, that is, the irrelevance of radial inertia when discarding O(ϵ 2 ) as already discussed in §3.1. This also implies a simplification of (3.31) by enforcing its RHS to equal zeros. After defining six R-invariant functions, namely H 0, 1 1 , H 0,1 2 and H 0,1 3 , the leading-and first-orders displacement fields fulfill

ζ 0 + δζ 1 = H 0 1 (Z, τ, T ) + δH 1 1 (Z, τ, T ), (3.36) 
ξ 0 + δξ 1 = H 0 2 (Z, τ, T ) + δH 1 2 (Z, τ, T ) 2 R + H 0 3 (Z, τ, T ) + δH 1 3 (Z, τ, T ) R , (3.37) 
The relation (3.36) is the first integral of (3.32) and (3.37) the first integral of (3.31)'s LHS. This similarly ensures the uniform behavior of the integrands of both (3.33) and (3.34). The shear continuity conditions in (3.27) and (3.28) then yield to .38) 130 A. Bayle, F. Plouraboué

α D ∂ 2 τ ζ 0 + δζ 1 + 2δ∂ T ∂ τ ζ 0 -∂ Z σ 0 zz + δσ 1 zz = 2δτ 0 w α(2 + α) . ( 3 
The as-yet-unknown functions H 0,1 

H 0 2 + δH 1 2 = C λs C G C G + C λs p 0 + δp 1 α 2 (2 + α) - 1 C λs ∂ Z ζ 0 + δζ 1 , (3.39) 
H 0 3 + δH 1 3 = C G α (1 + α) 2 2α(2 + α) p 0 + δp 1 . (3.40) Using that C G /(C G + C λs ) = 2ν s , H 0,1 2
and H 0,1 3 reduce to

H 0 2 (Z, τ, T ) + δH 1 2 (Z, τ, T ) = 2ν s C λs α p 0 + δp 1 α(2 + α) -∂ Z ζ 0 + ζ 1 , (3.41) H 0 3 (Z, τ, T ) + δH 1 3 (Z, τ, T ) = C G α (1 + α) 2 2α(2 + α) p 0 + δp 1 , (3.42) 
thus fulfilling the radial displacement expression in (3.37) at each order

ξ 0 + δξ 1 = 2ν s C λs R + (1+α) 2 C G R α(2 + α) p 0 + δp 1 2α -ν s R∂ Z (ζ 0 + δζ 1 ), (3.43) 
ξ 0 R=1 + δξ 1 R=1 = χ(p 0 + δp 1 ) 2α -ν s ∂ Z (ζ 0 + δζ 1 ), (3.44) 
with χ given in (2.15). Noting that 2α/C G + α(1 -2ν s )/C λs = αC 2 s /D, and considering the dimensionless Hooke stress tensor (2.52)- (2.53), direct relations between the normal solid stress components, p 0 and ∂ Z ζ 0 are found

σ 0 rr (R, Z, τ, T ) + δσ 1 rr (R, Z, τ, T ) = 1 - (1 + α) 2 R 2 p 0 + δp 1 α(2 + α) , (3.45) 
σ 0 θθ (R, Z, τ, T ) + δσ 1 θθ (R, Z, τ, T ) = 1 + (1 + α) 2 R 2 p 0 + δp 1 α(2 + α) , (3.46) 
σ 0 zz (Z, τ, T ) + δσ 1 zz (Z, τ, T ) = 2ν s p 0 + δp 1 α(2 + α) + αC 2 s D ∂ Z ζ 0 + δζ 1 . (3.47)
Thus, (3.45) and (3.46) recover the known radial dependence of stresses in thick pipes ( 18). In the α ≪ 1 limit, (3.45) also provides the thin-wall shell theory for which the radial stress linearly varies along the radial direction, that is σ 0 rr = p 0 (r -(R 0 + e))/e + O(α 2 ), from the applied fluid pressure at the inner pipe radius to the zero external pressure at the outer one. Furthermore, as α ≪ 1, the hoop stress σ θθ is found to be constant and thin-wall shell theory (more often named circumferential tension) is recovered (i.e σ θθ = p 0 /α + O(α 2 )) since 1/α is approximately the ratio of the average radius over the pipe wall thickness up to O(α 2 ) corrections. It is also interesting to note that σ 0 zz does not exhibit a radial dependence, a feature known in thin-wall shell theory (where σ 0 zz is called longitudinal tension), which extends to thick walls. Finally, the dependence of σ 0 zz with R is found consistent with thin-wall shell theory ( 25). The outer leading-and first-orders fluid behaviors are governed by mass and momentum conservation equations (2.38)- (2.40). Using the asymptotic sequence given in §3.3 along with the multi-time scale decomposition discussed in §3.2 leads to the following

∂τ P 0 + δP 1 + δ∂ T P 0 + C 2 ∂ Z W 0 + δW 1 = -C 2 ∂ R R R U 0 + δU 1 , (3.48 
)

∂τ W 0 + δW 1 + δ∂ T W 0 = -∂ Z P 0 + δP 1 , (3.49) 
∂ R P 0 + δP 1 = 0. (3.50)
At leading-order since ∂ R P 0 = 0 from (3.50), and, from the R derivative of (3.49),

∂ τ ∂ R W 0 = 0. If ∂ R W 0 = 0 is initially set at τ = 0, then ∂ R W 0 = 0 for all times.
The same applies for P 1 and W 1 . The radial uniformity of both outer pressure and axial velocity thus arises at leading-and first-orders, so that the LHS of (3.48) does not depend on R. We therefore introduce functions F 0 (Z, τ, T ) and F 1 (Z, τ, T ) so that

U 0 + δU 1 = - R 2 F 0 (Z, τ, T ) + δF 1 (Z, τ, T ) , (3.51) 
and consequently from (3.48), it yields

∂ τ P 0 + δP 1 + δ∂ T P 0 + C 2 ∂ Z W 0 + δW 1 = C 2 F 0 + δF 1 .
(3.52)

Fluid equations in the inner boundary layer region

The inner flow is driven by the boundary layer's rescaled mass and momentum conservation equations, (2.41)- (2.43). Up to first-order, one obtains the following

δ ∂ τ p 0 + C 2 ∂ Z w 0 = C 2 ∂ y u 0 + δu 1 -δC 2 u 0 , (3.53) ∂ τ -∂ 2 y w 0 + δw 1 = -∂ Z p 0 + δp 1 -δ ∂ T w 0 + τ 0 f , (3.54) 
∂ y p 0 + δp 1 = 0. (3.55)
As in the outer region (3.50), the inner pressure in (3.55) is uniform upon the radial re-scaled variable y, leading to pressure continuity per section at both orders

p 0 = P 0 , p 1 = P 1 . (3.56)
At leading-order, the inner mass equation (3.53) gives ∂ y u 0 = 0, so that the normal kinematic continuity condition (3.29) reads

u 0 = α∂ τ ξ 0 | R=1 , (3.57) 
or, equivalently, invoking (3.44)

u 0 = χ 2 ∂ τ P 0 -αν s ∂ Z ∂ τ ζ 0 . (3.58)
Furthermore, re-arranging the O (δ) terms in (3.53) along with the kinematic continuity condition (3.29) leads to

u 1 = y C 2 ∂ τ P 0 + ∂ Z y 0 w 0 dy ′ + yα∂ τ ξ 0 R=1 + α ∂ τ ξ 1 + ∂ T ξ 0 R=1 .
(3.59)

Outer and inner fluid velocity matching

The as-yet-unknown velocity functions F 0 (Z, τ, T ) and F 1 (Z, τ, T ), defined in (3.51), are fully determined by the asymptotic matching of radial velocities between the inner boundary layer and the outer region, as presented in §2.6. This matching nevertheless requires the knowledge of y 0 w 0 dy ′ accordingly to (3.59). For the sake of simplicity, the analysis is handled in the Laplace domain. The Laplace transform L with respect to the fast time τ is denoted by a tilde. So far any dependent variable f (Z, τ, T ), we write

f (Z, s, T ) = L (f (Z, τ, T )) = ∞ 0 f (Z, τ ′ , T )e -sτ ′ dτ ′ . (3.60)
With all unsteady fields initially at rest, the Laplace transform will map time derivatives into factors of the transform variable s. The inner leading-order axial velocity, w 0 , is governed by a diffusion equation (3.30), so its The Laplace transform leads to w0 = sα ζ0 e - √ sy -

1 s ∂ Z P 0 1 -e - √ sy , (3.61) 
where the axial kinematic continuity condition at the tube wall have been used. The Laplace transform of (3.49)'s leading-order produces where E.S.T="exponentially small terms". The asymptotic matching of axial velocities is directly guaranteed since they are far from the wall (i.e. for y = 1-R δ ≫ 1). The leading-order shear rate τ 0 f and wall shear rate τ 0 w can be deduced from (3.61)

W 0 = - 1 s ∂ Z P 0 , ( 3 
τ 0 f = ∂ y w0 = - √ s 1 s ∂ Z P 0 + sα ζ0 e - √ sy , (3.64) τ 0 w = - √ s 1 s ∂ Z P 0 + sα ζ0 . (3.65)
As expected, the leading-order wall shear rate is a linear combination of the leadingorder pressure P 0 and solid axial displacement ζ 0 from tangential velocity continuity at the tube wall (3.30). The derived parietal shear rate appears to be a combination of the s → 0 leading contribution of the theoretical parietal shear rate found by ( 56), namely -∂ Z P 0 / √ s, which provides a convolution kernel in time space as well as a new (FSI) shear rate contribution (-αs √ s ζ0 ). Noteworthy, ( 56) found other corrective contributions in his Laplace shear rate, which were related to the fact that his analysis did not consider an asymptotic boundary layer. However, neglecting the (FSI) corrections leads to an inconsistency regarding the velocity January 16, 2023 22:25 WSPC/PRE-PRINT
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Low-Mach number theory of pressure waves inside an elastic tube 133 continuity condition. The wall shear rate expressed within the time domain falls from a classical solution to the diffusion equation, yielding the following

τ 0 w (Z, τ, T ) = 1 √ π τ 0 ∂ τ ′ W 0 (Z, τ ′ , T ) -α∂ τ ′ ζ 0 (Z, τ ′ , T ) √ τ -τ ′ dτ ′ . (3.66)
The convolution kernel derived herein (i.e. 1/ √ πt), is identical to the leading-order contribution of ( 56)'s kernel while also sharing the same form as that of ( 48). On the other hand, our analysis reveals that the relevant acceleration to be considered in the convolution product must be the relative acceleration of the fluid to that of the pipe's wall, for ensuring asymptotic consistency. Suggested by ( 8), the solid contribution to the fluid wall shear rate is hereby rigorously established. The matching condition upon the radial fluid velocities, spelled out in (2.68), reads

Ũ 0 + δ Ũ 1 R=1-δ γ η = ũ0 + δ ũ1 y=δ γ-1 η , (3.67)
where η is the stretched coordinates defined in (2.67). The matching procedure thus constrains the expression of the unknown velocity functions F 0 1 (Z, τ, T ) in (3.51), yielding to

F 0 (Z, τ, T ) = -χ∂ τ P 0 + 2αν s ∂ Z ∂ τ ζ 0 , (3.68) 
F 1 (Z, τ, T ) = -χ∂ τ P 1 + 2αν s ∂ Z ∂ τ ζ 1 + τ 0 ∂ T F 0 + 2∂ Z τ 0 w dt. (3.69)
The full derivation of these expressions can be found in Appendix A.

Discussion on the fluid-filled pipe asymptotic (FSI) scheme

Based on many relations involved, it seems critical to focus on relations (3.44) and (3.47) as they reveal the radial-axial and axial stress-pressure Poisson coupling discussed many times in the literature (e.g. ( 44,45,43 )). The Poisson's modulus indeed converts the radial displacement (i.e. pipe breathing and overpressure) into axial displacement and axial stress, respectively. In the limit ν s → 0, this coupling vanishes and the only remaining coupling comes from the radial term. In this zero Poisson coupling limit the pipe can consequently be regarded as successive elastic cylindrical rings independent of each other, as proposed by ( 23). Figure 2 depicts the various couplings that occur in this asymptotic framework, thus providing a comprehensive description and detailed inventory. This scheme is completed by a the Table 1 that provides the related mechanical couplings as well as the associated relations in the derivation.

Table 1: Description of the asymptotic scheme for the fluid-structure-interaction that occur within a fluid-filled elastic tube system.

Relation Mechanical coupling

Asymptotic sequence [1,13] Normal stress continuity (3.25) + (3.26) [2,14] Radial Hooke's law (2.45) + [1,13] + (3.37) = (3.44)

[3], [15]- [15] & [21] Normal velocity continuity (3.29) + (3.53) = (3.57) + (3.59) [4,16] Radial fluid velocity matching (3.67) + Appendix A [5], [17]- [17] Outer fluid mass conservation (3.51) + (3.52)

[6], [18]- [18] Outer fluid axial momentum conservation (3.49)

[7], [19]- [19] Solid Inner fluid axial momentum conservation (3.54) [12] Definition of the fluid shear stress (3.64) [22] Tangential stress continuity (3.27) + (3.28) + (3.33) + (3.34) [23] Axial fluid velocity matching (3.63)

Solid

Inner Outer

Multiple-scale contribution

Solid hyperbolic system

Wall shear stress expression The red loops, (i.e. arrows [1]- [6] and [13]- [18]), in Figure 2 are related to (FSI), resulting in the pulse-wave speed c p modification occurring from the presence of the surrounding elastic tube. Its mechanism is detailed as follows. First, the pressure pulse is radially transmitted to the solid through stress continuity [1]. Then, the elastic Hooke's rheology transforms this radial stress into solid deformations [2].

P 0 p 0 ξ 0 U 0 w 0 u 0 ζ 0 σ 0 zz σ 0 rr σ 0 rz τ 0 w W 0 u 1 ξ 1 U 1 ζ 1 σ 1 rr P 1 W 1 σ 1 rz σ 1 zz Fluid hyperbolic system
The resulting radial velocity displacement should ensure velocity continuity conditions at the tube wall and thus match the inner fluid velocity [3]. A second matching on radial fluid velocity occurs at the boundary layer's interface [4], and the mass conservation equation in the outer region allows one to relate these radial velocity perturbations to the initial pressure pulse and axial velocity [5]. The axial momentum conservation equation [6] provides an outer relation between acceleration and the pressure gradient, which is necessary for closing the model. The red loop is nevertheless slaved to an unknown longitudinal displacement ζ 0 according to [2] which is a consequence of the Poisson coupling effects. Identical successive couplings also apply at first-order, resulting in the second loop (see arrows [13]- [18]). The green relations, (i.e. [7]- [8] and [19]- [20]), result from the combination of both the axial momentum-conservation equation and elastic Hooke's rheology. This combination produces a hyperbolic system upon ζ 0 and σ 0 zz enslaved by the fluid overpressure p 0 . Both hyperbolic systems arising from the red and green loops are consequently coupled through ν s parameter. The leading-order fluid shear stress follows from a combination of a pressure uniformity and continuity argument [10], an inner axial momentum conservation equation [11], an axial velocity conservation equation expressed on the axial shear stress, [9], and the fluid shear stress definition [12]. While most damping models ( 7 , 48 , 49 , 46 ), consider near-wall fluid friction, an additional fluid shear stress occurring from the solid axial dynamic has to be considered. This additional term is nevertheless required in terms of the axial velocity continuity conditions. As the axial velocity matching [23] does not introduce any further information to the coupling scheme, it is omitted from the discussion as a secondary by-product of the analysis. At first-order, the slow-time contribution and O (δ) corrections provide additional contributions that must be considered to evaluate the damping of the leading-order. The various contributions are indicated in Figure 2 with blue arrows (i.e. [15], [17], [18], [19], [21] and [22]). At this stage, however the combined effect of these various terms on damping is not easy to summarize, even if it can be re-cast into a highly compact form, as derived later in Section §4.

(FSI) coupled hyperbolic system

The liquid-filled pipe dynamic, at both leading-and first-orders, coupled with (FSI) is governed by a set of two coupled hyperbolic problem systems. The first is related to an elastic solid wave propagation, whereas the second accounts for pulse pressure acoustic wave propagation. Each hyperbolic system is enslaved by either a pressure component for the solid elastic system or the solid axial stress for the fluid acoustic system. The fluid hyperbolic system is built upon a combination of the axial momentum and the mass conservation equations, or (3.49) and(3.52) respectively, with the expression of the asymptotic matching functions F 0 and F 1 defined in (3.68) and(3.69). The axial momentum conservation equation then achieves in

∂ τ W 0 + δW 1 + δ∂ T W 0 = -∂ Z P 0 + δP 1 , (3.70)
while the mass conservation equation leads to

∂ τ P 0 + δP 1 + ∂ Z W 0 + δW 1 = 2αν s ∂ Z ∂ τ ζ 0 + δ ∂ τ ζ 1 + ∂ T ζ 0 -δ∂ T P 0 + 2δ τ 0 ∂ Z τ 0 w dt. (3.71)
where the relation (1 + χC 2 )/C 2 = 1 from (2.16) have been used. The solid hyperbolic system, in turn, depends on a combination of the axial momentum conservation equation and the derivation with respect to the fast time τ of the axial component of the Hooke's law through combining (3.38), (3.47)

α D ∂ 2 τ ζ 0 + δ ∂ 2 τ ζ 1 + 2∂ T ∂τ ζ 0 -∂ Z σ 0 zz + δσ 1 zz = 2δτ 0 w α(2 + α) , (3.72) 
∂τ σ 0 zz + δσ 1 zz - αC 2 s D ∂ Z ∂τ ζ 0 + δζ 1 = 2νs α(2 + α) P 0 + δP 1 . (3.73)
The fast time integration of (3.73)'s leading-order gives

- αC 2 s D ∂ Z ζ 0 = 2ν s α(2 + α) P 0 -σ 0 zz , (3.74) 
then yielding to

∂ τ σ 0 zz + δσ 1 zz - αC 2 s D ∂ Z ∂ τ ζ 0 + δ ∂ τ ζ 1 + 2∂ T ζ 0 = 2ν s α(2 + α) ∂ τ P 0 + δP 1 + 2δ∂ T 2ν s α(2 + α) P 0 -σ 0 zz . (3.75)
The equations set of (3.70), (3.71), (3.72) and (3.75) provides the four-(FSI) coupled hyperbolic equations associated with the dynamic of the liquid-filled pipe problem. At leading-order, it is identical to those derived by ( 9) and ( 43). The ( 43)'s derivation was based on averaging solid displacement vectors and stress along the radial direction. This approach relies on the hypothesis of no tangential shear stress in the solid (Eq. ( 2.50) demonstrates that it is indeed O(ϵ) smaller than the stress spherical components), providing radially uniform stress, which is also a basic assumption of thin-shell models ( 40). The constitutive hyperbolic coupled system is hereby re-organized into a coupled wave equation system that acts upon the pressure and stress variables only. Let us first focus on the pressure wave equation derivation. Combining a fast-time derivative of the outer mass equation (3.71) with the spatial derivative of the outer momentum equation (3.70) leads to the following The leading-order of (3.71) reads as follows

∂ 2 τ -∂ 2 Z P 0 + δP 1 = 2αν s ∂ Z ∂ τ ∂ τ ζ 0 + δ ∂ τ ζ 1 + ∂ T ζ 0 + δ∂ T ∂ Z W 0 -∂ τ P 0 + 2δ∂ Z τ 0 w . ( 3 
∂ τ P 0 + ∂ Z W 0 = 2αν s ∂ Z ∂ τ ζ 0 , (3.77) 
while combining (3.77) with (3.72) results in (3.78). This yields

∂ 2 τ -∂ 2 Z P 0 + δP 1 = 2αν s ∂ Z ∂ τ ∂ τ ζ 0 + δ ∂ τ ζ 1 + 2∂ T ζ 0 -2δ ∂ T ∂ τ P 0 -∂ Z τ 0 w . (3.78) We now use (3.75) to substitute for ∂ Z ∂ τ ζ 0 + δ ∂ τ ζ 1 + 2∂ T ζ 0 in
1 + 4ν 2 s D α(2 + α)C 2 s ∂ 2 τ -∂ 2 Z P 0 + δP 1 = 2ν s D C 2 s ∂ 2 τ σ 0 zz + δσ 1 zz -2δ ∂ T ∂ τ 1 + 4ν 2 s D α(2 + α)C 2 s P 0 - 2ν s D C 2 s σ 0 zz -∂ Z τ 0 w . (3.79)
On the other hand, the solid stress wave equation is revealed by a simple combination of the derivative with respect to τ in (3.75) with the derivative with respect to Z in (3.72), yielding the following

∂ 2 τ -C 2 s ∂ 2 Z σ 0 zz + δσ 1 zz = 2ν s α(2 + α) ∂ 2 τ P 0 + δP 1 -2δ ∂ T ∂ τ σ 0 zz - 2ν s α(2 + α) P 0 - C 2 s α(2 + α) ∂ Z τ 0 w . (3.80)
Both wave-equations can be re-casted into a coupled formulation

∂ 2 τ -C 2 P ∂ 2 Z P 0 + δP 1 = -2δ   ∂ T ∂τ P 0 -∂ Z τ 0 w   1 + 2νsD α(2+α) 1 α(2+α) 2νsD + C 2 s + 4ν 2 s D α(2+α)     , (3.81)
where

C 2 P = 1 2ν s D 2νs α(2+α) 4ν 2 s D α(2+α) + C 2 s
, and, P 0 + δP

1 = P 0 + δP 1 σ 0 zz + δσ 1 zz . (3.82)
The leading-order of (3.81) displays a parabolic form without dissipation associated with a fast time-scale wave propagation, as opposed to the additional slow-time scale damping that arises when O(δ) corrections are considered. This short-time behavior appears because the dissipation in the fluid boundary layer does not have time to develop; thus, the coupled system remains purely conservative. The eigenvalues c ± of C 2 P provide the (FSI)'s impact on the previously defined intrinsic wave speeds c p and c s . More precisely, since c p is selected as the reference speed, c p c - provides the fluid pulse pressure wave speed mode while c p c + provides the elastic wave speed mode. The eigenvalues c 2 ± are found equal to

c 2 ± = 1 + C 2 s + 4ν 2 s D α(2+α) ± 1 + C 2 s + 4ν 2 s D α(2+α) 2 -4C 2 s 2 . (3.83)
In dimensional form, these expressions are identical to those of ( 43). In the latter, and for the sake of brevity, the sum of the squared speed c 2 is introduced

c 2 = c 2 + + c 2 -= 1 + C 2 s + 4ν 2 s D α(2 + α) . (3.84)
The asymptotic behavior with respect to the α parameter of all dimensionless (FSI) characteristic wave speeds is provided in Figure 3. As α increases or ν s → 0, the dimensionless positive and negative wave speed mode, c ± , respectively tend to C s and one according to (3.83), as depicted in Figures 3b, 3c and3d. In other words, in the ν s → 0 limit the wave-speed remains unhampered by the (FSI) and the pressure pulse propagates at c p within the fluid while the elastic wave at c s within the tube.

For the wave speed signatures depicted here, the pulse wave speed modifications, (i.e. corrections in c -, Cf. Figure 3c), remains low and do not exceed 6% (for ν s = 0.35). 

∂ Z τ 0 w = -s √ s P 0 + α(1 -2ν s )∂ Z ζ0 , (3.85) 
while the use of (3.74) transforms it into

∂ Z τ 0 w = -s √ s 1 -(1 -2ν s ) 2ν s D αC 2 s (2 + α) P 0 + (1 -2ν s ) D C 2 s σ0 zz . (3.86)
The axial gradient of the fluid wall shear stress appears to be a linear combination of P 0 and σ0 zz ; thus, the vector-wave equation defined in (3.81) ensues in the Laplace domain

s 2 -C 2 P ∂ 2 Z P0 = 0, (3.87) s 2 -C 2 P ∂ 2 Z P1 = -2s ∂ T + √ sE P0 , (3.88) 
where 

E = 1 2ν s   1 -(1 -2ν s ) c 2 -1 C 2 s 1 + 2νsD α(2+α) 2νsD(1-2νs) C 2 s 1 + 2νsD α(2+α) 1 -(1 -2ν s ) c 2 -1 C 2 s c 2 -(1-2νs) α(2+α) 2νsD(1-2νs) C 2 s c 2 -(1-2νs) α ( 
Π = 2νsD c 2 --1 2νsD c 2 + -1 1 1 & Π -1 = 1 det (Π) 1 -2νsD c 2 + -1 -1 2νsD c 2 --1 , (4.1) 
C 2 P = Π -1 • C 2 P • Π = c 2 -0 0 c 2 + , (4.2) 
E = Π -1 • E • Π, P0 = Π • P0 & P1 = Π • P1 . (4.3)
Some additional elements regarding the axial boundary conditions, provided in §2.5, are now discussed. In the fluid, the downstream velocity variation (2.58), i.e. W 0 Z=1 + δW 1 Z=1 = -H eav (τ ), is equivalent, regarding the leading-and firstorders fluid momentum conservation equation (3.70), to impose Neumann condition on the pressure field, then yielding to

∂ Z P 0 Z=1 = δ(τ ) , and, ∂ Z P 1 Z=1 = 0, (4.4) 
where δ(τ ) is the Dirac distribution. Upstream, the homogeneous Dirichlet condition applied on the pressure trivially leads to

P 0 Z=0 = P 1 Z=0 = 0. (4.5)
In the solid, the upstream and downstream homogeneous Dirichlet conditions (2.59), i.e. ζ 0 Z=0&1 = ζ 1 Z=0&1 = 0, are equivalent regarding (3.72) to

∂ Z σ 0 zz Z=0&1 = 0 , and, ∂ Z σ 1 zz Z=0&1 = - 2 α(2 + α) τ 0 w Z=0&1 . (4.6) 
For the sake of simplicity and compactness let us introduce four 2 × 2 matrices N , M, Q, R. Boundary conditions in the diagonalization basis can formally be written as a rectangular 4 × 8 linear system

N M 0 0 0 0 Q R         P0 Z=0 ∂ Z P0 Z=0 P0 Z=1 ∂ Z P0 Z=1     + δ     P1 Z=0 ∂ Z P1 Z=0 P1 Z=1 ∂ Z P1 Z=1         = c 2 --1 2ν s D     0 0 1 0     + δ     2 α(2 + α) √ s     0 0 0 1     + 0 MN 0 0 0 0 0 0     P0 Z=0 ∂ Z P0 Z=0 P0 Z=1 ∂ Z P0 Z=1         , (4.7) 
where

N = 1 c-β c+ 0 0 , M = 0 0 1 1 , Q = 0, R = N + M, (4.8) 
and

β = c + c 2 --1 c -c 2 + -1 . (4.9)
In deriving (4.7), the use have been used of ∂ Z τ 0 w Z=0&1 = -1 √ s P 0 Z=0&1 according to (3.65) and the solid boundary conditions. Let us then define the operator H that acts on the square-integrable 2D-vector field Ψ(Z)

∀Ψ(Z) ∈ L 2 (R) × L 2 (R), Ψ(Z) → HΨ(Z) = C 2 P • ∂ 2 Z Ψ(Z), (4.10) 
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with the following homogeneous associated set of spatial boundary conditions

N M 0 0 0 0 Q R •     Ψ(0) ∂ Z Ψ(0) Ψ(1) ∂ Z Ψ(1)     = 0.
(4.11)

The vector-wave equations system (3.87)&(3.88) then become 

s 2 -H P0 + δ P1 = -2sδ ∂ T + √ sE P0 . ( 4 
(Z, s, T ) = λ k ∈R ã0 λ k (s)A λ k (T )Φ λ k (Z) + P0 p (Z, s), (4.13) P1 (Z, s) = λ k ∈R ã1 λ k (s)Φ λ k (Z) + P1 p (Z, s), (4.14) 
where A λ k (T ) is for the long-time attenuation amplitude of each leading-order kth mode associated with H's eigenvalues, -λ 2 k . It is shown in Appendix C that the operator H is self-adjoint for the scalar product

∀Ψ, Ψ ′ ∈ L 2 (R) × L 2 (R), ⟨Ψ ′ , Ψ⟩ = 2 j=1 η j 1 0 Ψ ′ j (Z)Ψ j (Z)dZ, (4.15) with η ≡ [η 1 , η 2 ] = [1, -β (c -/c + )
3 ] for a reservoir-pipe-anchored valve system, ( 4).

The eigenvectors Φ λ k (Z) then constitute an orthogonal basis of H. Note that (4.14) displays no dependence on the long-time scale T because O(δT ) corrections have been discarded. It is also interesting to mention that the choice for the particular solution P0 p (Z, s) is not unique even-though it has to fulfill the prescribed nonhomogeneous boundary conditions. The general solution in the RHS of (4.13) is thus adapted so as to provide the unique LHS P0 (Z, s, T ). The initial rest conditions of the unsteady fields along with the orthogonal behavior of Φ λ k (Z) imposes

a λ k (0) = -⟨P 0 p (Z, 0), Φ λ k (Z)⟩ & ∂ τ a λ k (0) = -⟨∂ τ P 0 p (Z, 0), Φ λ k (Z)⟩ (4.16) 142 A. Bayle, F. Plouraboué
The terms Pp 0 (Z, s), Pp 1 (Z, s) are regarded as separated space-time variables functions

P0 p (Z, s) ≡ P0 p (Z) = Z det (Π) 1 -1 , (4.17) P1 p (Z, s) = 1 α(2 + α) √ s   Z 2 1 - c + c -β 1 - c + c -β - 4νsD Z 2 2 -Z c 2 --1 1 0 0 c -β c + ∂ Z P0 Z=0   , (4.18)
the which are particular solutions for the boundary condition system (4.7). In the early-stage of the propagation, the fast-time τ is of order O( 1) such that T ∼ O(δ) according to the slow-time definition (3.3). Thus, from a fast-time viewpoint, the attenuation function thereby remains at initial condition A λ k (0) = 1, set up to one, and leads to

A λ k (T ) ≡ A λ k (δτ ) ≈ 1, for, τ ≪ O 1 δ , i.e T ∼ O(1). (4.19)
This condition nevertheless holds as long as τ does not exceeds O (1/δ). In this limit, the attenuation plays an overcoming role, and a secularity condition is required to ensure consistency ( 19). Then, this secularity condition, associated with the resonance condition of the O(δ) perturbations sets the long-time attenuation amplitude A λ k (T ), which is investigated next. Note that since P 0 is real, the LHS of (4.13) is also real when s is real from the definition of the Laplace transform (3.60). Hence the RHS of (4.13) is also real when s is real. Then, from the parity of Φ λ k = Φ -λ k detailed in Appendix C, a conjugation of the amplitudes is required for each mode couple (λ k , -λ k ): ã0⋆

λ k A ⋆ λ k = ã0 -λ k A -λ k for real s.
Furthermore, since this conjugate relation has to hold for every slow-time T and since at T = 0 A λ k (0) = 1, the conjugate condition extend to both ã0

λ k and A λ k , i.e., ã0⋆ λ k = ã0 -λ k for real s and

A ⋆ λ k = A -λ k .
4.3. Solution for 2D-vector wave equation 4.3.1. Leading-order fast-time dependent amplitude ã0 k (s) Combining P0 (Z, s, T = 0) (the T = 0 is chosen according to condition (4.19)) in expression (4.13) with boundary conditions (4.16) into the constitutive vector-wave equation (4.12) leads to

λ k ∈R s 2 -H ã0 λ k (s)Φ λ k (Z) = -s 2 P0 p (Z). (4.20)
Using (C.4), the orthogonality of the eigenfunction basis as well as its symmetry

Φ λ k = Φ -λ k , one obtains the following ã0 λ k (s) + ã0 -λ k (s) = λ k 2i 1 s -iλ k - 1 s + iλ k -1 ⟨ P0 p (Z), Φ λ k (Z)⟩. (4.21)
An identification using the conjugate relation ã0⋆ λ k = ã0 -λ k (for real s) discussed above, thus leads to the following (note that this identification is not unique up to January 16, 2023 22:25 WSPC/PRE-PRINT
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ã0 ±λ k (s) = - 1 2 ±iλ k s ∓ iλ k + 1 ⟨ P0 p (Z), Φ λ k (Z)⟩. (4.22)
Finally re-injecting the ã0 λ k (s) found in (4.22) within the Laplace transform in (4.13) gives the following

P0 (Z, s, T ) = P0 p (Z) - λ k ∈R A λ k (T ) 2 iλ k s -iλ k + 1 ⟨ P0 p (Z), Φ λ k (Z)⟩Φ λ k (Z) (4.23)
At this stage, the attenuation A λ k (T ) remains the only unknown.

First-order coupled wave equation and secularity condition

Next, let us combine the Laplace splitting form of P1 (Z, s) in (4.14) within the firstorder constitutive vector-wave equation (4.12). Regarding the derived expression of P0 in (4.23), it then yields the following

λ k ∈R s 2 + λ 2 k ã1 λ k (s)Φ λ k (Z) = -s 2 -H P1 p (Z, s) -2s √ sE P0 p (Z, s) + s λ k ∈R ∂ T + √ sE A λ k (T ) iλ k s -iλ k + 1 ⟨ P0 p (Z, s), Φ λ k (Z)⟩Φ λ k (Z). (4.24)
A complete derivation of s 2 -H P1 p (Z, s) have been carried out in Appendix D, and is not repeated here. From the orthogonality of Φ λ k (Z), one finds the following

ã1 λ k (s)+ã 1 -λ k (s) = isλ k ⟨ P0 p (Z, s), Φ λ k (Z)⟩ (s + iλ k ) (s -iλ k ) 2 ∂ T + √ s⟨EΦ λ k (Z) - J λ k (Z, s) s 2 , Φ λ k (Z)⟩ A λ k (T ) -isλ k ⟨ P0 p (Z, s), Φ λ k (Z)⟩ (s -iλ k ) (s + iλ k ) 2 ∂ T + √ s⟨EΦ λ k (Z) - J λ k (Z, s) s 2 , Φ λ k (Z)⟩ A -λ k (T ) -2s √ s ⟨E P0 p (Z, s), Φ λ k (Z)⟩ s 2 + λ 2 k +s ∂ T + √ s⟨EΦ λ k (Z), Φ λ k (Z)⟩ A λ k (T ) + A -λ k (T ) ⟨ P0 p (Z, s), Φ λ k (Z)⟩ s 2 + λ 2 k + s √ s λ j ∈R\{-λ k ,λ k } iλ j s -iλ j + 1 ⟨ P0 p (Z, s), Φ λ j (Z)⟩⟨EΦ λ j (Z), Φ λ k (Z)⟩ (s -iλ k ) (s + iλ k ) A λ j (T ) - 1 α(2 + α) √ s s 2 + λ 2 k ⟨ s 2 Z 2 -2C 2 P 1 - c + c -β 1 - c + c -β - s 2 Z 2 -2Z -2C 2 P 1 - c -β c + 1 - c -β c + , Φ λ k (Z)⟩ - λ j ∈R\{-λ k ,λ k } iλ j ⟨ P0 p (Z), Φ λ j (Z)⟩⟨J λ j (Z, s), Φ λ k (Z)⟩ √ s (s -iλ j ) (s -iλ k ) (s + iλ k ) A λ j (T ) - λ j ∈R ⟨ P0 p (Z), Φ λ j (Z)⟩⟨J λ j (s, Z), Φ λ k (Z)⟩ √ s (s -iλ k ) (s + iλ k ) A λ j (T ), (4.25)
with

J λ k (Z, s) = λ k α(2 + α) 1 -c-β c+    s 2 Z 2 2 -Z -c 2 - tan λ k c - c- -s 2 Z 2 2 -Z -c 2 + tan λ k c + c+    , (4.26) 
an even function of λ k . The secularity contribution lies in every double-pole found in the RHS terms of ã1 λ k (s). These double-poles are associated with resonance conditions between the (4.24)'s RHS and the natural frequencies of the (4.24)'s LHS, i.e. (s ± iλ k )

2 . These resonance conditions produce a linear divergence term upon the fast time τ of ã1 λ k (s), as found from the inverse Laplace transform of the double poles in (4.25), through Cauchy's residue theorem

L -1 1 (s ± iλ k ) 2 (τ ) = lim s→±iλ k (∂ s e sτ ) = τ e ±iλ k τ . (4.27)
When τ reaches O(1/δ), the asymptotic approximation collapses since assumption (4.19) vanishes. To prevent it, the attenuation function is built to cancel the divergent double-pole contributions. In (4.25), double-poles are gathered within the two first RHS terms since λ j ̸ = ±λ k . The secularity condition therefore reads as follows lim

s→±iλ k ∂ T + √ s⟨EΦ λ k (Z) - J λ k (Z, s) s 2 , Φ λ k (Z)⟩ A ±λ k (T ) = 0, (4.28) 
leading to

A λ k (T ) = e - √ iλ k T T λ k , (4.29) 
T -1 λ k = ⟨EΦ λ k (Z) + J λ k (s = iλ k , Z) λ 2 k , Φ λ k (Z)⟩, (4.30) J λ k (Z, s = iλ k ) = λ k α(2 + α) 1 - c -β c +       - Z 2 2 -Z + c - λ k 2 tan λ k c - c - Z 2 2 -Z + c + λ k 2 tan λ k c + c +       . (4.31)
An explicit expression of the envelope slow-time decay T λ k is provided in Appendix E. Result (4.30) for the deviation of our prediction from ( 32) given by T λ k shows that this deviation results from the interaction between (FSI) vibrations modes and dissipation. More precisely this term is the projection of vector EΦ λ k (Z) +

J λ k (s=iλ k ,Z) λ 2 k
which results from wall shear rate longitudinal gradient on each (FSI) modes. Note that with the conjugation conditions A ⋆ λ k = A -λ k is verified. In the Laplace domain, the leading-order vector P0 is now fully established. Combining the previous expression of A λ k (T ) within P0 in (4.23) leads to the following

P0 (Z, s, T ) = P0 p (Z, s)- 1 2 λ k ∈R e - √ iλ k T T λ k iλ k s -iλ k + 1 ⟨ P0 p (Z, s), Φ λ k (Z)⟩Φ λ k (Z) (4.32)
As often required, the space-time solution associated with the previous expression could be deduced by performing an inverse Laplace transform.

Laplace inversion and time-dependent solution

The particular part of P0 , P0 p for the hereby reservoir-pipe-anchored valve system examined here under impulse disturbance, does not depend on s as found in (4.17). January 16, 2023 22:25 WSPC/PRE-PRINT
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The inverse Laplace transform of (4.32) then becomes

P 0 (Z, τ, T ) = P 0 p (Z) - 1 2 λ k ∈R e - √ iλ k T T λ k ⟨P 0 p (Z), Φ λ k (Z)⟩Φ λ k (Z) + 1 2i λ k ∈R λ k Φ λ k (Z)L -1   e - √ iλ k T T λ k s -iλ k   (τ )⟨P 0 p (Z), Φ λ k (Z)⟩. (4.33)
Applying Cauchy's residue theorem yields the following

L -1   e - √ iλ k T T λ k s -iλ k   = e iλ k τ - √ iλ k T T λ k . (4.34)
Using notation sgn(λ k ) for the sign of λ k , (i.e. (4.34) results by symmetry

λ k = sgn(λ k )|λ k |) and since i sgn(λ k )|λ k | = (1 + sgn(λ k )i) |λ k | 2 ,
P 0 (Z, τ, T ) = P 0 p (Z)- λ k ∈Sp e - λ k 2 T T λ k cos λ k 2 T T λ k ⟨P 0 p (Z), Φ λ k (Z)⟩Φ λ k (Z) + λ k ∈Sp λ k e - λ k 2 T T λ k Φ λ k (Z) sin λ k τ - λ k 2 T T λ k ⟨P 0 p (Z), Φ λ k (Z)⟩, (4.35)
Here S p is the operator H's discrete spectrum introduced in (C.7). The leadingorder pressure-stress vector P 0 (Z, τ, T ) falls from basis change relationships (4.3).

The wall shear stress τ 0 w , through combining of (3.66), (3.70), (3.72) and (4.17), achieves the following 4.36) where,

τ 0 w (Z, τ, T ) = - D 1 -1 det (Π) √ πτ + λ k ∈Sp e - λ k 2 T T λ k       2λ k b λ k (τ, T ) + cos λ k 2 T T λ k √ πτ       ⟨Z 1 -1 , Φ λ k (Z)⟩D ∂ Z Φ λ k (Z) det (Π) , ( 
D [X ] = 1 D 1 D ΠX • 1 0 (4.37) b λ k = cos λ k τ - λ k 2 T T λ k Fs t λ k -sin λ k τ - λ k 2 T T λ k Fc t λ k . (4.38)
Here, F s , F c are the sine and cosine Fresnel functions, respectively, and

t λ k = 2λ k τ π .

Comparison with experiments

In this section various quantities are compared with previous theoretical predictions ignoring (FSI) and with experimental observations. All geometrical and physical properties from experimental articles are provided in Table 2. A reservoir-pipeanchored valve system has been studied by ( 32,33 ), but they did not consider (FSI), so an analytical expression for the pressure field and its spectrum has been found

P = 2 k∈N (-1) k sin(λ k Z) λ k e -λ k 2 T sin λ k τ - λ k 2 T & λ k = π 1 2 + k . (5.1)
Noteworthy, in the ν s → 0 limit and for the impulse response, the predicted pressure attenuation in (4.35) reaches that found by ( 32,33 ), which is given in (5.1), since T -1 λ k = 1 (as ν s → 0, E → I and J λ k (s = iλ k ) → 0, whilst the eigenmodes are orthogonal). The pressure signature is compared at different locations in Figure 4 Table 2: Physical and geometrical properties for the analysis of the reservoir pipe anchored valve system. ( ⋆ ) refers to unavailable data in the original article. They were estimated by the authors based up available properties of pure copper tube and water. from ( 1)'s data set. The special case ν s → 0 or that of ( 32) is again depicted. Each analytical solutions exhibits excellent agreement for both amplitude and phase for every considered pipe's locations with experimental observations. No parameter fit is used. The variety of observed patterns of the pressure signal depicted in Figure 4 and the surprisingly precise predictions provided by the theory results from the complex mode decomposition Φ λ k (Z), each with its own phase. In Figure (4a), a deeper analysis of the pressure signature reveals that ( 32)'s theory leads to a better agreement with experimental data in the early times, i.e. τ ≪ O (1/δ). At longer times, both models correctly describe the attenuation, ( 32)'s theory underattenuating, whist the hereby developed one slightly over-attenuating. In data at long time, ( 32)'s theory again under-attenuating. It is worth noting that these differences are minor in both configurations as the (FSI) coupling has little influences in these experimental data set.

Article Density Elasticity ν f νs Geometry (kg • m -3 ) (10 9 P a) (m 2 • s -1 ) (m) ( 20 ) ρ ⋆ f0 = 998.3 K ⋆ f = 2.1 3.967 • 10 -5 0.34 ⋆ R = 0.0127 ρ ⋆ s0 =
To deepen the analysis of the new prediction for (FSI) damping, Figures (5a)-(5d) then focus on the damping envelope of the first exponential mode. A comparison with four sets of experiments is provided. For each experiment, the pressure of the envelope peaks are extracted, non-dimensionalized, and compared with the theoretical damping trend. Figures (5a)-(5d) reveal as very good agreement between the predictions and experiments for laminar and transitional Reynolds numbers. As the first mode damping is dominant over others at long time, the match between predictions and observations becomes better with time, as expected. Furthermore, to more accurately quantify how much this preferential damping dominates others, Figure ( 6a) and (7a) depict and compare the ratio of ( 32) first damping mode (i.e. π/4) with the present asymptotic theory (i.e. √ λ 0 / √ 2T λ0 ) for a various set of iso-α and iso-E. This ratio appears to be less than unity within the entire ν s range between zero and one-half, which demonstrates that (FSI) liquid-filled pipe systems attenuate faster than those where no-(FSI) is considered, which is an expected effect. It is also interesting to note that the thinner the pipe (i.e. the lower the α), the stronger the damping, which is also expected due to the increasing importance of (FSI) effects in thin-shell. In Figure (6b) and (7b), the ratio of the second to first exponential damping rate (i.e. Fig. 5: First exponential damping mode comparison with experimental dimensionless pressure peaks, P peaks . The present theory is depicted with a continuous line while ( 32)'s theory (ν s → 0) is depicted by a dashed line.

sarily follow this pattern. Depending on the dimensionless numbers' relative values, the second attenuation mode could attenuates slower than the first, possibly leading to a distinct long-time behavior. This can be observed for the chosen parameters in Figure ( 6b) and (7b) when the computed ratio is smaller than one for increasing ν s values; thus, in this special case, the second mode drives the long-time dynamics. For extremely thin tubes (i.e. α ∼ 10 -2 ), lying within a shell theory framework, such behaviors should therefore be expected. The wall shear stress (4.36) is provided in Figure 8 and 9 using ( 1)'s experimental parameters. The solution in the ν s → 0 limit is again depicted to illustrate the possible contribution of the solid axial displacement acceleration in the convolution 1)'s data from Table 2. term (3.65) 8 and 9 consider the wall shear stress under impulse disturbance, one can observe the successive peaks associated with the back-and-forth pulse propagating wave at a given position. Obviously, these peaks should be smoothed by convolution with the applied valve closure law for non-impulse disturbances. The observed difference between the (FSI) wall shear stress and the one computed without including (FSI) effects are rising with time, but also increasing for larger density ratio D. This difference is systematically in- 9b) where the influence of the thickness of the tube wall and the Poisson coefficient are provided. These plots permit to realize that the prediction of the (FSI) wall shear stress differ by a factor two or more from the one omitting (FSI), for ν s larger than 0.25 for usual relative wall thickness (i.e. α < 0.1). From this, one can infer that this very important quantity in the blood-hammer context (for which D ≈ 1, α ∈ [0.05-0.2], ν s ∈ [0.45-0.5]) deserves to be examined from an (FSI) viewpoint. Since many studies have demonstrated the importance of the wall shear stress in bio-mechanics (e.g., ( 12)) this theoretical prediction is thus January 16, 2023 22:25 WSPC/PRE-PRINT
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Conclusion

This contribution investigated a low-Mach number theory of (FSI) pulsed waves in a pipe. The asymptotic analysis included three small parameters, namely the dimensionless viscous boundary layer thickness δ = 1/ ϵRe p , the Mach number M, and the tube aspect ratio ϵ, which were chosen within the framework of δ 2 ≫ M, δ ≫ ϵ 2 , δ ≫ αM (or equivalently 1/Re p ≫ max ϵM, ϵ 5 , α 2 ϵM 2 ) and 1 ≫ ϵ ≫ αM, consistent with the parameter ranges of many relevant studies. The resulting (FSI) problem was then analyzed considering three distinct and coupled regions, namely the elastic solid, inner boundary layer, and outer pipe region, as well as two time scales, namely a fast one associated with wave propagation along the tube and a slow one associated with momentum diffusion within the boundary layer. The couplings between the various pressures, velocity components, stress components, and elastic displacement fields were studied in detail to produce a complete asymptotic understanding, as depicted in Figure 2. Within this framework, the leading-order four-(FSI) equations were recovered, exhibiting a pulsed velocity consistent with ( 43)'s average analysis predictions. Furthermore, at this leading-order, the resulting shear stress was found to be equally consistent with the leading-order long time behavior found by ( 56), except for a missing (FSI) coupling term, which is small in the limit of thick-wall, but can be significantly different for thin-wall and solid/fluid density ratio close to one. Seeking a prediction for the slow-time damping of the leading-order wave propagation, a secularity condition was developed, which was found by analyzing first-order perturbations. The resulting longitudinal, mode-dependent, exponential damping generalized the ν s → 0 theory of ( 32,33 ), which now includes (FSI). This damping not only depended on the fluid and solid properties through a newly defined tensor E associated with dissipation but also on the considered boundary conditions though a damping vector J λ k . This is because it was directly related to (E, J λ k )'s double contraction over the vibration eigenmodes as well as to the corresponding eigenvalue, both of which were strongly connected with the set of axial boundary conditions. The resulting damping predictions were successfully compared with various experimental measurements, providing convincing evidence for the presented theory.

Appendix A. Matching procedure for the radial velocity field

The leading-order inner axial velocity w0 found in (3.61) can be y-integrated and Z-derived, such that

∂ Z y 0 w0 dy ′ = α √ s 1 -e - √ sy ∂ Z ζ0 - 1 s ∂ 2 Z P 0 y - 1 √ s 1 -e - √ sy (A.1)
The radial velocity matching procedure presented in (2.68) is detailed as follows.

Invoking the expressions Ũ 0 , ũ0 , and ũ1 in (3.51), (3.57) and (3.59), respectively, leads to the following

- 1 2 F0 + 1 2 δ γ η F0 + δ - 1 2 F1 + 1 2 δ γ η F1 = sα ξ0 R=1 + s C 2 P 0 δ γ η + sαδ γ ξ0 R=1 + αδ s ξ1 R=1 + ∂ T ξ0 R=1 + α √ s∂ Z ζ0 Ri (δ -E.S.T ) - 1 s ∂ 2 Z P 0 δ γ η - 1 √ s (δ -E.S.T ) , (A.2)
or, reorganising terms

- 1 2 F0 + 1 2 δ γ η F0 - δ 2 F1 = sα ξ0 R=1 + s C 2 P 0 δ γ η + sαδ γ η ξ0 R=1 + αδ s ξ1 R=1 + ∂ T ξ0 R=1 + δα √ s∂ Z ζ0 R=1 - 1 s ∂ 2 Z P 0 δ γ η - δ √ s + O δ γ+1 . (A.3)
The asymptotic sequence reads as follows

• O (1) F0 = -2sα ξ0 R=1 , (A.4) • O (δ γ ) 1 2 F0 = sαξ 0 R=1 + 1 sC 2 s 2 -C 2 ∂ 2 Z P 0 . (A.5)
Combining (3.70) and (3.71) considered at leading-order and in the Laplace domain yields

s 2 -C 2 ∂ 2 Z P 0 = sC 2 F0 , (A.6) such that F0 = -2sαξ 0 R=1 , (A.7)
which is identical to (A.4).

• O (δ)

- 1 2 F1 = sα ξ1 R=1 + α∂ T ξ0 R=1 + 1 √ s 1 s ∂ 2 Z P 0 + αs∂ Z ζ0 R=1 . (A.8)
Using the definition of the parietal shear rate in (3.65) leads to the following

F1 = -2sα ξ1 R=1 -2α∂ T ξ0 R=1 + 2 s ∂ Z τ 0 w . (A.9)
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Through using (3.44), the matching functions F 0 (Z, τ, T ) and F 1 (Z, τ, T ) are fully determined from the inverse Laplace transform of (A.4) and (A.9)

F 0 (Z, τ, T ) = -χ∂ τ P 0 + 2αν s ∂ Z ∂ τ ζ 0 , (A.10) F 1 (Z, τ, T ) = -χ∂ τ P 1 + 2αν s ∂ Z ∂ τ ζ 1 + τ 0 ∂ T F 0 + 2∂ Z τ 0 w dτ ′ . (A.11)

Appendix B. Comparative analysis with Tijsseling's thick-wall theory

One starts from the four-(FSI) coupled equation system derived by ( 43)

∂ t W * + 1 ρ f0 ∂ z P * = 0, (B.1) ∂ z W * + 1 K f + 2 E 1 α + 1 + α 2 + α + ν s ∂ t P * = 2ν s E ∂ t σ * zz , (B.2) ∂ t ζ * - 1 ρ s0 ∂ z σ * zz = 0, (B.3) ∂ z ζ * - 1 E ∂ t σ * zz = - 2ν s αE (2 + α) ∂ t P * . (B.4)
Invoking the scaling from §2.3.2 and §2.4, leads to

∂ τ W + ∂ Z P = 0, (B.5) ∂ Z W + ρ f0 c 2 p 1 K f + 2 E 1 α + 1 + α 2 + α + ν s ∂ τ P = 2ν s ρ f0 c 2 p E ∂ τ σ zz , (B.6) ∂ τ ζ - D α ∂ Z σ zz , = 0, (B.7) αE ρ f0 c 2 p ∂ Z ζ -∂ τ σ zz = - 2ν s α (2 + α) ∂ τ P. (B.8)
Using (2.11), (2.12), and (2.17), one finds

E ρ f0 c 2 p = C 2 s D , (B.9)
and One is left with an expression of the term ρ f0 c 2 p 1

∂ τ W + ∂ Z P = 0, (B.10) ∂ Z W + ρ f0 c 2 p 1 K f + 2 E 1 α + 1 + α 2 + α + ν s ∂ τ P = 2ν s D C 2 s ∂ τ σ zz , (B.11) ∂ τ ζ - D α ∂ Z σ zz = 0, (B.12) αC 2 s D ∂ Z ζ -∂ τ σ zz = - 2ν s α (2 + α) ∂ τ P. (B.
K f + 2 E 1 α + 1+α 2+α + ν s versus dimensionless parameters.
Using the definition of acoustic fluid wave speed c 0 = K f /ρ f0 while invoking (2.11), (2.12), and (2.17) leads to

ρ f0 c 2 p 1 K f + 2 E 1 α + 1 + α 2 + α + ν s = 1 + 4ν 2 s D α(2 + α)C 2 s . (B.14)
Now, combining (B.11) within (B.13) result in 16)

∂ τ σ zz - αC 2 s D ∂ Z ζ = 2ν s α(2 + α) ∂ τ P, (B.15) ∂ τ ζ = D α ∂ Z σ zz , (B.
∂ τ P + ∂ Z W = 2αν s ∂ Z ζ, (B.17) ∂ τ W = -∂ Z P. (B.18)
The four-(FSI) dimensionless equation system derived by ( 43) is thus identical to the one asymptotically defined in §3.9.

B.1. Vector-wave system in the Laplace domain

The first-order dynamic is governed by the equations (3.79) and (3.80) expressed within the Laplace domain

1 + 4ν 2 s D α(2 + α)C 2 s s 2 -∂ 2 Z P 0 + δ P 1 = 2ν s D C 2 s s 2 σ0 zz + δσ 1 zz -2δ s∂ T 1 + 4ν 2 s D α(2 + α)C 2 s P 0 - 2ν s D C 2 s σ0 zz -∂ Z τ 0 w , (B.19)
and

s 2 -C 2 s ∂ 2 Z σ0 zz + δσ 1 zz = 2ν s α(2 + α) s 2 P 0 + δ P 1 -2δ s∂ T σ0 zz - 2ν s α(2 + α) P 0 - C 2 s α(2 + α) ∂ Z τ 0 w . (B.20)
By combining the previous relations with the derived expression of ∂ Z τw (Z, s) in (3.86), it follows

As 2 -B∂ 2 Z P0 + δ P1 = -2sδ As 2 + √ sD P0 , (B.21)
with A, B, D and P0 , P1 defined as

A =     1 + 4ν 2 s D αC 2 s (2+α) -2νsD C 2 s -2νs α(2+α) 1     , B = 1 0 0 C 2 s , P0 = P 0 σ0 zz , P1 = P 1 σ1 zz , (B.22)
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D =    1 -(1 -2ν s ) 2νsD αC 2 s (2+α) (1-2νs)D C 2 s C 2 s α(2+α) 1 -(1 -2ν s ) 2νsD αC 2 s (2+α) (1-2νs)D α(2+α)    . (B.23)
Since A is a unitary matrix, its inverse reads as follows

A -1 =    1 2νsD C 2 s 2νs α(2+α) 1 + 4ν 2 s D αC 2 s (2+α)    . (B.24)
Let us define the matrix

E = A -1 • D. Noting that C 2 P = A -1
• B, and using the definition of c 2 in (3.84), one yields

E = 1 2ν s     1 -(1 -2ν s ) c 2 -1 C 2 s 1 + 2νsD α(2+α) 2νsD(1-2νs) C 2 s 1 + 2νsD α(2+α) 1 -(1 -2ν s ) c 2 -1 C 2 s c 2 -(1-2νs) α(2+α) 2νsD(1-2νs) C 2 s c 2 -(1-2νs) α(2+α)     , (B.25) such that s 2 -C 2 P ∂ 2 Z P0 + δ P1 = -2sδ ∂ T + √ sE P0 . (B.26)
Appendix C. Self-adjointness of the H operator and eigenvector decomposition ( 4 ) developed a solution for the leading-order vector-wave equation ( 4.12) associated with boundary conditions (4.7)-(4.9) using the orthonormal decomposition basis arising from the eigenvectors Φ λ k (Z) of the operator H, whereby P0 and P1 were projected. To achieve this decomposition, one must set H's self-adjointness. Defining the scalar product

∀Ψ, Ψ ′ ∈ L 2 (R) × L 2 (R), ∀η 1 , η 2 ∈ R, ⟨Ψ ′ , Ψ⟩ = 2 j=1 η j 1 0 Ψ ′ j (Z)Ψ j (Z)dZ, (C.1) with η ≡ (η 1 , η 2 ) ∈ R 2
an as yet unknown real vector that is adapted to each specific boundary condition set. From the self-adjoint property ⟨HΨ,

Ψ ′ ⟩ = ⟨Ψ, HΨ ′ ⟩, one finds from (C.1) condition 2 j=1 η j c 2 j ∂ Z Ψ j (Z)Ψ ′ j (Z) -Ψ j (Z)∂ Z Ψ ′ j (Z) 1 0 = 0. (C.2)
Denoting -λ 2 k , the k th eigenvalue is real negative in accordance with the well-known Laplacian eigenvalues. Its related eigenfunction Φ λ k , fulfills the following eigenvalue problem 

HΦ λ k (Z) = -λ 2 k Φ λ k (Z), (C.
∂ 2 Z Φ λ k (Z) = -λ 2 k C -2 P Φ λ k (Z), with C -2 P = c -2 - 0 0 c -2 + .
(C.4)

The solution to (C.4) reads as follows

Φ λ k (Z) ∂ Z Φ λ k (Z) = ∂ Z T λ k (Z) T λ k (Z) -λ 2 k C -2 P T λ k (Z) ∂ Z T λ k (Z) Φ λ k (0) ∂ Z Φ λ k (0) , (C.5)
where

T λ k (Z) = 1 λ k   c -sin λ k Z c- 0 0 c + sin λ k Z c+   , (C.6) and (Φ λ k (0), ∂ Z Φ λ k (0)) T represent the modal-dependent amplitudes of Φ λ k (Z),
each of which is associated with the Dirichlet or Neumann condition imposed at Z = 0&1. Furthermore Φ λ k (Z) should ensures the homogeneous boundary condition system (4.11). Finding a non trivial solution leads to the following condition

N M Q∂ Z T k (1) -λ 2 k RC -2 P T k (1) QT k (1) + R∂ Z T k (1) = 0. (C.7)
This transcendental equation upon λ k fully prescribes the system's spectrum S P .

While the radial boundary condition (i.e., the stress and velocity continuity conditions) informs about the wave-speed propagations of pulses within both fluid and solid, the axial boundary conditions located at the pipe's dead-end, in-turn, specify the system's spectrum

S P = {-λ 2 k | λ k ∈ R + }. (C.8)
Combining the boundary matrix expressions provided in (4.8) with the spectrum equation (C.7) yields the following (simplified) transcendental equation,

β tan λ k c - = tan λ k c + , (C.9)
where β was provided in (4.9). ( 4) found the following analytical expression for the eigenvectors Φ λ k (Z) 

Φ λ k (Z) = Φλ k (Z) ∥ Φλ k (Z)∥ , (C.10) Φλ k (Z) =   cos λ k c-Z + tan λ k c-sin λ k c-Z -c+ βc-cos λ k c+ Z + tan λ k c+ sin λ k c+ Z   , (C.11) ∥ Φλ k (Z)∥ 2 = c + β cos 2 λ k c+ -c -cos 2 λ k c- 2c + β cos 2 λ k c+ cos 2 λ k c- , (C.12) η = η 1 η 2 = 1 -β c- c+ 3 . (C.
s 2 -H P1 p (s, Z) = s 2 Z 2 -2C 2 P α(2 + α) √ s 1 -c+ c-β 1 -c+ c-β - 4ν s D s 2 Z 2 2 -Z -C 2 P α(2 + α) √ s c 2 --1 1 0 0 c-β c+ ∂ Z P0 Z=0 . (D.1)
The expression of ∂ Z P0 Z=0 , which is easily deduced from (4.13) and (4.17), then yields to

s 2 -H P1 p (s, Z) = s 2 Z 2 -2C 2 P α(2 + α) √ s 1 -c+ c-β 1 -c+ c-β - 4ν s D α(2 + α) √ s c 2 --1 λ k ∈R ã0 λ k (s)A λ k (T ) s 2 Z 2 2 -Z -C 2 P 1 0 0 c-β c+ ∂ Z Φ λ k Z=0 - 4ν s D s 2 Z 2 2 -Z -C 2 P α(2 + α) √ s det (Π) c 2 --1 1 -c-β c+ , (D.2) or otherwise since det (Π) = 2νsD c 2 --1 1 -c-β c+ s 2 -H P1 p (s, Z) = 1 α(2 + α) √ s    s 2 Z 2 -2C 2 P 1 - c + c -β 1 - c + c -β -2 s 2 Z 2 2 -Z -C 2 P 1 - c -β c + 1 - c -β c +    - 2 α(2 + α) √ s 1 - c -β c + λ k ∈R ã0 λ k (s)A λ k (T ) s 2 Z 2 2 -Z -C 2 P 1 0 0 c -β c + ∂ Z Φ λ k Z=0 . (D.3)
Regarding the definition of

∂ Z Φ λ k Z=0 provided in (C.11), it follows s 2 Z 2 2 -Z -C 2 P 1 0 0 c -β c + ∂ Z Φ λ k Z=0 = λ k c-   s 2 Z 2 2 -Z -c 2 -tan λ k c - - c - c + s 2 Z 2 2 -Z -c 2 + tan λ k c +   . (D.4)
whilst injecting the expression of ã0 λ k (s) derived in (4.22) into (D.3), it results with

s 2 -H P1 p (s, Z) = 1 α(2 + α) √ s s 2 Z 2 -2C 2 P 1 -c+ c-β 1 -c+ c-β - s 2 Z 2 -2Z -2C 2 P 1 -c-β c+ 1 -c-β c+ + λ k ∈R iλ k s -iλ k + 1 ⟨ P0 p (Z), Φ λ k (Z)⟩ √ s A λ k (T )J λ k (Z,
J λ k (Z, s) = λ k α(2 + α) 1 -c-β c+    s 2 Z 2 2 -Z -c 2 - tan λ k c - c- -s 2 Z 2 2 -Z -c 2 + tan λ k c + c+    . (D.6) Appendix E. Further investigation of T -1 λk
Let us define E i,j , i, j ∈ {1, 2} as the matrix elements of

E = Π -1 • E • Π.
Invoking the definition of Π and Π -1 in (4.1) along with that of E in (B.25) leads to the following

E 11 = D 1-(1-2νs) c 2 -1 C 2 s c 2 --1 + 1-2νs C 2 s 1 + 2νsD α(2+α) 1 -c 2 -(1-2νs) c 2 + -1 det Π , (E.1) E 12 = D 1-(1-2νs) c 2 -1 C 2 s c 2 + -1 + 1-2νs C 2 s 1 + 2νsD α(2+α) 1 -c 2 -(1-2νs) c 2 + -1 det Π , (E.
2)

E 21 = D 1-(1-2νs) c 2 -1 C 2 s c 2 --1 + 1-2νs C 2 s 2νsD α(2+α) c 2 -(1-2νs) c 2 --1 -1 -1 det Π , (E.
3)

E 22 = D 1-(1-2νs) c 2 -1 C 2 s c 2 + -1 + 1-2νs C 2 s 2νsD α(2+α) c 2 -(1-2νs) c 2 --1 -1 -1 det Π (E.4)
where 1/det Π is obtained regarding (4.1). Invoking both the scalar product definition in (C.1) with the definition of T -1 λ k in (4.30) while introducing the 2D-function

Φ λ k (Z) = [Φ - λ k , Φ + λ k ](Z) achieves the following 1 0 Φ - λ k 2 Zdz = λ k + c -cos λ k c-sin λ k c- 2λ k ∥ Φλ k (Z)∥ cos 2 λ k c- , (E.5) 1 0 Φ + λ k 2 Zdz = c + βc - 2 λ k + c + cos λ k c+ sin λ k c+ 2λ k ∥ Φλ k (Z)∥ 2 cos 2 λ k c+ , (E.6) 1 0 Φ - λ k (Z)Φ + λ k (Z)dz = c 2 + c + tan λ k c--c -tan λ k c+ λ k ∥ Φλ k (Z)∥ 2 β c 2 --c 2 + . (E.7)
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Then the ⟨EΦ λ k (Z), Φ λ k (Z)⟩ contributes to

⟨EΦ λ k (Z), Φ λ k (Z)⟩ = E 11 1 0 Φ - λ k (z) 2 dz + η 2 E 22 1 0 Φ + λ k (z) 2 dz + [E 12 + η 2 E 21 ] 1 0 Φ - λ k (z)Φ + λ k (z)dz, (E.8)
in the expression of T -1 λ k in (4.30). Furthermore, by definition of J λ k in (D.6)

J λ k (s = iλ k , Z) λ 2 k = λ k α(2 + α) 1 - c -β c +       - Z 2 2 -Z + c - λ k 2 tan λ k c - c - Z 2 2 -Z + c + λ k 2 tan λ k c + c +       , (E.9) then ⟨ J λ k (s=iλ k ,Z) λ 2 k , Φ λ k (Z)⟩ contributes to ⟨ J λ k (s = iλ k , Z) λ 2 k , Φ λ k (Z)⟩ = - λ k tan λ k c - α(2 + α)c-1 - c -β c + 1 0 Z 2 2 -Z Φ - λ k (Z)dz + c- λ k 2 1 0 Φ - λ k (Z)dz η2λ k tan λ k c + α(2 + α)c+ 1 - c -β c + 1 0 Z 2 2 -Z Φ + λ k (Z)dz + c+ λ k 2 1 0 Φ + λ k (Z)dz , (E.10) in T -1 λ k with 1 0 Z 2 2 -Z Φ + λ k (Z)dz = - c 3 + c -βλ 3 k ∥ Φλ k (Z)∥ λ k -c + tan λ k c + , (E.11) 1 0 Z 2 2 -Z Φ - λ k (Z)dz = c 2 - λ 3 k ∥ Φλ k (Z)∥ λ k -c -tan λ k c - , (E.12) 1 0 Φ + λ k (Z)dz = - c 2 + c -βλ k ∥ Φλ k (Z)∥ tan λ k c + , (E.13) 1 0 Φ - λ k (Z)dz = c - λ k ∥ Φλ k (Z)∥ tan λ k c - . (E.14)

Linear visco-elastic pipe rheology 4.1.1 Terminology of visco-elastic materials

Unlike the elastic materials, the visco-elastic fluid or solid do not instantaneously respond to stress or strain solicitations. A time-delay response is observed along with possible hysteretic behaviors. The creep response corresponds to the strain evolution when the solid is submitted to a constant stress. On the other hand, the relaxation behavior depicts the stress evolution when the solid is submitted to a constant strain deformation. Several models exist to characterize the visco-elastic behavior of a solid (or a fluid), one-dimensional ones being the most popular.

The Maxwell and Kelvin-Voigt models are the most widely spread 1D visco-elastic models, generally described by a combination of dashpot and spring responses as depicted in Figure 4.1. Kelvin-Voigt's visco-elastic model (single element). • Maxwell's model is one of the simplest existing model to describe the viscoelastic response of a fluid or a solid. It is mechanically analogous to a spring and a damper in a row (Cf. Figure 4.1a). While the spring describes the instantaneous elastic response, the damper enslaves the long time dynamic. This model nevertheless fails to describe the material creep behavior.

   σ = σ s = σ d ϵ = ϵ s + ϵ d σ s = E ϵ s σ d = η ∂ t ϵ d ∂ t σ + E η σ = E∂ t ϵ (a) Maxwell's visco-elastic model (single element). σ s = E ϵ s σ d = η ∂ t ϵ d    σ = σ s + σ d ϵ = ϵ s = ϵ d ∂ t ϵ + E η ϵ = 1 E σ (b)
• Kelvin-Voigt's model consists in a spring set up in parallel to a damper (Cf. Figure 4.1b). This model fails to describe the material relaxation behavior.

According to [Covas, 2003]: "These models describe the behavior of simple systems and do not provide a good approximations to the visco-elastic behavior of polymers". resulting from a constant axial stress perturbation of amplitude σ 0 . For the generalized Kelvin-Voigt model, following [START_REF] Covas | Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis[END_REF], Keramat et al., 2011], it yields

J(t) = J 0 + N k=1 J k 1 -e -t τ k
, with, J k = 1/E k , and,

τ k = η k E k . (4.1)
The stress perturbation is nevertheless not always constant but can vary in time.

In this case, the Boltzmann superposition principle is used to express the instantaneous strain response versus the time-dependent stress following [Shaw and MacKnight, 2018]

ϵ(t) = J 0 σ(t)
Instantaneous response

+ t 0 σ(t -t ′ ) d dt ′ J(t ′ )dt ′ Retarded response . (4.2)

Visco-elastic fluid pulse wave speed: hydraulic analysis of water hammer in visco-elastic materials

The presence of a retarded stress-strain relation in the solid rheology 4.2 perturbs the fluid dynamic. In this subsection the pipe axial dynamic is discarded, i.e. ν s = 0, and the fluid will be considered inviscid. The fluid is thus governed by its mass and momentum conservation equations, which are forced by hoopstress response associated with the pipe breathing [Meißner, 1977, Suo and Wylie, 1990[START_REF] Covas | Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis[END_REF]]

∂ t + 0 K f -1 ρ f 0 ∂ z P W = -2K f ∂ t ϵ θθ 1 0 . (4.3)
From (4.2) whilst re-organizing (4.3), it yields the visco-elastic forced pressure wave equation

∂ 2 t - K f ρ f ∂ 2 Z P = -2K f ∂ 2 t J 0 σ θθ (t) + t 0 σ θθ (t -t ′ ) d dt ′ J(t ′ )dt ′ . (4.4)

CHAPTER 4. THE LIQUID-FILLED-VISCO-ELASTIC PIPE PROBLEM

For a circular tube, when the influence of the Poisson's modulus is discarded, the force equilibrium provides a straightforward relation between the radial solid stress and the pressure σ θθ = P/α, which has been spelled out in (1.11) (Cf. §1.4.1).

From this one gets

∂ 2 t - K f ρ f ∂ 2 Z P = - 2K f α ∂ 2 t J 0 P + t 0 P (t -t ′ ) d dt ′ J(t ′ )dt ′ . (4.5)
Performing a Fourier transform (4.6) leads to

        ω 2 + K f ρ f 1 + 2K f α J 0 + iω J(ω)
Frequency-dependent wave speed, cp

∂ 2 Z         P = 0. (4.6)
Noteworthy, the visco-elastic pulse wave speed is frequency-dependent and displays a similar form with the elastic Korteweg's wave speed, defined in (1.2), but for the elastic Young modulus replaced by a complex, frequency-dependent one [Meißner, 1977, Suo and Wylie, 1990, Mitosek and Chorzelski, 2003[START_REF] Covas | Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis[END_REF].

An example of time-varying pulse-wave speed is depicted in Figure 4.3 associated with the experiment measurements of [Mitosek and Chorzelski, 2003]. The visco- [Mitosek and Chorzelski, 2003].

elastic rheology is thus modeled as a simple extension of the elastic framework from only considering complex solid rheological parameters, [START_REF] Rubinow | Wave Propagation in a Fluid-Filled Tube[END_REF], Rubinow and Keller, 1978, Barez et al., 1979]. Let us discuss the physical consequences of a complex wave speed. Following the analysis of [Suo and Wylie,
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167 1990], writing the pressure field as a plane-wave, leads to

P = P 0 e iω t-z cp(ω) = P 0 e - ωzIm(cp(ω)) ∥cp(ω)∥ 2
Rheological damping

e iω t- zRe(cp(ω)) ∥cp(ω)∥ 2 . (4.7)
The real part of the fluid complex visco-elastic pulse wave speed drives the phaseshift of the pressure signature. Its imaginary counterpart is responsible for the wave damping. It is interesting to note that this complex velocity component is directly related with the imaginary part of the creeping-law response according to (4.6). The rheological-based damping appears to be dominant over the fluid viscous one (Cf. §3.3) as demonstrated by [START_REF] Lee | Frequency domain analysis of pipe fluid transient behaviour[END_REF], the results of which are depicted in Figure 4.4. The comparison between the fluid boundary layer viscous dissipation, and visco-elastic damping trend was performed by [Ramos et al., 2004] and merges with [START_REF] Lee | Frequency domain analysis of pipe fluid transient behaviour[END_REF]'s conclusions. [Urbanowicz et al.,Figure 4.4: Time-and frequency-response of a reservoir-pipe-valve system. Fluid friction along with visco-elastic effects have been considered, [START_REF] Lee | Frequency domain analysis of pipe fluid transient behaviour[END_REF].

2016, [START_REF] Urbanowicz | Modelling Water Hammer with Quasi-Steady and Unsteady Friction in Viscoelastic Pipelines[END_REF] surveyed the main models, along with their numerical implementation, used to describe the visco-elastic liquid-filled pipe dynamic (restricted at ν s = 0). Some authors furthermore extended the ν s = 0 restricted framework to account for the solid axial coupled dynamic.

Visco-elastic FSI systems

[ Barez et al., 1979] extended the elastic work of [Walker and Phillips, 1977], by considering a visco-elastic, Maxwell-driven, rheology for the pipe. The authors then investigates the resulting FSI coupled wave speeds and conclude that: "the 168 CHAPTER 4. THE LIQUID-FILLED-VISCO-ELASTIC PIPE PROBLEM viscosity of the fluid has negligible influence on the pulse propagation in the system, although it is well known that it has a significant effect on the flow characteristics".

The asymptotic approach of [Walker and Phillips, 1977] was also revisited by the breakthrough contributions of [Čanić et al., 2006a[Čanić et al., , Čanić et al., 2006b[Čanić et al., , Kizilova, 2006] ] (already presented in §3.2), the which performed an asymptotic expansion in ϵ of both the incompressible, viscous, Navier-Stokes equations and the viscoelastic pipe wall ones. The strength of these theories lies in the incorporation of three-dimensional models to describe the pipe visco-elastic rheology, i.e. by the generalization of the elastic Hooke's law to visco-elastic materials, thus considerably extending the one-dimensional scope proposed so far. More recently, [Keramat et al., 2011] delivered an insightful work by extended the four-FSI elastic framework of [Tijsseling, 2007] to one-dimensional visco-elastic Kelvin-Voigt-based, materials. The authors spelled out a four-equations hyperbolic system, which displays a mathematical structure similar to the elastic one, but where additional viscoelastic, convoluted-based, terms are found. [START_REF] Achouyab | Numerical modeling of phenomena of waterhammer using a model of fluid-structure interaction[END_REF]] used a very similar approach but considered a visco-elastic shell model for the solid. [Keramat et al., 2011]'s model now stands has a reference study in the literature and was largely used for pipe anomaly detection [START_REF] Zanganeh | Fluid-Structure Interaction in Transient-Based Extended Defect Detection of Pipe Walls[END_REF] or for the analysis of junction couplings [Hosseini et al., 2020, Aliabadi et al., 2020]. Very recently, [START_REF] Andrade | Fluid transients in viscoelastic pipes via an internal variable constitutive theory[END_REF] proposed a quasi-2D model to investigate the effects of visco-elastic FSI and fluid dissipation in liquid-filled pipe systems. The authors combined the continuum theory of mixtures to describe the viscous fluid dynamics (previously derived for elastic material in [START_REF] Andrade | A new model for fluid transients in piping systems taking into account the fluid-structure interaction[END_REF]) with the internal variable constitutive theory to model the solid visco-elastic response. For the fluid, the continuum theory of mixtures consists in splitting the fluid into a succession of concentrically-shell-shaped constituents (similarly done by [START_REF] Vardy | A characteristics model of transient friction in pipes[END_REF] but without FSI) and to ensure mass and momentum conservation equations in each fluid rings. The fluid viscous dissipation is then incorporated to the model by using an idealize turbulent kinematic viscosity distribution and by invoking the frozen-viscosity assumption (Cf. [Vardy andBrown, 2003, Vardy et al., 2015] and §1.4.2). In the solid, the thermodynamics viewpoint is adopted by the definition of potentials that portray the reversible and irreversible character of the viscoelastic material, the latter being associated with dissipative phenomena. A linear generalized Kelvin-Voigt visco-elastic rheological model was adopted then providing relationships between the thermodynamics potential and the Kelvin-Voigt elements, i.e. shear elastic constants E i and viscosity coefficients η i on Figure 4.2. Finally, the set of hyperbolic fluid-solid governing equations was numerically solved and compared with the experiments of [Gally et al., 1979, Covas, 2003]. A very close agreement was found between numerical predictions and experimental measurements when only two and five Kelvin-Voigt cells were used to describe [Gally et al., 1979]'s and [Covas, 2003]'s experiments, respectively. Through a rigorous, thermodynamics-based, energetic analysis, [START_REF] Andrade | Fluid transients in viscoelastic pipes via an internal variable constitutive theory[END_REF] estimated the rate of energy dissipation (separately in the fluid and the solid) and yielded to the conclusions that the: "energy dissipation in the pipe has superior magnitudes compared to those found in the fluid"" and that "the alteration of the visco-elastic characteristics of the pipe affects the fluid hydrodynamics".

Creep characterization

The visco-elastic models nevertheless remain difficult to use without a proper creep function model. A significant visco-elastic HDPE solid creep characterization was for instance carried out by [Covas et al., 2004a, Covas et al., 2005[START_REF] Covas | Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis[END_REF]. The authors indeed investigated the presence of hysteretic responses in the material and analyzed the temperature influence on the visco-elastic behavior, which can have an important impact on parameter estimation [Thorley, 1969, Williams, 1977], as depicted in Figure 4.5 Overpressure measurement in sev- eral locations, of water hammer waves were used to spelled out an optimal set of Kelvin-Voigt's visco-elastic parameters. Such estimation, i.e. the minimization of the error between experimental data and the model, is quasi-systematic in the literature subject an often limit the model scope to the experiment setup, [Urbanowicz et al., 2016]. [Weinerowska-Bords, 2006] delivered an in-depth discussion on the modeling problems encountered in visco-elastic pipes from the model choice (e.g. pros and cons of the use of generalized Kelvin-Voigt and Maxwell models) to the complex wave speed implications. [Soares et al., 2008] followed the work of [Covas et al., 2005] and embedded several fluid viscous damping models (Cf. §1.4.2), the pressure signatures of which were confronted to experimental measurements on a PVC tube.

The current four-FSI equations systems, restricted to the long-wavelength asymptotic framework, appears to be FSI-inconsistent when 3D visco-elastic effects are taken into account because the visco-elastic variations of the Poisson modulus are discarded. On the other hand, the two-equations fluid models fails to handle junction couplings. Thus, there is a need to develop an FSI-consistent, rheological-based model, to reconcile the classical approaches with the Poisson

Introduction

Pressure waves in visco-elastic tubes is a topic of importance in many hydraulic contexts [1] as well as biomechanical ones [2,3,4,5,6]. It is known for a long time that when a water-hammer wave propagates into a filled-fluid pipe, the visco-elastic properties of the solid wall drastically modifies the nature and characteristic of its motion. More precisely, the importance of viscoelastic stress-strain response of the pipe wall in the water-hammer waves propagation was first raised by [7]. A few years later some experiments from the same team [8] complemented with a 1D theoretical model [9] confirmed the relevance and interest of these effects on water-hammer waves propagation. As opposed to the situation of a purely elastic solid tube, the wave velocity becomes dispersive when a visco-elastic wall is present [2,10,11]. Secondly, not only the wave velocity depends on the considered frequency, but it also acquires an imaginary component associated with visco-elastic dissipation resulting in exponential damping [12,13,14,15]. Such exponential damping is also present in water-hammer wave propagation within elastic filled-fluid pipes but for a very distinct mechanism: the viscous dissipation arises only within the liquid boundary layers [16].

Nevertheless, compared to this viscous damping, the visco-elastic one turns out to be dominant in many configurations, resulting in the filtering of high-frequency bouncing elastic waves. Recently, [17] indeed analysed the energy rates of energy dissipation in the fluid and the pipe for visco-elastic water-hammer.

Since most aspects of water-hammer wave propagation have been found material dependant, the pioneering studies of [7,8,9] inspired many others, following the similar footsteps, combining experimental measurements with one-dimensional two-equations modelling associated with pressure (hydraulic head) and axial velocity coupled propagation coupled with solid creep-functions displaying Kelvin-Voigt behaviour (Cf [18,13,14,19] among others). The applicative interest and the relevance of the topic motivated many further studies whereby one could enrich the Kelvin-Voigt model [20,21] to better fit with observations. Alternatively, some authors also included both solid visco-elastic damping and fluid one, through time-convolution shear-stress models [22,23,24]. Because the modelling relies on many parameters, combined with time-convolution many approaches are possible to match experiments raising a number of questions including wave-speed calibration in visco-elastic pipes [19,25]. The influence of the visco-elastic stress response has been more recently considered in a Fluid-Structure-Interaction (FSI) context as more extensively discussed in the recent review of [26]. In this context Kelvin-Voigt solid responses of the creep function have also been used in FSI four-equations models [27,28] in order to improve the relevance of the modelling. Furthermore, for improving data fitting, a series of Kelvin-Voigt units are often considered [27,29,28,30]. However, in these previous modelling, the creep-function parameters are calibrated [31] not only to describe the visco-elastic properties of the solid but also the considered pipe configuration associated with a specific length, thickness, diameter and boundary conditions. Nevertheless, Kelvin-Voigt units leading to a thermodynamic consistent framework of internal stress-strain theory have recently been proposed in [30] so as to improve their mechanical background.

In this contribution we pursue in this direction with the aim of stepping aside from Kelvin-Voigt models from considering rheology-based visco-elastic modelling of water-hammer propagation within a visco-elastic solid. The aim of this contribution is thus to distinguish and clarify the respective contribution of the visco-elastic response within pressure/stress wave propagation from the considered boundary conditions and pipe configuration. This permits to propose a new rheology-based visco-elastic FSI four equations model which can be used in many configurations (pipe's and boundary conditions) with material dependent only, visco-elastic kernels. The parameters of this model evidently need calibration. One option undertaken in this contribution is to use the existing pressure measurements of the water-hammer wave dynamic for inverse transient analysis of the model's parameter [32]. Another possible option opened by our contribution is to perform the parameter calibration/estimation from rheological measurements of the pipe material. The advantage of such rheology-based parameter calibration is to precisely focus the model estimation independently of the specific configuration at the end for water-hammer use (hence not depending on the configuration geometry, pipe supports, flow conditions, boundary conditions, etc...). Whilst the latter is interesting, it is beyond the scope of the present contribution to the lack of existing data. The details of the protocol for this rheological-based parameter calibration are nevertheless presented in Appendix A.

The paper is organised as follows. Section S.2 provides a first overview of notations and considered problems. Using a long wavelength analysis and a generalised frequency-dependent Hooke-law for the stress/strain relation the pressure/longitudinal stress coupled wave system (equivalent to the classical four-equations Fluid-Structure Interaction (FSI) description) is derived in section S.3.

The resulting set of equations involves four visco-elastic kernels directly related to the generalised frequency-dependent Hooke-law, the visco-elastic dispersive speed wave being solved as an explicit function of those. Considering specific visco-elastic rheology in S. 4.1, a specific set of boundary conditions in S.4.2, an explicit solution for the resulting visco-elastic FSI is derived in section S.4.2.

It is then compared with previously proposed models as well as with experimental observations in section S. 4.5.

2. General considerations concerning visco-elastic material and their FSI waves.

Physical analysis overview

We consider the axi-symmetric propagation of a pressure/stress wave inside a Newtonian liquid filling a visco-elastic cylindrical tube. The circular visco-elastic-walled pipe tube has a thickness e, an inner radius R 0 , and a length L 0 whilst its density is set constant equal to ρ s . The solid has both an elastic Poisson's modulus ν e and Young modulus E e . The fluid is assumed isothermal and inviscid of constant density ρ f , bulk modulus K f and crossed by an acoustic overpressure P * , the elastic wave speed of which is set to c e p ( [33,34])

c e p = c 0 1 + χ e C 2 , c 0 = K f ρ f , χ e = 2K f αE e C 2 2(1 -ν 2 e ) 2 + α + α (1 + ν e ) , C = c 0 c e p , (1) 
which depends on the dimensionless pipe thickness α = e/R 0 and the bulk fluid acoustic velocity c 0 . From this definition of χ e , one can find a trivial but important relation

C 2 = 1 + χ e C 2 (pulse speed wave c e p = c 0 /C from definition of C in (1)
) which is also important to consider for the simplification of the visco-elastic model provided in Appendix Appendix B.

In the solid, a deformation occurs due to the propagation of the acoustic fluid overpressure waves, the displacement of which is

ξ * = ξ * e r + ζ * e z . (2) 
where (ξ * , ζ * ) are respectively the radial and axial displacements, whereas (e r , e z ) are the cylindrical coordinates unit vectors in the radial and axial directions. These deformations are associated with solid stress tensor

σ * s =      σ * rr 0 σ * rz 0 σ * θθ 0 σ * rz 0 σ * zz      . (3) 
The wave advective time-scale L/c e p is chosen as a reference for the physical time t, whilst the length of the pipe L and radius R 0 as a reference length-scale in the longitudinal and radial direction (r, z), respectively, so that dimensionless time and coordinates are set

τ = c e p L t, Z = z L , R = r R 0 , and ϵ = R 0 L , (4) 
where we also introduce the tube aspect-ratio being a small parameter ϵ ≪ 1 as one key feature of the problem on which a long wavelength approximation is based. In the following the Fourier

transform of a causal function f * (t), i.e. f * (t) = 0 if t < 0, is denoted f (ω * ) from f * (ω * ) = ∞ -∞ f * (t)e -iω * t dt ≡ ∞ 0 f * (t)e -iω * t dt, (5) 
with associated pulsation ω * . When a dimensionless system is regarded, the pulsation ω * has to be substituted by the dimensionless pulsation ω such that

ω * = c e p L ω. (6) 
2.2. Visco-elastic solid rheology

General linear dynamical rheological model

In Fourier space, the dimensional form of the 3D solid rheology is a frequency-dependent generalized Hooke-law [3] σ

* s = λ * s (ω * ) Tr (ε * s ) I + 2μ * s (ω * )ε * s , and, ε * s = 1 2 ∇ ξ * + ∇ T ξ * . ( 7 
)
where Tr is trace, λ * s , μ * s are the generalized Lamé coefficients, dependent on pulsation ω * . These coefficients provide the respective spherical and deviatoric response of the elastic deformation, depending on the considered pulsation ω * , i.e. the response to oscillating compression and oscillating shear stress. From them, one can deduce the generalized Poisson and Young coefficients

2ν * s (ω * ) = λ * s (ω * ) λ * s (ω * ) + μ * s (ω * ) , Ẽ * s (ω * ) = μ * s (ω * ) 3 λs (ω * ) + 2μ * s (ω * ) λ * s (ω * ) + μ * s (ω * ) . (8) 
Subscript s stands thereafter for solid generalized physical fields or quantities. Also, from these relations one can deduce the reverse Lamé coefficients versus Poisson and Young coefficients

λ * s (ω * ) = ν * s (ω * ) Ẽ * s (ω * ) (1 + ν * s (ω * ))(1 -2ν * s (ω * )) , μ * s (ω * ) = Ẽ * s (ω * ) 2(1 + ν * s (ω * )) . (9) 
This notation embeds both elastic and visco-elastic contributions. In this general context, one needs to specify the functional dependence of generalized Lamé coefficients on pulsation ω * . Nevertheless, it is not easy to deduce them from experimental measurements as discussed in Appendix A. This is the reason for considering explicit rheological constitutive laws as later on considered in S.4.

Dimensionless parameters and physical fields scaling

The general Lamé-Clapeyron rheological parameters ( 8)-( 9) are scaled to their elastic counterparts [3] 2ν e = λ e λ e + µ e , and, E e = µ e (3λ e + 2µ e ) λ e + µ e ,

so that

ν * s (ω * ) = ν e νs (ω), Ẽ * s (ω * ) = E e Ẽs (ω), (11) λ 
* s (ω * ) = λ e λs (ω), μ * s (ω * ) = µ e μs (ω). (12) 
The couple νs , Ẽs then corresponds to the re-scaled Poisson and Young visco-elastic modulus, respectively. The solid axial visco-elastic and elastic propagating wave speeds are furthermore set up regarding these dimensionless functions [1] c * 

s (ω * ) = Ẽ * (ω * ) ρ s = c e s Ẽs (ω) , with c e s = E e ρ s , (13) 
Four dimensionless Cauchy numbers are associated with the solid elastic and visco-elastic responses to the acoustic pulse pressure one [35] C

µe = ρ f c e p 2 µ e , C λe = ρ f c e p 2 λ e , (15) 
Cµs (ω) = ρ f c e p 2 µ e μs (ω) ≡ C µe μs (ω) , Cλs (ω) = ρ f c e p 2 λ e λs (ω) ≡ C λe λs (ω) . (16) 
Leading to the dimensionless parametrisation of λ * s (ω * ) and μ * s (ω * )

λs (ω) = C λe Cλs (ω) μs (ω) = C µe Cλs (ω) , (17) 
and finally, the fluid-solid density ratio is introduced

D = ρ f ρ s . (18) 
The reference longitudinal fluid velocity is chosen has W 0 . From Joukowsky's theory, [36] a reference pressure ρ f c e p W 0 is built. This Joukowsky reference pressure is also chosen as reference stresses in the fluid and the solid, so that

W * = W 0 W • e z , (19) 
P * = ρ f c e p W 0 P. ( 20 
) [σ rr , σ θθ , σ zz , σ rz ] * = ρ f c e p W 0 [σ rr , σ θθ , σ zz , ϵσ rz ] . (21) 
Finally, it has been shown in [34] that the solid displacements are related to fluid typical velocity because of kinematic boundary conditions to be applied at the fluid/solid interface. From choosing L/c e p as a reference time it results in the appearance of the dimensionless ratio W 0 /c e p ≡ M defined as the Mach number, in the solid displacement ξ * (2) scaling, so that

ξ * = αR 0 M ξe r + ζ ϵ e z , (22) 
3. Dimensionless governing equations

Solid's equations

In dimensionless form, frequency domain, in cylindrical coordinates ( 4), the visco-elastic governing equation ( 7) using ( 17) reads

σrr = α 2 Cµs (ω) + 1 Cλs (ω) ∂ R ξ + α Cλs (ω) ∂ Z ζ + ξ R , (23) 
σθθ = α 2 Cµs (ω) + 1 Cλs (ω) ξ R + α Cλs (ω) ∂ Z ζ + ∂ R ξ , (24) 
σzz = α 2 Cµs (ω) + 1 Cλs (ω) ∂ Z ζ + α Cλs (ω) ∂ R R R ξ , (25) 
ϵ 2 Cµs (ω) α σrz = ∂ R ζ + ϵ 2 ∂ Z ξ, (26) 
where it takes the form of a generalised frequency-dependent Hooke-law (form the linearity of the visco-elastic rheological model ( 59)). The advantage of these dimensionless forms is to show that some terms are small as they involve the small parameter ϵ ≪ 1 [37,38,39,33,34]. The dimensionless form of Lamé-Clapeyron equations in frequency domain are [40] -

ϵ 2 ω 2 ξ + ∂ Z σrz = ∂ R R (Rσ rr ) - σθθ R , (27) 
- α D ω 2 ζ = ∂ Z σzz + ∂ R R (Rσ rz ) . (28) 
Inserting the visco-elastic rheology ( 23)-( 26) into the dimensionless Lamé-Clapeyron equations ( 27)-( 28) leads to the solid dynamical governing equations

-ϵ 2 ω 2 + D Cµs (ω) ∂ 2 Z ξ = D 2 Cλs (ω) + Cµs (ω) Cµs (ω) Cλs (ω) ∂ R ∂ R R R ξ + D Cµs (ω) + Cλs (ω) Cµs (ω) Cλs (ω) ∂ R ∂ Z ζ,( 29 
)
-ϵ 2 ω 2 + D 2 Cλs (ω) + Cµs (ω) Cµs (ω) Cλs (ω) ∂ 2 Z ζ = D Cµs (ω) ∂ R R (R∂ R ) ζ + ϵ 2 D Cµs (ω) + Cλs (ω) Cµs (ω) Cλs (ω) ∂ Z ∂ R R R ξ (30) 
derivation is provided in Appendix B and achieves as follows [33,27,34] iω

P + ∂ Z W -2iωαν e ∂ Z ζ = -iωχ e ĨF P P + 2Dν e C e s 2 iω ĨF σ σzz , (38) 
iω W = -∂ Z P (39) iωσ zz - 2ν e α(2 + α) iω P -iω αC e s 2 D ∂ Z ζ = -iω ĨS σ σzz + 2ν e α(2 + α) iω ĨS P P , (40) 
α D ω 2 ζ + ∂ Z σzz = 0, (41) 
where the hereby introduced visco-elastic extra terms ĨF P , ĨF σ , ĨS P and ĨS σ read

ĨF P = C e s Cs 2 1 -ν 2 e νs + α(2+α) 2 (1 + ν e νs ) 1 -ν 2 e + α(2+α) 2 (1 + ν e ) -1 ≡ 1 Ẽs (ω) 1 -ν 2 e νs (ω) + α(2+α) 2 (1 + ν e νs (ω)) 1 -ν 2 e + α(2+α) 2 (1 + ν e ) -1, (42) 
ĨF σ = C e s Cs 2 (ν s (ω) -1) ≡ νs (ω) -1 Ẽs (ω) , (43) 
ĨS P = νs -1 + νs C e s 2 -C2 s C2 s ≡ -1 - νs (ω) Ẽ(ω) , (44) 
ĨS σ = C e s 2 -C2 s C2 s ≡ 1 -Ẽs (ω) Ẽs (ω) . (45) 
In ( 42)-( 45), the relation

C2 s = C e s 2
Ẽs have been used according to (14). The dimensionless viscoelastic Young modulus ratio in ( 42)-( 45) are directly connected to the dimensionless, frequencydependent, creep function Js (ω), defined as

Js (ω) -1 = 1 -Ẽs Ẽs , or Js (ω) = 1 Ẽs , (46) 
so that, each visco-elastic kernel in ( 42)-( 45) is linearly related to the creep function Js (ω) which encapsulates part of their material rheology dependence. Nevertheless, ( 42)-( 45) display supplementary frequency dependence of these kernels related to the visco-elastic Poisson coefficient νs (ω)

and the dimensionless Young modulus Ẽs (ω) defined in (11). Finally, it is interesting to state that the time-domain version of ( 39)-( 41), i.e the inverse Fourier transform of ( 39)-( 41) is the FSI fourequations formulation used for the method of characteristics since all l.h.s terms display constant convective hyperbolic operators associated with a constant travelling velocity. This choice has been set in order to provide the easiest comparison with previous formulations, such as [27]. However, the next section details another popular approach for visco-elastic propagation, i.e. the evaluation of a dispersive frequency-dependent visco-elastic velocity with its associated, wave propagation operator in the Fourier domain.

Pressure-stress coupled visco-elastic wave propagation

Let us now consider the three equations ( 38)-( 39)-( 40)-, which, from the elimination of ζ and W produces the following forced wave equation for the pressure perturbation

ω 2 1 + χ e ĨF P + 4ν 2 e D α(2 + α)C e s 2 1 + ĨS P P + ∂ 2 Z P = 2ν e D C e s 2 1 + ĨS σ + ĨF P σzz . (47) 
This wave equation can then be rewritten using ( 40) and ( 41) on the right-hand-side of ( 47), whilst also using ( 43) and ( 45) to simplify the kernel's dependance

ω 2 P + [c v p ] 2 ∂ 2 Z P = 2αν e νs ω 2 [c v p ] 2 ∂ Z ζ (48) 
where the effective frequency-dependent corrective visco-elastic pulsed-wave speed cv p (ω) has been introduced

cv p (ω) = 1 1 + χ e ĨF P -4Dν 2 e α(2+α)C e s 2 ĨF σ 1+ ĨS P 1+ ĨS σ . (49) 
On the other hand, the coupled equations ( 40) and (41) give rise to the coupled stress/pressure wave equation in the solid

1 + ĨS σ ω 2 σzz + C e s 2 ∂ 2 Z σzz = 2ν e ω 2 α(2 + α) 1 + ĨS P P . (50) 
The wave system resulting from the FSI four equations hyperbolic problem ( 39)-( 41) can thus be recast into two coupled waves propagating system associated with a two-component pressure/stress vector P ≡ [ P , σzz ] following [34]

ω 2 P + [c v p ] 2   1 2ν e D 1+ ĨS σ + ĨF σ 1+ ĨS σ 2νe α(2+α) 1+ ĨS P 1+ ĨS σ C e s 2 1+χe ĨF P 1+ ĨS σ + 4ν 2 e D α(2+α) 1+ ĨS P 1+ ĨS σ   ∂ 2 Z P = 0. (51) 
The characteristic equation associated with this propagating operator is

c± cv p 4 - c± cv p 2 1 + C e s 2 1 + χ e ĨF P 1 + ĨS σ + 4ν 2 e D α(2 + α) 1 + ĨS P 1 + ĨS σ + C e s 2 1 + χ e ĨF P 1 + ĨS σ + 4ν 2 e D α(2 + α) 1 + ĨS P 1 + ĨS σ 1 - 1 + ĨS σ + ĨF σ 1 + ĨS σ = 0, (52) 
the root of which can then be explicitly found

c2 ± = [c v p ] 2 ĉ ± ĉ2 -4 C e s 2 1+χe ĨF P 1+ ĨS σ + 4ν 2 e D α(2+α) 1+ ĨS P 1+ ĨS σ 1 -1+ ĨS σ + ĨF σ 1+ ĨS σ 2 , (53) 
ĉ = 1 + C e s 2 1 + χ e ĨF P 1 + ĨS σ + 4ν 2 e D α(2 + α) 1 + ĨS P 1 + ĨS σ ≡ c2 + + c2 - [c v p ] 2 . (54) 
The diagonalisation matrix of ( 51) operator along with the change of basis relations are

Π(ω) =   2νeD[c v p ] 2 c2 --[c v p ] 2 1+ ĨS σ + ĨF σ 1+ ĨS σ 2νeD[c v p ] 2 c2 + -[c v p ] 2 1+ ĨS σ + ĨF σ 1+ ĨS σ 1 1   , and P = Π-1 P =   P- P+   . (55) 
The wave-vector system (51) then becomes diagonal

  ω 2 +   c2 - 0 0 c2 +   ∂ 2 Z   P = 0. (56) 
From ( 56) it is then possible to find the explicit (Z, ω) dependence of P(Z, ω) (as well as its gradient) which depends upon the prescribed boundary condition P± (0, ω), ∂ Z P± (0, ω) as

P± (Z, ω) = cos ω c± Z P± (0, ω) + sin ω c± Z c± ω ∂ Z P± (0, ω) , (57) 
∂ Z P± (Z, ω) = - ω c± sin ω c± Z P± (0, ω) + cos ω c± Z ∂ Z P± (0, ω). (58) 

Analysis of an experimental configuration using explicit visco-elastic rheology

The herein rheology-based model is now explicitly derived for a single pipe closed valve configuration, also known as the reservoir-pipe-anchored valve problem. Hereafter, general visco-elastic rheology is considered which allows the analytical derivation of the pressure-stress vector solution P, along with explicit expressions for visco-elastic convolution kernels ( 42)-( 45).

Generalized 3D visco-elastic rheology

Various Kelvin-Voigt models have been previously considered in the literature [41,31,20,21,22,28]. Nevertheless, for a real solid a 3D rheological model is necessary to take care of the solid's shape (not necessarily 1D/isotropic/spherical) and the considered boundary conditions. A general form of 3D visco-elastic rheology reads

a (1 + τ r ∂ t ) σ * s = λ e (1 + τ λ ∂ t ) (∇ • ξ * ) I + µ e (1 + τ µ ∂ t ) ∇ξ * + ∇ T ξ * , (59) 
where six parameters a, τ r , τ λ , τ µ , λ e , µ e can be used as constitutive ones, whilst (λ e , µ e ) being the elastic Lamé coefficients and (τ r , τ λ , τ µ ) are characteristic times, all independent from ω * . Various 3D visco-elastic rheological laws have indeed been considered in the literature [3,15,42,43,44,45,46], (59) encapsulating all of those. More precisely, all model parameters of the cited references, are provided in table 1. It is important to note that most of the visco-elastic models proposed in literature did not consider the relaxation parameter τ r associated with the instantaneous elastic response. Only [15] consider this term for an incompressible material. Now, from the Fourier a τ r λ e τ λ µ e τ µ Carcione et al. [42] ✓ ✓ ✓ ✓ Eringen, Canic et al. [43,3] ✓ ✓ ✓ ✓ Kisilova et al. [15] ✓ ✓ ✓ Bland [44] ✓ ✓ Ieşan [45] ✓ ✓ ✓ ✓ Sharma et al. [46] ✓ ✓ ✓ ✓ transform of (59) and identification with ( 7) the generalized Lamé coefficients can be deduced for this rheology

λ * s (ω * ) = λ e 1 + iω * τ λ a (1 + iω * τ r )
, and μ *

s (ω * ) = µ e 1 + iω * τ µ a (1 + iω * τ r ) . (60) 
Generalized Poisson and Young modulus can also be found from these rheological parameters

ν * s (ω * ) = ν e 1 + iω * τ λ 1 + iω * τ ν , and Ẽ * s (ω * ) = E e (1 + iω * τ µ )(1 + iω * τ E ) a(1 + iω * τ r )(1 + iω * τ ν ) , (61) 
where the above introduced times-scale τ ν and τ E are given by τ ν = λ e τ λ + µ e τ µ λ e + µ e , and τ E = 3λ e τ λ + 2µ e τ µ 3λ e + 2µ e .

Also, the dimensionless creep function Js (ω) (46) reads regarding ( 6) and ( 9)

Js (ω) = 1 Ẽs = a 1 + iωτ r c e p L 1 + iωτ ν c e p L 1 + iωτ µ c e p L 1 + iωτ E c e p L . (63) 

Explicit form of visco-elastic extra-terms kernels

As discussed in S.2.2, the motivation of this study is to built a rheology-based model dependent on the material visco-elastic properties but not on the specific wave problem and/or its boundary conditions. For this the visco-elastic kernels are now explicitly derived versus rheological parameters. In the 3D visco-elastic rheology model framework, the rheological parameters ν * s , Ẽ * s presented in ( 11) and ( 61), are explicit function of the characteristic times (τ λ , τ µ , τ ν , τ E , τ r ) presented in (62) as well as elastic parameters. The convolution visco-elastic kernels ( 42)-( 45 

ĨS P = -   1 -a 1 + iωτ r c e p L 1 + ωτ λ c e p L 1 + iωτ µ c e p L 1 + iωτ E c e p L   , (65) 
ĨS σ = -   1 -a 1 + iωτ r c e p L 1 + iωτ ν c e p L 1 + iωτ µ c e p L 1 + iωτ E c e p L   . (66) 
Using the inverse Fourier transform, their time-domain form read

I F P = a Cν τr νeτ λ νe - α(2+α) 2 -τν α(2+α) 2 + 1 -τ E τµ τ E τµ δ(τ ) + aL(τ E -τr) νe(τ λ -τ E ) α(2+α) 2 -νe + (τν -τ E ) α(2+α) 2 + 1 c e p τ 2 E Cν (τ E -τµ) e -τ L τ E c e p H(τ ) + aL(τµ -τr) νe(τµ -τ λ ) α(2+α) 2 -νe + (τµ -τν ) α(2+α) 2 + 1 c e p τ 2 µ Cν (τ E -τµ) e -τ L τµc e p H(τ ), (68) 
I F σ = aτr(τ λ -τν ) τ E τµ δ(τ ) - aL(τ λ -τν ) c e p τ 2 E τ 2 µ (τ E -τµ) τ 2 µ (τ E -τr)e -τ L τ E c e p -τ 2 E (τµ -τr)e -τ L τµc e p H(τ ), (69) 
I S P = aτ λ τr -τ E τµ τ E τµ δ(τ ) + aL c e p (τ E -τµ)   (τ E -τr) (τ E -τ λ ) τ E e -τ L τ E c e p τ E - (τµ -τr) (τµ -τ λ ) τµ e -τ L τµ c e p τµ   H(τ ), (70) 
I S σ = aτν τr -τ E τµ τ E τµ δ(τ ) + aL c e p (τ E -τµ)   (τ E -τr) (τ E -τν ) τ E e -τ L τ E c e p τ E - (τµ -τr) (τµ -τν ) τµ e -τ L τµc e p τµ   H(τ ), (71) 
where δ(τ ) and H(τ ) stands for the Dirac distribution and its primitive, the Heaviside function.

Relations ( 68)-( 71) have been cross-checked using formal calculus software. It is interesting to note that every r.h.s of( 68)-( 71) display a Dirac distribution term resulting in a local visco-elastic response thus modifying the elastic one. In other words, these terms being independent of ω in Fourier space (the Fourier transform of the Dirac distribution is equal to one) they act as a modification of the non-dispersive elastic wave-speed. We will more explicitly examine how this provides an additional visco-elastic contribution to the elastic velocity in the next section. However it is interesting to mention that the choice for defining kernels ĨF P , ĨF σ , ĨS P , ĨS σ has been done in order to permit a better comparison with previous models. However, local terms could have been recast into some elastic-like behaviour resulting from visco-elastic effects and left aside the kernels.

The reservoir-pipe-anchored valve problem

As depicted in Figure 1, the single visco-elastic pipe anchored upstream to a reservoir and downstream to an instantaneous closure valve, is now investigated. In the following the experimental data of Covas et al. ([18,13]) and Pezinga et al. [32] are investigated, the details of which are given in Table 2. The perturbed flow rate is set to Q 0 = 1.01 l/s and Q 0 = 4.03 l/s for the experiments of Covas et al., [18,13] and Pezinga et al., [32], respectively. For the investigated systems, the elastic fluid pulse wave speed is found equal to c e p = 394.6m/s and c e p = 360.05m/s respectively for Covas et al. ([18,13]) and Pezzinga et al. [32] experimental set up. Upstream, the reservoir impedes the pressure to fluctuate whereas downstream, a sudden velocity perturbation 

H 0 = cst

Article

Material Density (kg

• m -3 ) Elasticity (P a) ν f (m 2 • s -1 ) ν e Geometry (m) 
Covas et al., [18,13]

HDP E ρ f = 998.3 K f = 2.1 • 10 9 3.967 • 10 -5 0.46 R = 2.53 • 10 -2 ρ s = 960.0 E e = 1.43 • 10 9 e = 6.3 • 10 -3 L = 277.0 Pezinga et al., [32] HDP E ρ f = 998.3 K f = 2.1 • 10 9 10 -6 0.45 R = 4.67 • 10 -2 ρ s = 960.0 E e = 1.56 • 10 9 e = 8.1 • 10 -3 L = 200.0
Table 2: Physical and geometrical properties for the experimental visco-elastic analysis of the reservoir-pipeanchored valve system of Covas et al. ([18,13]) and Pezinga et al. [32].

is imposed, the result of which is a pressure gradient variation according to (39). Downstream, the velocity variation associated with an impulse response is thus W (1, t) = -H(t)(here again H(t) is the Heaviside function), being minus one for positive time. This transient closure law is set to compensate steady-state velocity (being one at time zero) with initial transient conditions (34). The pipe is supposed anchored at both ends so that no solid motion occurs, i.e. ζ(Z = 0, ω) = ζ(Z = 1, ω) = 0, which is equivalent to cancel-out the solid stress gradient according to (41). In the original basis, the boundary conditions read

W (Z, t = 0) = 0. The Fourier transform of W (1, t) for ω > 0 is thus precisely W (1, ω) = -i/ω leading to ∂ Z P (1, ω) = 1 ≡ iω W (1, w) from
P (0, ω) = 0 , ∂ Z P (1, ω) = 1, ∂ Z σzz (0, ω) = ∂ Z σzz (1, ω) = 0. (72) 
Introducing

β(ω) = c+ c- • c2 --cv p 2 c2 + -cv p 2 , (73) 
the diagonal-space vector boundary conditions can be deduced from ( 55), ( 58) and ( 72)

P-(0, ω) = - c- β c+ P+ (0, ω), (74) 
∂ Z P-(0, ω) = -∂ Z P+ (0, ω), (75) 
∂ Z P-(1, ω) = - ω c- sin ω c- P-(0, ω) + cos ω c- ∂ Z P-(0, ω) = c2 --cv p 2 2ν e D cv p 2 1 -c- β c+ 1 + ĨS σ 1 + ĨS σ + ĨF σ , (76) 
∂ Z P+ (1, ω) = ω c- β sin ω c+ P-(0, ω) -cos ω c+ ∂ Z P-(0, ω) = - c2 --cv p 2 2ν e D cv p 2 1 -c- β c+ 1 + ĨS σ 1 + ĨS σ + ĨF σ . (77) 
Defining matrix M(ω) as

M(ω) ≡    -ω c-sin ω c- cos ω c- ω sin ω c+ c- β -cos ω c+    . (78) 
The boundary condition system ( 74)-( 77) can be expressed in the following matrix form

M(ω) •   P- ∂ Z P-   (0, ω) = c2 --cv p 2 2ν e D cv p 2 1 -c- β c+ 1 + ĨS σ 1 + ĨS σ + ĨF σ   1 -1   . (79) 
Multiplying (79) by M-1 (ω) leads to

  P- ∂ Z P-   (0, ω) = - c2 --cv p 2 2ν e | M|D cv p 2 1 -c- β c+ 1 + ĨS σ 1 + ĨS σ + ĨF σ    cos ω c+ -cos ω c- ω c- sin ω c+ β -sin ω c-    ,(80) with | M|(ω) ≡ det M given by | M|(ω) = ω c- sin ω c- cos ω c+ - 1 β sin ω c+ cos ω c- . (81) 
Combining ( 80), ( 81) and ( 74) in ( 57) close the diagonal wave solution in Fourier domain reading

P(Z, ω) = P-(0, ω)   cos ωZ c- -c+ c- β cos ωZ c+   + ∂ Z P-(0, ω) ω   c-sin ωZ c- -c + sin ωZ c+ .   (82) 
Or, in a more explicit and compact form

P(Z, ω) = - c2 --cv p 2 2νe| M|D cv p 2 1 -c- β c+ 1 + ĨS σ 1 + ĨS σ + ĨF σ     cos ω c+ -cos ω c- cos ωZ c- + sin ω c+ -β sin ω c- β sin ωZ c- -c+ c-β cos ω c+ -cos ω c- cos ωZ c+ + sin ω c+ -β sin ω c- sin ωZ c+     .
(83)

Numerical Fast Fourier Transform (FFT) inversion procedure

The pressure-stress solution (83) has a simple pole in ω = 0 associated with the trivial zero of | M| (81), the contribution of which is equal to average signal in the time domain. The solution in the time domain is difficult to obtain first because of the discrete non-trivial set of poles from condition | M| = 0, and second from the square-root dependence of velocity c+ (Cf ( 53)) leading to a branch-cut. Hence, the inverse Fourier transform of ( 83) is numerically computed with a homemade Python code and the use of the Scipy.fft library.

Experimental data analysis. The steady-pressure time-dependent experimental variations have been disregarded withdrawing the initial static head value to the pressure signal. The transient component has been scaled according to Joukowsky's theory [36] (Cf. eq.( 20)) and the physical time on the water-hammer advective one (Cf. eq.( 4)). Then, the signal linear time-drift between the beginning and the end of the experimental pressure measurements is removed so as to analyse the effect of perturbations only, removing the change in the steady-state provided by the valve aperture. A Fast-Fourier-Transform (FFT) of the experimental time-dependent signal is performed providing their frequency-dependent counterpart. This FFT analysis is useful for the establishment of a suitable frequency threshold ensuring the Nyquist criterium, i.e. frequency truncation, value to perform the inverse numerical FFT of (83). A cutoff frequency of f c = 2000Hz is found for both the experimental data sets.

Inverse Fast Fourier Transform (IFFT) of the theoretical pressure-stress solution. The dimensionless pulsation and time resolution are set equal to ∆ω = 10 -3 and ∆τ = 2.5 • 10 -4 , respectively, providing a frequency cutoff at f c = 2000Hz. At this stage, the direct inverse Fourier transform of (83) cannot be performed from the ignorance of the rheological parameters [a, τ r , τ µ , τ λ ]. This is where the calibration procedure enters into play so as to minimise the quadratic error (using "Scipy.optimize.curve_fit" Pyhton's library) between ( 83 [a, τ r , τ µ , τ λ ] ≈ [1.3017, 0.1963, 0.3008, 0.1291] for Covas et al., [18,13] data,

[a, τ r , τ µ , τ λ ] ≈ [1.1771, 0.1963, 0.2709, 0.1299] for Pezzinga et al.,[32] data.

It is interesting to observe that these calibrated dimensionless visco-elastic parameters are quite close although the two experiments were performed by two distinct teams in two distinct publications. However this can be understood from realising that the considered materials (HDPE) had closed mechanical properties, as provided in table 2. The calibration procedure is thus comforted by this coherent estimation.

Comparison between fluid viscous dissipation, elastic FSI effects and visco-elastic effects

As mentioned in the introduction, viscous dissipation in the fluid boundary-layers is a supplementary source of damping, eventually less dissipative than visco-elastic effects as discussed in [14].

To illustrate this point, this section compares the fluid viscous dissipation with various visco-elastic models and the one observed in experiments. The fluid viscous dissipation brilliantly investigated by [16] without considering FSI effects is used for this purpose. Furthermore, to complement this comparison this section also analyses the influence of FSI effects in visco-elastic models. In the case of a reservoir-pipe-anchored valve system, Mei et al. [16] derived an analytical exponential decay H k,M ei , both mode and time dependent, for the pressure time domain variation

H k,M ei = e -λ k 2 δτ , with, λ k = π 1 2 + k for, k ∈ N, (86) 
so that Mei et al. [16] rediscover the cornerstone role of the small dimensionless parameter δ = ν f L/c e p R 2 0 in the viscous boundary-layers exponential damping (this parameter was known of importance from many other previous studies). Recently, [34] provided a time-dependent solution for the elastic liquid-filled pipe FSI elastic response on the very same reservoir-pipe-anchored valve configuration but disregarded the effect of fluid viscosity. [34] derived a spectral transcendental equation governing the elastic resonant frequencies, the structure of which is found close to (81) when elastic parameters are considered only. The visco-elastic pressure at the valve, i.e. Z = 1, 4)) and frequency (using ( 6)) pressure signature at the valve comparing model's prediction with the experiment of Pezinga et al., [32]. The elastic signature is also depicted to point-out (a) the fluid viscous damping without FSI in the elastic pipe (b) the associated resonant frequencies and (c) the elastic FSI effects without fluid viscous damping (d) the associated resonant frequencies. Figure (e) displays the limit ν e → 0 of (83)'s IFFT compared to Pezinga et al. [32]'s experiment.

for the experiment of Pezinga et al., [32] is depicted in Figure 2a along with its elastic counterpart where fluid viscous damping and FSI effects have been evaluated using the analytical solution of Mei et al. [16] (figures 2a-2b) and Bayle et al. [34] (figures 2c-2d), respectively. On can observe in figures 2a that the fluid viscous damping is small compared to the observed visco-elastic one, as previously stated. Furthermore, the purely elastic FSI effect illustrated in figures 2c produces high-frequency response to the signal that are not visible in Pezinga et al.,[32] experimental observations. Also, these high-frequencies are not clearly visible in the frequency domain either, as illustrated in figure 2d. Nevertheless both elastic non-FSI (figure 2b) and FSI predictions figure 2d accurately capture the first-two lowest frequency observed in Pezinga et al. [32]'s signal. Finally it is interesting to observe that visco-elastic FSI effects are interesting to consider in order to more accurately describe Pezinga et al. [32] pressure time variations as illustrated in figure 2e.

Hence figure 2 illustrates the strong impact of the visco-elastic response to the pressure signal which displays a much stronger decay than the one found from viscous dissipation in the fluid [14]. This figure shows that the proposed visco-elastic theory permits a convincing description of the experimental pressure signature both in time and frequency domains. For longer times, the elastic and visco-elastic predictions rapidly diverge from each other. This is also consistent with the fact that for this long time, i.e smallest frequency, the corrective velocity cv p is dissipative and strongly depends on frequency (as latter-on reported in figure 4a). As expected, the viscoelastic FSI response much more strongly attenuates high-frequency oscillations than the elastic one. More precisely, the signal's high frequencies arising from FSI-couplings quickly attenuate from the influence of visco-elastic kernel convolution and are barely discernible after the wave's first back and forth. The spectrum analysis provided in Figure 2b reveals how much the viscoelastic response smoothens high-frequencies so that only the first three harmonics appear relevant.

A small shift of the visco-elastic resonant frequency compared to the elastic ones provided by the red dotted lines of figure 2b is also found as previously noted in [47]. However, in the early stage of the signal the proposed theoretical model fails to accurately reproduce the observed pressure variations by ≈ 18%, so that the Joukowsky [36] over-pressure is not exactly recovered from viscoelastic FSI effects at this position Z = 1. Nevertheless, the overall damping trend and phase seem correctly represented. The comparison of the proposed visco-elastic rheology-based model with previous Kelvin-Voigt models is now discussed.

Comparison with previous theoretical models.

In Fourier-domain, the dimensionless form of models proposed by Covas et al. [13], on the left, and Keramat et al. [27], on the right, reads

iω W = -∂ Z P , iω W = -∂ Z P , ( 87 
) iω P + ∂ Z W = - 2D αC e s 2 iω ĨCov P , iω P + ∂ Z W -2iωαν e ∂ Z ζ = - 2D (1 -ν 2 e ) αC e s 2
iω ĨKer P , (88)

iωσ zz -iω ν e α P -iω αC e s 2 D ∂ Z ζ = -iω Ĩker σzz + ν e α iω ĨKer P , (89) 
α D ω 2 ζ + ∂ Z σzz = 0, (90) 
where ĨCov -resp. ĨKer -is the Fourier transform of kernels proposed in Covas et al. [13] (resp. Keramat et al. [27]). The Covas et al. [13]'s model stands as a limit when ν e tends to zeros of the Keramat et al. [27]'s one as the Poisson coupling vanishes, resulting in decoupling fluid axial dynamic to the solid's one. The dimensionless derivation of the Keramat et al.

[27]'s model is provided in Appendix C. Both authors consider N kv Kelvin-Voigt elements to build their convolution kernel interpreted as a creeping law, each having its own exponential times-decay τ k , amplitudes J k , to model their convolution kernels, [29] ĨCov , ĨKer =

N kv k=1 E e J k 1 + iω c e p τ k L . ( 91 
)
The values of (τ k , J k ) for both models are provided in Table 3 for the experimental set-up of [13].

It is very interesting to note that Covas et al. [13]'s and Keramat et al. [27]'s models both display a very similar form compared to ( 39)- (41). Qualitatively, the visco-elastic material response can indeed be recasted into similar convolution products with pressure and axial stress. In order to make this comparison more precise it is interesting to consider the very same hypothesis that the generalized Young modulus ν * s equals the elastic one ν e , i.e. νs = 1, and the dimensionless tube's thickness is small, i.e. α ≪ 1, in which case the visco-elastic kernels ( 42)- (45) Table 3: Covas et al. [13] and Keramat et al. [27]'s convolution kernels parameters for the experimental data of Covas et al. [18,13].

This simplified framework indeed provides a simple condition for the equivalence of formulation according, to ( 46) and ( 91)

Js (ω) ≡ 1 + N kv k=1 E e J k 1 + iω c e p τ k L . ( 93 
)
Hence, within νs = 1 (ν * s = ν e ) and α → 0 hypothesis, it is nice to observe that the l.h.s of ( 38 Keramat et al. [27]'s visco-elastic convolution kernels for the experimental data of Covas et al. [18,13]. Dimensionless time τ (using ( 4)) has been used.

display a convolution product with the pressure only, as so does (43) when I F σ = 0 as provided by (92). Furthermore, the kernel associated with ĨF P , ĨS P and ĨS σ is the same, so that both r.h.s terms of (40) share the same kernel respectively applied to the pressure and the axial stress. The very same feature is satisfied by the r.h.s of (89). Hence, the visco-elastic rheological based model ( 39)-( 41) is similar with Keramat et al. (2011) (87)-( 90) when using the νs = 1 and α → 0 hypothesis. In other words, in the limit of thin-wall and without visco-elastic contribution to the [18,13]. (a) cv p (ω) (49), (b) c+ ( 53), (c) c- (53). Dimensionless pulsation ω using ( 6) have been used.

when taking into account their elastic properties only. This 6.5% over-velocity of our prediction compared to Covas et al. [13] and Keramat et al. [27] models is also observable for c+ in figure 4c.

Previous studies, e.g. [18,41,50], had indeed pointed-out some difficulties in correctly estimating the effective wave speed in visco-elastic materials, consequently, leading to bad predictions for the first pressure overshoot according to Joukowsky's theory. The visco-elastic wave-speed correction (approximately evaluated between 10% -25% in [18,41,50]) is of practical consequence. It should be taken into account in the modelling from using rheology-based visco-elastic dispersive velocities such as (49) and (53). This can be implemented using the transfer matrix method [51] recently extended to visco-elastic materials [52]. Such theoretical method which is very useful for leakage detection in pipes [53,54,55], could suffer from an approximated wave speed modelling that our contribution might improve. For now, we did only compared subsequent quantities not easy to [13] and [27] ones for the pressure signal at various location for the reservoir-pipe-anchored valve configuration. Dimensionless pulsation ω using ( 6) have been used in (a) and (b), dimensionless time using ( 4) in (c), (d), (e) and (f). measure experimentally i.e. visco-elastic kernels and the dispersive velocities. It is nevertheless interesting to compare predictions for the pressure signature to [13] and [27] ones. This comparison is illustrate in Figure 5 for the pressure signal at the valve. Whilst Covas's model slightly overshoot its prediction for the first pressure mode, it succeeds in nicely capturing the second and third one as illustrated in figure 5a. In time-domain, this first frequency overshoot manifests itself from a systematic over-pressure prediction at long times as illustrated in figures 5c and 5e although more markedly noted in the case associated with dimensionless distance Z = 0.42. For these long-time behavior the proposed visco-elastic model in blue provides a better fit to the pressure dynamics.

Nevertheless, at small time, the opposite can be observed in figure 5c for capturing the first peak.

A similar behavior is observed with Keramat's model in 5b with an overshoot prediction for the first Fourier's peak, but for a less accurate fitting for the further second and third peaks. In timedomain, this again explains why Keramat's model over-predicts the pressure at long-time. It is interesting to observe that, at short time, both Keramat's model and the proposed visco-elastic one nicely match together, especially for providing high-frequency peaks which are absent in Covas's model prediction in figure 5a. These high-frequency peaks result from the FSI interaction from bouncing elastic waves in the solid obviously not considered in Covas's model. They are not observed in the experiments from high-frequency filtering of the measurement's sensors. Also of interest in figure 5a and 5b are the reported dispersive frequency band ∆ω evaluated in figure 4a indicating which frequency range is associated with the elastic response (on the left) and the visco-elastic one (on the right). Overall our proposed visco-elastic model provides a convincing comparison to the pressure signal measured at various positions, comparable with other previous models.

Sensitivity analysis

This section considers the sensitivity analysis of visco-elastic kernels to parameters in the four-dimensional parameter-space of (a, τ r , τ λ , τ µ ) -in general the elastic parameters (λ e , µ e ) are supposed known material properties-. More precisely, any method (e.g. steepest-descent, Newton method, etc..) for minimizing the distance/the error between measurements and model's predictions needs the evaluation of visco-elastic kernel gradients in the parameter space. It is interesting to mention that the analytical relations between kernels ĨF P , ĨF σ , ĨS P , ĨS σ and parameters (a, τ r , τ λ , τ µ ) has been obtained in 64-67, permitting the explicit analytical evaluation of the kernel's Jacobian in parameter space if needed. (d) Visco-elastic kernels derivatives with respect to τµ versus dimensionless time (using ( 4)).

Figure 8: Visco-elastic kernels derivatives with respect to τ µ versus dimensionless time (using ( 4)).

In order to simplify the picture, it is first interesting to realize from the definition of the viscoelastic kernels ĨF P , ĨF σ , ĨS P , ĨS σ in 64-67 that these kernels are all linear functions of parameter a and τ r . Thus the derivative of visco-elastic kernels in the aτ r space does not depend on these parameters and decays in time as illustrated in figures 6a and 6b. Considering the other parameters (τ λ , τ µ ) being chosen at their optimal value, it is interesting to observe that the kernel derivatives in the aτ r sub-space is very moderate. In other words, visco-elastic kernels are poorly sensitive to a and τ r parameters. Similarly the derivative of the kernels with respect to τ λ are also moderate, with a significant decay in time, as illustrated in figure 7a -7d. On the contrary, the derivative of the kernels with respect to τ µ reach much higher values as shown in figures 8a-8d where, at short time, the kernels derivatives are an order of magnitude more sensitive to τ µ that all other parameters. Hence, from the four dimensional parameters, the most sensitive one to visco-elastic kernels is τ µ , meaning that its precise evaluation is of clear significance in the parametric estimation. This result is consistent with the fact that the visco-elastic kernels exponential decay are directly related to τ µ in ( 64)-(67).

Conclusion

A rheology-based model for water-hammer wave propagation in a visco-elastic pipe has been proposed. Using a long wavelength analysis and a generalized frequency-dependent Hooke-law for the stress/strain relation the pressure/longitudinal stress coupled wave system has been derived.

In this general framework, a visco-elastic FSI four equations model having four visco-elastic kernels and the corresponding pressure/longitudinal stress wave equation system have been established. This has first permitted us to find the generalized visco-elastic dispersive propagating velocity as explicit functions of the visco-elastic kernels. For a general linear visco-elastic rheology, the four visco-elastic kernels, and the corresponding creep function have been derived explicitly. They can be used to find visco-elastic rheology parameters in any specific pipe/boundary conditions configuration (e.g. from numerically solving the corresponding FSI-four equation problem, i.e. using a time-domain version of ( 39)-( 41), with kernels ( 68)-( 71) and creep function ( 63)). Furthermore, for specific boundary conditions, an explicit analytical solution in Fourier domain for the pressure/stress wave has been derived and used so as to estimate the visco-elastic parameters from experimental water-hammer time-domain pressure measurements from numerical inverse Fourier transform. The model's predictions have then been successfully compared to the experimental measurements as well as with other models adjusted to the same experimental data set. Also, the model's parameter sensitivity has been quantified by computing the four visco-elastic kernels derivative with parameters, showing a stronger influence of the viscous relaxation time τ µ over all other parameters. This contribution has shown that the proposed rheology-based visco-elastic model provides a convincing description of the water-hammer wave propagation in the visco-elastic pipe.

It can be used in many other contexts with the specific ability to distinguish the intrinsic viscoelastic rheology from the considered pipe geometry and boundary conditions. Let us finally discuss the practical relevance and usefulness of this contribution. Even if the proposed model needs parameter calibration exactly as previous other visco-elastic Kelvin-Voigt models, it nevertheless presents two distinct features. First, as opposed to other models which need with A and B defined by

A =      1 + µe λe τµ τ λ 1 1 1 1 + µe λe τµ τ λ 1 1 1 1 + µe λe τµ τ λ      , and, B =      1 + 2 µe λe 1 1 1 1 + 2 µe λe 1 1 1 1 + 2 µe λe      . (A.6)
To obtain the strain evolution, A -1 B is diagonalized. In the eigenvector basis, it follows

(∂ t + Ω) ε * d = a(1 + ν e ) E e F (1 + τ r ∂ t ) σ * d , (A.7)
with Ω and F defined by

Ω =      1/τ µ 0 0 0 1/τ µ 0 0 0 1/τ E      , and, F =      1/τ µ 0 0 0 1/τ µ 0 0 0 1 τ E 1-2νe 1+νe      , (A.8)
whilst εd and σd vectors are defined by

ϵ * d = Π ε * d , and, σ * d = Π σ * d , where Π =      -1 -1 1 0 1 1 1 0 1      . (A.9)
Using the base change matrix Π, we found the strain components as is possible to determine parameters (a, τ r , τ µ , τ λ ) for various visco-elastic materials. Unfortunately, all model's parameters cannot be determined through a single experiment. Indeed, for a creep test, the characteristic stress relaxation time τ r does not appear. It is, therefore, necessary to carry out two independent tests, a creep one and a stress relaxation one so as to determine all model parameters. However, for a given material it is not easy to find all the necessary mechanical stress configurations in the literature to close the parameter estimations. We perform some of those from the data sets found in the literature to further exemplified the approach.

ϵ * i (t) = a(1 + ν e ) E e       t 0 j Π ij F jj σj * (T ) e (T -t)Ω jj (1 -τ r Ω jj )dT Visco-elastic component + j τ r Π ij F jj σj * (t) Elastic component       + j Π ij εi * (0) - (1 + ν e ) E e σj * ( 
where H [1,2,3] are functions of ω and Z given by the boundary conditions associated with axial velocity and radial constraint (Cf [34]). Note that this analysis is a long wavelength approach which neglects O (ϵ 2 ) so that (B.1) is in fact consistent with (26). Following [34], combining boundary conditions ( 35)-( 36) with ξ expression in (B.1) whilst using visco-elastic Poisson modulus ( 8) and ( 11) leads to H2 (Z, ω) = 2ν e νs (ω) Cλs (ω) P

α 2 (2 + α) -∂ Z ζ , and, H3 (Z, ω) = Cµs (ω) (1 + α) 2 2α 2 (2 + α) P . (B.
2)

The deformation vector field at the solid wall is necessary in order to close fluid momentum equation (33). It can be found from replacing results (B.2) in (B.1)

ξ R=1 = χs (ω) P 2α -ν e νs (ω)∂ Z ζ, (B.3) χs (ω) = 2ν e νs (ω) Cλs (ω) + (1 + α) 2 Cµs (ω) α(2 + α) (B.4)
where χs (ω) generalizes the elastic effective velocity parameters χ e , introduced in ( 1). Now, considering the leading-order solid stress, from σrz in (28), whilst using (B.1) as well as σzz in ( 25), the shear-stress boundary conditions ( 35)-( 36) leads to find zero shear-stress everywhere inside the solid (at leading order, neglecting O(ϵ 2 )), as in the elastic case [33,34] σrz = 0. (B.5)

It is noteworthy that this zero-shear stress in the solid is also a hypothesis of thin-shell approxi- The elastic and visco-elastic velocity parameters (χ e , χs ) introduced in ( 1) and (B.4) respectively, can be revised regarding the solid acoustic wave speeds (13), their ratio to the acoustic fluid wave speed (14) and the density ratio (18). It thus follows 

χ e = 4D α(2 + α)C e s 2 1 -ν 2 e + α(2 + α) 2 (1 + ν e s ) , ( 
ρ s ∂ τ ζ * -∂ z σ * zz = 0, (C.4)
where the original hydraulic head H terms have been substituted by the pressure P = ρ f gH, and 

I * ker = d dt J * (t
∂ τ P + ∂ Z W -2αν e ∂ Z ζ = 2D ν e 2 -1 αC e s 2 ∂ τ τ 0 I ker (τ ′ )P (τ -τ ′ )dτ ′ , (C.9) ∂ τ σ zz - ν e α ∂ τ P - αC e s 2 D ∂ z ζ = -∂ τ τ 0 I ker (τ ′ )σ zz (τ -τ ′ )dτ ′ + ν e α ∂ τ τ 0 I ker (τ ′ )P (τ -τ ′ )dτ ′ , (C.10) α D ∂ τ ζ -∂ Z σ zz = 0. (C.11)
Finally, in the frequency-domain (C.8)-(C.11) achieve as follows iω W = -∂ Z P , (C.12) This chapter focuses on the development of a network-oriented numerical tool to model the water hammer wave propagation phenomena. The numerical solver handles the resolution of the hyperbolic fluid equations (disregarding FSI effects i.e. in the limit ν s → 0), using the very standard Method Of Characteristics (MOC). The WDN are usually burred, which strongly suggests the simplification of disregarding the signal's high-frequencies (e.g. Poisson coupling) in the modeling and consider the fluid mass and momentum conservation equations only [Chaudhry, 2014]. At the network nodes, specific boundary conditions have to be ensured, the latter depending of the type of hydraulic component being modeled (e.g. valve, source [START_REF] Abdeldayem | Analysis of Unsteady Friction Models Used in Engineering Software for Water Hammer Analysis: Implementation Case in WANDA[END_REF] . pump, reservoir), [Covas, 2003]. A first part of this section is dedicated to provide a brief overview of the numerical methods used to model water hammer waves. Then the MOC formalism, i.e. governing equations discretization, is discussed and detailed. The solver is validated by simple comparisons with numerical or experimental benchmarks before being extended, at scale one, to a realistic on-field test case.

iω P + ∂ Z W -2iωαν e ∂ Z ζ = - 2D (1 -ν 2 e ) αC e

Overview of the existing models

Several numerical schemes exist to model pressure waves in WDN. The forthcoming brief literature review relies on the excellent review of [Pal et al., 2021]. While the MOC numerical scheme is worldly spread as shown in Figure 5.1, other techniques as the Finite Volume Method (FVM) or Finite Difference Method (FDM) are also used. The FVM is a well known numerical technique which consists in considering flux balance (for mass, momentum, energy, temperature) upon elementary volumecells (thus, by definition, FVM are conservative). Well-suited for the analysis of hyperbolic problems [Toro, 1997], FVM provides a fine description of the shock interactions and discontinuities, [START_REF] Zhao | Godunov-Type Solutions for Water Hammer Flows[END_REF]. Some insights on the practical application of FVM for water hammer applications can be found in [Guinot, 2010]. In the low-Mach number framework, i.e. neglecting the influence of the inertial Navier's terms in the Navier-Stokes equations, the hyperbolic system
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(1.40) can be recasted in the following form ∂ t X + J∂ z X Flux = 0, (5.1) where J is the Jacobian matrix and X unknown fields discretized into the mesh grid. When discontinuities propagate along the pipe domain, such problems are called Riemann problems. Numerical methods and approaches to solve Riemann problems are called Riemann solvers. The eigenvectors directions of the Jacobian matrix provide the shock-wave propagation directions and are known as the Riemann invariant. These invariants characterize the diagonal basis of (5.1), which is a key-issue in MOC procedure too, as later-on discussed. Let us discretize a pipe domain in equal volumes. Assuming the field X being equally distributed in each pipe sub-domain, the time integration procedure results in estimating the flux across each cell interface. The entire FVM numerical scheme lies in the flux determination for which several specific formulations exist [Pal et al., 2021]. Despite the numerical advantages of the FVM (e.g. stability for Courant-Friedrichs-Lewy less than one [START_REF] Zhao | Godunov-Type Solutions for Water Hammer Flows[END_REF], easy embedding of cavitation phenomena [START_REF] Zhou | Godunov-Type Solutions with Discrete Gas Cavity Model for Transient Cavitating Pipe Flow[END_REF]), this scheme is not used much to handle large-scale water distributions networks for which MOC-like or MOC-based methods are preferred, [Nault et al., 2018, Jensen et al., 2018, Meng et al., 2019, Xing and Lina, 2020, Guo et al., 2021, Riaño-Briceño et al., 2022].

The FDM discretizes both space and time derivatives of (5.1) following an explicit (or implicit) scheme [Chaudhry, 2014]. The [Maccormack, 1969]'s procedure, which is second order accurate in both time and space, is commonly used despite its inherent dissipative behavior [Chaudhry, 2014]. It consists in the succession of predicative (e.g. forward finite difference) and a corrective (e.g. backward finite difference) steps to determine the numerical optimal solution. The method was recently used by [Wan andHuang, 2018, Malesińska et al., 2021] to analyze the transient response of in-line connected pipes. Despite its implementation simplicity and second order accuracy, this approach surfers from a dispersive behavior and some difficulties to properly handle boundary conditions, which needs to combine finite difference method with characteristics equations [Chaudhry, 2014].

The Method of Characteristics (MOC) formalism 5.2.1 Numerical scheme

The MOC, [Chaudhry, 2014, Jensen et al., 2018, Xing and Lina, 2020], consists in describing a set of hyperbolic equations along their characteristics, i.e. parametric curves (t, z(t)), along which the solutions are conserved. For one-dimensional hyperbolic systems, it results in an eigenvalue problem where each eigenvalues depict the propagation wave speed solution, [Tijsseling, 2007]. The fluid hyperbolic two (5.

2)

The fluid hyperbolic equations set (1.40) is now re-organized to display a dependence upon the hydraulic head H and the flow-rate

Q   ∂ t +   0 c 2 p gS gS 0   ∂ z   H Q = gS sin (θ) - 4τ w S ρ f D 0 1 , ( 5.3 
)

P = ρ f g (H + x sin (θ)) , ( 5.4 
) (5.5) where θ is the pipe slope, S its section, D its inner diameter and x the altitude. Then, along the characteristic curves (5.2), i.e. in the hyperbolic system diagonalization basis, the hyperbolic fluid system (5.3) reads

W = Q S ,
D Dt H ± c p gS Q = ∓ 4c p τ w ρ f 0 gD ± c p sin (θ) , along, dz(t) dt = ±c p , ( 5.6) 
where D Dt ≡ ∂ t ± c p ∂ z is the Lagrangian derivative, which depends on the characteristic curve slope sign.

Governing equation discretization

Let us introduce (N z , N t ) the number of space and time grid points. In the following the discrete expression of physical fields is denoted

H(z, t) ≡ H(i∆ z , n∆ t ) ≡ H n i , ( 5.7) 
with (i, n) ∈ 0, N z -1 × 0, N t -1 . Some insights on the MOC discretization scheme is provided in Figure 5.2. Integrating (5.6) along the characteristic lines (5.2) leads to

H n+1 i -H n i-1 ∆t + cp gS Q n+1 i -Q n i-1 ∆t = - 4cpτ n w,i-1 ρ f gD + cp sin (θ) , on, z i = z i-1 + cp∆t, ( 5.8 
) (5.9) whilst combining (5.8)-(5.9) in

H n+1 i -H n i+1 ∆t - cp gS Q n+1 i -Q n i+1 ∆t = 4cpτ n w,i+1 ρ f gD -cp sin (θ) , on, z i = z i+1 -cp∆t,
H n+1 i = 1 2 H n i+1 + H n i-1 - cp gS Q n i+1 -Q n i-1 + 4cp∆t ρ f gD τ n w,i+1 -τ n w,i-1 ,
(5.10)

Q n+1 i = 1 2 Q n i+1 + Q n i-1 - gS cp H n i+1 -H n i-1 - 4S∆t ρ f D τ n w,i+1 + τ n w,i-1 + 2gS sin (θ) . (5.11)
The wall shear rate, τ w (z, t) is thereafter discretized, at grid points, as the boundary conditions, permitting to close the model. 

Wall shear rate discretization

The quasi-steady shear stress (1.41) is easily discretized following [Chaudhry, 2014] τ n qst,i = ), the numerical implementation of the MOC greatly differs. Indeed, the IMAB discretization remains a matter of debate. [Ramos et al., 2004] considers the impact of the timespace derivative within the hyperbolic operator. In such implementation, the pulse wave speed c p is Reynolds dependent, via the deviation parameter k 3 introduced in (1.46)- (1.47), then modifying the hyperbolic eigenvalues. The invariant space-time behavior of the MOC discretization grid thus enforces the use of grid interpolations [Ghidaoui et al., 2005, Pal et al., 2021], which gives rise to numerical diffusion. On the other hand, [Vítkovský et al., 2006, Xing and[START_REF] Xing | [END_REF]] have considered the space and time inertial derivatives of the IMAB's models as source terms.

ρ f f n DW,i Q n i |Q n i | 8S 2 . ( 5 
In these approaches, the original hyperbolic structure (5.3) remains, and so does its eigenvalues. Grid interpolations are therefore unnecessary. [START_REF] Tiselj | Integration of unsteady friction models in pipe flow simulations[END_REF] analyzed both approaches for second order accurate characteristic upwind scheme. The authors concluded that the source term approach is relevant as long as the inertial contributions do not severely affect the eigen-structure of the hyperbolic system. Then, in the hereby low-Mach number asymptotic framework, this approach is adopted for IMAB models. In addition, the results inaccuracy introduced by the source term implementation method can be reduced by using CHAPTER 5. MOC NUMERICAL INVESTIGATIONS a thinner discretization grid, which is however computationally expensive (≈ 5 times more CPU than for the scheme used in [START_REF] Tiselj | Integration of unsteady friction models in pipe flow simulations[END_REF]). Considering a time-explicit first-order Euler discretization of space-time derivatives in (1.44) yields

τ n tr,i+1 = ρ f Dk 3 4S Q n i+1 -Q n-1 i+1 ∆ t + c p • sgn Q n i+1 Q n i+1 -Q n i ∆ x , (5.13) τ n tr,i-1 = ρ f Dk 3 4S Q n i-1 -Q n-1 i-1 ∆ t + c p • sgn Q n i-1 Q n i-1 -Q n i ∆ x . (5.14)
The WFB wall shear rate models have the major disadvantage of being computationally costly since the full flow history have to be conserved to handle the convolution product. To avoid this hindrance, [Trikha, 1975] proposed an exponential fitting decomposition of the convolution kernel, which then simplify the convolution product (1.52)

τ tr (z, t) = N k j=1
y j (z, t), (5.15)

y j (z, t) = 4ρ f ν f DS t 0 ∂ u Q(z, u)W j (t -u)du, ( 5.16 
) (5.17) with N k the number of exponential fitting terms. [START_REF] Kagawa | High Speed and Accurate Computing Method of Frequency-Dependent Friction in Laminar Pipe Flow for Characteristics Method[END_REF], Schohl, 1993] further improved the [Trikha, 1975]'s method by reconsidering the kernel fitting, i.e. by increasing N k , and the integration procedure for laminar flows. [START_REF] Vardy | Approximation of Turbulent Wall Shear Stresses in Highly Transient Pipe Flows[END_REF], relying on the re-scaled weighing function approach detailed in [START_REF] Vitkovsky | Efficient and accurate calculation of Zielke and Vardy-Brown unsteady friction in pipe transients[END_REF], proposed a Reynolds-dependent scaling for the convolution kernel delivered in (1.62) and (1.65). The authors used the relation (5.18) so that 1 (5.19) where the general, Reynolds independent, fitting coefficients m * j = m j A * , and, n * j = n j -B * (Re), (5.20) have been defined. These coefficients are tabulated in Table 5.1. Finally the (A * , B * ) coefficients are determined using (1.62) and (1.65), which fully determine the kernel fitting parameters (m j , n j ) values. Once the [START_REF] Vardy | Approximation of Turbulent Wall Shear Stresses in Highly Transient Pipe Flows[END_REF]'s model parametric estimation overcomes, the [Trikha, 1975]'s integration is performed. The procedure is denoted as the Trikha-Vardy-Brown (TVB) procedure Ψ < 10 -8 10 -8 ≤ Ψ < 10 -7 10 -7 ≤ Ψ < 10 -6 10 -6 ≤ Ψ < 10 -5 10 -5 ≤ ψ < 10 in the subject literature. It is interesting to mention that the convolution kernel found in [Bayle and Plouraboué, 2022]'s (Cf. §3.3) can be exponentially fitted following the TVB approach since this kernel scales in 1/

W j (t) = m j e -4ν f n j t D 2 ,
A * e -B * (Re) 4ν f t D 2 4ν f t D 2 ≈ N k j=1 m j e -4ν f n j t D 2 ,
4ν f t D 2 ≈ N k j=1 m * j e -n * j 4ν f t D 2 ,
4ν f t D 2 (Cf. §1.4.
2), i.e. by canceling out the B * contribution in (5.18)-(5.20). More recently, [Urbanowicz, 2018] enriched the integration procedure in the early convolution time by setting up a corrective parameter η defined as follows .21) Several values of η are thereafter provided depending on the WFB model used.

η = 4ν f ∆ t D 2 0 W analytic (u)du 4ν f ∆ t D 2 0 W f itted (u)du . ( 5 
Let us define the dimensionless viscous time step, ∆ * t = 4ν f ∆t D 2 , then it yields: • for laminar flow, [Bayle and Plouraboué, 2022] .22) with z 1 = 1 2 √ π ≡ A * . • for laminar flow, [Zielke, 1968]

η(∆ * t ) = 2z 1 √ ∆ * t N k j=1 m j n j (1 -e -n j ∆ * t ) , ( 5 
, ∆ * t ≤ 0.02 η(∆ * t ) = 2z 1 √ ∆ * t + z 2 ∆ * t + 2 3 z 3 (∆ * t ) 3 2 + z 4 2 (∆ * t ) 2 + 2 5 z 5 (∆ * t ) 5 2 + z 6 3 (∆ * t ) 3 N k j=1 m j n j (1 -e -n j ∆ * t )
, (5.23) with

z 2 = -5 4 , z 3 = 15 16•Γ( 3 2 ) 
, z 4 = 15 16 , z 5 = 135 256•Γ( 52 )

and z 6 = -45 128 and where Γ stands for the gamma function (Cf. (1.53)).

• for laminar flow, [Zielke, 1968] • for turbulent flow [Vardy and Brown, 2003]

, ∆ * t ≥ 0.02 CHAPTER 5. MOC NUMERICAL INVESTIGATIONS η(∆ * t ) = (5.23)(∆ * t ≡ 0.02) + 5 j=1 e r j ∆ * t -e 0.02•r j r j N k j=1 m j n j (1 -e -n j ∆ * t ) . ( 5 
η(∆ * t ) = erf ∆ * t B * (Re) 2 B * (Re) N k j=1 m j n j (1 -e -n j ∆ * t )
.

(5.25)

The [Urbanowicz, 2018] integration procedure, i.e. the approximation of the convolution product (5.15)-( 5.17), finally results in

τ n+1 tr,i = N k j=1 y n+1 j,i
(5.26)

y n+1 j,i ≈ 4ρ f ν f DS E j y n j,i + ηF j Q n+1 i -Q n i + [1 -η] E j F j Q n i -Q n-1 i , ( 5.27 
) .28) where in the limit, W f itted ≡ W analytic , the parameter η tends to one, which recovers the results of [Schohl, 1993].

E j = e - 4ν f n j ∆ t D 2 , F j = m j D 2 4ν f ∆ t n j [1 -E j ] , ( 5 

Optimal time-step discussion

The MOC scheme stability is ensured by the Courant-Friedrichs-Lewy C f l , criteria [Chaudhry, 2014], which is defined by .29) When the C f l is not equal to one, some grid interpolations are necessary to perform the computation, introducing numerical dispersion and/or artificial damping [Pal et al., 2021]. When an undamped scheme is considered, i.e. by setting τ w ≡ 0 in (5.10)- (5.11), this condition follows from analytical considerations. In contrast, when damping terms are considered, the use of an analytical determination is no longer possible and the stability must be handled by numerical simulation [Chaudhry, 2014]. For IMAB models, [START_REF] Tiselj | Integration of unsteady friction models in pipe flow simulations[END_REF] indicated that the C f l number should be reduced of nearly 2% (due to the hyperbolic eigenvalues modification by k 3 ), to respect the stability condition criteria. The author criteria was nevertheless not established by considering neither space-time derivatives of equation (1.44) as source terms, nor the sign variations in the spatial gradient. From a network standpoint, all pipes should respond to the very same time step, ∆ t = min i∈P ipes δ t so as to ensure the boundary conditions. For C f l = 1, the local space step, ∆ z , hence have to be modified as to ensure the local stability criteria.

C f l = δ t c p δ x ≤ 1. ( 5 
Let N cr be the number of space sample points in the time step most restrictive pipe. The global time and local space steps then achieve in

∆ t = min i∈P ipes L i c p,i 1 N cr -1
, and, ∆ z = c p ∆ t . (5.30) This choice of time step introduces some space discretization errors, ∆ ϵ , intrinsic to the numerical method, in each pipe of the network, the amplitude of which are given by .31) where E is the integer part function. The update local number of grid point in each pipe then follows from

∆ ϵ (%) = 100 • 1 -E L ∆ x ∆ z L , ( 5 
n z = 1 + E c p ∆ t L .
(5.32)

The N cr parameter is representative of the cut-off frequency of the numerical method in the most restrictive pipe. The higher the cut-off frequency, the higher the number of grid points in every pipe, and thus a considerable increase in computation time.

Boundary condition management

Boundary conditions are one of the arduous points to deal with in numerical analyses since they directly influence the simulation results. For the classical case-study of a pipe-reservoir-valve (RPV) connected system, [START_REF] Cao | Effect of Boundary on Water Hammer Wave Attenuation and Shape[END_REF] provided a recent in-depth analysis of the impact of boundary condition upon the general pressure damping. While the boundary conditions at the regular network nodes result in ensuring both the hydraulic head and flow-rate conservation, for specific hydraulic organs (e.g pumps, throttle valve or pressure reducing valves) additional boundary conditions have to be set up [Tijsseling, 1993, Covas, 2003, Zecchin, 2010]. Some specific boundary conditions are hereafter provided.

Regular nodes

Let us introduce (N e , N s ) being respectively the number of incoming and outgoing flows connection to a node, and Q d the steady-state flow demand. The connection configuration is depicted in Figure 5.3. The head/flow-rate conservation conditions then read As depicted in Figure 5.2b, the use of the negative characteristic (5.9) for incoming pipes to the node, respectively the positive characteristic (5.8) for outgoing pipes, yields to .36) Finally, combining the equations (5.33) and (5.35)- (5.36) results in

Ne k=1 Q n+1 k,n (z,k) -1 - Ns l=1 Q n+1 l,0 = Q n+1 d , (5.33) H n+1 1,n (z,1) -1 • • • H n+1 Ne,n (z,Ne) -1 = H n+1 1,0 • • • H n+1 Ns,0 ≡ H n+1 inc . (5.34) 226 CHAPTER 5. MOC NUMERICAL INVESTIGATIONS N e N s Q n+1 1,n (z,1) -1 Q n+1 k,n (z,k) -1 Q n+1 1,0 Q n+1 l,0 Q n+1 d
Q n+1 l,0 = Q n l,1 + gS l c p,l H n+1 inc -H n l,1 - 4c p,l ∆tτ n w,l,1 ρ f 0 gD l + c p,l ∆t sin (θ l ) , (5.35) Q n+1 k,n (z,k) -1 = Q n k,n (z,k) -2 - gS k c p,k H n+1 inc -H n k,n (z,k) -2 + 4c p,k ∆tτ n w,k,n (z,k) -2 ρ f 0 gD k -c p,k ∆t sin (θ k ) . ( 5 
H n+1 inc = - γ n β , ( 5.37) 
with

γ n = Q n+1 d - Ne k=1 Q n k,n (x,k) -2 - gS k c p,k -H n k,n (x,k) -2 + 4c p,k ∆ t τ n w,k,n (x,k) -2 ρ f0 gD k -c p,k ∆ t sin (θ k ) + Ns l=1 Q n l,1 + gS l c p,l -H n l,1 - 4c p,l ∆ t τ n w,l,1
ρ f0 gD l + c p,l sin (θ l ) , (5.38) and β the node impedance transmission coefficient .39) The updated flow-rates simply follow from (5.35)- (5.36).

β = g Ne k=1 S k c p,k + Ns l=1 S l c p,l . ( 5 

Reservoir nodes

The reservoir impedes any head variation over time so that .40) The updated boundary condition flow-rates are thus prescribed by (5.35)-(5.36).

H n+1 inc = H res . ( 5 
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H Z ∝ K 0 Q n+1 valve 2 H n+1 2,0 H n+1 1,n (z,1) -1 H n+1 2,0 K 0 H n+1 1,n (z,1) -1

Valve law

Under steady-state flow conditions, a valve is known to produce a local hydraulic head loss, as depicted in Figure 5.4, which is proportional to the valve squared flow-rate according to [Chaudhry, 2014] .41) where K 0 is the quasi-steady valve head loss coefficient. For transient analyses, this relation is supposed to hold, [Tijsseling, 1993], so that a valve device is modeled as

H 0 1,n (z,1) -1 -H 0 2,0 = K 0 Q 0 valve 2 , ( 5 
K 0 Q n+1 valve 2 = |H n+1 1,n (z,1) -1 -H n+1 2,0 |. (5.42) 
The valve flow-rate then follows from the combination of the positive characteristic (5.8) with (5.42)

K 0 Q n+1 valve 2 -- 1 g c p,1 S 1 + c p,2 S 2 Q n+1 valve + H n 1,nz,1-2 -H n 2,1 + 1 g c p,1 Q n 1,nz-2 S 1 + c p,2 Q n 2,1 S 2 - 4∆ t ρ f g c p,1 τ n w,nx-2 D 1 + c p,2 τ n w,2,1 D 2 + ∆ t (c p,1 sin (θ 1 ) + c p,2 sin (θ 2 )) = 0. (5.43)

Wave-speed model

It is known that the fluid pulse wave speed is a function of the fluid physical (usually water), solid geometrical and rheological properties (Cf. §1.4.2). These properties are not always known at the network scale and data interpolation are needed, e.g. the tube's thickness per its inner radius ratio, α. The α ratio depends on the pipe materials and should be consequently adjusted. Some generics α-laws are hereafter provided in Figures 5.5a-5.5e. The SETOM's collaborators gathered, for the pipes installed in the Toulouse's WDN, the pipe thickness (provided by the pipe's manufacturers) with respect to the pipe radius R 0 , the discrete ratio of which is depicted by blue dotted points in 5e. An error minimization procedure is thus performed between the tabulated α ≡ e R 0 and some general dependence laws evaluated at the very same set of discrete radius, finally providing a generic α dependence trend with respect to the pipe radius, for several pipe materials. 

Solver overview

The herein numerical MOC solver is a home-made Python code operating with the open source Python package WNTR, [START_REF] Klise | A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study[END_REF], to optimize the network management of the original EPANET's data, [START_REF] Rossman | EPANET 2.2 User Manual[END_REF]. The orientedobject solver architecture is thereafter provided in Figure 5.6. Table 5.2: Physical and geometrical properties for the analysis of the RPV system, [START_REF] Adamkowski | Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation[END_REF].

Numerical to experimental validations

The numerical code, along with the implementation of the viscous wall shear rate models, is validated and analyzed with respect to the experiments of [START_REF] Adamkowski | Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation[END_REF], [START_REF] Malesińska | Water Hammer Simulation in a Steel Pipeline System With a Sudden Cross Section Change[END_REF] and the numerical analysis of [Kim, 2022]. In the forthcoming, notations (DW ), (T V B), (BP ), (Z), (Bru) are adopted to refers to the Darcy-Weisbach, [START_REF] Vardy | Approximation of Turbulent Wall Shear Stresses in Highly Transient Pipe Flows[END_REF], [Bayle and Plouraboué, 2022], [Zielke, 1968] and [Brunone et al., 1991] models, respectively.

Comparison with [Adamkowski and Lewandowski, 2006]'s experiment

The [START_REF] Adamkowski | Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation[END_REF]]'s experimental setup dimensions are provided in Table 5.2 along with the Figure 5.7. Two different initial flows are investigated, W 0 = 0.066m/s and W 0 = 0.940m/s, the respective laminar and turbulent Reynolds being Re = 1100 and Re = 15843. For the low-Reynolds number study case, i.e. .8e, the WFB models are found close to each-other and better represent the signal attenuation and sharpness than other wall shear rate models (quasi-steady and IMAB). The quasi-steady model fails to describe the pressure patterns while the IMAB struggles to represent the peak's sharpness. This is an expected result since WFB models have been analytically established for laminar flows by [Zielke, 1968, Bayle andPlouraboué, 2022]. However, at Re = 15843, i.e. .8f, the IMAB model better represents the observation also reported by [START_REF] Ferrari | Influence of Frequency-Dependent Friction Modeling on the Simulation of Transient Flows in High-Pressure Flow Pipelines[END_REF]. The peaks depicted in the IMAB's wall shear rate models arise from numerical difficulties to handle the flowrate time derivative in (1.44), which are found close to the Dirac distribution when instantaneous perturbations are considered. Very similar peak patterns occurs in the WFB models but are smoothen by the convolution product. This preliminary numerical validation is now extended to the analysis of in-line connected pipe branch with diameter heterogeneity, experimentally studied in [START_REF] Malesińska | Water Hammer Simulation in a Steel Pipeline System With a Sudden Cross Section Change[END_REF].

Comparison with [Malesińska et al., 2021]'s experiment

The [START_REF] Malesińska | Water Hammer Simulation in a Steel Pipeline System With a Sudden Cross Section Change[END_REF] [START_REF] Malesińska | Water Hammer Simulation in a Steel Pipeline System With a Sudden Cross Section Change[END_REF].

NUMERICAL TO EXPERIMENTAL VALIDATIONS

235 with the experimental data for all the considered wall shear rate models. The WFB's models once again provide pressure signatures close to each-others despite the steady Reynolds number in the downstream pipe is estimated at Re ≈ 5 • 10 3 . Since no fitting parameters have been used, the pressure signature phase is surprisingly well described, and so does the fluid pulse wave speeds. All the models nevertheless suffer from a poor description of the long-time damped dynamic, the quasi-steady model being the less accurate. The analysis of the second configuration, i.e. , degrades these conclusions. While the short-time signal remains relatively well described by the numerical analysis, all the models rapidly fail to provide a relevant description of the signal characteristics, i.e. its amplitude and phase. The relative ∆ L 2 norms, for both configurations, are provided in Table 5.5. The use of transient wall shear rate models, even for the second configuration, diminish the error between the MOC predictions and the experimental pressure signals.
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Figure 5.12: [Kim, 2022]'s network topology. [Kim, 2022] implemented the impedance matrix method, previously developed by [Zecchin, 2010], and applied it to the analysis of transient in a small idealize network, which is depicted in Figure 5.12 along with its geometrical properties in Table 5.6. Only a quasi-steady viscous damping model was considered by [Kim, 2022], so that no transient wall shear-ate model is used in the forthcoming comparison. The pressure signature at node n o 9 (Cf. Fig. 5.12) is provided in Figure 5.13 for both approaches. The herein MOC numerical code reveals a close agreement with the prediction of [Kim, 2022] despite slight differences in the wave speed model. These differences nevertheless introduce some signal high-frequencies mismatch, having small amplitudes. Furthermore, the observed differences may arise from a different modeling of the Darcy-Weisbach friction factor. While [Kim, 2022]'s considered a constant initial-Reynolds-based friction coefficient factor f DW , the present MOC procedure both updates, in time and space, the value of f DW to match with the local flow conditions according to the steady-state EPANET, [START_REF] Rossman | EPANET 2.2 User Manual[END_REF] correlations. These set of experimental and numerical comparisons validate the MOC approach and provide reliable base for further analyses. An on-field, realistic, study case has been set up on a small sub-network of the Toulouse's WDN, the results of which are hereafter discussed.

Comparison with [Kim, 2022]'s numerical analysis

On-field networks investigation

In order to further investigate the MOC solver ability to model operational hydraulic network transient life, a on-field test has been carried out. First, a strategic zone has been identified, so as to have a low connectivity to the rest of the network and mainly composed of carbon materials (e.g. ductile iron, stain). Then, the hydraulic flow condition and pressure distribution are investigated and some hydraulic components are simplified (e.g. simplification of pressure regulation valves and connection to households). Finally, the valve head loss coefficient K 0 defined in (5.42) is determined and the MOC predictions to the on-field measurements [Kim, 2022]. are analyzed. Few studies have reported the comparison between some numerical predictions and on-field transient response of WDN, [START_REF] Ebacher | Transient Modeling of a Full-Scale Distribution System: Comparison with Field Data[END_REF], although a crucial step for practical relevance of modeling approaches. The test network is composed of 198 pipes and fed upstream by a constant head reservoir, the value of which has been settled to match with the mean daily head variation at this point. An overview of the investigated sub-network is depicted in Figure 5.14. The opened and closed PRV valve, depicted on Figure 5.14a, have been respectively modeled by a simple node (i.e. fully open valve without head loss) and a dead-end configuration. The network skeletonization simply follows from the available EPANET model, provided by SETOM, while the minor connection to users have been disregarded. At the input node, an hydrant have been opened and its flow-rate controlled by a control valve. Then a new steady-state is reached from the hydrant opening condition and once re-stabilized, the valve is suddenly, manually, closed by an operator. The resulting pressure transient signature is recorded at two output nodes in the network (Cf. Fig. 5.14). The pressure sensors have a frequency sample rate of 100 Hz (which allows the analyses of the low frequency transient response band), a resolution of ±150 mBar, and a measurement range of 0 -30 Bar. The pressure sensors time synchronization was manually handled by clocking the sensors on the internal clock of a computer a few moment before the experiment began. It latter appears a poor synchronization due to manufacturer technical issues, then leading to a residual incertitude on the time localization of the pressure signatures. In the forthcoming numerical to experimental comparisons, the experimental signals are consequently time shifted to match with the first pressure rise at each measurement locations. The pressure input impulse at the valve is also recorded, to provide a measurement of the initial overpressure generation. The network diameter and material distributions have been regarded from the perceptive of inducing fluid pulse wave speed variations in the network. It appears, regarding the test network theoretical wave speed distribution in Figure 5.15a, that the wave speed is quasi-constant across the whole network as its mainly composed of ductile iron material (Cf. Fig. 5.15b) and the diameter heterogeneity is weak (Cf. Fig. 5.15c). The strategic set of small dimensionless parameters introduced in §3, i.e. δ =

ν f L cpR 0 , M = W 0 cp , ϵ = R 0 L
, have also been investigated as depicted in Figure 5.16. The asymptotic low-Mach framework and long-wavelength framework established in §3 stipulates the need of δ ≫ ϵ 2 and δ 2 ≫ M conditions to be ensured in order that viscous corrections to prevail over inertial ones. While the first conditions is unquestionably satisfied regarding the Figure 5.16e, then satisfying the long-wavelength framework, the second low-Mach conditions is not always ensured regarding the values of the ratio δ 2 /M provided in Figure 5.16f. Then, some additional inertial corrections may occur in the network, which are expected to couple the transient response of the system to its preexisting flow conditions according to the non-linear Navier's term in the Navier-Stokes equations (Cf. §3.3 or [Bayle and Plouraboué, 2022]). Despite the Mach number is small, as illustrated in Figure 5.16d, its impact on the network transient may be important in some of the network's subareas. The herein MOC procedure nevertheless does not account for inertial effects and we then assume a model simplification. At the input node, the valve generates a singular head loss following relation (5.41). The steady-state head loss valve coefficient K 0 , is hereafter estimated. This is accomplished from measuring the pressure upstream to the valve and the flow-rate through it. By squaring the flow-rate, a linear relation is obtained between the head loss and the flow-rate according to (5.42), the slope of which is a function of K 0 . For the hereby experimental configuration, K 0 was experimentally measured at K 0 ≈ 0.257m -5 • s 2 , the experimental data used for the estimation being shown in Figure 5.17a. The closure law trend is finally provided in Figure 5.17b, along with its flow-rate fitting curve. The simulation results are hereafter provided, for two tests realized with an initial perturbation amplitude of ∆Q ≈ 10m 3 /h and ∆Q ≈ 14m 3 /h, in Figure 5.18. In both tests, the pressure increase at the input and output n°2 nodes are well described by the model, so does their first harmonic. Nevertheless, its seems clear that the results are unsatisfactory for longer time as the model fails to reproduce the damping following the pressure increase at the input node. The results at the output node n°1 are even more unexpected. The pressure increase is poorly described and a second pressure increase is observed just after the first initial pressure front. This sudden secondary increase is unexpected regarding the sub-network topology. Several operational conclusions are reached from the on-field investigations.

The control valve damping effects on the first pressure decrease phase (≈ 0.6s in Figure 5.18a and ≈ 1s in Figure 5.18b) is numerically lower than the one experimentally observed. The numerical second overpressure peaks then propagates and is found in both output responses, as displayed in Figures 5.18c not allow the generation of proper water hammer waves. The non-instantaneous valve closure causes a coupling between the water hammer (fast) network transient response and its slow steady-state head re-establishment one. This point is nevertheless crucial at the pipe narrowing. While the water hammer boundary condition does not account for the local head losses occurring at pipe narrowing, i.e. perfect acoustic reflection conditions, the network slow response is enslaved by these energetic losses. This point should analyzed in further investigations. Regarding the closure signals in Figures 5.18a and 5.18b, the head profile indeed seems to step up from the initial steady-state head profile to a new one, the small amplitude pressure overshoot being associated with the water hammer effect, which does not match with the [Joukowsky, 1904]'s criteria. Furthermore, the presence of minor branches in polymeric materials may plays an important role in the overall network dynamic response as recently addressed by [START_REF] Meniconi | On the role of Minor Branches, Energy Dissipation, and Small Defects in the Transient Response of Transmission Mains[END_REF]. These materials are mainly of small diameters and are located at the network dead-ends but they are not considered in the herein analysis. However, such rheology behavior is known to produce higher damping effects than elastic ones (Cf. §4), which may be an important point to consider in further analysis. From an operative viewpoint, the repetition of closure and opening tests, i.e. a loss of water in the network, leads to a head re-establishment in the sub-network though automatic consign transmitted to the upstream PRV valve (Cf. Fig. 5.14a), the variations of which have perturbed the transient measurement by adding supplemantary uncontrolled flow and head variations. The complex influence of active end users and water consumption on the water hammer predictions have recently been investigated by [START_REF] Marsili | Experimental analysis of the water consumption effect on the dynamic behaviour of a real pipe network[END_REF], Meniconi et al., 2022], then pointed out the relevance of such operative behavior. All the wall shear rate models furthermore fail to predict the overpressure damping. The water hammer waves seem to attenuate much faster than what its theoretically and numerically predicted. The presence of inertial, Mach-driven, corrections, not considered in the herein MOC simulations, but relevant from the asymptotic standpoint (Cf. Fig. 5.16f), might be one possible reason for the observed mismatch. Nevertheless it remains allusive which effect is the more influential in these reported on-field measures among the various mentioned ones (discarding small visco-elastic pipes, "active" networks changes associated with the demand during the test, influence of δ 2 ≪ M corrections).

Chapter 6

Geolocalization of water-waves origin within urban hydraulic networks using time reversal of first event detection: Article to Water Research.

Several detection methods have been provided in §1. While these detection methods rely on complex signal analyses techniques and often need an in-depth knowledge of the network before any anomaly occurs, an operational efficient network anomaly detection procedure is hereafter provided. This technique, already investigated by [START_REF] Pinto | Locating the Source of Diffusion in Large-Scale Networks[END_REF], Shen et al., 2016], only focuses on the first transient event signature, i.e. the initial transient pressure gradient, to backtrack the potential source. This method may suffers from pressure wave front refocusing errors [Waqar et al., ], i.e. the water hammer wave speed frequency dispersion due to FSI, polymeric and fluid viscous effects which does not allow an exact wave backpropagation. To overcome this limitation, a strategic operative concept of Region Of Interest (ROI) is defined and characterized, then distinguishing our approach from [Shen et al., 2016]'s one and enriching the classical anomaly detection framework. In the forthcoming chapter, the high frequency pressure sensors were pre-installed by the operative company SETOM, while time synchronization was ensured through embedded GPS ships in each sensor. The frequency acquisition was set to 128 Hz, then being slightly different from the previous transient pressure acquisitions presented in the §5.

Introduction

Water hammer waves within Water Distribution Networks (WDNs) are a common hindrance resulting from many possible routine operations, either organized, voluntary or accidental. Not only these waves are responsible for structure wear, but they are also capable of facility damage. Intermittent water supply operations have indeed been correlated to incident damages in WDNs [START_REF] Agathokleous | Vulnerability of urban water distribution networks under intermittent water supply operations[END_REF] pin-pointing both the detrimental influence of quasi-steady WDN dynamic but also the generated transients associated with related operations (e.g. valve opening and closure, pumps starting).

Since the water-hammer wave speed in WDNs is very fast (between for 350 m/s for the softest plastic pipes to 1200 m/s for cast iron pipes ) having a rather slow attenuation, the wave generated at a given location can propagate over a large portion of the entire urban network within a few seconds before decaying in less than a minute. It results in a myriad of reverberation causing as much disorder and possible breakages as pre-existing weaknesses.

Since the lifetime of these events inside the network is short, and since they are not numerous within a day (e.g less than a few per day in the considered city of about half a million people), the dynamic of each water-hammer event can be considered separately. Being able to find the origin of a cascade of reverberating waterwaves events is interesting from various viewpoints: patrimonial management, security, insurance, etc... Nevertheless, this topic has not been developed in real WDNs because it necessitates overcoming several challenges, not been fully addressed yet. Firstly, urban WDNs are, in many cases, not sufficiently and reliably detected and observed in detail for precise modeling of transient waves into them to be relevant. Secondly, localizing the origin of water-hammer waves necessitates real-time high-frequency monitoring with widely distributed detectors, rarely deployed in WDNs. Thirdly, the computational cost of direct transient wave modeling in water distribution networks is very challenging either using the Method Of Characteristics [START_REF] Wang | Pipe burst risk state assessment and classification based on water hammer analysis for water supply networks[END_REF]Nault et al., 2018;Meniconi et al., 2021;[START_REF] Moosavian | Unified matrix frameworks for water hammer analysis in pipe networks[END_REF]Riaño-Briceño et al., 2022), or finite volumes e.g (Pal et al., 2021;[START_REF] Zhang | Algorithm for detecting multiple partial blockages in liquid pipelines by using inverse transient analysis[END_REF].

Fourthly, an inverse method capable of identifying the origin of a reverberating water hammer wave over a large network, solving as many direct problems as tentative tries for possible origin, is even more challenging. Last but not least, from a more fundamental viewpoint, even if the uniqueness of the wave origin from detecting reverberation waves has been established on discrete wave models on arbitrary networks [START_REF] Caputo | Inverse source problem in a forced network[END_REF][START_REF] Plouraboué | Source identification of propagating waves inside a network[END_REF], it is still a pending issue for continuum ones.

Hence, even if the idea of using the entire timecourse of signal reverberation within the network at the sensor location to enlarge as much as possible data collection is appealing, in practice, this approach is still very difficult to develop at the present state of the art (Che et al., 2021). As part of the European "Surge-Net" project, Ferrante et al. (2009) carried out leakage location tests using echo analysis, by combining Lagrangian and wavelet transforms signal analysis, in the Lintrahen's (Scotland) WDN main trunk. Shucksmith et al. (2012) performed leakage tests on Bradford's (Yorkshire, UK) WDN. The authors operated at the neighborhood scale (about 100m of weakly branched pipe) using spectral analysis for the leak echo-localization (cepstrum analysis) and with a wide variety of pipe materials (PVC, cast iron, asbestos-cement). Recently, Meniconi et al. (2015) also combined a wavelet transform analysis with a Lagrangian method to preliminary examine one of the main pressure transmission lines of Milan's (Italy) WDN. Although achievable on a district scale or the main supply pipes of a water distribution network, the implementation of such leak detection techniques is questionable for large-scale analysis. Indeed, techniques based on leak wave reflection suffer from a high sensitivity to propagation speed uncertainties and surrounding noise (Wang et al., 2021). Moreover, an idealized test case without leakage or blockage is required for allowing direct comparison with the field pressure signal in the absence of transients generated by users' consumption variations unavoidably present within WDN. In order to improve the matching between transient predictions and experimental observations laboratory experiments within controlled networks are thus interesting and useful, e.g (Meniconi et al., 2022a). However, such benchmark case is often not operationally possible or prone to modeling errors (e.g. cross-section pressure interactions, wave attenuation, incorrect network topology, etc...) as in other contexts such as quality event detection [START_REF] Kessler | Detecting accidental contaminations in municipal water networks[END_REF]. This is why an approximate alternative method avoiding the cost of a complete timecourse of wave propagation evaluation is proposed and developed in this contribution, following [START_REF] Meniconi | A quick survey of the most vulnerable areas of a water distribution network due to transients generated in a service line: A lagrangian model based on laboratory tests[END_REF]. Rather than trying to exploit the entire signal complexity recorded at each sensor location, we take advantage of the first arrival time only. This already permits back-track wave origin using a time-reversal method. Time reversal methods, either at the individual pipe level [START_REF] Grigoropoulos | Time reversal of waves in hydraulics: experimental and theoretical proof with applications[END_REF] or at the network one (Shen et al., 2016) have already permit computationaly efficient source identification. This method has been used to develop noise-tolerant pipeline defect detection [START_REF] Wang | Pipeline leak detection using the matched-field processing method[END_REF][START_REF] Wang | A review on applications of remote sensing and geographic information systems (gis) in water resources and flood risk management[END_REF]Meniconi et al., 2021) in the precise context of water-hammer waves. This contribution aims to demonstrate that combining first-event detection with timereversal is an interesting strategy to geolocalize water-hammer events in real WDN.

The paper is organized as follows. Section 2.1 describes the material related to the urban network and the pressure sensors used within the study. Section 2.2 details the algorithm of the first event detection, time reversal method, and candidate order. Section 3.1 discusses the localization of prescribed events in a real WDN to test and validate the method efficiency and its sensitivity to detectors number (more precisely the sensor "density", the sensor number divided by the total node number in the network). Section 3.2 finally describes the application of the proposed method to the field's data to geolocalize real events and discuss the obtained results.

Materials and Methods

Materials

The materials consist in WDN data within which high-frequency pressure detectors are disposed of.

Water distribution network data

The entire network from the city of Toulouse (France) illustrated in figure 1a is composed of a total of 26 094 pipes. It has been formatted in Epanet format providing the pipe lengths, structural properties and diameters. The distinct pipe's composition within the network is detailed in table 1, showing a great majority of cast iron material. The heterogeneity of pipe diameters and lengths is illustrated in figure 1b andc showing a great diversity of diameter and length over more than a decade. This result in wave-propagation heterogeneity to be taken care-off of considering the adapted velocity in each pipe. Local wave-hammer wave velocity indeed depends on the pipe diameter, length, thickness, Young modulus, and material density. It is estimated from known validated formulas (cf Appendix). Furthermore, the chosen location for high-frequency pressure sensors (18 in total) is depicted in Figure 1a with green dots, each described by a label between 1 to 18, being spatially uniformly distributed over the urban network.

High-frequency pressure detectors

Pressure detectors record at 128 Hz frequency with a 5000P a accuracy. The recording mode is triggered by an awaking threshold which is empirically set from the base signal.

These thresholds are chosen as a multiple (in-between 2 and 3) of the WDN time-variation base-signal. They are empirically chosen by the network manager, so as to have a reasonable number (about twenty) of ascents per day. Each sensor threshold lies in the range 1±0.5bar over the local base-line average pressure. This precautionary procedure avoids recording embarrassing irrelevant signal series in the detection event database, also needed from the limited capabilities of the used sensors technology.

Since the event amplitude is expected within the range of [0.8, 2]10 5 Pa, the relative precision on the detected peak amplitude is of the order of 6.25%. Also, only the time-arrival of the first peak is critical for the chosen method. Each detector has been primarily submitted to a pressure calibration test using a prescribed static pressure before field deployment. Each sensor has its own embarked battery and RAM. Once triggered to awaken mode, the detectors acquire at full high-frequency (i.e. 128Hz) during 300 seconds. The resulting collected data are then transmitted latelly with a standard GSM 3G protocol keeping each signal associated with each detector identifier.

Methods

The method decomposes into various steps : (i) first event detection into each detectors, (ii) back-propagation from detectors to potential source of detected event using the time-reversal method and (iii) calibration of time-reversal method on the network and detector set. The methods associated with these three steps are now detailed. An additional noise sensitivity check of the method has also been used, the details of which is also given in 2.2.3.

First event detection and time reversal method

First event detection is performed using offline change point detection method [START_REF] Truong | Selective review of offline change point detection methods[END_REF]. The detection criteria are associated with a functional minimization associated with the local gradient of the noisy signal. More precisely we use a binary change point detection to perform a fast signal segmentation, coupled with a L 2 cost function that detects meanshifts in the signal. The determination of the arrival times is illustrated for a real signal in figure 2.

of detector/non-detector nodes in the network, a totaltime is evaluated by computing the sum of each time propagation within each pipe along the shortest path between those within the network, as depicted in figure 3b. Performing this total time of propagation between each node and one detector results in the detector back-propagation cartography depicted in figure 3c for detector d 1 , figure 3d for detector d 2 and figure 3e for detector d 3 . Now using the first-time arrival component vector t i , i = 1, 2, 3, results in back-propagating-time vectors at each node (each time is colored with the same color as the detector with which it is associated in figure 3f). In Shen et al. (2016) the source node is the one with minimum variance backpropagating-time vector as illustrated in figure 3f. Note, however, that depending on the recorded time, several source nodes are possibly found with this method as depicted in figure 3e. Hence, in the case of noisy recordings one can infer that, in this case, the true source might not necessarily be the one having the minimum variance. Hence, to give more robustness to the method (but less sensitivity) we extend the search for the true source by considering the sorted list of back-propagating-time vector variances to find the "best" source candidates. This sorted list has to be closed, keeping with a "reasonable" number of possible candidates. This is what we call the method "calibration" as detailed in the next section. 

Calibration of the time reversal method

In the original research (Shen et al., 2016), the locality condition is widely discussed. Two main aspects are highlighted: (i) all edge spreading times must be sufficiently different and

(ii) nodes with a single neighbor disrupt this condition. Consequently, the success rate (i.e.

exact source location) of the method depends on the topology of the considered network and the number of detectors. In our approach, the signals are real and uncertainties necessarily exist in the signal measurements. Moreover, it is currently not possible to deploy sensors on 20% of the nodes in the city networks, as suggested by Shen et al. (2016); the current order of magnitude is less than one percent. In response to this, the method has been adapted to achieve interesting success rates with a limited number of sensors. The resulting variance of each source candidate is sorted to produce a tentative hierarchy of the best source candidate. Nevertheless, this priority list is not always relevant: the source having the minimum variance, i.e. the first source in the sorted list of variances, is not always the true source. Hence, a list of potentially successful sources, i.e. "the best choice" among the entire variance list has to be defined. This "best choice" needs a potentially successful source number to be defined. For this, a dedicated "calibration" of the method needs to be performed to find the most sensible potentially successful source number. This potentially successful source number has to be chosen from a trade-off between accuracy and selectivity, i.e. maximizing the probability of finding the true source whilst, on the order hand, not increasing too much the number of potential sources.

This "calibration" is highly sensitive to the specific network at hand, the detector number, and their positions, as well as to the wave velocity variability among the pipes. Hence, this calibration is empirically evaluated using the real network data and the exact detector positions and numbers. For this, we randomly chose sources in the network, perform the time-reversal approach in each case, and built the success-rate histogram of finding the true source at each rank of the variance list. The success probability is thus empirically evaluated from the ratio between successfull tries (those where the true source is part of the source candidates) and the total number of tries. This is what we called the "calibration" of the method. One calibration example is illustrated in figure 4a where all tested sources (used for building statistics) have been colored in red (they represent 5% of the total network). Figure 4b depicts the probability of each candidate being a true source versus its rank in the potentially successful source list. The closest to one, the most probable being the true source. Once adding together all potentially successful source probability in the list result in the probability of having the true source versus rank, i.e. versus the chosen potentially successful source number. The 0.9, 0.95, and 0.99 probabilities have been depicted with vertical dotted lines in figure 4b. They are "calibrated" in this case by a potentially successful source number of 11, 23, and 75 respectively.

Time reversal method with noisy data

To test the influence of noise in the first event detection time, some noise is added to the celerity wave in each pipe. This noise is modeling the uncertainty associated with structural or geometrical parameters both influencing the wave velocity. We chose to impose a multiplicative noise, i.e. a noise being a small fraction (between 0 to 5%) of the local value of wave time-travel within each pipe. In this framework, first event detection times become random variables to be evaluated a large number of times to access the reliability and sensitivity of the source identification to noise. Obviously, for a given configuration (i.e. fixed network topology, wave celerity field, detector number, and locations) the calibration procedure is performed only once so that for each set of random sources, the noise distribution is applied in a randomly and differently . Increasing the noise amplitude permits quantifying the degradation of the method performance, to be able to extrapolate it for increasing noise and/or uncertainty.

Results

Influence of detector density and signal-to-noise ratio

As discussed in section 2.2.2, the success rate, i.e. the capability of finding the true source among the potentially selected ones depends both upon the sensor spatial density and on the signal-to-noise ratio. We hereby analyze both from randomly chosen detector locations within the network. The detector density influence is first analyzed without noise, i.e. supposing that the wave velocity is perfectly evaluated within each pipe. In this case, 30 randomly chosen detector configurations are analyzed for each varying number of detectors between 10 to 50. This corresponds to a detector "density" (i.e. the percentage of the detector within the total node number of the network) between 0.05% to 0.22%. Note that these detector densities have been voluntarily chosen in a much modest range than the ones tested in Shen et al. (2016), in line with what is currently deployed and what will be deployed soon. This is motivated by the practical constraint that detectors deployment within the network is costly. Hence it is required to test how the method performs for weak detector density. For such low detector density, it is not expected that the method could provide a highly reliable success rate. Nevertheless, Figure 5a shows that the success rate associated with the best source in the variance list can reach 45.5% of exact detection for the highest detector density (with degradation scales linearly with the noise amplitude as found in figure 6a and6b. This linear behavior permits an easy extrapolation of the method's performance for larger noise, resulting from many possible networks defects, aging, breakages, etc.... Hence this permits us to predict the method performances in different contexts for which the uncertainty of the wave velocity is larger. 

Real events geolocalization

The method is now applied to two real field data analyes denoted case 1 and case 2.

For case 1, figure 7a shows the time variation of the high-frequency pressure signal from the awaken detectors (four of those, # 10, 12, 13, 18 whose location is given in figure 1) of one event. The geolocalization of the source is provided in figure 7b using various convex-hull of potentially successful source positions associated with various calibrations as previously explained in section 3.1. The physical motivation for the convex-hull evaluation is to provide a hierarchy of investigated sites within the network, to be exploted by operators as well as quantity the surface area of possible source candidate sites. As quantified in table 2, the ROI area provided by the convex hull represents a small fraction (a few percent) of the total 262 network area. This area varies depending on the calibration level. Case # % of pot. suc. source number Hull area (%) Pipe length (%) It decreases as the potentially successful source number used also levels down. The proportion of pipe length within the convex hull for the case 1 is also provided in table 2.

It shows that (in the less selective choice) only 0.6% of the total pipe length is worth of investigating for finding the source. This shows that the methods already permit a huge screening over the total pipe length inside the network, a result of high operational interest. This is the geolocalized illustration of the method's selectivity. This a posteriori confirmation is a supplementary demonstration that the proposed method is relevant for the field's water-hammer source identification.

Another geolocalization example associated with case 2 is illustrated in figure 8 for which the event responsible for the water-hammer wave has been identified as the start-up of one boost pump inside a drinking water production plant. In this case height detectors have been awakened (# 1, 2, 3, 4, 5, 6, 7, 18) all showing a sudden uprising from base-state illustrated in figure 8a as opposed to the sudden depression found in figure 7a. This is indeed the expected behavior from a pressure injection event associated with a boost pump turn-on.

The location of the pump is however found (figure 8c arrow) at the very edge of the ROI in this case. This might be related to the presence of high-diameter pipe connections of the drinking water production plant into the distribution system for which the associated wave velocity is perhaps roughly approximated. Concerning the quantitative figures obtained for the case 2 provided in table 2 a similar conclusion to case 1 can be raised. Also, in this case, the method permits a huge screening over the total pipe length worth investigating from the overall network.

Conclusions

This work has investigated the geolocalization of water-hammer events sources within a water distribution network from the use of high-frequency pressure detectors distributed within it. Combining first event detection with a time-reversal method, the accuracy and selectivity of the method have been analyzed within real network configurations, considering the very low density of pressure detectors. In this context, we demonstrate from a dedicated calibration procedure the relevance of the proposed method to perform a very good screening of potentially successful sources. The effect of noise either associated with the detector signal or the network uncertainty has also been analyzed. Performance degradation of the method has also been quantified for a noise range between 1 to 5% of the base signal. Finally, the relevance of the proposed method is illustrated in two field cases for which history-matching analysis provides a true source location consistent with the method's prediction.

Hence the proposed method has demonstrated the proof-of-concept that water-hammer events geolocalization is possible with a combination of rather sparing computational and technological tools. Considering the possible managerial interest of such localization in insurance issues and/or repairing investigations, this contribution can lead to significant operational consequences in the field.

Uncertainties about the pipe's properties as well as network topological reliability could hamper a direct application of the method in some urban networks. Nevertheless, some more acknowledge F. Nospelle, from SETOM, for sharing his network knowledge and for his contribution in gathering the on-field information necessary to confirm the sources of the transient events herein analyzed.

Appendix. Local water-hammer wave velocity

Given the Young modulus E of the pipe, the Poisson coefficient ν s , the pipe's density ρ s , the dimensionless thickness α = e/R (e being the pipe thickness and R its radius), the acoustic water velocity c 0 , K the isothermal fluid bulk modulus, the water-hammer wave speed is given by

c = c -• c p , ( .1) 
with,

c 2 p = c 2 0 1 + 2K αE 2(1-ν 2 s ) 2+α + α(1 + ν s ) . ( .2) 
c 2 -= 1 + C 2 s + 4ν 2 s D α(2+α) - 1 + C 2 s + 4ν 2 s D α(2+α) 2 -4C 2 s 2 (.3)
with C s = E/ρ s c p being the pulse wave velocity ratio, whilst D = ρ f /ρ s being the fluid to solid density one. These expressions can be found in Zhang et al. (1999); Tijsseling (2007). 

PhD highlights

This PhD thesis has been dedicated to the Modeling of transient pressure waves in water distribution networks (WDN). The literature review of §1 has permitted to describe the distinct aspects of transient modeling: on the onehand water-hammer considered from the hydraulic viewpoint, i.e. by neglecting the axial response of the pipe and focusing on the near-wall viscous fluid modeling, or, on the other hand, the mechanical one considering an inviscid fluid associated with fluid-structure interactions (FSI). The presence of FSI-couplings, especially the Poisson's coupling, give rise to a complex structure of resonant modes for elastic pipes, the dynamics of which is non-dispersive in the long-wavelength asymptotic framework. In such framework, the radial pipe inertial response to overpressure transients can be neglected, i.e. transverse pipe vibrations are not considered, and yields to the derivation of the well-known four-FSI hyperbolic equations set to describe the behavior of liquid-filled pipe systems.

The coupled four-FSI equations have been investigated, for specific hydraulic configurations, using the Transfer Matrix Method (TMM). Since this frequencydependent method suffers from practical limitations (e.g. the need to perform an inverse Laplace transform in complex hydraulic networks), a new theoretical, operator-based framework was derived in §2. This new dynamical analysis of the coupled four-FSI equations allows a direct time-domain treatment from selecting a strategic orthogonal decomposition basis for the pressure-stress solutions, providing a complete description of the resonant modes. This operator-based theory has been successfully compared with previously published numerical FSI-analyses, 274 CHAPTER 7. CONCLUSION recovering well-established results derived using TMM's method.

In order to include the fluid viscosity effects into the overall liquid-filled pipe transient modeling so as to reconcile both hydraulic and mechanical viewpoints, a multi-time scale asymptotic analysis has been carried out in §3. The FSI couplings were investigated in a low-Mach number, M = W 0 cp ≪ 1, and long-wavelength, ϵ = R 0 L ≪ 1, asymptotic framework, seeking for a small parameter δ = ν f L cpR 0 (the dimensionless boundary layer thickness defined in (1.49)) expansion solution. This parameter has been shown to play a cornerstone role in the system's exponential damping. A rigorous asymptotic framework associated with condition δ 2 ≫ M, δ ≫ ϵ 2 and ϵ ≫ M, has been spelled out to ensure the dominance of the viscous wall shear rate effects at first order, thus discarding the influence of both fluid and solid radial inertia. From analyzing corrections up to first order, an FSIconsistent asymptotic scheme has been spelled out bringing significant insights on the description of the coupling mechanisms. Regarding the liquid-filled pipe system O(δ) corrections (Cf. secularity condition in §3.1.3) a mode-dependent exponential damping has been found to characterize the FSI viscous energetic losses in liquid-filled pipe systems. Finally, this chapter stresses the relevance of considering the relative fluid to solid acceleration at the pipe's inner wall, i.e. ∂ τ W -α ζ , for FSI-consistent convoluted wall shear rate model (Cf. WFB models in §1.4.2). This issue is relevant in bio-mechanical applications, whereby relative errors up to 75% have been found between the FSI and the no-FSI wall shear rate models, confirming the necessity of further investigations.

Even if the asymptotic multi-time scale analysis provides significant insights on the liquid-filled pipe behavior description, this analysis is restricted to elastic pipes. An extension of the four-FSI equations to visco-elastic pipes has been proposed in §4, at leading order (discarding O(δ) corrections). It permits to promote a new rheology-based, FSI-model. The investigation has been successfully handled and permitted to derive new visco-elastic-kernels associated with the non-local response in time of convolution terms generalizing previous model such as [Keramat et al., 2011] one. The proposed kernels dependence in both pipe mechanical properties (rheological behavior) and geometrical properties (pipe's thickness to its inner radius ratio, α) have been found explicitly. The new model's predictions were successfully confronted with previous theories as well as experiments both in time and frequency domains. While the pipe visco-elasticity smooths the signal's high-frequencies and increases the damping (compared to purely elastic materials), the dispersion band on the coupled wave speed modes is found to be weak.

By focusing only on the numerical modeling of the transient response of WDN, the FSI-high frequencies can be discarded to deal only with fluid coupled hyperbolic equations. An in-house numerical solver has then been set-up in §5, fully coupled to the steady-state EPANET's solver, [START_REF] Rossman | EPANET 2.2 User Manual[END_REF], using the 7.2. RESEARCH PERSPECTIVES 275 MOC method. Several wall shear rate models have been implemented, i.e. quasisteady, convoluted-and inertial-based ones, and confronted with respect to experimental and numerical previously published investigations. The analysis of the relative L 2 norm error between MOC-predictions reveals very little differences between all the proposed convoluted models. Furthermore, while convoluted models better represent the transient signal peaks sharpness and phase, the inertial-based one better depicts the amplitudes. In the low to transitional Reynolds number range, the convoluted-based wall shear rate models are shown to be more accurate than inertial-based one, the quasi-steady model always being the less accurate. For higher Reynolds number, the inertial-based model nevertheless increases the predictions accuracy to experimental observations, the convoluted models being slightly less accurate. Noteworthy, the quasi-steady wall shear rate model describes surprisingly well the high Reynolds transient responses and then can stands as a good operational compromise between accuracy and efficiency. To go further in the wall shear rate models description, an on-field test has been set up in a subnetwork of the Toulouse's water distribution network. The comparisons with the on-field measurements nevertheless remain unsatisfactory up to now [START_REF] Meniconi | On the role of Minor Branches, Energy Dissipation, and Small Defects in the Transient Response of Transmission Mains[END_REF], Marsili et al., 2021], for all considered damping models.

Finally, a new anomaly detection method in WDN, relying on the backtracking of the overpressure waves first front, has been developed in §6. This method is simple to implement, CPU-efficient and has already permitted to geolocalize several anomalies in the Toulouse's water distribution network. The method is pipe material sensitive and then requires the full-knowledge of the network. No need are nevertheless made to dispose of an idealize test benchmark as classically needed for other detection methods (Cf §1.4.4). The method is also sensitive to the sensor density but shown good robustness to noise, then allowing the detection of anomalies despite uncertainties in the theoretical prediction of water hammer wave speeds.

Research perspectives

The research on the modeling of overpressure waves in WDN is obviously still an ongoing work. Relying on the work that have been accomplished in this PhD, several enhancements can be accomplished:

• First, the herein one-pipe restricted FSI-models should be extended to the network scale. The self-operator-based theory developed in §2 must be enlarged to network analyses, classically by following the step of the transfer matrix method or the impedance matrix method (Cf. the notable contributions of [Zecchin, 2010, Zecchin et al., 2012]). Such advances will provide a full theoretical, time-dependent, transient network description.

• Second, relying on the first above-mentioned point, the multi-time scale analysis performed in §3 should also be extended to the network scale. This is expected to provide a theoretical description of FSI-viscous damping occurring in WDN. The wall shear rate convoluted structure can be expected to remain so that the global network multi-time scale asymptotic method should provides a suitable alternative to the classical MOC-numerical schemes (Cf. §5).

• The promising new first front backtracking anomaly detection method (Cf. §6) can also be improved. The relevance of the method indeed depends on several surrounding variables such as the completeness of the water distribution network data (e.g. material, diameter or length distributions) along with the position of the sensors. Several data analyses, along with the definition of a strategic sensor positioning procedure, can then be envisioned to overcome these technical barriers. Furthermore, the herein method does not account for the daily network connectivity evolution, i.e. the daily modification of water fluxes in the district metered areas (DMA) (Cf. section 1.2).
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. 45 )

 45 where the superscript T refers to the transpose operation and ∇ * stands for the dimensional Nabla operator. The solid stress tensor diagonal terms are all identically January 16, 2023 22:25 WSPC/PRE-PRINT Article˙M3AS Low-Mach number theory of pressure waves inside an elastic tube 123 scaled so as to match with the pulse overpressure, i.e. O (ρ f0 c p W 0 ), thereby ensuring volumetric stress components of Tr (σ * s ) to uniformly respond to this overpressure [σ * rr , σ * θθ , σ * zz ] = ρ f0 c p W 0 [σ rr , σ θθ , σ zz ] .(2.46) 

  number theory of pressure waves inside an elastic tube 125 e r σ s,st R=1 e r = e r σ st y=0 e r , e r σ s,st R=1+α e r = 0, (2.64) e r σ s,st R=1 e z = e r σ st y=0 e z , e r σ s,st R=1+α e z = 0, (2.65)

. 1 )

 1 The resulting forced diffusion equation for longitudinal velocity component w provides crucial informations to understand the damping mechanisms. (3.1)'s terms leading to the wave's energy loss are • O M C 2 and O M C 2 fluid density compressibility effects (2.31); • O ϵ 2 δ radial flow compressibility effects within the inner region; • O ϵ 2 δ 2 and O ϵ 2 δ axial diffusion and radial flow compressibility; • O (M) axial inertial corrections; • O M δ radial inertial transport of viscous shear; • O (δ) radial diffusion transport of viscous shear.

σ

  rr R=1+α+O(αM) = O (αϵM) , (3.20) σ rz R=1+O(αM) = -δτ w y=O( αM δ ) + O (αϵM) ,

2 and

 2 
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Fig. 2 :

 2 Fig. 2: Asymptotic scheme for fluid-structure-interaction in a fluid-filled elastic tube.
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3. 10 .w

 10 Axial gradient of the wall shear rate, ∂ Z τ 0 Let us now derive the previous expression of the parietal shear rate, τ 0 w with respect to Z in (3.65) to enclose the 2D vector wave equation (3.81). Combining it with the leading-order Laplace transforms of (3.70) and (3.71) leads to

1 .Fig. 3 :

 13 Fig. 3: α-dependence (α = e R0 ) of the characteristic wave speeds of the (FSI) problem for ν s = 0.35 and D = 0.1122, EK f = 54. The red dashed lines provide information on the asymptotic behavior of the dimensionless wave speeds with respect to α.

Fig. 4 :

 4 Fig. 4: Pressure signature compared with experimental data of ( 1 ). Experimental data are depicted with black dotted lines while theoretical results from (4.35) are depicted with continuous lines. ( 32 )'s solution (no-FSI) is provided with dashed line. Dimensionless numbers are M = 7.2 • 10 -4 , ϵ = 8.2 • 10 -5 , α = 0.125, δ = 3.3 • 10 -2 and D = 0.11.

  analyzed. Whereas no-(FSI) modes gradually attenuate, liquid-filled pipe systems that incorporate (FSI) do not neces-M = [7.65 (+) , 15.3 (•) , 23 (×) ] • 10 -5 , ϵ = 3 • 10 -4 , α = 0.146, δ = 1.7 • 10 -2 M = 1.53 • 10 -4 , ϵ = 6.57 • 10 -4 , α = 0.1, δ = 1.1 • 10 -2 05 (+) , 26.0 (•) , 48.3 (×) , 72.0 (■) ] • 10 -5 , ϵ = 8.2 • 10 -5 , α = 0.125, δ = 3.3 • 10 -2

January 16 ,Fig. 6 :Fig. 7 :

 1667 Fig. 6: Exponential damping coefficient analysis: (a) Analysis of T 0

1 Fig. 8 :Fig. 9 :

 189 Fig. 8: Dimensionless fluid wall shear stress τ 0 w at middle's pipe location. ( 1 )'s data from Table 2 are used with (a) unmodified density ratio D, (b) modified density ratio D = 1.

Figure 4 . 1 :

 41 Figure 4.1: Schematic interpretation of the Maxwell and Kelvin-Voigt rheological models. A single element is depicted.

Figure 4 . 3 :

 43 Figure 4.3: Fluid pulse wave speed time variation in an (MDPE) pipe,[Mitosek and 

Figure 4 . 5 :

 45 Figure 4.5: Influence of the temperature on the creep characterization,[Covas et al., 2004a].

Figure 1 :

 1 Figure 1: Constant head H 0 reservoir-pipe-anchored valve configuration

  )'s IFFT and the experimental data in time domain, at the very same time-located points. If needed, a linear interpolation of (83)'s IFFT is used to perfectly match experimental time and numerical one. The calibration results are given below (for dimensionless parameters, as dicussed above) for the datasets ofCovas et al. and Pezzinga et al. 

  Time-dependent pressure signal at the valve compared to the non-FSI Mei et al.[16]'s theory. Positive-half pressure signal spectrum at the valve. The Mei et al.[16]'s resonant frequencies are depicted by dotted red lines. Time-dependent pressure signal at the valve compared to the FSI, fluid non-viscous Bayle et al.[34]'s theory. theoryBayle et al. (2023) (d) Positive-half pressure signal spectrum at the valve. The Bayle et al.[34]'s resonant frequencies are depicted by dotted red lines.

  theory (ν e = 0.46) Visco-elastic theory (ν e = 0) (e) Limit in νe → 0 of the visco-elastic solution.

Figure 2 :

 2 Figure 2: Dimensionless time (using (4)) and frequency (using(6)) pressure signature at the valve comparing model's prediction with the experiment of Pezinga et al.,[32]. The elastic signature is also depicted to point-out (a) the fluid viscous damping without FSI in the elastic pipe (b) the associated resonant frequencies and (c) the elastic FSI effects without fluid viscous damping (d) the associated resonant frequencies. Figure (e) displays the limit ν e → 0 of (83)'s IFFT compared to Pezinga et al.[32]'s experiment.

  in frequency-domain simplify to ĨF P = ĨS P = ĨS σ = Js (ω) -1 , and ĨF σ = 0. (92) k τ k (s) J k (10 -10 Pa)

Figure 3 :

 3 Figure 3: Comparison to (a) Covas et al. [13]'s and (b)Keramat et al. [27]'s visco-elastic convolution kernels for the experimental data of Covas et al.[18, 13]. Dimensionless time τ (using (4)) has been used.

Figure 4 :

 4 Figure4: Comparison of frequency domain dependence of dimensionless visco-elastic velocities obtained from fitting parameters to the experimental data of[18, 13]. (a) cv p (ω)(49), (b) c+ (53), (c) c-(53). Dimensionless pulsation ω using (6) have been used.

Figure 5 :

 5 Figure 5: Comparison between the proposed rheology-based model and[13] and[27] ones for the pressure signal at various location for the reservoir-pipe-anchored valve configuration. Dimensionless pulsation ω using (6) have been used in (a) and (b), dimensionless time using (4) in (c), (d), (e) and (f).

Figure 6 :

 6 Figure 6: Dispersive behaviour of the visco-elastic corrective pulse wave speed, cv p versus dimensionless time (using (4)).

Figure 7 :

 7 Figure 7: Visco-elastic kernels derivatives with respect to parameter τ λ versus dimensionless time (using (4)).

Figure A. 9 :

 9 Figure A.9: Sketch of (a) shear, and (b) creep applied mechanical stress configurations on a visco-elastic material.
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 51 Figure 5.1: Overview of the open-source and commercial water hammer software,

CHAPTER 5 .

 5 MOC NUMERICAL INVESTIGATIONS equations set (1.40) (Cf. §1.4.2) displays trivial eigenvalues being ±c p associated with characteristic curves z(t) = ±c p t the slopes of which are dz(t) dt = ±c p .

( a )Figure 5 . 2 :

 a52 Figure 5.2: Fixed MOC grid discretization formalism.

. 12 )

 12 Depending on the transient shear rate model (Instantaneous material accelerationbased (IMAB) or Weighting function-based (WFB) (Cf.(1.4.1)

. 24 )

 24 with r 1 = -26.3744, r 2 = -70.8463, r 3 = -135.0198, r 4 = 218.9216, r 5 = 322.5544 (Cf.(1.54)).

Figure 5 . 3 :

 53 Figure 5.3: Flow rate conservation at a regular network node.

Figure 5 . 4 :

 54 Figure 5.4: Singular head loss at a valve.

Figure 5 . 5 :

 55 Figure 5.5: Tube's thickness to its inner radius ratio, α ≡ e R 0 , in function of the pipe materials.

Figure 5 . 6 :

 56 Figure 5.6: Method of characteristic solver's MOC architecture.

Figure 5 . 7 :

 57 Figure 5.7: [Adamkowski and Lewandowski, 2006]'s experimental setup.

Figure 5 . 8 :

 58 Figure 5.8: MOC numerical prediction compared with the experimental data of[START_REF] Adamkowski | Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation[END_REF].

  τ w at Re = 15843.
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 59510 Figure 5.9: Wall shear rate model comparison for the[START_REF] Adamkowski | Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation[END_REF]]'s experiment.

Figure 5 . 11 :

 511 Figure 5.11: MOC numerical predictions compared with the experimental data of

Figure 5 . 13 :

 513 Figure 5.13: Comparison to the numerical predictions, based on the impedance matrix technique, of[Kim, 2022].

( a )

 a On-field test network characteristics.

  Input head daily variations. (c) Input hydrant perturbation.

Figure 5 . 14 :

 514 Figure 5.14: Test zone overview.

Figure 5 . 15 :

 515 Figure 5.15: Characteristic parameter distributions for the investigated test network.

Figure 5 . 16 :

 516 Figure 5.16: Small dimensionless asymptotic number distributions for the investigated test network. The hydrant input flow-rate is equal to 10m 3 /h for the herein distributions.

Figure 5 . 17 :

 517 Figure 5.17: Experimental valve and closure properties

Figure 5 . 18 :

 518 Figure 5.18: Comparison between MOC simulations and on-field recorded pressure signals.

Figure 1 :

 1 Figure 1: (a) Topography of the considered water distribution network. The network is composed of 23 784 nodes, 26 094 pipes for a total pipe distance close to 1 200 km. The positions of high-frequency pressure detectors (from 1 to 18), arranged within the network are illustrated with green dots. (b) Probability Density Functions (PDF) (with the corresponding histogram in zoom's inset) of dimensionless lengths (median 0.012 indicated with vertical dotted lines) normalized by maximal length. (c) same as (b) for dimensionless diameters (median 0.05) normalized with maximal diameter.

Figure 3 :

 3 Figure 3: Time-reversal propagation method principle. (a) awaiken detectors d i , i = 1, 2, 3 at first passage time t i , i = 1, 2, 3 (b) Shortest-path between detector d 1 and one node. (c,d,e) Back-propagation cartography for detector d 1 -d 2 -d 3 . (f) For a given arrival time vector, the source node is the one having a back-propagation vector with minimum variance. (g) Depending on the first passage time t i , the resulting time arrival time vector can lead to several possible source nodes.

Figure 4 :

 4 Figure 4: Calibration of the method for the city network and the 18 real sensors (cf. figure 1a). 5% of the network nodes are chosen independently and randomly as sources. (a) network with random sources in red. (b) Calibration histogram and probability density function.

Figure 5 :

 5 Figure 5: Influence of detector number on the selectivity and success rate of the source geolocalisation. For each detector number, 30 random sets are calibrated, using 5% of temptative randomly chosen true sources among all nodes (1189). (a) Exact and one-neighbor detection function of detector number. In each case, the average behavior is plotted with bold continuous lines where respective colored zone displays ± the standard deviation around it. (b) Average values of the potentially successful source number versus detector number.

Figure 6 :

 6 Figure 6: Noise influence on the geolocalization (a) accuracy and (b) selectivity. Using the 18 detector locations provided in figure 1a, the calibration is performed by randomly adding a multiplicative noise to each pipe travel time, for each tested random source. Evolutions of (a) success rates and (b) potentially successful source number versus noise amplitude. Dashed lines display linear regressions.

Figure 7 :

 7 Figure 7: Case 1 illustrating real event detection from the field's data recordings. (a) Normalized pressure signals recorded by high-frequency detectors. (b) Geolocalization of the source with three convex hulls associated with three calibration levels : (yellow) 0.75 %, (orange) 0.5 %, and (red) 0.1 % of potentially successful source number in overall nodes. The four detectors that awaken during this event are depicted in green. (c) Zoom on ROI with the largest hull in dashed lines and nodes colorized versus their variance level from yellow to red for increasing probability of being the source.

  Figure7calso provides a zoom into the ROI region to better visualize the convex hull as well as the true source location. In the considered event, history matching has indeed permitted us to find the true location of the responsible event associated with a pipe breakage. The black arrow of figure7cindicates that the breakage location indeed lies inside the ROI prediction of the method.
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		XVI XVIII	LIST OF TABLES XVII NOMENCLATURE
		s	Laplace variable		
		ω	Pulsation		rad • s -1
		Dimensionless numbers		
	ϵ Nomenclature Inner tube's radius by its length ratio α Pipe's thickness by its inner radius ratio		
		δ	Fluid overpressure dimensionless boundary layer		
		M	Re-scaled (on c p ) fluid Mach number		
	Physics and rheological constants δ st Fluid steady-state dimensionless boundary layer		
	ρ f	C s	Fluid density Solid elastic by the fluid water hammer wave speed ratio kg • m -3
	K f	D	Fluid bulk modulus Fluid by solid density ratio		P a
	ν f	Re	Fluid kinematic viscosity Reynolds number		m 2 • s -1
	ρ s	Solid density Physical fields		kg • m -3
	E	W	Young's modulus Axial fluid velocity		P a	m • s -1
	ν s	P	Poisson's modulus Fluid pressure			P a
	W 0	ζ	Order of magnitude of the steady velocity Axial solid displacement velocity		m • s -1	m • s -1
	Characteristic velocities			P a
	c 0	τ w	Fluid acoustic wave speed. Speed of sound in the fluid Fluid wall shear rate			P a
	c p	τ qst	Modified Korteweg's wave speed / Fluid pulse wave speed Quasi-steady component of τ w	m • s -1	P a
	c s	τ tr	Solid elastic wave speed Transient component of τ w		m • s -1	P a
	c ±	f DW	Dimensionless coupled propagation modes wave speed Darcy-Weisbach friction factor		
	Geometrical and time properties		
	R 0		Inner initial tube's radius		m
	r		Dimensional radial coordinate		m
	R		Dimensionless radial coordinate		
	e		Tube's thickness		m
	L		Tube's length		m
	z		Dimensional axial coordinate		m
	Z		Dimensionless axial coordinate		
	θ		Azimuth coordinate		m
	t		Dimensional time		s
	τ		Dimensionless fast time		
	T		Dimensionless slow time		

[σ rr , σ θθ , σ zz ] Radial, azimuth and axial solid stress tensor components

  log 10 ( 14.3 

				Re 0.05 ) , (1.62)
	and then for t ≡ O L cp			
	Θ Vardy et al. (1995) ≡ O	1 δ	.	(1.63)

  extended their previous model by modifying both: (i) their idealized turbulent viscosity distribution (until then considered as infinite in the acoustic core) and, (ii) by considering the boundary layer thickness as Reynolds non dependent. They thus reached a new convolution kernel via a modification of the B * coefficient

	B * =	Re log 10 ( 15.29 Re 0.0567 ) 12.86	,	(1.65)

which is valid over a wide range of Reynolds numbers, Re ∈ [2 • 10 3 , 10 8 ]. Finally, this theory was one more time extended by

Contents 2.1 Frequency analysis and Transfer Matrix Method (TMM) 43 2.2 Laplace-based FSI investigations . . . . . . . . . . . . . 47 2.3 Spectral-operator-based FSI investigations . . . . . . . 63

  

Table 2 :

 2 Comparative analysis of natural frequencies for the two study configurations. For each encountered frequency, the relative error ∆(%) is estimated.

	13.1	13.00	0.8	12	12.4	3.2
	38.5	38.3	0.5	32	31.8	0.6
	64.0	63.8	0.3	56	55.5	0.9
	89.6	89.3	0.3	73	72.9	0.1
	115.1	114.6	0.4	97	96.6	0.4
	131.8	131.7	0.08	116	115.8	0.2
	141.3	140.8	0.3	141	140.5	0.4
	166.6	165.9	0.4	161	160.0	0.6
	192.1	191.4	0.4	185	183.9	0.6
				202	201.4	0.3
				226	224.9	0.5
				245	243.9	0.5

  ϵ 2 , αM .The steady-state contributions into the unsteady fluid equations(2.38)-(2.43) appear to driven by the Mach number. Despite the hereby asymptotic framework ensures δ ≫ M, it is crucial to ensure that no steady-state contributions arise into the unsteady boundary layer(2.42). Since the leading-order steady-state solution only is hereby investigated, no assumptions are made regarding its asymptotic sequence. The leading-order dimensionless steady solution refers to as W 0 st , P 0 st . Steady-state mass conservation(2.35), follows steady incompressible condition
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	3.4. Steady-state fluid axial velocity leading-order solution

  By following the same footsteps, an equivalent relation is achieved for R * o (z, t). The dimensionless normal and tangential vectors, (n i , n o ) and (t i , t o ) respectively then fulfills

	so that combining (3.14) and (3.15), one finally gets	
	R i (Z, τ, T ) = 1 + O (αM) .	(3.16)
		2 , (3.15)

  13) 
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	Appendix D. Simplification of s 2 -H P1 p (s, Z)
	Let us combine the definition of the operator H in (4.10) with the expression of P1 p (s, Z) in (4.14), it follows

  4.1. LINEAR VISCO-ELASTIC PIPE RHEOLOGY 165 Then, the 1D models are generalized, using a combination of several Maxwell or Kelvin-Voigt single elements added in series. The generalized 1D Kelvin-Voigt model is depicted in Figure 4.2. Let us now introduce the creep function J(t)

		η 1	η k
	E 0	E 1	E k
	Figure 4.2: Generalized Kelvin-Voigt model

Table 1 :

 1 Comparative table of 3D rheological parameters taken from literature.

Table 5 . 1 :

 51 WFB's kernel exponential coefficients, for theTrikha-Vardy-Brown (TVB) 

	integration procedure, Ψ ≡	4ν f t D 2 .

  a) Physical properties.

	Pipe Diameter Thickness Length n o 1 42mm 2.6 ⋆ mm 26.45m n o 2 26.5mm 2.2 ⋆ mm 21.2m	Pipe Diameter Thickness Length n o 1 42mm 2.6 ⋆ mm 13.3m n o 2 35mm 2.4 ⋆ mm 14.15m n o 3 21mm 2 ⋆ mm 12.2m
	(b) One narrowing geometries	

(c) Two narrowing geometries

Table 5 . 4 :

 54 Physical and geometrical properties for the analysis of the experimental setup of,[START_REF] Malesińska | Water Hammer Simulation in a Steel Pipeline System With a Sudden Cross Section Change[END_REF]. ( ⋆ ) refers to unavailable data in the original article.

	Wall shear rate models	One narrowing Two narrowing
	Darcy-Weisbach	7.70%	53.34%
	[Vardy and Brown, 2007]	3.46%	36.30%
	[Zielke, 1968]	3.44%	36.27%
	[Bayle and Plouraboué, 2022]	3.42%	36.24%
	[Brunone et al., 1991]	4.49%	29.22%

Table 5 .5: Relative

 5 

∆ L 2 norm between the MOC's models and the

[START_REF] Malesińska | Water Hammer Simulation in a Steel Pipeline System With a Sudden Cross Section Change[END_REF]

's experiment.

Table 5 . 6

 56 

:

[Kim, 2022]

's network geometries

Table 1 :

 1 Distribution of pipe materials. Other materials are inox, fiber, PE, and PVD.

	Material Quantity (%) Length (%)
	Iron	87.66	89.28
	Steel	1.97	4.04
	PVC	1.01	1.22
	Others	2.15	1.46
	Unknown	7.21	4.00

Table 2 :

 2 Hull areas (normalized by the total area of the network) and subgraph pipe lengths (normalized by the total pipe length of the network) versus the node proportion kept in the potentially successful source list for the real events illustrated in figure7 and 8.

		0.75	7.97	0.67
	Case 1	0.5	7.27	0.40
		0.1	2.39	0.05
		0.75	15.92	0.77
	Case 2	0.5	10.05	0.52
		0.1	4.24	0.08

Φk (Z) [λ k sin (λ k τ )δ(τ )] . (82)The above expressions (77)-(81) have been cross-checked using formal calculus softwares.
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Chapter 4

The liquid-filled-visco-elastic pipe problem The increasing number of polymeric ducts in water distribution networks goes hand-in-hand with its modernization. Although traditional pipe raw materials (e.g. ductile iron, steel) suffer from time chemical and mechanical deterioration, polymeric materials offer a stronger time resiliency for a low-cost installation. Furthermore, where carbonaceous materials rapidly propagate shock waves (c p ≈ 1200m/s), the polymeric materials reduce the water hammer wave speed (c p ≈ 300 -400m/s), which drops-down the generated overpressure accordingly to the [Joukowsky, 1904]'s law (Cf. (1.6)), as well as strongly attenuates the pressure signal. Despite their clear operational interest, the rheological characterization of polymeric pipes is non-trivial and still suffers from a lack of understanding. This chapter aims developing a new rheological-based, FSI-consistent, to model the liquid-filled visco-elastic pipe dynamic. A brief literature review of the current models along with some of the existing visco-elastic knowledge is provided. Then, a new model is established, the implications of which are in-depth analyzed and compared with other pre-existing models. 

Highlights

Frequency varying rheology-based fluid-structure-interactions waves in liquid-filled visco-elastic pipes.

A.Bayle, F.Rein, F.Plouraboué

• A fluid-structure-interaction water-hammer model for linear visco-elastic rheology is derived.

• It involves new history-dependent visco-elastic response through time-convolution kernels.

• It does not need Kelvin-Voigt calibrated parameters, but rheological ones.

• The dispersive wave velocity is also obtained explicitly versus rheological parameters.

Frequency varying rheology-based fluid-structure-interactions waves in liquid-filled visco-elastic pipes.

Fluid equations

In the fluid region, the dimensionless low-Mach, long-wavelength mass conservation and momentum balance lead to the following outer/core region fluid equations [31,33,34]

From the r.h.s of ( 31) and the long-wavelength approximation, continuity relations of the radial velocity at the wall is automatically satisfied. Moving to the frequency domain gives

iω W = -∂ Z P .

(34)

Fluid/solid interface boundary conditions

Ignoring external constraints applying to the solid radial direction (supposing a zero external normal stress), and using definition of σrr in (23), the continuity of the normal and tangential stress as well as axial velocity reads (Cf [34] for more details)

Note that, for dimensionless radial distance r, since the dimensionless thickness of the pipe is α, the outer wall is reached as R = 1 + α.

FSI four-equations dimensionless visco-elastic problem derivation

From the combination of the fluid, solid and the fluid-solid interface governing equations, a set of four coupled hyperbolic equations system is obtained upon ( P , W , σzz , ζ). Its complete

Poisson coupling, the proposed rheological model produces convolution kernels directly provided by the creep function, as previously done in [13,27]. The various visco-elastic convolution kernels are compared in Figure 3 for the experimental data of [13] presented in Table 2. Each kernel family has been fitted with the same pressure field time variation coming from [18,13]. Even though they present similar exponential decay family types, ĨCov and ĨKer display faster attenuation that the various kernels I F P , I F σ , I S P , I S σ of the proposed model. Also, both I F P and I S σ are very similar for the obtained visco-elastic parameters.

Concerning the velocity dispersivity prediction provided in figure 4, it is interesting to mention that every models display a similar trend for the norm of complex velocities: it varies from a minimum value at ω = 0 within a narrow low-frequency region (associated with a long time behaviour) so as to reach a constant plateau for large |ω| values. Hence, at short-time/large |ω| most dispersivity of the wave velocity is lost and the visco-elastic response is very much like the elastic one, [48,49]. This allows to define a 'dispersive' frequency gap band depicted within vertical orange dotted lines for which visco-elastic effects are important. The 'dispersive' frequency gap band ∆ω v is more precisely define as the 95% difference velocity region from the asymptotic high-frequency regime, as exemplified in the inset of figure 4a. The larger this dispersive gapband, and the deeper the ω = 0 velocity, the larger visco-elastic effects are. It is interesting to observe in figure 4 that the dispersive gap is wider for Covas et al. [13] and Keramat et al. [27] models than for the hereby model (in black) for parameters obtained from the same data set [18,13]. Considering specifically the corrective visco-elastic velocity cv p (ω) predictions analysed in figure 4a it can be observed that for the Covas [13] and Keramat [27] models the corrective visco-elastic velocity cv p (ω) tends to one in the |ω| ≫ 1 limit. Noteworthy, this is not the case for our model for which the high-frequency limit of cv p (ω) is approximately 6.5% above one as can be observed in figure 4a. Combining this limit with the c-→ 1 as |ω| ≫ 1 found in figure 4c produces a slight over-visco-elastic-velocity of about 6.5% larger than the elastic one.

These additional contributions to the elastic velocity from visco-elastic effects result from local terms in the visco-elastic kernels (as previously mentioned at the end of S. 4.1.1). The vertical dotted line, depicted in the zoom inset of Figure 4a, reports the time-scale range for which the complex corrective velocity factor cv p evaluated with the same visco-elastic parameter display a nondissipative behaviour, i.e very weakly depends on frequency. This result is interesting per-see since it affects the predicted Joukowsky over-pressure which should be higher in visco-elastic materials the numerical computation of the water-hammer wave system problem, our Fourier-domain analytical solution permits getting the time-domain pressure solution from a simple Fourier transform only. This is more simple and more useful than being able to accurately compute the wave equations (a hyperbolic problem necessitates devoted numerical schemes and methods). Furthermore, the minimisation between observation and model for parameter calibration could also be performed in frequency-domain, from a simple Fourier transform of the pressure observations themselves as done in this paper in Figures 5a and5b. In this case, the parameter calibration could directly benefit from our analytical solution as well as from the analytical sensitivity matrix computation, the derivative of which is needed in the calibration numerical procedure. This is a simplified procedure over the state of the art. Secondly, because our parameters are rheology-based, they can be estimated before-end from applied mechanical stress-strain response tests. These mechanical stress-strain tests might be of various kinds (e.g. oscillatory, shear, compression, mixed, etc..) so as to increase the parameter estimation step robustness. In this case, the presented model could provide water-hammer time-domain pressure prediction without the need for parameter calibration on water-hammer tests. A distinct path which is beyond the scope of the present paper but might motivate future investigations.

Appendix A. Visco-elastic parameters estimation from creep and stress relaxation methods

In this appendix, the rheological parameters identification within a 3D linear rheological model is discussed. Most common rheological models are based upon a mechanical approach, where springs and dashpot are associated in order to establish differential equations describing media's deformation. The Kelvin-Voigt, Maxwell, and Zener models are built within this approach and represent 1D models involving parameters either directly fitted to pressure signals [31,27] or to mechanical measurements [56,[START_REF] Kontou | Application of a fractional model for simulation of the viscoelastic functions of polymers[END_REF]. A wide variety of techniques (e.g. creep and stress relaxation, free oscillation methods, resonance methods, and wave propagation methods) based on different solicitation frequencies can be used to quantify visco-elastic models and estimate their parameters.

Here, the details of the rheological parameters determination of 3D models 59 based on the creep and stress relaxation methods are presented. In index form model 59 reads

δ ij being the Kronecker's symbol. In rheological studies, one applies stress (either constant or oscillating) to the visco-elastic media and measures the associated strain. Hence, the strain field components ϵ * ij , have to be written versus the stress fields ones σ * ij , thus inverting (A.1). Let us first focus on the non-diagonal part of (A.1). The strain non-diagonal components achieve as follows

whilst performing an integration by parts of (A.2)'s r.h.s, yields

Initial conditions e -t/τµ . (A.

3)

The ϵ * ij strain field components are therefore composed of three terms. A visco-elastic component whose dynamics is only driven by the characteristic shear-time τ µ , an elastic component whose response is instantaneous and an exponentially decaying initial conditions contribution. The inversion of (A.1)'s diagonal terms is now considered. Introducing the stress σ * d and strain ϵ * d vector field

From considering the applied stress configurations of figure A.9b, it yields

In the framework of a single step loading of a stress σ * 0 , the model predicts the strain from (A.10), so that the creep compliance J * (t) = ϵ * (t)/σ * 0 is .11) This test allows to determine parameters (a, τ µ , τ λ ).

Appendix A.2. Stress relaxation

Similarly to the creep test, for a single step strain ϵ * 0 , the model involves stress from (A.3) and therefore Young modulus

1 + (a -1)e -at/τr . (A.12)
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This test allows finding parameters (a, τ r ). Note that in both experiments, the a value can be evaluated, thus providing a cross-checked evaluation.

An example of parameter estimation based on creep and stress relaxation tests on femur bones

experiments carried out by [START_REF] Neidigk | Creep and relaxation of osteoporotic bones[END_REF] is illustrated inA.10. The parameter estimation has been carried out using a least square method in order to find the minimum error between the model and data. show a good agreement between the model with the experimental measurements. Also, the a value estimate lies within the 25% difference between both tests. The a parameter is then allowed to characterize the visco-elastic strain of a material, which is added to its elastic strain. It is thus necessarily larger than one. Furthermore the larger parameter a, the more visco-elastic the media.

Appendix B. Theoretical derivation of the visco-elastic FSI four-equations model

Keeping O(1) terms and neglecting O(ϵ 2 ) in ( 29)- (30), it is possible to find that, to leading order, the displacements fields fulfils (Cf [34] for more details)

ζ = H1 (Z, ω) , and, ξ = H2 (Z, ω) signal attenuation and phase shift than WFB ones, which under estimates the pressure peak's amplitudes but correctly depicts peak's sharpness. For the very same Reynolds number, the quasi-steady model surprisingly matches with the experimental data and seems to provide a better description of the peaks attenuation than WFB ones. In the water hammer early-stage, a line packing phenomena, i.e. the linear pressure increase due to fluid accumulation [Chaudhry, 2014], slightly modified the expected [Joukowsky, 1904]'s overpressure by nearly 5%. The relative ∆ L 2 norm, defined as

is also investigated for the different models as an accuracy indicator. This indicator is thereby used to assess the numerical to experimental errors at several pipe locations. This approach nevertheless fails to provide an exhaustive description of the energetic losses, i.e. along the whole pipe, since only space-located error are considered. This limit can be overcome following [START_REF] Duan | Local and Integral Energy-Based Evaluation for the Unsteady Friction Relevance in Transient Pipe Flows[END_REF], who have extended the energetic balance approach of [Karney, 1990] to characterize the global energetic variations induced by the fluid viscosity, versus the wall shear rate model. Despite the hereby analysis only assesses the error between experiment and numerical predictions, this point deserves to be emphasized. The corresponding values of ∆ L 2 are presented in Table 5.3. The analysis of the relative L 2 -norm goes along with our previous conclusions. The relevance of the WFB's model to characterize the laminar flow regime is degrading when the regime is turbulent, for the benefit of IMAB's models. To provide additional insights on the observed slight Reynolds-dependent differences between the models, the wall shear rate at the middle pipe location is investigated, the results of which are provided in Figure 5.9. For laminar flow, the wall shear rate is poorly affected by the quasi-steady contributions, the main viscous damping arising from the transient response of the boundary layer, i.e. WFB or IMAB modes. In contrast, for Re = 15843, the contributions of the transient WFB and IMAB models to the overall damping appear weak. This justifies the relevance of the Darcy-Weisbach model, a striking Time reversal of first event detection within the network follows the approach proposed in Shen et al. (2016). The method principle is detailed in Figure 3. As a prerequisite, each pipe is associated with a time propagation resulting from computing the ratio between pipe length and velocity evaluated following the Appendix formula. Then the signal processing starts when an event has been detected, resulting in a first-time arrival (denoted t i , i = 1, 2, 3 in figure 3a) of the signal at various awaken detectors (denoted d i , i = 1, 2, 3). For each pair 50 detectors). This is already an interesting performance from the practical point of view considering the poor detector deployment effort. Moreover, when relaxing/extending the identification success to a one-neighbor distance within the network, i.e. considering one node distance to the best source of the variance list is a success, then the success rate can reach 68.7% as illustrated in Figure 5a. This means that the obtained geolocalization of the best source positions in the network is useful to locate the true source in its vicinity in case of an unsuccessful search. Hence, it is interesting to relax the selectivity of the method (which is the maximum for a single choice associated with the best variance in the potentially successful source list) to study how increasing the sensor density with a given calibration (from varying the list success rate from 0.9 to 0.99) impacts its selectivity. This calibration sensitivity to detector density is is shown in figure 5b. Whereas increasing the detector density had a weak impact on the success rate of the best source candidate in the list, on the contrary, one can observe in figure 5b that it has a strong impact on the potentially successful source number which strongly decays as the detector number increases from 10 to 50. This is true for every level of calibration (i.e. for every prescribed success rate from 0.9 to 0.99). Hence, even if the method accuracy is poorly sensitive to sensor density, it is selectivity is strongly influenced by it. For this reason, we also evaluate the convex hull of potentially successful source positions to provide a Region Of Interest (ROI) for the source location. This convex hull is not only useful from the practical viewpoint to delineate the research ROI. It is also useful as a possibly expandable region to increase research success, in case of unsuccessful research within it. This convex hull will be exemplified in two practical cases in the next section.

We now turn to the analysis of noise impact on success rate. To analyze the expected precision of the geolocalization produced by the first event detection method in the presence of noise, we analyze the performance of the method with the same number of detectors as the one used on the field (18) for a large number of randomly chosen sources when considering a relative uncertainty between 0 to 5% for each local wave velocity in pipes. As expected, the larger the noise amplitude, the lower the success rate. Interestingly enough, the performance involved sensors and/or a more elaborated use of the signal beyond first-event detection might be interesting to develop in the future to partly overcome these uncertainties.
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