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Titre: Stratégies de simulation et de contrôle de systèmes dynamiques à partir de modèles numériques alimentés
par les données - Applications en génie parasismique
Mots clés: Recalage de modèle, Assimilation de données, Dynamique des structures, Contrôle de systèmes en
temps réel, Génie parasismique, Essais sismiques sur table vibrante.

Résumé: Le laboratoire EMSI du CEA Saclay est
équipé de tables vibrantes permettant de reproduire
sur des ouvrages de génie civil de taille conséquente
des chargements sismiques complexes. Les lois
de commande des vérins hydrauliques qui les pilo-
tent n'intègrent pas directement l'évolution de l'état
de santé des structures testées, pouvant pourtant
soudainement se dégrader et conduire à des essais in-
stables, menaçant l'intégrité de l'installation expéri-
mentale.

L'objectif de cette thèse est de développer une
stratégie d'assimilation de données uni�ée autour du
concept d'erreur en relation de comportement modi�ée
(ERCm), permettant de recaler un modèle numérique
de la structure testée pour régler les lois de contrôle
en temps réel. L'ERCm a d'abord été mise en ÷uvre
a posteriori, pour traiter les données recoltées d'essais
achevés. Une stratégie intégralement automatisée a
été proposée pour identi�er les paramètres de raideur

d'un modèle éléments �nis de manière robuste et �-
able. Ce cadre a ensuite été étendu à l'assimilation
séquentielle de données, en intégrant l'ERCm comme
observateur d'un �ltre de Kalman (MDKF).

Tous les développements ont été validés avec des
mesures simulées issues d'exemples de génie parasis-
mique, puis appliqués avec succès à la campagne ex-
périmentale SMART2013. Avoir pu suivre en temps
réel l'évolution de la signature modale d'une struc-
ture complexe en béton armé à partir de mesures
d'accélération souligne la robustesse et l'e�cacité de
la stratégie proposée.

En�n, la question du contrôle adaptatif a été abor-
dée au travers d'une preuve de concept, où une com-
mande par retour d'état adaptée en temps réel par
MDKF a pu stabiliser un essai sismique simulé. Ce
dialogue essais/calculs ouvre ainsi la voie à des per-
spectives de contrôle hybride, et à de nouveaux outils
pour le suivi de l'état de santé de structures.

Title: Numerical framework for data-driven model-based monitoring of dynamical systems - Application to
earthquake engineering problems
Keywords: Model updating, Data assimilation, Structural Dynamics, Real-time control of systems, Earthquake
engineering, Shaking table experiments.

Abstract: The EMSI laboratory (CEA Saclay) is
equipped with shaking tables that allow to assess the
seismic performance of civil engineering constructions.
The control laws of the hydraulic actuators that drive
them do not directly integrate the health condition of
the tested structures, which can suddenly deteriorate
and lead to unstable tests. If so, the integrity of the
experimental setup is threatened.

This thesis work aims to develop a data assimila-
tion framework uni�ed around the concept of modi�ed
Constitutive Relation Error (mCRE), in which a digital
twin of the tested specimen is used to adapt control
laws on-the-�y. First, a fully-automated mCRE-based
�nite element model updating strategy is implemented
in an o�ine context in order to perform robust and
accurate parameter identi�cation. The methodology
has then been extended to online data assimilation by

integrating the mCRE within a Kalman �lter (MDKF).

All numerical developments have been validated
with simulated data from earthquake engineering prob-
lems, and successfully applied to the SMART2013 test
campaign database. The possibility to monitor in real-
time the modal signature of a reinforced concrete spec-
imen from actual acceleration measurements illustrated
the relevance and robustness of the proposed strategy.

Eventually, the adaptive control issue has been
addressed via a proof-of-concept in which a state-
feedback command has been tuned in real-time with
MDKF to stabilize simulated shaking table tests. This
dynamical data-to-model interaction thus paves the
way of future investigations for hybrid control strate-
gies and new physics-guided structural health monitor-
ing techniques.
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Introduction

Interaction between models and data...

The design, analysis and prediction of dynamical systems requires the construction of robust
numerical models. These models can be directly built from measurements (black-box modeling)
or derived after in-depth physical description of the involved phenomena (white-box modeling).
Intermediate hybrid approaches are also conceivable, e.g. when a part of the underlying physics
is too complex to be properly described (grey-box modeling). In each case, ensuring the repre-
sentativeness of these models is a crucial issue that needs to be addressed for their practical
use. On the one hand, one cannot blindly believe in the predictive capabilities of high-fidelity
models as an increasing number of internal uncertain parameters must be correctly calibrated
to ensure their reliability. On the other hand, one cannot directly generalize a model built on a
specific database to a given system in a given environment. Therefore, obtaining a useful virtual
model is no longer a question of increasing model complexity, but now conversely consists in
developing trust by uncertainty quantification and confrontation to experimental data.

As most of modern systems are now equipped with numerous sensors, models are assessed
(and even augmented) by comparison with experimental data. The validation, enrichment and
exploitation of numerical models from experimental data are part of theDigital Twin paradigm,
whose applications range from simple post-processing to preliminary design, prognosis, active
control, or even decision-making process [Chinesta et al. 2018; Rasheed et al. 2020; Wagg et al.
2020]. These features are also promoted by the Dynamic Data Driven Applications Systems
(DDDAS) paradigm [Darema 2004; Chamoin 2021], which formally represents a close (online)
dialog established between numerical models and experimental data with a dual objective:

(i) controlling the evolution of the experimental system thanks to model predictions,
(ii) updating the numerical model with measurements acquired in real-time.

To do so, in situ measurements have to be sequentially assimilated in order to dynamically up-
date parameters of the model in real-time (see Fig. 1). This challenging framework has many
applications1 and requires the elaboration of fast and robust data assimilation techniques.

Regarding civil engineering applications, earthquake engineeringproblems are no exception
to the need of using experimental data to build, validate and operate robust numerical models.
More particularly, the fields of Structural Health Monitoring (SHM) [Chatzi et al. 2020; Ritto
and Rochinha 2021] and vibration-based damage detection [Alvandi and Cremona 2006; Avci
et al. 2021] have been constant research topics of interest since the safety of structures depends
on monitoring the occurrence, formation and propagation of structural damage [J. Brownjohn
2007]. In this framework, measurements are collected in operational conditions to predict the
evolution of damage and evaluate the state of the structure. If modal analysis tools based on
subspace identification techniques are powerful and popular techniques for a posteriori analysis
[Overschee and Moor 1996; Reynders 2012] alongside finite element model updating methods
[Friswell and Mottershead 1995; Simoen et al. 2015], data assimilation techniques are manda-
tory to process measurements on-the-fly in real-time (with respect to the time scale of observa-
tions).

1see http://www.1dddas.org for instance

http://www.1dddas.org
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Figure 1: Interactions between a physical system and a numerical model in a DDDAS framework.

... for enhanced earthquake engineering experiments

In the industrial nuclear context, power-plant equipments (facility buildings, pipes, tanks, elec-
tric closets, overhead cranes, ...) are qualified for their capability to withstand earthquakes
according to strict safety norms. To do so, shaking table experiments can be performed to as-
sess the response of structures subjected to groundmotion solicitations [McConnell and Varoto
1995; Williams and Blakeborough 2001]. In a research context, shaking table tests on complex
structures can also be used to assess the prediction capabilities of nonlinear models [Richard
et al. 2016]. The hydraulic actuators that drive the shaking tables can be exploited for hybrid
experiments as well [Bursi et al. 2012; Abbiati et al. 2015; 2021].

In this diverse background, the CEA/TAMARIS facility carries out seismic tests using shak-
ing tables moved by high-power hydraulic actuators on complete or partial specimens, at real or
reduced scale, to evaluate the capability of civil structures towithstand seismic groundmotions.

Controlling the hydraulic actuators of the shaking tables is still a challenging task that em-
phasizes the need of establishing a close dialogue between model and measurements (see Fig.
2): if the control of shaking tables for seismic replication is a well-identified issue [J. Yao et al.
2016], most of the proposed strategies do not consider the fact that sudden damage occurence
may lead to unstable experiments. Actually, because of the strong physical coupling between
the actuators, the shaking table and the tested specimen, the controllability of the full device
critically depends on the modal signature of the specimen, which is known to be directly condi-
tioned by stiffness changes [Cawley and Adams 1979]. Therefore, during seismic experiments
on damaging specimens (such as reinforced-concrete constructions), the modal signature can
face sudden changes, which may turn the initial control strategy inadequate with regards to the
current state of the tested specimen.

So far, the lack of representativeness of numericalmodels to predict suchphenomena implies
to carry out test sequences of increasing level where control laws are iteratively corrected from
one test to another to account for the observed frequency drop [LeMaoult et al. 2012]. In spite of
these complex protocols, unstable test endings yet may happen, spoil a complete test campaign
and put the safety of the facility at risk.

http://www-tamaris.cea.fr
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Challenges, objectives and outline

The ambition of this thesis work consists in developing a novel data-drivenmodel-based
control strategy that fits within the above-mentioned DDDAS paradigm, in which a close
dialog between the experimental device and a digital twin is performed in real-time.

From the numerical viewpoint, the integration of a digital twin requires a complex numeri-
cal framework including a robust model updating algorithm providing fast and representative
solutions of inverse problems. The latter would then be included into an efficient data assim-
ilation scheme to update model predictions from acquired data as frequently as possible, ulti-
mately in near real-time, whereas the computational burden carried by recursive calls to model
predictions may be prohibitive. The robustness of the digital twin is essentially conditioned by
the properties of the underlying model updating strategy:

. The ill-posedness of the inverse problem in Hadamard’s sense [Tikhonov and Arsenin
1977] and ill-conditioning issues [Mottershead and Foster 1991] that are related to the fact
that the full state of the structure cannot be measured, and that data acquisition signals
include measurement noise. Regularization techniques must then be considered to guar-
antee uniqueness of the solution and enforce local ellipticity of the problem [Ahmadian et
al. 1998; Titurus and Friswell 2008]. For shaking table experiments, this is particularly de-
cisive when performing low-level non-damaging random tests that naturally have a very
low signal-to-noise ratio.

. The inverse problem definition itself [Tarantola 2005], including:

– the sensivity of model parameters to update with respect to the chosen cost-function;
– the richness of available measurements, i.e. the types and densities of sensors;
– the complexity of the parameter space, and the question of parameter identifiability
that may arise;

– the limited input frequency bandwidth, which is limited by the physics of the system
that filters input and output data.

. The robustness with respect to model bias, that always exists as long as the class of in-
volved models does not enable to perfectly replicate the behavior of the experimental de-
vice.

. The real-time constraint, that may necessitate the call for reduced order modeling (ROM)
techniques [Chinesta et al. 2011; Benner et al. 2020] combined to parallel computing as
done for instance in [Pereira Álvarez et al. 2021; Bonney et al. 2022] or [Prudencio et al.
2013].

The construction of such a DDDAS framework implies to fulfill all the previouslymentioned
difficulties within a single numerical framework. In this thesis, this will be done using the con-
cept of modified Constitutive Relation Error (mCRE) as a cornerstone. Introduced by Ladevèze
and co-workers in the late 1990s [Maia et al. 1994; Chouaki et al. 1997; Deraemaeker et al. 2002],
the mCRE is particularly attractive as it takes simultaneously model error and measurement
noise into account to perform model updating with physics-based regularization. Around this
concept, the objectives targeted for this thesis are listed below:

. Establish a robust model updating strategy for correcting finite element models from
datasets acquired in low-frequency dynamics, with the aim to detect and quantify struc-
tural damage,

. Extend the previous framework to sequential data assimilation for track damage propa-
gation,

. Illustrate the benefits of adaptive data-driven model-based control for shaking table tests,

. Provide a unified numerical framework that can be operated by non-expert users.
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In what follows, the preliminary validation of these objectives will systematically be done us-
ing synthetic measurements from simulated academic examples representative of earthquake
engineering problems. Subsequently, the effectiveness of the proposed strategies will also be
illustrated by processing actual measurements recorded during previous test campaigns at the
CEA/TAMARIS facility.

Figure 2: DDDAS framework for enhanced monitoring and control of shaking table experiments.

Letting the introduction and conclusion aside, the research work carried out during the the-
sis is organized in 3 parts and 5 chapters structured around the perspectives of data-to-model
interaction for enhanced shaking table experiments that are illustrated in Fig. 2, as each chapter
corresponds to one of the arrows connecting the digital twin to the control loop. The three parts
allow to distinguish in which context the presented contributions are applicable. Besides, the
state of the art is spread out among all the chapters due to the multidisciplinary dimension of
the thesis subject.

The main content of each chapter is detailed in the following.
Chapter 1 proposes a brief review of offline model updating methods for finite ele-

ment models, with particular attention to damage detection problems. The concept of mCRE
is positionned among the state-of-the-art, and the formulation of the mCRE-based model up-
dating problem for damage detection from linear FE models is given. After a first illustration,
contributions for robust and enhanced mCRE-based model updating in low-frequency dynam-
ics are presented, with an application to the offline processing of actual measurements from the
SMART2013 test campaign.

Chapter 2 focuses on the inherent model updating limitations that have been previ-
ously observed, mostly related to parameter identifiability and sensor density. To limit their
impact, a fully-automated offline model updating framework is proposed. It does not require
any user intervention (once the mCRE formulation is defined). The automated procedure is
validated throughout a numerical benchmark in which damage is detected at best from sparse
acceleration data.

www-tamaris.cea.fr
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Chapter 3 is dedicated to optimal sensor placement in order to address the problem
of data sparsity when discrete sensors are used for model updating. After a review of classical
OSP techniques for SHMwith illustrations on an academic example, a newmCRE-based sensor
placement technique is proposed, based on a modified formulation of the information entropy
and Fisher InformationMatrix. The sensor placement results obtained on a frame structure sub-
mitted to random ground motion show the efficiency of this new placement technique and the
soundness of such an approach in perspective of a DDDAS unified around the mCRE concept
for SHM.

Chapter 4 addresses the core problem of extending an offline model updating algo-
rithm to a sequential data assimilation framework. After a review on data assimilation tech-
niques, with special attention paid to Kalman filtering techniques, a novel data assimilation
technique called Modified Dual Kalman Filter is presented. The proposed strategy integrates
the mCRE within a sequential process as parameters are updated according to the mCRE it-
self, and not only from a direct data-to-model comparison. The performance of MDKF is first
assessed using synthetic measurements from a plane frame subjected to random ground accel-
eration. Actual measurements from the SMART2013 benchmark are then assimilated in a real-
time context to monitor the eigenfrequency drop of a reinforced-concrete structure submitted
to a sequence of gradually damaging shaking table tests.

Chapter 5 sets up the DDDAS framework of Fig. 2 by exploring the feasibility of
mCRE-based data-drivenmodel-based control. After emphasizing themain difficulties and ap-
proaches for the control of electrohydraulic shaking tables, a proof-of-concept on a simulated
example shows that MDKF can be advantageously used to improve the quality and the safety
of shaking table experiments.

Finally, general concluding remarks of this thesis are drawn, with perspectives of future
works of growing complexity also mentioned.

For organizational purposes, several appendices have been included at the end of the
manuscript. The recurrent earthquake engineering examples of the thesis are detailed in Ap-
pendix A. Appendices B and C provide mathematical details about the mCRE-based model
updating framework presented in Chapters 1-2. Appendix D proposes an alternative presen-
tation of Kalman filtering which can be related to Bayesian inference. Finally, Appendix E lists
the contributions (publications and communications) that have been made in the context of
this work.



Contributions for a robust and unified model
updating framework in low-frequency

dynamics

Voilà l’homme tout entier, s’en prenant à sa chaussure alors
que c’est son pied le coupable.

Samuel Beckett, En attendant Godot



Chapter1
Offline model updating in low-frequency dynamics
State-of-the-art and contributions for an enhanced energy-based

formulation

In this chapter, we focus on the offline model updating of finite element models from noisy discrete mea-
surements acquired in low-frequency dynamics. After a preliminary state-of-the-art with particular at-
tention paid to the positioning of the modified Constitutive Relation Error functional among the different
standard model updating approaches, we present the associated mathematical framework and minimiza-
tion algorithm. Several contributions for the enhanced robustness of the mCRE functional are then pre-
sented, mostly oriented towards the optimal management of low-SNR measurements. Lastly, the perfor-
mance of the proposed methodology is shown throughout the processing of acceleration recordings from
the SMART2013 test campaign, which represents a first step towards the integration and online update
of FE models in shaking table control strategies.

The work presented in this chapter has been the subject of the following contributions:

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2022c]. “Robust energy-based model updating frame-
work for random processes in dynamics: application to shaking-table experiments”. Computers and
Structures 264.106746, p. 40. doi: https://doi.org/10.1016/j.compstruc.2022.106746
M. Diaz, P.-É. Charbonnel, and L. Chamoin [2023c]. “Fully automated model updating framework
for damage detection based on the modified Constitutive Relation Error”. Computational Mechanics.
doi: 10.1007/s00466-023-02382-z

https://doi.org/https://doi.org/10.1016/j.compstruc.2022.106746
https://doi.org/10.1007/s00466-023-02382-z
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1.1 Overview of offline model updating techniques for structural
health monitoring

For Structural Health Monitoring (SHM) applications, the calibration of stiffness parameters
from experimental data allows to identify (i.e. locate and quantify) structural damage. During
the last decades, a wide panel of damage detection methods has been proposed [Simoen et al.
2015; Chatzi et al. 2020; Avci et al. 2021]. For the sake of conciseness, we will exclusively focus
on damage detection problems from sparse data (obtained from accelerometers, strain gauges,
transducers for example) although dedicated approaches operating full-field measurements
have also been developed, see [Claire et al. 2004; Helfrick et al. 2009; Curt et al. 2022] to cite
a few. When dealing with sparse datasets, the identification of damage in large structures is
inherently difficult because of the relatively reduced amount of availablemeasurements, leading
to an ill-posed inverse problem [Tarantola 2005].

Because many SHM applications directly exploit modal features, a parametrized model is
thus not mandatory as the changes in modal features such as eigenfrequencies, damping ratios
or modeshapes can provide direct information about the damage state of a structure. Their evo-
lution with time allows the user to track structural damage [Fan and Qiao 2011]. In particular,
classical modal analysis techniques aim to identify modal features through the construction of
a (growing-order) state-space model from measurements [Allemang et al. 2010]. One of the
most accurate methods are based on stochastic subspace identification [Overschee and Moor
1996], although alternative techniques exist for frequency-domain system identification [Guil-
laume et al. 2003]. These algorithms have been massively used in Operational Modal Analysis
(OMA) techniques, that process output-only measurements from (large) structures [Peeters
and De Roeck 2001; Deraemaeker et al. 2008; Reynders and Roeck 2008; Reynders et al. 2012]
obtained from unknown excitations in an operational environment (i.e. wind or road traffic for
bridges).

However, Finite Element (FE) models can still be updated according to experimental (pos-
sibly modal) data. This will be the case in the following developments as FE models of the
specimen that are tested on shaking tables at the CEA/TAMARIS facility are always available
(they are developed when designing test campaigns). In such a context, Bayesian/stochastic
approaches (whose extended comprehensive review is available in [Simoen et al. 2015]) are
classically distinguished from deterministic methods, as explained in the following.

In any case, model updating techniques aim to correct parameters θ ∈ Θ of a mathematical
modelM based on a set of observed outputs y obtained under a given set of inputs e . In practice,
y may contain any physical measured quantity deriving from a displacement field at sensors
location (displacements, velocities, accelerations, strains), whereas the inputs e , if known, are
associated to the loading (imposed displacements, forces or accelerations). Optimal parameters
θ̂ are searched as minima of a cost-function J measuring the gap between measurements and
associated model predictions :

θ̂ = arg min
θ ∈ Θ

J
(
M (θ, e) ; y

)
(1.1)

As all inverse problems, offline model updating problems are prone to ill-posedness (in the
sense of Hadamard) and ill-conditioning issues especially because of measurement noise and
model bias [Tarantola 2005]. Regularization techniques must be considered to ensure the
uniqueness of the solution, by enforcing local ellipticity of the functional. Extensive literature
reviews of validation/model updating approaches can be found [Mottershead and Friswell
1993; F. M. Hemez and Doebling 2001; Bonnet and Constantinescu 2005; Simoen et al. 2015].

Remark 1.1. For the sake of completeness, even though not considered afterwards, let us
mention damage detection techniques based on neural networks and machine learning, that
are getting more and more popular due to their capability to process large amount of data
[Gomes et al. 2019; Avci et al. 2021; García-Macías and Ubertini 2022]. They exploit tech-
niques such as data fusion and statistical pattern recognition that are of growing interest

www-tamaris.cea.fr
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in SHM [Figueiredo and J. Brownjohn 2022]. However, they still lack of generality in the
sense that results obtained by extrapolation outside the learning database may not be rel-
evant. Also, the interpretation of results may also be difficult as data are transformed into
non-physical latent spaces.

1.1.1 Deterministic model updating methods
Deterministic methods, extensively reviewed in statics/quasi-statics in [Bonnet and Constanti-
nescu 2005] and for nonlinear transient dynamics in [F. M. Hemez and Doebling 2001] build
the cost-function to be minimized as a distance from the response of the model to available
measurements and overcome the ill-posedness issue using a so-called Tikhonov regularization
term [Tikhonov and Arsenin 1977], containing a priori information G(θ, θ0) on the parameters
to identify. The gap between model and data is measured using a (non-necessary Euclidean)
norm

∣∣∣∣∣∣ • ∣∣∣∣∣∣ taking the entire amount of available data (y , e) into account. The cost-function
reads:

J (θ) =
∣∣∣∣∣∣H (M(θ, e))− y

∣∣∣∣∣∣ +
1

α
G(θ, θ0) (1.2)

whereH(•) is the (possibly nonlinear) observation operator which allows to extract model pre-
dictions in order to compare them to the measured quantities, leading to the data-to-model dis-
tance (H (M(θ, e(t)))− y(t)). In the linear case, H corresponds to a projection matrix operator,
whose non-zero terms allow to extract model predictions at sensor locations. The weighting
coefficient α associated to the regularization term G(θ, θ0) is directly related to the degree of
confidence the user has into the prediction capability of the model to reproduce the observed
data. It can be calibrated using various techniques such as the Morozov discrepancy principle
[Morozov 1968] or the L-curve method [Ahmadian et al. 1998].

Modal features can be used as a reference for dynamics problems: the data-to-model dis-
tance then directly compares experimental eigenfrequencies, modeshapes and damping ratios
to those predicted by the FE model. This is the case of the so-called mode matching methods
whose cost-function includes an eigenfrequency residual combined with amodal assurance crite-
rion (MAC) on modeshapes [J. Brownjohn et al. 2001]. FE model updating techniques can still
be involved to correct models based on experimental modal features in dynamics: for exam-
ple, the sensitivity method is a popular and powerful technique, reviewed in [Farhat and F. M.
Hemez 1993; Friswell andMottershead 1995; Mottershead et al. 2011] and applied in [Teughels
andDeRoeck 2005;Weber et al. 2007; Moaveni et al. 2009; Batou 2019] amongmany otherworks.
It is based upon linearization of the generally nonlinear relationship between measurable out-
puts, such as natural frequencies, mode shapes or displacement responses and the parameters
of the model in need of correction. As all deterministic inverse problems, regularization tech-
niques are mandatory to prevent the ill-posedness of the problem [Titurus and Friswell 2008;
Weber et al. 2009; C. D. Zhang and Y. L. Xu 2016].

Alternatively, direct data-to-model comparison (1.2) can be performed in the case of hav-
ing a norm

∣∣∣∣∣∣ • ∣∣∣∣∣∣ that is Euclidean (with measurements processed in the time or frequency
domains). This technique is also referred to as the weighted least-squares method [Sorenson
1970]. The interested reader can find a comparative study between modal-based and time-
domain updating approaches in [Link and Weiland 2009].

1.1.2 Stochastic model updating methods
Stochastic methods, in turn, use the Bayesian inference framework to describe uncertainties on
parameter estimates [Kaipio and Sommersalo 2005; Stuart 2010]. The Bayesian approach aims
to improve the prior knowledge on the parameters probability density function (pdf) denoted π(θ)
using both experimental data y and the predictionmodelM [Simoen et al. 2015]. The updating
strategy is based on the eponymous Bayes theorem, which derives the posterior pdf π(θ|y ,M)
from the prior pdf π0(θ) and the likelihood function π(y |θ,M), such that:

π(θ|y ,M) ∝ π(y |θ,M) π0(θ) (1.3)
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The prior π0(θ) is generally chosen based on engineering judgment and describes an initial guess
of the parameters distribution in the absence of observations. If its provides an intrinsic regu-
larization, its choice is crucial when few data are available [Van Biesbroeck et al. 2023]. The
likelihood function can be interpreted as a measure of how good the set of parameters θ ap-
plied to modelM succeeds in explaining the observations y . Optimal parameters θ̂ can then
be recovered based on classical Maximum Likelihood Estimation (MLE) principle, i.e. such
as maximizing the log of the likelihood function. The Maximum a posteriori principle (MAP),
which considers the posterior pdf, can also be used. Since no assumption is made on the prob-
ability laws, the evaluation of the posterior pdf cannot be performed analytically (except for
special cases); it is thus necessary to proceed by random selection and propagation. The com-
putation of the likelihood function is the critical issue for stochastic approaches. For example,
in a Monte-Carlo sampling framework, the number of calls to the modelM can be too impor-
tant from the numerical viewpoint, hence the coupling with Reduced Order Modelling (ROM)
techniques to gain numerical efficiency. For instance, stochastic model updating methods can
be combined to the Proper Generalized Decomposition (PGD) [Rubio et al. 2018] or the Proper
Orthogonalized Decomposition (POD) [N.-H. Nguyen et al. 2014].

Remark 1.2. For the particular case where all random variables are assumed to be nor-
mally distributed, it can be proved that the Maximum A Posteriori (MAP) estimate de-
fined in the Bayesian framework corresponds to the deterministic minimal solution of a least
squares functional weighted by the covariance of the measurement error and enriched with
a Tikhonov regularization from the prior pdf:

Indeed, let one postulate that the prior pdf π(θ) and the likelihood function π(y |θ) are
both defined with Gaussian laws such that

π(θ) ∝ exp
[
−1

2
(θ − θ0)T Σ−1

0 (θ − θ0)

]
(1.4)

π(y |θ) ∝ exp
[
−1

2
F(θ)TΣ−1

v F(θ)

]
(1.5)

where F(θ) = H (M(θ, e))− y is seen as a function of θ (model, inputs, and measurements
being given), Σ0 refers to the a priori parameters knowledge covariance matrix, θ0 to the
initial guess of the parameters and Σv = Σm + Σy to the error covariance matrix on model
and measurement errors [Tarantola 2005]. Therefore, according to the Bayes theorem and
the Maximum A Posteriori (MAP) principle, the optimal set of parameters is sought as

θ̂ = arg max
θ∈Θ

log π(θ|y) = arg max
θ∈Θ

log π(y |θ)π(θ)

= arg min
θ∈Θ

[
1

2
F(θ)T [Σm + Σy]

−1F(θ)︸ ︷︷ ︸
Weighted least-square term

+
1

2
(θ − θ0)T Σ−1

0 (θ − θ0)︸ ︷︷ ︸
Regularization term

]
(1.6)

which leads to the typical deterministic minimization problem defined according to the for-
malism of (1.2) with a weighted least-square functional written as a Mahalanobis distance
(the quadratic distance is weighted by the covariance error matrix). The relative weight of
Σ0 compared to Σv defines the relative importance of the regularization term, exactly as
done by α in (1.2).

Using this approach, the modeling structure is never questioned, as only a parameter set
is updated. In the mCRE framework, as described in the next paragraph, an explicit model
error term provides more flexibility to choose a suitable model structure from available data.

1.1.3 The modified Constitutive Relation Error in dynamics
An alternative approach consists in using the concept of modified Constitutive Relation Error
(mCRE) that exploits the concept of reliability of information. This is the main driver behind
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its selection as a reference method for model updating in this thesis. Since (i) the model struc-
ture may not be able to describe the observed phenomena, (ii) the measurement noise stored in
data may significantly disrupt the update of FE models with typical least-squares functionals,
and (iii) the computational burden carried by probabilistic models risks to be prohibitive for
real-time prospects, amodel updating cost-functionwith enriched physicalmeaning and strong
mechanical content, the so-calledmCRE, is preferred. ThemCRE is a deterministic energy resid-
ual defined as a quadratic model-to-measurements distance enriched with a term based on the
concept of Constitutive Relation Error (CRE) which allows to relax the unreliable information of
the problem. Historically, the CRE was introduced in the 1980s for the purpose of FE verifica-
tion [Ladevèze and Leguillon 1983], and extensively developed afterwards in [Ladevèze et al.
2006; Louf et al. 2010; Ladevèze and Chamoin 2011; Pled et al. 2011; Ladevèze and Chamoin
2016] among many other references. The CRE concept was later adapted for model validation
[Chouaki et al. 1998] in structural dynamics to define a modified CRE (mCRE) residual to be
minimized with respect to the updated parameters. Without going into much detail for now,
the mCRE functional reads:

mCRE(θ) = CRE(θ) + α |||H (M(θ, e))− y |||2 (1.7)

with the scalar α balancing the CRE and the data-to-model distance terms1. This energy-based
residual offers interesting advantages. In particular, it improves local convexity properties com-
pared to classical least-square functionals [Bonnet and Constantinescu 2005; Feissel and Allix
2007; Aquino and Bonnet 2019]. Besides, the CRE part of the residual, computable over the
whole structure, allows to select the most erroneous areas in order to restrain the updating pro-
cess to a few parameters; this is regularizing (in the Tikhonov sense), particularly when the
number of parameters to update becomes important [Bui and Constantinescu 2000; Barthe et
al. 2004; Charbonnel et al. 2013]. The mCRE functional has proved robustness and efficiency
for model updating throughout a large number of applications involving:

. Defect detection in linear structural dynamics in beams [Faverjon et al. 2009; Waeytens
et al. 2016], composites [Barbarella et al. 2016], or frame structures [Hu et al. 2017; Hu
et al. 2019],

. Very noisy or even corruptedmeasurements [Allix et al. 2005; Feissel andAllix 2007; H.-M.
Nguyen et al. 2008],

. Modal-based approaches using frequency response functions [T. Silva and Maia 2017] or
additional sparse regularization [Guo et al. 2018],

. Full-fieldmaterial identification in elastodynamics [Banerjee et al. 2013;Warner et al. 2014;
Guchhait and Banerjee 2016; Ghosh et al. 2017; Guchhait and Banerjee 2018],

. Tolerance to incomplete boundary conditions [Bonnet and Aquino 2015; M. I. Diaz et al.
2015; Aquino and Bonnet 2019],

. Nonlinear mechanical constitutive behavior identification [Hadj-Sassi 2007; Marchand et
al. 2019],

. Coupling with model order reduction techniques like reduced basis [Deraemaeker et al.
2002] or Proper Generalized Decomposition (PGD) [Bouclier et al. 2013],

. Coupling to domain-decompositionmethods for enhanced flexibility in the updating pro-
cess [Samir et al. 2022],

. Real-time data assimilation [Alarcon et al. 2011a; Marchand et al. 2019].

Note that the use of mCRE is not restricted to dynamics: for the sake of completeness, let us
mention applications in 3D acoustics [Decouvreur et al. 2007; 2008], statics with digital image
correlation measurements [Ben Azzouna et al. 2015; Ferrier et al. 2021; H. N. Nguyen et al.
2022], building thermal problems [Djatouti et al. 2020], and recent advances in multiphysics
for wind turbine calibration [Roussel et al. 2022].

1In most papers, one will find a weighting scalar α written as r
1−r , with r ∈ [0; 1[. This reduces the range of

variation of the parameter but has no particular benefit otherwise.
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Regarding civil engineering applications, to the authors best knowledge, only [Oliveira et
al. 2020; 2021] have used of a CRE-based cost function for the characterization of a RC wall-
slab junction from hammer-shock tests, with a dedicated implementation in the FE software
Cast3M© [Oliveira et al. 2022].

Eventually, it is worth noticing the closeness between the mCRE and the Minimal Dynamic
Residual Expansion method (MDRE), developped by Balmès and co-workers in the 2000s [Bo-
billot and Balmès 2001]: the MDRE functional combines a modeling error and a measurement
error as for the mCRE in (1.7). The model error is based on the energy norm of dynamic resid-
ual loads of model predictions (using stiffness FE matrix Euclidean norm). To overcome the
data sparsity issue, the data-to-model distance of the MDRE is computed using shape expan-
sion methods [Balmès 2000; Corus et al. 2006]. These latter allow to estimate the motion of all
DoFs based on a limited set ofmeasurements by interpolation on awell-chosen reduced basis. A
similar approach has been presented for the mCRE in [Deraemaeker et al. 2002], except that the
reduced basis in the MDRE must not be static and follow the parameter identification process
due to the shape expansion requirements. [Balmès et al. 2022; Martin et al. 2022] have recently
presented an application ofMDRE to ameasured brake squeal limit cycle, with 3D scaning laser
Doppler vibrometry and use of the SDTools© vibration software. Particular emphasis has been
put on the proximity to the mCRE2 and to the calibration issues of the functional, especially
the confidence into measurement weight α, introduced in (1.7): its miscalibration may lead to
spurious identification consequences, and an iterative strategy on a wide range of values has
been presented as the only sustainable approach to obtain relevant model updating results.

Remark 1.3. Contrary to modal analysis techniques, the mCRE-based model updating al-
gorithm is not restrained to the processing of linear responses of structures. However, the
knowledge of the input signal is mandatory for the mCRE-based model updating method-
ology proposed herein, contrary to operational modal analysis techniques applied to SHM
that only take advantage of output-only measurements. Besides, the explicit evaluation of a
local model error indicator, namely the CRE part of the residual, provides more insight on
the validity of themodel itself compared to classical finite elementmodel updatingmethods.

Remark 1.4. The mCRE and MDRE are not the only model updating frameworks based on
the reliability of information. For the sake of completeness, let us also mention the recent
work of [M. Bhattacharyya and Feissel 2022] that presents amodel updating technique called
optimal control based on the reliability of information for Bayesian inference application in
quasi-static problems. It considers full-field digital image correlation measurements and
unknown boundary conditions. In this framework, the richness of local DIC measurements
and the lack of knowledge on boundary conditions is such that the model constitutive law
can be fully trusted, leading to a different inverse problem formulation.

1.1.4 Link betweenmCRE, deterministic and stochasticmodel updating techniques

In this paragraph, the aim is to shortly discuss the positioning and meaning of mCRE with the
above-mentioned deterministic and stochastic model updating techniques.

The mCRE, a deterministic functional

Following the general equations of the previous section, one can notice that (1.7) has a very
similar form as the general deterministic residual given in (1.2).

However, if at first sight, the CRE term seems to replace the user a priori knowledge, one
should not take shortcuts on further comparisons because the CRE is not a regularization

2It was observed that the mCRE andMDRE functional are almost identical, except for a metric weighting change
and a slightly different writting of the model error.
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in the sense of Tikhonov! The computation of the CRE is far from being as explicit as that
of a Tikhonov regularization. Besides, once the user has identified which equations are con-
sidered as "unreliable", there is no need for any additional expert-knowledge, which makes
the mCRE model updating approach more independent from some user’s expertise, hence its
physics-regularized feature.

Interpretation of the mCRE from the Bayesian inference viewpoint

Although the proposed mCRE-based model updating strategy is deterministic, one can show
that this procedure is equivalent to the Maximum a posteriori (MAP) estimation in the Bayesian
inference frameworkwithGaussian distributions, ameasurement error norm based on themea-
surements covariance matrix, and no a priori on parameters [Deraemaeker et al. 2004]. Since
covariance on the modeling error is usually not known, the idea is to integrate modeling error
in a more flexible manner into the Bayesian inference framework.

If one assumes that the a priori pdf π(θ) and the likelihood function π(y |θ) are both defined
with Gaussian distributions, then it has been shown in (1.6) that optimal parameters are sought
as minimizers of a functional in which appears a least-square term weighted by a combination
of model and measurement error covariance matrices.

This way, the structure of the constitutive relation is imposed strongly and impacts the least-
square term via the model and measurement error covariance matrices, but it is assumed to
know the modeling error features, which is not the case in most problems. The value of the
CRE functional is thus used to globally quantify the confidence on the less reliable parts of the
model (constitutive relations in particular), into a pdf accounting for model error:

πCRE ∝ exp

[
− 1

α
CRE(θ)

]
(1.8)

The confidence on the modeling exponentially decreases when the CRE value increases, with
a rate speed specified by the scalar α. Therefore, in a mCRE context with a measurement error
norm based on the covariance of the measurements Σy, one can rewrite the likelihood pdf:

π(y |θ) ∝ exp

[
−1

2
(M(θ, e))− y)T Σ−1

y (M(θ, e))− y)

]
. exp

[
−1

α
CRE(θ)

]
(1.9)

Thus, if one no longer assumes any a priori assumption on θ (uniform pdf), the application of
the MAP principle leads to:

θ̂ = arg min
θ∈Θ

[
α (M(θ, e))− y)T Σ−1

y (M(θ, e))− y)︸ ︷︷ ︸
|||H (M(θ, e))− y |||

+ CRE(θ)

]
(1.10)

where one easily recognizes the sum of a model error (the CRE) with a data-to-model distance
tominimize. It thus illustrates that themCREmetric can be naturally derived from the Bayesian
inference framework.

1.2 FE formulation of the mCRE-based model updating problem in
dynamics

This section intends to provide more details on the model updating framework considered in
the remainder of the thesis, namely the calibration of FE-based stiffness macromodels using the
mCREwritten in the frequency domain. For the sake of conciseness, wewill directly go through
the FE discretized formulation of the model updating problem. The interested reader will find
complementary details about the continuous formulation of the presented mCRE-based model
updating problem in [Charbonnel et al. 2013; M. Diaz et al. 2022c].
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1.2.1 Reference dynamics problem, data and parameter space

Frequency domain dynamical equilibrium

Let us consider the general case of an elastic structure Ω spatially discretized in finite elements
such that Ω = ∪Ee=1 Ωe, and subjected to a given dynamical excitation during a given time
interval [0;T ]. K,D,M denote the stiffness, damping andmass FEmatrices, respectively, while
F (t) and U(t) are the nodal loading conditions and displacement field at a given instant t. With
these notations, the dynamical equilibrium reads for all t ∈ [0;T ]:

M Ü(t) + DU̇(t) + KU(t) = F (t) (1.11)

For a structure submitted to a given ground motion acceleration Üd, if one notes Fω and Uω the
frequency counterparts of F and U , the dynamical equilibrium in the frequency domain for a
given angular frequency ω is:[

−ω2M + iωD + K
]
Uω = ω2MΞUd,ω = Fω (1.12)

where Ξ is a matrix addressing the acceleration ground motion to the associated degrees of
freedom (DoF).

Measurements

In addition, a set of sensors is assumed to be scattered over the considered structure. Measure-
ments are often associated to the unknown displacement field U or its time and space deriva-
tives. Excitation forces or actuator state variables may also be available. In practice, the dataset
of observed outputs may contain any physical measured quantity deriving from a displacement
field at sensors location (displacements, velocities, accelerations, strains, etc.), whereas inputs
F , if measured, are associated to the loading (imposed displacements, forces or accelerations).

In the frequency domain, assuming for the moment that measurements are perfect (i.e.
noise-free), such information can be written without loss of generality as:

ΠUω = Yω (1.13)

where Yω refers to the frequency counterpart of measurements at angular frequency ω and Π
denotes an observation matrix that allows to extract the components of Uω that are measured.
It corresponds to the linearization of H in the frequency domain - see (1.2). For displacement,
velocity or acceleration measurements, its non-zero values are integer powers of (iω). The ma-
trix of FE shape functions gradient can also be involved in case strain is measured, for instance
with strain gauges or optical fibers.

Remark 1.5. It will be assumed that the position of sensors is perfectly known in the following,
and that all sensor locations perfectly correspond to a node in the associated FE mesh. It
avoids the necessity to interpolate measurements on the mesh closest nodes with FE shape
functions.

Stiffness parametrization

As mentioned in the introduction, one can interpret damage as local stiffness loss [Cawley and
Adams 1979]. Therefore, a convenient manner to parametrize a linear FE problem for dam-
age detection is to parametrize the FE stiffness matrix. In this work, it is thus chosen to focus
correcting actions only on structural stiffness properties. Doing so, the Nθ parameters to up-
date θ ∈ Θ ⊂ RNθ only affect the stiffness matrix K. More precisely, the FE stiffness matrix is
decomposed into nθ non-overlapping subdomains and parametrized as follows:

K (θ) =

Nθ∑
i=1

θi
θ0,i

K0,i with K (θ0) =

Nθ∑
i=1

K0,i (1.14)
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This approach is common for model updating problems relying on component mode synthe-
sis [Papadimitriou and Papadioti 2013]. Note that the subdomains can perfectly match with
finite elements or gather some of them to reduce the number Nθ of parameters to identify. For
example, a typical macro-parametrization for a building model is given in Appendix A, Fig.
A.4.

Besides, a current practice for correcting frequency response functions (FRF) in low-
frequency dynamics consists in updating stiffness parametrization first to update eigenfre-
quencies, before updating damping parameters in a second step: this allows to correct eigenfre-
quencies before the narrowness the resonant peaks. Eventually, mass properties are very often
well-identified compared to stiffness and damping properties, even though the original mCRE
framework allows to update all properties at once [Chouaki et al. 1998].

1.2.2 The modified CRE: a physics-regularized approach for inverse problems

Reliability of information and CRE

The key idea for the construction of the CRE residual lies into the distinction between reliable
and unreliable information on the reference mechanical problem. The mCRE concept extends
this distinction to experimental data as well, allowing to build a functional able to simultane-
ously handle measurement error and model uncertainty.

Practically, the redundant information gathered in (1.12) and (1.13) means all equations
cannot be exactly verified: taking the measurements as additionnal boundary conditions over-
specifies the mechanical reference problem. Besides, from an experimental point of view, the
knowledge of the frequency complex amplitudes of inputs and outputs is subjected to uncer-
tainties because of measurement noise, finite nature of the recordings, sampling process, sen-
sors offset or miscalibration, anti-aliasing filters, etc. Therefore, some equations of the problem
must be considered less reliable, and thus relaxed as they will be only verified at best when
minimizing the mCRE functional.

In other words, the fundamental idea of the mCRE concept is to compute mechanical fields
and material parameters that are a trade-off between all available information without adding
any other a priori assumption. Although this distinction between reliable and unreliable equa-
tions is not unique and deeply relies on the case study and engineering expertise, it is also
well-known that, in most applications, constitutive relations are subject to caution. The full
separation of equations for the considered damage detection problem is given in Tab. 1.1.

Reliable Unreliable

Model

. Geometry

. Elastic constitutive relations. Boundary conditions
. Equilibrium equations
. Dissipative and inertial constitutive relations

Experiments
. Loading frequencies ω/2π

.Measured outputs Yω. Sensor locations
.Measured inputs Fω

Table 1.1: Distinction between reliable and unreliable information for damage detection from stiffness
update in dynamics.

Remark 1.6. The distinction made in Tab. 1.1 is the only step involving strong user decision
making, contrary to traditional deterministic model updating functionals whose regulariza-
tion term is fully determined by some user’s a priori knowledge.

With the above notations, the CRE at a given angular frequency ω reads:

ζ2
ω(sω, θ) =

1

2
(Uω − Vω)HK(θ)(Uω − Vω) =

1

2

∥∥Uω − Vω∥∥2

K(θ)
, sω = (Uω, Vω) (1.15)
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with Uω a kinematically admissible displacement field (Uω ∈ Uad), which satisfies the reliable
kinematic equations of the problem, and Vω an auxiliary dynamically admissible displacement
field (Vω ∈ Dad) derived from the stress field and satisfying the dynamical equilibrium. Math-
ematically, Uω and Vω are related such that:

[−ω2M + iωD]Uω + K(θ)Vω = Fω ∀ ω (1.16)

Integration of measurements: the mCRE

The extension of the CRE concept to unreliable experimental data directly leads to the so-called
modified Constitutive Relation Error (mCRE). The CRE is completed by a data-to-model distance
between the predictions Uω and the frequency counterpart of measurements Yω :

e2
ω(sω, θ;Yω) , ζ2

ω(sω, θ) +
α

2

∥∥ΠUω − Yω
∥∥2

G
(1.17)

In terms of notations:

. The CRE ζ2
ω(sω, θ) measures the closeness of the mechanical displacement fields (Uω, Vω)

in the sense of the strain energy. Uω satisfies the reliable kinematic equations of the prob-
lem (boundary conditions, closeness to measurements as involved in the data-to-model
distance) and Vω is constrained to satisfy the dynamical equilibrium of the problem. In
practice, sω is obtained by solving a constrained optimization problem for allω (for a given
parameter set θ):

sω(θ;Yω) = arg min
sω=(Uω ,Vω)

[
e2
ω(sω, θ;Yω)

]
s.t. [−ω2M + iωD]Uω + K(θ)Vω = Fω (1.18)

The minimization of the mCRE with respect to mechanical fields under the dynamical
equilibrium constraint is performed using a classical Lagrange multiplier vector Λω and
an associated augmented cost function defined for each angular frequency ω:

Lω(Uω, Vω,Λω, θ;Yω) = e2
ω((Uω, Vω) , θ;Yω)

+ <(Λω)T<
[[
−ω2M + iωD

]
Uω + K(θ)Vω − Fω

]
+ =(Λω)T=

[[
−ω2M + iωD

]
Uω + K(θ)Vω − Fω

] (1.19)

The stationarity ofLω with respect to the fields (Uω, Vω,Λω) leads to the solution of a linear
system (the proof is given in Appendix B):

AX = bwith



A =

[
Z(θ)H αΠHGΠ
−KH(θ) Z(θ)

]
X =

{
Λω
Uω

}
=

{
Uω − Vω
Uω

}
b =

{
αΠHGYω

Fω

} (1.20)

where Z(θ) = K(θ) + iωD − ω2M is the dynamical impedance of the structure.
. The data-to-model distance is a Hermitian norm of the gap between model predictions
Uω with measurements Yω. G is a symmetric positive-definite matrix guaranteeing that
‖�‖2G is homogeneous to ζ2

ω and equivalent in level. The choice ofG is not critical: a clas-
sical choice forG is to use the Guyan reduction of the initial stiffness operator condensed
on the sensors locations [Deraemaeker et al. 2002]. Herein, G is chosen proportional to
the identity matrix and weighted by the strain energy stored in the first (involved) eigen-
modes. Lastly, the tuning factor α ∈ R+ enables one to give more or less confidence to
the measurements; large values can be specified when measurements are considered reli-
able whereas close-to-zero values are better suited to corrupted or noisy recordings. The
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choice of α is therefore crucial for providing relevant parameter estimates. Its optimal cal-
ibration has been deeply studied in [Warner et al. 2014; Balmès et al. 2022], with attention
paid to its dependency on the measurement noise level if known. Automated techniques
for its optimal tuning will be discussed in the next chapters following the developments
initiated in [M. Diaz et al. 2022c; 2023c].

Remark 1.7. Working in the frequency domain with linear FE models allows to solve the
adjoint-state problem classically encountered in the time-domain mCRE formulation with
a simple matrix system (1.20). As observed in the next sections, the CPU cost for solving
such problems is not expensive. In quasi-statics or transient mechanics [Chamoin et al. 2014;
Djatouti et al. 2020], the mCRE adjoint-state problem also writes as a matrix system to solve.
However, a general time-domain formulation implies the solution of a retrograde time prob-
lem to get the adjoint-state vectors [H.-M. Nguyen et al. 2008; Marchand et al. 2019], which
is an expensive task from the numerical viewpoint.

Remark 1.8. Note that the damping modeling will not be subject to caution as damping vari-
ations are secondary for damage detection. However, note that an analogous formulation
can be written when casting doubt on the dissipative part of the constitutive relations, the
mCRE being a well-suited functional for updating damping properties [Deraemaeker et al.
2002]. In practice, an additional field (often denoted Wω) is added and allows to write a
dissipation error ‖Uω − Wω‖2D(θ) that completes the error on the elastic part of the consti-
tutive relations. As a consequence, the dynamical equilibrium constraint to satisfy writes:
−ω2MUω + iωDWω + KVω = Fω. A similar system would be obtained if mass properties
were updated as well. Measured forces are not considered herein neither, but can also be
integrated, as explained in [Charbonnel et al. 2013].

mCRE in low-frequency dynamics

Eventually, it turns out that the analysis of a single angular frequency is too restrictive in low-
frequency dynamics, particularly when several eigenmodes are simultaneously involved in the
response of the structure. The model updating procedure must be conducted on a frequency
bandwidth Dω which contains essential information about the response of the structure. The
mCRE functional J to be minimized is thus obtained by direct integration over Dω:

J (θ, Y ) =

∫
Dω

z(ω)e2
ω(ŝ(θ;Yω), θ, Yω) dω (1.21)

where ŝ(θ;Yω) refers to the optimal mechanical solution for given parameters and measure-
ments in the sense of (1.20). z(ω) is a frequency weighting normalized function such that∫
Dω

z(ω) dω = 1 allowing to modulate the importance of specific frequencies of Dω. An ap-
propriate manner to define z(ω) in low-frequency dynamics is discussed in Section 1.4.

For most earthquake engineering problems, the largest part of relevant information is trans-
mitted below 50 Hz. Moreover, as eigenfrequency peaks of frequency response functions are
well-separated, one could only compute a mCRE functional as the sum of the contributions as-
sociated with the natural frequencies within the interval [0 Hz; 50 Hz]. Although appealing at
first sight, this approach reveals to be too restrictive as soon as a significant model bias occurs
and that the natural frequencies provided by the FE model do not correctly match with those
of the real structure. This is particularly the case for the forthcoming application to the update
of the SMART2013 FE model (see Section 1.5). In the following, Dω will thus correspond to a
uniformly discretized frequency range within [0 Hz; 50 Hz].
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The model updating problem

In summary, optimal parameters θ̂ are searched as minima of the mCRE functional

θ̂ = arg min
θ ∈ Θ

[
J (θ;Y ) ,

∫
Dω

z(ω)e2
ω(ŝ(θ;Yω), θ, Yω) dω

]
(1.22)

and the evaluation of the mCRE for a given value of θ requires to solve a matrix system for all
ω ∈ Dω to obtain the optimal mechanical fields {ŝω}ω∈Dω . The nested interaction between these
minimization problems (resp. on θ and sω) can be mathematically emphasized by writting the
overall mCRE-based model updating problem as follows:

θ̂ = arg min
θ ∈ Θ

[∫
Dω

z(ω) e2
ω

(
arg min

[−ω2M+iωD]Uω+

K(θ)Vω=Fω

[
e2
ω(Uω, Vω, θ;Yω)

]
, θ, Yω

)
dω

]
(1.23)

Remark 1.9. The mCRE-based model updating problem can also be geometrically visualized
by manifold representations [H. N. Nguyen et al. 2022], as presented in Fig. 1.1. To do so,
two manifolds of full time-space mechanical solutions smust be defined:

. Amanifold (Ad), in which any solution s satisfies the considered reliable equations (s
is then said admissible).

. Amanifold (ΓθY ) generated by the parametrized constitutive relationsmodel and noisy
observations.

Figure 1.1: Geometrical interpretation of the mCRE functional using manifolds, with emphasis on
the effects of measurement realization and parameter variations.

Due to the presence of noise in data andmodeling bias, nothing guarantees the existence
of an intersection between (Ad) and (ΓθY ). In this framework, the mCRE (at fixed θ and Y )
represents the minimal distance between these manifolds. As (Ad) in our case is made of
linear equations, it has been represented by a blue straight line in Fig. 1.1, contrary to (ΓθY ).
The effects ofmeasurement realization and parameter variations on themCRE are illustrated
to recall that (i) the model updating results are always an indirect function of the data, and
(ii) when changing parameters value, mechanical fields need to be recomputed accordingly.

1.2.3 mCRE-based model updating algorithm
From the numerical viewpoint, the nonlinear problem (1.23) is solved recursively as the limit
of the sequence

(
θ(k)
)
k
in an iterative localization/correction algorithm for which a detailed

pseudo-code is given in Alg. 1.1. Key numerical ingredients for efficient mCRE computation
and minimization are detailed below.



20 Chapter 1. Offline model updating in low-frequency dynamics

Efficient mCRE computation

According to (1.23), the key operation that must be efficiently performed is the solution of sys-
tem (1.20). Indeed, the only evaluation of the mCRE functional for a given parameter set θ
requires to solve #Dω matrix systems whose matrix A is explicitly function of ω and possibly
of large size (twice the number of DoFs 2Nu).

First, parallelization techniques can be used to significantly save CPU time. The solution of
system (1.20) for all frequencies in Dω can be easily parallelized using new in-core page-wise
left matrix divide function pagemldivide (available since Matlab© 2022a release).

However, such techniquesmay still not be efficient enough as the size of the vectorX is twice
the number of DoF Nu. A manner to drastically reduce the size of the AX = b system consists
in projecting the latter in a well-chosen reduced basis [Deraemaeker et al. 2002; Charbonnel
et al. 2013; M. Diaz et al. 2022c]. Typically, a projection on a truncated modal basis made of the
L first eigenmodes is used to reduce the size and thus the computational cost of the solution
of (1.20). An appropriate choice for L can be made such that ωL � 2πmax(Dω) and L � Nu,
whereωL is the eigenfrequency ofmodeL. To improve the quality of the approximation, a series
of so-called Krylov vectors associated with the current excitation or sensor locations might be
added to the reduced basis (see [Deraemaeker et al. 2002] for further details). IfΦL denotes the
reduced basis and Ur,ω, Vr,ω the reduced mechanical fields, then the system (1.20) is simplified
as follows:

ArXr = br with



Ar =

[ [
ΦT
LZ(θ)ΦL

]H
α[ΠΦL]HG[ΠΦL]

−
[
ΦT
LK(θ)ΦL

]H
(θ) ΦT

LZ(θ)ΦL

]

Xr =

{
Λr,ω
Ur,ω

}
=

{
Ur,ω − Vr,ω

Ur,ω

}
br =

{
α[ΠΦL]HGYω

ΦT
LFω

}
Uω = ΦLUr,ω

Vω = ΦLVr,ω

(1.24)

Remark 1.10. The projection of (1.20) using a reduced basis is not the only manner to ac-
celerate mCRE computations. For instance, alternative techniques use a PGD description
of the mechanical fields [Marchand et al. 2016], or iterative solvers such as the successive
over-relaxation algorithm [Banerjee et al. 2013].

Localization of most erroneous areas

The CRE provides a direct insight regarding the validity of the model itself, making it a relevant
tool for identifying erroneous parts of the model due to the possibility to compute all finite
element contributions to the CRE independently. In particular, the CRE per subdomain Si (one
subdomain is affected by one parameter θi) reads:

∀ i ∈ J1;NθK, ζ2
ω,i(sω, θ) =

∑
e⊂Si

1

2

∥∥Uω − Vω∥∥2

Ke(θ)
(1.25)

whereKe(θ) is the contribution of element e to the overall stiffness matrixK. This asset can be
seen as a Tikhonov regularization in the mCRE framework in the sense that a restrained num-
ber of parameters can be updated [Deraemaeker et al. 2002; Charbonnel et al. 2013]. Indeed,
defining a threshold β ∈ [0; 1], one can identify subdomains to update such that they satisfy the
following inequality:

i ∈ J1;NθK s.t.
1

|Si|

∫
Dω

z(ω)ζ2
ω,i(sω, θ) dω > β max

i∈J1;NθK

{
1

|Si|

∫
Dω

z(ω)ζ2
ω,i(sω, θ) dω

}
(1.26)
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where the normalization by the size of subdomains |Si| permits to fairly compare subdomains
of various sizes. Eventually, if most references consider that β = 0.8 is a convenient empirical
value, no clear parametric study has been performed in order to optimize the choice of β for
optimal parameter identification.

Minimization strategy

The nonlinear optimization of the mCRE functional with respect to the parameters is done in
practice using a classical BFGS minimization algorithm. Here, the fminunc function of the
MATLAB© optimization toolbox has been exploited to perform all minimizations. A quasi-
Newton algorithm is used, with possibility to specify an objective function gradient. As shown
in [Charbonnel et al. 2013], the computational burden associated to theminimization algorithm
can be largely improved by suppling an analytical gradient of the functional with respect to the
updated parameters. Fortunately, the mCRE gradient with respect to the parameters, the me-
chanical state, and the mCREHessian matrix with respect to parameters have (semi-)analytical
expressions.

With the above stiffness parametrization, the mCRE gradient with respect to parameters
reads (for a given angular frequency ω):

∇θje
2
ω(sω, θ;Yω) =

1

2

∥∥Uω − Vω∥∥2

K0,j
+ <

(
(Uω − Vω)HK0,jVω

)
(1.27)

where<(�) denote the extraction of real part of�. This result directly derives from the adjoint-
state problemwritten in the frequency domain. The interested reader will find all mathematical
developments to obtain such an expression in Appendix B.

Monitoring the convergence with combined stopping criteria

The FEmesh density and the size of the structure strongly depend on the studied problem, and
therefore have much incidence on the mCRE numerical value. In order to robustly assess the
convergence of themethod, a normalization term is defined at the first iteration of the algorithm,
leading to a normalized cost-function J :

J (θ;Y ) =
J (θ)

J0(θ0;Y )
(1.28)

with J0(θ0;Y ) =

∫
Dω

z(ω)

2
‖U (0)

ω + V (0)
ω ‖2K(θ(0)) dω

The convergence can be assessed at the kth iteration according to two criteria based on the nor-
malized cost function value and on the stationarity of the optimal parameters:

J (θ(k);Y ) 6 ε1 (1.29)∣∣∣θ(k) − θ(k−1)
∣∣∣ 6 ε2 ∣∣∣θ(k−1)

∣∣∣ (1.30)

Appropriate values for the thresholds ε1 and ε2 are between 10−6 and 10−4. They must be de-
fined jointly and consistently, depending on (i) the a priori assumed accuracy of the model to
update and (ii) the noise level in measurements (if known). Once one of the two previous
criteria is met, the algorithm is stopped assuming its convergence (see Alg. 1.1).

The algorithm

The mCRE-based standard minimization algorithm is presented in Alg. 1.1. Note that no clue
has been given yet for the calibration of internal parameters. Exhaustive details regarding that
point will be given in Section 1.4. The idea at this point is to already have a general understand-
ing of the algorithmic structure that is required to perform parameter identification using the
mCRE functional.
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Algorithm 1.1: Standard mCRE-based model updating strategy.
Data: FE model including mesh and matrices K,D,M , subdomain decomposition and

associated initial parameter guess θ(0) ∈ Θ, measurements y.
Result: Updated set of parameters θ̂.

Preamble & initialization
Computation of the reduced basis ΦL ;
Frequency-domain data preprocessing: Yω ∀ ω ∈ Dω ;
Choice of the confidence into measurements weight α and thresholds ε1, ε2, β ;
Computation of the frequency weighting function z(ω) ;
Evaluation of the initial quality of the model: J0(θ0;Y ) ;
Model updating algorithm
while J

(
θ(k)

)
6 ε1 and

∣∣θ(k) − θ(k−1)∣∣ 6 ε2 ∣∣θ(k−1)∣∣ do
Step 1: Localization of the most erroneous areas
Solution of the matrix system (1.24) ∀ ω ∈ Dω ;
Computation of ζ2ω,i

(
sω, θ

(k)
)
∀
(
ω, i
)
∈
(
Dω × J1;NθK

)
;

Identification of the most erroneous subdomains using (1.25) ;

Step 2: Correction
Minimization of J (θ) : θ(k+1) ← θ(k) with respect to the identified parameters
from Step 1 (BFGS method with supplied gradient - see (1.27)) ;

Step 3: Convergence assessment
Convergence criteria computation: J (θ(k+1)) and

∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ ;
end

1.3 Numerical implementation for a two-story plane frame submitted
to random ground motion

The objective of this section is to propose a first illustration of the capabilities of mCRE-based
model updating on a typical earthquake engineering example. A two-story plane frame that
is submitted to a random ground motion is considered (see Fig. 1.2). Complete explanations
about FE modeling and measurements simulation are provided in Appendix A.1.

What must be kept in mind is that measurement noise is added to the simulated data (the
measurement noise level is denoted δ) obtained with a parameter set θ?, that is assumed un-
known. The objective is to recover this set of parameters starting from an initial guess θ0 using
the mCRE functional. Six (dimensionless) parameters are updated in this example, one per
wall and per slab of the frame structure, all initialized at 1 (see Tab. 1.2).

Healthy ref. Damaged modulus in W10 Initial guess
Young’s moduli [GPa] 33 20 30
Associated parameters [−] 1.1 0.67 1.0

Table 1.2: Material properties of the frame (actual configuration and initial guess).

1.3.1 Reference model updating results
When dealing with ideal noise-free measurements, the model updating procedure converges
quickly to the expected parameters as shown in Fig. 1.4-1.3, illustrating the efficiency of the
methodology to identify stiffness parameters from sparse measurements and to improve the
correlation with reference FRFs (see Fig. 1.3). The analysis has been conducted within the
frequency intervalDω = [0 Hz; 30 Hz] with a 0.1 Hz step discretization so as to correctly capture
the contribution of the three first eigenmodes of the specimen. A reduced basis involving the
first 10modeswas used to compute themCRE quickly and accurately. The frequencyweighting
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W10 W20

W11 W21

F10

F20

Figure 1.2: Plane frame with sensor locations (yellow dots), subdomains labels, and damaged area
W10 highlighted in orange.

z(ω) has been chosen as uniform by default: z(ω) = 1/#Dω ∀ ω ∈ Dω. If not precised, α is
chosen equal to 1 by default.

A last result showing the convexity of the mCRE compared to the measurement error taken
alone is proposed in Fig. 1.5 when trying to update theW10 parameter alone assuming all other
parameters are already well calibrated. It illustrates how the CRE term drastically improves the
convexity of the functional.

Figure 1.3: Experimental, initial and updated frequency response function (FRF) from a sensor located
at the top of the frame.
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Figure 1.4: Plane frame mCRE-based model updating: evolution of the stiffness parameters and
associated mCRE-based functional with iterations.

Figure 1.5: Plot of the mCRE functional with respect to W10 parameter, illustrating enhanced convexity
due to the CRE term. The measurement error term taken alone yet remains convex.

1.3.2 Supplied analytical gradient for enhanced numerical performance

As shown above, the mCRE gradient with respect to the parameters has an analytical expres-
sion depending on the current mechanical fields {ŝω(θ)}ω∈Dω and on the derivatives of the stiff-
ness FE matrix K with respect to updated parameters. Note that these derivatives may not be
simple to calculate for structural parameters (thicknesses or geometry parameters for instance).
Howewer, in any case, and particularly for the studied parametrization (1.14), the above-written
analytical expressions avoid the numerical computation of the gradient (by finite difference ap-
proximation) which allows for large CPU time savings, as shown in Tab. 1.3 where CPU times,
number of mCRE functional evaluations, and number of iterations are compared for several
measurement noise levels. It illustrates the fact that for the same identification accuracy (rela-
tive L2 distance between θ̂ and θ?), even for a low-dimensional simple identification problem,
significant numerical improvements are observed.

δ [%] Numerical gradient (finite difference) Analytical supplied gradient
J eval. CPU time [s] Accuracy crit. J eval. CPU time [s] Accuracy crit.

0 91 4.3405 1.60.10-3 13 0.9886 1.60.10-3
5 105 4.9903 0.0143 15 1.3121 0.0143
10 105 5.7422 0.077 15 1.2351 0.077
20 147 6.8948 0.1096 21 1.4846 0.1096

Table 1.3: Comparison of mCRE-based model updating performances using BFGS minimization
algorithm, with finite-difference approximated and supplied analytical gradient.
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1.3.3 Robustness with respect to measurement noise

As soon as the noise level δ increases, the mCRE-based model updating algorithm is not able
to perfectly recover the expected parameter set θ? (as any inverse problem solver). This is even
more significant in that case due to the fact that relative measurements are naturally of low
amplitude (which implies low-SNR data to process).

The results collected in Tab. 1.4 illustrate the effect of noise on updated parameters θ̂. The
model updating procedure with a default α = 1 value does not provide relevant corrections
with respect to the reference parameters. However, integrating the knowledge that measure-
ments are noisy by decreasing the value of α to 0.1 provides a parameter estimate closer to the
reference one. This simple illustration highlights that dedicated effortsmust be done to enhance
the robustness of the algorithm, in particular regarding the calibration of the internal mCRE pa-
rameters: α,Dω, and z(ω) (the effect of the last two has not been highlighted here because less
influent compared to α).

Subdomains Expected Updated parameters
parameters α = 1 α = 0.1

W10 0.67 0.3550 0.5832
W11 1.1 0.5832 0.9654
W20 1.1 0.9683 1.0630
W21 1.1 0.4586 0.9347
F10 1.1 1.3619 1.1536
F20 1.1 1.5656 1.1901

Table 1.4: Comparison of parameter estimation for low-SNR measurements (δ = 20%).

1.3.4 Choice of the reduced basis for enhanced numerical performance

Following the recommendations given in [Deraemaeker et al. 2002], a truncated modal basis
can be used to enhance mCRE computations (1.24). What is also commonly recommended, fol-
lowing traditional modal analysis techniques, consists in adding the static responses associated
with different excitations at sensor locations. In practice, a sufficiently rich and constant basis
computed in preamble of the model updating algorithm enables to avoid a complex depen-
dency of the solution fields

(
Uω, Vω

)
in parameters. As long as ωL is high enough (compared to

the input frequency bandwidth) and Dω well discretized, this is not a critical issue for obtain-
ing accurate results. As illustrated in Fig. 1.6, the amount of eigenmodes stored in ΦL can be
significantly reduced using static responses from unit displacement at sensor locations (Krylov
vectors). Yet, it does not change the statistical effect of measurement noise.

Figure 1.6: Effect of the reduced basis on model updating accuracy from 10% noisy data. Adding
Krylov vectors allows to reduce the amount of eigenmodes within ΦL for the same accuracy.

If more advanced techniques are available, such as reanalysis or parametric families [Balmès
1996], the direct dependency into the updated set of parameters would turn the overall mini-
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mization algorithm more complex as the derative of the reduced basis with respect to θ should
be computed in the mCRE gradient.

1.4 Contributions for enhanced robustness to low-SNR random data
The analysis of the previous results motivated the need for automated tuning procedures of
mCRE functional to spread the use of the functional in an industrial environment, and to en-
hance the robustness of the model updating strategy, especially when dealing with low-SNR
measurements. The contributions presented herein are devoted to making the mCRE more ro-
bust considering the following aspects:

. Enhanced robustness with respect to measurement noise – An automated tuning proce-
dure of the confidence into measurements coefficient α that naturally discriminates low-
SNR measurements would be beneficial. As previously illustrated, the choice of α is cru-
cial to obtain relevant parameter estimates. Following the initial studies of [Warner et al.
2014; Balmès et al. 2022], several techniques are proposed to automatically choose the
value of α at best. Besides, mostly because of the high values in the very-low-frequency
range that occurs due to measurement noise, the mCRE updating procedure may fail at
providing relevant identification results. To avoid such issues, the frequency weighting
function z(ω) can be adjusted. In the literature, only [Alarcon et al. 2011a] proposed a
non-default frequencyweighting function, with a case-by-case procedure to build a piece-
wise constant function around frequencies having large mCRE values. In [M. Diaz et al.
2022c], a novel tuning of the frequency weighting function z(ω) is proposed based on the
frequency content of the collected data. It allows to automatically favor the vicinity of
the experimental modal eigenfrequencies, improving the parameter sensitivities and the
accuracy of parameter estimates.

. Enhanced robustnesswith respect to low-magnitude ergodic inputs – during shaking ta-
ble experiments, non-damaging broad-band ergodic tests are performed to identifymodal
signature changes. Similarly to what is classically done for processing periodograms for
random processes [Stoica and Moses 2005], a data windowing extension of the mCRE
functional is presented and effective for preventing potential divergence of the model up-
dating algorithm and providing more stable estimates even when considering low-SNR
measurements from low-PGA random testings.

Complete explanations about these contributions are given in the remainder of this section.
The frame example of the previous sectionwill be used to illustrate the proposed improvements,
before an application to the processing of actual measurements in Section 1.5.

1.4.1 Averaged formulation for statistical robustness to measurement noise and
convergence to measurements in terms of PSDs

When studying systems submitted to stochastic inputs, random signals, viewed as discrete-time
sequences, do not have finite energy and hence do not possess a discrete-time Fourier transform
(see e.g. [Stoica and Moses 2005]). However, they usually have a finite average Power Spectral
Density (PSD). Under stationarity assumption, and introducing a unit window v of length T
such that xT (t) = v ·x(t), the PSDmatrix of a random signal x(t), denoted Sxx[ω], can be defined
for all ω as:

Sxx[ω] , lim
T→+∞

E
(

1

T

∫ +∞

−∞

[
XT,ω

][
XT,ω

]H
dω

)
(1.31)

where XT is the Fourier transform of xT , and E (•) denotes the mathematical expectation op-
erator. Defining in practice a correct windowing (number of segments, type and length of the
windows for apodization, zeropadding, etc.) might not be an easy task and could add un-
certainty to a quantity (the PSD matrix) that, by nature, can only be estimated in a statistical
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manner. An example of the windowing used for the SMART2013 application can be seen in
Fig. 1.7. Let us simply assume here for the sake of generality that when dealing with random
processes, a given set ofNw possibly overlapping windows

{
vj
}Nw
j=1

is used for the computation
of the PSD matrices. Once applied to the input and output time-series, this windowing step
provides an ensemble of complex values denoted (Yj,ω).

Figure 1.7: 60%-overlapped Blackman windows to compute PSDs from acceleration time histories
recorded during the run #6 of SMART2013.

Averaged mCRE

Half of shaking table test campaigns consider low-magnitude random as ground motion in-
puts (see Appendix A.2). The measurements are thus characterized by their low SNR and their
stationarity. In order to make the mCRE-based model updating procedure more robust to mea-
surement noise in the statistical sense in such cases, we propose in [M. Diaz et al. 2022c] to
integrate within the mCRE functional the same windowing process that is classically involved
for PSD computations. To do so, themCRE is reformulated usingwindowed frequency-domain
preprocessedmeasurements (Yj,ω). The elementary mCRE term is therefore defined for a given
angular frequency ω ∈ Dω and a given window vj , j ∈ J1, NwK:

∀ j ∈ J1, NwK, ∀ ω ∈ Dω, e2
j,ω(sj,ω, θ;Yj,ω) , ζ2

j,ω(sj,ω, θ) +
α

2
‖ΠUj,ω − Yj,ω‖2G (1.32)

Therefore, on each segment j and each angular frequency, a mechanical solution ŝj,ω is
searched by solving the matrix system (1.20) whose second member is fed by Yj,ω and Fj,ω.
Then, the averaged mCRE can be evaluated with respect to parameters θ as follows:

Javg(θ;Y ) = E
j

(∫
Dω

z(ω)e2
ω(ŝj,ω(θ;Yj,ω), θ;Yj,ω) dω

)
(1.33)

Note that the integral sign andmathematical expectation can be permuted if the realizations on
each segment are statically decorrelated, which is the case if windows are not much overlapped.
The main change compared to the standard mCRE functional (1.21) lies in the fact that the ma-
trix system to solve must now be solved for each angular frequency and for each time-window.
Therefore, the computational burden of the averaged-mCRE functional is Nw times more im-
portant compared to the standard approach. Fortunately, one can easily parallelize the solution
of these systems in order to mitigate the additional cost due to data windowing.

Convergence towards measurements in terms of PSDs

In the perspective of dealing with random processes, our claimed objective is to build a cost
function that, once minimized with respect to the model parameters θ, would make the model
predictions converge to the measurements in terms of PSDs. One could legitimately ask if this
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desired requirement ismet. To prove this claim, one has to consider the integrated and averaged
model-to-measurements term, that reads:∣∣∣∣∣∣H(M(θ, e))− y

∣∣∣∣∣∣2 =

∫
Dω

z(ω) E
j

(
‖ΠUj,ω − Yj,ω‖2G

)
dω (1.34)

As previously explained, the involved norm is written using real symmetric positive-definite
matrixG. Let thus introduce the prediction-error sequence (η) = (G1/2(ΠUj,ω −Yj,ω) using the
square-root of matrixG.The distance term reads:

∀ j,∀ ω, ‖ΠUj,ω − Yj,ω‖2G = [ΠUj,ω − Yj,ω]H G [ΠUj,ω − Yj,ω] (1.35)

Now taking the mathematical expectation of this last expression yields:

∀ ω, E
j

(
‖ΠUj,ω − Yj,ω‖2G

)
= tr (Sηη[ω]) > 0 (1.36)

by definition of the PSD sequence, where tr (•) refers to the trace operator. Thus, if the matrix
G is symmetric, positive and definite, the following distance to measurements term

∣∣∣∣∣∣H(M(θ, e))− y
∣∣∣∣∣∣2 =

∫
Dω

z(ω) tr (Sηη[ω]) dω (1.37)

obviously defines a norm on the PSD sequence
(
Sηη[ω]

)
ω∈Dω which is exactly the property that

was looked for. Minimizing a weighted norm of the prediction error PSD matrix on the whole
frequency domainDω with respect to θ thus makes the model predictions converge to the mea-
surements.

Therefore, the preliminary data windowing and the averaged extension of the model up-
dating process enable a better integration of random processes and bring an additional statis-
tical stability of the parameters with respect to measurement noise. This makes it worthwhile
to extend the convergence of model predictions towards the measurements in terms of PSDs.
An illustration using the frame example is given in Fig. 1.8: when running multiple times the
model updating algorithm with different measurement noise realizations, one can observe an
enhanced stability in the parameter estimate using the averaged mCRE formulation and data
windowing. In Fig. 1.8, the width of each plotted interval represents the maximal variabil-
ity of updated parameters with respect to measurement noise after having repeated 50 times
model updating from the same input signal, but with different noise realizations. It is thus
clear that the data windowing preprocessing step enables the algorithm to provide more stable
estimates: increasing the amount of windows Nw in the data preprocessing step is benefi-
cial for increasing statistical stability. However, one shall note that the number of segments
cannot be indefinitely increased: statistical independence of data blocks must be guaranteed
for the averaging to be meaningful [Stoica and Moses 2005]. Noticing that reducing the time-
length ofwindows does not drastically providemuchmore accurate results, a compromisemust
then be sought when designing the shape, number and length of time-windows. In this work,
60%-overlapping Blackman windows lasting up to 2 s have been used and always provided sat-
isfactory results. As a last remark, the comparison of the intervals between subdomains (for a
givendatawindowing configuration) shows the difference in sensitivity of the parameters to the
mCRE functional: one can therefore remark that the top walls W11 and W21 are less sensitive
due to the fact they do not store much mechanical strain energy compared to the subdomains
located at the bottom of the frame.

Remark 1.11. The averagedmCRE formulation can be seen as a generalization of the standard
mCRE functional in the sense that J (θ) = Javg(θ) using a single window segment Nw = 1
with unitary rectangular shape. However, this generalization remains valid only for random
ergodic processes. Therefore, seismic runs should not be processedwith the averagedmCRE.
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Figure 1.8: Statistical variability of parameter estimates with respect to measurement noise. Based on
50 different 60 s-random ground motion inputs and a δ = 10% noise level, synthetic acceleration
measurements are processed by 3 mCRE-based model updating algorithms having different data

windowing: Alg. 1) Single unit rectangular window Alg. 2) Blackman-10 s data windowing, Alg. 3)
Blackman-5 s data windowing.

1.4.2 Frequency range and data-based frequency weighting function
The model updating procedure is carried out on a given frequency bandwidth Dω = [ωmin;
ωmax] which contains the essential part of the mechanical energy of the system. For seismic
applications, ground motions usually have a significant frequency content up to 50 Hz, which
implies that Dω ⊂ [0 Hz; 50 Hz]. In practice, the integration over Dω also requires to introduce
a frequency step ∆f . The latter must be carefully chosen to correctly capture the frequency
content associated to the sollicitated eigenmodes. A common engineering judgment one can
recommend is to choose ∆f such that the narrowest resonant peak is described by at least
three points. Considering the 3 dB cut-off frequency, a simple rule of thumb for the choice
of ∆f is 3∆f ≈ mini(ξifi) where the couple (ξi, fi) refers to the damping ratio and eigenfre-
quency of mode i. In the upcoming earthquake engineering-inspired applications, with typical
5% damping ratios and first eigenfrequencies at around 2− 5 Hz, ∆f is thus chosen within
[0.1 Hz; 0.5 Hz].

Then comes the question of the frequency weighting function, often chosen constant by de-
fault. One should note that the frequency weighting function z(ω) can be used as a modulation
function to favor frequencies deemed to have the largest influence on themodel updating proce-
dure. In this work, an automated data-based computation of z(ω) is used based on the fact that,
for low-frequency dynamics, the essential frequency content of the measurements is gathered
around experimental natural frequencies. A normalized version of the Complex Mode Indica-
tor Function (CMIF) [Allemang and Brown 2006] on transfer functions is used for frequency
weighting as explained in the following lines.

One first needs to compute the transfer matrix H(ω) from the crossed input/output PSD
matrices Syy(ω), Sye(ω), See(ω) using one of the three following formulas:

H(ω) =
[
Syy(ω)

] [
Sey(ω)

]† (1.38)

H(ω) =
[
Sye(ω)

] [
See(ω)

]† (1.39)
H(ω) = [Syy(ω) Sye(ω)] [Sey(ω) See(ω)]† (1.40)
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where •† refers to the Moore-Penrose pseudo-inverse. The dominant singular value Σ1(ω) of
matrix H(ω) has the property of peaking in the vicinity of natural frequencies and can be ad-
vantageously used to define z(ω). This indicator based on the transfer matrix is calledH-CMIF
in what follows (owing to its similarities with classical CMIF). The preliminary smoothing of
the PSDs is therefore crucial for allowing the detection of resonant peaks without misinterpre-
tation due to the random nature of the signals when considering random inputs. Finally, to
fulfill the condition

∫
Dω

z(ω) dω = 1, the H-CMIF weighting function z(ω) is derived as

z(ω) =
Σ1(ω)∫

Dω
Σ1(ω) dω

(1.41)

The efficiency of thisH-CMIF-based frequencyweighting function is highlighted in the next
sectionwhen the SMART2013 recordings are processed : due to the large gaps in terms of eigen-
frequencies, awell-defined z(ω) that integrates the information fromdata helps the convergence
of the mCRE-based model updating process towards convincing results in terms of eigenfre-
quency tracking. A H-CMIF example is proposed for the frame example in Fig. 1.9, showing
the crucial importance of such weighting when the noise level becomes important: it particu-
larly contributes in preventing spurious increases of the mCRE frequency content below 5 Hz.

Figure 1.9: Data-based frequency weighting function to emphasize the mCRE frequency content on the
experimental eigenfrequencies of sollicitated modes.

1.4.3 Automated calibration of the confidence into measurements

Historically, out of the specific continuation scheme proposed in [Banerjee et al. 2013] and the
trial-and-error presented in [Balmès et al. 2022], several approaches related to regularization
techniques were employed to define an optimal value of α. The influence of α was particularly
investigated in [Deraemaeker et al. 2004; Warner et al. 2014; Huang et al. 2016; Ferrier et al.
2021], with empirical conclusions that an equivalent confidence between the CRE and data-to-
model distance terms provided relevant model updating results. In other words, one should
intend to calibrate α such that the two terms are in the same order of magnitude. This idea is
closely related to the L-curve method [Ahmadian et al. 1998].

Alternatively, another technique to choose α lies in Morozov’s discrepancy principle [Mo-
rozov 1984; Nair et al. 2003]. Therefore, the latter could be used in order to integrate the a priori
knowledge on measurement noise features appropriately, as it was done in [M. I. Diaz et al.
2015; H. N. Nguyen et al. 2022] to performmCRE-based identification from imaging databases.

Two tuning strategies based on the previously mentioned principles are discussed in the
following. Both require a preliminary parametric study on α that can be done (at low-cost) in
preamble of the model updating procedure. Doing so, a full parametric study on α, that would
be prohibitive in terms of CPU requirements, is avoided.
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A priori balance between modeling and measurement errors

As mentioned above, the (physics-based) CRE term allows to explicitly integrate modeling er-
rors into the updating process. Its relative weight with respect to the modeling error termmust
be correctly set in order to guarantee relevant identification results. Without any additional a
priori information, one can choose to calibrate α to ensure a correct a priori balance between
measurement error and modeling error. This approach, which is close to the L-curve principle
in terms of formulation, has been proposed in recent works [Ferrier et al. 2021; M. Diaz et al.
2022c] and provided relevant model updating results.

α̂ = arg min
α∈R+

∣∣∣∣∣
∫
Dω

z(ω)ζ2
ω (ŝ(θ;Yω), θ;Yω) dω︸ ︷︷ ︸

Modeling error

−
∫
Dω

z(ω)

2

∥∥ΠUω − Yω∥∥2

G
dω︸ ︷︷ ︸

Measurement error

∣∣∣∣∣ (1.42)

Note that this approach is non-trivial as themechanical fields that need to be computed (Uω, Vω)
are indirectly impacted by the value of α following (1.20).

Morozov’s discrepancy principle to integrate the knowledge of measurement noise

In most cases, it seems relevant to take advantage of the knowledge of measurement noise fea-
tures (if available) to enhance the model updating process. Morozov’s discrepancy principle
permits to calibrate α so that the measurement error term should not be lower than the noise
level δ. We owe to Bonnet and co-workers the only use of Morozov’s discrepancy principle
from data obtained in the frequency domain within the mCRE framework [Warner et al. 2014],
although its implementation remains questionable. Indeed, as expressed in [M. I. Diaz et al.
2015], themeasurement noise is assumed to be proportional to themagnitude ofmeasurements,
meaning that during the same experiment, sensors measuring low- or high-amplitude data do
not have the same noise level. Besides, the implementation of the criterion has only been pro-
posed for harmonic analysis and from synthetic data with low noise levels (up to 5% only).

In this contribution, a Morozov’s discrepancy criterion for optimal choice of α dedicated
to the considered mCRE-based model updating framework is proposed. If one (legitimately)
assumes that the added measurement noise follows a zero-mean Gaussian probability density
function, i.e. η(t) ∼ N (0, δ2

s) ∀ t, and if G is proportional to the identity matrix, i.e. G = G0I ,
then one can show that the measurement error term can be statistically approximated by:

E
(∫

Dω

z(ω)

2
‖ΠUω − Yω‖2G dω

)
=

1

2
G0δ

2Ns (1.43)

as the squared modulus of a zero-mean random process follows a non-centered χ2(2) probabil-
ity distribution conditioned by its variance δ2, whatever the value of ω (see Appendix C for the
complete proof starting fromMorozov’s discrepancy main theorem). One can thus statistically
bound the measurement error term, which directly corresponds to the adaptation of Morozov’s
discrepancy principle to the mCRE written in the frequency domain (when all sensors are sup-
posed uncorrelated, which is legitimate in practice). The statistical upper-bound thus depends
simultaneously into the number of sensorsNs, the measurement noise δ and the scaling matrix
G, which is intuitively consistent.

The practical use ofMorozov’s discrepancy principle implies to choose the optimal value α̂ a
posteriori using an iterative scheme, where the value of α is tuned using a bisectionmethod after
assessing the quality of the solution once having fully minimized the mCRE functional. Doing
so, in a few iterations, one could hope to find a relevant value for α̂. However, one cannot afford
to perform several minimization steps to update parameters correctly when performing model
updating on-the-fly, as it is the intention of this thesis work. Similarly to the a priori balance
criterion (1.42), one can also perform a (quick) a priori parametric study on α to propose a
suboptimal value (that one hopes should be relevant for mCRE convergence):

α̂ = arg min
α∈R+

∣∣∣∣∫
Dω

z(ω)
∥∥ΠUω(α)− Yω

∥∥2

G
dω −G0δ

2Ns

∣∣∣∣ (1.44)
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Remark 1.12. It is important to notice that Morozov’s discrepancy criterion works as an a
posteriori tuning strategy for regularization weighting parameter. It is our choice to freeze α
to a value obtained a priori on the basis of the initial values of θ (i.e. prior to any pamaterer
updating). As the perspective of use for the mCRE is on-the-fly model updating, one cannot
afford to get a proper value of α by doing multiple times model updating on a fixed dataset
whereas brand new data (that may inform on possible damage) is assimilated at the same
time.

Despite this choice, the a posteriori choice of α is the subject of very-short-term forth-
coming investigations, as it is true that a poorly-chosen initialization on θ may lead to an
inappropriate calibration of α.

Numerical validation of the criteria for automated a priori selection of α

To illustrate the consistency of the proposed criteria, their behaviour with respect to measure-
ment noise on the previous frame example is presented in Fig. 1.10. All mCRE internal param-
eters (except from α) are identical, and the effect of measurement noise on the calibration of
α can be observed. As one could have intuitively expected, the more the measurement noise,
the lower "optimal" α. However, there are strong discrepancies between the values provided
by these two methods (the x-axis of Fig. 1.10 is in log-scale), which suggests more tests must
be done to evaluate the relevance of these two criteria. This will be done in a large benchmark
reported in Chapter 2 and concluding remarks will be drawn at this moment regarding the
calibration of α.

(a) L-curve criterion. (b) Morozov’s discrepancy criterion.

Figure 1.10: Automated calibration of the scaling factor α with respect to measurement noise.

1.5 Application to SMART2013: eigenfrequency tracking of a RC
specimen using mCRE and acceleration data

In order to assess the vulnerability of RC structures subjected to torsional effects during seis-
mic ground motions, the SMART2013 experimental campaign was conducted in the CEA/-
TAMARIS facility. A three-story 1/4 reduced-scale trapezoidal RC specimen clamped on the
AZALEE shaking table has been subjected to a sequence of seismic tests. The specimen was in-
strumented with more than 200 sensors including 64 capacitive accelerometers of ±10 g range
scattered over the RC specimen. 48 out of the 64 accelerometers have been used as experimental
reference to correct two FE models that have been produced using the FE software Cast3M©.

http://www-tamaris.cea.fr/
http://www-tamaris.cea.fr/
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Extended details about the campaign and the FE mod-
els are given in Appendix A.2 because this application
example is also used in Chapter 4.
The purpose of this study is to evaluate, to improve, if
possible, and to compare two FEmodels (developed on
the CEA FE simulation software Cast3M©, and fully
described in Appendix A.2) using a complete mCRE
analysis based on reference data from the experimen-
tal campaign. Two objectives are targeted: (i) to deter-
mine whether global stiffness parameters can correct
the models to recover the experimental modal signa-
ture and (ii) to follow the drop of eigenfrequencies
that are directly related to damage occurence during
the campaign, which is a crucial information for con-
trol law adaptation. Limitations of the method will be
highlighted when trying to refine the parameter space
for local damage detection purposes.

Figure 1.11: SMART2013 RC specimen
anchored to the AZALEE shaking table.

1.5.1 Need for model updating
In spite of the analyses and the work that has been carried out, the SMART2013 database has
never been used for model updating purposes. Only [Alarcon et al. 2011b] used it to assess
the potential of CRE to identify damage deliberately introduced into a simplified model, even
though [Richard et al. 2018] presented a great zoology ofmodels that try to fitwith the observed
responses of the structure.

The call for model updating is warranted for bothmodels due to the strong gaps one can see
between the predicted and the experimental eigenfrequencies (see Tab. 1.5). As a reminder,
each material property of all finite elements will not be updated: an overall stiffness model
(1.14) is adjusted in order to propose the best stiffness corrections based on the actual richness
of measurements.

Mode number Eigenfrequencies [Hz]
Experimental Model 1 Error [%] Model 2 Error [%]

1 6.28 9.10 44.8 8.34 32.8
2 9.22 15.72 70.5 14.89 61.5
3 17.6 31.77 80.5 29.47 67.5

Table 1.5: SMART2013 - Comparison of the first eigenfrequencies between FE model initial predictions
and modal analysis from experiments.

1.5.2 mCRE settings and first model updating results from initial runs and initial
FE models

Model updating settings

Knowing the large gap in terms of natural frequencies betweenmodel predictions and available
measurements (even at the beginning of the campaign, see Tab. 1.5), a single global stiffness
parameter is updated herein. Due to the fact that the seismic loading is bi-axial, only the sensors
measuring accelerations along the x and y directions are considered as inputs of the model
updating strategy3.

A preliminary analysis of acceleration time series confirms the low-frequency dynamics of
themeasurements and therefore justifies the use of themCRE-basedmodel updating algorithm
previously described on the frequency range Dω = [1 Hz; 30 Hz] with a ∆f = 0.1 Hz frequency
step. The averaged formulation can be used for random low-PGA runs.

3Acceleration data in the z-direction mostly provide information about measurement noise features.
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An important statement to keep in mind is that the signal-to-noise ratio (SNR) for low-PGA
inputs of the SMART2013 database is so important (although intrinsic sensors noise level is low)
that a uniform frequency weighting function and a default value of α = 1 lead to non-physical
or divergent results: the variations of the functional J with respect to θ and α are plotted in Fig.
1.12 to illustrate once again the non-neglictible impact of α on the parameter estimate provided
by the updating algorithm. In the following, the L-curve based methodology (1.42) has been
chosen to adapt α at best4. The addition of a normalizedH-CMIF frequencyweighting function
enables to exploit at best all the available information frommeasurements minimizing spurious
noise effects. Fig. 1.13 illustrates that point showing that the frequency content of the mCRE
functional is emphasized with the normalized H-CMIF.

Figure 1.12: SMART2013 - run #7 – Influence of α on the model updating procedure. The mCRE
functional is always convex but the minimum value is significantly altered with α (the white circles

indicate the mCRE minimum location for a given α).

Figure 1.13: SMART2013 - run #7 – H-CMIF used as frequency weighting function, leading to sharper
peaks of the mCRE profile around the experimental eigenfrequencies.

4As already mentioned, exhaustive conclusions on the definition of α are drawn in Chapter 2.
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Convexity checking and comparison to total least-squares model updating

One could legitimately wonder about the performance of the mCRE-based proposed method-
ology when compared to classical Frequency Least-Square (FLS) minimization written in the
frequency domain:

θ̂FLS = arg min
θ∈Θ

[
JFLS(θ) ,

∫
Dω

‖ΠUω(θ)− Yω‖2 dω

]
(1.45)

whereUω(θ) in that case is the direct displacement field obtained from the FEmodel predictions.
Note that it is shown mathematically in [Aquino and Bonnet 2019] that one can see the FLS
minimization like a particular limit case of the mCRE-based model updating algorithm with
α→∞. The plot of both mCRE- and FLS-based functionals in Fig. 1.14 illustrates the enhanced
convexity properties of themCRE-based functional, which yields an easier convergence towards
the optimal set of parameters.

Figure 1.14: SMART2013 - run #7 – Identification of a global stiffness parameter using the mCRE-based
model updating algorithm (with α = 0.1 in that case). An enhanced convexity shows the relevance of

the methodology compared to a frequency total least-square error.

Besides, the computation of the updated eigenfrequencies based on the corrected FEmodel 1
in Tab. 1.6 shows that themCRE-based algorithmprovidesmuchmore reliable results (in better
match with experimental eigenfrequencies). Similar results has been recovered with model 2
and are not presented here for the sake of conciseness.

Mode Experimental Initial mCRE updated FLS updated
number frequency Frequency Error Frequency Error Frequency Error

1 6.28 9.10 44.8 5.68 14.9 4.07 39.1
2 9.22 15.72 70.5 9.82 6.5 7.03 23.7
3 17.6 31.77 80.5 19.84 12.7 14.21 19.3

Table 1.6: Model updating results obtained for SMART2013 run #7 – Comparison of the first
eigenfrequencies (in [Hz]) and relative errors (in [%]) between experimental reference [Charbonnel
2021], initial model 1 and updated model 1 from the mCRE-based and frequency least-square (FLS)

model updating algorithms.

An additional quantitative appreciation of the model updating results on the whole fre-
quency range can be obtained by comparing the experimental reference to model 1 in terms of
H-CMIF. Several normalized H-CMIFs are displayed in Fig. 1.15:

(i) Reference experimental H-CMIF computed from accelerometers (see (1.38-1.40)),
(ii) H-CMIF from the initial model (θ = 1),
(iii) H-CMIF from the mCRE-based updated model with default α = 1,
(iv) H-CMIF from the mCRE-based updated model with optimal α̂,
(v) H-CMIF from the FLS-updated model.
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The numericalH-CMIFs (ii-v) above correspond to the dominant singular value of the transfer
functionH computed using the FEmatrices of model 1. From these plots one can conclude that
the parameter estimates provided by the mCRE-based algorithms are more physically relevant
with respect to the expected frequency content; the corrected model H-CMIFs get closer to
the experimental reference, especially in the vicinity the two first eigenfrequencies. The choice
of a single parameter model is obviously too simplistic to perfectly recover the experimental
frequency content over Dω. A better adequacy with higher eigenfrequencies could certainly
be obtained by updating several parameters simultaneously, with risks of having convergence
issues as shown afterwards. The choice of an optimal α̂ permits an improved estimation of the
two first eigenfrequencies, whose eigenmodes are essential in the low-frequency specimen
dynamical response.

Figure 1.15: SMART2013 - run #7 – H-CMIF comparison between experimental reference and model
predictions before/after updating. The mCRE-based model updating algorithms provide more

accurate results than FLS minimization in terms of H-CMIF. A compromise is made for fitting at best
the experimental frequency peaks (marked with grey vertical lines).

Remark 1.13. Note that no data windowing has been performed previously, considering that
run #7 time series cannot be assumed ergodic and stationary. The enhanced statistical sta-
bility of data windowing will be observed in the next paragraph when considering low-SNR
random measurements from even-numbered runs.

1.5.3 Offline correction of the FE model during the full SMART2013 test campaign
In what follows, the mCRE-based model updating procedure will be sequentially used for cor-
recting the FE models along the whole SMART2013 test campaign. As a reminder, a full de-
scription of the campaign is available in Appendix A. In practice:

. the measurements from each run are consecutively processed by the model updating al-
gorithm, meaning that an updated parameter value is obtained per run;

. when processing run #n, the final result from the previous run #(n− 1) is used as initial
guess.

Due to the fact that damaging runs time series inputs cannot be assumed as ergodic and
stationary, the averaged mCRE-based model updating algorithm with data windowing (which
favors data-model correlation in terms of PSDs) is exclusively assessed on the low-PGA runs.
Two variants of the model updating algorithms are thus used:

(a) Model updating using a single unit-rectangular window for data windoing, which is con-
venient for all testings and does not guarantee optimal stability with respect to measure-
ment noise.

(b) Model updating of the random low-PGA runs (even runs from Tab. A.1) using 60%-
overlapping Blackman-5 s windows (illustrated in Fig. 1.7).
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Fig. 1.16 presents the evolution of the updated first three eigenfrequencies (squares) com-
pared to the experimental reference from [Charbonnel 2021] (connected circles) using a single
parameter stiffness model, whose estimated optimal values are also specified (right subplots).
Models 1 and 2 have been equally used for the mCRE-based model updating process, but it
seems that model 1 tracking results are more in accordance with experimental data, in partic-
ular after run #14. However, in both cases, the model updating procedure provides relevant
correcting actions, confirmed by the proximity of the reference eigenfrequencies. The progres-
sion of damage can be related to the decreasing values of the updated parameter throughout
the different runs.

The study of the frequency drop highlights two stages in the test campaign where param-
eters remain globally constant: runs #6 to #12 (phase 1: SMART2008 inputs), and #20 to #24
(phase 3: after-shock analysis). One can remark in each of them that the enhanced statistical
robustness of data windowing (comparing Fig. 1.16a and 1.16c) confers a better stability of the
parameter estimate, as previously observed in the academic two-story frame example. Even
though the correcting actions remain global due to the spatial sparsity of accelerometers, one
has to notice that a correctly updated (linear) stiffness FE model is able to follow the state of
a structure during the entire test sequence, in which many nonlinear phenomena occur.

Remark 1.14. Once all mCRE internal parameters have been well calibrated, the algorithms
all converged towards physical-meaning values in terms of eigenfrequencies, except for run
#13. During the latter, a significant crack propagated at the bottom of the specimen, which
lead to an unstable test ending with an emergency stop. As this is typically the problem that
this thesis aims to solve, run #13 will be deeply considered in Chapters 4 and 5.

1.5.4 Towards subdomains refinement and underlying identifiability problems
Until now, the updating procedure has only been focusing on one global stiffness parameter,
providing relevant tracking of the first eigenfrequencies drop, which is directly related to the
evolution of the overall damage state of the specimen. This global damage assessment is al-
ready promising for better control of shaking table actuators. However, it is certain that the
corrections of the FE stiffness matrix proposed herein may lack of relevance for local damage
detection purposes as the overall weighting of the stiffness matrix does not give access to any
local information. Therefore, the feasibility of the identification of several parameters naturally
arises. Indeed, now that the model is globally updated, a next step would consist in defining
smaller subdomains in order to evaluate the damage state more locally. It raises new problems,
particularly regarding the relative accuracy of the algorithm when identifying several parame-
ters simultaneously and its capability to update accurately all of them.

If one now considers the FE model 1 to be split in four subdomains whose stiffness FE sub-
matrices are obtained by assembling the elementary contributions of the elements belonging to
each of them. They are displayed in Fig. 1.17.

To the extent that the CRE distribution per subdomain and mechanical strain energy are
intrinsically related, a first preliminary analysis of the modal strain energy contributions per
subdomain can be performed remarking that, if among all, certain subdomains have a very
low-energy contribution compared to the others, then it will be probably difficult to update
the associated parameters properly. For the initial FE model, the modal strain energies per
subdomain are displayed in Fig. 1.17 for the first five eigenmodes. One can notice that the
contribution of the anchoring and 3rd floor subdomains are of less importance compared to
the global mechanical strain of the structure. Therefore, the lack of sensitivity of the associated
parameters may lead to an uncertain updated value.

To confirm this statement, a 2Dmap of the mCRE functional with respect to the 1st and 2nd
floor stiffness parameters has been plotted in Fig. 1.18 based on run #6 data. The amount of
possible couples of parameters that are relevant in the mCRE sense shows that the algorithm
will hardly be able to provide a consistent minimum value. Indeed, the mCRE functional is



38 Chapter 1. Offline model updating in low-frequency dynamics

(a) mCRE-based update of model 1 from acceleration measurements in directions (x, y), without data windowing.
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(b) mCRE-based update of model 2 from acceleration measurements in directions (x, y), without data windowing.

(c) mCRE-based update of model 1 with data windowing for the broad-band low-PGA tests exclusively.
5 s-Blackman windows have been used.

Figure 1.16: Correction of SMART2013 FE models using mCRE-based model updating algorithms and
acceleration measurements – modal signature tracking and parameter estimate evolution with runs are

plotted.

sensitive to both parameters, but the lack of local information (i.e. the low spatial density of
sensors) limits the capability of mCRE to identify parameters accurately, even if they are se-
lected as most sensitive. Although a large number of sensors is spread over the specimen, the
experimental information they bring is unfortunately not rich enough to locally quantify
the damage state of the specimen, even if the model updating process is restrained to the most
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Figure 1.17: Four-subdomains decomposition of the SMART2013 specimen FE model and associated
mechanical strain energy contributions per subdomain and per mode.

sensitive areas. As a last remark, it is highly likely that the position of sensors is not as accurate
as expected: FE nodes may not perfectly correspond to sensor locations, and instrumentalists
may have done errors when positioning accelerometers on the specimen as well. This induces
additional model bias that may disrupt themodel updating process (whatever the chosen func-
tional). The question of sensor location trustworthiness is a short-term perspective of this thesis
work.

Figure 1.18: 2D map of the normalized mCRE J with respect to the 1st and 2nd floor stiffness
parameters from run #6 database. An isoline at 0.7% has been emphasized to show the (numerous)

relevant set of parameters in the mCRE sense.
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1.6 Conclusion & prospects
In this chapter, a robust energy-based model updating framework from data acquired in low-
frequencydynamicswas proposed. A strategy for correcting FE stiffnessmodels by exploiting at
best a set of available measurements a posteriori was discussed. The model updating methodol-
ogy is based on the so-calledmodified Constitutive Relation Error. After a bibliography study and
a positioning among other model updating approaches, the mCREmodel updating framework
has been presented for low-frequency dynamics problems, and (i) extended to random pro-
cesses with a formulation of the cost function to be minimized in terms of PSDs, and (ii) tuned
for an optimal integration of low-SNR measurements in the algorithm. Automated calibration
rules for optimal balance between themodel andmeasurement errors have been presented, and
the H-CMIF has been exploited as a frequency weighting function to naturally emphasize the
experimental eigenfrequencies of the tested structure.

The first application of the implemented algorithm for updating an academic plane frame
model subjected to random ground motion validated the robustness of the approach with re-
spect to known noise level. The second application was dedicated to the SMART2013 shaking
table test campaign database. Updating a single global stiffness parameter highlighted the pos-
sibility to recover the first eigenfrequencies drops of a RC specimen submitted to a sequence of
damaging seismic loadings. The nice correlation between subspace-based data-driven identi-
fication results and the mCRE-based model updating results suggest the relevance of the ap-
proach and its future use as back up to the modal analysis tools currently used at the CEA for
eigenfrequency tracking [Charbonnel 2021], that are only limited to the processing of ergodic
stationary signals. With the proposed approach, eigenfrequency tracking can be performed
even during (stable) seismic runs, and the FE models that are developed in the predesign step
of test campaigns can be reused in that sense (which is not the case so far).

In the perspective ofmore localized damage detection, a finer stiffness parametrizationmust
be introduced. Unfortunately, the algorithm has not been able to provide relevant results with
more than one subdomain in the SMART2013 case because of the sparse density of available
recordings. The definition of an adaptive model updating strategy that exploits measurements
at best to define an optimal (and economous) parametrization is a research topic that very few
references have studied, whereas the coupling of adaptive processes with inverse problemsmay
be attractive [R. Becker and Vexler 2005; Bangerth 2008; Bangerth and Joshi 2008; Puel and
Aubry 2011]. The strong asset of using mCRE in such a context is the possibility to exploit
the CRE as a local refinement indicator, as done for classical verification purposes [Ladevèze
and Chamoin 2016]. CRE-based stiffness parametrization in preamble of the model updating
process will be one of the main drivers of Chapter 2.

Eventually, the developed tools will be reinvested within a complete data-driven strategy,
where coupling with data assimilation techniques and adaptive model-based control theory
are the main topics discussed in Chapters 4 and 5.



Chapter2
Towards a fully-automated mCRE-based model updating

framework for damage detection
Adaptive inverse problem for optimal damage detection

The quality of the solution of an inverse problem is conditioned by inherent features of the latter, in partic-
ular (i) the richness of available data, (ii) the a priori experimental andmodeling knowledge that allows to
regularize the ill-posedness nature of the problem, and (iii) the complexity of the space in which updated
parameters are sought. Motivated by the ambition to understand and overcome the identifiability prob-
lems observed when processing the SMART campaign data, we present in this chapter a fully automated
robust mCRE-based model updating framework dedicated to the correction of finite element models from
low-frequency dynamics measurements. The rules to automatically calibrate mCRE internal parameters
are involved, and a clustering strategy based on the CRE term allows to optimize the complexity of the
space in which parameters are sought, leading to a fully autonomous algorithm (once the mCRE frame-
work has been set). The performance and robustness of the proposed methodology are illustrated using a
numerical benchmark in which defects of various shapes are detected on a plate from noisy acceleration
datasets, with focus on inherent limitations due to sensors sparsity and identifiability issues.

The work presented in this chapter has been the subject of the following contribution:

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2023c]. “Fully automated model updating framework
for damage detection based on the modified Constitutive Relation Error”. Computational Mechanics.
doi: 10.1007/s00466-023-02382-z

https://doi.org/10.1007/s00466-023-02382-z
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2.1 Introduction and motivation

From the numerical viewpoint, the integration of a digital twin requires a complex numerical
framework including a robust model updating algorithm able to operate in real-time. In this
chapter, we will address the possibilities to perform damage detection from sparse data col-
lected in an offline low-frequency dynamics context, with an emphasis on the trade-off that
must be found between:

. the richness and quantity of available measurements,

. the richness of excitation inputs,

. the complexity of the parameter space,

. the inherent model updating limitations due to the inverse problem itself.

The ambition of this chapter is to propose a mCRE-based fully automated model updat-
ing algorithm with the objective of identifying damaged areas optimally, i.e., as accurately as
possible at minimal computational cost.

In order to build a fully automated model updating strategy, all mCRE internal tuning pa-
rameters must be calibrated with rigorous and robust rules. One must then pay attention to the
setting of:

. the frequency bandwidth Dω,

. the frequency weighting function z(ω),

. the confidence into measurements coefficient α,

. the parameter space Θ in which parameters are searched.

As all these parameters have a significant impact onmodel updating results, a systematic tuning
procedure would then be useful to handle potential non-convincing model updating results.
The calibration of the 3 first items has been handled in Chapter 1 so as to guarantee relevant
model updating results without requiring any user’s a priori knowledge or experience (once the
equations of the problem have been labelled as reliable or unreliable).

The selection of the parameter space and the validation of the tuning strategy for α are ex-
tensively discussed in this chapter, as no clear contribution has been found in that sense in the
literature, out of empirical studies. More precisely, an automated selection of the parameter
space is proposed based on the CRE discrepancies. A clustering strategy is carried out to iden-
tify in which areas model updating is more needed, generalizing the above-mentioned concept
of localization of most erroneous areas. In the meantime, physics-inherent model updating
limitations are highlighted, namely the impact of the sensor placement and the identifiability
of defects in problems where the strain energy distribution of the tested structure is too hetero-
geneous.

2.2 Numerical evidences ofmCRE-basedmodel updating ill-posedness
and identifiability issues

Identifiability issues have been observed in the study of SMART2013 FE models updating from
acceleration data. If experimental errors may have allowed to bring them to light, the limits of
identifiability reported when one intends to identify a parameter field from discrete (spatially
sparse) measurements are well known, and we propose to present numerical results emphasiz-
ing on them in this paragraph.



44 Chapter 2. Towards a fully-automated mCRE-based model updating framework

2.2.1 Toy example: beam subjected to dynamical loading

In this section, we consider a 1D cantilevered beam
made of an isotropic material submitted to a dynami-
cal loading (see Fig. 2.1). One unknown damaged area
is present, andmodelledwith a 50%-penalized Young’s
modulus for x ∈ [0.5L; 0.75L]. Syntheticmeasurements
of known noise level coming from discrete sensors are
simulated with a Newmark time integration scheme.

A similar model (without knowing the existence of
the damaged area) is updated using the mCRE-based
model updating algorithm with the information given
by the few available sensors. In this simple example,
typical updating situations are considered to draw gen-
eral conclusions with regards on how to define subdo-
mains in an automated manner.

Figure 2.1: Cantilevered beam subjected
to dynamical loading with damaged area

and sensor locations.

Model updating case 1: subdomains are coarser than the defect

Considering only one subdomain (and therefore one single parameter θ) when having only two
sensors and no a priori information is a reasonable choice. As the subdomain definition is com-
patible with the sensors locations, the mCRE functional remains convex around a single global
minimum θ̂ ≈ 0.8 (see Fig. 2.2). The identification process is not subjected to local minima
issues but the identified value only reflects the overall behavior of the structure, similarly to the
SMART2013 problem of Chapter 1.

Figure 2.2: 1D beam FE model updating – Plot of the mCRE functional with respect to θ when only one
overall subdomain is updated.

Model updating case 2: subdomains are finer than the defect

If one hopes the localization of the most erroneous areas is enough to regularize the model
updating algorithm, then a finer subdomain decomposition can be chosen and only the param-
eters associated with erroneous areas are updated. In the considered example, one can pos-
tulate a 8-subdomain decomposition with exclusively parameters θ5 and θ6 updated (see Fig.
2.3). The lack of local information makes the algorithm unable to identify a global minimum:
there exists an infinite number of couples (θ5, θ6) that are equivalent in the mCRE sense (even
if (θ̂5, θ̂6) = (0.5, 0.5) is one of them).
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Figure 2.3: 1D beam model updating – 8 subdomain decomposition and mCRE map with respect to the
two parameters related to the damaged area. The expected parameters (black circle) are located within

a valley of local minima, leading irrelevant identification results.

Preliminary conclusions

From the previous results, it should be concluded that the sparsity of available information
is a constraint that is unavoidable and due to the experimental setup. The mCRE functional
is directly impacted by the lack of richness of local information to identify defects accurately.
The definition of coarser subdomains regularizes the solution of the minimization problem and
helps the convergence towards global minima. Coupled with the localization and correction
of the most erroneous areas, it can at least provide good trends to identify damaged areas. In
particular, it should be emphasized that:

. A low-dimensional parameter space naturally regularizes the model updating process.
The compatibility of subdomains with the available sensors is crucial, even if the localiza-
tion/correction of the most erroneous areas should help the model updating algorithm to
converge.

. A high-dimensional parameter space is more likely to lead to irrelevant identification re-
sults because several unequal parameter sets (local minima in the parameter space) can
have the same overall response if no local information is available. It confirms that the
shape of subdomains should be defined in accordance with the sensors at disposal.

2.2.2 Inherent mCRE identifiability issues and confidence intervals

Cantilevered wall

The sensor placement configuration and the input sollicitation condition the identifiability of
parameters and the accuracy of model updating results. These two features may lead to non
physical-meaning identification results if they do not allowparameters to be sensitive tomCRE1.

As the mCRE formulation for stiffness parameters is strongly related to strain energy, one
could not expect to identify accurately field parameters in areas where little strain energy is
present. This is another reason that may explain the poor identification results obtained when
refining subdomains in the SMART2013 problem. To illustrate the identifiability issue on an
academic example, let us consider the case of a cantilevered wall having two rectangular de-
fects, submitted to a plane ground motion (see Fig. 2.4). Accelerometers are scattered on the
wall and oriented in the outer plane direction, i.e. the loading direction. This structure has a
highly heterogeneous strain energy distribution: most of it is stored at the bottom of the struc-
ture, making the identification of the top defect impossible. In practice, the CRE map is totally
insensitive to the top defect even if sensors are located nearby, as shown in the mCRE surface

1Actually, this remark has to be made for all inverse problem strategies.
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plot of Fig. 2.5 that has been obtained after the (strong) assumption that the two damaged areas
were correctly captured. The damage located at the top of the frame is not identifiable as the
mCRE totally lacks of sensitivity with respect to the associated parameter.

Figure 2.4: Cantilevered wall subjected
to random ground motion with two

damage defects to recover.

Figure 2.5: Evidence of the unidentifiability issue:
areas storing few strain energy are less prone to
relevant mCRE-based accurate identification.

mCRE-based confidence intervals

What should be recommended to future mCRE users is to plot relative confidence intervals at
convergence [Charbonnel et al. 2013]. This low-cost operationwill allow to anticipate and assess
possible identification difficulties.

Briefly, when identifying several parameters simultaneously, one could wonder what rela-
tive precision is reached in the identification process for Uncertainty Quantification (UQ). To do
so, one can thus consider the computation of confidence intervals. Mathematically, due to the
mCRE convexity, there exists a subset Iθ ⊂ Θ such that:

∀ θ ∈ Iθ, J (θ) < εJ (θ0) (2.1)

From a UQ point of view, quantifying the measure of Iθ has more sense than the optimal pa-
rameters θ̂ because of the impact of any measurement perturbation on it and the heterogeneous
sensitivity of parameters to the model updating problem itself. As explained in [Charbonnel et
al. 2013], providing optimal parameters inside confidence intervals is an original and effective
way to deal with the Lack Of Knowledge associated to the numerical model with a low computa-
tional cost, as it is a one-step direct post-processing procedure that is performed easily as mCRE
gradient and Hessian matrix have semi-analytical expressions (see Appendix B). The width of
the interval Iθ for a given threshold ε can be established using a second order Taylor polynomial
approximation around the optimal parameters θ̂:

J (θ) = J (θ)+O
(

(θ − θ̂)3
)

with J (θ) = J (θ̂)+

[
dJ
dθ

]T
(θ−θ̂)+

1

2
(θ−θ̂)T

[
d2J
dθ2

]
(θ−θ̂) (2.2)

Once a threshold ε is chosen (its value is a user’s choice), the relative width of the confidence
intervals allows to identifywhich parameters are estimatedwithmore doubt than others, which
can be relevant for possible focusing model updating actions exclusively on highly sensitive
parameters.

Remark 2.1. As explained, the proposed confidence intervals are not rigorously able to quan-
tify the uncertainties on θ̂. Nonetheless, choosing a consistent value of ε after model updat-
ing convergence should be enough to draw preliminary conclusions on the identifiability of
parameters.
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2.3 CRE-based parametrization for fully automated model updating

As explained in Chapter 1, the CRE term provides a direct insight regarding the intrinsic va-
lidity of the model. As all finite element contributions to CRE can be computed independently,
it is a relevant tool for identifying erroneous parts of the model. This asset can be seen as a
Tikhonov regularization because a restrained number of parameters can be updated. However,
the efficiency of the localization criterion is constrained by the threshold β of (1.26). If most
references consider that β = 0.8 is a convenient value, no clear parametric study has been per-
formed in order to optimize the choice of β for optimal defect detection based on noisy datasets.
Therefore, if the CRE can be a convenient local model indicator, the localization criterion (1.26)
alone is limited to provide an automated parametrization (and associated subdomains). The
remainder of this section is devoted to present a novel CRE-based clustering technique for auto-
mated subdomain definition, which aims to extend the localization criterion traditionally used
in the mCRE-based model updating framework.

2.3.1 A brief overview of clustering techniques for automated data analysis and
classification

Clustering is one of the most widely used techniques for data analysis and classification
[Miyamoto et al. 2008]. The objective of cluster analysis is the classification of objects according
to similarities among them, and therefore organizing datasets into groups (the so-called clus-
ters). Without going into much details, clustering techniques allow to partition a space in the
sense of a given metrics: within a cluster, the distance between objects remains small, whereas
the distance between objects of different clusters is larger. There exists many clustering tech-
niques: hard clustering, fuzzy clustering [Bora and Gupta 2014], spectral clustering [Luxburg
2007] to only cite a few of them. Regarding civil engineering applications, clustering algorithms
have been mostly used to automatically identify physical modes in modal analysis stabilization
diagrams [Carden and J. M. W. Brownjohn 2008; Reynders et al. 2012; Charbonnel 2021].

To recall algorithmic principles in a nutshell, in hard clustering techniques, the data to clas-
sifyX ∈ Rd×N is divided into distinct clusters, where each data point can only belong to exactly
one cluster. To do so, the cluster center locations {Cj}kj=1 are optimized such that:

{C} = arg min
Cj ∈ Rd

k∑
j=1

N∑
i=1

‖Xi − Cj‖22 (2.3)

and the data samples are then directly classified into clusters according to their distance to cen-
ters. Although efficient, such algorithms tend to be less effective when dealing with not-well
separated, and non-spherical clusters. This motivated the development of fuzzy clustering (also
referred to as soft clustering) where membership functions are associated to each data point
Xi, which somehow relaxes the belonging to a given cluster. The membership function of data
point i to cluster j is denoted µij and takes values in [0; 1]. As a consequence, a data point Xi

will be more likely to belong to a cluster j if µij → 1. Using a non-necessary Euclidean norm
‖�‖A, the centers andmembership functions are sought according to the following constrained
minimization problem:

{C, µ} = arg min
C, µ

k∑
j=1

N∑
i=1

µmij ‖Xi − Cj‖2A︸ ︷︷ ︸
J(C,µ;X)

with
k∑
j=1

µij = 1 ∀i ∈ J1;NK (2.4)

where the exponent m reflects the degree of fuzziness of the partition: if m = 1 corresponds
to hard clustering, m = 2 is the classical (empirically) chosen value in many applications. The
Hermitian norm ‖�‖A can be defined using a positive definite matrix A, identically chosen for
all clusters. Alternatively, the metric can be defined using a k-tuple {Aj}kj=1, with Aj a positive
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definite matrix. The objective function is then extended as J(C, µ,A;X). This choice allows
better identification of elliptic and overlapping clusters. More details on that subtility can be
found in [Charbonnel 2021]. In any case, the constrainedminimization of these methods is per-
formed numerically using a fixed-point algorithm that iteratively optimizes all the arguments
of the functional J (see Alg. 2.1).

Algorithm 2.1: Fuzzy clustering algorithm developed in [Charbonnel 2021]
Data: Data X ∈ RE×d, number of clusters to identify k, initial centers {C0

j }j∈J1;cK (if known,
otherwise random pick), threshold ε0

Result: Updated cluster centers {Cj}j∈J1;kK, ellipticity {Aj}j∈J1;kK and data points membership
functions {µij}(i,j)∈(J1;EK×J1;kK)

Start with circular cluster shapes Aj = I ∀ j ∈ J1; kK ;
Assign cluster centers {Cj}j∈J1;kK with the initial guesses {C0

j }j∈J1;cK, random pick otherwise ;
Fixed-point algorithm
while J(C, µ,A;X) > ε0 do

Compute membership functions µij =

[
k∑
p=1

‖Xi − Cj‖2Ak

‖Xi − Cp‖2Ap

]−1
∀ (i, j) ∈ (J1;EK× J1; kK) ;

Update centers position Cj =

∑E
i=1 µ

2
ijXi∑E

i=1 µ
2
ij

∀ j ∈ J1; kK ;

Compute the cost-function J(C, µ,A;X) =

E∑
i=1

k∑
j=1

µ2
ij‖Xi − Cj‖2Aj

;

Update the ellipticity of clusters Aj = (ρj |Σj |)1/d Σ−1j ∀ j ∈ J1; kK

with Σj =

∑E
i=1 µ

2
ij(Xi − Cj)(Xi − Cj)T∑E

i=1 µ
2
ij

, ρj =
k|Dj |1/(d−1)∑k
p=1 |Dp|1/(d−1)

and Dj =
1

|Σj |

[
E∑
i=1

µ2
ij

]d
;

end

However, the damage pattern in a structure may not be convex, particularly when several
damaged areas have to be identified. When non-convex clusters are expected, spectral cluster-
ing techniques often outperform the above-mentioned traditional approaches by performing
clustering on a transformed dataset which hopefully provides better separated and more eas-
ily identifiable clusters. The interested reader can find a pedagogical and detailed tutorial in
[Luxburg 2007].

Spectral clustering is widely used because of its simplicity to implement and it can be solved
efficiently by standard linear algebramethods. The key idea of spectral clustering is to transform
the coordinates of the pattern matrix to recover convex subdomains. In practice, a mapping
C is derived from the data X to transform non-convex and possibly overlapping clusters into
hopefully better separated clusters of more convex shape Y , through a change of variable:

Y = C(X) (2.5)

The mapping C (more precisely the transformed dataset Y ) is constructed from the smallest
eigenvalues (0 in the ideal case) of the so-called graph LaplacianL following the steps described
hereafter:

. A similarity matrix S is first assembled. The coefficient Sij estimates how much a given
point Xi belongs to the vincinity of Xj . Almost unit values are associated to close points
whereas smaller values concern more distant points. The similarity matrix construction
is not unique; a common way to do so is to use a Gaussian similarity function and a tun-
ing parameter σ controlling the width of the neighborhood where points are considered
closed:

Sij = exp
(
−1

2

‖Xi −Xj‖2

σ2

)
(2.6)
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Complementary details regarding the definition of the similarity matrix can be found in
[Charbonnel 2021].

. The graph Laplacian can then be computed. Various weightings have been considered to
improve the condition number of L:

L = D − S (2.7)
Lsym = D−1/2LD−1/2 (symmetric weighting) (2.8)

Lrw = D−1L (random walk weighting) (2.9)

where D is the degree matrix defined as Dij = δij
∑N

j=1 Sij , δij denoting the Kroenecker
operator.

. A set of k eigenvectors {Λc}c∈J1;kK corresponding to the k smallest eigenvalues of L (or its
weighting variants) are then extracted, yielding to the transformed pattern matrix Y :

Yi =
Λi(∑k

c=1 Λ2
c

)1/2
(2.10)

Then, hard or fuzzy clustering techniques can be applied to define the clusters on Y , that are
built to be more convex in the transformed coordinates space.

An illustration of clustering techniques

The scatter plots presented in Fig. 2.6 and 2.7 illustrate the performance of the above-mentioned
clustering techniques and allow to compare them on 2D data classification problems2. Fig. 2.6
highlights that fuzzy clustering allows to identify points at the border of clusters (without exces-
sive additional CPU cost). The data points deemed to belong to both clusters are those having
membership functions values close to 0.5.

(a) Data points to classify. (b) Hard clustering result.

(c) Fuzzy clustering membsership functions. (d) Fuzzy clustering result.

Figure 2.6: Hard vs. fuzzy clustering comparison on a 2D database of well-separated non-spherical
clusters.

2Complementary tutorials are also available online. For instance, MATLAB© users can refer to https://fr.

mathworks.com/help/fuzzy/fuzzy-clustering.html.

https://fr.mathworks.com/help/fuzzy/fuzzy-clustering.html
https://fr.mathworks.com/help/fuzzy/fuzzy-clustering.html
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(a) Data points to classify. (b) Fuzzy clustering result.

(c) Graph Laplacian mapping and fuzzy clustering. (d) Spectral clustering result.

Figure 2.7: Fuzzy vs. spectral clustering comparison on a 2D database of poorly-separated non-convex
clusters. Markers gray levels correspond to the membership functions values.

2.3.2 CRE-based clustering for automated parameter space definition
In this work, the fuzzy k-means clustering algorithm developed in [Charbonnel 2021] is rein-
vested. Originally intended to separate the physical modes from the spurious modes produced
by a growing model-order identification algorithm in a modal analysis context, its robustness
with respect to non-convex, poorly dissociated, and heterogeneous clusters makes it a relevant
tool to defineparameter distributions from theCREmap. Starting from the initialmodel, the key
idea is to identify a cluster of most erroneous elements through the computation of the mod-
eling error (CRE) map per element which naturally emphasizes the damaged area. In other
words, a two-cluster distinction is performed from the normalized CRE map:

X =

{
Xi − min

i∈J1;EK
{Xi}

}E
i=1

max
i∈J1;EK

{
Xi − min

i∈J1;EK
{Xi}

} , Xi =

∫
Dω

z(ω)ζ2
ω,idω (2.11)

which allows to label each finite element as "healthy" or "erroneous". Note that this is not a
computationally expensive procedure as it is a (vectorizable) post-processing operation once
mechanical fields solution of (1.20) has been obtained.

The clustering algorithm technical details (with notations independent from the rest of the
manuscript) are given in Alg. 2.1. In the latter, the ellipticity of clusters is updated as well. It is
important to notice in this case that the initial position of clusters is specified (C1, C2) = (1, 0)
so that the first cluster is enforced to be the cluster of erroneous elements. Doing so also avoids
the undesired case of equal partitioning when random initial centers are specified.

Remark 2.2. Note that, so far, the number of clusters and center initializations remain unspec-
ified. Before converging towards this clustering framework, several tests were performed: in
particular, we tried to cluster a multidimensional dataset X made of the CRE per element,
with barycentric coordinates specified. Multiple clustering in this 4D space was interesting
in the perspective to assign one parameter per identified defect. However, the absence of fi-
nite element barycentric coordinates in X allows to simultaneously identify damaged areas
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at different locations. It avoids the complex discussion about the robustness of clustering
algorithms when the number of clusters to identify changes from an application to the other
[Balasko et al. 2005], and to obtain inaccurate parameter estimates due to a coarse shaping
of the damage defect to identify.

The pseudo-code associated to the main steps of the fully automated model updating pro-
cess is given in Alg. 2.2. At the end of the CRE-based clustering, a new parameter space Θ̂ is
defined in which all erroneous elements are updated independently whereas the healthy ele-
ments remain unchanged. This can be interpreted as a generalization of the localization of most
erroneous areas principle that was mentioned earlier, but in a more adaptive manner. Numeri-
cal illustrations are provided in Section 2.5.

Note that the normalization of the CRE between 0 and 1 before performing clustering allows
to automate the initialization of the CRE-based clustering algorithm. Besides, this is efficient in
terms of parametrization as long as the overall initial guess is well calibrated, otherwise all
elements can be classified as erroneous. Therefore, it is recommended to perform a preliminary
model updating procedure with large subdomains (even only one) to properly calibrate the FE
model in case of strong a priori discrepancies between model predictions and observed data.

Algorithm 2.2: Fully automated mCRE-based model updating algorithm
Data: FE model including mesh and matrices K,D,M , subdomain decomposition and

associated parameter guess θ0 ∈ Θ0, measurements {y(t)}
Result: Updated set of parameters θ̂ ∈ Θ̂.

Preamble & initialization:
Computation of the reduced basis ΦL ;
Data frequency domain preprocessing: Yω ∀ ω ∈ Dω ;
Data-based computation of z(ω) using a normalized H-CMIF ;
Confidence into measurements scalar α̂ calibration following (1.42) or (1.44) ;
Evaluation of the initial quality of the model: J0 = J (θ0) ;
Choice of thresholds ε1, ε2 ;
CRE-based clustering for subdomain definition
Computation of the CRE map per element ζ2ω,e

(
sω, θ

(0)
)
∀
(
ω, e
)
∈
(
Dω × Ωe

)
;

CRE-based clustering to identify the subset of most erroneous elements using Alg. 2.1 with 2
clusters of centers initialized at (1, 0) ;
Definition of the parametrization Θ̂, as all false elements are independently updated ;
Model updating algorithm
while J

(
θ(k)

)
6 ε1 and

∣∣θ(k) − θ(k−1)∣∣ 6 ε2 ∣∣θ(k−1)∣∣ do
Iterative correction
Minimization of J (θ) : θ(k+1) ← θ(k) with respect to the parameters
from Step 1 (BFGS method with supplied gradient - see (1.27)) ;

Convergence assessment
Convergence criteria computation: J (θ(k+1)) and

∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ ;
end

Remark 2.3. A CRE-based subdomain refinement strategy has also been considered to try
to catch at best the shape of defects. In this iterative process (not presented in detail as
inconclusive), all the elements gathered in the "erroneous" areas were weighted by the same
stiffness parameters. Iteratively, following the CRE map, subdomains were refined and the
dimension of Θ progressively increased where needed. However, it was empirically noticed
that the updating results were corresponding to local minima typical of the toy example of
Section 2.2.1.
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For instance, following the work of [Bangerth and Joshi 2008; Puel and Aubry 2011], a
quadtree subdomain refinement technique was implemented on the case study described in
Fig. 2.4. The idea consisted in an iterative quadtree refinement of most erroneous subdo-
mains (in the CRE sense). The algorithm was therefore close to what is presented in Alg.
2.2, except that the parameter space was updated as well (i.e. θ(k) ∈ Θ(k)). The wall case is
optimal for quadtree refinement because the bottom defect one can detect with mCRE has a
squared shape as well. Although the model updating process efficiently localizes the dam-
aged area, it has not been able to quantify it properly due to the fall into local minima that is
unavoidable in an iterative inverse problem solution (see Fig. 2.8).

Besides, note that this approachwas not adapted to the simultaneous detection of several
defects, and not compatible with the on-the-fly model updating prospects of this work.

Figure 2.8: Quadtree refinement of the parameter space for damage detection. From left to right:
parameter estimates at iterations 4 and 8, and mCRE evolution during the whole adaptive process.
Localization is correctly performed, but the model updating algorithm converges towards local

minima parameter values.

2.4 Alternative approach: sparse-regularizedmCRE for localized cor-
rections

Following the developments of [Guo et al. 2018; Ferrier et al. 2021], one could also imagine
adding an explicit regularization term to the mCRE so as to favor some a priori knowledge on
the parameter estimates that are sought. In particular, when it comes to detect localized damage,
sparse regularization should allow to focus the model updating process to a reduced amount of
parameters [C. D. Zhang and Y. L. Xu 2016; Benning and Burger 2018]. The sparse-regularized
mCRE functional Jr reads as follows:

Jr(θ;Y, θ0) =

∫
Dω

z(ω)e2
ω(ŝ(θ, ;Yω), θ;Yω) dω + γ‖θ − θ0‖1 (2.12)

where θ0 is the a priori information one has on the parameters (healthy area stiffness value for
example), γ is the weighting parameter allowing to give more or less importance to the regular-
ization, and ‖�‖1 refers to the L1-norm. The minimization of this functional can be performed
using the same algorithmic structure andmathematical developments that have been presented
previously, except for the analytical gradient formulation that must be slightly changed to in-
tegrate the regularization term. However, the introduction of a new a priori information goes
against the philosophy of the mCRE which intends to analyze the mechanical equations of the
problem in order to exempt the inverse problem of any expert-user’s judgment. Another dis-
advantage of this technique is the arbitrary nature of the choice of a regularizing parameter γ
which impacts the smoothness of the solution [Titurus and Friswell 2008].
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The impact of sparse regularization and a comparison with CRE-based clustering is pro-
posed in Section 2.5.

Remark 2.4. The purposes of the clustering step and the additive sparse regularization are
similar. The use of the CRE to define an optimal parameter space seems to be a more natural
approach within the mCRE framework. If one performsmodel updating without clustering,
the effect of the sparse regularization (once well calibrated) should be beneficial on the ac-
curacy of the identified parameters, but it is likely that the clustering alone will be as efficient
in terms of accuracy and more robust because less calibration efforts are needed.

2.5 Application to damage detection from sparse data

2.5.1 Description of the problem and objectives of the study

In this section, numerical results are presented and discussed to assess the relevance of the
automatedmCRE-basedmodel updating strategy for damage detectionwith typical earthquake
engineering applications. To evaluate the performance of the methodology, academic examples
are considered in which a simply supported plane rectangular floor is subjected to a vertical
low-magnitude ground acceleration input. The reference meshes with the defects one hopes to
identify are shown in Fig. 2.9. The optimality criteria for α that have been previously discussed
are compared and assessed, as well as the effect of an additional sparse regularization term.

A uniform sensor placement is considered: discrete accelerometers oriented in the outer
plane direction are spread over the structure to collect data at the sampling frequency fs =
1000 Hz. The effect of sensor density is illustrated in the following by comparing the sensor
placement configurations shown in Fig. 2.10, characterized by the distance between sensors ds,
and more carefully studied in Chapter 3. In order to assess the robustness of the methodol-
ogy with respect to measurement noise, a white noise of known standard deviation is added
to simulated data in order to process noisy synthetic measurements. δ ∈ [0; 1] represents in
the following the noise level with respect to the input ground acceleration standard deviation
std(Üd).

Two damage detection problems are considered to assess the potentialities of the method-
ology (see Fig. 2.9):

(a) a Y-shape defect (representative of a propagated crack with bifurcation) that is modeled
with a local 50% stiffness loss, and

(b) a double circular inclusion problem, respectively modeled with local 50% and 70% stiff-
ness losses.

(a) Y-shape defect (propagated crack with
bifurcation). (b) Double circular inclusion defects.

Figure 2.9: Reference FE meshes to simulate synthetic data with emphasis on the defect areas Ωd to
identify (orange elements). Locked dofs are specified with red circles.

If the first case is much more representative of what could happen in actual experiments
involving crack propagation, the double inclusion case will allow to assess the robustness of the
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clustering algorithm to identify several defects while the Y-shape case will permit to assess the
possibility to perform relevant clustering of non-convex CRE distributions.

Meshes and FE matrices (reference and initial guess) are built using the CEA simulation
sotfware Cast3M© before being uploaded in a MATLAB© environment. In both cases, the ini-
tial model guess is made of regular quadrangular shell elements whose homogeneous Young’s
modulus is equal to the non-damaged reference. Note that, because triangular elements have
been used in the reference mesh, a modeling error bias is implicitly introduced as the mesh of
the updated model is not compatible with the defects to identify.

The knowledge of the expected parameter estimate θ? enables to assess the model updating
accuracy using the following accuracy indicators:

η(θ, θ?) =

∫
Ω
‖θ − θ?‖2 dΩ∫
Ω
‖θ?‖2 dΩ

; ηd(θ, θ
?) =

∫
Ωd

‖θ − θ?‖2 dΩ∫
Ωd

‖θ?‖2 dΩ

(2.13)

which indicate the closeness of an estimate θ to the expected parameter set θ?, respectively on
the full structure Ω or on the restriction to the damaged area Ωd (see Fig. 2.9).
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Figure 2.10: Three uniform sensor placement configurations with different densities (quantified by the
distance between sensors ds). Blue arrows locate the discrete accelerometers and red circles emphasize

on boundary conditions.

Performing an accuratemodel updating from sparse and noisy data in that case is a complex
task, particularly for a non-convex defect to recover. From these 2D earthquake engineering-
inspired examples, the aim is to emphasize the main underlying issues of model updating from
discrete sensors and to validate the automated strategy presented previously. To do so, a com-
plete numerical study is conducted with several objectives:

. illustrate the limits of the localization criteria for damage detection and emphasize the
effectiveness of the CRE-based clustering step for automated parametrization;

. assess both effectiveness and soundness of the two criteria proposed in Section 1.4.3 for au-
tomated calibration of α and evaluate the influence of the confidence into measurements
scalar α on parameter estimates;

. evaluate the robustness of the automated mCRE-based model updating algorithm with
respect to measurement noise;

. illustrate the damage detection expectations from limited sensor density;

. assess the benefits of the additional sparse regularization to the mCRE functional.

For the sake of conciseness, all similar numerical results will not be shown as most of them
are redundant between the two configurations of Fig. 2.9 (in terms of results analysis). As the
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Y-shaped defect is the most challenging application, results will mainly be focused on the latter,
whereas the inclusion example will be used to drive complementary discussions.

In terms ofmCRE calibration, as the first eigenmode (which is themost excited) is at around
20 Hz, a frequency bandwidth Dω = [1 Hz; 30 Hz] with ∆f = 0.1 Hz has been chosen for the
computation of all forthcoming results. The call to a reduced basis made of the first 20 eigen-
modes of the structure allowed to achieve convergence in fast CPU times (between 0.5 and 2
minutes per mCRE-minimization with CRE-based clustering) on a personal laptop.

The remainder of this section is structured according to the (above-mentioned)major objec-
tives of this numerical study in order to emphasize the potentialities and limitations of mCRE-
based model updating algorithm from discrete noisy data.

2.5.2 Limits of the localization criterion for optimal damage detection

First, a parametric study on the localization parameter β defined in (1.26) has been made in
order to assess the capabilities of classical mCRE-based model updating to perform optimal
damage detection, i.e., accurate identification at low computational cost. It considers the most
convenient model updating setting: large amount of data (sensor placement (a) from Fig. 2.10)
and perfect measurements (δ = 0%) which yields a high confidence into measurements.

The criteria (2.13) are computed for each parameter estimate identified at convergence and
stored in Tab. 2.1. Two typical model updating results are plotted in Fig. 2.11 and 2.12. One
can observe that mCRE-basedmodel updating with strong localization (Fig. 2.11) is accurate at
the full structure scale as it does not correct many parameters (letting most of the undamaged
area unchanged). However, the few parameters that are corrected do not permit to obtain an
accurate defect shape. On the contrary, with a lower localization value (Fig. 2.12), the defect
shape is accurately described, but unexpected corrections occur in the undamaged area, which
leads to parameter estimates that are not optimal in the sense of η. Besides, note that the CPU
time increases for low values of β as a (too) large amount of parameters is updated at once.
Finally, one should notice that iterative model updating approaches with a high value of β do
not improve identification results as they take more CPU time and often fall into equivalent
solutions (at the specimen scale) that do not describe the defect accurately.

Therefore, the localization of most erroneous areas principle, which regularizes the model
updating algorithm in the Tikhonov sense, is not sufficient to perform accurate damage detec-
tion from sparse data in reasonable computational times. Comparative results obtained with
CRE-based clustering are given in Fig. 2.13 for the same model updating context. As observed,
only a restrained group of finite elements is corrected (60 among 480). This group of elements
correctly matches with the shape of the damaged area because of its CRE-based construction
and permits to obtain an accurate estimate, as shown in Tab. 2.1. Besides, the comparison of
modeling error (CRE) map before and after model updating confirms the efficiency of the pro-
posed approach.

Localization parameter β η(θ̂, θ?) ηd(θ̂, θ
?) CPU time [s]

0.2 0.00859 1.897 > 5000
0.3 0.00880 1.829 1670
0.4 0.00932 1.794 526.2
0.5 0.01212 1.833 171.9
0.6 0.01041 1.966 192.5
0.7 0.01783 2.168 33.8
0.8 0.04982 2.431 39.6

with CRE-based clustering 0.00955 1.641 100.3

Table 2.1: Emphasis on the limitations of the localization of
most erroneous areas for accurate and efficient damage
detection in the most favorable damage detection case

(noisy-free data - high sensor density).
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Figure 2.13: Fully automated mCRE-based model updating results obtained with the sensor placement
of Fig. 2.10a and noise-free data. The CRE-based clustering step allows to restrain correcting actions on

the area that surrounds the defect to identify.

2.5.3 Automated confidence into measurements

One of the objectives of this study, already raised in Chapter 1, is to check the validity of the cri-
teria allowing to automatically define an optimal confidence into measurements parameter α̂.
As a reminder, a first criterion defines α̂1 such that the a priori balance between model andmea-
surement error is guaranteed (1.42). The second criterion lies on the a priori use of Morozov’s
discrepancy principle and chooses α̂2 in accordance with the noise level (1.44).

Using themost dense sensor placement and a given random input acceleration signal of 0.1g
standard deviation, Fig. 2.14 shows the natural decrease of confidence parameters (α̂1, α̂2) with
respect to the measurement noise level δ. Both criteria thus react as expected to measurement
noise: the more measurement noise, the less confidence into experimental data.

Figure 2.14: Automated choice of confidence into measurements coefficient: comparison of L-curve (a
priori balance - left) and Morozov’s discrepancy (right) criteria for several noise levels δ.

δ[%]
Sensor config. (a) Sensor config. (b) Sensor config. (c)

ds = 0.1 m ds = 0.2 m ds = 0.3 m
α̂1 α̂2 α̂1 α̂2 α̂1 α̂2

0 9.62.105 108 284 108 570 108
5 70.6 452 358 1.44.103 908 2.30.103
10 27.9 70.6 112 225 226 452
15 13.9 3.50 70.3 11.0 141 44.3
20 8.70 1.37 44.2 5.49 70.5 13.9

Table 2.2: Values α̂1 (L-curve) and α̂2 (Morozov) of the confidence into measurements with respect to
noise level. The numerical values are implicitly conditionned by the choice for G.
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Figure 2.15: Automated mCRE-based model updating algorithm - Quality assessment of parameter
estimates using η (left side) and ηd (right side) according to α, δ and the sensor plans shown in Fig.
2.10. The positions of α̂1 (L-curve criterion - in blue) and α̂2 (Morozov’s criterion - in red) are also

given to evaluate the relevance of the automated methodology. Colormaps are identical in each column
to compare the effect of sensors density more easily.



58 Chapter 2. Towards a fully-automated mCRE-based model updating framework

Although similar trends in the evolution of α̂ with respect to measurement noise are ob-
served, the values given by both criteria are quite different, and yet one cannot conclude about
their validity so far. To assess which of the criteria is the most appropriate to use, a full para-
metric study on the joint influence of α and δ on the identified estimates has been conducted.
Associated results are given in Fig. 2.15 where criteria η and ηd are plotted as a function of δ
and α for the three considered sensor placement configurations previously displayed in Fig.
2.10. The colormaps (that are identical for subfigures a-c-e and b-d-f) allow to appreciate the
combined effects of sensor density, noise level and confidence into measurements on the values
of η and ηd.

The location of α̂1 and α̂2 compared to the optimal α values in the sense of η or ηd suggests
that both criteria do not provide the optimal value of α for damage detection in the considered
case. They can thus be considered too "conservative" as they systematically underestimate the
optimal confidence one should put into data. If one has to choose between them, the criterion
based on Morozov’s discrepancy principle should be preferred as it integrates additional
information about the measurement noise.

In practice, the "conservative" choice of α should also be seen as a robust feature of the
algorithm: excessive confidence into measurements could lead to diverging results (with non-
physical negative values of stiffness parameters - see Fig. 2.16). The automated calibration of
α using L-curve-type or Morozov’s discrepancy criteria allows to avoid such issues, at the cost
of suboptimal identification results. Indeed, the "conservative" feature of α̂1 and α̂2 directly
impacts the quality of identification: the sub-optimal choices in the sense of η and ηd lead to less
accurate identification results, with a cluster of false-labeled elements larger than the defect to
describe (see Fig. 2.17). However, the obtained results still remain consistent with the location
of the defect whatever the sensor placement density.

Remark 2.5. As a last remark, please note that the values of α are indirectly depending on
the value given to G, showing once again how this scaling matrix is not that crucial if α is
afterwards well tuned.

Figure 2.16: Convergence assessment of the automated mCRE-based model updating algorithm. If the
algorithm converges most of the time (light area), overexcessive confidence can lead to non-physical
results (dark area, where some estimated parameters have negative values). The automated calibrated

values of α̂1 and α̂2 systematically lead to convergent model updating results.
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Figure 2.17: Automated mCRE-based model updating algorithm - Impact of α on clustering and
parameter estimates. Results obtained for sensor placement Fig. 2.10.a with δ = 10%. The identification

provided with the Morozov criterion α̂2 is also provided.

2.5.4 Impact of sensor placement on damage detection performance

As one could have expected, the more scattered sensors, the more accurate identification re-
sults. However, for real industrial applications, the amount of available sensors is limited by
instrumentation constraints and economic considerations. What is thus interesting to observe
from the identification results displayed in Fig. 2.18 is that one can coarsely identify damage
locations from a restricted amount of sensors. Here, taking advantage of the knowledge of the
defect shape allows to show the effect of the sensor placement while ignoring the one due to
the selection of α. It also emphasizes the fact that inverse problem parametrizations should
be made in accordance with the associated sensor placement configuration, and that optimal
sensor placement strategies should be applied in such cases in order to get the most relevant
information from a restricted amount of data. This point particularly motivated the optimal
sensor placement work presented in Chapter 3.
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Figure 2.18: Automated mCRE-based model updating algorithm - Impact of the sensor placement
configuration on parameter estimates. Results obtained for sensor placement of Fig. 2.10 with δ = 10%

with the optimal value of α in the sense of ηd.

2.5.5 Multiple defect detection

Although the convex shape of the inclusions makes their identification easier compared to the
Y-shape defect, the fact that there are two defects to identify simultaneously is an interesting
challenge to face with the parametrization done by CRE-based clustering.
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We present in Fig. 2.19 and 2.20 the initial CRE maps and identification results obtained
from both noise-free and noisy measurements using the sensor placement of Fig. 2.10.b. The
expected parameter value of the small bottom left inclusion and of the larger top right inclusion
have been respectively chosen at 0.5 and 0.7. The obtained results illustrate the capability of the
methodology to identify multiple defects at once, as attested by the emphasis of the CRE map
on the inclusions, even with significant measurement noise level and model bias.

As previously remarked, performing clustering without considering the barycentric coordi-
nates of finite elements allows to avoid the (iterative) process on the optimal number of clusters
to distinguish. Note that the value of α had to be divided by 100 between noise-free and 10%
noisy data to obtain these results, highlighting once again the crucial role handled by the coef-
ficient of confidence into measurements to get relevant identification results.

2.5.6 Effects of additional sparse regularisation

As written above, the addition of a sparse regularization term to the mCRE should be seen as
a backup to the method for identifying localized defects more accurately. Identification results
using sparse regularization with variable weighing γ and fixed a priori knowledge θ0 = 1 are
shown in Fig. 2.21, where several parameter estimates obtained from the same 10%-noisy mea-
surements are plotted.
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Figure 2.19: Identification of the two circular inclusions from noise-free accelerometer data. The initial
CRE map used for clustering is plotted on the left. The parameter estimate is plotted on the right with

the exact defects shapes on it to qualitatively assess its accuracy.
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Figure 2.20: Identification of the two circular inclusions from 10% noisy sparse accelerometer data. The
initial CRE map used for clustering is plotted on the left. The parameter estimate is plotted on the right

with the exact defects shapes on it to qualitatively assess its accuracy.

The sparse regularization term permits to provide more accurate results only if the weight-
ing is correctly calibrated. In this example, the weighting γ = 10−4 has been identified after
several tests as a close-to-optimal value. The comparison of parameter estimates obtained with
γ = 10−3 illustrates how the calibration of the sparse regularization term is crucial. Besides, the
reader should keep in mind that, in this academic example, the initial guess perfectly matches
with the expected parameter value on non-damaged areas, thusmaking the chosen a priori value
θ0 = 1 highly relevant. This may not be the case for industrial applications where the stiffness
distribution might not be well-known in advance.

As one can remark fromFig. 2.21 aswell, the use of the automatedCRE-based clustering step
makes the effect of the additional sparse regularization less relevant as corrections are already
focused on parameters in need for them. In spite of these limitations, the additional sparse
regularization term, if well calibrated, can be beneficial for getting more accurate parameter
estimates. However, due to the fact it necessitates some a priori knowledge, this regularization
should be seen as an option that can be considered and calibrated in a case-by-case approach.
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Figure 2.21: Effect of the sparse regularization effect over the identification of two inclusions from
sparse 10% noisy acceleration datasets, with comparison to CRE-based clustering and direct

mCRE-based model updating.

2.6 Conclusion & prospects on the automation of the mCRE-based
model updating framework

After having analyzed the results from the numerical benchmark, let us summarize the main
advantages (3) and limitations (7) of the automated model updating methodology presented
in this chapter:

3 CRE-based clustering extends the concept of localization of most erroneous areas. It facil-
itates damage detection as it strongly restrains the number of parameters to update. This
is particularly well suited for damage detection as such defects are supposed to appear lo-
cally. Indeed, the simplest (but less computationally efficient) choice would be to update
all E finite elements independently. With the proposed strategy, one could legitimately
hope for dim(Θ̂)� E.

3 The proposed model updating strategy is fully autonomous with all the implemented
procedures for its automation. As the selection of α, the computation of the CREmap and
the clustering steps are fast post-processing operations, significant CPU time savings are
made without loosing accuracy.

3 Sparse regularization may be helpful for getting more accurate results in cases where de-
fects are localized, but it requires some a priori knowledge and dedicated calibration. Its
effect is less significant when combined to CRE-based clustering.

7 The calibration of α becomes even more crucial herein as it also conditions the effective-
ness of the CRE-based clustering. The "conservative" feature of the proposed criteria for
selecting α provides sub-optimal yet relevant damage detection results. In an offline con-
text, it may be worth trying to update α iteratively in an a posteriori manner.

7 The performance of the clustering step and of the model updating process is conditioned
by the quantity and quality of available sensors. This limitation has to be kept in mind
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when trying to identify damage from sparse datasets. This problem will be addressed in
Chapter 3.

7 Due to the energy-based definition of the mCRE, the identification of defects will be dif-
ficult in non-sensitive or heterogeneous areas (in the sense of the strain energy distribu-
tion). This problem-dependent issue should not be decisive for the case of damage detec-
tion from groundmotion testings, but it could be the case when trying to identify inherent
defects, e.g. due to material uncertainty.

Overall, the automated setting of all the internal tuning parameters without any additional
a priori engineering judgment and the low computational resources requirements make it an
interesting tool for robust model updating problems in dynamics. Although optimal results
for damage detection have not been systematically obtained, the methodology has proven ro-
bustness through the automated choice of tuning parameters and numerical efficiency as one
completedmodel updating (including data preprocessing) in a couple ofminutes on a personal
laptop. Those two aspects are essential in the perspective of proposing an efficient model up-
dating toolbox for digital twin applications. Several recommandations on the application of the
model updating algorithm according to the context of use can be made:

. If real-time constraints exist or if the model updating is exploited for data assimilation,
a first precalibration test (with a typical low-magnitude random input) should be made
to calibrate all mCRE internal parameters at best. Besides, the initial model guess would
be already well calibrated regarding the initial damage state of the specimen under study.
This way, theMDKF process (fully detailed in Chapter 4) could integrate all the proposed
improvements. The obtained results will not be optimal (as evidenced before), but they
should be relevant enough to provide accurate results in real-time.

. If there is no particular time constraint, i.e. if the algorithm is only exploited as a post-
processing tool, then one can afford running several mCRE minimizations around the
suboptimal values of α̂ to find optimal results. Indeed, all the minimizations performed
in this contribution lasted less than 2 minutes on a personal laptop. To provide a friendly
framework in that sense, a MATLAB© visualization tool has been developed, allowing the
user to navigate easily through the generated results (see Fig. 2.22).

Figure 2.22: A visualization tool on Matlab for easy post-processing of model updating results, applied
here to the detection of one circular inclusion in a plate.
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Eventually, a last perspective lies in using full-field (digital image correlation) or locally
highly dense (optic fibers) measurements to perform model updating. In such a context, not
all the available data can be processed at once, but the updated model may be progressively
enriched to integrate data and refine the parameter space only where needed, whether using
model selection or mesh adaptation techniques. Coupling the automated model updating al-
gorithm with mesh adaptation and model selection techniques is a promising idea, that will
require dedicated efforts in a long-term perspective of this work.





Chapter3
Optimal Sensor Placement dedicated to mCRE-based

model updating
Unified framework for enhanced structural monitoring

In Structural Health Monitoring (SHM) applications, the data obtained from sensors embedded on large
civil engineering structures can valuably be post-processed for digital twin applications. However, as the
available data is often spatially sparse and noisy, the identification problem becomes challenging. If the
modified Constitutive Relation Error framework has shown to be an interesting alternative to classical
model updating approaches in the sense that it is highly robust to measurement noise, the data spar-
sity problem can only be addressed through optimal sensor placement (OSP). In this chapter, after a
brief review of classical OSP techniques for SHM with an illustration on a 1D academic example, a new
mCRE-based sensor placement technique is proposed from the definition of a modified Fisher Information
Matrix. If this new strategy suffers from the well-known calibration problems of the mCRE, a proof of
concept involving an earthquake engineering inspired case study, where accelerometers are positioned on
a two-story frame structure subjected to random ground motion, permits to illustrate the soundness and
efficiency of the proposed methodology compared to other classical OSP techniques.

The work presented in this chapter has been the subject of the following contribution:

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2023d]. “Merging experimental design and structural
identification around the concept of modified Constitutive Relation Error in low-frequency dynamics
for enhanced structural monitoring”. Mechanical Systems and Signal Processing (under review) - available
in hal (03878634)
Note from the author: the reading of this chapter is not mandatory for understanding the content of
the next chapters. The reader interested in data assimilation problems is invited to directly go to
Chapter 4.
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3.1 Introduction

Structural HealthMonitoring (SHM) aims to improve the diagnosis of structures in operational
conditions in order to prevent potential structural failures. The automated techniques that have
been developed in the last four decades, which directly exploit measured data, make it possible
to assist and reinforce the health monitoring inspection of structures in order to permit a safe
decision-making process. SHM has been particularly studied in the context of localizing, quan-
tifying, and tracking structural damage from ambient dynamic datasets. Throughout the last
decades, a broad panel of damage detection methods has been proposed [J. Brownjohn 2007;
Gomes et al. 2019; Chatzi et al. 2020] - only to cite a few of them. These techniques all have in
common the aim of updating numerical models, and when performing model updating from
(possibly spatially sparse) datasets, several difficulties have been identified [Tarantola 2005;
Friswell 2007]:

(i) Model bias due to the fact that the chosen class of structural models does not contain the
actual behavior of the structure;

(ii) Measurement noise in the test data that implies the addition of a priori information for
regularization purposes;

(iii) Incomplete observability of the structure due to the limited budget and technologies of
available sensing devices, leading to local and incomplete datasets;

(iv) Incomplete number of contributing modes due to limited bandwidth in the input and
dynamical response.

As difficulties (i) and (iv) are already addressed via the mCRE-based model updating
framework in the previous chapters, we will mainly focus on difficulty (iii) herein as one shall
imagine how inappropriate experimental designs can lead to inaccurate identification results.

Thewill to exploit at best the information provided by a fewamount of sensors lead to the de-
velopment of optimal sensor placement (OSP) techniques to guarantee the relevance of sensor
locations for various applications such as modal analysis, structural identification, or damage
detection. Indeed, the quality of damage diagnosis from structural vibrations critically depends
on the sensor layout, in particular when a small number of sensors is used for large structures
under unknown or random excitation. It is especially the case of large-scale civil structures
such as bridges or buildings that cannot be fully instrumented in practice. As part of the exper-
imental design, OSP is a challenging problem. Indeed, as sensors are not properly positioned at
this stage, actual measurements are not available. The performance of OSP algorithms is thus
conditioned by the (assumed good) predictive behavior of the involved numerical models that
allow to generate simulated data. Besides, it is also an expensive task from the computational
viewpoint due to the numerous calls to data generation simulations. The question of sensor
placement is not new [Bensoussan 1972; Yu and Seinfled 1973] and has been massively studied
in the last three decades for SHM applications [Yi and H.-N. Li 2012; Mallardo and Aliabadi
2013; Ostachowicz et al. 2019; Barthorpe and Worden 2020] with the introduction of a wide
variety of OSP criteria and optimization algorithms.

In this chapter, after having reviewed the most popular sensor placement techniques in the
field of SHM, with an application on a 1D multi-DoF spring-mass chain toy example, we will
discuss the possibility to integrate the mCRE functional within an OSP strategy. To do so, we
will exploit the close links of the latter with Bayesian inference and we will derive the well-
known concept of Information Entropy to propose OSP that are dedicated to optimal mCRE-
based identification.

3.2 Overview of OSP techniques for SHM

In this section, the most common and popular sensor placement techniques are briefly pre-
sented. The interested reader is invited to find complementary explanations in the following
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review papers [Yi and H.-N. Li 2012; Mallardo and Aliabadi 2013; Ostachowicz et al. 2019;
Barthorpe and Worden 2020].

In most SHM applications, measurements are discrete kinematic quantities (displacement,
strain, acceleration) that directly derive from the mechanical state that one tries to predict with
a modelM(θ, e) ∈ X . The observation operator H : X 7→ Y thus allows to explicitly compare
predictions with the available measurements. Classically, the eponymous observation equation
reads [Kalman 1960; Kirkegaard and Brincker 1994; Udwadia 1994]:

y = H(M(θ, e)) + v (3.1)

where v is an additive noise assumed to be Gaussian of covariance matrix Σy allowing to take
into account measurement noise and model discrepancies. In what follows attention is paid to
the best choice of sensors locations in order to obtain the best identification of θ̂. The problem
is thus to find the best projector Ĥ that minimizes the covariance on the parameter estimate P θ.
In the following, the optimal discretized observer operator Π̂ will be sought.

In SHM and structural dynamics applications, OSP problems raised formodal identification
purposes, as it has been well-known historitically that damage occurence is related to eigenfre-
quencies loss and mode shapes changes [Cawley and Adams 1979]. It is thus not a surprise to
observe that former works have addressed the question of OSP whether for enhanced modal
analysis or directly for better system identification. However, the tools that are invested in these
approaches are (for the largest part) all related to the information theory, that is presented be-
low.

3.2.1 Information theory, a well suited framework for OSP
Even if the mathematical developments dealing with the information theory date back to the
1920s [Fisher 1925], [Shah andUdwadia 1978] is probably one of the first papers devoted toOSP
for parameter estimation of structures subjected to earthquake loading conditions. They exhibit
a mathematical expression of the OSP (for a given amount of sensors Ns) that has been after
reinvested in many other works [Kammer 1991; Kirkegaard and Brincker 1994; Heredia-Zavoni
and Esteva 1998]:

Π̂ = arg min
Π

[
P θ , E

((
θ? − θ̂(Π, y)

)(
θ? − θ̂(Π, y)

)T)]
(3.2)

where θ? and θ̂ refer to the exact and estimated parameter sets while E (�) denotes the math-
ematical expectation. Note that, because models are numerically discretized (e.g. in the finite
element sense), then there is no reason to look for the optimalNs sensors locations in a continu-
ous space. Each sensor position will thus be optimized among a "grid" of allNd possible sensor
locations. Doing so, the OSP problem becomes a combinatorial optimization problem, that is
well-known for being exploratory and computationally expensive: if one intends to naively look
for a global minimum,

(
Nd
Ns

)
tests are required!

Remark 3.1. The implicit dependency into measurements of the optimal sensor placement
is explicitly shown in (3.2) to recall that the OSP is strongly relying on the way data are
simulated and sensitive to the considered sensing technology.

If the prediction model is considered as unbiaised, then the Cramér-Rao bound theorem
applies. It postulates that the variance of any unbiased estimator is bounded by the inverse of
the so-called Fisher Information Matrix (FIM):

E
((

θ? − θ̂
)(

θ? − θ̂
)T)

≥ Q−1 with Q =

∫
Y

∂Π(M(θ, e))

∂θ

∣∣∣∣
θ̂

Σ−1
y

∂Π(M(θ, e))

∂θ

∣∣∣∣T
θ̂

(3.3)

By definition, the FIM is strongly related to the sensitivity of predictions with respect to the
parameters. It is a relevant mathematical entity on which the sensor selection can rely as it is a
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way of measuring the amount of information carried by a given sensor configuration. Indeed,
minimizing the covariance matrix P θ thus corresponds to maximizing the FIM, in the sense of
a certain measure. The latter is often chosen according to the FIM invariants, and therefore its
eigenvalues. Traditional optimality criteria are thus based on:

. the minimization of the condition number of the FIM κ(Q) - also referred as E-optimality.
The condition number is related to the rank of the FIMmatrix and to the difficulty in per-
forming its inversion. With this approach, no sensor is redundant with another [Reynier
and Abou-kandil 1999].

. the maximization of the trace of the FIM tr (Q) - also referred as A-optimality. The trace
is a measure of the global sensitivity of data with respect to the parameters and hence
has to be maximized. It has been the optimality criterion used in the pioneering works
of Udwadia and co-workers [Shah and Udwadia 1978; Udwadia 1994] and reinvested by
[Heredia-Zavoni and Esteva 1998; Heredia-Zavoni et al. 1999] to perform OSP for build-
ings submitted to ground motion from frequency-domain measurements. A-optimality
criterion is now combined to sensor sparsity constraints [Nagata et al. 2021].

. the maximization of the FIM determinant det(Q) - also referred as D-optimality. The in-
verse of the determinant is a measure of the overall uncertainty on the estimated parame-
ters, which thus needs to be minimized. D-optimality techniques have been widely used
as a basis for OSP. For instance, one can mention the Effective Independence method (EI)
developed by [Kammer 1991; L. Yao et al. 1993; F. Hemez and Farhat 1994] where atten-
tion is paid to the sensitivy of measurements with respect to the modeshape matrix. This
measure has also been shown to be strongly correlated to the Bayesian statistical frame-
work in [Beck and Katafygiotis 1998; Katafygiotis and Beck 1998] and to the concept of
information entropy introduced by [Papadimitriou et al. 2000].

Remark 3.2. The FIM can also be derived from the probabilistic viewpoint as the variance of
the score, i.e. the gradient of the log-likelihood function π(y |θ,M):

Q = E

((
∂ log π(y |θ,M)

∂θ

)(
∂ log π(y |θ,M)

∂θ

)T ∣∣∣∣∣ θ
)

(3.4)

OSP for modal analysis: Mode Shape Difference (MSD), Effective Independence (EI) and
Modal Kinetic Energy (MKE)

The Effective Independence method (EI) was introduced by Kammer [Kammer 1991] and can
be considered as a modal-based OSP technique. Indeed, it exploits the Fisher Information Ma-
trix with the modeshape matrix as quantity of interest due to the fact that the variations of the
latter can be directly related to damage. The starting point of this approach is the Mode Shape
Difference method (MSD) in which (3.1) is rewritten using a modal basis Φ and modal coor-
dinates q.

y = ΠΦq + v = Φsq + v (3.5)
whereΦs is the modal basis projected on sensors locations. The key idea is then to consider the
modal coordinates of eigenmodes to be the parameters previously designated by θ, which leads
in a straighforward manner to the following FIM:

Q =

∫
Y
ΦsΣ

−1
y Φs (3.6)

If MSD only considers sensors as relevant if they are sensitive to modeshape changes (when
considering several damage scenarios) [Shi et al. 2000; Blachowski 2019], the EImethod extends
this concept with the independence distribution vector: the contributions of each sensor to each
mode of Φ are quantified within the matrix

E = Φs

[
ΦT
sΦs

]−1
ΦT
s (3.7)
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which can be interpreted as an orthogonal projector whose rank is equal to the number of tar-
getedmodes. E can thus be full rank if themode partitions resulting from a given SP are linearly
independent, which is the objective of EI. The independence distribution vector corresponds to
the diagonal terms of E. They allow to quantify the potential contribution of sensors to modal
analysis. The methodology of EI is given in Alg. 3.1 (for the case of a single damage scenario).
Its structure is similar to a Backward Sequential Sensor Placement algorithm, which will be
discussed in the following.

The EI method has been widely exploited in the literature: the work has been quickly ex-
tended to take into account modeling errors as well as measurement noise effects [Kammer
1992a; Kammer 1992b]. A Genetic Algorithm (GA) based approach has also been proposed in
[L. Yao et al. 1993] and the method has been able to successfully position 3D accelerometers
for modal vibration tests [Kammer and Tinker 2004]. More recently, it has been coupled with
topology optimization-inspired tools [Blachowski et al. 2020]. Besides, EI has been adapted to
the particular case of damage detection based on strain measurements in [F. Hemez and Farhat
1994] by considering a strain energy prediction matrixE. As a more specific tool, it has outper-
formed EI for damage detection problems by providing more relevant sensor placements.

Finally, it is also worth mentioning in the Modal Kinetic Energy (MKE) method in parallel
of MSD and EI as it intends to locate sensors at points of maximum kinetic energy for themodes
of interest [Salama et al. 1987]. The major advantage of MKE compared to EI is that favorable
locations are promoted in areas where the SNR should be important, which limits the spurious
effects of measurement noise in the identification process. It can be valuably exploited for dam-
age detection [Bach et al. 2023; Le et al. 2023]. [D. S. Li et al. 2007] studied the mathematical
connections between MKE and EI and compared them for SHM applications, showing EI can
be seen as an iterated version of MKE.

Algorithm 3.1: Effective Independence Sensor Placement Algorithm
Initialization: Grid of all Nd possible sensors locations, targeted number of sensors Ns,

eigenmodes matrix Φ

while more than Ns sensors are retained do
Compute the current projectorΠ and the modal basis partitioned to sensors Φs = ΠΦ

Compute the EI vector ED = diag
(
Φs

[
ΦT
s Φs

]−1
ΦT
s

)
Rank ED terms and eliminate the sensor associated to mini(ED,i)

end
Result: Optimal placement of Ns sensors with respect to the eigenmodes Φ

Information Entropy (IE)

Contrary to MSD, EI and MKE that are based on the sensitivity of modal features, one can for-
mulate the OSP problem from the Bayesian viewpoint. Indeed, the posterior pdf π(θ|y) repre-
sents the uncertainty on parameters θ knowing the information stored in measurements y . The
concept of Information Entropy (IE) has been introduced to provide a unique scalar measure of
this uncertainty [Papadimitriou et al. 2000; Papadimitriou 2004]. It benefits from the Bayesian
statistical framework proposed by [Beck and Katafygiotis 1998; Katafygiotis and Beck 1998] as
it properly handles measurement noise and modeling error features. The IE, denoted h(Π, y),
reads:

h(Π, y) = E
θ

(− log π(θ|y)) (3.8)

OSP is then achieved byminimizing the changes in the IE, that depends on the available data and
on the sensor configuration Π. A rigorous mathematical description of the IE concept for OSP
is given in [Papadimitriou et al. 2000; Papadimitriou 2004] for the case of "small" and "large"
uncertainties on the parameters to estimate. An important result that has been shown is the
asymptotic formulae for a large amount of available data that relates the IE to the determinant
of the FIM.
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For small uncertainties on θ, one can legitimately choose a relevant value θ0 that minimizes
a classical weighted least-square cost-function defined as

JWLS(θ) =

N∑
i=1

‖yi −ΠMi(θ)‖2Σ−1
w

(3.9)

where N is the number of measurement samples (in the time or frequency domain) and the i
index refers to the ith sample with respect to the discretized time or frequency domain. When
NNs →∞, it is shown that:

h(Π, y) ≈ H(Π, y; θ0) =
1

2
Nθ log 2π − 1

2
logdet(Q(Π, θ0, y))

with Q(Π, θ0, y) = NNs∇θ∇Tθ (JWLS(θ)) ≈
N∑
i=1

‖Π∇θMi(θ)‖2(ΠΣyΠT )−1

(3.10)

Using (3.10), one can thus look for Ns optimal sensors locations Π̂ solving:

Π̂ = arg max
Π

[logdet(Q(Π, θ0, y))] (3.11)

It is important to notice that according to the values of the sought parameters, for complex
problems and geometries (considering for example the case of complex damageable structures,
onemay not straightforwardly guesswhere damagewill appear first), OSP resultsmay strongly
differ fromone parameter value to the other. In this case, referred to as largemodel uncertainties
in [Papadimitriou et al. 2000], a parameter estimate θ0 cannot be postulated anymore. This
implies that the OSP will be sought as:

Π̂ = arg max
Π

[∫
Θ

logdet(Q(Π, θ, y))π0(θ)dθ

]
(3.12)

The parameter space is thus explored (for example with Monte-Carlo sampling) and the con-
tributions of the FIM computed according to each sample are averaged with respect to the prior
pdf on parameters π0(θ).

One of the strong assets of the IE is that it allows to compare sensor configurations of vari-
ous size [Yuen et al. 2001], as one can guess that adding sensors is always beneficial, or at least
equivalent in terms of carried information. In [Papadimitriou 2004], mathematical classifica-
tion rules are given on the upper and lower bounds of the IE as a function of Ns allowing to
perform sequential placements (see Alg. 3.2) that are almost as efficient as genetic algorithms,
but obtained with much less computational effort.

There have been much use of the IE for OSP in the last two decades. Without being exhaus-
tive, let us mention some contributions: in [Papadimitriou and Lombaert 2012], the functional
has been extended to take into account the effect of sensors spatial correlation in Σw. Simi-
larly, a penalty term to enforce the sparsity of the sensor configuration has been added to the
IE [Cantero-Chinchilla et al. 2020]. The IE was also used to design optimal characteristics of
the excitation e for optimal identification [Metallidis et al. 2003]. In [Papadimitriou 2005; Yang
2022], a multi-objective optimization problem was introduced to design an OSP dedicated to a
class ofmodels. IEwas reinvested for statistical seismic source inversion in [Long et al. 2015]. IE
was also applied to model identification of periodic structures endowed with bolted joints [Yin
et al. 2017] and to optimal crack identification on plates from strain measurements in [Argyris
et al. 2018]. Very recently, the case of multiple damage scenario with modal shape expansion
was considered in [Ercan and Papadimitriou 2021] to handle virtual sensing under output-only
vibration measurements.

Eventually, as the next Chapter is dedicated to data assimilation techniques and Kalman Fil-
tering, it is worth mentioning apart [Ercan et al. 2023] and [Taher et al. 2023], that both perform
OSP within an augmented Kalman filtering framework. The information gain, i.e. the criterion
that allows to position sensors, is oriented towards input-state estimation, which enables to per-
form state reconstruction and monitoring from incomplete datasets.
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3.2.2 Optimization methods
Thewide variety of OSP strategies do not only differ by the quantity of interest that is optimized,
but also by the algorithmic structure that performs sensor placement. In this paragraph, wewill
briefly review the classical algorithms that are currently used in the literature to perform (sub-)
optimal sensor placement in reasonable CPU times, without being exhaustive for the sake of
conciseness. We will particularly focus on IE-based OSP applications because these techniques
will be illustrated in the following application Section 3.2.3.

Genetic algorithms & metaheuristic algorithms

GAs are algorithmic structures for solving both constrained and unconstrained optimization
problems based on a natural selection process that mimics biological evolution. GAs are very
popular to solve OSP problems as they are most suitable for solving discrete optimization prob-
lems and providing near-optimal solutions of global optimization problems [Goldberg 2002].
GAs are now well known by the scientific community and dedicated toolboxes are available
in many numerical environments, for example the MATLAB© global optimization toolbox. [L.
Yao et al. 1993] is presented as one of the earliest papers to use GAs to solve EI-based OSP.
[Papadimitriou et al. 2000] initially used GAs to solve the IE-based sensor placement problem,
using the determinant of the FIM as optimization criterion. The efficiency of GAswith respect to
sequential sensor placement strategies has also been illustrated in [Papadimitriou 2004], with
emphasis also put on its expensive CPU cost. Finally, let us mention [Zhou et al. 2017] that
gathered four OSP techniques within a generic sensor placement framework driven by a GA to
facilitate multi-criteria-based OSP.

Neural Networks (NN) are also valuable tools for sensor placement. For instance, [Worden
and Burrows 2001] described an approach to fault detection and classification using NN and
simulated annealing (SA). A comparison between SA and GA for OSP was recently done in
[Nasr et al. 2022]. Among the numerous recent contributions involving NN, it is worth men-
tioning [Azarbayejani et al. 2008] that trains a NN to predict damage location by observing the
damage feature values at all possible sensor locations before maximizing a damage detection
probability for a restricted sensor budget, and [Ručevskis et al. 2022] that uses NN to optimally
position strain gauges for modal analysis on composite structures.

Of course, the use of metaheuristic/exploratory optimization algorithms does not restrict to
GAs and NNs. For example, one can refer to OSP techniques inspired from topological opti-
mization [Bruggi and Mariani 2013; Blachowski et al. 2020], or statistical pattern recognition
classifiers [Figueiredo and J. Brownjohn 2022].

Sequential sensor placement techniques

Sequential sensor placement techniques, whether they are Forward (FSSP) or Backward (BSSP)
do only provide suboptimal sensors configurations, but they are much less computationally de-
manding than GAs. The location of the Ns sensors are determined sequentially by placing/re-
moving one sensor at a time. FSSP and BSSP methods proceed with a very similar algorithmic
structure, as shown from the IE-oriented algorithms that are given below. Alg. 3.2 and 3.3 are
the pseudo-codes for IE-based FSSP and BSSP while Alg. 3.4 is a direct FSSP extension to the
case of highly uncertain parameters. This last algorithm allows to appreciate the additional
CPU cost required to take multiple scenarios into account, although it remains beneficial and
necessary when considering large parameter uncertainties.

As mentioned earlier, the EI method lies on a BSSP strategy [Kammer 1991], but FSSP and
BSSP has really been emphasized in the literature with the IE concept because of its intrinsic
mathematical properties [Papadimitriou 2004; Papadimitriou and Lombaert 2012]. In fact, it
has been shown that FSSP and BSSP provide relevant (yet suboptimal) OSP on many test cases
with less computational effort than GAs. For SHM problems where a few amount of sensors
must be positioned, it is recommended to use FSSP instead of BSSP or GA. This point will be
illustrated in the forthcoming application.

https://www.mathworks.com/products/global-optimization.html
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Algorithm 3.2: IE-based Forward Sequential Sensor Placement (FSSP)
Initialization: Grid of all Nd possible sensors locations, targeted number of sensors Ns, set of

simulated measurements, n = 0 number of selected sensors
while n < Ns do

Consider all possible combinations by adding one new sensor to the previous n: {Πj}j∈J1;Nd−nK
for j ∈ J1;Nd − nK do

Evaluate the information entropy IEj of the sensor configuration given byΠj

end
Identify the sensor configuration J = arg minj∈J1;Nd−nK IEj
Store the last sensor of configuration J as the (n+ 1)th optimal position
Go to the next iteration: n→ n+ 1

end

Algorithm 3.3: IE-based Backward Sequential Sensor Placement (BSSP)
Initialization: Grid of all Nd possible sensors locations, targeted number of sensors Ns, set of

simulated measurements, n = Nd number of selected sensors
while n ≥ Ns do

Consider all the combinations from the n sensors by removing one of them {Πj}j∈J1;nK
for j ∈ J1;nK do

Evaluate the information entropy IEj of the sensor configuration given byΠj

end
Identify the sensor configuration J = arg minj∈J1;nK IEj
Store the last sensor of configuration J as the (Nd − n)th optimal position
Go to the next iteration: n→ n− 1

end

Algorithm 3.4: IE-based FSSP for highly uncertain parameters
Initialization: Grid of all Nd possible sensors locations, targeted number of sensors Ns, Nc

number of parameter "scenarios", n = 0 number of selected sensors
Sample the parameter space with Nc samples taken randomly (MC, LHS, etc): {θc}, c ∈ J1;NcK
Simulate and Nc measurement sets associated to these parameters
while n < Ns do

Consider all possible combinations by adding one new sensor to the previous n: {Πj}j∈J1;Nd−nK
for j ∈ J1;Nd − nK do

for c ∈ J1;NcK do
Evaluate the information entropy IEj,c of the sensor configuration given by Πj

for parameter θc (of occurence probability π0(θc)) and associated measurements
end

end
Identify the sensor configuration J = arg minj∈J1;Nd−nK

∑Nc

c=1 IEj,cπ(θc)

Store the last sensor of configuration J as the nth optimal position
Go to the next iteration: n→ n+ 1

end

3.2.3 First illustration of OSP in structural dynamics on a toy example

In this section, the main OSP concepts previously mentioned are illustrated in an application to
a 1D academic example. Let us consider a 40-DoF spring-mass chain-like model with locked-
free boundary conditions as shown in Fig. 3.1. Although not represented, all eigenmodes are
uniformly damped at 5%. The last mass is subjected to a random dynamical input F (t). If the
masses {mi}40

i=1 are considered to be identical and well known, the spring stiffness distribution
{ki}40

i=1 is uncertain, which motivates the positioning at best of sensors to identify misfits or
possible stiffness changes. For a uniform distribution of {ki(θ)}, the response of the structure
to a random input F (t) is given in the frequency domain in Fig. 3.1, showing that the 5 first
eigenmodes are significantly involved in the structural response.
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The main objective of this study is to illustrate and compare the effectiveness of OSP algo-
rithms (sequential andGAs) for bothmodal analysis and structural identification using a simple
system that allows to understand OSP results with physical-meaningful analysis. Another un-
derlying objective is also to implement a library of OSP strategies that can be exploited in future
experimental campaigns at the CEA/TAMARIS facility as an objective decision helping toolbox.

Figure 3.1: 40-DoF spring-mass chain-like model and associated frequency-domain response to a
random input. Although not represented, 5% uniform modal damping is present.

OSP for modal identification

Let us first consider the case where the objective of OSP is modal identification. Hence, the FIM
expression corresponds to the one in (3.6). In that case, the OSP in the sense of its determinant
performed using IE or EI will exactly lead to the same results. A-optimality OSP has also been
implemented following [Udwadia 1994]. Whatever the chosen criterion, FSSP, BSSP or GA op-
timization are implemented too. It thus leads to 6 sensor placement strategies whose results are
presented in Fig. 3.2 and 3.3.

Each subfigure (a,b,c) respectively presents the OSP obtainedwith FSSP, BSSP andGA from
1 to 40 sensors. Such figures must be read line per line from top to bottom, with colored squares
corresponding to the position of sensors. For example in Fig. 3.2a, the first sensor that has been
placed is at the right end of the system, the second at the DoF just nearby on the left, and so
on. One can thus properly observe how FSSP and BSSP algorithms behave with iterations. Note
that the results from GAs are much different because the OSP at budget Ns does not condition
the OSP at budget Ns + 1.

Several observations can be made from these results :

. The optimality criteria (trace or determinant) have a non-neglictible impact on the first
positioned sensors, but similar patterns are recovered. It can be noticed that the placement
of the first sensors in each case coarsely corresponds to the antinodes of the modes stored
in Φ.

. If FSSP and BSSP do not provide the sameOSP for the very first sensors, results are almost
equivalent after having placed a very few sensors, as illustrated by the (d)-subfigures. The
results obtained by GA are very similar as well.

. The size of the truncated modal basis Φ specified to the FIM conditions the sensor place-
ment, as one can see in Fig. 3.4 where IE-based OSP is obtained for reduced basisΦmade
of respectively 5 and 8 modes.

. The amount of information carried by the first sensors is more important because not
redundant: when as many sensors as modes in Φ have been positioned, the amount of

www-tamaris.cea.fr
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(a) OSP by FSSP. (b) OSP by BSSP.

(c) OSP by GA. (d) Comparison of algorithms wrt tr (Q).

Figure 3.2: A-optimal sensor placement results (maximization of tr (Q)) for modal analysis of the first
5 eigenmodes. At each line of subfigures a to c (given sensor budget), sensors are located with white

squares.

(a) OSP by FSSP. (b) OSP by BSSP.

(c) OSP by GA. (d) Comparison of algorithms wrt det(Q).

Figure 3.3: D-optimal sensor placement results (maximization of det(Q)) for modal analysis of the first
5 eigenmodes. At each line of subfigures a to c (given sensor budget), sensors are located with white

squares.

information carried by new sensors is less important as it only "conforts" the knowledge
carried by the sensors that are already positioned. This is particularly visible with the
sudden slope change in Fig. 3.3d.

Remark 3.3. For the sake of reproducibility , it is important to notice that the FIM is singular
if there are less sensors than modes in Φ, which is totally normal because there are more
modes to identify than sensors. It can create numerical problems when optimizing det(Q)
as the latter is null for all sensor configurations in that context. Following [Papadimitriou
and Lombaert 2012], it has been decided tomaximize the product of all non-zero eigenvalues
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(a) OSP by FSSP with 4 modes inΦ. (b) OSP by FSSP with 8 modes inΦ.

Figure 3.4: Effect of the size of Φ to D-optimal sensor placement for modal analysis. At each line (given
sensor budget), sensors are located with white squares.

of the FIM instead of the full determinant.

OSP for structural identification (with small uncertainties)

Let us now consider the case where the quantity of interest for OSP is directly the set of stiffness
properties, and let us assume that they are well known a priori (small uncertainties). The FIM
can thus be computed as specified in (3.10) with the state x depending on the stiffness distri-
bution {ki}40

i=1. Because it is obvious that 40 sensors are mandatory to identify 40 parameters
accurately, let us gather neighboring springs in subdomains so as to reduce the size of the pa-
rameter space. The A-optimal and D-optimal sensor placement results with 5 subdomains are
proposed in Fig. 3.5 and 3.6, respectively.

First, the comparison of Fig. 3.5 and 3.6 reveals the soundness of OSP problems driven by
the determinant of the FIM rather than its trace. If in both cases, one can recover that sensors
are gathered at the subdomains boundaries, it appears that it takes at least 20 sensors with
FSSP/BSSP algorithms to position sensors around the two first subdomains when maximizing
the trace: A-optimal sensor placements are thus less relevant because of the heterogeneous
identification sensitivity of parameters.

Similarly to modal analysis OSP, one can observe that after having positioned 5 sensors, the
information carried by new sensors is lower as redundant - see Fig. 3.6d.

To show how the parametrization of the inverse problem to solve infers on the sensor place-
ment results, Fig. 3.7 presents D-optimal sensor placement results for 10 subdomains. Here
again, both FSSP and BSSP provide similar OSP, with the 10 first sensors almost located at the
boundary between subdomains.

Contrary to the modal analysis case, even if computations are not expensive at all, one can
afford a fair comparison of CPU times. In Tab. 3.1 are presented the necessary CPU times to
optimally position a given budget of sensors as a function of the chosen OSP algorithm. As pre-
viously mentioned in Section 3.2.2, FSSP should be preferred to BSSPwhen positioning a few
number of sensors. Although GA appears to be a less effective option, the difference in terms
of CPU time with sequential algorithms is much less marked for real industrial applications. It
is also important to notice that the tuning of the internal parameters of the algorithm conditions
its efficiency1.

Sensor budget 5 10 20 30
OSP Algorithm Required CPU time [s]

FSSP 0.0243 0.0467 0.0681 0.0746
BSSP 0.0734 0.0709 0.0612 0.0435
GA 0.6395 1.7274 1.6210 1.9497

Table 3.1: CPU time required by FSSP, BSSP and GA to position sensors for structural identification
assuming a 5 subdomain parametrization.

1The MATLAB© global optimization toolbox in-core GA function gawas used in the present study.

https://www.mathworks.com/products/global-optimization.html
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(a) OSP by FSSP. (b) OSP by BSSP.

(c) OSP by GA. (d) Comparison of algorithms wrt tr (Q).

Figure 3.5: A-optimal OSP results for structural identification of 5 subdomains.

(a) OSP by FSSP. (b) OSP by BSSP.

(c) OSP by GA. (d) Comparison of algorithms wrt det(Q).

Figure 3.6: D-optimal sensor placement results for structural identification of 5 subdomains.

Eventually, the non-uniqueness (and ill-posedness) nature of the sensor placement problem
is emphasized in Fig. 3.8 where one can remark there exist many optimal couples of positions
for the two first sensors.

Conclusions from the application of classical OSP techniques

In this section, we illustrated classical OSP techniques on an academic example. It reveals to
be a relevant gateway to introduce the main features of OSP, particularly the dependency into
the parametrization of the inverse problem that is targeted and the ill-posedness nature of the
OSP problem. The soundness of minimizing the determinant of the FIM instead of its trace is
also highlighted when performing OSP for structural identification. Unfortunately, because the
structural parameters sensitivity is too homogeneous in this 1D example, we have not been able
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(a) OSP by FSSP. (b) OSP by BSSP.

(c) OSP by GA. (d) Comparison of algorithms wrt det(Q).

Figure 3.7: D-optimal sensor placement results (maximization of det(Q)) for structural identification of
10 subdomains.

Figure 3.8: Illustration of the non-uniqueness and ill-posedness of the optimal placement of 2 sensors in
the sense of det(Q) for structural identification.

to emphasize the case of large uncertainties mentioned in Section 3.2.1.

3.3 A mCRE-oriented OSP strategy

For structures having heterogeneous stiffness sensitivity to model updating, parameter esti-
mates may be quite far from reality when the model updating process is performed using a
small amount of sensors, as illustrated in Chapter 2. This is the case for several SHM applica-
tions considering one cannot always afford for dense instrumentation on large scale structures.
If OSP strategies have been proposed for (standard) structural identification and modal anal-
ysis, there is no proper sensor placement strategy dedicated to mCRE-based model updating
in the literature whereas it has shown to be an efficient alternative to standard approaches in
Chapter 1. In the following, a modified FIM is introduced by integrating the mCRE within the
information entropy. This novel approach is legitimate in light of the relationship between the
mCRE (though deterministic) and the Bayesian inference framework detailed in Chapter 1.
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3.3.1 mCRE-based OSP: modified Fisher Information Matrix

The key idea of this novel OSP technique is to use the mechanical fields {Uω}ω∈Dω computed
for mCRE needs (solution of system (1.20)) within the Information Entropy concept. Mathe-
matically, we thus define a modified Fisher Information MatrixQm such that:

Qm =
∑
ω∈Dω

(Π∇θUω)T (ΠΣyΠ
T )−1 (Π∇θUω) (3.13)

In other words, the modified FIM analyzes the sensitivity of the mCREmeasurement error part
with respect to the parameters to identify. The effect of the CRE is implicit in the computation
of {Uω}.

Similarly to IE-based OSP techniques, the determinant of the modified FIM is maximized to
position sensors (assuming the amount of data is large enough to reuse the asymptotic result
mentioned above).

If FSSP has been chosen as reference to test mCRE-based OSP (see Alg. 3.5), all the pre-
viously mentioned algorithms are applicable as only the FIM definition is changed. Besides,
the access to a semi-analytical expression of the gradient of Uω with respect to θ is a valuable
asset to perform OSP in reasonable CPU times: the modified FIMQm can thus be quickly com-
puted without any loss of accuracy. As a reminder, the computation of ∇θUω is a low-cost
post-processing operation once (1.20) has been solved (see Appendix B for the mathematical
developments).

Algorithm 3.5:mCRE-based FSSP algorithm
Initialization: Grid of all Nd possible sensors locations, targeted number of sensors Ns, number

of selected sensors n = 0, initial parameter guess θ0 ∈ Θ, set of simulated
measurements y (obtained with θ0), FE model including mesh and matrices
K,D,M , mCRE internal parameters (frequency bandwidth Dω , confidence into
measurements α, frequency weighting function z(ω), reduced basis ΦL

while n < Ns do
Consider all possible combinations by adding one new sensor: {Πj}j∈J1;Nd−nK
for j ∈ J1;Nd − nK do

Initialize the modified FIM Qm,j = 0
for ω ∈ Dω do

Get mechanical fields (Uω, Vω) solving the AX = b system (eq. 1.24)
Compute∇θUω (eq. 1.27)
Qm,j = Qm,j + (Πj∇θUω)

T
(ΠjΣyΠ

T
j )−1 (Πj∇θUω)

end
end
Identify the sensor configuration J = arg min

j∈J1;Nd−nK
{det (Qm,j)}

Store the last sensor of configuration J as the nth optimal position
Go to the next iteration: n→ n+ 1

end

Remark 3.4. Although it is written in [Papadimitriou and Lombaert 2012] that the FIM given
in (3.10) is obtained by asymptotical approximation of NyNs∇θ∇Tθ J (θ, y), one should not
think that it is possible to directly replace the FIM expression with the semi-analytical Hes-
sian matrix expression of the mCRE functional. Indeed, the analysis of the mathematical
proof in [Papadimitriou 2004] confirms that the FIM expression appears by simplifying the
second order derivative of logJLS(θ, y)with respect to θ, whereJLS is a classical least square
functional between data and model predictions. This does not apply for the mCRE, hence
the formulae lying on the gradient.
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3.4 Application in structural dynamics on a 3D example

3.4.1 Description of the problem
A realistic (yet academic) earthquake engineering application is considered herewith the frame
structure of Fig. 3.9 submitted to a 2D random ground acceleration. The problem consists in
positioning a set of accelerometers to identify at best the stiffness distribution of the structure.
To simulate damage scenarios, inasmuch as it is assumed that very few sensors are available, an
intuitive coarse stiffness parametrization of the stiffness is defined. Six subdomains are defined
{W10, W11, W20, W21, F10, F20}, one per wall and per slab. The updated stiffness model (1.14)
is thus made of Nθ = 6 parameters. The subdomains areas are clearly presented in Fig. 3.9.

In practice, this example is the 3D extension of the plane frame example presented in Ap-
pendix A.1. The model is made of shell elements instead of beam elements in Cast3M©, and
relative time acceleration measurements in both x and y directions are simulated using fast
Fourier transforms and the frequency transfer matrix of the direct dynamical problem formu-
lated in terms of relative displacement.

(a) Uniform sensor placement (blue dots). (b) Grid of possible accelerometer locations.

Figure 3.9: Frame structure - uniform default sensor placement and grid of possible locations for OSP.
Subdomains areas and denomination are also given.

The objective of this application is to assess the proposed sensor placement strategy for ef-
ficient mCRE-based identification. To restrain CPU times and to avoid sensors concentrations,
a grid on 48 potential sensor locations is defined: a triaxial accelerometer can be positioned at
each orange circle of Fig. 3.9b.

Although several types of sensors could be positioned simultaneously, only accelerometers
are considered herein because they are popular, reliable on a large frequency bandwidth, mini-
mally invasive and easily deployable for SHM and earthquake engineering applications. In or-
der to be realistic regarding what could be achieved in practical shaking table tests, a restricted
budget of Ns = 24 data acquisition channels is fixed. It allows to uniformly spread enough
sensors to reproduce typical sensor placement configurations from earthquake engineering ap-
plications. Besides, asNθ = 6 parameters are supposed to be updated, it is theoretically enough
to get proper identification results and information redundancy in measurements.

3.4.2 OSP benchmark
In order to assess the relevance of mCRE-based OSP with respect to other strategies, a numer-
ical benchmark has been conducted to compare sensor placements oriented towards different
quantities of interest. An overview of the tested strategies is presented in Tab. 3.2.
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Description and desingation Optimality Accelerometer
criterion type

Reference (dense) OSP (Ns = 48) Ref - -
Uniform default OSP Def - Triaxial

OSP for modal analysis of the MA1
log (det Q(Φ))

Uniaxial
10 first structural eigenmodes MA2 Triaxial

OSP for standard SI1
log (det Q(X))

Uniaxial
structural identification SI2 Triaxial

mCRE-based OSP mCRE1
log (det Qm)

Uniaxial
mCRE2 Triaxial

mCRE-based OSP for mCRE-MS1
∫

Θ
log (det Qm)π0(θ)dθ

Uniaxial
uncertain damage scenarios mCRE-MS2 Triaxial

Table 3.2: OSP benchmark

OSP algorithms for modal analysis (MA# cases), structural identification (SI# cases) and
mCRE-based model updating are compared, for uniaxial and triaxial accelerometers. The case
of multiple scenarios is also considered for mCRE-based OSP (mCRE-MS# cases). A FSSP op-
timization algorithm is used in all cases to fairly compare sensor placement results between
methods. Among the proposed sensor placement strategies, it should be highlighted that:

. In the reference OSP, all the possible locations are covered with triaxial accelerometers.
The sensor configuration is thus spatially highly dense. This is not a realistic configu-
ration, neither an economous one, but it provides a reference case when comparing the
performance of OSPs in terms of model updating.

. In the uniform default case, 8 triaxial accelerometers are uniformly spread over the struc-
ture. This is typically what should be done naively without considering OSP algorithms.

. Optimal uniaxial and triaxial accelerometer placement are systematically compared. Po-
sitioning triaxial sensors is more practical from the experimental viewpoint and less com-
putationally demanding than uniaxial accelerometer placement because the number of
possible sensor configurations is reduced. However, forcing triaxial sensors implies the
addition of constraints to OSP strategies, which should thus lead to less performant re-
sults.

. The OSP strategies oriented towards modal analysis aim to identify at best the 10 first
structural eigenmodes. As a reminder, the associated Fisher Information Matrix reads:

Q(Φ) = (ΠΦ)T
(
ΠΣyΠ

T
)−1

(ΠΦ) (3.14)

which is independent of the nominal stiffness parameter values θ0.
. The OSP for structural identification directly deals with the identification (in a least-
square sense) of the stiffness parameters. In that case, the FIM is directly computed
from the sensitivity of the frequency-domain counterpart of the mechanical state U with
respect to the parameter set θ:

Q(U) =
∑
ω∈Dω

(Π∇θU(θ, ω))H
(
ΠΣyΠ

T
)−1

(Π∇θU(θ, ω)) (3.15)

and for the considered stiffness parametrization and dynamical equilibrium (1.12), the
gradient formulation is analytical:

∇θU(θ, ω) = −Z(θ, ω)−H
∂K

∂θ
Z(θ, ω)−1

[
ω2MΞUd,ω

]
(3.16)

with Z(θ, ω) the dynamical impedance of the structure at angular frequency ω. For le-
gitimate comparisons with mCRE-based OSP, the frequency range that is considered to
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compute Q(U) is also Dω. Note that the FIM could also be obtained with time-domain
measurements, but the sensitivity matrix would be computed by solving a full-time do-
main problem [Papadimitriou and Lombaert 2012].

Contrary to the MA cases, the optimal sensor locations depend on the location and type
of excitation that is used. Also, the matrix Q(U) may be non-singular even for only one
positioned sensor since the structural response obtained from themodelmay store enough
information from all contributing eigenmodes in order to estimate the parameter set θ.

. Regarding the setting of themCRE, as the first fivemodes of the structure are below 20 Hz,
a frequency bandwidth Dω = [1 Hz; 30 Hz] with ∆f = 0.1 Hz has been chosen for the
computation of all forthcoming results. The call to a reduced basis made of the first 10
eigenmodes (i.e., dim(span(ΦL)) = 10) of the frame allows to achieve fast and accurate
mCRE computations as it largely covers the frequency range of interest. The weighting
function z(ω) is computed using the H-CMIF. The value of α is hardly tunable as mea-
surements are not available at the experimental design stage2. Its effect will be analyzed
via calibration tests, and the tested values will be specified case by case for the sake of
reproducibility in the following.

. Because one also intends to provide sensor placements that are still efficient once damage
has occurred, the case of multiple scenarios mCRE-based optimal sensor placement has
been addressed. Following the subdomain decomposition shown in Fig. 3.9, the 6 param-
eters have been pseudo-randomly sampled using a Latin Hypercube algorithm (LHS) in
order to take into consideration 30 damage scenarios, assuming the parameter set follows a
multivariate uniform pdf on ([0.2; 1])Nθ . This is the less informative prior pdf in the sense
of the statistical maximum entropy. The generated set of samples is denoted ΘS . Each
θs ∈ ΘS is thus used to simulate a dataset ys, which will be processed to perform OSP.
The stiffness parametrization of each scenario is given in Fig. 3.10. The change on stiff-
ness parameters has significant effects on the frequency domain response of the structure
as one can observe in Fig. 3.11 where the normalized H-CMIF plot for each considered
damage configuration is given, because the frequency shift of the peaks shows how the
structural response varies from one scenario to the other.

Following the work initiated in [Papadimitriou et al. 2000] for the case of highly uncertain
parameters, the optimality criterion is thus approximated by:

∫
Θ

log
(
det (Qm(Π, θ, y))

)
π0(θ)dθ ≈ 1

#ΘS

∑
θs∈ΘS

log
(
det(Qm(Π, θs, ys(θs)))

)
(3.17)

leading to an optimal sensor placement that is dedicated to a wider range of damage con-
figurations. In practice, it is true that cases involving damage at the top of the structure are
highly unlikely, but the uncertainty on estimated parameters in such cases will naturally
discriminate them with regards to more sensitive and realistic damage configurations.

2This is also one of the reasons that motivated the proposal of a priori calibration rules in Chapter 1.
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Figure 3.10: Stiffness samples
ΘS to simulate multiple

damage scenarios.

Figure 3.11: Impact of damage configuration on the frequency
response of the structure. A wide variability of responses is

integrated into the OSP framework.

3.4.3 OSP results - first comments

Modal identification

The OSP results obtained for modal analysis using a truncated modal basis made of the first 10
modes of the frame are presented in Fig. 3.12. To confirm the soundness of the results, both
det(Q) and the H-CMIF obtained after having positioned accelerometers are plotted, with a
comparison to the H-CMIF obtained from the dense OSP configuration.

The amount of information carried by the first sensors is more important as it allows the
identification of one supplementary mode. When as many sensors as modes in Φ have been
positioned, the additional information carried by new sensors is less important as it only con-
forts the modal identification, making it more accurate. Due to the complexity of the structure,
no clear visual trend from the sensor position can be easily guessed, except that most sensors
are located on the floors. This is legitimate as floor eigenmodes are part of the 10 first ones of
the structure.

Figure 3.12: OSP of uniaxial and triaxial accelerometers for the MA1 (left) and MA2 cases (right).
Accelerometers positions are given by the red arrows, while determinant of the FIM (in log scale) and

H-CMIF are plotted to confirm the soundness of the approach.

3.4.4 Structural identification OSP results

The OSP results obtained for SI1 and SI2 cases are presented in Fig. 3.13. The evolution of
det(Q(U)) is also given to confirm the relevance of the results. Due to the large parameters
sensitivity, the sensor placement is not visually intuitive in the sense that not all subdomains
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are covered by at least one sensor. One can interpret the fact that sensors are mostly located
at the top of the structure because it is the most kinematically responsive part of the latter.
However, from the sudden slope change of the determinant of the FIMwith positioned sensors,
we find that after the placement of 6 sensors, the system is a priori totally identifiable, meaning
that new sensors (mostly) bring redundant information.

Figure 3.13: OSP of uniaxial and triaxial accelerometers for the SI1 (left) and SI2 cases (right).
Accelerometers positions are given by the red arrows, and the determinant of the FIM (in log scale) is

plotted to confirm the soundness of the approach.

mCRE-based OSP results

The OSP results obtained for mCRE1 and mCRE2 cases are presented in Fig. 3.14. To under-
stand at best the sensor placement process, a particular attention was paid to the sequential
positioning of sensors by coloring the sensor position according to its order of appearance in
the FSSP algorithm. The value of the det(Qm) is also provided. The value of α is well-known to
be crucial in the mCRE framework, and as it is not properly tunable at the experimental design
stage, its influence on mCRE-based OSP results was explicitely studied. What can be observed
at first glance is that the more important the confidence into measurements α, the closer to the
bottom of the structure for sensor locations. If the increasing value of det(Qm) confirms FSSP
behaves correctly, the values plotted in Fig. 3.14 are not comparable as they are function of α
(which implicitly modifies the FIM definition). For the following studies, the confidence into
measurements coefficient has been chosen at α = 104 because of the correct dispersion of the
sensors on the whole structure (see Fig. 3.14).

Finally, OSP results for mCRE-based sensor placement taking multiple damage scenarios
into account are presented in Fig. 3.15. Several remarks can be made from these placements.
First, there is no sensor positioned in the x direction for the mCRE-MS1 case, which can explain
whymCRE-MS2 is less optimal in the sense of the det(Qm). Unsurprisingly, one can notice that
the first sensors in both cases are located at the bottom of the structure, where damage is most
likely to occur. Similarly, few sensors are located on the topwalls as they are less identifiable (in
the CRE sense) and less prone to damage. Of course, the numerical resources that are necessary
to compute these results are much more important, as #ΘS times more solutions of the mCRE
system are required. Hopefully the required CPU time did not exceed more than 12 hours on a
personal laptop. This numerical effort should be worthwhile, as the resulting sensor placement
will be effective over a wider range of stiffness configurations.

Remark 3.5. The values of det(Q) between the different OSP techniques are not comparable
as the FIM definition is different.
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Figure 3.14: mCRE-based OSP of uniaxial and triaxial accelerometers for the identification of the
6-subdomain parametrization of the frame. The arrows indicate the sensor position and their color

indicates their order of appearance in the FSSP strategy. From top to bottom, results have been obtained
with α = {1; 102; 104; 106}.
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Figure 3.15: mCRE-based OSP of uniaxial and triaxial accelerometers taking multiple damage scenarios
into account. The arrows indicate the sensor position and their color indicates their order of

appearance in the FSSP strategy. A value of α = 104 was chosen.

3.4.5 Comparisons of OSP methods for mCRE-based model updating

Model updating case study

Because we look for optimal sensor placement in the sense of damage detection, we propose to
challenge the different OSP that have been obtained and presented previously for mCRE-based
model updating using three datasets that fairly represent the typical situations one can meet in
practice:

(i) Updating the model from the same data that has been used to perform OSP. The expected
parameter vector is exactly the one that has been used to position sensors.

(ii) Updating the model from data obtained after an overall 10% stiffness underestimation.
This is a situation that can be encounteredwith the presence ofmodeling bias. In addition,
measurements will be polluted with a white noise of 10%-SNR with respect to the input
ground acceleration.

(iii) Updating the model from data obtained in a new damage scenario. The expected param-
eter vector is θ? = [0.5 0.9 0.6 0.9 0.8 1]. Measurements are also polluted with noise (10%
in level too). Note that this scenario is not included in ΘS .

Case (i) is probably the most comfortable model updating situation with ideal measure-
ments; Case (ii) gets more difficult as noise is added to measurements and a uniform model
bias must be recovered; Case (iii) is the most challenging problem as a damaged configuration
must be identified from noisy measurements using sensors whose location has been optimized
from another parameter estimate (except for mCRE-MS1 and mCRE-MS2 cases). Because of
the random nature of measurement noise, one cannot expect to properly assess model updat-
ing performance exclusively with parameters estimates. Model updating results will thus be
assessed using both parameter estimates and relative confidence intervals widths (see Chapter
2 - section 2.2.2), using the highly dense sensor placement as reference.

Remark 3.6. Although not considered here because of the assumed non-damaging nature
of the input signals, the variability of loading conditions may also have been exploited if
nonlinear damaging models were used, so that the damage scenarios that are generated for
OSP are much more realistic.
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mCRE-based model updating results

The assessment of OSP for model updating is summarized in Fig. 3.16 with 6 colormaps. For
each model updating scenario, we propose two colormaps: the first one indicates the relative
gap of parameter estimates with respect to the exact parameter set that should have been recov-
ered θ? (see Fig. 3.16.a). The second map shows the relative width of confidence intervals with
respect to the ones given by the reference sensor placement configuration (see Fig. 3.16.b).

For all maps, each line indicates the performance obtained by a given sensor placement
(denominations are given in Tab. 3.2) while each column corresponds to a given subdomain
(denominations are given in Fig. 3.9).

The understanding of results displayed in Fig. 3.16.b is not direct and is recalled in the fol-
lowing lines: a close-to-zero value means that the convexity of the mCRE functional evaluated
around θ̂ with a given OSP is almost the same as the one of the mCRE evaluated with the refer-
ence sensor placement case in which twice the number of sensors are present. It suggests that
the considered sensor placement is efficient in the sense that there is not much doubt regarding
the value of parameter estimate. On the contrary, when the relative gap on confidence inter-
vals width is important, the mCRE functional is less convex around θ̂, meaning that another
measurement noise realization may have lead to significantly different model updating results.

(a) Relative gaps on parameter estimates (in [%]) obtained with the different sensor configurations.

(b) Relative gaps on confidence intervals (in [%]) obtained with the different sensor configurations.

Figure 3.16: Assessment of optimal sensor placement algorithms for several model updating scenarios
with the mCRE as cost-function.
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Discussion on the relevance of the modified FIM

According to the results of Fig. 3.16, one can first conclude that, because the number of sensors
(Ns = 24) was sufficient with respect to the number of parameters to be identified (Nθ = 6),
correct mCRE-basedmodel updating results have been obtained in all cases as parameters have
been correctly identifiedwith less than 10% errorwith respect to the expected values in themost
unfavorable case. The comparison of the maps (a.i) and (a.ii) reveals that the presence of noise
extends the identification issues on the less sensitive parameters of the problem, namely the
top-story ones (W11, W21 and F20). Besides, if one compares the visual positioning of sensors
previously shownwith the relative confidence intervals widths, it appears that the subdomains
of parameters having large intervals are not directly equipped by sensors (associated to poor
convexity and low sensitivity). One can also observe that the triaxial accelerometers placement
is less accurate, as expected from the values of the determinant of the FIM plotted above.

The overall analysis of Fig. 3.16 confirms the effectiveness of mCRE-based OSP. Indeed,
mCRE1 and mCRE2 sensor configurations provide the best parameter estimates, with minimal
confidence intervalswhen data is noisy. This application is thus a proof of concept showing the
benefits of FSSPwith the modified FIM that directly yields from the interpretation of mCRE
from a Bayesian viewpoint. Nevertheless, it is important to keep inmind themain limitation of
this newOSP approach: the strong dependency in the confidence intomeasurements coefficient
α. As running amCRE-basedOSP algorithmdid not lastmore than 5minutes for the considered
case, the experimental designer can afford to assess mCRE-based OSPs obtained for several
values of α. Despite this alternative, in-depth studies must be conducted to clarify this point.
In particular, one can legitimately wonder if the optimality criteria for calibrating α that have
been proposed in Chapter 1 are convenient to obtain relevant sensor configurations. Additional
tests on other damage scenarios can also be done to confirm the observed trends.

Finally, let us point out that taking into account several damage scenarios allows for amore
robust sensor placement with respect to the identification of new parameter configurations,
as shown in Fig. 3.16 - mCRE-MS1 case in scenario (iii), where the identification is almost per-
fect with small-size confidence intervals. The CPU time spent to "learn" the best trade-off from
multiple datasets is thus worth of interest. As one could have expected, taking into account
several scenarios makes mCRE-MS1 and mCRE-MS2 model updating results suboptimal (yet
efficient) for cases (i) and (ii) compared to mCRE1 and mCRE2. However, the performance
achieved in case (iii) by mCRE-MS1 and mCRE-MS2 is remarkable and promising for monitor-
ing the occurrence and evolution of structural defects on structures. This observation goes in
the sense of recent contributions [Cantero-Chinchilla et al. 2020; Ercan and Papadimitriou 2021]
which emphasize the need to take both model and measurement uncertainties into consider-
ation to build efficient and robust OSP.

3.5 Conclusion&prospects on the numerical framework forOSP and
model updating unified around the mCRE

Even though the modified Constitutive Relation Error has proved to be a credible alternative
to classical model updating approaches, no dedicated sensor placement strategy has been pro-
posed yet, although the literature on this topic in the literature is extensive. The ambition of the
work presented in this chapter consisted in proposing a novel sensor placement algorithm ded-
icated to mCRE-based model updating. Owing to the link between the mCRE and the Bayesian
inference framework, and inspired from the Information Entropy concept, a modified Fisher In-
formationMatrixwas formulated and its determinantwasmaximized to optimally position sen-
sors. A proof of concept showing the relevance of this newmCRE-based OSP strategy has been
proposed on a 3D academic example where optimal accelerometers locations were searched on
a two-story frame structure subjected to random ground motion. This case study permitted to
perform deep analysis of this new OSP approach and to compare it with classical techniques in
different model updating scenarios, which allowed to illustrate the efficiency and relevance of
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the proposed mCRE-based OSP methodology. If this study focuses on accelerometers as they
are common and weakly invasive for earthquake engineering applications, all types of sensors
can be easily integrated in the proposed framework.

All the OSP techniques that have been implemented in MATLAB© have been capitalized
for future use at the CEA/TAMARIS as decision-support tools in forthcoming experimental
campaigns.

Therefore, the proposedmCRE-based OSP appears as an interesting additional asset for the
construction of amCRE-unified framework for SHMor structural dynamics applications (see
Fig. 2). However, there is no doubt that this tool still lacks maturity to be properly exploited,
and further research should address the strong influence of the confidence into measurements
coefficient and validate the observed trends on more complex case studies. Besides, as OSP are
not exclusively intended to perform optimal model updating, future work will focus on finding
the best sensor placement trade-off that contributes to multiple objectives simultaneously, for
example modal identification and mCRE-based model updating. Pareto front algorithms may
be a first tool for this purpose.

Moreover, one of the current on-going investigations of the authors concerns the use of
mCRE-based OSP for active sensing purposes in order to improve damage detection in cases
where the state of the structure is tracked online via data assimilation techniques (that are pre-
sented in the next chapter). Iterative strategies could then be employed to refine the sensing
configuration only where needed, i.e. where damage occurences are detected.

What may also be interesting to consider is the impact of sensor location errors on themodel
updating process. Indeed, as most sensors in practical applications are located at vibration
nodes and antinodes, the sensitivity of identification results with respect to sensor positioning
errors must be estimated for uncertainty quantification purposes. Initial investigations on sim-
ple applications (see figure 3.17) have shown that a slight error in sensor position can lead to
significant variability in model updating results. Forthcoming studies must be conducted to
properly integrate all sources of uncertainty within the model updating process.

Figure 3.17: Highlighting the effect of sensor positioning error on mCRE-based parameter
identification. The overall stiffness of a cantilevered beam is estimated with an accelerometer supposed

to be located in the middle of the beam. Assuming the sensor location error follows a Gaussian
distribution, a Monte-Carlo sampling on the sensor location allowed to quantify the uncertainty on

parameter estimates. Based on the parameter distribution, probability densities have been empirically
adjusted, showing that a lognormal distribution seems to correspond well to the observed distribution.

Finally, mid-term prospects may concern the extension of the presented OSPmethod to dis-
tributed measurements (i.e. optic fibers). At a first glance, one might want to use the presented
strategy to identify optimal strain measurement points and then find the best path (with con-
strained bending radius) through these points to obtain an optimal optic fiber path for mCRE-
based damage detection. Another way to do so would be to exploit a parametrized fiber path
description, using splines and isogeometric analysis for example.
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Chapter4
The MDKF, a physics-guided Kalman filter for real-time

model updating in dynamics
Integration of mCRE into a data assimilation framework

The feasibility of DDDAS lies (among others) in efficient data assimilation schemes able to update model
predictions from acquired data. Such algorithms must be able to operate in real-time whereas the compu-
tational burden carried by recursive calls to model predictions can be prohibitive. So far, a model updating
framework based on the modified Constitutive Relation Error has been presented to handle at best sparse
noisy dataset in low-frequency dynamics, in an offline context.

In this chapter, attention is paid to the identification/update loop of Fig. 2 and a new Kalman filter-
based approach for real-time data assimilation is proposed, where the offline mCRE-based model updating
framework is reinvested in order to perform robust on-the fly structural parameter tracking. In practice,
this new data assimilation scheme, called Modified Dual Kalman Filter (MDKF), integrates the mCRE
through a metric change in the measurement update equation. It thus differs from classical nonlinear
Kalman filtering for parameter estimation as the comparison between measurements and model predic-
tions is achieved via the mCRE functional itself.

After a review of classical data assimilation techniques, with particular emphasis on Kalman filtering,
the MDKF algorithm is presented in details. The performance of MDKF is assessed using the applica-
tions described in Appendix A, i.e., (i) synthetic measurements from a plane frame subjected to random
ground motion, and (ii) actual measurements from the SMART2013 benchmark. In this last example,
the eigenfrequency drop of a reinforced-concrete structure submitted to a sequence of gradually damag-
ing shaking table tests has been monitored in real-time, which suggests a promising use of MDKF for
on-the-fly adaptive control prospects.

The work presented in this chapter has been the subject of the following contributions:

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2023a]. “A new Kalman filter approach for structural
parameter tracking: Application to the monitoring of damaging structures tested on shaking-tables”.
Mechanical Systems and Signal Processing 182, p. 109529. doi: 10.1016/j.ymssp.2022.109529
M.Diaz, P.-É. Charbonnel, and L. Chamoin [2023b]. “A new physics-guided data assimilation frame-
work for online structural monitoring: application to shaking-table tests”. COMPDYN2023 - 9th EC-
COMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineer-
ing. Athens, Greece

https://doi.org/10.1016/j.ymssp.2022.109529


92 Chapter 4. Physics-guided Kalman filtering for real-time model updating in dynamics

Contents
4.1 Data assimilation for DDDAS - an overview . . . . . . . . . . . . . . . . . . . . 93

4.1.1 The data assimilation problem . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.2 Variational data assimilation techniques . . . . . . . . . . . . . . . . . . . 94
4.1.3 Sequential data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 An extended review on Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . 96
4.2.1 The linear Kalman filter, algorithm and computational origins . . . . . . 96
4.2.2 Academic example: tracking of a ballistic shot . . . . . . . . . . . . . . . 97
4.2.3 Extended Kalman filter (EKF) . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.4 Ensemble Kalman filter (EnKF) . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.5 Unscented Kalman filter (UKF) . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.6 Scaled Spherical Simplex Filter (S3F) . . . . . . . . . . . . . . . . . . . . 105
4.2.7 Joint and Dual nonlinear KFs for parameter estimation . . . . . . . . . . 105
4.2.8 Application of nonlinear KFs to structural dynamics . . . . . . . . . . . 108
4.2.9 Conclusions on the use of nonlinear KF for model updating . . . . . . . 109

4.3 mCRE-based KF for robust data assimilation . . . . . . . . . . . . . . . . . . . 110
4.3.1 MDKF formulation: change of observation metrics . . . . . . . . . . . . 110
4.3.2 Technical details about MDKF - Calibration guidelines . . . . . . . . . . 111
4.3.3 Computational considerations for real-time prospects . . . . . . . . . . . 113
4.3.4 CRE-based clustering for partial state-update . . . . . . . . . . . . . . . . 114
4.3.5 The algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Illustrations on a two-story plane frame submitted to random ground motion 117
4.4.1 MDKF reference data assimilation results . . . . . . . . . . . . . . . . . . 117
4.4.2 MDKF vs. classical joint UKF . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.3 Comparative study between mCRE-based Kalman filters . . . . . . . . . 122
4.4.4 Towards an optimal use of CPU resources: a proof-of-concept for the

clustered MDKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.5 Online modal signature monitoring of the SMART2013 specimen . . . . . . . 125

4.5.1 Procedure for the online correction of SMART2013 FE model . . . . . . 125
4.5.2 MDKF-based eigenfrequency monitoring in real-time - results and dis-

cussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.6 Conclusion & prospects for future use of MDKF for SHM applications . . . . 129



4.1. Data assimilation for DDDAS - an overview 93

4.1 Data assimilation for DDDAS - an overview
From the numerical viewpoint, the integration of a digital twin in the control loop of Fig. 2
requires a complex numerical framework including the necessity to adapt classical model up-
dating techniques to an online context where data must be processed on-the-fly. In particular,
data assimilation algorithmsmust be able to operate in real-time even though the computational
burden carried by recursive calls to model predictions can be prohibitive [Bonney et al. 2022;
Pregnolato et al. 2022]. With the extended availability of data and the difficulties of validat-
ing complex nonlinear phenomena modeling, last decades have seen the emergence of hybrid
approaches, often referred to as data-driven techniques. They systematically involve:

. Surrogate modeling - model order reduction has been successfully developed for a vari-
ety of applications relying on high-fidelity modeling to reduce the CPU burden due to
the call to model predictions. This is especially true for data-driven approaches based on
projecting a high-fidelity model in low-dimensional subspaces: the so-called Reduced Or-
der Model (ROM) can be obtained using classical techniques such as Reduced Basis (RB)
[Rozza et al. 2008], Proper Orthogonal Decomposition (POD) [Eftekhar Azam and Mariani
2013; Benner et al. 2020], or Proper Generalized Decomposition (PGD) [Chinesta et al. 2011];

. the correction of model predictions (due to mismodeling or unanticipated phenomena)
by a data-based enrichment step.

Without necessarily being exhaustive, let us present several classical data assimilationmeth-
ods whose framework includes the previous statement, before specifically focusing on Kalman
filtering (KF) techniques.

4.1.1 The data assimilation problem
The starting point of data assimilation problems is the definition of a dynamical system under
space and time discrete form (4.1). This system is made of two equations: a state prediction
equation and an observation equation.{

xk+1 = M(xk, θ, ek) + wx ,k

yk = H(xk, ek) + vk
(4.1)

In terms of notations, xk ∈ RNx is the nodal vector describing the state of the system at
time point tk, yk ∈ RNy is the vector of observed data, and the two vectors wx ,k ∈ RNx and
vk ∈ RNy respectively represent model and measurement errors. They are assumed additive in
most applications. The dynamical system (4.1) is based on two (possibly nonlinear) operators,
namely the model operatorM and the observation operator H. The latter classically extracts
local information regarding the predicted state xk or inputs ek. Eventually, model predictions
also depend on a set of internal parameters θ ∈ RNθ (e.g. material properties).

Remark 4.1. If one focuses on linear FE dynamicsmodeling of structures submitted to ground
acceleration inputs, the dynamical equilibrium equation (1.12), written in terms of relative
displacements, combined to the observation of displacement field derivatives via a (linear)
observation matrixΠ constitute a particular case of (4.1).
The following matrix system is the so-called state-space representation canonical form:{

ẋ = Ax(t) + BÜd(t)

y(t) = Cx(t) + DÜd(t)
with x(t) =

[
U(t)

U̇(t)

]
,

A =

[
0 I

−M−1K −M−1D

]
, B =

[
0
−Ξ

]
, C =

[
Π
0

]
, D = 0

(4.2)

Once discretized in time, this system is given by (4.1):{
xk+1 = exp (A∆t)xk + B∆tÜd(tk)

yk = Cxk + DÜd(tk)
(4.3)
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This problem is linear with respect to the state vector, but nonlinear with respect to the pa-
rameters θ (whose FE matrices implicitely depend).

4.1.2 Variational data assimilation techniques
Unlike sequential data assimilation (which emanates from estimation theory - see the next para-
graph), variational assimilation is based on optimal control theory [Asch et al. 2016]. Varia-
tional data assimilation was historically introduced by the meteorological community to solve
numerical weather prediction problems [Auroux 2007]. The analyzed state is not defined as
the one that maximizes a certain pdf, but as the one that minimizes a cost-function. The mini-
mization process requires numerical optimization techniques, such as gradient descent or BFGS
algorithms. These techniques can rely on the gradient of the cost-function, that is obtained in
most cases with adjoint state methods.

The most popular variational data assimilation techniques are the 3D-Var and 4D-Var. First,
3D-Var method aims to minimize the following cost-function

J3D(x) =
1

2
(x− x0)TP−1

0 (x− x0) +
1

2
(y −H(x))TR−1(y −H(x)) (4.4)

which measures both the gap between the state x and the prior guess x0 and the data-to-model
distance. P0 andR refer to the covariance error matrices on state prior misfit andmeasurement
error, respectively. One can note that this is a typical regularized weighted least-square func-
tional. Assuming that the observer operator is linear, e.g. a projection matrixC like in (4.2), the
gradient and the Hessian matrix are explicit:

∇J3D(x) = P−1
0 (x− x0)−CTR−1(y −Cx)

∇2J3D(x) = P−1
0 + CTR−1CT

(4.5)

The incremental version of the 3D-Var consists in treating the difference between the state of the
system and the prior guess as control quantity of interest (QoI), and not the state of the system
itself. The main advantage of rewriting the problem in this form is the possible reduction of the
control space dimension, and consequently the reduction of the covariancematrices dimension.

The 4D-Var is a generalization of the 3D-Var by adding the time dimension to the minimiza-
tion problem because the dynamics of the system cannot systematically be neglected. In that
case, the 4D-Var cost-function reads:

J4D(x) =
1

2
(x(0)− x0)TP−1

0 (x(0)− x0) +
1

2

n∑
k=1

(yk −H(xk))
TR−1(yk −H(xk)) (4.6)

In that case, adjoint state methods are mandatory to compute the gradient of J4D(x). Similarly
to the 3D-Var, an incremental version allows to reduce the dimension of the controlled vector.

Aside from 3D-Var and 4D-Var, a recent variational approach that exploits assimilated data
for model enrichment is the Parametrized Background Data Weak formulation (PBDW) [Maday
et al. 2015a; b]. It is a non-intrusive, reduced-basis, real-time data assimilation method that
directly derives from a variational writting of a least-square identification problem. Before re-
cent works [Haik et al. 2023], it has been dedicated to the state estimation of steady-state prob-
lems, with extensions regarding the nonlinear case and noisy data [Gong et al. 2019; Cohen
et al. 2022]. Its originality lies in the fact it can be seen as a projection-by-data method, con-
trary to the KF that can be seen as a projection-by-model method. It processes the model a priori
does not propose any correction directly on the latter, which is limiting parameter identification
prospects. In that sense, it is similar to the sparse-PGD data assimilation technique, which aims
at enriching a prior PGD basis from sparse data that is progressively assimilated [Ibáñez et al.
2018]. Besides, links have been clearly stated between the PBDW and the Generalized Empirical
Interpolation Method [Maday and Mula 2013] that has particularly been studied for OSP pur-
poses [Argaud et al. 2017; 2018]. The reader interested in PBDW is referred to the pedagogical
review of [Mula 2022] for complementary details.
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4.1.3 Sequential data assimilation

Optimal interpolation

One of the first original works regarding sequential data assimilation issues can be attributed
to [Aitken 1935] who designed the Best Linear Unbiased Estimator (BLUE). Briefly, the principle
of optimal interpolation is to look for an optimal combination between model predictions and
observeddata at the same time steps. The BLUE is the one that achievesminimumerror estimate
variance. Mathematically, if one starts from the state-space representation of (4.2), and if one
denotes x̂ the estimated state obtained from a prior guess x0, and x the true value of the estimate,
then the BLUE must satisfy:

x̂ = Lx0 + Ky

E (x̂ ) = x

x̂ s.t. E
(
(x − x̂ )(x − x̂ )T

)
is minimized

(4.7)

where L and K are matrices to determine. The unbiased feature directly leads to

L = I −KC (4.8)

K is computed afterwards as the argument minimizing tr
(
E
(
(x − x̂ )(x − x̂ )T

))
. With the no-

tations defined in the previous paragraph, it can be shown that:

K = P0C
T
[
R + CP0C

T
]−1

=
[
P−1

0 + CTR−1C
]−1

CTR−1 (4.9)

where
[
P−1

0 + CTR−1C
]
is often referred to as the analysis covariance error matrix. The BLUE

thus reads:
x̂ = x0 + P0C

T
[
R + CP0C

T
]−1

(y −Cx0) (4.10)

Remark 4.2. The BLUE is the concept that directly relates variational and sequential data
assimilation techniques: the state that minimizes the 3D-Var cost-function is directly related
to the optimal gainmatrix given by the BLUE, and the linear Kalman filter can then be seen as
successive calls to the BLUE (at each time step) combined with a linearized model operator.

Statistical estimation theory and Bayesian filtering

Since many physical systems have time-varying properties, and since measurements are regu-
larly acquired, state estimations could be considerably improved by updating the current opti-
mal estimate without having to repeat all model predictions and without having to assimilate
all the measurements that have been acquired so far. An appropriate framework for this se-
quential updating is the Bayesian filtering framework, whose basic principle is to exploit the
Bayesian inference framework in a sequential manner [Law et al. 2015]: at each time step mea-
surements are acquired, the prior pdf for the data assimilation process is taken as the posterior
pdf obtained at the previous step (see [Kapteyn et al. 2019] for a graphical representation).

However, the most difficult point is to build the likelihood function in order to compute
the posterior pdf of the parameters to identify. In the general case without any assumption
on the form of uncertainties on model and measurements, the likelihood function needs to be
sampled with computationally expensive techniques such as Monte-Carlo. In order to reduce
the uncertainty propagation cost, parallel computing techniques may be involved [Prudencio
et al. 2013], but a more efficient approach consists in integrating a ROM, for instance using PGD
[Rubio et al. 2018; 2021] or POD [Pereira Álvarez et al. 2021].

In the following, we will focus on the Kalman filter (KF) introduced in the 1960s [Kalman
1960; 1964], which can be seen as a Bayesian filter where basically prediction and observation
operators are linear and all random variables are Gaussian (see Appendix D for mathematical
explanations).
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4.2 An extended review on Kalman Filtering

4.2.1 The linear Kalman filter, algorithm and computational origins
The Kalman filter (KF) is a linear optimal recursive state estimator designed for linear time-
varying dynamical systems. The KF estimate of the system is statistically optimal with respect
to a quadratic function of the estimate error (see [Kalman 1960; 1964; Maybeck 1979; Grewal
and Andrews 2008] for a non-exhaustive list of references). At each time point tk, the algorithm
successively alternates between two steps (an illustration is given in Fig. 4.1):

(i) A prediction step, where the future state vector x̂−k+1 and its covariance error matrix P−k+1

are predicted based on the current model.
(ii) A correction step, where predictions are corrected based on new assimilated measure-

ments yk+1, leading to the updated state vector x̂k+1 and associated covariance error ma-
trix Pk+1.

Figure 4.1: Illustration of the Kalman filter algorithm.

Fundamental assumptions must be made to recover the linear KF framework:

. Both model and observer operators are assumed linear, meaning that (4.1) becomes:{
xk+1 = Axk + Bek + wk

yk = Cxk + vk
(4.11)

Note that most of the time, the observer operator does not depend on the loading, which
justifies the absence of ek in the linearized observation equation.

. Observation and modeling errors are statistically independent from the state:

E
(
xkw

T
k

)
= 0 and E

(
xkv

T
k

)
= 0 ∀ k > 0 (4.12)

. Observation and model errors are statistically independent from each other:

E
(
wkv

T
k

)
= 0 ∀ k > 0 (4.13)

. All pdfs are supposed to be Gaussian. The model and measurement noises are assumed
to be zero-mean Gaussian random variables:

wk ∼ N (0,Q) ; vk ∼ N (0,R) ∀ k > 0 (4.14)

where Q and R respectively denote the process and measurement noise covariance ma-
trices. For the sake of simplicity, they will be assumed constant in the following even if
they may vary with time.

The remainder of this section intends to recall the fundamentals of KF from computational
origins and the algorithmbefore a first pedagogical illustration so as to understand the influence
of noise covariance matrices on the methodology.
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Computational origins of the KF

x̂−k is the a priori estimate at step k predicted by the model from the KF estimate at step k − 1.
x̂k is the a posteriori estimate at step k after correction by newly assimilated measurements yk.
As the model is not fully reliable and measurements are noisy, both estimates are not exactly
equal to the exact state at step k, denoted xk. This allows to define a priori and a posteriori error
estimates:

ε−k = xk − x̂−k
εk = xk − x̂k

(4.15)

From these errors are built the a priori and a posteriori error covariance matrices:

P−k = E
(
ε−k ε
−T
k

)
Pk = E

(
εkε

T
k

) (4.16)

Then, based on the Gauss-Markov theorem1, the KF objective is to compute the a posteriori esti-
mate as a combination of the a priori estimate and a weighted difference between the predicted
state and measurements:

xk = x−k + Kk

(
yk −Cx−k

)
(4.17)

The so-called Kalman gain matrix Kk must finally be determined. According to the fact that
the best estimator minimizes the a posteriori error covariance matrix, one gets that

Kk = arg min
Kk

{tr (Pk)} = arg min
Kk

{
tr
(
E
(
εkε

T
k

))}
= arg min

Kk

{
tr
(
E
((
xk − x̂−k −Kk

(
yk −Cx̂−k

)) (
xk − x̂−k −Kk

(
yk −Cx̂−k

))T))}
= P−k CT

(
CP−k CT + R

)−1

(4.18)

The presence of the measurement noise covariance matrix R in the definition of Kk nat-
urally allows to consider measurement uncertainty when correcting model-based predictions.
However, the process noise covariance matrix Q only appears at the prediction stage and it is
a quantity which is very difficult to estimate as it should be somehow representative of model
bias.

Remark 4.3. The comparison between (4.10) and (4.18) illustrates the proximity between
optimal interpolation and KF. Actually, the KF can be seen as a succession of calls to the
BLUE (at each time step) on a linearized model operator.

The linear KF algorithm

The prediction/correction algorithm of the linear KF (in the case model and observation oper-
ators remain constant with time) is detailed in Alg. 4.1.

4.2.2 Academic example: tracking of a ballistic shot

To illustrate the linear KF concept, a simple academic problem is considered, namely the es-
timation of the trajectory of a ballistic shot. The reference model used to simulate noisy data
takes into account the viscous friction of the projectile in the air, whereas the model used for
the data assimilation process is built without taking into account this phenomenon. Doing so,
it is possible to illustrate the impact of the process noise on the quality of the state predictions.

We assume that the projectile is modeled by a point of mass m, initially launched at the
speed u̇0 from the origin of a 2D Galilean reference frame. It is subjected to viscous friction of

1For a linear model in which the model and observation errors are uncorellated and have null expected values,
the best linear unbiased estimator is the least squares estimator.
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Algorithm 4.1: Linear Kalman Filter.
Data: Model and observation matrices: A,B,C, loading conditions e0:∞, noise covariance

matrices: Q,R, initial state vector x̂0 and associated covariance matrix P0

Result: Successive predictions of the state vector and associated covariance matrix
Loop on data assimilation time steps

for k = 1 :∞ do
1) Prediction step
x̂−k = Axk−1 + Bek−1 ;
P−k = APk−1A

T + Q ;

2) Data assimilation and correction step
Kk = P−k C

(
CP−k CT + R

)−1 ;
x̂k = x̂−k + Kk(yk −Cx̂−k ) ;
Pk = (I −KkC)P−k ;

end

coefficient η and to gravity of acceleration g. Then, the trajectory of the projectile in the (ex, ey)
plane is theoretically perfectly known:

u(t) =

{
u̇0.exτ

(
1− e−t/τ

)
(u̇0.ey + τg) τ

(
1− e−t/τ

)
− τgt

}
(ex,ey)

(4.19)

with τ = m/η. The position (X(t), Y (t)) and velocity (Ẋ, Ẏ ) of the projectile are the state
variables. The (linear) dynamical system (4.11) then reads:

xk+1 =


Xk+1

Yk+1

Ẋk+1

Ẏk+1

 =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

xk +


0

0

0

−∆tg

+ wk

yk =

[
1 0 0 0

0 1 0 0

]
xk + vk

(4.20)

with process and observation noises of covariance matrices Q and R. Several KF estimates
depending on the process noise covariance Q are displayed in Fig. 4.2. One can remark that,
when considering small values of Q coefficients, the assimilation process fails to compensate
the fact that model predictions are incomplete. However, the obtained state is smooth with
time. On the contrary, for important process noise covariance coefficients, the KF tends towards
the real (measured) state but with disturbed predictions due to the excessive confidence into
measurements, that are incomplete (in the sense that velocity is not measured in this example).
A crucial compromise must then be made to carefully choose the process noise covariance
matrix. A user-defined Q is often not well justified in the literature although it is critical in
the quality of the assimilation process. Eventually, it is worth noticing that the measurement
noise covariance matrixR can be quantified based on the knowledge of measurement noise
features (particularly from the standard deviation of the latter).

Necessity for nonlinear extensions of the Kalman filter

As most physical systems are nonlinear, the main limitation of the linear KF lies in the fact that
linear models and observers are required, which is problematic in most applications. Several
extensions of the KF to handle nonlinear models and observers have been proposed over the
last decades. One can classically divide them in two families:

. Methods based on model and observer linearizations – probably the most intuitive, but
not the most efficient way to handle nonlinearities. The Extended Kalman Filter (EKF) is
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Figure 4.2: Ballistic shot –m = 1 kg, η = 5 kg.s−1, dt = 10−4 s, v0 = 10 m.s−1 – Estimated trajectories
from linear KF predictions. The choice of the process noise covariance Q is crucial in the quality of the

predictions.

based on this principle and it is probably one of themost popular in the literature, both for
state and parameter estimation [Hoshiya and Saito 1984; Welch and Bishop 2006; Terejanu
2008; X. Liu et al. 2009];

. Methods based on statistical regularization – these techniques are based on the fact that
sampling points transformed by nonlinear operators enable to approximate state statistics
correctly. Particular reference is made here to the Particle Filter (PF) [Orlande et al. 2011]
or Ensemble Kalman Filter (EnKF) [Evensen 1994; 2003], where a set of sampling points
generated by the Monte-Carlo algorithm are propagated through the nonlinear opera-
tors. On the contrary, the Unscented Kalman Filter (UKF) paradigm consists in carefully
selecting a small-size set of sampling points (in a deterministic manner) that allows to
compute state mean and covariance accurately [Mariani and Ghisi 2007; Terejanu 2011].
This deterministic sampling point generation is called the Unscented Transform – UT [S.
Julier et al. 2000; S. Julier 2002; Van Der Merwe and Wan 2004; Kandepu et al. 2008]. An
alternative to the UKF has been recently proposed with the Scaled Spherical Simplex Filter
(S3F) [Papakonstantinou et al. 2022a], that almost divides by two the amount of sampling
points to propagate for the exact same accuracy as UKF.

In the following, recall the concepts associated to the above-mentioned KF extensions for
nonlinear systems ae briefly recalled, with illustrations on the plane frame example presented
in Appendix A.1.

4.2.3 Extended Kalman filter (EKF)

A Taylor series expansion to recover the linear Kalman filter

As previously mentioned, the key idea of the Extended Kalman Filter (EKF) is to linearize both
model and observer operators around the currentmean and covariance in order to directly reuse
the linear KF detailed in Alg. 4.1. The interested reader can find comprehensive reviews of EKF
in many references [Sorenson 1970; Hoshiya and Saito 1984; Terejanu 2008] (to cite a few) and
several programming softwares already include in-core EKF implementations2.

Starting from the nonlinear dynamical representation (4.1), and ignoringmodel parameters
for the moment, one can approximate state and measurements without taking into account the
process and measurement noises. This introduces x̃k and ỹk defined such that{

x̃k+1 =M(x̂k, ek)

ỹk = H(x̃k, ek)
(4.21)

2For instance, the MATLAB© EKF block in the Simulink control system toolbox.

https://www.mathworks.com/help/ident/ref/ekf_block.html
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From these approximations and from the nonlinear operators, one can rewrite a linearized set
of governing equations, using Jacobian matrices and first-order Taylor series approximation:{

xk+1 ≈ x̃k+1 + [∇xM(x̂k, ek)] (xk − x̂k) + wk

yk ≈ ỹk + [∇xH(x̃k, ek)] (xk − x̂k) + vk
(4.22)

From the last equation, new prediction and measurement errors can be introduced:

ε̃x,k = xk − x̃k (4.23)
ε̃y,k = yk − ỹk (4.24)

As the actual state xk is not available (because it is the quantity to estimate), the set of governing
equations (4.22) can be rewritten as:{

ε̃x,k+1 ≈ ∇xM(x̂k, ek)(xk − x̂k) + εk

ε̃y,k ≈ ∇xH(x̃k, ek)ε̃x,k + ηk
(4.25)

where εk and ηk are random variables such that εk ∼ N (0,Q) and ηk ∼ N (0,R) ∀ k.
Note that system (4.25) is presently linear, and in a close form to the linear KF discrete

equations (4.11). This motivates us to introduce another error between the approximation x̃k
and the final state prediction x̂k:

ε̂k = x̂k − x̃k (4.26)

Given all the previous assumptions and letting the prediction value of ε̂k be 0, the Kalman filter
correcting action from (4.25) to estimate ε̂k is:

ε̂k = Kk ε̃y,k (4.27)

The substitution of (4.27) into (4.26) then leads to

x̂k = x̃k + Kk ε̃y,k = x̃k + Kk(yk − ỹk) (4.28)

whereKk is the ExtendedKalman gain obtained from (4.25). The EKF algorithm is given below
in Alg. 4.2 to emphasize on the similar algorithmic structure compared to linear KF, as the main
consequence of the linearization process remains the substitution of x̂−k by x̃k.

Remark 4.4. It has been fairly assumed that process and measurement noises are additive
to model and observer operators. In a very general framework where one cannot dissociate
these noises from model and observer operators, then

εk ∼ N
(
0,
[
∇wM(x̂k, ek, wk)Q∇wM(x̂k, ek, wk)

T
])

ηk ∼ N
(
0,
[
∇vH(x̂k, ek, vk)R∇vH(x̂k, ek, vk)

T
])

Limitations of the Extended Kalman filter algorithm

Although EKF is a common tool for sequential data assimilation, let us mention several well-
identified limitations:

. The computation of the Jacobian matrices is necessary at each time step. It is a consuming
operation from the computational viewpoint but recent advances tried to limit that nasty
effect with the use of model reduction techniques such as reduced basis [X. Liu et al. 2009]
or PGD [González et al. 2017].

. The Jacobian matrix ∇xH(x̃k, ek) propagates the relevant components of measured data,
which makes the filter quite sensitive to measurement noise. In other words, important
measurement noise can lead to divergent estimates because of the operators linearization.
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. The EKF is most of the time effective enough but its results may be of poor quality com-
pared to other nonlinear KF extensions in cases where nonlinearities are too strong to be
correctly approximated with a first-order Taylor expansion. This limitation has been clas-
sicaly highlighted in former research works [Wan and Van Der Merwe 2000; Lefebvre et
al. 2004; Mariani and Ghisi 2007; Hommels 2008; Eftekhar Azam 2014].

Algorithm 4.2: Extended Kalman Filter (for additive model and measurement errors).
Data: Nonlinear model and observation operators:M,H, loading conditions: e0:∞, error

covariance matrices: Q,R, initial state vector x̂0 and associated covariance matrix P0

Result: Successive predictions of the state vector mean and associated covariance matrix
Loop on data assimilation time steps

for k = 1 :∞ do
1) Prediction step
x̃k = M(x̂k−1, ek−1) ;
P−k = ∇xM(x̂k−1, ek−1)Pk−1∇xM(x̂k−1, ek−1)T + Q ;

2) Data assimilation and correction step
Kk = P−k ∇xH(x̃k, ek)

[
∇xH(x̃k, ek)P−k ∇xH(x̃k, ek)T + R

]−1 ;
x̂k = x̃k + Kk(yk −H(x̃k, ek)) ;
Pk = (I −Kk∇xH(x̃k, ek))P−k ;

end

4.2.4 Ensemble Kalman filter (EnKF)

Contrary to EKF, Sigma-Point Kalman Filters (SPKF) use the statistical linearization technique
[Gelb 1974; Lefebvre et al. 2004]: a nonlinear function of a randomvariable is linearized through
a linear regression between n sampling points drawn from the prior distribution of the random
variable. This approach tends to be more accurate than Taylor series linearization, in particular
when nonlinearities cannot be properly linearized, as illustrated in Fig. 4.3.

The EnKF originated as an alternative KF for large problems [Evensen 1994] (essentially,
the covariance matrix is replaced by the sampled covariance), and it is now a major data as-
similation technique for weather forecasting [Evensen 2003; Hommels 2008; Lakshmivarahan
and Stensrud 2009; Mandel 2009] (to cite a few). EnKF is related to the PF but the EnKF makes
the assumption that all involved probability distributions are Gaussian. The EnKF takes its
name from the ensemble of n possible state vectors that are sampled at each iteration, which
avoids representing the covariance matrix. Each ensemble member is then propagated through
the nonlinear model. The weighting terms associated with the σ-points {wik}i=1,...,n are often
defined uniformly by default, i.e. wik = 1/n for all i ∈ J1;nK. Key equations of EnKF are sum-
marized in Alg. 4.3 for a linear observer3.

With the generation of ensemble matrices, there is no need (and no interest) in computing
covariance matrices, as the information carried by the propagation of the ensemble of samples
is richer. Besides, the generation of random state vectors may lead to non-physical meaning
states. Resampling techniques can be implemented to avoid such spurious effects.

The main limitation of EnKF is the need to propagate a large number of samples n � Nx

through the nonlinear function to ensure sufficient accuracy (see Fig. 4.3), which limits the
prospects of using EnKF for on-the-fly data assimilation processes [Eftekhar Azam et al. 2012a].

3The nonlinearity tends to be more present in the model operator rather than in the observer operator. The latter
is very often a projection matrix at sensor locations. In the literature, there has not been any EnKF application
involving nonlinear observer so far, to the author’s best knowledge.
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Algorithm 4.3: Ensemble Kalman Filter.
Data: Nonlinear modelM, observation operator C, loading conditions: u0:∞, error covariance

matrices Q,R, initial state vector x̂0 and associated covariance matrix P0

Result: Successive predictions of the ensemble state (whose statistics can be post-processed)
Generate the ensemble matrices from the prior statistics of x: X0 =

[
x10 . . . x

n
0

]
;

Loop on data assimilation time steps

for k = 1 :∞ do
1) Prediction step
Propagation of the ensemble matrix:
X−k =

[
M(x1k−1, ek) + w1

x ,k . . .M(xnk−1, ek) + wnx ,k

]
where {w ix ,k} are random realizations of model error following the covariance Q;

Predicted observation ensemble: Yk =
[
C([X−k ]1, ek) + v1

k . . .C([X−k ]n, ek) + vnk
]

where {v ik+1} are random realizations of measurement noise following the covariance R;

2) Data assimilation and correction step
Kalman gain: Kk = X−k Y

T
k [YkY

T
k ]−1 ;

Assimilate a new data point yk and update the ensemble: Xk = X−k +Kk(yk − Yk) ;
Option: compute mean and covariance of ensemble state by discrete sum.

end

Remark 4.5. The Particle Filter (PF) is a method close to EnKF, except that particles are gener-
ated by SequentialMonte Carlo sampling [Arulampalam et al. 2002; Kaipio and Sommersalo
2005; Orlande et al. 2011]. The idea is to represent the posterior pdf by a set of random sam-
ples (the so-called particles) with associatedweights, and to compute the estimates based on
these weighted samples. As the number of samples is often large, this Monte-Carlo charac-
terization becomes an equivalent representation of the posterior pdf, and the solution tends
to sequential Bayesian filtering. Similarly to EnKF, the computational burden associated to
the propagation of particles may be prohibitive for real-time model updating purposes.

4.2.5 Unscented Kalman filter (UKF)

The Unscented Transform in a nutshell

To overcome the EnKF curse of dimensionality, [S. Julier et al. 2000] developed an automated
deterministic sampling selection algorithm to approximate the statistics of a random variable
which undergoes a nonlinear mapping: the so-called Unscented Transform (UT). The UT guar-
antees a second-order accuracy (mean and covariance) with a minimal (2Nx + 1) amount of
well-chosen σ-points (see Fig. 4.3).

To illustrate the UT, let us consider the stochastic equation y = h(x), with h(•) a nonlinear
function and x ∈ RNx . To compute the mean and covariance (ŷ,Py) of y from the mean and
covariance of x (x̂,Px), the matrix of the 2Nx + 1 σ-points (denoted X ) is built according to the
set of equations given in the left column of Tab. 4.1. The triplet (α, β, κ) controls the statistical
behavior of the UT process as it conditions the weighting of each σ-point and their distance to x̂.
It has been shown that β = 2 is optimal for Gaussian distributions. κ is a secondary parameter,
often set to zero in the literature and α ∈ [0; 1] has a direct influence on the spread of the σ-
points. The performance of the algorithm is directly related to their choice (even though the
calibration of noise covariance parameters is more critical). Once computed, the σ-points are
propagated through the nonlinear function h and the statistical linearization technique yields:
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(a) Prior pdf and MC sampling for EnKF. (b) Computation of σ-points for UT.

(c) Transformed MC samples and EnKF estimate
mean and covariance estimate (reference).

(d) Comparison of estimated mean and covariance
between EnKF (reference), UT and linearization.

Figure 4.3: Illustrative 2D comparison of EnKF, EKF, UKF and S3F for predicting mean and covariance
after a nonlinear transformation (X,Y ) = f(x, y) =

[
sin |x|; cos y0.7

]
.

ŷ =

2Nx∑
i=0

Wm
i h(Xi) (4.29)

Py =

2Nx∑
i=0

Wc
i (h(Xi)− ŷ) (h(Xi)− ŷ)T (4.30)

Remark 4.6. Sometimes, the space in which lies the state may be strongly constrained (e.g.,
bounded coordinates for physical reasons, or positive material properties). To avoid the
propagation of physical-meaningless samples, [Kandepu et al. 2008] proposed a projection
technique allowing to take such constraints into account.

The UKF algorithm

The UKF is a straighforward extension of the UT to the recursive KF estimation framework
where the state random variables are redefined as the concatenation of the original state and
noise variables:

xak = [xTk w
T
k v

T
k ]T (4.31)

TheUT is then applied to this augmented state to calculate the corresponding σ-points, denoted
X ak . Then, the classical KF equations are applied (see Alg. 4.4).
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Some technical points about the UKF algorithm should be mentioned:

. Contrary to EKF, no explicit Jacobian computation is required and, contrary to EnKF, only
a restrained number of calls to the nonlinear function is required.

. For high-dimensional state vector, the computation and propagation of the σ-points can
be time consuming. Parallelizing their propagation can limit this issue, as illustrated in
[Eftekhar Azam et al. 2012b].

. The performance comparison of EKF, EnKF and UKF has been extensively studied in the
literature [Wan and Van Der Merwe 2000; Bolzon et al. 2002; Lefebvre et al. 2004; Mariani
and Ghisi 2007; Eftekhar Azam et al. 2012a; Astroza et al. 2019b] (to cite a few), always
showing that UKF and EnKF are more accurate but less intuitive to implement than EKF.

. A similar version of UKF has also been proposed without requiring an augmented state
vector in [Wan and Van Der Merwe 2000] for the case of additive noise (which is the
case in many applications). The covariance of process and measurement noise are then
incorporated using a simple additive procedure when computing P−k and Pyy.

Algorithm 4.4: Unscented Kalman Filter.
Data: Nonlinear model and observation operators:M,H, loading conditions: e0:∞, noise

process and measurements covariance matrices: Q,R, UT parameters: α, β, κ = 0, initial
state vector x̂0 and associated covariance matrix P0.

Result: Successive predictions of the state vector and associated covariance matrix
Initialization: Augmented state and covariance computation:
x̂a0 = [x̂T0 0 0]T ; P a

0 = diag(P0,Q,R) ;

Loop on data assimilation time steps
for k = 0 :∞ do

1) Compute σ-points and associated weights
Xk,0 = x̂k−1 ;
Xk,i = x̂k−1 + α

√
Nx
[√

Pk−1
]
i
, ∀i ∈ J1;NxK ;

Xk,i = x̂k−1 − α
√
Nx
[√

Pk−1
]
i
, ∀i ∈ JNx + 1; 2NxK ;

Wm
0 = 1− 1

α2 ; Wc
0 = Wm

0 + 1− α2 + β ;
Wm
i =Wc

i = 1
2α2Nx

∀ i ∈ J1; 2NxK ;

2) Prediction step
State prediction:
X̂−k = M(X xk , ek,Xwk ) ;
x̂−k =

∑2Nx

i=0 Wm
i X xk,i ;

P−k =
∑2Nx

i=0 Wc
i

(
X̂−k,i − x̂

−
k

)(
X̂−k,i − x̂

−
k

)T ;

Observation prediction:
Yk = H(X xk , ek,X vk ) ;
ŷ−k =

∑2Nx

i=0 Wm
i Yk,i ;

Pyy =
∑2Nx

i=0 Wc
i

(
Yk,i − ŷ−k

) (
Yk,i − ŷ−k

)T ;

Cross-covariance matrix:
P−xy =

∑2Nx

i=0 Wc
i

(
X̂−k,i − x̂

−
k

)(
Yk,i − ŷ−k

)T ;

3) Data assimilation and correction step
Kalman gain matrix: Kk = P−xyP

−1
yy ;

State and covariance update:
x̂k = x̂−k + Kk(yk − ŷ−k ) ;
Pk = P−k −KkPyyK

T
k ;

end
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4.2.6 Scaled Spherical Simplex Filter (S3F)

Very recently, another SPKF algorithm, called Scaled Spherical Simplex Filter (S3F), has been de-
veloped in [Amir et al. 2022; Papakonstantinou et al. 2022a; Papakonstantinou et al. 2022b]. S3F
can be used in all applications where UKF can be involved, achieving the exact same numeri-
cal performance in terms of accuracy, with about 50% CPU time savings. By sampling Nx + 2
σ-points instead of 2Nx + 1, S3F preserves all the important features of UKF with the minimal
amount of sampling points to propagate (see Fig. 4.3 for a 2D and Fig. 4.4 for a 3D concep-
tualization). Fundamentally, the S3F and UKF algorithms do only differ in the way σ-points
(and associated weights) are declared. The overall structure from Alg. 4.4 remains the same,
except from the definition of σ-points that is recalled in the right column of Tab. 4.1 taken from
[Papakonstantinou et al. 2022a].

UT (of parameters α, β, κ = 0) S3F
Sigma-points definition

∀ i ∈ J0; 2NxK,Xi = x̂+
[√

PxC
]
i
, C ∈ RNx×(2Nx+1) ∀ i ∈ J0;Nx + 1K,Xi = x̂+

[√
PxC

]
i
, C ∈ RNx×(Nx+2)

with C =


0 q −q
0 q −q
...

. . . . . .
0 q −q

 with C =


0 −q1 q1 0 . . . 0
0 −q2/2 −q2/2 q2 . . . 0
...

...
...

...
. . .

...
0 −qn/Nx −qn/Nx −qn/Nx . . . qn


with q = α

√
Nx and qi = i/

√
i(i+ 1)Wm

i ∀ i ∈ J1;Nx + 1K

Sigma-points weights

Wm
0 = 1− 1

α2 ; Wc
0 = Wm

0 + 1− α2 + β Wm
0 = 1− 1

α2 ; Wc
0 = Wm

0 + 1− α2 + β
Wm
i =Wc

i = 1
2α2Nx

∀ i ∈ J1; 2NxK Wm
i =Wc

i = 1
α2(Nx+1)

∀ i ∈ J1;Nx + 1K

Table 4.1: Sigma-points sampling for UKF and S3F from a Nx−dimensional estimate (x̂,Px).

Figure 4.4: σ-points locations around the current mean state estimate for UKF (equally spread over a
hypersphere - left) and S3F (corners of a simplex - right). Figure from [Papakonstantinou et al. 2022a].

4.2.7 Joint and Dual nonlinear KFs for parameter estimation

The above-mentioned extensions of the linear KF permit to update physical state vectors in
sequential data assimilation processes involving nonlinear dynamical systems. However, in
many applications, internalmodel parameters θ are uncertain QoI that need to be tracked. More
specifically, in the last decades, researchworkwas dedicated to damagedetection andparameter
identification based on KF algorithms.

[Hoshiya and Saito 1984] was the first (to the author’s best knowledge) that used EKF for
structural dynamics model identification. Let us also cite [Corigliano and Mariani 2001] that
identified composite interface models using EKF, and [Bolzon et al. 2002] that updated a co-
hesive crack model with EKF. More recently, the EKF was coupled with model order reduction
techniques such as POD to identify damage in civil engineering structures [EftekharAzam2014;
Eftekhar Azam and Mariani 2018] or PGD for real-time applications [González et al. 2017].
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UKF was also largely used for similar applications, see [Wan and Van Der Merwe 2000;
Gove andHollinger 2006] for pedagogical tutorials about the use of UKF for nonlinear state and
parameter identification. [Mariani and Corigliano 2005; Eftekhar Azam et al. 2012a; Eftekhar
Azam et al. 2012b] compared UKF and EKF for characterizing composite delamination. A ded-
icated comparison between EKF and UKF in nonlinear structural dynamics was proposed in
[Mariani and Ghisi 2007], and real-time data assimilation prospects were investigated in [Wu
and Smyth 2007]. Several modifications of UKF, especially to save CPU time, were also dis-
cussed in [Moireau and Chapelle 2011; Onat 2019]. More recent works intend to apply EKF
and UKF to update classical nonlinear reinforced concrete models based on earthquake engi-
neering experiments [Astroza et al. 2019a; b; Song et al. 2020; Cheng and T. C. Becker 2021].

Finally, let us mention apart the works of [Alarcon et al. 2011a; Alarcon et al. 2011b; Marc-
hand et al. 2016; 2019] who successfully coupled UKF andmCRE for model updating purposes
(these contributions will be discussed in more detail at the beginning of Section 4.3).

Formulation of an evolution law on model parameters

Parameters must be explicitely integrated to the dynamical system (4.1) if one wants them to be
identified in a KF framework. Let us consider that themodel operator relies on a set of unknown
structural parameters θk ∈ RNθ . Without any a priori knowledge, one can formulate a simple
stationary evolution law:

∂θ

∂t
= 0 (4.32)

Of course, all parameters are not constant with time (damage is a relevant example). The
stationarity assumption is thus relaxed with the addition of a zero-mean Gaussian white-noise
wθ so as to model uncertainty on parameters and enable their evolution during the data assim-
ilation process. Therefore, the full dynamical system (4.1) now reads

θk+1 = θk + wθ,k

xk+1 = M(xk, θk, ek) + wx,k

yk = H(xk, θk, ek) + vk

(4.33)

In the above-mentioned works, two formulations are used to apply nonlinear KF to the sys-
tem (4.33): the so-called Dual and Joint nonlinear KFs, that are equally applicable to any non-
linear KF (EKF, UKF, S3F, ...). Their principles are schematically presented in Fig. 4.5.

Figure 4.5: Joint and dual Kalman filters schemes.

Remark 4.7. The stationarity assumption is not critical for the identification of time-evolutive
parameters. First, the covariance of parameters that defines the pdf of wθ,k allows them to
vary between consecutive steps. Besides, if data assimilation time steps are small enough
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compared to the characteristic time that is required to assess a significant parameter evolu-
tion, then the stationarity assumption is worthwhile. For strongly discontinuous dynamical
problems, a dedicated formulation has been recently proposed in [Chatzis et al. 2017].

Joint Kalman filter

The joint Kalman filter consists in a simple concatenation of state and parameters into a joint
state vector x ?k = [xTk θTk ]T (see Fig. 4.5). The associated dynamical state/observation system
reads: x

?
k+1 =

[
M(xk, θk, ek) + wx,k)

θk + wθ,k

]
yk = H(x?k, ek) + vk

(4.34)

Dual Kalman filter

The dual Kalman filter principle is to keep the parameters as state vector alone. This implies to
turn the observer (often a linear projector when considering classical KF) into a state evaluation
operatorHdual: {

θk+1 = θk + wθ,k

yk = Hdual(xk, θk, ek, wx,k, vk)
(4.35)

This new observer is itself based on a second Kalman filter (which is at the origin of the "dual"
denomination): {

xk+1 = M(xk, ek, θk) + wx,k

yk = H(xk, θk, ek) + vk
(4.36)

Comparison of both approaches

Even though they do not seem that much different, from the computational viewpoint, DKF
appears to be more complicated and time demanding than JKF. Both methods have been imple-
mented in former studies, even compared in structural dynamics by [Mariani and Ghisi 2007].
Even if DKFmay provide slightly better estimates, the combined use of two KFs also introduces
more user-defined parameters (especially process and observation noise) that are difficult to
calibrate. Besides, the risk of divergence in case of corrupted measurements is higher.

Remark 4.8. Beyond JKF and DKF, the estimation of state and parameters can also be sepa-
rated with other schemes, for example via marginalization - see the Rao-Blackwellisation of
PF [Olivier and Smyth 2017]. This approach enables tomarginalize out all the states/param-
eters which do not contribute to any high nonlinearity in the system equations. Hierarchical
separations are also applicable, as proposed in [Tatsis et al. 2022].

Remark 4.9. Although it is not our main concern, Augmented Kalman Filters (AKF) enable to
estimate both state and input forces. The principle is close to the joint KF: unknown input
forces are included in the state vector and estimated alongside during the data assimilation
process. AKF have been studied as a stochastic force identification technique in structural
dynamics applications [Lourens et al. 2012; Naets et al. 2015b], with extensions to state-
input-parameter identification [Naets et al. 2015a; Capalbo et al. 2023]. Eventually, it has
also been used for OSP in [Ercan et al. 2023; Taher et al. 2023].
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4.2.8 Application of nonlinear KFs to structural dynamics
In this section, the aim is to compare the performance
of UKF and EKF for parameter estimation from sparse
measurements in a typical earthquake engineering aca-
demic problem. Let us consider the plane frame example
already exploited in the previous chapters, that is fully
detailed in Appendix A.1.
The frame is clamped to a rigid moving support (shaking
table) and submitted to a 30 s random low-PGA (0.1g)
ground motion input. The stiffness properties are as-
sumed uncertain. The reference stiffness reference field
θ? presents a defect in wall W10 whereas the initial guess
is uniformly underestimating the healthy properties of
the structure by 10% (see Tab. 1.2). The vector θ is then
made of 6 parameters, one associated to each of the sub-
domain depicted in Fig. 4.6.

W10 W20

W11 W21

F10

F20

Figure 4.6: Frame submitted to
ground motion, with subdomains

and sensor locations.

The numerical objective is to recover θ? using nonlinear KFs and simulated accelerationmea-
surements with noise of known level coming from discrete sensors scattered over the structure
(yellow dots in Fig. 4.6). Simulations are performed using aNewmark time integration scheme.
Note that to ensure that a residual model bias remains, the updated FE model is based on a
coarser mesh (4 times less elements) than the model used for simulating data. JEKF and JUKF
have been successfully implemented from scratch in MATLAB© so as to identify key difficulties
and limitations of the algorithms. All drawn remarks are listed below with related figures.

. The process and measurement covariance matrices must be well calibrated in order to
obtain relevant results. On the one hand, the measurement noise covariance can be esti-
mated quite accurately assuming that all measurements are statistically independent and
disturbed by a noise modelled as a zero-mean Gaussian random variable of covariance δ:

R = δI (4.37)
On the other hand, providing an "optimal" value of the process covariance is not an easy
task. Considering that covariance of state and parameters must be defined in accordance
to their order of magnitude, Q is defined as a block diagonal matrix:

Q =

[
qXI 0

0 qθI

]
(4.38)

where qX ∈ [10−8; 10−6] and qθ ∈ [10−4; 10−2] are convenient values for this problem.
. Both JEKF and JUKF are able to quickly and accurately update both state and param-
eters when considering non-noisy measurements (see Fig. 4.7-4.8), as both the gap be-
tween state predictions and measurements (i.e., ‖yk −Cx̂k‖L2) and the gap between esti-
mated parameters and their expected values (i.e., ‖θ̂k − θ?‖L2) converge towards 0.

. As one could have expected, EKF and UKF performances are altered by measurement
noise, even if R is calibrated in accordance. As observed in Fig. 4.9-4.10, the presence of
low-level noise makes the algorithm converge slowly to the expected parameter values.
As one could have guessed, once the noise level becomes too important compared to the
magnitude of the measurements, KF algorithms may diverge. Note that the calibration
of the covariance matrix Q is a painful task for non-expert users, and may necessitate
several trials before obtaining a relevant result.

. In the JUKF, most of the CPU time is spent for propagating information through the non-
linearmodelwhich needs to callmany times theNewmark time integration scheme. In the
JEKF, the computation of the gradient of the model operator also requires recurrent calls
to the model operator if Jacobian matrices are obtained using a finite difference method.
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Figure 4.7: Sequential data assimilation results for the truss problem using JEKF. Parameter means are
getting closer to expected values while state gets well predicted with time. Credible intervals have not

been plotted for the sake of clarity.

Figure 4.8: Sequential data assimilation results for the frame problem using JUKF. Parameter means are
getting closer to expected values and state gets well predicted with time. Credible intervals have not

been plotted for the sake of clarity.

Figure 4.9: Noise influence on JEKF parameter predictions. The W10 parameter (damaged area) is
harder to recover when noise level increases.

4.2.9 Conclusions on the use of nonlinear KF for model updating

This brief bibliography review emphasized that nonlinear KFs are relevant tools to update on-
the-fly FE models of dynamical (and evolutive) systems. They allow to track and identify ac-
curately structural parameters from sparse and noisy measurements, as illustrated for EKF and
UKF in the previous example. This last example was the opportunity to implement classical KF
from scratch and to understand their inherent limitations. In particular, the calibration of the co-
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Figure 4.10: Noise influence on JUKF parameter predictions. The W10 parameter (damaged area) is
harder to recover when noise level increases.

variance error matrices still remains a difficult task as the miscalibration of matrices Qx ,Qθ,R
may lead to irrelevant results, although recent works have presented adaptive techniques for
automating their choice [W. Li et al. 2016; Astroza et al. 2019a; Song et al. 2020]. Besides, the
computational effort associated with state predictions makes the real-time constraint not af-
fordable if no reduced order modeling technique is involved. Finally, typical increase of conver-
gence time towards expected values has been observed when increasing measurement noise;
this means the lack of robustness of KFs with respect to measurement noise can limit their per-
formance.

These aspects motivate the integration of the mCRE within a KF framework, so as to benefit
from the capabilities of the mCRE to perform robust and reliable parameter identification from
highly noisy data within a sequential data assimilation framework. Inspired from the previous
works of [Alarcon et al. 2011a] and [Marchand et al. 2016], a novel data assimilation concept
called theModified Dual Kalman Filter (MDKF) is proposed in the following.

4.3 mCRE-based KF for robust data assimilation

In this section is introduced a new Kalman filter-based data assimilation strategy that extends
the offline mCRE-based model updating algorithm presented in Chapters 1 and 2. The mCRE
is integrated within a nonlinear dual Kalman Filter for stiffness parameter tracking, leading to
the so-called Modified Dual Kalman Filter algorithm (MDKF).

Note that this coupling has already been the subject of extensive research work by [Marc-
hand et al. 2016] who developed a Modified Kalman filter approach dedicated to quasi-statics
model updating where the mCRE written in the time domain was integrated to an UKF and
combined with PGD. However, this formulation is not well suited in our context, the frequency
domain formulation of the mCRE being more adequate and practical in the context of low-
frequency dynamics. To our best knowledge, there is no previously published work presenting
a data assimilation strategy coupling mCREwritten in the frequency domain and KF, except for
the proof of concept addressed by [Alarcon et al. 2011a] inwhich a FEmodel of the SMART2013
specimenwas used, but in an artificialmanner: large-size defaultswere introduced in themodel
to simulate measurements, and localized afterwards using the CRE map.

4.3.1 MDKF formulation: change of observation metrics

Although the common definition of a projection matrix as observer seems rather intuitive since
sensors directly collect measurements to be compared to model predictions, the choice of the
observation metrics (and thus the way measurements are processed) can be reconsidered for
enhanced robustness with respect to measurement noise. In that sense, the developments initi-
ated in [Marchand et al. 2016] differ from the classical nonlinear KF framework for parameter
estimation as the metric space of the observer is no longer the typical L2-norm guaranteeing the
convergence of state estimates towards measurements.
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From the dual KF, one can choose to replace the dual observation operator (classically being
a state prediction Kalman filter) with another functional able to quantify the closeness between
model predictions and assimilated measurements. In this work, relying on advances that have
been performed in the tailoring of mCRE to low-frequency dynamics, theModified Dual Kalman
Filter (MDKF) derives the mCRE as new observer operator in a dual Kalman filtering frame-
work. Practically, in a similar manner as one would compute optimal parameters minimizing
the functional J from (1.21), the observation equation of the MDKF will reinvest the mCRE
gradient∇θJ in order to guarantee the stationarity of the cost-function. Please note that no ad-
ditional numerical error is made with the call to the mCRE gradient as its analytical expression
can be explicitly derived from the constrained minimization problem (1.24) (see Appendix B).
The MDKF dynamical system thus reads:{

θk+1 = θk + wθ,k

0 = ∇θJ (θk, yk) + vk
(4.39)

This new framework thus differs from classical KFs as measurements are indirectly compared
with model predictions through the mCRE functional. Parameter estimates are then sought as
minimizers of the mCRE (according to current measurements). The doubt put on the mCRE
gradient (with the classical observation noise v) then quantifies the authorized proximity of
estimates to the optimal set of parameters that minimizes the mCRE at each time step.

Remark 4.10. Inspired by [Marchand 2017], an initial attempt was made to directly minimize
the value of the mCRE in the observation equation of the KF rather than its gradient. This
approach remains less efficient since the normalization of the mCRE depends on the initial
parameter guess, and since the mCRE does reach exactly 0 due to the existence of measure-
ment noise.

4.3.2 Technical details about MDKF - Calibration guidelines

The coupling between mCRE and dual Kalman filtering avoids the calibration of process and
measurement covariance matrices for state estimation as the mechanical state is directly built
and processedwithin themCRE framework. However, some influent (and tunable) parameters
still need to be defined, either following engineering judgement or using automated procedures.
These parameters are gathered in Tab. 4.2. Besides, several issues have to be addressed:

. the time-frequency domains nested interaction when mixing sequential data assimilation
(in time) and mCRE (written in the frequency domain) properly;

. the robustness of the methodology and the calibration of internal parameters. General
guidelines must be given on how to adapt the enhanced tools from Chapters 1-2 to a data
assimilation framework (namely how to tune α and z(ω)) and how to choose process and
measurement noise covariance matrices (Qθ,R);

. the KF variant that should be used for optimal trade-off between numerical performance
and accuracy. So far, EKF, UKF, and S3F are viable alternatives.

. the capability to performdata assimilation in real-time for online adaptive control prospects.

These issues will be discussed in the remainder of this section.

Data assimilation mCRE functional
. Parameter covariance error matrix Qθ . Confidence into measurements coefficient α
. Observer covariance error matrix R . Frequency weighting function z
. Data assimilation time steps {tk} . Frequency bandwidth Dω and its sampling

Table 4.2: Listing of the influential parameters related to the MDKF algorithm.
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Sliding window technique

The fact that themCRE operates in the frequency domain implies that a dedicated effortmust be
made to define howmeasurements are assimilated by the mCRE functional. Indeed, compared
to classical KF approaches, updating parameters for all new data points does not seem rele-
vant as the observer operates on data in the frequency domain. A sliding window technique,
whose principle is illustrated in Fig. 4.11, is thus proposed for handling the time-frequency
nested interaction.

The key idea of the sliding window technique is to process the most recent data block that
(partially) includes new assimilated data in order to characterize changes in the measurements
frequency content. The design of the sliding window is crucial as it determines the tracking
capabilities of MDKF and how fast the changes in structural parameters can be captured.
This is especially decisive in cases where abrupt stiffness degrations due to damage may occur.

The design of the sliding window must be done in accordance with the measurements ac-
quisition sampling frequency fs and the mCRE frequency bandwidth Dω discretized with a
frequency step ∆f . The latter must be carefully chosen to correctly capture the frequency con-
tent associated to the participating eigenmodes. As mentioned in Chapter 1, common engi-
neering judgment can recommend to choose ∆f such that the narrowest resonant peak is de-
scribed by a least three points. In the upcoming earthquake-engineering applications, with typ-
ical 5% damping ratio values and 2-5 Hz first eigenfrequency values, ∆f is then chosen within
[0.1 Hz; 0.5 Hz]. Therefore, in order to process accurate Fourier transforms in the mCRE frame-
work, the number of data points N in the projection window must verify:

N >
fs
∆f

(4.40)

In order to react efficiently to abrupt changes, one should avoid to average the information
provided by the newly assimilated data with former measurements. N is thus chosen as the
smallest integer satisfying the above inequation. Note that zeropadding can permit to reduce
N without decreasing much the Fourier transforms accuracy, but it should not be used abu-
sively. Besides, the shape of the window must be carefully chosen due to Fourier transforms
apodization issues. In the following, Blackman windows are used, as illustrated in Fig. 4.11.

To track at best sudden structural changes, some overlapping between windows can also be
authorized as the Markov process assumption from the KF remains valid. The overlapping rate
between two consecutive windows αo defines the amount of new assimilated data at each time
step. Using αo-overlapped windows thus implies that the last (1− αo)N data points are new.

Remark 4.11. In practice, non-overlapping sliding windows may limit the tracking capabil-
ities of MDKF: if one imagines that ∆f = 0.5 Hz and fs = 1000 Hz, then N = 2000 data
points are required per window. In other words, time-windows must be at least 2 s-long.
As seismic experiments on shaking tables commonly last up to 60 s, overlapping should be
authorized to prevent from an insufficient number of data assimilation time steps.

Finally, please note that the sliding window also fully conditions the real-time prospects
of the MDKF algorithm to the extent that one considers data is assimilated in real-time if the
necessary CPU time per iteration is lower than the time between two consecutive data assimi-
lation time steps. Therefore, a compromise has to be found on the overlapping rate αo to allow
MDKF to perform in real-time and to react fast enough to damage occurrences. A dedicated
study below shows the paramount effect of αo for accurate real-time identification and confirms
that it must be chosen as high as possible, considering real-time computational constraints.

Calibration of MDKF tuning parameters

Contrary to offline model updating algorithms, the mCRE tuning parameters (α, z(ω)) cannot
be computed using all the available data since the latter is progressively assimilated. However,
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Figure 4.11: Illustration of the sliding window technique for progressive assimilation of data to be
processed in the frequency domain by mCRE. A coarse MDKF time scale is defined according to the
overlapping rate αo and the window slides from tk−1 to tk to assimilate new available data and to

identify changes in the frequency content.

after a first training stage, it can be realistically assumed that α and z(ω) have already been com-
puted from a low-level non-damaging random input using the automated procedures given in
Chapter 1 before performing data assimilation. Nevertheless, if the value ofα is not supposed to
be tuned during experiments (as it is essentially driven by the measurements SNR), the initial
frequency weighting function can become irrelevant if the modal signature of the damaging
specimen significantly changes. z(ω) can be ponctually updated if strong changes in the fre-
quency content are observed, as noticed in Alg. 4.5-4.6.

Regarding the crucial selection of filtering parameters, some guidelines are given for choos-
ing matrices Qθ and R (assumed time-invariant). Using a discretized form of (4.39), one can
directly relate the value of Qθ with the expected possible variation of parameters with time:

Qθ = E
[
wθ,kw

T
θ,k

]
≈ ∆t2 E

[(
∂θ

∂t

)(
∂θ

∂t

)T]
(4.41)

Therefore, assuming the data assimilation time step ∆t = (1− αo)N/fs to be given by the slid-
ing window design, an engineering judgement regarding the possible variability of parameters
allows to give a relevant estimation ofQθ. Regarding the calibration ofR, as mentioned above,
the observation noise vk quantifies the tolerance one can have on the expected stationarity of
the mCRE gradient: it tempers the fact that the mCREmay not be exactly minimized by θk con-
sidering the current measurements yk. Even if one should pick R = 0 idealistically, a small
non-zero value of R is used so as to limit the spurious influence of time steps where data does
not store much relevant information for model updating. Typical convenient values of R are
given in the following applications.

4.3.3 Computational considerations for real-time prospects

To prove the relevance ofMDKF to performdata assimilation efficiently, the last point to address
concerns the numerical performance, in particular when the parameter set θ and/or the number
of degrees-of-freedom of the FE problem become important.

The analysis of Alg. 4.5-4.6 emphasizes the most time-consuming steps of the algorithm
(colored in gray), namely the frequency domain data preprocessing and the computation of the
mCRE for each frequency of Dω (and each σ-point in a SPKF context). Even if the call to Fast
Fourier Transforms is unavoidable, the computation of the mCRE can be drastically shortened
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using all the numerical tools previously mentioned in Chapter 1: reduced basis, parallelization
of frequency samples of Dω, analytical expression of the gradient with respect to parameters.

It should be noticed that (4.39) is not constrained to be used in an UKF framework as origi-
nally presented in [Marchand et al. 2016] and [Alarcon et al. 2011a]. As mentioned earlier, the
S3F is an alternative σ-point Kalman Filter that has proved to have the same numerical perfor-
mance than UKF with almost 50% CPU time reduction. Besides, UKF was preferred to EKF
due to its better accuracy in higher order statistical moments. However, from the computa-
tional viewpoint, EKF avoids the (costly) propagation of σ-points, which implies that it should
be quicker without being less accurate as the analytical expression of the mCRE gradient and
the semi-analytical expression of the mCRE Hessian are available (see Appendix B).

MDKF based on dual EKF, dual UKF and dual S3F structures will be compared in terms
of accuracy and CPU time in the following application, in the next section of this chapter.

4.3.4 CRE-based clustering for partial state-update
The CPU performance of sampling-based KFs remains directly proportional to Nθ. Therefore,
the processing of data in real-time may not be possible in cases whereNθ � 1, which can be the
case in realistic monitoring applications on large-scale structures. A possible way to improve
numerical performance without loss of accuracy is to use the full potential of the mCRE within
the MDKF.

We have presented in Chapter 2 a CRE-based clustering low-cost preprocessing step allow-
ing to focus model updating actions on parameters in need for correction. The clustered exten-
sion ofMDKF is presented inAlg. 4.7 for aMDKFwith SPKFbasis. In a very similarmanner that
the parameter space is optimized in the CRE sensewhen automating offlinemCRE-basedmodel
updating, clustering can be exploited in MDKF to restrict the update to a well-chosen subset of
parameters. They are gathered at each data assimilation time step in the subset R ⊂ J1;NθK.
The subset R corresponds exactly to the cluster of erroneous parameters, to which correcting
actions will be focused in order to update optimally at minimal cost. Non-updated parame-
ters are then not considered from one data assimilation time step to the other, which allows for
large CPU time savings and may avoid the MDKF to fall into physical-meaningless parame-
ter configurations. The relevance of the clustered MDKF is illustrated in Section 4.4.



4.3. mCRE-based KF for robust data assimilation 115

4.3.5 The algorithms

Algorithm 4.5:Modified Dual Kalman Filter with SPKF basis.
Data: Sliding window, data assimilation time steps {tk}, loading conditions e0:∞, mCRE tuning

parameters: Dω, α, z(ω) and reduced basis ΦL, initial statistics on parameters: mean θ̂0
and covariance P θ

0 , process and measurements noise covariance matrices: Qθ,R

Result: Successive estimates of the parameter vector statistics (θ̂k,P θ
k )

Loop on data assimilation time steps
for k = 1 :∞ do

1) Compute σ-points and associated weights
Use Tab. 4.1 to compute σ-points {Xk,i}i and associated weights {Wm

i ,Wc
i }i ;

2) Prediction step
Direct propagation of the σ-points: X−k,i = X ik−1 ∀ i ;
Computation of a priori mean and covariance:
θ̂−k =

∑
iWm

i X
−
k,i ;

P θ−
k =

∑
iWc

i

(
X−k,i − θ̂

−
k

)(
X−k,i − θ̂

−
k

)T
+ Qθ ;

3) Processing new data in the frequency domain
Extraction of the new data block with the sliding window: yk(t)
Fast Fourier Transform for mCRE analysis: Yk(ω) ∀ ω ∈ Dω

Possible option: update the frequency weighting function z(ω)

4) Correction step
Propagation of the σ-points through the mCRE functional:
Yk,i = ∇θJ (X−k,i;Yk) ∀ i ;

Compute propagated mean and covariance matrices
ŷ =

∑
iWm

k,iYk,i ;
Pyy =

∑
iWc

k,i (Yk,i − ŷ) (Yk,i − ŷ)
T ;

Pθy =
∑
iWc

k,i

(
X−k,i − θ̂

−
k

)(
Yk,i − ŷ

)T
;

Correct predictions to compute a posteriori statistics:
Kk = Pθy (Pyy)

−1 ;
θ̂k = θ̂−k −Kkŷ ;
P θ
k = P θ−

k −KkPyyK
T
k ;

end
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Algorithm 4.6:Modified Dual Kalman Filter with EKF basis.
Data: Nonlinear model and observation operators:M,H, loading conditions: e0:∞, error

covariance matrices: Q,R, initial state vector x̂0 and associated covariance matrix P0

Result: Successive estimates of the parameter vector statistics (θ̂k,P θ
k )

Loop on data assimilation time steps
for k = 1 :∞ do

1) Prediction step
θ̃k = θ̂k−1 ;
P θ−
k = P θ

k−1 + Qθ ;

2) Processing new data in the frequency domain
Extraction of the new data block with the sliding window: yk(t)
Fast Fourier Transform for mCRE analysis: Yk(ω) ∀ ω ∈ Dω

Possible option: update the frequency weighting function z(ω)

3) Correction step
Compute mCRE value J (θ̃k;Yk) and derivatives (see Appendix B)

Compute Kalman gain: Kk = P θ−
k ∇2

θJ (θ̃k;Yk)
(
∇2
θJ (θ̃k;Yk)P θ−

k ∇2
θJ (θ̃k;Yk) + R

)−1
;

Correction of parameter estimate mean and covariance:
θ̂k = θ̃k −KkJ (θ̃k, Yk) ;
P θ
k = (I −Kk∇2

θJ (θ̃k;Yk))P θ−
k ;

end

Algorithm 4.7: Clustered Modified Dual Kalman Filter (with SPKF basis)
Data: Sliding window, data assimilation time steps {tk}, loading conditions e0:∞, mCRE tuning

parameters: Dω, α, z(ω) and reduced basis, initial statistics on parameters: mean θ̂0 and
covariance P θ

0 , error covariance matrices: Qθ,R

Result: Successive estimates of the parameter vector statistics (θ̂k,P θ
k )

Loop on data assimilation time steps
for k = 1 :∞ do

0) CRE-based clustering
Computation of the CRE map at the current estimate: ζ2i (θ̂k−1) ∀ i ∈ J1;NθK
Identification of a restricted subset in need of correction θR,k−1, R ⊂ J1;NθK using Alg. 2.1

1) Generation of σ-points
Computation of σ-points for the restricted parameter set θR,k using Tab. 4.1

2) Prediction step
Direct propagation of the σ-points through the state-update equation
Computation of a priori mean and covariance for θR,k
3) Processing new data in the frequency domain
Extraction of the new data block with the sliding window: yk(t)
Fast Fourier Transform for mCRE analysis: Yk(ω) ∀ ω ∈ Dω

4) Correction step
Propagation of the σ-points through the mCRE functional
Correction of predictions to compute a posteriori statistics of θR
The statistics of the non updated parameters remain unchanged from the previous time step.

end
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4.4 Illustrations on a two-story plane frame submitted to random
ground motion

In this Section, the intention is first to validateMDKF for parameter estimation from sparsemea-
surements with a typical earthquake engineering academic example, before comparing MDKF
structures (EKF, UKF, S3F) and the benefits of the CRE-based clustering approach for partial
state-update. The frame example described inAppendix A.1will be reinvested here again. Con-
trary to the first KF illustrations of Section 4.2.8, the frame structure is submitted to a 120 s
random bi-axial ground motion input, and the reference stiffness field presents a defect that
appears during the test in wall W10 (see Fig. 4.12) while the initial guess underestimates by
10% the healthy reference configuration.

Figure 4.12: MDKF application to a plane frame submitted to ground motion - W10 reference stiffness
parameter evolution.

The intuitive wall/slab decomposition of Fig. 4.6 is still chosen: 6 subdomains are defined
{W10, W11, W20, W21, F10, F20}. The stiffness model to update on-the-fly is then made of
Nθ = 6 parameters. Note that the case of Nθ = 12 subdomains will be considered to evaluate
the clustered MDKF extension.

The objective of this academic example is to assess the MDKF ability to recover the ex-
pected parameters from simulated acceleration measurements acquired by discrete sensors
scattered over the structure (yellow dots in Fig. 4.6), with particular attention paid to the ca-
pability of identifying evolutive parameters.

The list of reference MDKF tuning parameters used to obtain the forthcoming results is
stored in Tab. 4.3. These values are implicitly used in the following if not specified.

MDKF framework Reference value
Data sampling frequency fs = 1000 Hz
Overlapping rate for Blackman windows αo = 90%
mCRE frequency interval Dω = [1 Hz; 20 Hz]
mCRE frequency sampling step ∆f = 0.1 Hz
Amount of new data per window (1− αo)/∆f = 0.1 s
Covariance on parameter state Qθ = 10−4I
Covariance on mCRE gradient R = 10−8

Initial covariance on parameters P θ
0 = 0.05I

Table 4.3: Reference MDKF setting parameters for the considered applications. I denotes the identity
matrix of appropriate dimension.

4.4.1 MDKF reference data assimilation results

Numerical results are presented below to assess the overall data assimilation algorithm and the
effect of its internal parameters. Before considering the effect of the underlying nonlinear KF
basis of MDKF and the potentialities of its clustered extension, we will exclusively focus on the
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MDKF algorithm based on UKF as default choice from previous literature works. The latter is
described in Alg. 4.5, with σ-points definition explicitly written in Tab. 4.1.

Assimilation of perfect measurements

The MDKF algorithm is first assessed using (idealistic) non-noisy acceleration measurements
(i.e., δ = 0). Stiffness parameters are correctly updated, as shown in Fig. 4.13 where the Gaus-
sian pdfs π(θ̂k|y0:k) of the parameters are plotted at each data assimilation time step. The close
correlation of pdfs with the reference parameter values as well as the tightness of credible in-
tervals illustrate the relevance of MDKF for on-the-fly model updating.

Even though the first time step is longer as not enough data has been assimilated to per-
form accurate FFTs (10 s-long sliding window), the short time response in the first iterations
emphasizes that all parameters are quickly and correctly identified. Moreover, the decay of
the W10 parameter is well monitored, with an unavoidable slight delay due to the use of the
sliding window. This is certainly the main drawback of the proposed approach. Note also that
the update of the time-evolutive W10 parameter does not lead the algorithm to erroneous local
minima.

Eventually, one can note that the relative confidence in parameter estimates can be observed
throughout the relative width of the plotted pdfs. It highlights how MDKF can indirectly pro-
vide information regarding (relative) uncertainties of estimates, similarly to the confidence in-
tervals evoked in Chapter 2.

Figure 4.13: MDKF data assimilation results of the frame FE model from non-noisy measurements
(δ = 0%, α = 0.1). Probability density functions are plotted for each stiffness parameter with expected

values to identify.

To confirm the fact that MDKF parameter estimates are corrected so as to sequentially min-
imize the mCRE, we compare in Fig. 4.14 the W10 parameter estimate given by MDKF and
the full mCRE evolution with respect toW10 parameter computed after each data asssimilation
time step in an offline manner (with the same data blocks Yk that are used in the MDKF pro-
cess). The strong concordance between mCRE minima and MDKF predictions confirms that
the data assimilation process behaves as planned.

Remark 4.12. Actually, any KF with a prediction equation defined from a model can be re-
ferred to as physics-informed. We claim the MDKF to be physics-guided in the sense that the
physics knowledge is no longer hidden within the prediction stage, but in the observation
metrics.
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Figure 4.14: Emphasis on MDKF being driven by sequential minimization of mCRE during the data
assimilation process. The mCRE map has been plot in an offline manner after each data assimilation

time step using current measurements, and the mCRE minima are compared to the W10 mean estimate
provided by MDKF.

Enhanced robustness with respect to measurement noise

For real-life realistic applications, the stability and robustness of the MDKF with respect to
measurement noise must be addressed. In Fig. 4.15, low-SNR measurements (with δ = 20%)
are successfully assimilated. As measurement noise disturbs the data assimilation process, the
credible interval identified for all parameters becomes larger. The mean estimate θ̂k is also os-
cillating around the expected value due to the fact that noise directly impacts the convexity of
the mCRE functional. The difference in terms of sensitivity between subdomains (W10, W20,
F10) and (W11, W21, F20) is even more significant.

Figure 4.15: MDKF data assimilation results of the frame FE model from noisy measurements
(δ = 20%, α = 10−2). Probability density functions are plotted for each stiffness parameter with

expected values to identify.

Due to the fact that MDKF benefits from mCRE properties, the data assimilation algorithm
shows a different behaviour compared to classical nonlinear KFs with respect to measurement
noise. Indeed, as mCRE tuning parameters are automatically adapted to measurement SNR,
the MDKF algorithm directly integrates the reliability of available data through the mCRE
observer, which leads to an enhanced robustness with respect to measurement noise. In par-
ticular, the estimated means of parameters tend to (slowly) oscillate around the target values
rather than being systematically biased, and increasing the noise level does not affect the reac-
tivity of MDKF (observed by comparison of Fig. 4.13 and 4.15).
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Design of the sliding window

As mentioned in Section 4.3.2, the design of the sliding window must be made with caution
so as to guarantee a compromise between real-time computational constraints and reactivity
to detect defects accurately. Fig. 4.16 allows to show the necessity to correctly calibrate the
overlapping rate between consecutive windows αo when trying to track a local sudden stiffness
change appearing in W10 subdomain. Low values let a lot of remaining CPU time available
between iterations (to perform post-processing operations) but are not reactive enough to fol-
low sudden stiffness changes whereas high values do not enable MDKF to perform in real-time.
The αo = 90% value defined in Tab. 4.3 appears to be a good compromise between accurate
parameter tracking and real-time CPU constraints.

Here again, one can observe the slight delay due to the use of the sliding window, which
is unavoidable and due to the time-frequency domains nested interaction through the mCRE
functional. Although this is probably the main limit of the method, one expects it not to impact
much the additional post-processing operations.

(a) α = 0%
Remaining CPU time between consecutive data

assimilation steps: 9.83 s.

(b) α = 50%
Remaining CPU time between consecutive data

assimilation steps: 4.83 s.

(c) α = 90%
Remaining CPU time between consecutive data

assimilation steps: 0.83 s.

(d) α = 99%
CPU time to assimilate data is too long by 0.08 s for

real-time prospects.

Figure 4.16: Impact of the overlapping rate between consecutive sliding windows to accurately track
sudden stiffness changes in real-time.

Calibration of MDKF error covariance matrices

As the calibration of classical KFs covariance error matrices strongly impacts parameter esti-
mates, a complete study regarding the influence of internal parameters ofMDKF thatmay affect
its performance must be done. As the reference parameters θ?(t) are known in this academic
example, an overall performance indicator, denoted ε, can be defined:

ε =
‖θ?(t)− θ̂(t)‖2L2

‖θ?(t)‖2
L2

with ‖�‖2L2 ,
∫ T

0
�2 dt (4.42)
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where T is the duration of the test. The computation of this performance indicator allows to
carry out a sensitivity analysis on the key parameters of the MDKF algorithm, namely Qθ,R
and α, whose results are presented in Fig. 4.17.

(a) log(ε) as function of Qθ and R (b) log(ε) as function ofQθ and α

Figure 4.17: Impact of tuning parametersQθ,R and α on the performance of MDKF from noisy
measurements (δ = 10%).

Even if this analysis is computationally expensive and not possible in realistic applications
(only because reference parameters are not always known), several remarks can be made:

(i) there exists a set of optimal parameters that minimize the error between the estimated
mean and reference parameters (for a given dataset);

(ii) sub-optimal choices forQθ,R, α (i.e. values close to the optimum) are yet leading to cor-
rect and acceptable results. Indeed, there is no need to select the optimum value among
Qθ,R, α to get satisfying results. For instance, observing Fig. 4.17.a, Qθ can be merely
adjusted between 10−4 and 10−2 and MDKF will still provide accurate results. Actually
for this example, any triplet (Qθ,R, α) that satisfies log ε < −4.6 is satisfying. These re-
sults suggest that the general guidelines provided in Section 4.3.2 are sufficient to calibrate
tuning parameters correctly;

(iii) the optimal values provided by the plots of Fig. 4.17 do not take into account the width
of credible intervals, which is of major importance if the complete parameter statistics are
post-processed.

Remark 4.13. The MDKF results presented above have been obtained processing measure-
ments faster than they were assimilated. With an overlapping rate αo = 90%, 1 s-overlapped
windows were assimilated in less than 0.2 s using a personal laptop (8Go RAM - Intel i5 1.70
GHz processor). The computational burden carried by the numerous calls to mCRE is con-
siderably reduced using all parallelization techniques that have been mentioned previously.
Considering realistic industrial applications, the remaining available CPU time could be ex-
ploited to update mCRE tuning parameters (in particular z(ω)) or to communicate with the
experimental system in order to adapt control laws in a DDDAS context.

4.4.2 MDKF vs. classical joint UKF

One could legitimately question the interest of MDKF in comparison with the classical data
assimilation methods mentioned in Section 4.2. Although it is well known that nonlinear KFs
can lose accuracy with high noise levels, a dedicated comparison in the current case study with
joint UKF (implemented according to Alg. 4.4) has been performed. Key results are shown
in Fig. 4.18 for the tracking of the W10 (evolutive) stiffness parameter. One can first observe
that JUKF does not suffer from the slight delay due to the MDKF sliding window process as it
integrates every single new data point independently, which (i) necessitates much more calls



122 Chapter 4. Physics-guided Kalman filtering for real-time model updating in dynamics

to the model and limits real-time prospects from complex models, and (ii) creates spurious os-
cillations around the mean value due to measurement noise. Besides, JUKF estimates hardly
correspond to the expected value after t = 60 s, showing here the limitations of classical ap-
proaches to recover damage parameters from acceleration measurements using explicit time
integration schemes for model predictions. On the contrary, MDKF parameter estimates are
much more stable in time, whatever the noise level.

(a) JUKF - δ = 0%,Qx = 10−8I ,Qθ = 10−7I ,
R = 10−3I

(b) MDKF - δ = 0%, α = 1

(c) JUKF - δ = 20%,Qx = 10−8I ,Qθ = 10−7I ,
R = 10−1I

(d) MDKF - δ = 20%, α = 10−3

Figure 4.18: Comparison of JUKF and MDKF for the identification of the W10 stiffness parameter from
acceleration measurements. Credible intervals are defined at ±3σθ. For the sake of conciseness, only

the pdf of W10 parameter is plotted.

Another important remark relates to the calibration of the JUKF tuning parameters, which
is a complex task without any a priori idea about the intrinsic relevance of both model and mea-
surements. In particular, the compromise betweenQx ,Qθ andR is a sensitive user-dependent
manipulation that strongly conditions the quality of JUKF results.

Finally, whether for joint or dual UKF, the amount of σ-points to be propagated at each
data assimilation time step is a major limitation considering real-time applications prospects
(justifying among other reasons why recent works focus on ROM techniques).

4.4.3 Comparative study between mCRE-based Kalman filters
So far, a UKF has been used asMDKF algorithmic structure, but the formulation given in (4.39)
does not restrain to UKF. In this paragraph, the aim is to assess which nonlinear KF structure
(UKF, EKF, S3F) is the most appropriate to perform stiffness parameter tracking with MDKF
in real-time from discrete acceleration measurements. Various noise levels are considered δ =
{0; 5; 15}% to assess the robustness to measurement noise. Accuracy is quantified via the L2-
norm misfit error on parameters defined in (4.42). Results of this comparative study are stored
in Tab. 4.4, and illustrated in Fig. 4.19.
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Dataset δ = 0% (perfect data) δ = 5% (noisy) δ = 15% (highly-noisy)
KF basis UKF S3F EKF UKF S3F EKF UKF S3F EKF
εW10 0.0052 0.0052 0.0083 0.0054 0.0054 0.0111 0.0069 0.0070 0.0198
εW11 0.0001 0.0001 0.0001 0.0005 0.0005 0.0004 0.0017 0.0017 0.0011
εW20 0.0002 0.0002 0.0002 0.0004 0.0004 0.0005 0.0004 0.0004 0.0005
εW21 0.0001 0.0001 0.0001 0.0009 0.0009 0.0015 0.0009 0.0009 0.0015
εF10 0.0004 0.0004 0.0003 0.0007 0.0007 0.0006 0.0007 0.0007 0.0006
εF20 0.0001 0.0001 0.0000 0.0003 0.0003 0.0004 0.0003 0.0003 0.0004

Average CPU 0.22303 0.16379 0.13590 0.21300 0.16154 0.13137 0.21424 0.16375 0.12753time per step [s]

Table 4.4: Comparison of mCRE-based KFs accuracy for stiffness parameter tracking.

(a) δ = 0% - UKF basis (b) δ = 5% - UKF basis (c) δ = 15% - UKF basis

(d) δ = 0% - S3F basis (e) δ = 5% - S3F basis (f) δ = 15% - S3F basis

(g) δ = 0% - EKF basis (h) δ = 5% - EKF basis (i) δ = 15% - EKF basis

Figure 4.19: Online update of W10 stiffness parameter using several mCRE-based KFs.

Several remarks can be made from these results:

. Whatever the KF in which the mCRE is integrated, the tracking of parameters is success-
fully performed in real-time, with always more than 50% of remaining time to perform
other operations online. Even for highly-noisy measurements, the stiffness drop of W10
parameter is well captured by mCRE-based data assimilation algorithms.

. From the error indicator values ε• displayed in Tab. 4.4, one can consider the identification
of correct quality. The fact that εW10 is one order of magnitude higher is due to the slight
delay at the identification of the sudden change in W10, which is a direct consequence of
the sliding window technique.

. Owing to the fact that UKF and S3F produce the exact same estimates [Papakonstantinou
et al. 2022a], Fig. 4.19a-4.19c and Fig. 4.19d-4.19f are identical. The analysis of CPU times
in Tab. 4.4 confirms that using S3F σ-points enables a significant gain on this academic
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example (30% faster, 8 σ-points instead of 13 in that case). There is no doubt that this CPU
gain will be higher in problems where the parameter space dimension Nθ is larger. The
systematic use of S3F instead of UKF is thus strongly recommended, as it is as accurate
for a lower computational cost.

. EKF-based MDKF benefits from the simplicity of EKF and the parallel computation of
mCRE computations to process data faster than σ-points-based MDKF. However, it also
naturally carries the limitations of EKF in terms of accuracy, with the loss of tracking re-
activity that appears at high measurement noise levels. Therefore, if EKF-based MDKF
is faster, it is also less accurate than SPKF-based MDKF.

In the end, it appears that S3F-basedMDKF is the best compromise between computational cost
and accurate estimates. It will thus be chosen as reference mCRE-based KF algorithm.

4.4.4 Towards an optimal use of CPU resources: a proof-of-concept for the clustered
MDKF

Finally, we intend to validate the clusteredMDKFwhen trying to update the frame parametriza-
tion described by Nθ = 12 non-overlapping subdomains. Having "too numerous" subdomains
compared to the defect to identify will allow to assess the relevance of the clustered MDKF for
high-dimensional identification problems. More specifically, emphasis is put on the compro-
mise between estimate accuracy and CPU time savings compared to standard MDKF.

In order to avoid falling into local minima as the initial guess does not match correctly with
the expected parameters (10% gaps), the first 10 iterations (over 110) are forced to update the
full set of parameters. Afterwards, the CRE-based clustering automatically drives which pa-
rameters have to be updated (see Alg. 4.7).

The clustered MDKF is applied to assimilate the same data that is processed to obtain the
results displayed in Fig. 4.20, that will be used as reference. Parameter identification results are
shown in Fig. 4.21 and the comparison between CPU times is summarized in Tab. 4.5.

Algorithm Nθ Average CPU time per iteration
UKF-based MDKF 6 0.33 s
S3F-based MDKF 6 0.16 s
UKF-based MDKF 12 0.76 s
S3F-based MDKF 12 0.44 s

Clustered UKF-based MDKF 12 0.48 s (including 0.02 s for the clustering step)
Clustered S3F-based MDKF 12 0.35 s (including 0.02 s for the clustering step)

Table 4.5: Comparison of CPU time per iteration between MDKF and clustered MDKF to assimilate the
same amount of data.

It can be observed that the clustered MDKF does not impact the accuracy of parameter esti-
mates by respectively comparing Fig. 4.20 and 4.21. Indeed, the noise level and MDKF internal
parameters still condition accuracy results, whether the clustering step is present or not. In
terms of CPU times, it is undeniable that the clustering step is not a time-consuming procedure:
only 0.02 s of the 0.5 s allowed to process data in real-time. It provides a significant speed-up
according to the results given in Tab. 4.5: inmost time steps only half of the parameters stored in
θ are updated. The remaining saved time can therefore be spent for DDDAS purposes instead
of trying to update low-sensitive or already well-identified parameters (in the mCRE sense).
Besides, although only 12 parameters were updated here, the speed-up one can expect when
Nθ � 1 may thus be even larger in practice as the ratio between false and healthy elements may
be smaller.

Lastly, CPU time comparisons between UKF-based MDKF and S3F-based MDKF have also
been reported in Tab. 4.5, and show that when combining (i) a KF in which the number of σ-
points is optimized and (ii) an adaptive parametrization of the problem, considerable gains
can be made for substantially equivalent accuracy.
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Figure 4.20: MDKF results of the frame model from noisy measurements (δ = 2%). Pdfs are plotted for
each of the Nθ = 12 parameters with expected values.

Figure 4.21: Clustered MDKF results of the frame model from noisy measurements (δ = 2%). Pdfs are
plotted for each of the Nθ = 12 parameters with expected values.

4.5 Onlinemodal signaturemonitoring of the SMART2013 specimen
from acceleration measurements

4.5.1 Procedure for the online correction of SMART2013 FE model

To assess the applicability of MDKF to process actual measurements, we propose in this second
application to process the SMART2013 acceleration database to update a FEmodel of the tested
specimen. Complete information about the SMART2013 test campaign is given in Appendix
A.2. As a reminder, a trapezoidal three-story RC specimen was subjected to a test sequence
built as an alternation of bi-axial gradually damaging seismic inputs and of random ground
motions with low acceleration level chosen such that the first eigenmodes of the experimental
system are excited but without adding further damage to the RC specimen.

The non-damaging low-PGA tests allow to iteratively adapt the linear control laws according
to the observed eigenfrequency drop. However, when the specimen response becomes strongly
nonlinear (due to damage) within a seismic test, the control strategy fails to keep the input
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stable: it has been the case for run #13 where the test end became unstable after important
damage occured at the bottom of the specimen (see Fig. 5.1). To avoid such issues, the control
strategy must integrate a tool allowing for online modal signature monitoring.

In Chapter 1, the SMART2013 database has already been considered to successfully perform
offline mCRE-based model updating for eigenfrequency tracking. The objective herein is to
extend these results so as to perform online modal signature tracking in real-time from actual
acceleration measurements.

If two FE models have been developed to reproduce the SMART2013 specimen response,
attention will be exclusively given to the model 1 of Fig. A.4 developed by S. Cherubini in
[Richard et al. 2016] because it has shown slightly better results for offline model updating in
Chapter 1.

Remark 4.14. One should first notice that classical KFs fail at properly tracking eigenfrequen-
cies: we applied a classical UKF algorithm with the above-described FE model projected on
a truncated modal basis made of the first 100 eigenmodes of the cantilevered specimen (in
order to be competitive enough in terms of CPU time). Unfortunately, despite all attempts
to calibrate covariance matrices properly, the algorithm systematically diverged (negative
stiffness parameter estimates). This can be explained by the fact that the model to update is
too stiff to properly describe the observed state of the structure (see Tab. 1.5). Note that this
is consistent with the inaccurate results provided by total least-squares minimizations in an
offline model updating context.

Contrary to classical KFs, mechanical fields are not explicitly integrated in the MDKF
as only the mCRE gradient value is exploited in the correction step of the algorithm. This
makes MDKF still relevant in cases where classical KFs fail at identifying parameters due to
strong model discrepancies, as illustrated in the following.

In order to assess the relevance of the proposed methodology in this context, the MDKF
algorithm is carried out on the complete SMART2013 database and post-processing CPU-time
inspection shall allow us to conclude on the suitability of the approach for further online appli-
cations. Practically:

. a precalibration test (based on run #6 data) allows to estimate relevant values for mCRE
tuning parameters α = 10−2 and z(ω). As for the previous case, covariance error matrices
are set toQθ = 10−4I,R = 10−8.

. the measurements of all runs are gathered into a single data block, meaning the campaign
from run #6 to #24 is processed at once. The frequency weighting function is updated
after each low-PGA input block as new ergodic data is available to compute z(ω) with
data-based H-CMIF as explained in Section 1.4.2.

. once parameter statistics {θ̂k,P θ
k } are provided, a low-cost post-processing step consists in

propagating parameters uncertainties to relevantQoI, namely the first three(participating)
eigenfrequencies. The suitability of MDKF for adaptive control law design can then be
judged from eigenfrequencies mean values and associated credible intervals. Of course,
the question of the definition of the FE model parametrization is a problem on its own
that also directly impacts the performance of the algorithm. This point has already been
addressed in Section 1.5.4.
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4.5.2 MDKF-based eigenfrequencymonitoring in real-time - results and discussion
Data assimilation results obtained after processing the complete SMART2013 database are given
in Fig. 4.22 - 4.23 - 4.24. Several remarks can be made regarding:

. MDKF suitability for DDDAS and adaptive control law design

Using the dedicated strategies for enhanced numerical performance explained in Section
4.3 allows to process data faster than they are assimilated as 0.5 s-overlapped data win-
dows are assimilated in less than 0.3 s on a personal laptop. Here again, the computational
burden carried by the numerous calls to mCRE is considerably reduced, and real-time as-
similation is achieved as shown in Tab. 4.6.

MDKF step CPU time [s]
Frequency domain preprocessing of loading and measurements 0.028076
Parameter prediction 0.000348
Computing σ-points 0.000497
Propagating σ-points through the state-update 0.002044
Transforming the σ-points through the mCRE observer 0.366661
Computing Kalman gain and a posteriori estimates 0.002682
Total 0.400380

Table 4.6: Average CPU time required per iteration by MDKF during the assimilation of SMART2013
run #7 database. About 0.6 s remains for additional post-processing before assimilating new data.

Beyond the possibility to track the evolution of eigenfrequencies in real-time, the MDKF
is able to process strongly nonlinear runs, where a posteriorimodel updating methods
are unable to provide any result without data preprocessing (see the focus on the run
#13 in Fig. 4.24). The information provided byMDKF could then be valuable for avoiding
unstable experiments in a DDDAS framework, as illustrated in the last chapter of this
thesis.

Finally, let us remark that the call for reduced basis when computing the mCRE permits
an important computational speed-up, whatever the initial complexity of the FE model to
update. This feature suggests that MDKF (and mCRE in general) could be applied to a
wide range of online model updating problems.

. The applicability of MDKF to online structural monitoring

The proposed data assimilation algorithm is able to update the general stiffness parameter
of a linear FE model in order to track the structural state of a specimen subjected to com-
plex nonlinear phenomena. The newMDKF algorithm has been able to assimilate data in
real-time (regarding CPU-time, according to the above definition) and provided param-
eter estimates that allow (after post-processing) to observe the eigenfrequency drop that
was reported after the experimental campaign [Richard et al. 2016]. In particular, two
stages in the test campaign where the modal signature remains globally constant have
been well recovered: runs #6 to #12 (phase 1: SMART2008 inputs), and #20 to #24 (phase
3: after-shock analysis).

Besides, the similarities between MDKF estimates and (i) former results from stochastic
subspace identification [Charbonnel 2021] and (ii) former mCRE-based model updating
confirm the relevance of parameter estimates provided by MDKF in Fig. 4.22-4.23.

Unfortunately for the SMART2013 case, even if a large number of sensors are scattered
over the specimen (48 data acquisitions channels), the experimental information they
bring is not rich enough to locally quantify the damage state of the specimen, which is
a critical issue for SHM perspectives. Although the processed database can be considered
rich, the initial gap between the updated model and the highly-noisy (δ > 20%) data col-
lected from the experimental campaign does not allow us to perform realistic SHM (with
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localized damage detection). However, please note that, even when performing offline
mCRE-based and least-square-based model updating from the SMART2013 database, we
have not been able to identify more than one global stiffness parameter. Therefore, it
should be pointed out that the SMART2013 database itself seems hardly exploitable for
damage detection problems and SHM, which cannot allow us to draw proper conclusions
about the applicability of MDKF for SHM in this specific context.

. The intrinsic quality of the updated model

Here, contrary to the plane frame problem where Nθ = 6 parameters were updated at
once, the FE model has only been parametrized with one global stiffness parameter. Al-
though this simplistic parametrization choice is enough for control prospects, it is certain
that the corrections of the FE stiffness matrix proposed herein may lack of relevance for
local damage detection purposes. Let us recall that the noise level always exceeds 20%
(see Tab. A.1), which makes the identification of stiffness parameters tough. The same
issue has been raised in Chapter 1 when performing offline model updating from the
SMART2013 database using mCRE and total least-square functionals. If measurements
were less noisy and more dense at the bottom of the specimen (which has been shown to
be the more sensitive area for stiffness parameters of cantilevered structures), it is likely
that more parameters would have been identified, whether in offline or online model up-
dating contexts.
Regarding the SMART2013 FE model itself, the anchorage boundary conditions that fully
cantilever the specimen to the shaking table should be questioned. Indeed, an overestima-
tion of the anchorage stiffness (due to the combination of integrated shell elements and
volumic elements at the soleplate level) may lead to a globally too rigid FE model.

Figure 4.22: SMART2013 - Tracking of the three first eigenfrequencies using MDKF. Mean and credible
intervals are given, as well as former identification results using SSI techniques (in colored bullets) and

offline mCRE-based model updating (in colored circles).
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Figure 4.23: SMART2013 - Focus on the first eigenfrequency identified by MDKF. The shaking table
acceleration recordings in x-direction are given to relate inputs with structural evolution.

Figure 4.24: SMART2013 - Focus on run #13. Although the shaking table device becomes unstable,
MDKF still identifies damage occurence and updates eigenfrequencies adequately.

4.6 Conclusion & prospects for future use of MDKF for SHM appli-
cations

In this chapter, after a bibliography review of most common data assimilation techniques, a
new sequential method, deriving from a KF framework and using the mCRE as an alterna-
tive metrics for observations, has been presented with several improvements for its numerical
performance. This new online model updating algorithm, called Modified Dual Kalman Filter
(MDKF), combines dual KF and mCRE advantages as it proposes a sequential data assimila-
tion with enhanced robustness with respect to measurement noise.

Although intuitively constraining at the first sight because of themCRE definition in the fre-
quency domain, the MDKF has shown relevant performance from synthetic and actual mea-
surements, both in terms of accuracy and CPU time. Indeed, the comparison with classical
UKF on an academic plane frame example illustrated the relevance of the MDKF which is able
to perform accurate and robust identification of stiffness properties in real-time, whatever the
complexity of the FE model under study. This academic case study was also the opportunity to
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fairly compare possible variants of MDKF according to the KF structure in which the mCRE
functional is embedded, with the conclusion that the S3F-based MDKF is the best compro-
mise between computational cost and estimation accuracy. A proof-of-concept for the clustered
MDKF extension was also presented, in which a sequential partial state-update was performed
according to the model error distribution.

Then, the complete processing of the SMART2013 database highlighted (i) the ability of the
MDKF for online eigenfrequency tracking and (ii) the robustness of the algorithm to update a
linear FE model from sparse data involving many nonlinear phenomena. General guidelines
were also provided regarding the calibration of MDKF internal tuning parameters in order to
avoid conditioning the performance of the method to an expert-user’s judgment. Even though
a full automation of the MDKF algorithm is not obtained yet (and is currently investigated),
the positive results obtained herein show the potential of this new sequential data assimilation
algorithm. Contrary to the offline mCRE-based model updating case, the possibility to mon-
itor in real-time the modal signature of the specimen on-the-fly during (nonlinear) seismic
tests is a significant improvement compared to the modal analysis tools that are classically
deployed in shaking table test campaigns.

Let us lastly recall that the applicability of MDKF for SHM has not been properly illustrated
throughout the SMART2013 example as only one global stiffness parameter has been updated
in this application4. However, we hope that forthcoming test campaigns at the CEA/TAMARIS
facility will allow to validate this statement. Besides, although we will not go into further de-
tails regarding the clustered MDKF extension, the latter would be particularly relevant when
considering rich/full-field measurements and damage detection problems such as the ones that
can occur in SHM applications to achieve real-time monitoring constraints.

In the next chapter, MDKF will be reinvested to perform adaptive model-based control of
shaking tables, following the ambition of the thesis work (see Fig. 2).

4According to the classical 3 damage detection levels for SHM [Worden et al. 2007], only level 1 "damage detec-
tion" has been achieved in this application. Levels 2 "damage localization" and 3 "damage quantification" have not
been reached.

www-tamaris.cea.fr




Application to the improvement of shaking
table experiments

Who controls the past controls the future.
Who controls the present controls the past.

George Orwell, 1984



Chapter5
Towards real-time adaptive control of shaking table

experiments
A first proof-of-concept for mCRE-based DDDAS

Shaking table experiments can be performed to assess the response of (damaging) structures subjected to
ground motion loading. The performance of such tests is assessed in terms of acceleration (and displace-
ment) replication. However, due to the numerous nonlinearities of the system underlying physics, and due
to the fact that the tested specimen properties may vary with time, the control of the hydraulic actuators
that are connected to shaking tables may lack of robustness, leading to suddenly unstable experiments.

In this last chapter, the main nonlinearities that disrupt the control of shaking table tests are first
presented, alongside with classical control strategies that are commonly used in the field. In light of the
recent data assimilation and model updating tools based on the modified Constitutive Relation Error, an
exploratory study is performed, in which classical control tools are enhanced using the Modified Dual
Kalman Filter, whose formulation and relevance have been previously highlighted. Although no math-
ematical proof guarantees the stability of such controlled systems, the simulation results that have been
obtained on a simple, yet representative, example suggest that the use of a digital twin updated in real-
time may contribute to enhance the stability of shaking table experiments, although much work remains
to be done before considering an application to actual experimental devices.
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5.1 Earthquake engineering context

5.1.1 Shaking tables, context of use and limitations
The main objective of a shaking table device is the high-fidelity reproduction of acceleration
(and displacement) time histories such as earthquake accelerograms. However, reproducing
a dynamic signal is known to remain a difficult task [Hwang et al. 1987]. As emphasized in
[Le Maoult et al. 2010; 2012; Charbonnel 2021], the control of the hydraulic actuators that drive
shaking tables is still a challenging task, especially because the performance requirements in
terms of accuracy are more and more demanding.

Among the inherent difficulties that exist when trying to control hydraulic actuators dur-
ing shaking table tests, the interaction between the tested specimen and the table is of major
importance [Blondet and Esparza 1988]: the modal signature of the tested specimen can sud-
denly change during experiments due to damage occurence [Charbonnel 2021]. As the modal
signature is one of the key feature for control law design, an initially well-calibrated control
strategycan become totally inappropriate, leading to unstable experiments1. It has been the
case during the SMART2013 run #13, which was manually stopped in emergency by operators
(see Fig. 5.1).

Figure 5.1: SMART2013 Run #13 - Shaking table device becoming unstable due to sudden strong
damage occurence at the bottom of the specimen.

5.1.2 Objectives and methodology
So far, to take into account the evolving mechanical properties of the specimen, shaking table
test campaigns alternate between low-level non damaging random inputs and increasing level
seismic inputs (see Fig. 4.23 and A.3). Such a testing approach may pre-damage the healthy
specimen before reaching the desired level of loading, even though the random tests permit to
incrementally track the modal signature of the specimen using modal analysis tools [Charbon-
nel 2021]. Besides, although various advanced nonlinear control methods have been proposed
for electrohydraulic shaking tables [Plummer 2016; Shen et al. 2016; J. Yao et al. 2016; J. Yao
2018], no clear contribution has been found about on-the-fly adaptive control of shaking table
tests taking into account the table/specimen interaction (the specimen is very often considered
as a rigid mass). Yet, similar adaptive control algorithms are being developed in the context of
real-time hybrid testing [C. E. Silva et al. 2020; Simpson et al. 2020; Abbiati et al. 2021].

The main objective of this work is to explore the possibilities on how MDKF can be advan-
tageously used to enhance shaking table control laws (and as a consequence improve shaking
table test campaigns). So far, MDKF has been successfully applied to overall stiffness tracking
of structures submitted to random ground motion. The objective of this study thus does not

1We refer to the bounded-input/bounded-output (BIBO) stability definition that commonly applies in control
theory for linear time-invariant systems.
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consist in developing the latest state-of-the-art advanced control design algorithms for shaking
tables, but in illustrating how the information carried by MDKF can be reinvested to design
adaptive control laws deemed to improve the stability of shaking table tests.

Nevertheless, the relevance of theMDKF can only be shown in a representative enough case
study. Before considering dedicated control strategies that have been proposed for shaking ta-
bles [Merritt 1967; Jelali and Kroll 2003; Plummer 2007], a realistic model of hydraulic actuator
is presented. It consists in a linearized state-space model inspired from [Conte and Trombetti
2000], with realistic behavior compared to the one of the CEA/TAMARIS facility. Instabilities
due to sudden strong time-varying structural parameters evolutions are highlighted (evenwith
robust control laws), and very similar situations to the ones experimentally observed have been
numerically reproduced. Several improvements prospects (of growing intrusiveness) based on
the information provided by MDKF are then proposed in order to guarantee (at least) the in-
tegrity of the facility by stabilizing shaking table tests in which the specimen undergoes sudden
strong damage.

5.2 Modeling of valve-controlled hydraulic systems

If one looks for accurate and predictive models of valve-controlled systems (VCS), an in-depth
physics-based description is mandatory in order to include themost relevant dynamic and non-
linear effects that are involved [Merritt 1967; Jelali and Kroll 2003; Plummer 2008; Shen et al.
2011]. To do so, the dynamic behavior of each VCS component must be described. Nonetheless,
it is worth mentioning that such complex nonlinear models involve a large number of physical
parameters, and somemay be unknownor hardly identifiable. Besides, most ofmodels involved
in control theory are linearized around the current operating point to exploit the classical Linear
Time Invariant control tools that have been developed in the 20th century. After a brief descrip-
tion of a typical VCS, a linearizedmodel is presented, with all required simplifying assumptions
clearly stated. This model will be reinvested in the following sections, and the interested reader
is referred to [Jelali and Kroll 2003; Plummer 2008] for extended details.

5.2.1 Description and modeling of hydraulic servo-systems

The main components of a shaking table system are: the table, the hydraulic actuators, the hy-
draulic power supply (tank, pumps, accumulators) with pipelines, the servo-valves, the control
unit and the measurement devices (see Fig. 5.2).

In a nutshell, the (controlled) voltage usv sent to the servo-valve allows to drive the oil flows
(QA, QB) that are sent to the cylinder chambers. The oil is supplied by a power unit at a constant
pressure pS . The return flow is fed to a tank under the (low) return pressure pT . The difference
of oil flows causes a difference of pressure within the cylinder chambers (pA, pB), which thus
drives the piston rodmotion. It is of paramount importance to notice that a constant servo-valve
opening leads to a constant oil flow and differential pressure pA−pB , which results in a constant
velocity imposed for the rod ẋt (until mechanical stop). This explains the necessity of a pure
integrator in the control loop of the rod displacement. The overall shaking table system stands
on a reaction mass isolated from the rest of the facility that is recommended to be as stiff as
possible to avoid parasitic base motions.

In order to understand the inherent physics of a VCS, the own dynamic behavior of its sub-
components is independently analyzed and modeled [Jelali and Kroll 2003].

Power supply

The behavior of the pump and power supply unit is not critical. Most of the time, the supply
pressure is assumed constant. It is a fair assumption in most applications as long as accumu-
lators are placed close to the pumping device and main pipelines to compensate for pressure
drops. The pressure supply can be easily controlled in most facilities with dedicated sensors.
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Figure 5.2: Uniaxial shaking table powered by a VCS to test a two-story specimen. Control unit and
measurement devices are not represented for the sake of clarity. The servo-valve details are also hidden

because discussed afterwards.

Pipelines

The main components of a VCS are connected by pipelines. If pipelines are not too long2, the
pipeline volume can be added to the corresponding cylinder chamber, and pipeline dynamics
can be neglected. It avoids the modeling of flows using laminar Hagen-Poiseuille equations
combined with head losses models as pipes are not fully straight-lined.

Servo-valves

Servo-valves are essential components as they drive the input flows sent to actuators. Unfortu-
nately, their behavior is quite complex to catch accurately, due to several nonlinear phenomena:

. Dead band related to valve center manufacturing imperfections. The dead band effect oc-
curs around the central position of the spool xsv = 0 and its effect depends on the spool
geometrical defects (see Fig. 5.3). In the underlapped case, undesirable actuator move-
ments may occur as it is hard to maintain a null differential flow. In the overlapped case,
pressure peaks may occur, which may put at risk the integrity of other components. If
most commercialized servo-valves are designed to be zero-lapped due to the linear rela-
tionship between usv and the output flow Q, there may remain a residual lapping that
disturbs the (assumed linear) valve input-output relationship.

. The output flow is a square-root function of flow equations spool xsv. For a zero-lapped
valves, typical flow-pressure relationships write:

Q = csvxsv
√

∆p sign(∆p) (5.1)
2A rule of thumb involving the effective oil bulk modulus β, the oil density ρ, and the maximal frequency of

interest fmax allows to estimate the pipeline length l fromwhich flowdynamics cannot be neglected: l < 1
10fmax

√
β
ρ
.

With the approximate values for mineral oil properties β = 650 MPa, ρ = 850 kg/m3 and fmax = 50 Hz, one has to
guarantee that l < 1.7 m, which is satisfied at the CEA/TAMARIS facility
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where csv, xsv and ∆p respectively refer to the valve constant (also called discharge coef-
ficients), the spool stroke, and the pressure difference between valve orifices.

. Saturations due to limited spool displacement (mechanical stops) and maximal voltage
applicable to the servo-valve.

. Leakage flowwithin the valve which impacts the behavior of the latter for small openings.

. Hysteresis due to friction forces between the spool and the servo-valve body.

. Flow induced friction forces.

Figure 5.3: Dead-band phenomenon and its consequence on the relationship between input voltage and
output valve flow.

Moreover, because of their limited flow capacities, multi-stage servo-valves are preferred:
they have one or two hydraulic amplification stages that substantially multiply the output flows
to drive consequent masses, or to overcome important external forces.

One of the most common servo-valve types used, currently used at the CEA/TAMARIS
facility, is the two-stage flapper-nozzle valve (see Fig. 5.4), in which:

(i) the flapper-nozzle system (driven by a low-level voltage) converts the flapper motion into
a hydraulically-powered motion of the spool,

(ii) the small spool motions control relatively large oil flows through the spool ports, which
acts as an amplifier.

As one can imagine, full physics-based models are too complex to be properly used, partic-
ularly because they involve a too important number of uncertain parameters that are hard (or
even impossible) to identify. Empirical simplifiedmodels can be exploited for control purposes:
for instance, single-stage servo-valves are modeled using a 2nd order model whose parameters
are provided by manufacturers.

As shown in Fig. 5.4, an inner control loop is present to properly drive the three-stage servo-
valve. Themain spool displacement is fed back using a LVDT sensor, and a proportional deriva-
tive controller allows to stabilize the control of the servo-valve in the frequency range of interest
(up to 50 Hz for seismic replication). In practice, the behavior of the inner controlled servo-
valve can be drastically simplified: subspace-based identification tests recently performed at
the CEA/TAMARIS facility suggest that modeling the controlled servo-valve as a pure gain
remains a valid assumption up to about 200 Hz (see Fig. 5.5).

Hydraulic actuator

The actuator is the last component of the servo-system as directly connected to the load. Ac-
cording to [Merritt 1967], an exhaustive mathematical model of hydraulic cylinder must take
into account important several effects :

. The oil compressibility: at the operating temperature, the oil cannot be assumed incom-
pressible, and the fluid inside the chambers acts like a spring, which introduces the so-
called oil column frequency. The latter drastically limits the perform of hydraulic servo-
systems for higher frequencies. Actually, cancelling the undesired effects of the oil column
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Figure 5.4: Scheme of three-stage servo-valve connected to an actuator, with connections to inner and
outer control loops.

Figure 5.5: Identification of the servo-valve inner loop transfer function. A 16th order SS model allows
to correctly capture the behavior of the servo-valve up to 350 Hz. A pure gain modeling assumption up

to 200 Hz is valid from experimental observations.

frequency is one of the main challenges when designing the outer control loop (see Fig.
5.4) as it occurs within the frequency range of interest for shaking table tests.

. The dependency of oil bulk modulus and oil density on pressure and temperature.

. The nonlinear friction forces opposing the piston/rod velocity.
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In such a context, the flow continuity leads to the pressure dynamics equations of the cylinder:{
QA −QLe = V̇A + VA

β(pA) ṗA

QB −QLe = V̇B + VB
β(pB) ṗB

with


VA = 1

2V0 + xtAp

VB = 1
2V0 − xtAp

QLe = kLe(pA − pB)

(5.2)

In terms of notations, xt is the actuator stroke,QLe the leakage flow between both chambers
with kLe the associated leakage coefficient, Ap is the piston section, V0 is the amount of fluid
stacked into the chambers and β the effective oil bulk modulus. As the pressure drives the
motion of the piston rod, one can also write the piston motion dynamics equation:

mtẍt + Ff (ẋt) = (pA − pB)Ap − Fext (5.3)

wheremt is the sum of themasses from the fluid in the chambers and pipelines, from the piston
and from the table. Fext is the reaction force coming from the structure clamped on the table.
Ff is the friction model, which is classically defined using the so-called Stribeck friction model:

Ff (ẋt) = σtẋt + sign(ẋt)

[
FC + FS exp

(
−|ẋt|
cS

)]
(5.4)

Figure 5.6: Stribeck friction force model.

It combines linear viscosity, static and Coulomb
friction with dedicated parameters. The typi-
cal nonlinear shape of Stribeck friction model
is shown in Fig. 5.6. Such strong nonlineari-
ties are ignored in linearized models, but they
are responsible for the difficulties to maintain
the (ẋt = 0)-command stable: the strong dis-
continuity makes the cancellation of the steady-
state error difficult and causes parasitic motions
around a constant piston position [Alleyne and
R. Liu 1999; Alleyne and R. Liu 2000; Le Maoult
et al. 2010].

5.2.2 Towards a linearized shaking table model
Eventually, the dynamical properties of the valve-controlled system may be significantly
changed once the actuator is connected to a compliant structure (which is the case during
shaking table tests), as suggested by the Fext term in the piston motion dynamics. Therefore,
the (nonlinear) behavior of the specimen that is tested should also be included into the set of
governing equations (i.e. from the servo-valve input voltage to the structural response). In a
very general manner [Geradin and Rixen 2015], the response of a nonlinear structure (in a FE
sense) submitted to a ground motion loading reads:

M ẍs + fs(ẋs, xs) = −M ẍt (5.5)

where fs describes the nonlinear internal forces. In the linear case, one has fs = Dẋs + Kxs.
The nonlinear shaking table device model governed by (5.1) to (5.5) is yet representative

of many underlying nonlinear phenomena, but too computationally expensive to be used in for
real-time applications, and it is also inadequate in the perspective of being accomodated with
classical control strategies, which are mostly based on linear(ized)models. In the following, we
propose to derive the linearized shaking table model proposed by [Conte and Trombetti 2000].
The main equations of the model (with assumptions) are briefly recalled below, but one should
particularly note that all the control issues due to nonlinear phenomena will not be observable
using this linear model. The disturbance rejection capabilities of the model will assess whether
the control strategy is able to efficiently cancel the effects of valve lapping and Stribeck friction
in the frequency range of interest.

Themandatory assumptions to justify the linearmodel given by [Conte and Trombetti 2000]
are listed below:
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. As the servo-valve can be drivenmuchmore accurately than the remainder of the shaking
table system (actuator, outer control loop, reaction mass), the effect of the inner control
loop is usually neglected in the overall modeling. Therefore, the oil flow rate sent to the
actuator can be modeled as a linear function of the servo-valve input voltage.

. The base (reaction mass) on which stands the shaking table is assumed infinitely stiff.

. The pipeline dynamics is neglected in the frequency range of interest.

. The fluid leakage through the actuator seals is assumed proportional to the pressure in
the cylinder chambers.

. The friction forces in the actuator are neglected compared to the other forces at stake (re-
action force from the structure in particular).

. The oil is assumed compressible, and its mass is neglected with respect to the masses of
piston, table and structure. Its temperature is assumed constant, and the bulk modulus
dependency into pressure and temperature is neglected as well.

. The specimen response is assumed to remain linear and modeled as a single DoF (SDoF)
system with modal properties associated to its first eigenfrequency (strong assumption
and inconsistent with damage occurence that will be all).

The associated system of (linear) equations in the time domain reads:

Qsv(t) = ksvusv(t)

Qsv(t) = QLe(t) +Apẋt +
V0

4βAp
Ḟa

QLe(t) = kLe
Fa(t)

Ap
Fa(t) = (mt +ms)ẍt +msẍs

ẍs + 2ξsωsẋs + ω2xs(t) = −ẍt

(5.6)

In terms of notations, xd refers to the desired shaking table displacement, ksv is the servo-valve
gain, qsv is the oil flow rate sent from the servo-valve to the actuator, Fa is the actuator force,
kLe is the leakage coefficient, and (ωs, ξs) denote the eigenproperties (angular frequency and
damping ratio) of the structure seen as a SDoF system3. An associated state-space representa-
tion is:

ẋ = Ax+ Busv

with x =
[
xt ẋt Fa xs ẋs

]T

A =


0 1 0 0 0
0 0 1

mt
ω2
s
ms
mt

2ξsωs
ms
mt

0 −4βA2
p

V0
−4βAp

V0
kLe 0 0

0 0 0 0 1

0 0 − 1
mt

−ω2
s

(
1 + ms

mt

)
−2ξsωs

(
1 + ms

mt

)

 , B =


0
0

4βAp
V ksv

0
0


(5.7)

One can directly notice thatA is not a full rank matrix as the first column is null, due to the fact
that a hydraulic actuator is flow-based. Therefore, a zero-pole naturally appears in the equiv-
alent transfer function of (5.7) as the actuator stroke is not directly controlled. An equivalent
block-scheme written in the Laplace domain of (5.6) is given in Fig. 5.7. The associated fre-
quency response function for the parameter set given in Tab. 5.1 is shown in Fig. 5.8. The
influence of the specimen dynamics is emphasized, especially (i) on the impact on the oil col-
umn frequency (at around 35 Hz in that case) and (ii) on the effect of low-damping around the
specimen eigenfrequency. It thus seems that the outer-loop control law sensitivity with respect
to the specimen modal parameters is not neglictible, which can (partially) justify the control
issues that appeared with sudden damage occurences.

3If the structure is modeled as a multi-DoF system, the last equation becomes a matrix system ΦTnMsΦnq̈s,n +
ΦTnDsΦnq̇s,n + ΦTnKsΦnqs,n = ΦTnMsẍt, with xs(t) =

∑L
n=1 Φnqn(t) for all modes Φn stored inΦL.



142 Chapter 5. Towards real-time adaptive control of shaking tables

Figure 5.7: Block-scheme of the linearized shaking table model, with emphasis on components
contributions and couplings (s is the Laplace variable).

Parameters Reference value
Servo-valve gain ksv = 5400.10−6 m3/V/s
Piston effective section Ap = 40.10−4 m2

Volume of oil column in the actuator V = 1700.10−6 m3

Oil bulk modulus β = 675.106 Pa
Valve leakage coefficient kLe = 2.5.10−19 m3/Pa/s
Mass of the table mt = 500 kg
Mass of the specimen ms = 1000 kg
Eigenfrequency of the specimen ωs/(2π) = 5 Hz
Damping ratio of the specimen ξs = 0.05 [-]

Table 5.1: Reference setting parameters of the shaking table device, considering a SDoF specimen
clamped on the table.
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Figure 5.8: Bode plot of the shaking table system linearized transfer function (given in Fig. 5.7), with
emphasis on the impact of the specimen modal properties on the frequency response Xt/Usv .

Lastly, to remain consistent with practical applications, the full stateX is not observed. The
measurements Y are the only available knowledge that the user has access to for the design of
control strategies in practice. It is a commonpractice tomeasure the pression difference between
chambers ∆p, the position and the acceleration of the piston (xt, ẍt), and the position and the
acceleration of the specimen (xs, ẍs).
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5.2.3 Concluding remarks on the modeling of shaking table devices
VCSs are complex systems that necessitate advanced knowledge in thermics, structuralmechan-
ics, and fluidmechanics to get an exhaustive physics-based description. Because the internal pa-
rameters in such complex models are sometimes unknown or hardly identifiable in an accurate
manner, more or less complex models have been derived according to the user requirements.
In this section, we mentioned many nonlinear phenomena that are influent but that are (fairly)
neglected in order to get an appropriate model for control purposes. Therefore, although the
VCS model used in the remainder of this study is imperfect, it is worth having a model built
from degraded physics as long as it is exploitable and identifiable. The knowledge of the
model errors can allow the user to select appropriate control laws, in particular ones that can
efficiently reject disturbances associated to neglected phenomena. As a remark, having access
to an erroneous model (even if not identifiable) can at least be used to evidence sensitivity or
inconsistent behavior.

5.3 Review of classical shaking table control strategies
Now that themain phenomena involved in electrohydraulic shaking tables have been described,
control strategies can be presented in accordance. The objective of this section is to start from
control basics [Mullhaupt 2017; Preumont 2018] before introducing the key ideas hidden behind
advanced control strategies such as the ones presented in [J. Yao et al. 2014; Shen et al. 2016; J.
Yao et al. 2016]. The reader should keep inmind that themain target here is the control of VCSs,
which implies that not all the control strategies of the literature will be mentioned (e.g. fuzzy
control or control based onNeural Networks that are getting popular for robotics applications).

Although a closed-loop on the actuator rod displacement is the most intuitive approach
for shaking tables, the acceleration transmitted to the table is the main quantity of interest.
Indeed, the resistance of equipments to seism is often quantified in terms of pseudo-spectral
acceleration4, and a correct displacement tracking performance does not guarantee relevant
acceleration replication. Themain challenges shaking table control lawsmust address dealwith:

. the compensation of the oil column resonance within the frequency range of interest. It is
a hard task due to the low damping and time-varying properties of the specimen. If not
taken into account, situations like the one of Fig. 5.1 may happen;

. the rejection of the servo-system nonlinearities, in particular the Stribeck friction and the
valve spool lapping. They are responsible for the so-called stick-slip instabilities at close-
to-zero actuator velocity setpoint;

. the robustness to modeling errors: if the estimator that intends to predict the response of
the system is not accurate, associated control laws may be inadequate. This is one major
issue when performing inverse model control, as discussed further. A typical example is
the spillover instability [Preumont 2018], which appearswhen the contribution of residual
high-frequency modes is not neglictible but not taken into account by the model;

. the parasitic motions of multi-axis shaking tables when trying to replicate 3D groundmo-
tions. A minimal cross-coupling between each actuator must be achieved so as to avoid
parasitic interferences [Plummer 2008; 2016]. This is typically the case for the AZALEE
shaking table, in which at least 2 actuators are involved per loading direction.

4The pseudo-spectral acceleration is constructed by varying the frequency of a 1-DoF oscillator and plotting this
frequency on the x-axis and the temporal maximum of the response to a seismic load on the y-axis. This provides a
pseudo-acceleration response spectrum for a fixed damping.
They are widely used in earthquake engineering because, at a first approximation, structures can be assimilated to
oscillators whose natural frequencies and damping are approximately known.
For example the French authority of nuclear safety norm RFS 2001-1 or the NF EN 60068-2-57 which specifies the
pseudo-spectral acceleration error that is accepted when assessing the seismic risk of nuclear power plant equip-
ments.
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Of course, these issues must be handled within the physical bounds of the system perfor-
mance: (i) the piston mechanical stops limit the range of actuator displacement, (ii) the servo-
valve voltage saturation impacts the oil flow sent to the actuator and thus the maximum piston
velocity, (iii) the acceleration of the table is limited by the piston effective area and by the pres-
sure supply.

Remark 5.1. There is no unified manner to control shaking tables because most of them are
not designed in the same manner. One can refer to [Gomez and Stoten 2000] for one of
the rare attempts to compare European shaking tables. The CEA/TAMARIS shaking table
control strategy is presented in [LeMaoult et al. 2012; Moutoussamy 2013] and is quite close
to the one of the E-Defense, the world’s largest shaking table [Tagawa and Kajiwara 2007].

5.3.1 Feedback control

If either the output or some part of the output is returned to the input side and used as part of
the system input, then it is known as feedback, also referred as closed-loop control. Feedback
plays an important role to improve the performance of controlled systems as the information
collected by sensors is used to drive the system according to given performance requirements
(see Fig. 5.9).

Figure 5.9: Feedback control system scheme. s denotes the Laplace variable, G the system transfer
function, and Cfbk the controller transfer function.

Among the desired features of the closed-loop system are the stability properties, expressed
by the gain and phasemargins, the transient response characteristics, the frequency bandwidth,
the high-frequency attenuation for measurement noise rejection, and the ability to maintain the
output at a desired value with minimum static error.

The most standard feedback controller is the Proportional Integral Derivative controller (PID)
with all its variants (P, PI and PD, lead and lag compensators). In the Laplace domain, the PID
transfer function reads:

CPID(s) = Kp +
Ki

s
+Kds (5.8)

where Kp,Ki,Kd are the three gains that respectively weigh the proportional, integral and
derivative actions of the controller. Although neither the most recent nor most complex control
approach, PID is still considered for its robustness and simple framework [S. Bhattacharyya
2017]. One of the main challenges when using PID controllers is their calibration: different
strategies have been proposed to tune PID gains at best. First tuning approacheswere built from
empirical observations: the Ziegler and Nichols technique for instance [Ziegler and Nichols
1942]. Since the 1990’s, automated tuning techniques have been implemented in commercial
softwares5 [Astrom and Hagglund 1995; Wang and Shao 2000]. More recently, [Kang et al.
2005] even tried to optimize the calibration of PID gains using neural networks.

Another strong limitation lies in the fact that PID are designed for linear time invariant sys-
tems, which makes them therefore not well suited for damaging shaking table experiments in
which modal properties of the tested specimen may significantly vary with time. An adaptive
PID control strategy has been proposed in [Foltin and Sekaj 2006], but it remains an empirical

5An example is the pidtune function of the MATLAB© control system toolbox.
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alternative that can be useful only when it is possible to anticipate for system nonlinearities and
associated effects on the control framework.

Regarding the need for both displacement and acceleration tracking performance, note that
acceleration feedback can be used alongside displacement feedback, but it cannot be used alone
as the displacement of the rod ismechanically constrained. Due to the closeness of pressure and
acceleration in actuators dynamics, acceleration feedback is also referred to as pressure feedback
in the literature [Jelali and Kroll 2003]. Although theoretically beneficial, it seems there are no
clear guidelines given for the calibration of the inner acceleration feedback loop when coupled
to displacement feedback.

The interested reader will also find control strategies based on force feedback [Alleyne and
R. Liu 1999; Alleyne and R. Liu 2000], which is encouraged by the presence of force sensors
in the actuator rod. Force feedback allows to attenuate the structure/actuator interaction by
directly providing ameasure of the reaction force transmitted by the actuator to the table. Force
feedback is often used alongside displacement-based feedback control as multi-axis shaking
tables are over-constrained (when having more actuators than kinematic DoFs). Thus, internal
force control is used to prevent actuators ’fighting’ against each other [Plummer 2008; 2016].

5.3.2 Feedforward control

Feedforward control is classically used in addition to feedback control. It complements the latter
and modifies the input signal by anticipation of the open-loop response [Jelali and Kroll 2003].
The major difference with feedback control is that it does not take into account the information
carried by measurements. It is thus not subjected to identification delays. In most applications,
feedforward controllers integrate an inverse model of the open-loop. Because there is no con-
sideration for the structure response during the test itself and thus no interaction between the
system and the feedforward controller, the latter allows (if well calibrated) to control shaking
table tests even after the oil column eigenfrequency [Conte and Trombetti 2000; Butterworth
et al. 2012]. However, such methods are not robust at all to damage occurence as as they fully
ignore the system evolution, which justifies the combined usewith feedback control [LeMaoult
et al. 2010].

For shaking table experiments, frequency-domain feedforward control is commonly pro-
posed by control industrials (ISTAR, Pulsar ICS,...). A principle scheme is given in Fig. 5.10.
The inverse model of the open-loop Ĝ−1 is computed offline. Several inherent limitations to
such control approach must be reported:

. test campaigns are getting more complex, as it necessitates to update the inverse closed-
loopmodel estimate Ĥ−1. In particular, it explainswhy tests campaigns alternate between
low level non-damaging tests and seismic tests of increasing intensity [Richard et al. 2016;
Charbonnel 2021].

. The knowledge of the input signal U(s) must be complete before the test has been
launched, which is not the case for hybrid experiments [Moutoussamy 2013; Abbiati
et al. 2021].

. The control strategy is more sensitive as any discrepancy between the estimated inverse
model with the actual device may turn the controlled device unstable.

Overall, it is worth combining feedback and feedforward control techniques. It is often re-
ferred to as 2-DoF control in the literature: a popular example is the 2-DoF PID [Araki and
Taguchi 2003], while a generalization of combined feedback and feedforward control is known
as three-variable controller (TVC). It encapsulates both acceleration, velocity and displacement
feedback, hence its popular use for shaking table control laws [Plummer 2007; Shen et al. 2016]:
the fact that TVC explicitely compares measured displacement, velocity and acceleration is ap-
pealing for shaking table tests as it may meet both acceleration and displacement requirements.
For example, the E-defense shaking table uses a TVC as basic controller [Tagawa and Kajiwara
2007]. The CEA/TAMARIS facility shaking tables are also based on a strategy derived from

http://www-tamaris.cea.fr/
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Figure 5.10: Feedforward control coupled to feedback control. s denotes the Laplace variable, G the
system transfer function, Cfwd and Cfbk the controller transfer functions.

the TVC [Le Maoult et al. 2012]. A TVC block diagram is shown in Fig. 5.11. It includes a
velocity filter, as the latter is very often reconstructed from displacement and acceleration data
[Tagawa and Kajiwara 2007]. The reference signal generator block allows to obtain coherent
displacement, velocity and acceleration inputs from an initial acceleration input command.

Figure 5.11: Three-variable controller - Feedback and feedforward gains are denoted by �fbk and �fwd,
respectively. Measured acceleration Ya and displacement Yd are distinguished to fit with practical

applications. (K0, ξ0, ω0) are the reference signal generator parameters.

5.3.3 State-space estimation-based control

Since the groundbreaking work of Kalman for state estimation and optimal control, [Kalman
1960; 1964], state-space-based control methods became popular due to (i) their applicability
to any problem that can be described by a (linearized) first-order partial differential equation
in time, (ii) the natural generalization of transfer function it represents for Multi-Input Multi-
Output (MIMO) systems and, (iii) the mathematical proofs associated to the stability and ro-
bustness of these methods.

SS-based control aims to position at best the poles of the closed-loop transfer function in
the stability area, according to the phase and gain margins that are specified (denotedmϕ and
mδ respectively - see Fig. 5.12). A system remains stable if all its poles are located in the left-
half plane of the root locus. Performance requirements are achieved if they are far enough
from the <(s) = mδ border, and inside the cone of anglemϕ that limitates the damping rate of
eigenmodes. Another safetymarginmε is defined: it represents the fact that poles cannot be too
strictly chosen to avoid too important demands on the command and saturation phenomena.

There are many control strategies that can be used to obtain the desired pole positions.
Among them, Ackermann’s formulae [Ackermann 1980] is often used for placing poles at de-
sired locations (as long as the system is controllable) [Y. Xu et al. 2008; Ouyang et al. 2013]. An-
other very popular approach from the optimal control theory is the Linear Quadratic command
(LQ), largely discussed in [Preumont 2018] and applied for shaking table tests in [Phillips et al.
2014; Najafi and Spencer 2020] among other contributions. LQ is widely used due to its connec-
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Figure 5.12: Emphasis on the nice stability area (in green) for pole placement in the root locus. It is
defined according to the phase and gain margins denotedmϕ andmδ .

tions with Kalman filtering [Kalman 1964], and due to the Linear Quadratic Gaussian extension
(LQG) to take measurement noise and model uncertainty into account.

In cases where the full state vector is not directly accessible (number of measurements lower
than the number of state variables), an observer is mandatory for state reconstruction, inde-
pendently from the control scheme. Ackermann’s formula can be reinvested herein to build a
Luenberger observer. The KF can also be used as it designs an optimal observer in the sense that
it minimizes the variance of the state estimate [Kalman 1960]. A comparison between Luen-
berger observer and EKF has been proposed in [Y. Zhang et al. 2009], with the conclusion that
the Luenberger observer is more efficient than EKF for steady-state performance and low speed
operation, but lacks of robustness to measurement noise features.

Observability and controllability

All the following mathematical developments and control algorithms are valid only if the sys-
tem one aims to control is observable and controllable.

Controllability measures the ability of a given actuator configuration to control all the states
of the system; conversely, observability measures the ability of a given sensor configuration
to supply all the information necessary to estimate all the system states. Classically, control
theory offers controllability and observability tests which are based on the rank deficiency of
the controllability and observability matrices: the system is controllable if the controllability
matrix is full rank, and observable if the observability matrix is full rank.

Considering the linear time invariant system described by the linear SS model of (4.2) with
matrices A, B, C, and the state vector x is of size nx, the controllability matrix C and the ob-
servability matrix O are defined as:

C =
[
B AB A2B . . . Anx−1B

]
; O =

[
CT (CA)T (CA2)T . . . (CAnx−1)T

]T (5.9)

If rank(C) = nx, then the pair (A,B) is said to be controllable. Similarly, if rank(O) = nx,
then the pair (A,C) is said to be observable. If these conditions are met, then one can write a
controlled-observed system under the following form:{

ẋ = (A−BK)x+ Bu−L(Cx− y + v) + w

x(t = 0) = 0
(5.10)

The regulator K directly multiplies the state vector to guarantee the system stability, and the
observerL allows to estimate the state frommeasurements. The dynamics of the system is thus
modified by integrating the gap between model predictions and measurements (see Fig. 5.14).
Note that the design of the observer and the regulator are mathematically independent (as they
are quantified by different pairs of matrices).
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Controllability of a 2-DoFs system: a first analytical example to emphasize the table-
specimen interaction

To understand how the interaction between the (nonlinear) specimen and the shaking table
can disturb the control of the latter, and in order to illustrate the concept of controllability, let
us consider a 2-DoFs spring-mass-damper system that represents a shaking table with a struc-
ture embedded on it. Its representation and notations are given in Fig. 5.13. As it is the case in
practice when actuators apply a force to drive the shaking table, a force is applied to the inter-
mediate mass (which represents the table). A state-space representation of such a problem is
given by :

A =


0 0 1 0
0 0 0 1

−Kt+Ks
Mt

Ks
Mt

−Dt+Ds
Mt

Ds
Mt

Ks
Mt

−Ks
Mt

Ds
Mt

−Ds
Mt

 , B =


0
0
1
Mt

0

 , x =


xt
ẋt
xs
ẋs

 (5.11)

As a reminder, the system is controllable only if the rank of C is equal to dim(X) = 4. In other
words, the controllability of the 2-DoFs spring-mass system can be assessed by calculating the
determinant of C. In this particular case, it can be shown that

det C = − K2
s

M2
sM

4
t

(5.12)

which illustrates the fact that a sudden drop of the specimen eigenfrequency (that can be di-
rectly related to damage or stiffness loss [Cawley and Adams 1979]) can lead to an almost un-
controllable system. Indeed, one can easily imagine that themassMswould be harder to control
if the stiffnessKs gets closer to 0. Although this simplistic problem fully ignores the inherent dif-
ficulties due to the hydraulic actuator and servo-systems nonlinear dynamics, one can already
imagine how control laws can become inefficient in case of sudden damage occurrence.

Figure 5.13: Two spring-mass system as a first coarse modeling of a specimen embedded on a shaking
table.

Regulator design

� Direct pole placement by state feedback

The principle of the state-feedback approach is to synthesize a full state feedback under the
form u = −Kx̂, where x̂ is the reconstructed estimated state. Owing to the separation principle
between observer and regulator, let us first focus on the gain matrix K, which is selected to
achieve desirable properties of the closed-loop system. Details on the observer design are given
afterwards.

Following (5.10), the closed-loop system matrix isA−BK. Its eigenvalues are the closed-
loop poles; they determine the natural behavior of the closed-loop system and are solutions of
the characteristic equation:

det [sI − (A−BK)] = 0 (5.13)

A system of the nxth order involves nx state variables. Therefore, there are nx feedback gains
{ki}nxi=1 that can be adjusted. The state feedback design task consists in selecting these gains so
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that the roots of (5.13) are at desirable locations in the complex plane. If the system is control-
lable, all poles can be assigned arbitrarily. In other words, (5.13) becomes:

det [sI − (A−BK)] =

nx∏
i=1

(s− ki) = 0 (5.14)

However, itmay not always be practical to assign poles arbitrarily, because the control effortmay
be too large for the actuators, or the large values of the feedback gains may unduly increase the
bandwidth of the control system and lead to noise problems [Preumont 2018]. For shaking
table tests, since the value assigned to poles is directly related to the dynamical performance of
the closed-loop system, it is recommended to position poles in the complex left half plane with
a modulus of a least 50 Hz.

� Linear Quadratic Regulator design

One effective way to design a full state feedback is the optimal Linear Quadratic Regulator (LQR).
This approach is common and popular as it carries a strong energy meaning. The objective is
to identify the gain matrixK which minimizes the cost-function:

JLQ =

∫ ∞
0

xTQLQx+ uTRLQu dt (5.15)

whereQLQ is a semi-positive definite matrix andRLQ is a strictly positive definite matrix. The
functionalJLQ is made of two contributions, one from the state x and the other from the control
command u. Contrary to the direct pole placement technique in which a priori intelligence must
be put on the choice of the poles, the LQR designer has to calibrate the relative weight of matri-
cesQLQ andRLQ. Very often, one selectsQLQ = CTC to design the regulator according to the
measured states, andRLQ = ρ−1I where ρ ∈ R+ is a scalar parameter that defines the trade-off
between fast closed-loop poles and control effort. Unfortunately, there is no automated way to
choose the parameter ρ except the trial and error empirical method, where the user progres-
sively decreases the value of ρ−1 to find the best compromise between command energy and
closed-loop performance [Preumont 2018].

Observer design

� Luenberger observer

In most practical situations, a direct measurement of all the states is not feasible. As discussed
earlier, if the system is observable, the states can be reconstructed from a model of the system
and the output measurements. If the state estimator does not take into account the output
measurements, the obtained estimate x̂may be totally different from the one of the real system.
The SS system (4.2) is thus modified so as to integrate a data-to-model distance:{

˙̂x = Ax+ Bu−L(Cx− y + v) + w

x̂(t = 0) = 0
(5.16)

The observer L is called a Luenberger observer [Luenberger 1971] (see Fig. 5.14). What has
been mathematically shown is that, without any errors v and w, the reconstruction error ε =
x̂ − x converges towards 0 with a dynamics conditioned by the observer. Such a dynamics is
conditioned by the eigenvalues of (A − LC) that must be appropriately chosen. If this choice
can be theoretically made arbitrarly if the pair (A,C) is observable, the choice of L must be
done with caution because of the existence of model error and measurement noise. A rule of
thumb recommends that the eigenvalues of the observer should be at least 5 times faster than
the regulator eigenvalues [Preumont 2018]. Once the desired eigenvalue locations are fixed, L
can be easily obtained numerically6. Note that the pole assignment procedure is identical to
that used for the regulator design.

6For example, one can use the MATLAB© place function.
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� Kalman Filter

The KF, also known as Linear Quadratic Estimation, is a sequential stochastic data assimila-
tion method derived from the Bayes theorem, that initially applies to linear dynamical systems
under Gaussian assumptions [Kalman 1960; 1964]. Extended details about the KF has been al-
ready given in Chapter 4 and Appendix D. For control purposes, it is worth noticing that the KF
state correction equation has the same form as the observation equation (5.16), except that the
Kalman gain is statistically optimal with respect to a quadratic function of the estimate error.

The calibration of model and measurement errors covariance matrices is crucial to obtain a
relevant reconstructed state when using KF. Here again, a trial and error calibration method is
often mandatory on the relative weight of Q with respect to R, the latter being well-known in
practice as it characterizes measurement noise features.

The combination of KF and LQR is called Linear Quadratic Gaussian (LQG) control, illus-
trated in Fig. 5.15. It is a control approach known to be robust: [Luo and Johnson 1993] studied
the effects ofmodel bias andmeasurement noise on the robustness of LQG control for linearized
systems, with the proposal of a sufficient condition of stability robustness for the continuous-
time LQG regulator subject to system perturbations when assuming they are bounded.

Remark 5.2. LQR andKF formulations are said to be dual. In the LQR approach, the regulator
design is based on the open-loop transfer function between the input command u and the
controlled variable x, while the KF observer design is based on the transfer function between
the system noisew and the output y. Actually, the KF and the LQ gain can both be written as
the solutions of Ricatti equations, except that matricesA,B,QLQ, andRLQ are involved for
LQR, whereas matrices A, C, Q, and R are involved for the KF. The interested reader will
find exhaustive explanations in [Preumont 2018].

Prefilter design

A prefilter on the input signal u allows to cancel steady-state errors [Jelali and Kroll 2003]. Its
value can be directly determined from the transfer function of the regulated closed-loop. To
ensure that model predictions fit with measurements at t −→ ∞, a prefilter can be explicitly
chosen owing to the final value theorem:

F =
[
CT

(
BKT −A

)
)−1B

]−1 (5.17)

5.3.4 Adaptive control of shaking tables
To ensure satisfactory acceleration replication, controller parameters have to be repeatedly re-
designed due to the specimen time-varying structural properties. Control laws must then be
adaptive in the sense that they must somehow be tuned in accordance to observed changes.
Historically, the question is not new; [Leitmann 1979] is probably one of the first papers dealing
with state-feedback control deemed to be robust to structural parameters variations. A mathe-
matical framework is proposed to quantify the effect of bounded state-spacematrices variations
on the stability and robustness of control algorithms.

Many adaptive control techniques have been proposed in the litterature to minimize the ef-
fect of nonlinear VCSs behavior on acceleration replication, but the concept of adaptive control
does not always refer to real-time adaptation of controllers. Among adaptive techniques, let
us first mention the concept of iterative control: intermediate non-damaging broad-band tests
are performed to account for structural changes between seismic tests. A feedforward inverse
model is iteratively recalibrated, and the process is repeated with growing-level seismic tests
until the reference command signal has been transmitted [Plummer 2007]. This is exactly what
is currently done at the CEA/TAMARIS facility. As already discussed, offline adaptive control
is not useful when sudden damage occurs during a test, and the need to perform intermediary
tests may predamage the tested specimen before reaching the desired excitation level, which

http://www-tamaris.cea.fr/
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Figure 5.14: Control structure (in the Laplace domain) based on a state-feedback estimator and a
Luenberger observer (with D = 0).

Figure 5.15: Control structure based on a Linear Quadratic Gaussian (LQG) regulator.

might disturb the interpretation of test results. This motivation led to the development of the
online adaptive controllers that are reviewed in [Shen et al. 2016].

Besides, adaptive feedforward control has been proposed for the suppression of the reaction
force generated by a specimen [Seki et al. 2009a; b]. The proposed approach includes a Notch
filter (also known as band-stop filter) that aims at compensating the reaction force from the
specimen. Adaptive inverse control is a similar approach except that it uses a finite impulse re-
sponse command filter [Shen et al. 2011]. The combination of AIC with Least Mean Square
(LMS) for state reconstruction is probably the most widely used adaptive algorithm for prac-
tical applications such as adaptive noise cancellation, owing to its simplicity, robustness and
effectiveness. The filtered-X LMS algorithm is an extension of the LMS algorithm for active
noise and vibration control which takes into account the presence of the error path transfer
function between the output of an adaptive control filter and the measurements [Bjarnason
1995; Dertimanis et al. 2015].

Another classical approach is the minimal control synthesis (MCS) [Stoten and Benchoubane
1993; Stoten and Gomez 2001]. Contrary to PID in which tuning quality is mostly user-
dependent, MCS continually adapts to accommodate parameter variations with minimal re-
quirements on the operator expertise. The main advantage that MCS has over alternative
adaptive algorithms is that system or disturbance parametrization are required in order to
achieve global asymptotic stability of the closed-loop error dynamics [Ahmed et al. 2012]. MCS
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has been widely used and reviewed in the literature: it has been extended to nonlinear systems
[Bernardo and Stoten 2006] and coupled with adaptive inverse control for shaking table tests
[Shen et al. 2011].

Although a wide variety of adaptive control algorithms have been proposed and compared
[Butterworth et al. 2012; Shen et al. 2016], there are still lots of open questions associated with
VCSs nonlinear control, such as finding a manner to handle heavy parametric uncertainty and
uncertain nonlinearities [J. Yao 2018].

Eventually, note that pragmatic control design choices are also made according to the re-
quirements and industrial supplier choices of each shaking table device, which explains the
strong discrepancies between European shaking tables reported in [Gomez and Stoten 2000].
Finally, it is worth recalling that this brief review of adaptive control techniques is not intended
to be exhaustive but to provide first insights into how to drive shaking tables in a most so-
phisticated way (see [Plummer 2007; Shen et al. 2016; J. Yao et al. 2016] for complementary
explanations).

5.3.5 Model predictive control, a well-suited approach for DDDAS?
Initiated at the end of the 1970s for industrial applications [Richalet et al. 1978],Model Predictive
Control (MPC) designates a class of time-domain control algorithms that use an explicit process
model to compute an optimal future control sequencewithin a finite time horizon, often referred
asmoving horizon control [Cutler and Ramaker 1980; Richalet 1993]. Linear MPC is now present
as a toolbox in several softwares7. This control technique is particularly attractive in recent
control applications because:

. it can easily integrate constraints and nonlinearities as no assumption is made regarding
the mathematical form of the model. MPC estimates an optimal command that respects
actuation restrictions, input and output constraints or imposed states of the system.

. it is applicable to systems whose linearization is poorly efficient (dead-time, multivariate
and unstable processes, non-minimal phase characteristics) that cannot be simplified or
neglected in classical control strategies that are based on linearized models [Allgöwer et
al. 2004; Rahideh and Hasan Shaheed 2011].

. it is easier to tune aMPC than a traditional PID,which explains its application in industrial
control systems [Richalet and O’Donovan 2009].

However, MPC requires an accurate model of the controlled system, which is not always
the case in all situations. In particular, regarding the control of shaking table experiments, the
models at disposal are not predictive enough to legitimately consider such a model-based ap-
proach. Indeed, understanding the behaviour of RC specimen submitted to dynamical 3D load-
ing is still an open research question [Richard et al. 2016], and the models that are available are
still too expensive to be used in real-time. For extended information, in particular the math-
ematical formulation of the MPC problem, the reader is referred to [Qin and Badgwell 2003;
Richalet and O’Donovan 2009; Mullhaupt 2017].

5.4 Numerical investigations on shaking table control
Now that control strategies and modeling of shaking table devices have been briefly reviewed,
preliminary numerical results are presented from controlled shaking table tests that have been
fully simulated in MATLAB©.

Remark 5.3. Compared to what is currently done in the field of control theory, the proposed
approaches can be considered simple. However, they still provide a framework in which the
relevance of the MDKF can be assessed. As mentionned in the beginning of this report, this
study remains exploratory and much work needs to be done before considering practical
7See e.g. the MATLAB© MPC toolbox or the open-source do-mpc toolbox for Python users.

https://www.mathworks.com/products/model-predictive-control.html
https://www.do-mpc.com/en/latest/
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Figure 5.16: Model Predictive Control principle scheme.

use of MDKF for DDDAS. The following case study must be considered as a preliminary
intention which encourages the investigation of more complex problems.

5.4.1 Control context: model, inputs, performance criteria

Regarding modeling features, the full shaking table system was modelled with the linearized
system of equations previously presented in (5.6). An input voltage saturation was added to
avoid non-physicalmeaning fully divergent results. The specimen is considered as a SDoFmass-
spring-damper system. All the numerical values of internal parameters used in the forthcoming
simulation results are given in Tab. 5.1.

Measurements are collected every ∆t = 10−3 s. In parallel, the time step for the discrete
state-space model of the shaking table system evolution is set lower than 10−4 s to ensure the
convergence of the discrete time integration scheme.

The input sent to the control algorithm is an acceleration signal. It is first processed by a
signal generator (2nd order filter - see Fig. 5.11) so as to generate consistent acceleration, velocity
and displacement signals that are QoI for state-feedback control.

In this study, the focus is mostly put on pole placement and LQG techniques, as they be-
long to the class of most popular and standard control approaches. Four normalized accuracy
indicators are introduced to assess control performance in terms of time-domain displacement
tracking, time-domain acceleration tracking, frequency-domain power spectral density match-
ing, and pseuso-spectral acceleration matching. They are defined as follows:

ηt,x =
‖xt(t)− x?t (t)‖

2
L2([0;T ])

‖x?t (t)‖2L2([0;T ])

; ηt,ẍ =
‖ẍt(t)− ẍ?t (t)‖2L2([0;T ])

‖ẍ?t (t)‖2L2([0;T ])

ηω,PSD =

∥∥Sxt,xt(ω)− Sx?t ,x?t (ω)
∥∥2

L2(Dω)∥∥Sx?t ,x?t (ω)
∥∥2

L2(Dω)

; ηω,Γs =
‖Γs(ẍt)− Γs(ẍ

?
t )‖

2
L2(Dω)

‖Γs(ẍ?t )‖
2
L2(Dω)

(5.18)

where •? refers to the target of •, T refers to the time duration of the test, Dω = [0 Hz; 50 Hz]
the frequency range of interest. Sxt,xt and Γs(xt) respectively denote the PSD and the pseudo-
spectral acceleration of the shaking table displacement xt.

5.4.2 First control simulation results

Now that the control context has been described, let us present some control results obtained
using pole placement and LQG. A particular effort has also been put at properly calibrating the
controller gains. The relevance of the four criteria previously written for calibration will thus
be observed.
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Controller by state-feedback, Luenberger observer and pole placement

As explained previously, the calibration of a state-feedback controller by pole placement with
Luenberger observer does only restrict to the specification of the desired distance and spreading
of regulator poles to the origin of the complex plane.

After a few tests, it appears that the distance of regulator poles to the origin is the most sen-
sitive tuning parameter. Its influence on the control assessment criteria is presented in Fig. 5.17.
It shows that for optimal displacement tracking, it is recommended to choose a regulator gain as
high as possible. However, it is not the case for acceleration tracking, whose associated criterion
starts increasing at around 80 Hz. In practice, the measured displacement spuriously oscillates
around the target displacement when the regulator poles distance is overcalibrated, which im-
plies a divergence of measured acceleration compared to the target signal. A very similar trend
is also illustrated by the frequency-domain criteria that also present a global minimum below
100 Hz. It thus illustrates that the regulator poles should be carefully chosen for a correct con-
trol performance. In addition, we present in Fig. 5.18 and 5.19 the simulation results obtained
with a correctly tuned and an overestimated regulator.

Figure 5.17: State-feedback by pole placement - effect of the regulator calibration (user choice whose
lower bound fixed by system performance expectations) on the control performance.

Figure 5.18: Controller by state-feedback set by pole placement - example of good compromise between
acceleration and displacement requirements, with a regulator pole modulus distance chosen at 100 Hz.
The four quantities of interest are plotted (displacement tracking, acceleration tracking, PSDs, and

pseudo-spectral acceleration).
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Figure 5.19: Controller by state-feedback set by pole placement - example of inappropriate compromise
between acceleration and displacement requirements, with a regulator pole modulus distance chosen
at 130 Hz. The four quantities of interest are plotted (displacement tracking, acceleration tracking,

PSDs, and pseudo-spectral acceleration).

Linear Quadratic Gaussian controller

The calibration of a LQG requires the setting of QLQ,RLQ,Q and R. First, one can restrict
the structure of QLQ to CTdiag [Qxt Qẍt 0 0 0]C. Doing so, the LQR correcting actions will be
devoted to handle at best the system acceleration and displacement table tracking. As only the
relative weighting of QLQ with respect to RLQ matters for LQ, RLQ = 1 is fixed and we will
only focus on the pair (Qxt , Qẍt).

In Fig. 5.20 is presented the effect of varying Qxt and Qẍt on the four accuracy indicators
of interest after having imposed RLQ = 1. One can observe here that all four criteria bring to
light that there is a compromise between acceleration and displacement weightings to control
the system at best. As the LQ regulator is explicitely optimized both for displacement and
acceleration tracking performance, acceleration tracking is better than for pole placement, as
observed by comparing the control performance achieved in Fig. 5.18 and 5.21.

Note that the KF covariance matrices (Q,R) are fixed once and for all and not modified
afterwards, as they are less sensitive compared to LQ internal parameters (for this particular
example).

5.4.3 Need for adaptive control

PID controller tuning variability

Although PID controllers are not relevant enough to produce robust control laws (compared
to SS-based feedback), the dependency of the PID gains with respect to the specimen state of
Fig. 5.22 illustrates the strong need for adaptive control when the specimen evolves during a
test. To obtain such a result, the linearized model (5.6) was used and PID gains were tuned
using the MATLAB© pidtune function. It should be noted that when damage occurs, i.e. when
eigenfrequency falls, regulator gains can suddenly become overrated if not adapted.
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Figure 5.20: Calibration of LQG controller - compromise between acceleration and displacement
requirements for efficient control. The four quantities of interest (displacement tracking, acceleration

tracking, PSDs, and pseudo-spectral acceleration) are plotted in log-scale.

Figure 5.21: LQG controller - example of good compromise between acceleration and displacement
requirements, with (Qxt

, Qẍt
, RLQ) = (105, 102, 1). The four quantities of interest are plotted

(displacement tracking, acceleration tracking, PSDs, and pseudo-spectral acceleration).

Lack of robustness of SS-based feedback control for time-varying systems

If well calibrated, SS-based feedback control laws (pole placement or LQG) are able to correctly
replicate displacement and acceleration signals on shaking tables. However, all the simulation
results that have been presented before did not consider time-varying properties, such as struc-
tural damage. As an illustration of how control laws may lack of robustness, we present in Fig.
5.23 the effect of sudden damage on control laws, becoming inappropriate whereas initially
well-calibrated. As a matter of fact, a 100 Hz distance of regulator poles to the complex plan
origin was chosen (like in Fig. 5.18) and a 75% damage loss at t = 30 s lead to an unstable
test ending. This test result can be closely related to what happened during the run #13 of the
SMART2013 test campaign, duringwhich a very similar control instability occured after sudden
cracking at the bottom of the specimen [Richard et al. 2016].
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Figure 5.22: Significant variability of optimal PID gains (automatically computed with the MATLAB©

pidtune function) with respect to specimen properties.

Figure 5.23: Shaking table test controlled by pole placement becoming unstable due to sudden damage
occurence, although control laws were initially well calibrated.

Note that a sudden loss of accuracy (much less spectacular though because not fully unsta-
ble) has been observed with LQG as well.

5.4.4 Towards enhanced control of shaking tables with MDKF

The solution of the mCRE problem is close to the problem of determination of an observer in
the sense that one tries to reconstruct the state of a system (here the dynamical response of a
mechanical structure) by minimizing the estimation error, i.e. the difference between the real
state of the structure and its estimate, hence the coupling between mCRE and KFs (see Chapter
4).

Since LQG state estimator is based on a KF as well, it would be interesting to integrate the
mCRE within such a control framework. Actually, we owe to [Formosa 2002] the first research
work trying to integrate the CRE for active control of smart structures (equipped with piezo-
electric actuators). Formosa proposed a "LQ-CRE" control framework inwhich the state estima-
tion from measurements was performed using the mCRE. On an academic example (vibrating
plate with a damage defect), the feasibility of using mCRE for control purposes was illustrated,
and LQG control was shown less performant than LQ-CRE control in the high-frequency band-
width.

The objective here is to propose a novel manner to perform DDDAS by informing the con-
troller of the state evolution, based on the MDKF. In this last study, a new methodology which
takes MDKF into consideration within a SS-feedback control strategy is presented.

The time-frequency formulation of the MDKF is the main limitation that prevents the di-
rect use of Formosa’s control framework: due to the sliding window technique that allows for
progressive data assimilation, parameters are updated at a coarse time scale compared to the
data acquisition frequency. Besides, the mechanical fields provided by the mCRE are provided
in the frequency domain, but only for a restricted subset of angular frequencies (ω ∈ Dω). Us-
ing discrete inverse Fourier transforms would not be accurate enough if one wanted to directly
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exploit the mCRE-computed mechanical fields.
The valuable information that can be exploited fromMDKF for control laws is the parameter

estimates. The MDKF-based adaptive control law perspectives are illustrated in Fig. 5.24. Note
that MDKF can infer on the control strategy at different levels of "intrusiveness":

. If sudden stiffness loss is detected, the prefilter gain can be lowered towards zero. The
target signal will no longer be replicated, but additional damage on the structure should
not happen, and the safety of the installation will be preserved.

. The estimator state-space model can be updated so that the control strategy is informed
of the specimen evolution.

. To go even further, the controller gains could be adapted on-the-fly according to MDKF
estimates. However, such operations may not be feasible in real-time. An empirical way
to do so is to built an a priori mapping of controller gains according to damage in state-
space matrices [Foltin and Sekaj 2006] and to interpolate within this map during the data
assimilation process. The underlying difficulty in that case lies in the fact that controller
gains specifications for optimal control are also function of the damage level.

Remark 5.4. Control simulation results must be analyzed with caution when MDKF adapts
the SS model and/or the controller gains as no mathematical proof guarantees stability and
robustness for time-varying online adaptive control.

Figure 5.24: Perspective of using on-the-fly model updating algorithms to perform adaptive control
design on a pole-placement-based state-feedback control framework.

In Fig. 5.25, we present the benefits of adaptive control based onMDKF on a controller based
on Luenberger observer and pole placement regulator. Without tuning the controller gains, it
is possible to exploit the stiffness tracking provided by MDKF to stabilize the shaking table test
once damage occured (in spite of the MDKF identification delay due to the data windowing
process). Although the example remains simple in terms of modeling complexity, note that the
result of Fig. 5.25 is achieved in real-time! This can be seen a first proof-of-concept showing
the relevance of mCRE-based DDDAS in low-frequency dynamics, for shaking table exper-
iments. Therefore, this completes the overall goal of this thesis work depicted in Fig. 2.
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Figure 5.25: Control strategy based on Luenberger observer and pole placement regulator - benefits of
adapting the state-space matrices with MDKF estimates to enhanced stability.

5.5 Conclusion & prospects for model-based control informed by
mCRE

In this chapter, after a description of the difficulties in modeling nonlinearities of valve-
controlled systems, a brief review about the wide range of shaking table control strategies
was presented. Once having put emphasis on the control instabilities that may happen when
the tested specimen gets damaged, we proposed a first full digital twin application for en-
hanced stability of shaking table experiments. The Modified Dual Kalman Filter algorithm, a
data assimilation process based on the modified Constitutive Relation Error functional, is used
to track the stiffness loss of a specimen undergoing damaging groundmotion experiments. The
information provided byMDKF is thus advantageously used to feed and update the state-space
model of the controller in accordance. Doing so, we illustrated on a academic example the
feasibility of performing mCRE-based DDDAS.

Nonetheless, several perspectives must be kept in mind:

. Using a more realistic shaking table device model fully built from measurements (with
input/output identification),

. Introducing nonlinearities in the specimen response and the actuator behavior,

. Simulatingmulti-actuatormulti-directional groundmotions, whichwill require to handle
the spurious interferences between actuators [Plummer 2008],

. Going through more complex control strategies than pole placement or LQG, perhaps
model predictive control if a ROM from a high-fidelity model is available,

. Writing a full time-domainmCRE functional projected on a truncatedmodal basis. Doing
so, the LQ-CRE control strategy from [Formosa 2002] may be applicable. It could even be
combined with an Augmented Kalman Filter for state-input-parameter estimation when
considering output-only measurements [Lourens et al. 2012].





Conclusion and prospects

Main contributions of the thesis
The overall ambition of this thesis work consisted in developing a robust numerical framework
to improve the control of shaking tables.

Starting from the offlinemodel updating viewpoint, a fully automatedmodel updating algo-
rithm based on the modified Constitutive Relation Error (mCRE) was successfully implemented.
Dedicated efforts have been made so as to enhance the robustness of parameter identification
when considering low-SNR measurements typical of earthquake engineering experiments and
damage detection problems, especially with an averaged formulation of the mCRE functional
and a CRE-based parametrization of the problem. In parallel, as the amount of sensors that
are embedded on structures may be limited, a novel optimal sensor placement strategy, which
introduces the mCRE in the information entropy framework, has been proposed so as to po-
sition sensors at best for mCRE-based parameter identification. A complete model updating
framework unified around the mCRE concept for SHM is thus achieved.

The offlinemodel updating frameworkwas then extended to sequential data assimilation by
integrating themCREwithin a dualKalmanFilter, leading to a newdata assimilation framework
called Modified Dual Kalman Filter (MDKF). The full algorithm was fully detailed, with many
variants considered for optimal numerical performance and guidelines based on engineering
judgment provided for its easy calibration by non-expert users.

Both offline and online mCRE-based model updating frameworks have been assessed on a
wide range of academical examples typical of shaking table experiments and on actual mea-
surements recorded during the SMART2013 test campaign, in which an unstable test occured
due to control failure. Although the updated models remained linear and far from being pre-
dictive in terms of modal analysis, we have been able to successfully track defects that occured
due to complex nonlinear phenomena (constitutivemodels of steel, concrete, and interfaces, be-
havior of wall-slab joints, description of damping, damage initiation and propagation) whose
modeling is still an open research question.

Lastly, as it was the overall motivation of this work, the challenges regarding the control
of shaking tables were considered, and, on a first academical example with a classical control
strategy, an adaptive control test based on the information carried by MDKF was performed in
real-time. This illustrates the feasibility of achievingmCRE-based DDDAS and one hopes it will
lead the path and motivate future investigations.
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Prospects
The work presented in this thesis can be extended in several directions stated below:

� About control and the industrial use of mCRE for DDDAS

As mentioned when dealing with adaptive control, additional tests and investigations must be
done regarding a more accurate modeling of shaking table devices. In particular, a black-box
model built fromactualmeasurements collected at theCEA/EMSI/TAMARIS facilitymay allow
to fairly compare control strategies and MDKF benefits in a realistic context. For instance, the
thesis of Daniel Martin-Xavier, started end 2022, aims at building a robust and stable control
algorithm for structures subjected to evolutive damage by means of an updated damage model
and a MPC algorithmic structure.

In terms of industrial needs, in addition to the OSP developments, the next step consists in
performing real-time data assimilation with MDKF in forthcoming test campaigns, and even
adaptive control once a proper control framework based on the mCRE will have been set. In
practice, it will require the transfer of all the framework developed in MATLAB© to a real-time
controller with low level programming language recently acquired by the CEA/EMSI labora-
tory. An implementation of the mCRE/MDKF routines in the CEA softwares Cast3M© and
Manta [Jamond et al. 2022] may also be considered if needed, following [Oliveira et al. 2022].

� About the range of applications

The general model updating applications provided in this work were dedicated to an earth-
quake engineering context but it is perfectly suited for many other applications involving vibra-
tory loadings and low-SNR measurements: vibration-based damage detection, ageing of civil
engineering structures, structural health monitoring, fatigue of mechanical components, and
more generally systems submitted to vibratory phenomena potentially coupled with thermal
evolution. Indeed, once reliable and unreliable quantities of the reference problem have been
distinguished by engineering judgement, a mCRE cost-function can be built andminimized fol-
lowing the methodology presented in this thesis. As an example, one can refer to the PhDwork
of Antoine Roussel which investigates mCRE-based multiphysics model updating for sea wind
turbines [Roussel et al. 2022], that are submitted to dynamical excitations due to wind, waves
and sea current.

� About the mCRE formulation and the associated updated model(s)

Regarding the positioning of the mCRE functional among other model updating techniques,
only [Waeytens et al. 2016] proposed a fair comparison in quasi-statics for a concrete beamusing
strain data. Apart from the benchmark described in Chapter 2 and the validation tests showing
the relevance of the proposed numerical tools, no experimental or numerical benchmark has
been proposedwith the intention of positioning themCRE among othermodel updating/modal
analysis techniques in dynamics. A comparison between time and frequency formulations of
the mCRE would also be valuable.

All the models that have been updated in this work are linear, and parameters directly
weighted the associated stiffness FE matrices. If this framework is well-suited for the shak-
ing table control problems, such an approach remains insufficient for prognosis purposes, first
because linear models cannot correctly predict nonlinear phenomena, and second because the
frequency-based formulation of the mCRE is not adequate for inverse Fourier transforms. For
more accurate state predictions, either (i) more frequencies must be analyzed by the mCRE,
but it leads to much longer reaction delays to parameter changes in an online context, or (ii)
a full-time approach must be adopted, and the issues mentioned in [Marchand 2017] arise
(time-dependent confidence into measurements, temporal sub-discretization for the compu-
tation of admissible mechanical fields, non-homogeneous initial condition at each assimilation
time step).

www-tamaris.cea.fr
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Besides, the question of model complexity and model selection could be addressed. A li-
brary of more or less complex models may be all updated in parallel, and one could identify
which one is most appropriate regarding a given quantity of interest. A normalizedmodel error
map may be used to define which model is most accurate, but one could also imagine consid-
ering the best model being such that the uncertainties of the updated parameters remain small.
A first study may consist in comparing different "model quality" indicators, and to compare the
benefits carried by the CRE compared to other approaches, such as the Bayesianmodel evidence
concept, recently coupled to UKF in [Rosafalco et al. 2021].

Eventually, coupling physics-based models and deep learning techniques for the real-
time monitoring of structural damage may be an alternative approach considering the ever-
increasing use of machine learning techniques in the last decades. This is the topic of Antoine
Benady’s thesis, in which a data-driven methodology using neural networks to learn (nonlin-
ear) constitutive laws in the form of thermodynamic potentials is investigated, with the use of
mCRE as loss function to facilitate the learning process [Benady et al. 2022].

� About measurements

In all the examples that have been considered, actual or simulated acceleration data was used
for model updating. In practice, the extension to other types of measurements is not a painful
task from the mCRE viewpoint (it changes the definition of the model-to-data observation ma-
trix). The integration of strain measurements from gauges or optic fibers would be interesting
to performmore accuratemodel updating in the sense it would facilitate damage detection. The
mCRE-basedOSP algorithmwould easily integratemultiple types of sensors aswell [Ercan and
Papadimitriou 2021].

Even if it was initially expected to be done with the SMART2013 test campaign, the use of
dense measurements from optic fibers or digital image correlation has unfortunately not been
possible in the context of this thesis. In such a context, the question of data selection has to
be addressed: which data points from DIC or optic fibers should be selected to perform model
updating in real-time? What is the optimal path optic fibers should follow for optimal identi-
fication? These issues are currently investigated by Sahar Farahbakhsh in her thesis in which
mCRE-based damage identification is performed with Rayleigh optic fibers. With such mea-
surement devices, the objective is to exploit measurements in a frugal manner, and to define the
model complexity depending on the situation, in order to facilitate data-to-model comparison
[Chamoin et al. 2022]. The above-mentioned perspective of model selection, in the sense of
model adaptivity also raises herein.

Except frommodel bias, the blind trust in the location of sensors can be questioned. Indeed,
a lack of accurate knowledge on sensor locations propagates an error that can have a signifi-
cant impact on the identification results. This may be another reason for not having been able
to look for defects in the SMART2013 case with a finer spatial resolution. A first study one
could perform would consist in quantifying the amount of uncertainty on parameter estimates
propagated by uncertain sensor locations.
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AppendixA
Description of earthquake engineering problems

Several earthquake engineering examples have been involved to assess, compare and validate
the contributions presented in themanuscript. For the sake of clarity, this appendix is dedicated
to the full description of the most recurrent ones, so that the interested reader can find apart all
the necessary details for the implementation.

As a preliminary remark, all models have been built in the CEA FE analysis and simulation
software Cast3M© [Cast3M 2020]. Once models have been built, the FE matrices are exported
in MATLAB© using the sormat.eso function, available since 2012 in the Cast3M© library. The
latter has been slightly modified with the export of the internal nodes numbering of the nodes
to proceed to the harmonization of the discretized operators. Then, several dedicated routines
in MATLAB© functions have been created to extract and correctly read the FE operators of the
linear dynamics problems.

A.1 Plane frame submitted to random ground motion
We consider here the plane frame structure of Fig. A.1 whose stiffness distribution is assumed
unknown. This structure is clamped to a rigid moving support (e.g. a shaking-table). The
stiffness reference field (the one to be identified) presents a defect in the wall W10 whereas the
initial guess is uniformly underestimating the initial stiffness of the overall structure. According
to the considered case studies, the defect in wall W10 suddenly appears during the test or is
already present at the beginning of the test. The objective of this academic example is to recover
the stiffness distribution based on simulated acceleration measurements with noise of known
level δ coming from discrete sensors scattered over the structure (yellow dots in Fig. A.1).

The FE model used to simulate measurements is made of 192 elastic beam elements. The
FE model used to perform model updating has half less elements so that a discretization error
is systematically present to introduce model bias. Relative time acceleration measurements in
both x and y directions are simulated using fast Fourier transforms and the frequency transfer
matrix of the direct dynamical problem is formulated in terms of relative displacement X as
follows:

MẌ + DẊ + KX = −MΞÜd , X = U − Ud (A.1)

where Ξ is a matrix addressing the bi-axial acceleration ground motion to the associated DoFs
and Üd the random ground acceleration input.

In order to assess the robustness of the data assimilation algorithms with respect to mea-
surement noise, a white noise of known standard deviation is added to the synthetic measure-
ments. The noise level δ (in %) is then defined according to the magnitude of the input ground
acceleration Üd such that noisy synthetic acceleration data is obtained as follows:

ÿnoisy(t) = ÿ(t) + δ std
(
Üd(t)

)
η(t) (A.2)

where η(t) ∼ N (0, 1) is a randomGaussian vector of zeromean and unitary standard deviation.
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Figure A.1: Two-story plane frame submitted to random ground motion. Sensors location (yellow
dots) and subdomains labelling (according to the chosen parametrization - nθ = 6 or 12) are specified.

The damaged part of the frame in simulations is highlighted in orange.

A.2 The SMART2013 test campaign
EDF and CEA are deepfully acknowledged for giving access to the SMART2013 database.

In order to assess the vulnerability of RC structures subjected to torsional effects during
seismic groundmotions, the SEISM Institute led the SMART2013 experimental campaign in the
CEA/TAMARIS facility where a three-story trapezoidal RC specimen clamped on the six DoFs
AZALEE shaking-table has been subjected to a sequence of seismic tests. Equipped with eight
1000kNmaximum capacity hydraulicMTS actuators, theAZALEE shaking-table can reproduce
complex seismic loadings on huge specimens. In terms of mass, nearly 34 tons have been added
to the 12 tons of the structure to account realistic floor loading and respect Cauchy-Froude’s
similitude law (see Fig. A.2).

The specimen is instrumented with more than 200 sensors including 64 capacitive ac-
celerometers of ±10 g range scattered over the RC specimen. 48 out of the 64 accelerometers
(pointed on Fig. A.2) have been used as experimental reference for correcting the FE model.
Measurements are acquired at a sample frequency of 1000 Hz and filtered with 400 Hz cut-off
frequency anti-aliasing filters. A typical ±0.003 g white noise level was observed on the ac-
celerometers. More precisely, accelerations are recorded on corners of the trapezoid on each
story (including soleplate level), while vertical accelerations are measured in-between the
masses at floor levels. The displacements and accelerations of the eight hydraulic rods of the
Azalee shaking-table are also measured, providing complete and redundant access to the input
imposed on the specimen.

A.2.1 Experimental campaign
A brief recap of the SMART2013 test campaign is given in Tab. A.1. The test sequence con-
sists in an alternation of bi-axial gradually damaging seismic inputs (of increasing level) with
random ground motions with low-acceleration level chosen such that the first eigenmodes of
the experimental system are excited but without adding further damage to the RC specimen.
For illustration purposes, the acceleration table groundmotion recordings in the x-direction for
the full campaign are also presented in Fig. A.3. Complementary information can be found in
[Richard et al. 2016; 2018; Charbonnel 2021] or on the dedicatedwebpage of the SEISM Institute.

https://www.institut-seism.fr
http://www-tamaris.cea.fr/
https://www.institut-seism.fr/projets/smart/
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Figure A.2: The SMART RC specimen anchored to the AZALEE shaking table with actuators and
sensors locations. The yellow arrows indicate the position of the accelerometers that are used for model
updating. Only the horizontal actuators (V#x) are represented, the position of the vertical actuators
(V#z) underneath the AZALEE table is labeled with white dots and their action marked with black

arrows - from [Charbonnel 2021].

Phase 1: SMART2008 inputs - PGA(x, y) = (0.2g, 0.2g) δ [%]

Run #6 Broad-band bi-axial signal (x+y) 0.02g RMS 22.6
Run #7 Seismic signal - 50% -
Run #8 Broad-band bi-axial signal (x+y) 0.02g RMS 29.0
Run #9 Seismic signal - 100% -
Phase 2: Northridge main shock signal - PGA(x, y) = (1.78g, 0.99g)

Run #10 Broad-band bi-axial signal (x+y) 0.02g RMS 23.8
Run #11 Seismic signal - 11% -
Run #12 Broad-band bi-axial signal (x+y) 0.02g RMS 31.1
Run #13 Seismic signal - 22% -
Run #14 Broad-band bi-axial signal (x+y) 0.02g RMS 26.1
Run #15 Seismic signal - 22% -
Run #16 Broad-band bi-axial signal (x+y) 0.02g RMS 28.5
Run #17 Seismic signal - 44% -
Run #18 Broad-band bi-axial signal (x+y) 0.02g RMS 28.0
Run #19 Seismic signal - 100% -
Phase 3: Northridge after-shock signal - PGA(x, y) = (0.37g, 0.31g)

Run #20 Broad-band bi-axial signal (x+y) 0.02g RMS 20.1
Run #21 Seismic signal 33% -
Run #22 Broad-band bi-axial signal (x+y) 0.02g RMS 26.0
Run #23 Seismic signal 100% -
Run #24 Broad-band bi-axial signal (x+y) 0.02g RMS 22.5

Table A.1: Synthesis of the SMART2013 shaking-table test campaign and computation of noise level δ
for the bi-axial random tests.
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Figure A.3: SMART2013 - Recordings from the AZALEE shaking-table acceleration in the x-direction.

A.2.2 FE models at disposal

Two FE models of the SMART2013 specimen, implemented in Cast3M© to process as usual
according to engineering practice, are available:

. Model 1: mainly developed by S. Cherubini and B. Richard, the RC specimen has been
modeled by an assembly of several finite elements. The shear walls, the slabs and the cen-
tral beams have been discretized by multi-layered shell finite elements. The foundation
has been discretized by volume FE. The column has been represented as a vertical beam
made of Timoshenko multi-fiber beam FE. Linear and nonlinear constitutive laws have
been given both for concrete (continuum damage mechanics) and steel reinforcing bars
(Menegotto-Pinto model) - see [Richard et al. 2016] for additional information. The nu-
merous underlying parameters have been estimated at best from measurements but are
most likely subjected to uncertainty or error. The effect of the additionnal masses has been
taken into account with additionnal nodal elements on the floors.

. Model 2: developed byN. Ile, the FEmesh is quite similar, except that the entire specimen
has beenmodeled using shell elements. Floor reinforcements are presentwith additionnal
shell elements too. The main consequence is that the FE matrices are of larger size and
therefore heavier to handle. The material properties are chosen at best in accordance with
the measurements of the test campaign.

Remark A.1. A compatible full shell FE model of the AZALEE shaking-table is also available
to be coupled to both models. However, as the model updating procedure will be based
on relative measurements, it will not be necessary herein. To the extent that the solicita-
tion inputs are bi-axial and that the shaking-table is considered infinitely more stiff than the
specimen, it will be assumed in the following that the soleplate is subjected to 2D rigid body
movement. Therefore, the boundary conditions from the hydraulic actuators can be imme-
diately extended at the bottom of the anchorage.
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(a) FE mesh of model 1. (b) FE mesh of model 2.

(c) FE mesh of model 1 fixed on the AZALEE shaking-table model (connected dots are in green, additional nodal
masses in blue, locked nodes for BCs in red).

Figure A.4: Available FE models of the SMART2013 specimen. The yellow circles locate the sensors
used for the model updating strategy in subfigures (a-b). Faces colors are random.





AppendixB
Semi-analytical expressions of mCRE derivatives

As a consequence of (1.23) and algorithmic requirements presented in Section 1.2.3, the mCRE-
based model updating may become much more efficient in terms of CPU performance if ana-
lytical mCRE derivatives were easily computable. Fortunately, it is the case, and this appendix
intends to gather all necessary mathematical developments for the proof. For the sake of sim-
plicity, we will restrain the mathematical developments to a single angular frequency ω as the
extension to a frequency rangeDω is trivial (z(ω)-weighted integration). Besides, the subscript
ω of mechanical fields will be omitted.

B.1 mCRE computation: back to the minimization with respect to
mechanical fields

As mentioned above, we denote by ŝ(θ;Y ) = (Û , V̂ ) the optimal solution in the mCRE sense
for given parameters and measurements. In a FE framework, the constrained minimization
problem allowing to determine ŝ is:

ŝ(θ;Y ) = arg min
[−ω2M+iωD]U+K(θ)V=F

e2
ω(s, θ;Y ) (B.1)

Introducing Lagrange multipliers Λ̂ and an augmented cost-function, we will show in the re-
mainder of this section that (B.1) is equivalent to the solution of the following linear system:

A

[
Λ̂

Û

]
= bwith



Λ̂ = Û − V̂

A =

[ [
K(θ) + iωD − ω2M

]H
αΠHGΠ

−K(θ)
[
K(θ) + iωD − ω2M

] ]

b =

{
αΠHGY

F

} (B.2)

As we are dealing with quantities written in the frequency domain, derivatives and con-
straints must be considered with caution: the real and imaginary parts have to be separated
to write consistent mathematical expressions (in particular Gateaux’s derivatives). In the fol-
lowing, •r and •i will denote the real and imaginary parts of •, respectively.

Let us introduce a set of Lagrange multipliers (Λ0,Λ1) to introduce an augmented cost-
function that integrates the constraint on s = (U, V ):

L(U, V,Λ0,Λ1, θ;Y ) =
1

2
‖U − V ‖2K(θ) +

α

2
‖ΠU − Y ‖2G

+ ΛT0
[
[−ω2M + iωD]U + K(θ)V − F

]
r

+ ΛT1
[
[−ω2M + iωD]U + K(θ)V − F

]
i

(B.3)
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After separating real and imaginary parts of mechanical fields andmeasurements, one gets:

L(Ur, Ui, Vr, Vi,Λ0,Λ1, θ;Y ) =
1

2
[Ur − Vr − i(Ui − Vi)]T K(θ) [Ur − Vr + i(Ui − Vi)]

+
α

2
[ΠUr − Yr − i(ΠUi − Yi)]T G [ΠUr − Yr + i(ΠUi − Yi)]

+ ΛT0
[
K(θ)Vr − ωDUi − ω2MUr − Fr

]
+ ΛT1

[
K(θ)Vi + ωDUr − ω2MUi − Fi

]
(B.4)

As a reminder, the objective is now to find the mechanical fields that are coordinates of the
saddle point of L for a given parameter vector θ. Mathematically, forgetting the •̂ for enhanced
readability, this problem reads:

Find (Ur, Ui, Vr, Vi,Λ0,Λ1) ∈ Rnx × . . .× Rnx such that:


(U∗r )T dL

dUr
= 0 ∀ U∗r ∈ Rnx

(U∗i )T dL
dUi

= 0 ∀ U∗i ∈ Rnx
...

(Λ∗1)T dL
dΛ1

= 0 ∀ Λ∗1 ∈ Rnx

(B.5)

The six stationarity equations lead to the following system of linear equations:

K(θ) [Ur − Vr] + αΠHG [ΠUr − Yr]− ω2MΛ0 + ωDΛ1 = 0

K(θ) [Ui − Vi] + αΠHG [ΠUi − Yi]− ωDΛ0 − ω2MΛ1 = 0

−K(θ) [Ur − Vr] + K(θ)Λ0 = 0

−K(θ) [Ui − Vi] + K(θ)Λ1 = 0

K(θ)Vr − ωDUi − ω2MUr = Fr

K(θ)Vi + ωDUr − ω2MUi = Fi

(B.6)

After having identified that Λ0 = Ur − Vr and Λ1 = Ui − Vi (assuming det(K(θ)) 6= 0), one can
simplify this system into a 4-row-block linear system:

K(θ)− ω2M αΠTGΠ ωD 0
−K(θ) K(θ)− ω2M 0 −ωD
−ωD 0 K(θ)− ω2M αΠTGΠ

0 ωD −K(θ) K(θ)− ω2M


︸ ︷︷ ︸

Aext(θ)


Ur − Vr
Ur

Ui − Vi
Ui


︸ ︷︷ ︸

Xext

=


αΠTGYr

Fr
αΠTGYi

Fi


︸ ︷︷ ︸

bext
(B.7)

Remark B.1. This mathematical development is true if Π takes its values in R. This is the
case for displacement and acceleration measurements in dynamics, but it is not the case for
velocity or strain data! One must be a bit more careful if values of Π coefficients are in C.
However, it should not much change the shape of the matrix system.

The matrix system (B.7) can also be rewritten under the following form in order to fully
decouple U from V :

Aext(θ)Xext = bext with

Aext(θ) =


K(θ)−ω2M+αΠTGΠ −(K(θ)−ω2M) ωD −ωD

−ω2M K(θ) −ωD 0

−ωD ωD K(θ)−ω2M+αΠTGΠ −(K(θ)−ω2M)

ωD 0 −ω2M K(θ)


X Text =

[
UTr V Tr UTi V Ti

]
(B.8)

Combining the first two rows of (B.7) with the last two ones weighted by i, one can finally
recover the system (B.2), which concludes the proof.
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B.2 Model updating problem: minimization with respect to stiffness
parameters

Now that the mCRE can be computed for any value of θ, its minimization with respect to the
latter can be numerically done using unconstrained minimization algorithms such as the gradi-
ent steepest descent technique, the BFGSmethod or the trust-region algorithm1. In this section,
semi-analytical expressions of the mCRE gradient and Hessian matrix with respect to θ are es-
tablished for enhanced CPU time and construction of confidence intervals.

B.2.1 Analytical mCRE gradient

Once the mechanicals fields ŝ computed, the expression of the mCRE gradient with respect to
the parameters to update can be analytical (only if the link between stiffness and parameters
is too). The "tip" is to exploit the augmented cost function L derivative at the saddle point
established above:

de2
ω

dθ

∣∣∣∣
ŝ

,
dL
dθ

∣∣∣∣
ŝ

=
∂e2

ω

∂θ
+

∂L
∂Ur

dUr
dθ

+
∂L
∂Vr

dVr
dθ

+
∂L
∂Ui

dUi
dθ

+
∂L
∂Vi

dVi
dθ︸ ︷︷ ︸

= 0 at the saddle point

(B.9)

As the parameters weight the FE stiffness matrix, a general formulation for the mCRE gradient
with respect to parameter θk, k ∈ J1;nθK is:

de2
ω

dθk

∣∣∣∣
ŝ

=
1

2

[
UTr

∂K

∂θk
Ur + UTi

∂K

∂θk
Ui − V T

r

∂K

∂θk
Vr − V T

i

∂K

∂θk
Vi

]
(B.10)

For the stiffness parametrization (1.14), one thus directly gets:

de2
ω

dθk

∣∣∣∣
ŝ

=
1

2

[
UTr K0,kUr + UTi K0,kUi − V T

r K0,kVr − V T
i K0,kVi

]
(B.11)

The possibility to provide an analytical gradient when minizing the mCRE is thus strongly
recommended due to its simplicity of implementation as well as the associated computational
speed-up.

B.2.2 Semi-analytical mCRE Hessian matrix

Using the same starting idea, let us compute the mCRE Hessian matrix value at coordinate
j, k ∈ J1;nθK2 :

Hθjk =
d2e2

ω

dθjdθk

∣∣∣∣
ŝ

,
d2L

dθjdθk
=

∂2L
∂θj∂θk

+

[
d

dUr

(
∂L
∂θk

)]T dUr
dθj

+

[
d

dVr

(
∂L
∂θk

)]T dVr
dθj

+

[
d

dUi

(
∂L
∂θk

)]T dUi
dθj

+

[
d

dVi

(
∂L
∂θk

)]T dVi
dθj

(B.12)

Three terms to develop thus occur:

• The second order partial derivative of the augmented cost-function L is trivial:

∂2L
∂θj∂θk

=
1

2

[
UTr

∂2K

∂θj∂θk
Ur + UTi

∂2K

∂θj∂θk
Ui − V T

r

∂2K

∂θj∂θk
Vr − V T

i

∂2K

∂θj∂θk
Vi

]
(B.13)

1See the Matlab© optimization toolbox or the fminunc documentation for complementary details.

https://fr.mathworks.com/help/optim/index.html?s_tid=CRUX_lftnav
https://fr.mathworks.com/help/optim/ug/fminunc.html
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• The crossed derivatives, whose computation is also direct:

d

dUr

(
∂L
∂θk

)
=

∂K

∂θk
Ur

d

dVr

(
∂L
∂θk

)
= −∂K

∂θk
Vr

d

dUi

(
∂L
∂θk

)
=

∂K

∂θk
Ui

d

dVi

(
∂L
∂θk

)
= −∂K

∂θk
Vi

(B.14)

• The derivatives of ŝ with respect to parameters, whose computation can be obtained by
derivation of the system AextXext = bext:

dAext
dθj

Xext +Aext
dXext

dθj
=

dbext
dθj

⇒ dXext
dθj

= A−1
ext

[
dbext
dθj

− dAext
dθj

Xext
]

(B.15)

with A−1
ext that can be already known from the AextXext = bext solution to compute the

mCRE value (e.g. the inverse matrix can be stored) and:

dbext
dθj

= 0

dAext
dθj

=


∂K
∂θj

−∂K
∂θj

0 0

0 ∂K
∂θj

0 0

0 0 ∂K
∂θj

−∂K
∂θj

0 0 0 ∂K
∂θj


(B.16)

All simplifications done, one has:

d

dθj


Ur
Vr
Ui
Vi

 = −A−1
ext



∂K

∂θj
(Ur − Vr)
∂K

∂θj
Vr

∂K

∂θj
(Ui − Vi)
∂K

∂θj
Vi


(B.17)

Finally, the general expression ofHθjk reads:

Hθjk =
1

2

[
UTr

∂2K

∂θj∂θk
Ur + UTi

∂2K

∂θj∂θk
Ui − V T

r

∂2K

∂θj∂θk
Vr − V T

i

∂2K

∂θj∂θk
Vi

]

−



∂K

∂θk
Ur

−∂K
∂θk

Vr

∂K

∂θk
Ui

−∂K
∂θk

Vi



T

A−1
ext



∂K

∂θj
(Ur − Vr)
∂K

∂θj
Vr

∂K

∂θj
(Ui − Vi)
∂K

∂θj
Vi


(B.18)

The application of this expression to the stiffness parametrization (1.14) leads to:

Hθjk = −


K0,kUr
−K0,kVr
K0,kUi
−K0,kVi


T

A−1
ext


K0,j (Ur − Vr)

K0,jVr
K0,j (Ui − Vi)

K0,jVi

 (B.19)
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Remark B.2. Due to the fact that the Hessian matrix depends on the inverse of Aext whose
expression is not analytical (once knowing mechanical fields), the expression of the Hessian
can be considered as semi-analytical.

B.2.3 Exploitation for mCRE-based model updating
If the expression of the mCRE gradient with respect to parameters is easily available (ac-
cording to the stiffness parametrization), its formulae must be provided to minimization al-
gorithms in order to get enhanced numerical performances.

The case of the Hessianmatrix is a bit different due to the fact that it requires intelligent stor-
age of the inverse matrix of Aext for all ω ∈ Dω. In particular, one can note that A is inverted
instead of Aext due to its reduced size and direct availability from former literature works. Of
course, providing the Hessian would also reduce the amount of iterations of nonlinear opti-
mization algorithms but it also carries a storage burden that should be taken into account.





AppendixC
Morozov’s discrepancy principle for the mCRE in

dynamics

In order to go through technical details without carrying a burden due to notation complexity, please
note that the notations used in the following appendices are not necessarly consistent with the ones of the
contribution.

C.1 Theorem: Morozov’s discrepancy principle

Let us consider an inverse problem F (x) = y with its associated regularized cost-function J =
α‖F (x) − yδs‖2 + R(x), R being the regularization function (in Tikhonov’s sense). Assuming
that a scalar δs quantifies measurement noise1 such that noisy data y satisfies

‖F (x)− y‖2 6 δ2
s 6 ‖y‖2 (C.1)

and thatR is strictly convex, non-negative, weakly coercive and weakly-lower semi-continuous,
then, according to [Morozov 1984], there exists an optimal weighting α̂(δ) associated to an in-
verse problem solution xδα̂ such that

‖F (xδsα̂ )− y‖2 = δ2
s (C.2)

In other words, it is possible to calibrate the weighting coefficient α according to the noise level
quantifier δs.

C.2 Adaptation to mCRE-based model updating
As all the conditions on R are met by the modeling error term of the mCRE functional, some
attention must be paid to the definition of the upper bound of the data-to-model distance. Let
us start from the fact that time-histories can be legitimately modeled such that:

y(t) = yex(t) + η(t) (C.3)

where yex(t) is the exact measurement time-series that would have been obtained without any
measurement noise and η(t) is a white-noise signal, whose value at each acquisition time step
follows a standard Gaussian random variable: η(t) ∼ N (0, δ2) ∀ t with δ the noise amplitude
(standard deviation of measurement noise).

Then, the frequencydomain pre-processing step requires to take the (discrete) Fourier trans-
form of measurements. Focusing on the frequency range Dω, and using the linearity property
of the Fourier transform, one has:

Yω = Yex,ω +Hω, ∀ ω ∈ Dω (C.4)
1The s index allows to clearly distinguish the noise level δ from the bound δs of Morozov’s theorem (C.2).
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where Hω is the Fourier transform of the random process η(t). From here, one can properly
introduce the mCRE measurement error by replacing Yex,ω withΠUω :

‖ΠUω − Yω‖2G = ‖Hω‖2G, ∀ ω ∈ Dω (C.5)

⇒
∫
Dω

z(ω)

2
‖ΠUω − Yω‖2G dω =

∫
Dω

z(ω)

2
‖Hω‖2G dω (C.6)

If one knows the statistics of the square modulus ‖Hω‖2 of the discrete Fourier transform of
a random process, then the δ scalar of the Morozov discrepancy theorem would be explicitely
made available in a formulation dedicated to the mCRE.

C.2.1 Probability distribution function of a random process

Hω is the amplitude of the discrete Fourier transform of {η(tn) = ηn}N−1
n=0 at angular frequency

ω. Mathematically, it means that:

Hω , F
(
{ηn}N−1

n=0 , ω
)

=
N−1∑
n=0

ηne
−2iπωn/N (C.7)

Focusing on the real part of Hω denoted <(Hω), one has:

<(Hω) =
N−1∑
n=0

ηn cos (2πωn/N) (C.8)

Denoting yn = ηn cos (2πωn/N), it implies that the pdf of yn satisfies:

πyn(y) =
1

cos (2πωn/N)
πηn

(
y

cos (2πωn/N)

)
(C.9)

In other words, yn ∼ N (0, δ2 cos (2πωn/N)2). For the sake of conciseness, we will abbreviate
cos (2πωn/N)) ≡ cω,n. With such a notation, one has yn ∼ N (0, δ2c2

ω,n) ∀ n ∈ J0;N − 1K.
The pdf of <(Hω) is the convolution of all the random variables yn (that have to be summed

in the discrete Fourier transform).

π<(Hω)(x) =
N−1⊗
n=0

πyn(x) (C.10)

Taking the Fourier transform of the last equation allows to simplify the convolutional product:

F
(
π<(Hω), k

)
=

N−1∏
n=0

F (πyn , k) (C.11)

Knowing that the Fourier transform of a Gaussian function of standard deviation σ is also a
Gaussian of standard deviation 1/σ, one can write

F
(
π<(Hω), k

)
∝ exp

[
−−k

2δ2

2

N−1∑
n=0

cos (2πωn/N)2

]
= exp

[
−−k

2δ2N

4

]
(C.12)

Therefore, one finally gets that the Fourier transform of <(Hω) is a random variable following
a centered Gaussian pdf of standard deviation

√
2/(δ
√
N). One can conclude that <(Hω) ∼

N
(
0, δ2N/2

)
. The same conclusion holds for the imaginary part of Hω denoted =(Hω).

We have thus proved that the discrete Fourier transform of a Gaussian random process is
also a random variate whose pdf is a multivariate Gaussian law, both its real and imaginary
parts taken alone being zero-mean Gaussian random variables of standard deviation σ

√
N/2.

From this result, it is worth mentioning that:
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• the measurement noise level directly impacts the value of Hω;
• there is no dependency on the considered angular frequency ω, which is consistent with

the well-known constant Power Spectral Density (PSD) of a white-noise signal;
• the dependency on the number of sampling points in the time domainN seems intuitively

logical as the more data points, the more accurate a Fourier transform of a white noise.
This dependency can be cancelled by normalizing the discrete Fourier transformby 1/

√
N ,

which is done numerically in the MATLAB© fft function.

C.2.2 Probability distribution function of the squared modulus of a random pro-
cess

Now that the distribution ofHω is known, to identify which law follows ‖Hω‖2, we can exploit
the following theorem:

Be [X1; . . . ;Xd] a vector of d random variables such that Xi ∼ N (0, 1) ∀i ∈ J1; dK and all
couples of random variables (Xi, Xj), i 6= j are independent. Then the squared norm of vector
[X1; . . . ;Xd], denoted Y , follows a chi-squared distribution of degree d. In other words:

Y =
d∑
i=0

X2
i ∼ χ2(d) with πY (y) =

(1/2)d/2

Γ(d/2)
yd/2−1e−y/2

where Γ : d 7→
∫
R+ t

d−1e−t dt is the Gamma function.
The real and imaginary components of a Fourier transform indeed correspond to the indi-

vidual Fourier transforms even and odd components of the time domain function. As all func-
tions can be decomposed as a sum of an even and odd function, and since the Fourier transform
is a one-to-one mapping between the time and frequency domains, the lack of correlation be-
tween even and odd parts in the time domainwould imply a lack of correlation in the frequency
domain too. As we deal with a zero-mean white-noise time series, the real and imaginary parts
of its Fourier transform are thus uncorrelated.

As <(Hω) and =(Hω) are both centered Gaussian random variables of standard deviation
δ
√
N/2, one can deduce that the pdf of 2N/σ2‖Hω‖2 is a noncentered chi-squared distribution

of degree 2 with λ = 0. After variable change, one finally obtains an analytical formulation for
the pdf of ‖Hω‖2:

π‖Hω‖2(x) =
e−x/(δ

2/N)

δ2/N
(C.13)

As mentioned in the remarks of the previous paragraph, a 1/
√
N normalization of the Fourier

transforms allows to take off the dependency into the number of time points N .
Therefore, the squared modulus of a zero-mean random process ‖Hω‖2 follows a non-

centered χ2(2) probability distribution conditioned by the measurement noise variance δ2,
whatever the value of ω. In particular, one can note that

E
(
‖Hω‖2

)
= δ2 (C.14)

where E (�) is the mathematical expectation operator. AssumingG is proportional to the iden-
tity matrix, i.e. G = G0I , then one recovers (1.43), which is the adaptation of Morozov’s dis-
crepancy principle to the mCRE framework (in the frequency domain).

C.2.3 Numerical illustrations

To provide a simple numerical illustration of the property described above, let us useMATLAB©

and apply the following steps:

• Monte-Carlo sampling: draw a large number 100000 of 10 s-long randomwhite-noise sig-
nals x(t), having a given sampling frequency fs = 1000 Hz and a given standard deviation
σ = 1.
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• Extract the f0 = 10 Hz component, denoted Xω0 (arbitrary choice) of the (1/
√
N -

normalized) discrete Fourier transform of each signal;
• Use maximum likelihood estimation (MLE) to fit the histogram of <(Xω0), =(Xω0), |Xω0 |

with standard pdfs.

The results are displayed in Fig. C.1, and are in perfect accordance with the previous mathe-
matical developments.
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Figure C.1: Numerical evidence of the probability distribution function followed by the discrete Fourier
transform of white-noise signals.



AppendixD
An interpretation of Kalman filtering from Bayesian

inference

Starting from the following linear state-space dynamical system:{
xk+1 = Axk + Bek + wk

yk = Cxk + vk
(D.1)

with xk, yk, wk, vk respectively refer to the discretized state vector, measurements, model error
noise and measurement noise (all at time step k), let us show that the Kalman filter equations
can also be derived from the Bayesian inference framework.

D.1 Bayes theorem, Markov process and Gaussian pdfs
Let us first rewrite Bayes’ theorem by considering discrete measurements that have been se-
quentially obtained:

π (xk|y0:k) =
π (y0:k|xk)π (xk)

π (y0:k)
(D.2)

where π(�) is the pdf associated with the random variable � and the index (0 : k) denotes all
values over interval [t0, tk].

Then assuming that,

(i) The state vector is a Markov process: π(xk|x0:k−1) = π(xk|xk−1),
(ii) Observations are independent from the state history: π(yk|x0:k) = π(yk|xk),

then one can rewrite Bayes’ theorem as follows:

π (xk|y0:k) =
π(xk, yk|y0:k−1)

π(yk|y0:k−1)
=

π(yk|xk, y0:k−1)π(xk|y0:k−1)

π(yk|y0:k−1)
=

π(yk|xk)π(xk|y0:k−1)

π(yk|y0:k−1)
(D.3)

Therefore, the posterior pdf π (xk|y0:k) only depends on (i) the prior pdf π (xk|y0:k−1) which re-
flects the model quality and (ii) the likelihood pdf π(yk|xk) which reflects the measure quality
as well as the uncertainty propagation into the model. Note that the normalization term (de-
nominator) does not impact much the posterior pdf.

To determine the optimal state xk, the Maximum a Posteriori method can be applied. To do
so, one must explicit the likelihood and prior pdfs. The Gaussian assumption previously made
permits to write those pdfs in the following form:

π(�) ∝ exp

(
−1

2
(�− E (�))T )P−1

� (�− E (�))

)
(D.4)

In other words, the determination of expected values and covariance matrices of the likelihood
and prior pdfs is sufficient to obtain the posterior pdf.
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D.2 Likelihood pdf formulation - mean and covariance
The mean value of the likelihood can be immediately estimated inasmuch as observations are
statistically independent of the state:

E (yk|xk) = E (yk) = E (Cxk + vk) = E (Cxk) (D.5)

as the measurement noise is assumed to be a zero-mean Gaussian variable. Due to the fact that
only one trajectory at time point k is considered, one finally gets:

E (yk|xk) = Cxk (D.6)

Regarding the covariance matrix of the likelihood pdf, one can also use the statistical indepen-
dence between state and observations to directly obtain:

cov[yk|xk] = cov[yk] = E
(

(yk − E (yk)) (yk − E (yk))
T
)

= E
(
vkv

T
k

)
(D.7)

Insofar as vk is a Gaussian random variable having a covariance matrixR, one concludes that

cov[yk|xk] = R (D.8)

The likelihood pdf therefore reads:

π(yk|xk) ∝ exp

(
−1

2
(yk −Cxk)

T R−1 (yk −Cxk)

)
(D.9)

D.3 Prior pdf formulation - mean and covariance
Using the statistical independence between current state and former measurements, one has
directly a simplified expression of the prior pdf mean:

E (xk|y0:k−1) = E (xk) = E (Axk−1 + Bek−1 + wk−1) = E (Axk−1 + Bek−1) (D.10)

as the process noise is assumed to be a zero-mean Gaussian variable. Due to the fact that only
one trajectory at time point k is considered and denoting x̂−k = Axk−1 + Bek−1, the a priori
estimate, one finally gets:

E (xk|y0:k−1) = E
(
x̂−k
)

= x̂−k (D.11)

Following the same process as for the likelihood pdf, the covariance of the a priori pdf reads:

cov[xk|y0:k−1] = cov[xk] = E
(
(xk − E (xk))(xk − E (xk))

T
)

(D.12)

One can therefore conclude that

cov[xk|y0:k−1] = P−k (D.13)

The prior pdf therefore reads:

π(xk|y0:k−1) ∝ exp

(
−1

2

(
xk − x̂−k

)T
(P−k )−1

(
xk − x̂−k

))
(D.14)

D.4 Maximum a Posteriori principle
The substitution of (D.9) and (D.14) into (D.3) enables to rewrite the posterior pdf:

π(xk|y0:k) ∝ exp

{
−1

2

[
(yk −Cxk)

T R−1 (yk −Cxk) +
(
xk − x̂−k

)T
(P−k )−1

(
xk − x̂−k

)]}
(D.15)
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In order to recover the a posteriori optimal state estimate, one intends to apply a MAP principle
to maximize the posterior pdf:

∂ log π(xk|y0:k)

∂ xk

∣∣∣∣
xk=x̂k

= 0 (D.16)

The use of (D.15) allows to write the expression of the a posteriori state estimate based on the a
priori estimate and current measurements:

x̂k =
(
CTR−1C + (P−k )−1

)−1 (
(P−k )−1x̂−k + CTR−1yk

)
(D.17)

This expression can be simplified using the inverse matrix lemma1. All simplifications done,
one obtains:

x̂k = x̂−k + Kk

(
yk −Cx̂−k

)
(D.18)

where Kk is the so-called Kalman gain:

Kk = P−k CT (CP−k CT + R)−1 (D.19)

To have a full correction scheme frommeasurements, an explicit formulation of covariance ma-
trices P−k and Pk is required. Using the notations of Section 4.2.1, one can establish that:

P−k = cov[ε−k ε
−T
k ] with ε−k = xk − x̂−k (D.20)

as the definition of the a priori estimate at point k is derived from the a posteriori estimate at step
k − 1. From a theoretical point of view, it reads:

ε−k = Axk−1 + Bek−1 + wk−1︸ ︷︷ ︸
xk from xk−1

− (Ax̂k−1 + Bek−1)︸ ︷︷ ︸
x̂−k definition

= Aεk−1 + wk−1

(D.21)

As a consequence, an expression of P−k from the state and covariance estimates of the previous
time step is available:

P−k = Acov
[
εk−1ε

T
k−1

]
AT + cov[wk−1w

T
k−1] = APk−1A

T + Q (D.22)

In order to obtain all the KF equations, the correction of the predicted state covariance matrix is
still missing. In other words, one needs to formulate the equation givingPk with respect toP−k .
To do so, it is mandatory to start from the covariance definition of the a posteriori error estimate:

εk = xk − x̂k = xk − x̂−k −Kk(yk −Cx̂−k )

= ε−k −KkCε
−
k −Kkvk = (I + KkC)ε−k −Kkvk

(D.23)

Therefore, the a posteriori state covariance matrix reads:

Pk = (I −KkC)P−k (I −KkC)T + KkRKT
k (D.24)

Substituting the expression of the Kalman gain (D.19) allows to simplify this expression:

Pk = P−k −KkCP−k − P−k CTKT
k + KT

k (CP−k CT + R)Kk

= P−k − P−k CT (CP−k K
T
k + R)−1CP−k

= (I −KkC)P−k

(D.25)

All the Kalman filter equations, for both prediction and correction steps have then be recovered
from the Bayesian inference framework.

1Inverse matrix lemma: A = B−1 + CD−1CT ⇔ A−1 = B −BC(D + CTBC)−1CTB.





AppendixE
Publications and communications

The research work presented in this manuscript has been the subject of publications and com-
munications in conferences that are listed below:

Publications in peer-reviewed journals

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2022c]. “Robust energy-based model updating
framework for randomprocesses in dynamics: application to shaking-table experiments”. Com-
puters and Structures 264.106746, p. 40. doi: https://doi.org/10.1016/j.compstruc.2022.
106746

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2023a]. “A new Kalman filter approach for struc-
tural parameter tracking: Application to the monitoring of damaging structures tested on
shaking-tables”. Mechanical Systems and Signal Processing 182, p. 109529. doi: 10 . 1016 / j .

ymssp.2022.109529

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2023d]. “Merging experimental design and struc-
tural identification around the concept ofmodifiedConstitutive Relation Error in low-frequency
dynamics for enhanced structural monitoring”. Mechanical Systems and Signal Processing (under
review) - available in hal (03878634)
M. Diaz, P.-É. Charbonnel, and L. Chamoin [2023c]. “Fully automated model updating frame-
work for damage detection based on the modified Constitutive Relation Error”. Computational
Mechanics. doi: 10.1007/s00466-023-02382-z

National communications

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2021]. “Towards a fully automated model up-
dating framework for low-frequency dynamics: application to shaking-table testings”. Journée
thématique Identification & Validation de la Fédération Francilienne de Mécanique (F2M). ENSAM,
Paris

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2022e]. “Vers une stratégie robuste et automa-
tisée pour le recalage de modèles en dynamique vibratoire : application au suivi des structures
endommageantes testées sur table vibrante”. 15ème Colloque National en Calcul des Structures
(CSMA 2022). Giens, France

https://doi.org/https://doi.org/10.1016/j.compstruc.2022.106746
https://doi.org/https://doi.org/10.1016/j.compstruc.2022.106746
https://doi.org/10.1016/j.ymssp.2022.109529
https://doi.org/10.1016/j.ymssp.2022.109529
https://doi.org/10.1007/s00466-023-02382-z


186 Appendix E. Publications and communications

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2022b]. “Automated physics-guided data assim-
ilation strategy for model updating in dynamics - Application to the monitoring of structures
tested on shaking tables”. Journée scientifique de l’Institut SEISMParis-Saclay (GIS SEISM). Saclay,
France

International communications

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2022a]. “A new data assimilation framework us-
ing the modified Constitutive Relation Error for online structural monitoring: application to
shaking-table experiments”. 8th European Congress on Computational Methods in Applied Sciences
and Engineering - ECCOMAS Congress 2022. Oslo, Norway

M.Diaz, P.-É. Charbonnel, andL.Chamoin [2022d]. “Towards an automatedphysics-regularized
model updating strategy applied to the monitoring of civil engineering structures in low-
frequency dynamics”. 7th European Conference on Structural Control - EACS 2022. Warsaw,
Poland

M. Diaz, P.-É. Charbonnel, and L. Chamoin [2023b]. “A new physics-guided data assimila-
tion framework for online structural monitoring: application to shaking-table tests”. COMP-
DYN2023 - 9th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics
and Earthquake Engineering. Athens, Greece



AppendixF
Extended abstract in French

Contexte industriel et problématique
L’analyse et la prédiction de la réponse de systèmes dynamiques nécessitent la mise à disposi-
tion de modèles numériques avancés. Ces derniers peuvent être construits directement sur la
base de données ou à partir des équations traduisant les phénomènes physiques sous-jacents.
Quoi qu’il en soit, il est impératif que le degré de représentativité du modèle soit suffisamment
élevé pour son utilisation pratique : ce n’est pas le niveau de complexité du modèle mais le
niveau de confiance que l’on peut avoir en ses prédictions qui est déterminant lorsqu’on le con-
fronte à des données expérimentales.

Comme la plupart des systèmes sont désormais instrumentés avec de nombreux cap-
teurs, les modèles numériques sont directement comparés et augmentés par comparaison aux
mesures collectées. La validation et l’enrichissement du modèle par les données font partie du
paradigme du jumeau numérique, dont les applications sont nombreuses et variées [Chinesta
et al. 2018]. Cet aspect est également mis en exergue au sein du paradigmeDynamic Data Driven
Application Systems - DDDAS [Darema 2004], où l’objectif est d’établir une synergie forte entre
le modèle et les données:

(i) Le système réel est piloté grâce aux prédictions du modèle,
(ii) et le modèle est recalé grâce aux mesures assimilées en temps réel.

C’est dans ce cadre que s’inscrivent les travaux de thèse présentés dans ce mémoire, avec
une application dédiée aux besoins industriels du CEA pour le génie parasismique.

Le laboratoire EMSI du CEA Saclay est équipé de tables vibrantes permettant de reproduire
des chargements sismiques complexes sur des ouvrages de génie civil de taille conséquente. Ces
tables sont connectées et pilotées par des vérins hydrauliques de forte puissance. Ces action-
neurs sont eux-mêmes contrôlés par l’intermédiaire de servo-valves, composants permettant
d’alimenter en débit les vérins à tension électrique donnée.

En pratique, le contrôle de ces actionneurs n’est pas une tâche facile, en raison des nombreux
phénomènes non-linéaires présents dans le système. Si des stratégies de contrôle robustes, cou-
plant contrôle par rétroaction et par anticipation telles que le TVC [Tagawa and Kajiwara 2007]
peuvent être employées, de nouveaux besoins ont émergé ces dernières années, poussant les
techniques de contrôle à leurs limites au détriment parfois de la sécurité de l’installation. Ces
nouveaux besoins pour les essais standards sont aujourd’hui d’atteindre précision, rapidité et
stabilité sans réaliser d’essai d’identification (pré-test) et sans contrainte de niveau d’essai, de
manière à ne pas pré-endommager des structures et d’être capable de simuler un séisme de fort
niveau dès le premier essai.
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Les lois de commande des vérins hydrauliques qui les pilotent n’intègrent pas directement
l’évolution de l’état de santé des structures testées, pouvant pourtant soudainement se dégrader
et conduire à des essais instables, menaçant l’intégrité de l’installation expérimentale [Richard
et al. 2016]. Les stratégies de contrôle implémentées sont actuellement de type "itératives" : les
gains du contrôleur sont réglés essai après essai pour tenir compte de l’endommagement pro-
gressif de la structure, jusqu’à atteindre le niveau de sollicitation initialement ciblé [Le Maoult
et al. 2010; Gang et al. 2013].

L’objectif de cette thèse est de mettre en place un cadre DDDAS pour faciliter et améliorer
le contrôle des tables vibrantes. Pour ce faire, une stratégie d’assimilation de données unifiée
autour du concept d’erreur en relation de comportementmodifiée (ERCm) est développée, per-
mettant de recaler un modèle numérique de la structure testée pour, in fine, régler à la volée les
lois de contrôle en temps réel.

L’erreur en relation de comportement modifiée, fonctionnelle robuste
pour le recalage de modèle a posteriori

L’ERCm est une fonctionnelle d’identification déterministe qui se distingue des fonctionnelles
de type "moindres-carrés" par le terme d’erreur en relation de comportement (ERC) [Chouaki
et al. 1997]. Cette erreur de modèle au sens mécanique fort complète le terme classique de dis-
tance entre les données et le modèle, de sorte à ne plus nécessiter de régularisation au sens de
Tikhonov, dont le choix est toujours a priori et dépendant de l’utilisateur. Dans le cadre ERCm,
on s’affranchit donc du caractère mal-posé du problème inverse par l’intermédiaire d’un in-
dicateur de qualité intrinsèque du modèle. Cela permet de tenir compte simultanément de
l’effet de bruit de mesure (dans la distance aux données), et de l’erreur de modèle (dans le
terme d’ERC). En pratique, l’ERC est construite en distinguant parmi les équations du prob-
lèmes lesquelles sont fiables et lesquelles ne le sont pas. Une fois cette séparation faite, l’ERCm
permet de quantifier à quel point une solution mécanique respectant strictement les équations
fiables du problème (dans notre cas, conditions aux limites, géométries, équilibre dynamique,
position des capteurs) est valable au sens des équations sujettes à caution (dans notre cas, rela-
tions de comportement et proximité aux mesures collectées).

Cette fonctionnelle a largement été utilisée ces 30 dernières années dans la littérature, en
raison de sa forte convexité et de sa forte robustesse au bruit de mesure [Deraemaeker et al.
2002; Allix et al. 2005; Feissel and Allix 2007; Aquino and Bonnet 2019] avec des applications
variées, allant de la détection de défauts dans des structures [Faverjon and Sinou 2009; Char-
bonnel et al. 2013; T. Silva and Maia 2017; Guo et al. 2018; Oliveira et al. 2021], jusqu’à la re-
construction complète de champs paramétriques en élasto-dynamique (lorsque la densité de
points d’acquisition le permet) [Banerjee et al. 2013; Warner et al. 2014; Guchhait and Banerjee
2018], ou l’identification à la volée de comportements non-linéaires [Marchand et al. 2019].

Dans le cadre de ces travaux de thèse, une stratégie d’identification par ERCm a d’abord
été mise en œuvre a posteriori pour traiter des mesures dans le domaine fréquentiel en basses-
fréquences, pour d’abord évaluer la capacité à traiter les données recoltées d’essais achevés. Une
stratégie intégralement automatisée a été proposée pour identifier les paramètres de raideur de
modèles éléments finis de manière robuste et fiable [M. Diaz et al. 2022c; 2023c]. Une atten-
tion particulière a été prêtée pour améliorer le réglage de la fonctionnelle en exploitant le plus
possible la richesse d’informations contenue dans les données:

. La pondération des fréquences de la plage d’analyse est réglée selon le contenu fréquentiel
des données à disposition, grâce à un indicateur modal [Allemang and Brown 2006].

. Unpré-traitement des données par fenêtrage permet d’augmenter la robustesse statistique
au bruit de mesure.

. Une norme de Mahalanobis pour mesurer la distance entre modèles et données est pré-
conisée, intégrant de fait une connaissance de la corrélation des données via la matrice de
covariance du bruit de mesure des capteurs utilisés.
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. Le réglage du paramètre de pondération relative de l’ERC par rapport à la distance aux
mesures est critique dans l’obtention de résultats d’identification pertinents. Plusieurs
stratégies de réglage sont proposées. Un critère de Morozov [Nair et al. 2003] a notam-
ment été formulé explicitement pour l’ERCm. Si des tests de validation sur données
simulées ont montré que les valeurs proposées n’étaient pas parfaitement optimales en
vue de l’identification de paramètres, les propositions faites dans ce mémoire permettent
déjà de trouver un ordre de grandeur cohérent, permettant à l’algorithme de converger.
Reste alors à l’utilisateur à faire quelques tests autour de la valeur fournie pour améliorer
les tendances observées.

Toutes ces contributions ont été validées par une large gammede tests de recalage de raideur
de modèles de structures soumises à des chargements sismiques en pied, à partir de mesures
d’accélération simulées et bruitées.

Pour mettre en évidence la pertinence de la méthode, les mesures acquises lors de la cam-
pagne SMART2013 [Richard et al. 2016] ont été utilisées à des fins de recalage dans le but
d’améliorer la prédiction des fréquences propres de modèles éléments finis à disposition. Ces
premiers résultats concordent avec les résultats d’analyse modale de référence obtenus au CEA
[Charbonnel 2021] et sont donc encourageants dans la perspective d’utiliser l’ERCm en temps
réel pour suivre la signature modale d’une structure endommageante.

Enfin, toujours dans un cadre de recalage a posteriori, une stratégie de placement de cap-
teurs a été proposée dans le but d’améliorer les résultats d’identification par ERCm pour un
budget de capteurs donné [M. Diaz et al. 2023d]. Jusqu’alors, les stratégies de placement de
capteurs optimales étaient dédiées à des fonctionnelles déterministes quadratiques standards.
Ici, on intègre l’ERCm dans le critère de sélection des positions optimales des capteurs. Une
entropie de l’information modifiée par rapport à sa formulation classique [Papadimitriou et al.
2000] permet de limiter les incertitudes des paramètres identifiés par ERCm. Un benchmark
comparatif pour le placement d’accéléromètres sur une structure 3D de type portique à deux
étages a permis de valider la formulation proposée. Des études en perspective ont aussi permis
de quantifier l’incertitude (et la sensibilité) sur les paramètres liée à unmauvais positionnement
des capteurs.

Vers une stratégie d’assimilation de données intégrant l’ERCm: le fil-
tre de Kalman Dual Modifié

Pour répondre à la problématique globale de la thèse, la stratégie d’identification doit être ca-
pable de traiter des données à la volée, d’où la nécessité d’étendre la méthode de recalage a
posteriori précédemment évoquée à un cadre d’assimilation (séquentielle) de données.

Pour ce faire, l’idée évoquée dans les travaux de Marchand [Marchand 2017] consiste à in-
tégrer l’ERCm au sein d’un filtre de Kalman [Kalman 1960; 1964]. En effet, le filtre de Kalman
est le cadre mathématique approprié pour l’assimilation de données: il s’agit d’un estimateur
d’état récursif optimal, dérivé du filtrage bayésien pour des processus markoviens et des vari-
ables aléatoires toutes supposées gaussiennes. En pratique, un schéma de type prédiction par
le modèle - correction par les données s’applique à chaque pas de temps d’assimilation, de
sorte à suivre l’état courant du système. Depuis son introduction dans les années 60, le filtre de
Kalman n’a eu de cesse d’être étendu à des cas d’applications de plus en plus complexes, avec
entre autres:

. la possibilité d’exploiter des opérateurs non-linéaires par linéarisation locale et utilisation
de modèles d’ordre réduit - filtre de Kalman Extended [Hoshiya and Saito 1984; González
et al. 2017]

. la possibilité d’utiliser des opérateurs non-linéaires par régularisation statistique avec
propagation d’un nombre de particules bien choisies à travers les opérateurs non-linéaires
- filtre de KalmanUnscented [S. J. Julier andUhlmann 1997; Wan andVanDerMerwe 2000;
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Mariani and Ghisi 2007], filtre particulaire [Chatzi and Smyth 2009], filtre d’ensemble
[Evensen 2003], filtre S3F [Papakonstantinou et al. 2022a],

. l’extension pour l’identification de paramètres de modèle à la volée - filtres de Kalman
joint et dual [Mariani and Corigliano 2005; Ebrahimian et al. 2015; Astroza et al. 2019a],

. l’extension pour l’identification de chargement de le cas où les mesures ne représentent
que l’état mécanique du système - filtre de Kalman augmenté [Lourens et al. 2012; Ercan
et al. 2023].

L’ERCm n’a été incluse dans un filtre de Kalman que par Marchand avec un changement
de la métrique de l’équation d’observation du filtre de Kalman, pour des problèmes en quasi-
statique et une formulation temporelle de l’ERCm. Autrement dit, les prédictions dumodèle ne
sont plus corrigées pour assurer la correspondance entre l’état mécanique prédit et les mesures,
mais pour minimiser séquentiellement l’ERCm avec les nouvelles mesures acquises.

Dans le cadre de ces travaux, nous proposons une formulation plus robuste, où au lieu de
minimiser la valeur de l’ERCm (qui est dépendante du problème en question, du niveau de
bruit de mesure, du modèle considéré etc.), nous garantissons séquentiellement la correction
des paramètres vers la condition d’optimalité du problème inverse, c’est-à-dire, vérifier que le
gradient de l’ERCm par rapport aux paramètres est bien nul [M. Diaz et al. 2023a]. Ce nouveau
formalisme d’assimilation de données, appelé filtre de Kalman Dual Modifié (MDKF) a été
validé sur la base de mesures d’accélérations simulées sur un portique à 2 étages où un des
murs s’endommage soudainement. Cet exemple académique a permis de mettre en évidence
les forces de la méthode, à savoir :

. la robustesse accrue au bruit de mesure grâce à l’utilisation de l’ERCm,

. la capacité à assimiler très rapidement les données avec précision, à condition de bien
choisir la base de filtre de Kalman implémentée : les filtresUnscented et S3F se sont révélés
les meilleurs compromis dans les applications envisagées,

. la possibilité d’effectuer de l’identification partielle en isolant et recalant uniquement les
paramètres associés aux zones les plus erronées au sens de l’ERC,

. la facilité de réglage des matrices de covariance de biais de modèle et de bruit de mesure,
souvent délicates à gérer pour des filtres de Kalman traditionnels.

La principale limitation de la méthode est liée à l’utilisation d’une formulation fréquentielle
de l’ERCm, qui se heurte à l’assimilation séquentielle des données en temps. Une technique de
fenêtre glissante est mise en place pour assurer la précision fréquentielle requise par l’ERCm, au
prix d’un inévitable délai à l’identification. Si l’on peut penser que cette subtilité algorithmique
pourrait s’avérer limitante dans le cas où l’évolution des paramètres est soudaine, la capacité
à traiter avec le MDKF l’ensemble des données d’accélération acquises lors de la campagne
expérimentale SMART2013 montre le potentiel de la méthode. En particulier, avoir pu suivre
en temps réel l’évolution de la signaturemodale d’une structure complexe en béton armé àpartir
d’unmodèle linéaire (alors que des phénomènes non-linéaires - endommagement et dissipation
entre autres - sont en jeu) souligne la robustesse et l’efficacité de la stratégie proposée.

Application au contrôle adaptatif des tables vibrantes
Pour finalement tenter de répondre à la problématique initiale du sujet de thèse, à savoir
l’amélioration du contrôle des tables vibrantes, une ultime étude exploratoire a été menée pour
s’informer des stratégies de contrôle actuellement implémentées sur table vibrante, au CEA
[LeMaoult et al. 2012] et ailleurs [Shen et al. 2016; Preumont 2018]. En parallèle, une revue des
principales non-linéarités rendant le contrôle des tables complexe a été faite : comportement des
servo-valves avec boucle de contrôle interne, propriétés du fluide variable avec la température
et la pression, frottement de Stribeck au niveau de la tige des vérins, mouvements parasites dans
le cas de vérins combinés, couplage à une structure endommageante. Afin de proposer une
première approche pour un cadre DDDAS, un modèle linéarisé inspiré des travaux de [Conte
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and Trombetti 2000] a été utilisé. En faisant varier la raideur globale de la structure, modélisée
dans cet exemple comme un système masse-ressort amorti, on parvient à reproduire, avec une
stratégie de contrôle par retour d’état, des essais instables comme ceux observés lors de la
campagne SMART2013. Une preuve de concept a montré la pertinence du contrôle adaptatif,
où la commande par retour d’état adaptée en temps réel par les résultats d’identification issus
du MDKF, a pu stabiliser un essai sismique simulé. Une vraie piste de recherche est donc ou-
verte où des stratégies de type "gain scheduling" pourraient désormais permettre d’améliorer
le pilotage de systèmes complexes à partir de modèles identifiés à la volée. A voir évidemment
à quel point les résultats mis en exergue dans cette preuve de concept sont généralisables...

Perspectives d’applications dans le cadre DDDAS et pour le suivi
d’état de santé des structures
Un dialogue essais/calculs complet a été proposé autour du concept d’erreur en relation de
comportement modifiée, en partant d’une vision offline pour aller jusqu’à une proposition de
cadre DDDAS pour le contrôle amélioré de tables vibrantes. Ce cadre bénéficie des avantages
inhérents à l’ERCm, et des efforts notables ont été réalisés pour permettre à un utilisateur non-
initié de l’appréhender plus facilement, avec notamment un intérêt porté aux points sensibles
liés à la résolution des problèmes inverses : richesse des données, pertinence du chargement,
sensibilité paramétrique à la fonction-coût, placement des capteurs et effet des erreurs de posi-
tionnement, prise en compte du biais demodèle. Les résultats d’identification, d’assimilation de
données, et la preuve de concept obtenue pour l’amélioration du contrôle des tables suggèrent
le bien-fondé de l’approche et ouvrent ainsi la voie à des perspectives de contrôle hybride et à
de nouveaux outils pour le suivi de l’état de santé de structures.

Inscrit dans la continuité de ces travaux de thèse, le projet DREAM-ON [Chamoin 2021]
vise à instaurer un cadre DDDAS pour le suivi de l’état de santé de parcs éoliens, basé sur
un approfondissement des outils développés dans cette thèse, en utilisant (i) des mesures par
fibre optique, bien plus riches que celles d’accéléromètres [Chamoin et al. 2022], (ii) des réseaux
de neurones informés par la physique (PINNs en anglais) pour apprendre la forme-même du
comportement mécanique de la structure sans a priori [Benady et al. 2022], (iii) des stratégies
de contrôle avancées de type Model Predictive Control, plus robustes et permettant d’anticiper à
court-terme les évolutions du système [Richalet 1993].

Une autre perspective d’application demeure dans l’utilisation de l’ERCm et duMDKF pour
le suivi d’état de santé de structures en conditions opérationnelles. Des études complémentaires
doivent être menées, notamment sur les capacités d’identifiabilité de l’endommagement sur
des ouvrages de génie civil, en comparaison avec les techniques traditionnelles de Structural
Health Monitoring [Sohn et al. 2003; Barthorpe andWorden 2020]. Une extension doit aussi être
proposée pour tenir compte du fait qu’en conditions opérationnelles, les efforts d’entrée sont
méconnus ou non estimables. De premières pistes pour ce problème peuvent se trouver dans
des stratégies de type filtre de Kalman augmenté [Lourens et al. 2012; Capalbo et al. 2023], ou
par une reformulation de l’ERCm, en séparant différemment les équations selon leur degré de
confiance.
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