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ABSTRACT

S
ince its creation, the web has contributed to the transformation of our society through
the massive diffusion of knowledge. Understanding how we access and select information
on this new medium has become crucial. Contrary to static images, a web page needs to

be scrolled in order to fully explore its content. Thus, the understanding of ocular behaviour
on web pages requires analyses taking into account the dynamic from the visual exploration
and the scroll. Therefore, we set up an experimental study to demonstrate the importance of
the understanding of these dynamics in the prediction of eye movements. In this study, we
asked 150 participants to browse 18 web pages of variable lengths, and perform either a free
viewing task or a visual search task. The aim of the first axis of this work was to better describe
the dynamic of eye movements on web pages through the use of a composite indicator. Recent
research has shown a link between the fixation duration, the saccade amplitude and the two main
visual pathways involved in vision. Short fixations followed by long saccades (ambient visual
mode) would be related to the dorsal stream involved in objects localisation and visually guided
actions, while long fixations followed by short saccades (focal visual mode) would be related to
the ventral stream involved in object recognition. Thus, the ambient mode would dominate the
exploration at the beginning, and the focal mode at the end. We used the definition of visual
modes to study to which extent it could explain eye movement temporal evolution. To this end,
we investigated existing ratios describing ambient and focal visual modes. We showed that these
ratios only evaluated visual modes’ intensity rather than their dynamics. Hence, we proposed new
measures describing the number of switches between modes and the average time spent in each
mode. The second axis of this thesis was to investigate eye movement behaviours on web pages
through their relationships with mouse cursor movements and scrolling. We specifically focused
on the relationships between their parameters, and the influence of scroll on eye movements. We
provided a detailed statistical description of eye movements on web pages along with the mouse
movements and scroll statistics. Moreover, we studied how eye movements were influenced
before and during the scroll through the study of their parameters, including eyes position, scroll
amplitude and scroll speed. Based on these findings, we introduced a more precise definition and
segmentation of scrolling events. The third axis goal was to integrate findings from previous
axes in web pages scanpath modelling in order to improve prediction accuracy. Existing scanpath
models rarely address web pages, but when they do, they consider web pages as static screenshots
without the need to scroll. To tackle this problematic, we proposed the first saccadic model
including scrolling. Furthermore, scanpath modelling usually include some oculomotor biases,
which are mostly considered as stable through visual exploration. In our approach we addressed
these biases through their evolution over time. Thus, this work highlights the importance of
dynamics in the prediction of eye movements when exploring web pages.
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RÉSUMÉ

L
a ruée vers l’information engendrée par l’invention du web a totalement transformé notre
société. Il est aujourd’hui devenu crucial de comprendre comment nous sélectionnons et
accédons à certaines informations. Contrairement aux images statiques, une page web

est dynamique en raison de la nécessité de faire défiler le contenu pour le voir en intégralité.
Par conséquent, la compréhension du comportement oculaire sur les pages web nécessite des
analyses qui prennent en compte la dynamique de l’exploration visuelle et celle du défilement.
Afin de démontrer l’importance de la dynamique dans la compréhension et la prédiction des
mouvements oculaires, nous avons mis en place une étude comportementale. Lors de celle-ci,
nous avons demandé à 150 participants de parcourir 18 pages webs de longueur variable soit en
exploration libre, soit en recherchant une cible. Le premier axe de ce travail visait à contribuer à
une meilleure compréhension de la dynamique des mouvements oculaires sur les pages web grâce
à l’utilisation d’un indicateur unique. Des recherches récentes ont permis de trouver un lien entre
la durée de fixation, l’amplitude de saccade et les deux principales voies du traitement visuel.
Des fixations courtes suivies de longues saccades (mode visuel ambient) seraient ainsi liées à
la voie dorsale impliquée dans la localisation d’objets et les actions guidées visuellement, alors
que des fixations longues suivies de saccades courtes (mode visuel focal) seraient liées à la voie
ventrale impliquée dans la reconnaissance d’objets. Ainsi, le mode ambient serait plus présent
au début de l’exploration et le mode focal à la fin. Nous avons utilisé cette définition pour étudier
dans quelle mesure celle-ci pouvait décrire la dynamique des mouvements oculaires. À cette fin,
nous avons étudié les ratios existants décrivant les modes visuels ambient et focal. Nous avons
montré que ces ratios n’évaluaient que leur intensité et non leur dynamique. Nous proposons
de nouvelles mesures décrivant le nombre de changements de modes et le temps moyen passé
dans un mode. Le deuxième axe de cette thèse consistait à étudier le comportement oculaire
lors de l’exploration de pages web en tenant compte de la relation entre les mouvements des
yeux, le déplacement du pointeur et le défilement de la page. Nous nous sommes spécifiquement
concentrés sur la relation entre leurs paramètres et l’influence du défilement sur les mouvements
des yeux. Ainsi, nous avons proposé une description statistique détaillée des mouvements des
yeux sur les pages web ainsi que des mouvements de la souris et du défilement. De plus, nous
avons étudié comment les mouvements des yeux étaient influencés par le défilement. Nous avons
montré différents comportements avant et pendant le défilement, comprenant la position des
yeux, l’amplitude du défilement et la vitesse de défilement. Ces travaux nous ont permis de
proposer une définition et une segmentation plus précise des événements de défilement. L’objectif
du troisième axe était d’inclure les résultats des axes précédents dans la modélisation du chemin
oculaire lors de l’exploration de pages web afin d’améliorer la précision des prédictions. Les
modèles existants utilisent généralement des images de scènes naturelles et moins des stimuli
tels que les pages web. Dans ce dernier cas, ils utilisent la plupart du temps des captures d’écran
plutôt que des pages webs dont l’exploration requiert un défilement du contenu. Pour résoudre
cette problématique, nous avons proposé le premier modèle saccadique incluant le défilement. De
plus, la modélisation des mouvements oculaires inclut également la prise en compte de certains
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RÉSUMÉ

biais la plupart du temps considérés comme stables tout au long de l’exploration visuelle. Sur
la base de nos résultats, notre approche prend en compte ces différents biais et leur évolution
au cours du temps. Ainsi, l’ensemble de ce travail permet de mettre en avant l’importance de la
dynamique dans la prédiction des mouvements oculaires lors de l’exploration de pages web.
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RÉSUMÉ SUBSTANTIEL DE THÈSE

Cette thèse est le fruit d’une cotutelle de doctorat associant l’Université de Mons en

Belgique, et l’Université de Paris. La thèse étant rédigée en langue anglaise, un résumé

substantiel de la thèse est présenté ci-dessous.

Introduction

L’attention sélective permet de sélectionner les informations les plus pertinentes, en

inhibant les éléments distracteurs tout en rehaussant la cible à viser. L’information

visuelle qui parvient à notre rétine est extrêmement riche. Après une succession d’étapes,

l’information visuelle est acheminée dans le cortex visuel primaire. Par la suite elle est

transmise à différentes aires corticales afin d’extraire les propriétés de l’objet ou bien

d’effectuer des traitements plus complexes tels que l’identification (voie ventrale) ou

la localisation spatiale (voie dorsale). Ces traitements sont essentiellement possibles

lorsque l’objet se situe sur la partie de l’oeil ayant la plus haute acuité visuelle : la

fovéa. Pour ce faire, l’oeil effectue un mouvement appelé saccades permettant d’amener

l’objet d’interêt sur la fovéa. Lorsque nous réalisons une saccade vers un objet, notre

attention se déplace également sur ce dernier : c’est l’attention overt. Ces saccades

peuvent être déclenchée de manière réactive ou volontaires et se distinguent dans leurs

paramètres de latence, de direction et d’amplitude. Après l’exécution d’une saccade,

une période de stabilisation s’ensuit, appelée fixation. La fixation se caractérise par sa

durée et est entrecoupée de mouvements involontaires tels que les microsaccades, les

dérives et les tremblements. Les différents paramètres de la saccade et de la fixation

évoqués ci-dessus évoluent à travers le temps ce qui rend complexe leur étude. Ainsi, une

approche dynamique semble nécessaire afin de mieux appréhender l’exploration visuelle.

C’est dans ce but qu’un ensemble d’études a mis en lien les voies ventrales et dorsales
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RÉSUMÉ SUBSTANTIEL DE THÈSE

avec les mouvements des yeux en y associant deux modes visuels : ambiant et focal. Afin

d’analyser ces modes lors de l’exploration nous avons utilisé deux ratios, le premier est

présenté dans le Poster 1 et le second dans le Poster 2, l’Article 1 et l’Article 3.

Comme l’attention visuelle, l’exploration oculaire peut-être influencée par différents

types de facteurs que l’on peut classer en trois catégories. Les biais oculomoteurs

constituent le premier type de facteurs influençant cette exploration. Ces derniers sont

une combinaison de contraintes physiologiques et de comportements appris au cours de

l’évolution. Le second facteur, dit ascendant, regroupe les éléments propre au stimulus.

Le dernier et troisième facteur, appelé descendant, désigne l’influence des processus

cognitifs associés au contexte. Ces facteurs descendants peuvent également dépendre

du type de stimulus présenté. Par exemple, les pages webs suivent une organisation

similaire à travers le web. Cette organisation présente sur la majorité des sites webs

a mené les utilisateurs à développer des stratégies afin d’optimiser leur exploration

visuelle. On parle alors de biais spécifiques au web. Toutefois, les stimuli web possèdent

une particularité qui les distingue d’une image classique : ils sont interactifs au travers

de la souris. Cette interactivité a mené les recherches à tenter de mieux comprendre le

comportement visuel lors d’évènements tels que le défilement de la page ou le mouvement

de la souris. Ces aspects sont abordés dans les Articles 2 et 3 ainsi que dans le Poster

3. En ce sens, l’étude du mouvement de la souris s’est rapidement concentrée sur la

coordination entre l’oeil et la souris afin d’essayer de prédire les mouvements des yeux en

fonction de la position du curseur. L’étude de cette coordination sera abordée de manière

détaillée dans l’Article 2.

Les yeux sont au centre de la perception visuelle, et à travers l’enchainement des

fixations et des saccades, ils permettent d’acquérir des informations visuelle de manière

efficiente. C’est pourquoi de nombreux modèles ont tenté de reproduire cette mécanique.

Deux types de modèles ont alors émergés: les modèles de saillances et les modèles

saccadiques. Les premiers ont pour objectif de fournir un résumé des endroits visité

par un participant lors de l’exploration d’une scène visuelle. On catégorise souvent

ces modèles selon les types de facteurs qu’ils prennent en compte. D’un côté, nous
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INTRODUCTION

avons les modèles dits ascendants (ou bottom-up), qui ont donné lieux à une littérature

fleurissante, prédisent les régions visitées en se basant sur les caractéristiques du

stimulus. De l’autre côté, nous avons les modèles dits descendants (ou top-down). La

majorité du temps, ces modèles partent d’un modèle ascendant qu’ils "augmentent" avec

des paramètres liés à la tâche, les visages présents, les objets, etc. Bien que moins étendu

que la littérature des modèles ascendants, les modèles descendants sont aujourd’hui au

coeur de l’intérêt des chercheurs. Quant aux seconds types de modèles, leur but est, non

plus de fournir un résumé des régions fixées, mais la séquence détaillée et ordonnée des

zones vues. Ainsi, les paramètres oculomoteurs ont une bien plus grande importance

car ils peuvent influencer le choix de la fixation suivante. C’est pourquoi ce type de

modèle, en plus de modéliser le mécanisme de sélection de la prochaine fixation, modélise

également ces biais. Les biais les plus souvent modélisés étant l’amplitude de saccade,

l’orientation des saccades, la fovéa, et l’inhibition de retour. Toutefois, ces biais sont la

plus part du temps modélisés de la même manière. A la fois les modèles de saillance

et les modèles saccadiques ont été développés pour prédire les mouvements des yeux

lors de l’exploration de scènes naturelles. Lorsque ne nous intéressons aux pages webs,

les modèles se font beaucoup plus rares. Cependant, la modélisation sur page web a

donné lieu à un autre type d’approche : la modélisation de la position de l’oeil en fonction

de la position de la souris. Plusieurs modèles ont été proposés suivant cette approche

mais ils se sont focalisés sur les pages de recherches de moteur de recherche plutôt que

sur les pages webs classiques. A la lumière de tous ces éléments, nous proposons dans

le Chapitre 8 un modèle saccadique sur des pages webs dynamiques. De plus, nous

appliquons les analyses temporelles des paramètres oculaires réalisées dans l’Article 3

afin de proposer une modélisation des biais oculomoteurs basée sur leur évolution dans

le temps.
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RÉSUMÉ SUBSTANTIEL DE THÈSE

Objectifs

Les modèles saccadiques ont pour but de reproduire la dynamique des mouvements des

yeux ainsi que les facteurs l’influençant. La motivation principale derrière ce travail

de thèse est la démonstration de comment l’évolution temporelle des paramètres des

mouvements des yeux ainsi que la dynamique induite par le scroll sont primordiaux

dans la modélisation saccadique sur pages web.

Le premier axe de cette thèse se concentre sur comment résumé la dynamique

des mouvements des yeux en un seul indicateur. Basé sur la définition des modes

de traitements visuels ambient et focal (Pannasch et al., 2008; Unema et al., 2005;

Velichkovsky et al., 2005), nous avons évalué la pertinance des indicateurs existants

(Dehais et al., 2015; Goldberg & Kotval, 1999; Krejtz et al., 2016) lors de l’exploration

d’images naturelles et de pages web.

De nombreuses recherches se sont concentrées sur la coordination entre les yeux et le

curseur de la souris, mais ces études ont porté principalement sur les pages de résultats

des moteurs de recherche (SERP) et ont négligé le défilement (Guo & Agichtein, 2010;

Huang et al., 2012; Rodden et al., 2008). Pour ces raisons, le second axe de cette thèse

vise à analyser le comportement des mouvements oculaires lors de la navigation sur

des pages web de notre quotidien. Pour ce faire, nous avons mis en place deux études

expérimentales et nous avons examiné la relation entre les yeux, le curseur de la souris

et le défilement.

Les deux premiers axes ont permis de mieux comprendre la dynamique des mou-

vements oculaires et la relation entre les yeux, le curseur de la souris et le défilement.

Nous avons utilisé certaines de nos découvertes dans le troisième axe afin d’améliorer

la modélisation saccadique. Ainsi, nous avons proposé un modèle saccadique incluant

un mécanisme de défilement et modélisant l’évolution temporelle des paramètres des

mouvements oculaires. Ce modèle a été évalué sur la base de données de haute qualité

issues des études expérimentales présentées dans le chapitre suivant.
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CONTRIBUTIONS EXPÉRIMENTALES

Contributions expérimentales

Ambient et focal comme indicateurs de la dynamique des

mouvements oculaires

Le premier axe de cette thèse consiste à déterminer comment le traitement visuel

ambient et focal peut décrire la dynamique des mouvements oculaires. Ces modes

visuels trouvent leur origine dans les deux voies (ventrale et dorsale) empruntées par les

informations visuelles dans le cerveau (Goodale & Milner, 1992; Ungerleider & Mishkin,

1982). Comme décrit dans le Chapitre 1, le flux ventral va du cortex occipital au cortex

temporal et transporte des informations sur les caractéristiques des objets ("Quoi"),

tandis que le flux dorsal va du cortex occipital au cortex pariétal et transporte des

informations sur l’emplacement des objets ("Où"). Comme l’explique Velichkovsky et al.

(2005), ces voies visuelles peuvent être directement observées à travers les mouvements

oculaires à l’aide de fixations et de saccades. Une fixation courte suivie d’une saccade

de grande amplitude suggère un mode ambient (voie dorsale), tandis qu’une fixation

longue suivie d’une saccade de petite amplitude suggère un mode focal (voie ventrale)

(Pannasch et al., 2008; Unema et al., 2005; Velichkovsky et al., 2005). Ces deux modes

ont été résumés par la littérature à travers deux ratios principaux (Dehais et al., 2015;

Krejtz et al., 2016).

Nous avons étudié dans le Poster 1 comment le ratio proposé par Dehais et al.

(2015) pouvait être utilisé pour discriminer les tâches lors de la navigation sur les

pages web. Ce rapport a été créé à l’origine par Goldberg and Kotval (1999) pour

caractériser l’exploration visuelle dans les interfaces logicielles, et Dehais et al. (2015)

l’a modifié pour évaluer les modes de traitement visuel dans le contexte d’un cockpit

d’avion. Nous avons appliqué cette version modifiée sur des pages web pour étudier

les modes visuels. Nous avons également introduit l’utilisation des seuils de durée de

fixation et d’amplitude de saccade de Unema et al. (2005) et Pannasch et al. (2008)

pour différencier les fixations/saccades courtes et les fixations/saccades longues. Nous

avons montré que le mode ambient (ou mode d’exploration) était plus intense pendant la
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tâche de visualisation libre que pendant la tâche de recherche visuelle. De plus, nous

avons trouvé des résultats prometteurs montrant qu’un clic pouvait être précédé d’un

mode focal (ou mode d’exploitation). Cependant, ce rapport ne différenciait pas le temps

passé à explorer (saccades) du temps passé à exploiter rapidement l’information (courtes

fixations). Nous avons donc étudié le coefficient K, un ratio proposé par Krejtz et al.

(2016) sur les images naturelles. Contrairement au ratio précédent, le coefficient K a

été spécifiquement conçu pour décrire les modes ambiant et focal. Dans Article 1, nous

avons utilisé le coefficient K pour comparer les mouvements des yeux entre une tâche de

visualisation libre et une tâche de recherche visuelle. Nous avons constaté que le passage

entre les deux modes se faisait à une fréquence élevée, de sorte que la valeur moyenne

du coefficient était proche de zéro. Nous avons montré que, même si des différences

globales n’apparaissaient pas, la dynamique des modes visuels entre les tâches mettait

en évidence des différences dans le temps. De plus, nous avons réussi à différencier

globalement les tâches en introduisant de nouvelles variables liées au coefficient K. Enfin,

nous avons reproduit ces résultats sur des pages web dans le Poster 2. Nous avons

montré que le coefficient K ne pouvait pas différencier les tâches globalement, mais en

utilisant ces variables liées à K, nous avons pu mieux les différencier globalement et

dans le temps.

Comportement des mouvements oculaires sur les pages web

Le second axe de ce travail avait pour but d’étudier le comportement des mouvements

oculaires sur les pages web à travers la relation entre les yeux, le mouvement du

pointeur de la souris et le défilement. Les pages web doivent être étudiées différemment

des images en raison des interactions possibles avec la page web. Ces interactions

peuvent prendre plusieurs formes, notamment les clics, le défilement et le glisser-déposer.

Alors que les clics et les glisser-déposer sont un moyen de modifier ou de mettre à jour

directement le contenu, le défilement est davantage une découverte du contenu.

La plupart des études sur le comportement de défilement se concentrent sur le com-

portement des mouvements oculaires lors du défilement et de la lecture de documents
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textuels (voir Dyson (2004) pour une revue), mais peu d’études ont examiné ce comporte-

ment sur les pages web. La relation entre les yeux et le défilement est encore moins

étudiée. Pourtant, le défilement est utilisé par des milliards de personnes lorsqu’elles ac-

cèdent à internet ou à un smartphone. C’est pourquoi nous avons étudié la relation entre

les yeux et le défilement sur les pages web dans le Poster 3 et l’Article 2. Nous avons

montré que l’emplacement des yeux pouvait être utilisé pour déduire les paramètres du

défilement en cours ou celui précédent. Par exemple, nous avons observé que lors d’un

défilement rapide, nous avions tendance à orienter nos yeux dans la direction opposée

du défilement.

Ensuite, nous avons analysé la relation entre le curseur de la souris et les yeux dans

l’Article 2. Il est intéressant de noter que l’étude de cette relation a suscité beaucoup

d’intérêt de la part des moteurs de recherche, tels que Google et Microsoft. En raison de

la nature de ces sociétés, la grande majorité des études sur ce sujet ont été réalisées sur

des pages de résultats de ces mêmes moteurs de recherche (Search Engine Result Page

(SERP)). Le problème est que ces pages web ne sont pas représentatives du web que

nous utilisons tous les jours. Dans l’Article 2, nous avons étudié cette relation sur des

pages web classiques et proposé un modèle pour estimer la position des yeux en fonction

de la position du curseur de la souris. Comme dans pour les SERP, nous avons montré

que la coordination entre les yeux et le curseur de la souris était meilleure sur l’axe

vertical. Cependant, nous avons montré que lorsque les participants étaient sur le point

de cliquer, la coordination entre les yeux et la souris sur l’axe horizontal augmentait.

Jusqu’à présent, les relations entre les yeux et le défilement, ou entre les yeux et la

souris, ont surtout été étudiées d’un point de vue des zones d’intérêt. Par exemple, les

mesures classiques comprennent la durée de la fixation des yeux dans une zone donnée,

ou le nombre de clics nécessaires pour atteindre la cible désignée. La littérature sur la

description statistique des mouvements des yeux sur les pages web, les mouvements

de la souris et le défilement est très rare. Pour ces raisons, nous avons proposé dans

l’Article 3 une description statistique détaillée des mouvements des yeux sur les pages

web ainsi que des mouvements de la souris et du défilement. Cette analyse comprenait
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des paramètres globaux et leur évolution dans le temps. En outre, afin d’évaluer si les

modes ambient et focal peuvent être généralisés à la souris et au défilement, nous avons

étendu l’utilisation du coefficient K (Krejtz et al., 2016) à l’analyse de la dynamique de la

souris. Nous avons constaté que les paramètres liés à l’œil et à la saccade de la souris

diminuaient au fil du temps, tandis que les paramètres de défilement augmentaient.

Inversement, les paramètres liés à la fixation des yeux et des souris augmentaient avec

le temps, tandis que les paramètres de défilement diminuaient. Dans les deux cas, les

paramètres de l’oeil et de la souris ont suivi le même schéma, et les paramètres de

défilement ont suivi le schéma opposé. Il est intéressant de noter que ces observations

étaient cohérentes d’une tâche à l’autre.

Modélisation des mouvements oculaires sur les pages web

Nous avons proposé dans cette section l’implémentation d’un mécanisme reproduisant le

scroll afin de mieux modéliser les mouvements oculaires lors de l’exploration visuelle de

pages webs. Nous avons également proposé la prise en compte des durées des fixations,

de l’amplitude de saccade et la direction des saccades à travers le temps. Cela nous à

permis d’évaluer et d’analyser la qualité des chemins oculaires globalement et à travers le

temps. Nous avons montré que notre modèle obtenait les meilleurs résultats concernant

la longueur des saccades, la direction des saccades et la durée des fixations. De plus,

nous montrons que bien que notre modélisation soit meilleure sur ces aspects, elle n’est

pas constante dans le temps. On remarque particulièrement que la qualité de prédiction

des directions des saccades diminue avec le temps alors que celle des longueurs des

saccades reste stable. Cependant, malgré un scanpath plus plausible biologiquement,

nous n’avons pas amélioré l’état de l’art lorsque comparé avec les métriques de saillance.

Conclusion

Au carrefour de plusieurs domaines de recherche, le but de cette thèse était de démontrer

l’importance de la dynamique dans la compréhension et la prédiction des mouvements
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oculaires. Les études jusqu’à présent se sont principalement concentrées sur la prédiction

de l’emplacement de la prochaine fixation et sur les facteurs qui pourraient globalement

influencer le choix de cette prochaine fixation. Directement héritées du domaine de

la modélisation de la saillance, ces études ont négligé la modulation temporelle des

paramètres des mouvements oculaires.

Nous avons montré que l’exploration visuelle pouvait être influencée par des éléments

dynamiques provenant de sources multiples. La première se référait à la dynamique

du stimulus lui-même. Nous avons souligné que lors de l’exploration de pages web, le

défilement avait une influence sur les paramètres des mouvements oculaires. Cette

influence pouvait se produire soit avant, soit pendant le défilement. La deuxième source

se situait dans les paramètres de mouvement des yeux. Nous avons montré que ces

paramètres évoluaient au fil du temps lors de la navigation sur une page web. Nous

avons ensuite décrit les avantages de l’intégration de ces deux sources de dynamique

dans un modèle saccadique, et évalué la plausibilité du parcours oculaire généré grâce à

des mesures temporelles dédiées.

Les modèles saccadiques et de saillance sont déjà utilisés pour prédire le comporte-

ment des internautes afin d’afficher des informations plus précises ou plus spécifiques là

où elles ont le plus de chances d’être vues. Mais, le principal avantage de ces modèles

réside dans le fait qu’ils peuvent être adaptés à une grande variété de domaines présen-

tant des problématiques spécifiques, tels que l’ergonomie des logiciels, les jeux, la réalité

virtuelle, les outils éducatifs, ou même les utilisations cliniques.
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FOREWORD

V
isual perception refers to the ability to observe and analyse our environment.

Also known as vision for action, our interaction with the world fundamentally

depends on acquiring and understanding visual information so that we can act

accordingly.

To cope with the abundance of available information we perceive, we developed

physiological and cognitive mechanisms. The first mechanism concerns the very way we

access visual information: eye movements. Although seeing seems to require little effort,

a very large number of underlying cognitive processes and a complex set of muscles are

constantly interacting for this sole purpose. For instance, it is not possible for us to see

the entire visual environment at the same time. In order to explore a visual scene, our

eyes have to make "jumps" called saccades to move from one location to another. It is

between two saccades that our eyes stabilise to acquire information; we then speak of

fixations. Thus, the visual exploration of our environment consists of an infinite sequence

of fixations and saccades. The second mechanism allowing us to cope with the abundance

of information that is continuously available is our attention. Attention acts as a filter

that allows us to ignore distracting information to avoid our brain overloading. For

example, when we cross the road, we direct our attention to the incoming car rather than

to the colour of the sky. During this short period of time, we also give less importance to

other visual information.

The complexity of the visual system is of greater importance as our behaviour evolves

according to the context or the type of stimulus being visualised. For instance, we are

not going to look in the same way at a landscape, a portrait or a web page. But the

complexity of the functions related to vision does not stop there. Our behaviour not only

changes according to what we see, but also according to our goals. For example, when we

browse a website, we are not going to look at the same thing depending on whether we
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are looking for a particular photo or a specific paragraph in a text.

To study the complexity of the visual system, we investigate the oculomotor behaviour

on web pages. Invented at the beginning of the 1990s, the web has contributed to a

massive and rapid diffusion of knowledge accessible to all. This information explosion

has totally transformed our society and is still the source of many changes to come.

Through websites, we now have access to an unprecedented amount of information, so

much that at the end we tend to remember how to access information rather than the

information itself. Therefore, understanding how we access information and what draw

our attention on this particular medium is of critical importance.

Many researchers have been trying to understand the complexity of visual perception

on web pages through two main approaches: experimental psychology and modelling.

The aim of the first approach is to set up a scientific experiment to observe the behaviour

response of participants. In this manuscript we will present two experimental studies

to help us understand oculomotor behaviour when browsing web pages. The aim of

the second approach is to approximate human behaviour by using algorithms and

mathematics to predict where we look. If a model correctly predicts a behaviour, then we

have probably well identified and reproduced the variables that influence this behaviour.

Here, we will evoke models predicting where we orient our attention and where we are

gazing. We will particularly focus on models attempting to predict eyes’ location. These

types of models usually implement factors influencing visual exploration as constant

behaviour over the entire visual exploration. What we propose is to take the temporal

aspect of these factors into account. More specifically, we focus on eye parameter dynamic

modelling to improve the quality of prediction on visual exploration of web pages.

This thesis is organised into three main parts. First of all, the General Introduction

(Part I) is dedicated to describe key theoretical concepts in the vision framework used in

this work. Chapter 1 introduces the architecture of the Human Visual System (HVS)

and its functioning. We also present attentional mechanisms and their links to vision.

At the end of this chapter, a particular focus is done on how the study of the dynamic of

eyes movements could help to better understand the oculomotor behaviour. Chapter 2
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lists the most important factors influencing visual exploration, usually categorised in

two different types: bottom-up and top-down. Bottom-up factors designate stimulus-

dependent characteristics influencing visual exploration, such as colour, luminance,

shape, etc. While top-down factors designate cognitive processes influencing visual

exploration, including goal, expertise, emotions, etc. These factors will be addressed

on natural images and web pages along with systematic tendencies, or biases in the

manner we explore visual scenes. In Chapter 3 a selection of models predicting where

we orient our attention are introduced. Then, an extensive number of models predicting

eye movements is established with a particular focus on how oculomotor biases are

implemented across the different presented approaches.

Then, Part II presents contributions produced during this thesis. More specifically,

Chapter 4 outlines the general methodology used in the two experiments of this work.

Chapter 5 describes the validation framework developed during this thesis to evaluate

our model and compare it to others. Chapter 6 presents results from the first axis of

this thesis which consists in investigating how the dynamics of eye movements can be

summarised as an indicator. Based on ambient and focal visual processing modes we

evaluate the relevance of existing indicators on natural images and web pages. Chapter 7

explores the second axis of this thesis consisting in the study of eye movement behaviour

when browsing real web pages. The third axis of this work is described in Chapter 8. We

present a model predicting where we look using eye movement parameters evolution

over time.

Finally, the General Discussion is introduced in Part III of this document. Our

contributions to the improvement of the visual exploration understanding and modelling

on web pages are summarised and discussed in Chapter 9. Theoretical and practical

perspectives induced by these discussions are presented in Chapter 10.
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General introduction
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CHAPTER 1. THE VISUO-MOTOR SYSTEM

V
ision enables the perception and the understanding of our surrounding environ-

ment through physiological and cognitive mechanisms. As anyone can observe,

visual information is abundant in our environment, but we are not able to

process it all at once. That is why the large quantity of visual information collected by

the eyes first needs to be filtered. This is where Attention comes in. While the eyes and

more generally the visual system gather visual information, attention and more specifi-

cally visual attention acts as a filter to prevent this information from overloading our

brain. In this chapter we first explain basic attention mechanisms. Then we address the

physiology of the visual system and eye movements. Finally, we tackle eye movements

temporal dynamic.

1.1 Visual attention

Attention can be described as the focus of mental activity on a specific object. Since

William James (James, 1890), numerous theories contributed to a better understanding

of attention mechanisms. Nowadays, Attention is typically separated in two systems:

exogenous attention and endogenous attention (for a synthesis see Maquestiaux (2013)).

1.1.1 Exogenous attention

There are multiple examples of how our attention can be unintentionally captured by

an element of our surrounding. For example, when driving a car, we are focusing on

the road to ensure our car is securely heading the right way at the right speed and

at a correct distance from other cars. But if a pedestrian suddenly crosses the road,

there is a high probability that we will notice it almost instantly. In this situation,

attention is unintentionally and automatically shifted to an exogenous stimulus, here,

the pedestrian. This phenomenon is called attentional capture and is also referred to

as bottom-up attention. In visual context, bottom-up attention or attentional capture

is generally driven by physical characteristics of a stimulus, such as, luminance, shape,
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colour, etc. We tend to be influenced by these characteristics the first couple of seconds of

the visual exploration (Buswell, 1935; Karpov et al., 1968).

1.1.2 Endogenous attention

Fortunately, attention can also be intentionally directed. For instance, watching driving

requires a voluntary endogenous maintenance of attention during a long period of time.

Such maintenance is called sustained attention and is involved in any daily activities

we have like reading, cooking, working, studying, etc. Tasks however require more or

less attentional resources and; while a demanding task such as memorisation requires

all attentional resources available, a less demanding task will allow us to divide our

attention between two or more simultaneous tasks. This type of attention is called

divided attention. It allows us to multitask, but the main disadvantage is that each

action will likely be executed with less accuracy. In comparison, selective attention is a

voluntary focus of attention on a specific task or stimulus while inhibiting an exogenous

distractor. Helmholtz (1896) and Shepherd et al. (1986) showed that it is possible to

orient our attention without eye movements, but Shepherd et al. (1986) specified that

making a saccade necessarily involved the orientation of our attention to the target

location. The link between saccade and attention has been confirmed numerous times

since (e.g. Collins & Doré-Mazars, 2006; Deubel & Schneider, 1996; Doré-Mazars &

Collins, 2005).

1.1.3 Attention orienting

The ability to direct our attention on a part of our visual field without looking at it

is called covert attention. The opposite behaviour, which consists in moving our eyes

and/or our head to put the element of interest on the fovea, is called overt attention. The

fovea designates the area of the retina where the vision of details is the most accurate.

In a set of famous experiments, Posner and collaborators (Posner, 1980; Posner et al.,

1978) demonstrated how visuo-spatial attention could be oriented like a spotlight. In the

Posner’s paradigm described in Figure 1.1, participants are asked to fixate the centre
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Figure 1.1 – The Posner central cueing paradigm. The target is preceded by a cue
displayed at the centre of the screen. This cue can either be a plus sign (neutral) or an
arrow (valid or invalid) indicating the location where the target may appears. Once the
target is displayed, the participant respond as quickly as possible without moving the
eyes where the target appeared (covert attention). Adapted from Findlay and Gilchrist
(p. 37 2003).

of the screen during the entire experiment (covert attention). A cue is displayed at the

centre of the screen, and can either take the form of a plus sign (neutral cue), or of an

arrow pointing on the left or right side. Then a target is displayed either on the right or

on the left side of the central cue. Once the target appears, the participant is instructed

to press, as quickly as possible, on the keyboard the arrow button pointing the same

side as the target. During this experiment, two cueing conditions (excepted neutral

cue) are presented at the centre of the screen to the participant. In both conditions,

an arrow is used as the cue in order to imply an additional cognitive process involving

endogenous component of attention. This additional process corresponds to the voluntary

and controlled orientation of the participant’s attention on the location pointed by the

arrow. In 80% of the trials, the target’s appearance is correctly cued (valid cue), which

means that the cue correctly indicates where the target will appear. In the remaining

20%, the target appears in the opposite direction from the cue (invalid cue). Such large

proportion (>50% above chance) of valid cues enables the participant to "trust the cue"

and to voluntarily establish a strategy. In this case, endogenous attention takes a greater
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part in the orienting of the attention than exogenous. If however, the proportion of valid

and invalid cues is set to 50%-50%, the participants will not develop a strategy, and their

attention will be captured by the onset of the target. Hence, exogenous attention will take

a greater part in the orienting of the attention than endogenous. Results are analysed in

terms of costs and benefits. Reaction times in the neutral condition are subtracted to

reaction times in the valid and invalid conditions. If the difference is greater than zero,

valid or invalid condition is considered beneficial (in terms of reaction times) compared

to the neutral condition. If the difference is lower than zero, valid or invalid condition is

considered more costly (in terms of reaction times) than the neutral condition. Posner

(1980) showed that during the valid cue condition participants indicated the correct

side the target would appear faster than during neutral cue condition and invalid cue

condition. Later on, Posner and Cohen (1984) reproduced the same experiment but with

longer intervals between the disappearance of the cue and the appearance of the target.

Contrary to the first series of experiments, they observed longer reaction time in the

valid cue condition. They explained this behaviour by a process that would prevent

attention from returning to a previously explored location: Inhibition Of Return (IOR).

More specifically, this behaviour would be the result of an automatic inhibitor mechanism

preventing the oculomotor system from exploring twice a same location, so it can be faster

and more efficient during the rest of the visual exploration of the environment. IOR

would modify our visual scanning by reducing the number of eye movements directed to

the locations previously fixated. In addition, it has been shown that IOR could not occur

without eye movements which suggests that IOR could be related to oculomotor system

activation (for an extensive review see Klein (2000)).

1.2 The visual system

The visual system designates all the physiological structures involved in the capacity

of seeing. When focusing our attention on a visible object, the light is reflected on this

object to enter the main structure of the visual system, the eyes.
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Figure 1.2 – Photoreceptors distribution on the retina. The retina is composed of
cones and rods. Cones (in green) are mostly found in the fovea where acuity is maximal,
and their density decreases with the eccentricity. In contrast, rods (in blue) are mostly
found in the periphery and their density increases with the eccentricity. The optic disk
corresponds to the area with no photoreceptors, this is where the optic nerve starts.
From Mustafi et al. (2009).

1.2.1 Neurophysiological architecture

Once the light enter the eyes, it goes through the multiple layers of the eyes to finally

running out on the retina. The last layer of the retina is composed of a multitude of cells,

called photoreceptors, able to transform a light beam into a nervous signal. They can be

categorised into two types: cones and rods (Osterberg, 1935). The cones are responsible

for coloured and detailed vision involved, for example, in object recognition, while the

rods are responsible for achromatic and global vision involved, for example, in night

vision. These two types of photoreceptors are unevenly distributed across the retina (see

Figure 1.2). The cones are mostly concentrated in its central region, called the "fovea",

corresponding to approximately 2 degrees of visual angle, while the rods are mainly

present at the periphery. The visual angle is the common unit to designate the size of an

object on the retina.

Once the photoreceptors convert the light beam into a nervous impulse, the signal
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Figure 1.3 – Retina cells organisation. Photoreceptors convert the visual information
into a nervous impulse successively transmitted to horizontal, bipolar, amacrines and
ganglion cells axones finally form to the optic nerve. Image adapted from Keeling et al.
(2018).

is sent to several cells within the retina (Figure 1.3). The signal is first transmitted

to the bipolar and horizontal cells which relay the visual information to amacrine and

ganglion cells (Cowey, 1964). Ganglion cells’ axons then gather to constitute the optic

nerve which project to the brain. In the fovea, a single cone is connected to a single

bipolar cell, which send information to a single ganglion. The further away from the

fovea, the more multiple photoreceptors send information to a single bipolar cell and the

more bipolar cells relay information to a single ganglion cell. The level of convergence

determines our level of visual acuity (Cowey, 1964).

As described in Figure 1.4, the optical nerve does not go straight to the visual cortex

area in the occipital brain. First, the nasal hemiretina of the left eye crosses the nasal

hemiretina of the right eye without fusing with it. However, hemifields are grouped:

what we see on the right side of the retina will go to the right path and what we see

on the left side of the retina will go to the left path. It should be noted that the right

hemifield of the retina captures the left part of our visual field and the left hemifield

of the retina captures the right part of our visual field. This intersection is called the
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Figure 1.4 – Visual system neuroanatomic architecture. The left visual field is
projected on the left nasal hemiretina and the right temporal hemiretina (in red). The
left nasal hemiretina decussates on the optic chiasma to continue to the right primary
visual cortex. Thus, the left visual field is processed by the right primary visual cortex
and the right visual field is processed by the left primary visual cortex. Adapted from
Gazzaniga et al. (2001).

optic chiasma and the resulting newly grouped optic nerves are called optic tracts. From

there, 80 to 90% of the fibre composing the optic tracts project to the Lateral Geniculate

Nucleus (LGN) of the thalamus, this is the primary visual pathway. The remaining 10 to

20% break in four different paths, this is the secondary visual pathway. From the LGN,

primary visual pathway runs out in the primary visual area through the optic radiation.

The visual cortex consists of different areas distinguished by their functional speciali-

sation. After arriving in the primary visual area (V1), visual information is transmitted

to the secondary visual area (V2) which then projects the information on multiple vi-

sual areas V3, V4 and V5. These areas are sensitive to different characteristics, such

as, colour, movement or shape of stimuli. For instance, V1 area reportedly creates a

saliency map of visual inputs based on low-level features (colour, luminance, etc) to guide

attentional shifts to salient locations (Zhang et al., 2012), while V2 is more sensitive to

orientation and spatial frequency.
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Figure 1.5 – Illustration of the two visual pathways. In green, the dorsal stream
(vision for action) goes from the visual primary area to the posterior parietal lobe. In
purple, the ventral stream (vision for recognition) going from in visual primary area to
the inferior temporal lobe. Image adapted from Ungerleider and Mishkin (1982).

To process visual information, these visual areas communicate between each other

and with more than 30 different areas of the brain that process visual information.

Through the literature, numerous functional dichotomies have been suggested to ex-

plain the distribution of these cortical areas. The most notable being ambient-focal

(Trevarthen, 1968), noticing-examining (Weiskrantz, 1972), spatial-figural (Breitmeyer

& Ganz, 1976) or ambient-foveal (Stone et al., 1979) dichotomy. Ungerleider and Mishkin

(1982) demonstrated that these visual pathways are involved in two specific cognitive

mechanisms: visual recognition and visuospatial awareness. They found that a bilateral

lesion on the occipito-temporal cortex in monkeys disrupted object recognition, while a

bilateral lesion of the occipito-parietal cortex disrupted visuospatial awareness. They

proposed then that the visual cortex is divided in two main systems: ventral and dorsal

pathways (see Figure 1.5). Ventral stream goes from the occipital to the temporal cortex

and carry information about which object is being seen, while the dorsal stream goes

from occipital to parietal cortex and carry information about the object location. Later,

Goodale and Milner (1992) proposed a nuance to the original dichotomy. In their ver-
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sion, the ventral stream keeps a similar function as previously described and is called

Vision for Recognition, while the dorsal stream is supposedly more related to visually

guided movements and is named Vision for Action. Both studies indicated that the two

streams are independent and distinct, however recent studies highlighted that they are

extensively interconnected (see Milner (2017) and Rossetti et al. (2017) for reviews). A

group of studies (Bullier et al., 1996; Morel & Bullier, 1990) suggested an alternative

explanation for the dichotomy proposed by Goodale and Milner (1992) based on the

time needed to process the visual information. The ventral stream would be the slow

pathway involving, for instance, object recognition, and the dorsal stream would be the

fast pathway involving, for example, the quick analysis of an object’s global shape in the

environment.

Independently of the cognitive functions covered by each of the two streams, to

recognise or reach an object, it is better to put first this object on the centre of our fovea.

To do so, we execute jerky eye movements called saccades.

1.2.2 Saccades

Detailed vision is possible when the object of interest is on the fovea. The action of

moving the fovea around and enhancing the exploration of the environment is called a

saccade. We make around 200 000 saccades a day, which is the most frequent movement

a human will make through his life.

As represented in Figure 1.6, each eye is controlled by three pairs of antagonists

muscles providing a wide variety of movements to explore our environment (Porter et al.,

1995):

• Horizontal movements are the result of the action of the lateral and medial rectus

muscles.

• Vertical movements are achieved by the action of the inferior and superior rectus

muscles combined with the action of the inferior and superior oblique muscles.
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Figure 1.6 – Extraocular muscles. Each eye is controlled by three pairs of antagonists
muscles. The first pair designates the lateral and medial rectus muscles. The second pair
refers to the inferior and superior rectus muscles. The third pair identifies the inferior
and superior oblique muscles. Image adapted from Betts et al. (2013).

• Torsion movements are made possible by the action of the inferior and superior

oblique muscles.

In order to execute a saccade, extraocular muscles on the same direction as the

movement need to be contracted and antagonist muscles need to be released to allow

the eyes to move in the desired direction. Saccades can be categorised based on the

type of events that can trigger them: exogenous or endogenous (Leigh & Zee, 2006).

Exogenous or reactive saccades are triggered by the sudden appearance of a stimulus

within the visual field. Hence, they are triggered automatically and quickly. On the

contrary, endogenous or voluntary saccades are intentionally triggered to move the fovea

toward an object of interest. They are typically controlled and slower than reactive

saccades. To understand this difference, we need to go back to the primary visual cortex.

In addition to the already cited cortex areas, V1 also transmit information to the Parietal

Eye Field (PEF). The PEF then projects to the superior colliculus (SC) which represents

an important relay for saccade generation. The V1-PEF-SC pathway is the path taken

to generate reactive saccades. The PEF also projects to the Frontal Eye Field (FEF)

which projects in turn to the superior colliculus. The V1-PEF-FEF-SC is involved in the

generation of voluntary saccades.
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Classically, in the saccade domain, the main studied parameters are the latency, the

direction and the amplitude of the saccade First, the latency designates the time between

the display of a target and the start of the eye movement. The saccade is also described

by its direction. Finally, the amplitude corresponds to the difference between the position

of the eye at the end of the saccade and its starting position. In ecological situation,

saccades amplitude, with no head movements, is generally smaller than 15 degrees of

visual angle (Gilchrist, 2011). After the saccade has been executed, ensues most of the

time, a stabilisation period, called fixation.

1.2.3 Fixations

As we can guess by its name, the role of a fixation is to immobilise the eyes during

a long enough period of time to grasp details about a visual stimulus. Although we

perceive a steady image when fixating, fixation is more about stabilisation and low speed

displacement of the image on the fovea than a proper immobilisation (Fischer et al., 1997).

Actually, Ditchburn and Ginsborg (1952) showed that if an image is maintained stable

on the retina, vision is fading. It should be noticed that during high-speed movements of

the eyes, that is saccades, the acquisition of information is also limited (Burr & Ross,

1982).

To ensure the image is stabilised on the retina during a fixation, three types of

movements occur during a fixation. The movements to stabilise an image on the retina

during a fixation are called microsaccades. Drifts are slow curvy movements occurring

between microsaccades. Finally, tremors are very fast and extremely small oscillations

superimposed on drifts (Martinez-Conde et al., 2009).

Another particularity is that during fixations, spontaneous saccades are suppressed

to maintain the gaze on the target. Overall, this show us that fixating is not a passive

mechanism but rather an active process allowing us to grasp details on our surrounding

environment.

To study visual fixation the main parameter is its duration which designates the

period of time between two saccades. When observing pictures, fixations’ duration is
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usually around 300 to 350 milliseconds Mackworth and Morandi, 1967; Yarbus, 1967.

However, as for saccade amplitude, fixation duration evolves over time and needs specific

analyses. A dynamic approach is then necessary to better understand visual exploration.

1.3 Eye movements dynamic

Visual information is acquired through a succession of fixations and saccades distributed

in time and space. The role of vision is to aggregate these sequences to build a comprehen-

sive overview of the visual context. Since visual representations are progressively built

through saccades and fixations, the study of their parameters is of particular interest.

That is why, the evolution of Fixation Duration (FD) and the Saccade Amplitude (SA)

over time, has been particularly used to study and better understand visual exploration.

Figure 1.7 – FD and SA time courses. Left figure shows the increase of FD as a
function of time, while right figure shows the decrease of SA over time. The error bars
represent the 95% confidence interval. The dotted line designate predicted values from
an exponential function. Adapted from Unema et al. (2005).

1.3.1 Fixation duration and saccade amplitude time courses

Buswell (1935) was the first to observe an evolution of FD and SA when exploring

paintings. He described two patterns: short fixations during the global scanning of the

scene, and longer fixations in more limited areas, usually occurring after the scanning
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phase. Comparably, Karpov et al. (1968) noted the presence of an orienting phase during

which salient characteristics were explored, followed by a period in which people fixated

the most informative elements. Antes (1974), like Buswell (1935), showed a constant

increase of mean FD and a constant decrease of mean SA during the exploration of 10

pictures. He also described two phases; participants were progressively shifting from

long saccades and short fixations on informative components to longer and more frequent

fixations on less informative details. Irwin and Zelinsky (2002) reported a relationship

between fixation durations and the duration of the visual exploration: the longer the

exploration time was, the longer the fixations were. This relationship was confirmed

by Velichkovsky et al. (2005) but only for the first 2 to 3 fixations. Unema et al. (2005)

finally replicated previous findings by reporting a steady increase in fixation duration

over the first few seconds of the exploration and a following a continuous decrease of

saccade amplitude (see Figure 1.7).

1.3.2 Two visual processing modes: ambient and focal

Figure 1.8 – Visual modes dichotomy as defined by Pannasch et al. (2008). The
focal visual mode designates a long fixation (> 180ms) followed by a short saccade (<5°)
and the ambient visual mode designates a short fixation (< 180ms) followed by a long
saccade (>5°).

To better describe the relationship between fixations and saccades, Unema et al. (2005)

ran an experiment in which participants were asked to visually explore computer-
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generated scenes. Participants were presented with two similar scenes in which 8 or

16 objects were disseminated on a shelf. Participants had to locate and recognise the

different objects. They noted that localisation performance was similar in both conditions.

They however showed that recognition was faster in the 8 objects condition. This is easily

explained by the fact that visual recognition requires more processing. Since more objects

were present in the 16 objects condition, less objects could be recognised in the given time.

As Velichkovsky et al. (2005) stated, this recognition/location dichotomy is likely directly

related to the ventral/dorsal dichotomy of visual pathways. In their work, Velichkovsky

et al. were the first to link Trevarthen’s focal-ambient dichotomy (Trevarthen, 1968) to

eye movements. They identified two distinct segments of eye movements: ambient and

focal visual modes (see Figure 1.8). The first one was defined as a short fixation (from 90

to 260ms) related to a large following saccade (>5°), while the second was characterised

by a long fixation, 260 to 280ms, followed by a saccade within the parafoveal region. This

definition was then clarified by Pannasch et al. (2008). They defined the ambient visual

mode as a fixation shorter than 180ms (Unema et al., 2005) followed by a saccade longer

than 5° (Velichkovsky et al., 2005) and the focal visual mode as a fixation longer than

180ms followed by a saccade shorter than 5° of visual angle. The ambient mode would

allow a wide exploration of the stimulus (dorsal stream), while the focal mode would

focus on the information exploitation (ventral stream) (Tatler & Vincent, 2008).

This is the definition of visual modes we chose in this thesis when we describe and

interpret the dynamic of eye movements on complex scenes, such as web pages.

1.3.3 The evaluation of visual modes

As we have seen in the previous section, the definition of visual modes’ is based on a

fixation duration and the following saccade amplitude Thus, FD and SA time courses

must be assessed in order to determine which visual mode is being used. Nevertheless,

the study of both parameters’ time courses in multiple participants happens to be

extremely complex and hard to interpret. For this reason, Krejtz et al. (2016) designed

a synthetic ratio describing visual modes and their intensity: the K coefficient. Even
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though, this coefficient is the first one specifically created to describe ambient and focal

visual modes, other attempts have been made. The oldest attempt was the ratio proposed

by Goldberg and Kotval (1999). In their work, they used a ratio that represented the

time spent processing (fixation) by the time spent searching (saccades). This ratio is

anterior to the formal definition of visual modes by Velichkovsky et al. (2005), but it is

clearly trying to synthesise a phenomenon related to ambient and focal modes. More

recently, an enhanced version of this ratio has been developed by Dehais et al. (2015) in

the context of surprise in a plane cockpit. They first divided fixations in short and long

fixations. Then, short fixations were added up to saccades to represent the time spent

scanning a visual scene; and long fixations represented the time spent processing the

stimulus on their own.

All ratios presented here share the same approach and provide a global indicator

describing which visual mode dominated the visual exploration. The main limit to such

an approach, is that the use of a global ratio to describe a dynamic process causes a lost

of a large amount of information. Hence, to better estimate the time course of ambient

and focal visual modes, we decided to modified Dehais et al. (2015) ratio (Poster 1).

Unfortunately, this ratio could not take saccade amplitude into account to correctly asses

visual processing modes, so we switched to Krejtz et al. (2016) coefficient. Contrary

to the first ratio, the K coefficient has been used to report the evolution of the visual

modes using time bins. Nevertheless, because web pages are particularly complexes

(see Chapter 2) and the duration of exploration important, we proposed to extend this

approach by developing complementary K-based indicators (Article 1 and Poster 2).

Finally, to investigate if the ambient-focal dichotomy was relevant to other behaviours

that occur during the exploration of a web page, we applied the K coefficient and our new

indicators on computer mouse dynamic and scrolling (Article 3).

56



1.3. EYE MOVEMENTS DYNAMIC

Chapter 1 summary

Selective attention allows us to select the most relevant information, inhibiting dis-

tracting elements and enhancing the target to be aimed at. The visual information that

reaches our retina is extremely rich. After a succession of steps, the visual information

is conveyed into the primary visual cortex. It is then transmitted to different cortical

areas in order to extract the object’s properties or to perform more complex treatments

such as identification (ventral pathway) or spatial localisation (dorsal pathway). These

treatments are essentially possible when the object is located in the part of the eye with

the highest visual acuity: the fovea. To do this, the eye performs a movement called

saccades to bring the object of interest to the fovea. When we make a saccade towards

an object, our attention is also shifted on it: this is the overt attention. These saccades can

be triggered reactively or voluntarily and differ in their parameters of latency, direction

and amplitude. After the execution of a saccade, a period of stabilisation follows, called

fixation. Fixation is characterised by its duration and is interspersed with involuntary

movements such as microaccades, drifts, and tremors. The various parameters of saccade

and fixation mentioned above change over time and make it complex to study. Thus, a

dynamic approach seems a more precise understanding of visual exploration. To this

end, a series of studies have linked the ventral and dorsal pathways with eye movements

by associating two visual modes: ambient and focal. In order to analyse these modes

during exploration we used two ratios, the first one is presented in the Poster 1 and the

second one in the Poster 2, Article 1 and Article 3.
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Résumé du chapitre 1

L’attention sélective permet de sélectionner les informations les plus pertinentes, en

inhibant les éléments distracteurs tout en rehaussant la cible à viser. L’information

visuelle qui parvient à notre rétine est extrêmement riche. Après une succession d’étapes,

l’information visuelle est acheminée dans le cortex visuel primaire. Par la suite elle est

transmise à différentes aires corticales afin d’extraire les propriétés de l’objet ou bien

d’effectuer des traitements plus complexes tels que l’identification (voie ventrale) ou

la localisation spatiale (voie dorsale). Ces traitements sont essentiellement possibles

lorsque l’objet se situe sur la partie de l’oeil ayant la plus haute acuité visuelle : la fovéa.

Pour ce faire, l’oeil effectue un mouvement appelé saccades permettant d’amener l’objet

d’interêt sur la fovéa. Lorsque nous réalisons une saccade vers un objet, notre attention

se déplace également sur ce dernier : c’est l’attention overt. Ces saccades peuvent être

déclenchée de manière réactive ou volontaires et se distinguent dans leurs paramètres

de latence, de direction et d’amplitude. Après l’exécution d’une saccade, une période de

stabilisation s’ensuit, appelée fixation. La fixation se caractérise par sa durée et est

entrecoupée de mouvements involontaires tels que les microsaccades, les dérives et les

tremblements. Les différents paramètres de la saccade et de la fixation évoqués ci-dessus

évoluent à travers le temps ce qui rend complexe leur étude. Ainsi, une approche

dynamique semble nécessaire afin de mieux appréhender l’exploration visuelle. C’est

dans ce but qu’un ensemble d’études a mis en lien les voies ventrales et dorsales avec

les mouvements des yeux en y associant deux modes visuels : ambiant et focal. Afin

d’analyser ces modes lors de l’exploration nous avons utilisé deux ratios, le premier est

présenté dans le Poster 1 et le second dans le Poster 2, Article 1 et Article 3.
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CHAPTER 2. FACTORS INFLUENCING VISUAL EXPLORATION

I
n Chapter 1, we described how the visual system works and more globally the

different mechanisms involved in vision. We also detailed how attention is related

to vision and more specifically to eye movements. One of the goals of this thesis

is to investigate eye movement behaviour when exploring a web page. A behaviour

can be defined as the "Manner of being and acting of Animals and Humans, objective

manifestations of their global activity" (p. 153 Piéron, 1994). In the context of this thesis,

it corresponds to the distinctive characteristics of the visual exploration, defined by

factors as fixation duration, saccade amplitude, etc., that change during the exploration

of a web page. But, before considering visual behaviour on web pages (Section 2.2), we

will first outline factors impacting eye movements on natural visual scenes (Section 2.1).

2.1 Eye movements’ guidance

Factors that can modulate visual attention and eye movement behaviours can be cate-

gorised in three main types. The first are oculomotor biases which are inherent to eye

movements and most of the time independent of the stimulus type. The second cate-

gory, called bottom-up, includes factors directly related to the stimulus itself. The third

and last category designates the top-down factors reflecting the cognitive mechanisms

involved during visual exploration.

2.1.1 Oculomotor biases

As described in Section 1.2.2, the human eye is an organ moving inside the ocular orbit

by the means of extraocular muscles. Although we have the sensation to move our eyes

almost freely, they remain under physiological constraints arising from these muscles.

Oculomotor biases designate the combination of these physical constraints and the

behaviours we learned through human evolution. Tatler and Vincent (2009) reviewed in

their work some of these oculomotor biases, unrelated to stimulus attributes:

• Saccade amplitudes: saccade amplitudes follow a positively-skewed distribution

which means that we tend to make short saccades more often than long saccades
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(e.g. Gajewski et al., 2005; Tatler et al., 2006). In ecological situations, saccades

average amplitude is lower than 15 degrees of visual angle (Gilchrist, 2011). Mi-

crosaccades can even be much smaller with amplitudes shorter than 1 degree

(Martinez-Conde et al., 2009). Beyond 15 degrees of visual angle, eye movements

are usually executed with head movements. It should be noted however that in

laboratory, saccades can reach amplitudes up to 40 degrees without head move-

ments. However, saccade amplitudes also depends on their direction. For instance,

in addition of being more frequent, horizontal saccades are also longer (Tatler &

Vincent, 2008). Moreover, as described in Section 1.3.1, saccade amplitudes are

longer at the beginning of the exploration and decrease over time. The amplitude

of the current saccade is also related to the previous fixation duration.

• Saccade directions: saccades are not uniformly distributed in space. We tend

to execute more horizontal saccades than vertical ones and even fewer oblique

saccades (e.g. Brandt, 1945; Foulsham et al., 2008; Gilchrist & Harvey, 2006).

Although there is no consensus yet in the literature, extraocular muscles are

commonly found responsible. As described in Section 1.2.2, whereas only a single

pair of muscles is necessary to move our eyes horizontally, two pairs of muscles are

required to move the eyes vertically and obliquely. Foulsham et al. (2008) ran two

experiments to try to understand the prominence of horizontal saccades. To do so,

they showed to participants rotated stimuli. Contrary to the oculomotor-biased

theory, they found that participants could easily make vertical or oblique saccades

when the stimuli were rotated. They suggested then that previously learned

behaviours could be accountable for the predominance of horizontal saccades.

These bias could be learned through our environment or culture, such as the

importance of the horizon in our evolution or the reading direction.

• Fixation durations: several authors noted an evolution of fixations durations

over time (e.g. Antes, 1974; Buswell, 1935; Pannasch et al., 2008; Unema et al.,

2005). Contrary to saccade amplitude, fixation duration increases over time and
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seems to be related to the next saccade amplitude (see Section 1.3 for more details).

Oculomotor biases have a strong influence on visual exploration. Hence, they need to

be taken into account when analysing eye movements. That is why, we reported saccade

amplitudes and fixation durations globally and dynamically in our experiments presented

(Posters 1, 2, 3 and Articles 1and 3). Furthermore, we exploited our findings on these

parameters to build our scanpath model described in Chapter 8. This model also takes

advantage of saccade orientation time course.

2.1.2 Bottom-up

Contrary to oculomotor biases, bottom-up factors are stimulus-dependent. Although

some authors have questioned the existence of purely bottom-up influence during visual

exploration, it seems that the characteristics of stimuli play an important role in the

attention guidance (Theeuwes & Failing, 2020). Numerous models uniquely based

on bottom-up features have been created the last 20 years and have been able to get

close to human performance. Below, are presented the main features influencing visual

exploration and some of the models will be described later in Chapter 3.

• Basic features: our understanding of the impact of colour, orientation, luminance

and shape on visual attention is closely related to Treisman and Gelade (1980)

feature integration theory. They proposed a two-stage architecture of attention in

which basic features are first processed in parallel during a pre-attentive phase, to

be then processed at a higher level of the vision process, to recognise objects for

instance. The feature integration theory led to a wide variety of works including

Wolfe and Horowitz (2004), Itti et al. (1998) and more recently Theeuwes and

Failing (2020) work.

• Image size: von Wartburg et al. (2007) found a positive correlation between mean

and median saccade amplitudes with image size. They suggested that stimuli

should be at least 20 degrees of visual angle and should not exceed 40 degrees in

head-mounted design.
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• Edges: edges have been reported to be more predictive of fixation spatial behaviour

than luminance or contrast (Baddeley & Tatler, 2006). Moreover, Tatler and

Vincent (2009) compared a model uniquely based on edges with the Itti et al. (1998)

model, and obtained better performances.

• Faces: Morrisey et al. (2019) recently showed that faces were fixated first more

often than other images (e.g., cars or birds, etc.), and were detected faster than other

objects when they were the target. In their experiment, fixations on faces were short

indicating that they were processed more efficiently than other stimuli. However,

known and unknown faces should be differentiated, the bottom-up features of faces

described here mainly applies to unknown faces. The recognition of known faces

implies top-down processes which are not covered here.

• Centre-bias: first mentioned by Buswell (1935), the centre bias has been observed

in numerous studies ever since (Parkhurst et al., 2002; Rothkegel et al., 2017;

Tatler, 2007). When exploring visual stimuli, participants tend to look at the

centre of the image. The reason for this phenomenon is still discussed but Tatler

(2007), and Rothkegel et al. (2017), proposed interesting arguments. Tatler (2007),

refuted the idea that low-level salient features are more frequently at the centre of

the image and rather suggested that the centre of the screen may be an optimal

viewing position. This could be explained by extraocular muscles: the muscle

tensions are minimal when the eyes are in the centre of the orbit. Another theory

suggests that the centre of an image is actually the optimal position to grasp the

entire visual scene, even if not in details. Rothkegel et al. (2017) manipulated the

starting position of the eyes and the latency of the initial saccade to investigate the

centre bias. They found that the first Tatler (2007) proposition was not possible

since the centre bias was decreased with the increase of saccade latency. They

proposed a new explanation: the sudden luminance change due to the stimulus

appearance may be treated as an object, thus the eyes would be attracted toward

the centre.
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The "Feature Integration Theory" from Treisman and Gelade (1980) led to numerous

saliency models which confirmed the importance of basic features. Furthermore, as it

will be described in Chapter 4, we used a similar paradigm than Rothkegel et al. (2017)

to minimise centre bias (Poster 1, 2and 3 and Articles 2and 3).

2.1.3 Top-down

Figure 2.1 – Task influence on visual exploration. Visual explorations of partici-
pants looking at "The unexpected visitor" painting, according to a given task. From
Yarbus (1967).

It is generally assumed that the interaction between bottom-up and top-down factors

influence how we orient our attention. In that sense, top-down factors are usually

addressed as factors influencing bottom-up ones and are not considered as totally distinct

factors. Top-down factors include a wide variety of cognitive processes impacting visual

exploration. These processes are mainly related to context, memory, emotions, task, etc.

A selection of most common top-down factors is presented below:

• Age: young adults make shorter fixations than children. Hence, fixation durations

are negatively correlated with age (Helo et al., 2014). For Helo and collaborators, it
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could be that fixation duration is related to task complexity (see Task below), and

because cognitive resources increase with age, children would have less cognitive

resources available to process visual information and will take more time. Moreover,

Munoz et al. (1998) observed strong age-related effects in performance. They

recorded longer saccade durations in elderly subjects than in teenagers ones.

• Inhibition Of Return (IOR): because of IOR, as described in Section 1.1.3, when

a specific location has already been, it is less likely to be fixated again for a certain

period of time.

• Task: Yarbus (1967) showed that it is possible to obtain similar fixation location

and saccade amplitude patterns between participants for a same task (see Fig-

ure 2.1). For instance, participants with the task to estimate the age of people in

the An Unexpected Visitor painting, mostly looked at faces. Moreover, according to

Mills et al. (2011) fixation durations are longer in free-viewing tasks and informa-

tion retention tasks than in visual search tasks. In another experiment, Castelhano

et al. (2009) have shown that in an information retention task, participants tended

to fixate in a more scattered way. Moreover, Soh et al. (2012) and Sharafi et al.,

2013 noted that fixation durations could be used to predict task complexity or

the intensity of visual processing. Thus, fixation duration may be linked to the

difficulty to extract visual information. More globally, Tatler and Vincent (2009)

reported empirical evidence of the effect of the task on saccades amplitudes (e.g.

Rayner et al., 2007; Tatler et al., 2006).

The broad variety of top-down factors make it difficult to take all of these factors

into account when trying to predict where attention will be oriented. Even though

top-down models exist, they are far from covering all the endogenous aspects of attention.

Most of the time, top-down factors depend on the goal of the study used for acquiring

data. Hence, top-down attention cannot be modelled in a single approach as bottom-up

attention. In Chapter 3 we describe some top-down models and how IOR is modelled

on top of these pre-existing models. Moreover, when we study the effect of the task on
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visual exploration we usually compare behaviours on free-viewing and searching tasks.

We also investigated eye movements during a visual search task and a free-viewing task

(Article 1 and 3 and Poster 3).

2.2 Web pages

Websites and web pages:
a web page is at the core of the
web. It is generally what we all
see when surfing the internet.
Several types of web pages exist,
to name a few: Search Engine
Result Page (SERP), news, blog,
social network, etc. A website
is a group of web pages interre-
lated by hypertext available at
the same address, for instance,
the www.paris.fr website.

Previously described oculomotor biases are robust

across stimuli. Thus, they remain relevant in the

understanding of visual exploration behaviours on

web pages. In addition to these generic biases, peo-

ple developed new strategies in order to adapt to

this new stimulus type. Some of these biases are

described in this chapter. Contrary to static images,

a web page is interactive. The use of a computer

mouse is required and provides new inputs on ex-

ploration behaviour through its movements. This

is why, a lot of studies focus on the relationship

between mouse movements and eye movements. Interestingly, studies try to predict eye

movement locations by using this specific relationship. While this section focuses on this

relationship, the use of the mouse as a predictor of eye movements will be tackled in the

Chapter 3.

2.2.1 Eye movements on web pages

Although bottom-up approach is valid on web pages, Still and Masciocchi (2010) pointed

out that most of web-specific biases are top-down. The biases described here are mainly

related to learned behaviours. Indeed, because web pages often follow a similar template:

a header with main sections of a website, a content with left or right bar and a footer at

the end of the web page, users develop strategies to maximise their efficiency in visual
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exploration (Buscher et al., 2009). A selection of most common web biases is presented

below:

(a) Golden triangle (b) F-shape

Figure 2.2 – Common web viewing patterns. (a) Golden triangle represents the area
where most of the visual attention is attracted when using Google search engine. (b)
F-shape pattern occurs when browsing, for a large variety of web pages. Adapted from
Hotchkiss et al. (2005) and Nielsen (2006).

• Task: as for natural images, multiple studies found an influence of the task on

web pages browsing (Buscher et al., 2009; Cutrell & Guan, 2007).

• Ad blindness: as in the real world, advertisers exploit every available technique

to capture the users’ attention. The famous ’popup’ ad or window is a perfect

example. This type of solicitation is only based on bottom-up factors, such as

sudden appearance, motion, colour, etc. Nowadays, these little "epileptic blinking

windows" or banners no longer exist but had given way to more subtle techniques.

For instance, in-text ads looking exactly as the content to misguide the user to read

it by accident. Nonetheless, whatever the technique is, popup or a more advanced

technique, users developed what is called ’ads blindness’ (Benway, 1998). This

term designates strategies specific to web content we developed to avoid looking at
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advertisements. Ad blindness occurs after repeated exposition to advertisements

(Cho & Cheon, 2004; Hervet et al., 2011).

• Left side: Nielsen (2010) observed that users tend to spend more time on the

left part of a web page than on the right part. He also observed this behaviour

on right-to-left reading web pages. A more recent study from Fessenden (2017)

showed a similar behaviour on SERP but stronger.

• F-shape/Golden triangle: they are viewing patterns specific to web specific (see

Figure 2.2). The F-shaped bias for classic web pages and the Golden triangle bias

for web pages. Nielsen (2006) ran a usability experiment during which he analysed

which part of a web page users were looking at. He observed a recurring viewing

pattern in the shape of the F letter. People started their browsing at the top-left

corner of the web pages and read horizontally, then they were scrolling down to read

a second time horizontally to finally scan the content vertically. Similar behaviour

has been reported on Google’s results. A golden triangle has been observed by

Hotchkiss et al. (2005), describing the areas where search results are the most

visible and visited.

2.2.2 Scroll and eye movements

Scrolling consists in moving the web page up, down, left or right to see hidden content.

Nowadays, its common to visit a web page that needs scrolling to be fully explored. Thus,

scrolling is essential when browsing a web page. As described in Braganza et al. (2009),

the action of scrolling may be executed in various ways which can be categorised as

follows: scrolling with the mouse and scrolling with the keyboard. Scrolling with the

mouse includes grabbing and dragging the content or the scrollbar (on the right of the

browser) and using mouse’s wheel which is the most observed behaviour. In ecological

conditions, except on some specific occasions, the keyboard is rarely used. Contrary to

the mouse, scrolling can either be used on desktop computers, laptops, smartphones or
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tablets. Studying the behaviour related to scrolling is of great interest, because findings

on that specific subject might be, in some ways, applicable to multiple devices.

In their work about scroll and reading on web pages, Braganza et al. (2009) showed

that participants used a scrolling strategy to minimise vertical eye movements and that

fixation were more likely to be made at the bottom part of the web page. In a study on

Search Engine Result Page (SERP), Liu et al. (2017) demonstrated that users’ strategies

were not sensitive to time constraint when browsing. Since scrolling is used in most

cases, the study of its behaviour is of primary interest. However, studies mostly focus on

scrolling behaviour when reading and does not tackle quantitative analyses (see Dyson

(2004) for a review). This is why, we propose the first detailed quantitative analysis of

scrolling behaviour (Article 3), and introduce a new definition of scrolls and how they

can be differentiated. Finally, we analysed eye movement behaviours during scrolling in

various conditions (Poster 3 and Article 2).

2.2.3 Mouse and eye movements

Chen and Sohn (2001) were the first to specifically investigate the relationship between

a computer mouse and the movements of the eyes. In addition to a better understanding

of this relationship, their goal was to predict eye movements based on mouse movements.

This substitution would allow researchers to collect and process a large amount of data

remotely, without interrupting the user. In their work, Chen and Sohn (2001) showed

that the presence of the cursor in a particular region of the screen correlated with the

probability for the participant to fixate this region. Rodden and Fu (2007) observed that

the coordination between the eyes and the computer mouse was higher on the vertical

axis of the screen than on the horizontal axis. This behaviour was also observed by Guo

and Agichtein (2010). This relationship however remains uncertain, considering that the

mouse could be used as a means to mark a potential result previously located with the

eyes (Rodden et al., 2008). Furthermore, the amount of time spent by a user on an SERP

could affect the gaze and mouse location alignment during the exploration (Huang et al.,

2012). Navalpakkam et al. (2013) ran an experiment on non-linear page layouts and
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showed that the correlation between the eyes and the mouse was non-linear and user

dependent. More specifically, this correlation has been found for time periods during

which a user looked at an Area Of Interest (AOI) and when switched between AOIs.

However, SERPs are not representative of the web and remain transitional web pages

to access a content on a different website. Boi et al. (2016) showed that users spent a

significant cumulative amount of time on SERPs, but a cumulative way, in short bursts

of time.

Obviously, the study of the relationship between eye movements and mouse move-

ments interested search engines companies, as Google and Microsoft, a lot. It is partly

why a vast majority of studies have been done on Search Engine Result Page (SERP).

The problem is that those web pages are not representative of the web. We use search

engines on a daily basis to search for very different queries from our personal to our

professional lives. However, even if we can spend a significant cumulated time on these

web pages at the end of the day, we only spent a few consecutive seconds per query. It is

why, it is far more interesting and informative to investigate the relationship between

eye movements and mouse movements when browsing web pages (Article 2 and Article

3). Furthermore, there are a number of well-established, and ever improving, methods

to label raw data from eye recordings. However, mouse and scroll recordings lack such a

method, specifically to differentiate two close events. While it is easy to determine if two

events separated by two or three seconds are indeed two distinct events, doing the same

operation for two events with, for instance, less than one second in between, is much

harder. In Article 3 we propose a new segmentation threshold based on statistics and

observed behaviour. This method provided us better data quality to perform dynamic

analyses. As eye movements, the study of mouse movements and scrolling focuses on

global behaviour or patterns. In Article 3, we propose to apply eye movements dynamic

analyses to the mouse to better describe how the mouse and the scroll are used.
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Chapter 2 summary

As visual attention, eye movements can be influenced by different types of factors divided

in three categories. The first type of factor is oculomotor bias. These are a combination

of physiological constraints and behaviours learned over the course of evolution. The

second factor, known as bottom-up, groups together elements specific to the stimulus.

The last and third factor, called top-down factor, refers to the influence of cognitive

processes associated with the context. These top-down factors may also depend on the

type of stimulus presented. For instance, web pages follow a similar organisation through

the web. This organisation present on the majority of websites has led users to develop

strategies to optimise their visual exploration. These are called web-specific biases.

However, web stimuli have a particularity that distinguishes them from a classic image:

they are interactive through the mouse. This interactivity has led research to try to

better understand the visual behaviour during events such as page scrolling or mouse

movement. These aspects are discussed in Articles 2 and 3 and Poster 3. In this sense,

the study of mouse movement quickly focused on the coordination between the eye and

the mouse in order to try to predict eye movements according to the position of the cursor.

The study of this coordination will be discussed in Article 2.
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Résumé du chapitre 2

Comme l’attention visuelle, l’exploration oculaire peut-être influencée par différents

types de facteurs que l’on peut classer en trois catégories. Les biais oculomoteurs

constituent le premier type de facteurs influançant cette exploration. Ces derniers sont

une combinaison de contraintes physiologiques et de comportements appris au cours de

l’évolution. Le second facteur, dit ascendant, regroupe les éléments propre au stimulus.

Le dernier et troisième facteur, appelé descendant, désigne l’influence des processus

cognitifs associés au contexte. Ces facteurs descendants peuvent également dépendre

du type de stimulus présenté. Par exemple, les pages webs suivent une organisation

similaire à travers le web. Cette organisation présente sur la majorité des sites webs a

mené les utilisateurs à développer des stratégies afin d’optimiser leur exploration visuelle.

On parle alors de biais spécifiques au web. Toutefois, les stimuli web possèdent une

particularité qui les distingue d’une image classique : ils sont intéractifs au travers de

la souris. Cette intéractivité a mené les recherches à tenter de mieux comprendre le

comportement visuel lors d’évènements tels que le défilement de la page ou le mouvement

de la souris. Ces aspects sont abordés dans les Articles 2 et 3 ainsi que dans le Poster

3. En ce sens, l’étude du mouvement de la souris s’est rapidement concentrée sur la

coordination entre l’oeil et la souris afin d’essayer de prédire les mouvements des yeux en

fonction de la position du curseur. L’étude de cette coordination sera abordée de manière

détaillée dans l’Article 2.
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T
he eyes are at the core of visual perception: through fixations and saccades, they

allow us to acquire information efficiently. The question of where the eyes are

located during visual exploration is crucial and gave rise to numerous theories

and models. Within the engineering field, these models can be categorised as either

saliency models or saccadic models. Saliency models consist in providing a map, similar

to a heatmap, that represent pixel per pixel the likelihood that the eyes will be located

there. This Saliency map holds gaze predictions for the exploration of an entire stimulus

independently of the exposure duration. Saccadic models are more about scanning

patterns (Scanpath). Their goal is to predict in addition to eye locations, the order in

which eye fixations will occurr. Scanpath holds predictions of the exact coordinates and

order of the successive eye fixations for a given stimulus,and is dependent of participants’

exposure duration.

Our work focuses on the improvement of saccadic models on web pages. Yet, since

modern saccadic models are all based on a saliency map, we will first introduce some

bottom-up and top-down computational models. In the previous chapters, we outlined

how the visual system works and what biases could influence visual exploration. In

this chapter, we will describe how these biases are modelled and how the dynamics of

these parameters could be taken into account to improve saccadic models. We will then

review the principal saccadic models and how oculomotor biases are modelled. Then,

we will assess how the dynamics of these biases could be taken into account to improve

saccadic models. Finally, we will review how each approach tackle saliency and scanpath

modelling on web pages.

3.1 Saliency models

Visual attention and eye movements are influenced by a combination of bottom-up and

top-down factors, such as colour, edges, or task (see Chapter 2). Some evidence has

shown that the influence of both types of factors fluctuates during visual exploration (Itti

& Borji, 2015; Theeuwes & Failing, 2020). The key point of predicting visual attention is
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thus to correctly weight each factor depending on the visual context. Because bottom-up

factors, based on stimulus’ characteristics, are easily accessible, numerous models based

on a bottom-up approach of visual exploration have been developed through the last

20 years. Top-down models are less popular and more complex but recently renewed

attention has been given to these models. Both types of saliency models are relevant

and of interest since most of recent saccadic models can either take a stimulus and/or a

saliency map as an input.

3.1.1 Bottom-up models

Figure 3.1 – Overview of the Feature-based Saliency Model. Features are extracted
from the image to be transformed into multi-scale Gaussian pyramids. Then a centre-
surround mechanism is applied to each pyramid. Finally, scales of each pyramid are
combined and the resulting three maps are again combined. The result is a saliency map.
Adapted From Itti et al. (1998).

Early work on computational saliency models was based on Koch and Ullman’s frame-

work 1985. In their seminal work, they proposed a biologically plausible framework

of Treisman and Gelade (1980) "Feature Integration Theory" and introduced the con-

cept of saliency maps. They also proposed the Winner-Take-All (WTA) algorithm and

implemented the Inhibition Of Return (IOR) phenomenon to select the most salient
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locations of a visual scene. The WTA algorithm consists of selecting the most probable

location as the solution, while IOR allows the inhibition of the already selected peak to

prevent the WTA algorithm from selecting the same location twice. The first complete

implementation of this framework was proposed by Itti et al. (1998) on natural scene

still images. While, many models are based on the implementation of Itti et al. (1998)

implementation (Borji & Itti, 2013), other approaches have since emerged. For instance,

models have been proposed based on Information Theory, Bayesian statistics or Pattern

Classifications (see Borji and Itti (2013) for an extensive review).

In their "Feature-based Saliency Model" (see Figure 3.1), Itti et al. (1998) extract

three types of features from the image: colours, intensity and orientations. Each feature

is subsampled in Gaussian pyramids. Then centre-surround filter is applied on each

pyramid to construct new features maps. These maps are then summed across scales

and normalised, which gives a conspicuity map. These three conspicuity maps are finally

linearly combined to give a saliency map.

Figure 3.2 – Overview of the Coherent Computational Saliency Approach. Image
is split into 3 different colour channels. Then visibility, perception and perceptual
grouping are performed on each channel to build a coherent saliency map. From Le Meur
et al. (2006).

Then, Le Meur et al. (2006) extended this model by tackling attention prediction

using mechanisms directly inspired from the Human Visual System (HVS): visibility,
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perception, and perceptual grouping. As depicted in Figure 3.2, the image is first

separated using Krauskopf ’s colour space to reflect the three types of cones handling

different wavelengths (L-cones, M-cones, and S-cones). Visual features are then extracted

from the channels. The role of the visibility part is to simulate the limited sensitivity of

our human visual system. The perception phase’s goal is to suppress the redundancy

of visual information through centre-surround and achromatic mechanisms. Finally,

perceptual grouping refers to the ability to group and bind visual features to build a

meaningful saliency map.

Figure 3.3 – Overview of the RARE2012 saliency model. Image is split into 3
different colour channels through PCA. Then a Gabor filter is applied to each channel to
detect edges and textures. Then rarity is computed to finally combine all the channels
into a single saliency map. From Riche et al. (2013).

Finally, a saliency model based on information theory to find the rare features in

a stimulus and predict visual fixations have been proposed by Riche et al. (2013) (see

Figure 3.3). Interestingly, they consider that a feature is not necessarily salient alone,

but only in a specific context. They thus proposed a multi-scale rarity mechanism to
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detect locally contrasted and globally rare features.

During the first stages of the model, low-level features (colours) and then medium-

level features (orientations and textures) are extracted. In a first step, authors used a

Principal Component Analysis (PCA) to convert the image (RGB) into an alternative

colour space (YCbCr) and decompose the image into luminance (Y) and chrominance

(Cr and Cb) maps. From there, the model splits in two pathways: the first one use the

PCA-based colour transformation to compute its rarity, and the second apply Gabor

filters for 3 scales and 8 orientations to extract orientation features’ maps. A multi-scale

rarity mechanism is then applied. At the end, six rarity maps (3 colour maps and 3

orientation and texture maps) are fused together into a unique saliency map.

3.1.2 Top-down models

Deep Neural Network
(DNN): designates a specific
type of artificial neural network
with multiple layers of artificial
interconnected neurons. The
role of an artificial neural
network is to simulate how
neurons work to solve diverse
problems. To do so, the neural
network is trained with labelled
data and then tested with
unknown data. Contrary to
classic approaches, important
features, their transforma-
tion or reduction and their
contribution to the result are
automatically computed by the
neural network.

Attention can either be directed exogenous or en-

dogenous (see Chapter 1). Exogenous attention

(or bottom-up) models exclusively focus on predict-

ing salient elements based on stimulus characteris-

tics. This approach can be assimilated to the predic-

tion of attentional capture. However, saliency mod-

els trying to predict endogenous attention (or top-

down) are based on the view that attention is the

result of the modulation of stimuli characteristics

by top-down factors (Folk et al., 1992). That is why

the majority of top-down models are built on top

of bottom-up ones. For instance, Wolfe (1994) pre-

sented the Guided Search Model based on Koch and

Ullman (1985) framework. In their model, Wolfe

(1994) manually defines weights depending on the task to adjust the importance of

bottom-up features. According to Borji and Itti (2013), the main problems tackled by

top-down models are visual search prediction, the role of scene context and scene layout.
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3.1.3 Saliency attentive model

Figure 3.4 – Overview of Saliency Attentive Model (SAM). A Convolutional Net-
work extracts feature maps from the input image, then an Attentive Convolutional
LSTM enhances saliency features. Then 16 Gaussian maps simulating centre-bias are
combined with previous output. From Cornia et al. (2018).

More recently, advances on Deep Neural Network (DNN) disrupted saliency modelling

to the extent that today the top 10 best saliency models from the MIT Benchmark are

exclusively DNN models (Kümmerer et al., 2020). The interest of such models is to

provide an end-to-end mechanism aware of bottom-up and top-down features. Usually,

DNN saliency models are built on top of pre-trained models already able to recognise

certain classes of objects (Borji & Itti, 2013). Then the model is augmented with a

specific algorithm or information specific to saliency and trained on one or multiple

image datasets. Although, DNNs provide new promising results; and have not yet

revealed their full potential, some limitations need to be considered.

Cornia et al. (2018) based their model on VGG-16 and ResNet-50 pre-trained models

and a modified version of Long Short-Term Memory (LSTM) (see Figure 3.4). VGG-16

and Resnet-50 are both Convolutional Neural Networks able to classify objects on visual

scenes. They respectively have 16 and 50 layers in their deep architecture. The interest

of using these models is that they have already been trained to recognise objects, so they

have already learned the necessary bottom-up features of a wide variety of natural scenes.

On top of the saliency part of the Saliency Attentive Model (SAM), there is another kind
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of DNN: a Long Short-Term Memory (LSTM). Usually, this type of neural network is

used on tasks involving time dependencies and cannot be employed for spatial tasks.

Cornia et al. (2018) modified the LSTM network to process features coming from VGG-16

and ResNet-50 iteratively instead of using the model to process the same input changing

over time. The iterative processing of salient feature is similar to how attention can

be orientated, that is why they called their modified version an "Attentive ConvLSTM".

Finally, they trained a network to learn the parameters of 16 2D Gaussian functions to

simulate centre-bias. These 16 centre bias maps are combined with the output of the

Attentive ConvLSTM to produce the final saliency map. Cornia et al. (2018) trained their

model using a combination of well known saliency metrics: NSS, CC and KL-Div.

Kummerer et al. (2017) showed that these types of models underestimate bottom-up

factors. In their study, they demonstrated that, when applied to datasets with limited

top-down elements, state-of-the-art DNN-based models were outperformed by bottom-up

ones. Moreover, Kong et al. (2018) quantified what objects were contributing the most to

top-down performance. They found that the detection of faces, text and animals were

explaining a consistent proportion of DNN-based model performances. They also were

able to outperform state-of-the-art models by augmenting a bottom-up model with these

features.

3.1.4 Web page saliency

A few models are specialised in web content, but these follow the same approach as

previous models: combine bottom-up and top-down approaches. Contrary to natural

images, web pages are much richer in visual media, text, logos, etc. That is why, specific

modelling and biases need to be taken into account. Buscher et al. (2009) performed a

linear regression on features extracted from web page contents and used a decision tree

to predict visual attention. Shen and Zhao (2014) proposed a revisited version of the

Itti-Koch model (Koch & Ullman, 1985) using a new colour-space and web-dependant

features. The image is first converted into a Derrington-Krauskopf-Lennie colour-space

to extract intensity, colour and orientation. The interest of such a colour space compared
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Figure 3.5 – Overview of the web page saliency model. From Shen et al. (2015).

to the RGB one, is that each channel reflect the three types of cones handling different

wavelengths (L-cones, M-cones, and S-cones). Then, as in the seminal Koch and Ullman

(1985) work, Gabor filters, Gaussian pyramids and centre-surround mechanisms are

applied to each feature. Afterwards a face and body detector is used, as their data suggest

that body parts attract more attention. Next, a positional bias is applied as two maps:

one for the top-left bias, which represents the tendency to look at the top-left of a web

page, and the centre-bias (see Chapter 2). Finally, they used Multiple Kernel Learning,

which is an algorithm combining multiple kernels of support vector machines (SVMs)

instead of one, to combine all feature maps. In a later work, Shen et al. (2015) extended

their model by adding a Deep Learning approach. As depicted in Figure 3.5, low-level

features are processed with a similar approach to the previous work of Shen and Zhao

(2014), while high-level features are extracted using a DNN. The neural network used

here is AlexNet (Krizhevsky et al., 2017), the predecessor of VGG architecture (Simonyan

& Zisserman, 2014). Again, this DNN was trained to differentiate numerous objects on a

wide dataset of natural images. The output of low-level and high-level paths are then

combined using a linear support vector machine (SVM).
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3.2 Saccadic models

Figure 3.6 – Differences between saliency and scanpaths models. A saliency
model outputs a saliency map summarising where attention has been oriented. Scanpath
model outputs an ordered sequence of fixations of precise locations attended. Adapted
From Le Meur et al. (2017).

Saliency models provide average visual attention performances of an image (see

Figure 3.6). That is why saliency models are compared to the behaviour of a group of

participants (Madelain & Chauvin, 2007, p. 214). Contrary to such models, saccadic

modelling is more about the prediction of which locations are fixated on, in which order

and sometimes for how long (see Figure 3.6). One of the points of interest of these models

is the ability to convert a scanpath back into a saliency map and thus enhance bottom-up

or top-down saliency models used for scanpath prediction. Thus, it is common to see

scanpath models compared to saliency models through this technique in literature.

Based on the literature, a saccadic model can be synthesised as 3 complementary

but essential modules (seeFigure 3.7). The first module’s role is to handle the features

extraction which can be either bottom-up, top-down or a mix of the two. Most of the

time this part is performed by a saliency map which comes from an already existing

saliency model (e.g. Boccignone & Ferraro, 2004; Le Meur & Liu, 2015; Wang et al., 2016).

The second module models the oculomotor biases mechanisms. As previously described,
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biases influence how the next fixation will be selected. Which bias is modelled varies

a lot from one model to another, but most of the time IOR and saccade amplitude are

used. Finally, the fixation selection module is the one that attracts the most attention

in saccadic modelling. Its role is to take the two previous modules to select the next

fixation. For instance, in Itti et al. (1998), this part is handled by the WTA algorithm

which uses the generated saliency map and IOR to determine the next fixation. The next

fixation selection has been widely studied with various approaches including, Markov

processes (e.g. Coutrot et al., 2017; Hacisalihzade et al., 1992; Mannaru et al., 2016),

Neural Networks (e.g. Chen & Sun, 2018; Ngo & Manjunath, 2017; Simon et al., 2016;

Zhang et al., 2011) or Bayesian statistics (e.g. Le Meur & Coutrot, 2016; Le Meur et al.,

2017; Le Meur & Liu, 2015; Wang et al., 2016).

Figure 3.7 – Modules composing a saccadic model. A saccadic model can be syn-
thesised as 3 modules: saliency map, oculomotor biases and next fixation selection.
The scanpath generator takes these 3 modules and generate scanpaths. Adapted From
Le Meur and Liu (2015).
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3.2.1 Early work on scanpath prediction

Early studies on visual exploration suggested that participants change their visual

behaviour according to the task (Yarbus, 1967). Later, Noton and Stark (1971a, 1971b)

claimed that a particular visual pattern induced a particular sequence of eye movements

called "Scanpath". However, further work failed to identify evidence supporting replicable

scanning sequences (Findlay & Gilchrist, 2003, p. 134). For instance, Parker (1978)

asked participants to memorise a scene containing about six different objects which

were always in the same location. Participants looked at each object in their preferred

viewing order. Nevertheless, the study of statistical dependencies between eye movement

parameters emerged from this approach. For instance, the seminal work of Stark and

Ellis (1981), Ellis and Smith (1985) and detailed by Ellis and Stark (1986), suggests that

eye movements could be assimilated as a Markov process. They displayed an encounter

between their supposed aircraft and an intruder to 8 airlines pilots. They asked to the

pilots to use a switch to designate if the intruder was in front or behind their aircraft.

The authors then analysed the fixation durations on each element of interest and noted

the transitions between them. They noted that instead of being randomly distributed,

the pilots looked back and forth between the intruder and intruder’s predicted path.

They explained this behaviour by a Markov process predicting transitions between two

AOIs. A Markov process designates a random variable depending only on the current

state. Which means, in this case, the next item expected by the pilots only depends on

the one currently viewed. Such a process does not have any memory.

Then, Hacisalihzade et al. (1992) extended this model to predict visual fixations

on AOIs of drawings or paintings. They also evaluated their model using the string-

edit method (described in Chapter 5). Although, this work led to numerous scanpath

prediction models that will be described in detail below, this approach focused more on

transitions between manually defined AOIs than the stimulus as a whole. Moreover,

the complexity induced by this type of model requires computational power, which was

limited at the time.

84



3.2. SACCADIC MODELS

3.2.2 Scanpath and saliency maps

With computational power in mind, Itti et al. (1998) developed the first bottom-up

saliency model based on the framework of Koch and Ullman (1985). As described in

Figure 3.1, extracted features used for saliency predictions are processed in parallel.

While the main contribution of Itti et al.’s work is undoubtedly the saliency model, they

also proposed a method reproducing attention orienting. This method is based on two

mechanisms: Winner-Take-All (WTA) and Inhibition Of Return (IOR). The Winner-Take-

All algorithm consists of selecting the maximum value as the next fixation. But, by just

selecting this maximum value, the model could not generate a sequence of expected

locations. That is why WTA was combined with an inhibition mechanism. The Inhibition

Of Return mechanisms prevent our attention from going back to an already fixated

location. This inhibition lasts approximately 500-900ms (Posner & Cohen, 1984). In

addition to one of the first bottom-up saliency models, Itti et al. (1998) proposed the first

attentional shift model based on a saliency map. Since then, all saccadic models present

in the literature are based on at least one saliency map. For instance, Brockmann and

Geisel (2000) modelled visual exploration with a "Levy flight", which is a type of random

walk. A random walk designates a mathematical process describing a 2D path in which

each step is selected randomly. For example, a simple random walk starts at 0 and its

next step is randomly selected by adding or subtracting 1 with equal probability. The

result is a path generated randomly. The "Levy flight" random walk refers to a random

walk in which the step-length follows a Levy distribution which is positively skewed.

Influenced by the work of Itti et al. (1998), Boccignone and Ferraro (2004) adapted

Brockmann and Geisel (2000) model by constraining the Levy flight through a saliency

map.

3.2.3 Modelling oculomotor biases

While bottom-up saliency needs to be combined with top-down factors to more accurately

describe what will guide attention on a scene, saccadic models cannot be based solely
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Model Year IOR
Saccade

amplitude
Saccade

orientation
Fovea centre-bias

Zhang et al. 2009 n last fixs Gamma
distribution

– Surrounding
ROI

–

Wang et al. 2011 Constant
forgetting

factor

20° area – Gaussian
Pyramid

First fix at
image centre

Tavakoli
et al.

2013 Stochastic
Mapping
Function

Gaussian
Mixture
Model

– – –

Engbert
et al.

2015 Gaussian
profile

– – Gaussian
aperture

–

Le Meur and
Liu

2015 Linearly
declines on 8

fixs

Kernel
Density

Estimation

Kernel
Density

Estimation

– No precision

Le Meur and
Coutrot

2016 Linearly
declines on 8

fixs

Kernel
Density

Estimation

Kernel
Density

Estimation

– No precision

Wang et al. 2016 Same as
Le Meur and

Liu (2015)

Same as
Le Meur and

Liu (2015)

Same as
Le Meur and

Liu (2015)

Gaussian
pyramid

First fix at
image centre

Le Meur
et al.

2017 Linearly
declines on 8

fixs

Kernel
Density

Estimation

Kernel
Density

Estimation

– No precision

Ngo and
Manjunath

2017 LSTM – – – –

Shao et al. 2017 Only
previous fix

Same as
Wang et al.

(2011)

– – –

Wloka,
Kotseruba,

et al.

2018 Linearly
declines on

100 fixs

– – Gaussian
pyramid

First fix at
image centre

Chen and
Sun

2018 LSTM – – Gaussian
pyramid

–

Han and
Xiao

2018 Linear model Statistics Statistics Gaussian
pyramid

–

Xia et al. 2019 No precision Weighted
map

encouraging
short

saccades

– – Centered
weighted

map

Xia and
Quan

2020 Based on
distance with
previous fix

2D Gaussian
function

Gaussian
function

– –

Table 3.1 – Summary of how common oculomotor biases are modelled in the liter-
ature. This includes Inhibition Of Return (IOR), saccade amplitude, saccade orientation,
the fovea and the centre-bias.
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on saliency maps. The main reason is that biases influence our visual exploration. For

instance, we tend to do more short saccades than long ones, and more horizontal saccades

than vertical ones (see Chapter 2). Since saliency is a global view of where attention is

directed, saccade amplitude or orientation does not influence saliency models. However,

the biases directly influence how the next fixation is selected, thus saccadic models are

dependant on such biases. The first illustration of important biases in saccadic modelling,

but marginal in saliency modelling, is the Inhibition Of Return (IOR), as presented in

Itti et al. (1998). In their model, the couple WTA-IOR comes at the end of the saliency

model and does not affect salient area prediction but is at the core of scanpath pattern

prediction. The WTA algorithm selects the saliency maximum as the next fixation and

IOR prevents the WTA from selecting the same maximum twice.

Zhang et al. (2009) were some of the first to introduce additional oculomotor biases

in their model, see Table 3.1 for an overview of oculomotor biases modelling in the

literature. Zhang et al. (2009) based their model on Itti’s saliency map, but added

saccade amplitude and fovea modelling as biases, and used a genetic algorithm to select

the next fixation. To mimic our tendency to do shorter saccades than long ones, they used

a Gamma distribution which was combined with saliency map. Then, they modelled the

fovea/retina as a Region Of Interest (ROI) around the previous fixation. The fixation

selection algorithm was forced to stay in a certain ROI, and when too many fixations

were generated in this ROI, the algorithm was again forced to jump to another one, and

so on. Wang et al. (2011) implemented a model based on information maximisation with

fovea, centre-bias, visual memory and saccade amplitude biases. Contrary to Zhang et al.

(2009), they modelled the fovea using a Gaussian pyramid as proposed by Geisler and

Perry (2002). The first level of the Gaussian pyramid designated the original image.

The second level was obtained by blurring and down-sampling the original image. The

next levels were then built the same way as the previous level. The number of levels

or scales was determined beforehand. Finally, the region which needed to be foveated

was determined (where the fixation is), and each level of the pyramid was then blended

together. To simulate centre bias, which describes the tendency to look at the centre of
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an image, Wang et al. (2011) placed the first fixation at the centre of the image. Visual

memory (or IOR) was modelled as a constant decaying factor without further precision.

Finally, saccade amplitude was modelled as a 20-degree area around the fixation in

which the next fixation would be selected using information maximisation.

Tavakoli et al. (2013) took the Ellis and Stark (1986) idea that visual exploration could

be approximated as a markov model and combined it with Itti’s approach, basing their

model on saliency maps and oculomotor biases. They implemented saccade amplitude as

a Gaussian Mixture Model fitted to eye-tracking data, and IOR as a stochastic mapping

function to avoid immediate return to fixation. Moreover, this Markovian approach was

extended by Liu et al. (2013) and Coutrot et al. (2017), but without biases modelling.

Le Meur and Liu (2015) proposed a modular Bayesian approach. They built a model on

the junction of probabilities between a bottom-up saliency map, a saccade amplitude and

orientation probability map and an inhibition map. The next fixation was selected as

the location with the highest saliency gain. Saccade orientation and saccade amplitude

maps were inferred using Kernel Density Estimation from fixations location distribution

of four publicly available datasets. Inhibition Of Return was modelled as a simple linear

model with the IOR disappearing after eight fixations. Later on, Le Meur and Coutrot

(2016) applied this approach by adapting each module to the content type. For instance,

they computed saccade amplitude and orientation probability maps depending on the

stimulus type, such as web pages, natural scenes and conversation videos. Le Meur et al.

(2017), demonstrated again the advantages of such a modular approach by estimating

saccade orientation and amplitude distributions by the participant’s age. Wang et al.

(2016) and Han and Xiao (2018) extended Le Meur and Liu (2015) model by adding

fovea computation and then applying saliency. To better mimic scanpath’s dynamic

Wloka, Kotseruba, et al. (2018) proposed a new approach involving periphery-fovea

separation and a dynamic computing of saliency maps. The image was foveated using a

Gaussian pyramid, then the fovea and the periphery were separated and a bottom-up

saliency model was run on the periphery part and a top-down saliency model on the fovea

part. Then both parts were combined and the next fixation was selected with WTA-IOR
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algorithms. This approach is a step towards better scanpath dynamics. So far, studies

have focused on the dynamics of the fixation selection process. In most of the models

presented here, the fovea system is used to update the existing saliency map and adapt

it for each fixation. However, Wloka, Kotseruba, et al. (2018) were the first to entirely

distinguish fovea and periphery and apply different types of models to each iteration. An

interesting evolution of this approach would be to update the saliency models used, add

oculomotor biases and combine this with another fixation selection strategy than WTA.

Thus, scanpath prediction could become even more dynamic and more plausible.

Recently, as in the saliency modelling fields, Deep Neural Network have been used to

tackle scanpath prediction. Ngo and Manjunath (2017) used an already trained VGG-16

Convolutional Network (Simonyan & Zisserman, 2014) connected to a Recurrent Neural

Network (RNN) to simulate IOR. VGG-16 is a 16-layer Convolutional network able to

correctly classify and identify 1000 different objects over 14 million images with an

accuracy of 92.7%. The idea behind an RNN is that its output is connected with its

input, so that short-term memory can influence next iteration of the network. The RNN

used in this model and the following ones is the Long Short-Term Memory (LSTM). Its

particularity lies in the fact that, in addition to its output connected to its input for

short-term memory, a hidden state reproducing long-term memory follows the same

schema. The interest of this two-DNN approach is to use a Convolutional Network to

extract features from the image and compute saliency, while using eye-tracking data to

train an LSTM to model IOR, saccade amplitude and orientation biases. Chen and Sun

(2018) used a similar approach, but used different kinds of LSTM and added foveated

input images through a Gaussian pyramid.

As we have described in previous sections, existing models try to reproduce the eye

dynamics based on static saliency maps and distributions of oculomotor biases. Fixation

selection dynamics has been mainly modelled as Bayesian statistics, Levy flight or

Winner-Take-All. Static stimuli, generally natural scenes, and static saliency maps

have been made dynamic using different techniques, such as centre-surround (Xia et al.,

2019), the fovea mechanism (Chen & Sun, 2018; Engbert et al., 2015; Han & Xiao, 2018;
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Wang et al., 2011; Wang et al., 2016; Zhang et al., 2009) or the dynamic fovea-periphery

mechanism (Wloka, Kotseruba, et al., 2018). Even though the use of biases is not

systematic (Boccignone & Ferraro, 2004; Brockmann & Geisel, 2000; Mannaru et al.,

2016; Simon et al., 2016; Zhang et al., 2011), numerous models implement them. The

most used one would be Inhibition Of Return, followed by the fovea mechanism and

then saccade amplitude and orientation. Even though different implementations do

not agree on how long the IOR should last, a consensus seems to have been reached

on its need and the fact that it is limited in time. Regarding the fovea mechanism, all

models seem to have converged on the use of a Gaussian pyramid. However, there are

still divergences on how and which oculomotor biases to implement. For instance, Zhang

et al. (2009) used a Gamma distribution to model both bias. Wang et al. (2011) chose

to simulate saccade amplitude as an area of 20 degrees around the previous fixation

in which the next would be picked. Tavakoli et al. (2013) applied a Gaussian Mixture

Model on saccade amplitude, while Le Meur and Coutrot (2016), Le Meur et al. (2017),

Le Meur and Liu (2015), and Wang et al. (2016) used Kernel Density Estimation to

model saccade amplitude and orientation. Nevertheless, the use of such biases has not

been done dynamically. Saccade parameters are estimated or computed according to

different techniques but remain on the globality of the exploration. Such an approach

does not tackle the dynamic of eye movement parameters described by Pannasch et al.

(2008), Unema et al. (2005), and Velichkovsky et al. (2005). That is why we propose

a dynamic approach of oculomotor biases in Chapter 8. In this approach, how these

parameters evolve over time is considered to enhance saccadic models. Moreover, we

introduce in a new methodology to analyse models based on the time-dynamic of the

generated scanpath and compare it to the human scanpath.

3.2.4 Scanpath on web stimuli

Scanpath modelling on web pages has been tackled using two distinct approaches.

The first is the classic saccadic model, but adapted to web content complexity and

diversity. The second approach takes advantage of the use of the computer mouse, which
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is not usually available on natural images. These models focuses on the eye-mouse

coordination to model the location of the eyes based on the mouse location. Although

these two methods are of great interest, they have been addressed by the literature

quite differently. For instance, the eye-mouse modelling resulted in models specialised in

Search Engine Result Page (SERP), while scanpath modelling resulted in a very limited

number of models.

Guo and Agichtein (2010) were the first to propose a computer-mouse-based model of

the scanpath. They first used their own study to compute the euclidean distance between

the eyes and the mouse. Then, they labelled each mouse-eye sample with two classes:

"InFocus" and "Away". The category was defined if the distance was below or above a

predefined threshold. Finally, they trained a LogitBoost algorithm on these labeled data

and were able to predict the position of the eyes within a 100-pixel area around the mouse

with a mean accuracy of 77%. Huang et al. (2012) modelled eye-mouse coordination

as a Multiple Linear Regression using 4 different features. The first was the cursor

position coordinates, defined as a tuple (x, y). The second feature was the behaviour

feature reflecting the cursor’s activity. Their analyse showed that an active cursor was

better aligned with the eyes, than an inactive cursor. Therefore, they measured idle time

following the last movement as a behaviour feature. The third feature corresponded to

the time elapsed since the loading of the page, this is the dwell feature. The fourth and

final feature was the future feature, which represents the position of the mouse within

the next 10 seconds. Using Euclidean Distance to evaluate their model, they reached an

average 181-pixel accuracy. Which means, the predicted eye position was, in average,

181 pixels from the mouse’s position.

Regarding the saccadic modelling classic approach, we found very few models tackling

web pages. In addition of Le Meur and Coutrot (2016), we only found a recent work

of Xia and Quan (2020) tackling this question. Xia and Quan (2020) proposed a model

based on their own saliency algorithm, with biases modelling, and WTA as the fixation

selection mechanism. They introduced a top-left-bias as a weighted map to highlight our

tendency to do more fixations on the top-left regions of a web page at the beginning of
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exploration. To model saccade amplitude and orientation, they trained a 2D Gaussian

function on dataset’s statistics and set asymmetric standard deviations to encourage

horizontal saccades. Moreover, they implemented an IOR mechanism, but instead of

using time to recover already seen area, they computed it as a function of the distance

between the current fixation and the previous one.

Each approach suffers from distinct major disadvantages. For instance, models

predicting the eyes based on the computer mouse are mainly trained with SERP data.

An SERP layout is very specific and can be recognised among many others. We use it

every day for both our professional queries and our personal ones, so we could state

that we are highly expert in these types of web page layout. Moreover, this page type

does not reflect other web page types, such as news sites, blogs, videos, forums, mixed

content, etc. In the end, we cannot generalise these models. That is why we proposed a

simple model trained on classic dynamic web pages in Article 2. We used a Gaussian

model based on learned statistics with Euclidean Distance between the eyes and the

mouse. Concerning classic saccadic models, the first main disadvantage also lies in

the generalisation problem. As we described in the previous section, many methods

have been explored to predict scanpath. However, these methods were created based

on natural images and it is still unsure how they could be generalised since web pages

are much more complex. The second main disadvantage concerns about the stimulus

itself. Contrary to eye-mouse models, which are on dynamic SERP, scanpath prediction

has been only predicted on static web pages (Le Meur & Coutrot, 2016; Xia & Quan,

2020). Yet, this dynamic fro web pages generates much interest. With all these elements

in mind, we developed a saccadic model predicting scanpath on dynamic web pages,

described in Chapter 8. We implemented specific mechanisms to handle web page

dynamics and related statistics. Moreover, we used the findings of Article 3, on the

evolution of eye movements and mouse parameters over time, to propose time-dependant

bias modelling.
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Chapter 3 summary

The eyes are at the centre of visual perception, and through the sequence of fixations

and saccades, they enable visual information to be acquired efficiently. This is why many

models have tried to reproduce this mechanism. Two types of models have emerged:

saliency models and saccadic models. The former aim to provide a summary of the

places visited by a participant when exploring a visual scene. These models are often

categorised according to the types of factors they take into account. On the one hand, we

have the so-called bottom-up models, which have given rise to a flourishing literature,

predict the areas visited based on the characteristics of the stimulus. On the other hand,

we have the so-called top-down models. Most of the time, these models start from a

bottom-up model which they "increase" with parameters related to the task, the presence

of faces, objects, etc. Although less extensive than the literature on bottom-up models,

top-down models are nowadays at the heart of researchers’ interest. As for the second

type of models, their aim is no longer to provide a summary of the fixed regions, but

the detailed and ordered sequence of the areas seen. In this approach the oculomotor

parameters are of much greater importance as they can influence the choice of the

next fixation. This is why this type of model, in addition to reproduce mechanisms for

selecting the next fixation, also models these biases. The biases most often modelled are

the saccade amplitude, saccade orientation, fovea, and inhibition of return. However,

these biases are modelled most of the time in the same way. Both saliency and saccadic

models have been developed most of the time to predict eye movements when exploring

natural scenes. When we look at web pages, models become much rarer. However, web

page modelling has given rise to another type of approach: the modelling of the eye

position as a function of the mouse position. Several models have been proposed following

this approach but they have focused on Search Engine Result Page (SERP) rather than

classical web pages. In the light of all these elements, we propose in the Chapter 8 a

saccadic model on dynamic web pages. In addition, we apply the temporal analyses of

ocular parameters carried out in the Article 3 to propose a model of oculomotor biases

based on their evolution over time.
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Résumé du chapitre 3

Les yeux sont au centre de la percetion visuelle, et à travers l’enchainement des fixations et

des saccades, ils permettent d’acquérir des informations visuelle de manière efficiente. C’est

pourquoi de nombreux modèles ont tenté de reproduire cette mécanique. Deux types de modèles

ont alors émergés: les modèles de saillances et les modèles saccadiques. Les premiers ont pour

objectif de fournir un résumé des endroits visité par un participant lors de l’exploration d’une

scène visuelle. On catégorise souvent ces modèles selon les types de facteurs qu’ils prennent en

compte. D’un côté, nous avons les modèles dits ascendants (ou bottom-up), qui ont donné lieux à

une littérature fleurissante, prédisent les régions visitées en se basant sur les caratéristiques du

stimulus. De l’autre côté, nous avons les modèles dits descendants (ou top-down). La majorité du

temps, ces modèles partent d’un modèle ascendant qu’ils "augmentent" avec des paramètres liés à

la tâche, les visages présents, les objets, etc. Bien que moins étendu que la littérature des modèles

ascendants, les modèles descendants sont aujourd’hui au coeur de l’intérêt des chercheurs. Quant

aux seconds types de modèles, leur but est, non plus de fournir un résumé des régions fixées,

mais la séquence détaillée et ordonnée des zones vues. Ainsi, les paramètres oculomoteurs ont

une bien plus grande importance car ils peuvent influencer le choix de la fixation suivante. C’est

pourquoi ce type de modèle, en plus de modéliser le mécanisme de sélection de la prochaine

fixation, modélise également ces biais. Les biais les plus souvent modélisés étant l’amplitude

de saccade, l’orientation des saccades, la fovéa, et l’inhibition de retour. Toutefois, ces biais

sont la plus part du temps modélisés de la même manière. A la fois les modèles de saillance

et les modèles saccadiques ont été développés pour prédire les mouvements des yeux lors de

l’exploration de scènes naturelles. Lorsque ne nous intéressons aux pages webs, les modèles

se font beaucoup plus rares. Cependant, la modélisation sur page web a donné lieu à un autre

type d’approche : la modélisation de la position de l’oeil en fonction de la position de la souris.

Plusieurs modèles ont été proposés suivant cette approche mais ils se sont focalisés sur les pages

de recherches de moteur de recherche plutôt que sur les pages webs classiques. A la lumière

de tous ces éléments, nous proposons dans le Chapitre 8 un modèle saccadique sur des pages

webs dynamiques. De plus, nous appliquons les analyses temporelles des paramètres oculaires

réalisées dans l’Article 3 afin de proposer une modélisation des biais oculomoteurs basée sur

leur évolution dans le temps.
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A
ccording to the literature presented in this first part, saccadic modelling aims to

reproduce eye movement dynamic and which factors influence it. The principal

motivation behind this thesis is to demonstrate how eye movement parameters

time courses and the dynamic induced by the scroll are important in saccadic modelling

on web pages.

The first axis of this thesis focused on the investigation of how eye movement

dynamic could be summarised as an indicator. Based on ambient and focal visual

processing modes definition (Pannasch et al., 2008; Unema et al., 2005; Velichkovsky et

al., 2005) we evaluated the relevance of existing ratios to describe these visual processing

modes (Dehais et al., 2015; Goldberg & Kotval, 1999; Krejtz et al., 2016) on natural

images and web pages.

Several research focused on the coordination between the eyes and the mouse cursor,

but these studies involved specific web pages (SERP) and neglected the scroll (Guo

& Agichtein, 2010; Huang et al., 2012; Rodden et al., 2008). For these reasons, the

second axis of this thesis aims to analyse eye movement behaviour when browsing

more ecological web pages of our daily life. To this end, we set up two experimental

studies, and we examined the relationship between the eyes, the mouse cursor and the

scroll.

The two first axes provided a better understanding of eye movements dynamic and

the relationship between the eyes, the mouse cursor and the scroll. We used some of our

findings in the third axis in order to improve saccadic modelling. Thus, we proposed

a saccadic model including a scroll mechanism and modelling the temporal evolution

of eye movement parameters. This model was evaluated on high-quality data from the

experimental studies presented in the next chapter.
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T
wo experimental studies have been run during this thesis. The principal mo-

tivation behind these two studies is the lack of available high-quality datasets

containing real web pages. In the usability field, most studies are done on web

pages with a limited sample size, while datasets available in the modelling field only

contain screenshots. That is why we set up two studies to provide high-quality data on

French real web pages with a large sample size.

The results of the first study are shown in Article 2 (eye-mouse coordination and

scrolling behaviour) and Poster 3 (scrolling behaviour) which tackle the eyes and the

mouse coordination and scrolling behaviour. The results of the second study are described

in Poster 1 (first ratio for ambient and focal modes), Poster 2 (second ratio for ambient

and focal modes), Article 3 (eye-mouse-scroll coordination) and Chapter 8 (scanpath

modelling). The purpose of this chapter is to introduce similarities and differences

between these two studies.

4.1 Participants

In Article 2 and Poster 3, participants were PhD students in the engineering laboratory

of the University of Mons.

In Articles 3, Posters 1 and 2 and Chapter 8, participants were bachelor students

from the Institute Psychology of Paris University or members of the Vision Action

Cognition laboratory. In exchange to their participation, bachelor students received

academic credits. In addition to students, external participants were recruited for the

second study, through the "Réseau d’Information en Sciences Cognitives", and were

compensated with a 15=C voucher for their participation. All procedures performed in

studies involving human participants were in accordance with the ethical standards

of the institutional and national research committee (local Ethics Committee of Paris

University, No. CER-PD:2018-77) and with the 1964 Helsinki declaration and its later

amendments. All participants gave written informed consent before the experiments.
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4.2 Stimuli

(a) First experiment
(b) Second experiment

Figure 4.1 – Websites examples. Examples of websites displayed during experiment 1
(a) and experiment 2 (b). Only headers of the web pages are shown here, the full page is
in average 5000 pixels long (about 4-5 times screen’s height). In (b) the gray area allows
to normalise website content to ensure websites layouts were the same.

In the study of Article 2 and Poster 3, stimuli were displayed on a 17-inch computer

screen set to a resolution of 1920x1080 pixels. Instructions and websites were displayed

in a Google Chrome browser with a resolution of 1920x955 pixels. Ten web pages were

displayed presented in the same order to each participant. In the study of Articles 3

and Posters 1 and 2, stimuli were displayed on a 24.5 inch LCD computer screen with

a 1920x1080 pixels resolution and a 144Hz refresh rate. Participants placed their head

in a chin-rest at 57cm of the screen. Eighteen web pages (e.g. Figure 4.1) from eighteen

different websites were randomly presented to the participants with a mean height of

6405 pixels. However, in Chapter 8, only 9 web pages of the presented stimuli were

used to avoid web pages with sticky header and a good distribution of participants. A

sticky header being a header of a web page staying on top of the screen while scrolling.

In both studies, participants were allowed to freely move the mouse, scroll or click

without restriction, but hyperlinks were deactivated, thus participants could not leave

the displayed web page.
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4.3 Eye movement recordings

In Article 2 and Poster 3, eye movements were recorded using a FaceLAB 5 eye-tracker

sampled at 60Hz without head constraint. Mouse movements were recorded through

the browser and uploaded on the fly on a local NodeJS server using browser’s extension

system. In Articles 3, Posters 1 and 2 and Chapter 8, eye movements were recorded

using an Eye-Link 1000 Plus (SR Research Ltd., Canada) at a 1000Hz sampling rate with

0.05°precision. The right eye of the participants was recorded with a 35mm monocular

lens. Mouse movements were recorded with a standard USB optical mouse with a 125Hz

polling rate.

In both studies, the experiment started with a calibration phase during which partic-

ipants had to fixate successive points in 5 different locations inArticle 2 and Poster 3

and 9 different locations in Articles 3, Posters 1 and 2 and Chapter 8. In the second

study, this calibration phase was repeated between each trial with a 5 points calibration

and a 9 points calibration at the half of the experiment. Then, instruction was displayed

in Article 2 and Poster 3. However, participants had to first go through a training

phase, before displaying instructions. During the second experiment, if a participant’s

calibration reached an error greater than 1°, calibration was started over.

4.4 Tasks

In Article 2 and Poster 3, a set of three types of tasks was presented to participants:

free-viewing, visual search and reading. As the websites, the tasks were displayed in the

same order for all participants. During the free-viewing task, participants were asked to

freely browse the web page as long as they wanted. During the reading task, participants

were asked to read the a specific paragraph. In the visual search participants had to

either find an item, or an hyperlink.

In Article 3 and Posters 1 and 2, participants had to perform two types of tasks:

free-viewing and visual search. Tasks were randomly displayed nine times each. During

the free viewing task, the participants were instructed to explore the web page freely for
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exactly 60s. During the visual search task, participants were asked to find a target in

maximum two minutes. The targets could be anywhere on the web page, but they were

distributed between the top, middle and bottom of the web page across web pages. The

participants were ignorant about the number of targets presented

4.5 Data analyses

In Poster 3, we investigated if the saccade preceding a scroll was on the same direction

as the scroll. We analysed average scroll speed with and without anticipation during

both tasks. Moreover, we analysed whether there was a correlation between eye position

before scrolling and the amplitude of the scroll. Finally, we evaluated where participants

fixated during scroll and how the area of the screen fixated changed depending on the

scroll speed.

In Article 2, we compared eye and mouse spatial distribution using Pearson’s Cor-

relation Coefficient. Then, we dynamically assessed the distance and the correlation

between the position of the eyes and the mouse. Moreover, we ran similar analyses as

in Poster 3 on scroll speed influence and scroll amplitude but using different screen

division. Finally, we proposed a gaussian model to predict eye position depending on the

location of the mouse.

In Poster 1, ambient and focal visual processing modes were described using Dehais

et al. (2015) ratio. This analysis has been performed on data of the second study. In

Article 1, again ambient and focal visual processing modes were described, but using

Krejtz et al. (2016) coefficient. Contrary to Poster 2, in this article the goal was to

discriminate two tasks of an external dataset of scene viewing. To do so, we used

variables derived from Krejtz et al. (2016) coefficient. In Poster 2, the same coefficient

has been applied on the second study’s data.

In Article 3, we ran an extensive quantitative analysis on mouse movements,

scrolling and eye movements on web pages. In addition, we investigated the relationship

between parameters, such as, saccade amplitude, scroll amplitude, fixation duration,
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scroll idle, etc, over time.

Finally, in Chapter 8, we investigated the influence of eye movements dynamic

parameters, such as, saccades orientation, fixation duration and saccades amplitude on

scanpath modelling.
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A
s seen in Chapter 3, lots of saliency and saccadic models have been released. In

order to assess how good a model is, there are two prerequisites: a dataset of

stimuli including ground-truth experimental data to compare the models with,

and a metric to objectively measure how close models are close to ground-truth. However,

these models were developed using various technologies. Some were made available to

researchers while the others are harder or impossible to access. Hence, it became difficult

to reproduce results and compare new models to past ones. To address this problem, the

MIT Benchmark was created (Kümmerer et al., 2020). The role of the MIT benchmark

is to provide a platform where researchers can compare their saliency models to others

with common metrics and predefined datasets. One of these dataset is the MIT dataset

(Judd et al., 2009). It relies on two essential parts: a public part and an hidden part.

In the public part of the dataset, stimuli with ground-truth data are publicly available

and can be freely downloaded on the website (Judd et al., 2009). The hidden part only

consists of stimuli without ground-truth data. Thus, researchers can train or test their

models on the public part, while the hidden part of the dataset is used to benchmark

how good is a model on unknown data. The MIT benchmark (Kümmerer et al., 2020) is a

fantastic initiative and provides a great platform to compare saliency models. Yet, this

platform is focused on saliency models and leave out saccadic models. Of course, it is

possible to convert generated scanpaths to a saliency map and then compare this map to

saliency models. But, the very essence of saccadic models lies in their dynamics which

is suppressed with such approach. That is why a counter part of the MIT benchmark

specific to scanpath models would be a great step forward towards the openness of the

modelling community.

A validation framework is the combination of one or more datasets and some metrics,

as the MIT benchmark is. But, when researchers want to compare their model, they

need to develop their own validation framework in order to load data, run the evaluation

metrics, and compile the results. This work is very tedious and is, to some extent, a

waste of time. That is why, open source validation frameworks recently emerged. The

first initiative was proposed by Zanca et al. (2018) with FixaTons. Focused on scanpath
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modelling, its role is to gather in one place a tool to download public datasets, run metrics

and compute statistics. In addition to these, FixaTons propose a structure to encourage

others to add their own datasets and metrics. Around the same time, another framework

was created: the Saliency Model Implementation Library for Experimental Research

(SMILER) (Wloka, Kunić, et al., 2018). Contrary to FixaTons, SMILER provides inter-

faces to run the maximum available saliency models within a single tool. In addition,

Wloka, Kunić, et al. (2018) suggested a common data format for models parameters to

facilitate models compatibility. More recently, the ownership of the MIT Benchmark

changed from the Massachusetts Institute of Technology, United-States to Tuebingen

University, Germany. With it, a brand new validation framework has been developed

(Kummerer, 2019). Called PySaliency, this framework provides a more complete ap-

proach for saliency models including dataset, metrics and models. It should be noted

that PySaliency provides a bridge to transform scanpaths into saliency maps. However,

the SMILER and PySaliency frameworks are saliency-oriented, while FixaTons mainly

focuses on scanpath metrics. Moreover, none of the above extensively focus on scanpath

metrics, benchmarking or dynamic datasets. In our case, we need to evaluate models

on dynamic web pages taking into account the scroll, which is not currently possible in

available frameworks. For all these reasons, we developed the first end-to-end valida-

tion framework handling the steps when creating a new saliency and saccadic model

from training to benchmarking. Named SalScan, this framework aims to be modular,

open-sourced and developer-oriented to encourage contributions from the community.

5.1 Datasets

When evaluating a model, the data source is of primary interest. That is why, instead of

standardising data files so that every dataset followed the same guidelines (Kummerer,

2019; Zanca et al., 2018), SalScan comes as a software layer on top of the original data

without modifying it. Thus, original data can instantly be used as a data source to train

or evaluate an already existing model. Many datasets are publicly available (Borji & Itti,
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2015; Le Meur et al., 2006; Xu et al., 2014), but we describe here the main ones: MIT

(Judd et al., 2009), Toronto (Bruce & Tsotsos, 2007) and Fiwi (Shen & Zhao, 2014).

5.1.1 MIT datasets

Figure 5.1 – Illustration of the MIT dataset. Row 1: the original stimulus, row 2:
fixation points, and row 3: density map. From Judd et al. (2012).

The MIT dataset depicted in Figure 5.1, is the dataset on which models are evaluated

when submitted to the MIT Benchmark. Actually, as previously evoked, there is two MIT

datasets. The MIT300 (Judd et al., 2012) used for the benchmark evaluation and the

MIT1003 used by researchers to train their models. Both have the same characteristics,

but ground-truth from MIT300 is not publicly available. They respectively contain 1003

and 300 random images from Flickr creative commons and LabelMe (Russell et al., 2008).

Images were displayed on a computer screen during 3 seconds to 15 participants for

MIT1003 and 39 for MIT300. Presented images included text, faces, indoor, outdoor,

landscape and portrait images.
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5.1.2 Toronto dataset

Figure 5.2 – Illustration of the Toronto dataset. Rows 1 and 2: indoor scenes and
row 3: outdoor scene with no particular regions of interest. Column 1: the stimulus,
column 2: the fixation points, column 3: the density map, and column 4: the heat map.
Adapted From Riche (2015).

Bruce and Tsotsos (2007) proposed a dataset called Toronto containing 120 natural scene

images as displayed in Figure 5.2. They were randomly presented on a computer screen

for 4 seconds. Images included indoor and outdoor scenes collected from 20 participants.

5.1.3 Fiwi dataset

Figure 5.3 – Illustration of the Fiwi dataset. Pictorial: web pages occupied by one
dominant picture or several large thumbnail, Text: web pages containing informative
text with high density, and Mixed: web pages with a balanced mix of the two previous
categories. From Shen and Zhao (2014).
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The Fiwi (Fixations in Webpage Images) dataset (Shen & Zhao, 2014) is the only large

web pages dataset available. It consists of 149 screenshots of various sources on the web

categorised as pictorial, text and mixed content (see Figure 5.3). Stimuli were displayed

to 11 participants during 5 seconds.

5.1.4 EMDW dataset

The Eye Movements Dataset on Web pages (EMDW) is a subset from the experimental

data collected during this thesis (see Chapter 4). We extracted 204 trials from the

original data including 122 participants and 9 websites. Websites were freely browsed

during 60s. Contrary to Fiwi dataset, web pages were entirely scrollable.

5.2 Viewport engine

(a) Vertical viewport (b) Scroll viewport

Figure 5.4 – Viewport engines. (a) each viewport directly follows the previous one
without overlapping. (b) reproduce scroll events from recorded data.

All models mentioned in Chapter 3 assume the input to be a static image. This is

not a problem since all datasets in the saliency and saccadic modelling fields are static

images. However, while these models can perfectly work on web pages screenshots, they

cannot correctly process dynamic web pages. Hence, we implemented in the SalScan
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framework a viewport engine. Its role is to provide the models with a mechanism to

process unconventional stimuli such as a 360 degrees images or a web page. For instance,

when we browse a web page, only a limited part of the web page is displayed on the

screen, this is the viewport. That is why we need to use the scroll to fully explore it.

Thus, a viewport designates a static image extracted from a larger stimulus given an

exploration strategy. For now, two viewport strategies are implemented: vertical and

scroll. As depicted in Figure 5.4 (a), the vertical viewport strategy consists of browsing the

stimulus vertically. The viewport fits the width of the image, while its height is manually

predefined. Each viewport directly follows the previous one without overlapping. Once

at the bottom of the stimulus, the exploration ends. The scroll viewport strategy is

based on scrolling information. The viewport is determined according to the scroll events

(Figure 5.4 (b)). Depending on how the participant scrolls, viewports can overlap each

other and can be either below or above the previous one.

5.3 Metrics

When evaluating a model’s performance, it needs to be tested on a dataset with met-

rics. The role of a metric is to give a numerical value assessing the quality of model’s

predictions. In the saliency field, a wide variety of metrics exist, but there is no gold

metric standard. The saliency metrics that are presented bellow can be divided in two

categories: metrics focusing on saliency map values at fixation positions and metrics

comparing saliency map and ground-truth fixation statistical distributions.

As explained in Chapter 3, a lot of saccadic models were based on saliency maps. Since

many saliency metrics were initially available and due to the complexity of evaluating

scanpath patterns, the scanpath modelling literature used saliency metrics for evaluation.

To do so, they convert generated scanpaths back to saliency map and use related metrics.

Recently, specific metrics emerged (Jarodzka et al., 2010). Contrary to saliency maps,

which designate 2D maps of where visual attention is directed, a scanpath is much

more complex and involve many additional dimensions. For instance, the duration of
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each fixation, the order on fixated locations, etc. As in the saliency fields, scanpaths

comparison metrics tried to evaluate models by summarising their performances with

a single value (Brandt & Stark, 1997; Shepherd et al., 2010). However, metrics trying

to tackle the complexity of scanpath emerged by proposing multiple values evaluating

multiple aspects of a scanpath (Jarodzka et al., 2010).

5.3.1 Saliency metrics

Are implemented in SalScan one saliency metric of each category: The Normalized

Scanpath Saliency (NSS) evaluates saliency map values at fixation positions, while

Correlation Coefficient (CC) compares saliency map with ground-truth statistical dis-

tributions. Both presented metrics are computed globally as in the literature and over

time. To do so, each metric is computed for each second to provide the metric temporal

evolution.

5.3.1.1 Normalized Scanpath Saliency (NSS)

Introduced by Peters et al. (2005), the idea of the NSS metric is to sum all values from

saliency maps where ground-truth fixations are located. The result is then normalised

following:

(5.1) NSS =

1
N

∗

NX

p=1

SM(p)−µSM

σSM

where p designates the location of a ground-truth fixation, SM is the saliency map

and N the total number of fixations. The higher the score is, the better the saliency map

prediction is.

5.3.1.2 Correlation Coefficient (CC)

The CC metric has been first applied to saliency map evaluation by Ouerhani et al.

(2004). The linear CC is obtained following equation:
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(5.2) CC =

cov(SM,GT)
σSM ∗σGT

where SM designates the saliency map and GT the ground-truth saliency map. The

output goes from -1 to 1. When the result is close to -1 or 1, there is an almost perfect

linear relationship between the two saliency maps.

5.3.2 Scanpath metrics

Scanpath-specific metrics intend to to take into account the dynamic aspect of visual

exploration. Multiple approaches has been proposed over the years. The two most

common are Dynamic Time Warping (DTW) and string-edit algorithms. They are both

described below. More recently, the MultiMatch metric has been proposed to assess

various aspects of the scanpath comparison.

5.3.2.1 Dynamic Time Warping (DTW)

DTW is a common algorithm to evaluate the similarity between two paths with potential

temporal shift. To compare two scanpaths, the distance between each fixation of the same

order is computed. The result is a distance matrix. Then the path with the minimum

cost is selected. The final score is computed as the sum of all distance constituting this

path.

5.3.2.2 String-edit

String-edit or the Levenshtein distance is an algorithm introduced by Levenshtein (1966).

Originally, this algorithm quantifies the difference between two word, sentences or any

characters strings. It has been adapted to scanpath differences by Brandt and Stark

(1997). In this version, the image is divided in N equal regions labeled with the letters

of the alphabet beginning with "A". Then, each fixation of the scanpath is assigned the
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letter corresponding to the region in which the fixation is located. The difference between

scanpaths is then computed using the string-edit algorithm.

5.3.2.3 MultiMatch

MultiMatch is an algorithm proposed by Jarodzka et al. (2010) to compare two scan-

paths on five dimensions: scanpath shape, saccades length, fixations location, fixations

duration and saccades orientation. Each dimension can be studied separately or in an

global MultiMatch score averaging all dimensions. Before computing each measure, the

scanpath is pre-processed through two steps: simplification and temporal alignment.

The simplification phase consists of deleting small saccades and merging consecutive

long saccades with the same direction. Thus, the noise induced by the individuality

of each participants is reduced. Then, the temporal alignment step aims to transform

simplified scanpath in a graph from which the shortest path is computed using Dijkstra

algorithm (Dijkstra, 1959).

As for NSS and CC metrics, we implemented a dynamic version of MultiMatch.

Each dimension is computed for each second of the exploration. However, due to the

temporal alignment, results can be biased. That is why, the dynamic MultiMatch metric

is computed without alignment.

5.4 Evaluation and comparison

The major advantage of the SalScan framework is to provide an easy way to evaluate

any model with any metric on any dataset. Usually, different frameworks provide

complementary tools to manipulate each component separately, the researcher must

then combine each element. In this framework the validation process can first be

executed through Sessions. To do so, a model, a dataset and metric(s) are povided to the

Session module. First, the Session takes care of running the model on every image of the

dataset. A viewport engine can also be provided. In that case, the session will use the

viewport engine and directly send the viewport to the model. Thus, models not developed
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for unusual stimuli, such as dynamic web pages, can be used transparently. Finally, the

Session evaluates every generated scanpath or saliency map with provided metrics. If

saliency metrics are given to evaluate a scanpath model, saliency maps are built from

generated scanpaths. The result is a table summarising all metrics scores.

The second tool included in this framework is the Benchmark. The Benchmark can

have two roles. The first one is to test different configurations of a model on one or

multiple datasets with one or multiple metrics. This is convenient when developing a

new model to find the best parameters to reach the best results. The second role of the

Benchmark tool, is to compare a wide quantity of models on multiple datasets. Both uses

can be run at the same time.
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References:

• Poster 1 (page 120): Milisavljevic, A., Le Bras, T., Petermann, C., Mancas, M.,

Gosselin, B., & Doré-Mazars, K.(2018). A dynamic approach of searching behaviour

in webpages. 41th European Conference on Visual Perception, 26-30 August 2018,

Trieste, Italy. Perception, ECVP 2018. 48(S1), p.22

• Article 1 (page 123): Milisavljevic, A., Bras, T. L., Mancas, M., Petermann, C.,

Gosselin, B., & Doré-Mazars,K. (2019). Towards a better description of visual

exploration through temporaldynamic of ambient and focal modes. InProceedings

of the 11th ACM Symposium

• Poster 2 (page 129): Milisavljevic, A., Le Bras, T., Abate, F., Gosselin, B., Peter-

mann, C., Mancas, M. and Doré-Mazars, K.(2019). Different visual explorations
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6.1 Contributions presentation

The first axis of this thesis is to determine how ambient and focal visual processing

can describe eye movement dynamic. These visual modes find their origin in the two

pathways (ventral and dorsal) taken by visual information in the brain (Goodale & Milner,

1992; Ungerleider & Mishkin, 1982). As described in Chapter 1, the ventral stream goes

from occipital to temporal cortex and carries information about object features ("what"),

while the dorsal stream goes from occipital to parietal cortex and carries information

about object locations ("where"). As Velichkovsky et al. (2005) explained, these visual

pathways can be directly observed through eye movements using fixations and saccades.

A short fixation followed by a high-amplitude saccade suggests an ambient mode (dorsal

pathway), while a long fixation followed by a small-amplitude saccade suggests a focal

mode (ventral pathway) (Pannasch et al., 2008; Unema et al., 2005; Velichkovsky et al.,

2005). These two modes have been summarised by the literature through two main

ratios (Dehais et al., 2015; Krejtz et al., 2016).

We studied in Poster 1 how the ratio proposed by Dehais et al. (2015) could be used

to discriminate tasks during web pages browsing. This ratio was originally created by
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Goldberg and Kotval (1999) to characterise visual exploration in software interfaces,

and Dehais et al. (2015) modified it to assess visual processing modes in the context of

surprise in a plane cockpit. We applied this modified version on web pages to investi-

gate visual modes. We also introduced the use of Unema et al. (2005) and Pannasch

et al. (2008) fixation duration and saccade amplitude thresholds to differentiate short

fixations/saccades and long fixations/saccades. We showed that ambient mode (or ex-

plore mode) was more intense during free viewing task than during visual search task.

Moreover, we found promising results showing that a click could be preceded by a focal

mode (or exploit mode). However, this ratio did not differentiate the time spent exploring

(saccades) from the time spent exploiting information quickly (short fixations). Hence, we

investigated the K coefficient, a ratio proposed by Krejtz et al. (2016) on natural images.

Contrary to previous ratio, the K coefficient was specifically designed to describe ambient

and focal modes. In Article 1, we used the K coefficient to compare eye movements

between a free viewing task and a visual search task. We found that the switch between

the two modes occurred at a high frequency so that the average value of the ratio was

close to zero. We showed that, even though global differences did not emerge, the dy-

namic of the visual modes between tasks highlighted differences over time. Moreover, we

succeeded to globally differentiate tasks by introducing new K-related variables. Finally,

we replicated these results on web pages in Poster 2. We showed that the K coefficient

could not discriminate tasks globally, but by using these K-related variables, we were

able to better discriminate tasks globally and over time.
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6.2 Poster 1: "A dynamic approach of searching
behaviour in webpages"

Milisavljevic, A., Le Bras, T., Petermann, C., Mancas, M., Gosselin, B., & Doré-Mazars,

K.(2018). A dynamic approach of searching behaviour in webpages. 41th European

Conference on Visual Perception, 26-30 August 2018, Trieste, Italy. Perception, ECVP

2018. 48(S1), p.22

Poster 1 summary

In this study we analysed the effect of the type of task on global parameters of ocular

exploration as well as on its dynamics. We asked 16 participants to browse 18 websites in

ecologically valid conditions. They had to perform two types of task: free exploration and

visual search. Preliminary results showed an influence of the task on visual exploration

parameters, such as the length of the scanpath, the horizontal dispersion of fixations and

the saccade amplitude. However, to better understand the behaviour of the participants,

we studied the influence of the task on the dynamics of visual exploration. To do so, we

used the ratio proposed by Dehais et al. (2015). We found that the "Explore" (ambient)

mode was more intense during the free-viewing compared to the visual search task.

Furthermore, we found that a mouse clicks were often preceded by a "Exploit" (focal)

mode.
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Résumé du poster 1

Dans cette étude nous avons analysé l’effet de la tâche sur les paramètres globaux de

l’exploration oculaire ainsi que sa dynamique. Nous avons demandé à 16 participants

de parcourir 18 sites web en conditions écologiques. Ils devaient réaliser deux types de

tâches : exploration libre et recherche visuelle. Les résultats préliminaires montrent une

influence de la tâche sur les paramètres de l’exploration visuelle tels que la longueur

du chemin oculaire, la dispersion horizontale des fixations et l’amplitude des saccades.

Cependant, afin de mieux comprendre le comportement des participants, nous avons

étudié l’influence de la tâche sur la dynamique de l’exploration. Pour ce faire, nous

avons utilisé le ratio proposé par Dehais et al. (2015). Nous avons observé que le mode

"Explore" (ambient) était plus intense en parcours libre qu’en recherche visuelle. De plus,

nous avons noté qu’un click était précédé la plupart du temps par un mode "Exploit"

(focal).
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The visit of a webpage is driven by multiple bottom-up and top-down factors, such as the inner characteristics of the webpage, the goal or the user profile. In 

the present experiment, we studied static and dynamic goal’s effects on participants’ visual behaviour while browsing webpages. In order to achieve this, we 

asked them to carry out two kinds of tasks: Free Viewing task and Target Finding task.
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3 Research and Development department, Sublime Skinz, Paris, France  
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Preliminary results showed the influence of the task on the scanpath length, the spatial dispersion 

of the fixations and the amplitude of the saccades. However, scanpath’s characteristics evolve 

during the navigation which highlighted explore/exploit modes. Further analyses suggest that the 

scanpath’s dynamic is also influenced by the target detection. In our future work, we will 

investigate the bottom-up influence and mix it with the top-down to better explain participants 

behaviour during target-finding condition.

▶ Participants 
• 16 participants.

• Normal or corrected-to-normal vision.

• 6 ; 10 ; ~23 y.o.

▶ Apparatus 
• EyeLink 1000 (SR Research®).

• Temporal resolution of 1KHz.

• Spatial resolution of 0.05°.


▶ Stimuli 
• Mean height of 6505px.

• Width of 1920px.

• Scrollable.

• 24.5-inch screen size.

• 144Hz screen’s refresh rate.

• 1920x1080 of screen resolution

• Fully offline.

• Single page.

▶ Does the task influence eye movements ?

▶ Explore or Exploit ?

In order to better understand this dynamic, we looked for visual 
exploration modes during the browsing of the webpage. As 
formalized by (Unema et al., 2005), there is two visual exploration 
modes: Exploit or Focal and Explore or Ambient. These modes 
could help to have a more precise understanding of the 
scanpath’s dynamic. To do so, we used (Dehais et al., 2015) 
version of (Goldberg and Kotval, 1999) ratio as described in 
Figure 1.

As you can see in Figure 2, the switch between the two modes changes in frequency and intensity according 

to the task. This switch occurs for two kind of reasons in both case: bottom-up or top-down stimulation. 
What change is the importance of one compared to the other depending on the task and stimulus.


We observed the following behaviours:

Free Viewing Target Finding F PR(>F)

Scanpath spatial length 998° 975° 5.32e-07 PR << F

Fixation dispersion 370px 390px 0.000019 PR << F

Saccade amplitude 4.33° 6.03° 0.000822 PR << F

Fixation duration 228ms 242ms 6.86e-08 PR << F

Table 1: Influence of task on eye movements variables

Randomly 

selected

18 websites

Click on the blue-highlighted button 

to display instructions.
No internet

Scrollable

1min

Free viewing task

single page

Freely browse the following webpage for 

one minute.

Press Space key to terminate the trial

Target finding task

From 1 to 3 clickable targets


(only images)

Target found:  
highlighted after click

No internet

Scrollable

2min max

single page

Click on images with a turtle. There are maximum 3.

INTRODUCTION

Exploit/Focal: long fixations (>180ms) 
followed by short saccades (<5°).


Explore/Ambient: short fixations (<180ms) 
and large saccades (>5°).

Visual exploration modes

(Unema et al., 2005)

As shown in table 1, the scanpath length is longer during Free Viewing condition. 
This can be explained by the fact that this condition was standardized to 1 minute 
exactly while Target Finding condition duration was up to the participant finding 
the target(s). At the opposite, other variables are higher during Target Finding but 
no conclusion can be given.


Global analyses show the influence of the task on eye movements but the 
scanpath is dynamic and change over time. With this type of analysis it is difficult 
to understand the behaviour of a participant while browsing.

saccades + short fixations

long fixations
r =

r > 1 Explore

0 < r < 1 Exploit

Short fixations

long fixations

Figure 1: Classification methods and explore/exploit ratio computing.

▶ What implies target detection ?

Figure 3: Clicks and fixation duration.

Mouse’s click

Fixation duration

• Explore mode during the first 2 seconds is  
not systematic, specially when the user scroll 
within these 2 seconds.


• Explore mode is more intense during Free 
Viewing (higher peaks).


• In addition of the task and content, eye  
position in the page influence the dynamic of 
the exploration (F=0.004, PR<F).

Free Viewing

Target Finding

• Clicks are 80% of the time performed during 
exploit mode (r < 1.5).


• Neither the scroll or the click on a target could 
explain the switch between the two modes.

Figure 2: Ratio in Free viewing condition, (a) is a Free Viewing exploration on a website with a lot of 

text and (b) is a Free Viewing task on a website with many images and (c) is Target Finding task.

(a)

(b)

(c)

Mouse’s scroll

Fixation on target

Mouse’s click

E/E Ratio

Finally, as shown in Figure 3, we found that most of the time, clicks were surrounded by abnormal long 
fixations thus describing a change in the exploration dynamic. This could be explained by the fact that the 
participant wanted to be sure to click on the right target.

References
Goldberg, J., and Kotval, X.. 1999. Computer Interface Evaluation Using Eye Movements: Methods and 

Constructs. International Journal of Industrial Ergonomics 24 (6): 631–45.


Dehais, F., Peysakhovich, V., Scannella, S. and Gateau, T.. 2015. Automation Surprise’ in Aviation: Real-

Time Solutions. In 33rd Annual ACM Conference on Human Factors in Computing Systems, 2525–34. 

Seoul.


Unema, P. J. A., Pannasch, S., Joos, M., & Velichkovsky, B. M. (2005). Time course of information 

processing during scene perception. Visual Cognition 12(3). 473-494.

CHAPTER 6. AMBIENT AND FOCAL AS AN INDICATOR OF EYE MOVEMENT
DYNAMIC

122



6.3. ARTICLE 1: "TOWARDS A BETTER DESCRIPTION OF VISUAL EXPLORATION
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6.3 Article 1: "Towards a better description of visual
exploration through temporal dynamic of
ambient and focal modes"

Milisavljevic, A., Bras, T. L., Mancas, M., Petermann, C., Gosselin, B., & Doré-Mazars,K.

(2019). Towards a better description of visual exploration through temporaldynamic of

ambient and focal modes. InProceedings of the 11th ACM Symposium

Article 1 summary

In Poster 1, we showed that the type of task influenced the overall parameters of visual

exploration as well as the intensity of the "Explore-Exploit" (ambient-focal) modes. The

examination of the dynamics also allowed us to observe that in addition to the difference

in maximum intensity from one task to another, the intensity distribution in time was

also different. It is in the continuity of this work that the Article 1 intervenes. In

this article, we first changed the ratio in order to use the coefficient K (Krejtz et al.,

2016). The interest of this change lies in the fact that the coefficient K is dedicated

to describe the ambient and focal visual modes. Then, after having failed to observe

significant differences in dominant visual mode between tasks, we proposed new K-based

complementary measures: the number of switches between visual modes and the average

time spent in one mode. Finally, we were able to distinguish between both tasks using

these new variables. We showed that visual mode changes were very frequent during

exploration. So much that the intensity of the ratio was close to zero which made difficult

to differentiate the two tasks. Finally, we analysed the dynamic of the K coefficient and

the number of mode changes to narrow the description of each mode over time. Contrary

to the global analysis, the dynamic of the K coefficient turned out to be a better tool to

differentiate the two tasks.
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Résumé de l’article 1

Dans le Poster 1, nous avons montré que la tâche avait une influence sur les paramètres

généraux de l’exploration visuelle ainsi que sur l’intensité des modes "Explore-Exploit"

(ambient-focal). L’étude de cette dynamique nous a également permis d’observer qu’en

plus de la différence d’intensité maximale d’une tâche à l’autre, leur distribution dans

le temps était également différente. C’est dans la continuité de ce travail qu’intervient

l’Article 1. Dans cet article, nous avons d’abord modifié le ratio afin d’utiliser le coeffi-

cient K (Krejtz et al., 2016). L’intérêt de ce changement réside dans le fait que ce dernier

est dédié à la description des modes visuels ambiant et focal. Après ne pas avoir observé

de différences significatives du mode visuel dominant entre les tâches, nous avons pro-

posé de nouvelles mesures complémentaires basées sur K : le nombre de changements de

mode et le temps moyen passé dans un mode. Nous avons finalement pu distinguer les

deux tâches à l’aide de ces nouvelles variables. Nous avons montré par la suite que les

changements de mode visuel étaient très fréquents au cours de l’exploration. A tel point

que l’intensité du ratio était proche de zéro, ce qui rendait difficile la différenciation

entre les deux tâches. Enfin, nous avons analysé la dynamique du coefficient K et le

nombre de changements de mode pour affiner la description de chaque mode dans le

temps. Contrairement à l’analyse globale, la dynamique du coefficient K s’est révélée

être un meilleur outil pour différencier les deux tâches.
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ABSTRACT

Human eye movements are far from being well described with

current indicators. From the dataset provided by the ETRA 2019

challenge, we analyzed saccades and �xations during a free explo-

ration of blank or natural scenes and during visual search. Based

on the two modes of exploration, ambient and focal, we used the

K coe�cient [Krejtz et al. 2016]. We failed to �nd any di�erences

between tasks but this indicator gives only the dominant mode over

the entire recording. The stability of both modes, assesses with the

switch frequency and the mode duration allowed to di�erentiate

gaze behavior according to situations. Time course analyses of K

coe�cient and switch frequency corroborate that the latter is a

useful indicator, describing a greater portion of the eye movement

recording.
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1 INTRODUCTION

Nowadays, we know that human gaze behavior is in�uenced by

multiple aspects of a stimulus such as faces, shapes, colors and so

on [Coutrot and Guyader 2014; Tatler et al. 2003, 2008]. In that

sense, two categories of factors emerged: bottom-up and top-down
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[Helo et al. 2014; Yarbus 1967]. Bottom-up factors are low-level fea-

tures describing stimuli’s physical characteristics like luminance,

contrast or edges [Tatler et al. 2008]. The in�uence of these factors

appeared to be higher at the beginning of visual exploration [Tatler

et al. 2008]. In contrast, top-down factors are high-level features

which represent the wide scope of cognitive processes [Hender-

son and Hollingworth 1999] including the task, semantic, memory,

emotions, etc [Le Meur and Coutrot 2016; Yarbus 1967]. Contrary

to bottom-up factors, the in�uence of top-down ones is more com-

plex to understand and to predict because of its nature inherent to

each person [Borji and Itti 2013; Le Meur and Coutrot 2016]. Thus,

bottom-up and top-down factors alternatively in�uence the visual

exploration during its course [Henderson 2003; Torralba et al. 2006].

The reasons of the switch between the two remain uncertain but

[Unema et al. 2005] showed the existence of two visual processing

modes related to the two visual pathways. These visual process-

ing modes were de�ne according to �xation duration and saccade

amplitude parameters. The �rst mode is the ambient one which is

de�ned by a short �xation (<180ms) followed by a large saccade

(>5°) [Pannasch and Velichkovsky 2009; Velichkovsky et al. 2002].

Its role is to contextualize elements present within the visual scene

[Pannasch et al. 2008; Velichkovsky et al. 2002]. The second one is

the focal mode which is characterized by a long �xation (>180ms)

followed by a short saccade (<5°) [Helo et al. 2014; Velichkovsky

et al. 2002]. It allows to identify speci�c elements of the visual

scene. As reported by [Velichkovsky et al. 2002], ambient mode

is dominant during the two �rst seconds of the exploration while

the focal mode gradually becomes dominant overt time. Therefore

ambient mode was associated with bottom-up factors while focal

mode seems to be related to top-down ones [Helo et al. 2014].

The interest in the dynamic of the ocular exploration and more

recently in these two visual processing modes led researchers to im-

plement several ratios to describe and exploit these aspects. To our

knowledge, Goldberg and Kotval [Goldberg and Kotval 1999] were

the �rst to try to represent this dynamic by describing its diversity.

In their study, these authors proposed a ratio separating �xation du-

ration and saccade duration, visual information processing taking

place only during the �xation. However, they had limited results

with this method. More recently, [Dehais et al. 2015] introduced

an improved version of this ratio based on the distinction between

short and long �xations.

Nevertheless, such ratios are not directly related to the two

visual processing modes described here but report an interest of

researchers to explain the complexity of visual exploration. To our
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knowledge, the �rst and only ratio created in order to represent

ambient and focal modes is the one proposed by [Krejtz et al. 2016].

In their work, the authors exploited the oculomotor parameters

de�ned by [Unema et al. 2005] to identify the two visual processing

modes and their respective intensity. Thereby, this ratio called K

coe�cient, seems to be a good global estimator while respecting

the de�nition of the two modes given by [Unema et al. 2005].

The main goal of the present work is to assess whether the K

coe�cient described in [Krejtz et al. 2016] could be a good tool to

understand visual behavior. That is why we introduce new analyses

inwhichwe use this coe�cient and extend it with two new variables

in order to give more insights into the understanding of visual

exploration. These analyses can be independently used for global

and temporal analyses. To demonstrate their utility, we use them

to discriminate free-viewing and visual search tasks.

2 DATASET

As part of the 2019 ACM Eye-Tracking Research and Application

(ETRA) conference, a new dataset composed of images and raw

eye movements recordings has been released. We only describe

here the subset we used for our analyses, see [McCamy et al. 2014;

Otero-Millan et al. 2008] for further details.

2.1 Participants

The head of participants was placed on a chin-rest 57 cm from the

video monitor (75 Hz refresh rate). Eye-tracking data were recorded

from eight participants (2 women and 6 men) in three experimental

sessions of 60 minutes each.

2.2 Stimuli

Stimuli were split in four categories: Blank scene, Natural scene,

where is Waldo scene and picture puzzle but we only are interested

in the �rst three. The �rst one was a plain 50% grey displayed on the

whole screen. The second category contained 15 images of multiple

scenes from �ower bed to school bus. Some scenes included people

and animals but never at the same time. The third category was

composed of 15 where is Waldo scenes.

2.3 Tasks

Participants were asked to perform three tasks: free-viewing, visual

search and �xation but we only are interested by the �rst two. For

Natural stimuli, participants had to complete a free-viewing task

while they had to search a visual target (Waldo, or another character

or item) into the Waldo scene.

2.4 Experimental Design

All Participants performed all the conditions, 4 in free-viewing task

and 4 in �xation task. For all the conditions, stimuli were presented

during 45 seconds. In the �xation task, participants received an

auditory feedback when their gaze left an area of 2 deg around

the �xation cross for more than 500ms. In the visual search task

for puzzle scenes and “Where is Waldo ?“ scenes, they had to click

where they thought the di�erences or the targets were, after the 45

seconds.

2.5 Data cleaning

Our interest in this research is to study the dynamics of ocular

exploration. For this reason we kept data from Blank, and Natu-

ral scenes in the free-viewing condition and where is Waldo ? in

the visual search condition. Provided data are samples of events

recorded by the eye-tracker every 2 milliseconds. In order to aggre-

gate and identify �xations and saccades, we used the identi�cation

velocity-based algorithm (I-VT) from [Salvucci and Goldberg 2000].

Then, we set a velocity threshold of 100°/s to separate �xations

and saccades. Next, based on �xation duration distributions, we

removed outliers by deleting every �xation under 100 milliseconds

and greater than 1000 ms. Finally, we removed �xations outside the

screen and re-computed saccades.

3 ANALYSES AND RESULTS

We �rst globally computed the K coe�cient’s intensity as de�ned

in [Krejtz et al. 2016] to understand the general tendencies across

stimuli and tasks. We then completed it with other variables such

as mean duration in each mode to illustrate the wide variety of

possibilities brought by this same coe�cient. Finally, as the visual

exploration is dynamic, we selected the most interesting variables

and observed them through time. We �rst checked that our basic

statistics of eyemovements were in accordancewithMcCamy (2014)

and Otero (2008) [McCamy et al. 2014; Otero-Millan et al. 2008].

We observed similar �xation durations for Waldo stimuli (M=282.7,

SD=131.8), Natural stimuli (M=287.7, SD=150.5) and Blank stimuli

(M=360.7, SD=201) as well as saccades amplitudes for Waldo stimuli

(M=4.41, SD=4.25), Natural stimuli (M=5.58, SD=4.81) and Blank

stimuli (M=7.89, SD=6.81).

3.1 Intensity

We compute the K coe�cient’s intensity as described in [Krejtz et al.

2016]. To this end and as shown in equation 1, the K coe�cient is

the z-scored di�erence between �xation duration and next saccade

amplitudewhere µ andσ are respectively themean and the standard

deviation of �xations duration or next saccades amplitude within a

trial.

K =
1

n

’

n

di − µd

σd

−

ai+1 − µa

σa

(1)

Thus, a negative value of the K coe�cient means that the �xation

duration di deviates from the mean duration and the next saccade

amplitude ai+1 is a long saccade (>5°) which deviates from the mean

amplitude of the trial. On the contrary, a positive value indicates

that the �xation di and the next saccade ai+1 correspond to a focal

mode.

We did not found signi�cant di�erences between Blank, Natural

and Waldo stimuli, F (2,14) =1.38,p>.05. As seen in Table 1, means of

K coe�cient are very similar and close to 0, hence the fact that there

is no dominant mode. For this reason, the variation of gaze behavior

during the exploration added to the characteristics of tasks and

stimuli do not allow to di�erentiate visual explorations through K

coe�cient.

CHAPTER 6. AMBIENT AND FOCAL AS AN INDICATOR OF EYE MOVEMENT
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Table 1: Means and standard deviations (std) of K coe�cient, number of switches, ambient and focal durations as a function

of the tasks and visual stimuli: free-viewing in Blank and Natural scenes and visual search in Waldo scenes

Blank Natural Waldo

mean std mean std mean std

Coe�. K 4.43e-18 3.34e-16 3.15e-17 4.03e-16 -4.55e-17 3.83e-16

Number of switches 34.21 12.86 62.81 12.56 69.42 11.70

Ambient duration 330.12 51.73 253.94 26.64 250.36 23.56

Focal duration 529.56 104.81 381.35 57.38 360.89 45.05

3.2 Stability

Here we extend the coe�cient by computing two new variables

which are the average duration per mode (ms) and the number of

switches between modes. The �rst allows us to know the mean

duration during which participants stayed in the same mode. The

higher the value is, the more the time spent in each mode increases

and the more stable the participant’s exploration is. To do so, we

determined when a mode session started and when it �nished. Then

we calculated the mean duration by adding the �xation durations

and saccade durations for each session. Next, we calculated the

mean duration of each session in ambient mode and in focal mode

as shown in Table 1. Unlike with the K coe�cient, we found a sig-

ni�cant main e�ect of the stimulus type on mean ambient duration.

Moreover, di�erences on the mean ambient duration were signif-

icant between the three stimuli F (2,14) = 39.61, p<.001. A Tukey

test showed that di�erences between Blank and Waldo stimuli was

signi�cant, t(7) = 56.44, p<.001; as between Blank and Natural stim-

uli, t(7) = 46.35,p.<.001. However, di�erence between Natural and

Waldo stimuli, t(7) = 1.89,p>.05, was not signi�cant. We observed

the same signi�cant e�ect on the mean duration in focal F (2,14)

= 49.75,p<.001. Tukey test analyses showed again that Blank and

Waldo stimuli were signi�cantly di�erent, t(7) = 47.24,p<.001; as

well as the di�erence between Blank and Natural stimuli, t(7) =

36.95, p.<.001. Di�erence between Natural and Waldo stimuli t(7) =

4.83, p>.05, was not signi�cant. Such analyses based on the mode

stability reveal di�erences between visual explorations, in partic-

ular for the Blank stimulus but not between Waldo and Natural

scenes.

The second variable allows us to investigate another aspect of

the mode stability: the number of mode switches during recording.

This variable corresponds to the number of times K coe�cient

switches from positive to negative values or the reverse. As for

mean duration per mode, we found a signi�cant main e�ect of the

stimulus type on the number of switches F (2,14) = 100.21,p<.001,

see Table 1). Interestingly, Tukey analyses revealed di�erences

between the three stimuli. Blank stimulus di�ered from Waldo

stimulus, t(7)= 231.46,p<.001) as well as from Natural stimulus t(7) =

112.85,p<.001. However, the di�erence was signi�cant here between

Natural and Waldo stimuli, t(7) = 5.23,p<.05. Di�erences emerged

when indicators of stability were taken into account, suggesting

to turn to other analyses to better explain the dynamics of visual

explorations and di�erentiate them as a function of each stimulus

presented to the participants.

3.3 Dynamics

The mean duration of each mode and the number of switches be-

tween modes change over time across the three stimuli. This pro-

vides more information than global analyses which does not take

into account the temporal dynamic. Thus we need to consider the

dynamic of the exploration by dividing our data in time sequences

and observe the time course of our variables. To minimize our data

loss, we removed every records after 34s which corresponds to the

shortest trial after cleaning. We then divided each trial in eight

sequences of 4.25s.

As shown in Figure 1, there is a signi�cant e�ect of time on

the number of switches and K coe�cient F (7,49) = 7.80, p<.001

which increases over time. Moreover, the exploration of all the

three stimuli begins with an ambient mode which then tend to focal

mode over time. We noticed that in the �rst sequence, K coe�cient

was signi�cantly di�erent between Waldo stimulus and Natural

stimulus t(7) = 6.82,p<.05, Waldo stimulus and Blank stimulus t(7)

= 8.20,p<.05 but not between Blank stimulus and Natural stimulus

t(7) =0.02,p>.05. These di�erences are not signi�cant from the next

sequence until the end of exploration, respectively t(7) = 1.66,p>.05

;t(7) = 1.06,p>.05 ;t(7) = 3.32,p>.05.

When considering the number of mode switches, di�erences

between Natural and Waldo stimuli were not signi�cant for the

�rst sequence t(7)=0.56,p>.05, the seventh sequence t(7) = 2.49,

p>.05 and the eighth time sequence t(7) = 3.36,p>.05. For each other

sequences, di�erences between Blank stimulus, Natural and Waldo

stimuli were signi�cant t(7) = 28.29, p<.001 ; t(7) = 106.79,p<.001.

If we put these observations in perspective, it becomes clear

why the K coe�cient did not discriminate visual exploration be-

tween stimuli. Therewere two sequences of approximately 9s where

K coe�cient di�erentiated stimuli against the last six sequences

covering 25.5s which did not di�er. Therefore, the analysis of K

coe�cient through time gave new insights on how to discriminate

stimuli and tasks. However, the coe�cient could only discriminate

25% of the exploration. As shown in Figure 1 (right), the di�erence

betweenWhere’s Waldo and Natural conditions remained signi�-

cant during the �rst half of the exploration (i.e. for each of the �rst

four sequences). It is interesting to note that the di�erence is visible

longer than for the K coe�cient.

4 DISCUSSION AND CONCLUSION

The analyses of the K coe�cient showed that a global approach is

too coarse to emerge signi�cant relationships between stimuli and

modes. When analyzed statistically, the values of coe�cient K for

the three stimuli are close to the origin. This could be explained
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Figure 1: K Coe�cient (left panel) and Number of switches (right panel) as a function of stimuli and time sequence ranges.

by the fact that the gaze behavior is dynamic in essence and is

constantly changing between ambient and focal modes. These �uc-

tuations could cancel each other and result in a coe�cient near 0.

This assumption is supported by the fact that signi�cant di�erences

appeared when the coe�cient was analyzed over time. In addition,

we observed a dominant ambient mode during the �rst sequence

which turned into a focal mode during the second sequence except

for Blank stimulus probably due to the fact that no visual stimulus

is available and thus does not require cognitive resources. Thus,

participants could stay much longer in each mode. This hypothesis

is supported by the results shown in Figure 1 (right).

The analyses of mean duration in ambient and focal modes are

to put in perspective with the number of switches. When the mean

duration in each mode increases, the number of switches decreases

and reverse. A higher mean duration in ambient implies more con-

textualization from the participant and less processing but does not

necessarily mean the dominant mode is ambient.

The investigation on the number of mode switches allowed us to

discriminate the stimuli up to 50% of the exploration. This improve-

ment suggests the number of switches could help to better explain

bottom-up and top-down in�uences during the visual exploration.

In this study, it is important to note that we were limited by the

missing information about the given tasks and the target identity

in Where’s Waldo condition. Indeed, we do not know when the

participant found the target, impeding to take into account only

the period where the participant was really performing a visual

search rather than the entire recording.

We think that future works should take into account these vari-

ables based on the K coe�cient and their dynamic analyses, as they

provide very interesting tools to better understand ocular behavior

in situations di�ering as for visual inputs or goals.
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6.4 Poster 2: "Different visual explorations between
free-viewing and target finding tasks in websites:
evidence from temporal analyses of ambient and
focal modes"

Milisavljevic, A., Le Bras, T., Abate, F., Gosselin, B., Petermann, C., Mancas, M. and Doré-

Mazars, K.(2019). Different visual explorations between free-viewing and target finding

tasks in websites: evidence from temporal analyses of ambient and focal modes. 20th

European Conference on Eye Movements, 18-22 August 2018, Alicante, Spain. Journal of

Eye Movement Research 12(7), p. 390

Poster 2 summary

In Article 1, we showed that the K coefficient and our k-based variables (Krejtz et al.,

2016) provided more precise tools to differentiate tasks and understand oculomotor

behaviour. Poster 2 aimed to show that the investigation of ambient and focal mode

carried out in Article 1 could be generalised to web pages. Similarly to Poster 1, we

asked 116 participants to browse 18 websites in ecologically valid conditions. They had

to perform two types of task: free viewing and visual search. We then reproduced the

methodology used in Article 1: we first used the global intensity of the K coefficient

(Krejtz et al., 2016) to differentiate tasks, and we then analysed its dynamic to refine

the results. We replicated our previous results: the global intensity described by the

K coefficient did not allow us to differentiate the tasks, whereas the k-based variables

provided more precise results. Furthermore, although the number of changes between

visual modes was similar for both tasks at the beginning of the exploration, our results

showed that it decreased within the two first seconds of visual search.
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CHAPTER 6. AMBIENT AND FOCAL AS AN INDICATOR OF EYE MOVEMENT
DYNAMIC

Résumé du Poster 2

Dans l’Article 1, nous avons montré que la dynamique du coefficient K et de nos

variables basées sur K (Krejtz et al., 2016) fournissaient des outils plus précis pour

différencier les tâches et comprendre le comportement oculomoteur. Le Poster 2 visait à

montrer que l’étude de la dynamique des modes visuels ambient et focal réalisée dans

l’Article 1 pouvait être généralisée aux pages web. Comme pour le Poster 1, nous avons

demandé à 116 participants de parcourir 18 sites web dans des conditions écologiques. Ils

devaient effectuer deux types de tâches : une exploration libre et une recherche visuelle.

Nous avons ensuite reproduit la méthodologie utilisée dans l’Article 1 : différencier

d’abord les tâches en utilisant l’intensité globale du coefficient K (Krejtz et al., 2016),

puis analyser sa dynamique dans le but d’affiner les résultats. Nous avons montré que,

comme précédemment, l’intensité globale décrite par le coefficient K ne permettait pas

de différencier les tâches, alors que les variables basées sur K donnaient des résultats

plus précis. De plus, nous avons observé que bien que le nombre de changements de

mode était similaire pour les deux tâches au début de l’exploration, il diminuait dans les

deux premières secondes lors d’une recherche visuelle.
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Two visual exploration modes were highlighted by Unema et al. (2005) from Trevarthen’s work (1968) on the two visual 
pathways. An ambient mode which is influenced by bottom-up factors and a focal mode which is influenced by top-down 
factors. Kreijtz et al. (2016) proposed the K coefficient to measure these two modes.

In the present study we use K-derived new variables as described by Milisavljevic et al. (2019) in order to study task’s 
effects on gaze during the exploration of webpages.

Different visual explorations between free-viewing and target finding tasks in websites: 
evidence from temporal analyses of ambient and focal modes 

Alexandre Milisavljevic1,2,3, Thomas Le Bras1, Fabrice Abate1, Matei Mancas2, Coralie Petermann3, Bernard Gosselin2, Karine Doré-Mazars1

20th European Conference on Eye Movements, Alicante, Spain, 2019,  18th to 22th August

METHODS

RESULTS
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2 Numediart institute, University of Mons, Mons, Belgium


3 Research and Development department, Sublime Skinz, Paris, France  

CONCLUSION
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Global analyses show a significant effect of the task on all variables except the K 
coefficient. This result highlights that the new variables we propose are more useful than 
the K coefficient to discriminate tasks based on gaze behavior. Further dynamical analyses 
show that our new variables are more robust and thus reveal significant task’s effects on 
the K coefficient.

Future work should focus on visual processing modes when the target is detected by the 
participant. These analyses should also be put in perspective of the mouse’s scroll during 
the exploration of the webpage.

▶  Global analyses

▶ Temporal dynamics analyses

Randomly 

selected

18 websites

Click on the blue-highlighted button 

to display instructions.
No internet

Scrollable

1min

Free viewing task

single page

Freely browse the following webpage for 

one minute.

Press Space key to terminate the trial

Target finding task

From 1 to 3 clickable targets


(only images)

Target found:  
highlighted after click

No internet

Scrollable

2min max

single page

Click on images with a turtle. There are maximum 3.

INTRODUCTION

First, we ran global analyses on classic eye movements variables which are fixation duration and saccade amplitude.

We found significant differences between Target Finding and Free Viewing tasks.
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The number of mode switches (see figure on the right) is different between tasks 
only for the first part of the visual exploration.


However, Target Finding task seems to have a smaller number of switches, for every 
time sequences, compared to Free Viewing task.


Taken together, these results can be explained by the fact that in Target Finding task, 
participants have to stay more often in focal mode to discriminate the target.

▶ Participants 
• 116 participants.

• Normal or corrected-to-normal vision.

• 19 ; 97 ; ~25.5 y.o.

▶ Stimuli 
• Mean height of 6505px.

• Width of 1920px.

• Scrollable.

▶ Data Cleaning 
• Records >= 35s are kept.

• 15 bins of 2.33 seconds each.

• Blinks and outliers removed.

▶ Apparatus 
• EyeLink 1000 (SR Research®).

• Temporal resolution of 1KHz.

• Spatial resolution of 0.05°.

• 24.5-inch screen size.

• 144Hz screen’s refresh rate.

• 1920x1080 of screen resolution

Then, we computed the K coefficient (Krejtz, et al., 2016; see formula on the right) 

from which we computed 3 new variables from (Milisavljevic et al., 2019):

- number of mode switches

- mean duration in focal mode

- mean duration in ambient mode

Free Viewing Target Finding F p-value

Fixation duration (ms) 233.11 249.13 58.27 p < .001

Amplitude (°) 4.79 7.01 415.80 p < .001

K coefficient 9.96e-19 -1.63e-17 0.26 p > .05

Number of  mode 

switches
61.1 58.8 6.07 p < .05

Mean duration in focal 

mode (ms)
308.07 333.75 55.94 p < .001

Mean duration in ambient 

mode (ms)
219.56 238.73 185.40 p < .001

All the new variables related to the K coefficient (see table on the left), in contrast to 
the K coefficient itself, are able to significantly better differentiate the gaze behavior 
dynamic between the tasks.


Global analyses show the task’s influence on all our variables.

New variables show that participants stay longer in both focal and ambient modes 
during the target finding task than during the free viewing task.

The significant task’s effect on the number of switches highlights that gaze behavior 
dynamic variates as a function of the task given to the participant.

K > 0 → Focal
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5.0

5.2

5.4

Short saccade (< 5°)

Long fixation (>180ms)

Long saccade (> 5°)

Short fixation (<180ms)

Focal Mode Ambient Mode

6.4. POSTER 2: "DIFFERENT VISUAL EXPLORATIONS BETWEEN FREE-VIEWING
AND TARGET FINDING TASKS IN WEBSITES"
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CHAPTER 7. EYE MOVEMENT BEHAVIOUR ON WEB PAGES

References:

• Poster 3 (page 136): Milisavljevic, A., Doré-Mazars, K., Gosselin, B., Mancas, M.,

& Petermann, C. (2017). What scroll can teach us about web users ? 40th European

Conference on Visual Perception , 27-31 August 2017, Berlin, Germany. Perception,

ECVP 2017

• Article 2 (page 139): Milisavljevic, A., Hamard, K., Petermann, C., Gosselin, B.,

Doré-Mazars, K., & Mancas, M. (2018). Eye and Mouse Coordination During

Task: From Behaviour to Prediction. In Proceedings of the 13th International Joint

Conference on Computer Vision, Imaging and Computer Graphics Theory and
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Gosselin, B., Mancas, M., & Doré-Mazars, K. (Under revision). Similarities and dif-

ferences between eye and mouse dynamics during web pages exploration. Frontiers

in Psychology

7.1 Contributions presentation

The purpose of the second axis of this work was to investigate eye movement behaviour

on web pages through the relationship between the eyes, the movement of the mouse

pointer and the scroll. Ecologically valid web pages need to be studied differently than

images because of possible interactions with the web page itself. These interactions can

take multiple forms, including clicks, scrolling, and drags and drops. While clicks and

drags and drops are a mean to directly change or update the content, scrolling is more

about the discovery of the content.

Most studies about scrolling behaviour focus on eye movement behaviour while

scrolling and reading text documents (see Dyson (2004) for a review), but few studies

have examined this behaviour on web pages. The relationship between the eyes and the

scroll is even less studied. Yet, the scroll is used by billions of people when accessing

internet or a smartphone. Hence, we investigated the relationship between the eyes and

the scroll on web pages in Poster 3 and Article 2. We showed that the eyes location

could be used to infer next or current scroll parameters. For instance, we observed that
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7.1. CONTRIBUTIONS PRESENTATION

when quickly scrolling, we tended to orient our eyes towards the opposite direction of the

scroll.

Next, we analysed the relationship between the mouse cursor and the eyes in Article

2. Interestingly, the study of this relationship attracted a lot of interest from search

engine companies, such as Google and Microsoft. Due to the nature of these companies,

the vast majority of studies on this subject were done on Search Engine Result Page

(SERP). The problem is that those web pages are not representative of the web we use

every day. In Article 2, we investigated this relationship on classic web pages and

proposed a model to estimate eye position based on the mouse cursor position. As in

SERP, we showed that the coordination between the eyes and mouse cursor was better

on the vertical axis. However, we showed that when participants were about to click, the

coordination between eyes and mouse on the horizontal axis increased.

So far, the relationships between eyes and scroll, or between eyes and mouse, have

mostly been studied from an Area Of Interest (AOI) point of view. For instance, classical

measures include the duration of eye fixations in a given area, or the number of clicks

needed to reach the designated target. The literature on the statistical description of

eye movements on web pages, mouse movements and scrolling is very sparse. For these

reasons, we proposed in Article 3 a detailed statistical description of eye movements on

web pages along with the mouse movements and the scroll. This analysis included global

parameters and their time courses. Furthermore, in order to evaluate if the ambient

and focal modes can be generalised to the mouse and scroll, We extended the use of K

coefficient (Krejtz et al., 2016) to the analysis of mouse dynamics. We found that eye

and mouse saccade-related parameters decreased over time, while scrolling parameters

increased. Conversely eye and mouse fixation-related parameters increased over time,

while scroll parameters decreased. In both cases, eye and mouse parameters followed

the same pattern, and the scroll parameters followed the opposite one. Interestingly,

these observations were consistent across tasks.
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CHAPTER 7. EYE MOVEMENT BEHAVIOUR ON WEB PAGES

7.2 Poster 3: "What scroll can teach us about web
users ?"

Milisavljevic, A., Doré-Mazars, K., Gosselin, B., Mancas, M., & Petermann, C. (2017).

What scroll can teach us about web users ? 40th European Conference on Visual Perception

, 27-31 August 2017, Berlin, Germany. Perception, ECVP 2017

Poster 3 summary

In this preliminary study, we asked 5 participants to browse 10 websites in ecologically

valid conditions. They were asked to perform three types of task: free exploration, visual

search and text reading. The aim was to analyse the influence of web page scrolling on

visual exploration. We show that participants do not systematically anticipate scrolling

by orienting their gaze in the same direction as the upcoming scroll. However, when this

anticipation happens, participants do scroll faster. We also show that the amplitude of

the scroll is related to the last known position of the eyes before the scroll. Furthermore,

once the scroll is triggered, gaze position varies as a function of the speed of the scroll.

This poster is also an opportunity to define what a scroll is: a continuous set of scrolls

ending with a mouse movement.
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7.2. POSTER 3: "WHAT SCROLL CAN TEACH US ABOUT WEB USERS ?"

Résumé du poster 3

Dans cette étude préliminaire, nous avons demandé à 5 participants de parcourir 10

sites webs en conditions écologiques. Trois types de tâches leur ont été demandé :

exploration libre, recherche visuelle et lecture de texte. Le but était d’analyser l’influence

du défilement de la page internet sur l’exploration oculaire. Nous montrons que les

participants n’anticipent pas systématiquement le défilement en dirigeant leur regard

dans la même direction vers laquelle ils s’apprêtent à défiler. Toutefois, quand cela arrive

le défilement est plus rapide. Nous avons également montré que l’amplitude du scroll est

liée à la dernière position connue des yeux avant que celui-ci ne soit déclenché. De plus,

une fois le défilement déclenché, les participants positionnement leurs yeux en fonction

de la vitesse de celui-ci. Ce poster est également l’occasion de définir ce qu’est un scroll :

un ensemble continu de défilement terminés par un mouvement de souris.
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Users adapted their eyes position before scrolling.

Results

What scroll can teach us about web users ?
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 3 Research and Development department, Sublime Skinz, Paris, France 

Introduction

Methods

▶ Participants and apparatus 
• 5 participants.

• Normal or corrected-to-normal vision.


• 4 ; 1 ; 24±2 y.o.


• Monocular recording with a FaceLab 5 eye-tracker.

• Google Chrome maximized at 1920x955.

Conclusion

40th European Conference on Visual Perception, Berlin, Germany, 2017, August 27th – August 31st

▶ Procedure 
• Click on the bookmark situated in the browser’s top bar request to the server the next link to load (cf Figure 1).

• Then website or instruction is displayed.

• When the user finishes reading or doing the task, he/she clicks on the bookmark again (cf Figure 1).

• Etc.

Tasks Description

Free 
viewing

Browse the website by visiting at least two other pages

Browse two articles of your choice

Target 
finding

Browse the following pages: calendar, team and news

Buy the specific given item

Text 
reading

Read the two first paragraphs

Alexandre Milisavljevic1,2,3, Karine Doré-Mazars1, Bernard Gosselin2, Matei Mancas2, Coralie Petermann3

▶ Tasks 
• At most 2 webpage visits.

• No time limit.

• Full scroll possibilities.

▶ Amplitude

▶ Speed
• For our analyses we divided the screen in 2 or 6 areas 

numbered as follows to have two-levels accuracy:

▶ Definitions 
Mouse movement: Physical mouse shift resulting in a 
change of cursor position on the screen.


Scroll: use of the mouse’s wheel or equivalent to scroll 
up or down 

Scroll session: set of continuous scrolling events on 
the same webpage ended with a mouse movement

Scroll 
speed

Eyes 
position

Scroll down

slow

fast

Scroll 
speed

Eyes 
position

Scroll up

slow

fast

Acknowledgment
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for supporting this work and Kevin Hamard for his help on this work. 

• We consider Free Viewing and Target Finding tasks because Reading task was too 
localized and did not require scroll.

Mean speed 
with 

anticipation

Mean speed 
without 

anticipation
Target 
Finding

1154px/s 1038px/s

Free 
Viewing

996px/s 783px/s

▶ Anticipation

However we found that:


• scroll is faster when eyes anticipates the scroll.

Analyses showed no significant effect of scroll anticipation by the eyes for both types 
of task in six-areas and two-areas configurations.


• when the user begin to scroll, there is a higher 
probability that his/her eye position was on the same 
half of the screen than the direction of his/her scroll.

We observed that participants adapted their eyes position according to their 
scrolling speed (cf Figures 5, 6 and 7).

Users adapt their eyes position according to their intent:

• Before scroll, eyes position are a clue to guess how fast and how far 

the user will scroll

• While scrolling, users position their eyes according to where they think 

the information could be. While scrolling fast, they position their eyes at 

the opposite direction to be able to detect bottom-up characteristics 
through peripheral vision. Furthermore, when users are looking for a 
specific information or one that need more attention, they scroll more 
slowly and position their eyes in the center of the screen or in the same 
direction as the scroll.

• When the eyes were located on the 
top screen area before scrolling 
down the scroll amplitude was much 
higher.
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While looking for specific information, users 

scroll slower to be able to differentiate elements 
(text, blocs, titles, etc).

While looking for a more generic information 

like an image, a colored box surrounding a 
website category, etc, users positioned their 
eyes on the opposite side of the scroll 
direction. They used their peripheral vision to 
detect bottom-up elements.

• When the eyes were located on the 
bottom screen area before scrolling 
up the scroll amplitude increased. 
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Figure 2: Screen areas

anti-correlation of -0.77correlation of 0.94

Browse two articles of your choice

Bookmark to go to next page 
task or website

Website

instruction

Mouse-Tracking plug-in 
~50ms sampling

Time

Figure 1: Study’s browser setup and procedure

Buy the item n°X

Figure 3: Scroll up amplitude according to pre-scroll eyes position Figure 4: Scroll down amplitude according to pre-scroll eyes position

Figure 5: Scroll down speed according 

to eyes position while scrolling

Figure 6: Illustration of eyes position according 

to scroll speed while scrolling down

Figure 7: Illustration of eyes position 

according to scroll speed while scrolling up

Table 1: Tasks list by category

Table 2: Speed in pixels per seconds with and 

without anticipation and its effects on scroll speed

▶ Set-up 
• Two types of webpage to display : instruction or website bound to a task. (cf Figure 1)

• Instructions and websites links were stored on a local server.

• All instructions were stored locally and websites were online.

• time


•event type (click, 
movement or scroll)


•mouse’s coordinates


•offset induced by the 
scroll


•URL


•screen size (width x 
height)


•eyes position

Collected data

Understanding why a user is on a webpage is a good way to deduce his or her interest in the content. To measure this interest, Eye-tracking is a precise tool that 

allows to estimate goal impact on user’s eye-gaze (Yarbus, 1967). However, this method is hard to scale up.

▶ State of the art 
Thus, mouse-tracking models emerged as an efficient proxy to determine user’s attention (Rodden, 2007; 
Navalpakkam, 2013; Guo, 2010; Huang & White, 2012; Huang et al. 2012). These same models mainly use 
mouse movements, mouse clicks and hovered page elements while considering scrolling as a simple model 
feature. In addition to these analyses, other studies focused on how the eye behave during onscreen reading 
using scroll (Sharmin, 2013).

instruction
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7.3. ARTICLE 2: "EYE AND MOUSE COORDINATION DURING TASK: FROM
BEHAVIOUR TO PREDICTION"

7.3 Article 2: "Eye and Mouse coordination during
task: from behaviour to prediction"

Milisavljevic, A., Hamard, K., Petermann, C., Gosselin, B., Doré-Mazars, K., & Mancas,

M. (2018). Eye and Mouse Coordination During Task: From Behaviour to Prediction. In

Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications(pp. 86–93). Funchal, Madeira, Portugal:

SCITEPRESS - Science and Technology Publications

Article 2 summary

In Article 2, we investigate the coordination between the mouse and the eye position,

and the scroll and the eye position on web pages. As in Poster 3, we asked 5 participants

to browse 10 websites in ecologically valid conditions. They were asked to perform

three types of task: free viewing, visual search and text reading. We first analyse the

eye-mouse coordination by comparing their density maps on the entire web page. Then,

we analyse how the euclidean distance between the two effectors fluctuates with the

task. We show that the coordination between the eyes and mouse cursor is better on the

vertical axis. Based on these fluctuations, we propose a model predicting eye position

based on mouse position. Finally, we show that the scroll amplitude varies with eye

position before the start of the scroll, which confirms findings of Poster 3.
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Résumé de l’article 2

Dans l’Article 2, nous étudions la coordination entre la souris et l’oeil ainsi que le

défilement et l’oeil sur les pages web. Comme dans le Poster 3, nous avons demandé

à 5 participants de parcourir 10 sites web dans des conditions écologiques. Nous leur

avons demandé d’effectuer trois types de tâches : exploration libre, recherche visuelle et

lecture de texte. Nous analysons d’abord la coordination oeil-souris en comparant leurs

cartes de densité sur l’ensemble de la page web. Ensuite, nous analysons comment la

distance euclidienne entre les deux fluctue en fonction de la tâche. Nous montrons que

la coordination entre les yeux et le curseur de la souris est meilleure sur l’axe vertical.

Sur la base de ces fluctuations, nous proposons un modèle prédisant l’emplacement des

yeux en fonction de la position de la souris. Enfin, nous montrons que l’amplitude du

défilement varie en fonction de la position des yeux avant que celui-ci ne commence, ce

qui confirme les résultats exposés dans le Poster 3.
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Abstract: The study of web users’ behaviour is of crucial importance for understanding people reaction when browsing

websites. Eye-tracking is a precise tool for this purpose, but it is hard to scale up when trying to apply it to a

wide range of situations and websites. On the other hand, mouse-tracking fulfills these requirements. Unfor-

tunately, mouse data provides a limited approximation of the eye position as it was shown in the literature. In

this paper, we investigated the relationship between mouse and eye behaviour on several kind of websites with

three different tasks to create models based on these behaviours. Our findings were that 1) saliency Pearson’s

correlation is not suitable to analyse eye and mouse coordination, 2) this coordination is altered according to

the task, 3) scroll speed directly influence where the eyes are during the scroll, 4) amplitude vary according to

eyes position before the scroll and 5) by using the X axis variations it is possible to find the moments where it

is easier to model eyes location from mouse location.

1 Introduction

Understanding why a user visits a webpage has

been a central question since the beginning of the

twenty first century. To answer this question, Eye-

tracking has been used as a precise tool to estimate

intention impact on users gaze. However, these kinds

of studies are hard to scale up and apply it to a wide

user panel is difficult. That is why mouse-tracking

emerged as an efficient proxy to determine users at-

tention. Since then, correlation between mouse move-

ments and eye movements has been found (Mueller

and Lockerd, 2001; Chen, 2001; Rodden and Fu,

2007; Rodden et al., 2008; Cooke, 2006; Guo and

Agichtein, 2010; Huang and White, 2012; Naval-

pakkam et al., 2013) and modelling attempts followed

(Guo and Agichtein, 2010; Huang and White, 2012;

Navalpakkam et al., 2013; Boi et al., 2016).

Nevertheless, a majority of these studies focused

on SERP (SEarch Result Pages) from search engines

putting aside the rest of the web and tasks. In addition,

eye-mouse and eye-task relationships have been stud-

ied separately (Yarbus, 1967; Castelhano et al., 2009;

Mills et al., 2011) but rarely together. That is why, the

goal of this study was to explore the eye-mouse-task

relationship in a more diversified environment.

Chen (2001) was the first to show that areas vis-

ited by the mouse were also visited by the eye in

free-viewing condition. Rodden and Fu (2007) also

showed that regions visited by the mouse were also

visited by the eye but they were the first to high-

light the better correspondence on Y axis between

mouse and eye. Unlike previous work, they set-up

an experiment with pre-defined search queries on a

search engine. Guo and Agichtein (2010) confirmed

Rodden and Fu (2007) results about more accurate

correlation on Y axis. Their main contribution was

the first attempt to automatically infer the user’s eye

position using mouse movements. They also sug-

gested the presence of images did not have a signif-

icant effect on eye-mouse coordination. Huang and

White (2012) presented that amount of time spent on

a search web page by a participant can affect where

they were pointing and looking and then used this

finding to enhance their algorithm. They showed

that gaze-cursor alignment was distinct for each par-

ticipant but did not highlight significant difference

among women and men. Navalpakkam et al. (2013)

updated previous work by investigating more recent

SERP which now includes images and more complex

content. They showed that this content induced differ-

ent behaviour. Then they proposed a non-linear model

7.3. ARTICLE 2: "EYE AND MOUSE COORDINATION DURING TASK: FROM
BEHAVIOUR TO PREDICTION"
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outperforming state-of-the-art models because of its

non-linearity.

Our exploratory study aimed to investigate ef-

fect(s) of user’s goal on eye and mouse coordination

in ecological conditions (different categories of web

sites, no scroll limitations). Our hypothesis was the

following: there is a direct link between the eye, the

mouse movements and the task which fluctuates ac-

cording to the task. Thus, we could enhance the pre-

cision of the current models.

This paper was structured as follows: experiment

set-up was described in section 2 followed by the re-

sults of the static and dynamic analyses in section 3.

Finally we discussed and concluded the paper in sec-

tion 4.

2 Method

We recruited five participants with normal or

corrected-to-normal vision (4 males and 1 female)

aged between 24 and 25 years from the local signal

processing department. All participants were right-

handed and fluent with computer operations. They

were tested on 10 various websites including blogs, e-

commerce platforms, etc. From the calibration phase

at the beginning of the study to the end, the whole

process took about 20 minutes per person.

2.1 Tasks

We used a set of five tasks distributed in three classes

as presented in Table 1: free viewing, target finding

and text reading. The number of pages that could

be visited during Free viewing tasks was limited to

two but was not limited in time and participants had

full scroll possibilities. The reading task was specific

enough to prevent any free interpretation in order to

simulate participants’ willingness to read a specific

paragraph. Finally, we chose two types of target find-

ing tasks: one in which participants were instructed to

find and buy an item, the second in which they had to

find a given page.

2.2 Set-up

To record eye movements, we used a FaceLAB 5 eye-

tracker at 60Hz without head constraint on a 17-inch

screen set to a resolution of 1920X1080. Instructions

and websites were displayed in Google Chrome max-

imized with a resolution of 1920X955.

To record Mouse movements we developed a

plug-in using WebExtensions1 standard. It took the

1https://developer.mozilla.org/Add-ons/WebExtensions

Category Description

Free viewing Browse the website by visiting at

least two other pages

Browse two articles of your

choice

Target finding Browse the following pages: cal-

endar, team and news

Buy the specific given item

Text reading Read the two first paragraphs

Table 1: Generic tasks used in the study.

form of an ON/OFF button on the browser top bar

and has only been used by the operator. The ex-

tension monitored the following metrics: time-stamp,

event type (click, movement or scroll), mouse’s coor-

dinates, offset induced by the scroll, URL and screen

size. The plug-in developed in Javascript was upload-

ing all mentioned metrics on the fly or every 50-60ms

to a NodeJS2 server via a socket connection. The

same server inserted in real time the data in a MySQL

database without further processing. The server also

kept track of the page to deliver to the participant.

2.3 Procedure

Participants started on a homepage describing the

context of the study. To visit the next planned page

by the study they had to click on a Javascript book-

mark situated in the browser’s bookmark top bar. The

first click on it led them to the first task instruction.

All tasks were stored in HTML format locally. After

reading the instruction, participants could once again

click on the bookmark and begin the task. When the

task was completed participants had to click again on

the bookmark to read the next instruction and so on.

At the end of the study, participants were asked to

answer to a survey about there knowledge of the web-

sites.

3 Results

We ran three sets of analyses in order to high-

light coordination between eye and mouse move-

ments. First, we used 2D saliency metric PCC (Pear-

son’s Correlation Coefficient) to check consistency

between overall eye and mouse movements. Then we

repeated the same analysis between participants’ eyes

movements. Second, we applied literature’s tempo-

ral and distance estimation to our task-related context

to bring out tasks’ influence on eye and mouse co-

2https://nodejs.org/en/
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Figure 1: (a) eye fixation density map, (b) original website and (c) mouse fixation density.

ordination. Third, we analysed the participants’ be-

haviour while scrolling because - at our knowledge

- it has not been treated by the literature whereas it

could be an essential information to the understand-

ing of eye and mouse coordination. Finally, we used

the results of the two first sets of observations to cre-

ate two Gaussian-based models to approximate eye

position from mouse position.

While the first approach focused on a static and

spatial analysis, the second and third aimed for a dy-

namic analysis taking into account the temporal evo-

lution of both eye and mouse tracks.

3.1 Static fixation densities comparison

Pearson’s Correlation Coefficient (PCC) also known

as the Pearson Product-Moment Correlation (1), is a

metric used in saliency maps comparison by authors

like Ouerhani et al. (2004) and Le Meur et al. (2007)

and used to compare fixations and mouse movements

by Tavakoli et al. (2017). PCC has a value between

-1 and 1. When the coefficient is almost equal to 1,

there is a strong relationship between the two vari-

ables. The goal was to apply this metric to highlight

eye and mouse coordination changes between tasks.

The originality of this metric lies in the fact that it uses

probability densities instead of raw variables values.

To do so, we computed PCC between eyes density

map and mouse density map. To obtain these maps,

fixations from eye-tracking and mouse-tracking were

convolved with a Gaussian filter. Thus PCC was com-

puted between images (a) and (c) as shown in Figure

1.

PX ,Y =
cov(X ,Y )

σX σY

(1)

We obtained for our three tasks classes (free view-

ing, target finding and text reading) defined in section

2.1 correlation scores as in Table 2, “inter” column.

Both classes correlation and their relative difference

remained small which showed that mouse-tracking

could not be directly used to model eye movements.

For this reason, we decided to refine the investigation

based on motion dynamics in the next sections.

Furthermore, when comparing eye-tracking re-

sults between different participants on the same stim-

ulus, we obtained results in Table 2, “intra-eye” col-

umn which showed a higher correlation for “Text

reading” task than for the two others. This result con-

firmed that if the task and its location were precise,

then most of the participants would produce similar

eye-gaze patterns. We observed the same behaviour

for mouse tracks in Table 2, “intra-mouse” column,

but with a lower overall correlation which showed

that mouse behaviour remained less consistent than

eye behaviour.

3.2 Dynamic analyses

Considering the dominant use of scroll in our exper-

iment, modern vertically-based designs and the tend

of Human eye to be more efficient horizontally, we

separated X and Y coordinates to enhance granularity
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Figure 2: First column (a) is a free viewing task, second column (b) is a target finding task and third column (c) is a text
reading task

Task inter intra-eye intra-mouse

Free viewing 0.132 0.036 0.082

Target finding 0.171 0.028 0.107

Text reading 0.176 0.440 0.162

Table 2: Pearson’s correlation coefficients for intra and inter
analyses.

in our dynamic analyses. For each X and Y coordinate

we got temporal vectors which were synchronized be-

tween mouse and eye. To do so, we matched eye

fixations with mouse events and then down-sampled

mouse data to fit eye data. We chose to not interpo-

late as in Deng et al. (2016) because it could have

generated non-existing fixations and wrong results.

3.2.1 Temporal and distance estimation

We observed for some participants a time shift on

Y axis between mouse and eye with the mouse be-

ing delayed as in Figure 2 (a) and (c) right columns.

This finding joined Huang and White (2012) previous

work in which they detected a lag between the mouse

and the eye. This could be explained by the fact that,

in visual exploration context, the eye is the only mean

of perception and leads the hand movements.

We computed euclidean distance (3) and obtained

an eye-mouse distance of 554 pixels. This result

was not in accordance with the average 229 pixels

from state-of-the-art (Rodden and Fu, 2007; Guo and

Agichtein, 2010; Huang and White, 2012). We then

refined our analysis by separating the two axes. Us-

ing formula (2) we got a mean distance of 409 pixels

for X axis and 291 pixels for Y axis. With this results

we began to have a better consistency on Y axis as

expected. However, Bejan (2009) demonstrated that

our eyes scan horizontally faster than in the vertical

dimension. Based on our results, we could assumed

that participants kept their mouse vertically stationary

to scroll down or up and used it as a vertical pointer,

allowing them to horizontally browse without diffi-

culties. Thus the participant could easily move his

eye on X axis more often. That is why the participant

tended to move it’s eye on X axis more often.

We then continued with separate axes to compute

correlation. Compared to distances, correlation coef-

ficients between mouse and eye were drastically dif-

ferent. Chen (2001) obtained a correlation of 0.58

with more than 50% of the pages associated with cor-

relations larger than 0.8. In our study, we measured a

mean correlation of 0.64 on Y axis and 0.18 on X axis.

Difference between axes got even more significant

when we examined these correlations coefficients ac-

cording to their corresponding task. As exposed in

Table 3, free viewing task had the best correlation on

Y with 0.9. This result reflected a greater trend to use

the mouse as a vertical pointer as in other tasks. Co-

efficients for target finding were more balanced with

an increased correlation on X but a decrease on Y. Fi-

nally, text reading correlations expressed the fact that

participants did not used much the mouse during this

task. We could assume that more the cognitive load

of the task is important more the correlation drop on
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Task type rx ry

Free viewing 0.176 0.921

Target finding 0.383 0.699

Text reading 0.006 0.32

Table 3: Pearson’s correlation on X and Y axes.

both axes.

d(i) = |xm(i)− xe(i)| (2)

d(X ,Y ) =
q

(xm − xe)2 +(ym − ye)2 (3)

3.2.2 Scroll’s speed and direction influence

As we previously exposed, mouse and eyes were more

correlated on Y axis. In addition, scroll events are a

barely studied subject while it is a common behaviour

in all webpages browsing. We based all our calculus

on scroll sessions which corresponds to a set of con-

tinuous scroll events ended with a mouse movement.

Scroll is an important feature providing good infor-

mation about the degree of participants’ interest on a

website. Another advantage is that the scroll is mea-

surable on desktop and mobile. Through the follow-

ing analyses, we highlighted influence of behaviour

on scroll’s speed and amplitude.

We collected for each scroll session the direction (up

or down) and the absolute speed. After empirical tries

and errors and after taking into account the amount

of data, we also separated the browser screen into 3

equals categories as in Figure 5 to detect patterns.

Figure 5: Screen’s three areas

For the current analyses we removed text reading

tasks because it did not included enough scroll events.

For both amplitude and speed influence test, we per-

formed a one-way independent ANOVA (analysis of

variance) (4) test. The ANOVA examines if the mean

of numeric variables differs across levels of categor-

ical variables. After checking all assumptions (nor-

mality of errors, equal error variance across category,

independence of errors), we hypothesized:

H0 : µ0 = µ1 = µ2 (4)

H1 : At least one mean is not equal to the others.

As shown in Table 4, we considered that all means

were equal to each other. The statistic test we ran

was the ratio of the between-category variance and

the within-category variance. If this ratio was greater

than the critical probability distribution F, we could

reject the null hypothesis. After obtaining a p-value

below the 0.05 threshold, we could affirm the rejec-

tion of the null hypothesis with a confidence rate of

95 %. Thus, we can conclude that there is an effect of

scroll speed on eyes category position.

Indicator Task Down Up

F-test Free viewing 4.26 7.07

Target finding 3.76 -

P-value Free viewing 0.017 0.001

Target finding 0.031 -

Table 4: Result test ANOVA with significance level (p-
value) and F-score.

To go further, we had to determine and define this

influence. We focused on means for each tasks using

a Tuckey’s test. We observed that while scrolling

quickly, participants positioned their eyes at the

opposite side of the scroll’s direction to be able to

detect bottom-up characteristics through peripheral

vision as shown in Figure 3. Furthermore, when

participants were looking for a specific information

(target finding task), they tended to quickly look

towards the center of the screen when the scroll speed

decreased.

Then we focused on scroll’s amplitude, which is

the distance between the start and the end of a scroll

session. We wanted to know if participants adapted

their eyes position before scrolling. Here again we

differentiated the target finding and the free viewing

tasks and calculated the means distance for each area

before the participant scroll.

Indicator Task Down Up

F-test Free viewing 3.08 10.44

Target finding 0.09 -

P-value Free viewing < 0.001 < 0.001

Target finding 0.9 -

Table 5: Result test ANOVA with significance level (p-
value) and F-score.

We could conclude using ANOVA test that for

the free viewing task, when the eyes were located

at the bottom of the screen and before scrolling up,

the scroll amplitude increased with p-value < 0.05 as

shown in Table 5. As expected, when the eyes were

7.3. ARTICLE 2: "EYE AND MOUSE COORDINATION DURING TASK: FROM
BEHAVIOUR TO PREDICTION"

145



Figure 3: Eyes position according to scroll speed, (a) and (b) corresponds to free viewing task, (c) corresponds to target
finding task

Figure 4: Scroll amplitude according to screen area before scroll, (a) and (b) corresponds to free viewing task, (c) corresponds
to target finding task

located on the top of the screen before scrolling down

the scroll amplitude were much higher, see Figure 4

(a) and (b). About the target finding task, there was

no significant impact (c) of amplitude on the screen

area before scrolling (p-value > 0.05). However, we

noticed that when searching specific information, par-

ticipants did not have a long scroll amplitude in order

to not miss an element (text, blocs, titles, etc) and to

differentiate them.

The scroll event could improve the prediction of

the localization of the eyes on Y axis using the com-

bination of direction, amplitude and speed variables.

3.3 Model

Previous analyses provided several insights about

users behaviours on webpages given more or less spe-

cific tasks. We built our models from these, more

particularly from the eyes movements standard devia-

tions. As in section 3.2.1, we separated X and Y axes

to infer the parameters of a Gaussian model which

predicted the eyes position based on the mouse posi-

tion and cognitive load of the task. From these stan-

dard deviations we were able to define a confidence

area around the mouse in which the eyes had a 70%

probability to be in it. We chose to base our calcu-

lus on the 70th percentile because it was the minimum

confidence rate we observed in the state of the art. As

shown in Table 6, columns “x std.” and “y std.”, the

70th percentile (5) gave a first coarse pixel area around

the mouse cursor.

percentile = µ±Zσ (5)

But we were interested in a better model, so we fo-

cused on specific behaviours during tasks. As shown

in Figure 2 (a) target finding class, we identified sud-

den changes on X axis. After analysing participants’

videos and comparing with several target finding tasks

among them, we found that these sudden changes

matched participant’s interest. When the participant

had a target finding goal and found his target, he

quickly moved his mouse to the point of interest.

Thus, we manually defined a threshold at the be-

ginning of each sudden changes and we computed the

standard deviation before and after every final sudden

change on X. We obtained better results as shown in

Table 6, column “x std. thrs.” and “x std. thrs.”. Area

covered by the 70th was reduced by around 150 pix-

els for both axes. With this second model, we were

able to increase the accuracy but only by focusing on

a specific event.
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Task x std. y std. x std.

thrs.

y std.

thrs.

Free

viewing

558.0 416.4 - -

Target

finding

486.4 403.8 361.3 251.0

Text

reading

627.8 257.9 - -

Table 6: Standard deviation (percentile 70%) normal and
using only sudden X changes.

4 Conclusion and Discussion

We first compared eye and mouse data with the

saliency metric PCC. We did not find significant con-

sistency between participants’ eyes and mouse posi-

tions (inter) and between participants’ eyes (intra).

However, results showed that participants behaved in

a more similar way when they had the same task with

the same location (reading task).

Then, we got deeper with dynamic analyses. We

showed that using distance and correlation, we were

able to highlight more interesting coordinations be-

tween eyes and mouse. We had better results on Y axis

than X axis and succeed to demonstrate behaviour dif-

ferences between tasks. In addition, scroll analyses,

clearly showed a relation between eyes position and

scroll speed while browsing and amplitude before the

scroll.

Finally, we made a model for each task able to pre-

dict the area around the mouse’s cursor in which the

eyes had 70% chances to be located in. However, eyes

location uncertainty compared to mouse position re-

mained high, even if we succeed to enhance the model

during target finding task by observing brutal changes

on X axis.

In this paper, we presented results of a prelimi-

nary study, used as a validation to conduct a bigger

experiment, including more participants. This will al-

low us to analyse the impact of participants’ age on

their mouse movements. Moreover, we did not use

scroll events analyses to enhance our models. In fu-

ture work, we think that doing so, could boost the

precision of the model by reducing the area around

the mouse’s cursor. We could also investigate new re-

lations between the scroll and the eyes by analysing

scroll in 2D. Then, we could use machine learning

models to integrate new features and more user be-

haviours such as mouse patterns. Finally, our main

objective is to propose the most accurate model in

order to use it in real time to predict web user be-

haviours.
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7.4. ARTICLE 3: "SIMILARITIES AND DIFFERENCES BETWEEN EYE AND MOUSE
DYNAMICS DURING WEB PAGES EXPLORATION"

7.4 Article 3: "Similarities and differences between
eye and mouse dynamics during web pages
exploration"

Milisavljevic, A., Abate, F., Le Bras, T., Petermann, C., Gosselin, B., Mancas, M., &

Doré-Mazars, K. (Under revision). Similarities and differences between eye and mouse

dynamics during web pages exploration. Frontiers in Psychology

Article 3 summary

In the this article, we extend to the scroll, the analyses on eyes and mouse coordination

started in Article 2. The purpose of Article 3 is to statistically define a mouse movement

and a scroll when exploring web pages. In addition, we study the oculomotor behaviour

and examine the relationship between the eyes, the mouse and the scroll. To this end, we

recorded the eye, mouse and scroll movements of 151 participants exploring 18 dynamic

web pages while performing free viewing and visual search tasks for 20 seconds. The

data revealed significant differences of eye, mouse and scroll parameters over time which

stabilise at the end of exploration. This suggests the existence of a task-independent

relationship between the eye, the mouse and the scroll parameters which is characterised

by two distinct patterns: one common pattern for movement parameters and a second

for dwelling/fixation parameters. Within these patterns, mouse and eye movements

remained consistent with each other, while the scrolling behaved oppositely.
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Résumé de l’article 3

Dans cet article, nous appliquons au défilement, les analyses sur la coordination des yeux

et de la souris qui ont été présentés dans l’Article 2. Le but de l’Article 3 est de définir

statistiquement un mouvement de souris ainsi qu’un défilement lors de l’exploration

de pages web. En outre, nous étudions le comportement oculomoteur et examinons la

relation entre les yeux, la souris et le défilement. À cette fin, nous avons enregistré les

mouvements des yeux, de la souris et du défilement de 151 participants qui ont exploré

18 pages web dynamiques tout en effectuant des tâches de visualisation et de recherche

visuelle pendant 20 secondes. Les données ont révélé des différences significatives des

paramètres de l’oeil, de la souris et du défilement au fil du temps, qui se stabilisent à

la fin de l’exploration. Cela suggère l’existence d’une relation indépendante de la tâche

entre l’œil, la souris et les paramètres de défilement qui sont caractérisés par deux

schémas distincts : un schéma commun pour les paramètres de mouvement et un second

pour les paramètres de pause/fixation. Dans ces schémas, les mouvements de la souris

et de l’oeil sont restés cohérents l’un par rapport à l’autre tout le long de l’exploration,

tandis que le défilement s’est comporté de manière opposée.
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ABSTRACT

The study of eye movements is a common way to non-invasively understand and analyse human

behaviour. However, eye-tracking techniques are very hard to scale, and require expensive

equipment and extensive expertise. In the context of web browsing, these issues could be

overcome by studying the link between the eye and the computer mouse. Here, we propose new

analysis methods, and a more advanced characterisation of this link. To this end, we recorded

the eye, mouse and scroll movements of 151 participants exploring 18 dynamic web pages while

performing free viewing and visual search tasks for 20 seconds. The data revealed significant

differences of eye, mouse and scroll parameters over time which stabilise at the end of exploration.

This suggests the existence of a task-independent relationship between eye, mouse and scroll

parameters which are characterised by two distinct patterns: one common pattern for movement

parameters and a second for dwelling/fixation parameters. Within these patterns, mouse and eye

movements remained consistent with each other, while the scrolling behaved the opposite way.

Keywords: eye movement, behaviour, computer mouse, scroll, web page

7941 words, 4 Figures and 4 Tables. British English.

1 INTRODUCTION

Websites, and more particularly web pages, designate a type of stimulus we potentially see every day. Such

stimuli are rarely entirely visible, hence the fact that we cannot fully explore them using only our eyes.

That is one of the reasons web browsing on a desktop computer requires the use and coordination of the

eyes and the computer mouse. On the one hand, the eyes are used to explore and extract information of

interest, such as the location of items. On the other hand, the mouse is used to interact with the content.

This interaction can take multiple forms, including clicks, scrolling, and drags and drops. While clicks and

1
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drags and drops allow the user to perform actions on the visible content, scrolling drives which part of the

web page is displayed. These specific characteristics proper to web pages induce more complex behaviours,

as well as more challenging issues to address. One particularly interesting aspect is how the eyes and the

mouse are related.

Conveniently, eye movements have been extensively studied. We know that visual exploration is mod-

ulated by bottom-up and top-down factors regardless of the stimulus type (Yarbus, 1967; DeAngelus

and Pelz, 2009; Helo et al., 2014; Itti and Borji, 2015). Bottom-up factors are characterised by low-level

features of the stimulus, such as luminance, contrast or edges (Tatler and Vincent, 2008). In comparison,

top-down factors are characterised by high-level properties representing cognitive processes (Henderson

and Hollingworth, 1999). Both factors have been widely investigated during website exploration in order

to better understand user behaviour and thus improve the usability of web pages. For instance, Pan et al.

(2004) showed differences in visual exploration depending on the type of website, their presentation order

and the gender of the user. They did not find any difference between a memorisation and a free viewing

task, highlighting the importance of adapting a website to its targeted audience. In his work, Tullis (2007)

found that older users spent more time looking at a page content, especially navigational areas, compared

to younger users. Additionally, Roth et al. (2013) showed that user expectations had an influence on visual

exploration, and, more particularly, less fixations were needed to find items in expected locations compared

to unexpected ones.

These studies clearly show an influence of bottom-up and top-down factors. However, Tatler and Vincent

(2008) and Anderson et al. (2015) show that bottom-up influence was higher at the beginning of visual

exploration. Thus, both factors alternatively influence visual exploration (Henderson, 2003; Torralba et al.,

2006). As such, Cronin et al. (2020) encouraged the need to focus more on the dynamic of eye movements.

They showed that comparing experimental conditions on the basis of global eye movement parameters

did not necessarily allow them to be distinguished them. To do so, they compared fixation durations and

saccade amplitudes between a memorisation task and an aesthetic judgment task. While they did not find

differences in the mean level analyses, the use of temporal and distributional analyses allowed them to

discriminate the two tasks.

Previous research already highlighted the dynamic of eye movements (Unema et al., 2005; Pannasch

et al., 2008; Pannasch and Velichkovsky, 2009). They found that the amplitude of saccades decreased while

the duration of fixations increased over time. Pannasch and Velichkovsky (2009) and Velichkovsky et al.

(2002) defined two visual exploration modes based on the relationship between saccade amplitudes and

fixation durations. The ambient mode corresponds to short fixations (<180ms) followed by saccades with

an amplitude greater than 5�, while the focal mode corresponds to long fixations (>180ms) followed by

saccades with an amplitude of less than 5�. Generally, visual exploration begins in ambient mode before

gradually switching to focal mode (Pannasch and Velichkovsky, 2009; Velichkovsky et al., 2002). Our

knowledge on these visual modes is growing but still incomplete. A closer understanding of these two

modes could help to better grasp the dynamic of eye movements when looking at complex stimuli, such as

web pages. More specifically, in addition to eye movements, it would also be of interest to use these two

visual modes to investigate the dynamic of mouse movements.

To our knowledge, despite the fact that the use of the computer mouse is well studied, its dynamic is

rarely considered. Generally, research on the computer mouse focuses on how mouse movements could

reveal users’ intentions. Its availability and its potential for scalability enable innovative applications, such

as authentication (Zheng et al., 2011), the prediction of the users’ cognitive load (Rheem et al., 2018), the

prediction of users’ intentions (Guo and Agichtein, 2010a; Fu et al., 2017) or pattern behaviour analysis
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(Tzafilkou and Protogeros, 2018). One of the most studied topics is the computer mouse movement patterns

commonly used by participants when browsing. Tzafilkou and Protogeros (2018) reviewed six patterns:

the straight pattern (Griffiths and Chen, 2007), the hesitation pattern (Mueller and Lockerd, 2001), the

horizontal reading pattern (Rodden et al., 2008), the vertical reading pattern (Rodden et al., 2008), the

random pattern (Ferreira et al., 2010) and the fixed pattern (Griffiths and Chen, 2007).

Whether it is necessary to describe mouse movement patterns or their dynamic, mouse movements are

not limited to moving the mouse, and include scrolling as well. However, contrary to mouse movements,

scrolling behaviour has, to our knowledge, not been closely examined. For instance, Liu et al. (2017)

investigated users’ strategies when navigating Search Engine Results Pages (SERP) through their scrolling

behaviour. An SERP consists of a list of links corresponding to a query entered by a user in a search

engine. Liu et al. (2017) analysed the number of scrolls and their direction. In their work, Braganza et al.

(2009) evaluated user preferences depending on the web page layout and the scrolling mechanism using the

number of scrolls and their total duration. More generally, these studies show that the mouse is a convenient

and cheap way to infer users’ cognitive processes, such as intentions or reading strategies, but neglect

mouse and scroll parameters.

These limitations can also be found when it comes to the relationship between the eye and the computer

mouse. To this day, one of the most studied web stimuli for investigating this relationship is the Search

Engine Results Page (SERP). On this type of web page, the coordination between the eyes and the computer

mouse is higher for the vertical axis of the screen than for the horizontal axis (Rodden and Fu, 2007;

Guo and Agichtein, 2010b). However this relationship remains uncertain, considering that the mouse

could be used as a means to mark a potential result previously located with the eyes (Rodden et al., 2008).

Furthermore, the amount of time spent by a user on an SERP can affect the location of the gaze and

the mouse during the exploration (Huang et al., 2012). Navalpakkam et al. (2013) designed a model to

predict the location of the eyes based on the mouse location and showed that the correlation between the

eyes and the mouse is nonlinear and user dependant. More specifically, this correlation has been found

for time periods during which a user looked at an Area Of Interest (AOI) and when switched between

AOIs. However, SERPs are not representative of the web and remain transitional web pages to access a

content on a different website. As a matter of fact, users spend a significant cumulative amount of time

on SERPs, but in short bursts of time. When focusing on common web pages, the eyes and the mouse

are also coordinated on the vertical axis, and the scroll speeds influence the position of the eyes during

scrolling (Milisavljevic et al., 2018). The participant is looking at the opposite part of the screen when

scrolling at a high speed. Moreover, the presence of the cursor in a region of the screen correlates with the

probability that the participant is fixating on this region (Chen et al., 2001). To better estimate if the eyes

and the mouse are coordinated, Boi et al. (2016) generalised the work of Navalpakkam et al. (2013) by

defining that the eyes and mouse must be positioned over the same content. This new definition allowed

them to improve the predictive power of the models of Guo and Agichtein (2010b) and Huang et al. (2012)

when applied to classic web pages. Finally, when it comes to the coordination of the eyes and scrolling,

web pages are not of primary interest. That is why, to our knowledge, no studies tackle the coordination

between the two outside the reading field (Kumar et al., 2007; Sharmin et al., 2013).

The goal of our study was to contribute to this growing area of research by exploring the similarities and

differences between movement of the eyes and computer mouse on web pages. First, we introduced a new

segmentation threshold in order to differentiate two mouse movements or scrolls as precisely as possible.

Then, with this new segmentation, analyses from eye movement methodology were applied to mouse

movement and scrolling parameters. This methodology allowed us to investigate the influence of the tasks
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(free viewing and visual search) on eye, mouse and scroll parameters. Beyond these global analyses, we

also considered the influence of time on the dynamic of each type of movement through visual exploration

modes.

2 MATERIAL AND METHODS

2.1 Participants

We recruited one hundred and fifty-one participants (127 females and 24 males) aged between 18 and 56

(M = 22.77, SD = ±6.33). Participants reported normal or corrected to normal vision and were naive about

the purpose of the study. They were right-handed or accustomed to using a computer mouse with the right

hand. A majority were undergraduate students from the psychology institute at the Université de Paris.

Participants were compensated either by course credit or a 15 euro gift card. All procedures performed

in studies involving human participants were in accordance with the ethical standards of the institutional

and/or national research committee (local Ethics Committee of Paris Descartes University, No. CER-PD:

2018-77) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

All subjects gave written informed consent.

2.2 Apparatus

Eye movements were recorded using an Eye-Link 1000 Plus (SR Research Ltd., Canada) at a 1000Hz

sampling rate with 0.05�precision. We recorded the right eye of the participants with a 35mm monocular

lens. Mouse movements were recorded with a standard USB optical mouse with a 125Hz polling rate.

Stimuli were displayed on a 24.5 inch LCD computer screen with a 1920x1080 pixel resolution and a

144Hz refresh rate. The experiment was run using Python 2.7 with Pylink from the manufacturer and

Chromium 64.

2.3 Stimuli

In this experiment eighteen web pages (see Figure 1) from eighteen different websites were randomly

presented to the participants. The web pages has a width of 1920 pixel and their total height was between

5000 pixels and 19230 pixels (M = 6405px, SD = ±2673px). Participants were allowed to freely move the

mouse, scroll or click without restriction. However, hyperlinks and content animations were deactivated,

thus participants could not leave the displayed web page. The web pages were chosen according to several

criteria to minimise biases. The two first criteria were the popularity and language of the website. We

ensured stimuli were from French websites with differing popularity. The third criterion was about the

websites’ news content. Since this study was run over several months, a web page could not have any

content referring to current events or content related to a season, date, holiday, celebration, etc. As the

fourth criterion, we checked that the web pages did not have any external advertising. In contrast to the

first four criteria, which were respected on all web pages, the following criteria were counterbalanced

between web pages. As Bruyer et al. (1987) explained, faces are handled differently by our brain during

visual exploration. To this end we made sure that we keep a balance of faces between the web pages. We

also made sure that a balance was maintained for images, texts, general layout and total length of the web

page to have stimuli with different content types and organisation. Finally, as described in the following

paragraph, we gave targets already present within the original web page. Thus, we checked the number of

targets available on the web page and their distribution across the page.

2.4 Tasks

Participants had to perform two types of tasks during this study. Both tasks were randomly displayed nine

times each. During the free viewing task, the participants were instructed to explore the web page freely

for exactly sixty seconds. In the visual search task, participants were asked to find a target in maximum

This is a provisional file, not the final typeset article 4

CHAPTER 7. EYE MOVEMENT BEHAVIOUR ON WEB PAGES

154



Milisavljevic et al. Similarities and differences between eye and mouse

two minutes. The participants did not know how many targets there were but we informed them that there

were up to three targets, with at least one, per web page. As previously defined, the targets were icons or

images already present on the original web page. Moreover, the targets were distributed between the top,

middle and bottom of the web page, and could be found on the sides, or in the content, header or footer.

2.5 Procedure

In a quiet room, with constant luminosity, the participants were instructed to position their head on a

chin rest in front of a computer screen at a viewing distance of 57cm. The experiment then began with

practice trials, one for each task. After this phase, the participants’ right eye was calibrated at nine points

and this was repeated until the error value was below 1�. Once the calibration was successfully complete,

the participants had to click on the next trial with the mouse on a 3 by 6 table, as shown in Figure 2. Then

the instructions were displayed on a new screen with a button to launch the trial. The position of this

button was randomly chosen in order to avoid bias related to the first fixation commonly being at the same

position as the button launching the trial. Furthermore, to ensure the web page would have completely

loaded before the trial started a 3-second countdown was added to the button launching the trial. The

countdown only began after the page entirely loaded, thus visual elements displayed after few seconds

could be avoided. During this phase, the participants were informed of the presence of maximum three

targets when carrying out the visual search task. After clicking on the button, the web page was displayed

for 60 or 120s, depending on the task. During the visual search task, the participants had to click on the

targets when they founded them. If the image clicked was one of the targets, a green rectangle surrounded

the target to indicate that one of the targets had been found. The participants were instructed to press the

space bar on the keyboard when they thought they had found all the targets. After 1 minute of the free

viewing task, and 2 minutes or after the space bar was pressed in the visual search, the recording was

stopped, and the 3 by 6 table displayed at the beginning was displayed again. Between each trial a 5-point

calibration was performed. A 9-point calibration was initiated after the ninth trial, or if any problems

occurred during the experiment.

2.6 Data Analysis

2.6.1 Data cleaning

Data from 12 participants who did not finished the experimental protocol due to calibration problems

were discarded. Among the remaining 139 participants (2502 trials), due to problems encountered during

the experiment, such as calibration problems, participants talking during a trial, external noise, etc, we

removed 4.88% of all trials (122 trials). The remaining data (2380 trials) was then pre-processed and

cleaned in three steps. The first step was only applied to the visual search task. The last 2 last seconds of

recording were removed in order to deal with the moment the participant looked at the keyboard when

pressing the space bar. In addition, and for the same reason, residual fixations below the screen at the end

of the exploration were removed. Throughout the second step, blinks and fixations under 100ms around a

blink were cleaned (Holmqvist et al., 2011). During the third and final step, fixations with a visual angle of

more than 3�from the screen’s border were deleted. Fixations outside the screen, but below the 3�threshold,

were reset to the corresponding border of the screen. These three steps led to deletions within all the trials.

All 139 participants, and 95% of the initial trials (2378 trials), were kept. In total, 91.74% of all records

were retained for analyses. Finally, only the first 20 seconds were selected for this work, and 18 more trials

were deleted due to insufficient mouse moves or scrolling events (2360 trials remaining). It should be noted

that eye movement analyses were run on aggregated data, and scrolling and mouse events on raw data. All

analyses were carried out using Python 3.6.
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2.6.2 Events Segmentation

There are a number of well-established, and ever improving, methods to label raw data from eye

recordings. However, mouse and scroll recordings lack such a method, specifically to differentiate two

close events. While it is easy to determine if two events separated by two or three seconds are indeed

two distinct events, doing the same operation for two events with, for instance, less than one second in

between, is much harder. In the literature, we can find multiple attempts to define a threshold allowing the

differentiation of idle time and movement of the mouse. Since the mouse is a pointing device, a simple

threshold seems to be appropriate, contrary to eye movements which are more complex. In their attempt

to define a new behavioural biometric technique based on mouse movements, Gamboa and Fred (2004)

differentiated two mouse movements as a pause in the user’s interaction when the two consecutive events

were separated by more than 100ms. In their work, Reeder and Maxion (2006) arbitrarily considered a

threshold of 3s with to the user being silent and inactive (with both the mouse and the keyboard) in order to

propose a method to detect user difficulties when using an interface. On the other hand, Feher et al. (2012)

empirically set this threshold to 500ms to categorise mouse movements and thus uniquely identify users.

More recently, Seelye et al. (2015) studied cognitive impairment using computer mouse movement patterns.

They mentioned a median idle time, which is the time spent idling or pausing between mouse movements,

of 310ms. In the continuity of the work of Gamboa and Fred (2004), Antal and Egyed-Zsigmond (2019)

used a threshold of 10 seconds to segment mouse movements and used them to detect intruders on a

computer.

Moreover, some studies focused specifically on scroll segmentation. In their study into the scrolling

behaviour, Braganza et al. (2009) determined that two scrolls recorded within one second of each other

were considered as a single scroll. To set this threshold, they tried values ranging from 200ms to 4s, with

increments of 100ms. They did not find any major differences between these timings, and consequently

chose 1s as a threshold. In their study, Milisavljevic et al. (2018) defined a scroll session as a set of

continuous scroll events ended with a mouse movement. On the topic of scrolling when reading, Brady

et al. (2018) sampled a frame every 100ms to check if the displayed text had moved. If it had moved more

than half a line between one sentence and the next, it was counted as a scroll.

Even though the presented techniques try to segment scrolling or mouse events, they are mostly arbitrary

thresholds. If we take a closer look at our previous attempt to segment events, we defined a threshold based

on the events number rather than the time (Milisavljevic et al., 2018). This definition does not take into

account all parameters that come into play when interacting using mouse or scroll. The main parameter

is the fact that, on a desktop, it is possible to move the mouse during a scroll. In such a case, a single

scroll would be labelled as two different scrolls. The bias will remain if the participant uses the browser

scroll bar, which allows the user to grab a bar on the right of the browser and scroll by moving it up

or down. Furthermore, Brady et al. (2018) used a spatial threshold of 40 pixels to identify when a user

was scrolling, but this is applicable to mouse movements. In addition to highlighting the need to use a

time-based threshold, all previously mentioned studies did not correctly handle stops and micro-stops. A

stop is a period of time during which the user does not move the mouse or scroll. During this idle time, the

user explores the web page and processes it. But based on this definition, a new question arises: what is the

minimal length of this period of time to give the user enough time to process the stimulus and make the

decision to keep moving, scrolling, or stop entirely? In other terms, how can we differentiate micro-stops

from the movement itself? A micro-stop is an interruption during the action which is long enough to allow

the user to make a decision, but this is not visible to the eye. To differentiate micro-stops from movements

we looked at the study from Moher and Song (2019) in which they compared behaviours between a 3D
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reach tracker, a computer mouse and a stylus. Among multiple conditions, they measured the average

response latency of 220ms when displacing a target. This could be considered as the minimum time to

visualise a target’s new position and make the decision to reorient the movement. Thus, a micro-stop

could not be less than 220ms, and a stop below this threshold should be considered as the continuity of

the previous action. We used a unified threshold to segment mouse movements and scrolls. We chose a

threshold of 300ms to differentiate two distinct movements or scrolls. This corresponds to the average

visual fixation duration in a scene viewing (Henderson and Hollingworth, 1998). Despite the fact that visual

fixations can be shorter than 300ms, this does not apply to ecological conditions and semantic-rich stimuli,

such as web pages.

2.6.3 Variables

After all cleaning processes, we ran our analyses on a wide range of new parameters. In the state-of-the-

art, the same types of parameters are frequently used. For the use of the mouse, these include curvature,

trajectory, clicks, dwells or the number of movements (Zheng et al., 2011; Tzafilkou and Protogeros,

2018; Rheem et al., 2018; Fu et al., 2017), and for scrolls, amplitude, speed and number (Liu et al., 2017;

Braganza et al., 2009; Milisavljevic et al., 2018). In comparison, eye-mouse studied parameters are more

related to their respective positions, but are not limited to this factor. For instance, eye-mouse distance,

content hovered, lag, percentage of regions visited by both the eyes and mouse, etc., have been studied

(Chen et al., 2001; Rodden and Fu, 2007; Rodden et al., 2008; Guo and Agichtein, 2010b; Huang et al.,

2012; Navalpakkam et al., 2013; Boi et al., 2016).

In this paper, we propose a more complete set of parameters directly inspired from eye movement

analyses. These parameters include dwell duration, movement duration, movement amplitude and number

of events. It should be noted that duration variables are expressed in seconds or milliseconds, while

amplitude variables are expressed in degree of visual angle. Furthermore, in order to better characterise

the dynamic of the exploration through ambient and focal visual modes, we apply, for the first time, the

K coefficient defined by Krejtz et al. (2016) to mouse and scroll events. This coefficient is calculated by

averaging the differences in z-scores between the duration of each fixation and the next saccade, as shown

in equation 1. A negative value indicates that the fixation di is short and the next saccade ai+1 is long

(>5�). In contrast, a positive value suggests that the fixation di is long and the next saccade ai+1 is short

(<5�) which corresponds to a focal mode.

K =
1

n

X

n

di − µd

σd

−

ai+1 − µa

σa

(1)

Milisavljevic et al. (2019) introduced two new variables to better capture the dynamic of focal and

ambient modes. While the K coefficient did not discriminate between the different stimuli used in their

study, the number of switches between modes did. It is for this reason that we are using these parameters to

more precisely describe the dynamic of the exploration for both the eyes and mouse.

2.6.4 Mouse and Scroll Overlap

Participants were able to independently move the mouse and scroll. Consequently, this led to overlaps

between mouse movements and scrolls. We found that this overlap occurred only 10% (SD = ±4.83%)

of the total mouse movement time and 15% (SD = ±10.59%) of the total scrolling time. During these

overlaps we observed mouse movements with an amplitude of 0.02�(SD = ±0.02�) and a duration of

240ms (SD = ±195.53ms) for a total duration of 570ms (SD = ±430ms). As described, during overlaps,

movements represented a negligible part of the exploration. Moreover, these overlaps followed three

main patterns: move-scroll, scroll-move and move-scroll-move. The move-scroll pattern refers to a scroll
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that began while already moving the mouse. This pattern occurred 43% of the time and was the most

frequent. The second pattern we observed was the scroll-move pattern. This pattern is the exact opposite:

the participant began to move the mouse while already scrolling. This pattern happened 25% of time.

The move-scroll-move pattern is when the participant scrolled within a single mouse move. This was

less common and occurred 21% of the time. Finally, the 11% remaining was exotic patterns, such as

move-scroll-move-scroll or move-scroll-move-scroll-move which represent 2% each, etc. Due to the low

frequency of overlaps between scrolls and mouse movements, we can safely conclude that these specific

movements are residual movements or involuntary micro-movements generated by the use of the mouse

wheel. For this reason, we did not take overlaps into account in the following analyses.

3 RESULTS

To study the similarities and differences between eye movements, mouse movements and scrolling, we ran

two types of analyses. We first described eye, mouse and scroll parameters globally, to clearly define what

a mouse or scroll movement was, and summarised them in Table 1. Then, we examined the role of tasks

and time, by performing a 2 (free viewing and visual search) X 4 (0-5s time-bin, 5-10s time-bin, 10-15s

time-bin and 15-20s time-bin) repeated measures analyses of variance (ANOVAs). Post-hoc analyses were

run using pair-wised student’s t-test with a Bonferroni correction.

3.1 Eye Movements Analysis

We measured a rather stable distribution between fixations and saccades across the different conditions.

During the exploration of a website, participants spent approximately 14% (SD = ±1.72%) of the time

doing a saccade (see Table 1). Although this proportion was maintained across the tasks, we found a task

effect on the distribution of fixations/saccades (F(1,138)=231.98, p <0.001). Participants spent 13.6%

(SD = ±1.79%) of the time doing a saccade in the free viewing task and 15% (SD = ±1.84%) during the

visual search task. Furthermore, we found a time effect (F(3,414)=685.59, p <0.001) present between the

first and second time-bins (t=-29.50, p <0.001), and between the second and third time-bins (t=8.98, p

<0.001), but not between the third and fourth time-bins (t=-2.33, p >0.05). We also found a significant

interaction effect between task and time (F(1,138)=3.48, p <0.05), but post-hoc analyses confirmed that

main effects were preserved (see Table 2).

3.1.1 Number of Fixations and Saccades

Globally, participants performed an average of 72 (SD = ±6.5) fixations and saccades during the explo-

ration of a website for 20s. The task had an effect on the number of fixations and saccades (F(1,138)=424.29,

p <0.001) with less fixations and saccades during the visual search (M = 68.4, SD = ±6.31) compared to

the free viewing task (M = 75.16, SD = ±7.08). We found a time effect (F(3,414)=27.86, p <0.001), but

there were no significant differences between the first and second time-bins (t=0.32, p >0.05). However,

there was a significant decrease in the number of fixations and saccades between the second and third

time-bins (t=-4.84, p <0.001), as well as between the third and fourth time-bins (t=-2.85, p <0.05). The

interaction between the time and task was also significant (F(3,414)=3.29, p <0.05). The main task effect

was maintained for each time-bin (all p <0.001). In free viewing task, there were no significant differences

between the successive time-bins (all p >0.05). However, in visual search, the only difference with the

main time effect was the absence of a reduction between the third and fourth time-bins (p >0.05) (see

Table 2).

3.1.2 Fixation Duration

As expected, we observed an average fixation duration of 236ms (SD = ±24.45ms). The average fixation

duration varied according to the task (F(1,138)=195.75, p <0.001), being shorter in the free viewing task

(M = 229ms, SD = ±24.59ms) than the visual search task (M = 247.17ms, SD = ±26.41ms). The average
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fixation duration significantly increased over time (F(3,414)=297.65, p <0.001) up to the third time-bin.

More precisely, the first time-bin was significantly different from the second time-bin (t=20.91, p <0.001),

and this second time-bin was significantly different from the third time-bin (t=6.80, p <0.001). However,

the third time-bin was not significantly different from the fourth (p >0.05. There was also an interaction

effect between task and time (F(3,414)=3.29, p <0.05), but post-hoc analyses confirmed that main effects

were preserved (see Table 2).

3.1.3 Saccade Amplitude

We measured an average saccade amplitude of 6.1�(SD = ±0.67�). We found a significant difference

between the tasks (F(1,138)=1314.42, p <0.001), saccade amplitudes were shorter during the free viewing

task (M = 5.08�, SD = ±0.77�) than during the visual search task (M = 7.36�, SD = ±0.77�). We also

observed a time effect (F(3,414)=378.60, p <0.001) up to the third time-bin. The average saccade amplitude

decreased from the first to the second time-bin (t=-21.27, p <0.001), and from the second to the third

time-bin (t=-8.45, p <0.001), but not between the third and fourth time-bins (t=-1.55, p >0.05). However,

there was no significant interaction between the time and task (F(3,414)=2.11, p >0.05) (see Table 2).

3.1.4 Dominant Mode

Finally, to understand the dynamic of visual exploration, we computed the K coefficient and its associated

variables, as defined by Krejtz et al. (2016) and Milisavljevic et al. (2019), and described in the Methodology

section. Globally, we found a dominance of the ambient mode with a K coefficient below zero (M = -0.13,

SD = ±0.2). There was a significant difference between tasks (F(1,138)=313.8, p <0.001) which indicated

a higher dominance of the ambient mode in the visual search task (M = -0.28, SD = ±0.23) than in the

free viewing task (M = -0.01., SD = ±0.21.) We also found a significant time effect (F(3,414)=579.66,

p <0.001). The K coefficient, beginning with negative values, got significantly closer to 0 between the

first and second time-bins (t=-27.10, p <0.001), became positive between the second and third time-bins

(t=-10.23, p <0.001), but did not significantly change between the third and fourth time-bins (t=1.94, p

>0.05). Post-hoc analyses did not show a significant interaction between the task and time (F(3,414)=1.97,

p >0.05) (see Table 2).

3.1.5 Visual Modes Switches

As described in the Methodology section, the number of visual modes switches corresponds to how

many times a participant switched from ambient to focal and focal to ambient during a trial. Participants

switched between visual modes 33.15 (SD = ±3.25) times and this amount varied according to the task

(F(1,138)=63.06, p <0.001). There were more switches in the free viewing task (M = 34.26, SD = ±4.30)

than in the visual search task (M = 31.67, SD = ±3.22). There was also a time effect (F(3,414)=22.69,

p <0.001). The number of visual mode switches significantly increased between the first and second

time-bins (t=8.05, p <0.001), but significantly decreased between the second and third time-bins (t=-4.05,

p <0.001). It was not, however, significantly different between the third and fourth time-bins (t=-1.24,

p >0.05). Furthermore, we found a significant interaction between the task and time (F(3,414)=6.33, p

<0.001). The main task effect was maintained except for the third time-bin (t=4.33, p >0.05). Similarly,

the main time effect was preserved for the free viewing task, but not in the visual search task, during which

there were no significant differences between the second and third, and the third and fourth time-bins (all p

>0.05) (see Table 2).

3.1.6 Visual Modes Proportions

The participants spent, in total, 43% (SD = ±6.81%) of the time in ambient mode. This proportion

significantly varied according to the task (F(1,138)=358.75, p <0.001). It was higher in the visual search

task (M = 48.35%, SD = ±7.33%) than in the free viewing task (M = 38.21%, SD = ±7.65%). There

was a significant time effect (F(3,414)=638.94, p <0.001). The proportion of time spent in ambient
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mode significantly decreased between all successive time-bins: between the first and second time-bins

(t=-31.30, p <0.001), between the second and third time-bins (t=-9.32, p <0.001) and between the third

and fourth time-bins (t=-1.44, p >0.05). We also found a significant interaction between the time and task

(F(3,414)=8.75, p <0.001), but post-hoc analyses confirmed that main effects were preserved (see Table

2).

To summarise, we found a task and time effect on all the variables of eye movements parameters. Most

of the parameters increased over time to then stabilise starting at the third time-bin (after 10-15s). More

specifically, fixation-related variables increased and movement-related variables decreased over time.

Moreover, ambient mode was predominant during the exploration but progressively switched to focal mode

as time went by.

3.2 Mouse Analysis

The participants freely used the mouse during their exploration, and spent 20.85% (SD = ±8.33%) of the

time moving it. We found a significant task effect (F(1,138)=37.66, p <0.001), the proportion of time spent

moving the mouse was significantly higher in the visual search task (M = 23.33%, SD = ±8.48%) than in

the free viewing task (M = 18.94%, SD = ±10.11%). We also observed a time effect (F(3,414)=420.24,

p <0.001) with a significant decrease between the first and second time-bins (t=-24.14, p <0.001), and

between the second and third time-bins (t=-3.25, p <0.01). However, there was no significant difference

between the third and fourth time-bins (t=-1.68, p >0.05). There was a significant interaction between

time and task (F(3,414)=7.75, p <0.001). The main task effect was maintained excepted for the second

time-bin (t=1.2, p >0.05). The main time effect was preserved in the free viewing, but not entirely during

the visual search task, there was no significant difference between the second and third time-bins (p >0.05)

(see Table 3).

3.2.1 Number of Mouse Movements

The participants did 6.04 (SD = ±1.78) movements on average. We found a task effect (F(1,138)=73.45,

p <0.001) with more mouse movements during the visual search task (M = 6.77, SD = ±2.01) than during

the free viewing task (M = 5.43, SD = ±1.97). We found an influence of time (F(3,414)=183.46, p <0.001)

with a significant decrease between the first and second time-bins (t=-14.34, p <0.001), and between the

second and third time-bins (t=-4.70, p <0.001). However, there was no significant difference between the

third and fourth time-bins (t=-1.79, p >0.05). We also found a significant interaction between time and

task (F(3,414)=14.15, p <0.001). The main task effect was preserved excepted for the second time-bin

(p >0.05). In the free viewing task, the main time effect was preserved, but, in the visual search task this

main effect was maintained only between the first and second time-bins (p <0.001) (see Table 3).

3.2.2 Duration of Mouse Movements

The participants moved the mouse for 768ms (SD = ±342.55ms) on average. We found a task effect

(F(1,138)=15.63, p <0.001) with significantly longer mouse movements in the free viewing task (M =

772.68ms, SD = ±362.58ms) than in the visual search task (M = 767.43ms, SD = ±386.39ms). Moreover,

we found a time effect (F(3,414)=269.83, p <0.001) with a significant decrease between the first and

second time-bins (t=-19.53, p <0.001), but no significant difference between the second and third time-bins

(t=-2.56, p >0.05) nor between the third and fourth time-bins (t=0.74, p >0.05). We also found a significant

interaction between time and task (F(3,414)=3.69, p <0.05). However, the main task effect was preserved

only for the two last time-bins (all p <0.005), while the main time effect was only preserved for the visual

search task. During the free viewing task, we observed significant differences between the first and second

time-bins, and between the second and third time-bins (all p >0.05) (see Table 3).
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3.2.3 Amplitude of Mouse Movements

The participants performed mouse movements of 0.27�(SD = ±0.23�) on average. We found a significant

differences between the two tasks (F(1,138)=24.16, p <0.001). The average amplitude slightly decreased

from the free viewing task (M = 0.26�, SD = ±0.2�) to the visual search task (M = 0.3�, SD = ±0.3�).

We also found a time effect (F(3,414)=235.57, p <0.001). There was a significant decrease between the

first and second time-bins (t=-17.57, p <0.001)amp, but no significant differences between the second and

third time-bins (t=-2.42, p >0.05) nor between the third and fourth time-bins (t=0.22, p >0.05). We did

not find any interaction effect (F(3,414)=1.61, p >0.05) (see Table 3).

3.2.4 Dynamic of Mouse Movements

Here, K coefficient is used to better understand the mouse movement dynamic. The K coefficient showed

a dominance of the ambient mode (M = -0.35, SD = ±0.63). We found significant differences between

tasks (F(1,138)=15.27, p <0.001) which was slightly higher in the free viewing task (M = -0.31, SD =

±0.58) than in the visual search task (M = -0.39, SD = ±0.77). There also was a significant time effect

(F(3,414)=410.86, p <0.001). We found a significant increase between all successive time-bins (all p

<0.001). However, there was no significant interaction effect (F(3,414)=2.48, p >0.05) (see Table 3).

3.2.5 Mode switches

On average, 3.78 (SD = ±0.89) switches occurred between modes given by the K coefficient. There was

a significant task effect (F(1,138)=70.08, p <0.001) which was characterised by a lower number of mode

switches during the free viewing task (M = 3.44, SD = ±1.04) than during the visual search task (M =

4.19, SD = ±1.07). There was also a significant time effect (F(3,414)=109.86, p <0.001). The number of

switches significantly increased between the first and second time-bins (t=11.68, p <0.001), and between

the second and third time-bins (t=3.72, p <0.005), but there was no significant difference between the third

and fourth time-bins (t=1.42, p >0.05). We also found a significant interaction between the time and task

(F(3,414)=11.93, p <0.001). The main task effect was preserved excepted for the first time-bin (p <0.05).

Furthermore, the main time effect was maintained for the free viewing task, but, for the visual search task,

the first and second time-bins were significantly different (p <0.001), while remaining time-bins did not

have significant differences (all p >0.05) (see Table 3).

To summarise, we found a task and time effect for all the mouse parameters. As found for eye movements,

most of the mouse parameters stabilised at the end of the exploration. Interestingly, the mouse parameters

behaved similarly to eye movements parameters. Finally, ambient mode was the prevailing mode for mouse

movements, but, as for the eyes, progressively switched to the focal mode over time.

3.3 Scroll Analysis

The participants, globally, spent 16.58% (SD = ±5.32%) of a trial scrolling. There was a task effect

(F(1,138)=469.10, p <0.001). The proportion of time spent scrolling was higher in the visual search task

(M = 23.80%, SD = ±8.28%) compared to the free viewing task (M = 10.86%, SD = ±4.87%). We also

found a time effect (F(3,414)=239.92, p <0.001). There was a significant increase between the first and

second time-bins (t=20.74, p <0.001), as well as between the third and fourth time-bins (t=3.70, p <0.005),

while there was no significant differences between the second and third time-bins (t=0.06, p >0.05). We

found a significant interaction between the time and task (F(3,414)=11.94, p <0.001). The main task effect

was maintained for all time-bins (all p <0.001). However, the time effect was not preserved. In both tasks,

the first and the second time-bins were significantly different (t=-20.5, p <0.001), but we did not find

significant differences between other time-bins (p >0.05) (see Table 4).
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3.3.1 Number of Scrolls

During the trial, the participants scrolled on average 8.77 (SD = ±2.04) times. We found a task effect

(F(1,138)=512.15, p <0.001). We measured lower numbers in the free viewing task (M = 6.62, SD

= ±2.25) compared to the visual search task (M = 11.44, SD = ±2.63). We also found a time effect

(F(3,414)=282.94, p <0.001). There was a significant increase between the first and second time-bins

(t=24.37, p <0.001). However there was no significant differences between the second and third time-bins

(t=0.19, p >0.05) nor between the third and fourth time-bins (t=-0.62, p >0.05). There was a significant

interaction between the time and task (F(3,414)=6.03, p <0.001). However, post-hocs analyses showed

that the main effects were maintained (see Table 4).

3.3.2 Scroll Duration

Scrolls lasted on average 367.57ms (SD = ±121.65ms). We found a task effect (F(1,138)=205.20,

p <0.001). Scroll was shorter in the free viewing task (M = 328.64ms, SD = ±99.57ms) compared

to the visual search task (M = 417.24ms, SD = ±186.17ms). Additionally, we found a time effect

(F(3,414)=55.49, p <0.001). There was a significant increase between the first and second time-bins

(t=9.34, p <0.001), as well as between the third and fourth time-bins (t=3.39, p <0.01). However there

was no significant difference between the second and third time-bins (t=1, p >0.05). We did not find any

interaction (F(3,414)=1.94, p >0.05) (see Table 4).

3.3.3 Scroll Amplitude

A scroll was on average 8.52�(SD = ±2.35) long. The task had an influence on scroll amplitude

(F(1,138)=389.81, p <0.001). Scrolls were longer in the visual search task (M = 10.58�, SD = ±3.12�)

than in the free viewing task (M = 6.91., SD = ±2.6.) The time also had an influence (F(3,414)=34.04, p

<0.001). There was a significant increase between the first and second time-bins (t=9.44, p <0.001), but

not between the second and third time-bins (t=0.77, p >0.05), nor between the third and fourth time-bins

(t=1.20, p >0.05). There was a significant interaction between the time and task (F(3,414)=6.51, p <0.001),

but post-hoc analyses confirmed that main effects were preserved (see Table 4).

3.3.4 Scrolling Dynamic

In contrast to eye and mouse dynamics, scrolling dynamic was dominated by the focal mode (M =

0.43, SD = ±0.45). There was a task effect on the K coefficient (F(1,138)=454.64, p <0.001), which was

significantly more indicative of the focal mode in the free viewing task (M = 0.92, SD = ±0.67) than in

the visual search task (M = -0.17, SD = ±0.47). There was also a time effect (F(3,414)=5.58, p <0.001),

the K coefficient significantly decreased between the first and second time-bins (t=-4.29, p <0.001), but

did not between the following successive time-bins (all p >0.05). We found an interaction between the

time and task (F(3,414)=39.55, p <0.001). The main task effect was maintained (all p <0.001). However,

maintained during the free viewing task, the main time effect, was not maintained in the visual search

task. We measured a significant reduction between the first and second time-bins, and the second and third

time-bins (all p <0.05, but not between the third and fourth time-bins (p >0.05) (see Table 4).

3.3.5 Modes Switches

The participants switched between modes an average of 3.63 (SD = ±0.74) times. There was a significant

task effect (F(1,138)=257.59, p <0.001). The number of switches between modes was significantly lower

in the free viewing task (M = 2.99, SD = ±0.94) than in the visual search task (M = 4.37, SD = ±1). We

also found a significant time effect (F(3,414)=109.40, p <0.001). There was a significant decrease in the

number of switches between the first and the second time-bins (t=-15.27, p <0.001), but no significant

differences between the following successive time-bins (all p >0.05). The interaction of the time and task

was also significant (F(3,414)=4.60, p <0.001), but post-hoc analyses confirmed that main effects were

preserved (see Table 4).
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To summarise, we found a task and time effect for all scrolling parameters. As with the eyes and mouse

parameters, most of the scrolling parameters stabilised at the end of the exploration. However, this evolution

was in the opposite sense of that for the eye and mouse movements. While the eye and mouse fixation or

dwelling parameters increased over time, scrolling dwells decreased. Inversely, while the eye and mouse

movement parameters decreased over time, scrolling increased. As such, the focal mode was predominant

in the global exploration, but tended to ambient mode over time.

4 DISCUSSION

In the present study, a large set of participants explored 18 web pages for 20 seconds each and were asked to

perform two tasks (a free viewing task and a visual search task). Our study is the first to ally the description

of eye, mouse and scroll movement parameters on web pages, and how they evolved between tasks and

over time.
4.1 Eye Movement Parameters

We first found a task effect for all eye variables which replicated several studies in the literature (Yarbus,

1967; DeAngelus and Pelz, 2009; Itti and Borji, 2015). Fixation-related variables were higher in the free

viewing task compared to the visual search task, while movement-related variables were higher in the visual

search task. We also found a time effect on all variables. Fixation-related variables increased over time for

both tasks while movement-related variables decreased. Participants did fewer fixations and saccades, but

longer fixations and shorter saccades over time (Unema et al., 2005). As a result, we observed a global

domination of ambient mode (i.e. short fixations with long saccades), but over time the dominant mode

progressively switched to focal mode (i.e. long fixations with short saccades). This behaviour could indicate

that participants try to contextualise the stimulus at the beginning of the exploration to then focus more and

more on content as time goes by.
4.2 Mouse Parameters

Then we ran the same analyses on mouse movements and scrolls. We found a task effect for all parameters

of the mouse exploration, except for the average amplitude and duration of the mouse movements. As for

the eye movements, dwell-related variables were higher in the free viewing task compared to the visual

search task, while movement-related variables were higher in the visual search task. Again, we found a

time effect on all variables. Comparably to eye movement parameters, dwell-related variables increased

over time and movement-related variables decreased over time for both tasks. This behaviour is similar to

that of eye movements and suggests strong similarities between the two. Hence, we applied visual mode

concepts to mouse movements. However, it is worth noting that the number of mouse movements was

broadly inferior to the number of eye movements, so these results should be discussed with caution. Despite

the difference in the number of events, we observed similar behaviour in the mouse dynamic, which began

in ambient mode to progressively switch to focal model over the course of the exploration.

Regarding scrolling, all parameters varied according to the task. Comparably to eye and mouse movement

parameters, we found a task effect for all parameters. We also found an time effect on all the variables,

but dwell-related variables decreased over time while scroll-related variables increased. However, the

stabilisation of scroll parameters began earlier than for mouse parameters (see Figures 3 and 4). Although

there were fewer scroll movements than eye movements their frequency remained slightly higher than

that of mouse movements. Therefore, we conducted analyses of dominant modes and found that, globally,

scrolling was in focal mode. However, when looking over time, we observed that the focal mode was more

dominant at the beginning of the exploration and ambient mode at the end. Since participants scrolled
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increasingly over time but did longer eye fixations, they seemed to balance the natural emergence of the

focal mode of the eyes, by scrolling to keep changing and contextualising the newly displayed content.

4.3 Similarities and Differences

Next, we separated computed variables into two distinct categories: variables related to movements

and variables related to fixations or dwells. In Figure 3 A we can observe a clear relationship between

the fixation-related variables of the eyes, mouse and scroll. On the one hand, eye and mouse parameters

behaved similarly. Fixation or dwell durations, and percentages of fixations or dwells, were at their lowest

at the beginning of the exploration and increased up to the end of exploration. On the other hand, scrolling

behaved exactly the opposite way. Scroll dwell was at its highest at the beginning of the exploration and

decreased overtime. These observations are consistent in both the free viewing and visual search tasks

(Figure 3 B, C). Yet we observed a stabilisation of mouse and scroll dwell durations starting from the

second time-bin. In Figure 4 A we can observe the opposite pattern for movement-related variables. Eye and

mouse movement variables decreased over time and scroll variables increased. Eye and mouse parameters

behaved in the opposite way to scroll parameters, just as with fixation-related variables. Furthermore, this

relationship was maintained across both tasks (Figure 4 B, C).

Our results show a clear relationship between eye, mouse and scroll parameters. Previous studies have

already shown the spatial coordination of the eyes and mouse (Guo and Agichtein, 2010b; Boi et al.,

2016; Huang et al., 2012) and some coordination between the eyes and scroll speed (Milisavljevic et al.,

2018). However, here we show that this relationship is even deeper than expected, and can be identified

through analysing eye, mouse and scroll parameters. Indeed, coordination is not only between the eyes and

the mouse, or, between the eyes and the scroll, but clearly between all three. Our findings show, for the

first time, that eye and mouse parameters behave similarly, which confirms the interest of using mouse

behaviour to predict eye behaviour. Yet the interaction described here does not take spatial coordinates into

account that could be combined with relationship parameters to better predict eye movements from mouse

events.
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Figure 1. Example of website displayed during the experiment.

Figure 2. Example of screen on which participants had to click the next item to get the instruction. The
white button indicates a website not yet visited, the green button a website already visited, and the blue
button the next website to visit. Only the blue button was clickable.

This is a provisional file, not the final typeset article 18

CHAPTER 7. EYE MOVEMENT BEHAVIOUR ON WEB PAGES

168



Milisavljevic et al. Similarities and differences between eye and mouse

●●●●

●●

●●
●●

●
●

●●
●
●

●
●

●
●

●
●

●
●

−1

0

1

0−5 5−10 10−15 15−20

Time−bins

Z
−

s
c
o
re

s

Fixation Global(A)

●●●●

●●

●●●●

●●

●●●
●

●
●

●●●
●

●
●

−1

0

1

0−5 5−10 10−15 15−20

Fixation Free Viewing(B)

●●●●

●●

●●

●●

●
●

●
●

●●

●
●

●
●

●
●

●●

−1

0

1

0−5 5−10 10−15 15−20

Fixation Visual Search(C)

Percentage Dwell

Dwell Duration

●

●

●

Eyes

Mouse

Scroll

Figure 3. Relationship between fixation-related variables of the eyes, mouse and scroll. (A) global z-scored
averages. (B) z-scored averages over time in the free viewing condition. (C) z-scored averages over time in
the visual search condition.

●●●
●●●

●●●

●●●
●●●

●
●

●

●●●
●
●●

●

●

●

●
●
●

●
●●

●

●

●

−1

0

1

0−5 5−10 10−15 15−20

Time−bins

Z
−

s
c
o
re

s

Movement Global(A)

●●●●●●

●●●

●●●●●●

●●●

●●●
●
●
●

●
●

●

●
●
●●
●
●

●

●

●

−1

0

1

0−5 5−10 10−15 15−20

Movement Free Viewing(B)

●●●
●●●

●

●

●

●●●

●●●

●

●

●

●●
●
●●●

●

●

●

●
●
●

●●●

●

●

●

−1

0

1

0−5 5−10 10−15 15−20

Movement Visual Search(C)

Percentage Moving

Move Amplitude

Move Duration

●

●

●

Eyes

Mouse

Scroll

Figure 4. Relationship between saccade-related variables of the eyes, mouse and scroll. (A) global z-
scored averages. (B) z-scored averages over time in the free viewing condition. (C) z-scored averages over
time in the visual search condition.

Table 1. Global means and standard deviation of all studied variables (139 participants on 18 web pages
for 20s each).

Eye Mouse Scroll
mean std. mean std. mean std.

Fixations/Dwells

% of time 85.76% ±1.72% 79.15% ±8.33% 83.42% ±5.32%
Avg. count 72.18 ±6.5 8.71 ±2.57 10.07 ±1

Avg. duration 236.97ms ±24.45ms 2.49s ±1s 2.3s ±0.71s
Tot. duration 16.83s ±0.33s 15.68s ±1.65s 16.52s ±2.33s

Movements

% of time 14.24% ±1.72% 20.85% ±8.33% 16.58% ±5.32%
Avg. count 72.18 ±6.5 6.04 ±1.78 8.77 ±2.04

Avg. duration 39.04ms ±4.29ms 768.24ms ±342.55ms 367.57ms ±121.65ms
Tot. duration 2.8s ±0.34s 4.13s ±1.65s 3.28s ±1.39s

Avg. amplitude 6.10� ±0.67� 0.27� ±0.23� 8.52� ±2.35�

Tot. amplitude 435.22� ±52.74� 1.6� ±0.71� 70.79� ±19.70�

Dynamic

Avg. K coeff. -0.13 ±0.2 -0.35 ±0.63 0.43 ±0.45
Avg. nb. switches 33.15 ±3.25 3.78 ±0.89 3.63 ±0.74

% time in ambient 42.82% ±6.81% - - - -
% time in focal 57.37% ±6.8% - - - -
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CHAPTER 8. MODELLING EYE MOVEMENTS ON WEB PAGES

T
he third axis of this work is to integrate our findings from previous axes in web

pages scanpath modelling in order to improve prediction accuracy. Existing

scanpath models rarely address web pages, but when they do, they consider

web pages as static screenshots without the need to scroll (Le Meur & Coutrot, 2016;

Shen et al., 2015; Shen & Zhao, 2014; Xia & Quan, 2020). To tackle this problematic, we

propose the first saccadic model including scrolling. Furthermore, we propose a dynamic

approach of oculomotor biases. Our approach models oculomotor biases as a function

of time to enhance saccadic models. We also introduce a new methodology to analyse

models based on the time-dynamic of generated scanpath and compare it to human

scanpath. Thus, our work highlights the importance of dynamics in the prediction of eye

movements when exploring web pages.

8.1 Data

The model presented in this chapter has been trained and evaluated on a subset of the

study used in Articles 3 and Posters 1 and 2 (see Chapter 4). In this study, 18 web

pages were displayed on a computer screen with a 1920x1080 pixels resolution. In this

chapter, 9 web pages were selected to train and evaluate the model during free viewing

task. We only selected 9 web pages over the 18 originally presented to avoid web pages

with sticky header and a good distribution of participants. A sticky header being a header

of a web page staying on top of the screen while scrolling.

8.2 Model architecture

Based on the literature, a saccadic model can be synthesised as 3 complementary but

essential modules. The first module’s role is to handle the features extraction which

can be either bottom-up, top-down or a mix of the two. Most of the time this part is

performed by a saliency map which comes from an already existing saliency model (e.g.

Boccignone & Ferraro, 2004; Le Meur & Liu, 2015; Wang et al., 2016). The second
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8.2. MODEL ARCHITECTURE

module models the oculomotor biases mechanisms. Which bias is modelled vary a lot

from one model to another, but most of the time IOR and saccade amplitude are included.

Finally, the fixation selection module is the one that attracted the most attention in

saccadic modelling. Its role is to take the two previous modules to select the next fixation.

Furthermore, since we model ocular behaviour on web pages, we had a new module called

a viewport engine. Described in Chapter 5, its role is to reproduce the scroll behaviour

and to extract viewport as an input to the model for prediction.

8.2.1 Top-down saliency map

It is generally assumed that attention orienting is the result of an interaction between

bottom-up and top-down factors. Some authors have even questioned the existence

of purely bottom-up influence during visual exploration (Theeuwes & Failing, 2020).

Moreover, top performing saliency models of the MIT Benchmark (Kümmerer et al.,

2020) are learning-based which are mostly top-down. Therefore, the saliency map is

predicted using the state-of-the-art Saliency Attentive Model (SAM) top-down model

(Cornia et al., 2018) (see Chapter 3 for more details).

8.2.2 Oculomotor biases

8.2.2.1 Dynamic fixation duration

Fixating is an active process allowing us to grasp details on our surrounding environment.

The Fixation Duration (FD), which designates the period of time between two saccades,

is usually around 300 to 350 milliseconds Mackworth and Morandi, 1967; Yarbus, 1967.

However, FD is not stable during the exploration and evolves over time. Buswell (1935)

was the first to observe an evolution of FD and SA when exploring paintings. He described

two patterns: short fixations during the global scanning of the scene, and longer fixations

in more limited areas, usually occurring after the scanning phase. Antes (1974), like

Buswell (1935), showed a constant increase of mean FD and a constant decrease of mean

SA during the exploration of 10 pictures. Unema et al. (2005) reported a steady increase
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in fixations duration over the first few seconds. They also modelled these fluctuations by

an exponential function described in Equation 8.1.

(8.1) FD(t)= b∗ ea/t

Figure 8.1 – Fixation duration modelling. Predicted and observed average fixation
durations as a function of time.

Where b is the asymptotic value, a the acceleration rate of the function, and t the

time elapsed since the beginning of the exploration. In our model, we first grouped

fixations in 1s time bin across all participants. We then averaged fixations duration of

each time bins to have a single value for each second. Finally, we fitted the resulting

average fixations duration using Equation 8.1. We then used the fitted exponential

function to predict fixation duration after for each predicted fixation. The result of our

model is showed in Figure 8.1. Here, the fixation duration prediction is based on global

behaviour observed across literature. Thus, it is not directly related to the content.

8.2.2.2 Dynamic direction map

Saccades are not uniformly distributed in space. We tend to execute more horizontal

saccades than vertical ones and even fewer oblique saccades (e.g. Brandt, 1945; Gilchrist
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& Harvey, 2006). Although there is no consensus yet in the literature, extraocular

muscles are commonly found responsible. As described in Section 1.2.2, whereas only a

single pair of muscles is necessary to move our eyes horizontally, two pairs of muscles

are required to move the eyes vertically and obliquely. Foulsham et al. (2008) found

that participants could easily make vertical or oblique saccades when the stimuli were

rotated.

To model saccade orientation over time, we follow a similar approach as Le Meur

and Coutrot (2016). The screen is first divided in 9 areas of equal size (640x360 pixels).

Then, every saccade origin initiated in a given area is shifted to the area’s centre, while

keeping the correct saccade direction. Finally, a line is drawn for each saccade and a

Gaussian filter of 1 degree of visual angle is applied. This operation is repeated for each

area every second. The result is a set of direction maps for every area.

During prediction, the direction map corresponding to the area of the previous

predicted fixation is selected. The direction map is then centered to the previous fixation

and merged with the top-down saliency map.

8.2.2.3 Dynamic saccade amplitude

Figure 8.2 – Saccade amplitude modelling. Predicted and observed average saccade
amplitudes as a function of time.
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Saccade amplitudes (SA) follow a positively-skewed distribution which means that

we tend to make short saccades more often than long saccades (e.g. Gajewski et al., 2005;

Tatler et al., 2006). In ecological situations, saccades average amplitude is lower than

15 degrees of visual angle (Gilchrist, 2011). Moreover, as described in Section 1.3.1, SA

are longer at the beginning of the exploration and decrease over time. Unema et al.

(2005) reported a steady decrease in saccade amplitude over the first few seconds. They

modelled these fluctuations with the same exponential function as fixation duration

described in Equation 8.2.

(8.2) SA(t)= b∗ ea/t

Where b is the asymptotic value, a the acceleration rate of the function, and t the

time elapsed since the beginning of the exploration. As for fixation duration, saccades

are first grouped in 1s time bins across all participants. We then averaged saccades

amplitude of each time bin to have a single value for each second. Finally, we fitted the

resulting average saccades amplitudes using Equation 8.2. The saccade amplitude is

determined by computing the time elapsed since the first predicted fixation. The result

of our model is showed in Figure 8.2.

8.2.2.4 Inhibition Of Return

Posner and Cohen (1984) observed an automatic inhibitor mechanism preventing the

organism from exploring twice a same location, so it can be faster and more efficient

during the rest of the visual exploration of the environment: Inhibition Of Return (IOR).

IOR is directly involved in the modulation of our visual scanning by reducing the number

of eye movements directed to the locations previously fixated. Furthermore, it has been

shown that IOR could not occur without eye movements in the orienting of endogenous

attention which suggests that IOR could be related to oculomotor system activation (for

an extensive review see Klein (2000)).

178



8.2. MODEL ARCHITECTURE

(8.3) Pior(t)=
T −N + t+1

T

We define Pior(t) as the inhibition state of a fixation at time t from a scanpath with N

fixations (see Equation 8.3). Based on Mannan et al. (1997) and Samuel and Kat (2003)

works, Le Meur and Liu (2015) suggested the disappearance of IOR after 2.4s which

corresponds to T = 8 fixations with an average duration of 300ms. Thus, location fixated

at time t and an area of 2 degrees of visual angle around it is inhibited and linearly

recovers after 8 fixations. All fixations inhibited at time t are represented in a probability

map Pior.

8.2.3 Scroll mechanism

A web page must be scrolled for its content to be fully explored. For this reason, we

implemented a scroll mechanism to always provide to the model a realistic represen-

tation of what a user would see. Using this mechanism, an image with the size of the

screen (1920x1080 pixels) is extracted from the web page given scrolling information.

The scrolling strategy is directly based on real scrolling sessions recorded during the

experimental study. The part of the web page is updated when at least 10% of the screen

has changed due to the scroll, below this threshold the viewport does not change. Next,

the time before the next 10% change is computed. The model then predicts as many

fixations as needed to reach the computed time. The saliency map is computed for each

pause between scrolls, while the inhibition map Pior(t) is computed for the entire web

page.

8.2.4 Strategy to choose the next fixation

To determine the next fixation, we consider the three computed probability maps at time

t described in Equation 8.4.
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(8.4) P(x, t)= Psal(x)×Pdm(xt−1, t−1)×Pior(t)

Where P(x, t) is the probability for each pixel to be selected as the new fixation, Psal(x)

the top-down saliency map, Pdm(xt−1, t) the direction map at previous location and time

and Pior(t) represents the memory state of the location x at time t. Then the next fixation

is determined using Equation 8.5.

(8.5)
x = argmin(d(dx, s(t)))

dx = d(xt−1,P(x, t)>α)

All values from P(x, t) greater than the threshold α are kept. Then, every possible

amplitude between the previous fixation xt−1 and the selected probabilities P(x, t)>α are

computed. Next, another euclidean distance is computed between possible amplitudes

and the predicted saccade amplitude s(t) at time t. The next fixation corresponds to the

point from P(x, t) with the minimum distance between its amplitude with the previous

fixation dx and the predicted saccade amplitude s(t).

8.3 Results

We evaluate the relevance of the oculomotor biases modelling as a function of time

through the MultiMatch metric (Jarodzka et al., 2010). The contribution of each oculomo-

tor bias to the overall performance is examined. MultiMatch is an algorithm to compare

two scanpaths on five dimensions: scanpath shape, saccade length, fixations location,

fixations duration and saccades orientation. Each dimension can be studied separately or

in an global MultiMatch score averaging all dimensions. Before computing each measure,

the scanpath is pre-processed through two steps: simplification and temporal alignment.

The simplification phase consists of deleting small saccades and merging consecutive
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Method MM MMdir MMshape MMlen MMpos MMdur DurDiff LenDiff DirDiff CC NSS

WTA+IOR 0.847 0.752 0.992 0.991 0.846 0.655 0.664 0.908 0.255 0.175 0.520
Random 0.823 0.691 0.976 0.968 0.827 0.657 0.664 0.787 0.279 0.171 0.432
Le Meur 0.849 0.780 0.983 0.979 0.846 0.656 0.664 0.859 0.250 0.374 0.999

Fixation duration

const. fix. dur. 0.848 0.756 0.992 0.991 0.844 0.655 0.664 0.582 0.257 0.171 0.512
exp. fix. dur. 0.848 0.756 0.992 0.991 0.844 0.754 0.745 0.582 0.257 0.171 0.512

Saccade amplitude

sac. amp. top 100% 0.872 0.783 0.990 0.988 0.845 0.754 0.745 0.928 0.255 0.192 0.554
sac. amp. top 50% 0.872 0.784 0.990 0.988 0.845 0.755 0.745 0.928 0.255 0.191 0.552
sac. amp. top 10% 0.872 0.775 0.992 0.991 0.846 0.755 0.745 0.922 0.256 0.178 0.521

Saccade orientation

dir. map. 0.860 0.684 0.989 0.986 0.885 0.754 0.745 0.821 0.321 0.237 0.696
dir. map + sac. amp. top 100% 0.877 0.764 0.993 0.992 0.882 0.754 0.745 0.937 0.339 0.269 0.768

Table 8.1 – Models performance using MultiMatch (MM) which average values from
direction (MMdir), shape (MMshape), length (MMlen), position (MMpos) and duration
(MMdur). Duration difference (DurDiff), Length difference (LenDiff) and Direction
difference (DirDiff) are equivalent of corresponding MultiMatch metrics without temporal
alignment. Moreover, saliency metrics Correlation Coefficient (CC) and Normalized
Scanpath Saliency (NSS) are computed. The model "Le Meur" corresponds to the model
presented in Le Meur and Coutrot (2016).

long saccades with the same direction. Thus, the noise induced by the individuality

of each participants is reduced. Then, the temporal alignment step aims to transform

simplified scanpath in a graph from which the shortest path is computed using Dijkstra

algorithm (Dijkstra, 1959).

Since we assess the evolution of biases over time, we implemented a dynamic version

of MultiMatch without the alignment phase. In the original version, temporal alignment

is using fixation location using the shortest path. Thus, a fixation contribution to the

shortest path may be removed or moved in the fixation sequence, which would interfere

with the scanpath time course evaluation. Each dimension is computed for each second

of the exploration. In addition, we use the Normalized Scanpath Saliency (NSS) and the

Correlation Coefficient (CC) to compare scanpath-based saliency map with ground-truth

statistical distributions. Again, both metrics are computed globally and over time.

As shown in Table 8.1 and Figure 8.3, the combination of direction map modelling

direction and the model implementing saccade amplitude performs the best. However,

Le Meur model still performs better when comparing with CC and NSS. As shown in

Figure 8.3 (c) and (d), our approach outperform other models, but only for the few first
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seconds. Then the scores converge around the half of exploration.

(a) LenDiff (b) DirDiff

(c) CC (d) NSS

Figure 8.3 – Metrics time courses. (a) depicts the time course of top models using
LenDiff metric, (b) describe the time course of top models using DirDiff metric, (c) shows
the time course of top models using CC saliency metric, (d) shows the time course of
top models using NSS saliency metric. The higher the score is, the better the model
performed.

8.4 Conclusions and perspectives

Our goal was to investigate how oculomotor biases could improve scanpath modelling.

The fixation duration approximation over time was at the core of our approach. The vast

majority of existing models try to reproduce eye movement dynamics but neglect fixation

duration. Without fixation duration, the analysis of model performances over time is not
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possible. We demonstrated that using a fixed average fixation duration of 300ms was an

easy and reasonable approximation, but a more refined approximation as we introduced

in this chapter, provided significant improvement of the proposed model. Furthermore,

we showed that the modelling of saccade amplitude dynamics contributed to improve the

model. As shown in Figure 8.3 (a) this improvement is rather stable across time when

combined to direction maps. Interestingly, in addition to increase overall scores, the

implementation of direction maps obtained the best result in fixation position. However,

when investigated over time (see Figure 8.3 (b)), we can observe that saccades orientation

is better modelled during the first 30 seconds and then slowly decreases over time. The

complete model provided more realistic scanpaths but failed to outperform classic models

on spatial saliency metrics CC and NSS. These limited global and temporal performances

may be explained by the interest or the inner goal of the participants. For the presented

model, only the free viewing task has been kept. Initially, participants had to browse the

web page during 60 seconds. Thus, each participant may have had a different inner goal

that may have been influenced by different factors. Furthermore, the modified version

of MultiMatch we used turned out to be more informative than the original ones. We

suggest that eye movements cannot be summarised and compared as a simple vector

as in the MultiMatch metric. Also, the normalisation of each sub-metrics is most of the

time done using screen’s dimensions, which result in scores often close to the maximum.

Such results, interfere with the understanding of model comparison. Finally, further

work is needed to confirm the interest of our dynamic approach on other datasets.
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Chapter 8 summary

In this chapter, we proposed the implementation of a scroll-like mechanism to better

model eye movements on web pages. We also proposed to take into account the fixation

duration, the saccade amplitude and the saccade direction through time. Our approach

allowed us to evaluate and analyse the quality of the scanpath globally and over time.

We have shown that our model gave the best results in terms of saccade length, saccade

direction and fixation duration. In addition, we showed that although our model was

better in these aspects, it was not constant over time. In particular, we showed that

the prediction accuracy of the saccade direction decreased over time, while prediction

accuracy of the saccade length remained stable. However, despite a more biologically

plausible scanpath, we have not improved the state of the art when compared with the

salience metrics.
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Résumé du chapitre 8

Nous avons proposé dans ce chapitre l’implémentation d’un mécanisme reproduisant le

scroll afin de mieux modéliser les mouvements oculaires lors de l’exploration visuelle de

pages webs. Nous avons également proposé la prise en compte des durées des fixations,

de l’amplitude de saccade et la direction des saccades à travers le temps. Cela nous à

permis d’évaluer et d’analyser la qualité des chemins oculaires globalement et à travers le

temps. Nous avons montré que notre modèle obtenait les meilleurs résultats concernant

la longueur des saccades, la direction des saccades et la durée des fixations. De plus,

nous montrons que bien que notre modélisation soit meilleure sur ces aspects, elle n’est

pas constante dans le temps. On remarque particulièrement que la qualité de prédiction

des directions des saccades diminue avec le temps alors que celle des longueurs des

saccades reste stable. Cependant, malgré un scanpath plus plausible biologiquement,

nous n’avons pas amélioré l’état de l’art lorsque comparé avec les métriques de saillance.
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T
his thesis presented several advances in the domain of vision and scanpath

modelling. In addition to contribute to a better understanding of ocular be-

haviour on web pages, axes developed in this document provided improvements

in computational scanpath modelling. The original contributions and their interpretation

are presented in this chapter.

9.1 Eye movement dynamic as a single indicator

To process visual information, visual areas of the brain communicate between each

others and with more than thirty different visual cortical areas. Starting from the

primary visual area, these cortical regions forms two visual pathways. The ventral

stream carries information about what object is seen (Vision for Recognition), while

dorsal stream is related to action guided by vision (Vision for Action) (Goodale & Milner,

1992; Trevarthen, 1968).

Velichkovsky et al. (2005) were the first to link Trevarthen’s focal-ambient visual

pathways dichotomy to eye movements. They identified two distinct segments of eye

movements: ambient and focal modes of processing. The first one was defined as short

fixation (from 90 to 260ms) related to larger following saccade (>5°), while the second

was characterised by fixation longer than 260-280ms followed by a saccade within the

parafoveal region (<5°).

The first goal of this thesis was to find an indicator summarising the manifestation

of these two visual modes in eye movements. In Poster 1 we used the ratio introduced

by Dehais et al. (2015). This ratio differentiated the time spent searching (saccades and

short fixations) and time spent processing (long fixations), but it lacked of formal and

physiological definitions. For this reason, we switched to another ratio, directly inspired

from Velichkovsky et al. (2005) definition of ambient and focal visual modes (Krejtz et al.,

2016). In Article 1 we used this ratio to differentiate free viewing and visual search

tasks. We first evaluated the dominant mode over the visual exploration, but failed to

find differences between tasks. That is why we introduced two new variables derived
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from the ratio: number of mode switches and average mode durations. These two new

variables provided better results to distinguish participants’ tasks. However, we showed

in Article 1 and Poster 2 that the temporal study of ambient and focal modes was more

informative than the global score provided by the ratio. This dynamic analysis provided

new evidence explaining why a global approach of visual modes might not produce

significant results. Ambient mode is predominant at the beginning of exploration, while

focal mode is predominant at the end. However, this predominance is not constant

within these time periods. We are constantly switching back and forth between the two.

This explain why the global score could not indicate which visual mode was dominant

during visual exploration. However, the use of complementary measures help to better

summarise the dynamic. This is mainly explained by the fact that these measures denote

a frequency and a duration, while the original indicator denotes an intensity. When

investigated over time, even the ratio performs better to explain visual exploration.

Moreover, we can observe that even though the switch between visual modes is clearly

visible, there remain a period of time without clear visual mode. In these cases, the

ratio is really close to zero. Back to Velichkovsky et al. (2005) and Unema et al. (2005)

definition of visual modes, they described ambient mode as an association of a short

fixation and a high-amplitude saccade, and focal mode as an association of a long fixation

and a low-amplitude saccade. They did not address the two remaining associations:

short fixation and low-amplitude saccade association, as well as long fixation and high-

amplitude saccade association. These two associations are neither covered by visual

modes nor visual pathway theories from Goodale and Milner (1992).

Recent work from Follet et al. (2011) found that saccade amplitude was more rep-

resentative of the visual modes than fixation duration. This would explain the FD-SA

missing associations. Then, only the saccade amplitude would account for the visual

mode. Further research should examined these observations with stronger tasks in order

to confirm this hypothesis. However, they also suggested that focal fixations relied more

on low-level features than ambient fixations. This is in contradiction with our results

presented in Article 1 in which we found a dominant ambient mode at the beginning
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of the exploration which is also the period of time during which bottom-up factors have

more influence on visual exploration. However, the idea that visual modes might be the

result of an interplay between low-level and high-level features seems interesting. As

we showed in Article 1, the intensity of the visual modes varies with the participant

and the stimulus during the exploration. Thus, we should maybe consider ambient and

focal visual modes as a continuum and not a dichotomy. In this continuum, a short

fixation followed by a high-amplitude saccade may be labelled as ambient, and a long

fixation followed by a low-amplitude saccade may be labelled as focal. Similarly to the

interaction between bottom-up and top-down factors, the variation between the two

visual processing modes would reflect the interplay between the task influence and

stimulus’ features. Thus, when the ratio is near zero, it may suggests a state during

which we switch from one mode to another. One of the marker (FD or SA) from the

current mode would then be combined to a marker (FD or SA) from the next mode. This

might be explained why in these cases we observed a short fixation normally associated

to ambient mode, with a low-amplitude saccade normally related to focal mode. We

hypothesise that the decision to switch from one mode to another may be initiated in

parallel of the end of the current visual mode. This transition might take some time to

be effective, and could be observed within the ratio’s value. Further work is needed to

assess the proportion of these "transition modes" and how long they last.

9.2 The relationship between the eyes and the
computer mouse

The second axis of this thesis was to investigate eye movement behaviour on web

pages through the relationship between the eyes, the movement of the mouse pointer

and the scroll. Contrary to images, ecological web pages need to be studied differently

due to possible interactions. These interactions can take multiple forms, including clicks,

scrolling, and drags&drops. While clicks and drags&drops are a mean to directly interact

with the web page’s content, scrolling is more about content discovery. In this work, we

specifically focused on the relationship between eye movements, mouse movements and
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scrolling parameters and the influence of scroll on eye movements.

Thus, we investigated in Article 2 the coordination between the mouse cursor and

the eye position. We found a better correlation on the vertical axis than the horizontal

one. Yet, the coordination on the horizontal axis increased when the participant intended

to click. Furthermore, we created a Gaussian model based on experimental statistics,

predicting where the eyes were located given the position of the mouse.

Next, we studied how eye movements were influenced by the scroll. In Article 2 and

Poster 3, we found that eye positions could help to predict the next scroll amplitude.

For instance, when the eyes were positioned at the top of the screen before the start of

the scroll, its amplitude was higher than when the eyes were positioned at the bottom.

Moreover, we showed a similar relation between eye fixation location and scroll speed

during the scroll. When scrolling fast, participants tended to position their eyes at the

opposite of the scroll direction.

We proposed in Article 3 a detailed statistical description of eye movements on web

pages along with the mouse movements and the scroll. We found that eyes and mouse

parameters related to the movement, such as amplitude of the movement and percentage

of time moving, decreased over time, while scroll parameters increased. Conversely eye

and mouse parameters related to the fixation/pause, such as fixation/pause duration and

percentage of time spent fixating/idling, increased over time, while scroll parameters

decreased. In both cases, eyes and mouse parameters followed the same pattern, while

the scroll parameters followed the opposite one. Interestingly, these observations were

consistent across tasks.

These findings demonstrate that the relationship between the eyes and the mouse is

deeper than expected. In Article 2 we showed a relative link between the eyes and the

mouse position, but this spatial coordination varies across studies and does not remain

constant. Even though further studies are needed to confirm our results, the relationship

between eyes and mouse parameters seems consistent over time. This may be related to

similar processing in the ventral and dorsal streams. For instance, Stone and Gonzalez

(2015) reported several studies in which ventral and dorsal streams of congenitally
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blind individuals were preserved during pointing and grasping tasks. Thus, we can

assume that the important role of both streams involved in hand movements and eye

movements may explain why the eyes and the mouse parameters behave similarly during

the exploration. However, this hypothesis does not address why the scroll parameters

behave oppositely.

The opposite behaviour we observed for the scroll may be explained by the "the

sensory weighting hypothesis" (Ernst & Banks, 2002). This theory states that during a

task involving sensory competition, here the presence of both vision and haptic, we tend

to rely on the optimal one to complete the task. For instance, before reaching an object

whose position is unknown, we first need to look at it, but there are occasions when we

reach objects without looking at them because we already know their exact position. In

our case, the task is to browse the page with or without a target. At the beginning of

the exploration, the optimal sensory input to fulfill this task would be the eyes. As time

goes by, we discover the web page more and more until we browsed it entirely. The scroll

would gradually become the optimal way to browse the web page, since fixation duration

is increasing and saccade amplitude decreasing, and the scroll would then replace large

saccades.

Further research is necessary to better understand what mechanisms are involved

in the eyes and mouse coordination during web pages exploration. For instance, we did

not differentiate scroll up from scroll down in our analyses. When we scroll down, we

usually discover the content for the first time. But a scroll up is necessary to re-examine

an already seen area of the web page. Differentiating the two directions might provide

finer results on what cognitive processes are involved.

9.3 Including visual exploration and
stimulus-dependant dynamics improve existing
models performance

The third axis goal was to integrate findings from previous axes in web pages scanpath

modelling in order to improve prediction accuracy. Existing scanpath models rarely
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address web pages, but when they do, they consider web pages as static screenshots

without the need to scroll (Le Meur & Coutrot, 2016; Shen et al., 2015; Shen & Zhao,

2014; Xia & Quan, 2020). To tackle this problematic, we proposed the first saccadic

model including scrolling. Furthermore, scanpath modelling usually includes some

oculomotor biases, which are mostly considered as stable through visual exploration. In

our approach we addressed these biases through their evolution over time. Thus, this

work highlighted the importance of dynamics in the prediction of eye movements when

exploring web pages.

In Chapter 8 we introduced the use of the scroll mechanism in a scanpath model,

and showed significant improvement of the prediction accuracy. Our modular approach

allowed us to apply this mechanism either on saliency models or scanpath models.

Regarding saliency models, the use of such mechanism provided more precise saliency

maps. Without it, these models were resizing the stimulus to match their expected

input size, which resulted in blurry saliency maps indicating vague and confused areas.

Regarding scanpath modelling, these type of models originally predicted scanpaths

around the centre of the web page, without being able to fully explore the stimulus. In

both cases, the scroll provided promising results, and confirmed the need to integrate

such mechanism in future models on web pages.

Based on scanpath metrics, our spatio-temporal approach of oculomotor biases, in-

cluding fixation durations, saccade amplitudes, and saccade directions, resulted in more

realistic scanpaths. In addition to be modelled as a function of time, saccade directions

have also been implemented depending on the screen area similarly to Le Meur and

Coutrot (2016). However, based on saliency metrics, our scanpath model did not signifi-

cantly perform better than existing scanpath models (using scroll mechanism). Saliency

metrics usually describe spatial distribution of fixations during the entire exploration.

Thus, they provide a summary of how good the model predicted eye positions. This

may be explained by the underlying dynamic involved in vision. Attention and more

specifically eye movements cannot be reduced to where we look at. The time-dependency

and the order of fixations and saccades are essential to create better scanpath models.
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This is an additional evidence to the importance of assessing such models separately

from saliency ones.
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T
he results obtained in this interdisciplinary work contribute to the understand-

ing and modelling of ocular behaviour on web pages. We propose new methods

to investigate web pages and we illustrate through concrete examples how the

dynamic of the scroll plays an undeniable role in ocular behaviour. Yet, we also open

novel perspectives. In this chapter, we address some future works that could follow this

thesis.

10.1 Ocular behaviour on web pages

As described in Chapter 2, the studies of eye movement behaviour on web pages are very

sparse. Although our results on the description of the relationship between eye, mouse

and scroll parameters are promising, we did not investigate stimulus-related factors that

could influence this relationship. Further research is necessary to better characterise

what influence each element separately and the impact on their relationship. We present

here two preliminaries analyses on factors possibly influencing visual exploration on

web pages. The first preliminary one focuses on the differences between scrolling up

and down. The second preliminary analysis investigates the scroll behaviour at the

beginning of the exploration. Finally, we discuss the interest of more extensive scrolling

behaviour investigations on other devices than desktop computer.

10.1.1 Differences between scrolling up and down

The first preliminary analysis assessed the influence of scroll direction on its parameters,

such as its amplitude, frequency or pause. We observed less scrolls up than scrolls down

in both free viewing task and visual search task. However, we found that participants

did more scrolls up in visual search task compared to free viewing task. We also observed

a greater scroll amplitude when scrolling up again in both tasks. As expected we found

scroll parameters differences according to its direction. When we scroll down, we usually

discover the content for the first time, while a scroll up is necessary to re-examine an

already displayed area of the web page, even if it has been briefly seen. However, we
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observed more scrolls up in visual search task than in free viewing task. It could be

explained by the requirements of the task itself. In visual search, the target can be

anywhere in the web page, thus, when participants did not find target(s), they tend

to double check by scrolling up and down. Accordingly, we found that scrolls up were

executed in average later during the exploration compared to scrolls down.

These results show interesting differences between scrolls up and down. They support

the idea that both scrolls could respond to different goals. We can also assume that

a scroll down at the beginning of the exploration does not have the same purpose of

a scroll down at the end. Thus, different purposes could result in different ocular

behaviours. Further studies on this subject could provide a more precise understanding

of the underlying dynamic of scrolling behaviour and its influence on eye movements.

10.1.2 Insights of the first scroll on eye movement dynamic

To consider the influence of scrolling behaviour differences during browsing, the second

preliminary analysis focused on the relationship between early scrolls and eye movement

dynamic. Since scrolls up occur later during web page exploration, we investigated

the first five scrolls down. We found that participants scrolled for the first time after

4 seconds in average, while scrolling after 1.7 seconds afterward. In both cases, the

participants scrolled around 26% of the screen height. Thus, the scroll amplitude is not

influenced by the duration of the preceding pause, but the first scroll is done after a

longer pause compared to following scrolls. This preliminary result may suggest that

during the first few seconds of visual exploration, participants explored in more detail

the first screen of the web page. This may also support previous studies on natural

images and paintings that the first seconds could be an orienting phase (Karpov et al.,

1968), the extraction of most informative regions (Antes, 1974) or an adaptation strategy

to the task (Scinto et al., 1986). More studies are needed to investigate the influence of

the beginning of the exploration on scrolling behaviour, but these preliminary results

suggest that eye movement dynamic directly influence the scrolling dynamic. Thus,

both dynamics should not be addressed separately but as a whole. We suggest that this
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behaviour should be investigated with dedicated study implementing a free viewing task

of defined duration.

10.1.3 Multi-device

All the studies presented in this work aimed to understand the ocular behaviour when

browsing web pages on desktop computers. Yet, since the commercialisation of the iPhone

in 2007 and the iPad in 2010, people started consuming more and more content on these

new devices. Marginal at the beginning, more than 50% of the entire web traffic is done

on mobile since 2017 (StatCounter, 2020). This new distribution of devices highlights

the need to investigate web behaviour on mobiles. However, as we described in this

thesis, the literature lacks of studies on ocular behaviour parameters when browsing

web pages. That is why we suggest to orient new studies on the scroll. Contrary to the

mouse, scrolling can either be used on desktop computers, laptops, smartphones, tablets

or TVs. Although each device has different size, results on a specific device might be,

in some ways, applicable to others. For instance, we hypothesise that the behaviour

we observed about the eyes positioned at the top of the screen while quickly scrolling

down and vice versa (see Chapter 7), may be reproducible on smartphones and tablets.

We think that parameters might change between devices, including scroll amplitude,

fixation duration, etc, but the behaviour may remain the same.

10.2 Scanpath modelling

Scanpath models attract more and more attention, but they are only a few to tackle web

pages. The main disadvantage of these models is that they use web pages screenshots.

As we showed in this thesis, contrary to screenshots, real web pages need to be addressed

with specific tools and analyses. That is why we discuss here the urgent need to create a

high-quality open source database of eye movements on web pages. Furthermore, we

discuss the interest of using techniques, such as Deep Neural Network (DNN) in eye

movements modelling.
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10.2.1 Open source dataset

The first step of our work has been to collect a high-quality dataset, in order to use them to

analyse behaviours and train our model. Models need data to be trained and/or evaluated.

The quality of collected data can influence how good a model will be. We already evoked

the MIT benchmark initiative in saliency modelling field which in addition to providing

a platform to compare models between each others, they gather many available datasets

in one place (Kümmerer et al., 2020). From this endeavour emerged a wide variety of

models proposing numerous approaches to saliency. However, we identified only one

dataset publicly available containing web pages stimuli (Shen & Zhao, 2014). Described

in Chapter 5, it contains web pages screenshots displayed during 5 seconds. To help

future research on web pages behaviour and eye movements prediction, we suggest the

creation of a large dataset containing recordings of eye movements, mouse movements

and scroll on web pages. From our experience we suggest important details that need

particular attention:

• Layout: the importance of the web page layout needs to be properly handled. For

instance, it is common to browse web pages with a layout filling the entire screen

width. But, it is also common to visit web pages with a layout centered on the

screen with wings containing advertisements or nothing. Since both are possible,

only one should be selected to avoid layout-biases. Moreover, homepage layout

needs to be differentiated from layout with content. Generally, the homepage of a

website summarises available content and main categories in an appealing setting.

Thus, its purpose is not the same as web pages with content.

• Computer mouse: we described in Chapter 2 and Chapter 7 the rising interest in

estimating the eye positions from the mouse. Thus, the use of the mouse represent

a unique opportunity to improve eye movement modelling.

• Length: the length of displayed web pages should also be taken into account.

Similar web page length may cause an adaptation of the participants, which may

result in stereotyped behaviour.
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• Content: some biases could emerge if the content of a web page is not selected

carefully. For instance, all content related to news or incoming or past events

should be avoided. Moreover, in free viewing condition, participants may give poor

interest in certain contents. To reduce this bias we recommend to mix content’s

topics.

10.2.2 DNN as a model

The model described in Chapter 8 is a computational model reproducing behaviour

observed from experimental studies. These types of models are usually a combination of

algorithms in order to obtain the best scanpath prediction accuracy. Their objective is to

find which features are essential and how they can be approximated by an algorithm,

statistics or both. The last ten years have seen the rise of Deep Neural Network (DNN)

in numerous research fields to solve various problems, such as hand writing recognition,

speech recognition, translation, object recognition, etc. The use of DNN paired with an

increasing processing power, led to new breakthroughs which encouraged researchers

from many other fields to try this solution. The interest of such algorithm lies in its

unsupervised learning capabilities. Given a large amount of data and an evaluation

metric (or loss function), a DNN can learn by itself which feature is important for

prediction. A model that is able to learn from an input and predict an output without

human action is called an end-to-end model. It should be noted that the creation of the

model itself is not trivial and requires an extensive expertise in DNN.

A good example of how these models can perform compared to computational models is

the accuracy achieved by DNN models in saliency map prediction. Every top-performing

models of the MIT Benchmark are now all DNN models. As explained in Chapter 3

these models neglect bottom-up features, but they remain very accurate. Recently, the

use of Deep Neural Network emerged in scanpath modelling (Chen & Sun, 2018; Ngo

& Manjunath, 2017; Simonyan & Zisserman, 2014; Xia & Quan, 2020). However, none

of these models are end-to-end yet. They are still based on computational parts, such

as the Winner-Take-All (WTA) algorithm to select the optimal fixation. Further work
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should focus on creating an end-to-end deep learning model.

We tried to develop an end-to-end model using Recurrent Neural Network (RNN), but

we faced different problems. To lower the complexity of our approach we ran our tests on

natural images. We implemented an RNN with two consecutive gated recurrent units

(Cho et al., 2014). The idea behind a RNN is that its output is connected with its input,

so that short-term memory can influence next iteration of the network. The RNN used

in this model is similar to the Long Short-Term Memory (LSTM). The particularity of an

LSTM lies in the fact that, in addition to its output connected to its input for short-term

memory, a hidden state reproducing long-term memory follows the same schema. It is

called a hidden state because it is not directly influenced by the input. A gated recurrent

units is similar to a LSTM but with a forgetting mechanism. Unfortunately, using Mean

Square Error (MSE) as a loss function, our model failed to converge to a solution.

Some models from the literature succeeded in using LSTM for scanpath prediction

(Chen & Sun, 2018), which support the need to use these DNN. However, an end-to-end

solution requires further research. One of our biggest problem was similar to all deep

learning models: the amount of data. DNN requires a large amount of data in order to

be able to learn which feature is important. We did not find a large enough dataset to

train our model. This problematic got even worse for web pages. Thus, the need to build

large public datasets for scanpath prediction has never been more important.
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GENERAL CONCLUSION

A
t the crossroad of several research fields, the goal of this thesis was to demon-

strate the importance of the dynamic in the understanding and the prediction

of eye movements. Previous studies mainly focused on the prediction of where

the next fixation could be located and what factors could globally influence the selection

of this next fixation. Directly inherited from saliency modelling field, these studies

neglected the temporal modulation of eye movements parameters.

We showed that visual exploration could be influenced by dynamic elements from

multiple sources. The first one referred to the dynamic of the stimulus itself. We high-

lighted that during web pages exploration, scrolling had an influence on eye movement

parameters. This influence could occur either before or during the scroll. The second

source lied in the eye movement parameters. We showed that these parameters evolved

over time when browsing a web page. We then described the benefits of incorporating

these two sources of dynamic in a scanpath model, and evaluated the plausibility of

generated scanpath through dedicated temporal metrics.

Saccadic and saliency models are already used to predict web users behaviour to

display more accurate or specific information where it has the best chances to be seen.

But, the main advantage of these models lies in the fact that they can be adapted to a

wide variety of domains with specific problematic, such as software ergonomic, gaming,

virtual reality, educational tools, or even clinical uses.
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