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“All models are wrong, but some are useful.”

– George Box, 1976
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Introduction

In the last 10 years and since my PhD, I have tackled a wide variety of research topics in the theoretical
design of system software for High-Performance Computing, particularly in the allocation of various
resources depending on the system constraints:

I/O scheduling [C2, J9, J3, RR3, C4, C8, C12]: A key issue in supercomputers is the management of
data that has been generated and that needs to be stored on disks (checkpoints for resilience,
visualization etc). Part of my research has been on scheduling to minimize contention and increase
I/O performance of HPC applications.

Scheduling Stochastic Applications [J5, C6, C9, C11, C10, J10]: With the advent of HPC, new types
of applications are run on supercomputers. Those applications have different characteristics than
the typical HPC applications, specifically their execution time is not as deterministic. In this
project with researchers from Vanderbilt University, we study Neuroscience application and model
their performance using probability distribution. We are interested in the convergence of HPC
schedulers and these new applications. In this work we discuss the performance of current sched-
ulers and propose novel algorithmic strategies to deal with stochastic applications.

Storage-aware Adjoint Computation [J6, J4, J13, J16]: This is a project with Argonne National Lab
(Paul Hovland, Krishna Narayanan) where we study a specific type of graph, backpropagation
graphs, and provide efficient solutions to execute them in the presence of storage constraints. With
Julien Herrmann we developed a library where those algorithms are implemented (H-Revolve).

Resilience [C18, J2, C5, RR2]: Since my PhD I have been interested in managing failures on HPC re-
sources. Checkpointing is the standard technique to protect applications running on HPC (High-
Performance Computing) platforms: after each failure, the application executing on the faulty
resource is interrupted and must be restarted. Without checkpointing, all the work executed for
the application is lost. With checkpointing, the execution can resume from the last checkpoint,
after some downtime (enroll a spare to replace the faulty processor) and a recovery (read the
checkpoint). Lately I have been working on the limitations of checkpointing models.

The common grounds of these studies is the methodological approach that I bring when tackling
them. My reseach has been focusing on proposing algorithmic solutions and evaluating new approaches
to these studies. Reading back 10 years of research, I was able to observe the evolution and maturity
that I gained on how to model performance of resource management software. This is what I will try to
describe in this document.

Introduction on High-Performance Computing

High-Performance Computers (also called supercomputers) are massive infrastructure allowing the exe-
cution of extremely large parallel applications. These applications come from a wide range of domains,
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ii INTRODUCTION

such as material physics, climate modeling/prediction, astronomy etc. Used as a cornerstone of some
industrious applications (self-driving cars, drug discovery etc), supercomputing is also one of the pillars
of scientific discovery (such as recently the discovery of Higgs Boson, the formation of supermassive
blackholes). With the advent of Big Data and machine learning, and the race to Exascale (a supercom-
puter able to compute at a peak of 1018Flops) an explosion of application domains turned to such
resources. In addition, the structure of these machines is changing; the scientific workflows are be-
coming more complex; their execution patterns are drastically evolving. These resources are extremely
expensive, both in terms of construction (the Frontier supercomputer, expected to be one of the first
Exascale machines, is estimated to half a billion euros2) and exploitation (Fugaku, the current fastest
supercomputer, consumes 28MW, which represents 24 million Euros per year; which should be added
to several important maintenance costs). Given such a high-cost and energy consumption, utilization
of these systems has to be as close to 100% as possible!

The allocation (or scheduling) problem consists in allocating the different jobs (applications) on
the shared computational resources based on their requirements. The middleware solution in charge of
this allocation is the Resource and Job Management Systems (RJMS), with the most used being the
Slurm Workload Manager [1] (running on most of the 500 most powerful supercomputers). Initially,
these middlewares focused mostly on the allocation on compute resources (CPU, GPU), but they now
start to include the allocation of data resource such as bandwidth and storage. They are central to the
performance of HPC centers and as such have become extremely complicated pieces of machinery.
Research on the design of job management has always made two key assumptions:

• User-provided resource needs: Users are in charge of declaring the volume of resource needed by
their applications during their execution;

• Jobs, not Users: The RJMS system sees submissions as independent jobs, even though, in practice,
an increasing number of jobs are part of a larger user workflow.

User Provided Resource Needs RJMS expect users to give them precise information about the
behavior of their application at submission time, such as the wall time that is requested by the users. Then
RJMS take this information into account to perform resource allocation. This is a simple model, but
unfortunately it is naive because it makes the unrealistic assumption that used-provided resource needs
are accurate. It has been long documented that user estimates are inaccurate (overestimated) [73, 58, 56],
despite user’s best effort! This inaccuracy not only hurts the performance of the system [76], but also
discourages new users to come to these important resources (“How much time am I supposed to ask
for this application, what happens if I overestimate, do I wait longer? Am I penalized?"). The above
assumption may have made sense when applications were regular parallel applications, designed by
HPC experts, running on homogeneous machines, but the growing diversity of applications and the
heterogeneity of supercomputers call for new approaches. In summary, RJMS ask information that
most users are unable to provide accurately, and by using this inaccurate information the overall
performance of the supercomputer is negatively impacted.

Jobs, not Users The scheduling decisions of the RJMS are based on existing information at the
time of decision: which jobs are available, since when, what resources they need, what resources are
available. It also uses information about the share of the platform globally allocated to each user to
provide some fairness in resource usage. However jobs are more complicated than this. Upcoming
applications embrace more dynamic, heterogeneous multi-phase workflows, where the results obtained
by some jobs trigger the submission of new jobs. RJMS and scheduling algorithms barely consider this

2https://www.pcmag.com/news/us-to-spend-600-million-on-frontier-exascale-supercomputer

https://www.pcmag.com/news/us-to-spend-600-million-on-frontier-exascale-supercomputer
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important behavior, critical to user satisfaction and response time. Some tweaks have been introduced
(such as the notion of karma or niceness, of job dependencies for workflows), with negative consequence
to the point that they had to be deactivated on some large systems [39]. Currently, because of their
outdated designs, RJMS rely on collections of ad-hoc “hacks" to solve problems that were not
initially anticipated, resulting in unexpected negative consequences.

Research on RJMS is extremely active in the field of HPC as the smallest loss in system utilization
can cost millions of euros. Yet, this research remains very conservative for the same reasons, focusing
on how to perform local improvement, how to include new knowledge, new architectures. Because
of these constraints, existing algorithms and optimization strategies have been less than suboptimal. It
has also repelled users from those systems. This has been a major barrier to the efficient usage and
democratization of supercomputer, wasting an enormous volume of resources and energy.

Content of this document: I hypothesize that job resource requirements and temporal variations
are in essence stochastic. The variability of their needs is inherent and can be large. Based on this
hypothesis, I believe that HPC scheduling algorithms and softwares should embrace the uncertainty
of job resources requirements. In the design of algorithmic solutions for HPC system softwares, this
uncertainty is not taken into account in a satisfying manner.

In this document I make the case for new ways to incorporate the inaccuracy of knowledge into
models designed for Resource and Job management systems and HPC system software algorithmic.
This demonstration will be based on the research I did in the last ten years.

Through questions and specific examples, I try to show in this document how one can (i) design a
model that accurately represent applications, while being practical; then (ii) show the importance of
questioning the limits of the model proposed, by testing these models against real world hypothesis.

I purposefully chose to focus this thesis on a discussion on models. However, models are only the
first step of the approach; designing new algorithms and scheduling strategies is also at the heart of my
contributions. Please refer to the corresponding publications for more details.

This document is partitioned as follows:

• In Chapter 1, I present some introductory remarks on the design of a model for Resource Man-
agement Algorithmic. In particular I discuss the usual hypothesis for model design.

• In Chapter 2, through a specific use-case (fault-tolerance), I show how one can find and evaluate
inaccuracy in a model.

• This leads in Chapter 3 to reopening the leading questions on how to design properly a model. In
addition, I present my case for better understanding of evaluation objectives in this Chapter.

• In Chapter 4, through the use-case of I/O scheduling, I discussed very thoroughly a search for
efficient models. Specifically I show how the models may be related to the optimization objective
that one wants to study.

• In Chapter 5, I discuss these questions on another use-case: batch scheduling and the inaccuracy
of job runtimes.

• Finally I provide some concluding remarks and open on what I believe will be important research
directions in the future.
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Chapter 1

On Designing an Accurate Model for a
Resource Management Problem

Assume a new research question related to system performance in HPC arises. This questions can
come from a system administrator complaining about low performance –e.g. observation of I/O con-
gestion between applications [J9, C23]–; from a new architecture design being proposed –e.g. Cache-
partitioning is a technology that allows to share exclusively the cache between different processes run-
ning on the same node [J7]–; or simply a new idea using existing techniques –e.g. “what would happen
if, when there is a failure, instead of waiting for a node to be rejuvenated, I killed another, less important
job [RR2]?”–.

1.1 Designing our first model

To answer such questions, one needs to formally define the problem. This is what is often called a
scheduling problem [28]. Most of the time, it needs three distinct elements to be well-defined:

• Elements describing the application;

• Elements describing the machine;

• Elements describing the optimization objective(s).

Describing these elements is the modeling phase of a problem resolution. This phase is then used to get
a better understanding of the problem, formalize it explicitly and design algorithmic solutions used for
optimization purpose.

Example (Modeling I/O behavior [J9, C4]). Consider the following issue: I am seeing I/O con-
gestion occurring at the I/O bandwidth level, it slows-down the performance of applications.

Here we propose a modelization for this problem. It starts by understanding the architecture
considered, before proposing a modelization for applications. Finally, if one wants to measure if a
solution addresses the problem, one needs to be able to define performance.

1.1.1 Machine Model

We consider a parallel platform structured as follows: P compute nodes are sharing an I/O node
(sometimes called a forwarding node) which is available to perform I/O operations from the com-

1



2 CHAPTER 1. ON DESIGNING AN ACCURATE MODEL FOR A RESOURCE MANAGEMENT PROBLEM

pute nodes to the parallel file system. It can send and receive data to/from the Parallel File System
with a maximum bandwidth b.

PFSCompute Nodes
J1

J2

J3J4

1.1.2 Applications

We consider a batch of scientific applications that need to run simultaneously onto the parallel
platform. Applications consists of a series of consecutive non-overlapping phases: (i) a compute
phase (executed on the compute nodes); (ii) an I/O phase (a transfer of a certain volume of I/O using
the available I/O bandwidth) which can be either reads or writes.

Formally, we have a set of n jobs {J1, . . . , Jn}. Each job Ji requests Qi compute nodes for
its execution. Ji consists of ni successive, blocking and non-overlapping operations: (i) Wi,j (a
compute operation that lasts for a time wi,j); Vi,j (an I/O operation that consists in transferring a
volume vi,j of data). Therefore, if the bandwidth available to Ji to transfer its I/O to the PFS is
equal to b, the time Ti needed for the total execution of Ji is:

Ti(b) =
∑
j≤ni

wi,j +
vi,j
b

. (1.1)

However, in general the I/O bandwidth is shared amongst several applications and it may incur
delays to the execution of Ji.

1.1.3 Optimization problem

To measure performance, we can define several objectives. Given a schedule, each job Ji is released
at time ri and finishes its execution at time Ci.

The stretch ρi of Ji is the ratio between the actual execution time and the minimal execution
time:

ρi =

∑
j≤ni

wi,j +
vi,j
b

Ci − ri
(1.2)

(where b is the maximum available I/O bandwidth). A stretch of 1 means that the application is
not impacted by the other applications running on the system. A stretch of 2 means that due to I/O
contention, the application takes twice as long to execute as it would normally. Typically the stretch
is an objective more user oriented. The Dilation D of the system is the maximum of these stretches.
It is an objective that one is looking to minimize.

D = max
i

ρi
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The System Efficiency (SE) of a schedule is the peak performance of the platform, i.e. the
number of operations per time units:

SE =
1

n

n∑
i=1

Qi ·
∑

j≤ni
wi,j

Ci − ri
(1.3)

It is an objective that one tries to maximize. Typically, the system efficiency is an objective more
platform oriented.

1.2 Evaluating a model

After designing a model of the problem, we need to be able to evaluate its practicality with regards to
the objectives that we are targeting. With this in mind, often the first question that one wants to answer
is:

Question 1.1. How accurately does your model fit reality?

Example. Describing an architectural model connected by physical links is something that is easy
to instantiate. A large pan of research is performed on this topic, and tools such as HWLOC [12]
provide ways to represent it and analyze it (Fig 1.1).

Figure 1.1: Graphical representation of a two processor AMD EPYC 7352
(2x24 core) topology as computed by HWLOC [12], B. Goglin, 2019 (repro-
duced with authorization).

Yet even then, some behaviors, particularly with respect to bandwidth performance are hard to
model correctly. Velho et al. [79] have focused on invalidating certain flow-level models of network
communications. They show that one can never be fully confident in such models and assert that
when proposing a model, one should study its limitations.

Often the model is not able to accurately represent reality. However, is this an issue? Is Question 1.1
really the question that we want to solve? A model is not an end in itself, but more a mean to design
algorithms that perform well with respect to our target objectives.

The risk on focusing on Question 1.1 is to provide an hyper-parameterized model. In the past,
hyper-parameterization has led to the design of many meta-heuristic based strategy, which, when used
indiscriminately, often had poor performance compared to heuristic designed for a model with fewer
parameters [67].

When considering a model that has too many parameters to describe it, a recent alternative approach
has been to consider the model as a black-box function [53, 55, 52]. Similarly, in this case designing
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efficient combinatorial algorithms to optimize the objective function is complicated, and researchers
often have to rely on reinforcement learning algorithms or generally deep learning algorithms to resolve
this problem [9, 72].

But the fact that a performance is dependent on many input parameters does not mean that all pa-
rameters are equally important.

Example. Isakov et al. [38] studied the impact of several parameters to predict the I/O performance
of an application. In Figure 1.2, one can see that information on five key parameters (I/O volume,
runtime, cumulative read, write and metadata time) is enough to obtain most of the prediction
performance obtainable.

Figure 1.2: Various I/O parameters have various importance in predicting cor-
rectly the I/O performance. Figure from [38], reproduced with authorization
from the authors.

An alternative example comes from a work with Francieli Boito and Luan Teylo [C2]. In this
work we demonstrated the importance of storage target allocation in applications’ I/O performance
I/O performance (Fig 1.3). In this case, we show that more than the number of storage targets, it is
how the targets are balanced amongst the servers that impact the performance.
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Figure 1.3: The allocation on storage servers plays a major role, and could
account for a large variability in bandwidth performance. All details for this
evaluation can be found in [C2].

This really underlines the importance of the question Why are we constructing a model?, and the
fact that a performance model should often be designed in the context of an optimization objective.

Following this remark, in my past research, I have focused on an alternative question:

Question 1.2. Given this model, are we able to design algorithmic strategy that perform well on what
we are evaluating?

The intuition behind this is that we do not necessarily need a perfect model: some parameters may
have negligible impact on an algorithm design compared to other parameters, and hence should not be
used in ths design. The measure of performance could be inaccurate, while the behavior of the solution
could still be as efficient in the real-world experiment than it is in a simulated scenario (relatively to
other solutions).

Of course, simulations based on this model would not be able to predict the exact performance of a
real-work evaluation. But what we really need from this model, is the ability to design a solution that
performs well (and an easier model may improve the tractability of a problem).

Example. Even-though the models are hard to describe accurately, we were able to show that
a simple model described in the previous paragraph is enough to predict performance extremely
accurately.

Using the model presented in Section 1.1, we designed two algorithms: Periodic, which pre-
computes a static schedule based on the job model and Online, which takes online decisions. We
measured their performance with respect to two objectives: the system efficiency (which measures
how well the system is used), and the dilation, which measures the cost to an individual user. We
performed two evaluations: one on a home-made simulator, and one running IOR benchmarks on a
development platform. All details can be found in [J9].



6 CHAPTER 1. ON DESIGNING AN ACCURATE MODEL FOR A RESOURCE MANAGEMENT PROBLEM

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd

Periodic (expe)
Periodic (simu)
Online (expe)
Online (simu)
Congestion

1.2

1.5

1.8

2.1

1 2 3 4 5 6 7 8 9 10
Set

D
ila

tio
n

Periodic (expe)
Periodic (simu)
Online (expe)
Online (simu)

Figure 1.4: Performance for both experimental evaluation and theoretical
(simulated) results. Congestion is the system measure without additional
scheduling strategies. The performance estimated by our model is accurate
within 3.8% for periodic schedules and 2.3% for online schedules. The x-axis
corresponds to different scenarios evaluated, sorted by increasing Upper-bound
on System Efficiency (details can be found in [J9, Table 2]).

These algorithms were evaluated on various set of applications, with a performance measured
both by simulation (using the model), and experimentally (using I/O benchmarks on a platform that
was made available to us). We observe (Fig. 1.4) that the performance of the simulated algorithms
are particularly accurate.

When focusing on the accuracy of the performance of an algorithm instead of the accuracy of
the model, we were able to verify the coherence of it on several machines: Vesta (a development
platform for the super-computer Mira) [C23], Jupiter (a platform at Mellanox) [J9], and Plafrim (a
platform at Inria Bordeaux) [RR3].

1.3 General comments

When designing a model to represent a scheduling problem, focusing too much on the accuracy of the
model may have detrimental consequences, at the point that one cannot design scheduling algorithms
anymore. Deep reinforcement learning has been proposed as a solution for this hyper-parameterization
of models: we replace the algorithm-designer by a machine learning algorithm.

It is not clear that such precision in a model is needed. The question that one should ask from a
model is not whether it is accurate, but whether this model allows for the selection of the most efficient
strategy.

If it permits this, then one can say that the model is robust [3, 31]: given the inaccuracy of the
model, the expected practical performance are still within a certain precision. This robustness is a trade-
off between its accuracy and its practicability This trade-off can sometimes be measured and we study
this on a use-case in Chapter 2.

On the importance of designing a model and the cost of experiments versus simulations
Designing a model to understand performance behavior has many advantages:

1. It helps architecture designers to understand the limits of an architecture from the application
perspective. A RL algorithm may not show that the limitation of a system for a given workload is
due to memory performance (for instance).

2. It is key to the design of a simulation based evaluation. For instance in a recent I/O work [RR3],
we were able to show that 80% of the experimental results that we performed were within 3.5% of
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the performance predicted by a simulator, describing cases where the simulations were accurate
and cases where they were not. This is even-though we have seen in Figure 1.2 that I/O needed
an extremely large number of parameters to be accurate. In practice the experiments took us 44h
of compute-time on a HPC machine for a simulation time of 5s. The complete evaluation that we
performed to study the limits of our solution would not have been doable by experiments only.
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Chapter 2

Finding and Evaluating Inaccuracy in a
Model: Use Case Fault-Tolerance

In this Chapter, to illustrate the difficulty in finding and evaluating inaccuracy in models, we discuss the
use-case of fault-tolerance. In a nut-shell, fault-tolerance arises in supercomputing from the plentiness
of computing resources: even if each computing resource has a very low probability of failure, the
failure probability of the whole HPC system is much higher. With Yves Robert, we wrote a very nice
introduction to failures and fault-tolerance techniques which I highly recommend , [O3].

To deal with failures, several techniques exist [34, O3]. In this Chapter I will focus on Checkpoint-
Restart: jobs are periodically checkpointed. When a failure occurs, the work done since the last check-
point is lost, and the job restarts from the last checkpointed chunk of work (see Figure 2.1).

Time

failure

period Tlost

p C T -C C T -C C T -C C D R T -C C . . .

Figure 2.1: An execution.

2.1 Modeling fault-tolerance mechanisms

Following Section 1.1, we present a model for the unreliable platform and the applications (and fault-
tolerance mechanism). Then we present an objective to optimize.

For the modelization step, we use one of the simplest model from the literature for periodic check-
point [84, 20]: a job can be checkpointed at any time (divisible job), the failures are independent and
their Inter-Arrival Times (IATs) follow an exponential distribution.

2.1.1 Unreliable platform model

We consider a parallel platform subject to failures. We assume that the failure inter-arrival times are IID
(independent and identically distributed) and follow an Exponential distribution EXP(λ) of parameter λ,
whose PDF (Probability Density Function) is f(x) = λe−λx for x ≥ 0. The MTBF is µ = 1

λ . When hit
by a failure, the platform is unavailable during a downtime D.

9
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2.1.2 Job model

We consider a job of length TIMEbase when there are no failures. We consider the job to be divisible, i.e.
it can be checkpointed anywhere at a constant cost C. In case of a failure, it takes R units of time (after
the downtime D) to recover from the last checkpoint.

2.1.3 Optimization function

The typical objective that one measures is the Waste of resource usage:

WASTE =
TIMEfinal − TIMEbase

TIMEbase
(2.1)

where TIMEfinal is the total time of the execution.1

2.1.4 Optimal solution

For periodic solution, the optimal solution for this problem is what is called the Young/Daly formula [84,
20]: when C is small before µ, then one should checkpoint with a period of

√
2µC to minimize the

waste.
There has been a large body on literature on how to optimize this formula for different contexts [34].

We showed that Daly actually made a small mistake in his model [J19], and that the right approximation
for his model should be

√
2(µ− (D +R))C, but the impact is generally negligible, and the simple

satisfying formula is a good approximation.
In the next sections, we discuss several examples where this model does not take into account real

system constraints along with its robustness.

2.2 Inaccuracy in architecture: the case for independence of fail-
ures

The interested reader can find more information about the science discussed in this chapter here [C18].

The well-known Young/Daly formula for the optimal checkpointing period [84, 20] is valid only if
failure inter-arrival times (IATs), are IID (Independent and Identically Distributed) random variables.

2.2.1 Does the model correspond to reality (Question 1.1)?

There are several ways that this model can be inaccurate. We will discuss here the IID hypothesis.
Several studies [51, 74, 6] have intuited correlation in failures. Indeed, the intuition is that when

something causes a failure (for instance a component overheats), it can create several other failures, in
cascade. This assumption may impact the MTBF of the platform (more failures take place), but also
strongly impacts the independence hypothesis between failures.

Intuitively, if a failure increases the chance of having another failure soon, a fault-tolerant strategy
may want to enter a degraded mode and checkpoint more frequently after a failure.

1Note that the ergodic theory says that the time average is almost surely the space average, hence for a long enough
execution, this is equal to the expectation of the waste.
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Example (Evaluating the presence of cascade failures [C18]). We aim at providing a quantitative
answer to the following question: to what extent are failures temporally independent? We base our
analysis on publicly available failure logs from LANL [45, 42] and Tsubame [78].

In a nutshell, the method that we proposed analyzes the distribution of pairs of two consecutive
IATs. Intuitively, consider a failure log and its IATs. If small values are scattered across the log,
we do not conclude anything. On the contrary, if a small value follows another small value, we
may have found the beginning of a cascade. Our approach checks the frequency of having two
consecutive small values, and compares this frequency with the expected value when IATs are
independent.
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Figure 2.2: Lag plot for LANL2 (left), LANL 20 (center), Tsubame (right) [C18].

Log Number Presence of Cascades
of Faults

LANL 2 5351 Yes
LANL 16 2262 Inconclusive
LANL 18 3900 Inconclusive
LANL 19 3222 Inconclusive
LANL 20 2389 Maybe
Tsubame 884 Inconclusive

Altogether, the observation is that there are indeed some cascades, albeit not very frequent, in
some failure logs. Hence we were wrong to assume failure independence everywhere.

2.2.2 Are the solution designed for the simpler model able to perform well
(Question 1.2)?

Does the previous result mean that when modeling a system, we need to model cascade failures? This
would start to get extremely complicated as we would need to model various type of origin for failures
and their possible impact.

Example (Specific algorithmic strategies to deal with the presence of cascade failures [C18]). In a
second step, we can evaluate the usefulness of cascade-aware checkpointing algorithms. For this,
we have used both public and synthetic logs. We used the latter to explicitly create “artificial”
cascades. We have shown that current cascade-aware bi-periodic checkpointing algorithms are not
really more efficient than the standard periodic checkpointing approach that considers failures to
be independent. Finally, by using a brute-force search over all possible bi-periodic algorithms and
considering omniscient oracles that know exactly when cascade failures will strike, we have shown
that only insignificant gain should be expected from designing future cascade-aware checkpointing
algorithms. The conclusion is that we can wrongly, but safely, assume failure independence!
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Note that there has been other results that show the same results, for instance the failure inter-arrival
time may not follow an exponential distribution. Tiwari et al. [74] and Heien et al [33] confirmed the
observation that the Young/Daly formula is a very good approximation for Weibull distributions.

This conclusion stresses the fact that having an extremely accurate model is not necessarily critical.
Of course the work done is important (even if it is not rewarding): one has to evaluate it thoroughly to
be able to come to this conclusion.

2.3 Inaccuracy in job model

In order to derive their optimal formula, Young and Daly considered a model where the job consisted in
a single continuous execution which could be checkpointed anywhere (divisible) [84, 20].

2.3.1 Does the model correspond to reality (Question 1.1)?

Being able to checkpoint anywhere is possible using some system-based library (such as FTI [7]), but
the checkpoint cost may be extremely expensive (a complete memory footprint), and restart may be
a lot harder for the job. In practice, many scientific applications are decomposed into computational
iterations, and where one can (should) checkpoint only at the end of an iteration. Indeed, for iterative
applications, checkpointing is efficient, let alone possible, only at the end of an iteration, because the
volume of data to checkpoint is dramatically reduced at that point. A wide range of applications fits in
this framework. Iterative solvers for sparse linear algebra systems are a representative example [61, 60].

Some authors have considered including these considerations in order to improve the model (answer
to Question 1.1) to include a limited number of possible checkpointing locations.

The model becomes [O3]:
Given a linear chain of n tasks, T1, T2, . . . , TM . Each task Ti has weight wi. The cost to checkpoint
after Ti is C, and R to recover from this checkpoint.

The problem of finding the optimal checkpoint strategy for a linear chain of tasks (determining which
tasks to checkpoint), in order to minimize the expected execution time, has been solved by Toueg and
Babaoglu [75].

In practice, large scale applications often have extremely large number of iterations (M ) and this
number may even be unknown (iterate until convergence). Hence this algorithm may be inapplicable. In
addition, there may be multiple possibilities to checkpoint within an iteration, each with different cost.

Example (Model for an iterative application with multiple tasks per iterations [J2]). We consider
an iterative application A. Each iteration of the application consists of n parallel tasks ai, where
0 ≤ i < n, task ai has length ti and memory footprint Mi. We define the length of an iteration as
T =

∑n−1
i=0 ti. We assume that the number of iterations is extremely large (and unknown).

Note that the hypothesis of a large number of iterations model has an impact on the criteria
evaluated: there is no guarantee that the limit of the slowdown of a schedule exists when the number
of iterations tends to infinity, hence we focus on the limit of the upper-bound of this slowdown.
The interested reader can find more information in [J2].

Overall, given this model, we are able to provide two important results:

Theorem 2.1. There exists a periodic schedule that is optimal.
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a0 a1

Init

a2 a0 a1 a2 a0 a1 a2 · · ·

Period

a2 a0 a1 a2 a0 a1 a2 · · ·

Period

a2 a0 a1 · · ·

Period

Figure 2.3: A periodic schedule represented graphically for a job where each iteration
consists of three tasks a0, a1, a2 [J2].

Theorem 2.2. We can compute an optimal periodic schedule in polynomial time.

The complexity of the algorithm to compute the optimal schedule is: O
(
n7 log(

∑n
i=1 ti)

2
)
. It

relies on the proof of an upper-bound on the size of the period, followed by a brute-force search
in periods smaller than this bound via a dynamic programming algorithm to evaluate the minimal
slowdown. For visual representation, the algorithm that computes the optimal period is represented
in Figure 2.4 (without going into the details of the notation since this is not the goal of this work).

Figure 2.4: The optimal algorithm for the precise job model. Notations are not introduced
on purpose but the full details can be found in [J2].

In the end, one can see that focusing on Question 1.1 and having a more accurate model is at the
trade-off of a more complicated solution.

Note that in practice there are many ways in which this model can still be unsatisfying, but you get
the idea ,.
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2.3.2 Are the solution designed for the simpler model able to perform well
(Question 1.2)?

The solution obtained by refining the job model provided in Figure 2.4 has (at least) two main drawbacks.
The first one that one may think of is its important computational complexity. The second one (which
is to me the most important drawback) is its lack of simplicity compared to the elegant Young/Daly
formula.

Indeed, as one can see from Figure 2.4, there are many indexes that are likely to create coding errors,
and a quite complicated proof that make it hard to verify2.

This is also why, I believe that one must really focus on Question 1.2: is it worth having this ex-
tremely complicated algorithm?

Example. In order to evaluate the importance of this solution, we compare to various simple refer-
ence strategies:

1. One that checkpoints after each task;

2. One that checkpoints after each iteration;

3. One that works at least
√
2µc̄, where c̄ is the average checkpoint cost, after the previous

checkpoint and that checkpoints as soon as possible;

4. One that works at least
√
2µcmin, where cmin is the smallest checkpoint cost, after the previ-

ous checkpoint and that checkpoints the first task with a checkpoint cost of cmin.

We evaluated these strategies compared to the optimal solution in various applicative and failure
scenarios, and the conclusion is that overall, the third strategy (average Young/Daly) generally
performs within 2% of the optimal strategy!

In the end, I believe that our work [J2] is important. It allows to assess the almost quasi-optimality
of easier greedy strategies! However no-one should ever implement the algorithm that we proposed ,.

2.4 General comments

In this chapter, we have tried to demonstrate that focusing on the accuracy of a model can be harmful to
the design of algorithmic solutions. One should keep in mind that designing a model serves a purpose:
finding an efficient algorithmic solution.

Focusing on the performance of the model-based algorithmic solution can help to provide simpler
solutions which do not necessarily perform worse in practical scenarios.

2Truthfully, I am not 100% sure that the reviewers have verified the proof thoroughly or if they have mostly trusted us for
the details.



Chapter 3

Towards More Practical Models?

As discussed in the previous chapters, it is not uncommon to make simplifications when designing a
model. It allows to derive more easily theoretical results such as performance guarantees or simply
algorithms that are easier to implement in practice, while still providing good performance in the "real"
environment. These simplifications can be considered voluntary.

3.1 How accurate can the input to instantiate your model be?

Throughout my recent research I have focused on a limitation of these models that is more deceitful:
What happens when the job model is indeed correct, but the information that one can hope to obtain to
instantiate this model is inaccurate?

Probably the most famous example from the literature is the case of runtime estimates. It does not
seem extravagant to model a parallel HPC job as follows: a number of processors p and an execution
time t. It however becomes a problem when the scheduling strategy uses this information to take its
scheduling decisions. Many heuristics however do. For instance, it is known that a good heuristic for
scheduling single node jobs to minimize the total execution time is to sort them by decreasing execution
time and to schedule them greedily (list-scheduling). On the contrary, to minimize the average response
time, one wants to sort them by increasing execution time and schedule them greedily (list-scheduling).

We discuss this example in more depth in [C1].

Example. For fault-tolerance strategy, we have shown that using the Young/Daly formula, i.e.,
checkpointing with a period of

√
2µC where µ is the Mean Time Between Failures (MTBF) and C

the checkpoint cost, is a good approximation for the optimal strategy.
But how does one know the MTBF µ? How do we instantiate the model? Obtaining the MTBF

of a platform can be done in several ways such as:
• Based on maker data, when all machines are taken independently.
• Based on historical data once your machine has run for a long enough time.

In practice, neither of these strategies guarantees an accurate platform MTBF. Gupta et al. [30]
showed that the MTBF of a platform was subject to large variations.

We can actually measure the cost of inaccuracy. Given a platform whose real MTBF is µ0 =
40min (ground truth, data considered to be unknown). We can evaluate the performance of the
algorithm that takes a MTBF µ as input and checkpoints every

√
2µC, and compare its performance

to the algorithm that checkpoints every
√
2µ0C (Fig. 3.1).

15
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Figure 3.1: Ratio of the waste (Eq.(2.1)) of the algorithm that uses an inaccurate MTBF µ
compared to that of the algorithm that uses the exact MTBF µ0 (C = 3min, µ0 = 40min).
As one can see, the cost of misevaluating the MTBF of the platform by a factor of 2 (µ = 2µ0

or µ = µ0/2) incurs a 6% increase in waste. Hence interestingly we can see that the Young/Daly
formula is quite robust to input inaccuracy.

To sum up, one of the limitation of Question 1.2 is that we focus on what the job is, instead of
focusing on what information can be provided to us (by the user, an analysis tool, historical traces etc).

There are many cases where system software expects a specific type of input, either from a user, or
from a predictive system, but where there is very little chance for the input to be correct.

Hence, building on Question 1.2 I believe that a more interesting question that one should answer
when designing a model for resource management software is the following:

Question 3.1. Given this model and given the expected quality of the information obtainable, are
we able to design algorithmic strategy that perform well on what we are evaluating?

Of course it is extremely hard to define properly what is the expected quality of the information
obtainable: one may expect it to be dependent of the available technical advances at time t.

In the following Chapters, we discuss two examples on how one can try to answer this question.

3.2 How to evaluate performance correctly?

A final question that I would like to raise in this Chapter on model design is about evaluating the per-
formance of a solution. In Question 3.1, I discreetly proposed the sentence: that perform well on what
we are evaluating. But what are we evaluating? And how do we decide? The optimization criteria is
an important part of the design of a scheduling problem.

For theoretical results (complexity or approximation results), it is very common to focus on a single
criteria [28]. However when studying the performance of a resource management software, optimizing
with respect to a single criteria may have unforeseen consequences.

Several optimization criteria are used to evaluate the performance of a Resource and Job Manage-
ment Software. In this Section, we discuss more in depth those objectives, particularly in the context of
High-Performance Computing. We explain their limitations in this context. Part of a work with Robin
Boezennec and Fanny Dufossé [C1].
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The analysis presented in this work is targeted for High-Performance Computing: building a ma-
chine able to perform ExaFlops targets the execution of large scale applications mostly and the valida-
tion of the performance of a solution should reflect this. Extreme-scale platforms have a high operating
cost and are expected to be utilized as much as possible.

Analysis of HPC system traces showed that Users are now submitting medium-sized jobs because
the wait times for larger sizes tend to be longer [58]. To execute medium-size jobs, it is probably more
efficient (cost-wise) to have multiple smaller clusters than an HPC machine with a dense interconnect.

In order to define the objective we propose the following notations for job Ji:

ri The release time of job Ji

Ci The completion time of job Ji

treal
i The real length of job Ji

twait
i = Ci − ri − treal

i The waiting time of job Ji

3.2.1 Mean (bounded) slowdown

The mean slowdown (also called mean flow) is the main optimization criteria in many recent works on
improving resource management in HPC [48, 14, 86]. Its goal is to provide a measure of fairness over
applications.

The slowdown Si of job Ji (also called the flow of the job) corresponds to the ratio of the time it
spent in the system over its real execution time. Formally, it is defined as

Si =
treal
i + twait

i

treal
i

=
Ci − ri

treal
i

Note that in practice many jobs are extremely small (few seconds). In these cases their slowdown
could be arbitrarily high even if their wait time is ridiculously small (a five minutes wait time for a job
that dies instantly (one second) would result in a slowdown of 300).

The solution that is often used is to consider a variant of the slowdown called the bounded slowdown:

Sb
i = max

(
Ci − ri

max
(
treal
i , τ

) , 1) (3.1)

where τ is a constant that prevents the slowdown of smaller jobs from surging. Then the mean bounded
slowdown S̄ is:

S̄b =
1

n

∑
i

Sb
i , where n is the number of jobs

Limits for HPC workloads By improving the quality of service to the small jobs, one can consid-
erably improve this objective. This is often what is actually measured when work study this objective,
and is the opposite of what a system administrator of an HPC machine is looking for. This is illustrated
in Figure 3.2.
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Figure 3.2: In this example, all jobs are released at t = 0. Despite what appears to be a more efficient
strategy, the left schedule has worse mean slowdown than the right schedule.

We also show that this is subject to a high variability, and hence the performance is highly dependent
on the input data.

Alternative approach To understand the actual behavior of the system, some work [RR2] consider
the bounded slowdown as a function of the size of the job. In this case, this objective is not one to
optimize anymore, but more a qualitative way to measure and understand the performance of a solution.
Another approach is to use a weighted version of the average slowdown where large jobs are given more
weight than smaller jobs.

3.2.2 Utilization

This optimization criteria measures how fully the platform is occupied. It is a particularly important
objective for an HPC platform that costs multiple-million of dollars yearly to operate. This is the main
objective studied in [24, C10, C11].

If W (t1, t2) is the total amount of work done between t1 and t2 on a platform with N nodes, the
utilization U(t1, t2) on the interval [t1, t2] is measured as:

U(t1, t2) =
W (t1, t2)

N · (t2 − t1)
. (3.2)

Note that when jobs fail to complete fully (for instance because their walltime is underestimated), it
is interesting to measure the “useful utilization”, i.e. the volume of computation that lead to a successful
execution [RR2] .

Limits for HPC workloads One of the main limitation is for machines with lower submission
rate (i.e. that are not “packed”), then any scheduling solution has the same (low) utilization since it
corresponds to executing almost all jobs during the whole window. Utilization by itself does not allow
to discriminate between different schedule qualities (Figure 3.3).
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Figure 3.3: Two examples of schedules and their corresponding cumulative density function. Even
though the global utilization is the same between the two schedules (13/16), the distribution of their
utilization differ significantly.

Another one is the fact that it is more a system administrator target: how to maximize the yield of
my machine. It does not give a sense of the quality of the schedule: an easy way to maximize utilization
would be to have a large queue of jobs waiting to be executed and find the one that works best at all time
(often favoring smaller jobs that can fill a hole).

Alternative approach Our observations show that in some scenarios if the utilization of an HPC
platform is lower than 93%, the “quality” of a scheduler has no impact on the average utilization of the
schedule.

There are settings where the workload has different “modes” (such as intensive in the day; low on
requests in the night), in this case it may be interesting to study utilization of these workloads separately.
Having a good understanding of one’s workload is important.

We found that a way to measure this is to study the density function for the utilization (see Fig-
ure 3.3). Indeed intuitively, for two identical job submission schemes a “better” scheduling algorithm
will have more phases at very high utilization (and hence more at lower utilization). Indeed, it can pack
jobs as soon as they are available, whereas a poorer scheduling quality will delay jobs from phases of
time with intensive job counts to phases with less intensive job counts.

When two schedules have an almost identical utilization (because all jobs are scheduled in the same
time window), we propose to measure the variance of the utilization as a way to differentiate the quality
of a schedule: the “best” algorithm from a utilization perspective should have a higher variance: more
time-windows with very high occupation and more time-windows with low occupation. For example
the schedule at the top of Figure 3.3 is better at using all available resources at the same time, leading to
a variance of utilization 9 times greater than the schedule at the bottom of Figure 3.3.

Some remarks on utilizing the variance:

1. This metric allows to qualify whether one schedule is better than another one from a utilization
perspective, but it lacks interpretability: what does having a variance x times greater than another
one means overall? This is an open question for us.

2. It is important to note that the variance is only relevant to compare schedules with a similar uti-
lization. If it is not the case, one can just tell which schedule is better by looking at the utilization.
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3.2.3 Response time (and Wait Time)

Mean response time (or mean wait time) is a metric often used in the literature [24, C11, 77, 56, 71, 85].
The response time RT i of a job Ji is the duration between the submission of the job and its completion,
or equivalently its wait time and its length.

RT i = twait
i + treal

i

The mean response time is equivalent to the mean wait time since the difference is the mean runtime
which depends on the workloads but not on the schedule. In the following, we only address the response
time, but our reasoning identically apply to wait time.

Limits for HPC workloads One of the first concern about response time is that it does not differen-
tiate between the waiting time and the size of the job, hence a job of 1 hour that waits for 1 minute has
the same response time as a job of 1 minute that waits for 1 hour.

In addition, using this objective gives equal importance to all jobs, independently of the work they
represent. In an HPC workload, this gives an advantage to the numerous “small” jobs, even if they only
represent a very small portion of the workload. In Figure 3.2 we can see that the schedule on Fig. 3.2(a)
intuitively looks more efficient than the schedule on Fig. 3.2(b). Yet it has a worse mean response time
(3.6 vs 3). This is because schedule 3.2(b) favors small jobs despite being less effective at densely
packing jobs.

Similarly to the mean bounded slowdown, we show in [C1] that when using a workload from a big
compute center (with an important variability in jobs sizes), the mean response time is mainly going
to be influenced by the proportion of very small jobs which are backfilled (and then have a very low
response time). In addition to not corresponding to what we want to optimize, the relative performance
between different algorithms is also subject to a lot of variability depending on the workload. This is
something that was confirmed by our experiments and which is covered more in depth in [C1].

In the end, this is a limit for the response time objective because simply improving it does not
necessarily mean improving the quality of the overall schedule (from an HPC perspective at least).

Alternative approach Goponenko et al. [27] have used the weighted mean response time, where one
weights the response time by a priority (such as the total amount of work of a job, or the number of nodes
that a processor uses). We argue that when computing the average response time in the context of an HPC
job scheduler, one should give a higher weight to bigger jobs. For example giving a weight proportional
to the area of the job would allow to transform the mean response time in a system administrator metric:
as Goponenko et al. [27] underlined, using this weight would mean swapping a job with two smaller
jobs of the same duration but half the resources would not change the weighted response time. This way
neither small nor big jobs are favored, and what is measured is the ability of the scheduler to densely
pack jobs. Alternatively, Gainaru et al. [C11] have proposed to only measure the response time of
non-backfilled jobs.

3.3 General comments

To conclude this Chapter, there are two take-away that I believe should be considered when designing a
model for HPC system software algorithmic:

1. We should not only consider what the objects (jobs, machines) are, but consider whether we can
instantiate them accurately. Note that if we cannot instantiate these models accurately, it does
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not mean that the model is necessarily wrong; it does however mean that one should study the
robustness to instantiation inaccuracy of the solutions designed.

2. When studying an optimization objective, one should not only focus on a numerical value, but
understand the limits of such objectives.

Many objectives when optimized have negative side effect for large scale platform (such as improv-
ing the performance of small jobs at the detriment of large jobs).

Yet a significant body of work, particularly recent work that discuss improving batch-scheduling
techniques using machine learning still optimize these objectives. As an example, recent research direc-
tions have focused on using RL-based scheduling in batch schedulers [85, 86]. They show that by using
RL into the batch scheduling, one can improve considerably the response time and bounded slowdown
at a small cost in utilization.

By simply looking at the objective function, their analysis lacks quality elements that could show
the limits of their performance as discussed in the previous section. Specifically it is very likely that
their important improvement in response time or slowdown are mostly used by the improvement of the
slowdown/response time of small jobs, which may be done at the detriment of those of larger jobs.

Work by Carastan-Santos et al. [14] where the ML algorithm provides a priority function confirms
this intuition and the fact that learning-based batch schedulers with the objective of bounded slowdown
simply give higher priority to small jobs. Similarly, Legrand et al. [48] have realized the importance of
small jobs for bounded slowdown and focus on having an oracle which guesses which job is small and
which is large. This is sufficient for important performance gains for this objective.
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Chapter 4

Finding the Right Model: Use-Case I/O
Management

In this Chapter, we take the example of I/O management to illustrate the wide possibility of model
selection for the same use-case. For the rest of this Chapter, we consider the architecture discussed in
Section 1.1. Throughout this Chapter we consider applications that perform I/O synchronously, i.e. that
do not overlap compute operations and I/O operations. This chapter is based on a five year project funded
in part by the ANR JCJC Dash (young researcher funding by the French National Research Agency),
and a European H2020 project Admire. It was a collaboration with many people (by alphabetical order):
Olivier Beaumont, Francieli Boito, Lionel Eyraud-Dubois, Ana Gainaru, Emmanuel Jeannot, Valentin
Lefevre, Luan Teylo, Nicolas Vidal.

Context on I/O management As High-Performance applications increasingly rely on data, the
stress put on the I/O system has been one of the key bottleneck of supercomputers. The I/O bottleneck is
usually defined comparing the speed of the growth of computational power of supercomputer, compared
to the speed of the growth of Parallel File System bandwidth.

This becomes an issue when multiple concurrent applications request access to the I/O bandwidth
simultaneously: I/O congestion creates delay in the execution of applications, hurting the utilization of
the platform.

Many solutions have been proposed to face the congestion issue. Some solutions trade-off storage
for computation: for instance compression will reduce the volume of I/O sent to PFS at the cost of
extra operations (such as compression, decompression, correction). If data has a limited lifespan, local
management is a solution to reduce the data sent to PFS, at the cost of extra space occupied on fast
storage that could be used to increase the speed of the computation.

Other solutions generally try to manage the I/O accesses. Amongst approaches that manages I/O
accesses, the first one, which is the topic of this chapter is I/O scheduling [C23, 88]: it consists in
deciding algorithmically which applications get priority when too many applications are requesting I/O
simultaneously. Architectural solutions such as Burst-Buffers [68] allow to smooth the I/O requests over
time, reducing the chance of an I/O peak, and allowing to perform I/O almost asynchronously. However,
there still remains an I/O scheduling problem [C8] of selecting when the burst-buffers should be emptied
to PFS (write operations), or when the data should be prefetched to PFS and moved to the buffers (read
operation).
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4.1 How accurately does your model fit reality (Question 1.1)

In most of my past work [C23, J9, C8, J3], the job model I have used to design I/O scheduling heuristics
is the one presented in Section 1.1, that we can name task model. A job is represented by a sequence of
compute and I/O phases (read and writes) of various length and volume.

Example (Example of Application model considering reads and writes [C8]). In this work with
Olivier Beaumont and Lionel Eyraud-Dubois, we have considered the following constraints. Ap-
plications consist in a sequence of up to three consecutive actions: (i) data fetching from disks
(read); (ii) computations (compute); and (iii) data uploading on disks (write).

Formally, application Ak is released at time rk and consists of nk iterations. Iteration i ≤ nk

of Ak consists of three consecutive non-overlapping phases: a read phase, where Rk,i denotes the
volume of data read, at read bandwidth brk; a compute phase, where lk,i denotes the compute time;
and a write phase, where Wk,i denotes the volume of data to be written at write bandwidth bwk .
We assume that the phases cannot be overlapped for a given application: reading must be finished
before the computation can start, and similarly the computation must be finished before starting to
write. This constraint is representative of many applications, whose memory requirements prevent
to fetch data for the next phase in advance when the data for the previous phase still occupies the
memory.

In practice, brk and bwk depend on the resources allocated by the batch scheduler and are given
for Ak. Hence, an application can be written as:

Ak = (rk, b
r
k, b

w
k ,Π

nk
i=1 (Rk,i, lk,i,Wk,i)) . (4.1)

Does this model fits reality? In order to evaluate the model, one needs to instantiate jobs and
architecture. A strategy that we use to evaluate our models, is to create a machine simulator that follows
the model designed in the work, and that is instantiated with some key parameters from a real machine.
For the application instantiation, it is common to use I/O benchmarks (such as IOR [37]). We then
compare the performance of the algorithms in the model-based simulator to the performance measured
on the actual machine.

Example. An example of evaluation is the one that we have performed for [J9]. In there we have
proposed a wide variability of applicative scenarios with various performance.

We evaluate various scheduling strategies (online and offline) for each of these job scenarios.
We perform the evaluation in three steps: first we simulate behavior of applications and input them
into our model to estimate both Dilation (Section 1.1.3) and SysEff (Eq. (1.3)) of our algorithm
and evaluate these cases on an actual machine to confirm the validity of our model. The interested
reader will find all details of the evaluation in [J9].

The results are shown in Figure 1.4, the main observation being that the performance estimated
by our model is accurate within 3.8% of that of the real execution. This confirms that this model,
with this level of approximation can be considered to be a good fit for I/O-scheduling analysis.

4.1.1 Discussion on model-requirements and limits

In order to derive the previous experiments, we used a controlled experimental platform. The appli-
cations were not real applications but I/O benchmarks which we instantiated manually. To do so, we
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defined the length of the compute phases (which are actually not-doing-anything phases in the case of
an I/O benchmark), and the volume of I/O that is transferred during the I/O phases.

Under these constraints, we have seen that if we are able to describe accurately the application
(and its I/O patterns), then the task based model allowed to design solutions whose simulated behavior
accurately represent what would happen in a real scenario.

However the requirements for task-based schedules are extremely precise: it is not given that for
a real application it is easy to predict ahead of time the exact I/O volume needed by a phase. Indeed,
characterizing the I/O of an HPC application is a challenging task and often requires detailed modeling
approaches. The presence of I/O variability due to various reasons including PFS congestion and slow
I/O, can make this tasks even difficult.

In addition, the HPC I/O stack only sees a stream of issued requests, and does not provide I/O
behavior characterization. Notably, the notion of an I/O phase is often purely logical, as it may consist
of a set of independent I/O requests generated during a certain time window, and popular APIs do not
require that applications explicitly group them.

Hence, some approaches have been proposed to provide high-level aggregated metrics — the most
popular example probably being Darshan [65], but on the other hand, these aggregated metrics do not
properly represent the temporal behavior of applications [83].

Example. As a simple example we have shown that simply answering the question: “Is the I/O of
my application periodic or not?” is hard [RR1].

Figure 4.1: Difficulty of detecting I/O phases: Where does A finish? Is B one
or two I/O phases? How about A and B together? [RR1]

The first complication is where to draw the border of an I/O phase (see Figure 4.1), as it is
composed of one or many I/O requests, issued by one or more processes and threads. For example,
an application with 10 processes may access 10 GB by generating a sequence of two 512 MB
requests per process, then do compute and communication phases for a certain amount of time
and perform a new 10 GB access. In this case, we need a way of saying that the first 20 requests
correspond to the first I/O phase, and the last 20 to a second one. One could propose an approach
where the time between consecutive requests, compared to a given threshold, determines whether
they belong to the same phase or not. But then a suitable threshold must be chosen that will depend
on the system. Moreover, the reading or writing method can make this an even harder challenge
as accesses can occur, e.g., during the computational phases in the absence of barriers. Hence, the
threshold would not only be system-dependent but also application-dependent.
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4.2 Measuring the impact of the trade-off Simplicity-Precision (Ques-
tion 1.2)

The task-based model is accurate, but as we have seen is extremely hard to instantiate (if it is even
possible) as it often considers the full I/O pattern to be known. It is also much harder to use it to derive
theoretical results [J3]. Furthermore, deriving, a priori, an optimized solution based on theoretical I/O
values may not be robust.

In another work [C12] we have proposed a much simpler probabilistic model that can be instantiated
very easily. We present this much simpler model in this Section. It is purposefully inaccurate to derive
algorithmic solutions. We discuss its limits when evaluating it.

Example (Probabilistic-based model [C12]). In order to obtain theoretical results, we model ap-
plication data transfers with a random process. To achieve this, we omit the phase behavior in the
model. Instead, we consider discretized time units and we assume that during each of these time
units, application Ai sends data with probability pi (with bandwidth bi). In order to have a time
unit corresponding to the characteristic size of the system, we set it as the average value of the
application I/O transfer times.

Therefore, in our model, all applications share a common time unit, and there is no correlation
between what happens at time step t and t + 1 (memoryless property). This assumption is of
course crucial to build a Markov chain model. However, if the length of a data transfer for Ai is
much longer than the time unit, the fact that Ai is involved in a communication at time t strongly
influences the probability that it is involved in the same communication at time t+ 1. On the other
hand, if the period of the pattern for Aj is much shorter than the time unit, then the I/O bandwidth
consumed during one time unit with our model is very imprecise, since it is either sending or not
sending during the whole time unit, whereas such an Aj actually performs several communication
and computation phases. These two examples show clearly that this probabilistic model does
not correspond to reality.

This simple model of application allowed us to build a Markov-chain-based model of the sys-
tem. Using this, we were able to quickly answer issues about dimensioning of the system, such as
for a given set of applications, and for a given Burst-Buffer size and bandwidth, how often does
the buffer overflow. Using this, we expect that system administrators can evaluate various complex
burst-buffer management strategies. As an example, we showed that waiting until the buffer was at
least 20% full before flushing it to disks had almost no impact performance-wise (we call this Lazy
emptying). This can be useful if one does not want to fragment too much their data, or if there is
important latency when accessing the PFS.

Limits This simple model is advantageous when it comes to deriving algorithmic policies. If de-
scribed correctly, these policies can be used in practice, even if the job model is incorrect: for instance
“flush a buffer only when it is at least 20% full”
is a policy that can be implemented independently of the behavior of the jobs.
“Allocate a buffer of size S for application A”
(where S is computed through our solution) is another policy that can be used even if the model used to
compute it is incorrect.

Should they be used in practice is a different question, and for this we need to evaluate whether the
model still makes some sense, even if it does not correspond to reality.
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Example. One way to evaluate the importance of the simplicity made in the model is to point-out
the main hypotheses that were made and to compare the theoretical performance with those on a
model closer to real life. Here, we propose to evaluate some of the main limitations of the model:
the hypothesis that applications share similar characteristic time (the common time unit proposed
in the model), and its memoryless property.

Methodologically, we used data from APEX workflows [46] to generate various application
profiles, and compared the I/O performance as predicted by our Markov chain, and the one mea-
sured on the discrete event simulator validated in our previous work (that we completed with a
burst-buffer model) [C23].

The evaluation confirmed the inaccuracy of the model (see for instance Figure 4.2 and [C12,
Section VI.C] for more results and a more thorough analysis).
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Figure 4.2: Comparison of predicted idle times between Markov chain (dashed
lines) and discrete event simulator – APEX data (full lines). S is the size of the
buffer (relative to the characteristic time of the evaluation), α is a measure of
the stress on the I/O system (higher=more stress). For a complete and thorough
definition of the notations from this figure see [J9].

However it does not mean that everything should be thrown away. It shows that the results
obtained with this simple model are still somehow representative of the real performance and can
be used as a first-order solution. These results show heuristically that the memoryless property
tends to be pessimistic with respect to the performance (of course one would need more thorough
analysis to confirm this intuition).

This pessimism and the fact that lazy emptying with a 20% threshold seem to have no impact on
the Markov model performance [C12, Figures 6 and 7] is also a good indicator and what encouraged
us to make this first-order recommendation.

4.3 Towards an instantiable I/O model (Question 3.1)

Approach from Section 4.1 [C23, J9, 88] can be called Clairvoyant approaches as they consider the
I/O patterns of each application are known before-hand. In this case, one can compute a schedule
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that optimizes the right objective functions (often maximum system utilization or a fairness objective
between applications). This task can be computationally expensive because applications can have a
large number of I/O phases. Moreover, these techniques require information that in practice is often not
accurate or even accessible (Section 4.1.1).

On the contrary, in Section 4.2, the approach was non-clairvoyant since it was based on a probabilis-
tic model. Non-clairvoyant schedulers do not know when applications will perform I/O. These accesses
are thus simply scheduled given a priority order, the most common being first-come-first-served, or semi
round-robin (the I/O served is that of the application that performed I/O the least recently) [87, C23].

Going further, we would like to design an I/O scheduling solution that uses some information about
applications, but as little as possible, while remaining robust to inaccuracies in this information.

Example. If your I/O scheduler is able to give you aggregated information such as: the execution
lasted for 2h, the cumulative I/O was 200TB, and that there were roughly 60 iterations (compute-
I/O) [RR1], can we do better than the performance of the probabilistic model?

Hence, to answer Question 3.1, we propose to work with an average behavior and focus on
algorithmic design that is robust to inaccuracy. A theoretical example is provided on Figure 4.3,
where the "real" behavior is represented in red, and the model selected in blue, with the average
behavior witer being the total execution length divided by the number of iterations.

Time0
0

bw

Modelwiter Real

Figure 4.3: An average model for a corresponding “real” behavior.

4.3.1 Algorithmic design

For the algorithmic designs, an observation is that when one knows exactly the I/O pattern of
applications (Clairvoyant), then an exclusive bandwidth access (i.e. one application performs I/O at
the time), or semi-exclusive when applications cannot use all the available bandwidth by themselves
(i.e. some applications run concurrently using as much bandwidth as they can) seems to be the better
choice.

However, in our work [J3, Figure 3] we observed that sometimes without clairvoyance, fair-
share (i.e. the I/O bandwidth is shared equally by all applications in a best-effort fashion) behaves
better than exclusive heuristics.

With Francieli Boito, Luan Teylo and Nicolas Vidal, we have tried to understand this more in
depth for the algorithmic design [RR3].

Fairshare vs Exclusive

We illustrate this with a simple example. Consider two applications, (i) one that has relatively
large I/O phases (we will call it large), which when running in isolation performs periodically:
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computation during one unit of time and I/O during one unit of time; and (ii) a small one, which
in isolation performs periodically: computation during one unit of time and I/O during 0.01 unit
of time. We consider two scenarios in Figure 4.4: two large applications competing for the I/O
bandwidth, and a large with a small. In the following, we assume accesses, once started, cannot be
interrupted, and that, at the beginning of the first I/O phase, the large application’s request arrived
before.

Two Large Large+Small
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Figure 4.4: Two different pairs of jobs are shown side by side, and two sched-
ulers are shown one above the other. For each of the four parts of the fig-
ure, the top half represents activity on compute nodes, and the bottom half the
I/O accesses to the PFS (the height represents the portion of the bandwidth
used). [RR3]

As one can see from this figure, fair-sharing can be inefficient: for the TWO LARGE scenario
it takes three units of time to perform the work that exclusive does in roughly two units of time
(after initialization). However, the opposite can also be true: in the LARGE+SMALL scenario,
exclusive takes roughly two units of time to perform the computation of the small application when
fair-sharing can do it in roughly one, with almost no extra cost for the large application.

4.3.2 Bandwidth sharing

We argue that sharing the bandwidth does not have to be done fairly. In Figure 4.5, we consider the
two application profiles from the previous section, small and large. If the small I/O phase finishes
before the large one, then giving it more of the available bandwidth improves locally (i.e. for this
phase) the performance of small without delaying the large one.
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Figure 4.5: The applications share the bandwidth, but J2 (the one with small
I/O phases) receives more or less of it than J1 [RR3]

Of course, improving the performance of the small application may globally delay the large
one, however the impact seems negligible. For instance, in Figure 4.5 (on the right), at every two
iterations of J1, J2 performs an additional I/O phase. Hence J1’s I/O phase becomes 1% longer.
Over its execution, this is a slow-down of less than 0.25%. By comparison, when J1 receives most
of the bandwidth, every three iterations, one small I/O phase takes 0.9 units of time instead of 0.01.
In this case, three iterations of J2 take 4.1 units of time instead of 3.2, i.e. a slow-down to the small
application of roughly 28%.

4.3.3 High-level presentation of an algorithmic strategy

Based on these various motivational examples, we proposed a Set-based approach [RR3]:

• Each applications performing I/O is assigned to a set Si ∈ {S0, S1, . . . }.

• Each set Si is allocated a bandwidth priority pi.

• At any time, only one application per set is allowed to do I/O (exclusive access within sets).
We use the first-come-first-served (FCFS) scheduling strategy within a set (i.e. we pick the
application that requested it the earliest).

• If applications from multiple sets request I/O, they are allowed to proceed and their share of
the bandwidth is computed based on the priority given to its set.

Proposing a heuristic for this approach consists therefore of answering two important questions:
(i) how do we choose the set in which an application is allocated, and (ii) how do we define the
priority of a set.

We have then evaluated a heuristic that schedules jobs in each set depending on the order of
magnitude of their mean time between consecutive I/O phases (which we call their "characteristic
time" (witer in Figure 4.3). The priority given to the set is then rougly the inverse of their order of
magnitude. The more technical details can be found in the paper [RR3].

Through an extensive evaluation, we have shown excellent performance of this heuristic on
various challenging scenarios. Notably, it was shown to be quite robust to inaccurate information,
due to being based on an average estimation instead of precise application information. Finally, we
have provided insights on how our method can be implemented.



4.4. GENERAL COMMENTS 31

4.4 General comments

To conclude this chapter, I would like to stress that I do not think that there is a right model. As we have
seen here, for a given problem there can be a multitude of modeling strategies. What we should keep in
mind at all time is the motivation for constructing the model, the fact that they should be adapted to the
problem that one is studying, particularly in terms of designing solutions. This is what is stressed out by
Question 3.1.
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Chapter 5

Finding the Right Model: Use-Case Resource
Management

One of the most famous example for the importance of input accuracy is the case for runtime estimates
in resource management software.

5.1 A simple model for job representation (Question 1.2)

Algorithmic design in Resource and Job Manager Software (RJMS) often requires the users to submit
an allocation value (how many resources does the job need) and a time limit/walltime (how long is
the run expected to last). They use this information to take scheduling decisions often in a greedy
way (typically Best-Fit algorithm / List-scheduling heuristic). However, it is a widely acknowledged
fact that runtime estimates are overestimated [17, 58, 77]. As was again very recently highlighted by
Patel et al. [58] in their analysis of Mira’s log (supercomputer at Argonne), the wait-time of users has
increased significantly in the past 10 years. In their work, Tang et al. [70] showed that improved runtime
predictions can decrease the average wait time and slowdown by up to 20%. Note that some authors have
tried to show that this inaccuracy may be beneficial to the system, but their work has been debunked in
depth [77, 76].

This is an excellent example for the limits of model realism as one would study if only consid-
ering model design Question 1.2.

Over time, the impact on the system performance has been described by several researchers [76].
Incentives have been proposed to users to try to improve this estimate with very little effect by Lee
et al. [47]. Several approaches have been made to predict reliably the execution time of applications.
Tsafrir et al. [77] proposed to use a greedy approach that takes the average of two last actual runtimes
of the user as a prediction. Machine learning-based solutions have been proposed [82] to try to improve
the prediction, but while some gains could be observed, those are still unsatisfying precision-wise. In
addition, those solutions often forget to describe the impact on the number of under-estimations [24]
of those estimate. Under-estimation of walltime has a critical impact: the jobs are interrupted if they
are longer than the walltime estimate, and user then need to pay for the execution of their jobs without
getting the result.

New designs of RJMS Faced to this challenge, several solutions have been proposed. The his-
toric solution is backfilling which consists in scheduling small applications in the gaps created by the
overestimation, under the condition that they do not delay existing reservations [56]. Backfilling is still
under heavy evaluation, recently Carastan-Santos et al. [15] have shown by studying several metrics
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that, in order to improve backfilling algorithms, one should prioritize jobs according to a smallest area
first criterion instead of the usual first-come-first-served.

Another approach to cope with the fact that information is unreliable is the use of Reinforcement
Learning (RL) to design RJMS [66, 85, 23]. Reinforcement learning (RL) is a type of machine learning
technique where agents learn efficient policies through interaction with their environment. Preliminary
results on very limited scenarios seem to show some improvement, but those solutions are still very
immature to be able to see whether they can or cannot be a real solution. Limitations of RL include
its scalability [29, 23], the input it requires [23], and its implementation [23]. In addition, an important
issue with some of these solutions when they are hyperparametrized and unstructured is their black box
nature. The lack of explainability of those solutions may limit their widespread dissemination.

5.2 New application models that include input (in)accuracy (Ques-
tion 3.1)

In the rest of this Chapter, we discuss how one would construct a model based on the model design
Question 3.1. Part of this Chapter is taken from a recent work with co-authors: Gainaru, Goglin and
Honoré (one of my former PhD Student) [J5].

What if the model (number of processors and estimated length) considered from the start was wrong?
Could we change the model considered to take into account the inaccuracy expected from the data, and
would this help us to design better algorithms? These are the questions that we discuss in this Section.

Example. Field in close relation to HPC have proposed new models that try to incorporate inaccu-
racy for the execution time of a job.

New models in Probabilistic Timing Analysis Real-Time Systems (RTS) have been pre-
cursors in realizing the importance of coming up with other representations for program execution
times [22]. The historical study in RTS has focused on the Worst-Case Execution Time (WCET) of
a program, studying upper-bounds on the execution time that could be used in systems with hard or
soft deadlines. Since the years 2000, a part of this community has studied probabilistic Worst-Case
Execution Time (pWCET), a grandeur that models a probabilistic upper-bound on the performance
of the program. Several methods have been provided to describe the pWCET (detailed in [22]).
Roughly, these rely on a mix of static analysis of the program [5, 4], statistical estimates [19, 62]
and benchmark/evaluation [63, 2]. Some of these techniques will certainly be useful to study HPC
applications, however because of the respective dimensions of the applications under consideration
they will not be applicable directly. Indeed, real-time analysis often considers program running on
few nodes for short amount of time, far from the volumes of computations needed for HPC. In HPC,
a coarse-grain analysis without access to the code may then be sufficient. Similarly, the timing con-
straints are different: instead of tight-constraints, HPC could target average-case behavior. Hence
instead of the design of probabilistic upper-bounds with guaranteed, heuristic representations of the
behavior could be sufficient. The models would trade-off the guarantees from RTS for precision
over generic behavior.

State of the art in Theoretical Scheduling Dealing with the scheduling of jobs whose ex-
ecution time is unknown has also been an important problem of the scheduling community. One
of the most common approach has been the design of robust solutions: determining the schedule
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with the best worst-case performance compared to the corresponding optimal solution over all in-
stantiations of job processing times [21]. This is sometimes also called a min-max regret approach.
The typical job models used in robust scheduling are ones where the uncertainty on the processing
times is represented by either a discrete set [40] or a continuous bounded interval [25]. Because
these models are very generals, the typical results are not practical (negative results on approxima-
bility even in the single machine case for different objective functions [54]). Some authors (such
as budgeted uncertainty [8, 10]) showed that given more structured job models, one could obtain
positive results (such as approximation algorithm). Yet, all these models are cursed to target large
competitive bounds (at best) because they deal with general instances and adversarial proofs may
construct very biased running time distributions. In addition, intuitively robust solution guarantee
performance in a worse case scenario and so are important for real-time constraints, but do not guar-
antee expected performance, which are more important for HPC systems. Extensions to robustness
have been introduced such as Recoverable robust solutions [50], where the goal is to guarantee
robustness with bounded recoverable means (such as swapping at most k times pre-determined al-
locations). This provides again interesting directions but have very limited impact in the research
of practical solutions for HPC job scheduling.

In Stochastic Scheduling [57], jobs are modeled as random variable. The main difference com-
pared to deterministic scheduling is that one aims to show the optimality of a scheduling policy with
respect to the expectation of an objective function. There are few cases in the literature for which
optimal scheduling policies are known to be efficiently computable. This is considerably more
difficult. Several authors have focused on the performance of variants of deterministic algorithms
where one uses the expected processing time instead of the deterministic processing time, to study
the expectation of usual objective functions (such as expected makespan, response time, weighted
completion time) [81]. To be able to obtain results, authors often include very constrained condi-
tions (such as exponential distributions [13], same general distribution between jobs [80]). More
recently, approximation algorithms for stochastic machine scheduling have been derived [64], but
those are complicated (using mix of linear programming based stochastic scheduling policies) and
inapplicable for HPC because of their high computational complexity and general performance.

These last examples are interesting with respect to the trade-off correctness of the model versus
applicability: it seems that in the theoretical scheduling community, models that are realistic with regard
to what input data could be expected performed loosely.

Note that in my recent work [C9, C6] I showed that we were able to obtain quasi-optimal stochastic
solutions for HPC-oriented objectives for any distributions. The algorithms used are quite approachable
with low complexity. This path has opened up many directions. This is what I discuss in the rest of the
Section.

5.2.1 Stochastic job model: Case study of a Neuroscience Application

On purpose, this Section goes in a lot more technical depth than the other section. It shows how one can
experimentally construct a new type of model for HPC job scheduling. It is motivated through a thorough
study from an upcoming HPC application from neuroscience: SLANT. First high-level observations are
made, then explained with lower-level performance analysis.

Spatially Localized Atlas Network Tiles (SLANT)

The study of this work is centered around a specific representative neuroscience application: SLANT [36,
35]. This application performs multiple independent 3D fully convolutional network (FCN) for high-
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resolution whole brain segmentation. It takes as input an MRI image obtained by measuring spin–lattice
relaxation times of tissues. We use a CPU version of the application1. There exists different version
of SLANT depending on whether the network tiles are overlapped or not. Here, we consider the over-
lapped version (SLANT-27 [36]) in which the target space is covered by 3× 3× 3 = 27 3D FCN. The
application is divided into three main phases: i) a preprocessing phase that performs transformations on
the target image (MRI is a non-scaled imaging technique) ii) a deep-learning phase iii) a post-processing
phase doing label fusion to generate the final application result. Each of the tasks may present run-to-run
variations in their walltime.

High-level observations

In recent work [J10], observations showed large variations in execution time of neuroscience applica-
tions, complicating their execution on HPC platforms. We are interested in verifying and studying this.
To do so, we run SLANT on 312 different inputs. These inputs are extracted from OASIS-3 [43]2 and
Dartmouth Raiders Dataset (DRD)3 [32] datasets. We run the application on a Haswell platform com-
posed of a server with two Intel Xeon E5-2680v3 processors (12 core @ 2,5 GHz). We run the docker
image presented in the Git repository of SLANT-27 using the Singularity container runtime.

Figure 5.1: SLANT application walltime variation for various inputs.

Figure 5.2: Performance variability on identical inputs. Variability is studied over five runs.

In Figure 5.1, we confirm the observations about the large walltime variations. Specifically we can
see two categories of walltimes which correspond to the two datasets: OASIS inputs have a walltime of

1The code is freely available at https://github.com/MASILab/SLANTbrainSeg
2For this very large dataset, we only used a subset of available data.
3Available at http://datasets-dev.datalad.org/?dir=/labs/haxby/raiders

https://github.com/MASILab/SLANTbrainSeg
http://datasets-dev.datalad.org/?dir=/labs/haxby/raiders
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Figure 5.3: Correlation between the size of the input and the walltime over the 312 runs.

70min±15% and DRD inputs have a walltime of 125min±30%. The natural questions that arise are the
following:

• Is the walltime variation due to a machine artifact (or is it related to the quality of the input)?

• Is the walltime variation due to the input size (and can it be predicted using this information)?

We study these questions in the following experiments. First we randomly select three inputs of both
datasets and execute them five times each. We present the results in Figure 5.2. We see that the behavior
for each input is quite stable. There are slight variations for DRD inputs, but nothing of the order of
magnitude observed over all inputs. Hence, it seems that the duration of the execution is mainly linked
to the input.

We then study the variation of walltime as a function of the input size in Figure 5.3. We can see that
for a given dataset, the walltime does not seem correlated to the input size. The corresponding Pearson
correlation factors are 0.30 (OASIS) and −0.15 (DRD). The datasets however seem to have different
input types: except for the outlier at 120 MB, the input sizes of OASIS vary from 0 to 30MB while
those from DRD vary from 45 to 75MB. We present visually the type of inputs for the two databases in
Figure 5.4. Intuitively, the performance difference on OASIS versus DRD inputs is probably due to the
resolution quality.

Altogether, we believe we can give these preliminary observations on these new applications:

1. We confirm the observations of significant variations in their walltime.

2. These variations are mostly determined by elements from the input, but are not correlated to
the size of the input (quality and not quantity).

Task-level observations

Studies using machine learning methods to estimate the future resource consumption of an application
assume a constant peak memory footprint (e.g. [69]). In this section, we study more closely the memory
behavior of these new HPC applications.

Figure 5.5 presents the memory footprint of two runs of the SLANT application, one for each of the
input categories. Note that all other runs follow similar trends, specifically the peak memory usage is
not dependent on the input, only the time depends (and hence the average memory utilization). For
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(a) Segmentation for OASIS.

(b) Segmentation for DRD.

Figure 5.4: Typical inputs and outputs based on the dataset.

both profiles, we can see clearly the three phases of the application (pre-processing, deep-learning, post-
processing). Note that these traces hint at the fact that the difference in executed time is more linked to
a quality element since there is fewer pre/post-processing time for OASIS input.

In the following, we focus our discussions on the runs obtained from the 88 DRD inputs (Figure 5.5b)
because their pre/post processing steps are more interesting, although the same study could be done for
the OASIS inputs.

These memory footprints show that the runs can be divided into roughly seven different tasks of
“constant” memory usage:

• pre-processing phase: This phase includes the four first tasks. The 1st task shows a memory
consumption peak of around 3.5GB for the few first minutes of the application execution. The
2nd, 3rd and 4th tasks have respectively a peak of about 10GB, 6GB and 10GB.

• deep-learning phase: The 5th task, represents the deep-learning phase. This task presents a pe-
riodic pattern with memory consumption peaks going up to 50GB. Each pattern is repeated 27
times, corresponding to the parameterization of the network tiles in SLANT-27 version.

• post-processing phase: The 6th and 7th tasks model the last phase of the application, with a mem-
ory peak to respectively 3.5GB and 10GB.

In the second step of this analysis we are interested in the behavior of the job at the task level. We
decompose the job into tasks based on the memory characteristics by using a simple parser (see Fig-
ure 5.6). This parser returns the duration of each task within each run based on their memory footprint.
Note that this decomposition can be incorrect, we discuss this and its implications later.

Using the decomposition in tasks, we can plot the individual variation of each task execution time
(for simplicity, we only considered execution time at the minute level) in Figure 5.7.

We make the following observations. First, all tasks show variation in their walltime based on the
input run. This variation differs from task to task. For instance, task #7 has variations up to 25 minutes
while tasks #3 and #4 have less than 5 minutes difference between runs.
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(a) Typical memory profile with OASIS input.

(b) Typical memory profile with DRD input.

Figure 5.5: Examples of memory footprints of the SLANT application with inputs from each considered
dataset. Memory consumption is measured every 2 seconds with the used memory field of the vmstat
command.

1 2 3 4 5 6 7

Figure 5.6: Job decomposition in tasks based on raw data of a memory footprint.

Another observation from the raw data on Figure 5.7, is that some tasks present several peaks (tasks
#5 and #7). There may be several explanations to this, from actual task profile (for instance a condition
that adds a lot of work if it is met), lack of sufficient data for a complete profile, or finally a bad choice
in our task decomposition. Going further, one may be interested in generating a finer grain parsing of
the application profile to separate these peaks into individual tasks, based on more parameters than only
the memory consumption. We choose not to do this to preserve some simplicity to our model. In the
following, we denote by X1, . . . , X7 the random variable that represents the execution times of the seven
tasks.
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Figure 5.7: Count of the task walltime for all jobs (raw data).

Table 5.1: Pearson Correlation matrix of the walltimes of the different tasks.

Task Index 1 2 3 4 5 6 7
1 1.000 0.998 -0.308 -0.261 -0.114 -0.039 0.139
2 1.000 -0.293 -0.277 0.142 -0.058 0.159
3 1.000 0.076 0.547 -0.283 0.223
4 1.000 -0.361 0.296 -0.308
5 1.000 -0.568 0.574
6 1.000 -0.475
7 1.000

An important next question is whether they show correlation in their variation. Indeed, given that
they are based on the same input, one may assume that they vary similarly. To study this, we present
in Table 5.1 their Pearson Correlation coefficients. We see that only tasks #1 and #2 present a very
high correlation (meaning that their execution times are proportional), while others have meaningless
correlation. This measure is important as it hints at the independence of the different execution time
variables.

Finally, to investigate the distribution of memory usage over time, we study the task status at all time
(at time t, which task is being executed). To do so, given Xi (i = 1 . . . 7) the execution time of task i,
we represent in Figure 5.8 the functions yi(t) = P

(∑
j≤iXj < t

)
. Essentially, it means that yi is the

probability that task i is finished.

Figure 5.8: yi(t) = P
(∑

j≤iXj < t
)

is the probability that task i is finished at time t (raw data).
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Figure 5.8 is read this way: the probability that task i is running at time t corresponds to the distance
between the plots corresponding to task i − 1 and task i. For instance, at time t = 0 task #1 is running
with probability 1. At time 100, tasks #5 to #7 are running (roughly) with respective probability 0.06,
0.5, 0.38. In addition, with probability 0.06 the job has finished its execution.

This figure is interesting in the sense that it gives task properties as a function of time. For instance,
given the memory footprint of each task, one can estimate the probability of the different memory needs.

5.3 From observations to a theoretical model

Using the observations from Section 5.2.1, we now derive a new computational model. We discuss the
advantages and limitations of this model in Section 5.3.2.

5.3.1 Job model

We model an application A as a chain of n tasks:

A = j1 → j2 → · · · → jn,

such that ji cannot be executed until ji−1 is finished. Each task ji is defined by two parameters: an exe-
cution time and a peak memory footprint. The peak memory footprint of each task does not depend on
the input, and hence can be written as Mi. The execution time of each task is however input dependent,
and we denote by Xi the random variable that represents the execution time of task ji. Xi follows a
probability distribution of density (PDF) fi. We also assume that the Xi are independent.

Finally, the compact way to represent an application is

{(f1,M1), . . . , (fn,Mn)}. (5.1)

5.3.2 Discussion

Figure 5.9: Interpolation of data from Figure 5.7 with Normal Distributions.

To discuss the model, we propose to interpolate the data from our application with Normal Dis-
tributions4. We present such an interpolation on Figure 5.9 (data in Table 5.2). Fitting to continuous

4We write that X follows a normal distribution N (µ, σ).
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Table 5.2: Parameters (µ, σ) of the Normal Distributions interpolated in Figure 5.9.

Task ID 1 2 3 4 5 6 7
Mean µ (in sec) 255 871 588 459 3050 804 1130
Std σ (in sec) 96.7 322 76.8 48.1 263 393 568

distributions is interesting in terms of data representation, and offers more flexibility to study the prop-
erties of the application. As we have seen earlier, Normal Distributions may not be the best candidate
for those jobs (for examples jobs with multiple peaks), but they have the advantage of being simpler to
manipulate. This is also a good element to discuss the limitations of our model.

Using the interpolations, one can then compute several quantities related to the problem with more
or less precision. We show how one would proceed in the following.

Task status with respect to time

We can estimate the functions P
(∑

j≤iXj < t
)

represented in Figure 5.8, which later helps to guess
the task status with respect to time. Indeed, if X1, . . . , Xi are independent normal distributions of
parameters N (µ1, σ1), . . . ,N (µi, σi), then Yi =

∑
j≤iXj follows N (

∑
j≤i µj ,

√∑
j≤i σ

2
j ). We plot

in Figure 5.10 the functions fi = P (Yi < t).

Figure 5.10: Representation of the cumulative distribution of the termination time of the 7 tasks over
time from raw data.

An important observation from this figure is that even if the interpolations per task are not perfect,
the sum of their model gets closer with time to actual data. Obviously this may not be true for all
applications and is subject to caution, however the fact that initially all models seemed far off on a per
task basis but converged well is positive.

Memory specific quantities

Using this data, one should be able to compute different grandeurs needed for an evaluation, such as:
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• The average memory needed for a run M̄ =
∑n

i=1MiE[Xi]/
∑n

i=1 E[Xi]. This quantity may be
useful for co-scheduling schemes in the case of shared/overprovisionned resources [11, 59];

• Or even arbitrary values such as, the “likely” maximum memory needed as a function of time.

Mτ (t) = max

Mi|P

∑
j<i

Xj < t ≤
∑
j≤i

Xj

 > τ

 (5.2)

In addition, the data for the values of Mi can be obtained with traces of very few executions (since it is
not input dependent).

The fi can also be interpolated from very few executions with more or less precision. We evaluate
this precision here with the following experiment, presented in Figure 5.11. We interpolate from 5, 10,
20, 50 randomly selected (with replacement) runs the functions fi and compare (i) the evolution of M̄ ;
and (ii) the maximum memory need t 7→ M0.1(t). Each experiment is repeated 10 times to study the
variations.

(a) Average memory M̄ for different number of inputs over 10 experiments.
Red star is M̄ of the original 88 runs.

(b) M0.1 for different number of inputs (avg of 10 experiments).

Figure 5.11: The model can help interpolate different quantities such as average memory (top) or peak
memory (bottom).

We observe from Figure 5.11a that with respect to the average memory need, increasing the num-
ber of data elements does not improve the precision significantly. This was expected since the only
information needed is the expectation of the random variables, which is a lot easier to obtain than the
distribution. The difference between M̄ as evaluated and the red star is due to the job modelisation. In
the model, we consider constant memory per task when it is not the case. For instance the memory of
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Task 5 is set at 50GB in the model (and in the computation of M̄ ), when in practice (Fig. 5.6) it fluctuates
a lot, hence the red star being lower.

With respect to the maximum memory requirements (Figure 5.11b), it seems that very few runs (5
runs) already give good performance. This could also be predicted due to the Maximum function which
gives more weight to any single run.

Obviously this modelization is not perfect and can be improved depending on the level of precision
one needs, specifically we can see the following caveats:

• The peak memory is different from the average memory usage (see for instance task #5 in Fig-
ure 5.6), where the job varies between high-memory needs and low-memory needs. Hence using
peak memory to guess the average memory may lead to an overestimation of the average memory
(as shown in Figure 5.11a). To mitigate this, one may add as a variable the average memory per
task.

• The model assumes that the lengths of the tasks are independent. However this may not be true as
we have seen in Table 5.1 where the lengths of tasks #1 and #2 are highly correlated. In our case,
a simple way to fix this would have been to merge them into a single meta task. We chose not to
do this to study the limits of the model.

• This model is based on the information available today. Specifically, the jobs here are sequen-
tialized (the dependencies are represented by a chain of tasks). However we can expect a more
general formulation where the dependencies are more parallel (and hence represented by a Di-
rected Acyclic Graph instead of a linear chain).

To conclude this section, we have presented a model for the novel HPC applications that is easy to
manipulate but still seems close to the actual performance. We discussed possible limitations to this
model.

5.4 Model instantiation and performance

Question 3.1 incorporated a notion of expected quality of the information obtainable. Given this model
and given the expected quality of the information obtainable, are we able to design algorithmic strategy
that perform well compared to what we are evaluating?

In our work [J5], and given the observations, we proposed to interpolate the distribution based on
historical data. How many historical points do we need for performance that are good enough? Note
that few points may give an interpolation that is inaccurate, but it does not mean that the performance of
the algorithm is bad (remember that this is the difference between Question 1.1 and Question 1.2).

Example. With Ana Gainaru, Brice Goglin and Valentin Honoré [J5] we compared various algo-
rithms to compute the reservation strategies. All these strategies are based from the same input: k
previous runs of the application (in practice we use k = 5, 10, 20, 50).

• ALL-CKPT [C6, III.D]: This computes the optimal solution to minimize the expected total
reservation time when all reservations are checkpointed and when the checkpoint cost is
constant. We take the maximum memory footprint over the execution as the basis for the
checkpoint cost.

• MEM-ALL-CKPT: it is an extension of ALL-CKPT based on Section 5.3.1. Specifically it
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uses M0.1 (defined in Eq. (5.2)) as the basis for the checkpoint cost function. The complete
procedure of this extension can be found in [J5].

• NEURO [J9, 44]: This is the algorithm used by the neuroscience department at Vanderbilt
University. In their algorithm, they use the maximum length of the last k runs as their first
reservation. If it is not enough they multiply it by 1.5 and repeat the procedure. To be fair
with the other strategies, we added a checkpoint to this strategy. Hence the length of the
second reservation (T2) is only 50% of the first one (T1), so that T1+T2 = 1.5T1. We use the
maximum size of a checkpoint as checkpoint cost. For completeness, we have also added a
strategy that uses average length instead of maximum length. We denote it by NEURO-AVG.

Overall and without going into too much details here, we were able to show that thanks to
checkpointing, the solution is extremely robust: using only the five last runs, one could obtain a
performance almost identical to the one with fifty runs. Without checkpointing [C10], the conver-
gence is slower, but we could obtain interesting performance for many job distributions.

5.5 General comments

I have described here the experimental construction of a new job model that could be better fitted for
the representation of certain jobs. The underlying hypothesis is that the information of job performance
is inaccurate because the data is non deterministic. This model did make purposefully some wrong
asumption (for instance the independence between the length of several tasks).

Of course, the model proposed now needs to be evaluated on a lot more jobs, this is a direction that I
am working on is to study statistical behavior model / non-deterministic models, wondering if this could
be more correct. These models may be much harder to manipulate algorithmically, but they may be
more accurate and provide better expected performance.
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Conclusion

In this habilitation thesis I have revisited how one could design models for resource management in
HPC. I have proposed and studied several design hypotheses. I have discussed and illustrated the fact
that having a model that is too accurate may be counter-productive: it complicates the algorithm design
without necessarily improving the final performance.

Going further, I have tried to demonstrate that models should start to take into account the fact that
the input information may be inaccurate. This is I believe an important paradigm shift for scheduling in
HPC resource management, where previous studies have mostly focused on trying to get accurate data.
Then, I discussed the fact that the optimization objectives should also be reevaluated: by focusing on
optimizing a single objective, there is a risk of losing sight of what is actually happening in terms of
schedule.

Overall, I believe that this document presents an overview of how my research vision evolved in the
last 10 years; interestingly I believe that this vision has been highly influenced (for the better) by my
involvement in the Inria Evaluation Committee5: indeed, as part of this committee, I have worked on
a report on how to evaluate research in general and the risks of focusing on specific indicators [O2]. I
believe the same type of risks apply to our field.

Future of the field and political considerations

In the rest of this conclusion I would like to discuss several elements of vision that I have on the evolution
of our field, in relation to the ecological crisis that we are living through.

When I ask myself what the future of HPC may look like6, there are several elements that I would
like to consider in my future research:

Chip shortage Chip shortage is likely to occur for many reason: many component of these chips
are mostly produced in a single country (for instance for Rare Earth Element, China)7. These are called
Critical raw materials when not only are they important in our daily use, but when this importance is
combined to a high risk associated to their supply. Indeed production could stop for other part of the
world due to a socio-political crisis. In addition, they are extremely costly from an environmental [26]
and a human perspective to produce [49, 16, 41]. Finally, we have also seen that extreme weather
changes may impact the production of chips, for instance recently (Summer 2021), droughts in Taiwan
affected chip production as they impacted the availability of ultra-pure water that is needed to clean the
silicon wafers used in microprocessors8.

5This committee is in charge of all type of scientific evaluation at Inria (including prospective work, recruitment, team
evaluation, advancement etc.)

6Under the hypothesis that we still have some sort of HPC, hypothesis that is far from being granted.
7Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability, European Commission,

2020
8Taiwan’s drought is exposing just how much water chipmakers like TSMC use (and reuse), Eamon Barrett, Fortune, 2021
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https://publications.europa.eu/resource/cellar/160da878-edc7-11ea-991b-01aa75ed71a1.0015.03/DOC_1
https://fortune.com/2021/06/12/chip-shortage-taiwan-drought-tsmc-water-usage/
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All in all, shortage of such critical raw material is something that is likely to occur in a close future.
Will we be able to build a new supercomputer in 2030? in 2050? What would HPC look like in the case
where we are not able to renew our machines every 5 years? There is a chance that this is not the end
of HPC, but the beginning of a different HPC. We may observe new scheduling constraints for instance
with the introduction of second-hand equipment:

1. if we start using old architecture, then we may see an increasing number of failures. Currently
the research in fault tolerance makes the assumption that the mean time between failure is large
before the checkpoint time. Without this hypothesis, checkpointing does not work anymore, hence
reinventing resilience strategies may be critical.

2. Some part of the architecture may even be definitely broken, or with variable performance: how
do we include this heterogeneity/variable performance into our scheduling models? This is again
an information that may be extremely inaccurate.

More generally, even if this shortage does not occur at short-term, is it really sustainable to have
HPC machines with a lifespan of 5 years? I believe those questions will gain tremendous important in a
close future.

Energy shortage or Renewable energy The problematic of having computing centers whose
sole energy supply is renewable energy is also getting increasing attention. One of the novelty9 of re-
newable energy is its intermittence, the fact that the source of energy is not constant but may be extremely
low at some times (for instance on cloudy days). There has been an increasing amount of research on
this topic. Particularly, it was discussed in a new working group on variable capacity resources for sus-
tainability. In the panel Unspoken Challenges at this workshop, I was able to expose my vision of a key
problematic that I believe we face: the race for performance.

Indeed, I believe that the variability of availability of resource should reopen for us some assump-
tions that we made about HPC systems, amongst which:

1. Time criticality: HPC has always been evaluated on performance. How to get things fast; Which
machine has the best response time etc. I believe that we need to start thinking about priority-based
HPC centers where not all jobs have the same priority, or Not-Urgent Computing. Managing jobs
in an HPC center has often been about fairness (which does not seem absurd). The First-Come-
First-Served heuristics guarantees that no job will be delayed too much. But could we be more
efficient from an energetic perspective if we did not impose this constraint and informed all users
that there is in general a one-week response time and this is not negotiable.

2. "Meta"-research: how to evaluate performance. As we have seen in chapter 3, when designing a
solution to optimize a criteria, this may have unexpected (and possibly detrimental) effects. For
instance, minimizing the mean bounded slowdown via Reinforcement Learning is likely to prior-
itize the smallest jobs instead of the large parallel jobs as one may “expect” on a supercomputer.

Are scheduling models as we use to do them still the correct way to evaluate performance? This
is also the discussion that I wanted to raise with this habilitation thesis For instance when look-
ing at a single optimization objective, there is a high risk of rebound effect. Hence we really
need a qualitative assessment of our solutions instead of numerical optimization objectives (i.e.
I do not believe that "minimizing the energy consumption for X" will suffice to solve the energy
consumption problem).

9From a scheduling perspective

https://people.cs.uchicago.edu/~aachien/workshops/varsched23/
https://people.cs.uchicago.edu/~aachien/workshops/varsched23/
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How users react should be an extremely important part of our research, and needs to be done in
coordination with social science researchers.

3. Reviewing best practices: "What happens if I try this configuration? It doesn’t work, what about
this one?" "Let me collect all possible data and think later what I am going to do with them."
"Now that I am doing my evaluation I am realizing that I could use this information, let me re-run
this experiment". These are all statements that I have seen during my years as a researcher.

Generally, I am under the impression that contrarily to other experimental sciences where the
cost of setting up an experimentation is extremely visible (think about a chemistry experiment,
where 2ml of a reactant cost more than $1000), computing-based science has often lacked the
vision of correctly setting up an experiment. The cost of computation is often decorrelated from
our research. Some large computing centers ask users to request a number of core-hour for an
experiment, but in my experience it is often largely before an evaluation protocol is designed, and
the value is often over-estimated.

Interestingly, during the panel discussed earlier, I simply brushed the idea that we could be getting
reports of the computing cost of our evaluation, and including them into our papers (as is already
done by some communities or some authors [18]). This was a panel in a small workshop with
people environmentally-concerned. Yet the opposition to this idea was extremely visible

Final words To conclude, I believe that there are an important number of challenges revolving around
HPC and the climate catastrophe. HPC scientists cannot simply be spectators to this, and we really
need to rethink about how our system works. I also believe that for us, it goes further than simply
doing resource management as usual with a "minimizing the energy consumption" criterion. This is the
direction that I would like to give to my future research.
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Résumé en français

Les machines de Calcul à Haute-Performances (HPC) sont des ressources de calculs extrèmement in-
tenses. Pour donner un ordre de grandeur, la machine10 la plus puissante actuellement (Juin 2023) est
Frontier à Oak Ridge National Lab. Cette machine contient environ 8.7 millions de cœurs pour une
performance théorique de 1.7EFlop/s. Elle a une consommation de 21MW.

Le sujet de mes recherches de ces 10 dernières années (et depuis l’obtention de ma thèse de doctorat)
a porté très largement sur la problématique de la gestion des ressources en HPC. Spécifiquement :

L’ordonnancement d’I/O [C2, J9, J3, RR3, C4, C8, C12]: Une problématique majeure des super ordi-
nateurs est la gestion des données générées qui doivent être stockées sur les disques (par exemple
données de visualisation, checkpoints pour la résilience). Une part de ma recherche s’est con-
centrée sur des techniques d’ordonnancement pour minimiser la contention I/O et améliorer la
performance d’applications HPC.

Ordonnancement d’applications à performances stochastiques [J5, C6, C9, C11, C10, J10]: Avec la
généralisation du HPC, de nouveau type d’applications sont exécutés sur les super-ordinateurs.
Ces applications ont des caractéristiques différentes des applications typiques HPC. Particulière-
ment leur temps d’exécution est moins déterministe. Dans ce projet mené avec des scientifiques
de l’université de Nashville, nous avons étudié certaines applications de neurosciences et avons
modélisé leur performance en utilisant des outils probabilistes. Nous nous intéressons aux perfor-
mances des gestionnaires de ressources face à ces nouveaux profils et avons proposé de nouvelles
stratégies algorithmiques pour gérer ces applications “stochastiques”.

Calcul d’adjoint sous contraintes mémoires [J6, J4, J13, J16]: Pour ce projet mené avec des collègues
d’Argonne National Lab. (Paul Hovland, Krishna Narayanan), nous avons étudié un type de
graphe spécifique : les graphes de rétropropagation (ou différentiation automatique). Nous avons
proposé de nouvelles solutions algorithmiques pour les exécuter en présence de contraintes mé-
moires. Avec Julien Herrmann, nous avons ensuite développé une librairie Python (H-Revolve)
où ces algorithmes ont été implémentés.

Résilience [C18, J2, C5, RR2]: Depuis ma thèse je me suis intéressé à la gestion des fautes sur les
ressources HPC. Le checkpoint est la technique la plus habituelle pour protéger les applications
HPC: après chaque faute, l’application qui s’exécutait sur la ressource défaillante est interrompue
et doit être redémarrée. Sans checkpoint le travail exécuté serait perdu. En présence de checkpoint,
l’application peut redémarrer à son dernier point de sauvegarde après un temps de réjunévation.
Récemment je me suis particulièrement intéressé aux limitations des modèles de checkpoints.

Le point commun entre ces études est l’approche méthodologique que j’apporte en les étudiant. Ma
recherche se concentre particulièrement sur la modélisation des problèmes et le fait d’y proposer des

10dont les données sont publiques
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solutions algorithmiques. En revenant sur 10 ans de recherche, j’ai pu observé l’évolution et la maturité
que j’ai obtenu sur la problématique de modéliser les performances d’un gestionnaire de ressources.
C’est ce que je vais essayer de décrire dans ce document.

Contenu de ce document: Je fais l’hypothèse que l’utilisation de ressources des différents jobs
ainsi que leur variations temporelles possèdent une part d’aléa. La variabilité de ces besoins leur est liée
et peut être très large. À partir de là, je pense que les algorithmes d’ordonnancement et les logiciels pour
l’HPC doivent embrasser cet aléa. Actuellement, il me semble que cette incertitude n’est pas encore
prise en compte de manière satisfaisante dans la conception de ces solutions.

Dans ce document, je défends de nouvelles manières d’étudier et d’incorporer l’imprécision des
performance dans les modèles utilisés pour la conception de gestionnaires de ressources. Cette démon-
stration se basera sur la recherche que j’ai effectuée ces 10 dernières années.

Au travers de questions et d’exemples spécifiques, j’essaye de proposer dans ce document comment on
pourrait (i) concevoir un modèle qui représente de manière plus fidèle les applications tout en restant
pratiques ; puis (ii) je montre l’importance de questionner les limites des modèles proposé en en testant
certains contre des hypothèses du “monde réel”.

Ce document est ensuite conçu ainsi:

• Dans le Chapitre 1, je présente des remarques introductives sur la conception de modèle pour
l’algorithmique de gestionnaires de ressources. En particulier je discute des hypothèse courantes
faites dans la conception d’un modèle.

• Dans le Chapitre 2, au travers d’un cas pratique (la tolérance aux fautes), je montre comment on
pourrait détecter des imprécisions d’un modèle.

• Cela mène dans le Chapitre 3 à réouvrir les questions de fond sur la conception de modèles.
Par ailleurs, je plaide dans ce chapitre pour une compréhension plus qualitative des objectifs
d’évaluation plutôt que de considérer des objectifs quantitatifs de minimisation/maximisation.

• Dans le Chapitre 4, au travers d’un cas pratique (l’ordonnancement d’I/O), je discute en pro-
fondeur une recherche pour des modèles pratiques. Spécifiquement, je montre que les modèles
peuvent différer en fonction des besoins de ce qu’on cherche à étudier.

• Dans le Chapitre 5, je discute à nouveau ces questions sur un autre cas pratique: l’incertitude pour
les temps d’éxecutions de certains jobs.

• Enfin, après quelques remarques de conclusions, je discute les grandes lignes de ce qu’il me
semble être d’importantes directions de recherche dans le futur.
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