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NOTATIONS AND ACRONYMS

This section provides the mathematical notations and the abbreviations/acronyms
used throughout the thesis.

For definitions and problem formulation, the following notations were used.
A The adjacency matrix.
AN The set of attribute names.
#n(e) The value of attribute n ∈ AN for event e ∈ E .
B The set of batches.
D The dissimilarity matrix.
E The event universe.
E∗ The set of all finite subsets of E .
E [.] The expectation of a variable or a function.
E The set of edges.
G The graph.
K(.) The kernel function.
L The set of labels associated with edges in a graph.
L The event log.
P∗ The nominal path.
Φ The set of production phases.
R The set of real numbers.
Rp The p-dimensional Euclidian space.
T The set of traces.
V The set vertices.
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NOTATIONS AND ACRONYMS

Let’s also give the following abbreviations.

AOI Automated Optical Inspection.
ARIMA AutoRegressive Integrated Moving Average.
AWS Amazon Web Services.
BE Back End.
BPMN Business Process Model and Notation.
CNN(s) Convolutional Neural Network(s).
DFG Directly Follows Graph.
DPM Descriptive Process Mining.
FC Fully Connected.
FE Front End.
FE1 Front End side 1.
FE2 Front End side 2.
GAT(s) Graph Attention Network(s).
GCN(s) Graph Convolutional Network(s).
GNN(s) Graph Neural Network(s).
GGNN Gated Graph Neural Network.
GRNN(s) Graph Recurrent Neural Network(s).
GRU(s) Gated Recurrent Unit(s).
ICT In Circuit Test.
JS Jensen-Shannon.
KDE Kernel Density Estimation.
KL Kullback-Leibler.
LCT Life Cycle Time.
LOO Leave One Out.
LSTM Long Short-Term Memory.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MES Manufacturing Execution Systems.
MISE Mean Integrated Squared Error.
MLP Multi-Layer Perceptron.
MSE Mean Squared Error.
MSL Moisture Sensitivity Level.
MPNN(s) Message Passing Neural Network(s).

12



NOTATIONS AND ACRONYMS

P&P Pick and Place.
PCB(s) Printed Circuit Board(s).
PPM Predictive Process Mining.
R-GCN(s) Recurrent Graph Convolutional Network(s).
RCT Remaining Cycle Time.
RNN(s) Recurrent Neural Network(s).
S3 Simple Storage Service.
SMD Surface Mounted Devices.
SMT Surface Mount Technology.
SPI Solder Paste Inspection.
SPP Solder Paste Printing.
SSE Sum of Squared Errors.
t-PM Timed Process Model.
VGAE Variational Graph Auto-Encoders.
WIP Work-in-progress.
XGBoost eXtreme Gradient Boosting.
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RÉSUMÉ

Extraction de connaissances pour
l’optimisation des processus de production

par process mining

La recherche présentée dans cette thèse s’intéresse aux méthodes utilisées dans le do-
maine du process mining, qui est un domaine en pleine expansion ces dernières années.
Le process mining est un sous-domaine de la science des données qui comprend des tech-
niques permettant d’analyser et d’optimiser des processus en utilisant des données de
journaux, ou logs d’événements. Dans ce travail, nous nous concentrons spécifiquement
sur les logs d’événements enregistrés dans les processus de fabrication. Les travaux effec-
tués se divisent en deux axes principaux du process mining : le process mining descriptif
et le process mining prédictif. Le process mining descriptif consiste à analyser les logs
d’événements pour extraire des connaissances sur le processus et identifier les points à
améliorer, tandis que le process mining prédictif concerne la construction de modèles
d’apprentissage pour prédire le comportement futur du processus.

Concernant le process mining descriptif, la première étape consiste à extraire et pré-
traiter les données brutes. Cette étape est cruciale pour mieux comprendre le processus
et bien préparer les données. Ensuite, des techniques liées à la découverte automatique de
processus, à la vérification de la conformité et à l’analyse de la performance sont mises en
oeuvre. La découverte de processus consiste à construire le modèle de processus à partir
des logs d’événements. Le chemin nominal, avec des contraintes temporelles de transi-
tion entre les opérations, a été établi comme référence pour les produits normaux. En
comparant le chemin d’écoulement des produits avec le chemin nominal temporalisé, un
indice de qualité a été calculé pour caractériser la qualité des produits. Ce calcul est basé
sur différents critères tels que la présence ou l’absence d’opérations nominales, les défail-
lances pendant la production, le temps de transition et le lot de produits, etc. De plus,
une analyse de la performance de production entre les équipes de travail a été menée en

15



Résumé

utilisant l’indice de qualité obtenu. Au niveau applicatif, nous avons développé une appli-
cation de suivi des encours en temps réel pour aider le fabricant à connaître l’état actuel
du processus et à mieux gérer la production. Les résultats obtenus par les techniques de
process mining descriptif ont fourni des connaissances approfondies sur le processus de
production et les points d’amélioration. De plus, ils ont mis en évidence le grand potentiel
de l’utilisation de la technique de process mining dans l’industrie manufacturière.

En ce qui concerne le process mining prédictif, nous développons des modèles d’apprenti-
ssage basés sur des logs d’évènements pour prédire le comportement futur du processus.
Plusieurs problèmes de prédiction ont été proposés et testés ; parmi ceux-ci, deux prob-
lèmes ont été présentés dans ce manuscrit : la prédiction des encours et la prédiction
du temps restant des produits en encours. Pour la prédiction des encours, nous avons
évalué et comparé différents modèles, allant des méthodes classiques comme la régression
linéaire aux modèles plus avancés et complexes tels que des réseaux de neurones récur-
rents LSTM. Les résultats révèlent que la régression linéaire donne les meilleurs résultats
en termes d’erreur de prédiction, de temps de calcul et d’interprétabilité. Cependant, le
modèle rencontre encore des difficultés avec le changement de tendance et la prédiction
à plusieurs étapes. Les résultats suggèrent d’incorporer des informations supplémentaires
telles que la planification de la production et les données logistiques.

Concernant la prédiction du temps restant, nous proposons d’utiliser les réseaux de
neurones pour le graphe (GNNs) pour résoudre ce problème. GNN est un domaine de
recherche relativement nouveau qui se concentre sur les réseaux neuronaux conçus pour
traiter des données présentées sous forme de graphes. Nous avons choisi les GNNs car
les modèles de processus sont généralement représentés par des graphes avec des nœuds
représentant des activités, des événements ou des états, et des arcs représentant des dépen-
dances ou des transitions entre eux. En exploitant la structure inhérente des modèles de
processus, les réseaux de neurones à graphes peuvent capturer efficacement les dépen-
dances complexes entre différentes activités. De plus, nous sommes les premiers à utiliser
les GNNs pour prédire le temps restant dans les processus. Nous avons comparé la perfor-
mance de ce modèle avec le benchmark, qui est le modèle LSTM. Les résultats indiquent
que notre modèle GNN surpasse le LSTM de référence pour les processus longs et com-
plexes. Ces résultats mettent en évidence le potentiel d’utilisation des GNNs dans les
applications de process mining.

Le travail de thèse présenté dans ce manuscrit est appliqué au développement de l’usine
du futur pour toutes les usines de Vitesco Technologies, avec un accent particulier sur la
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Résumé

production de cartes électroniques pour les véhicules électriques et hybrides à Foix, en
France.

L’industrie automobile est en constante évolution, avec des changements technologiques,
économiques et sociaux. Les dernières évolutions incluent l’automatisation et la transfor-
mation numérique. Le processus de fabrication dans cette industrie est complexe et re-
quiert une grande précision ainsi qu’une coordination entre les fournisseurs, les fabricants
et les usines d’assemblage. Comprendre ces processus en profondeur à l’aide de méthodes
traditionnelles est de plus en plus difficile. C’est pourquoi des techniques avancées inté-
grant des informations provenant de différentes sources et appliquant une analyse à grande
échelle des données sont nécessaires pour obtenir des informations utiles. Les entreprises
qui adoptent des technologies avancées, telles que la robotique, l’internet des objets et
l’intelligence artificielle, peuvent améliorer leur efficacité, réduire leurs coûts et accélérer
la prise de décision.

Les données que nous avons traitées proviennent de l’usine de Foix de Vitesco Tech-
nologies dans laquelle sont conçus et fabriqués des produits électroniques à grande échelle.
La production fonctionne 24/7 et produit des dizaines de millions de produits chaque an-
née. La production comprend quatre phases principales : front end, ICT, back end et
l’emballage. Les données sont collectées en temps réel tout au long du processus, depuis
les PCB vides jusqu’aux cartes électroniques assemblées. Ces données sont stockées sous
forme de log d’événements. Afin d’assurer la qualité des produits livrés et éviter les non-
conformités, l’entreprise doit surveiller la performance des machines et du personnel, ainsi
que les coûts et les délais de production. La surveillance se base sur une compréhension
détaillée du processus et de l’état du système de production. Dans cette optique, cette
thèse se focalise sur l’extraction de connaissances à partir de logs d’évènements, de sig-
naux et d’indicateurs pour améliorer le processus de production. Cette analyse permettra
de prendre des décisions qui conduiront à l’optimisation du processus, de la planification
et de la maintenance.

Cette thèse CIFRE s’inscrit dans le cadre de la chaire “Collaborative AI : Synergistic
transformations in model based and data-based diagnosis” à l’Institut Interdisciplinaire
d’Intelligence Artificielle de Toulouse (ANITI). Les travaux ont été menés dans le cadre
d’une collaboration entre le Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)
et l’entreprise Vitesco Technologies, située à Toulouse, France.

Mots clés: Process Mining, Journaux d’événements, Analyse Prédictive, Graph Neu-
ral Networks, Industrie 4.0
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ABSTRACT

Leveraging process mining for knowledge
extraction and process optimization

The research presented in this thesis centers around process mining, a rapidly expand-
ing field in recent years. Process mining is a subfield of data science that involves utilizing
event logs to analyze and optimize processes. The focus of this work is specifically on event
logs derived from manufacturing processes. The research is divided into two main areas
of process mining: descriptive process mining and predictive process mining. Descrip-
tive process mining involves analyzing event logs to extract insights about the process
and identify areas that can be improved. On the other hand, predictive process mining
involves constructing learning models to forecast the future behavior of the process.

Regarding descriptive process mining, the initial step involves extracting and pre-
processing raw data, which is crucial for gaining a comprehensive understanding of the
process and ensuring proper data preparation. Subsequently, techniques related to auto-
mated process discovery, compliance checking, and performance analysis are implemented.
Process discovery specifically involves constructing a process model based on event logs.
Then, a nominal path is established as a reference for normal products. By comparing the
production path of products with the nominal path, a quality index is calculated to char-
acterize product quality. This calculation takes into account various criteria, including the
presence or absence of nominal operations, production failures, transition time, product
batches, etc. Furthermore, an analysis of production performance is conducted by compar-
ing time slots using the obtained quality index. Additionally, an application for real-time
work-in-progress tracking has been developed to aid manufacturers in understanding the
current state of the process and enhancing production management. The results obtained
through descriptive process mining techniques offer profound insights into the production
process and identify areas for improvement, thereby showcasing the immense potential of
process mining in the manufacturing industry.

In terms of predictive process mining, we have developed learning models based on
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event logs to predict the future behavior of the process. We have explored several predic-
tion problems, two of which are presented in this manuscript: work-in-progress prediction
and remaining cycle time prediction. For work-in-progress prediction, we have evaluated
and compared different models, including classical methods like linear regression and more
advanced and complex models like recurrent neural networks LSTM. The results indicate
that linear regression performs the best in terms of prediction error, computation time,
and interpretability. However, the model still faces challenges when it comes to handling
trend reversals and making multi-step predictions. Therefore, the results suggest the need
to incorporate additional information, such as production planning and logistics data, to
enhance the model’s performance.

In order to predict the remaining cycle time, we propose using Graph Neural Networks
(GNNs) to tackle this problem. GNNs belong to a relatively new research field that focuses
on neural networks designed specifically for processing data presented in the form of
graphs. We chose GNNs because process models are generally represented by graphs
with nodes representing activities, events, or states and edges representing dependencies
or transitions between them. By leveraging the inherent structure of process models,
graph neural networks can effectively capture the intricate dependencies among various
activities. Moreover, we are the first to utilize GNNs for predicting the remaining cycle
time in processes. We conducted a performance comparison of our GNN model against
the benchmark LSTM model. The results demonstrate that our GNN model outperforms
the reference LSTM for long and complex processes. These findings highlight the potential
use of GNNs in process mining applications.

The research work presented in this manuscript is applied to the development of the
smart factory for all Vitesco Technologies plants, with a particular focus on the production
of electronic boards for electric and hybrid vehicles in Foix, France.

The automotive industry is constantly evolving, with technological, economic, and so-
cial changes. Recent developments include automation and digital transformation. The
manufacturing process in this industry is complex and requires high precision and co-
ordination between suppliers, manufacturers, and assembly plants. Understanding these
processes in-depth using traditional methods is increasingly challenging. Therefore, ad-
vanced techniques that integrate information from different sources and apply large-scale
data analysis are necessary to obtain meaningful insights. Companies that adopt advanced
technologies such as robotics, the Internet of Things, and artificial intelligence can improve
efficiency, reduce costs, and accelerate decision-making.
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The data we processed come from the Foix plant of Vitesco Technologies, where elec-
tronic products are designed and manufactured on a large scale. The production operates
24/7 and produces tens of millions of products annually. The production includes four
main phases: front end, ICT, back end, and packaging. Data are collected in real time
throughout the process, from empty PCBs to assembled electronic boards. These data
are stored in the form of event logs. To ensure the quality of delivered products and
avoid non-conformities, the company needs to monitor the performance of machines and
personnel, as well as production costs and cycle times. Monitoring is based on a detailed
understanding of the process and the state of the production system. In this context,
this thesis focuses on extracting knowledge from event logs, signals, and indicators to
improve the production process. This analysis will enable decisions that lead to process
optimization, planning, and maintenance.

This thesis is part of CIFRE program under the “Collaborative AI : Synergistic trans-
formations in model based and data-based diagnosis” chair at ANITI. The research has
been conducted through a collaboration between the Laboratory of Analysis and Archi-
tecture of Systems (LAAS) and Vitesco Technologies, situated in Toulouse, France.

Key words: Process Mining, Event logs, Predictive Analysis, Graph Neural Networks,
Industry 4.0
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INTRODUCTION

Manufacturing processes are crucial for organizations that produce goods and prod-
ucts for their customers. Generally, these processes are complex due to several reasons.
Firstly, they involve multiple stages, resources, and dependencies between raw materials,
machinery, and labor. Secondly, manufacturing processes often require a high level of cus-
tomization and variability depending on the specific product being manufactured and the
customer’s requirements. Additionally, the use of technology, such as sensors, software, and
automation systems, can improve production management, but it can also contribute to
the process’s complexity. As a result, understanding these processes thoroughly with tra-
ditional methods is increasingly challenging. To overcome this issue, advanced techniques
that integrate information from various sources and apply analysis to a large amount of
data must be used to obtain valuable insights.

One approach that has gained significant attention in recent years due to its potential
to improve organizational efficiency and effectiveness is process mining. It is a subfield
of data science that focuses on the analysis and improvement of processes using data,
as shown in Figure 1. The field includes techniques from data mining, machine learning,
and related areas to extract knowledge from data generated during process execution.
There is an overlap between these subfields. The boundaries are not always clear-cut and
may change over time. However, process mining is distinct in that it specifically aims to
optimize processes. As a result, expertise in both data analysis and process modeling, as
well as expertise in the specific domain, is necessary to effectively apply process mining
techniques.

In recent years, process mining has gained popularity due to the increasing availabil-
ity of data from processes and the need for businesses to optimize their processes for
efficiency and cost savings. In addition, the growth of machine learning techniques and
artificial intelligence has also contributed to the field’s growth. Consequently, several re-
search studies are being conducted in the field, and a comprehensive literature review is
presented in Section 1.1. Simultaneously, many process mining tools have been developed,
which provide users with functionalities to perform various types of process mining anal-
ysis on event data. Figure 2 provides an overview of these tools for both academic and
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Figure 1 – The main ingredients contributing to data science from [106, p. 12].

commercial purposes. The availability of a variety of tools indicates a significant inter-
est in the field, and many organizations have recognized the value of process mining for
improving their processes and gaining a competitive edge.

In this thesis, we present our work in the framework of process mining with application
to a real manufacturing process. The data used for process mining are stored in the form
of an event log, which captures specific activities, their timestamps, and additional details
such as resource or activity duration during process execution. Our work primarily focuses
on two families of process mining techniques: descriptive and predictive process mining.
Descriptive process mining involves analyzing event logs to extract knowledge from the
process and identify areas for improvement, while predictive process mining concerns
constructing learning models to predict the future behavior of the process.

During the descriptive process mining phase, we first extract raw data and perform
necessary preprocessing. We conduct a comprehensive analysis to gain a global under-
standing of the production process and data structure. Then we use techniques related
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Figure 2 – Overview of Academic and Commercial Process Mining Tools (Source: https:
//www.processmining-software.com/tools/).

to process discovery, conformance checking, and performance analysis to gain insights
into the process. The inefficient points are identified by analyzing the number of failures
generated during each operation, product life cycle time, and transition time between op-
erations. Based on this analysis, we propose a process mining framework to characterize
product quality by comparing their production path with the nominal process model. Ad-
ditionally, we conduct an analysis of production performance between work shifts using
the quality index obtained from the previous shift.

In the predictive process mining phase, we develop learning models using event logs to
predict the future behavior of the process for several prediction problems. We evaluate and
compare the accuracy of the models ranging from simple regression to more advanced and
complex models such as Long Short-Term Memory (LSTM) and Graph Neural Networks
(GNNs). While LSTM is a well-known Recurrent Neural Network (RNN) that can model
and predict sequential data, GNNs are a relatively new area of research that focuses on
neural networks designed to work with graph-structured data. We choose GNNs because
process models are commonly represented by graphs with nodes representing activities,
events, or states, and edges representing dependencies or transitions between them. By
leveraging GNNs, process mining can benefit from their ability to learn and generalize
across graphs of different sizes and structures, particularly for analyzing complex process
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models. Moreover, from the literature review presented in section 1.1.2, we find that there
is limited research on GNNs in manufacturing and no GNNs application in our studied
prediction problem regarding remaining cycle time prediction. Hence, our work presents
a new method to apply to this problem and provides a significant perspective on using
GNNs in manufacturing processes.

Our case study examines the manufacturing process of Vitesco Technologies, an auto-
motive company that provides a wide range of products and solutions for internal com-
bustion engines, hybrid vehicles, and electrified vehicles. The company operates in over
50 locations across 14 countries in Asia, Europe, and America, making it a global leader
in the automotive industry, known for producing high-quality products for customers
worldwide (as shown in Figure 3).

Figure 3 – Vitesco Technologies global footprint.

Specifically, we focus on the electronic board assembly process at the Foix plant in
France, which we systematically describe in Chapter 2. Our findings aim to improve
the manufacturing process by identifying areas for enhancement and predicting potential
issues before they arise. By doing so, we can potentially save costs, improve efficiency,
and enhance product quality. Additionally, our objective is to develop a method that is
generalizable and can be applied to other plants within Vitesco Technologies and other
similar production processes.

In summary, this thesis focuses on process mining techniques that are adapted and
leveraged to be applied to a real manufacturing process and highlights the benefits of both
descriptive and predictive process mining approaches. The results of this work can be used
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to guide future efforts to optimize manufacturing processes and improve performance. The
contributions of this thesis are as follows:

— Proposing a novel end-to-end process mining framework for computing a quality
index for products from their production paths.

— Developing a method for analyzing performance across work shifts using the ob-
tained quality indexes.

— Creating a tool for tracking the state of products and computing the work-in-
progress (WIP) in real-time.

— Evaluating different models for the work-in-progress prediction problem.
— Proposing the first use of the GNNs model to predict the remaining cycle time of

ongoing products during the production phase.
All these contributions are presented in the following chapters of the manuscript and

organized as follows:
Chapter 1 presents a literature review of the two research topics investigated during

the thesis: Process Mining and Graph Neural Networks.
Chapter 2 introduces the application context of the thesis, the automotive industry,

and manufacturing in particular. The chapter provides a detailed description of the printed
circuit board assembly process and related datasets used for the research.

Chapter 3 presents different case studies and techniques used in descriptive process
mining. This includes three main tasks: assessing product quality, performance analysis,
and work-in-progress calculation.

Chapter 4 presents two prediction problems: work-in-progress prediction and remain-
ing cycle time prediction. Different models, including Graph Neural Networks, are used
to solve these problems.

Finally, the last chapter provides conclusions and perspectives on our work for future
research and application.
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Chapter 1

STATE OF THE ART

This chapter presents a literature review of the two research topics
investigated during the thesis. The first one is Process Mining which
refers to a family of techniques that process data in the form of event
logs. There are two main axes in this area: Descriptive Process Min-
ing (DPM) and Predictive Process Mining (PPM). The study of the
state of the art is conducted for each axis. Then, a literature review
of process mining approaches in manufacturing is presented. The
second topic is Graph Neural Networks (GNNs). GNNs refer to a
family of neural networks that are developed to process graph data
and resolve prediction problems related to graphs. Recent research
has explored the use of GNNs in process mining. Such techniques
have the potential to improve the accuracy and efficiency of the
process mining approach. The implementation of GNNs can enable
organizations to obtain valuable insights into their business pro-
cesses. Consequently, this can empower them to make data-driven
decisions, ultimately leading to enhancements in their operations.

Summary of Chapter 1

1.1 Process Mining

“Process mining can be seen as a means to bridge the gap between data science and
process science. Data science approaches tend to be process agnostic whereas process sci-
ence approaches tend to be model-driven without considering the evidence hidden in the
data [106, p. 15]”. Especially, process mining is a field of study that uses data mining
techniques to analyze processes based on event logs. By providing a visual and quan-
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titative analysis, process mining helps organizations to understand how their processes
are being executed, identify bottlenecks, inefficiencies, and compliance issues, and suggest
ways to improve the process. Process mining techniques can be classified into two main
families: descriptive and predictive [114, p. 369]. Descriptive techniques involve analyzing
and visualizing the data from an existing business process to reveal insights into how the
process is currently being executed. On the other hand, predictive process mining aims to
predict future outcomes or behaviors of a process using data mining and machine learning
techniques.

1.1.1 Descriptive process mining

DPM consists of data analysis techniques to model the processes and generate visu-
alizations. It aims to understand and improve the performance of processes by analyzing
data generated from various processes-related sources. DPM includes process discovery,
conformance checking, and process enhancement (i.e., model extension, repair, etc.) (see
Figure 1.1). Process discovery and conformance checking are the most important activities.

Process discovery involves automatically extracting process models from event logs.
The technique analyzes a set of sequences or traces extracted from event logs to repre-
sent the process in the form of a flow diagram or other graphical models such as Petri
nets or Business Process Modeling Notation (BPMN) diagrams. Many process discovery
algorithms have been proposed in the literature. The α-algorithm [1] is the first and sim-
ple discovery technique that constructs causal relationships observed between tasks. It is
based on the concept of a “footprint matrix”, which is a matrix that represents the fre-
quency with which different activities are performed in sequence. The α-algorithm works
by building the footprint matrix and then using it to create a flow diagram that repre-
sents the process. For this, the algorithm begins by creating an initial set of nodes in the
flow diagram, one for each unique activity in the event log. It then adds edges between
the nodes to represent the sequence of activities in the process. The algorithm uses the
frequency of each activity pair in the event log to determine the weight of the edges in the
flow diagram. The α algorithm is known for its simplicity and efficiency [99]. However,
it does have some limitations, such as its inability to handle noise and incompleteness.
Noise in process mining refers to rare and infrequent behavior that is not representative
of the typical behavior of the process. Incompleteness means that the event log contains
too few events to be able to discover some of the underlying structures [106]. The Heuris-
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Figure 1.1 – Three main activities of descriptive process mining: process discovery, con-
formance checking, and process enhancement.

tic Miner algorithm is developed as an extension of the α-algorithm to address these
limitations [118]. The algorithm uses causal nets [106] for process model representation.
Moreover, the frequencies of events and sequences are taken into account when construct-
ing a process model. Specifically, infrequent paths are filtered out by a user-predefined
threshold, making it more robust than the α-algorithm. However, this algorithm is not
the best choice to handle the event logs with a high degree of concurrency. Concurrency
refers to the fact that multiple tasks can be performed at the same time in the process.
This drawback is overcome by the Inductive Miner algorithm [54]. The algorithm works
by repeatedly finding a split in the event log into smaller event logs. The procedure is
repeated until a base case (sub-log with only one activity) is reached. The first Inductive
Miner is presented in [54], then [55] proposed an adaptation of this algorithm to deal
with incomplete logs, and [56] solved the problem of scalability with quality guarantees.
These variations make it a powerful tool for process mining. However, like any algorithm,
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it has some limitations. One limitation is that it may not be well suited for event logs
that do not contain a high degree of concurrency, as it is specifically designed to handle
such cases. Additionally, Inductive Miner may be computationally intensive, depending
on the size of the event log, which can make it less practical for large-scale process mining
projects. Another approach used in process discovery is the Genetic Miner [65]. In this
case, a genetic algorithm is used to iteratively evolve process models. It generates a popu-
lation of possible process models and uses evolutionary techniques to improve the process
model over time until it finds an optimal model that fits the event log. Recently, neural
networks have been used for process discovery [98]. However, these methods are usually
time-consuming for the training process and are not always explainable.

Conformance checking refers to the analysis of the consistency between the behavior
of a process described in a process model and event logs that have been recorded during
the execution of the process [17]. This work brings important notions [84], like:

— fitness measures the extent to which log traces can be associated with execution
paths specified in the process model: a model fits a log if all traces in the log can
be replayed by the model. Fitness can be calculated using various measures, such
as the fraction of events in the log that can occur according to the model or the
fraction of traces in the log that can be fully replayed, etc.

— appropriateness provides the degree of accuracy and clarity in which the process
model describes the observed behavior. This notion is composed of two parts:
structural and behavioral appropriateness. Structural appropriateness refers to how
minimal the model structure is to reflect the behavior clearly. At the same time,
behavioral appropriateness analyzes the balance between overfitting and underfit-
ting.

Conformance checking is useful in several tasks, among them performance analysis
[5] and deviations analysis [6]. There are several techniques for conformance checking in
process mining that depend on the assumptions made about the process model and its
actual behavior. In particular, one may assume that the process model is correct and seek
to verify whether the actual behavior matches the expected behavior. On the other hand,
some may assume that the observed process log may not adhere to the exact sequence of
activities specified in the process model or may demonstrate different behavioral patterns
compared to the process model. Basically, two general approaches corresponding to these
two assumptions are considered: log replay and trace alignment [17, 2].

— Log replay involves replaying the events recorded in an observed event log on a
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given process model to check if the model can accurately reproduce the log. One
example of this approach is the token-based log replay method described in [83].
Although log replay is time-efficient, it assumes the process model is accurate.
Therefore, any events related to activities that are not included in the process
model cannot be considered during the replay process.

— Trace alignment is the approach that tries to find the best alignment between traces
from the event log with the process model. Once the alignment is computed, it can
identify any deviations between the observed behavior and the expected behavior
and suggest possible improvements to the process model.

In addition to the two presented approaches, there are conformance checking tech-
niques based on rule checking presented in [17]. Furthermore, the authors in [26] demon-
strate that current techniques focus solely on the process control flow and suggest that
future research should consider additional perspectives such as time, resources, and others.

Conformance checking is an important aspect of process mining as it enables organiza-
tions to ensure that their processes are being executed according to the expected behavior
and identify deviations that may indicate inefficiencies, compliance issues, or other prob-
lems. It is important to note that conformance checking is not only limited to comparing
the event log with the process model, but it can also be done with other forms of reference
models such as performance indicators, regulations, or policies.

Process enhancement is an essential aspect of process mining that involves using
the insights obtained to extend or improve an existing process [106]. Process improvement
consists of identifying bottlenecks and inefficiencies and suggesting ways to optimize the
process. There are several approaches to improve processes, such as performance analysis,
case duration analysis, or performance prediction [40]. Process extension refers to adding
perspectives extracted from the event log to the control-flow model, such as organizational,
time, or other perspectives. Furthermore, processes can be repaired or redesigned by
removing unnecessary steps, consolidating activities, or introducing new activities.

Process enhancement is a critical aspect of process mining. Organizations can increase
process efficiency, reduce costs, and improve overall performance by using the information
gained from process mining to optimize processes. It is important to note that process
enhancement is an ever-evolving process that requires constant monitoring and analysis
to identify new improvement opportunities and to adapt to changing business conditions.
In addition, it is beneficial to involve domain experts in process improvement activities
to ensure that proposed solutions are aligned with business objectives and are achievable.
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1.1.2 Predictive process mining

Predictive process mining in general

PPM is a discipline that uses advanced data analytics and machine learning algorithms
to analyze process data and make predictions about future process behavior. By discover-
ing patterns and trends in process data, PPM allows organizations to proactively identify
potential problems and opportunities within their processes, making informed decisions
and improving process performance. Several research have been conducted on the topic of
PPM. These can be categorized into different classes depending on the criteria, i.e., PPM
problems, prediction model classes, application domains, etc.

When it comes to prediction problems, there are various examples to consider. For
example, we can predict the next activity or sequence of activities of an ongoing (uncom-
pleted) process [22]. In [80] Rama-Maneiro et al. describe different prediction problems
within the context of the PPM. Specifically, given a sequence of events for a running
process instance, i.e., the prefix, the PPM aims to forecast various attributes of the next
event or sequence of events, i.e., the suffix. The PPM also involves predicting the output
of a running process and the remaining time, i.e., the time required to complete it.

Regarding the prediction models, the authors in [64] classify the approaches into two
families, process-aware and non-process-aware methods. Process-aware methods consider
the structure and behavior of processes when making predictions. These methods use
process models and data to predict future process behavior. For example, process-aware
methods may use process mining techniques to discover process models and then use these
models to make predictions about future process outcomes. Non-process-aware methods,
on the other hand, do not take into account the structure and behavior of processes when
making predictions. Indeed, these methods only use data from the process to analyze and
make predictions. For example, non-process-aware methods may use machine learning
algorithms to analyze process data and predict future process outcomes.

Both process-aware and non-process-aware methods have their advantages and dis-
advantages. Process-aware methods are more accurate but may be more complex and
time-consuming to implement. Non-process-aware methods are simpler and faster to im-
plement, but they may be less accurate as they do not consider the process structure and
behavior.

Di Francescomarin et al. [23] review existing methods for the PPM based on prediction
type, input data required, tool support, the validity of the algorithm, and the family of
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algorithms to help industries select the method that best suits their problem. In recent
years, deep learning has been widely exploited in the PPM due to its promising results
against classical methods [80]. The authors in [37] focus only on deep learning approaches
based on Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), and
Stacked Autoencoder. A more complete review of the state-of-the-art deep learning meth-
ods in PPM is presented in [70, 80]. These reviews are followed by a benchmark of the
approaches for the next activity and suffix prediction. Pasquadibisceglie et al. [72] use
a 2-D Convolutional Neural Network (CNN) based on Inception blocks for next-activity
prediction. Recently, Williams Rizzi et al. [82] present a toolkit, namely Nirdizati, that
offers a useful and flexible instrument for investigating and comparing PPM techniques.

Remaining cycle time prediction

In this thesis, we focus on predicting the Remaining Cycle Time (RCT), and we hence
conduct a state-of-the-art about methods used to achieve this. The RCT prediction ap-
proaches in the PPM are classified based on input data, data preprocessing (encoding)
method, process awareness, the family of algorithms, etc. According to input data, all
studies handle the event log with at least a case id, an activity, and a timestamp. Further-
more, many methods use additional attributes of case and event to feed the prediction
models [24, 78]. Others use contextual information to obtain more accurate predictions
[92, 29]. Most process-aware methods discover process models from event logs because the
model is not always known and may be different from the real behavior. A transition sys-
tem is constructed and used to predict the remaining time in [107, 11, 78, 77]. Meanwhile,
Verenich et al. [112] make a prediction based on the process tree obtained from histor-
ical traces. Non-process aware approaches usually apply machine learning algorithms to
learn a model from labeled training data, i.e., supervised learning [111]. Several regression
models can be used such as linear regression [4], random forest [101], XGBoost [92] and
neural networks [28, 103, 66, 102, 69, 16, 48, 116].

The authors in [111] present a systematic review and a benchmark of the existing
methods for the RCT prediction problem. The results show that LSTM-based networks
achieve the best accuracy in terms of Mean Absolute Error (MAE). Over the last few years,
GNNs have also been used to solve PPM problems. Philipp et al. [74] present the first use
of GNNs to predict the amount of disbursement per area regarding a process of application
request. They develop a model that contains two graph convolutional layers followed by
one linear layer. Venugopal et al. [110] present a comparison of Graph Convolutional
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Network (GCN) with the CNN and LSTM models along with a Multi-Layer Perceptron
(MLP) for the next activity and timestamp prediction. In addition, a Gated Graph Neural
Network (GGNN) is used in [119]. The authors in [81] build a process model in the form
of a Petri net, then feed it to a model that integrates GCNs and RNNs. Whiorrini et
al. [18] develop a GNN model that performs well in the event log with a high presence
of parallelism. However, all of these works only focus on the problem of the next activity
and timestamp prediction. There have been no studies so far about GNNs on the RCT
prediction. As such, one of our studies aims to address this gap in the literature by
focusing on the use of GNNs to predict RCT outcomes. By exploring the potential of this
approach, we want to enhance the accuracy and efficiency of RCT prediction models, as
well as contribute to the advancement of PPM in general.

1.2 Graph Neural Networks

Graphs are a powerful tool to represent data because of their capability to depict
complex relationships and interactions between entities. The versatility of graphs has led
to their widespread use. They have been applied to a wide range of sectors, including
Social Network Analysis, Computer Vision, Natural Language Processing, Cheminfor-
matics, Bioinformatics, and many more. The abundance and complexity of graph data,
along with the increase in computation capacity, has led to a significant increase in the use
of deep learning models for handling graph-structured data. These models are referred to
as Graph Neural Networks (GNNs). GNNs are different from other neural networks in the
way that operated data is not a regular grid. Graphs are discrete objects that can differ
in size and structure. Furthermore, information about node identity and ordering across
multiple samples is not always accessible. These characteristics pose challenges in terms
of expressiveness and computational complexity for learning compared to vector-based
data [8].

Back to the history of GNNs, Sperduti and Starita made the first proposal of neural
networks for graphs in 1997 [100]. They present the use of recursive neural networks for
processing directed acyclic graphs, which inspires early research on GNNs. The notion
of GNNs is initially outlined in [33], which extends recursive neural networks to general
graphs, including directed, undirected, labeled, and cyclic graphs. Then in 2009, two GNN
models were proposed to tackle the problem of mutual dependencies between variables
in the cyclic graphs [87, 67]. Since 2012, several breakthroughs in the performance and
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accuracy of deep neural networks have attracted the attention of research communities.
Similar to the progress of deep learning in general, a wide range of GNN architectures have
been proposed, including GGNN and GCN, etc. These architectures can be categorized
in multiple ways based on different criteria. In the following paragraph, we will describe
the taxonomy of GNNs presented in Figure 1.2.

Figure 1.2 – A taxonomy of Graph Neural Networks.

The primary role of GNNs is to learn a relevant representation of graphs, including the
graph’s structure and the relationships between its nodes for the downstream tasks. These
can be nodes, edges, or graphs-related tasks. However, most GNN models, regardless of
the specific training objective, ultimately output node representations [8]. Indeed, a graph
representation can be obtained by aggregating its node representations using pooling
operations such as max-pooling, sum-pooling, or neural networks. Pooling is a common
operation used in CNNs to reduce the dimension of feature tensors after convolutional
layers. In GNNs, pooling is used to reduce the number of nodes and also to compute the
graph embedding. For example, max-pooling involves selecting the maximum value within
a group of nodes, or all nodes in the case of graph embedding, to represent the group
or graph. The GNNs learn node representation by assigning each node an initial state
representing its local information. Then, this information is spread out across the graph
under specific diffusion mechanisms to update the state of its neighbors. In the meantime,
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the state itself is updated by incorporating information from neighboring nodes. It is
repeated multiple times to refine the representations of the nodes and edges in the graph.
This process has been abstracted to a general framework called Message Passing Neural
Networks (MPNNs) [32]. Two components that constitute the fundamental building blocks
of MPNNs are the message function and the update function. The message function, when
applied to a node, computes a representation of the node based on its interactions with
its neighboring nodes. Subsequently, the update function utilizes this representation, in
conjunction with the original node features, to update the feature representation of the
node. Different architectures of GNNs are mostly based on the variant of the message
function and the update function.

Regarding the information diffusion mechanism, there are two main approaches to
define the message-passing process: recurrent and feedforward.

— The recurrent approach is based on the idea of recursively aggregating information
from the neighborhood of a node.
One of the earliest recurrent GNN architectures is the Graph Recurrent Neural Net-
work (GRNN) proposed by Scarselli et al. in 2009 [87], in which the authors propose
a generalization of RNNs to graph-structured data. They introduce a message-
passing mechanism, where the hidden state of a node at time step t is a function of
the hidden state of the node at time step t− 1 and the messages received from its
neighboring nodes at time step t. Later, GGNN is introduced by Li et al. in 2015
[58]. In this architecture, the authors introduce a gating mechanism to control the
flow of information between the nodes, which is similar to the gating mechanism
used in Gated Recurrent Units (GRUs) and LSTM. Another recurrent GNN ar-
chitecture is the Graph Attention Networks (GATs) proposed by Velickovic et al.
in 2018 [109, 13], where the authors propose an attention mechanism to weigh the
contribution of each neighbor to the new representation of the node. This archi-
tecture extends the traditional recurrent approach by incorporating an attention
mechanism to weigh the contribution of each neighbor to the new representation
of the node. Recently, Recurrent Graph Convolutional Networks (R-GCNs) have
been proposed by Schlichtkrull et al. [88], where the authors propose a recurrent
approach where the message-passing process is based on graph convolutions, which
allows modeling the interactions between the nodes in a graph.
In conclusion, the recurrent approach in GNNs has been extensively studied in
the literature, with several architectures proposed that generalize the traditional
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recurrent neural network to graph-structured data. The recurrent approach allows
GNNs to handle graphs with arbitrary topologies, and it can be used in various
types of GNNs.

— The feedforward approach is based on the idea of applying a fixed number of layers
of neural networks to the nodes and edges of the graph without recursion. In this
approach, the representations of the nodes are updated in parallel, based on the
representations of the nodes in the previous layer and the messages received from
the neighboring nodes.
One of the earliest feedforward GNN architectures is the GCN proposed by Kipf
and Welling [49]. In this architecture, the authors propose a convolutional opera-
tion on graphs, where the convolutional filters are applied to the nodes of the graph,
and the convolution is defined as a symmetric normalization of the node features
followed by a linear transformation. Another feedforward GNN architecture is the
GraphSAGE proposed by Hamilton et al. [35], where the authors propose a gen-
eralization of the convolutional operation to graphs by sampling and aggregating
the features of the node’s neighborhood. The feedforward approach is simpler to
implement and computationally more efficient than the recurrent approach, but it
cannot handle graphs with arbitrary topologies, and it is typically used in cases
where the graph structure is known and fixed.

Regarding the architecture and the complexity of the model, we can classify GNNs
into four categories: Message Passing GNNs, Graph Autoencoders, Spatial-Temporal GNNs
and Generative GNNs.

— Message Passing GNNs are approaches that utilize a message-passing mechanism
to update the representations of the nodes in a graph. Examples of this category
include GCNs [49], GATs [109], and GGNNs [58].

— Graph Autoencoders employ a graph autoencoder architecture to learn the latent
representation of a graph. The graph is first encoded into a lower-dimensional
space and then decoded back to the original space. The main objective of this ar-
chitecture is to preserve the graph structure during the encoding-decoding process.
Examples of this category include Variational Graph Auto-Encoders (VGAE) [50],
and GraphVAE [97].

— Spatial-Temporal GNNs are designed to handle spatio-temporal data, such as videos
or sensor data, by extending the graph representation to include the time dimen-
sion. These models are commonly used in tasks such as action recognition, anomaly
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detection, and video prediction [14, 57, 34].
— Generative GNNs are used to generate new graph samples by learning the under-

lying probability distribution of graph data. These models can be applied to tasks
such as graph generation, link prediction, and graph completion [126, 41].

An important aspect to consider in GNNs is handling changes in the graph structure
over time. For this, they distinct into two categories Static GNNs and Dynamic GNNs.
Static GNNs treat the graph as fixed and unchanging over time. They process the graph
once and produce a fixed representation of the graph. These models are suitable for
tasks that involve analyzing a single snapshot of a graph, such as node classification,
graph classification, and graph generation. Dynamic GNNs handle changes in the graph
structure over time by updating the graph representation as new edges and nodes are
added or removed. These models are suitable for tasks that involve analyzing the evolution
of a graph over time, such as node classification in evolving networks, link prediction,
and node representation learning. Dynamic GNNs can be divided into two categories:
temporal GNNs and incremental GNNs. Temporal GNNs process the entire sequence of
graph snapshots and use RNNs or attention mechanisms to capture the evolution of the
graph. Incremental GNNs update the graph representation incrementally as new edges and
nodes are added, and they are more computationally efficient than temporal GNNs. The
choice of which type of GNN to use depends on the specific task and the characteristics
of the graph-structured data. Dynamic GNNs are more complex and computationally
expensive than static GNNs, but they are necessary for tasks that require capturing the
evolution of the graph over time.

1.3 Applications of Process Mining and Graph Neu-
ral Networks

As previously described, the field of process mining is concerned with extracting useful
information about process execution by analyzing event logs [2]. The research area of
process mining is large and leads to a wide range of applications. For example, process
mining techniques have been applied to support the invoice handling process in a road
construction and maintenance company [3], for organizational mining to discover social
networks and to optimize the underlying processes [99], or in the healthcare environment
to improve the quality of patient care [73].

Process mining was originally developed for Business Process Management (BPM),
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so there have been many applications in real business processes. [75] processes event logs
to configure process risk indicators (PRIs) that predict process delay. [45] presents an
overview of existing discovery techniques for the construction of high-level Business Pro-
cess Model and Notation (BPMN) models. There are also the applications of process
mining in healthcare [63]. There have been fewer applications of process mining in the
manufacturing industry. Valencia Parra et al. implement a prototype that extracts com-
plex semi-structured data from an assembly-aircraft process and transforms it into an
event log to utilize process mining tools [105]. Yang et al. propose a system architecture
to use both structured and unstructured data to discover process models and analyze the
performance [124]. Process mining techniques have also been applied in the analysis and
prediction of manufacturing costs [39]. The heuristic miner algorithm is applied in [85] to
obtain the process model, then used for maintenance inspection interval optimization.

GNNs are widely used in various fields due to their ability to model relationships
between entities in a graph. In recommendation systems, GNNs are popularly used to
model user-user and user-item interactions, with nodes representing users and items and
edges representing interactions [123, 27, 125]. GNNs are also used in computer vision to
model relationships between objects in an image and predict object interactions [43, 79].
In natural language processing, GNNs are useful for modeling relationships between words
in a sentence or documents and making predictions based on those relationships [122, 59].
Moreover, GNNs show promising results in predicting the properties of molecules, which is
essential in drug discovery in cheminformatics [120, 42]. In the context of manufacturing,
Seito et al. use reinforcement learning with graph convolutional networks to create a
dispatching rule independent of human expertise for production scheduling [91]. Another
study in [46] presents a new method based on GNNs to improve the prediction of failure
in missing value conditions from a home appliance manufacturer. In [61], the authors
propose a new approach for online planner selection using GNNs, which are advantageous
over other methods due to their invariance to node permutations and incorporation of
node labels. They also propose a two-stage adaptive scheduling method to improve cost-
optimal planning, and the experimental results show the effectiveness of the proposed
method.

The primary objective of process mining and GNNs in the manufacturing industry
is to improve production efficiency by identifying and eliminating bottlenecks and ineffi-
ciencies. Process mining, for instance, can uncover delays by analyzing production logs,
which can then be rectified to increase overall production speed. Similarly, GNNs can
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detect potential failures, enabling predictive maintenance. Another critical aspect is en-
hancing product quality. Through analysis of production logs, correlations between certain
process parameters and product quality can be detected, providing insights that can be
leveraged to improve the process and maintain consistent production of high-quality prod-
ucts. Additionally, process mining and GNNs can be integrated to optimize supply chain
management in the manufacturing sector. Analyzing delivery times and quantities of raw
materials and finished products can help to pinpoint areas for improvement in the supply
chain [44, 53, 51].

1.4 Conclusion

In conclusion, process mining has been an active area of research and development
in recent years. It has been widely applied in various domains and industries, including
manufacturing, healthcare, finance, and IT. The literature review shows that process min-
ing encompasses several tasks, including process discovery, conformance checking, process
improvement, and process prediction. There are various process mining techniques avail-
able, ranging from process model-based to machine learning-based methods, and each
technique has its strengths and weaknesses. Additionally, the literature review shows that
process mining has been used with other related technologies, such as data mining and
machine learning to achieve better results. Furthermore, process mining is shown to be
a valuable tool for organizations looking to improve their processes and increase effi-
ciency. The increasing demand for process mining and the continuous development of new
techniques and applications highlight the importance and relevance of process mining in
today’s business world.

The analysis of the literature reveals that deep learning-based predictive process min-
ing has made significant progress in recent years. The use of neural networks enables the
identification of intricate relationships and dependencies among various process variables.
Among several neural network architectures, GNNs have exhibited substantial potential
owing to their ability to process input as a graph. Research in this domain is expanding at
a rapid pace and has garnered significant attention in recent years. GNNs offer a potent
tool for processing graph-structured data and have shown promise in numerous applica-
tions, such as node classification, graph classification, and graph generation. GNNs are
still evolving, and new techniques and models are being developed rapidly. Several GNN
models can be categorized in different ways based on various criteria, each with its own
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advantages and disadvantages. The choice of which one to use depends on the specific task
and the characteristics of the graph-structured data. There are also various challenges and
open problems in GNNs, including scalability, interpretability, and generalization. How-
ever, progress in this area of research is ongoing, and new techniques and models will
likely be developed to overcome these challenges.

Overall, process mining and GNNs are two emerging technologies that hold great
promise for the manufacturing sector. The potential of their combination lies in their
ability to offer valuable insights into production processes, minimize waste, and enhance
overall efficiency. This thesis effectively demonstrates the practical application of process
mining techniques and GNNs in a real-world scenario by exploring an electronic board
manufacturing process at Vitesco Technologies. The findings of this study offer promising
prospects for the future utilization of these technologies in the manufacturing industry.
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Chapter 2

CONTEXT & CASE STUDY

This chapter provides an introduction to the application context of
the thesis, the automotive industry, and particularly on manufac-
turing. The chapter discusses how technological advances present
both opportunities and challenges for the industry and highlights
the importance of proactively adopting and leveraging these tech-
nologies to increase competitiveness in a constantly changing and
challenging market. The chapter then introduces the case study of
Vitesco Technologies, an automotive company, which is studied in
the thesis. It provides a detailed description of the printed circuit
board assembly process and related datasets, which are used for
the research. In conclusion, the chapter explains that the produc-
tion process and the vast amount of event log data have motivated
the study of process mining and process-related methods as the core
of the research in the thesis.

Summary of Chapter 2

2.1 General context of the automotive industry

The automotive industry is a complex and dynamic sector that plays a crucial role in
the global economy. The industry encompasses vehicle design, manufacturing, marketing,
and sale. Over the years, the sector has undergone significant transformations, driven by
factors such as technological advancements, shifting consumer preferences, and changing
regulations. Indeed, the automotive industry is currently undergoing several evolutions,
including electrified vehicles, autonomous and connected vehicles, zero-emission vehicles,
and carbon-neutral manufacturing. All these trends are both opportunities and challenges
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for the industry. In the highly competitive automotive market, traditional car manufactur-
ers are now competing with tech companies and startups in electrified and autonomous
vehicles. Governments worldwide heavily regulate the industry with stringent emission
standards and safety requirements, making it crucial for companies to comply. The au-
tomotive industry also relies heavily on a global supply chain encompassing numerous
suppliers and manufacturers, leaving it vulnerable to disruptions such as natural disas-
ters or political conflicts, which can significantly impact production and costs. The recent
Covid-19 pandemic, the blockage of the Evergreen ship in the Suez Canal, and the conflict
between Ukraine and Russia have all been poignant examples of the difficulties companies
face today. In conclusion, the automotive industry presents a unique set of opportunities
and challenges. Companies must navigate this complex landscape by embracing techno-
logical advancements, complying with regulations, and staying ahead of the competition.
By doing so, they can ensure continued growth and success in this exciting and dynamic
sector.

Manufacturing is a critical aspect of the automotive industry and involves the produc-
tion of vehicles and their components. The automotive manufacturing process is complex
and requires a high level of precision and coordination between suppliers, manufacturers,
and assembly plants. Companies that manage their manufacturing processes effectively
will be better positioned to meet the market’s demands and achieve long-term growth and
success. The solution is to offer high-quality and customized products with optimized cost
and short production time [15]. At the Hannover Fair in 2011 in Germany, the concept of
“Industry 4.0" was introduced to describe the creation of a new industrial revolution that
brings together virtual and physical manufacturing systems for increased flexibility [89].
The objective is to establish smart factories that are highly automated and data-driven,
to increase efficiency, reduce costs, and improve decision-making. Many manufacturing
industries are adopting advanced technologies such as robotics, 3D printing, and artificial
intelligence to achieve this. Additionally, they are undergoing a digital transformation
by utilizing digital twins, cloud computing, and other digital tools to enhance supply
chain management and improve decision-making. Data have become a critical resource in
this era, and companies are investing in infrastructure to collect, store, and analyze vast
amounts of data to make informed decisions and improve processes. The release of Chat-
GPT, a conversational language model developed by OpenAI, has recently caused a stir
in the community. With its in-depth knowledge of various fields and its ability to respond
in a manner that resembles human speech, ChatGPT has marked a new milestone in the
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development of machine learning and AI. Scientists and companies are considering the
limits of this development and how they can leverage it to reduce costs, increase produc-
tion capacity, and improve competitiveness. Soon after the release of ChatGPT, Google
introduced its AI chatbot named Bard. The Chinese tech company Baidu announced its
plan to launch an AI chatbot on Mars in 2023, and other tech giants such as Meta and
Apple are racing to develop generative AI similar to ChatGPT to keep pace with the
boom. In the era of rapid technological development, manufacturers that can effectively
adopt and leverage these technologies will be better positioned to succeed in the era of
Industry 4.0.

This thesis project is in the context of the development of the factory of the future for
all Vitesco Technologies plants. The studied plant in Foix, France, focuses on producing
electronic boards for electrified vehicles.

2.2 Case study

Electronic boards, also known as Printed Circuit Boards (PCBs), are crucial compo-
nents of modern vehicles. They control various functions and systems in the vehicle, such
as engine management, navigation, and safety systems. The manufacturing of electronic
boards for the automotive sector is a specialized field that requires high levels of precision,
reliability, and quality. Automakers must work closely with suppliers and manufacturers
to ensure that the boards are of the highest quality and meet the required performance
criteria. Companies that can effectively manage the manufacturing of electronic boards
will be better positioned to succeed in the highly competitive automotive market. At Foix
plant in France, Vitesco Technologies designs and manufactures high-volume electronic
and mechanical products for the automotive industry. The production runs 24/7 and pro-
duces tens of millions of products annually. The quality of the delivered products, the
rejection rate, the availability and performance of machines and personnel, and the time
and cost dimensions are key performance factors of a production site. Non-conformities
can arise from issues with the products, handling, equipment, and operations coordina-
tion over time. These require a detailed understanding of the process and state of the
manufacturing system. The main objective of this thesis is to extract knowledge from the
analysis of logs, signals, and indicators to build and update explicit knowledge. This ex-
plicit knowledge serves as a basis for making decisions that will lead to the optimization
of the process, including control actions, replanning, and maintenance actions, as well
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as the optimization of production through the sequencing of batches and products. The
following paragraphs present the studied assembly process and the dataset.

2.2.1 The PCB assembly process

The use case of this study concerns the PCB assembly process given in Figure 2.1.
This process is divided into four main phases:

— Front End assembly (FE): electronic components are placed and soldered onto the
PCB.

— In Circuit Test (ICT ): PCBs with mounted electronic components are tested to
verify their electrical performance before they are fully assembled into the final
product.

— Back End assembly (BE): connectors are added to the electronic boards, and the
whole is covered by the housing.

— Packaging: final electronic boards are packaged into different boxes following the
client’s instructions for delivery.

Figure 2.1 – A schematic view of PCB assembly process.

In the FE, the electronic boards are assembled using Surface Mount Technology
(SMT ). A schematic view of a SMT line is presented in Figure 2.2. SMT refers to a
method of mounting electronic components in which components are mounted or placed
directly onto the surface of the PCB. This method is more efficient in terms of production
time and costs than the older through-hole technology, where components are inserted into
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holes drilled into the PCB. SMT is a highly automated process, with many of the steps
performed by machines, such as component placement, soldering, and inspection. This
results in greater accuracy and repeatability. Hence, SMT allows for mounting miniatur-
ized components, allowing a higher component density. Besides, through-hole technology
is still preferred for high-reliability and high-power products, as the connection provided
by this method may offer superior mechanical stability and better heat dissipation.

SMT lines typically consist of several steps. In the first process, Solder Paste Printing
(SPP ), solder paste is injected through a stencil mask to create a solder layer over the PCB
that forms the primary interconnection basis between the components and connection
pads. Next, the solder deposit quality is verified by the Solder Paste Inspection (SPI)
machine. In this process, several properties of the pad, such as volume, area, height,
and position, are measured and verified according to the standard limits. PCBs that are
judged as good continue through the placement process. There, electronic components
are mounted directly onto the surface of the PCB. At this point, the joints are still in a
liquid form, so the components float in their position but are not firmly attached to the
PCB. This happens in the next step, called reflow.

Figure 2.2 – Surface Mount Technology line.

The reflow oven is divided into several chambers allowing the PCBs to be conveyed in a
specific temperature profile. Temperatures in each part are strictly controlled to guarantee
the quality of the solder pads and the integrity of the placed components. The FE phase
ends with an Automated Optical Inspection (AOI) that checks the components’ final
position and solder quality. The FE phase is then repeated on double-sided boards. In
the rest of this paper, the front end process on the first side of PCB is denoted as FE1
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and FE2 for the second side. It is important to notice that each PCB can contain one or
more sub-panels depending on the product type. In the FE phase, the whole panel passes
through processes and is modified or controlled at the same time.

The ICT phase involves using a designed test fixture to make contact with the board’s
test points. Then, a test program measures and verifies each component’s operation to
detect different types of defects, such as missing or incorrectly installed components, short
circuits, and open circuits. Products that fill the required quality standards are passed
through the BE phase.

The BE phase starts by cutting the PCB into single products. In this phase, the
connectors that communicate with peripherals are fixed to the PCB, and the set is as-
sembled in a housing for protection and thermal dissipation. The final product is ready
to be packed after performing the functional tests verifying product operation. It is worth
noting that, contrary to FE lines that have a standard configuration, BE lines are suited
to the specific needs of each product and, in many cases, employ a combination of human
operators and specialized robots [94].

Figure 2.3 – Back end process.

The packaging phase is the last step before products are transported to the clients.
This phase involves placing the final products into different boxes according to the orders.
Both the boxes and the products inside them are tracked and stored in the system to keep
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track in case of damage during the packaging or transportation process.
Although several tests check the quality of solder pads and the function of electronic

components during the production process, i.e., SPI, AOI, ICT , etc., more is needed to
evaluate the global quality of final products. When assembling PCBs, processing times
are one of the most important factors affecting product quality. Indeed, throughout the
assembly process, the PCBs are exposed to several factors affecting the reliability of elec-
tronics. Among the well-known factors are temperature, relative humidity, and dust. The
impact of these factors on the reliability of electronics increases as the size of electronics
reduces. Some moisture-sensitive components can be damaged during reflow when mois-
ture trapped inside the component expands. These sensitive components are always sealed
in air-tight packaging, including the Moisture Sensitivity Level (MSL) information, i.e.,
the time period in which a moisture sensitive device can be exposed to ambient room
conditions. Most of the damages caused by moisture, e.g., delamination, die damage, in-
ternal cracks, etc., are not visible on the component surface and, therefore, not detected
by visual inspection processes. In order to prevent moist-related damage, the MSL should
always be respected, and therefore the assembly processing times should be under control.

At Vitesco Technologies, between process phases, production is organized in batches.
Batch production involves the fabrication of a finite number of products within a time
frame. A batch can undergo a series of steps in a large manufacturing process to make
the desired product [52, 121]. Products within a batch are generally identical and be-
long to the same product family and reference, as in our case study. The batch concept
aims to ensure that the products are assembled under nearly identical conditions and
configurations, resulting in a homogeneous final quality. This also makes the process both
time- and cost-efficient. There is a break between two consecutive batches for product
recharging and reconfiguration. This time range varies depending on the batch size and
the product type. In our case study, batches can be retrieved automatically from event
logs by identifying inactive periods, as this information is unavailable in the collected
data. An idle period is supposed as a time interval in which no product passes along the
line. Besides, it is noteworthy that, even though products in a batch are produced under
the same configuration, their flow path may vary due to operational failures.

2.2.2 Dataset

In the context of Industry 4.0, data play a central role and are generated at every stage
of the production process. Since 2017, Vitesco Technologies has implemented a project to
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collect data in a structured manner and store them in one location. Figure 2.4 presents
the cloud architecture developed in this project. The data collection is performed directly
from all machines or by the Manufacturing Execution Systems (MES). Then, the NiFi
data broker collects and routes data from various sources, such as sensors or log files, to
a centralized location. Vitesco Technologies uses a cloud storage service such as the one
from Amazon to manage these datasets. The collected data, which are stored in Simple
Storage Service (S3), are then passed to lambda functions which perform various tasks,
such as data transformation and filtering. Finally, the processed data are extracted and
executed for further analysis and downstream applications.

Figure 2.4 – Cloud architecture for the data collection at Foix plant.

At Foix plant, data are collected from the following sources:
— Equipment: contains resource usage metrics related to CPU, memory, and disk

space in the SPP, SPI, and Oven.
— Product: contains results of tests performed by each testing equipment (SPI, AOI,

ICT, etc.) and the mailbox storing messages generated by the MES to track the
whole production process.

— Pressfit: contains data from the specific operation named Pressfit.
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— Process: contains data about programs, placements (P&P), as well as other MES.
— Materials: contains information about the materials.
— Master data: contains metadata about products, programs, equipment, and ma-

terials.

The data used in this thesis relate to products. In particular, data are extracted from
mailbox, which contains event logs about the whole production process. All the products
at Vitesco Technologies plants are tracked by a unique identifier which is encoded in the
form of a data matrix marked on the PCB. This matrix is read each time the PCB goes
through an operation. Information from all processes is collected in real-time or near-real-
time by the MES and recorded as logs. An example of decoded messages from the cloud
storage service of Vitesco Technologies is presented in Figure 2.5. Each message contains
product-related and machine-related information. The main features of the messages are
given below:

— Type of message (red): there are several types of messages, among which tran-
sitive messages and control messages are mainly used. While transitive messages
notify that the PCB has entered or exited some operations, control messages give
us information on whether or not the process passed as expected. Hence, these
messages have a feature of sanction that could be Pass (P) or Fail (F). An example
of a control message is the one generated from the AOI machine.

— Machine hostname/Machine_ID (pink): the identification of the machine or
computer that performed an operation in the PCB.

— Description of operation (purple): description of the performed operation.
— Family code (green): product family that is being produced.
— Serial Number/Board_ID (orange): the identification number of the product.
— Operation code/Operation_ID (blue): the identification number of the oper-

ation being performed.
— Sanction (brown): for control messages, the sanction given by the operation

(F/P), F means the operation has failed; meanwhile, P letter means the operation
has been performed successfully.

— Timestamp (magenta): the date and time an operation was performed.

In addition to the data extracted from the mailbox, master data are also used to
retrieve additional information, such as the number of subpanels, product family, and op-
eration description. Furthermore, master data are used to join tables to link the reference
to the product family and the machine ID to the production line. These pieces of in-
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Figure 2.5 – Snapshot of messages file from MES. Data are anonymized to preserve
confidentiality.

formation provide additional knowledge for analyzing and understanding the production
process.

In this thesis, we work mainly on data collected from 2019 to 2022. The dataset
is massive and holds a significant amount of information. On average, approximately
4 million products are produced each year, with around 100 million related messages
generated. Processing this vast amount of data presents significant challenges in terms of
computational time and capacity. Various techniques, such as multiprocessing and GPU
computing, must be employed to overcome these obstacles.

2.3 Conclusion

In conclusion, this chapter highlights the main objective of the thesis, which is to gain
insights into the production process, with a particular focus on the assembly of electronic
boards. The production process comprises four main phases: the FE, the ICT , the BE,
and the packaging. Among these, the FE and the BE process are a series of operations
performed on the PCBs conveyed through the production line. Real-time data are collected
throughout the product lifecycle, from the raw PCBs and components to the completed
electronic boards. These data, which are stored and managed by Amazon Web Services
(AWS), are in the form of event logs. Given the industrial context and the data collected,
the research presented in this thesis adopts a process mining approach to study, develop,
and apply appropriate techniques for extracting knowledge about the process to provide
optimization solutions. The following sections of the manuscript present different process
mining approaches and results obtained during the thesis.
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DESCRIPTIVE PROCESS MINING

Descriptive Process Mining (DPM) is a technique that involves us-
ing event logs to extract information about processes. This chap-
ter presents an overview of the works and results, which focus on
applying techniques in DPM to the PCB assembly process. The
chapter is organized into four sections. The first section covers the
basics of process mining, including definitions such as event, trace,
event log, and prefix. The second section explores process discov-
ery, which is the process of extracting process models from event
logs. The section details the proposed discovery algorithms and the
calculation of the nominal path. The third section discusses con-
formance checking, which is the process of identifying deviations
between the actual execution of a process and its intended model.
It presents a method to compute a penalty index to characterize
product quality. The fourth and final section provides an overview
of Work-In-Progress (WIP) calculation and tracking. Overall, the
chapter provides a comprehensive overview of the works and results
in descriptive process mining, highlighting the importance of event
logs and the different techniques used in process discovery, confor-
mance checking, and WIP calculation and tracking.

Summary of Chapter 3

3.1 Preliminary concepts

This section provides necessary concepts and notations of process mining used in the
manuscript. Let E be the event universe, and AN be the set of attribute names. For any
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event e ∈ E and attribute name n ∈ AN , #n(e) is the value of attribute n for event e.

Definition 1 (Event) An event e is represented by a tuple of attributes (#c(e),
#a(e),#t(e),#d1(e), ...,#dj

(e), ...,#dm(e)), where c is the case id, a is the activity during
which the event occurs, t is the timestamp and dj is the jth additional attribute of the
event.

The additional attributes may be the resource (e.g., the person in charge of the task) or
the associated cost, etc. Let E∗ be the set of all finite subsets of E .

Definition 2 (Case) A case refers to an end-to-end process instance that includes mul-
tiple activities or tasks. Each case is assigned a unique identifier that serves to capture all
events related to that instance.

In the presented assembly process, a case corresponds to a specific product (PCB), and
the case id is the serial number of that PCB.

Definition 3 (Trace) A trace is a finite, non-empty sequence of events σ ∈ E∗ \ {∅}
corresponding to some process instance, σ = ⟨e1, ..., e|σ|⟩ such that for 1 ≤ i < j ≤ |σ| :
#c(ei) = #c(ej).

Definition 4 (Prefix) A prefix is the head of a trace σ with a length 0 < k < |σ|. It is
denoted as hdk(σ) = ⟨e1, ..., ek⟩.

As an illustration, consider a trace σ = ⟨a, b, c, d, e⟩, hd2(σ) = ⟨a, b⟩ and hd3(σ) = ⟨a, b, c⟩.
The prefix notation is utilized in Section 4.2 for predicting the remaining cycle time.

Definition 5 (Event log) An event log L is a set of complete traces, i.e., traces repre-
senting the execution from the beginning to the end of a case.

An event log contains data related to a process, i.e., the assembly process of electronic
boards. Each process gives rise to as many process instances as products. A process
instance is characterized by a set of generated events that are gathered in a trace. The
structure of event logs is presented in Figure 3.1.

Definition 6 (Graph) A graph G is a tuple (V,E), where V is the set of N = |V |
vertices and E represents the set of edges.
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Figure 3.1 – Tree structure of an event log.

An edge eij ∈ E indicates the transition between vertex vi and vertex vj. Nodes and edges
can be assigned with features called node features and edge features.

Definition 7 (Adjacency matrix) Given a graph G = (V,E), the adjacency matrix of
G is denoted as A ∈ {0, 1}N×N . Each element Ai,j of the matrix represents the connectivity
between two corresponding nodes vi, vj ∈ V . This means that Ai,j = 1 if there exists an
edge eij between nodes vi and vj, and Ai,j = 0 otherwise.

3.2 Process discovery

3.2.1 Preprocessing and analysis of event logs

The first step in analyzing event logs is to extract and preprocess them. In the context
of this thesis, the collected messages are stored in S3 buckets and accessed using the boto3
package in Python. We employ parallel computing functions from the multiprocessing
package to speed up processing. In our case study, we used an Amazon EC2 Instance with
32 CPUs that ran for over 35 hours to process one year of data, which would have been
impractical with a classical machine.
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Preprocessing is a crucial step that determines the quality of the analysis process.
However, it can be tedious and challenging. The two major challenges we encountered were
missing data and abnormal data. Due to the assembly line configuration, only one camera
is installed at each operation, making it impossible to have both entry and exit information
for all operations. Some operations have a camera at the entry point, while others only
record the product state at the output of the operation. This missing data makes it
difficult to analyze cycle time and transition time. Abnormal data includes abnormal
serial numbers, duplicated messages, unrecognized operation IDs, and operations with
the same timestamp. We worked with process experts to investigate these issues and
developed functions to automatically identify and filter them out during processing. We
found out that abnormal serial numbers refer to products used to test the operation
function before running a batch. This is usually performed at the beginning of each shift.
In addition, duplicated messages and the problem of operations with the same timestamp
stem from an IT problem.

After the preprocessing, event logs are stored in a tabular format in which columns
are different attributes and rows represent events. A fragment of the event log used in
this study is shown in Table 3.1, where an event is associated with a product (a board),
an operation, a timestamp, and the machine being operated.

Table 3.1 – A fragment of an event log generated from messages: an event per line.

Board_ID Operation_ID T imestamp Machine_ID

Board_0 Operation_19 2019-01-21 11:20:49 Machine_0

Board_0 Operation_12 2019-01-21 11:20:50 Machine_26

Board_0 Operation_13 2019-02-07 23:52:37 Machine_19

Board_0 Operation_14 2019-02-08 00:24:21 Machine_11

Board_0 Operation_15 2019-02-08 00:31:33 Machine_12

Board_0 Operation_16 2019-02-08 00:31:35 Machine_12

Board_0 Operation_17 2019-02-08 00:39:39 Machine_20

Board_0 Operation_18 2019-02-08 00:42:49 Machine_14

Board_0 Operation_19 2019-02-08 00:43:00 Machine_14

Board_0 Operation_999 2019-02-08 00:43:01 Machine_0

Board_1 Operation_19 2019-01-21 11:20:33 Machine_0

Board_1 Operation_12 2019-01-21 11:20:34 Machine_26

Board_1 Operation_37 2019-01-30 23:55:46 Machine_10

Board_1 Operation_37 2019-01-30 23:57:54 Machine_10

Board_1 Operation_21 2019-01-30 23:57:55 Machine_0

... ... ... ...
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Once the data is extracted and preprocessed, a general analysis is conducted. For ex-
ample, Figure 3.2 displays the number of product families manufactured in 2019, revealing
over 70 families. It is shown that the number of products varies by family, depending on
the orders from clients.

Figure 3.2 – Number of products by family in 2019.

Figure 3.3 demonstrates the number of products packaged each month during 2019.
This graph shows a lower product delivery rate in the initial months of the year and
during the summer vacation period in August.

In the analysis of cycle times, we encountered the challenge of missing data, making
it impossible to measure the cycle time of products for each operation. However, we were
able to calculate the Life Cycle Time (LCT) of products by determining the time between
the first and the last event. As shown in Figure 3.4, we analyzed the LCT of products
in the family VD01 in 2019. The graph displays the number of products and their life
cycle times, ranging from one day to a year. Process experts have defined these time
intervals according to the product specifications. The graph indicates that most products
(80%) are completed within two days, which is accurate since production is performed
on demand. This means that products are produced only when needed and only in the
requested quantities. Products that take two days to a month to finish are generally due
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Figure 3.3 – Number of products by month in 2019.

to production failures or long waiting times between phases. However, products that have
existed for over a month should be examined further because they can compromise the
reliability of sensitive electronic components. This is a point that could be considered to
improve the plant’s production.

Figure 3.4 – Life cycle time of products VD01 in 2019.

60



3.2. Process discovery

Figure 3.5 presents the number of failures by operation. The barplot on the top (3.5(a))
presents the count of fail messages generated by each operation, while the pie chart on the
bottom (3.5(b)) shows the percentage distribution. The figure reveals that the majority
of the fail messages come from operations Controle SMD par vision face inf and Controle
SMD par vision face sup, which are performed by the same machine. The only difference
is that Controle SMD par vision face inf operates on the first side, and Controle SMD par
vision face sup operates on the second side of the PCB. There are more failures on the first
side, as it usually contains more components than the second. The third operation that
produces the most failures is Pressfit vision broches, which is in the BE phase. However,
further investigation revealed that the machine generated multiple fail messages due to a
computer problem.
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(a)

(b)

Figure 3.5 – Number of fails by operation in 2019.

We also analyzed the transition time between operations, i.e., the time difference
between messages generated by two consecutive operations. Our analysis was performed
by family and by year. Figure 3.6 displays the distribution of transition times between
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Operation_03 and Operation_04 performed on the first (3.6(a)) and second (3.6(b)) side
of the PCB. We compared the transition time of the same product family between 2019
and 2020. The figure indicates an improvement in 2020, with a shorter transition time.
The plant informed us that they had made a change in operation Operation_03. The
results obtained confirm this information.
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(a)

(b)

Figure 3.6 – Distribution of transition time between Operation_03 and Operation_04
performed on the first (a) and second (b) side of the PCB.
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We have also conducted an analysis of the products of the family EMS01 returned by
clients, specifically examining the transition times. Figure 3.7 displays the distribution of
the transition time between Operation_11 and Operation_12 in the back end, comparing
the faulty product’s transition time in violet line with that of all other products in the
same family and year. Additionally, the figure compares the distribution of the transition
time of the batch containing the faulty product with the overall population. The results
show that the transition time of the returned product is an outlier in the distribution,
and the batch distribution is shifted to the right, indicating that the products in that
batch require more time than others to pass through the two operations Operation_11
and Operation_12. This finding provides operators with a clue to identify the root cause
of product failure and prevent the issue from recurring in the future.

Figure 3.7 – Comparison of the transition time between Operation_11 and Operation_12
of returned product (violet line) with all other products (in orange) of the same family
(EMS01) in the same year and with products in the same batch (in light blue).
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3.2.2 Process discovery and further analysis

There are numerous process discovery algorithms presented in the literature with their
own advantages and drawbacks (refer to Section 1.1). In this study, we develop a method
to construct the Process Model (PM) from the event logs. Although the plant may have
its own designed PM before launching a new product, deviations from this model often
occur over time, creating a need for an automatic discovery process. Due to the dynamic
nature of industrial processes, the aim of this work is to develop a data-driven solution
to discover the PM automatically.

We proposed first to apply existing algorithms such as the α algorithm [1], Heuristic
Miner [118], and Inductive Miner [54], but the process expert was not satisfied with the
results. Indeed, the constructed process model abstracted the deviations into parallelism
and concurrency, which did not reflect the actual production process. The process expert
wants a visual depiction of all transitions during production. Indeed, a PCB passes nor-
mally through a sequence of operations. This sequence is called the nominal path. Any
deviation from the nominal path is considered an anomaly. Therefore, we proposed the use
of a Directly Follows Graph (DFG) (Definition 8) to capture all transitions of products
recorded in the event log, meeting the process expert’s requirements.

Definition 8 (Directly Follows Graph) A directly follows graph, denoted as DFG is a
pair (G, L) such that:

— G is a directed graph G = (V,E) with vertex set V and edge set E.
— L is a set of labels, where lij is associated with the edge between vertex vi and vertex

vj.

Definition 9 (Process model) A process model, denoted as PM , is a DFG, where V is
instantiated with the set of activities related to process operations, and the edges of E
represent the precedence relation of operations according to the traces of the process. V
includes two specific nodes, a source node vstart and a end node vend. The edge labels in L

can represent different information, such as transition counts, durations, etc.

Figure 3.8 presents the process model of the product family V D01 constructed from
the event logs in 2019. The visualization is produced by the process mining library devel-
oped in python PM4Py [9]. In this graph, the activities associated with nodes are numeric
identifiers of operations and are anonymized for confidentiality concerns. The vstart and
vend nodes are in circle and square, respectively. The edges refer to product state tran-
sitions between operations. Additionally, the label lij on top of each edge represents the
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number of products that have taken the corresponding transition. The number of prod-
ucts that have gone through operations is reflected by the more or less dark purple color
of the nodes. This number is reported between brackets in each node.

Figure 3.8 – Process model represented by a DFG.

For example, there are 10258 product transitions between the node marked with the
activity Operation_1, i.e, the laser marking operation, and the node marked Operation_2
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that corresponds to the solder paste inspection side 1. There are 10264 products that have
gone through Operation_1 and 10272 that have gone through Operation_2 (see Figure
3.9).

Figure 3.9 – Zoom of the DFG representing the process model on the front end phase.

Based on the frequency of each transition, only the transitions that most products
follow are kept so that only the nominal path is captured. For this purpose, an algorithm
has been developed to compute the nominal path, denoted as P∗. Products of the same
family follow the same path if nothing wrong happens along the production chain. The
nominal path P∗ is computed by the following formula:

P∗ = argmax
P∈P M

freq(P) (3.1)

where freq(P) returns the number of traces, i.e., process instances, that follow the path
P .
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The proposed process for computing the nominal path is described in Algorithm 1.
Firstly, the algorithm identifies the first and last operations, i.e., vstart and vend (row 1).
Subsequently, the DFG is computed from the event log L (row 2). In this case, the label
lij of each edge eij represents the transition count, i.e., the number of times a product
has passed from vi to vj. The algorithm then proceeds iteratively, searching for the next
operation from the first operation where most of the products are directed until the
last operation is reached (rows 3-9). This sequence of operations constitutes the nominal
path. The nominal path can be obtained by following purple-colored operation identifiers
in Figure 3.8.

Data: Event log L
Result: Nominal path P∗

1 Compute vstart and vend from L;
2 Compute DFG from L;
3 P∗ ← [vstart];
4 vcurrent ← vstart;
5 while vcurrent ̸= vend do
6 Ei ← {eij|vi = vcurrent & vj /∈ P∗};
7 vcurrent ← vk where eik ∈ Ei & lik = maxi{lij};
8 P∗.append(vcurrent)
9 end

Algorithm 1: Nominal path discovery.

The algorithm is then applied to each product family to obtain the corresponding
process model and nominal path. The goal of this step is twofold: to acquire global in-
formation about the actual production and to obtain a reference for the normal behavior
as represented by the nominal path. The nominal path computed by the Algorithm 1 is
shown as the pink path in Figure 3.8. The process model indicates that there are several
deviations from the nominal path, which are considered anomalies because they represent
variations from what is expected or designed. Such deviations can lead to faulty or unex-
pected quality outcomes. The graph highlights two obvious deviations: loops and reverse
transitions. These issues arise when a product returns to an already executed operation,
which is not typical in an assembly process. While a product may be retested in a check
operation, this could mean that it malfunctioned before or there was another problem
that required retesting. Therefore, it is considered an anomaly.

One solution to analyze each product’s flow path (or a group of products) is to isolate
and compare them with the nominal path. However, this solution requires significant
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effort and resources, especially with many products and product families. To address this,
a unified approach has been developed to check the conformity of the product path with
the reference and calculate a quality index. We will present this approach in Section 3.3.1.

3.3 Conformance checking

3.3.1 Assessing product quality from event logs

After analyzing event logs and process models, different types of anomalies are identi-
fied in the production process. Several products deviate from the standard path, and some
even fail certain check operations. Additionally, there is a significant variation in transi-
tion times between operations for different products and batches (see Section 3.2.1), which
can impact the final product quality. Therefore, we propose a novel method to calculate
a product quality index considering both the product path and production batches. This
index is generated by categorizing the products based on their consistency to the nominal
path and using advanced data analysis techniques enhanced by expert know-how. The
resulting quality index can identify the risk of customer return, which is highly relevant
information for after-sales service.

To achieve this, our method compares each product’s production path to a reference
standard known as the nominal path. Various criteria are established, such as the order
of operations or the absence of certain nominal operations (operations that constitute the
nominal path). Moreover, we use a time-based criterion to identify products that take
a long time between processes, which may affect the final quality. To accomplish this,
we compute time constraints that specify the standard transition time between nominal
operations. This results in a timed process model that combines the nominal path and time
constraint, where interval time labels represent the time ranges of all products traveling
between two operations for a set of process instances. By integrating time aspects into
the process model, we aim to determine the standard time constraints between process
operations.

Definition 10 defines the timed process model as the process model labeled with time
intervals representing the time constraints for process instances. This approach enables
us to identify more precise deviations from the standard path and time constraints, which
can help improve the quality of the final products.

Consider an event log L that gathers a set of traces T representing different instances
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of the same process. Consider an edge between two adjacent vertices vi and vj ∈ V

corresponding to two events ei and ej. The subset Tk ⊆ T gathers the traces that take
a path through the consecutive operations represented by vi and vj. Let us also assume
that in any trace σ ∈ Tk, the timestamps of ei and ej are such that #t(ej) > #t(ei), then
the label lij is determined as follows:

lij = [∆t−ij,∆t+ij] (3.2)

where:

∆t−ij = minei,ej∈Eσ ,σ∈Tk
(#t(ej)−#t(ei)),

∆t+ij = maxei,ej∈Eσ ,σ∈Tk
(#t(ej)−#t(ei)).

The time interval bounds defined by Equation (3.2) represent the inf and sup of the
elapsed time between two consecutive product states in the process.

Definition 10 (Timed process model)
A timed process model (t-PM) is a process model PM for which edges are labeled

according to the time constraints given by Equation (3.2).

A process instance or a trace σ = ⟨e1, e2, ..., en⟩ satisfies the timed process model if:

1. The sequence of activities ⟨#a(e1),#a(e2), ...,#a(en)⟩ can be replayed in the graph
G of t-PM .

2. All event pairs ei and ej satisfy the time constraint [∆t−ij,∆t+ij], i.e., #t(ej)−#t(ei) ∈
[∆t−ij,∆t+ij].

Once the timed process model is obtained, a categorization approach is proposed to
sort products into populations. A population is the set of traces related to the product.
Each population is then associated with a penalty index depending on the conformance
of the paths with the obtained model.

Populations are defined by constructing a decision tree which is a technique for clus-
tering [68]. The primary advantage of using a decision tree is that it is easy to follow and
understand. Decision trees have four main parts (see Figure 3.10): a root node, internal
nodes, leaf nodes, and branches. The root node is the starting point of the tree, and both
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Figure 3.10 – Structure of the decision tree.

root and internal nodes contain a test based on an attribute. Each branch represents the
answer to the test, and each leaf node represents a class label.

Let Y = {yα, α = 1, ...,m} be a set of m class labels. The partition issued from the
decision tree aims to gather the products that share the same path. Classes (yα)α=1...m are
then associated with individual penalty indexes (p̃α)α=1...m provided by process experts
to score process instances.

Figure 3.11 – Decision tree for product categorization.
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Product categorizing consists of checking the conformance of the corresponding trace
with the timed process model. Several criteria are used, particularly order of operations,
presence or absence of nominal operations, and consistency with the time constraints.
These criteria or categorizing rules are illustrated by the decision tree given in Figure
3.11. The building process of this decision tree involves several steps. First of all, products
that have a path from the first operation to the end are selected. This means that those
whose production path is incomplete are excluded. Then, among products that performed
the first and last operation, the algorithm checks whether products missed at least one
nominal operation. The next step is to check for the order of nominal operations and the
time constraints for transitions between these operations. The light blue boxes in Figure
3.11 represent internal nodes that contain split rules. The gray boxes are leaf nodes with
corresponding class labels. Each class is associated with a penalty index, a real number
in [0, 10], depicted in red. Moreover, a description of all class labels is presented in Table
3.2.

Table 3.2 – Description of class labels in the decision tree of Figure 3.11.

Class label Description

Half begin Products that lack information about the final state.

Half end Products that lack start date information.

Not classified Products that do not have a start state and end state information.

Failed Products that have failed an operation and are then discarded.

Missing Products whose production has been completed but some nominal

operations have been missed.

Falsecall Products have suffered some failures during production and have

passed all nominal operations in order.

Bad timestamp

(F)

Products that have suffered some failures during production and have

not fulfilled the order of nominal operations.

Bad timestamp Products that have completed production without failure but have

not fulfilled the order of nominal operations.

Episode Products that have completed production without failure and have

passed all nominal operations in order, but the time constraints have

not been respected.

Nominal Products that have completed production without failure and have

passed all nominal operations in order and within the time constraints.
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Penalty index for products

As mentioned previously, each product is associated with a so-called individual penalty
index, depending on the class it belongs to. This index aims at characterizing product
quality. The quality of a product is evaluated based on its production path and production
batches. Remember that a batch is composed of a set of products produced under the same
configuration within a given time frame.

Generally, products go through several phases, from separate components to assembly
and packaging (see Figure 2.1). Due to the heterogeneity of configurations in the different
phases, the partition of products into batches in each phase is different. This means it is
possible to have two products in the same batch in one phase and in different batches in
the other. A given product hence belongs to several batches, one batch per phase. For a
given phase, it is assigned a unique class indicated by its path along the operations of the
phase: yα, α = 1, . . . ,m.

Let X = {xi, i = 1, ..., n} be the set of all products. Let Φ = {ϕk, k = 1, . . . , |Φ|}
be the set of phases and Yk = {yα|k, α = 1, ...,mk} the set of class labels for phase ϕk.
Assume a set of batches B = {bj, j = 1, ..., |B|}, partitioned in B = ⋃|Φ|

k=1 Bk according
to the phases, where Bk = {bj|k, j = 1, ..., |Bk|}. The batch of product xi in phase ϕk is
denoted by bji|k.

— Individual penalty index of product xi in a given phase ϕk

Let p̃k(xi) denote the individual penalty index of product xi in phase ϕk. This
penalty index inherits the penalty index of the class it belongs to for the given
phase. For example, a product xi that belongs to class yα|k for phase ϕk has indi-
vidual penalty index p̃k(xi) = p̃α|k. As an example, the individual penalty index of
products of the nominal class (see Figure 3.11) is equal to 0. Products in this class
follow the nominal path without fail operations and respect the time constraints
between operations.

— Penalty index of a batch bj of phase ϕk

The penalty index of a batch is computed based on the percentage of products in
different classes for that batch. Given a batch bj containing |bj| products, the ratio
of products in the class yα|k with the corresponding penalty index p̃α|k is denoted
by rj

α|k. The penalty index of a batch bj of phase ϕk is then given by:

pk(bj) =
mk∑
α=1

rj
α|k × p̃α|k (3.3)
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As already explained, the quality of a product is influenced by the classes, i.e., the
paths it follows along the production line for the different phases and the batches to which
it belongs. The different phases and the corresponding batches may impact product quality
differently.

— Global penalty index of product xi The final penalty index of a product xi is
hence obtained by combining its individual penalty indexes for each phase and the
penalty indexes of the batches it belongs to, weighted by their phases.

pg(xi) =
|Φ|∑

k=1
γk ×

(
λ× p̃k(xi) + (1− λ)× p(bji|k)

)
,

λ, γk ∈ [0, 1],
|Φ|∑

k=1
γk = 1

(3.4)

Note that the value of individual penalty indexes p̃k(xi) is in [0, 10], the penalty
index of batches and of final products given by Equations (3.3),(3.4) are also in
[0, 10]. The parameter λ determines the contribution of the individual penalty index
and the penalty index of the batch to the overall penalty index in each phase, while
the parameter γk defines the weight given to the phase Φk in the sum. These two
parameters are determined by process experts in the first instance and can be tuned
to find the optimal values.

Quality evaluation: A case study

The calculation of the penalty indexes has been performed on the case study of the
PCB assembly process. In the first step, we built the timed process model. The building
procedure has been modified as instead of using the min and max value to define the two
bounds of the time constraints (see Equation (3.2)), statistical values, specifically the 5th

and 95th percentile. In this way, outliers and extreme values have been excluded. Figure
3.12 shows the timed process model obtained for the process model of Figure 3.8. The
model is relatively simple, with operations performed successively, one after the other,
and no deviations or concurrent operations.

The next step involves categorizing products by comparing their production path with
the timed process model. For this task, the decision tree presented in Figure 3.11 was used.
The penalty index assigned to each class (indicated as a red number) was provided by the
process expert, and their values range from 0 to 10, characterizing the conformance level.

75



Chapter 3 – Descriptive Process Mining

Figure 3.12 – The timed process model.

Note that the half begin and half end classes were excluded because the production paths
of products in these classes are incomplete. Specifically, only data registered in 2019 were
considered, and products that were put in the production line before 2019 and reappeared
in 2019 were classified in the half end class. Similarly, boards that were not finished in
production in 2019 were classified in the half begin class.

After categorizing products, the penalty index for batches and the global penalty
index of products were computed using Equations (3.3) and (3.4). The computed results
are presented below.

— Penalty index obtained by batch: Let us recall that a batch is a subset of prod-
ucts that are produced continuously and consecutively. Batches are extracted from
event logs, and their penalty index is computed using Equation (3.3). Figure 3.13
shows the relation between the penalty index and batch size in the three phases of
the production process, namely, FE1, FE2, and BE. Table 3.3 provides additional
statistics, such as the standard deviation of batch size, the percentage of batches
with penalty index < 1, and the percentage of perfect batches with a penalty index
equal to 0. Over the three phases, more than half of the batches have a penalty
index between 0 and 1 (see the third column of Table 3.3). Particularly in the FE1
phase, 84.21% of batches adhere to the timed process model. However, batches
produced in the FE2 and BE phases are less consistent than those in the FE1
phase. The results also indicate that there were no perfect batches, which means
that no batch had all its products pass through the production line without any
failure or deviation within the accepted time intervals. Additionally, the number
of products per batch varies with a standard deviation of around 200, and batches
with a high penalty index have small sizes. Without an in-depth investigation, it
is explainable that these batches are small due to process interruption or changes
in the configuration after a sequence of products with bad behavior, which results
in a high penalty index for them.
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Figure 3.13 – Penalty indexes and batch sizes for each production phase.

Table 3.3 – Summary of batch quality.

Batch size Penalty index of batches

Phase Mean Standard deviation

% batch with penalty
index < 1

(Good batches, only
delays)

% batch with penalty
index = 0

(Compliant batches)

FE1 269.42 217.25 84.21 0
FE2 261.03 213.74 69.23 0
BE 241.55 229.25 50 0

— Penalty index obtained for products in each phase: The distributions of the
penalty indexes for products in the three phases are shown in Figure 3.14. Table
3.4 presents statistics calculated on these distributions that allow for comparison of
production between phases. As expected, more than 75% of products have penalty
indexes between 0 and 1, which indicates good compliance with the process model.
Among the three phases, FE1 is the most consistent, with a mean and median
value of 0.54 and 0.4, respectively. Penalty indexes of products in the FE1 phase
have less variation than in FE2 (as seen from their range and standard deviation).
Note that FE1 and FE2 are the same operations performed on the first and second
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Figure 3.14 – Product quality for each production phase.

Table 3.4 – Summary of product quality.

Phase Mean Median Standard deviation Range (max−min) % products with penalty index < 1
FE1 0.54 0.4 0.41 4.84 89.0
FE2 0.71 0.57 0.51 8.51 78.63
BE 0.8 0.75 0.38 3.52 76.38

sides of the PCB. These results are interesting and warrant further examination
and improvement actions.

— Global penalty index for products: The global penalty index is computed
once the product has undergone all phases. The distribution of this index for all
products is shown in Figure 3.15. As expected from the previous results, most
products (91.77%) have a small penalty index between 0 and 1. A detailed analysis
should be performed on products with a high penalty index in association with
process experts.

3.3.2 Analysis of product quality variation over work shifts

This section presents the analysis of production process performance through the ob-
tained penalty indexes presented in Section 3.3.1. The overall performance of the assembly
process is analyzed and compared across different time slots during one year (2019). The
objective of this study is to verify whether there is a difference in performance between
time slots and then to identify the factors that drive these differences.

The proposed approach uses a 2D Kernel Density Estimation (KDE) method to ap-
proximate the distribution of nominal products for each time slot and then compute their
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Figure 3.15 – Global penalty indexes for all products.

dissimilarity. The results are beneficial for the factory to evaluate the impact of the work
shift and work time on production performance. From this point, the company can propose
solutions to help improve the quality of work.

This study is performed on the Foix plant, which operates on a shift basis. This in-
volves different groups of employees working the same job during agreed-upon periods
throughout the day and night. The plant has three shifts on weekdays (morning, after-
noon, and evening) and two shifts on weekends (morning and afternoon). We propose
examining shift work’s impact on the production process’s performance. Many studies in
the literature have been conducted on the matter of shift work. However, most of them
evaluate the impact of this type of work organization on workers’ health [60, 7, 47, 20,
10]. There is scarce research in the literature addressing the impact of shift work on pro-
duction process performance and product quality [36]. Our objective is to fill this gap by
presenting a quantitative analysis of this factor on product quality in a real electronic
board manufacturing process.

Let us recall that in terms of production, the “nominal" class comprises all products
that adhere to the nominal path and comply with all time constraints between operations.
Therefore, it is considered that a high percentage of nominal products indicates that the
production process operates correctly, with minimal interruptions, and that the product
quality is guaranteed. Conversely, a low percentage indicates that a significant number
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of products fail inspection or testing or do not meet time constraints. In such instances,
identifying the root cause of the deviation is critical. The causes could be a malfunction
of specific processes, a batch of raw material defects, or even a shift change. This study,
however, focuses on the latter. An analysis of production performance during different
work time slots is conducted to explore this issue.

We consider work slots of fixed duration: ∆t = 30 minutes. The analysis is per-
formed by comparing the performance of 48 production slots in a day, denoted as wk,
i.e., k ∈ [1..48]. Data are collected and computed for each slot and each day for a year
to obtain the proportion and number of nominal products. Since the type and number of
products produced per day vary based on customer demand, the analysis considers both
the proportion and the number of nominal products. Given a work slot wk, the study
defines xk = (x1

k, x
2
k) ∈ R2 is a 2-dimensional vector, where x1

k and x2
k are the variables

representing the proportion and the number of nominal products in the work slot wk,
respectively. Daily samples are indexed by j, i.e., wk,j = (x1

k,j, x
2
k,j), where j = 1, . . . , Nk,

and the set of samples for every slot wk is denoted by Wk = {(x1
k,j, x

2
k,j)}1≤j≤Nk

. It is im-
portant to note that the size Nk of Wk is not constant for all slots because there may be
no production during specific time periods on some days. These breaks can be planned or
unplanned. For instance, in the studied plant, there is no production from midnight to 5
a.m. every Monday, making these periods expected breaks. An example of an unexpected
break time is a process breakdown or unplanned maintenance.

The difference in the size of the sets Wk, k = 1, . . . , 48, raises a challenge in defining a
dissimilarity metric. One straightforward approach is to extend the size of all sets to the
same maximum size, but this results in a loss of information and may lead to inaccurate
analysis. To overcome this issue, we propose to compare the two-dimensional distribution
estimated from these data sets.

The workflow of our proposal to calculate the difference in performance between work
slots for the case study is shown in Figure 3.16. To begin with, we extract data from the
plant and apply the process mining framework presented in Section 3.3 to create a process
model. We also classify products into different quality categories based on their deviation
from the nominal path. This study takes into account the penalty index of all product
families produced in a year. For performance analysis, we extract only the nominal quality
class from the outputs of the process mining framework. Then we use a non-parametric
method, namely KDE [71], and define dissimilarity using the L1, L2, and Jensen-Shannon
distances [30] between obtained densities. The subsequent paragraphs provide more details
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on the KDE approach used for estimating the nominal product distribution for each work
slot and calculating their dissimilarity.

Figure 3.16 – Performance analysis workflow.

Kernel density estimation

In statistics, and particularly in statistical estimation, there are two categories: para-
metric and non-parametric statistics. In parametric statistics, the information about the
distribution of a population is known and is associated with a finite set of parameters.
Parametric methods are used to estimate these parameters, such as the mean, the vari-
ance, etc. On the contrary, non-parametric statistics are either distribution-free or use a
specified distribution whose parameters are unspecified.

The KDE method is the most common non-parametric method to estimate the prob-
ability density function of continuous random variables. It is also known as the Parzen-
Rosenblatt window method [71].

Definition 11 (Kernel density estimator of univariate distribution) Consider
{Xi}1≤i≤n, a random sample of size n drawn from an unknown probability density f . The
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kernel density estimator of f is:

f̂h
n (x) = 1

nh

n∑
i=1

K
(
Xi − x
h

)
∀x ∈ R (3.5)

where K is a kernel and h is the bandwidth or smoothing parameter.

Definition 12 (Kernel) A kernel is a non-negative real-valued integrable function K

such that
•
∫∞

−∞ K(u)du = 1
• K is an even function, K(−u) = K(u)

Table 3.5 shows some commonly used kernels.

Table 3.5 – Common kernels used in KDE.

Kernel K(u)

Gaussian 1√
2π

exp (−1
2u

2)

Uniform (Tophat) 1
21|u|≤1(u)

Epanechnikov 3
4(1− u2)1|u|≤1(u)

Exponential λ exp (−λu)

Linear (1− |u|)1|u|≤1(u)

Cosine π
4 cos (π

2u)1|u|≤1(u)

The smoothing parameter h controls the number of samples used to compute the
probability for a new point. According to [71] and [104], the choice of h is much more
important than the choice ofK for the behavior of f̂h

n (x). The quality of the approximation
is controlled by the Mean Integrated Squared Error (MISE):

MISE(h) = EX

[
∥f̂h

n − f∥2
L2

]
=
∫
R

(
f̂h

n (x)− f(x)
)2
dx (3.6)

=
∫
R

(
bias2f̂h

n (x) + V arX(f̂h
n (x))

)
dx (3.7)

The error is decomposed into two terms. The first term is called bias, and the second
term is variance. The quality of the estimation depends on the value of the bandwidth
parameter h. We have the following properties:

— Bias→ 0 when h→ 0
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— V ariance→ 0 when nh→ +∞
There is a trade-off between bias and variance. A large window of samples, i.e., a large
value of h, may result in a very smooth density with a high bias. In contrast, a small
window may have too much detail (high variance) and not be smooth or general enough
to correctly cover new or unseen samples. Several approaches were developed to find the
optimal value of h. Many of them are based on the assumption that data are sampled
from a normal distribution, i.e., Silverman’s rule [96], Scott’s rule [90], Sheather and Jones
method [95], etc. Cross-validation methods are another technique that does not use any
assumptions about the data. These methods aim to fit the model to part of the data and
then evaluate the remaining data.

The KDE can be extended to the multivariate case. The most general form is given
by Definition 13 [117].

Definition 13 (Kernel density estimator of multivariate distribution) Consider
{Zi}1≤i≤n, a p-variate random sample of size n drawn from an unknown probability density
function f : Rp → R. The kernel density estimator of f is:

f̂H
n (x) = 1

n

n∑
i=1

KH (x− Zi) (3.8)

where x = (x1, x2, ..., xp)T and Zi = (Z1
i , Z

2
i , ..., Z

p
i )T . The bandwidth parameter H is a

symmetric positive definite p× p matrix, and

KH(x) = |H|−1/2K(H−1/2x) (3.9)

The matrix H has p(p+1)
2 parameters. A simplified version of (3.8) can be obtained in (3.10)

by choosing the matrix H = diag(h2
1, h

2
2, ..., h

2
p), allowing different amounts of smoothing

in each of the coordinates.

f̂H
n (x1, ..., xp) = 1

n

1∏p
l=1 hl

n∑
i=1

K

(
x1 − Z1

i

h1
, ...,

xp − Zp
i

hp

)
(3.10)

Dissimilarity metric for performance analysis

To measure the dissimilarity between probability distributions, several metrics exist.
Among those, both statistical and Euclidean distances are used. The aim is to learn
whether the difference in the distances leads to different conclusions. Regarding statistical
distance, Jensen-Shannon (JS), a commonly used distance, has been selected. The L1 and
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L2 distances have been used for Euclidean distance. The L1, L2 distances between two
density probability functions g(x) and g′(x) on a domain S of the Euclidean space are
defined as:

dL1(g, g′) = ∥g − g′∥L1 =
∫

S
|g − g′|dx (3.11)

dL2(g, g′) = ∥g − g′∥L2 =
√∫

S
(g − g′)2dx (3.12)

The JS distance is the root square of the Jensen-Shannon divergence, which is an
extension of the Kullback-Leibler (KL) divergence [30]. KL divergence is a very common
measure used in probability and statistics that computes a score indicating how much
a probability distribution differs from another. Given g and g′ the probability density
functions of two continuous random variables, their Kullback-Leibler divergence is given
by:

DKL(g∥g′) =
∫ +∞

−∞
g(x) log

(
g(x)
g′(x)

)
dx (3.13)

This measure has two problems. First, it is defined only if ∀x, g′(x) = 0 implies g(x) = 0.
Second, the KL divergence score is not symmetrical, i.e., DKL(g∥g′) ̸= DKL(g′∥g). The
JS distance allows overcoming this later problem because it is symmetrical. The formula
of JS distance is as follows:

DJS(g∥g′) =
√
DKL(g∥ḡ) +DKL(g′∥ḡ)

2 (3.14)

where, ḡ = g+g′

2 .

Application to the case study

The non-parametric density estimation method KDE is used because there is no as-
sumption about the data distribution. Formula (3.10) is applied by choosing H as a
diagonal matrix. As defined in the previous section, Wk = {(x1

k,j, x
2
k,j)}1≤j≤Nk

is the set
of data representing the production in a 30-minutes work slot wk.

According to (3.10), the 2D probability density function estimated by the KDE for
each slot wk is hence given by f̂k

Hk

Nk
(x), k = 1..48, simply denoted by f̂k(x) for convenience,
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as follows:

f̂k(x1, x2) = 1
Nk

1
hk,1 × hk,2

Nk∑
j=1

K

(
x1 − x1

k,j

hk,1
,
x2 − x2

k,j

hk,2

)
(3.15)

where Hk = diag(h2
k,1, h

2
k,2).

The goal is to assess the dissimilarity of the estimated probability density functions
over different time slots.

Computing the dissimilarity of probability density functions solves the problem of sets
(Wk)k=1..48 having different sizes. Indeed the density f̂k(x)k=1..48 estimated respectively
from (Wk)k=1..48 can be compared as the dissimilarity between functions.

In this study, the Gaussian kernel is used as the basis function. The Leave One Out
(LOO) cross-validation method is used for parameter optimization as the data are not
normally distributed and the sample size is small [86]. This technique involves repeatedly
fitting the model on a dataset with one observation removed and then using the fitted
model to evaluate on the removed observation. The process is repeated for each observation
in the dataset. The probability density function pairs (g, g′) used in (3.11), (3.12), and
(3.14) for the three dissimilarity metrics L1, L2, and the JS distances, respectively, are
instantiated with all the possible pairs (f̂κ, f̂ν), κ, ν = 1..48 and κ > ν.

Results

The dataset used in this analysis consists of one year of production, including all
process lines of several product families. The number and proportion of nominal products
are computed for each time slot of 30 minutes. The study involves two main steps. In the
first step, the distribution of nominal products in each time slot is estimated from a set
of samples extracted during one year. In the second step, the dissimilarity matrix of the
different time slots is calculated as the difference between the corresponding densities.

— Kernel Density Estimation: The first step in density estimation is to check if
the data samples follow a normal distribution to determine if parametric estimation
methods can be used. To do this, the Shapiro-Wilk test [93] is performed on all
variables, as shown in Figure 3.17. The variables are separated into weekdays (a)
and weekends (b), with each column representing the test result based on the p-
value of 48 variables (denoted by k = 1..48) associated with either the proportion
of nominal products x1

k or the number of products x2
k in a production phase (FE1,
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FE2, BE).

Figure 3.17 – Results of Shapiro–Wilk test on the normality assumption of data on week-
days (a) and weekends (b)

The results show that most variables do not fit a normal distribution with a p-value
< 0.05, indicating that parametric methods are not applicable in this case study.
This test confirms our choice of using a non-parametric method, KDE.

Figure 3.18 – Estimated density of nominal products in FE1 during time slot [12:00, 12:30]
on weekdays. The density is visualized both in a 3D plot(left) and a 2D plot (right).
The X-axis and the Y -axis represent the proportion of nominal products x1

k and the
normalized number of nominal products x̃2

k, with k = 25 corresponding to the time slot
[12:00, 12:30], respectively.

As mentioned before, the choice of bandwidth parameters hk,i|k=1..48,i=1,2 is much
more important than the choice of kernel K. Hence, the study focuses on finding
the optimal value of hk,i. For this purpose, the well-known Gaussian kernel is used.
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As data are not normally distributed, bandwidth selection techniques that rely
on a reference distribution are not applicable. In this study, the cross-validation
method is used. In particular, the Leave One Out (LOO) cross-validation is used
as the sample size is small. The bandwidth parameter hk,i for each (k, i) is set
among {0.03, 0.031, .., 0.1} for the experimentation. The criterion used is the log-
likelihood of the data under the estimated model to find the best parameter. Figure
3.18 shows an estimated 2D density obtained by the proposed method. This is the
distribution of nominal products obtained in the FE1 phase during the time slot
wk = [12:00, 12:30] on weekdays. The X-axis represents the proportion of nominal
products x1

k, while the Y -axis represents the number of nominal products x̃2
k which

is normalized by min-max normalization, i.e., x̃2
k =

x2
k− min

k=1..48
x2

k

max
k=1..48

x2
k

− min
k=1..48

x2
k
.

— Dissimilarity matrices: Given a production phase among FE1, FE2, and BE,
a work slot wk is represented by a 2D density f̂k. The dissimilarity matrix D is a
symmetric matrix of size 48× 48 where each row or column corresponds to a time
slot. Each element Dκν , κ, ν = 1..48, of the matrix is the dissimilarity measure of
two corresponding time slots wκ and wν , i.e., Dκν = d(wκ, wν).
D is calculated as follows. First, the exact value of the two estimated densities f̂κ

and f̂ν are computed at each point of a grid G. The grid is defined in [0, 1]2 with size
of 100× 100. Dκν , κ, ν = 1..48, are then obtained with the three proposed metrics
L1, L2, and JS distance, completing the calculation of D. Figure 3.19 presents the
dissimilarity matrices between time slots in the production phase BE on weekdays.
The matrix in Figure 3.19(a) is computed using the L1 metric, while Figure3.19(b)
and 3.19(c) represent the dissimilarity matrices computed by L2 and JS metric,
respectively. In all three figures, darker colors represent lower dissimilarity, while
lighter colors show higher dissimilarity. Since the JS metric has a different scale
from the L1 and L2 metrics, a different color bar is used to make it more readable.
The first remark that stands out is that L1 distance presents higher dissimilarities.
In contrast, the L2 distance matrix is darker. This result is understandable because
the difference at each point of two densities is smaller than 1, so this value becomes
even smaller when squared. Secondly, it is unclear to recover work shifts from these
matrices. Remind that the three work shifts on weekdays are [5:30, 13:30], [13:30,
21:30], [21:30, 5:30]. This result shows no effect of shift work on product quality.
However, the question arises as to what level of dissimilarity means that two dis-
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(a) (b)

(c)

Figure 3.19 – BE production phase: dissimilarity matrices between 30 minutes time slots
computed from 3 different metrics: L1 (a), L2 (b) and JS (c).

tributions are sufficiently different. The answer is given by experimentation. For
that, the pair of slots with the largest dissimilarity in the L1 distance matrix is
chosen to draw the densities. Figure 3.20 presents the estimated densities of two
selected slots. Figure 3.20a, 3.20b present the 2D densities, and Figure 3.20c, 3.20d
present the 1D densities of each dimension. The 2D density associated with the
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Figure 3.20 – Visualization of two estimated 2D densities for work slot [15:30-16:00] (a)
and [20:00-20:30] (b) by the KDE method. The X-axis represents the proportion of nom-
inal products. The Y -axis represents the normalized number of nominal products. The
1D densities for each axis X (c) and Y (d) are also plotted.

slot [20:00-20:30] is flatter, and more spread out than [15:30-16:00]. Regarding 1D
density, there is not much difference between the two densities of the proportion of
nominal products (X-axis). According to the normalized quantity of nominal prod-
ucts (Y -axis), the distribution that corresponds to the slot [20:00-20:30] is slightly
shifted to the right compared to that of [15:00-16:00]. This means that it tends to
take on larger values. Nevertheless, again, this difference is minimal. This result
reinforces the assessment that there is a homogeneity of quality between slots and
no shift work effect on the production performance. Even if the analysis doesn’t
show significant variability between shifts, it is still important to provide relevant
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information to the quality service and management. This allows for a comprehen-
sive understanding of the production process and can help identify potential areas
for improvement. Additionally, the approach used in this analysis is interesting be-
cause it is generic and can be applied to other manufacturing processes. By using
this approach, companies can gain insights into their production processes in all
plants, which can lead to better decision-making and increased efficiency.

3.4 Monitoring of work-in-progress

Tracking the movement of products and the number of products being processed is a
crucial task in production scheduling and monitoring. However, this is a challenging task
that requires a significant amount of information and expertise in the field. Moreover,
the calculation of work-in-progress (WIP) must integrate a vast amount of information,
which makes the work time-consuming and prone to errors. To address these challenges,
we have developed a tool that can automatically and accurately compute the number of
WIPs.

In our case study, WIP is defined as partially finished goods that are waiting to move
to the next process for completion. Calculating WIP requires integrating several pieces
of information, such as product movement through phases, product status (pass/fail),
packaging information, etc., which can be extracted from the event log database. Our
developed program automatically extracts data and calculates WIP in real-time while also
generating visualizations of WIP in different phases and for different product families, as
well as the evolution of WIP over time.

To formulate the WIP calculation problem in each production phase, we define the
WIP of phase ϕi at time t, denoted Em

i,t, as the number of products that are waiting to
move through phase ϕi, are not scrap, and were introduced into production less than m

days ago.
To quantify the products waiting for a phase ϕi at time t, we search for products that

finished the previous phase ϕi−1 through events that occurred before time t. Let p be a
product, and the state of a product p at time t be represented by a vector [jp, t

0
p, ep, t

−
p ],

where
— jp is the serial number of p, which is unique for each product.
— t0p is the date when the product was introduced into production.
— ep is the last event associated with product p.
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— t−p is the timestamp associated with event ep (let t−p ≤ t).
Then, the WIP of phase ϕi at time t is calculated as:

Em
i,t = card(p|ep ▷◁ ϕi−1; t−p < t; t−p − t0p ≤ m) (3.16)

Where, ep ▷◁ ϕi−1 means that event ep corresponds to the last operation in phase ϕi−1.
The application we are using provides an interactive dashboard on PowerBI to track

work-in-progress (WIP) at the plant, which is displayed in Figure 3.21. This dashboard
computes WIP values, the number of packaged products (EMBAL), and products in re-
but. It also allows users to visualize each quantity by product family (treemap on the
top and barplot on the bottom left), production line, and product type (Pass/Fail). Fur-
thermore, the time slide located in the top left of the dashboard allows users to filter
products based on their duration in the assembly process, ranging from 0 to 200 days.
The production managers find this dashboard to be an essential tool for monitoring and
planning production. Moreover, it enables us to prepare a WIP dataset, which we can use
to study and develop prediction models (Section 4.1).

Figure 3.21 – PowerBI dashboard for tracking of WIP for all processes in Foix plant,
France.

The visualization depicted in Figure 3.21 is computed and updated every 30 minutes.
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Additionally, a real-time version has been developed using Lambda functions on AWS.
For this particular case, Grafana is employed for the visualization, as shown in Figure
3.22.

Figure 3.22 – Grafana dashboard for real-time tracking of WIP for all processes in Foix
plant, France.

3.5 Conclusion

To conclude, this chapter has provided an overview of our contributions to the field
of descriptive process mining, a crucial aspect of process mining. The basic concepts of
process mining, such as event log, event, trace, prefix, etc., were introduced. The chap-
ter has also focused on the three main tasks in descriptive process mining, namely pro-
cess discovery, conformance checking, and work-in-progress calculation, at which level our
contributions are placed. To compute the timed process model for process discovery, an
ad-hoc process discovery method was proposed. The conformance checking task involved
comparing the process model with the actual behavior of the system, and the work-in-
progress calculation was used to monitor the production process by tracking the number
of unfinished products. It is used daily in the Vitesco Technologies plant of Foix by the
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operational teams.
The results of applying these techniques to real-world event logs were presented, which

demonstrated their effectiveness in providing insights into process behavior and identifying
process inefficiencies. Process discovery allowed identifying the most frequent paths in the
process, while conformance checking revealed deviations between the process model and
actual behavior. Work-in-progress calculation helped to identify bottlenecks and areas for
improvement in the process.

Moving forward, the next chapter will focus on predictive process mining, which uses
historical data to predict the future behavior of a process. Predictive process mining lever-
ages advanced analytical techniques to provide valuable insights into process performance
and enable organizations to make data-driven decisions.
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Chapter 4

PREDICTIVE PROCESS MINING

This chapter explores two distinct prediction problems. The first
problem focuses on predicting the Work-In-Progress (WIP) between
production phases based on past variations. A range of prediction
methods is used, from the classic linear regression model to more
advanced LSTM models. The second problem involves predicting
the Remaining Cycle Time (RCT) of ongoing products in the assem-
bly line. This problem introduces the use of Graph Neural Network
(GNN) models for the first time, and the results indicate that GNNs
have the potential to be used in manufacturing processes. Overall,
the chapter highlights the importance of predictive process mining
in improving the efficiency and productivity of manufacturing pro-
cesses.

Summary of Chapter 4

Predictive Process Mining (PPM) is a subfield of process mining that encompasses a
range of techniques aimed at predicting the outcome or future properties of an ongoing
process case. To achieve this goal, input is derived from historical data of process execu-
tions that are stored in event logs. A predictive model is then constructed and trained
based on the specific needs of the situation in order to predict the relevant information per-
taining to the current process. Numerous PPM problems have been tackled and resolved,
and this study focuses on two prediction problems. Section 4.1 presents the prediction
of future WIP values between production phases based on their evolution in history. In
Section 4.2, we explore the work done to predict the RCT of ongoing products in the
production process.

95



Chapter 4 – Predictive Process Mining

4.1 Prediction of work-in-progress between produc-
tion phases

In this section, we will explore the prediction of WIP between production phases.
Accurate prediction of WIP is crucial for businesses to ensure that they meet produc-
tion targets and avoid unnecessary delays. We have utilized various prediction methods,
ranging from classic approaches such as linear regression and AutoRegressive Integrated
Moving Average (ARIMA) models to more complex methods like Long Short-Term Mem-
ory (LSTM) models. These methods have been proven to be effective in forecasting WIP,
and we will delve into the details of each method and its respective strengths and weak-
nesses. This section provides a comprehensive understanding of the different prediction
techniques and gives the means to choose the most suitable approach for specific business
needs.

4.1.1 Data preparation

Data preparation is essential for predicting the WIP between production phases in the
assembly process. Hourly WIP values are calculated between successive phases ϕ1 = FE1,
ϕ2 = FE2, ϕ3 = ICT , and ϕ4 = BE. In this case study, a training dataset of WIP values
was created using historical data collected by Manufacturing Execution System (MES)
from 2020 and 2021. The WIP variable is denoted as Em

i,t. As explained in Section 3.4,
this variable represents the number of products waiting to move through phase ϕi at time
t and that entered production less than m days ago. In this context, the process experts
set m to 200 days. Therefore, the WIP variable is referred to as Ei,t for further analysis.
The dataset is preprocessed by excluding periods of no production due to maintenance,
holidays, and other reasons. The prediction of the WIP value focuses on the period between
FE1 and FE2, which is denoted as E2,t. Figure 4.1 shows the variation of E2,t over the
two-year period. The dataset is divided into three parts: 70% for training data in green,
20% for validation data in violet, and 10% for test data in blue. The split is performed
based on time to preserve the sequential nature of the data. It is important to ensure that
the validation and test sets come after the training set in time. Standardization (Z-score
normalization) was performed, which scales the data to have a mean of 0 and a standard
deviation of 1. This was achieved by subtracting the mean of the time series from each
value and dividing it by the standard deviation.
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Figure 4.1 – WIP values variation in two years, 2020 and 2021, between FE1 and FE2.

4.1.2 Prediction models

ARIMA

ARIMA is a statistical model for time series forecasting using the past values [12].
It combines AR, MA, and differencing components. AR component captures the linear
relationship between past observations and the current value, while the MA component
captures the error term of the past observations. The differencing component helps in
making the time series stationary, which means that the mean, variance, and autocor-
relation structure of the series do not depend on time. The model is represented by the
notation ARIMA(p, d, q), where:

— p is the order of the autoregressive component, which represents the number of
lagged observations used to predict future values,

— d is the degree of differentiation needed to make the time series stationary, which
involves taking the difference between consecutive observations at least once or
multiple times until the series becomes stationary,

— q is the order of the moving average component, which represents the number of
lagged forecast errors used to predict future values.

The mathematical formula for the ARIMA(p, d, q) model can be expressed as:

y(t) = c+ Φ(1)y(t− 1) + ...+ Φ(p)y(t− p) + ϵ(t) + θϵ(t− 1) + ...+ θ(q)ϵ(t− q) (4.1)

where:
— y(t) is the time-series,
— c is a constant,
— Φ(1), ...,Φ(p) are autoregressive coefficients for lag 1 to p,
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— ϵ(t) is the error term or innovation at time t,
— θ(1), ..., θ(q) are the moving average coefficients for lag 1 to q,
— ϵ(t− 1), ..., ϵ(t− q) are the error terms for lag 1 to q.

Linear regression

Linear regression is a statistical technique used to model the relationship between
a dependent variable Y and one or more independent variables X. The model assumes
a linear relationship between the variables and tries to fit a straight line that best de-
scribes the relationship between them. There are two types of linear regression: simple
linear regression and multiple linear regression. In simple linear regression, there is only
one independent variable X, while in multiple linear regression, there are p independent
variables X1, X2,..., Xp, etc.

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ϵ (4.2)

where:
— Y is the dependent variable, which we want to predict or explain,
— X1, X2, ..., Xp are the independent variables (also called the explanatory variables

or predictors),
— β0, β1, ..., βp are the coefficients (also called the regression coefficients or parame-

ters). β0 is the intercept, which represents the value of Y when all the independent
variables are equal to zero. β0, β1, ..., βp represent the change in Y for a unit change
in X1, X2, ..., Xp respectively,

— ϵ is the error term, which represents the variability in Y that is not explained by
the model.

The goal of linear regression is to estimate the values of β0, β1, ..., βp that minimize the
Sum of Squared Errors (SSE) between the predicted values and the actual values of Y .
This is done using a method called Least Squares [31], which involves finding the line that
minimizes the sum of the squared differences between the predicted and actual values of
Y .

SSE =
n∑

i=1
(yi − ŷi)2 (4.3)

where:
— yi is the actual value of the dependent variable for the i-th observation,
— ŷi is the predicted value of the dependent variable for the i-th observation, calcu-
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lated as Equation (4.2).
Once the regression coefficients are estimated, the linear regression model can be used to
make predictions about the dependent variable based on the values of the independent
variables.

XGBoost

XGBoost (eXtreme Gradient Boosting) is a popular machine learning algorithm used
for both regression and classification [friedman2001greedy]. It is an ensemble learning
method that combines multiple decision trees to create a model that can make accu-
rate predictions. It is an extension of the gradient boosting algorithm that uses a more
regularized model to prevent overfitting and achieve better performance.

The XGBoost algorithm is based on a series of decision trees that are trained sequen-
tially, with each new tree attempting to correct the errors of the previous trees. The output
of the model is the weighted sum of the predictions of each tree. The XGBoost algorithm
combines gradient descent and Newton’s method to optimize a loss function. The loss
function is typically defined as the sum of a training error function and a regularization
function:

Obj(θ) = L(θ) + Ω(θ) (4.4)

where θ represents the model parameters, L(θ) is the training error function, and Ω(θ) is
the regularization function.

L(θ) =
n∑

i=1
l(yi, ŷi) (4.5)

where yi is the actual value of the target variable for the i-th instance, ŷi is the predicted
value, and l(yi, ŷi) is the loss function (sum of squared errors for regression problems or
cross-entropy loss for classification problems).

Ω(θ) = λ1

k∑
j=1
|θj|+ λ2

k∑
j=1

θ2
j (4.6)

where k is the number of parameters. The regularization term controls the complexity
of the model that can prevent overfitting. This is typically a function of the model’s
parameters, and it is designed to encourage the model to have smaller parameter values.
λ1 and λ2 are the regularization strength hyperparameters, which control the relative
weight of the regularization term compared to the data fitting error term.
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LSTM

LSTM is a type of Recurrent Neural Network (RNN) that is designed to handle the
vanishing gradient problem of traditional RNNs [38]. LSTMs can learn long-term depen-
dencies in sequential data and are widely used in tasks such as speech recognition, natural
language processing, and time-series prediction.

Figure 4.2 – The architecture of an LSTM cell.

The basic building block of an LSTM cell consists of three gates (Figure 4.2): the input
gate it, the forget gate ft, and the output gate ot. Each gate is controlled by a sigmoid
activation function, which produces output values between 0 and 1.

it = σ(Wxixt +Whiht−1 + bi) (4.7)

The input gate determines how much of the new input should be included in the cell
state ct. It takes the concatenation of the input xt at time step t and the output ht−1

from the previous time step t− 1 as its input (4.7). In these equations, W is the weights
matrix, and b represents the bias term.

The forget gate ft decides which information from the long-term memory stored in
the cell state ct−1 should be kept or discarded. It takes the concatenation of the input xt

at time step t and the output ht−1 from the previous time step t − 1 as its input (4.8).
The forget gate is then multiplied with ct−1 to determine how much of the previous cell
state should be retained (4.9).
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ft = σ(Wxfxt +Whfht−1 + bf ) (4.8)

Then, the cell state is updated by combining the output of the input gate it and the
output of the forget gate ft and adding it to the previous cell state ct−1 (4.9). The updated
cell state ct is then passed through the output gate to obtain the output ht for the current
time step t.

ct = ft ∗ ct−1 + it ∗ tanh(Wxcxt +Whcht−1 + bc) (4.9)

Finally, the output gate produces the short-term memory ht from the current input
and the current cell state ct. It takes the concatenation of the input xt and the output
ht−1 from the previous time step, and also takes the current cell state ct as its input (4.10,
4.11).

ot = σ(Wxoxt +Whoht−1 + bo) (4.10)

ht = ot ∗ tanh(ct) (4.11)

4.1.3 Experimentations and results

The previous section presents models used in this study to predict the WIP values
from historical data. ARIMA and linear regression are simple models, while XGBoost is
expected to provide more accuracy due to its ensemble-based approach. The LSTM model,
on the other hand, can capture the long-term dependencies and nonlinear relationships
and is expected to provide the best results among all the models. This section presents
the implementation and prediction results obtained from these models.

Univariate and one-step prediction

In the first instance, the study focuses on the problem of one-step prediction using a sin-
gle variable. This means that the model Ω takes as input the past values E2,t, E2,t−1, ..., E2,t−k+1

depicted in the k most recent values (window size) to predict the future value in one time
step, as shown in Equation (4.12).

Ê2,t+1 = Ω(E2,t, E2,t−1, ..., E2,t−k+1) (4.12)
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Initially, we attempted to predict the WIP using the ARIMA model, but the results
were unsatisfactory. The model failed completely in this case. Its poor prediction could
be due to the fact that the data is not stationary and does not exhibit clear patterns,
which the ARIMA model considers as random noise. We then compared three models:
linear regression, XGboost, and LSTM. We evaluated the performance of these models
in terms of computation time and prediction errors. Regarding prediction errors, we use
three metrics commonly used in machine learning: MAE, MSE, and MAPE.

— Mean Absolute Error (MAE) measures the mean of the absolute differences be-
tween the actual and predicted values,

— Mean Squared Error (MSE) measures the mean of the squared differences between
the actual and predicted values,

— Mean Absolute Percentage Error (MAPE) measures the average of the absolute
percentage difference between the predicted and actual values.

In the case of linear regression and XGBoost models, the k most recent values are
used as k predictors (explanatory variables) X1, X2, ..., Xk and there is no temporal or-
der between these variables. Note that in this case, these two models process k vari-
ables, but for time series forecasting, they still fall under the univariate category. For
the XGBoost model, we defined a set of hyperparameters to be optimized, including
max_depth, learning_rate, subsample, colsample_bytree, min_child_weight, and
n_estimators.

➢ max_depth: {3,4,...,10}
➢ learning_rate: {0.01, 0.05, 0.1, 0.2}
➢ subsample: {0.5,0.6,...,1}
➢ colsample_bytree: {0.5,0.6,...,1}
➢ min_child_weight: {0,1,...,5}
➢ n_estimators: {100, 300, 500}

We used the RandomizedSearchCV method to vary these hyperparameters and chose the
parameter setting that minimizes the mean square error. We then used these optimized
parameter values to make predictions and evaluate the model performance.
As for the LSTM model, it takes as input the sequence of k values. Figure 4.3 presents the
architecture of the 2-layers LSTM model used to predict the WIP in a one-time step. In
particular, the WIP value at each time step is iteratively fed into the model to compute
the hidden states at the output. These hidden states are stored and then passed as input
to the next layers to compute the final hidden state h2

k. This feature vector is then used
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to predict the WIP value Ê2,t+1 by passing through a Fully Connected (FC) layer.

Figure 4.3 – The architecture of LSTM model for the WIP prediction.

For the implementation of the LSTM model, we used MSE as the metric to minimize
and the optimizer Adam. The training was conducted for 20 epochs with a batch size
of 32. We do not use more epochs as the model converges rapidly within the 20-epochs
range. Additionally, since the problem is relatively straightforward, we selected a batch
size of 32, which is commonly used in neural network training.

After fitting the models, they undergo evaluation on the test dataset (the blue part in
Figure 4.1). For this study, we experimented with predicting from various window sizes k
ranging from 2 to 24. As each time step represents an hour, the model uses past values from
the preceding 2 hours to 24 hours to predict the WIP value for the subsequent hour. In
Figure 4.4, we compare the performance of the three models: linear regression, XGBoost,
and LSTM. In Figures 4.4(a), 4.4(b), and 4.4(c), we present the prediction errors (MAE,
MSE, and MAPE) computed on the test set for each window size. Figure 4.4(d) depicts
the computation time required for model training. The results indicate that XGBoost is
the least effective among the three models, according to all metrics. Linear regression and
LSTM have comparable performance in terms of prediction error, but linear regression is
faster in computation.

Figure 4.5 presents the prediction results obtained from the linear regression model
with window size k = 8. Figure 4.5(a) displays all test samples, whereas Figure 4.5(b)
focuses on the first 100 samples. The model appears to perform well, with a MAPE of
approximately 6.26% on the test dataset. However, upon closer inspection of the zoomed-
in figure, it becomes apparent that the model struggles to predict trend reversal in WIP
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(a) (b)

(c) (d)

Figure 4.4 – Performance comparison of three models: Linear regression, XGBoost, and
LSTM regarding the prediction errors MAE (a), MSE (b), MAPE (c) and the computation
time (d).

(red circles). To improve prediction accuracy, we need to integrate more information. One
potential solution is to incorporate WIP values from other phases in the process.

Univariate and multi-step prediction

This section describes the multi-step prediction of WIP values. Instead of predicting
only the next WIP value, the model predicts a sequence of p future values.

(Ê2,t+1, Ê2,t+2, ..., Ê2,t+p) = Ω(E2,t, E2,t−1, ..., E2,t−k+1) (4.13)
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(a)

(b)

Figure 4.5 – Comparison of predicted (orange) and true (blue) values in test dataset: All
data (a) and 100 samples (b). Trend reversal points are indicated by red circles.

In this study, we assessed two models that showed optimal performance for the one-step
prediction task: linear regression and LSTM. We used a window size of k = 8 and a
prediction horizon of p = 4. The linear regression model recursively predicts each value
using the previously predicted values as input for the next prediction. On the other hand,
the LSTM model directly predicts a 4-dimensional vector. Table 4.1 presents prediction
errors of both models: Linear regression (a) and LSTM (b). The results show that they had
similar performance for all steps. However, the models did not perform well in predicting
WIP values at time steps t+ 2, t+ 3, and t+ 4, indicating that they are not suitable for
multi-step WIP prediction.
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(a) Linear regression

Time
step

MAE MSE MAPE
(%)

t+1 265.87 118363.14 6.23
t+2 527.74 462386.46 12.25
t+3 711.86 847113.56 16.24
t+4 820.42 1109843.35 18.47

(b) LSTM

Time
step

MAE MSE MAPE
(%)

t+1 276.62 125306.22 6.34
t+2 530.68 465229.21 12.06
t+3 711.29 843660.46 16.00
t+4 821.85 1113086.44 18.38

Table 4.1 – Univariate prediction errors for multi-step.

Multivariate and one-step prediction

As stated in the previous sections, relying solely on information about past values of
WIP in a single phase is insufficient for accurately predicting future values, particularly
beyond t+2. Therefore, in this study, we incorporated WIP information from other phases
to enhance the model. Specifically, in order to predict E2,t between FE1 and FE2, we
used not only the historical variation of E2,t, but also the WIP values between FE2 and
ICT (E3,t) and between ICT and BE (E4,t). Consequently, the prediction problem, in
this case, became multivariate, as shown below:

Ê2,t+1 = Ω



E2,t

E3,t

E4,t

 ,

E2,t−1

E3,t−1

E4,t−1

 , . . . ,

E2,t−k+1

E3,t−k+1

E4,t−k+1


 (4.14)

Table 4.2 presents the prediction error obtained from multivariate models, as compared
to the error obtained in the case of univariate models. The results indicate that incor-
porating WIP values from other phases into the model input does not yield significant
improvement.

In summary, the results of the WIP prediction indicate that the past values of WIP
can be used to predict the value of WIP in the next hour, and linear regression performs
the best out of all the models tested. Additionally, the analysis shows that trend reversal
points cannot be predicted, and including WIP information from other production phases
does not improve prediction accuracy. These findings suggest that additional sources of
information may need to be integrated to obtain more accurate predictions.
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(a) Linear regression

Model
type

MAE MSE MAPE
(%)

uni- 265.87 118363.14 6.23
multi- 264.34 117647.54 6.21

(b) LSTM

Model
type

MAE MSE MAPE
(%)

uni- 276.62 125306.22 6.34
multi- 272.99 122738.89 6.26

Table 4.2 – Prediction errors from multivariate vs. univariate for one-step prediction of
WIP.

4.2 Remaining cycle time prediction

The Remaining Cycle Time (RCT) is the amount of time needed for a process instance
to complete from its current state. Accurately predicting the RCT of ongoing process
instances is a crucial aspect of predictive process mining. It allows for the extraction of
valuable insights into process performance, identification of bottlenecks, and proactive
measures for enhancing process flow. In the literature, various approaches are employed
to predict the RCT, which depend on input data, the prefix encoding method, process
awareness, and the family of algorithms. Neural networks have shown promising results
against classical methods in different benchmarks [111]. In this study, we focus on GNNs,
a new type of network that has recently demonstrated good performance in PPM but has
not yet been applied in RCT prediction. We present the first use of the GNN model and
compare its performance with the LSTM model of [102], which serves as a baseline due
to its highly promising results in the benchmark presented in [111].

4.2.1 Problem statement

This section provides the formalization of the RCT problem. Table 4.3 presents an
example of an event log L that illustrates the data used for RCT prediction. Each row in
the table corresponds to an event e.

Given the prefix of a process instance, which includes all the events that have occurred
up to a certain point in time, and a prediction model, which is trained on historical process
data, the goal is to estimate the remaining time until the completion of the process
instance.

For example for the trace σ1 = ⟨e1, e2, e3, e4, e5⟩ associated with case ID number 1
in Table 4.3, some prefixes that can be extracted from σ1 are hd2(σ1) = ⟨e1, e2⟩ and
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Table 4.3 – Example of an event log.

Event ID Case ID Activity Timestamp
e1 1 a 2022-01-30 08:20:07
e2 1 b 2022-02-08 08:58:46
e3 1 b 2022-02-08 09:59:05
e4 1 c 2022-02-11 17:27:35
e5 1 d 2022-02-15 09:45:20
e6 2 a 2022-01-30 08:38:54
e7 2 b 2022-02-07 09:30:07
e8 2 c 2022-02-10 15:12:25
e9 2 a 2022-02-10 17:15:08
e10 2 d 2022-02-12 16:31:20

hd3(σ1) = ⟨e1, e2, e3⟩.

The RCT prediction takes as input the prefix of a running case and outputs the time
remaining until the end of that case. An RCT prediction model is a function Ω such that:

Ω(hdk(σ)) = #t(e|σ|)−#t(ek), k ∈ 1..(|σ| − 1).

There are two main approaches to predicting the RCT of a running process instance.
The first approach, namely the recursive approach, involves recursively predicting the
next activity and its timestamp until the end of the process, and the RCT is obtained
with a function Ω′ by summing the time between all intermediate activities (see Equation
(4.15)). The second approach, namely the direct approach, involves directly predicting
the RCT from the prefix (see Equation (4.16)). This latter approach trains a function Ω
from the prefix space to R using historical data.

∆t̂ =
|σmax|−1∑

j=k

Ω′(hdj(σ)) (4.15)

∆t̂ = Ω(hdk(σ)) (4.16)

A systematic review of state-of-the-art models is presented in Section 1.1.2. For the
recursive approach, the model Ω′ is trained to predict the next event and timestamp.
Predicting the next activity and timestamp is a sub-task of the RCT prediction problem,
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making it simpler and generally resulting in lower prediction errors. However, the recursive
method requires many intermediate prediction steps to obtain the final result. As a result,
the prediction is computationally expensive, and the prediction errors may accumulate and
become significant for the final outcome, especially for long processes with many events
and a lot of duplicated activities [102]. On the other hand, the direct approach builds
its own model, resulting in faster and more direct predictions. However, for complex and
long processes, this approach may be less accurate.

In our case study, we use a neural network as the function Ω. It is important to note
that the prefix is represented as a subsequence of events, and each event is made up of an
activity label, a timestamp, and other attributes. To utilize a neural network for processing
prefixes, we must convert the prefix into numerical tensors, such as vectors or matrices,
which can be used as inputs for the network. This conversion process involves two tasks:
event encoding and sequence encoding. Event encoding is the process of transforming
each event into a vector of features, such as the timestamp and the operation performed.
Meanwhile, sequence encoding involves combining the event vectors into a matrix that
represents the prefix as a sequence of events.

Event encoding

As defined in Definition 1, an event is a tuple of attributes with different types, and
most of them are in text. Hence, event encoding involves extracting relevant attributes for
the prediction problem and then computing their numerical representation. Activity and
timestamp are essential attributes for predicting the RCT since they allow us to model the
past behavior of the ongoing process instance over time. Other attributes, such as cost or
resource, can be included to complement the prefix. The activity attribute is a categorical
variable often represented as text or label. The set of all possible values or modalities is
finite and predefined, making it countable. Common encoding techniques for categorical
variables include One-Hot Encoding, Integer Encoding, and Learned Embedding.

— One-Hot Encoding, also known as dummy coding, creates a binary variable for each
category of a nominal variable, i.e., a variable in which there is no order between
categories. The variable takes a value of 1 if the category is present and 0 otherwise.
This technique is popular for nominal variables.

— Integer Encoding is suitable for ordinal variables, where each category is assigned
an integer value. This method is straightforward and computationally efficient,
particularly for variables with a high number of categories. Nevertheless, integer
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encoding can be arbitrary and can create unintended relationships among cate-
gories. Therefore, one must be cautious when choosing integer values.

— Learned Embedding involves the creation of low-dimensional vector embeddings for
each category of variables. Typically, this is accomplished using a machine learning
model, such as a neural network. A relevant loss function is established, and the
embedding vectors are updated iteratively during training through backpropaga-
tion. While commonly used in natural language processing, this technique offers the
advantage of capturing complex and implicit relationships among categories while
reducing the dimensionality of the encoding vectors. However, it does require more
data and resources for the training process, and the resulting embedding vectors
may not be easily interpreted and can be sensitive to initialization and training
parameters.

In our study, since the order or hierarchy between categories is not explicitly known, we
consider the activity as a nominal variable. Then, the one-hot encoding technique is used
to encode the activity.

Regarding the timestamp, we use the encoding technique presented in [102]. Especially
four time-based features are computed for each event. These are the time from the previous
event in the same case, the time from the start of its case, the time within the day, and
the day within the week. In the end, each event is represented by a vector which is a
concatenation of activity encoding and a vector of time-based features. The illustration
shown in Figure 4.6 provides an example of how events can be encoded for the three
events found in the prefix hd3(σ1) = ⟨e1, e2, e3⟩. In this particular example, it is assumed
that there are four different activity labels, resulting in an activity encoding vector with
a length of four. Furthermore, the time between events is computed in seconds, and the
day of the week is encoded from 0 to 6, with Monday being assigned the value of 0 and
Sunday the value of 6.

Figure 4.6 – Example of event encoding.
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Sequence encoding

In the task of prediction of the RCT, inputs are prefixes with variable lengths. One
solution is to train multiple predictors based on the prefix length. This approach involves
training several predictors, each with a distinct prefix length of the input sequence. Each
predictor only needs to be trained on a subset of the data, thus making the training process
faster. However, the downside of this approach is that it requires numerous models and
training sessions, which can be challenging when dealing with long traces. Additionally,
the performance may deteriorate as the sequence length increases, as each predictor only
has access to limited information.

The other solution is to combine all the prefix lengths and train a single model that
takes the entire input sequence as input and predicts the RCT. By considering the entire
input sequence, the model can capture complex dependencies between the input sequence
and the remaining cycle time, resulting in more consistent and accurate predictions. In
our case study, we utilized the latter approach. In this case, the model takes inputs with
varying prefix lengths. After the event encoding, the prefix is represented by a sequence
of vectors. Subsequently, a sequence encoding step is required to obtain relevant inputs
for the model. This study utilizes two sequence encoding techniques:

— Prefixes padded [80]: Neural networks are, in general, designed to process data
with a fixed dimensionality or shape, meaning that the input tensor must have
consistent dimensions across all input examples. To accommodate this requirement,
this encoding technique consists of setting a fixed maximum length for the input
prefix and padding shorter prefixes with zeros. In this study, we take the length
of the longest trace as the maximum prefix length. As illustrated in Figure 4.7
for our example trace σ1 and prefix hd3(σ1) = ⟨e1, e2, e3⟩, the top table provides
an example of prefix padding where the maximum length is assumed to be 5, the
length of the trace. The prefix of length three is then padded with two rows of
zeros.

— Prefixes flexible: This method encodes all events in the prefix without using
padding. As a result, the length of the feature matrix matches the prefix length.
It is specifically designed for models that can process inputs of varying sizes. An
example of the flexible prefix technique is shown in the bottom table of Figure 4.7.
We observe that events e2 and e3 correspond to the same activity, b, resulting in
similar activity representations. However, their time-based features differ as they
occur at different times. The number of lines in the matrix is determined by the
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number of events in the prefix.

Figure 4.7 – Example of prefix encoding methods used in this study.

4.2.2 Neural network architectures for the RCT prediction

Graph Neural Networks

Graphs, which are defined in Definition 6 in Section 3.1, are essential tools for display-
ing relationships between entities and representing data. Their applications span various
fields, including social science, linguistics, chemistry, biology, physics, and more. Social
scientists use graphs to illustrate connections between individuals, while chemical com-
pounds are often depicted using graphs with atoms as nodes and chemical bonds as edges.
In linguistics, graphs are used to capture the syntax and structure of sentences. In this
study, we utilize the power of graphs by applying GNNs to the assembly process. In our
model, nodes represent different operations, and edges depict transitions between oper-
ations. GNNs belong to a class of neural networks designed to process graph data. This
section introduces the fundamental concepts of GNNs and some common architectures.

In simple terms, GNNs can be viewed as a process of representation leaning on graph
[62]. These representations are able to capture the connectivity and structure of the graph
and can contain valuable information for tasks such as node classification or link predic-
tion. There are two primary perspectives when it comes to GNNs: node embedding and
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graph embedding. Node embedding is the process of representing each node in a graph as
a low-dimensional vector. The aim of this process is to capture both the structural and
semantic information of the node and its surrounding neighborhood. The goal is for sim-
ilar nodes to be mapped to nearby points in the embedding space while dissimilar nodes
are mapped to distant points. Graph embedding, on the other hand, involves mapping the
entire graph into a low-dimensional vector representation. The aim of graph embedding
is to capture the overall structure and meaning of the graph. Node embedding is useful
for tasks like node classification, link prediction, and node clustering, while graph embed-
ding is useful for tasks like graph classification, graph clustering, and graph visualization.
The concise overview of graph representation learning is presented in Figure 4.8. In this
process, GNNs take on the role of the function f(.), which takes the graph G0 as input.
Typically, GNNs process both the graph structure, represented by the adjacency matrix
A ∈ RN×N and the node feature matrix H0 ∈ RN×d0 , respectively. d0 is the dimension of
the node feature vector. The output graph GL has the same structure as G0, but the node
features (or hidden states) are transformed to the latent space RdL . The graph embedding
vector is computed from the node embeddings through the pooling process.

Figure 4.8 – Overview of graph representation learning.

Message Passing: This section presents the Message Passing framework, a general con-
cept on which most GNN architectures are based [32]. It presents the process by which
information is propagated through a graph. In this framework, each node in the graph
aggregates information from its neighboring nodes and updates its own state. The process
of message passing involves three phases:
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1. Initialization
Each node vi in the graph is assigned an initial hidden state h0

i that describes its
attributes or properties. In case no information is available, a random initialization
can be performed.

2. Message aggregation
In this phase, each node vi with its hidden state aggregates information from its
neighboring nodes N (vi) (Equations (4.17), (4.18)).

ml+1
i = Ψ({(hl

j, eji)|vj ∈ N (vi)}) (4.17)

= Γ(
∑

vj∈N (vi)
ψ(hl

j, eji)) (4.18)

where l is used to identify the iteration (layer), ml+1
i is the message associated to

node vi at iteration l + 1. The function Ψ accepts as input the hidden state hl
j

of all neighborhood node N (vi) of the node vi as well as the corresponding edge
features eji. This function is invariant to permutation and produces an output that
remains constant even if the order of input elements is changed. The expression for
a permutation invariant function can be found in Equation (4.18), which follows
Theorem 4.1 of [115]. The use of this type of function solves the issue of not having
a consistent way to order nodes. Common examples of such functions include the
sum and the mean.

3. Update
This phase involves updating the state of each node based on the aggregated mes-
sages and its own previous state.

hl+1
i = U(hl

i,m
l+1
i ) (4.19)

The process of message aggregation and update is repeated for a fixed number of
iterations L or until a convergence criterion is met. Once completed, a new hidden state
hL

i is obtained for each node vi.
The selection of functions Ψ and U results in variations architecture of GNNs. Here

are some specific examples of these architectures:
∗ Graph Convolution Network (GCN) [49]

H l+1 = σ(D̃− 1
2 ÃD̃− 1

2H lΘ) (4.20)
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where A is the binary adjacency matrix and Ã = A + I, I being the identity
matrix. D̃ is the degree matrix associated with Ã, i.e., D̃ii = ∑

j Ãij. H ∈ RN×F is
the matrix of node features. Θ is a trainable weight matrix, and σ(.) denotes the
activation function. The GCN model is a simplified version of the Cheby filter [21]
with order K = 1 and an approximation of λmax = 2. Equations (4.18) and (4.19)
are implicitly included in Equation (4.20). The D̃− 1

2 ÃD̃− 1
2 matrix is non-zero only

for nodes that are directly connected. Thus, the GCN model updates node features
by considering directly connected neighbors [62].
∗ GraphSAGE [35]

NS(vi) = SAMPLE(N (vi), S) (4.21)

ml+1
i = AGGREGATE({hl

j|vj ∈ NS(vi)}) (4.22)

hl+1
i = σ([hl

i,m
l+1
i ]Θ) (4.23)

The GraphSAGE model starts with a sampling process which samples randomly
a fixed number S of nodes NS(vi) from the local neighborhood N (vi) of a given
node vi (4.21). Then the information from these selected nodes is aggregated by
the AGGREGATE() function (4.22). Various aggregators have been introduced in
[35] such as the mean aggregator, LSTM model or the pooling aggregator. Finally,
the aggregated message and the old hidden state are combined to generate the
new features as shown in Equation (4.23). In this phase, a fully connected layer is
used as the update function U(), and [., .] is the concatenation operation. Θ is a
trainable weight matrix, and σ(.) denotes the activation function.
∗ Graph Attention Network (GAT) [108, 109] The GAT model and GCN both

aggregate information from neighboring nodes to generate new features for each
node. However, the GAT model differentiates the importance of neighbors during
the aggregation process, while the GCN only considers the graph structure. To
achieve this, the GAT model attends to all neighbors of a node and generates an
importance score for each neighbor. These scores are used as linear coefficients
during the aggregation process to generate new features for the node.
For each node vi, the importance score of node vj ∈ N (vi) ∪ {vi} is calculated by
passing a feedforward layer:

αij =
exp

(
LeakyReLU(aT [Θhi,Θhj])

)
∑

vk∈N (vi)∪{vi} exp (LeakyReLU(aT [Θhi,Θhk])) (4.24)

115



Chapter 4 – Predictive Process Mining

where Θ is the shared weight matrix, a is a parametrized vector, [., .] denotes the
concatenation operation and LeakyReLU is the nonlinear activation function.

Graph pooling: Graph pooling is a technique utilized for graph embedding. It involves
computing the representation vector of the entire graph G = (V,E) by means of a readout
function R. If there is no discernible order among the nodes of the graph, then the function
R must be permutation invariant.

hG = R({hL
i |vi ∈ V }) (4.25)

where hG is the graph embedding.
There are several methods that are classified as either flat graph pooling or hierarchical

graph pooling, according to [62]. Flat graph pooling computes the graph representation di-
rectly from node embeddings in a single step. Examples of this approach include max/min
pooling, sum pooling, and average pooling. On the other hand, hierarchical graph pooling
coarsens the graph step by step from the original graph until the graph embedding is
achieved. This approach often involves multiple pooling layers. An example of this ap-
proach is sub-sampling, which involves selecting the most important nodes as the nodes
for the coarsened graph.

Gated Graph Neural Networks

Like most GNNs, the GGNN’s core operation is message passing, which consists of
two phases: message aggregation and update (as shown in Figure 4.9).

Figure 4.9 – Architecture of Gated Graph Neural Networks.

The input graph whose node features are initialized by the prefix encoding method
presented in Figure 4.7 first goes through a message aggregation phase in which each node
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vi aggregates information from its neighboring nodes N (vi).

ml+1
i =

∑
vj∈N (vi)

eji ×Θ× hl
j (4.26)

Then, the hidden state hi of node vi is updated. In the case of GGNN, the function
U is a Gated Recurrent Unit (GRU) cell [19].

hl+1
i = GRU(ml+1

i , hl
i) (4.27)

GGRU and LSTM are two popular types of recurrent neural networks. In comparison
to the LSTM architecture discussed in 4.1.2, the GRU has a simpler structure with only
two gates: the update gate and the reset gate. The message-passing process is repeated L
times so that the information from one node is propagated to all other nodes in the graph.
The hyper-parameter L is similar to the number of convolution layers in the CNN. The
GGNN model is used in [119] to predict the next activity. In this study, we applied this
model to solve the RCT prediction problem. The input prefix is considered as a graph
whose nodes are events presented in the prefix, and the edges represent the precedence
relations between the events. Furthermore, edges are distinguished into three types:
∗ Forward: edges from one to a new activity within a case, e.g., ⟨e1, e2⟩ in case 1 of

Table 4.3. This edge is shown in blue in Figure 4.9.
∗ Backward: edges from one to an activity that has been performed in a case, e.g.,
⟨e8, e9⟩ in case 2.
∗ Repeat: edges between two events associated with the same activity, e.g., ⟨e2, e3⟩

in case 1. This edge is the red one in Figure 4.9.
At the output of the GGNN block, we obtain the node embeddings. They are then passed
through a readout function to get the graph embedding. We use the global mean pooling
function to do this. Finally, the graph embedding goes through fully connected layers with
the activation function ReLU to make a prediction.

RCT prediction model architectures

In this case study, two neural network architectures have been employed to solve
the task at hand. The first architecture is LSTM, which was found to have the best
performance in the recent benchmark [111]. The second architecture is the Gated Graph
Neural Network (GGNN) which is proposed by Li et al. [58]. This model exhibits good
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performance when compared to classical methods for predicting the next activity, as
presented in [119]. Our study aims to compare these two models and determine whether
the GGNN can outperform the current state-of-the-art model, LSTM.

Figure 4.10 presents the architecture of the two RCT prediction models. The LSTM
model is shown in the top part of the figure, and it takes as input a sequence of vector
features, with each vector corresponding to an event in the prefix. The hidden state from
the output of the LSTM model is passed through fully connected layers to make the
prediction. On the other hand, the GGNN model, shown in the bottom part of the figure,
takes the input in the form of a graph, where each node represents an event. The graph
is then passed through a certain number of layers of GGNN, resulting in a new graph
with updated hidden states. The output graph is then subject to a global mean pooling
operation to obtain the graph embedding, which is subsequently passed through fully
connected layers to make the prediction.

Figure 4.10 – Architecture of RCT prediction model.

Regarding the prefix encoding, the prefixes padded encoding is used in the LSTM
model. The GGNN model uses the prefixes flexible encoding. The three first time-based
features are computed in seconds. They are normalized using min-max normalization
during the training phase.

4.2.3 Experimentation

Datasets

In this study, we use three event log datasets. The first two datasets, Helpdesk and
BPIC20, are publicly available datasets commonly used in the field of process mining.
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The third dataset is from the real manufacturing process of Vitesco Technologies.
— Helpdesk (Figure 4.11) contains event logs from a ticketing management process

of the help desk of an Italian software company. The logs are available at [76].

Figure 4.11 – Directly follows graph generated for the Helpdesk dataset.

— BPIC20 (Figure 4.12) contains events pertaining to two years of travel expense
claims [25].

Figure 4.12 – Directly follows graph generated for the BPIC20 dataset.

— EMS01 dataset (Figure 4.13) represents a real manufacturing process for assem-
bling electronic boards of the family EMS01 in Vitesco Technologies.
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Figure 4.13 – Directly follows graph generated for the EMS01 logs. The FE phase is in
blue, and the BE is in yellow. The label on each edge represents the number of products
that have taken the corresponding transition. Operation IDs in nodes are anonymized for
confidentiality reasons.

All of the datasets were preprocessed, and only complete traces were extracted. Table 4.4
displays the statistics of the processed event logs. The statistics reveal that the EMS01
dataset has the highest number of activities, the highest average events per case, as well as
the highest number of variants. These findings suggest that the manufacturing process for
EMS01 products is more intricate and detailed than the other two datasets. In contrast,
the Helpdesk dataset has the lowest average number of events per case, which implies a
relatively simple process. The BPIC20 dataset falls somewhere in between. Overall, the
statistics suggest that the manufacturing process of EMS01 products is more complex
than both the IT support ticketing process and the loan application process.

Each dataset is then split into two sets according to the start time of each case. The
first 2/3 of the traces are used to train the model, and the last 1/3 of the traces constitute
the test set. Regarding the input for the RCT prediction problem, only prefixes with a
minimum length of two events are considered because the GGNN model requires a graph
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input that contains at least two nodes.

Table 4.4 – Statistics of event logs used in the study.

Event log Nb. activities Avg.
case
length

Max.
case
length

Avg.
case du-
ration
(days)

Max.
case du-
ration
(days)

Min.
case du-
ration
(days)

Variants

Helpdesk 10 4.66 15 40.85 59.99 30.64 207
BPIC20 15 5.49 24 11.62 368.19 1.06 64
EMS3141 35 28.76 44 7.01 80.87 0.69 296

Experimental setup

We conducted an experiment using Pytorch that involved two tasks. The first task was
to compare the performance of the direct and recursive approaches in predicting the RCT.
The second task was to evaluate the performance of the GGNN model against the LSTM
baseline model. For the training step, we set aside 20% of the training set for validation
and implemented dropout layers and early stopping techniques to prevent overfitting.
We fine-tuned the dropout percentage as well as other hyperparameters, including batch
size, learning rate, number of layers, and the dimension of hidden layers, using Bayesian
optimization. Once we found the optimized hyperparameters, we retrained the model.
Due to the randomness problem in neural networks arising from initialization, dropout
process, and stochastic gradient descent, we repeated the training and reference process
five times and computed the average and standard deviation for prediction outputs to
ensure consistent results. We used the MAE metric to assess the model performance.
For more information on hyperparameter tuning and the training process, please visit
https://github.com/duongtoan261196/RemainingCycleTimePrediction.

4.2.4 Results and analysis

Direct vs recursive approaches for the RCT prediction

This section presents a comparison of the performance of recursive and direct ap-
proaches in predicting RCTs. To do this, we utilize the LSTM-based model shown in Fig-
ure 4.10 (top). The recursive approach was originally developed in [102], and we reused
it for this study, as well as developing a direct approach using LSTM.
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Table 4.5 presents the average prediction errors over all prefix lengths of the LSTM-
recursive and LSTM-direct models on the two public datasets Helpdesk and BPIC20.
The results demonstrate that LSTM-direct provides more accurate predictions for both
datasets. The last column of the table reveals the percentage of error reduction achieved
by using the direct approach rather than the recursive approach. Furthermore, our exper-
iment shows that the recursive approach takes longer to predict than the direct approach
because it must predict each subsequent event until reaching a stopping criterion, while
the direct approach predicts everything at once. As a result, it was decided to only test
the direct approach in future experiments.

Table 4.5 – Average MAE (days) over all prefix lengths of the prediction by the LSTM-
recursive and LSTM-direct model.

Dataset LSTM recursive LSTM-direct Gain in %
Helpdesk 5.783 5.666 2.02
BPIC20 3.431 3.269 4.72

GGNN vs LSTM for the RCT prediction

The main contribution of this study is the use of graph neural networks for RCT predic-
tion. This section compares the performance of the GGNN presented in Figure 4.10 (bot-
tom) and the LSTM model in Figure 4.10 (top). Table 4.6 shows that the GGNN model
outperforms the LSTM for the Helpdesk dataset. Concerning the BPIC20 dataset, the
two models perform nearly the same, with only 0.18% difference in the MAE. Figure 4.14
shows the prediction error for each prefix length. The figure does not show prefix lengths
for which the number of samples is very small. It can be seen from Figure 4.14(a) that
the prediction errors reduce when the prefix length increases. This result is reasonable
because a long prefix gives more information to predict the RCT. However, this seems
not to be the case for the BPIC20 dataset (Figure 4.14(b)). Indeed, the error goes up for
prefixes of length 6. Actually, in the BPIC20 dataset, the number of samples for prefixes
from the length of 6 is much lower than those for shorter prefixes. Hence, the model is
trained less for these prefixes. Overall, these results indicate that the GGNN model may
be applied to the RCT prediction problem to achieve better prediction.
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Table 4.6 – Average MAE (days) over all prefix lengths of the prediction by the LSTM
and GGNN model.

Dataset LSTM GGNN Gain in %
Helpdesk 5.666 5.345 5.67
BPIC20 3.269 3.275 -0.18

(a) (b)

Figure 4.14 – MAE values (days) of different prefix lengths for two public event logs:
Helpdesk (a), BPIC20 (b). The error bars at the top of each bar represent the standard
deviations of the metric.

Application of RCT prediction in a real manufacturing process

After comparing the two models on public datasets, we apply them to a real-life
process of the automotive company Vitesco Technologies. The process is composed of
different steps to assemble electronic boards from printed circuit boards (PCBs). Figure
4.13 presents the process related to the product family EMS01 by a directly-follows graph.
The assembly process consists of two consecutive phases: Front-end (FE) in blue and Back-
end (BE) in yellow. Compared to the two public datasets, the EMS01 dataset is more
complex in terms of the number of activities, case length, and the number of variants
(see Table 4.4). For the RCT prediction problem, we only consider products that have
completed the FE phase and are currently in the BE phase. This is products that have
completed the FE phase are stocked in an intermediate area while waiting to be processed
in the BE phase, and the waiting time varies significantly depending on the production
status and several other factors. This uncertainty can therefore degrade the performance
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of predictive models.
Figure 4.15 presents the prediction error for each prefix length between the LSTM

and the GGNN model. The results clearly show that the GGNN model outperforms the
LSTM. The average error over all prefix lengths is 1.267 hours for LSTM and 0.339 hours
for GGNN, respectively. That is 73.2% reduction on the prediction error of GGNN versus
LSTM. This outperformance is clearly superior compared to the results obtained with
Helpdesk and BPIC20. This also shows that the GGNN model works better with more
complex processes.

Figure 4.15 – MAE values (hours) of different prefix lengths for the EMS01 dataset. The
error bars at the top of each bar represent the standard deviations of the metric.

4.3 Conclusion

In this chapter, we presented two prediction problems applied to the real manufactur-
ing process from Vitesco Technologies: WIP prediction and RCT prediction. The objective
of the WIP prediction is to help manufacturers better manage their production process
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by predicting the amount of work in process at a given time. The RCT prediction aims
to predict the remaining time required to complete a product, which can aid in planning
and scheduling the production process.

Regarding the WIP prediction, our experiments show that linear regression performs
the best with respect to prediction error, computational time, and interpretability. How-
ever, the model still struggles with trend reversal in WIP variations and multi-step pre-
dictions (t+2, t+3, etc.). Furthermore, historical WIP values alone are insufficient for
accurate prediction. The complexity of manufacturing processes, which involve multiple
stages and sources of variability, makes accurate prediction challenging, and additional
information, such as planning and logistics data, should be incorporated.

For the RCT prediction, our results demonstrate that the GGNN model outperforms
the baseline LSTM, particularly for long and complex processes such as the assembly
process of our case study. This indicates that graphs can efficiently capture the com-
plex relationships and dependencies between process variables, leading to more accurate
predictions in complex processes.

In conclusion, predictive process mining is a promising approach for improving man-
ufacturing process efficiency and productivity. However, accurately predicting process
variables is challenging due to their complexity and variability. Future research should
focus on developing more accurate and robust prediction models that can incorporate a
broader range of data sources and handle the complexities of manufacturing processes.
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CONCLUSION

In this thesis, we present an in-depth exploration of process mining techniques and
Graph Neural Networks (GNNs) in the manufacturing industry. Initially, we conduct a
comprehensive overview of state of the art in process mining, highlighting its importance
and relevance in today’s business world (Chapter 1). The literature review reveals that
process mining has been widely used in various domains and industries, including health-
care, finance, and IT. We discuss various process mining techniques for process discovery,
conformance checking, and process improvement, ranging from process model-based to
machine learning-based methods. Moreover, we highlight the potential of process mining,
combined with other related technologies, such as data mining and machine learning, to
achieve better outcomes. Among various machine learning architectures, GNNs appear to
be promising due to their capacity to process graph-structured data, such as process mod-
els generated from process mining techniques. Additionally, the underdeveloped status of
process mining and GNNs in the manufacturing domain motivates us to apply GNNs to
a real manufacturing process in the context of process mining.

Next, in Chapter 2, we introduce the general context of the thesis, which is the auto-
motive industry and, specifically, the manufacturing process. We also introduce the case
study of Vitesco Technologies, along with a detailed description of the Printed Circuit
Board (PCB) assembly process and related datasets that are used for the research. The
production process and the vast amount of event log data motivate the study of process
mining and related methods as the core of the research in the thesis.

The main contribution of this thesis consists of two primary axes of process mining:
Descriptive Process Mining (DPM) and Predictive Process Mining (PPM), presented in
Chapters 3 and 4, respectively. Before that, we introduce fundamental process mining
concepts such as event log, event, trace, and prefix. Concerning DPM, we discuss the two
primary tasks in the field: process discovery and conformance checking. We have proposed
an end-to-end process mining framework that computes the timed process model and com-
pares it with the actual behavior of products to assess their quality and performance. The
quality indexes provided by our framework serve as an indicator for manufacturers to
evaluate how well their products performed during the production phases and to iden-
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tify any potential issues in case of failure. One of the fascinating aspects of our work is
that we have integrated domain knowledge from process experts alongside process mining
techniques and event log data. This integration enhances our results’ accuracy, enables
their interpretation, and supports effective decision-making. Moreover, we have proposed
a statistical methodology based on non-parametric kernel density estimation for perfor-
mance analysis between work shifts based on the quality index. Although the analysis
may not show significant variability between shifts, it provides relevant information to
the quality service and management, allowing for a comprehensive understanding of the
production process and identification of potential areas for improvement. Furthermore,
the method is generic and can be applied to other manufacturing processes. Finally, we
have developed a real-time Work-In-Progress (WIP) calculation and tracking program
that facilitates production monitoring. In particular, the operational teams use it daily as
an essential tool in the Vitesco Technologies plant of Foix.

Regarding PPM, we present two prediction problems applied to the PCB assembly
process: WIP prediction and Remaining Cycle Time (RCT) prediction. The goal of WIP
prediction is to assist manufacturers in better managing their production process by pre-
dicting the amount of WIP at a given time. On the other hand, the RCT prediction
aims to predict the remaining time required to complete a product, which can be useful
in planning and scheduling the production process. The experiments conducted on WIP
prediction reveal that linear regression yields the best results in terms of prediction error,
computational time, and interpretability. However, the model still struggles with trend
reversals in WIP variations and multi-step predictions. These issues arise due to a lack of
information. Past values of WIP alone are insufficient to accurately predict future values,
particularly over long periods. The results suggest incorporating additional information,
such as production planning and logistics data. Regarding RCT prediction, the results
indicate that the Gated Graph Neural Network (GGNN) outperforms the baseline LSTM
for long and complex processes. This is an exciting finding as it highlights the poten-
tial for using GNNs in process mining applications. In particular, the use of GNNs can
improve the efficiency of handling graph-structured data, which is often encountered in
manufacturing and other industrial processes. By leveraging the inherent structure of pro-
cess models, GNNs can effectively capture the complex dependencies between different
activities.

Despite several promising results achieved during this thesis, there are still various
aspects that require further improvement and exploration in future works. For example,
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in the evaluation of product quality using event logs (Section 3.3.1), a parameter learning
process (λ, γk) could be conducted based on after-sales service data related to products
returned by customers. Additionally, an additional dimension that affects product quality,
which is the time slot during production, could also be considered.

Regarding performance analysis between work shifts (Section 3.3.2), other dissimi-
larity measures between distributions, such as the Wasserstein distance [113], could be
tested. Furthermore, additional criteria, such as the number of rejected products, failed
operations, or the average cycle time, could also be considered. Finally, with regards to
the tool for WIP tracking, a unified and centralized application could be developed for
all other plants of Vitesco Technologies.

As for the prediction models, the WIP prediction (Section 4.1) results suggest that
more data should be collected to accurately infer future values of WIP. Once the prediction
is considered good enough, it can be integrated into the WIP tracking application to
provide both current and future information about the production process. For the RCT
prediction (Section 4.2), we intend to develop and evaluate more GNN variations for the
RCT prediction problem. Additionally, we will focus on the task of prefix encoding and
event encoding to improve the prediction.

Overall, this thesis has made significant contributions to the field of process mining
in the manufacturing industry. The case study demonstrates the practical application of
process mining techniques and GNNs in a real-world scenario, and the results obtained
have offered promising prospects for the future utilization of these technologies in the
manufacturing industry. The descriptive process mining presented in this thesis has pro-
vided a basis for thoroughly understanding process behavior, while the predictive process
mining techniques show promising results in predicting future process behavior. However,
there are still various challenges and open problems in process mining and GNNs, in-
cluding scalability, interpretability, and generalization, which require further research and
development. Moving forward, future research could focus on the integration of GNNs and
process mining techniques to develop more accurate and robust predictive models. Addi-
tionally, the development of more interpretable and scalable models for process mining
is essential to enhance the transparency of these models and make them more accessible
to a broader range of users in the manufacturing industry. Another promising direction
for future research is to investigate the potential of incorporating other machine learn-
ing techniques, such as reinforcement learning and transformer, to further enhance the
accuracy and efficiency of process mining. Finally, it is important to continue exploring
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the applications of process mining in different industries and contexts to fully understand
its potential benefits and limitations. With continued research and development, process
mining has the potential to transform the way the manufacturing industry approaches
process improvement and optimization.
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